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F 0 R E w 0 R D 

This book is one of several resulting from a recent revision of the 
Electrical Engineering Course at The Massachusetts Institute of Tech­
nology. The books have the general format of texts and are being 
used as such. However, they might well be described as reports on 
a research program aimed at the evolution of an undergraduate core 
curriculum in Electrical Engineering that will form a basis for a 
continuing career in a field that is ever-changing. 

The development of an educational program in Electrical Engi­
neering to keep pace with the changes in technology is not a new 
endeavor at The Massachusetts Institute of Technology. In the early 
1930's, the Faculty of the Department undertook a major review and 
reassessment of its program. By 1940, a series of new courses had 
been evolved, and resulted in the publication of four related books. 

The new technology that appeared during World War II brought 
great change to the field of Electrical Engineering. In recognition of 
this fact, the Faculty of the Department undertook another reassess­
ment of its program. By about 1952, a pattern for a curriculum had 
been evolved and its implementation was initiated with a high degree 
of enthusiasm and vigor. 

The new curriculum subordinates option structure5 built around 
areas of industrial practice in favor of a common core that provides a 
broad base for the engineering applications of the sciences. This core 
structure includes a newly developed laboratory program which stresses 
the role of experimentation and its relation to theoretical model-making 
in the solution of engineering problems. Faced with the time limita­
tion of a four-year program for the Bachelor's degree, the entire core 
curriculum gives priority to basic principles and methods of analysis 
rather than to the presentation of current technology. 

J. A. STRATTON 
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p R E F A C E 

The importance of electronic devices, circuits, and systems in 
modern technology is apparent to most electrical engineering students; 
many have acquired practical experience with circuits before they 
begin formal study of the subject. Electronic circuit theory can be 
introduced to the student in a variety of ways. In view of the many 
devices available and the numerous applications of electronic circuits, 
it is important in any plan of presentation to seek unifying principles. 
Such principles permit the student to extend his knowledge in a rapidly 
advancing field. 

We have organized our approach to electronics around circuit models 
and methods of circuit analysis in order to reduce the number of 
separate ideas and concepts. The many functions performed by 
electronic systems can be understood in terms of a few fundamental 
circuits if similarities are sought. 

This book deals with electronic devices, models, basic circuits and 
circuit functions. Many of the interesting properties of electronic 
devices are a consequence of nonlinearity accompanied by regional 
linearity. As a result, piecewise-linear circuit models can be used 
to convert a nonlinear circuit problem to a number of related linear 
problems. Thus, the mathematics of linear circuit theory can be 
applied to a broad class of physical circuits and systems operating in 
a nonlinear manner. 

The model concept emphasizes the need for making approximations 
as part of the process of analyzing a physical problem. The student 
is thus encouraged to exercise judgment in order to arrive at the 
simplest circuit models that will give an adequate result. Extremely 

ix 
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simple models can be used to explain the general mode of operation 
of electronic circuits. Simple resistive models together with one major 
energy-storage element suffice to explain the behavior of most basic 
circuits. Refinements in the resistive model and one or two additional 
energy-storage elements provide adequate accuracy for nearly all 
design purposes. Sinusoidal or rectangular-wave circuit response illus­
trates basic operations such as waveform generation, wave shaping, 
amplification and modulation. A companion volume presents methods 
of linear and quasi-linear analysis pertinent to more complicated elec­
tronic circuits, signals and systems. 

The emphasis on general methods illustrated by specific examples 
is in keeping with the present trend in engineering education. The 
emphasis on fundamentals is the inevitable consequence of rapid 
development, particularly in such fields as electronics, communications, 
and computation, which have literally exploded in the past decade. 
In today's technology, a specialized education becomes obsolete too 
soon after graduation. We do not mean to say that real problems 
and applications should be avoided. However, too much specialization, 
either in fact or in attitude, deprives the student of the background 
and the confidence that will enable him to enter new fields. More­
over, technical problems often span several disciplines so that breadth 
of understanding becomes more important in the long run than detailed 
knowledge. 

Some of the material presented in this book evolved from a 
graduate subject on pulse circuits, and some was developed during 
the revision of the introductory undergraduate subject on electronic 
circuits {part of the core curriculum for all electrical engineering 
students at M.I.T.). With minor variations, portions of the material 
in this book have been used for five years in this core subject. 

The development of this presentation of electronic-circuit theory 
was influenced by the early work of Godfrey T. Coate. Contributions 
have also been made by other colleagues on the teaching staff; in 
particular, many of the problems were prepared by section instructors. 
Ideas have come from staff members of the Research Laboratory of 
Electronics or have resulted from the stimulation of the research 
environment. The inspiring leadership of Professor Ernst A. Guillemin 
in circuit theory research and teaching has had both tangible and 
intangible effects on the project. Many worth-while suggestions have 
been made by our students. 

During the final stages of the book, we had the invaluable aid of 
Professor Campbell L. Searle, whose critical technical editing con­
tributed greatly to the improvement of the manuscript. In addition, 
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he gave his time and effort unsparingly to galley reading in order 
to help us meet publication deadlines. As in any other book, a 
number of errors inevitably remain. The number would have been 
greater had it not been for the perceptive checking and page proofing 
done by Professor Richard D. Thornton, who also took major respon­
sibility for organizing the index. 

We are most grateful to Professor Gordon S. Brown for creating 
a departmental environment in which academic experiments are the 
rule rather than the exception. His constant encouragement has 
provided a real stimulus throughout the subject revision, note writing, 
manuscript, and production stages of this project. 

Our acknowledgements would be incomplete without an expression 
of thanks to the secretaries who typed rough draft, notes, and 
manuscript. They are Bertha Hornby, Rosemarie Connell, Dorothea 
Scanlon, Marjorie D'Amato, and Louise .Juliano. 

HENRY J. ZIMMERMANN 

SAMUEL J. MASON 

Cambridge, Massachusetts 
January, 1969 
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C H A p T E R 0 N E 

Introduction 

1.1 Electronic Circuit Theory 

Electronic devices such as diodes, triodes, and transistors operate as 
switches or valves to control or modulate the flow of electric current. 
Electronic switches and valves are useful because of their sensitivity and 
speed of operation, which exceed the sensitivity and speed of mechanical 
or electromechanical devices. 

Electronic circuit theory is the mathematical study of circuits con­
taining electronic devices. The ultimate purpose of electronic circuit 
theory is to provide a basis for the design of electronic systems. Such 
systems are combinations of electric and electronic devices assembled 
and connected to perform some desired operation on an electrical signal. 
These systems may also be associated with nonelectrical devices as in 
servomechanisms or industrial process control. 

Like any other body of theory, electronic circuit theory deals with 
models. A model is a simple, idealized abstraction which approximates 
the behavior of a physical system. A model is always a compromise 
between simplicity and reality. The three phases of electronic circuit 
theory are, therefore, as follows: 

1. Development of _su~table circuit models for electronic devices._ Model 
making is facilitated by a knowledge of the theoretical "models" for the 
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underlying physical processes which determine the externally observed 
electrical behavior of a given device. 

2. Development of analysis methods applicable to electronic circuits. 
A natural and useful approach is the extension of elementary electric 
circuit theory so that familiar techniques can be brought to bear upon 
electronic circuits. 

3. Accumulation of a store of ideas from working with the models 
and analyzing the circuits. A knowledge of device and circuit capabilities 
and limitations provides specific criteria and general·technical intuition 
for the design of electronic systems. 

This book emphasizes the first two phases of electronic circuit theory, 
namely, model making and methods of circuit analysis. Design informa­
tion accumulates, as we proceed, from illustrative examples, problems, 
and interpretations of basic results. 

1.2 Ideal Circuit Elements 

In general, electronic circuits are not linear and do not obey reciprocity. 
This means that we cannot make satisfactory circuit models from the 
familiar R, L, and C building blocks of linear circuit theory. However, 
the difficulty can be overcome with only two additional circuit elements. 
These are the ideal diode and the controlled source. 

-----'t"'.o~----v 

(a) (b) 

Fig. 1.1. The ideal diode. (a) Circuit symbol; (b) Current versus voltage curve. 

As indicated in Fig. 1.1, the ideal diode is a self-operated switch that 
opens when the terminal voltage is negative and closes when the current is 
positive. The ideal diode, sometimes called an ideal rectifier, is a non­
linear circuit element. It is an idealized approximation of the class of 
electronic devices known as diodes or rectifiers. 

A controlled source is shown in Fig. 1.2. The control variable and the 
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source variable may each be either a current or a voltage, but only the 
current-controlled current source is shown here. The controlled source 
is a linear three-terminal circuit element. It is described by the linear 
two-terminal-pair relations between its input variables e1 and i 1 and its 
output variables e2 and i2 • The controlled source is a basic unilateral 
circuit element. "Unilateral" means that a signal at the input has an 

V2 

i1 = 3 2 1 -1 -2 
I I I I 

I I I I I I 
ai1 I I I I i1 - I -2a -al 0 la 12a -- i2 +\ I I 

I I 
I I 

Vl U2 I I 

"'---~ I I 
I f 

Vt= 0 

i2 = -ai1 (b) 
(a) 

Fig. 1.2. The controlled source. (a) Circuit symbol for a current-controlled current 
source; (b) Output curve (v2 vs. i2) showing the effect of the control signal. 

effect on the output but a signal applied at the output has no influence 
on the input. Thus in Fig. 1.2, the input current i1 controls the position 
of the line relating v2 and i2 . Varying i1 from +2 to -2 sweeps the 
v2 vs. i 2 line across the plane from left to right. Conversely, v1 and i 1 

are independent of applied v2• Such performance is impossible to achieve 
with resistance, capacitance, or inductance (including mutual induct­
ance). Coupling between two terminal-pairs due to any of these ele­
ments is "bilateral" or "reciprocal" (two-way coupling). 

1.3 Circuit Models 

The ideal diode allows us to make piecewise-linear models of nonlinear 
devices. From the current-versus-voltage curve for a typical vacuum 
diode [Fig. 1.3(a)], we see the general character of diode curves that 
suggests the ideal-rectifier approximation. By combining just a single 
resistance with an ideal diode, as in Fig. 1.3 (b ), we have a piecewise­
linear model that matches the actual curve very closely. 
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Inclusion of a controlled (or dependent) source allows us to devise 
models that approximate the output curve of a control valve (such as a 

r~ 
1-\p ___ _ 

0 V 

(a) (b) 

Fig. 1.3. Diode curve and piecewise-:linear approximation. 
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Fig. 1.4. Control valve curve and piecewise-linear approximation. (a) i2 vs. v2 for 
vi = -5; (b) Approximation. 

vacuum triode or transistor). A typical triode curve is shown in Fig. 
1.4(a) and a simple piecewise-linear approximation is indicated in (b ). 

