Radio Diary 1970

COLLINS
LONDON \& GLASGOW

LAST YEAR 1969

January				
S	5	12	19	26
M	6	13	20	27
T	7	14	21	28
W	1	8	15	22

February
291623 3101724
4111825
5121926
6132027
7142128
181522
April
S 6132027
M 7142128
T 18152229
W 29162330
T 3101724
F 4111825
S 5121926
July
$\begin{array}{llllll}\text { S } & & 6 & 13 & 20 & 27 \\ M & & 7 & 14 & 21 & 28 \\ T & 1 & 8 & 15 & 22 & 29 \\ W & 2 & 9 & 16 & 23 & 30 \\ T & 3 & 10 & 17 & 24 & 31 \\ F & 4 & 11 & 18 & 25 & \\ S & 5 & 12 & 19 & 26\end{array}$
October

| \mathbf{S} | $\mathbf{5}$ | 12 | 19 | 26 | |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| \mathbf{M} | 6 | 13 | 20 | 27 | |
| \mathbf{T} | 7 | 14 | 21 | 28 | |
| \mathbf{W} | 1 | 8 | 15 | 22 | 29 |
| \mathbf{T} | 2 | 9 | 16 | 23 | 30 |
| \mathbf{F} | 3 | 10 | 17 | 24 | 31 |
| \mathbf{S} | 4 | 11 | 18 | 25 | |

May
4111825
5121926
6132027
7142128
18152229
29162330
10172431
August
310172431
4111825
5121926
6132027
7142128
18152229
29162330
November
29162330
3101724
4111825
5121926
6132027
7142128
18152229

March
29162330 310172431 4111825
5121926
6132027
7142128
18152229
June
18152229
29162330
3101724
4111825
5121926
6132027
7142128
September
7142128
18152229
29162330
3101724
4111825
5121926
6132027
December
18152229
29162330
310172431
4111825
5121926
6132027

Easter Day, April 6

THIS YEAR 1970

	January	February	M
S	4111825	181522	18152229
M	5121926	291623	29162330
T	6132027	3101724	310172431
W	7142128	4111825	4111825
T	18152229	5121926	5121926
F	29162330	6132027	6132027
S	310172431	7142128	7142128

April
S $\quad 5121926 \quad 310172431$
$\begin{array}{ll}\mathrm{M} & 6132027 \\ \mathrm{~T} & 7142128\end{array}$
4111825
5121926
6132027
W1 8152229
T 29162330
F 3101724
S 4111825

	July	Aug
S	¢ 121926	29162330
M	6132027	310172431
T	7142128	4111825
W 1	18152229	5121926
T 2	29162330	6132027
F 3	310172431	7142128
S 4	4111825	18152229
	October	November
S	4111825	18152229
M	5121926	29162330
T	6132027	3101724
W	7142128	4111825
T 1	18152229	5121926
F 2	29162330	6132027
S 3	310172431	7142128

June
7142128
18152229
29162330
3101724
4111825
5121926
6132027
September
6132027
7142128
18152229
29162330
3101724
4111825
5121926
December
6132027
7142128
18152229
29162330
310172431
4111825
5121926

Easter Day, March 29

NEXT YEAR 1971

	January	February	March
S	310172431	7142128	7142128
M	4111825	181522	8152229
T	5121926	291623	29162330
W	6132027	3101724	310172431
T	7142128	4111825	4111825
F	18152229	5121926	5121926
S	29162330	6132027	6132027

June

S	25	2
M	5121926	310172431
T	6132027	4111825
W	7142128	5121926
T 1	18152229	6132027
F 2	29162330	7142128
S	3101724	18152229

	July	August	
5	4111825	18152229	5121926
M	5121926	29162330	6132027
f	6132027	310172431	7142128
W	7142128	4111825	18152229
T 1	18152229	5121926	29162330
F 2	29162330	6132027	3101724
53	310172431	7142128	4111825
	October	November	Decem
S	310172431	7142128	5121926
M	4111825	18152229	6132027
T	5121926	29162330	7142128
W	6132027	3101724	18152229
T	7142128	4111825	29162330
F 1	18152229	5121926	310172431
S 2	29162330	6132027	4111825

Easter Day, April 11

BANK \& PUBLIC HOLIDAYS 1970

England, N. Ireland, WalesSt. Patrick's Day (Ireland)Good Friday
Easter MondaySpring Bank HolidayMarch 17March 27
March 30
May 25
Orangeman's Day Holiday (N . Ireland) July 13Summer Bank HolidayChristmas Day (Friday)Boxing DayAugust 31December 25
December 26
ScotlandNew Year's DayGood FridaySpring Bank HolidaySummer Bank HolidayChristmas Day (Friday)
QUARTER DAYS
January 1
March 27
May 25August 3December 25
England, Ireland,

Wales
MidsummerMichaelmasChristmas
ScotlandMarch 25 CandlemasJune 24 Whitsunday
Sept 29 Lammas
Aug 1Dec 25 Martinmas

Feb 2 May 15 Nov 11

Sittings
Dining Terms
Hilary Jan 11-Mar 25 Hilary Jan 21-Feb 12
Easter Apr 7-May 15 Easter Apr 8-Apr 30
Trinity May 26-Jul 31 Trinity Jun 24-Jul 16 Mich'lmas Oct1-Dec 21 Mich'ImasNov4-Nov26 UNIVERSITY FULL TERMS
Oxford
Hilary Jan 18-Mar 14 Lent Jan 13-Mar 13
Trinity Apr26-Jun 20 Easter Apr21-Jun 12
Mich'Imas *Oct11-Dec5 Mich'Imas Oct 6-Dec 4 *Provisional

Radio Diary 1970

COLLINS
LONDON \& GLASGOW

Contents

$$
\begin{array}{rr}
\text { Usefultables } & 8-19 \\
\text { Resistance } & 20-22 \\
\text { Inductance } & 23-26 \\
\text { Capacitance } & 27-28 \\
\text { Time constant } & 29 \\
\text { Alternating current } & 30-35 \\
\text { Sound } & 36-40 \\
\text { Useful networks } & 41-48 \\
\text { Power supplies } & 49-53 \\
\text { Audio frequency } & 54-73 \\
\text { Electro-magnetic waves } & 74-81 \\
\text { Transmission } & 82-87 \\
\text { Reception } & 88-93 \\
\text { Microwaves } & 94-96 \\
\text { Television } & 97-103 \\
\text { Colour television } & 104-115 \\
\text { Feeders and aerials } & 116-123 \\
\text { Ultra-high frequencies } & 124-126 \\
\text { Semi-conductor devices } & 127-142 \\
\text { Receiving valves } & 143-158 \\
\text { Index } & 159-160
\end{array}
$$

© William Collins Sons \& Co. Ltd. 1969

Useful tables

WEIGHTS AND MEASURBS

Linear measure

Cubic or solid measure
Cubic foot $=1728$ cub. inches $\times 16.387 \infty 28317$ cub. centimetres.
Cubic yard $=27$ cubic feet $=21.033$ bushels $=0.7645$ cubic metre.
Shipping ton $=40$ cubic feet of merchandise $=1.13$ cubic metre.
Shipping ton $=42$ cubic feet of timber $=1 \cdot 18$ cubic metre.
One ton or load $=50$ cubic feet of hewn timber $=1.42$ cubic metre.
Ton of displacement of a ship $=35$ cubic feet $=1.02$ cubicmetre
Square or land measure
144 square inches - 1 square foot
9 square feet $=1$ square yard
1210 square yards $=1$ rood
4 roods $\quad=1$ acre (0.407 hectares)
640 acrea - 1 square mile
1 square link -62% square inches (approx.)
1 square chain $-10,000$ square links $=484$ square yards.
33 square yards $=1$ rod of bullding $=27.6$ square metre.
100 square feet = Square of flooring or roofing $=9.3 \mathrm{sq}$. metre.
2721 square feet $=$ Rod of bricklayer's work $=25.4$ sg. metre.

Avoirdupois welght

16 drams	$=1 \mathrm{oz} .(437.5 \mathrm{gr})$.	28 lbs.	$=1 \mathrm{qr}$.
16 ounces	$=1$ pound (lb.).	112 lbs.	$=1 \mathrm{cws}$.
14 pounds	$=1$ stone	$20 \mathrm{cwts}=1 \mathrm{ton}$	

Flusd memoranda

1 cubtc foot of water $=6 \frac{4}{2}$ gals. (approx.) $=62 \frac{1 \mathrm{lb}}{}=7 \cdot 48 \mathrm{U} . \mathrm{S}_{0}$ gal.
3 U.S. gal. $=231$ cub. In. $=0.1337$ cub. ft .
1 lb . water at $62^{\circ} \mathrm{F} .=0.016 \mathrm{cub}$. ft .
J B.I. gal. $=277.418$ cub. in. 1 cwt . of water $=1.8 \mathrm{cu} . \mathrm{ft} .=11.2$ gal.
JBritish $=1 \cdot 2009$ U.S. gal. 1 ton of water $=35 \cdot 9 \mathrm{cu} . \mathrm{ft},=224$ gal.
\boldsymbol{j} Inch of rainfall $=22,622 \mathrm{gals}$, per acre $=100$ tons (approx.).

	lb. $/ 8 \mathrm{al}$.
Acetic acid	$10 \cdot 49$
Alcohol	8
Hydrochtoric acid	12.0
Mercury	135.9
Milk	10.3

Useful tables

METRIC SYSTEM

The unit of length (or lin. measure) is the metre
The unit of surface (or sq. measure) is the area (100 sq. metres)
The unit of capacity is the litre ($1000 \mathrm{cu} . \mathrm{cm}$.)
The unit of mass is the gramme or gram (mass of 1 cc . of water)

Multiples and sub-multiples are denoted by the following prefixes:

Micron is $1 / 1,000,000$ th of a metre
Tonne is $1,000,000$ grams $(1,000 \mathrm{Kg}$.).

Linear measure

1 centimetre $=0.3937$ ins. 1 inch $=2.54$ centimetres
1 metre $\quad=\mathbf{3 9 . 3 7 0 8}$ ins. 1 yard $=0.914$ metres
1 kilometre $=0.6214$ miles 1 mile $=1.6093$ kilometres

Square measure

$$
\begin{aligned}
& 1 \mathrm{sq} . \mathrm{cm} . \quad=0.155 \mathrm{sq} . \mathrm{in} .1 \mathrm{sq} . \mathrm{in} .=6.45 \mathrm{sq} . \mathrm{cm} . \\
& 1 \mathrm{sq.} \text { metre }=1.196 \mathrm{sq.} \text { yds. } 1 \mathrm{sq} . \text { yd. }=0.836 \mathrm{sq} . \text { metres } \\
& 1 \text { hectare }=2.471 \text { acres } 1 \text { acre }=0.4047 \text { hectare } \\
& (N . B .-1 \text { hectare }=10.000 \text { sq. metres })
\end{aligned}
$$

Measure of capacity

$1 \mathrm{cu} . \mathrm{cm}$. $=0.061 \mathrm{cu}$. in. 1 cu. in. $=16.39 \mathrm{cu} . \mathrm{cm}$.
i litre $=0.0353 \mathrm{cu} . \mathrm{ft} .1 \mathrm{cu} . \mathrm{ft} .=28.3$ litres
1 litre $\quad=0.22$ gallons 1 gallon $=4.546$ litres

Meastre of weight

1 millirram $=0.015$ grain 1 grain $=64.8$ milligrams
1 sramme $=0.0352$ ounce 1 ounce $=28.35$ grammes
ikilogram $=2.2046 \mathrm{lbs} .1$ pound $=0.4536$ kilograms
1 tonne $=0.984$ tons 1 ton $=1.016$ tonnes

Useful tables
General Conversions

	To obrain	From	$\underset{b y}{M u l t i p l y}$
Multiply by	To convert	To	
2.54	inches	centimetres	. 3937
3048	feet	centimetres	0328
-914	yards	metres	1-094
1,609 3	miles	metres	.000621
1,853.27	nauitcal miles	metres	. 000539
6.45	square inches	sq. cms.	. 155
. 093	square feet	sq. metres	10.764
836	square yards	sq. metres	1.196
16.39	cubic inches	cub. cms.	. 061
28.3	cubic feet	litres	-0353
6.24	cubic feet	gallons	. 1602
765	cubic yards	cub. metres	1.308
. 3732	pounds (troy)	kilogrammes	2.68
3110	ounces (troy)	grammes	. 03216
${ }^{4} 4536$	pounds (avoir.)	kllogrammes	2.2045
7.000	pounds (avoir.)	grains (troy)	. 000143
28.35	ounces (avoir)	grammes	. 0352
065	grains	grammes	- 1538
50.8	cwt.	kilogrammes	-01968
1.016 .0	tons	kilogrammes	. 000984
4.546	gallons	litres	22
10	gallons of water	pounds	1
-454	pounds of water	pitres	$2 \cdot 202$
$70 \cdot 3$	ib. per sq. in.	gm./sq. cm.	. 0142
$2 \cdot 3$	lb. per sq. in.	head of water (ft.)	. 434
- 7	1b. per sq. in.	head of water (M)	1.4285
. 068	1b. per sq. in.	atmospheres	14.7
1.575	tons per sq. in.	kgm./sq. mm.	. 635
$4 \cdot 83$	lb . per sq. ft.	kgm./sq. metre	- 205
. 593	1b. per cub. yd.	kgm./cub. metre	1.686
16.02	lb. per cub. ft.	kgm./cub. metre	. 0624
. 0999	lb. per gallon	kgm./Utre	10.02
- 133	foot-lb.	K'grammetres	723
-.33	foot-tons	tonne-meires	
${ }_{746}^{1-014}$	horse-power	force de cheval	.9861
746	horse-power	watts	.00134
33,000	horse-power	$\mathrm{ft}-\mathrm{lb} . / \mathrm{min}$.	1/33000
76	horse-power	kg. $-\mathrm{m} / \mathrm{sec}$.	01316
44	watts	$\mathrm{ft} .-\mathrm{lb} . / \mathrm{min}$.	0227
0.1	watts	kg.-m. $/ \mathrm{sec}$.	
0.252	B.Th.U.	kg. calories	3.97
14.7	atmospheres	18./sa. inch	-068
0.90 9.55	German candles	English candies	$\begin{array}{r} 1.1111 \\ .1047 \end{array}$
. 737	joules	ft.-lb.	1.35;
88	miles/hour	ft./min.	. 01135
197	metres/sec.	ft ./min.	00502
1.8	C.H.U.	B.Th.U.	. 5555
.0000208	centipoise	ib. force sec./sq. ft.	48.000

SQuares. Cubes, SQuare Roots and Cube Roots

No.	Square	Cube	$B_{\text {quare }}$ rost	Oube	No.	Square	Cube	Square root	Cube	No.	Squard	Cube	Square root	Cube root
1	- 015	. 0019	- 353	. 56	31	11.390	38.443	1.837	1.50	81	$72 \cdot 250$	$614 \cdot 125$	2.918	$2 \cdot 04$
$\frac{1}{1}$	- 062	.0156	. 600	$\begin{array}{r} \cdot 629 \\ \cdot 721 \end{array}$	3.	$12 \cdot 250$ 13.140	42.875	$1 \cdot 870$	1.51	89	76.562	$669 \cdot 921$	$2 \cdot 958$	$2 \cdot 06$
	- 250	- 1250	. 707	-793	3	14.082	$52 \cdot 734$	1.936	1-65	9	81	729	3	2.08
t	-390	-244	- 790	-855	$3{ }^{\text {a }}$	$15 \cdot 015$	$58 \cdot 185$	1.968	1. 57	97	$85 \cdot 562$	791.453	3.041	2.09
4	$\begin{aligned} & .562 \\ & .765 \end{aligned}$	$\begin{array}{r} \cdot 421 \\ \cdot 670 \end{array}$	$.866$	$\begin{array}{r} \cdot 908 \\ \cdot 956 \end{array}$	4	16	64	2	1.68	1	90.25	857.375 926.859	3.082 3.122	$2 \cdot 11$ 2.13
1	1	1	1	1	$4 \frac{1}{2}$	18.062	76.765	2.061	1.61	10				
11	1.265	1.423	1.060	1.04	4.	$20 \cdot 250$	91.125	$2 \cdot 121$	1.65	10	10	1000	3.162	$2 \cdot 15$
117	1. 562	1.953	$1 \cdot 118$	1.07	48	22.062	107-171	$2 \cdot 179$	$1 \cdot 68$	$10 \frac{3}{6}$	$105 \cdot 062$	$1076 \cdot 89$ 1157.625	$3 \cdot 201$ 3.240	2.17 2.18
1	1.890	2. 599	$1 \cdot 172$	$1 \cdot 11$	5	25	125	$2 \cdot 236$	1.71	10.	115.562	1242.298	$3 \cdot 240$ $3 \cdot 278$	$2 \cdot 18$ $2 \cdot 20$
1	2.250	$3 \cdot 375$ 4.291	1.224	$1 \cdot 14$	$5 \frac{1}{2}$	$27 \cdot 562$	144.703	$2 \cdot 291$	1.73	11		1331	$3 \cdot 316$	$2 \cdot 22$
1	3.062	5.359	1.322	1.20	5	$30 \cdot 250$	$166 \cdot 375$	$2 \cdot 345$	1.76			1331	3.316	$2 \cdot 2$
11	3.516	6.591	1.369	1.23	51	33.062	190-109	$2 \cdot 397$	1.79	$11 \frac{1}{1}$	126.562	1423.828	3.354 3.391	$2 \cdot 24$
2	4	8	1.414	1-26	6	36	216	$2 \cdot 449$	1.81	1118	$138 \cdot 062$	1620.875 1622.234	3.391 $3 \cdot 427$	$2 \cdot 26$ $2 \cdot 27$
$2+$	4.515 5.082	9.595 11.390	1.457 1.500	1.28 1.30	$6 \frac{1}{62}$	39.062 42.250	$\begin{aligned} & 244 \cdot 140 \\ & 274 \cdot 625 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.549 \end{aligned}$	1.84 1.86	12	144	1728	3.464	2. 29
2	5.662	$13 \cdot 396$	1.500 1.541	1.30 1.33	6\%	45.562	307-546	2.598	1.88	124	150.062	$1838 \cdot 265$	3.500	$2 \cdot 31$
2	6. 250	$15 \cdot 625$	1.581	1.35	7	49	343	2.645	1.91	124	$158 \cdot 250$ 162.562	$1953 \cdot 125$ $2072 \cdot 672$	3.535 3.572	$2 \cdot 32$ $2 \cdot 34$
2	$6 \cdot 890$	18.088	$1 \cdot 620$	$1 \cdot 37$						12\%	162.562	2072-672	3.672	
2	$7 \cdot 562$	20.796	1.658	$1 \cdot 40$	$7 \frac{1}{2}$	$52 \cdot 562$	381.078	$2 \cdot 692$	1.93	13	169	2197	$3 \cdot 606$	$2 \cdot 35$
21	$8 \cdot 265$	23-763	1.695	$1 \cdot 42$	74	$56 \cdot 250$	421.875	$2 \cdot 738$	1.95					
3	9	27	1-732	$1 \cdot 44$	$7 \frac{1}{8}$	$60 \cdot 062$	$465 \cdot 484$	$2 \cdot 783$	1.97	$13 t$	175-562	$2326 \cdot 203$	3.640	2.36 2.38
37	9.765	30-517	1.767	1.46	8	64	512	2.828	2	13현	189.082	$2460 \cdot 375$ $2899 \cdot 609$	3.675 3.710	$2 \cdot 38$ $2 \cdot 39$
$3 \frac{1}{2}$	$10 \cdot 562$	34-328	1.802	1. 48	$3 \frac{1}{6}$	68.062	561.515	2.872	$2 \cdot 02$	14	198	2744	3.742	2.41

Useful tables

Trigonometrical Ratios

Anols		Sine	Tangent	Cotangent	Cosine	1.5708	90°
$\begin{gathered} \text { Deg. } \\ 0^{\circ} \end{gathered}$	$\begin{gathered} \text { Rad. } \\ \hline 0 \end{gathered}$						
		0	0	∞	1		
-5	.0087	-0087	. 0087	114.6	1	1.5621	89-5
1	. 0175	-0175	-0175	57.2900	. 9998	1.5633	89
1-5	. 0262	-0262	-0282	38.19	-9997	1-5446	88.5
2	.0349	-0349	-0349	$28 \cdot 6363$	-9994	1.6359	88
$2 \cdot 5$	-0436	-0436	-0437	22.90	. 9990	1.5272	$87 \cdot 5$
8	-0524	-0523	. 0524	19-0811	-9986	1-5184	87
$8 \cdot 5$. 0611	. 0810	-0612	16.35	. 9981	1.5097	86.5
4	-0698	-0698	-0699	$14 \cdot 3006$	-9976	1-5010	
4.57	-0785	-0785	. 0787	12.71	-9969	1.4923	85.5
5	. 0873	-0872	. 0875	11.4301	- 9962	1.4835	85
$5 \cdot 5$	-0960	-0958	-0963	10.39	-9954	1.4748	84.5
6	-1047	- 1045	-1051	$9 \cdot 5144$. 9945	1.4661	84
6.5	-1134	- 1132	-1139	$8 \cdot 7769$	-9936	1.4573	$83 \cdot 5$
7	- 1222	- 1219	- 1228	$8 \cdot 1443$	-9926	1.4486	83
$7 \cdot 5$	-1309	- 1305	- 1317	$7 \cdot 5958$	-9914	1.4399	$82 \cdot 5$
8	-1396	-1392	-1405	7-1154	-9903	1.4312	82
$8 \cdot 5$	-1484	- 1478	- 1495	$6 \cdot 6912$	-9890	1.4224	81.5
9	- 1571	- 1564	-1584	6.3138	-9877	1.4137	81
$9 \cdot 5$	-1658	$\cdot 1650$	$\cdot 1673$	5.9758	$\cdot 9863$	$1 \cdot 4050$	80.5
10	- 1745	$\cdot 1736$	- 1763	$5 \cdot 6713$	-9848	1-3963	80
10-5	- 1833	- 1822	- 1853	5-3955	. 9833	$1 \cdot 3875$	79-5
11	- 1920	-1908	- 1944	$5 \cdot 1446$. 9816	$1 \cdot 3788$	75
11.5	-2007	-1994	-2035	4.9152	. 9799	$1 \cdot 3701$	78.5
12	-2094	- 2079	-2126	$4 \cdot 7046$	-9781	1-3614	78
$12 \cdot 5$	- 2182	- 2164	-2217	4.5107	. 9763	1-3526	$77 \cdot 5$
13	-2269	-2250	-2309	$4 \cdot 3315$. 9744	$1 \cdot 3439$	77
13-5	-2356	- 2334	-2401	$4 \cdot 1653$	-9724	$1 \cdot 3352$	76.5
14	-2443	-2419	-2493	4.0108	. 9703	$1 \cdot 3285$	76
$14 \cdot 5$	-2531	- 2504	-2586	$3 \cdot 8667$	-9681	$1 \cdot 3177$	75.5
15	- 2618	- 2588	- 2679	3.7321	. 9659	1-3090	75
15-5	. 2705	- 2672	- 2773	3-6059	. 9636	$1 \cdot 3003$	74.5
16	- 2793	. 2756	-2867	3-4874	. 9613	1.2915	74
16.5	-2880	- 2840	- 2962	$3 \cdot 3759$	-9588	1.2828	$73 \cdot 5$
17	-2967	- 2924	-3057	$3 \cdot 2709$	- 9563	1.2741	73
17-5	-3054	- 3007	-3153	$3 \cdot 1716$	-9537	1.2654	72-5
18	-3142	- 3090	-3249	3.0777	-9511	1.2566	72
$18 \cdot 5$	-3229	- 3173	-3346	$2 \cdot 9887$	-9483	1.2479	71.5
19	-3316	-3256	-3443	$2 \cdot 9042$	-9455	1.2392	
$19 \cdot 5$	-3403	- 3338	-3541	$2 \cdot 8239$	- 9426	1-2305	70.5
20	-3491	-3420	-3640	2.7475	- 9397	1-2217	7
		-3502		2-6746	. 9367	$1 \cdot 2130$	69-5
21	-3665	-3584	-3839	$2 \cdot 6051$. 9336	1.2043	
21.5	-3752	-3665	-3939	2 -5386	. 9304	1-1956	68.5
22	$\cdot 3840$	- 3746	. 4040	$2 \cdot 4751$. 9272	1.1868	68
		Cosine	Co-tan-	Tan-	Sine	Rad.	Deg.
			g			Ang	

Useful tables
Trigonometrical Ratios

Useful tables

Looarithms

	0	1	2	3	4	5	6	7	8	9	13	5	7
10	0000	0043	0026	0128	0170	0212	0253	0294	0334	0374	12	21	29
11	0414	04.53	0442	0531	0569	0607	0645	0882	0719	0755	11	19	2686
12	0792	0828	0864	0899	0934	$0 ¢ 69$	1004	1038	1072	1106	10	17	2431
13	1139	1173	1208	1239	1271	1303	1335	1367	1399	1430	310	16	2389
14	1461	1492	1523	1563	1684	1614	1644	1673	1708	1732	9	16	2197
15	1781	1790	1218	1847	1975	1903	1931	1959	1987	2014	38	14	2025
16	2041	2068	209B	2122	2148	2175	2201	2227	2253	2279	8	13	1884
17	'304	3330	2355	2380	2180	2430	2485	2480	2504	2529	27	12	1728
18	2553	2577	2601	262 K	2648	2672	2695	2718	2742	2785	7	12	1621
19	2788	2810	2833	2866	2878	2900	2923	2985	2967	2989	27	11	1620
20	8010	3032	3054	3075	3096	3118	3139	3160	3181	3201	26	11	1519
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	A	10	1418
22	3424	3444	3464	3483	3502	3522	3541	35A0	3579	3598		10	1417
23	3617	3 A36	3655	3674	3692	3711	3729	3747	3766	3784		9	1817
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3982	25	9	1216
25			4014	4031	4048	006	4082	099	4116	4133	25		1215
26	4150	4166	4183	4200	4218	4232	4249	4265	4281	4298	25		1116
27	4314	4330	4346	4362	4378	4393	4409	4428	4440	4456	25		1114
28	1472	4487	4502	4518	4533	4548	1564	4579	4594	4609	2 ¢		1114
29	1684	4639	4654	4669	4683	4698	4713	4728	4742	4757	14	7	1013
30	477	4786	4800	4814	4829	4843	4857	4871	4886	4900	14		1018
31	4914	4928	4942	4958	1969	4983	4997	5011	5024	5038	14		1012
32	5051	5085	6079	5092	5106	5119	5132	5145	51511	5172	14		912
33	5185	5198	6211	5224	5237	5250	5263	5276	5289	¢302	1 4	6	12
34	5315	5328	5340	5353	\$366	5378	5391	5403	5416	5428	1	6	11
35	5411	5453			8490		5514	5527	5839	5651	1	6	11
36	5563	5575	5587	6599	5611	5623	5635	6647	5658	6670	14	6	11
37	5882	5691	570月	5717	5729	5740	5752	5783	5775	5786	18	6	10
38	5798	5809	5821	6832	5843	5865	5868	5877	5888	5899	18	5	10
39	6911	5922	5938	5944	5965	5968	5977	5988	5999	6010	18	5	10
1	3021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1		810
41	B128	6138	6149	6160	6170	6180	6191	6201	6212	6222	18	5	$7 \quad 9$
42	6232	6243	6283	6263	. 6274	5284	A294	t304	6314	6325	18	5	79
43	6335	6345	6355	6365	6375	6885	6395	6405	6416	6425	13	5	79
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	18	5	79
4	6532	6542	6561	6561	6571	6580	6590	6599	6609		13		79
46	6628	6637	6646	6856	6665	6775	6884	6693	6702	6712	18	5	78
47	6721	6730	6739	6749	6788	6717	6776	6785	6794	6803	19	5	68
48	6812	6821	6830	6839	6848	6857	6868	6875	6884	6893	18		68
49	6902	6911	6920	6928	6937	6946	6965	6964	6972	6981	18	4	68
50	6990	699	700	7016	702	033	7042	7060	7089	7067	18	4	68
-	7076	7084	7093	7101	7110	7118	7126	7135	7143	7162	18	4	68
52	7160	7168	7177	7185	7193	702	7210	7218	7226	7236	12	4	67
53	7243	7251	7259	7267	7275	728		7300	7308	7316	12	4	61
54	7924										12	4	67

Note: Ditferences 2, 4, 6, 8 obtalaed by interpolation.

Useful tables

LOGARITHMS

	0	1	2	3		5	6	7	8				5		
55	740	7412	7419	7427	7435	744	7461	㖪	74			12			
86	7482	7490	7497	7505	7513	7520	7528	7536	75			1.	4		
87	785	7566	7574	7582	7589	7597	7604	761	76	27			4		
58	763	7842	7649	7657	7664	7672	7679	788		01			1		
69	7709	7716	7723	7731	7738	7745	7752	77	7787	74		12	4		
60				7803		7	78	7832							
61	785	7860	7868	7878	7882		7896	7903	7910	17			4		
62	79	7931	7938	7948	7952	59	7986	797	7980	7			3		
63	7993	8000	8007	8014	8021	8028	8035	8041	80	8085			3		
64	8082	8069	8075	8082	8089	8096	8102	8109	8116	8122			3		
65									81						
66	8195	R202	8209	8215	A222	8228	8235	8241	824						
67	826	82	R274	8280	R287		8299	8306	831	8319			3		
68	8325	8331	8338	8344	8351	8357	8383	8370	837	8382			3		
69	8388	8395	8401	8407	8414	8420	8426	8432	8			12	3		
70				8470	8476	8482		8484	8500						
71	8513	8519	8525	8531	8537	8543	8549	8555	8581	8567		12			
72	8673	R579	8585	8591	8597	8603	8609	8615	8621	8627		2	3		
73	8633	8639	8645	8651	8857	8663	8669	8675	8681	8686		12	3		
74			8704	8710	8716	8722	872	8733	8739	8745		12			
76	3808	881	8820	8825		8837		8848	88						
77	3865	8871	8876	8882		8893	8899	8904	8910	915					
			8932	8938		8949		8980	5						
79	8978					9004	90	15	9020	9025		2			
	9085	9090	9096	9101	9106	9112									
82	9138	9143	9149	9154	9159	9165	9170	75	80						
83	9191	9196	9201	9208	9212	9217	9222	9227	9232	38					
84	9243		9253		9283	9269	9274	9279	9284	9289		2			
	93	935	9355	9360	9385	9370	9375	9380	9385	9390					
	93	94	9405	941	9415	942	42	94	9436	9440					
88	9445		9	9460	946	9469	9	9479	9484	9489					
89	9494						952		9533	9538		01	2		
91	9590	9	9800	9605	9609	9614	9619	24	9628	33					
92	96	9643	9647	9652	9657	9661	9868	9671	9675	80					
8	9685	9689	9694	9899	9703	9708	9713	9717	9722	27			2		
94	973	97		974		9754	9759	9783		9773		1	2		
	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818					
,	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863			2		
97	9868	9872	9877	9881	9886	9890	9994	9899	9903	9908			2		
88	9912	9917	9921	9926	8930	9934	9939	9943	9948	9952		01	2		
	9956	996	9965	9969	997	9978	9983	9987		9996		01	2		

Note: Common logarithms $=$ hyperperbolic logarithme $\times 0.434 .29$.