Many nonlinear electronic devices are fairly linear in certain regions of 
operation, with rather abrupt transitions connecting the different re-
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gions. In other words, a piecewise-linear model is often a very realistic 
representation. 

1.4 Analysis Methods 

From the analysis standpoint, piecewise-linear models lead to linear 
equations with restricted ranges of validity. A piecewise-linear analysis 
problem consists of a number of linear problems, each one pertinent to a 
separate "piece" or "range" of the variables involved. The convenience 
of the piecewise-linear approach lies in the ease of solution of linear 
equations. 

+ 

R 

Vt = Ri1 (1 - a) 
vi 

Rinput =1t = R (I - a) 

Fig. 1.5. Effect of controlled source on apparent resistance. 

Background gained in the study of linear RLC.circuits is useful since it 
applies directly to nonlinear electronic circuit problems when the devices 
are represented by piecewise-linear models. The very fact that piece­
wise-linear approximations provide a facility for handling nonlinear 
problems provides a strong stimulus for further study of linear circuit 
theory. The more we. know about linear circuit theory, the better our 
preparation for handling electronic circuit problems. 

The controlled source, though linear, introduces effects not treated in 
elementary circuit theory. Figure 1.5 offers a specHic example. The 
controlled source dictates the current through R, thereby establishing 
v1 and determining the apparent input resistance. If we apply The­
venin's theorem and calculate the effective resistance between terminals 
by "short-circuiting the internal voltage sources and open-circuiting the 
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current sources," we obtain the value R, which is incorrect. The error 
arises from an incorrect use of Thevenin's theorem. Only independent 
sources may be open-circuited or short-circuited to find effective resist­
ance, since only independent sources contribute to the constant A 
(open-circuit voltage) in the general linear terminal relation 

V =A+ Bi (1.1) 

Controlled sources are dependent on the control signal. Since they 
change when the control signal changes, they contribute to the constant 
B (effective resistance). Thus, controlled sources do not violate the 
laws of elementary linear circuit theory but they do require us to under­
stand the laws, rules, and theorems in order to apply them properly. 

In this book we shall describe certain conduction processes, from these 
deduce the terminal behavior of various electronic devices, make circuit 
models for the devices, and use the models to study the operation of 
basic electronic circuits. Attention is given to the important functions 
performed by each class of circuits. As we proceed, it will become clear 
that a relatively small number of fundamental ideas, properly inter­
preted, permit one to understand the operation of a very large variety of 
electronic devices, circuits, functions, and systems. An integration of 
such ideas is the basis for circuit and system design. 

PROBLEMS 

1.1. Which of the following terms apply to the ideal diode? (a) linear, 
(b) capacitive, (c) resistive, (d) inductive, (e) nonlinear, (f) lossless, (g) bi­
directional, (h) reactive, (i) passive, (j) active. 

1.2. Do the following relations between instantaneous current and voltage 
specify the behavior of the ideal diode completely? 

i ~ 0 
V ~ 0 
vi= 0 

1.3. Compare the following relations with those of Problem 1.2. 

V = 0 for i > 0 

i=O for V < 0 

1.4. What is the circuit model M for a driving-point curve like that shown 
in Fig. Pl.1? 

1.5. Sketch the output curve i 2 vs. v2 for the voltage-controlled voltage 
source shown in Fig. Pl.2. What are the dimensions ofµ? 
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i1 
i1 -+i 

M 0 
Vl Vl 

-i 

fig. Pl.1 

i1 =0 ~ 

+f 
, 

t+ 
111 112 

-l ! -
fig. P1.2 

1.6. Sketch the output curve i2 vs. v2 for the voltage-controlled current 
source shown in Fig. Pl.3. What are the dimensions of g? 

i1:=0 _,.. 
0 !II r 
Vt 

i-
fig. Pl.3 

1.7. Sketch the output curve v2 vs. i2 for the current-controlled voltage 
source shown in Fig. Pl.4. What are the dimensions of r? 

t-
fig. Pl.4 
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1.8. Plot the terminal relation v vs. i for a linear resistance. 
1.9. Show by graphical addition of voltages that the curve in Fig. 1.3 (b) is 

composed of the curves for a resistance R and an ideal diode. 
1.10. Plot the terminal relation v vs. i for a linear resistance R in parallel 

with an ideal diode. 
1.11, Plot i vs. v for the circuit shown in Fig. Pl.5. 

i -
T7: l ==-E 

-0 'J-
Fig. Pl.5 Fig, Pl,6 

1.12. Plot i vs. v for the circuit shown in Fig. Pl.6. 
1.13. How can the circuit of Fig; Pl.6 be modified to represent the curve of 

Fig. 1.4 (b) in the t~xt? 

r 
! 

Fig. Pl.7 

1.14. Determine the ratio of v2 to i~ for the circuit shown in Fig. Pl.7. _;_ -· · 
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Electrical Conduction and Diodes 

2.1 Introduction 

Electrical conduction processes govern the basic properties of many 
electronic devices. Vacuum, gas, or semiconductor diodes are important 
examples because they are in common use and because they form the 
basis for describing the behavior of transistors, triodes, pentodes, thyra­
trons, and other devices. 

Circuit models for electronic devices can be based entirely on meas­
ured electrical properties as typified by the average characteristic curves 
provided by manufacturers. However, without some knowledge of the 
theory of operation one might conclude that drastic differences exist 
between different types of devices. In terms of conduction processes, 
we can recognize .similarities .that unify and simplify the subject. At 
best) measurement of the external terminal behavior of a device can tell 
us only "what" happens, whereas the conduction processes help to 
~xplain "why" it happens. 

The following discussion of conduction processes is aimed primarily at 
establishing the plausibility of the theoretical forms for the current­
versus-voltage curves of vacuum, gas, and semiconductor diodes. The 
operation of a few other devices is also described. The results obtained 
for the diodes are- extrapolated<to transistors, triodes, pentodes and 
thyratrons in Cha:pte:fs: 5i 6, and 7; · ·· 

9 
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2.2 Atomic Particles 

For our purposes it will suffice to consider the nucleus of an atom as a 
single entity with a net positive electrical charge and a particular atomic 
weight. The remainder of the atom consists of electrons, each bearing a 
negative charge and orbiting around the nucleus. 

The orbital electrons can be considered to be arranged systematically 
in successive layers or shells. The ones nearest the nucleus are more 
tightly bound to the nucleus by the force of attraction between oppositely 
charged particles than are the more remote electrons. The total number 
of orbital electrons is just sufficient to neutralize the positive charge on 
the nucleus, so that atoms normally display no net charge. 

The similarity of the chemical properties of various elements, which 
results in the familiar periodic table, is related to the electron arrange­
ment around the nucleus. The shell nearest the nucleus can contain 
no more than two electrons, whereas successive layers may contain eight 
or more. The outermost shell contains the valence electrons which 
govern the nature of chemical reactions. These valence electrons also 
play a large part in determining electrical behavior and crystalline 
structure. 

The metallic elements tend to have one, two, or three valence elec­
trons, and nonmetals have five, six, or seven. Filled valence shells 
correspond to the inert gases, such as helium, argon, neon, and xenon. 
Half-filled valence shells characterize a class of elements known as semi­
conductors (e.g. carbon, silicon, germanium). Although mechanically 
brittle rather than ductile, these elements have a metallic appearance. 
As we shall see in the discussion of conductivity, the semiconductors 
are centered somewhere between the metals that are good electrical 
conductors and the nonmetals which tend to be good insulators. 

2.3 Electrical Conduction in Metals 

An electric field applied to a conducting material produces a slow, 
steady drift of electrons which accounts for the conduction current. 
Conduction current is defined as the rate at which ch~rge passes through 
a given cross section of a conductor (amperes equal coulombs per 
second). Although this current results from the motion of many elec­
trons, we shall neglect statistical fluctuations in the numbers of electrons 
and in their velocities so that current is like a smooth fluid fl.ow.* 

* The fluid-flow analogy is not valid for very &mall currents, because in this case 
the fluctuations due to the particle nature of the current Q~ot be neglected, 
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Copper, the most commonly used conducting material, has two valence 
electrons per atom. The atoms of copper are so densely packed that 
valence electrons are readily interchanged by the atoms and are free to 
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Fig. 2.1. Conduction in a metal. 

move when a force is applied. Current is proportional to the number of 
electrons involved, their mobility or freedom of motion, and the magni­
tude of the applied force. The mobility is defined as the drift velocity 
per unit of applied electric field. (See Fig. 2.1.) 

The fluctuations of current due to thermal agitation of the charged particles can 
be heard as a hissing sound in the output of a high-gain audio amplifier or radio 
receiver. As a result, such thermal fluctuations of current (or voltage) are called 
"noise." 
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The drift velocity of the electron:s in a metal represents an equilibrium 
condition analogous to the terminal velocity of a body falling in the grav­
itational field. In vacuum, the force of gravity produces constant 
acceleration; in air, a falling body attains a terminal velocity determined 
by the force of gravity and by friction forces. Similarly, in vacuum, the 
force on an electron due to an electric :field produces constant acceleration 
since there are no restraining forces. In a metal, the moving electrons 
collide with the atoms and lose some of the kinetic energy gained from 
the electric field. The collisions increase the th.ermal energy of the 
atoms and thus produce the familiar heating effect due to an electric 
current. The drift velocity represents an equilibrium between the 
kinetic energy gained from the applied field and that lost in collisions. 

Mobility corresponds roughly to the reciprocal of viscous friction in a 
mechanical system. The force on an electron is the product of the 
electronic charge e and the electric field strength E. Thus, the force 
equals (e/M)v, whereas in mechanics the corresponding term is fdx/dt 
or fv, where f is the coefficient of viscous friction. 

2.4 Conduction in a Semiconductor 

The elements called semiconductors have four valence electrons. 
Silicon or germanium are good examples. They are normally in crystal­
line form with each valence electron shared by two atoms. As indicated 
in Fig. 2.2, the atoms are arranged along the diagonals ahd centers of 
cubes. Each bond in this crystal lattice consists of two valence electrons 
shared by two atoms. The planar diagram in Fig. 2.2 is convenient 
for visualization of valence bonds. In Fig. 2.3(a) each link represents a 
single valence electron shared by two atoms. The circles each represent 
the nucleus of a germanium atom plus the orbital electrons other than 
valence electrons. A particular valence electron may be assumed to 
spend half time with each of two atoms. On the average each atom sees 
eight half-time electrons, which satisfies the valence requirements for 
four electrons. Compared with the situation that exists in a metal, the 
valence electrons are relatively tightly bound. 