Useful tables

ANTILOGARITHMS

	0	1	2	3	4	5		7	8	9	1		5		9
-0	1								19			1	1		
- 0	1023	1026	1028	1030	1033	1035	1088	104	1042	1045		1	1		
. 02	1047	1050	1052	05	1057	1058	1082	106	1067	1069		1	1		
.03	1072	107	1078	1078	1081	108	1086	1089	1091	1094					
-0	1096	1098			1107				17	19	0	1	1		
. 05	112		112	11								1	1		
-	114	1151	118	115	1159	1161		1167	1169						
. 07	1175	117	118	1183	1188	1189	1191	1194	119	1199					
-08	120	120		1211	1213	1216	1219	1222							
-09	123			12				126			0	1	1		8
- 10	12											1			
-11	128	129	12	12	1300	13	1308	1309	131			1			
12	181	132		13	330	13	1337	1340	1348	1346		1			
$\cdot 13$	1349	1362		1308	1381	368	88	1371	137	77			2		
$\cdot 1$	1880			-	1393			1403	1406	09	0	1	2		8
-15	1											1			8
- 16	1445	1449	1452	145	1459	1462	1466	1469	1472	1476					
$\cdot 17$	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510			2		
-18	1514	1517	521	1524	1528	1531	1535	1588	1542	1545					
-19	15		1856				157				0	1	2		
20	158	15	15		1600	1603	1607	1611		18			2		
-2	16	1626	1629	1633	1637	1641	1644	1648	165	1658					
. 22	186	1663	1667	1671	1675	1679	1683	1687	1690	694					
$\cdot 2$	169	1702	1706	1710				172	1730	3					
- 2	173			1750											
-25	17	17	1786	1791											
	182	142	182	1832	837		8,	1849	185						
-27	196	186	187	1876	1879	8	188	1892	189						
-28	190	1910	1	1919	1923	28	32	198	1941	194					
2	196		59				77	1982			0	1	2	3	
. 3			205				2070	207							
. 3			209		210	2113	2118	2123	21	2138					
. 83	213	2148	2148	2153	2158	2163	2168	2178	21	2188					
-34	218	21	2198	2208							1	2	8		
$\cdot 3$															
.36	228		2301	230	2312	2817	2329		233	39					
-37	234	2350	2355	2380	2366	2871	2377	298	2388	2893					
.38	239	210	410	2416	2421	2427	2432	2438	2449	2410					
-39	245		2466								1	2	3		
40	251						47		2589						
41	2570	25713	2582	2588		2600	2606	2612	2618	202					
- 42	2630	2636	2642	2649	2655	2661	2667	2873	2879	2685					
43	269	28	270	-2710	2716	2723	2729	2735	2742	48					
44											1				
	288	28	2897			17									
47	295	295	2986	29		2985				13					
48	302	302				3055				83		2		5	
												,		5	

Note: Differencea, 2, 4, 6, 8 obtatned by interpolation

Useful tables

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	3	79
. 50	31		3177			3199				3228		24	
-51	3236	324	3251	325		32	3281	32	920	3304	1		
- 62	3311	331	3327	333		33			337	3381	1		57
- 54	${ }_{34}^{33}$	33476	3404	34	4420		3436	3443	348	3459			
. 55													${ }^{6} 7$
${ }^{-56}$	363	3639								3707	1		
- 57	371	3724	373	37	375	37	376		3784	3793			48
-58	3802	3811	38		939					38	1		48
- 59	389	3899	390	3917	3926	3936	3945			39	1	,	3
-60	3981	3990	39		40	1	40		4086	$4!04$	1	38	${ }^{6} 88$
$\cdot 61$	\$074	408	409	4102	411	4121	413		418	4159		$3{ }^{3}$	8
$\bullet 62$	4168	417	4188	4198	1207	4217	4227	位	42	4256		3 ह	5
-63	4266	4278	4285	4295	4305	4315	432	4335	434	4358			
$\cdot 64$	4365	4375	4385			416				4457		,	S
-8B	4487	447	4487	4498	4508	4K19	452	4539	456	4880		35	5
	4571	4581	4592	03	4613	4624							
-67	4677	4688	4698	4710	721	4732	47	77	476	4775	1	35	5
	4786	4797	4808	4819	831	4842	485		487				B
-69	4898	4908	4920	4932	943	4955	96	12	4988	5000	1		8
.70	50	5023	6035							6117	1	4	8
	5128	61	5152	516	6176					5236			8
	52				529	6309	5321	6333	B34		1		8
$\cdot 73$	5370			5408	d20	ס433	6445						8911
$\cdot 7$	548	5508	5521	56	8546	65	5572	5585	659	5610	1		8
.75	5623	5838											
-76	5754												7.912
.77	6888	590	5916	5929	${ }^{5843}$	5957	597			3012		47	710
	60		6053	6067	6081	6095	610		613	-			7
79	61	6180	6194	6209	6×2	3237	6252	626م	6281	629		47	710
$\cdot 80$	6310	6324	63	63	63	6383	639			644		4	71013
-81	64.57	6471	64	650	651	6831	654	856	657	8592			8
-82	6607	662	6837	6853	66	6683	B8	871		6745		58	811
-83	6761	67					8866	3871	687	600		58	811
$\cdot 84$	69	6934						7031	7047	06	2	68	811
-85	707			712							2	68	812
									731	78		68	812
$\cdot 87$	7413	7480	44				516	73	755	7568	2		912
	758		7621	738				77	7727	7745			912
-89	77	7780	7798	7816		7852	7870	7889	7907	7925	2	69	91316
.90	794				01				809	8110	2		913
.91	8128	814	16									69	913
$\cdot 92$	8318	8337	8356	837	839					8492	2	610	14
.93	8511	8531									2	610	14
-94	8710	8730	870	-		d	8831	8801		892	2	610	1418
-95												310	15
	9120	91								311	2	611	115
-	y333	935	9376		9619	9441				9528	2	711	11520
-98	9550	957	959	981	938	61	968			, 0	2	711	11020
												711	116

Hoce: Hyperbolic logarithms $=2.3026 \times$ common logarithmg

Copper Wire Table

$\begin{aligned} & \text { un } \\ & \underset{\sim}{2} \end{aligned}$	Size-bare				Weight (lbs.) per 1000 yds .		
	Diameter		Section area				
	in.	mm.	in. ${ }^{2}$	mm. ${ }^{2}$	Enam.	Enam. S.S.C.	Lew- mex M.
10	. 128						
12	-104	$2 \cdot 641$	00850	$5 \cdot 480$			
14	. 080	2.0320	. 00503	$3 \cdot 243$	59.00		. 00
16	. 064	1.6256	-00322	2.0755	$37 \cdot 69$	38.07	
18	-048	1-2192	. 00181	$1 \cdot 1675$	21.22	21.43	21.30
20	-036	-9144	. 001018	- 6567	11.96	12-10	12
21	. 032	- 8128	. 000804	-5189	$9 \cdot 467$	9-591	. 518
22	. 028	. 7112	-000616	- 3973	7-257	7-329	$7 \cdot 30$
23	. 024	- 6096	-000452	- 2919	$5 \cdot 341$	5.406	5.38
24	. 022	- 5588	-000380	-2453	$4 \cdot 494$	4 -560	4
25	. 020	- 5080	-000314	- 202	3.719	$3 \cdot 755$	3.77
26	- 018	- 4572	-000254	-1642	$3 \cdot 016$	$3 \cdot 06$	$3 \cdot 0$
27	-0164	- 4166	-000211	-1363	$2 \cdot 504$	$2 \cdot 55$. 5
28	. 0148	- 3759	-000172	-1110	2.043	$2 \cdot 089$	$2 \cdot 08$
	. 0136	- 3454	. 000145	-0937	1.726	1.763	. 753
30	- 0124	- 3150	-000121	. 0779	1.436	1.474	1.459
32	- 0108	-2743	-0000916	. 0591	1.090	$1 \cdot 222$	$1 \cdot 11$
34	-0092	- 2337	. 0000665	. 0429	-792	-805	809
36	-0076	-1930	. 0000454	. 0293	-543	565	. 554
	-0060	- 1524	. 0000283	. 0182	-339	358	3
40	-0048	- 121		- 011	21		

Length/ohm

Wire Tables and Resistance Wires

	\ddagger Turns/inch		\ddagger Turns/cm		Resistance wire (ohms/yd)		
S.W.G.	Enam. or lewmex	$\begin{aligned} & \text { Enam. } \\ & \text { S.S.C.or } \\ & \text { D.S.C. } \end{aligned}$	Enam. or lewmex	$\begin{aligned} & \text { Enam. } \\ & \text { S.S.C.or } \\ & \text { D.S.C. } \end{aligned}$	Eureka $15 \cdot 5^{\circ} \mathrm{C} .$	Ni chrome (3) $500^{\circ} \mathrm{C}$.	Mangain @ $15 \cdot 5^{\circ} \mathrm{C}$
10	$7 \cdot 5$	$7 \cdot 4$	2.95	2.91	. 054	-	
12	$9 \cdot 2$	$9 \cdot 1$	$3 \cdot 62$	$3 \cdot 58$	-082	-	
14	$12 \cdot 0$	11.8	4.72	4.64	-138	. 31	. 123
16	14.7	$14 \cdot 5$	5.79	5.71	- 216	- 50	-198
18	19.5	$19 \cdot 1$	$7 \cdot 68$	$7 \cdot 52$. 384	. 89	. 311
20	$25 \cdot 7$	$24 \cdot 8$	$10 \cdot 12$	9.76	. 682	1.59	- 605
21	$28 \cdot 8$	$27 \cdot 6$	11.34	$10 \cdot 87$. 863	1.98	. 736
22	$32 \cdot 5$	31.2	$12 \cdot 78$	12. 28	$1 \cdot 13$	$2 \cdot 61$	1.03
23	$37 \cdot 5$	36	14.77	14.77	1.53	$3 \cdot 55$	1.40
24	41	39	$16 \cdot 14$	15.35	1.83	$4 \cdot 22$	$1 \cdot 62$
25	45	42	17.72	$16 \cdot 54$	$2 \cdot 21$	$5 \cdot 13$	1.96
26	50	47	19.68	18.51	$2 \cdot 73$	$6 \cdot 30$	2.48
27	54	51	21.25	20.07		$7 \cdot 62$	
28	60	56	23.62	22.04	4.04	9.32	$3 \cdot 53$
29	65	60	25.59	23.62	4.78	11.0	$4 \cdot 17$
30	70	66	27.66	25.98	5.75	$13 \cdot 3$	$4 \cdot 85$
32	80	74	31.50	$29 \cdot 13$	$7 \cdot 58$	$17 \cdot 5$	6.73
34	93	85	36.61	33.47	$10 \cdot 4$	24.2	9.27
36	112	99	$44 \cdot 10$	38.97	$15 \cdot 3$	$35 \cdot 4$	14.08
38	140	117	$55 \cdot 12$	46.07	$24 \cdot 6$	57.7	$21 \cdot 80$
40	172	137	$67 \cdot 71$	53.94	38.4	$88 \cdot 5$	$34 \cdot 45$
42	206	155	81.00	61.02	$55 \cdot 3$	130	$48 \cdot 68$

Resistance

Ohms law

The current in a dec. circuit is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit. $\quad I=E \mid R$
Power, in watts, in dec. circuit is given by the product of voltage and current. $W=E \times I$. Combining this formula with Ohm's law, gives also: $W=E^{2} / R$, or $W=I^{2} R$ The chart combines the quantities $\mathrm{R}, \mathrm{E}, \mathrm{I} \& \mathrm{~W}$, so that, if any two are known, the remaining two can be found.

CIRCUIT FORMULE

Resistors in series, $R \mathrm{~T}=+R_{1}+R_{2}+R_{3}+\ldots$ etc.
Resistors in parallel, $1 / R \mathrm{~T}=1 / R_{1}+1 R_{2}+1 / R_{3}+\ldots$ etc.

Star or delta transformation
If a network has three terminals, then, no matter how complicated, it will resolve into a star or delta.

Star to delta

$R a=R_{1}+R_{3}+R_{1} R_{\mathrm{o}} / R_{\mathrm{z}}$
$R b=R_{\mathrm{y}}+R_{\mathrm{z}}+R_{2} R_{3} / R_{\mathrm{z}}$
$R c=R_{1}+R_{2}+R_{1} R_{2} / R_{3}$

Delta to star
$R_{1}=R a R c /(R a+R b+R c)$
$R_{2}=R b R c /(R a+R b+R c)$
$R_{3}=R a R b /(R a+R b+R c)$

Resistance of materials
$R=\rho / / A, \rho$ specific resistance, $/$ length, A cross sectional area of conductor.

Material	$\begin{aligned} & \text { Resistivity, } \rho, \\ & \text { at } 0^{\circ} \mathrm{C} . \end{aligned}$		Resistivity relative $t o$ copper	Temperature coefficient
	Microhms /cm.cub	Ohms/ circ. mil. ft.		
Aluminium	$2 \cdot 62$	15.75	1.65	. 0042
Constantan	49.0	294.0	$30 \cdot 8$	-00002
Copper (standard)	1.59	9.56	1.0	-0043
Copper (hard drawn)	1.60	9.62	1.02	. 0041
Eureka	48.0	288.0	300	. 00004
Gold	2.20	13.23	1.38	. 0037
Lead	19.8	118.8	12.5	. 0041
Mercury	94.1	$565 \cdot 2$	59.2	. 00086
Nickel (drawn wire)	9.9	59.5	$6 \cdot 30$. 0033
Nichrome	109.0	657.0	68.5	. 00015
Platinum (drawn)	11.0	$66 \cdot 2$	6.92	. 0037
Silver	1.47	8.84	. 924	-0040
Steel (hard)	$45 \cdot 6$	2740	28.7	-0016
Tungsten (drawn)	5.42	$32 \cdot 6$	3.41	. 0051
Zinc	$5 \cdot 38$	$32 \cdot 3$	$3 \cdot 38$. 0040

Resistance varies with temperature within $110^{\circ} /-85^{\circ} \mathrm{C}$. according to $R t=R o(1+a(T-25)) . R t$ is resistance at $T^{\circ} \mathrm{C}_{\text {. }}$, $R o$ reference resistance at $25^{\circ} \mathrm{C}$., a the temperature coeff. $=(\triangle R / R o) / \triangle T$.

Carbon resistors

a is -ve, i.e. R falls as T rises; -.006 to $-.00012 /^{\circ} \mathrm{C}$.
R falls with applied voltage about $-0.5 / \% 100$ volts.

Skin effect at H.F.

Due to changing magnetic field when passing a.c. current crowds to the conductor surfaces.

Skin depth of $36.8 \%(1 / \varepsilon)$ of surface current at $d=5033$ $\sqrt{\rho / \mu f \mathrm{mc} \text {.; } \rho} \rho$ in ohms $/ \mathrm{cm}$. cube, μ permeability, f in Hz. R $_{H F}=\rho / d P \Omega / \mathrm{cm}$, where P is perimeter in cm . In copper, $d=6.62 \sqrt{f, R}=261 \sqrt{ } f 10-\% / P$.

Resistor colour code
Resistors are marked by a colour code painted on in either of two methods. (i) The first colour (A) occupies the body, the second colour (B) forms the tip or end,

Colour no.	
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Grey	7
White	9

(ii) Three bands of the appropriate colour may be painted as three successive rings placed to one end of the resistor.

A fourth band (D) of gold or silver denotes tolerance of $\mathbf{5 \%}$ or 10% respectively. If no fourth band, the tolerance is -20%, e.g. an all brown resistor would be 110Ω, a blue/ grey/red 6.8 K , a red/black/green $2 \mathrm{M} \Omega$.

Preferred values

These values follow a roughly logarithmic scale at 20% increments thus: $\mathbf{1 0}, \mathbf{1 2}, 15,18,22,27,33,39,47,55,68,82$ -repeating in multiples of 10 . e.g., 470, 4,700, 47,000.

Inductance

When current in a conductor changes, the magnetic field associated with it also changes creating a back e.m.f. which opposes the original change of current. The value of the back e.m.f. created by unit rate of change of current is a measure of the self-inductance, or inductance (L) of the circuit. The unit is the henry, which is the inductance of a circuit producing a back e.m.f. of 1 volt when the current changes by 1 ampere in 1 second.

Mutual inductance

The changing magnetic field in one circuit may induce an e.m.f. into a neighbouring circuit; the amount of e.m.f. produced depends on the mutual inductance (M) between the circuits. It is defined similarly to self-inductance, viz., two circuits have a mutual inductance of 1 henry when a change of current of 1 ampere per second in one circuit induces an e.m.f. of 1 volt into the other.

Induced voltage expressions

Self inductance, $e=-L(d i / d t)$ volts. mutual inductance $e_{9}=-M / d i / d t$) volts.
$M=K \sqrt{L_{1} L_{2}}$, where K the coupling coeff. is (total flux due to i_{1})/(flux producing e_{2}).

Energy stored in magnetic fields is $T=L I^{2} / 2$ joules.

Inductances in series

Inductors connected in series without their magnetic fields affecting each other have effective inductance, Leff. = $L_{1}+L_{2}$. If their fields do interact, they possess a mutual inductance, M, the fields may either aid or oppose each other. When the fields aid, the total inductance, Leff. = $L_{1}+L_{2}+2 M$. Where they oppose, Leff. $=L_{1}+L_{2}+2 M$.

Measurement of mutual inductance

From the two previous equations, if L_{Δ} and $L_{0}=$ total inductance when aiding and opposing respectively, it follows that $M=\left(L_{\Delta}-L_{0}\right) / 4$, and this provides a convenjent method of finding M. The coils are first connected up in one way and their total inductance measured; then the connection to one coil is reversed, and the measurement made again. This gives L_{Δ} and L_{0}, and hence M.

Inductance

Inductance in circuits

In circuits containing L and R, the current does not rise instantaneously to Ohms law value of $E / R \mathrm{amps}$ because of the back e.m.f. e. The current found by solving $(E-L$ di/dt) $=R i$, viz. $i=(1-\varepsilon R t / L) . E / R \mathrm{amps}$. At $t=$ L / R secs., $i=63 \% E / R$. If E volts a.c. at frequency f cycles $/ \mathrm{sec}$. is applied, the back e.m.f. opposes E, this opposition to a.c. flow is termed inductive reactance ($X \mathrm{~L}$) If $i=I \operatorname{Sin} 2 \pi \mathrm{ft}$. then $e=-\boldsymbol{L}(d i / d t)=-2 \pi f L I \operatorname{Cos} 2 \pi \mathrm{ft}$. volts. Thus, $X \mathrm{~L}=(e / i)=2 \pi f L / 90^{\circ}$, where $/ 90^{\circ}$ indicates i lags V by 90° phase, by virtue of which power cannot be dissipated in a pure inductor.

CALCULATION OF INDUCTANCE

The inductance of straight wires and various coil formations may be calculated from a number of formulae, all of which demand some recourse to constants which have been derived empirically. Few formulae give accurate results for coils used on vhf, due to self-capacitance and skin effects.

In the formulae given below (for air-cored coils) the dimensions are in centimetres and the inductance is in microhenrys.
μ is the permeability of the conductor, $=1$ (except for iron.)
8 is a factor, between 0 and 0.25 which is dependent upon frequency and wire diameter. Its value may be deduced approximately from the following table, where $x=0 \cdot 1 d-f$.

x	0	2	5	10	20	50	$\frac{100}{c}$	$\frac{\infty}{0}$
8	.25	.24	.14	.07	.035	.014	.007	0

Other symbols used are: $d=$ diam. of wire: $l=$ length of wire (or coil); $D=$ distance between wires; $r=$ radius of coil. In all cases of straight wires, the formulae have been simplified by assuming $/ / d$ very large.

Inductance

Round straight wires. $L=0.002 l\left(2.303 \log _{10}(4 / / d)-1+\right.$ $\mu 8$].

Two parallel wires. Round section, $L=0.0041\left[2.303 \log _{19}\right.$ $(2 \mathrm{D} / d)-(D / l)+\mu \delta \mathrm{J}$. If the two wires are not of the same dimensions, each must be calculated separately. and combined by the formula, $L=L_{1}+L_{3} \pm 2 M$.

Single circular turn of round wire. $L=0.0126 r\left(2.303 \log _{1 a}\right.$ $(16 r / d)-2+\mu \rho)$, provided $d / 2 r \ll 0 \cdot 2$.

Single square turn of round wire. $L=0.008 s\left[2.303 \log _{10}\right.$ $(2 s / d)-0.75+\mu \rho \mathrm{J},(\mathrm{s}=$ side of square $)$.

Single-layer coil of round wire (solenoid). $L=4 \pi^{1} r^{2} N^{2} K / l \times$ $10^{3}=0.0395 r^{2} N^{2} K / l$ where $N=$ number of turns, and K is a constant dependent upon the ratio $2 r / l$ and given in the table below.

$2 r / l$	K						
.00	1.0000	.32	.8767	1.00	.6884	2.5	.4719
.02	.9916	.34	.8699	1.05	.6777	3.0	.4292
.04	.9832	.36	.8632	1.10	.6673	3.5	.3944
.06	.9750	.38	.8565	1.15	.6573	4.0	.3654
.08	.9668	.40	.8499	1.20	.6475	4.5	.3409
.10	.9588	.45	.8337	1.25	.6381	5.0	.3198
.12	.9509	.50	.8181	1.30	.6290	6.0	.2854
.14	.9430	.55	.8031	1.35	.6201	7.0	.2584
.16	.9353	.60	.7885	1.40	.6115	8.0	.2366
.18	.9276	.65	.7745	1.45	.6031	9.0	.2185
.20	.9201	.70	.7609	1.50	.5950	10.0	.2033
.22	.9126	.75	.7478	1.60	.5795	15.0	.1527
.24	.9053	.80	.7351	1.70	.5649	20.0	.1236
.26	.8980	.85	.7228	1.80	.5511	30.0	.0910
.28	.8909	.90	.7110	1.90	.5379	50.0	.0611
.30	.8838	.95	.6995	2.0	.5255	100	.0350

Inductance

Another formula reasonably accurate, but not involving K is given by: $L=r^{2} N^{2} /(9 r+10 l)$, where r and l are in inches.

To obtain maximum inductance from a given length of wire wound in the form of a solenoid, the diameter should be $2.54 \times$ the length.

Inductance of multilayer coils of rectangular cross-section.

As for solenoids the inductance of a multi-layer coil is dependent upon the proportions of length, radius and depth of winding. A formula which is reasonably accurate for coils where $R /(t+l)$ and l / t are each not greater than $10: 1$, and which follows:

$$
\begin{aligned}
& L=\frac{.02303 N^{2}(2 R+t)(1 \sqrt{ } 1 \cdot 125 t / R)}{(1+1 \cdot 15 l / R)} \\
& \text { microhenry }
\end{aligned}
$$

The greatest inductance is given by a coil of square crosssection (i.e., $t=l$) and of as large a radius as possible.

Toroidal coils of rectangular and circular cross-section

Square section

$$
L=\cdot 0046 / N^{2} \log _{10}\left(R_{2} / R_{1}\right) \mu
$$

Circular section

$$
L=0126 N^{2}\left(R-\sqrt{\left.R^{2}-r^{2}\right)},\right.
$$

$\mu=$ permeability of the core material
Where the permeability, μ is high and the leakage is low, inductance is given by: $L=-0126 N^{2} \mu A / c$, where A is the cross-sectional area and c is the length of the magnetic path.

Capacitance

Definition

The capacitance of a conductor is defined as the quantity of charge required to raise its potential by one unit. If a quantity Q coulombs raises the potential by V volts, the capacitance is given by $C=Q / V$. The constant C is known as the capacitance and its unit is the farad. This unit is a very large one and for most practical purposes the unit used is one-millionth of a farad (a microfarad), or a millionth of a microfarad (a picofarad). A capacitor is a conducting surface whose capacitance has been artificially increased by bringing another conducting surface near to it. The capacitance depends upon the surface area of the conducting plates, the distance between them and the interposing dielectric, or insulating material between parallel plate capacitor. $\mathrm{C}=.0885 \mathrm{Ks} / \mathrm{d}$ picofarads, where $s=$ surface area (sq. cms.); $d=$ distance between plates and $K=$ dielectric constant (also called specific inductive capacitance, or permittivity). A table of values for K, for some of the commoner insulants, is given below. The power factor $(\cos \phi)$ is also given, but is only approximate.

Electrolytic capacitors are polarised for varying d.c. only or non-polarised (back to back polar units) suitable for a.c. The volume efficiency is high but leakage currents can be 002 to $\cdot 25 \mathrm{~m} / \mathrm{A}$ per μF.

Capacitors in parallel

The total (effective) capacitance of a number of capacitors in parallel is given by the sum of the individual capacitances.

$$
C_{e f f}=C_{1}+C_{3}+C_{8}+\ldots \ldots
$$

Capacitors in series

$$
1 / C_{\text {eff }}=1 / C_{1}+1 C_{2}+1 / C_{3}+\ldots \ldots
$$

Energy of a charged capacitor

The work done in charging a capacitor is given by: $W=C V^{2} / 2$, in farads, V in volts and W in Joules.

Capacitance
Values for K and $\cos \phi$.

Material	K	$\cos \phi$
Air (at N.T.P.)	1.000	
Ebonite	$2 \cdot 8$. 006
Glass, crown	$7 \cdot 0$. 007
Glass, flint	$6 \cdot 6$	-01
Glass, plate	$8 \cdot 4$. 01
Glass, Pyrex	4.9	-004
Gutta percha	$4 \cdot 2$. 03
Gypsum	$6 \cdot 3$	-002
Hydrogen	0.9998	
Marble	$9 \cdot 3$. 01
Mica	$8 \cdot 0$	-00017
Oil, paraffin	2.7	. 01
Oil, vaseline	2.0	. 02
Paper (dry)	2 to 3	-04
Paraffin wax	2.3	-009
Pitch	$1 \cdot 8$.05
Cellulose acetate	3 to 7	. 06
Nylon	3 to 4	-04
Paxolin 'T' Grade	4.9	. 030 Av
Paxolin 'V' Grade	$4 \cdot 6$. 028 Av
Penhol-formaldehyde	5 to 20	. 03
Polystyrine	2.5 to 3	. 0004
Poly-vinyl-chloride	4 to 12	. 03
Porcelain	$6 \cdot 5$	-006
Quartz	$4 \cdot 5$. 00015
Resin	$3 \cdot 3$. 003
Rubber, pure	$2 \cdot 2$. 05
Vulcanised	3.9	-03
Shellac	6.0	-07
Silica	$3 \cdot 6$	- 02
Slate	12	- 55
Steatite	$6 \cdot 5$	-001
Sulphur	3.0	
Tufnol *(Kite Brand)	$5 \cdot 07$. 038
Water (pure)	75	
Wood, birch	$5 \cdot 2$.065
Wood, oak	$3 \cdot 3$. 035
Wood, teak (oiled)	2.7	. 015
Wood, whitewood	1.7	. 025
Vacuum	. 9994	-

Time constant

Defined in (L,R) and (C,R) circuits as $T=\mathbf{L} / \mathbf{R}$ and $T=$ CR seconds respectively. These circuits modify input wave forms, the extent being gauged by comparing the period t of the input wave with the time constant. A short T is $\langle t / 10$, a long $T>10 t$ and the effect on a square wave is shown below.

Case A is a short T, when C charges completely well within t producing $V_{R I}$ or V_{L} which is substantially $\propto d V_{s / d} d$ and acts as a differentiator circuit. Case \mathbf{B} is a long T, C being unable to charge more than a few per cent of V_{S} within t, producing $V_{R_{2}}$ or V_{O} substantially $\propto \int V_{B} d t$ and acts as an integrator. Note that medium and long T circuits alter datum level with time; this permits a method of sorting different pulse widths, e.g. for $T=40 \mu S$.

Fig 2

Alternating current

Waveform

Most alternating current or voltage phenomena follow a sinusoidal (sine wave-form) law, which is written as-

$$
i=I_{\max } \sin \omega t ; e=E_{\max } \sin \omega t .
$$

where t and e are the instantaneous values of current or e.m.f. $I_{\text {max }}$ and $E_{\text {max }}$ are the maximum values of current or
e.m.f. $\omega=$ angular velocity $=2 \pi f$; and $t=$ time in seconds Average values
For a sinusoidal waveform: $E_{a v}=E_{\max } \times 2 / \pi=\cdot 637$
$E_{\text {max }} ; I_{a v}=I_{\max } \times 2 / \pi=637 I_{\text {max }}$
For square waveforms: $E_{a c}=E_{\text {mux }}$
For triangular waveforms: $E_{a v}=E_{\max } / 2$
Root mean square value (virtual, or effective value)
Sinusoidal waveform: $E=E_{\max } / \sqrt{ } 2=\cdot 707 E_{\max } I=$ $I_{\max } / \sqrt{2}=\cdot 707 I_{\text {max }}$
Sq. waveforms, $E=E_{\text {max }}$; triangle waveforms, $E=$ $E_{m a x} / \sqrt{3}$
Form factor $=R M S$ value/average value $=1 \cdot 111$ for sine wave $=1.000$ for square wave $=1.1574$ for triangular wave.

Series circuit

A series circuit containing resistance R, inductive reactance, X_{L}, and capacitive reactance, X c, has a total Impedance, $Z=\sqrt{R^{2}+\left(X_{L}-X c\right)^{2}}=$

$$
\sqrt{R^{2}+(2 \pi f L-1 / 2 f C)^{2}}
$$

Power factor $=$ true power $\left(I^{2} R\right)$ /apparent power $\left(I^{2} Z\right)=$ $R / Z=\cos \phi$. Phase angle, $\phi=\tan -i(X u-X c) / R$.

Parallel circuit

The simplest method of calculating parallel networks is to turn resistance, reactance and impedance into their reciprocals of conductance ($G=1 / R$), subsceptance ($b=1 / X$) and admittance ($Y=1 / Z$) and add these reciprocal quantities vectorially as for series networks, i.e., $Y=$ $\sqrt{G^{2}+b^{2}}$
Power factor $=G / Y=Z / R$: phase ang. $\phi=\tan ^{-1} b / G=$ $\tan ^{-1} R / X$

Resonance

In a series circuit, the condition for resonance occurs when $X_{L}=X c$.

$$
\therefore 2 \pi f L=1 / 2 \pi f C ; \text { and } f=1 / 2 \pi \sqrt{L C} .
$$

Alternating current

In the series circuit, known as the acceptor circuit, the impedance, $Z,=R$ at resonance, and maximum current occurs.

In the parallel circuit, know as the rejector circuit, the combination offers infinite impedance if no resistance is present. In practice, resistance must occur and the effective, or Dynamic resistance, of a tuned circuit at resonance is given by: $R_{d y n}=L / C R$, where $R_{d y n}$ is equivalent series resistance.
Q Factor. Practical inductors must have resistance, which prevents the tuned circuit presenting infinite or zero impedance in the case of parallel and series circuits respectively. The ratio of inductive reactance to the resistance of an inductor is a measure of its goodness and is known as the Q factor, $=2 \pi f_{o} L / R$, where f_{0} is the resonant frequency of the circuit in which it is used. It must be remembered that the resistance R is the effective resistance at the frequency involved, and, due to skin effect, may be considerably higher than its d.c. value. $R_{d g n}=Q X_{0}=Q^{2} R$.

When the Q of a parallel circuit is below 10, the term resonance is not so easily defined-there is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maximum value is not a pure resistance. Either condition could be called resonance, so with low \mathbf{Q} circuits it is necessary to distinguish between maximum impedance and resistive parallel resonance.

RESONANTCIRCUITS

These curves are applicable to all tuned circuits. They have been drawn for a Q of 30 but are correct to graphical accuracy for all Q 's above 10 or so. In order to make them of general application their scales have been normalised, i.e. expressed in parameters independent of particular circuits. The vertical axis for the series circuit represents the admittance as a fraction of that at resonance (also the current). The vertical axis for the parallel circuit similarly represents the impedance (and hence the voltage developed by a constant external current) as a fraction of that at resonance.