At room temperatures (say 300°K), the thermal vibrations of the 
atoms shake loose a few electrons. The number depends upon the 
purity of the crystal and other factors as well as the temperature. In a 
pure material, such as germanium (called an intrinsic semiconductor), 
the number of valence electrons free of the atomic bonds at any given 
time is apt to be one in every 108 to one i;n 1010 of the total number of 
valence electrons. These free electrons, except for the fact that they 
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are less numerous, behave somewhat like the free electrons in a metal. 
They have a definite mobility, and under the influence of an applied 
field they produce a conduction current. The conductivity of an intrinsic 
semiconductor can be expected to be much less than that of a metal 
because of the small number of free electrons available. 

Pig, 2.2. Semiconductor crystal structure. 

A free electron wandering through the semiconductor crystal is 
very likely to.be recaptured by any other atom which happens to have a 
missing valence electron. In fact, when an electron is jarred loose from 
its atomic bond, it leaves a vacancy in the crystal structure. This 
vacancy in the crystal lattice is very aptly called a "hole." The atom 
from which the electron has departed is effectively ionized (net positive 
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charge equal to +e), but since the total number of such ionized atoms 
equals the total number of free electrons, the material displays no 

Fig. 2.3. Conduction in an intrinsic semiconductor. 

charge in the macroscopic sense. Nevertheless, in the course of the 
endless thermal jostlings, the ionized atom seeks to acquire from a. 
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neighbor an electron to replace the missing one. Whenever such a 
transfer takes place, the electron vacancy or hole has effectively moved 
from one atom to another. Thus, the positive charge associated with 
an ionized atom may be transferred from one atom to another in the 
lattice. Since the atoms themselves do not migrate through the material, 
it is convenient to associate a positive charge with the hole. 

Designating the hole as the equivalent of a positively charged particle 
provides a physical model that agrees quite well with experimental 
observations. Holes display a mobility differing from that of free 
electrons, but like electrons, they contribute a component to the conduc­
tion current. In an intrinsic semiconductor, the number of holes and 
their total charge equal the number and total charge of the free electrons; 
hence, the fractions of the conduction current contributed by the elec­
trons and by the holes are proportional to the mobilities in an intrinsic 
semiconductor. The sketches in Fig. 2.3 (b) and (c) indicate the forma­
tion, migration, and recombjnation of electrons and holes. An applied 
electric field E is assumed to be directed from left to right. Under the 
influence of the applied field, the electrons move to the left and the holes 
to the right. Since they are oppositely charged, the electron current 
and hole current add to produce the total conduction current. 

The recapture of an electron by a vacancy in the crystal lattice 
amounts to the recombination of an electron with a hole. The breaking 
of a bond represents the creation of a free electron ( - e) and a hole ( +e ). 
The normal life span of the free charges is of the order of a millisecond 
in germanium. This lifetime is sufficient to make semiconductors 
interesting and important materials. 

From a practical standpoint the conductivity of an intrinsic semi­
conductor like germanium is too low to be very useful. Therefore, in 
normal use controlled amounts of impurities are injected to provide 
additional conduction electrons (n-type) or additional holes (p-type). 

2.5 n-Type and p-Type Semiconductors 

Since free electrons and holes exist in equal numbers in an intrinsic 
semiconductor, the charge carriers added by an impurity cause either 
the holes or the electrons to predominate. Thus, inn-type semiconduc­
tors, electrons are the majority carriers and holes are in the minority; 
in p-type the reverse is true. 

The n-type material is produced by adding a carefully controlled 
minute quantity (e.g., one part in 108

) of a "donor" impurity such as 
arsenic to the intrinsic semiconductor. The arsenic atoms merely 
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replace occasional germanium atoms in the crystal lattice. As indicated 
in Fig. 2.4 (a) they produce an excess of free electrons, since arsenic has 
five valence electrons. The number of free electrons "donated" by the 

(b) 

Fig. 2.4. Conduction in (a) n-type and (b) p-type semiconductors. 

arsenic far exceeds the number of electron-hole pairs formed; hence, the 
conductivity due to the majority carrier (electrons in this case) far 
exceeds that of the intrinsic material. 

The p-type semiconductor is formed by adding an "acceptor" impurity 
like gallium to an intrinsic semiconductor. The acceptor has only three 
valence electrons, and when it replaces the germanium in the crystal 
lattice, it leaves a hole as indicated in Fig. 2.4 (b). Thus, the holes 
predominate and the conductivity increase is mainly due to this charge 
carrier which in actuality is a shortage of electrons. 
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2.6 Semiconductor Junction 

Various methods are used to bring about the close proximity of p-type 
and n-type materials necessary to create a p-n junction. The so-called 
grown junction is actually a single crystal with a donor impurity on one 
side of the junction and an acceptor impurity on the other. The transi­
tion occurs in a very small distance (of the order of 0.001 millimeters). 

(a) p p-type n-type 0 

(b) 

Fig. 2.5. Potential diagram of a semiconductor p-n junction. 

The sketch in Fig. 2.5(a) shows a p-n junction. Each type of semi­
conductor material is electrically neutral, but the p-type contains an 
excess of holes, and the n-type contains free electrons. Consequently, 
by thinking of the excess holes or electrons as a gas or cloud of particles 
free to move, it is natural to expect some holes to diffuse from the p-type 
to then-type and some electrons to diffuse the other way. 

The holes moving to the right represent positive charge and leave the 
left side of the junction slightly negative. Similarly, electrons diffusing 
to the left add negative charge there. The loss of electrons from the 
right half further raises the potential of the right side of the junction. 
Thus, the diffusion of both holes and electrons results in an additive 
effect illustrated by the potential diagram in Fig. 2.5 (b). The potential 
difference developed across the junction by the diffusion of particles 
tends to oppose the diffusion. The higher the potential difference, the 
smaller the number of particles that have sufficient energy to migrate 
across the potential barrier. An equilibrium value is reached when the 
force due to the potential barrier equals the diffusion force. Now note 
what happens to the few hole-electron pairs formed by thermal agita­
tion. If a pair is formed in then-type material just to the right of the 
junction, the potential difference provides a force of attraction for the 
hole; hence, it moves to the left. Similarly, for a pair formed on the left, 
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the electron is pulled to the right. These directions of motion are oppo­
site to those involved in the diffusion process. When equilibrium 
occurs, the net value of the electron migration and the net value of the 
hole migration are zero across the junction. The disappearance of holes 
and free electrons through recombination can be considered qualita­
tively as a reduction in the number of pairs formed. 

The value of the equilibrium potential difference for a germanium 
diode is a fraction of a volt. This is a measure of the energy required to 
move a hole from left to right or an electron from right to left. 

2.7 Junction Diode 

The form of the current-versus-voltage curve for a semiconductor 
junction diode can be deduced from the principles just discussed. 
Suppose the voltage source in Fig. 2.6 is adjustable over a suitable 
range of values of either polarity. The desired diode curve is obtained by 
measuring the value of current i for specific values of applied voltage v. 

For positive values the source voltage opposes the p-n junction poten­
tial. Lowering the potential barrier by this means permits more holes 
to migrate from left to right and more electrons from right to left. The 
additive effects of the hole and electron motions constitute the current i. 
For small values of v the effective potential barrier is lowered only 
slightly; hence, only a few carriers get through. These are the ones 
having maximum thermal energy. For larger values of the source 
voltage more carriers can overcome the junction potential. Since the 
statistical distribution of the energies of holes or electrons is exponential,* 
more and more charges migrate across the junction as the barrier is 
lowered and we may therefore expect current i to increase exponentially 
with an increase in the positive value of v.t The exponential relation 
should hold over a fair range of values of current and voltage. For large 
values of these variables the heating effect of the current will modify 
the behavior. Also, the ohmic resistance of the semiconductor material 
in the diode body (away from the junction) will modify the curve of 
i vs. v toward a more nearly linear resistive curve. 

For slightly negative values of v the source effectively aids the junction 
potential in retarding diffusion of the majority carriers provided by the 
impurity content. However, this reverse voltage aids minority carriers 

* At any particular temperature the number of particles that have a specific 
energy decreases exponentially with increasing values of energy. 

t The constant Vo = kT /e is of the order of 0.025 volts for germanium at room 
temperature. 
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created by the formation of hole-electron pairs. For a pair created in 
the p-type material the electron migrates to the right. The particles that 
remain in the p-type or n-type material are the same as those provided 
by the impurities. The polarity of the applied potential pulls majority 
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Diode curve 

Fig. 2.6. Current versus voltage curve for a p-n junction diode. 

carriers away from the junction and tends to prevent their diffusing 
across the junction. Thus, the current carried across the junction de­
pends entirely on the thermally-created pairs of carriers and not on the 
applied voltage. After the voltage is a few tenths of a volt negative, the 
current approaches a small constant value (-I0 ). The magnitude of I 0 

is likely to be only a few microamperes and increases with temperature, 
but for a fixed temperature the current is virtually independent of voltage 
from a few tenths of a volt negative to a few volts or a few tem; of volts 
negative, 
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As the voltage is made more negative, the electric field acting on the 
charged particles increases correspondingly. For some value of v, say 
- V z, a large increase in current occurs. This increase results from the 
fact that the high value of electric field accelerates the minority carriers 
proportionately more. The kinetic energy thus acquired by the holes or 
electrons can be imparted to atoms in the crystal lattice by collision. 
Increasing the energy of an atom in this fashion may cause it to break 
an electron bond and thus free another hole-electron pair. At the voltage 
- Vz, this process, which is called the avalanche effect, becomes cumula­
tive, and a very large change in current occurs for very little increase 
in negative voltage. The breakdown voltage - V z is an important param­
eter in many applications of junction diodes. 

(a) 

(c) 

-i 
(b) 

Fig. 2.7. Point-contact diode. (a) Sketch; (b) Symbol; (c) i vs. v curve. 

2.8 Point-Contact Diode 

The point-contact rectifier consists of a semiconductor on which the 
tip of a fine wire rests as shown in Fig. 2. 7 (a). The curve of current 
versus voltage shown in Fig. 2. 7 ( c) is qualitatively similar to that 
of the junction diode. However,· for a given positive voltage, the point­
contact conducts less current than the junction diode. Also, for a given 
:reverse voltage the point-contact :conducts somewhat more current. 
Furth£r.more, as negative voltage increases, the reverse current tends to 
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increase rather than remaining nearly constant. The sharp breakin the 
junction diode curve at - V z does not occur in point-contact diodes, 
since heating of the sharp point occurs at much lower voltages and 
causes a gradual increase in the conductance in the negative direction. 
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Pig. 2.8. Properties of a gas discharge. (a) Gas-filled diode; (b) Current versus 
voltage curve. 