For a series circuit, $Y_{0}=G=1 / R$, or $Z_{0}=R$.
For a parallel circuit, $Z_{0}=L / C R$, if the Q is fairly high.

Alternating current

The frequency axis is expressed in terms of the fractional de-tuning $\triangle\left(=\delta f \mid f_{0}\right)$ multiplied by Q Hence, increasing the Q for a givenfractional de-tuning reduces the value of admittance (or impedance) read off from the curve for that amount of de-tuning corresponding to greater selectivity.

Nomographs for admittance, impedance and phase angle

Reactance and Resonance Chart for Radio Frequencies

To find the reactance of an inductance or capacitance at any frequency, the points of intersection of L and f, or C and f, are found, and the horizontal line at which this intersection occurs gives the reactance, in ohms.

Calculation of \mathbf{Q}

Provided that $Q>10$ and that $\delta f<f o / 20$ the impedance presented by a tuned circuit may be expressed

$$
\left.|z|=R \sqrt{1+\left(Q^{2} 8 f^{\prime} / f 0\right.}\right)^{2} \text { for series }
$$

and $|z|=R d y n|\sqrt{1+(02 S} \delta| f o)^{9}$ for paraltel circuits. Voltage (E) across a tuned circuit δf cycles off tune relative to the voltage at resonance ($E o$), is

$$
\left.E / E O=1 / \sqrt{1+\left(Q^{2}\right.} \delta / / f o\right)^{2}
$$

and when $Q=f o / 2 \quad \delta f, E=(1 / \sqrt{2}) E o . E=707 E o$.
R. F. coupling

The tuned circuit together with an R.F. transformer is a common form of coupling. The maximum possible gain at fo is given by $V_{23} / V_{11}=$ $\omega L s / 2 \sqrt{R p R s}$ (assuming coefficient of coupling $K=1.0$). If C, $L s$ and $R p$ be fixed, then the optimum $L p$ for this gain is $L p O P T .=R p / 2 \pi f o Q s$. If $L p O P T$. is employed $Q s$ is reduced and the selectivity degraded. Up to $30 \mathrm{MH}_{2}$ it is usual to put $L p=1 / 36 L_{p}$ OPT. giving 40% maximum gain but 95% maximum $Q s$. attenuate an undesired frequency a wave trap is often employed, being a parallel circuit in series with the receiver aerial input or more effective a bridged-T network as below:

Star network (2C, 2C, R) converts to delta equivalent. L now paralleled by capacity $C^{1}=C$ in series with negative
 resistance $-R^{1}$. At $f=1 / 2 \pi \sqrt{\bar{L}\left(C+C_{T}\right)}$ resistance $-R^{t}$ depends on R, and cancels out r (self resistance of L) when $R=R d y n / 4$, where $R d y n=L / C r$. Procedure is
(a) tune $C T$
(b) then adjust R for max., attenuation with receiver tuned to undesired signal.

Sound

Sound is the transfer of energy, in the form of longitudinal waves of compression and rarefaction, from one part of a conducting medium to another. At a temperature of $0^{\circ} \mathrm{C}$, a sound wave travels at 1087 feet per second, in air. As the temperature rises, the velocity of the sound increases-at a rate of 2 feet per second per degree centigrade increase in temperature.

The chief properties of sound are:
Loudness. The subjective sensation produced on the human ear.
Pitch. The impression that denotes the comparative frequency of the fundamental (or lowest tone) of a complex sound.
Timbre. The tone quality, as determined by the rate of rise and decay of the sound and the number, frequencies and relative amplitudes of the overtones superimposed on the fundamental frequency.
Intensity. The acoustical power per unit area of the sound conducting medium.
Pressure. The r.m.s. change of pressure in the conducting medium in the path of the sound wave.
Intensity and pressure are related in the following way:

$$
\text { intensity, } J=\frac{\mathbf{P}^{2}}{\mathbf{R}_{r}}
$$

where P is the pressure and R_{r} is the radiation resistance.
Human beings vary with age in their range of audibility. The lowest frequency audible as a note is about $16 \mathrm{~Hz}_{z}$., but the highest note varies from over $15,000 \mathrm{H}_{\mathbf{z}}$ for very young people and decreasing with age to 8,000 or $10,000 \mathrm{H}_{2}$ for elderly persons. The ideal upper limit for perfect transmission of all audible sounds would therefore be $15,000 \mathrm{H}_{2}$, but 10,000 is considered as perfectly satisfactory for high quality reproduction.

For satisfactory speech transmission (telephone communication) a range of 200 to $2,600 \mathrm{H}_{z}$ is sufficient.

MUSICAL SCALES

Notes of the gamut	C	D	E	F	G	A	B	C
$\left.\begin{array}{c}\text { Frequency ratios, } \\ \text { based on } \mathbf{C}=1\end{array}\right\}$	1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2

Sound

Intervals, $\frac{9}{8}$ and $\frac{10}{9}$ are whole tones; $\frac{16}{15}$ is a semitone.

Other intervals, and their frequency ratios, are:

$$
\begin{aligned}
& \text { 2/1, e.g. from } C^{\prime} \text { to } C \text {, is an octave } \\
& 3 / 2 \text {, e.g. from } G \text { to } C \text {, is a fifth } \\
& 4 / 3 \text {, e.g. from } C^{\prime} \text { to } G \text {, is a fourth } \\
& 5 / 4 \text {, e.g. from } A \text { to } F \text {, is a third }
\end{aligned}
$$

The above refers to the true diatonic scale, and enables one to calculate the frequency of any note if one note, say C is fixed. Thus, if middle C is given the (old) physical pitch of 256 cycles $/ \mathrm{sec}$. the corresponding A above it would

It is not possible to tune a keyed instrument (e.g. a piano or organ) to the diatonic scale exactly, so the equal tempered scale has been evolved in which every interval has the same frequency ratio. This ratio is: ${ }^{13} \sqrt{2}=1.05946$... a complete octave of ratio $2 / 1$ being effected in twelve notes.

Orchestral pitch has now been fixed by international agreement, as: $A^{\prime}=440.00 \mathrm{H}_{2}$. From this, the piano keyboard frequencies are as shown below.

Sound

DECIBEL CALCULATIONS

Power ratios $N($ decibels $)=10 \log _{10} P_{\mathrm{g}} / P_{1} . \quad N($ nepers $)=5 \log \varepsilon P_{2} / P_{1}$
Voltage and current ratios

$$
\begin{array}{ll}
N(d b)=20 \log _{10} E_{2} / E_{1} . & N(d b)=20 \log _{10} I_{2} / I_{1} \\
N(\text { nepers })=\log \varepsilon E_{2} / E_{1} . & N(\text { nepers })=\log \varepsilon I_{2} / I_{2}
\end{array}
$$

$d b$	Voltage ratios		Power ratios	
	E_{2} / E_{1}	$E^{\boldsymbol{1}} / E_{2}$	P_{2} / P_{1}	P_{1} / P_{8}
$0 \cdot 1$	1.0116	- 9885	1.0223	. 9772
$0 \cdot 2$	1.0233	. 9772	1.0471	. 9550
$0 \cdot 3$	1.0315	-9660	1.0715	. 9332
0.4	1.0471	. 9550	1.0965	. 9120
0.5	1.0593	-9441	1-1220	. 8912
0.6	1. 0715	-9332	1-1482	. 8710
0.7	1.0839	-9226	1.1749	. 8511
0.8	1.0965	-9120	$1 \cdot 2023$. 8318
0.9	1-1092	. 9016	$1 \cdot 2303$. 8128
1.0	1-1220	. 8912	1.2589	. 7943
$1 \cdot 2$	1-1482	.8710	$1 \cdot 3183$.7586
1.4	1-1749	. 8511	1.3804	. 7244
1.6	$1 \cdot 2023$	- 8318	1.4454	. 6923
$1 \cdot 8$	$1 \cdot 2303$. 8128	1.5136	. 6608
$2 \cdot 0$	1-2589	. 7943	1.5849	. 6310
$2 \cdot 2$	$1 \cdot 2882$. 7762	1.6595	. 6025
2.4	1.3183	. 7586	1.7382	. 5754
$2 \cdot 6$	$1 \cdot 3490$. 7413	1.8198	. 5501
$2 \cdot 8$	1.3804	. 7244	1.9055	- 5249
$3 \cdot 0$	1.4125	- 7079	1.9953	. 5012
$3 \cdot 4$	1.4789	. 6761	2.1884	. 4570
$3 \cdot 6$	$1 \cdot 5136$. 6608	$2 \cdot 2910$	- 4365
$3 \cdot 8$	1.5488	. 6457	2.3986	-4168
$4 \cdot 0$	1.5849	. 6310	2.5119	. 3981
$4 \cdot 2$	1.6218	. 6167	$2 \cdot 6305$	- 3802
$4 \cdot 4$	1.6595	. 6025	2.7539	- 3631
$4 \cdot 6$	1.6982	- 5888	$2 \cdot 8837$	- 3467
$4 \cdot 8$	1.7382	. 5754	3.0206	. 3311
5.0	1.7783	. 5623	$3 \cdot 1623$	- 3162
$5 \cdot 5$	1.8836	. 5309	3.5480	- 2819
$6 \cdot 0$	1.9953	. 5012	3.9811	- 2512

Sound

$d b$	Voltage ratios		Power ratios	
	E_{2} / E_{1}	E_{1} / E_{8}	P_{2} / P_{2}	P_{1} / P_{3}
6.5	2.1134	- 4732	$4 \cdot 4668$	- 2238
$7 \cdot 0$	$2 \cdot 2387$. 4467	5.0119	- 1995
$7 \cdot 5$	$2 \cdot 3712$. 4218	5.6234	- 1778
$8 \cdot 0$	$2 \cdot 5119$	- 3981	$6 \cdot 3096$	- 1585
$8 \cdot 5$	$2 \cdot 6605$	- 3757	$7 \cdot 0795$	- 1412
9.0	$2 \cdot 8184$	- 3548	7.9433	- 1259
$9 \cdot 5$	$2 \cdot 9851$. 3350	8.9125	- 1122
10.0	$3 \cdot 1623$	- 3162	$10 \cdot 000$	- 1000
11.0	$3 \cdot 5480$	- 2819	12.589	. 07943
$12 \cdot 0$	3.9811	- 2512	15.849	. 06310
13.0	4.4668	- 2238	19.953	. 05012
14.0	5.0119	- 1995	$25 \cdot 119$. 03981
$15 \cdot 0$	$5 \cdot 6234$	- 1778	31.623	. 03162
16.0	$6 \cdot 3096$	- 1585	39.811	-02512
$17 \cdot 0$	7.0795	- 1412	$50 \cdot 119$	- 01995
18.0	7.9433	- 1259	63.096	- 01585
19.0	8.9125	- 1122	79.433	- 01259
$20 \cdot 0$	10.000	- 1000	$100 \cdot 00$. 01000
$22 \cdot 0$	12.589	. 07943	158.49	-00631
24.0	15.849	. 06310	251-19	-00398
26.0	19.953	. 05012	$398 \cdot 11$. 00251
28.0	$25 \cdot 119$. 03981	$630 \cdot 96$	-00158
$30 \cdot 0$	31.623	. 03162	$1000 \cdot 0$	- 00100
$32 \cdot 0$	$39 \cdot 811$. 02512	1584.9	-00063
$34 \cdot 0$	50.119	. 01995	$2511 \cdot 9$	- 00039
36.0	63.096	. 01585	$3981 \cdot 1$	- 00025
38.0	79.433	. 01259	$6309 \cdot 6$. 00016
40.0	$100 \cdot 00$. 01000	10,000	- 00010
42.0	125.89	. 00794	15,849	. 000063
44.0	158.49	. 00631	25,119	. 000039
46.0	199.53	. 00501	39,811	. 000025
48.0	251-19	. 00398	63,096	. 000016
50.0	$316 \cdot 23$. 00316	10^{6}	. 000010
$60 \cdot 0$	1,000 $\cdot 0$. 00100	$10^{\text {e }}$	$10-8$
$70 \cdot 0$	3,162 - 3	- 00032	10^{7}	10-7
80.0	10^{4}	. 00010	10^{8}	$10{ }^{8}$
90-0	31,623	. 00003	10°	10-9
100.0	10^{3}	. 00001	10^{10}	10^{-10}

Sound

The relationship between power and voltage ratios is found since $N=10^{0} \log _{1} E_{2}^{2} / R_{2} / E_{1}^{3} / R_{1} d b$., giving $N=$ $20 \operatorname{long}_{10} E_{2} / E_{1}+10 \log R_{1} / R_{2} d b$. Usually the important relationship is that of the voltages, power being of less interest in some applications, and the last term above is omitted. It is convenient to work with ratios greater than unity; should $E_{8}<E_{1}$, invert the ratio and precede the logarithm with a negative sign (indicating loss):

$$
10 \log _{10} P_{2} / P_{1}=-10 \log _{10} P_{1} / P_{2} d b
$$

In addition to the relative $d b$ scales above there are two absolute $d b$ scales. One is the acoustic, zero level being taken at 0002 dynes $/ \mathrm{cm}^{2}$ (pressure scale) or 10^{-16} watts/ cm^{2} (intensity scale), giving the $d b$ level of any pressure $P x$ dynes as, $d b=20 \log _{10} P x / \cdot 0002$. The other is the absolute electrical (dbm .) scale, zero level being 1 mW , any power $W x$ having a $d b m$ level, $d b m=10 \log _{10}\left(W x / 10-^{2}\right)$. A standard communication impedance of 600Ω is assigned to this scale giving a corresponding voltage scale, the zero level when 1 mW is dissipated in 600Ω being .775 volts. The $d b$ level of any voltage $V x$ on this scale is $d b=20 \log _{10}(V x / \cdot 775)$. In television an absolute scale with a zero of 1 volt into 75Ω may be quoted.

Relationship between intensity and distance

The energy contained in a single sound wave remains practically constant and, since each wave is distributed over a spherical surface which is enlarging rapidly, the energy passing through each unit area of a wave surface depends upon the distance of that surface from the source of the sound. Because the area of a sphere varies directly as the square of the radius $\left(a=\pi r^{2}\right)$, the energy of the wave at a distance of 2 metres from the source, for example, will be distributed over an area four times as great as when the wave was at a distance of 1 metre. The intensity of the sound therefore varies as the inverse square of the distance from the source (when no solid object in the vicinity causes absorption or reflection).

As the intensity of a note decreases, so does the loudness, but not in step, The difference in loudness is roughly proportional to the differences in the logarithm, to the base ten, of their relative intensities.

Useful networks

ATTENUATOR DESIGN

In all cases, the voltage ratio, V, corresponding to the number of decibels loss, $N a b$, must first be found; i.e., $V=\operatorname{antilog}(N / 20)$.

Potentiometer, or L type

Unbalanced

Balanced

$$
\begin{aligned}
& R_{3}=2 V Z_{1} Z_{3} /\left(V^{2} Z_{3}-Z_{1}\right) \\
& R_{1}=Z_{1}\left(V^{2} Z_{3}+Z_{1}\right) /\left(V^{2} Z_{3}-Z_{1}\right)-R_{3}
\end{aligned}
$$

T and \mathbf{H} types

Unbalanced

Balanced

$$
\begin{aligned}
& R_{9}=2 V Z_{1} Z_{2} /\left(V^{2} Z_{2}-Z_{1}\right) \\
& R_{1}=Z_{1}\left(V^{2} Z_{2}+Z_{1}\right) /\left(V^{2} Z_{2}-Z_{1}\right)-R_{2} \\
& R_{2}=Z_{2}\left(V^{2} Z_{2}+Z_{1}\right) /\left(V^{2} Z_{2}-Z_{1}\right)-R_{1}
\end{aligned}
$$

π and square (or box) types

Unbalanced

Balanced

$$
\begin{aligned}
& R_{3}=\left(V^{2} Z_{2}-Z_{1}\right) / 2 V \\
& R_{1}=Z_{1}\left(V^{2} Z_{2}-Z_{1}\right) /\left(V^{2} Z_{2}+Z_{1}-2 V Z_{1}\right) \\
& R_{2}=Z_{2}\left(V^{2} Z_{2}-Z_{2}\right) /\left(V^{2} Z_{2}+Z_{1}-2 V Z_{2}\right) \\
& \quad 41
\end{aligned}
$$

Useful networks

Attenuator tables for $Z_{1}=Z_{2}=\boldsymbol{Z}=600 \Omega$
For other values of Z, multiply all resistors by $Z / 600$

db	R_{1}	R_{2}	R_{3}	R_{1}
$\cdot 1$	3.46	52.10k	6.9	104.2k
- 2	690	$26.06 k$	$13 \cdot 8$	52.12k
- 3	$10 \cdot 36$	17.38k	$20 \cdot 7$	$34.75 k$
-4	13.82	$13.02 k$	$27 \cdot 6$	$26.06 k$
- 5	17.26	$10 \cdot 42 k$	34.5	$20.87 k$
- 6	20.72	$8.68 k$	41.5	$17.38 k$
. 7	24.17	$7.44 k$	48.4	$14.90 k$
-8	27.62	$6.50 k$	$55 \cdot 3$	$13.04 k$
. 9	31.1	5.78k	62.2	$11.60 k$
10	$34 \cdot 5$	5.21k	68.6	$10 \cdot 43 k$
2	68.8	$2 \cdot 58 k$	$139 \cdot 4$	5232
3	107.7	$1.70 k$	212.5	3505
4	$135 \cdot 8$	1.25k	287.5	2651
5	168.1	987.6	264.5	2141
6	$199 \cdot 3$	803.4	447.5	1807
7	229.7	$685 \cdot 2$	537.0	1569
8	758.4	567.6	634.2	1393
9	$285 \cdot 8$	487.2	738.9	1260
10	$310 \cdot 0$	421.6	$854 \cdot 1$	1154
11	336.1	367.4	979.8	1071
12	$359 \cdot 1$	321.7	1119	1002
13	$380 \cdot 5$	282.8	1273	$946 \cdot 1$
14	$400 \cdot 4$	249.4	1443	899.1
15	418.8	$220 \cdot 4$	1632	859.6
16	$435 \cdot 8$	$195 \cdot 1$	1847	826.0
18	$466 \cdot 5$	152.5	2344	772.8
20	491	121.2	2970	$733 \cdot 3$
25	536.4	67.7	5318	670
30	563	37.99	9500	639
35	579	21.36	$16.86 k$	622
40	588	12.00	30.00 k	612
45	594	6.74	53.35k	607
50	596	$3 \cdot 79$	94.87k	604

Useful networks

Attenuator Pads to Work Between Unequal Impedances

T pad (unbalanced)					π pad (unbalanced)		
Z_{1} / Z_{2}	Loss	R_{2}	R_{2}	R_{3}	R_{1}	R_{2}	R_{3}
600/500	$5 d b$	256	64	902	332	4709	1169
	10	282	170	385	780	1764	1067
	20	502	400	111	2712	761	606
	30	566	466	35	4652	643	530
	40	590	490	11	26382	613	509
600/250	10	394	6	272	550	35080	382
	20	534	178	78	1916	849	281
	30	576	226	25	6120	664	260
	40	592	242	2	19348	619	253
600/100	20	586	52	50	1212	1143	107
	30	592	84	16	3872	708	102
	40	598	96	5	12248	631	101
600/30	20	562	4	27	664	5138	
	30	586	22	9	2108	835	30
	40	596	28		6700	659	30
250/30	20	238	12	18	428	572	32
	30	244	24	6	1368	305	31
	40	248	28	2	4330	265	30
100/30	20	90	18	11	272	153	33
	30	94	24	6	886	113	31
	40	98	30	1	2750	104	30
50/30	10	34	10	27	56	160	44
	20	44	24	8	192	70	36
	30	48	28	3	598	54	31
	40	50	30	0.8	1936	51	30

Attenuators between matched impedances,
Z, T and H types:
$R_{3}=2 V Z /\left(V^{2}-1\right): R_{1}=R_{2}=Z(V-1) /(V+1)$
π and square types:
$R_{\mathrm{a}}=Z\left(V^{2}-1\right) / 2 V: R_{1}=R_{3}=Z(V+1) /(V-1)$

CONSTANT RESISTANCE NETWORKS

A network designed to alter the frequency response of a system (equaliser network) contains reactors and will in general present a varying input impedance (Z_{11}) with frequency. If, however, a constant resistance structure is employed Z_{11} is constant and equal to the terminating resistor, R_{L}. Such structures are as shown above.
The necessary condition is that $Z Z^{1}=R L^{2}$; if Z, Z^{1} meet this condition they are inverse w.r.t. R_{L}. Inverse relationships are:

Z	$\xrightarrow[-1]{\text { R }}$	$\frac{L}{\infty}$	$\begin{gathered} \mathrm{c} \\ -1 \vdash \end{gathered}$	$\sqrt{\text { SERALES }}$
Z^{\prime}	R^{2} / R_{L} - $\mathrm{HW}-$	$\begin{aligned} & 1 / R_{L}^{2} \\ & -H 1 \end{aligned}$	$\begin{gathered} C R_{L}^{2} \\ -\infty \end{gathered}$	

Useful networks

A typical example is shown below:

The loss in all these structures is $20 \log _{10}\left(1+R_{L} / Z^{1}\right)$ or $20 \log _{10}\left(1+Z / R_{L}\right) d b$.

FILTERS

The basic $1 / 2$ section low pass filter and loss curve:

Procedure

given termination R, cut-off frequency fo, obtain c from $c=1 / 2 \pi f o r$
$2 L=C R^{2}$. For $f>f o$ loss is approximate $6+20$ log. flfo db.
The basic $1 / 2$ section high pass filter and loss curve:

Procedure above applies and loss is $6+20 \log f o / f$. The impedances Z_{12}, Z_{22} vary over the pass band causing mismatch losses at in put and output in the pass band. The Z_{11}, Z_{22} variations for an LPF are as shown on the next page.

Useful networks

The process of \boldsymbol{M} derivation reduces this variation. This process develops from the basic $1 / 2$ section; series M $1 / 2$ section has Z_{11} of basic, but more constant Z_{59}^{\prime}; shunt $M 1 / 2$ section has Z_{32} of basic but more constant Z_{11}^{\prime}.

These $1 / 2$ sections and loss curves are:

SERIES	SHUNT
DERIVED	DERIVED

LPF's

Filter $1 / 2$ sections may be cascaded to form a composite filter, if similar impedances always face each other. The tendency to constant loss L for an M derived $1 / 2$ section can be overcome by cascading with basic $1 / 2$ sections, the M sections going to either end of the composite filter to maintain a better match with source and load. The best M terminating section is shunt derived $M=\cdot 6$. Typical LPF:

Bandpass filters

An analogy between LPF's and BPF's permits easy design approach viz. (i) design an LPF for desired \mathbf{R} of BPF, with an $f o=\delta f$ the desired bandwidth of the BPF; this directly yields L_{1} and C_{2} values of BPF. (ii) from $f c=1 / 2 \pi \sqrt{L C}$ find C_{1} resonant with L_{1} also L_{2} anti-resonant with C_{8} at centre frequency $f c_{\text {. }}$

Bandstop filters

These are analogous with HPF's, stopwidth $\delta=$ fo of HPF; series arm anti-resonates, shunt arm resonant at fc.

$L_{1}=R / 2 \pi \quad \delta f, \quad C_{1}=\delta f / 2 \pi f c^{2} R, \quad C_{2}=1 / 2 \pi \delta f R, \quad L_{2} \Rightarrow$
$\delta f R / 2 \pi f c_{1}$

Useful networks

The series M derived BPF $1 / 2$ section.

$\mathrm{f} \propto, f \propto_{2}=f_{2} f_{2} \Rightarrow f o^{2} \quad P=\sqrt{\frac{f_{2}-\frac{1-\left(f \omega_{1} / f_{1}\right)^{2}}{f_{1}}}{1-\left(f \omega_{1} / f_{2}\right)^{2}}}$
$m=\left(\sqrt{f_{3} / f_{1}}+\sqrt{\left.\mathrm{f}_{1} / \mathrm{f}_{2}\right)} /(P+1 / P)\right.$

IMAGE OPERATION OF NETWORKS

If the network input and output impedances (Z_{11}, Z_{29}) match the source and load impedances respectively, the only loss is that due to the network under matched conditions. This requires $Z_{11}=Z s$ when 22 loaded with Z_{L}, and $Z_{22}=Z_{L}$ when Z_{s} faces 11. If a network is designed on this basis it is said to be image operated.
$Z_{11}=\sqrt{Z o c_{1} Z_{22}}=\sqrt{Z o c_{2} \cdot Z s c_{2}}$ $Z o c_{1}-Z$ into 11 when 22 open $Z S c_{1}-Z$ into 11 when 22 shorted
$Z o c_{9}-Z$ into 22 when 11 open $Z s c_{8}-Z$ into 22 when 11 shorted

Now $V_{11} i_{11} / V_{22} i_{22}=e^{8} \theta$ where θ is the image transfer constant. $\theta=\tanh ^{-1} \sqrt{Z s c_{1} / Z o c_{1}}$ and may be complex. The real part constitutes attenuation, the imaginery part phase shift. When $Z s=Z_{L}$, e $\theta=V_{11} / V_{23}$ direocly.

Power supplies

POWER TRANSFORMER DESIGN

The design of small power transformers for elcetronic use is greatly simplified by the fact that efficiency and power factor are secondary considerations. The transformer is therefore initially designed for the temperature rise permitted by conventional insulating materials. Since manufacturers produce scrapless laminations, which are of uniform proportions, the design procedure has become conventional. If the procedure below is followed, only minor adjustments are necessary to bring the design to an optimum:

1. Calculate the total secondary volt-amperes, $(E I)_{s}=$ $E_{1} I_{1}+E_{2} I_{2} \ldots$ The r.m.s. value of current and voltage must be used. All the voltages will be sinusoidal, but for the rectifier H.T. winding $I_{r m s} / I_{d c}$ is: approximately 2 for halfwave capacitor input, 1 for fullwave capacitor input, and precisely 0.707 for fullwave inductor input.
2. For scrapless $E I$ or $T U$ laminations with a stack equal to, or up to II times, the width of the centre limb, the area of cross-section of the core A (sq. cm.) is given by:

$$
A=1 \cdot 16 \sqrt{(E I) s} \text { sq. cm. }
$$

This area can be provided, say, by the next narrowest stock centre limb width below $\sqrt{2 A} / 3$ stacked to slightly more than $\sqrt{3 A / 2}$. If an unusual amount of insulation is to be provided, or there are four or more secondaries, more window space will be needed, so that the next widest centre limb width above $\sqrt{2 A / 3}$ should be chosen. The window width will then be greater in the same proportion.

Calculate the TPV (turns per volt) from the peak 3. flux density to be used. (This is determined by the permissible heating). TPV $=1 /\left(\sqrt{2 \pi B_{\max }} A k f\right)$ (mks units) where A is the area of cross section in square metres ($=$ area in sq. cm. $\times 10^{-4}$), $B_{\max }$ is the peak
flux density in weber/sq. metre, k is the core stacking factor (which takes account of insulation and air between laminations, and for the usual thickness of $375 \mu\left(0.015^{\prime \prime}\right)$ has a value of about 0.92$)$, and f is the frequency. For a reasonable temperature rise B should not exceed about $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$ for Stalloy, and similar silicon steels. ($1 \mathrm{~Wb} / \mathrm{m}^{2}=10,000$ gauss).
4. Calculate various secondary turns. The normal ratings for copper wire give a regulation of 10% or so, so all secondaries should be given 10% more turns than that given by the TPV figure, i.e. $N_{s}=$ TPV $\times E_{s} \times 1 \cdot 10$. The heater windings should be calculated first, since it is desirable to keep heater voltages as close to nominal as possible, and the windings should therefore come to a whole number of turns; rounding off by half a turn or so may increase the voltage by several per cent. If necessary therefore the TPV figure should be altered slightly to make Ns a whole number for L.V. windings. The other secondaries can then be calculated.
5. Calculate primary turns. On the assumption that primary resistance drop is negligible, $N_{p}=\mathrm{TPV} \times E_{p}$.
6. Find the approximate primary current, assuming the probable values of $\mathbf{9 0 \%}$ efficiency and $\mathbf{9 0} \%$ power factor, i.e.

$$
I_{p}=(E I)_{s} /\left(0.81 E_{p}\right)
$$

7. Knowing I_{p} and the secondary ratings, determine the various wire gauges on the basis of about $1.5 \mathrm{~A} / \mathrm{mm}^{2}$ (1000 Ain. ${ }^{2}$) for conservatively rated or large transformers; up to $2 \mathrm{~A} / \mathrm{mm}^{2}$ for smaller transformers. For the smallest (e.g. heater) transformers, which have a better surface area/volume ratio, up to $3 \mathrm{~A} / \mathrm{mm}^{2}$ is permissible.
8. Plan arrangement of windings. If the primary is to be screened then it should be the inner winding, and an open circuit single-layer copper-wire or foil sheet wound above it; this should be earthed. The finergauge windings should be on the inside since these wind more smoothly, but the outer heavy-gauge windings should then not be allowed to crush these by over-tight winding.

The tables on page 25 give the necessary information for planning windings. Margins of $3-4 \mathrm{~mm}$. should be left to avoid spilling turns or creepage between layers: this is sufficient for peak working voltages up to 1 kV ., and should be increased roughly in proportion for higher voltages. The enamel insulation of the wire, taking account of the inevitable bruising during winding, should not be called upon to stand working voltages of more than 30 v . or so. Very desirably, each layer should be interleaved with one layer of paper. Test voltages should be a minimum of 1000 v. , and double the working voltage above that. Safe test voltage ratings are, in volts peak per layer: Kraft paper $10 \mathrm{v} . / \mathrm{micron}$ ($250 \mathrm{v} . / \mathrm{mil}$); Empire cloth (yellow) 40 v ./micron $(1000 \mathrm{v} . / \mathrm{mi})$. The total depth or build of the windings, including bobbin, should not exceed 0.9 of the window depth, while the bobbin should be about 1 mm narrower than the window. Suitable clearances should also be allowed for the centre limb through the bobbin.
9. The regulation can then be roughly calculated. At $80^{\circ} \mathrm{C}$. copper has a resistivity 1.25 times that at $20^{\circ} \mathrm{C}$. The figures given on page 18 of resistance per metre should be multiplied by 00125 , by the length of mean turn, and by the number of turns to give the winding resistance. The length of mean turn for any winding is:
lmt $=\mathbf{2}(a+b)-8 r+\pi(2 r+d) \mathrm{cm} . \quad$ or $=2(a+b)-1.7 r+$ $\pi d \mathrm{~cm}$. where a and b are the internal dimensions, r the internal corner radius, and d the depth, of the winding.

Very roughly, $l m t=2(a+b)$. Copper losses on normal load can then be calculated. Iron losses for the core material are given by the manufacturer in watts/kg for various peak flux densities. Adding these gives the total loss W. The temperature rise is then roughly:

$$
\Delta T=30 W / A^{\circ} C
$$

where A is the total surface area in sq. cm . of the core considered as a solld block (i.e., ignoring windows).
The resultant temperature ought not to be above $80^{\circ} \mathrm{C}$. If the environmental temperature is already high, the temperature rise must be restricted.

POWER SUPPLY CIRCUITS

Fig. I. Half-wave rectifier with smoothing circuit

Fig. 2. Full-wave rectifier with smoothing circuit

Half-wave rectifier circuit for ac/dc receiver. (Fig. 3). \boldsymbol{R}_{2} serves the double purpose of smoothing and preventing heavy surges of current through the valve. It should be between 100 and 500 ohms. For $0-3$ amp. heater R_{2} is $A C$, found by subtracting the total voltage of heatersfrom the supply voltage and dividing by 03.

Fig. 3. Half-wave rectifier for a.c., d.c. receiver

Example

Value heaters voltages $=6 \cdot 3+6 \cdot 3+6 \cdot 3+26+26+4=$ 75 volts. Supply voltage $=240$, then $E_{1}=(240-75) / \cdot 3$ $=165 / \cdot 3=550$ ohms. r should be about 10 ohms for a 4 -volt dial lamp.

Fig. 4. Full-wave bridge circuit using metal rectifiers

Fig. 5. Voltage doubler circuit using metal rectifiers

In all of the above circuits, the values of $L, C r, C s$ depend largely upon the value of H.T. current and the degree of smoothing required. The reservoir capacitor Cr is usually $4 \mu \mathrm{~F}$. for currents up to 200 mA . and a voltage of anything up to 400 v . Paper or oil-filled
capacitors are preferable to electrolytics in this position. The smoothing capacitor $C s$ is usually either an $8 \mu \mathrm{~F}$. or $16 \mu \mathrm{~F}$. electrolytic type. The inductor L should have a value of not less than 10 Henries at the current it has to carry. A gapped inductor, sometimes called a swinging inductor, is often put in front of the reservoir capacitor, as L^{\prime} in circuit No. 5 , to give better regulation (i.e. less variation of output voltage with change of output load).

Fig. 6. 50W. invertor by G.E.C. laboratories
When say Tr conducts the induced voltage in FBI causes further heavy conduction, whilst FB2 biases Tr2 into cut-off. The battery voltage is now applied across the half primary winding inductance and the flux increases ($V=-N d \Phi / d t .10^{8}$) until $+\Phi_{S}$ saturation when FBI begins to cut off $\operatorname{Tr} 1$, FB2 opening $\operatorname{Tr} 2$, which remains open until - Φ_{S} saturation of core occurs and the cycle recommences. Frequency is $\bumpeq V .10^{8} / 4 N \Phi_{S}$, where N is half primary turns and Φ_{S} in gauss. The transistors are subjected to twice battery voltage on the collectors when being switched off. In this circuit mount transformers on $3^{\prime \prime} \times 3^{\prime \prime} \times 16$ SWG aluminium heat sinks and adjust the 5Ω preset to ensure that $I m<0.8 I p k$. The frequency is about $400 \mathrm{H}_{3}$.

* Bifilar wound. Lominations Telcon $226 \mathrm{~N}_{1} / 2^{\prime \prime}$ STACK

Fig. 7. Wave-forms and transformer details

Audio frequency

MICROPHONES

A microphone is a transducer which transforms acoustic pressure fluctuations into electrical output. The pressure wave drives either the front only (pressure operated) or both sides (pressure difference operated) of the diaphragm. The force developed on the latter vibrates the transducing mechanism proper, and output voltage depends on the velocity or displacement of the mechanical system. The force developed on a pressure driven mic. varies widely, increasing with frequency on average due to effects of diffraction. To minimise this, size is kept to a minimum. The net force developed in pressure difference mics. is due to difference between the opposite face pressures. The sound wave at the rear face is delayed by the path difference round the mic. structure.

Typical polar diagrams and the basic facts relating to the operation of most types of microphone are given below:

PRESSURE (P)

PRESSURE DIFFERENCE ($\triangle P$)

|
 quality | Opera-

 output | Transducing
 system |
| :--- | :---: | :---: | :---: |
| Carbon | \mathbf{P} | Variation of
 resistance of
 of carbon
 granules by |
| Poor | Approx.
 by vibration
 of diaphragm | Circuitry |

Audio frequency

Type \& quality	Operation \& output	Transducing system	Circuitry
Moving coil Good	$\begin{gathered} \mathbf{P} \\ -70 t o \\ -40 \mathrm{db} \end{gathered}$	vibration of coil in field of permanent magnete.m.f. induced by Faraday's Law.	
Ribbon Excellent	$\begin{gathered} \Delta \mathbf{P} \\ -80 t o \\ -60 d b . \end{gathered}$	vibration of metal-foil ribbon in magnetic field -induced e.m.f.	
Condenser Old types, fair. new types, excellent	$\begin{gathered} \text { P (old) } \\ \Delta \mathrm{P}(\text { new }) \\ -30 \text { to } \\ \text { - } 50 \mathrm{db} \\ \text { (pre- } \\ \text { amp } \\ \text { output) } \end{gathered}$	diaphragm is one plate of condenser. Variation of Salters charge Hence change in $\mathbf{i} \times \mathbf{R}$ gives output.	
Crystal Fair to good	\mathbf{P} 1 v. $0 \cdot 2 \mathrm{to}$ high quality lower approx. -50 db. -80 db.	Piezo-electric effect. Plates of quartz or Rochelle salts stressed by diaphragm.	

Variable polar diagram condensor microphones

These comprise two diaphragms mounted at back (B) and front (F) of a common central electrode plate (P). A number of holes are drilled in this plate, sound waves passing through the holes undergoing a delay. As far as any one diaphragm is concerned it is pressure difference operated since both internal and exposed faces are driven by the sound wave. The delay via the internal hole route is designed equal to the external path difference delay, the resulting polar diagram being a cardioid. If one diaphragm only is polarised a cardioid results; both excited with same polarity and audio outputs added-an omni-direction-
 al pattern; both oppositely polarised-a figure of eight pattern. When R_{t} slider is at j, B diaphragm not excited giving cardioid; at k, B and ${ }_{F}$ are polarised in same sense, giving omni pattern; at i, B and \mathbf{F} oppositely polarised, giving figure of eight.

A.f. hiss noise level

For a hi-fi system the noise should be $>55 \mathrm{db}$ down on output signal. Hiss is mainly contributed by the thermal noise of the source resistance. $e_{n}=1 \cdot 55 \cdot 10^{-8} \sqrt{R \mu V}=$ $-154+10 \log _{10} R \mathrm{db}$. For $R=300 \Omega$ and mean microphone level of -70 db initial separation is 58 db The first stage anode current contributes shot noise hiss, with the addition of partition noise ($I_{\sigma,}$ leaving I_{A}) in pentodes. These effects assigned a hypothetical equivalent thermal noise resistance: triodes $R=2 \cdot 5 / G_{m}$, pentodes $R=I_{A}\left[\left(2 \cdot 5 / G_{m}\right)+\left(20 I_{G 2} / G^{2} m\right)\right] /\left(I_{A}+I_{G_{2}}\right)$. At a.f., shot noise may practically be neglected.

AF AMPLIFIERS COUPLING AND DECOUPLING

Resistance capacitance coupling

$R a=$ valve ac resistance, $R=R_{l} R_{g} /\left(R_{l}+R_{g}\right)$
$r=R R_{a} /\left(R+R_{a}\right), \omega=$ $2 \pi f$, other symbols as diagram.
Stage gain at medium frequencies
$A m=\mu R(R+R c) ;$ phase shift $=\pi$.
Gain at low frequencies This falls (due to C_{c}), and is: $A_{l}=\mu R /\left(R+R_{a}\right)$

The attenuation is shown in Fig. 2, in which the frequency scale is in terms of f_{1}, given by $1 / 2 \pi R_{c} C_{g}$, at which $X c=$
Rg and the response is down 3 db . (It is useful to regard the $3 d b$ points as the limits of the pass band.) Phase shift is $\theta_{l}=\tan ^{-1} 1 / \omega C_{e} R_{g}$ (leading) $+\pi$.

Gain at high frequencies

The gain falls due to shunting of R_{1} by C_{a} and is:

$$
A_{h}=\mu R /\left(R+R_{a}\right) \sqrt{1+\omega^{2} C_{a} r^{2}}
$$

Fig. 2 also includes this curve, but the upper frequency scale must be used. Here the $3 d b$ point corresponds to $2 \pi f_{2} C_{a}=r$. Phase shift is $\theta_{h}=\tan ^{-1} \omega C_{\sigma r}$ (lagging) $+\pi$.
Screen decoupling
At low frequencies C_{8} is not negligible and the gain drops (Fig. 3) according to the same law as for coupling, but the same curve cannot be used as the presence of the screen ac resistance $R_{s g}$ across C_{8} causes the loss to become constant, below a frequency determined by C_{s} and $R_{s g}$, and at a level determined by R_{s} and $R_{s g}$. The parameter $R_{s g}$ is rarely available, but is typically $5 R_{a t}$ where $R_{\Delta t}$ is the anode ac resistance as a triode at the screen voltage. Making this assumption, Fig. 3 gives curves for various values of R in terms of $R_{a t}$. At frequency $f_{\mathrm{b}}, 1 / \omega C_{s}=$ parallel resistance of R_{s} and $5 R_{a t}\left(=R_{8 g}\right)$.

Audio frequency

R.C. Coupling Response Curves

Fig. 2. Coupling response

Fig. 3. Loss due to Screen decoupling

Fig. 4. Loss due to Cathode decoupling

Cathode decoupling

When C_{k} is not negligibly small, gain is reduced considerably by current feedback, which depends upon the product $\boldsymbol{R}_{\mathrm{kgmm}}$. Fig. 4 gives curves for this loss for various values of $\boldsymbol{R}_{\mathrm{kgm}}$, in terms of the frequency f at which $1 / \omega C_{k}=R_{k}$. This curve reveals that the droop begins at frequencies well above this, so that for consistent decoupling the product $C R$ should be at least ten times that for the screen. The loss will be reduced by any falling-off in screen decoupling but this interaction can be ignored since the error will be a pessimistic one and usually not large. The overall response can therefore be obtained by direct addition of the four separate ones.

Transformer coupling

The information given here applies also to input and output transformers. The main feature of the use of a.f. transformers is the production of a band-pass response whose $L F$ cut-off is due to the decreasing primary impedance with frequency and $H F$ cut-off is due to both leakage inductance and shunt capacitance. Very often the HF falling-off is accelerated by a resonant peak which precedes it, due to the leakage inductance resonating with the shunt capacitance.

Equivalent circuit diagram of transformer

The stage gain at any frequency is best studied by reference to an equivalent diagram embodying all the parameters of both the transformer and its accompanying circuits. The equivalent circuit may be broken down further into simpler diagrams which include only those elements which have appreciable effects at the frequencies involved.

Equivalent circuit of transformer at any frequency

Equivalent circuit at LF

Equiıalent circuit at HF Fig. 5. Equivalent diagrams
$\mu=$ amplification fac'r of $V_{1} \quad C_{m}=$ mutual capacitance $e_{\rho_{1}}=$ input voltage of $V_{1} \quad$ between P and S.
$R_{a}=$ ac resistance of $V_{1} \quad L_{m}=$ magnetising induct.
$R_{p}=$ res. of transf'r pr'y. $\quad \boldsymbol{R}_{c}=$ iron losses of tr'f'r.
$R_{s}=$ res. of transf'r sec'y. $\quad L_{1} L_{2}=$ ideal transf'r with
$L_{p}=$ pr'y leakage inductance no losses.
$L_{s}=\sec ^{\prime} y$ leakage inductance. $\quad N=$ turns ratio of transf'r.
$C_{p}=$ pr'y selfcapacitance. $\quad C_{02}=$ total input shunt
$C_{8}=\sec ^{\prime} y$ self capacitance.
capacitance of V_{2}
$e_{g_{2}}=$ voltage $_{V_{3}}$ applied to

Stage gain at low frequencies

$$
A_{l}=A_{m} \sqrt{1}+\left(R_{c}\left(R_{a}+R_{p}\right) / \omega \overline{L_{m}}\left(R_{c}+R_{a}+R_{p}\right)\right)^{2} .
$$

Stage gain at high frequencies

$$
A_{h}=A_{m} \sqrt{\left(f / f_{0} Q\right)^{2}+\left(1-f^{2} / f_{0}^{2}\right)^{2}}
$$

where $f=$ frequency at which H.F. gain is measured.
$f_{0}=$ frequency at which total leakage inductance resonates with shunt capacitance.
$Q=2 \pi \delta_{0}\left(L_{p}+N^{2} L_{o}\right) /\left(R_{a}+R_{p}+N^{2} R_{a}\right)$.

Gain variation by varying mu

Volume control by varying the amplification of the valves themselves is made possible by using variable-mu valves and varying the grid or cathode bias. This has the great advantage that the volume control carries only dc and not the signal voltages, so that it can be placed at a distance from the amplifier, enabling the volume to be controlled remotely.

Using these valves, it is possible to arrange for automatic control of gain by the signal itself, so that a steady level of volume is maintained, just as ave maintains a steady rf signal.

TONE CONTROL CIRCUITS

The chief types of tone control circuits required in A.F. amplifiers are treble cut or lift, and bass cut or lif. These four types are illustrated by the frequency response curves shown in Fig. 6; all may be obtained by simple circuits of the type given below.

Fig. 6. Frequency response curves

Treble cut. If $R_{1}=100 \mathrm{k} \Omega ; C_{1}=001 \mu F$, degree of treble cut is approximately 14 $d b$ at $10 \mathrm{KH}_{z}$ relative to response at 1 $\mathrm{KHz}_{\mathbf{z}}$.

Basslift. If $R_{1}=100 \mathrm{k} \Omega ; R_{2}=22 \mathrm{k} \Omega ; C_{1}=$ $0.05 \mu \mathrm{~F}$, degree of bass lift is approximately 15 db at 50 Hz relative to response at $1 \mathrm{KHz}_{2}$.

Bass cut. If $C_{2}=0.001 \mu F ; R_{3}=1 \mathrm{M} \Omega$, degree of bass is cut approximately 12 db at 50 Hz relative to response at $1 \mathrm{KH}_{2}$. This circuit has the same form as the R.C. coupling circuit of an amplifier and shows the necessity of making C_{3} large if no bass cut is required.

Treble lift. If $C_{2}=00001 \mu \mathrm{~F} ; R_{3}=100 \mathrm{k} \Omega$ $R_{\mathrm{t}}=500 \mathrm{k} \Omega$, degree of treble lift is approximately 12 db at $10 \mathrm{KH}_{3}$ relative to response at $1 \mathrm{KHz}_{\mathbf{z}}$.

Fig. 7. Tone control circuit
In the above circuit the flat gain is about unity. It should be placed between pre-amp and power output stages. To avoid noise, the input should be $\gg 01 \mathrm{~V}$. r.m.s., but $<2.0 \mathrm{~V}$. r.m.s. to avoid distortion. Maximum boost or cut is $\pm 16 \mathrm{db}$ at 30 Hz and 10 KHz rolling away from 750 Hz cross over.

RESONANT R.C. CIRCUITS

The Twin T amplifier shown below is very useful for A.F. equalisation where the inductors of the equivalent L.C. circuit would be impracticable or undesirable.

If $A=$ valve amplification without feedback, p is the fraction of output voltage fed back (as determined by the tapped anode load), and n is the parameter indicated in the circuit diagram, then:
Resonant frequency $f_{0}=1 / 2 \pi C R$.
Gain at resonance $A_{o}=A /(n+1)=A / 6$ for $n=5$.
Gain remote from resonance (at frequency limits) may be less than 1 .
$A_{l}=2 A \ln (1+p A)+2=2 A /(5 p A+7)$ for $n=5$.
Total lift of peak relative to frequency limits:
$A_{0} / A_{l}=[n(1+p A)+2] / 2(n+1)=(5 p A+7) / 12$ for $n=5$.

1. the valve should be well decoupled to avoid phase shift within the band of interest;
2. the driving impedance (output of previous stage) should not exceed R;
3. $p R_{l}$ should not exceed $R / 5$;
4. Cf should be negligible compared with R.

Design procedure should commence by referring to the curve to be equalised. The frequency up to which it is to be equalised becomes f_{0} and the amount it is to be lifted relative to distant frequencies becomes A_{0} / A_{l}. This gives $p A$. The actual gain desired from the stage gives A, and thence $p . n R$ is then made as high as the grid circuit permits; this determines the bridge elements R and C, and R_{l} is calculated as $<R p / 5$. A valve stage is then designed with this value of load and amplification A. Component tolerances in the bridge elements should be $\pm 5 \%$, and $n R$ and C / n should be $\pm 10 \%$.

As an example, component values are given for equalisation of the typical magnetic recording curve on page 72.

Valve EF86: $\quad E_{\delta}=250, \quad I_{k}=2-0 m A, \quad R_{l}=82 k+15 k$ ($p R_{l}=15 K$), following grid leak $=330 k, R_{s}=390 k$, $C_{s}=10 \mu F, R k=1 k, C_{k}=100 \mu F ; f_{0}=10.6 \mathrm{KH}_{z}, n=5$, ${ }_{n} R=750 K, c / n=20 p F(10 \%) ; R=150 k, C=100 p F(5 \%)$; $C_{f}=5 \mu F ; \quad A=41 \mathrm{db}, \quad A_{0}=25 \mathrm{db}, \quad A_{l}=+7 \cdot 5 \mathrm{db}, \quad A_{0} / A_{l}=$ $17.3 \mathrm{db} ; 3 \mathrm{db}$ frequencies at 4.6 KHz and 24.4 KHz .

LOUDSPEAKER OPERATION

Matching to the speech coil by a transformer requires a turns ratio $t p / t s=\sqrt{z p} / z s$ where $z p$ and $z s$ are valve output and speech coil impedances respectively. The conversion efficiency of electrical input to acoustic output varies over the A.F. band. The cone mass and spider compliance resonates at $40-100 \mathrm{~Hz}$. Above the resonance cone velocity ($U c$) and hence acoustic power output ($W a$) is governed by the cone mass (inertia). Thus $U c$ is choked off as frequency increases, but $W a=$ $U c^{2} R r, R r$ the acoustic radiation resistance depends on shape and dimension of radiator. For a cone Rrincreases with frequency and off-sets the choking, but between 300-600 Hz Rr ceases to rise. Beyond this choking would set in, but corrugations in cone become effective, one or more of which radiate over H.F. range. This variable H.F. behaviour is overcome by using a small separate L.S. or tweeter feeding both loudspeakers via cross-over networks diverting treble to tweeter only. To maintain bass, a baffle is necessary otherwise back radiation will cancel frontal output. The worst baffle circular, the best rectangular $3: 2$ ratio. By cabinet design, back radiation can reinforce frontal output extending bass. The cabinet walls must be lined with H.F. absorbent quilting and, apart from a vent at bottom, front should be sealed. The enclosed volume should resonate below speaker resonance (at least $12 \mathrm{cu} . \mathrm{ft}$.)

STEREOPHONY

A listener decides the position of a sound source partly by the difference in loudness produced at the two ears, and partly by the difference in time at which the sound arrives at each ear, plus certain apparent differences in sound quality and reverberation. The various systems of stereo microphone arrangements make use of either time or intensity difference or both. The loudspeaker arrangement shown in Fig. 1 is satisfactory for most systems; note that each ear in fact hears sounds from both L.S., though at different times and intensities. Most systems are not suitable for headphone listening.

Audio frequency

Fig. 2 shows the intensity difference system using coincident microphones (within a few inches at most so that no phase differences occur) having a figure 8 characteristic i.e. ribbon or condenser types. A sound source at A is on the dead axis of the R.H. mic. and the live axis of the L.H. mic., and so appears to come from the L.H. loudspeaker. A source at C produces equal outputs on L. and R. channels and so appears to come from midway between the speakers (which must be connected in phase), and so on for any point between \mathbf{A} and \mathbf{B}.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Fig. 3 shows one of the layouts using spaced mics., usually cardioid or omni-directional, giving mostly time difference information. With this system the sound image tends to be concentrated near the L.S., giving the effect of a hole in the middle, which is often partly filled up by placing a third mic. in the centre, fed equally into both channels.

Most systems of stereo transmission (see below) require the signals (left+right) (M signal) and (left-right) (S signal), which are obtained by using a sum and difference network. See Fig. 5. Alternatively the M and S signals may be obtained directly from the mics. using an arrangement like Fig. 4.
R.D. -C

Decreasing the S signal relative to the M signal decreases the apparent width of the stereo image at the loudspeakers, while increasing the S signal increases the width up to a certain limit where out-of-phase effects arise. The width can also be reduced simply by crossmixing the L. and R. signals with a variable attenuator connected between the two channels; $8-12 \mathrm{db}$ gives about half width and zero attenuation gives a central (monophonic) image; unwanted cross-talk has the same effect. The image can be offset in etther direction by a balance control which raises the gain of one channel relative to the other.

STEREOPHONIC BROADCASTING

Broadcast stereophony provides in effect two separate sound channels (left and right) between two microphones in the studio and two loudspeakers in the listening room. At the transmitter the two channels are coded by a multiplexing process for transmission on a single vhf wavelength. The signal is decoded by a special vhf receiver in order to extract the two signals required by the loudspeakers.

The BBC, in common with other European broadcasting authorities, uses the pilot-tone (Zenith-G.E.) system of stereophonic broadcasting. The system may be envisaged as a process of alternately switching the left and right channels to a single vhf transmission. A similar switching process at the receiver performs the reverse operation and extracts the left and right signals for feeding to the respective loudspeakers. The switches at the transmitter and in the receiver operate at the rate of 38,000 times per second and are kept in synchronism by the pilot-tone transmission. The system is fully compatible in that it allows ordinary vhf receivers to obtain satisfactory monophonic reception of stereophonic broadcasts. Moreover, it does not require separate transmitter wavelengths for the two channels.

To hear these programmes stereophonically special receivers are required. Ideally, the two loudspeakers should be spaced 6 to 12 feet apart and the listener should sit at a point which is equidistant from them and preferably not closer to them than their distance apart.

The stereophonic programmes on the vhf Third Network are broadcast in the Music Programme and in the Third Programme at times marked by a special sign 5 in the appropriate regional edition of the Radio Times, which also gives the correct vhffrequencies. The emphasis is mainly on music, because this type of programme derives the greatest benefit from stereophonic reproduction and also provides the necessary degree of compatibility for monophonic reception.

Initially, the stereophonic transmissions are available to listeners within the service area of the Third Network vhf transmitters in South-East England at Wrotham and Swingate (Dover) and in the Midlands from the Sutton Coldfield vhf transmitter, and in the North of England from the transmitter at Holm Moss.

REPRODUCTION FROM GRAMOPHONE RECORDS

78 r pm , or coarse-grove discs have approximately $90-120$ grooves per inch; long-playing or fine-groove discs ($33 \frac{1}{2}$ or 45 rpm) have 200-300 grooves per inch. Finegroove discs frequently use variable groove pitch, the spacing being increased to allow high modulation on loud passages, and decreased on quiet passages giving wide dynamic range with a long playing time.

Fig. 1

Fig. 2

If all frequencies were recorded with a constant rms velocity, the bass would have excessive amplitude

Audio frequency

requiring wide groove spacing, while the treble would have very small amplitude and so a poor signal-noise ratio. Frequencies below about $250 \mathrm{H}_{z}$ are attenuated at approximately 6 db per octave and, except on earlier 78 rpm discs, the high frequencies are pre-emphasised. Fig. 1 shows the BSI 1928: 1955 specification for recording equalisation; early 78 rpm discs had approximately the same L.F. roll-off but no top lift.

The ideal reproducing equaliser would produce the inverse of this curve, assuming a perfect velocity-sensitive pick-up. Most record companies use recording characteristics which differ from the B.S.I. curve, no single reproducing equaliser being correct for all discs, but the R.I.A.A. standard reproducing characteristic shown in Fig. 2 gives results within a few db for most discs. Fig 3 shows a circuit for a velocity sensitive pick-up (moving coil, moving iron or ribbon). Crystal pick-ups produce voltage a recorded amplitude, and can be used unequalised for many purposes but for high quality they can be shunted to produce an approximate velocity characteristic and equalised as shown, or used with a specially designed equaliser.

Fig. 3. Circuit for velocity sensitive pick-up

Audio frequency

Crystal pick-ups give an output of about 0-1-2.5 volts; magoetic types only $10-200 \mathrm{mV}$. Magnetic pick-ups, their associated wiring and transformers are liable to bum induction; care is necessary with the low output to avoid trouble from turntable motor and mains wiring. The standard 78 r.p.m. reproducing stylus has tip radius 0.0025 in . and for long-playing discs a radius of 0.001 in . For stereo a radius of 0.0005 in . is recommended, though 0.007 in . is often used. The stylus pressure on the disc should be less than 10 grams for long-playing dises and preferably less than 5 grams for stereo.

The groove on a monophonic disc is of constant depth but has lateral variations which cause the needle to vibrate horizontally. In an early system, the variations were hill-and-dale and produced vertical vibrations. In stereophonic recording, a right-angled cutter is driven by two drive rods (Fig. 4) extended from separate moving coil units, in such a way that two distinct hill-and-dale recordings are made on the 90° displaced opposite faces of the v-shaped groove.

The stereo information can then be recovered by scanning the groove with a single needle which drives two separate voltage generators in accordance with the information recorded on the two groove walls.

Fig. 4. How a stereo disc is cut

Fig. 5. Crystal stereo pick-up

A typical stereo pick-up consists of two crystal bimorphs, clamped at their rear ends and embedded at their front ends in a diamond-shaped sheet of plastic (the resolver) as shown in Fig. 5. The top of the resolver is held in a rubber clamp and the needle tip is fixed to the end of a rod which fits into a notch at the lower corner of the resolver.

If only the right-hand groove wall is hill-and-dale modulated, the arm of the resolver BC is vibrated longitudinally and turns arm AB about A, stressing the lefthand (R) bimorph, whilst arm CD pivots about D and produces relatively little stress in the right-hand (L) crystal.

Fig. 6. Moving coil pick-up

If, on the other hand, only the L.H. groove wall is modulated, it is the R.H. crystal (L) which is most stressed. A moving-coil resolver, which does not make use of pivoted levers is shown in Fig. 6. Two coils fixed at right angles can turn about their common centre, and are situated in a magnetic field parallel to their common diameter. L modulation alone turns the coils as shown; coil (r) remains in its own plane and so produces no output and coil (1) cuts lines of force and so has a signal induced.

MAGNETIC RECORDING

The storing of information in the form of a magnetic pattern on a wire or tape dates back to 1900, when Poulsen exhibited the first magnetic recorder at the Paris Exhibition of that year. Nowadays the medium is generally a $t^{\prime \prime}$ wide plastic or paper tape coated with a 0.5 mil layer of very finely divided ferric oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3} \gamma$).

Wiping process

Any previous recording is erased by passing the tape over the twenty mil long gap in a ring type electromagnet, energised by high frequency alternating current. The
magnetic flux, due to the current, is concentrated in the tape coating over the gap. Because the density of the flux in the tape is not uniform, but varies from zero value on the left-hand side of the gap to maximum in the middle and then back to zero at the right-hand side, the segments of coating passing over the gap are subjected to alternating magnetising forces which gradually increase in strength to saturation value and then diminish to zero. Thus any previously recorded programme is erased and the tape coating leaving the gap is in a completely demagnetized condition, ready for re-recording.

Recording process

The recording bead is a similar ring-type electromagnet, though with a much narrower gap. It is energised by the amplified output of the microphone, to which a supersonic bias (obtained from the oscillator, which also provides the erase current) is added. The function of the bias, which is of critical amplitude, is to inhibit the distortion of low audio frequencies, which would otherwise arise because of the s-shape of the initial magnetisation curve of ferric oxide. Another important function of the bias is to increase the output level, thus ensuring a good programme-to-noise ratio.

Domestic recorders have recording heads of half or quarter tape width and therefore record two or four tracks. On stereo, four-track, recorders the disposition of the tracks is as shown in Fig. 1.

Fig. 1

Reproducing process

Reproduction is effected by passing the tape (after rewinding) over the same ring-type electromagnet as used for recording. On most professional machines there is a separate reproducing head; with such an arrangement the recording can be monitored as it is being made. A change-over switch enables the operator to listen, at will, to the incoming sounds or their reproduction from the
tape. During reproduction (other than whilst recording as described above) the erase head is not energised. As the recorded tape moves over the gap in the replay head the magnetic pattern on the tape causes changing lines of magnetic force to thread the core of the replay head and this produces at the terminals of the coil surrounding the core, the electrical replica of the recorded signal.

After suitable equalisation and amplification the signal is fed to the loudspeaker and becomes audible. Over the range $100-3,000 \mathrm{H}_{z}$ the output voltage is proportional to the rate of change of flux in the core and therefore, if unequalised, rises 6 dB per octave as shown in the graph.

Fig. 2. Magnetic tape recording: unequalized response for typical good commercial recorder (tape speed $19 \mathrm{~cm} / \mathrm{sec}$)

Below $100 \mathrm{H}_{2}$ the fall off with decrease in frequency is at a sharper rate, whilst at frequencies above $3 \mathbf{K H}_{\mathbf{2}}$ the output begins to fall off, until it reaches a minimum at what is called the extinction frequency. This is the frequency at which the recorded wavelength is equal to the effective gap length in the replay head.

Equalisation

With suitable equalisation the output signal can be made linear up to a frequency which is $2 / 3$ of the extinction frequency.

It is normal for the replay pre-amplifier to include bass-lift equalisation to the C.C.I.R. characteristic for the
tape speeds required (response equivalent to a series R-C circuit of time-constant $100 \mu \mathrm{sec}$ for $7-5^{\prime \prime} / \mathrm{sec}$ and 50 $\mu \mathrm{sec}$ for $15^{\prime \prime} / \mathrm{sec}$). This is conveniently obtained by means of a simple anode-grid feedback circuit of \mathbf{R} and C in series, e.g., IM and 100 p.f. for $7-5^{\prime \prime} / \mathrm{sec}$. Additional very low frequency losses occur when the wavelength on the tape is comparable with the length of pole-piece in contact with the tape and high frequency losses occur when the wavelength is comparable with the reproducing gap width,

$$
\text { loss }=20 \log _{10}[(\sin (\pi \delta / \lambda) /(\pi \delta / \lambda)] \mathrm{db}
$$

where $\delta=$ the effective gap length in the replay head.
The recording equalisers and bias are adjusted to produce a recording having a C.C.I.R. characteristic with a given head and type of tape. Nearly all losses occurring during recording are at high frequencies: partial demagnetisation due to high bias level; self-demagnetisation of the tape as each half-cycle is short relative to its thickness (both these effects are less with high coercivity tapes) and losses in the record head itself. The top-lift necessary to correct for these losses is obtained from a tuned circuit either L.C. or twin-T negative feedback in the recording amplifier. The recording and reproducing amplifiers are frequently the same amplifier with only the equalisers switched for the different purposes.

A mis-alignment angle \propto between record and replay head gaps with a track of width W gives an HF loss of: $20 \log _{10}[\sin (\pi \mathrm{~W} \tan \propto / \lambda) /(\pi \mathrm{W} \tan \propto / \lambda)] \mathrm{db}$

Standard speeds

For the standard speeds (in inches per second), the frequency responses obtained with a $0.0003^{\prime \prime}$ replay head gap are as follows: $30^{\prime \prime}$, originally used for broadcasting, now almost obsolete- $15-20 \mathrm{KH}_{2} ; 15^{\prime \prime}$, broadcasting and professional recording- $15 \mathrm{KH}_{2} ; 7 \frac{1}{2}$ ", high quality domestic music- $10 \mathrm{KH}_{2} ; 3 \mathrm{~g}^{\prime \prime}$, normal domestic use$6 \mathrm{KH}_{z}$ (but much greater frequency response is often obtained by reducing bias level and tolerating a greater level of distortion). Lower speeds than these, $1 \frac{7^{\prime \prime}}{}{ }^{\prime \prime}$ and $\frac{5}{18}{ }^{\circ} \mathrm{sec}$, are in use for dictating machines.