2.9 Conduction in Gases 

Whereas in metals the atoms are so closely packed that the orbits of 
valence electrons overlap, the atoms in a gas can usually be considered as 
isolated particles. When pressures and temperatures begin to approach 
those for which the gas becomes a liquid, this simplifying assumption 
no longer applies. However, gas diodes contain gas or vapor at relatively 
low pressures for which the assumption applies fairly well. 

The sketch shown in Fig. 2.8 illustrates a simple electron tube. Assume 
the sealed glass tube contains a gas at low pressure. For example, let 
the gas be one of the inert elements, such as argon or neon. The elec­
tric field, -v/d, owing to an applied voltage v, should have no particular 
effect on the gas, since the atoms are electrically neutral. The atoms 
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move in random fashion because they have thermal energy. As they 
move about, the atoms occasionally collide with each other. Some of 
these collisions may cause one or both of the colliding atoms to ionize; 
that is, one or more valence electrons receives sufficient energy from the 
collision to escape from the atom. Thus, ionization results in the 
creation of one or more free electrons and a positively charged ion. 

In the absence of an applied field, the free electrons and ions move 
about in the gas and eventually recombine. The total number of charged 
carriers in the tube will depend on the gas temperature, the pressure, and 
the amount of high-energy radiation present. Cosmic rays or gamma 
rays passing through the tube may leave a trail of ionized atoms and 
free electrons. With a voltage v applied to the electrodes, the electrons 
tend to move toward the positive electrode. Since the mass of the ion 
is many times greater than that of the electron, the force imparts a high 
acceleration to the electron but a relatively small one to the ion. 

The electron accelerates until it collides with an atom or ion (or the 
left electrode). The probability that the electron will cause an ionizing 
collision depends mainly on the pressure. If the pressure is extremely 
low, there are few atoms in the tube, and the chances of hitting any of 
them are small. Nevertheless, for a given applied voltage the electron 
accelerates freely for a longer time (on the average); hence, if a hit occurs 
the probability of ionization is high. If the pressure is too great, the 
electron collides with atoms so frequently that the probability of ionizing 
one is negligibly small. Since the electron is so light compared with an 
atom, it is deflected in random manner by each collision. Thus, the 
acceleration due to the applied field is lost at each collision ( on the 
average). Between extremes of pressure a value exists for which the 
probability of ionization by collision is a maximum. 

Now let us consider the form of the current versus voltage curve 
likely to be obtained for a simple tube similar to the one shown in Fig. 2.8. 
The rate of formation and of recombination of the free charges in the 
tube establishes the equilibrium number present. For voltage equal 
to zero the current is zero. As voltage is increased from zero, some elec­
trons are accelerated through the tube and a small current is observed. 
A further increase of voltage begins to provide sufficient electron energy 
to ionize a few atoms. This increases the number of free charges present 
and permits a somewhat greater number of electrons to cross the tube. 
Average velocity also increases. The current is the product of the 
number of electrons, the electronic charge, and the velocity. Thus, the 
current should increase more rapidly than linearly with increasing volt­
age, because both the number and the velocity of electrons increase with 
the applied voltage. 
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A continued increase of the applied voltage increases the kinetic energy 
of the free electrons. A certain minimum of energy must always be 
inparted to a bound electron to free it and ionize the atom. However, 
with sufficient energy available, the ejected electron may have sufficient 
energy to ionize another atom by collision without first gaining energy 
from the applied field. Under these conditions the process is regenera­
tive, and the result is glow discharge (a form of electrical arc). The 
available current increases tremendously with no increase in voltage. 
In fact, once the discharge has been started the voltage drop across the 
tube diminishes below the value required to initiate the discharge. 

From the symmetry of the electrodes in the gas-filled tube sketched in 
Fig. 2.8(a), it is obvious that reversal of the polarity of v will result in a 
similar curve with the direction of current reversed. Thus, although 
this tube has a highly nonlinear i vs. v curve, the curve is bidirectional. 

2.10 Electron Emission from Meta Is 

The large numbers of free electrons in a metal give the metal its high 
conductivity. Although free to migrate within the metal, these electrons 
are restrained from leaving the metal by the potential barrier known 
as the work function. For most metals the work function has a value of a 
few electron volts. An electron volt is 1.6 X 10-19 joules. The elec­
tronic charge is 1.6 X 10-19 coulombs, hence the work function W in 
electron volts corresponds numerically to the voltage v. The several 
methods for supplying the necessary energy for electron emission con­
stitute an important aspect of electronic-device behavior. For emission 
to take place, it is always necessary to supply the difference between the 
required escape energy (work function) and the energy already possessed 
by the electron. 

Figure 2.9(a) shows the binding force holding an electron to a metal 
as a function of the distance from the surface. The surface is assumed 
to be at x = 0 with the metal to the left and free space to the right of 
the origin. When the electron is at point A, it is embedded in the 
metal and (on the average) feels no net force. At point B the metallic 
atoms are all to the left of the electron in question; hence, there is a net 
binding force tending to hold the electron to the metal. Right at the 
surface, the force on the electron is due primarily to positive charges on 
atoms nearest the electron. In going outward from B to C, the force 
increases somewhat. Although the increased distance diminishes the 
force due to immediately adjacent charges, the influence of positive 
charges over a greater part of the surface tends to increase the total 
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force. The distances from A to B and B to C are small multiples of 
atomic dimensions. 

(a) 

A 

(b) 

Force 

C 

Energy 

7 
Total energy 
required for 

electron escape 

fig. 2.9. Force and energy involved in electron emission. 

The sketch of Fig. 2.9(a) shows the applied force requfred to hold an 
electron in equilibrium at any value of x. The total energy required to 
remove an electron from the metal is therefore the area under the curve. 
The integral of the force curve ls sketched in Fig. 2. 9 (b). 

More precisely, the work function is defined as the difference of two 
energies (Wx - W 0 ) where Wx is the kinetic energy associated with the 
x component of electron motion (normal to the surface). The energy 
W0 is the maximum value of energy (associated with the x component 
of electron motion) at a temperature of 0°K. 

2.11 Field Emission 

Since free electrons are bound to a metal by electrical forces, let us 
consider electrical force as a means of releasing them from the metal. 
Emission of electrons as a result of an electrical force is called field 
emission, since the force on an electron is the product of charge and elec­
tric field intensity. The field intensity required is of the order of 1010 
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volts per meter. In order to obtain such large field intensities with 
nominal voltages between electrodes, special geometry is required. 

As an example, consider the cylindrical electrode structure shown in 
Fig. 2.lO(a). With a voltage applied between the two cylinders, the 
electric field intensity is given by the expression in Fig. 2.10 (b). Since 
there is circular symmetry, the lines of force are radial and the intensity 
varies inversely with r for r 1 < r < r 2 • This expression applies only if 

V 

(b) 
V 

Er = - for r1 < r < r2 
r In:: 

r1 

Fig. 2.1 o. Field emission from a cold cathode. 

the space between the electrode is evacuated or contains no charged 
particles. For v = 100 volts, r 1 = 0.01 cm and r2 = 1 cm, r2/r1 = 100, 
ln r2/r 1 = 4.6, and the maximum field intensity (which occurs for r = r 1) 

is approximately 2 X 105 volts per meter. This value is still far from 
that required for field emission. The inclusion of a fine, sharp-pointed 
wire or annular disc extending radially inward from the outer cylinder 
(cathode) can bring the field intensity up high enough for field emission. 
The so-called cold-cathode, gas-discharge voltage regulators use such an 
electrode structure. The high field intensity at the sharp point or edge 
causes electrons to be emitted to initiate the glow discharge. When the 
interelectrode space is filled with ionized atoms and free electrons, the 
field is radically modified, and the simple expression for electric field 
intensity no longer applies. 

2.12 Thermionic Emission 

The type of electron source most commonly used in vacuum tubes or 
gas-filled tubes is the heated cathode. The temperature of the emitting 
material is raised until a suitable number of the free electrons have 
thermal energies comparable to or exceeding the work function. Under 
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these conditions an electron leaves the cathode with a kinetic energy that 
depends on the amount by which its thermal energy exceeds the work 
function. Most of the electrons emerge from the hot cathode with a 
velocity corresponding to energies from zero to a few electron volts. 
Electrons are thus released whether or not an external field is applied. 
This means of releasing electrons is called thermionic emission. 

The cathode may be a filament of tungsten or thoriated tungsten wire 
heated to a temperature of 1500°K or more by passing an electric current 
through it. Indirectly heated cathodes are more efficient in terms of 
thermionic current available per watt of heating power. This type of 
cathode consists of a filament or heater surrounded by a small cylindrical 
sleeve of nickel or similar metal. The outer surface of the sleeve is 
coated with a material like barium oxide, strontium oxide, calcium oxide, 
or a mixture of oxides, which are better emitters than tungsten or thori­
ated tungsten because they have lower work functions. 

The efficiency of various cathode materials is a critical function of the 
detailed processing of the material. As a result, considerable variations 
occur even with the same type of material. The following empirical 
equation gives the form of the temperature dependence of thermionic 
current density. 

J = AT2e-b/T amperes/unit area (2.1) 

In this equation b is the work function in temperature units,* T is 
temperature in degrees Kelvin, and A is an empirical constant. The 
thermionic emission equation indicates that a saturation value of emis­
sion current exists for a specific value of cathode temperature. 

2.13 Temperature-Limited Emission in a Vacuum Diode 

The effect of temperature-limited emission on the behavior of a 
vacuum diode is illustrated by Fig. 2.11 where (a) shows the complete 
symbol t for a vacuum diode, and (b) shows the i vs. v curves for various 
values of T. These are established by adjusting the voltage E applied 
to the heater. The currents Ii, 12 , and / 3 are the product of cathode 
area and the corresponding current densities given by Eq. 2.1. Normal 

* b = e<f,/k, where e is electronic charge (1.6 X 10-19 coulombs), <f> is voltage 
equivalent of work function, and k is Boltzmann's constant (1.38 X 10-23 joules per 
degree Kelvin). 

t The more commonly used symbol [Fig. 2.11 (c)J shows only the anode and 
cathode. The heater and its power source are usually omitted, since it is assumed 
that the heater will be operated at rated voltage. The term diode is obviously 
a misnomer unless the heater and cathode are considered as a single electrode. 
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diode operation does not include temperature-limited operation, since 
other design ratings, such as anode power dissipation, are usually ex­
ceeded long before saturation is reached. 

12 

-------T1 

V 

(a) .(b) 

(c) 

Fig. 2.11. Temperature-limited emission in a vacuum diode. 

A vacuum diode designed to operate in the saturation region may be 
considered as a control valve with heater temperature as the control 
parameter. Since thermal time constants are large, the response to 
changes in T (effected by adjusting heater power source E) for such a 
device is too sluggish to compete with other available control valves, 
such as triodes or transistors. 