Electro-magnetic waves

Comprising electric (E) and magnetic (H) fields crossed 90° and mutually perpendicular to line of travel. In free space $E / H=Z_{o}=\sqrt{\mu 0 \varepsilon_{0}}=377$ ohms $/ M^{2}$ and velocity $C=1 / \sqrt{ }$ нов $о=299,793 \mathrm{~km} . / \mathrm{sec} . \bumpeq 3.10^{8} \mathrm{M} / \mathrm{sec}$. where permeability $\mu 0=1.25710^{-6}$; henry/ M, and permittivity $\varepsilon o=8.85 .10^{-1}$ farad/M. Wavelength in space is $\lambda=$ ($3.10^{8} /$ frequency) metres $/ \mathrm{sec}$. Wave speed $5.376 \mu \mathrm{~S}$ per mile, $3.335 \mu S$ per Km.

Propagation

The wave may proceed to the receiver along one or more of three possible routes:

1. Direct (line of sight)
2. Reflected (bounce off conducting object)
3. Surface wave (groundwave).

The ionosphere (ionised gas layers above earth) and earth surface constitute reflecting surfaces. Earth surface presents a parallel resistive/capacative impedance to a wave and attenuates surface waves as frequency increases. Above $2 \mathrm{H}_{z}$ attenuation is severe. Skywaves are reflected from earth with a reflection coefficient $r=$ (reflected) incident) wave amplitude.

Ionosphere

There are four reflecting layers: $\mathrm{D}, 50-90 \mathrm{Km} ; \mathrm{E}, 100$ Km ; $\mathrm{F}_{1} 200 \mathrm{Km}$; $\mathrm{F}_{2}, 250-350 \mathrm{Km}$ up by day. By night D and E partially de-ionise, leaving a combined $F_{1}+F_{3}$ layer at 250 Km . These layers have increasing free electron density maxima (N), from D to F_{2}. The electron density determines the critical frequency, f_{c}, the highest frequency reflected from the particular layer at vertical incidence. $\mathrm{f}_{\mathrm{c}}=9 \sqrt{ } \mathrm{~N}$

FREQUENCY BANDS

Allocation to communications services

In order to transmit intelligence, whether in the form of a simple code (morse), telephonic communication, or video (television) signals, a radio frequency has to be modulated, and the process of modulation causes the rf signal to occupy a channel of so many Hertz bandwidth. The width of this channel depends upon the nature of the intelligence to be transmitted, being fairly low for telegraphic messages in morse (below 1,000 Hz wide), about $10,000 \mathrm{~Hz}$ for am sound broadcasting,
and over 2.5 megacycles $/ \mathrm{sec}$. wide for the video signals used in television. If interference between two separate channels is to be avoided, it is obvious that some form of international agreement must be made on the allocation of frequency bands to each service. Such an agreement has been made on a world basis for general allocation of radio communication services. The world is divided into three main areas, viz., American, European, Australian, for this purpose, the allocations for each service being fairly similar at the hf end of the spectrum, due to the ability of such waves to travel long distances and thus cause interference at the other side of the world.

SHORT-WAVE BROADCASTING

Broadcasting on short waves is confined to a number of relatively narrow wavebands. Although quite a number of high-quality ($10 \mathrm{KHz}_{z}$) channels can be accommodated in each band, the number of s.w. stations is rapidly increasing and satisfactory reception is often limited to the advertised service area for the particular transmission. The following wa vebands have been allocated to international broadcasting (excluding tropical bands):

3.95-4.00	
5.95-6.20	$\mathrm{MH}_{\mathbf{z}} \mathbf{4 9}$ metre ba
7.10-7.30	$\mathrm{MH}_{2} 41$ metre band
9.50-9.775	$\mathbf{M H}_{\mathbf{z}} 31$ metre ba
11.80-11.975	$\mathbf{M H}_{2} \mathbf{2 5}$ metre ba
15.10-15.45	$\mathbf{M H z}_{\mathbf{z}} 19$ metre
17.70-17.90	$\mathbf{M H}_{\mathbf{2}} 16$ metre
21.45-21.75	$\mathrm{MH}_{\mathbf{z}} 13$ metre
25.60-26.10	$\mathrm{MH}_{2} 11$ metre ba

The use of particular channels for long-distance transmission is determined largely by ionospheric conditions. Schedules of transmission times and frequencies are worked out with reference to the ionospheric conditions at particular times of the day and year. Most countries now co-operate with one another to minimise interference, but many transmissions are still deliberately jammed.

From the U.K. a regular world service on s.w. is maintained by transmitters working on the following frequencies:

Electro-magnetic waves

Call sign	Freq. MHz_{z}	Wavelength	$\begin{aligned} & \text { Call } \\ & \text { sign } \end{aligned}$	Freq. MHz_{2}	Wavelength
75 metre band			GRX	69	
CM	$3952 \cdot 5$	$75 \cdot 90$	GWY	9.70	30.93
GRC	3975	75.47	GWF	9.735	$30 \cdot 82$
49 metre band				9.75	30.77
MCP	5.975	50.21	MCR	$9 \cdot 760$	$30 \cdot 74$
MCQ	5.99	50.08	MCN	9.770	$30 \cdot 71$
GRB	$6 \cdot 01$	49.92	GRH	9.825	30.53
GSY	$6 \cdot 04$	49.67	GRU	9.915	30-26
GSA	6.05	49.59	25 metre band		
GSX	6.06	$49 \cdot 50$	GRG	11.68	25. 68
GRR	6.07	49-42	GVV	11.73	25.58
GWM	$6 \cdot 09$	49-26	GSD	11.75	25.53
GSL	$6+11$	49-10	GVU	11.77	25.49
GWA	$6 \cdot 125$	$48 \cdot 98$		11.78	25.47
GRW	$6 \cdot 15$	48.78	GWV	11.79	$25 \cdot 45$
GWK	$6 \cdot 165$	48.66	GWH	11.80	25.42
GSZ	$6 \cdot 17$	$48 \cdot 62$	GSN	$11 \cdot 82$	25.38
GRO	$6 \cdot 18$	$48 \cdot 54$	GWQ	11.84	25.34
GRN	$6 \cdot 195$	$48 \cdot 43$	GSE	11.86	25.30
41 metre band			GRE	1188	$25 \cdot 25$
MCS	7-11	$42 \cdot 19$	GWW	11.89	25.23
GRM	7-12	$42 \cdot 13$	MCO	11.91	25-19
GRS	7-135	42.05	GVX	11.93	15.15
GRT	$7 \cdot 15$	41.96	MCQ	11.945	25.12
GRK	7-185	41.75	GVY	11.955	25.09
GWZ	$7 \cdot 20$	41.67	MCT	11.96	25.08
GWL	$7 \cdot 21$	41.61	GRV	12.04	24.92
GSW	7.23	41.49		12.095	24
GWI	7.25	41.38	19 metre band		
GSU	7.26	41.32	GWC	15.07	19.91
GWN	7.28	41.21	GWG	15.11	19.85
GRJ	$7 \cdot 325$	40.96	GSF	$15 \cdot 14$	19.82
31 metre band			GSO	$15 \cdot 18$	19.76
GRI	9.41	31.88	WU	$15 \cdot 21$	19.72
GSB	9.51	31.55	GWD	15.23	19.70
GWJ	9.525	31.50	GSI	15.26	19.66
GWB	9.55	31.41	GWR	15.30	19.61
GWX	9.57	31.35	GSP	15.31	19.60
GSC	9.58	31.32		15.36	19.53
GRY	9.60	31-25	-	15.375	19.51
GWO	9.625	31.17	-	15.40	19.48
GVZ	9.64	$31 \cdot 12$		15.42	19.45
GWP	9.66	31.06	GWE	15.435	19.44
GWT	$9 \cdot 675$	31.0	GRD	15.44	$19 \cdot 42$

$\begin{aligned} & \text { Call } \\ & \text { Sign } \end{aligned}$	Freq． MH	Wave－ length	Call sign	Freq． MHz_{z}	Wave－ length
16 metre band			13 metre band		
GVP	17.70	16.95	GSH	21.47	13.97
GRA	$17 \cdot 715$	16.93	GSJ	21.53	13.93
GVQ	17.73	16.92	GST	21.55	13.92
GRQ	17.74	16.91	GVT	21.63	13.87
GSG	17.79	16.86	GRZ	21.64	13.86
GSV	17.81	$16 \cdot 84$	GVR	21.675	13.84
GRP	17.87	16.79	GVS	21.71	$13 \cdot 82$
GVO	17.89	16.77	11 metre band		
－	18.08	$16 \cdot 53$	GSQ	25.75 26.08	11．65

Optimum wavebands for short－wave reception
Owing to world－time－differences and the reliance of s．w． broadcasting upon ionospheric conditions，s．w．stations in general do not attempt to maintain a continuous service．Instead，they run to a schedule in which wave－ lengths and directional aerials are changed from hour to hour and season to season．To assist s．w．listeners，Wire－ less World publishes each month tables showing muf＇s and luf＇s over different paths．Propagation forecasts， showing wavebands for optimum reception at given periods of the day，also appear in the monthly R SGB publication Radio Communications（see page 78）．

Example Table
（Figures relate to wavebands in metres）

$\begin{gathered} \text { N } \\ \text { む̃ } \\ \text { ట゙ } \end{gathered}$	$\underset{y y y y}{c}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { जै } \\ & \text { 以े } \end{aligned}$			$\begin{aligned} & \text { IN } \\ & \hline \end{aligned}$	ज．	$\begin{aligned} & \text { y.g } \\ & \text { 4. } \end{aligned}$
Spring	Morn	75	41	31	31	31	19	25
and	Aft．	41	16	16	16	19	25	31
Autumn	Eve．	M／W	31	31	31	31	41	49
Summer	Morn	49	31	25	31	25	16	19
	Aft．	31	16	19	16	25	19	25
	Eve．	41	25	25	25	31	25	31
Winter	Mor	75	41	49	49	41	25	31
	Aft．	41	16	19	19	25	31	41
	Eve．	M／W	31	31	31	31	41	49

The SINPO code

This is an international code for reporting details of reception of broadcasting stations and it takes the form of a five-figure code following the word sinpo. The code derives its name from the initial letters of the five qualities observed and each observation is reported in terms of one out of a range of five different degrees.

$\begin{aligned} & \mathrm{S}==\text { carrier } \\ & \text { Strength } \end{aligned}$	$\left\{\begin{array}{l} \text { Excellent } \\ \text { Good } \\ \text { Fair } \\ \text { Poor } \\ \text { Barely audible } \end{array}\right.$
$\mathbf{I}=\begin{aligned} & \text { Inter. } \\ & \text { ference } \end{aligned}$	$\left\{\begin{array}{l} \text { Nil } \\ \text { Slight } \\ \text { Moderate } \\ \text { Severe } \\ \text { Extreme } \end{array}\right.$
$\mathrm{N}=$ noise (QRN)	$\left\{\begin{array}{l}\text { Nil }(-40 \mathrm{db} .) \\ \text { Slight }(-30 \mathrm{db} .) \\ \text { Moderate }(-20 \mathrm{db} .) \\ \text { Severe }(-10 \mathrm{db} .) \\ \text { Extreme }(0 \mathrm{db} .)\end{array}\right.$
$\begin{aligned} \mathbf{P}= & \text { propaga- } \\ & \text { tion } \\ & \text { disturb- } \\ & \text { ance } \end{aligned}$	$\left\{\begin{array}{l} \text { Nil } \\ \text { Slight } \\ \text { Moderate } \\ \text { Severe } \\ \text { Extreme } \end{array}\right.$
$\begin{gathered} \mathrm{O}=\text { overall } \\ \text { reada- } \\ \text { bility } \end{gathered}$	$\left\{\begin{array}{l} \text { Excellent } \\ \text { Good } \\ \text { Fair } \\ \text { Poor } \\ \text { Unusable } \end{array}\right.$

EXAMPLB:
A good signal with slight het. but rapid fading would be: SINPO 44333.

Radio Society of Great Britain

The R S G B, a national society for radio amateurs in the United Kingdom, issues a monthly journal Radio Communication, free to members, of information on amateur radio activities and technical developments. Subscription: Corporate Members $£ 210 \mathrm{~s}$. Od., Associates $£ 15 \mathrm{~s}$. Od. Address: 35 Doughty Street, London, W.C.1. Tel: 01-837 8688.

Some international amateur prefixes

Prefix	Country	Prefix	Country
$\begin{aligned} & A C 4 \\ & A P \end{aligned}$	Tibet Pakistan	FY7	French Guiana
		G	Englan
$\begin{aligned} & \text { BV } \\ & \text { BY } \end{aligned}$	Taiwan China	GC GD GI GM GW	Channel Islands Isle of Man N. Ireland Scotland Wales
$\mathrm{CE}_{\mathrm{CL}}^{\mathrm{M}}$, CO	Chile		
CN2,8-9	Morocco Bolivia	$\begin{aligned} & \text { HA } \\ & \mathbf{H B} \end{aligned}$	Hungary
CP4 CR4			
CT1	Cape Verde Is.	HC	Switzerland
CT2	Azores	HE HH	Liechtenstein Haiti
CT3	Uruguay	HI	Dominican Republic
CX			
DJ, DK,		HKHMHP	Colombia
DL ${ }^{\text {DJ, }}$	Germany		Korea
DU		HR	Honduras
	Philippine Is.	HS	Thailand
EA6	Spain Balearic Is.	$\begin{aligned} & \mathrm{HV} \\ & \mathrm{HZ} \end{aligned}$	Vatican City Saudi Arabia
EA ${ }_{\text {E }}$ ¢	Spanish Guinea Eire	$\mathrm{ISI}^{\text {IT, }}$	Italy Sardinia
EL			
EP	Liberia	JA, KA	Japan Mongolia Jordan
9F3	Ethiopia		
F	FranceCorsicaGuadeloupeComoro Is.FrenchSomaliland	$\begin{aligned} & \text { K } \\ & \text { KA-KJ } \end{aligned}$	
FC			U.S.A. U.S. Stations in Pacific
FG7			
FH8		KL7	Alaska
FL8		KN	U.S.A. (Novices
$\begin{aligned} & \text { FM7 } \\ & \text { FO8 } \end{aligned}$	Somaliland Martinique Clipperton Is. and French Oceania	KR-KX	licence) U.S. Pacific Possessions Panama Canal
FP8		LA, LB	
	St. Pierre and Miquelon Reunion Is.		Norway
FR7		LU	Argentina
FU8	New Hebrides	LX	Luxemboung

Electro-magnetic waves

Prefix	Country	Prefix	Country
LZ	Bulgaria	UR2	Estonia
$\begin{aligned} & \mathrm{M} 1,9 \mathrm{P} \mathbf{1} \end{aligned}$	San Marino British stations in Persian Gulf	VE, VO	Canada,Labrador and Newfoundland
OA ODS OE OH OK ON4, ONS OX, KG1, XP OY OZ PA, PI PX PY PZ1 SM, SL SP ST2 SU SV TA TF TG TI TN UAI-6 UA9 UY5, UC- UO UP2 UQ2	Peru	VK	Australia and Dependencies,
	Austria		e.g. VK9-Papua
	Finland	VP1	Falkland Islands
	Czechoslovakia		and depend-
	Belgium	VP9	encies
	Greenland Faroe Islands Denmark	VQ1	Zanzibar
		VQ2	Zambia
		VRI-6	British Poss'ns in
		VS6	Hong Kong
		VS9	Aden and
	Netherlands Dutch West Indies Andorra		Maldive Is.
		VU	India
		W/K	U.S.A.
	Brazil	W/K	U.S.A.
	Netherlands Guiana	XE, XF	Mexico
		XW8	Laos
	Sweden Poland Sudan Egypt Greece	XZ	Burma
		YA	Afghanistan
		YI	Iraq
		YK	Syria
		YN	Nicaragua
	Turkey	YO	Rumania
		YS	Salvador
	Guatemala	YU	Yugoslavia
	Costa Rica Congo Republic	YV	Venezuela
		ZA	Albania
	European Russia	2B1	Malta
	Asiatic Russia	ZB2	Gibraltar
	Ukraine	ZD3	The Gambia
	Russian	ZE	Rhodesia
	Republics	ZK1	Cook Islands and
	Lithuania		Manihiki Is.
	Latvia	ZK2	Niue

Prefix	Country	Prefix	Country
ZL	New Zealand	5U7	Niger Republic
ZP	Paraguay	5W,	Samoa
ZS1-6	South Africa	7X	Algeria
3A	Monaco	8 F	Indonesia
$3 \mathrm{V8}$	Tunisia	9 Gl	Ghana
3W8	S. Vietnam	9 K 2	Kuwait
4S7	Ceylon	9 K 3	Neutral Zone
4W1	Yemen	9 LL	Sierra Leone
4X4	Israel	9M2	W. Malaysia
5 A	Libya	9M6/8	E. Malaysia
5 S 4	Cyprus	9N1	Nepal
5H3	Tanzania	$9 \mathrm{O5}$	Congo
5N2	Nigeria	9 VI	Singapore

The number following the letter K or W (prefix for U.S.A.) or VE (Canada) indicates the State:

K/W1	Connecticut. Maine Mass., New Hampshire, Vermont	W8	Wyoming
			Michigan, Ohio,
			West Virginia
		W9	Illinois, Indiana,
W2	New Jersey, New York	W	Wisconsin
W3	Delaware D.C.,		Kansas, Mi
	Maryland, Penn.		sota, Missouri,
W4	Alabama, Florida		Nebraska, N.
	Georgia,	VE1	New Brunswick,
	Kentucky,		Nova Scotia,
	Carolina,		Prince Edward
	Tennessee,		Islands, New-
	Virginia		foundland
W5	Arkansas,	VE2	Quebec,
	Louisiana,		Labrador
	New Mexico,	VE3	Ontario
	Oklahoma,	VE4	Manitoba
	Texas	VES	Saskatchewan
W6	California	VE6	Alberta
W7	Arizona, Idaho,	VE7	British Columbia
	Nevada,	VE8	Yukon
	Oregon, Utah	VE	Radio Clubs (any
	Washington,		district)

Transmission

CARRIER WAVE PRODUCTION

Various methods may be used to produce the rf carrier essential for the propagation of em waves, such as rotary alternators, spark generators, tuning-fork drives, and valve oscillators with lc or crystal control of the frequency. Only the two latter find favour in modern transmitters, where precise control of frequency is essential.

All oscillators consist fundamentally of four elements:

1. A frequency-determining network (either electrical or electro-mechanical, eg, crystal, tuned circuit).
2. An amplifying stage to make good the inevitable losses occurring in the fd network.
3. A system of positive feedback from the output of the amplifier to the fd network.
4. A limiting device to prevent the oscillations buildingup to a dangerous value. Often this is automatic in the sense that grid current is used to bias back the valve.

Circuits shown on the next page embody inductance, L, and capacitance, C, for frequency-determining elements. Unless otherwise stated, frequency of oscillation is $f=1 / 2 \pi \sqrt{L C}$. Feedback is obtained in circuits (i) and (iii) by mutual electro-magnetic induction between grid and anode units; in circuit (ii) by grid-to-anode capacitance of valve; in circuits (iv) and (vi) by currents flowing in common grid and anode circuits.

In circuit (v) extremely good frequency stability is obtained as $C_{1} \xlongequal{=} 003 \mu F\left(C_{2}=\cdot 006 \mu F\right)$ swamps valve variations-used below $30 \mathbf{M H}_{2}$; frequency is given by

$$
f=f_{0} \sqrt{1+\frac{C}{C_{1}}+\frac{C}{C_{2}}} ; C \simeq 300 p F \max \text { for } f<7 \mathrm{MH}_{2}
$$

Capacitances (unmarked) other than those in the tuned circuit are for decoupling or self bias.

(i) Tuned grid oscillator.

(ii) Tuned grid/tuned anode oscillator. $f=1 / 2 \pi \sqrt{L_{0} C_{3}}$

(iii) Meissner oscillator.

(iv) Hartley oscillator. $f=1 / 2 \pi \sqrt{ } C\left(L_{\Delta}+L_{0}+2 M\right)$

(v) Clapp oscillator.

(vi) Colpitts oscillator.
$f=\sqrt{ } C_{\Delta}+C_{G} / 2 \pi \sqrt{ } L C_{\Delta} C_{6}$

Basic oscillator circuits

MODULATION

The rf carrier wave radiated from a transmitter does not in itself convey any intelligence to the receivers. The af variations from the microphone must be made to control either the amplitude or the frequency of the carrier, a process known as amplitude, or frequency-modulation respectively.

Amplitude modulation

An unmodulated carrier of amplitude A is shown at (a); beneath it (b) is the af wave with which it is to be modulated. The final wave (c) shows the effect of varying the amplitude of (a) at the af rate of (b). The waves are not drawn to scale, since, even with the longest rf wave (150 Hz), this would represent many cycles for every cycle of af signal.

The amplitude Am of the modulating signal is shown as m times the carrier amplitude, where m is known as the modulation factor. The carrier varies between a maximum of $A(1+m)$ and a minimum of $A(1-m)$. When $m=1$, the carrier amplitude swings between 0 and $2 A$, a condition known as 100% modulation.

Modulation may either be performed at an early stage in the transmitter (low-power modulation) or the modulating stage may be the final stage (bigh-power modulation).

Transmission

Grid modulation
Anode, or Heising modulation

Push-pull Heising modulation
Series modulation
In these example circuits, triodes (rarely now used) are shown for simplicity. For the same reason, neutralisation circuits are omitted.

If $f_{c}=$ carrier frequency and $f_{s}=$ modulating frequency then the transmitter output is of the form
$\mathrm{E}_{0}=\mathrm{E}\left(1+m \sin 2 \pi f_{s} t\right)$. Sin $2 \pi f_{c} t$ which expands to $\mathrm{E}_{0}=\mathbf{E} \sin 2 \pi f_{c} t+5 m \mathrm{E} \cos 2 \pi\left(f_{c}-f_{d}\right) t+.5 m \mathrm{E} \cos$ $2 \pi\left(f_{c}+f_{s}\right) t$.
The first term is the carrier, the second and third are lower and upper sideband frequencies of $\left.\left(f_{c}-f_{s}\right), f_{c}+f_{s}\right)$ Hertz respectively. The bandwidth requirement is thus \pm the highest f_{8} anticipated centred about f_{c}.

The vector shows the situation for 100% mod., ie, $\mathrm{m}=$ 1.0 when the sideband vectors swing the amplitude between zero and twice B. The carrier does not itself bear infor-mation-providing the receiving system is a given means to artificially recreate an accurate carrier (for demodu-

Transmission

lation purposes) only the two sidebands need be transmitted or alternatively only the single sideband. As the high power carrier is absent in the transmitter output stage a higher sideband power is possible as also is a reduction in bandwidth with consequent improvement is signal/noise over the carrier plus double sideband system.

Balanced modulator/demodulator

A simple low level device which when fed with frequencies f_{o}, f_{c}, produces only $\left(f_{s}+f_{c}\right),\left(f_{s}-f_{c}\right)$, ie, no carrier component. If filters are subsequently employed, one of the two sidebands may also be eliminated.

Demodulation may be performed in a similar circuit if reconstituted identical carrier is fed to the points xx . If a frequency (Δf) or phase $(\Delta \phi)$ error exists between mod and demod carriers the demodulated signal is frequency or phase shifted by the same error respectively, relative to the original modulator input signal.

Frequency modulation

One of the main disadvantage of amplitude modulation is its susceptibility to interference, because the receiver cannot discriminate between noise and signal voltages. In frequency modulation, the amplitude of the carrier is kept constant; the receiver can therefore be made insensitive to amplitude variations and hence to noise voltages. Modulation is achieved by making the carrier frequency deviate above and below its normal frequency at a rate corresponding to the af signal impressed, the extent of the swing being proportional to the intensity of the af signal. It is difficult to represent this diagrammatically but the figure on the next page shows an af signal (d) modulating a carrier, f_{0}, which then assumes the shape (e). The particular deviation frequency, $f \mathrm{D}$, corresponds to only one amplitude of af and would be greater if the amplitude were to increase. In practice, the maximum deviation
necessary (corresponding to 100% modulation in the am system) is $\pm 75 \mathrm{KH}_{z}$, so that it is necessary to use the very high frequency band (above $30 \mathrm{KH}_{z}$).

Reactance modulator (f.m.)

The voltage across the lc circuit $\left(V_{11}\right)$ of the master oscillator is potentially divided, the voltage across Rm $(V g)$ being almost 90° phase advanced on V_{11}. This voltage generates a rf anode current $i a=g m . V g$ which flows back to the tuned circuit $\cong 90^{\circ}$ phase leading V_{12} hence \mathbf{Z}_{11} predominantly capacitive reactive; magnitude of synthesized capacity depends on Gm which is controlled by programme bias voltage $V \rho$. For small fd oscillator frequency $\propto V \rho, A$ pure tone modulated fm voltage is $e=E \sin (2 \pi f o t+(f d / f m) \sin 2 \pi f m t$.) This when expanded shows a carrier component and an infinite set of sidebands $\pm \mathrm{fm}, \pm 2 \mathrm{fm}, \ldots . \pm \mathrm{fm}$.

Reception

The wave form of current induced in the aerial is a replica of the modulated wave transmitted. The function of the receiver is to amplify the aerial voltage and then perform the converse process of demodulation or detection.

The important properties of a receiver are:

1. Selectivity, the ability to receive only the frequency band of interest whilst rejecting all other signals and
2. Sensitivity, the ability to amplify weak aerial voltages.

A simple receiver is the straight in whic' $\mathrm{r} f$ amplifiers precede the detector stage and the lc circuits are tuned to carrier frequency. This system is satisfactory if the range of carrier frequencies to be covered is small but if a range of say, $1,500-500 \mathrm{KHz}_{\mathbf{z}}$ (medium wave band) is required sensitivity and selectivity vary widely. It is usual to overcome this by converting if to a fixed intermediate frequency (if); as the majority part of receiver gain is effected in the if amplifier the fixed selectivity/ sensitivity of the if determines a constant performance for the receiver over a wide tuning range. This super heteorodyne system is schematically:

Fig. 1. Superheteorodyne system
Typical ifs are $465 \mathrm{KHz}_{z}$ for am up to hf, 10.7 MHz for am or fm on vhf and 45 , or $60 \mathrm{MH}_{2}$ for TV or radar receivers. R f amplication is still necessary (i) to reject the image rf, $2 \times$ if above the desired rf as otherwise the image would convert into the if (ii) to boost the rf signal amplitude prior to the convertor since the latter introduces a highnoise level. In these circumstances the noise in the r f stage itself sets the overall noise level of the receiver.

A circuit suitable for detection is that of a diode valve rectifier. Fig. 2 shows a typical diode detector circuit, $L C$ being the last of the rf tuned circuits. The diode output is developed across the load resistor R_{1}, but at this

Reception

stage it has a strong rfcomponent. It is therefore followed

Fig. 2. Diode detector circuit
by a smoothing circuit, consisting of $C_{1} R_{2} C_{2}$, but there is still the dc component, which may be removed by the blocking capacitor $C_{8} . R_{3}$ is the grid leak of the af amplifier which follows.

Where a sensitive detector is required, a triode or pentode is employed, the grid acting as a diode anode, rectified rf appearing on the grid is amplified as the desired af signal, filtering is effected in the anode. This cumulative or leaky grid detector is illustrated in Fig. 3. An ordinary af amplifier biased practically to cut-off point will act as a rectifier and so detect. It is, in

Fig. 3. Leaky grid detector fact, an anode-bend detector and gives good amplification but poor quality. If the bias is obtained by making the cathode resistor a high value, and the latter also acts as the load from which the output is taken, the quality is

Fig. 4. Infinite impedance detector greatly improved but the gain is reduced to less than unity. Its input impedance is very high, which gives it its name, and its performance is comparable with that of the diode detector. One of the main advantages is that it presents very little damping to the rf circuit from which it is fed and so gives better selectivity than the diode circuit. Fig. 4 gives the fundamental circuit.

Reception

Automatic gain control

Most receivers use some form of automatic gain control to minimise the effects of ionospheric or man-made fading, and to ensure that all signals, irrespective of their input amplitude, are reproduced at substantially-constant amplitude. A.g.c. is achieved by controlling the gain of pre-detector, usually i.f., stages by a voltage (or current) derived from the signal at the detector output or at a post-detector point. Some means is therefore required of adjusting the gain of a transistor amplifier by a control voltage.

Fig. 5. A circuit illustrating reverse control agc (after Amos)

The gain of a transistor falls at low collector currents and at low collectoremitter voltages and there are two corresponding ways of achieving gain control. The first is by applying the control voltage to the base as a reverse bias: this is known as reverse control and an example, using a pnp transistor and positivegoing control bias, is given in Fig. 5. An npn transistor would, of course, require a negative-going bias for reverse control. For both types of transistor the control bias increases when a strong signal is received thus biasing back the transistor and reducing the gain. An unfortunate feature of this type of control is that the signal-handling capacity of a transistor is reduced by reverse bias but the circuit has the advantage that collector current is reduced when strong signals are received: this is important in battery-operated receivers where current economy is desirable.

In the second method, known as forward control, the gain of the transistor is reduced by increasing the forward bias, thus increasing collector current. An essential feature of the circuit, illustrated in Fig. 6, is the decoupling circuit $R_{2} C_{2}$: as the collector current increases, the voltage drop across R_{2} is increased thus reducing the collectoremitter voltage and forcing the operating point to move into the knee of the $I_{c}-V_{c}$ characteristics where the char-

Reception

Fig. 6. A circuit illustrating forward control agc (after Amos)
acteristics are more crowded and the g_{m} therefore lower. For this type of control a pnp transistor requires a negative-going bias and an npn a positivegoing bias. Forward control has the advantage of increasing the signal-handling capacity of the transistor when this is needed for large-amplitude signals. Not all transistors are suitable for forward control and it is important to select a type which has been specifically designed for use in this type of circuit. By increasing the collector current of a suitable transistor from 4 to 13 mA , it is possible to reduce the gain by more than 40 dB .

Both methods of a.g.c. are in common use, sometimes in the same receiver. Both forms of control reduce the power output of the controlled stage. This is of little significance in early if stages but it is not usual to apply a.g.c. to the final if stage because this is required to supply appreciable power to the detector.

F.m. receivers centred on $10.7 \mathbf{~ M H z}$

Superhets are employed with 200 kHz wide if band local oscillator on high side of vhf signal frequency; the fm signal contains spurious a m which must be removed in order to give freedom from interference. The majority of receivers use ratio detectors which have up to 30 dB of a m rejection but to supplement this it is common practice to make the final if stage into an amplitude limiter stage.

F.m. detectors

The Foster-Seeley (phase) discriminator relies on the fact that the signal at the secondary of a double tuned if transformer is 90° phase advanced on that at the primary at centre frequency (f c).
The Foster-Seeley discriminator contains two diode detectors so arranged that their outputs are connected in series opposition. The diodes are fed from a doubletuned transformer, the primary and secondary windings of which are resonant at the centre frequency of the pass-
band to be covered. An essential feature of the circuit is that a fraction of the primary voltage is fed to the centre point of the secondary winding. In Fig. 7 this is achieved by a connection between the centre point of \boldsymbol{L}_{2} and a tapping point on L_{1} but the secondary connection could be to the junction of two equal capacitors across L_{2} (they could together constitute the tuning capacitance) and the primary connection could be to an inductor closely coupled to L_{1} or to a capacitive potential divider across L_{1} (formed by two capacitors which may also provide the tuning capacitance).

Fig. 7. One form of Foster-Seeley discriminator
For signals at the centre frequency, diodes D1 and D2 receive equal inputs and the voltages generated across R_{1} and R_{2} are equal, giving zero resultant voltage across $\left(R_{1}+R_{2}\right)$. The effect of the interconnection between primary and secondary windings is that for signals displaced from the centre value one diode receives a bigger input than the other, and there is a net output across ($R_{1}+R_{2}$), the polarity depending on the direction of the frequency displacement and the magnitude depending on the extent of the displacement. If, therefore, a fre-quency-modulated signal is applied to the discriminator, a copy of the modulation waveform is generated across $\left(R_{1}+R_{2}\right)$.

The Foster-Seeley discriminator gives zero output at the centre frequency. At other frequencies the output of the discriminator is proportional both to frequency
displacement and to signal input. The Foster-Seeley discriminator has poor ability to reject a.m. signals and is normally used with a separate limiter stage.

Ratio detector

The ratio detector has much better a.m. rejection than a Foster-Seeley circuit and nearly all commercial reccivers employ a ratio detector.

Fig. 8. One form of ratio detector (after Amos)
The circuit diagram of one form of ratio detector is given in Fig. 8. It has two diodes and a double-tuned transformer with a primary-secondary connection similar to that employed in the Foster-Seeley circuit but the diodes are connected in a series-aiding arrangement and supply a common load resistor. This resistor has a low value to give the heavy damping of the secondary tuned circuit on which the limiting properties of the detector depend. The diodes conduct continuously when a signal is applied to the detector and give a voltage across the load circuit proportional to the carrier input: The maximum value of this voltage gives an indication of the correct tuning point. The inputs to the two diodes vary with frequency displacement and the voltages generated across the reservoir capacitors C_{1} and C_{3} vary also although the total voltage across $\left(C_{1}+C_{9}\right)$ is independent of input frequency, being stabilised at a value proportional to carrier input amplitude by the long time constant $R_{1} C_{3}$ Pages 90-93 abridged by permission from Principles of

Transistor Circuits (4th Edition) by S. W. Amos, Iliffe

Microwaves

Waveguides

As opposed to the electro-magnetic field in space (see p. 74) when both E and H fields are transverse to direction of propagation, either E or H has a component in the direction of the guide depending on orientation of wave launching device wrt guide. It is usual to designate by the purely transverse component
 viz. TE (transverse electric). The subscript figures give the number of half periods of transverse field distribution along wide and narrow faces. The $T E_{10}$ is the lowest frequency wave mode passing all $f>f_{0}=c / 2 W$ with a λ_{g} in the guide found from $1 / \lambda_{g}{ }^{2}=\left(1 / \lambda^{2}\right)+\left(1 / \lambda_{0}{ }^{2}\right)$ where λ_{0} corresponds to f_{0}.

The klystron

Used as a cw generator at $f>1000 \mathrm{MHz}_{z}$ to produce powers from mW to about 30 Kw at present time. The double cavity type employs two resonant cavities, the

Fig.1. Double cavity klystron
electron beam traversing lips of cavity 1 , shock excites the latter, which in turn velocity modulates the beam electrons periodically, resulting in a bunching of the electron density in space AB. When this rf modulated beam current passes the lips of cavity 2 , strong oscillation results, a portion of this being fed back via the loop \mathbf{L}

Microwaves

to sustain the original shock oscillation and hence bunching action by the first cavity. The reflex type employs only one cavity; a repellor electrode, negative with respect to the cathode, causes electrons emanating from the lips to decelerate and reverse back through the cavity. The bunching space is about twice AB, the one cavity acting as its own buncher and catcher. The repellor potential controls both phase and amplitude of return bunch, the former providing means of frequency modulating a klystron ($\sim \cdot 7 \mathrm{MHz} /$ volt), the latter controls output power P as shown.

Microwave Reception

Conventional rf amplification has no advantage above $600 \mathrm{MH}_{2}$. Silicon diode mixer stage fed from aerial has lower noise, eg 10 db at 3000 MHz . A typical mixer assembly is show in Fig 2.

Fig. 2. Typical mixer assembly
The necessity to improve on $\mathrm{F}=10 \mathrm{db}$ has lead to development of several microwave rf amplifiers. One such device is the travelling wave tube shown in Fig 3.

Fig. 3. Travelling wave tube
The input cavity induces the signal on to the helix. The helix field velocity modulates the electron beam. This
modulation propagates at slightly less than the speed of the helix wave, interacting with it to produce amplification, the output being coupled via a terminating cavity. The performance (1969) of certain other devices is tabulated below:

System	Frequency $($ KMHz/) limits	F $(d b)$	Gain	Band width \%
Maser Parametric (i) varactor diode (ii) electron beam	-3 -optical	$\simeq 0$	$5-20$	$\bumpeq 1$
Travelling wave tube tunnel diode	$-3-10$	3	$10-20$	10

The noise factor (F , see p .92) of a receiver can be quoted in terms of a noise temperature $\mathrm{Te}\left({ }^{\circ} \mathrm{K}\right) . \mathrm{Te}=$ revr, noise output/KBxrcer. gain (when aerial input terminated with a resistor equalling aerial resistance). Now $\mathrm{F}=1+(\mathrm{Te} / \mathrm{To}), \mathrm{To}=290^{\circ} \mathrm{K}$ the standard temp. at which F is measured. Aerial noise temperature (Ta) ${ }^{\circ} \mathrm{K}$ is the temp. at which a resistor equal to aerial resistance produces the observed noise power at the revr., input. Whereas F as the noise factor assumes $\mathrm{Ta}=$ $290^{\circ} \mathrm{K}$, at any other aerial temperature $\mathrm{F}^{1}=(\mathrm{F}-1)+$ $(\mathrm{Ta} / \mathrm{To})=(\mathrm{Te}+\mathrm{Ta}) / \mathrm{To}$.

kMHz
Fig. 4. Microwave band nomenclature

Television

625-LINE MONOCHROME

Nominal specification of transmitted signal
Channel width
8 MHz

Spacing between unmodulated sound
and vision carriers $\quad \mathbf{6 M H z}$
Vision modulation (am negative) upper sideband lower sideband
5.5 MHz
1.25 MHz
synchronising level As percentage of $\left\{\begin{array}{l}100 \%\end{array}\right.$ blanking leve! white level
Sound modulation (fm) peak deviation pre-emphasis
Ratio of vision power during synch pulses to sound power

5:1
Lines per picture 625
Interlace
2:1
Field frequency
Line frequency
Approximate gamma of picture signal
50 Hz

Aspect ratio
$15,625 \mathrm{~Hz}^{*}$
Aspect ratio The transmissions are asynchronous; ie, the synchronising signals are derived from a stable oscillator and are not locked to the mains.
The idealised vision carrier amplitude as a function of time is shown in Figs. 1 and 2.
The vision carrier-amplitude waveform indicated in Figs. 1 and 2 represents the amplitude of a doublesideband am signal from which the transmitted vestigialsideband signal is derived. Sideband frequencies more more than 1.25 MHz below the vision carrier are attenuated.

Test-line signal

A test-line signal is transmitted on lines 16 and 329 . (When equipment modifications are completed, these will be changed to 18 and 331, to accord with international practice on test signals.) It consists of a $10-\mu \mathrm{s}$ white bar containing an inverted sine-squared pulse (halfamplitude duration, $0.2 \mu \mathrm{~s}$) and followed by an erect sine-squared pulse (half-amplitude duration, $0.2 \mu \mathrm{~s}$), a chrominance pulse (half-amplitude duration, $1 \mu \mathrm{~s}$) and a five-step staircase. The duration of each of the R.D.-D
first four steps is 4μ s and that of the last step is approximately $3.5 \mu \mathrm{~s}$. The steps are of nominally equal height

Fig. 1. Vision waveform showing line synchronising signals and the top step is at peak white. A colour sub-carrier signal, having a peak-to-peak value equal to the step beight, is superimposed on the whole staircase.

At times when the 625 -line network is carrying colour tests, those transmitters not radiating colour will transmit the test-line signal in a slightly modified form.

CAMERAS

Image orthicon camera

The image is focused on to the photo-cathode (see fig. 3). This emits electrons from A proportional to image brightness, the resulting electron density image is accelerated through a mesh B striking the target C. The target emits secondary electrons which are collected by the mesh (at small + ve voltage) leaving a + ve image pattern on the target face. The target is made of lateral conducting glass

Television

and the + ve image leaks to the rear face where the eleotron deficiency is made good by the low velocity scanning beam. The deficiency (picture) modulated beam returns towards the gun entering an electron multiplier, the magnified beam current being passed through a resistor developing a + ve video output. Scene illumination: 75 f . candles.

Fig. 2. Vision waveform showing field synchronising signals

Fig. 3. Image orthicon camera

Vidicon cameras

A photo conductive target which can be considered as a capacitor between target faces X, Y is charged to 20 volts. When exposed each elemental capacitor is shunted by a discharging resistance the value of which depends upon the image point brigh:ness. The scanning beam is faced with a charge deficiency ($+v e$) image which it makes good, ie, recharges the \mathbf{Y} face to cathode potential causing a charging current to flow in R giving a - ve video output signal. Scene illumination: 130 ft . candles.

Fig. 4. Vidicon camera

RECEIVERS

Superhet's with if about 11 MHz but higher, eg, 38 MHz in modern sets. Tuning accomplished by adjusting local oscillator frequency for loudest sound. The standard 405 line UK transmitted spectrum is vestigial side band to conserve channel space. The oscillator converts to the 2 ifs
 separated by 3.5 MHz , if the oscillator is on the high side of carrier frequency Snd if $=$ vis if $+3 \cdot 5 \mathrm{~Hz}$. The CCIR European standard channel is 7 Hz wide as shown. The circuit schematic after the vision if is:

Besides the adoption of negative modulation for vision, the sound channel is fm , with maximum deviation of $\Delta \mathrm{f}= \pm 50 \mathrm{KHz}$ and $50 \mu \mathrm{~S}$ pre-emphasis. Sound to vision carrier spacing is 5.5 MHz , giving just over 5 MHz of vision equivalent to resolving 500 lines across the picture.

The CRT averages a 1,500 hour life, limitation due to residual gas being ionised by the beam. This results in ion bombardment of cathode destroying emissive surface and burn up of screen due to those ions which strike the latter. This minimised by (i) protective aluminised backing to screen (also improves brilliance), (ii) bending

Television

gun and employing ion trap magnet to deflect electrons but not ions on to correct line of approach to screen.

Receiver adjustments

1. Tuning-controls local oscillator frequency.
2. Contrast-alters rf/if gain.
3. Brilliance-controls grid bias of CRT.
4. Focus - controls size of spot on screen.
5. Line hold-alters frequency and/or degree of locking by line sync. pulse.
6. Frame hold - as above but applies to vertical scan.
7. Line/frame linearity-ensures spot scans raster with uniform velocity.
8. Picture height/width (line/frame amplitude)-controls magnitude of scan currents in deflector coils.
Note: Lethal voltages exist inside televisors; do not remove back unless the risks involved are known and clearly understood.

Test card

The various patterns on this card are designed to assess certain characteristics of the system thus:
Aspect ratio: The central concentric black and white rings should appear truly circular when the width and height of the picture are adjusted to the standard aspect ratio of $4: 3$.
Picture size: As most receivers have a display area with an aspect ratio of about $5: 4$, it is usual to adjust the receiver so that the top and bottom edges of the display area coincide with the arrowheads and the side castellations of the test card just appear in the display area of the receiver. In this way the correct aspect ratio of the picture is obtained.
Contrast: At the centre of the test card is a column of five squares with a contrast range of about 30 to 1 between the top and bottom squares. The difference in brightness between adjacent squares should be constant on a correctly adjusted receiver. Within the top and bottom squares are small lighter spots; white or black crushing is shown by the merging of the top or bottom spot into its surrounding area. The areas of the test card which are at peak white include the spot in the top square of the contrast pattern and the white background with the exception of the white vertical line in the black surround and the white surround of the black vertical line.

Television

Resolution and bandwidth: At the sides of the contrast pattern are six gratings consisting of vertical stripes designed to produce, after gamma correction, signals of approximately sine-wave form corresponding to the following frequencies in $\mathbf{M H}_{2}$.

$$
1 \cdot 0,1 \cdot 5,2 \cdot 0,2 \cdot 5,2.75 \text { and } 3.0
$$

The range of brightness in the gratings is the same as that from the first (top) square to the fourth square of the contrast pattern; the brightest parts of the stripes have the same brightness as that of the area surrounding them.
Scanning linearity: The background of white lines should be reproduced in all parts as enclosing equal squares and the central black and white rings should appear truly circular.
Line Synchronisation: The border of the test card is a pattern of alternate black and white rectangles. The right side of this border serves as a test signal to check the line synchronisation of receivers. Faulty line synchronisation shows as horizontal displacement of those parts of the picture on the same level as the white rectangles in this side; it will also give the central rings the appearance of cogwheels.
Low-frequency response: This can be checked by means of the black rectangle within the white rectangle at the top centre of the test card. Poor low-frequency response shows as streaking at the right-hand edges of the black and white areas and also of the border castellations.
Reflections: The white vertical line with the black surround and the black vertical line with the white surround should appear free from displaced images (ghosts). If there are reflections of the television signal, from hills or large buildings, these may result in displaced ghost images of any significant feature of the picture. This effect will be most readily seen as displaced images of the white and black vertical lines. The lines represent pulses having a duration of 0.3 microseconds.
Uniformity of focus: In each corner of the test card there is a diagonally-disposed area of black and white stripes; the focus of these areas and of the central area of the test card should be uniform. The stripes correspond to a fundamental frequency of about 1 MHz .

Colour television

> The information in the following pages is based, with permission, partly upon information obtained from the BBC, partly upon Investigation Report No. L. 113 by I. McWhirter of Thorn-AEI Radio Valves \& Tubes Lid., and partly upon Gouriet's monograph, An Introduction to Colour Television, published for the Royal Television Society by Norman Price (Publishers) Lid.

The ability to transmit colour television signals in a three-colour system depends upon the fact, discovered by James Clerk Maxwell, that practically any spectral colour can be matched by mixing together (in suitable proportions) rays of three primary colours, red, blue and green. In a television camera the multi-coloured rays from a colour scene are filtered by dichroic mirrorsone of which will pass all rays but blue ones, which it reflects, another which will pass all but red rays, which it reflects. After filtering, the three resultant rays, respectively red, green and blue, are passed to the photocathodes of three television tubes built into one camera, which produce three output voltages proportional to the strength of the impinging rays. A typical arrangement of the dichroic mirrors is shown in Fig. 1, though relay lenses shown are usually only necessary in 4-tube colour cameras (p.112).

Fig. 1. Optical system of three colour camera with relay lens arrangement.

Because the human eye responds to different colour hues in a non-linear way-it is most sensitive to energy in the middle of the visible spectrum and responds only feebly to violet and deep red (see Fig. 2.) -the relative brightness content of the constituents of the mixture of red, (R), blue, (B), and green, (G), that makes white light is found to be approximately R 30%, G 60% and B 10%. In other words the luminance (brightness), Y , of white $=0.3 \mathrm{R}+0.6 \mathrm{G}+0.1 \mathrm{~B}$. These proportions hold good for standard white which is very similar to the a verage colour of the north sky and is called illuminant C^{\prime}.

Fig. 2
Using another white as the standard would alter the relative proportions of \mathbf{R}, B and \mathbf{G}. For example, if the white chosen were similar to the colour of an illuminated slide projector bulb, the equation would be nearer to

$$
Y(\text { white })=0.44 R+0.53 G+0.03 B
$$

The three properties of light which have to be transmitted are luminance, (brightness), hue (the colour

Colour television

wavelength) and saturation (strength). Luminance information is sent out on the main carrier and hue and saturation on a sub-carrier which is phase-modulated with the hue information and amplitude modulated with the saturation information.

Now the luminance signal alone-which corresponds to the normal black and white signal of monochrome transmissions, requires a bandwidth depending upon the number of lines per picture, the number of pictures per second and the fineness of the detail which is to be reproduced along each line. In the British 625/50 system the required video bandwidth is $5 \cdot 5 \mathrm{MHz}_{\mathbf{z}}$. It might have been expected that the hue and saturation (chrominance) signals would each occupy similarly wide bandwidths or in other words that three times the normal bandwidth would be required. But, in a compatible system, one of the requirements is that it shall be possible to place the whole signal within the existing black and white channel. Fortunately certain characteristics of human vision make it possible to reduce the bandwidth required for the chrominance signals. It has been found that the human eye cannot resolve the colour of fine details, thus the band width of the chrominance signals can be restricted to as little as 20% of the regular black and white television signal, the fine detail being provided by the wide bandwidth luminance signal. Furthermore the chrominance signals can both be transmitted within the bandwidth of the luminance signal by using a chrominance sub-carrier so placed in the frequency spectrum that the restricted side-bands lie within the bandwidth of the luminance signal (see Fig. 3). The frequency of the sub-carrier has been chosen to ensure that the interference pattern to which it gives rise will appear to cancel out when the picture is viewed from a reasonable distance. To make it possible for monochrome receivers to pick up a black and white version of the colour transmission the camera tube voltages (E_{R}, the red signal, E_{G}, the green signal and E_{B}, the blue signal), before being used for transmitter modulation, are encoded, that is converted into three combination signals:
(a) luminance, $Y=\left(0.3 \mathrm{E}_{\mathrm{R}}+0.59 \mathrm{E}_{\mathrm{G}}+0.11 \mathrm{E}_{\mathrm{B}}\right)$
(b) a red colour-difference signal $\left(\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}\right)$ and
(c) a blue colour-difference signal ($\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}$).

Colour television

The way in which the sub-carrier can be doubly modulated so that the two chrominance signals, $\left(\mathrm{E}_{\mathrm{R}}-\mathrm{E}_{\mathrm{Y}}\right)$ and $\left(E_{B}-E_{Y}\right)$, can be recovered in the colour receiver, without mutual interference, can best be explained by assuming the presence of two-sub-carriers of the same frequency but separated in time by 90°. In the phase alternation line (PAL) system the sub-carrier carrying ($E_{B}-E_{Y}$) is regarded as the reference and that carrying ($E_{R}-E_{T}$) is therefore phase advanced upon the reference signal by a quarter of a wavelength $\left(90^{\circ}\right)$.

Fig. 3
At the receiver, the three voltages representing the primary colour signals, E_{R}, E_{o} and E_{B}, are recovered by addition, the luminance signal E_{Y} being applied to the cathodes of the three-gun CRT and the difference signals to the respective control grids, for example:

$$
\begin{aligned}
& E_{\mathrm{R}}=\mathrm{E}_{\mathrm{Y}}+\left(\mathrm{E}_{\mathrm{R}}-\mathrm{E}_{\mathrm{Y}}\right) \\
& \mathbf{E}_{\mathrm{B}}=\mathrm{E}_{\mathrm{Y}}+\left(\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}\right) \\
& \text { and } \mathrm{E}_{\mathrm{O}}=\mathrm{E}_{\mathbf{Y}}+\left(\mathrm{E}_{\mathrm{O}}-E_{\mathrm{Y}}\right) .
\end{aligned}
$$

Note: Although the $\left(\mathrm{E}_{0}-\mathrm{E}_{\mathrm{Y}}\right)$ signal is not transmitted as such, it can be abstracted in the receiver, because $\left(\mathrm{E}_{\mathrm{Q}}-\mathrm{E}_{\mathrm{Y}}\right)=-\frac{1}{2}\left(\mathrm{E}_{\mathrm{R}}-\mathrm{E}_{\mathrm{Y}}\right)-1 / 5\left(\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}\right)$.

Bearing in mind that the colour difference signals are severely bandwidth restricted compared with the luminance signal, a more accurate equation is

Fig. 4. Waveform of single line of 625-line, 50 fields per second colour transmission

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}}(\text { recovered })=\left[\mathrm{E}_{\mathrm{Y}}\right]_{0}^{\mathrm{F}_{\text {max }}}+\left[\mathrm{E}_{\mathrm{R}}-\mathrm{E}_{\mathrm{Y}}\right]_{0^{\delta}}^{\mathrm{F}_{\text {max }}} \\
= & {\left[\mathrm{E}_{\mathrm{R}}\right]_{\mathrm{m}_{\mathrm{max}}^{\mathrm{b}}}+\left[\mathrm{E}_{\mathrm{Y}}\right]_{\frac{\mathrm{F}_{\text {max }}}{\delta}}^{\mathrm{F}_{\text {max }}} }
\end{aligned}
$$

Similar equations can be derived from the green and blue primary signals and they show that the reproduced image is in full colour up to detail components corresponding to $F_{\max }$ and the fine detail is described entirely by the luminance signal.

Flg. 5. Line sync and colour burst pulses in 625-line negative picture modulation colour transmission.

A danger of the double modulation system is that differential phase distortion in either the transmitter
or the receiver may alter the apparent phase of the subcarrier and this would result in a changs in the hue of of the reproduced picture. This danger was oversome in the early (American) colour phase alternation system by changing the phase of the I signal by 180° every other line. This had the effect of causing the developed error signals to be of opposite sign, ie, if line one became too blue, the next line became too red. In this way the eye integrated the successive errors and appeared to see the true colour. The West German redevelopment of this idea is to cancel out the phase error electrically. This requires that in the receiver an electrical delay line, of time length of one scanning line, be used to provide the signal from the preceding line of the field. This is subtracted from an undelayed chrominance signal so that the error signals cancel out. Thus phase distortions which would cause a noticeable deterioration of colour quality are rendered imperceptible to the viewer.

In transmission, the sub-carrier itself is suppressed and only the sidebands of the chrominance signal are transmitted. Of course the sub-carrier has to be reconstituted in the receiver before demodulation can take place.

The actual value of the chrominance sub-carrier frequency, f_{c} is $4,433,618.75 \pm 1 \mathrm{~Hz}$ and, since it is a sub-carrier superimposed on the main (luminance) carrier, this figure is its spacing from the luminance carrier. The local oscillator in the receiver (the colour reference oscillator) accordingly operates at $4.43 \mathrm{MH}_{\mathrm{g}}$.

The side-bands of the sub-carrier extend down to about $3.433 \mathrm{MH}_{2}$ and up to $5.433 \mathrm{MH}_{2}$.

As the sound carrier frequency is $6 \mathrm{MH}_{2}$ away from the luminance carrier, interference is reduced to acceptable limits. The sound carrier is frequency modulated.

Colour locking the receiver to the transmitter

Correct sampling is made possible by the transmission of a colour burst (consisting of 10 cycles of 4.43 MHz sine wave) on the back porch of the television signal which immediately follows the line sync pulse. In the receiver this burst is extracted from the signal and is used:
(a) to control the accurate timing of a sub-carrier regenerating oscillator operating at $4.43 \mathrm{MH}_{3}$

Fig. 6. Block diagram of PAL decoder. By courtesy of Thorn-AEI.
(b) to indicate whether the $\left(\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}\right)$ signal is to be positive or negative.
The latter facility is made possible by arranging that the phase of the colour burst is made to alternate at line frequency, between 135° and 225° away from the timing of the reference ($\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}$) component.

Choice of white for the display

At the time of going to press (spring 1969) there was still some indecision about which white was to be standardised in this country but it seemed likely that receivers would be adjusted to match a colour temperature fractionally more green than $9,027^{\circ} \mathrm{C}$, in order that the white achieved would more nearly match the white of existing black and white receivers. (Illuminant \mathbf{C} corresponds to a colour temperature of $6,500^{\circ} \mathrm{C}$.)

Cameras using four tubes

A large number of colour cameras use four tubes instead of three, the fourth tube being used to produce a normal monochrome signal which is used as the \mathbf{Y} signal instead of obtaining a \mathbf{Y} signal by the summation of the \mathbf{R}, \mathbf{G} and \mathbf{B} signals in due proportions, as described above.

Method of displaying the colour image in the receiver

Though a large number of different systems have been tried, the most successful for the home receiver (at the time of going to press) is the RCA shadow mask system.

In this the viewing screen is made up of approximately 400,000 groups of three phosphor dots-one dot in each group of three glowing red when subjected to a stream of electrons, one glowing blue in similar circumstances and one glowing green. The incoming colour signals, after reception and decoding, are turned into red, green and blue signals which vary as exactly as possible as the R, G and B signal output from the colour camera. These signals are applied to three electron guns which produce three beams of electrons which are deflected by the line and frame signals in exactly the same way as in the normal monochrome receiver. Between the guns and the phosphor screen there is a shadow mask with tiny holes in it. The number of holes in the mask is the same as the number of groups of three phosphor spots on the screen. Because of the orientation of the focused beams with respect to the holes in the mask,

Pulse from
dine transformer
Fig. 7. Block diagram of PAL decoder and video stages. By courtesy of Thorn-AEI.

Fig. 8. Principle of RCA shadow mask colour tube. After Gouriet.
it is ensured that, at any instant, the beam from the gun operated by the red signal can only (after passing through one of the holes in the mask) land on one of the red dots. Hence, however this beam is deflected it can never land on either a blue or green dot and thus cause these to fluoresce.

Similarly, the beam controlled by the blue signal can only land on blue dots and that controlled by the green signal only on green dots. Thus, as the beams scan the viewing screen, the groups of three dots are illuminated one after the other and, at any given instant, the group being illuminated will convey to the eye the hue produced by the combination of the three primary colours in the proportions determined by the relative intensities of the three impinging streams of electrons as determined by the R, B and \mathbf{G} signals. A very high order of mechanical accuracy is required in the alignment of the phosphor

Colour television

screen and difficulties had to be overcome in deflecting the electron beams accurately whilst still maintaining the convergence angles necessary for colour selection.

Compatability

The pal colour television system is fully compatible. In addition to ensuring the reproduction of colour images at least on a par with accepted colour photographic systems, it has the following advantages:

1. it makes it possible to place the whole of the signal within existing black and white channels and therefore involves no change in established international planning agreements for channel positions, spacings and transmitter power and sitings.
2. as far as is practicable, it is possible to transmit the signal through existing television transmission equipment.
3. existing unmodified $625 / 50$ black and white receivers can reproduce the colour transmission as an acceptable black and white picture.
4. colour receivers are able to reproduce an acceptable black and white image from an incoming black and white signal.

Gamma correction

For a pleasing reproduction of a scene, it is desirable that there should be a linear relation between light input to the camera and luminance of the display; ie, the gamma of the overall television chain should be $1 \cdot 0$. This can be achieved if the output signals from the camera, E_{R}, E_{Q} and E_{B} undergo an inverse non-linearality to that of the display. In practice it has been found desirable not to compensate completely for the display and a commonly used inverse gamma index is $1 / 2 \cdot 5$.

Feeders and aerials

FEEDERS

The conductors of a feeder cable possess distributed selfresistance $(R, \Omega / M)$, self-inductance ($L, H / M$), shunt capacitance ($C, F / M$) and shunt conductance ($G, m h o / M$). The equivalent circuit is:

Fig. 1
The feeder exhibits a characteristic impedance $\left(Z_{0}\right)$ ohms at P when termination at Q is also Z_{0} ohms, ie, when matched $Z_{0}=\sqrt{ } Z_{p o c .} Z_{p s c}\left(Z_{p o e}\right.$ is Z_{p} with $Q_{o} / c, Z_{p s c}$ is Z_{p} with $\left.Q_{s} / c\right)$ giving $Z_{0}=\sqrt{(R+i \omega L) /(G+i \omega c) \bumpeq}$ $\sqrt{ } L / C$ closely at rf. Physical dimensions governs L and C hence Z_{0} :

Fig. 2
Dielectric constant, $K=1.0$ for air, 2.3 for polyethylene. Propagation constant, $\succ=\sqrt{ } \succ(R+i \omega L)(G+i \omega C)=$ 116

Feeders and aerials

$\alpha+i \beta, \alpha$ the attenuation constant in $d b / M, \beta$ the phase constant in radians of phase delay per metre. When $Z_{Q} \neq Z_{0}$, ie is mismatched the travelling wave from P is partially reflected back from Q; $\sigma=$ reflected volts $\left(V_{R}\right)$ / travelling volts $\left(\left(V_{T}\right)=\left(Z_{Q}-Z_{0}\right) /\left(Z_{Q}+Z_{0}\right)\right.$. V_{R} adds with V_{T} to give a standing wave distribution of $\mathrm{rms} \mathbf{~ r f}$ voltage (V_{s}) with peaks (antinodes) and minima (nodes), the nearest antinode to Q is at $X=(2 \pi-\theta) \lambda / 4 \pi$ where $\theta=$ angle of reflection coefficient σ, λ is wavelength on line. The standing wave ratio $(\mathrm{swr})=V_{\mathrm{g}} \max / V_{\mathrm{B}} \mathrm{min} .=$ $(1+|\sigma|)(1-|\sigma|)$ indicates degree of mismatch, is 1.0 when $\sigma=0$ ie $Z_{Q}=Z_{0}$. Complete feeder equations are:

$$
\begin{aligned}
& V(x)=V_{Q} \cosh \forall x+I_{Q} Z_{0} \sinh \forall x . \\
& I(x)=\left(V_{Q} / Z_{0}\right) \sinh \forall x+I_{Q} \cosh \forall x .
\end{aligned}
$$

giving impedance at distance x from Q :
$Z(x)=Z o .(Z q+i Z o \tanh \gamma x) /(Z o+i Z q \tanh \rangle x)$ ohms.
When low loss cable is employed, hyperbolic functions can be replaced by corresponding trigonometric function. When $\mathrm{Q} s / c$,

$$
Z x=Z o \tanh \forall x, \delta=-1 \cdot 0
$$

when Qo/c,

$$
Z x=Z o \operatorname{coth} ४ x, \delta=1 \cdot 0
$$

Variation of $Z p$ sc with x is shown for short at $x=O=Q$. For $x=\lambda / 4$ Zpsc (very high) $=Z o$ coth αx resistive \bumpeq $Z o .8 \mathrm{fL} / R$ ohms. f is frequency. L / R is inductance/resistance ratio of feeder. At $\lambda / 2$ Zpsc $=$ zero ohms again, but is reactive as shown between $\lambda / 4$ points.

Fig. 3

Note that λ on line is approximately $1 / \sqrt{ } K$ of free space λ, (for polyethylene 68% of free space λ). Coaxial covers range $50-250 \Omega$, twin 200500 ohms. Devices for matching Z_{O} to Z_{Q} :
(a) $\lambda / 4$ transformer; insert a $\lambda / 4$ section of cable of impedance $Z o_{1}=\sqrt{ } Z q Z o$ between feeder and Z_{Q}.
(b) stub match; when $x=(\lambda / 2 \pi) \tan ^{1} \sqrt{Z_{Q} / Z_{0}}$ metres, or feet distant from $Q, Z x$ comprises $R=Z o$ paralleled by a reactance $\pm i X$.
An s / c or o / c stub is tee'd in at this distance, stub length and hence reactance adjusted to cancel the i i X on the line at x.

AERIALS

The direction of electric flux lines defines the polarisation of received or transmitted wave, eg, horizontal or vertical. The simplest aerial is the vertical unipole. $Z_{Q}=40 \Omega$ azimuth polar diag. omni-directional, elevation pattern as for F. used at mf, If on broadcast working-vertical polarisation. The $\lambda / 2$ dipole widely employed from hf to shf shown for vertical polarisa-tion- $Z_{Q}=75 \Omega$ resistive $\left(Z_{Q}\right.$ $=73+j 42.5$ ohms when $\boldsymbol{l}=\lambda / 2$). Azimuth polar diag. omni-directional, elevationas for $F . Z_{Q}$ varies with height for horizontal $\lambda / 2$ dipoles as shown converging to 73 ohms in free space. When $l=925 \lambda$, pattern is narrower version of F for $\lambda / 2$ dipole; Z_{Q} for horizontal -925λ dipole $=3,200$ ohms (using 12 swg wire). For $l=$ $1.425 \lambda, Z_{Q}=100$ ohms and elevation pattern as above-

Fig. 4

Fig. 5 azimuth pattern omni-directional. For television and vhf reception a $\lambda / 2$ dipole connected via 80Ω feeder is satisfactory within 15 miles of the transmitter. Beyond this distance, increased

Fig. 6

Fig. 7
sensitivity can be obtained by use of a parastic reflector behind the dipole. The reflector is 5% longer than the dipole. At 50 miles additional gain obtained by adding a
director in front of dipole, 5% shorter in length. Besides increasing the sensitivity, the polar diagram narrows down, attenuating unwanted ghost signals and interference.