2.14 Vacuum Diode 

The electrode structure of a typical vacuum diode is shown in Fig. 
2.12. With the cathode cold, the electrodes constitute ~ small capaci-
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tance (a few micromicrofarads). The capacitive properties of the diode 
need be considered only for high-frequency operation. With the cathode 
heated, the diode is primarily a nonlinear conductance even for anode 

t 
11 
E 

+ 

currents considerably less than the saturation 
value. This nonlinearity is the result of a cloud 
of electrons (called space charge) that accumu­
lates near the cathode. The presence of this 
cloud of negative charges depresses the po­
tential near the cathode to the same value as 
the cathode potential or even slightly below. 

The potential near the cathode depends to 
a great extent on initial velocities of electrons. 
For example, suppose both the cathode and the 
anode are connected to the same potential 
(say, zero). If we postulate an ideal cathode, 
namely one that brings all electrons just to the 
energy required to leave the cathode, electrons 
will emerge with zero energy or zero velocity, 
hence none will actually leave. The potential 
will then remain zero throughout the interelec­
trode space. If this ideal cathode is heated 
further, all electrons will emerge with a finite 
initial velocity and some will reach the anode. 
However, the presence of electrons between the 

Fig. 2.12. Typical vacuum electrodes depresses the potential below zero 
diode. and tends to retard electrons. From the region 

of negative potential, some electrons will be 
accelerated toward the anode while others will be returned toward the 
cathode. 

An actual cathode produces a distribution of initial velocities, since 
the electrons in the metal have an exponential distribution of energies. 
Again the space charge will depress the potential below cathode po­
tential, but a small anode current will exist even with anode voltage 
zero. If we make the anode voltage negative with respect to cathode, 
this small current will decrease exponentially with the negative volt­
age. This small exponential tail in the negative-voltage region can 
usually be neglected, so that for most engineering purposes we can as­
sume the anode current to be zero for zero anode voltage. 

As the anode voltage is raised to positive values the potential minimum 
is raised slightly. Thus more electrons tend to reach the anode and 
fe~er electrons remain in the space-charge cloud. 
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Fig. 2.13. Parallel-plane diode. 

2.15 The Parallel-Plane Diode 

In normal operation the current versus voltage curve for a vacuum 
diode is quite closely approximated by an expression of the form ib = 
Keb~\ The quantity K, called the perveance, depends upon electrode 
geometry, but the functional relation between eb and ib may be shown 
to be independent of geometry. Thus, the ib vs. eb relation for current 
limited by space charge in a vacuum tube is usually called the three­
halves power law. 

A quantitative derivation of the behavior of a vacuum diode is simpli­
fied by choosing a parallel-plane· electrode structure. As indicated by 
Fig. 2.13(a), we shall consider the conduction per unit area between 
parallel plates of infinite extent. This implies no fringing of fields; 
that is, no variations except as a function of x. For a given anode 
voltage eb, the potential distribution between electrodes is therefor~ 
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linear in the absence of electrons (cold cathode) and the electric field 
intensity (slope of the potential curve) is a constant. We shall also 
assume that for any given temperature, the cathode emits electrons at a 
constant rate in a direction normal to the cathode plane and that all 
electrons have the same initial kinetic energy. 

With the cathode emitting copious quantities of electrons, the poten­
tial distribution between the cathode (x = 0) and the anode (x = xb) 
takes on the form shown in Fig. 2.13 ( c). The electron cloud depresses 
the curve below the straight line that exists under cold-cathode condi­
tions. Assuming the general form of the curve to be reasonable, we shall 
calculate the mathematical expression for the curve from electron behav­
ior in the in terelectrode space. 

Electrons leave the cathode with an initial velocity v0• Assuming each 
electron acts independently, we can neglect the loss of energy by collision 
with other electrons. A change in kinetic energy must therefore appear 
as a change in the potential energy e<J,, where e is the electronic charge and 
<J, is the electric potential. Thus, at any distance x from the cathode: 

m 
e<J, = - (v2 

- v0
2 ) 

2 
(2.2) 

where m is electron mass and v is velocity. The initial kinetic energy 
is related to the initial velocity v0 by the expression: 

mvo2 

e<J,o = --
2 

so that Eq. 2.2 can be expressed ais follows: 

mv2 

2 = e(<J, + <l>o) 

(2.3) 

(2.4) 

Differentiating Eq. 2.2 or 2.4 with respect to x and remembering that 
v = dx/dt yields: 

d<J, dv dv 
e-=mv-=m-

dx dx dt 
(2.5) 

The first term is the force acting on the electron (product of charge 
and electric field). The last term is the product of mass and accelera­
tion. 

As an electron leaves the cathode, it encounters a retarding electric 
field. If the depth of the potential minimum is just equal to <J,0 , as shown 
in Fig. 2.13(c), the electron comes to rest at x0 • This is a point of un­
stable equilibrium, and the electron either falls back to the cathode or 
begins the longer fall to the anode. (Remember that electrons "fall" up 
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a potential hill because of the negative charge.) Our problem is to 
calculate the fractional number of emitted electrons that reach the 
anode. 

The total electron current passing through unit area of any plane for 
which x is constant is measured by the charge crossing the plane in 
unit time. To the right of x0 the current density Jb is pV, where p is 
the local space-charge density per unit volume. Both p and v vary with x, 
but continuity of current demands that their product be independent 
of x when the flow is in equilibrium. 

To the left of x0, current can be considered to consist of two com­
ponents, as indicated by Fig. 2.13(c). The emission current density 
J 0 is p+v, and the returned current density (J0 - Jb) is p-v. Equation 
2.4 shows that for a given x, the velocities are the same for electrons 
traveling in either direction. This is physically reasonable, since the 
acceleration from x0 back to the cathode is due to the same potential 
curve as the deceleration from cathode to x0• Thus, the total space­
charge density at any point on the left of x0 is related to the current 
densities by the equation: 

2Jo - Jb = (p+ + p-)v (2.6) 

The relation between the potential curve and the space charge that 
generates it is provided by Poisson's equation, which in one dimen~ion 
reduces to: 

(2.7) 

since both <f, and p are independent of y and z. In this equation, p is the 
total space-charge density at any point, and Eo is the permittivity of 
free space. 

Relation Jb = pv (independent of x) together with Eqs. 2.4 and 2.7, 
after elimination of p and v, yields 

d
2

<t> h✓m - = - - (</> + </>o)-½ 
dx2 Eo 2e 

Solution of this equation subject to the boundary conditions: 

yields the result: 

<f, = -<f,0, d<f, = 0 at x = xo 
dx 

(2.8) 

(2.9) 

(2.10) 
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4Eo --
A= 9 --V2e/m = 2.34 X 10-6 in MKS units (2.11) 

The result given by Eq. 2.10, which applies to the right of x 0, shows a 
three-halves power dependence on voltage and an inverse square de­
pendence on distance. This is consistent with the dimensions of Eq. 2.8. 
In fact, by dimensional analysis it can be shown that a three-halves 
power law holds for any electrode geometry as we shall see in Art. 2.16. 

For the region to the left of x0, the same method is used. The total 
space charge (p + + p-) is used in Poisson's equation together with the 
boundary condition <J, = 0 at x = 0. The conditions <J, = -<J,0 and 
d<J,/dx = 0 at x = x0 also apply. The latter insure continuity of poten­
tial and electric field at x0 • Using these factors to modify Eq. 2.10 
yields the following result: 

<l>o* 
2Jo - Jb = A - (2.12) 

Xo2 

Equations 2.10 and 2.12 frame the problem. Given emission current 
J 0 and emission energy <J,0, plate voltage eb and electrode spacing Xb, find 
current density Jb and the position of the minimum x0 • Practical 
considerations lead to a few simplifying assumptions. At normal 
operating temperatures <J,0 for an oxide coated cathode is usually a few 
electron volts. The plate voltage required to saturate a typical diode 
may be several hundred volts. At saturation Jb = J 0 ; hence, Eqs. 
2.10 and 2.12 become 

J _ A (eb + <1>0?2 A<J,o* 
o - (xb - xo)2 = Xo2 

(2.13) 

Since eb » <J,0 it follows that x0 « Xb. For example, if eb = 100¢0 , then 
x0 is approximately Xb/30. When eb is slightly negative, Jb = O; hence, 
~q. ·2.12 yields: 

A<J,/2 
2Jo = -­xl (2.14) 

Comparison with Eq. 2.13 shows that x0 is roughly one-third smaller at 
/cutoff (Jb = O) than at saturation (Jb = J 0 ). If the maximum value 
of x0 is xb/30, then (xb - x0 )

2 varies only about two per cent over the 
entire range of operation from cutoff to saturation. Ignoring this 
smal~ variation in x0, the space-charge-limited diode law becomes: 

(2.15) 
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where k and <t,0 are constants. The curve is sketched in Fig. 2.13 (d). 
This relation, called the Child-Langmuir law or three-halves power law, 
agrees closely with experimental tube curves over a wide range of 
positive voltages. Empirically determined values of <t,0 run from less 
than a volt to a few volts. Considered as an empirical constant, <t,0 

accounts for contact-potential difference as well as initial velocities. 
Actually, because of the exponential distribution of emission velocities, 

the plate current does not cut off abruptly as shown in Fig. 2.13(d). 
Instead, ib remains slightly positive and decreases exponentially as eb 
is made negative; hence, the cutoff region should more realistically be 
called the exponential region. 

An experimental curve also shows a gradual transition from space­
charge limit to saturation limit as indicated by the dotted line in Fig. 
2.13(d). This is due to the distribution of initial velocity, and to non­
uniformities in the cathode temperature, the cathode potential, and 
the interelectrode spacing. 

2.16 Generalized Three-Halves Power Law 

The parallel-plane electrode structure considered in the previous 
article is not as common in vacuum diodes as is the concentric cylinder 
structure. Anodes with rectangular or elliptical cross sections are also 
used with cylindrical cathodes. Nevertheless, except for the value of the 
constant multiplier, the three-halves power law applies for any electrode 
geometry. For concentric cylinders the law may be derived with blft 
slightly more difficulty than for the parallel-plane case. For other geome­
tries the derivation is analytically very difficult, if not impossible. The 
assumptions that are helpful in demonstrating plausibility of the three­
halves power law for a diode with arbitrary electrode cross sections are 
no more restrictive than those made for the parallel-plane structure. 

Two physical effects govern the behavior of the charged particles 
moving in an electric field, once the potential distribution and the current 
have reached equilibrium. These are as follows: 

(a) Charge distribution determines the potential. This means that 
if the position of all charges in space is known, the potential at any point, 
can be calculated by superposition of the potential due to each charge. 