Horizontally polarised TV and vhftransmissions require horizontal dipoles, etc.

Fig. 8 shows a simple type of 405 line television aerial. Though a folded dipole would offer slight advantages, these would most likely be offset by poor impedance matching between the aerial, down lead and set infut.

Fig. 8. 405 line television aerial details

Service	$\begin{gathered} \text { Frequency } \\ \mathrm{MH}_{2} \end{gathered}$		Aerial dimensions		$\begin{gathered} \text { Separa- } \\ \text { tion } \\ S \end{gathered}$
	From	To	A	R	
CH1	45.0	41.5	$10^{\prime} 9 \frac{1}{2}^{\prime \prime}$	11'11 ${ }^{\prime \prime}$	5'3"
CH2	51.75	48.25	9'413*	$9^{\prime} 8 \frac{1}{2}{ }^{\prime \prime}$	$4^{\prime} 11^{\prime \prime}$
CH3	56.75	53.25	$8^{\prime} 6 \frac{1}{2}{ }^{\prime \prime}$	8' 91 ${ }^{\prime \prime}$	$4^{\prime \prime} 6^{\prime \prime}$
CH4	61.75	58.25	$7{ }^{\prime} 10^{\prime \prime}$	$8^{\prime} 1^{\prime \prime}$	$4^{\prime} 1^{\prime \prime}$
CH5	66.75	$63 \cdot 25$	$7{ }^{\prime} 2 \frac{1}{2}^{\prime \prime}$	7' 5"	3'91 ${ }^{\text {* }}$
VHF/FM	87.5	100	$5^{\circ} 0^{\prime \prime}$	5, 3"	$2^{\prime} 8^{\prime \prime}$
Band III	179.75	211.25	2'3 ${ }^{\prime \prime}{ }^{\prime \prime}$	2' $5^{\prime \prime}$	$1^{\prime} 2^{\prime \prime}$
Band IV	$471 \cdot 25$	581.25	$1^{\prime} \frac{1}{2}{ }^{\prime \prime}$	$1^{\prime} 2^{\prime \prime}$	$0^{\prime} 65^{\circ}$
Band V	615.25	$853 \cdot 25$	$0^{\prime} 9 \frac{1}{2}{ }^{\prime \prime}$	$0^{\prime} 10 \frac{1}{2}{ }^{\circ}$	$0^{\prime} 48^{\prime \prime}$

Ghosting on band III is much worse than on band I hence a narrow polar diagram is essential. This can be obtained by adding further directors spaced -2λ apart and each 5% shorter than the previous director element as in table below:

Ch.	${\underset{4}{D i r}}^{2}$	$\begin{gathered} \text { Dir } \\ \hline \end{gathered}$	$\begin{gathered} \text { Dir } \\ 2 \end{gathered}$	Dir	Dip	Ref	Spac ing
6	2, 01	2, 0	2, 2				
7	1, 11	$2^{\prime}{ }^{\prime} 0^{\frac{1}{2}}$	2', 13			$2^{\prime} 6^{\prime \prime}$	$\mathrm{l}^{\prime} 0^{\prime \prime}{ }^{\prime \prime}$
8	$1 \cdot 101$	$1^{\prime} 11 \frac{1}{2}$	2' 01 ${ }^{\text {2 }}$	$2^{\prime} 18$	2' 31. ${ }^{\text {2 }}$	$2^{\prime \prime}{ }^{\prime \prime}$	$0^{\prime} 11 \frac{1}{*}$
10	$\mathrm{l}_{1} \mathrm{l}^{\prime} .99$	10	${ }^{2}, 11 \frac{1}{2}$	0	2, 2"'	31	$11{ }^{1}$
11	1' $8 \frac{9}{}$	$93^{\prime \prime}$	$1^{\prime} 10^{\frac{3}{8}}$	$2^{\prime \prime}$	$2^{\prime} 0^{\prime \prime}$	${ }^{\prime}, 2 \frac{1}{2}$	
12	1^{\prime} 8t"	1.9*	$1^{\prime} 10^{\prime \prime}$, 111	$2^{\prime}, 08^{\prime \prime}$	$2^{\prime} 2^{\prime \prime}$	$0^{\prime} 108^{\prime \prime}$
13	$1^{\prime} 7 \frac{1}{2}{ }^{\prime \prime}$	$1^{\prime \prime} 8^{\prime \prime}$	$1^{\prime} 9 \frac{1}{2}{ }^{\prime \prime}$	'103"	$2^{\prime} 0^{\prime \prime}$	$2^{\prime} 13^{\prime \prime}$	$0^{\prime} 10 \frac{1}{\prime \prime}$

Due to adding more elements $Z q$ of dipole becomes low (20Ω for 3 element, 15Ω for 4 element) and matching to 80Ω co-axial is not good. If a folded dipole is used instead of normal type, $Z q f=N^{2} Z q$ where N is number of folds and match is improved as $Z q f=4 Z q$ (2 fold) $Z q f=9 Z q$ (3-fold).

Fig. 9 Folded dipoles

Fig. 10 Cone aerial

The cone aerial (shown for horizontal polarization) of wide band width $\pm \cdot 15 \lambda, l=1.025 \lambda, d=\cdot 75 \lambda, S=\cdot 75 \lambda$, $Z=160 \Omega, \theta=60^{\circ}$. Cones can be made of 12 to 16 wires soldered at base ring and apex; $1 / 2$ cone acrial operates if one cone perpendicular to $\lambda \cdot 4$ radius sheet of narrow wire mesh, when $Z=80 \Omega$. The slot aerial comprising a
rectangular slot, w (between $\lambda / 12$ and $\lambda / 10$), $d=3 w$ cut in wire mesh.
$Z q s=(377)^{2} / Z q$ of corresponding length dipole;
for $l=\lambda / 2$
$Z q s=365-j 200$ ohms;
for $l=-475 \lambda$ and $w=01 \lambda$
Zqs $=530$ ohms resistive;
for $l=\cdot 925 \lambda, w=067 \lambda$
Zqs $=50$ ohms resistive.
Except in the last case, match to co-ax requires method shown or co-ax connected across slot at $x) \lambda / 20$.
Note: Slot shown is for vertically polarised wave operation.

Fig. 11 Slot aerial
For omni-directional vhf communication the $\lambda / 4$ ground plane $(Z=40 \Omega)$ is often employed. When at some height this aerial may be dc earthed for lightning protection by means of a $\lambda / 4$ stub.

Fig. 12 Co-axial

Fig. $13 \lambda / 4$ stub

Fig. 14 Discone

The discone is a wide band $Z=50 \Omega$ aerial having omnidirectional horizontal coverage and with 20% centre frequency band width.

Reflector type aerials

The reflected radiation from a shaped conducting surface can produce narrow beams whilst retaining the simplest

Fig. 15 Corner reflector

Fig. 16 Parobolic aerial forms of primary radiator, eg the dipole.

Corner reflectors (Fig. 15) may be made up of spaced conductors if spacing $<-1 \lambda$. Shown for vertical polarization, beam width 50° in azimuth, with a gain of 10 db at $\theta=0^{\circ}$ and Z is 70Ω, not a wide band structure.

The parabola (Fig. 16) -
geometrical definition $y=x^{3} / 4 f$, where ! is focal length; at the focal plane $W=4 f$. The properties of importance are:
(a) all reflected rays emerge parallel across W.
(b) distance $P Q R$ is constant $=$ $2 f$ independent of $\angle P Q R$ hence all waves emerge from W in phase. Assuining a source at A causes uniform illumination across W, the polar diagram for a circular dish is a pencil beam. The first zeros occur at $\pm \theta^{\circ}=$ $70 \sin 0.61 \lambda / W$, half power points $\pm \theta^{\circ}=31 / \lambda W$, side lobes $13 \%(-17 \mathrm{db})$ of the main beam intensity. The gain is a maximum for uniform illumination of $W, G_{0}=4 \pi A$ / λ^{2} where A is mouth area in units consistent with λ.

As the primary radiation is expanding until reflection occurs, the electric intensity is $\propto 1 / P Q$. Hence for uniform illumination the primary radiator polar diagram must increase intensity towards dish rim and then cut off at rim to avoid spill over waste of power. Such a polar diagram is virtually impossible and undesirable in that unwanted side lobe level is high. With the small primary radiating systems employed, illumination falls off slowly towards the rim, giving average results $G_{e}=60 \% G_{o}$ and $\pm \theta^{\circ}=36 \cdot 3 i / W$ half power bearings with first lobes of 6% (- $25 d b$). The primary feed may be a dipole providing both arms carry equal rf current; if not the main beam will squint off axis. A good feed is a flared
wave guide radiator which gives fairly uniform illumination over W.

To DISH
Fig. 17

Fig. 18

Aerial gain (G)

Any radiation attenuates in space according to the inverse square law; the hypothetical isotropic aerial radiates an expanding spherical wave; for P watts to aerial power density $S_{i}=P / 4 \pi d^{2}$ watts $/ m^{2}$ at d metres. A directional aerial would radiate $S=P G F(\theta \phi) / 4 \pi d^{2}$ watts $/ m^{2}$ where F is the directivity pattern (having a maximum value of unity at the bearing ($\theta \phi$) of maximum transmission). The gain in any direction ($\theta \phi$) is then $\left(S / S_{I}\right)=(G F \theta \phi)$, but the definition of gain relates only to the direction of maximum transmission. Gain is the factor by which the received power density from a directional aerial exceeds that given by an isotropic aerial.

Capture area (A)

The power available in the correctly matched terminating resistance (=radiation resistance) of a receiving aerial is $P=$ AS watts, where S in W / m^{2}, and A is in m^{2}. The relationship between A and G is $G=4 \pi A / \lambda^{2}$, this formula is useful in estimating space communication loss.

Aerial	G	A
Isotropic	1	$\lambda^{2} / 4 \pi$
Half wave dipole	$1 \cdot 64$	$1.64 \lambda^{3 / 4 \pi}$
Horn	$5.5 A_{P} / \lambda^{2}$	-45AP
$\left.\begin{array}{l}\text { Parabola } \\ \text { or lens }\end{array}\right\}$ Physical	6.3 to $7.5 A_{P} / \lambda^{2}$	- 5 to $6 A_{P}$
$\underbrace{\text { Broad side }}_{\text {array }}$ area A_{P}	$4 \pi A_{1} / \lambda^{2}$	A_{P}

Ultra high frequencies

Some of the First uhf 625-line tv Station Relaystations indented under main station of group

Station		Other uhf channels		Max vision erp
Belmont	28	$\begin{array}{llll}53 & 57 \quad 60\end{array}$	H	500 kw
Black Hill	46	404350	H	500 kw
Crystal Palace	33	232639	H	500 kw
Guildford	46	404350	V	2.5 kw *
Hertford	64	545861	V	500 w *
Reigate	63	535760	V	2.5 kw *
Turnbridge Wells	44	414751	V	$10 \mathrm{kw}{ }^{*}$
Divis	27	212431	H	500 kw
Dover	56	505366	H	100 kw *
Durris	28	$22 \quad 2532$	H	900 kw
Elmley Moor	51	414447	H	100 kw *
Llanddona	63	535760	H	100 kw *
Oxford	63	535760	H	500 kw
Pontop Pike	64	545861	H	500 kw
Rowridge	24	212731	H	500 kw *
Sudbury	44	414751	H	250 kw
Sutton Coldfield	40	434650	H	1000 kw
Brierley Hill	63	535760	V	$10 \mathrm{kw}{ }^{\text {* }}$
Bromsgrove	27	212431	V	4 kw *
Kidderminster	64	545861	V	2 kw *
Lark Stoke	26	232933	V	10 kw *
Talcolneston	55	596265	H	250 kw
Wenvoe	51	414447	H	500 kw
Aberdare	27	212431	V	125 w*
Kilvey Hill	26	232933	V	2.5 w*
Pontypridd	28	222532	V	500 w
Winter Hill	62	555965	H	500 kw

* Directional aerial

U.H.F. receiving aerials \dagger

The ultra high frequency range for television extends from 470 to 854 MHz . It is divided into two bands, band IV (470 to 582 MHz) and band V (614 to 854 MHz).

Band IV contains 14 channels (21-34) and band V 30 channels (39-68). BBC2 from Crystal Palace is on Channel 33 and from Sutton Coldfield on Channel 40. Typical uhf

Ultra high frequencies

receiving aerials are shown in Figure 19. They consist of multi-elements, based on a half-wave dipole. Quite near to a transmitter, a simple five-element receiving aerial is usually sufficient. Viewers in reasonably favourable locations within 20 or 30 miles of a high power station will generally find a nine-element aerial satisfactory. In fringe areas an aerial of up to 20 elements may be needed and this type may also be necessary in difficult locations closer to the transmitter. The greater the number of elements, the greater the pick-up power and directivity. This enables reflections to be suppressed to a great extent, but much more care in placing a uhf aerial is required. Hills and tall buildings cast rather sharp radio shadows and may reflect the waves. These effects, which cause appreciable variations in signal strength are much more noticeable than they are in bands I and III.

Indoor aerials and set top aerials are likely to give poor and variable results and are not in general suitable for uhf reception, though in very favourable locations, near to a transmitting station, they may prove sufficient. Even in such locations, the quality of the picture received would probably be improved by the use of a relatively simple outside aerial. In locations directly in the shadow

Fig. 19 Typical uhfaerials

Ultra high frequencies

of a large steel-framed building or immediately screened from the transmitter by a steep hill, really good reception of the uhf transmission may be impossible.

Because of the directional property of uhf aerials (the degree being dependent upon the number of elements in the aerial) the receiving aerial should usually be directed accurately at the transmitter, care being taken to mount it in a position in which there is an unobstructed line of sight to the transmitting aerial. If this is not practicable, the aerial should be placed in a high, open position with as few obstructions in the direction of the transmitter as possible. Obstructions close to the receiving point should be avoided.

It may however be possible to receive a satisfactory picture in a shadow area by pointing the aerial at a large building, outside the shadow area. The building may act as a reflecting surface, but pictures received in this way tend to be less sharp than those received directly and to vary according to weather conditions.

When a new aerial system is being installed which includes aerials for bands I and III as well as for uhf it is usually best to put the uhf aerial at the top of the mounting and to space it at least two feet and preferably four feet from the other aerials, gutters and roof surfaces.

The aerials should be connected to the receiver by low loss coaxial cable. Flat ribbon feeder is unsuitable for uhf.

It will sometimes be possible to use the same coaxial down lead for band I, band III and uhf aerials, but in this case a special junction unit (diplexer) should be used at each end of the cable-at the top end to accept the feeders from the bands I and III and uhf aerials, and at the bottom end to provide two leads for the two input sockets on the receiver.

It is important to install an aerial designed to work satisfactorily on all uhf channels that may be used to serve the area in the future, rather than one having an optimum performance on the first channel to be brought into use. In general all the uhf transmitters serving a particular area will be on the same site so that the same aerial, if suitable, can receive all the programmes radiated on uhf.

[^0]
Semi-conductor devices

I. PNP TRANEISTOR	2. NPN TRANSIETOR	3. PNPN THRAN SISTOR	4. RECTIFIER OR SIGNAL DIODE
5. KENMR DIORI	b. TUNNEL DIODE	Z SVMMETRCAL ZENER DIODE	silicon CONTMOUEO DECTIFIER

A-ANODR; B($1 \otimes 2$)-BNSE; B(5\&7)-BREAKDOWN DEVICE 3 C(1\&2)-COLLECTOR; C $(4,5,6,28)$-CATHODE; E-EMITTER; G-GATE,

Fig. 1. Standard symbols

BASIC CIRCUIT	EQUIVALENTS	CHARACTERISTICS
		COMMON KMITTER Moderdp input impeddne (1sNay) Moderateathel impedorce (soon) High rolfoqe gain (-270) Highes current qain Highest power gain (40 da).
		COMMON COLRCTOR Hiqhest input impedance ($350 N 1$) Lomest at/at impeddrce /sans) Unily voltaqe qain (I) High currem gain (-36) Lowest power qain (5 dd)
		COMMON BASE Lowest input impedance (350 N) Highest asht impedance ($1 \mathrm{M} / 2$) High voltage gain (380) Low current qain (-0.98) Moderate power quin ('s da)

Fig. 2. Equivalent circuits

Transistor data

Fig. 3. Conduction in a PNP junction transistor (common emitter connections)

Formulae for Transistor Circuits

Exact formulae	Approximate formulae
$Z_{11}=r e+r b \cdot \frac{r c(1-\alpha)+r_{\mathrm{L}}}{r c+r \mathrm{~L}}$	$Z_{11}=r e+r b(1-\propto)$
$Z_{32}=\frac{r c \cdot r e+r b(1-\propto)+r s}{r e+r b+r s}$	$Z_{39}=r c$
$\frac{V_{21}}{}=\frac{\alpha r c r L}{}$	\underline{V}
$\overline{V_{11}}=\frac{r c r e+r b(1-\propto)+n(r e+r b)}{\text { ren }}$	$\overline{V_{11}}=\propto \sim / 2 / Z_{11}$
$\frac{i_{22}}{i_{21}}=\frac{\propto}{1+n / r \mathrm{C}}$	$\frac{i_{23}}{i_{11}}=\propto$

In these formulae, $r s, r \mathrm{~L}, r e, r b, r c, r m$ are source, load, emitter, base, collector and transfer dynamic resistance parameters resp. $\propto=i c / i e, \beta=i c / i b=\propto / 1(1-\propto), \propto<1.0 \bumpeq 98 \mathrm{in})$ junction types, re inversely proportional (i) to Ie (dc emitter current) and (ii) to collector voltage $C c$ up to about - 3 V , independent thereafter; $r b$ comprises two parts (i) intrinsic (interface) ($r b$) inversely proportional to $I e$, but proportional to $V c$; (ii) extrinsic rb independent of biases; rc inversely proportional to Ie. Collector/base capacitance ($C c$) $5-20 p F$ important at R.F.; varies with $I e$ as shown. Noise increases with $I e$ and is bass heavy increasing below $\approx 100 \mathrm{~Hz}$; noise independent of $V c$ when $V c<-5 v$.

Semi-conductor devices

Fig. 4. Pre-amplifier by courtesy of G.E.C.
$C B$ resembles grounded grid and $C C$ the cathode follower. Most circuits CE. For pre-amps non-linearity due to re is small and ic (ie) reduced to improve noise; compromise between \propto and noise, eg, $\beta=25 / 45$ ic \simeq $\cdot 3 m A$ with $V c<-5$ say $-2 v$. Choose rl by battery voltage and reduced β to $\beta e=\beta /\left(1+r \mathrm{~L} / \mathrm{r}_{c}(1-\alpha)\right)$ eg, r L $\simeq 5 K \Omega . \beta e \bumpeq 85 \% \beta$. Medium gain stages compromise output versus dissipation. Ico $(10 \mu A)$ the reverse collector leakage current gives in CB Ic $=(\propto I e+I c o)$ important but in $\mathbf{C E}, I c=\left(\beta I b+I^{\prime} c o\right), I^{\prime} c o=(1+\beta)$ Ico; since β large and Ico doubles every $9 \mathrm{C}^{\circ}$ bias point is not stable.

Stability factor $S=d$ Ic/dIco (1.5 pre-amps 7 medium gain) $S=1+R e / R b /(1-\propto+R e / R b) \bumpeq(1+R b / R e)$ where $R b$ is R_{1} parallel R_{2}. Coupling-when $R C$ coupling condenser $>10 \mu F\left(\operatorname{low} Z_{11}, Z_{28}\right)$. Volt drop in dc winding resistance of transformers must be small.

Fig. 5. Typical amplifier chain

Power stages mostly class B push-pull; knowing Po (output power), V_{B} (battery voltage), rL to each transistor," $\mathbf{L}=$ $\left(V_{\mathrm{B}}-1\right)^{2} / 2 P_{0}$ ohms.

To avoid threshold distortion forward bias bases by -0.15 V , this should decrease by 2.5 $m V / C^{\circ}$ to compensate for emitter/base temp. Variation. (Thermistor on transistor (T).) Stabilise against V_{B} by diode (SX641 forward SX56 Zener) RF application\propto falls with frequ., $\propto(f)$ $=\propto /(1+i f / f \propto 0) f \propto o$ is alpha cut off. β cut off is $f^{\beta \beta}=f \propto \circ(1-\infty)$. Neutralisation of $\mathbf{C c}$ rb ${ }^{\text {. }}$ necessary.

Type	Deseription
AA119	Germanium point-contact di- ode
AC107	Germanium P-N P alloy junc- tion transistor for use in low noise applications
AC126	Germanlum P-N-P alloy junc- tion transistor for pre-amp and driver stages
AC128	Germanlum N-P-N high gain transistor for complimentary symmetrical class B output
Germanium P-N-P high gain transistor for class A and B output stages	
AD149	Germanium P-N-P alloy junc- tlon transistor for class B puah- pull output stages

Sem-Conductor Data

by courtesy of Mullard Ltd.

Vob max	Ic ($\Delta \nabla$) max	Ptot max	Current amplification factor (common omitler)	
			Small signal	Large signal
$\max r e-$ verse V Peak 45 Av 30 (V)	$\begin{aligned} & \text { Max Frd I } \\ & \text { Peak } 100 \\ & \text { Av } 35 \text { (mA) } \end{aligned}$			
$-15 \mathrm{~V}$	5 mA	$\begin{aligned} & \left(\text { Tamb }=25^{\circ} \mathrm{C}\right. \text {) } \\ & 80 \mathrm{~mW} \end{aligned}$	$(\mathrm{I} 0=800 \mu \mathrm{~A}) 60$	
$-32 \mathrm{~V}$	100 mA	$\begin{aligned} & \left(\mathrm{TJ}=75^{\circ} \mathrm{C}\right) \\ & 600 \mathrm{~mW} \end{aligned}$		140
$+32 \mathrm{~V}$	$\underset{500 \mathrm{~mA}}{\mathrm{ICm}_{\mathrm{s}}^{\mathrm{max}}}$	$\begin{aligned} & \left(\text { Tamb }=25^{\circ} \mathrm{C}\right) \\ & 340 \mathrm{~mW} \end{aligned}$		$(\mathrm{IO}=500 \mathrm{~mA}) 60$
$\begin{aligned} & (\mathrm{IE}=0) \\ & -32 \mathrm{~V} \end{aligned}$	Ion max	$\begin{aligned} & \left(\text { Tamb }=45^{\circ} \mathrm{C}\right) \\ & 155 \mathrm{~mW} \end{aligned}$		$\begin{aligned} & (\mathrm{IE}=300 \mathrm{~mA} \\ & \mathrm{VCB}=0) \\ & 60 \text { to } 175 \end{aligned}$
$-60 \mathrm{~V}$	$\begin{gathered} \text { ICM max } \\ 3.5 \mathrm{~A} \end{gathered}$	$\left.\operatorname{Tamb}_{22.5 \mathrm{~W}}=50^{\circ} \mathrm{C}\right)$	$\bar{\square}$	$\begin{aligned} & (\mathrm{Ic}=1.0 \mathrm{~A}) \\ & 30 \text { to } 100 \end{aligned}$

AD161	Germanium N-P-N alloy junction transistor with AD162 form complementary pair	$\begin{aligned} & (\mathrm{IE}=0) \\ & +32 \mathrm{~V} \end{aligned}$
AD162	Germanium P-N-P alloy junction transistor with AD161 form complementary pair	$\begin{aligned} & (\mathbf{I E}=0) \\ & -32 V \end{aligned}$
AF114	Germanium P-N-P alloy-diffused transistor for ri amp. in am and im receivers	$\begin{aligned} & (I E=0) \\ & -20 V \end{aligned}$
AF115	Germanium P-N-P alloy-diffused transistor for mixer/oscillator for $\mathrm{am} / \mathrm{fm}$ receivers	$-20 \mathrm{~V}$
AF116	Germanium P-N-P alloy-diffused junction transistor for if amplifiers in fmo receivers	-20V
AF117	Germanium P-N-P alloy-diflused Junction transistor for mizer/oeclllator and if amplifier in am receivers	-20V
AF118	Germanium P-N-P alloy-diffused transigtor for video ampliffer in television receivers	$\begin{aligned} & (\mathrm{IB}=0) \\ & -70 \mathrm{~V} \end{aligned}$
AF124	Gennanium P-N-P alloy-diffused junction transistor for ri amplifier in am and tm receivers	$\begin{aligned} & (\mathrm{IE}=0) \\ & -20 \mathrm{~V} \end{aligned}$

	$\begin{aligned} & \text { (Tamb } \leqq 72^{\circ} \mathrm{C} \text {) } \\ & 4 \mathrm{~W} \end{aligned}$		$\begin{aligned} & (\mathrm{VCE}=+1 \mathrm{~V} \\ & \mathrm{Ic}=500 \mathrm{~mA}) \\ & \text { S0 to } 320 \end{aligned}$
$\mathrm{ICm}_{3 \mathrm{~A}} \max$	$\left.\underset{6 \mathrm{~W}}{(\mathrm{Tamb}} \leq 63^{\circ} \mathrm{C}\right)$		$\begin{aligned} & (\mathrm{VCE}=1 \mathrm{~V} \\ & \mathrm{IC}=500 \mathrm{~mA}) \\ & 80 \text { to } 320 \end{aligned}$
	$\begin{aligned} & \left(\text { Tamb } \leq 45^{\circ} \mathrm{C}\right) \\ & 5 \mathrm{~mW} \end{aligned}$		
$\begin{aligned} & \text { ICM max } \\ & 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { (Tamb } \left.=45^{\circ} \mathrm{C}\right) \\ & 60 \mathrm{~mW} \end{aligned}$	150	
$\begin{aligned} & \text { Icm } \max _{10} \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { (Tamb } \left.=46^{\circ} \mathrm{C}\right) \\ & 50 \mathrm{~mW} \end{aligned}$	150	
$\begin{gathered} \text { ICM } \max _{10} \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \left(\mathrm{Tamb}=45^{\circ} \mathrm{C}\right) \\ & 50 \mathrm{~mW} \end{aligned}$	150	
$\begin{gathered} \text { ICM max } \\ 30 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \text { (Tamb }=46^{\circ} \mathrm{C} \text {) } \\ & 250 \mathrm{~mW} \end{aligned}$		180
$\begin{gathered} 10 \mathrm{~m} \max \\ 10 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \left(\operatorname{Tamb}=30^{\circ} \mathrm{C}\right) \\ & 60 \mathrm{~mW} \end{aligned}$		

Type	Description	Vob maz	Io ($\mathbf{A} \boldsymbol{\nabla}$) max
AP126	Germanium P-N-P alloy-diffueed transistor for is amplifer in tom receivers	$\begin{aligned} & (\mathbf{I E}=0) \\ & -20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { IOM max } \\ & 10 \mathrm{~mA} \end{aligned}$
AF127	Germanium P-N-P alloy-dife used transistor for mixer/oscillator and if ampllfer in mw and lw receivers	$\begin{aligned} & (\mathrm{Ig}=0) \\ & -20 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { ICM max } \\ 10 \mathrm{~mA} \end{gathered}$
AF178	Germanlum P-N-P alloy-diffused transistor for mixer/oscillator at irequencies up to 260 MHz	$\begin{aligned} & (\mathrm{IE}=0) \\ & -25 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { Icm } \max \\ 10 \mathrm{~mA} \end{gathered}$
AF179	Germanlum P-N.P alloy-diffused transistor for large algnal if amplitier in television receivers	$-25 \mathrm{~V}$	$\begin{aligned} & \text { ICM } \max _{15} \mathrm{~mA} \end{aligned}$
AF180	Germanlum P-N-P alloy-difiused transistor for R.F. ampllfier in tel. tuners, 1 up to 220 MHz	$\begin{aligned} & (\mathrm{IE}=0) \\ & -26 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { ICM } \max \\ & 25 \mathrm{~mA} \end{aligned}$
AF181	Germaniom P-N-P alloy-difrused translstor for television Fideo if amp. with forward A.G.C.	$\begin{aligned} & (\mathrm{IB}=0) \\ & -30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { ICM max } \\ & 20 \mathrm{~mA} \end{aligned}$

Plos max	Ourrent amplification factor (consmon emilter)	
	Small signal	Large signal
$\begin{aligned} & \left(\text { Tamb }=80^{\circ} \mathrm{C}\right) \\ & 60 \mathrm{~mW} \end{aligned}$		
$\begin{aligned} & \text { (Tamb= } 30^{\circ} \mathrm{C} \text {) } \\ & 60 \mathrm{~mW} \end{aligned}$		
$\begin{aligned} & \text { (Tamb } \leq 45^{\circ} \mathrm{C} \text {) } \\ & 75 \mathrm{~mW} \end{aligned}$	>20	
$\begin{aligned} & \text { (Tamb= }{ }^{\left.25^{\circ} \mathrm{C}\right)} \\ & 140 \mathrm{~mW} \end{aligned}$	ta	
$\begin{aligned} & \left(\text { Tamb }=25^{\circ} \mathrm{C}\right) \\ & { }_{156 \mathrm{~mW}} \end{aligned}$		Max. unllateralised gain. Typ25 dB
$\begin{aligned} & \left(\text { Tamb }=25^{\circ} \mathrm{C}\right) \\ & 156 \mathrm{~mW} \end{aligned}$		Max. unilateralfsed gain. Typ. 35 dB

BAlls	Gold bonded silicon diode for use as a television video nolse limiter	$\begin{gathered} \text { Max.rev. } \\ \text { volits } \\ 150 \mathrm{v} \end{gathered}$	Max. forward carrent 50 mA 60 ma
BA144	Gold bonded sillicon diode Intended for use in television flywheel syachronising circuits	Vbm $\max _{50 \mathrm{~V}}$	
BA148	A last general purpose diode		
BC107	8ilicon N-P-N epitaxial planar transistor for audio driver stages and teievision elgnal processing circuits	$\begin{aligned} & (\mathrm{IR}=0) \\ & +\mathrm{BOV} \end{aligned}$	$\begin{aligned} & \text { ICM max } \\ & 100 \mathrm{~mA} \end{aligned}$
BC108	silicon N-P-N epitaxial planar transistor, for as pre-amp. and driver stages in amps.	$\begin{aligned} & (\mathrm{IB}=0) \\ & +30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Icm max } \\ & 100 \mathrm{~mA} \end{aligned}$
BC109	8ilicon N-P-N epitazial planar transistor for low nolse input stages	$\begin{gathered} (\mathrm{IE}=0) \\ +30 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{I} C \mathrm{max} \\ 100 \mathrm{~mA} \end{gathered}$

Average forward current 2 mA	Tamb max $70^{\circ} \mathrm{C}$	
50 mW		
$\begin{aligned} & \text { TJ max } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
	$\begin{aligned} & \text { (VCE }=+5 \mathrm{~V} \\ & \mathrm{IO}=2 \mathrm{~mA}) \\ & 125 \text { to } 500 \end{aligned}$	
$\begin{aligned} & \left(\text { Tamb } \leq 25^{\circ} \mathrm{C}\right) \\ & 300 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & (\mathrm{VCB}=+6 \mathrm{~V} \\ & \mathrm{IC}=10 \mathrm{~mA}) \\ & 125 \text { to } 300 \end{aligned}$	
$\begin{aligned} & \text { (Tamb } \leqq 25^{\circ} \mathrm{C} \text {) } \\ & 300 \mathrm{~mW} \end{aligned}$	$\begin{gathered} (V C E=+\delta V \\ I C=2 \mathrm{~mA}) \\ 240 \text { to } 900 \end{gathered}$	

Type	Description	$V_{\text {ce }}$ max	Io (Av) \max
BC187	P-N-P silicon planar epitaxial transistor for use as sync separators and in a.g.c. and oscillator circults for line and feld deflection; also in driver stages of audio amplifiers	Vcbo $\max 30 \mathrm{~V}$	$\begin{aligned} & \text { Iom max } \\ & 200 \mathrm{~mA} \end{aligned}$
BD121	silicon $n-p-n$ planar expitaxial power transistor intended for general audio applications	Vcbo max 60 V	$\underset{6 A}{\text { ICmmax }}$
BD123	Silicon n-p-n planar epitaxial power transformer intended for general audlo applications	$\begin{gathered} \text { VCBo } \\ \text { max } \\ 90 \mathrm{~V} \end{gathered}$	$\mathrm{ICM}_{5 \mathrm{~A}}^{\max }$
BD124	Silicon n-p-n planar epitaxial power transistor Intended for televialon field time-base output atages and general purpose medium power applications		
BF115	Sillicon n-p-n planar epitaxial transistor for am and fon applications	Vcbo max 50 V	$\begin{aligned} & \text { ICM max } \\ & 30 \mathrm{~mA} \end{aligned}$
BF167	gilicon N-P-N planar transistor for control stage of video if amplifiers	$\begin{gathered} +40 \mathrm{~V} \\ \mathrm{VcR} \max \\ +30 \mathrm{~V} \\ \hline \end{gathered}$	25 mA
BF173	sillicon N-P-N planar epitaxial transistor for output atages of television video $1 f$ amplifiers	$\begin{gathered} +40 \mathrm{~V} \\ \mathrm{VCB} \max \\ +25 \mathrm{~V} \end{gathered}$	25 mA

Ptol max	Current amplification factor (common emitter)	
	Small signal	Large signal
$\begin{aligned} & \text { Tamb } 25^{\circ} \mathrm{C} \\ & 300 \mathrm{~m} W \end{aligned}$	$\begin{aligned} & I 0=2 \mathrm{~mA} \\ & 100 \text { to } 500 \\ & I 0=50 \mathrm{~mA} \\ & 65 \text { to } 325 \end{aligned}$	f_{T}. typ. atIo $=$ 50 mA 191 MHz
$\begin{aligned} & \text { Tamb }=25^{\circ} \mathrm{C} \\ & 45 \mathrm{~W} \end{aligned}$		$I_{0}=1.0 \mathrm{~A}$
$\mathrm{Tamb}_{45 \mathrm{~W}}=25^{\circ} \mathrm{C}$		$\mathrm{Ic}=1.0 \mathrm{~A}$
$\begin{aligned} & \text { Tamb } \\ & 16 \mathrm{~W} \end{aligned} 60^{\circ} \mathrm{C}$		$\min _{35}(I 0=0.8 \mathrm{~A})$
$\begin{aligned} & \text { Tamb } \leq 45^{\circ} \mathrm{C} \\ & 145 \mathrm{~mW} \end{aligned}$		
$\begin{aligned} & \text { (Tamb } \leq 45^{\circ} \mathrm{C} \text {) } \\ & 130 \mathrm{~mW} \end{aligned}$		Max. unilateralised gain. Typ. 42 dB
$\begin{aligned} & \text { (Tamb } \leftrightarrows 45^{\circ} \mathrm{C} \text {) } \\ & 200 \mathrm{~mW} \end{aligned}$		Max. Unilateralised gain.Typ. 42 dB

BF178	N-P-N silicon planar tranaistor primarily intended for use in Video output stages of mon- chrome televislon recelvers	$\begin{aligned} & \text { VcBo } \\ & \text { max } \\ & \mathbf{1 4 5 V} \end{aligned}$	50 mA
BF284	N-P-N sillcon planar epitaxial transietor recommended for use in the if amplifier of car rad anse in sound if stages of television recelvers	$\begin{aligned} & \hline \text { Vabo } \\ & \text { max } \\ & 30 \mathrm{~V} \end{aligned}$	30 mA
BF185	N-P-N olllicon planar epitaxial low-nolse transigtor for uae in the Input stage of car radiog and input and input and mirer/oscillator	$\begin{aligned} & \text { Vсво } \\ & \max \\ & 30 \mathrm{~V} \end{aligned}$	30 mA
BF195	N-P-N low nolse tranalstor in epoxy resin encapsulation with epoxy red elelocking strips for 3 rigld 3 elill insertlon into primice grids. boards using standand bor use In Input atages of amp/mm recelvers. Aloo mlxer and 1.1. stages of a.m. Dattery operated recelvera	$\begin{aligned} & \text { Vcao } \\ & \text { mav } \\ & \text { mav } \end{aligned}$	30 mA
BF200	V.F.F. slicon planar N-P-N tranaigtor with forward gain control characteristics intended for use in the r.f. amplifer stage of television v.h.f. taners To 72 constructlon with the shield connected to envelope	$\begin{aligned} & \text { Vcbo } \\ & \text { max } \\ & \text { mav } \end{aligned}$	20 mA

Type	Desiviption	$\mathrm{V}_{\text {cb }}^{\operatorname{man}}$ ($\underset{\max (\Delta V)}{\mathrm{Ic}^{(\Delta V)}}$
BY126	sillicon rectiter diode doublediffused junction rectifer with repetitive peak increase voltage of 650 V . For use as a maise rectifler in television recelvers. Plastlc encapsulation		$\operatorname{IP}_{1 \Delta}(\Delta V)$
BY127	silicon rectifler diode. Doubledifiused junction reotifier diode with repetitive peak reverse voltage or mains rectifer in television receivers. Plastic encapsulatlon	VKRM V1250V Crest Working reverse voltage OOOV	$\begin{aligned} & \text { Ip (AV) } \\ & \text { IA } \end{aligned}$
BY164	silicon bridge rectifer consisting of four double diffused junction diodes	$\left\{\begin{array}{c} \text { Max. } \\ \text { acinput } \\ \mathrm{V}=42 \mathrm{~V} \end{array}\right.$ r.m.e.	$\begin{aligned} & \text { VRRM } \\ & \text { O } 120 \mathrm{~V} \end{aligned}$
BYX10	silicon rectiter diode. Doublediffused Junction diode for low current rectifier application Plastio encapsulation	VRWM max 800 V VRRM max 1.6 KV	$\begin{gathered} \text { If (AV) } \\ \text { max } \\ 200 \mathrm{~mA} \end{gathered}$
0491	Germanlum point-contact diode for detector in am receivers and general purpoees	$\begin{gathered} \text { Max. } \\ \text { rev. } \\ \text { ils } \\ \text { av } 90 \mathrm{v} \end{gathered}$	Max. torward 150 mA

$\left(\right.$ Tamb $\left.=75^{\circ} \mathrm{C}\right)$
12.6 W
$\left(T a m b=45^{\circ} \mathrm{C}\right)$
43 mW
$\left(\operatorname{Tamb}=45^{\circ} \mathrm{C}\right)$
$\left(\mathrm{Tamb}=45^{\circ} \mathrm{C}\right.$) 75 mW

$\left(\mathrm{Tamb}=45^{\circ} \mathrm{C}\right)$ 75 mW
 90

$(\mathrm{VCE}=-6 \mathrm{~V}$
$\left.\mathrm{IB}=\mathbf{1 m ~}_{\mathrm{m}} \mathrm{A}\right)$
Typ. 50
20 to 60
(Vce $=-2 \mathrm{~V}$
$\mathrm{IC}=1 \mathrm{~mA}) 41$

Semi-conductor devices

Semi-conductor replacement hints
Reprinted with permission from a Mullard Data Book
The following points are intended as a guide to some of the problems which may be encountered in radio and audio equipment.

1. Polarity P-N-P transistors are more common than n-p-n but it is essential that the correct polarity transistor is used. The collector terminal of p-n-p transistors will be negative with respect to the emitter, and the collector terminal of $n-p-n$ transistors will be positive with respect to the emitter.
2. Lead Lengths The leads of all replacement components should be the same length as those of the original devices. If there is a screen lead on the Mullard replacement it should be connected to chassis if possible.
3. Audlo-frequency stages in portables Arrangements with either output and driver transformers, or a driver transformer only, normally use p-n-p transistors, but if one $\mathrm{n}-\mathrm{p}-\mathrm{n}$ is present every transistor in the arrangement is probably n-p-n. Complementary push-pull arrangements (recognised by the absence of any transformers) usually have at least one n-p-n transistor and frequently more. These can be difficult to service, and it is usually necessary to trace out the circuit if no diagram is available.
4. A.F. driver transistor The replacement should be selected with care in circuits where the battery voltage is greater than 12 V . The collector voltage rating should be twice the battery voltage, when a driver transformer is used.
5. A.F. output transistors If an output transistor has failed, and the cause appears to be over-heating, the Mullard replacement may also be in danger of fisling. If there is room, cooling clips should be fitted to the output transistors, or the area of the heat-sink should be enlarged if one already exists. Otherwise the value of the emitter resistor can be increased, or thermistors can be fitted across the base bias resistors.
6. Car radio output stages Arrangements with no driver transformer may use a number of circuit configurations, and the pre-amplifier and driver transistors can be p-n-p or n-p-n. A Mullard AD149 should be used as a p-n-p output transistor replacement in all car radio circuits.
7. A.M. I.F. stages When transistors in i.f. stages are replaced, a type should be chosen which has a similar value of feedback capacitance. Unfortunately these figures for other manufacturers' types have not always been available. In general, an OC45 is a suitable $\mathrm{p}-\mathrm{n}-\mathrm{p}$ type when neutralising components are used, and an AF117 (also p-n-p) should be used when there is no neutralisation. If there is instability after the replacement has been fitted satisfactory operation may be obtained by making some circuit modifications. For example, if there are neutralising components the value of the neutralising capacitor should be altered. If there is no neutralisation, and if the transformer is singletuned and of the correct phasing, instability may be removed by inserting a neutralising capacitor (value 1 to 10 pF). Another method of making the stage stable is to insert a damping resistor across the primary of the i.f. transformer in the collector circuit.
8. A.M. oscillator and mixer stages An AF117 is a suitable p-n-p replacement. If the circuit does not oscillate after the replacement has been fitted, the emitter current should be increased (but not over 3 mA). If there is squegging the value of the emitter decoupling capacitor should be reduced, and if this is unsuccessful a damping resistor should be connected across the oscillator tuned circuit.
9. F.M. I.F. stages A Mullard AF116 (p-n-p) should be used. If instability occurs the value of the neutralising capacitor should be altered if one is present. Otherwise the emitter current should be reduced (but not to less than half its value) by increasing the value of the upper base bias resistor. A damping resistor connected across the i.f. coil in the collector circuit may cure instability if other methods have failed.
10. F.M. oscillators and mixers Mullard AF114, AF178 (both $\mathrm{p}-\mathrm{n}-\mathrm{p}$) should be used. It is important to ensure that the lead lengths of the replacements are the same as those of the original devices. Instability can sometimes be cured by adjusting the value of the emitter current (by altering the value of the upper base bias resistor). It may be necessary to alter the value of the emitter feedback capacitor in oscillators.
11. F.M. R.F. amplifiers A Mullard AF114 or AF178 (both $\mathrm{p}-\mathrm{n}-\mathrm{p}$) should be used as a replacement. If there is instability the emitter current should be reduced by increasing the value of the upper base bias resistor across the coil in the collector tuned circuit.

Receiving valves

TYPE NOMENCLATURE SYSTEM

All new Mullard valves are registered with Pro-Electron and have type numbers according to the following code, based on the Pro-Electron type nomenclature system for receiving and amplifying valves.
The type number consists of two or more letters followed by a group of three figures (two figures in earlier types.)

The first letter indicates the heater or filament voltage or current:

D	0.5 to 1.5 V filament
E	6.3 V heater
G	5.0 V heater
P	300 mA heater
U	100 mA heater
Letters A	$(4.0 \mathrm{~V}), \mathrm{C}(200 \mathrm{~mA})$ and $\mathrm{K}(2.0 \mathrm{~V})$ have also been
used.	

The second and subsequent letters indicate the general class of value:

A	single diode
${ }^{\text {B }}$	double diode
C	triode
D	power output triode
E	tetrode
F	pentode
L	power output tetrode or pentode
H	bexode or heptode (hexode type)
K	octode or heptode (octode type)
M	tuning indicator
Y	half-wave rectifier
Z	full-wave rectifier

I wo or three of these letters may be combined together, e.g. BC-double-diode triode.

Receiving valves

The first figure of the serial number indicates the type of base:
2
3
4
5
8
9
B10B (10-pin) base (previously used for B8G base)
Octal base
B8A base
B9D (magnoval) base (previously used for miscellaneous bases)
B9A (noval) base
B7G base
The remaining figure or figures make up the serial number indicating a particular design or development.

Examples
PCF806 Triode pentode with B9A base for use in 300 mA series heater chain
EC90 Triode with B7G base and 6.3 V heater.

List of earlier types and types not in common use

AZ31	EBC41	EF55	EZ35
DAF91	EC90	EF92	EZ40
DAF96	EC91	EF95	EZ41
DCC90	ECC32	EL33	GZ30
DF91	ECC33	EL36	GZ32
DF96	ECC35	EL37	GZ33
DK91	ECC84	EL38	GZ37
DK92	ECC91	EL41	PL820
DK96	ECF80	EL42	TY86F
DL92	ECH35	EL85	UAF42
DL94	ECH42	EL91	UBC41
DL96	EF37A	EL95	UCH42
DM70	EF39	EL820	UF41
DM71	EF40	EL821	UY41
EAF42	EF41	EM34	20P4/CL30
EBC33	EF50	EM81	

MULLARD VALVE TYPES

Abriäged with permission from a Mullard Data Book
DY86/87 E.H.T. Half-Wave Rectifier

Ih
Pulsed input
P.I.V. max.
1.4
$\stackrel{V}{\mathrm{~V}}$

ia(pk) max.	40	mA
Iout max.	500	$\mu \mathrm{~A}$
C max.	2000	pF

B9A
Pins 3 and 7 may only be connected to points in the heater circuit and must not be earthed.
EB91 Double Diode (seperate cathodes)

EBC81 Double Diode Triode

	Vh	$6 \cdot 3$
N^{4}	Ih	230
,	Va	250
\% 4	Vg	-3.0
\% 0	la	1.0
- 19	gm	1.2
B9A	${ }_{\mu}$	70

EBF89 Double Diode Variable-MU R.F. Pentode

Vh	$300^{6 \cdot 3}$	
Va	250	250
Vg 3	0	0
Vg^{V}	80	100
Vgl	-1.0	-2.0
Ia	9.0	9.0
Ig2	2.7	2.7
gm	4.5	3.8
ra	0.9	1.0
$\mu \mathrm{g} 1-\mathrm{g} 2$	20	20

Receiving valves
EC86 U.H.F. Frame-Grid Mixer/Oscillator Triode

b ${ }^{\text {b }}$	Vh	$6 \cdot 3$
0	Ih	200
(Va	175
O)	Vg	-1.5
$0^{2}, 108$	Ia	12
	gm	14
	ra	4.85
B9A	μ	68

ECC81 R.F. Double Triode (separate cathodes)

ECC85 R.F. Double Triode (separate cathodes)

ECH81 Triode Heptode Frequency Changer

	Vh	$6 \cdot 3$	V
-	Ih	300	mA
	$\mathrm{Vah}=\mathrm{Vb}$	250	V
h or ah	$\mathrm{Rg} 2+\mathrm{g} 4$	22	ks
93	$\mathrm{Rg} 3+\mathrm{gt}$	47	ks
	Rk	140	s 2
	lah	3.25	$m \mathrm{~A}$
,	$\lg 2+84$	6.7	mA
B9A	$\mathbf{l g} 3+\mathrm{gt}$	200	$\mu \mathrm{A}$
B9A	gc	775	$\mu \mathrm{A} / \mathrm{V}$
	\checkmark at	100	V
	Iat	$4 \cdot 5$	mA

Receiving valves
ECL82 Triode Output Pentode (pa max. $=5-4 \mathrm{~W}$)

	$\begin{aligned} & \text { Vh } \\ & \text { Lh } \end{aligned}$		${ }^{6 \cdot 3}$	$\underset{m a}{\text { V }}$
40		Triode	Pentode	
	Va	100	250	V
気 ${ }^{\circ}{ }^{\circ} \mathrm{O}$	${ }_{12}$	3.5	250	mA
	Ig2	\bigcirc	5.7	mA
	Vg1	0	-22.5	V
B9A	gm	2.5	5.0	mA / V
	$\xrightarrow{\text { Ra }}$	-	9.0 3.4	k

ECL86 Triode Output Pentode (pa max. $=9 \mathrm{~W}$) ut
Vh
Ib

Va
Vg
la
la
lg 2
Vgl
gm
ra
Ra
Pout

EF80 High Slope R.F. Pentode

	Vh	6.3	V
t	Ih	300	mA
	Va	170	v
$\cdots 0^{\circ}$	Vg 2	170	V
O2 0	V83	0	V
	Rk	160	Ω
	Ia	10	mA
	Ig 2	2.5	mA
B9A	gm	7.4	mA/V
	ug1-g2	50	
	147		

Receiving valves
EF86 Low Noise A.F. Voltage Amplifying Pentode

	Vh	$6 \cdot 3$
	Ih	200
70\% 0^{2}	Va	250
	$\mathrm{Vg}^{\text {2 }}$	140
/3	VgI_{1}	-2.2
	Ia	3.0
B9A	Ig2	600
	${ }_{\mu \mathrm{gl}}^{\mathrm{gm}}$-g2	${ }_{38}{ }^{2 \cdot 2}$

EF91 High Slope R.F. Pentode

	Vh	$6 \cdot 3$
	1 l	
	V 2	250
	Vg^{3}	0
$\bullet 0103.8$	Rk	160
-	Ia	${ }_{2}^{10}$
	Ig2	2.6
B7G	$\mathrm{gm}_{\mu \mathrm{g}}$	$70^{7.6}$

EL34 Output Pentode (pa max. $=25 \mathrm{~W}$)

Vh	6.3
lh	1.5
Va	250
Vg2	250
$\mathbf{V g}^{\mathbf{3}}$	0
Rk	106
la	100
Ig2	15
gm	11
Ra	2.0
Pout	11

EL84 Output Pentode (pa max. $=12 \mathrm{~W}$)

	Vh	$6 \cdot 3$	V
h h ic	Ih	760	mA
	Va	250	
$00^{k} 0,0$	Vg2	250	
日s 010	Rk	135	Ω
$O^{2}{ }^{\circ} \mathrm{O}$ la	Ia	48	mA
16	Ig2	5.5	mA
Ic 92	gm	11.3	mA/V
B9A	Ra	4.5	k Ω
	Pout	$5 \cdot 7$	

Receiving valves
ELL 80 Double Output Pentode (pa max. $=2 \times 6 \mathrm{~W}$)

Vh	$6 \cdot 3$	V
Ih	Th 550 mA	
Characteristics (each section)		
Va	250	V
Vg2	250	V
${ }^{*}$ Rk	160	Ω
Ia	24	mA
lg2	4.5	mA
gm	$6 \cdot 5$	mA/V
Ra	10	k Ω
Pout	3.0	W

-Common to both sections
EM84 Voltage Indicator

EM87 Voltage Indicator

Receiving valves
EY86/87 High Voltage Half-Wave Rectifier

khsa	$\begin{aligned} & \text { Vh } \\ & \text { Ih } \end{aligned}$	$90^{6 \cdot 3}$
NC $9,1.0$ NC	Pulsed input	
	P.I.V. max.	22
$\mathrm{o}^{2} \quad 3 \mathrm{t}$	Iout	800
	la(pk) max.	40
kJus	C max.	2000

B9A
\dagger Pins $1,4,6$ and 9 may be used for fitting an anti-corona shield
*Pins 3 and 7 may only be connected to points in the heater circuit and must not be earthed

EZ81 Full-Wave Rectifier

PC88 U.H.F. Frame-Grid Grounded Grid Amplifier Triode

B9A

Ih
Vh
Va
Val
Vga
gma
gra
ra
H

300	mA
3.8	V
160	V
-1.25	mA
12.5	$\mathrm{~mA} / \mathrm{V}$
13.5	$\mathrm{k} \Omega$
4.8	

65

PC900 R. F. Triode

Receiving valves
PCC88 Frame-Grid Double Triode

PCC89 Variable-MU Frame-Grid Double Triode

PCF80 Triode Pentode (separate cathodes)

PCF84 Triode Pentode
Ih
Vh

Va
Vg
Vg
$\mathrm{Vg1}$
Ia
Ig 2
gm
ra

Receiving valves
PCF801 Triode Frame-Grid Variable-Mu Pentode

PCF802 Triode Pentode

PCL82 Triode Output Pentode (pa max. $=7$ W)

Receiving valves
PCL83 Triode Output Pentode (pa max. $=5 \cdot \mathbf{4 W}$)

PCL86 Triode Output Pentode (pa max. (pentode) $=9 \mathrm{~W})$

PL82 Output Pentode (pa max. =9W)

Receiving valves
PL508 Field Output Pentode for Colour TV

	Ib	300	mA
	Vh	17	V
	Va	190	v
a/0, 10) \%os	Vg 2	190	\checkmark
0,1	1 a	${ }_{4}{ }^{\text {a }}$	mA
-16	$\stackrel{182}{\text { V1 }}$	$-17{ }^{4.5}$	$\stackrel{\mathrm{mA}}{\mathrm{V}}$
B9D	gm	9.0	mA / V
	${ }_{\text {ug }} 1-\mathrm{g} 2$	$10^{7 \cdot 0}$	
	ra	10	$\mathrm{k} \Omega$

PL509 Line Output Pentode for Colour TV (pa max. $=30 \mathrm{~W}$)

\%	Ih	300	$m \mathrm{~m}$
8.	Vh	40	V
	Va	160	V
	Vg 3	0	V
$0 \cdot \mathrm{Oz} \cdot 0 / 8$	Vg_{2}	160	V
	Vg1	0	V
	Ia	1.4	A
B9D	Ig2	45	$m A$

PL802 Video Output Pentode for Colour TV

	lh	300	mA
	Vh	16	V
	Va	170	V
${ }^{\circ}{ }^{*}$	Vg3	0	V
$010,120$.	Vg 2	170	V
0108,	Vg 1	30.9	mA
* ${ }^{\text {a }}$,	Ia	30	$m A$
	Ig2	$6 \cdot 5$	mA
B9A	gm	40	mA/V
	ra	45	$\mathrm{k} \Omega$
	$\mu \mathrm{g} 1-\mathrm{g} 2$	70	

PY82 Half-Wave Rectifier

B9A
lh
P.I.V. max. $\quad 700$

Vin(r.m.s.) max. 250
lout max. $\quad 180$
C max.
Rlim min.
154

$$
\begin{array}{r}
300 \\
19
\end{array}
$$

mA
V V
\mathbf{V}
mA
60
45

Receiving valves

PY88 Booster Diode

ic
$\stackrel{\mathrm{Ib}}{\mathrm{Vh}}$
P.I.V. max.
Ia(av) max.
300
30
6.6
$m A$
\mathbf{v}
$\mathbf{m A}$
(cathode positive)
220
kV

U301/CY30 Efficiency Diode

UABC80 Triple Diode Triode (one diode having a separate cathode)

UBC81 Double Diode Triode

Receiving valves				
UF89 Variable MU R.F. Pentode				
	$\mathrm{Ib}_{\mathrm{Vh}}$		100	$\stackrel{m}{\text { m }}$
\% 6.	$\underset{\mathrm{Vg}}{\mathrm{Va}}$	170	200 0	V
	Rg_{2}	15	24	$\mathrm{k} \Omega$
${ }^{10} \mathrm{~d}^{\prime} \mathrm{b}^{192}$	Rk	130	130	Ω
B9A ${ }^{\text {a }}$	$\stackrel{\text { la }}{\text { Ig }}$	11	11.1 3.8	m
	gm		3.85	mA / V

UL84 Output Pentode (pa max. $=12 \mathrm{~W}$)

6CB6 R.F. Pentode

Receiving valves
6F23/EF812 High Slope R.F. Pentode

h	Vh	$6 \cdot 3$	V
h B	Ih	300	mA
k	Va	170	V
O_{3}, ${ }^{0}$	Vg2	170	V
010^{1}	Rk	150	Ω
	la	10	mA
${ }^{4}{ }^{93}$	122	2.6	mA
B9A	gm	9.2	mA / V
	$\mu \mathrm{gl}$-g2	60	

6/30L2/ECC804 Double Triode (separate cathodes)

h	$\mathbf{V h} \quad 60.3$	V
		A
k \%, 1,0	Characteristics (each section)	
)	$\begin{array}{ll}\mathrm{Va} & 200 \\ \mathrm{Vg} & -7.7\end{array}$	
- b ${ }^{\text {c }}$	1 a	A
	$\begin{array}{ll}\mathrm{gm} & 3.4\end{array}$	A/V
B9A	¢	

30C15/PCF800 V.H.F. Triode Pentode

30F5/PF818 H.F. Screened Pentode (pa max. =3W)

Receiving valves
30L15/PCC805 R.F. Cascode Double Triode

$h \quad 8$	$\begin{array}{ll} \text { Ih } & 300 \\ \mathbf{V h} & \\ \hline 100 \end{array}$
	Characteristics (each section)
O, ${ }^{2}$	Va 90
\%f: 0^{2} \% ${ }^{3}$	$\mathrm{Vg} \quad-1.2$
- 0	Ia 15
\cdots -	$\mathrm{gm} \quad 9.0$
B9A	μ

30P12/PL801 Beam Tetrode (A.F. or field output, pa max. $=6 \mathrm{~W}$)

-	Ih	${ }^{300}$
$4{ }^{\circ} \mathrm{la}$	Vh	17.6
0	$\mathrm{V}^{\text {a }}$	170
	$\mathrm{Vgl}^{\text {d }}$	-10.3
8		31
	Ig2	7.3
B9A	Ra	5.0
	Pout	2.25

30P19/PL302 Line Output Beam Tetrode (pa max. =10W)

30PL14/PCL88 Triode Output Beam Tetrode
Ih
Vh

Va
Va
Vg 2
Ia
gmm
${ }_{\mu}$

	$\begin{aligned} & 160 \\ & 16 \end{aligned}$
Triode	Tetrode
100	170
	170
10	
18	7.3 m

Index

Admittance nomograph, 32
Aerials, 116
Af amplifiers. 57
Alternating current, 30
Amateur prefixes, 79
Amplifier by G.E.C., 130
Amplifier. typical transistor. 131
Amplitude modulation, 84
Anode modulation, 85
Attenuator
between matched impedances, 44
design, 41 tables, 42, 43
Audio frequency, 54
Automatic gain control, 60, 90
Balanced modulator, 86
Bandpass filter, 47
Bands III, IV \& V. 119
Broadside array aerlal, 123
Capacitance, 27
table of values, 28
Capacitative reactance, Xc. 30
Capture area, 123
Carbon resistors, 22
Carrier wave production, 82
Cathode decoupling, 59
C.C.I.R. equalisation, 72

Circuit
formulae, 21
for velocity sensitive pickup, 68
Clapp oscillator, 83
Colour
locking. 110
receiver, 112
television, 104
Colpitts oscillator, 83
Compatability
of PAL system, 115
of stereo transmission, 66
Cone aerial. 120
Constant resistance networks, 44
Copper wire tables, 18
Coupling of a f amplifiers, 57
Critical frequency, 74
Cutting a stereo disc, 69
Decibel calculations, 38
Decoupling of af amplifiers, 57

Delta/star transform, 21
Demodulator, balanced, 86
Diatonic scale, 37
Directors \& reflectors, for channels 118-123

Electro-magnetic waves. 74
Equal-tempered scale, 37
Feeders \& aerials, 116
Filters, 45
fm detectors, 91
fm/vhf band. 119
Form factor, 30
Foster-Secley discriminator. 92
Four-tube colour cameras 104, 112
Frequency
bands, 74
modulation, 86
tables, channels 1-5, vhf, fm \& bands III, IV \& V 119
Gain at Lf \& hf. 57
Gamma correction, 115
Grid modulation, 85
Half-wave dlpole aerial, 123
Hartley oscillator, 83
Heising modulation, 85
Image operation of networks. 48
Image orthicon television camera. 98
Impedance, 30
nomograph, 32
Induced voltage expressions, 23
Inductance, 23
calculation of, 24
Inductive reactance, $X_{L}, 24$
Infinite impedance detector, 89
Intensity, 36
Intensity vs loudness, 40
International amateur prefixes, 79
Invertor, 53
Ionosphere, 74
Isotropic aerial, 123
Klystron, 94
Leaky-grid detector, 89
Lens aerial. 123

Loudness, 36
Loudspeaker operatlon, 64
Magnetic recording, 70
Maser. 96
Meissner oscillator, 83
Microphones, 54
Microwaves, 94
Musical scales, 36
Mutual inductance, 23
Offset waveguide. 123
Optimum wavebands, for short wave reception, 77
Oscillator circuits, 83
PAL
decoder, block schematic. 111
Video stages, block schematic, 113
Parabolic aerial, 122
Pianoforte frequencies, 37
Pitch, 36
Power
factor, 30
supplies, 49
supply circuits, 52
Pre-amplifier, iransistor, 130
Preferred values of resistors, 22
Prefixes, international amateur. 79
Pressure, sound, 36
Propagation, of radio wave, 74
Q. calculation of, 35

Q factor, 31
Quarter wave rod aerial for vhf, 121
Radio Soclety of Great Britaln, 78
Ratio detector, 93
Reactance, 30
chart, af, 33
chart, rf, 34
RC coupling response curves, 58
Receiving aerials for uhf, 124
Reception, 88
Reflector type aerials, 122
Resistance
circuit formulae, 21
ohm's law, 20
nomograph, 20
of materials, 21
wire table, 19
colour code, 22
preferred values, 22

Resonance, 31
RCA shadow mask colour tube, 114
RM S value, 30
Screen decoupling, 57
Semi-conductor
data, 132
devices, 127
replacement hints, 140
Series modulation, 85
Shadow-mask colour tube,
RCA, 114
Short wave
broacasting, 75
reception, 77
Sinpo code, 78
Skin effect. 22
Sound, 36
Intervals, 37
pressure, 36
Stage gain, 57
Star/delta transform, 21
Stereophonic brodcasting, 66 pickups, 69
Stereophony, 64
Stop filter, 47
Superhet, 88
Television, 97
cameras, 98
colour, 104
receivers, 101
test card, 102
wa veforms, 98, 99, 108
Timbre, of sound, 36
Time constant, 29
Tone control circuits, 61
Transformer
coupling, 59
design, 49
equivalent circult, 59
Transmission, 82
Transistor data, 128, 132
Transistorised amplifiers, 130,131
Travelling-wave tube, 95
Uitra high frequencies, 124
receiving aerials, 124
televiston stations, 124
Valve type \& bases, 143
Variable-mu valves, 60
Velocity sensitive pickup, 68
Vhf/fm band, 119
Vidicon television camera, 100
W ave guides, 94
Wire tables, 19

[^0]: \dagger Abridged with permission from a BBC publication How to Receive BBC2 and Colour.