(b) Potential distribution determines charge motion. This means 
that if the potential is known everywhere, the motion of charges can be 
calculated, assuming zero velocity at the point of origin. This effect 
may be expressed as <t,e = ½mv2

, where <t, is potential, e is electronic 
charge, m is electron mass, arid v is electron ·velocity: 
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Now consider a diode with arbitrary electrode structure. For conven­
ience, take the cathode potential as reference and let it be zero. Let a 
voltage eb be applied to the anode relative to the cathode and allow 
current to reach an equilibrium value. In accordance with (b ), velocity 
is proportional to the square root of potential (v "-' ~) at any pomt 
in the interelectrode space. In accordance with (a), doubling charge den-
sity p everywhere doubles <f, everywhere (q, "-' p). Under equilibrium 
conditions there must be continuity of current across any equipotential 
surface. In particular, the anode is an equipotential surface, and the 
anode current must be proportional to the charge density (p) times the 
velocity (v) at the anode. Since pv "-' <f,'\,1¢, we have ib "-' eb¾· The 
generality of this result is of considerable importance, since it establishes 
the idealized behavior of any vacuum diode* over a fairly wide range of 
current and voltage values, namely from the cutoff or exponential region 
to the saturation region. Thus, the three-halves power law unifies the 
interpretation of measured vacuum tube curves. 

2.17 Gas-Filled Thermionic Diode 

The discussion of conduction in a gas indicated that a discharge 
could be established between two electrodes as shown in Fig. 2.8. A 
few stray electrons, producing ionization by collision, initiate a discharge 
that can sustain itself. If one of the electrodes is a hot cathode, the 
large number of thermionic electrons thus made available will modify 
the properties of the discharge tube. With parallel-plane electrodes 
(both cold) the curve of current versus voltage is symmetrical for 
positive or negative v and i. With a hot cathode, a preferred direction 
of conduction exists, and the discharge tube becomes a rectifier somewhat 
analogous to the vacuum diode. Gas-filled diodes usually contain one 
of the inert gases, such as argon or neon. The gas pressure within the 
tube is made low compared with atmospheric pressure in order to make 
the breakdown voltage low. Sometimes a drop of liquid mercury is 
included. In this case the mercury vapor provides the atoms which are 
to be ionized. 

Suppose electrons are emitted from the cathode and attracted toward 
the anode of a parallel-plane structure by a positive value of eb, As the 
electrons accelerate, they ionize gas molecules by collision, releasing 
additional electrons and positive ions. The electrons, having high 
mobility, are swept rapidly toward the anode. The positive ions, being 

• It can also be extended to :multi-electrode tubes. 
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much larger and heavier, tend to move slowly toward the cathode. As 
indicated by Fig. 2.14, the presence of positive ions in the interelectrode 
space tends to raise the potential curve. 

cf, ib +pi eb 
/ 

/ 
/ 

eb / 
/ 

_l 
/ 

/ 
/ 

/ 
/ 

/ 

0 xb 0 e1, 

(a) (b) (c) 

Fig. 2.14. Thermionic gas diode. 

The symbol for a gas diode is shown in Fig. 2.14(a), and the expected 
form of the potential curve is shown in (b ). The current versus voltage 
curve is shown in (c). The form of this curve differs from that of the 
cold-cathode discharge. Since there is a large quantity of electrons 
available from the thermionic cathode, the low-current conduction 
region shown in Fig. 2.8 (b) does not exist here. Note, however, from 
Fig. 2.14(c) that once the discharge is initiated, the current will tend 
to become excessively large if a fixed voltage is applied. However, if 
the current is controlled, the voltage adjusts itself to the appropriate 

, value. The simple circuit of Fig. 2.14(a) might be used to determine the 
ib vs. eb curve experimentally, provided that E and R are adjustable. 
The resistance R limits the current to values safe for the diode. 

The form of the potential curve shown in Fig. 2.14(b) shows a high 
field intensity near the cathode. This field accelerates the electrons 
almost to final velocity (corresponding to eb); hence, ionization of gas 
molecules starts near the cathode. Over the majority of the space 
between electrodes, the potential variation is small. This means small 
field intensity and, hence, electrons tend to proceed at almost constant 
velocity. Meanwhile, positive ions in this region, being subject to low 
field intensity and having low mobility, drift slowly toward the cathode. 
This portion of the interelectrode space is called the plasma region. 
Here, under equilibrium conditions, ions and electrons are formed by 
collision and some may be lost by recombination. Near the cathode, 
the high field intensity accelerates emission electrons toward the plasma 
and then to the anode; concurrently, positive ions are accelerated toward 
the cathode, where they recombine with electrons. 
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The plasma is highly conducting because of both the positive ions and 
the electrons, which tend to cancel each other insofar as space 
charge is concerned, however the ion and electron currents are additive. 
Once the plasma has been established, the potential curve varies only 
slightly with the magnitude of the current. 

The large conduction current possible in a gas diode with very low 
voltage drop makes the device a very efficient rectifier in comparison 
with a vacuum diode. . The highly conducting plasma effectively places 
the anode very close tp the cathode. This helps to account for the low 
anode voltage required to sustain a large current. 

2.18 Excitation by Collision 

The conduction in a gas-filled tube is called a glow discharge because 
of the characteristic light given off. For neon the color is a deep red, 
for argon violet, and for mercury vapor a greenish blue. The light 
is emitted by the conducting gas following excitation of the atoms by 
collision with fast-moving electrons. Excitation involves an increase 
in the energy of an electron. The electron then loses that energy by 
emitting it in the form of electromagnetic radiation. 

According to quantum theory, the electrons associated with an atom 
can assume only a finite number of distinct values of energy. Only one 
electron at a time can assume a specific state. The lower energy states 
belong to the inner shells of electrons, and, in general, electrons seek the 
lowest energy states. Valence electrons have the highest energies and, 
hence, require the least additional energy for escape. Ionization nor­
mally occurs by removal of a valence electron. However, suppose a 
high-speed electron gives up enough energy in colliding with an atom 
to raise the energy of one of the electrons in an inner shell sufficiently 
to eject it from the atom. This leaves a vacancy in one of the low-energy 
states, and the atom or molecule is said to be excited as well as ionized. 
One of the high-energy electrons will then fall to the low-energy state, 
_and the decrease in electron energy will result in the emission of a 
quantum of light (photon). The low-energy electron need not be 
completely ejected from the atom for excitation to occur. Its energy 
could be raised from the normal level to a higher level within the atom. 
Upon losing that energy, a photon is emitted. The frequency of the 
light emitted is determined by the product of the energy difference 
between the two states involved and a natural constant known as 
Planck's constant, h = 6.63 X 10-34 joule sec. 
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2.19 Photoelectric Emission 

Photoelectric emission is the converse of excitation by collision. When 
an electron collides with an atom, giving up some or all of its energy, the 
result may be ionization, or excitation which then results in photon 
radiation. The converse applies to the situation in which photons of 
light impinge on the atoms of a material such as cesium, calcium, or 
aluminum. If the quantum of energy hv for light having a frequency v 

imparts sufficient energy to an electron to overcome the work function 
of the material, photoelectric emission occurs. For most materials the 
photoelectric work function is nearly equal (but not identical) to the 
thermionic work function. 

The materials mentioned above are good photoelectric emitters and 
are used as the cathode structure in a vacuum or gas-filled tube together 
with an anode to form a diode. The anode is connected to a positive 
potential relative to the cathode and thus attracts the emitted electrons. 
Photoelectric diodes (vacuum or gas-filled) may be compared in a 
general way to thermionic diodes. With light of constant intensity and 
frequency distribution impinging on a photoelectric diode, the current 
versus voltage curve is roughly similar to that of a thermionic diode 
with constant cathode temperature. However, constant cathode heating 
power (and therefore temperature) represents the normal mode of 
operation for thermionic diodes, whereas photoelectric diodes are more 
often used under conditions of varying light intensity and frequency. 

The sketch shown in Fig. 2.15(a) indicates the electrode geometry 
used in a common type of vacuum phototube. The cathode is part of a 
cylinder and the anode a wire placed before it. Light impinging on the 
cathode releases electrons which are attracted to the anode if the latter 
has a positive potential with respect to the cathode. Photoelectric 
emission from typical cathode materials yields electron currents of the 
order of microamperes (thermionic emission from an oxide-coated 
cathode may yield currents of many milliamperes or everi amperes). 
The successively higher values of saturation current in Fig. 2.15(d) 
correspond to increasing levels of light intensity. Specific values of 
current for a given light intensity depend upon the light frequency or 
wavelength, since the metals used as photoelectric cathodes show a 
definite peak in sensitivity. The peak for cesium occurs at a light wave­
length of about 5400 angstroms, whereas sodium and potassium show 
peaks at about 4200 and 4400 angstroms, respectively. 

The symbol for a vacuum phototube is shown in Fig. 2.15 (b). If a dot 
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is placed within the circle, the resulting symbol represents a gas-filled 
tube [Fig. 2.15(c)]. Anode curves for a gas-filled tube are much like 
those for a vacuum phototube until gas breakdown occurs. Then the 
available current increases rapidly with voltage [Fig. 2.15(e)]. In fact, 

(a) (b) (c) 

ib Increasing 
light intensity 

t 

(d) (e) 

Fig. 2.15. Properties of phototubes. (a) Phototube; (b) Symbol for phototube; 
(c) Symbol for gas-filled phototube; (d) Anode curves for vacuum phototube; 
(e) Anode curves for gas-filled phototube. 

as in the case of gas-filled thermionic diode, a series resistance is necessary 
to limit the current to reasonable values. The gas-filled tubes are useful 
in operating relays which then execute a function, such as door-opening, 
under control of a light signal. 

When it is desirable or necessary to increase the current output from 
a vacuum phototube, a device called a secondary emission multiplier is 
sometimes used. 
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2.20 Secondary Emission 

Electrons can be ejected from a metal, glass, or other material under 
bombardment by electrons. Thus, an electron impinging on a metal 
may impart sufficient energy to atoms near the surface to eject one or 
more electrons. This process, called secondary emission, of ten plays an 
important part in vacuum tube operation. For example, a secondary 

_J:!_ght --

Fig. 2. 16. Secondary-emission multiplier. 

ennss10n multiplier associated with a vacuum phototube is shown in 
Fig. 2.16. The cathode and the anode form a diode and the other 
electrodes, going counterclockwise from cathode to anode, are con­
nected to successively higher voltages (usually by means of a resistive 
voltage-divider). An electron emitted from the cathode is attracted 
to the first electrode where it may release one or more secondary elec­
trons. The higher potential of the next electrode attracts these second­
aries. If each electron releases r secondaries and there are n electrodes on 
the way from cathode to anode, the anode current will be rn times the 
photoelectrically-emitted current. The secondary emission ratio r 
usually falls in the range of two or three secondary electrons per primary 
electron. 

In many vacuum tube applications secondary emission is undesirable 
rather than useful. If bombardment of an anode or other electrode in a 
tube results in the release of secondary electrons, the characteristics of 
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the tube may be seriously affected. This point will be discussed further 
in Chapter 7 in connection with multi-electrode tubes. 
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PROBLEMS 

2.1. Give a brief qualitative description of the mechanism of electrical 
conduction in a metal. 

2.2. What basic processes govern electrical conduction in an intrinsic semi­
conductor like silicon or germanium? 

2.3. What is the effect of adding a small amount of a donor impurity like 
arsenic to an intrinsic semiconductor? Of an acceptor impurity like indium or 
gallium? 

2.4. What physical processes influence the equilibrium value of the potential 
barrier at a p-n junction with no external fields applied? 

2.5. Make a qualitative sketch of charge distribution, electric field and 
potential variations in the vicinity of a p-n junction. 

2.6. (a) Sketch the curve of current versus applied voltage for a p-n 
junction and give a qualitative physical explanation of the form of the curve. 

(b) Sketch another curve of current versus voltage for the same p-n 
junction at a higher equilibrium temperature. 
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2.7. (a) How much d-c current flows in a short-circuited semiconductor 
junction diode when the entire circuit is in thermal equilibrium at room tem­
perature? Explain. 

(b) With reverse voltage applied, a p-n junction diode conducts a small, 
nearly constant reverse current. Explain. 

(c) With forward voltage applied, a p-n junction diode conducts a relatively 
large forward current which increases exponentially with applied voltage. 
Explain. 

2.8. Sketch the general form of the current versus voltage curve for a cold­
cathode gas diode. 

2.9. Describe the operation of a hot-cathode gas-filled diode. 
2.10. For a vacuum diode, sketch curves of current versus anode voltage 

for various values of cathode temperature. 
2.11. For a vacuum diode, sketch curves of current versus temperature for 

various values of anode voltage. 
2.12. Explain the effects of space-charge limitation and temperature limita­

tion of current in a vacuum diode. 
2.13. State the basic principles involved in establishing the plausibility of 

the generalized three-halves power law for vacuum diodes. 
2.14. For a parallel-plane vacuum diode with cathode grounded and anode 

at +Eb, sketch the cold-cathode potential distribution, electric field, and 
charge distribution. Assume the anode and cathode each have an area A and 
are separated a distanced (neglect fringing). 

2.15. Modify the curves of Problem 2.14 to include the effects of a sheet 
of charge midway between cathode and anode. 

ib=loE-eb/E 

tor eb < 0 
½ where / 0 = k<J,0 

Fig. P2.1 

½ 
ib = k(eb + <Po> 

for eb> 0 

2.16. Measurements on the plate-to-cathode circuit of a vacuum diode 
yield results that are closely approximated by the curve in Fig. P2:1. 

(a) What are possible·reasons for! o· ;= O? 
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(b) What is the significance of the product ebib in the first quadrant? 
(c) What is the significance of the product -ebib in the second quadrant? 
2.17. The voltage-current relation for a particular diode is given by 

• e-J2 
i = 

1000 
amperes 

In the vicinity of the operating point (Eo, Io) this relation may be expanded 
in the power series 

i = coEo + c1(e - Eo) + c2(e - Eo) 2 + · · · Cn(e - Eo)n 

Evaluate the coefficients co, c1, and c2 at the operating point Io = 1 ampere. 
2.18. (a) Show that for a three-halves power law curve (ib = Keb%), 

which closely approximates the ib versus eb curve of a high-vacuum diode, the 
slope of the curve at any point is just three-halves times the slope of a chord 
drawn from the origin to that point. 

(b) If ib = 10 ma when eb = 100 v, what is the incremental resistance 
deb/dib of the diode at ib = 10 ma? 

(c) Show that the incremental resistance along a three-halves power ib 
versus eb curve varies inversely as the cube root of the current. 

2.19. Two parallel plates, spaced 1 cm apart, are connected in series with a 
current-indicating device and a battery of voltage V = 200 volts, as shown in 
Fig. P2.2. The area of each plate is A cm 2. At t = 0, an electron is intro­
duced at a small hole in the left-hand plate with zero initial velocity. Plot, 
as a function of time, the current which flows through the indicating device. 
Show that the energy acquired by the electron in its flight between plates is 
equal to the energy delivered by the battery. 

The polarity of the battery is reversed so that the left-hand plate is made 

1 cm 

Electron .... -

ma. 

-1111-+-
Fig. P2.2 

positive. At t = 0 an electron is injected through the hole with an x-directed 
initial velocity corresponding to an energy of 200 electron volts. Plot the 
current-time relation. Show that the energy lost by the electron is equal to 
the energy delivered to the battery. 

Field fringing effects at the plate edges and in the vicinity of the hole may be 
neglected. 

2.20. (a) Assuming that the cathode of a high-vacuum diode is a limitless 
source of zero-velocity electrons, what happens to the electric field at the 
cathode, to the electron velocity at a given point, and to the space-charge 
density at a given point when the plate-to-cathode voltage is doubled? 
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(b) Sketch log ib vs. log eb for a high-vacuum diode. What portion or 
portions of the curve are straight, and why? 

(c) Repeat part (b) with log eb replaced by eb, 

2.21. An idealized parallel-plane diode consists of a pair of semi-infinite 
plates spaced 8 mm apart. With the plate 100 volts positive with respect to 
the cathode, the current flow is space-charge limited. Under this condition, 
and neglecting initial velocities and contact potential, find the velocity attained 
by an electron which has reached a point 1 mm distant from the cathode. 

2.22. A particular germanium junction diode conducts 0.1 ma of current 
in the reverse direction when a few volts of reverse voltage are applied. The 
incremental resistance of the diode, measured at the origin of the i vs. v diode 
curve, is found to be 200 ohms. What are the values of the constants I O and 
Vo in the theoretical junction law i = lo(Ev/Vo - 1)? 

• 

Fig. P2.3 

2.23. Sketch the current versus voltage characteristic for two identical 
junction diodes, each characteristic given by i = I o(Ev/Vo - 1), connected in 
(a) series and (b) parallel as in Fig. P2.3. 

2.24. The voltage-ampere relationship of a germanium diode may be de­
scribed by the following equation: 

i = I o(Eqv/kT - 1) 

At room temperature kT / q = 0.025 volt. Typical values for the constant Io 
and the reverse voltage at which avalanche breakdown takes place are 50 X 
10-5 amperes and -80 volts, respectively. The maximum average power 
which can be dissipated by such a device without internal damage due to 
heating is typically 0.1 watt. 

(a) Determine the maximum average forward current rating of the device. 
(b) Determine the voltage v at which the forward current rating is reached. 
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Resistive Diode Circuits 

3.1 Introduction 

Resistive diode circuits include diodes, linear resistances, and sources, 
but no energy-storage elements. Although actual devices include small 
capacitances and inductances (for example the capacitance between 
electrodes in a vacuum diode), we shall represent diodes as nonlinear 
resistances in this chapter. By setting aside the consideration of the 
small energy-storage elements for the time being, we are in effect con­
fining our attention to situations in which the currents and voltages are 
either in static equilibrium or they are varying so slowly that their time 
derivatives can be neglected. Circuit equilibrium equations are there­
fore algebraic rather then differential. 

Since interelectrode and other stray capacitances, as well as wiring 
inductances, are very small in actual circuits, the resistive approximation 
fits many practical situations quite well. Both the circuit functions and 
the methods of analysis examined here will apply to circuits involving 
electronic devices other than diodes and to situations in which energy­
storage elements must be included to describe circuit behavior satis­
factorily. In fact, resistive circuit analysis forms the base upon which 
to build the analysis of circuits containing energy-storage elements. 

44 
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3.2 Graphical Analysis of Linear Resistance Networks 

Graphical analysis is seldom used for linear resistive circuits because 
quantitative results are more readily obtained by algebraic methods. 
However, a graphical solution may be the most convenient when the 
terminal relations for a device are available in graphical form and not 

••1 /R•. 
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··11r . 

-fol-L-. 

(a) 

/1 
/ I 

/ ,' 
/ / 

I 
I 

I 
I 

I 
I 

I 

v= v1 + v2 

V = i(Rl +R2> 
v=iR5 

O I 

(d) 

Fig. 3.1. Resistances in series. 

readily expressible as a simple function. If nonlinear curves are ap­
proximated to permit an analytic solution, a qualitative graphical 
solution may be helpful in making the approximations and interpreting 
the results. A graphical sketch is an aid to understanding the operation 
of a nonlinear device. A few graphical solutions of linear circuits will 
serve to introduce the techniques that also apply to nonlinear circuits. 

Figure 3.1 shows the graphical method of combining resistances in 
series. The circuit is shown in (a), and the pertinent equations are 
given in (b ). The three sketches in (c) represent resieta:nces R1 and R2 
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as well as the sum Ra. Voltage drops across R1 and R2 for any particular 
value of current are added to obtain the voltage drop across Ra for that 
current, as shown in (d). The same procedure can be extended to the 
summation of any number of resistances in series. 

V 

V 

+ 

i=i1 +i2 
i=v(G1+G2 ) 

i=vGP 
i=v/Rp 

~---v----Wl 

(c) 

(a) (b) 

V 

/G2 /G1 
/ // 

I / 
/ / 

/ / 
V ---+---7(---

ll // I 
/1 

/ I/ I 
I /I I 
// I I 

/L, I I 

(d) 

Fig. 3.2. Resistances in parallel. 

Figure 3.2 presents the dual problem of combining resistances in 
parallel. Here the voltage across the resistances is common, and the 
equivalent resistance of the parallel combination is obtained graphically 
by summing currents. Expressing the resistances R1 and R2 as the 
conductances G1 = l/R1 and G2 = l/R2 puts the equations in the same 
form as those for the series circuit. This is a consequence of the duaJity 
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principle. In fact, by applying this principle to the series-resistance 
problem given in Fig. 3.1, the solution for the parallel-resistance problem 
of Fig. 3.2 is immediately known. Using these methods, the total 
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v=vp+ v3 

v = i(Rp+R3 ) 

v=iRT 

(b) 

/ /~ I I 
/~1/1 I I-----~ 

/ h I __ -i------

(c) 

Fig. 3.3. Series-parallel combination. 

resistance RT for a series-parallel combination of resistances is deter­
mined graphically in Fig. 3.3. 

The foregoing examples illustrate several important points. A straight 
line through the origin of a voltage versus current plane represents a 
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linear resistance Rora conductance G = I/R. Thus, data given either 
as resistance or conductance may be plotted equally well, and no con­
version from one to the other is necessary. Any number of resistances 
or conductances can be combined in series and parallel, and the resultant 

v=iR+E 

(a) 

1 R=o 

i = i1 - I= v/R - I 

(c) 

ifr Resistances 
and 

batteries 

+ 
V---

(c) 

(b) 

(d) 

V 

/ 

/ 
/ 

/ 

(f) 

i = v/R - I or 
-v-IR=iR 

Fig. 3.4. Resistance and voltage or current source. Circuits (a) and (c) are equiv­
alent if the resistances are equal and if I = E / R. 

plot will still be a line through the origin with a slope equal to the 
total resistance. 

The graphical effect of including a source as part of a resistive circuit 
amounts to a translation of coordinates or, alternatively, a translation of 
the resistive line so that it does not pass through the origin. Since an 
ideal voltage source is independent of current, it appears as a line of zero 
slope, thus placing in evidence the fact that it has no internal resistance. 
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Similarly, a current source appears as a line of constant current for all 
voltages. 

Consider the series combination of a resistance and battery shown in 
Fig. 3.4(a). The resistance R might, of course, represent the composite 
effect of any number of resistances, in accordance with the results above. 
In the graphical representation of this circuit shown in Fig. 3.4 (b), the 
line has a slope R, a voltage intercept E, and a current intercept -E/R. 

Referring to Fig. 3.4(c) and (d), we see that a current source in 
parallel with a resistance has the same graphical appearance as a voltage 
source in series with a resistance. If the source values are related by 
E = IR, and a common value of resistance is chosen, the circuits (a) 
and (c) are equivalent, and the plots in (b) and (d) are identical. Thus, 
we have pictorial evidence of the equivalence of voltage source with 
series resistance and current source with parallel resistance. Conversely, 
for an arbitrary straight line in a voltage versus current plane, the slope 
and intercepts determine the values for the parameters in the voltage­
source or current-source representation of the line. Thus, the circuits 
in Fig. 3.4(a) and (c) are general circuit models for any straight line 
in av vs. i plane. If the intercept is zero, the circuit model contains no 
source, and the line represents only a resistance. 

Note specifically that the voltage intercept corresponds to zero current 
and is therefore the open-circuit voltage, whereas the current intercept 
corresponds to zero voltage and hence is short-circuit current. Thus we 
see that resistance between a pair of terminals in a network is the ratio of 
the open-circuit voltage to the short-circuit current ( with proper sign). 
Furthermore, it is evident from these facts that the behavior of an 
arbitrary resistive network is completely described at a pair of terminals 
by this resistance and either the voltage or the current source. 

Note that the v vs. i plot of a positive resistance will have a positive 
slope only if current and voltage reference directions are appropriately 
chosen. Negative slope does not necessarily imply negative resistance.* 

As a more general example, consider the circuit shown in Fig. 3.5. To 
relate the graphical interpretation to the algebraic relations, the lines in 
the v vs. i plane are numbered to correspond to the algebraic equations. 
The solution may be summarized as follows: 

(a) Plot lines (1) and (2) with appropriate slopes and intercepts. 
(b) Choose convenient points (like A and B) and sum currents of (1) 

and (2) to obtain line (3). 
* Negative resistance is a useful concept in electronic circuit analysis. In contrast 

to positive resistance, which dissipates power, negative resistance is a convenient 
way to represent certain types of power sources. Further discussion is deferred 
until Chapter 9. 
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R4 (1) Vp = i1R1 + E1 

(2) vp cc i2R2 + (i2 - l)Ra 
= i2(R2 + Ra) - IRa 

(3) i = i1 + i2 • (vp vs. i) 

(4) V4 = iR4 

(5) V = Vp + V4 

+ ~------v------~ 

V 

Fig. 3.5. Multiple resistances and sources. 

(c) Plot line (4). 
(d) Choose convenient points (like E 0 c and -lsc) and sum voltages 

of (3) and (4) to obtain line (5). 

Comparison of Figs. 3.4 (b) and (d) and 3.5 shows that the circuit of 
Fig. 3.5 is equivalent to a voltage source E 0 c in series with a resistance 
Ro, or a current source lsc in parallel with R 0 , where R 0 equals Euc!Isc• 
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The generalization of this concept is illustrated in Fig. 3.4(e) and (f). 
Regardless of circuit complexity, we can always reduce any number of 
resistances, batteries, and current sources to the same simple form of 
voltage versus current relation at a pair of terminals. Figures 3.4(b), 
(d), and (f) are identical in form, and hence they illustrate the Thevenin 
equivalent circuit concept. The graphical approach to resistive circuits 
has enabled us to deduce this result without stating or attempting to 
prove Thevenin's theorem. Furthermore, the graphical approach 
emphasizes the fact that this simple terminal representation for any 
resistive circuit is a direct consequence of linearity. The addition of 
currents or voltages specified by nonlinear relations does not lead to 
such generality. 

-i 

+ + 

I} 

vR= iR __ , 
I 

I 

Fig. 3.6. Diode and series resistance. 

3.3 Graphical Solution of Nonlinear Circuits 

v = iR + eb 

I} 

Having solved the general linear resistive circuit problem, let us 
analyze some elementary nonlinear circuits. A diode in series with 
resistance R, as shown in Fig. 3.6(a), is a nonlinear circuit analogous 
to the combination of linear resistances in series. The construction in 
Fig. 3.6 (b) illustrates the summation of voltage drops for specific values 
of current. A number of points must be plotted to obtain the new 
curve, since the result is not a straight line. This construction is only 
useful when a particular resistance Risto be associated with a particular 
diode; another curve must be plotted when either the diode or the 
resistor is changed. Since such plots may require a fair number of 
points, it is desirable to seek a simpler procedure. Restricting a problem 
to finding a specific solution, i.e., the equilibrium current and voltage 
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at one operating point, removes the need for replotting. A succession 
of such operating points would form a functional relation between two 
variables (like i and vat a pair of terminals). 

(a) 

0 

+ 
-=-E 

(b) 

(d) 

Fig. 3.7. Diode operating point. 

The diode circuit of Fig. 3.7(a) has a specific voltage E applied, 
supplying power to the circuit. The source E and the resistance R, 
often called the load resistance, provide a linear constraint that aids in 
solving the problem. This constraint or "load line," as plotted in 
Fig. 3.7(b), represents the relation i = (E - eb)/R and amounts to 
plotting the resistive line as a voltage drop subtracted from supply 
voltage E. The effects of varying the supply voltage for a fixed value 
of load resistance and varying the load resistance for a fixed value of 
supply voltage are illustrated by Fig. 3. 7 (c) and (d), respectively. 

Having solved the· simplest· one;..diode problem~ the previous results 
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obtained for linear resistances and sources tell us that we have also 
solved the most general one-diode problem. As indicated by Fig. 3.8, 
the load line may actually be representative of an arbitrary network of 
resistances and batteries. Graphical or algebraic reduction of the 
network to a single resistance and source permits solution of the 
operating-point problem. Once the current and voltage are specified 
at the diode terminals, any other current or voltage within the network 
can be determined. 

0 

e 

Linear 
resistances 

and­
batteries 

ib = - i r------7 
~ I 

t+ : Ro l 
I + l 
I -=-Eoc I 
I I 

'-----o--"""T"""--' I 
L _______ J 

Fig. 3.8. General one-diode circuit. 

Only a few relatively simple circuits with two diodes can be analyzed 
graphically. Obviously, any number of identical diodes in series or in 
parallel poses no greater problem than a single diode, since the voltage 
scale or the current scale of the diode curve can be multiplied by the 
number of diodes. 

As shown in Fig. 3.9(a), two different diodes in series present a more 
difficult problem, since the composite curve for the two (b) must be 
plotted point-by-point. The same circuit connected to a resistive load R 
and supply voltage Eis shown in (c). The operating-point problem for 
this case could be solved by using the composite curve i = f (v) from 
Fig. 3.9(b) and plotting the load line i = (E - v)/R, just as was done 
for a single diode. 

Graphical solution of the general two-diode circuit requires a number 
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of construction lines to carry out a double cut-and-try process in order 
to establish a pair of operating points for the two diodes. The solution 
is seldom necessary, since most two-diode circuits use identical diodes 
and usually exhibit symmetry, which can be exploited to simplify the 

(a) 

(c) 

Ii= f1(eb1> 
I 
I 
I 
/ i = t<u> 
I 

(b> 

(d) 

Fig. 3.9. Diodes in series. 

V 

E 

analysis. Circuits containing more than two diodes ( or any other type 
of nonlinear device) are so cumbersome to handle that simplifying 
approximations become essential. 

The essence of the general two-diode problem is shown in Fig. 3.10. 
Nate the simplicity with which any three-terminal linear circuit can be 
represented. The circuit shown in Fig. 3.10 (b) is only one of many 
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possible models for a three-terminal network. With three terminals 
there are two separate conditions that can be specified, say i 1 and i 2 • 

Each of these currents should be a linear function of the voltages e1 and 
e2. The model and the equations given in Fig. 3.10 satisfy these con­
ditions. 

ib1 -c[r, 
i1 i2 
~ -+ 

e1 

Resistances 
and 

batteries 

-::-

(a) 

(b) 

e1 - E1coc) = i1(R1 + Rm) + i2Rm 

e2 - E2coc) = i1Rm + i2(R2 + Rm) 

(b) 

Fig. 3. 1 o. General two-diode circuit. 

ib2 -
t ~ e2 

If values of i 1 and i 2 are assumed, e1 and e2 are determined; but with 
the diodes connected, i1 = - ib1 and i2 = -ib2 , and these values 
determine eb1 and eb2• There is little likelihood of finding the right 
values of the currents to make e1 = eb1 and e2 = eb2 without repeatedly 
assuming values for the currents. The cut-and-try process can be 
organized by means of graphical constructions. 

Continued pursuit of such procedures is unwarranted, particularly 
since one need only contemplate a circuit with three or more diodes to 
stimulate a search for a simpler method. We can conclude that graphi­
cal analysis is most useful for the solution of resistive circuits containing 
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a single nonlinear element and an arbitrary number of resistances 
and batteries. 

3.4 Algebraic Solution of Diode Circuit Problems 

An algebraic expression for the ib vs. eb relationship of a diode can be 
obtained either by deriving it from physical laws as outlined in Chapter 2, 
or by approximating either experimental data or average characteristics 
with an appropriate function. 

Algebraic determination of an operating point may be carried out by 
analogy to the graphical solution shown in Fig. 3.8(a) and (b). If the 
diode characteristic is specified by an equation such as i = Ke%, this 
expression for current may be equated to the expression i = (E - %)/R 
given by the load line. The solution of this equation yields Eb, the 
value of eb at the operating point. 

For exponential expressions, such as those describing semiconductor 
diodes, the solution of problems involving two or more diodes may result 
in transcendental equations that require graphical or cut-and-try 
solutions. However, in many cases the algebraic solution is direct and 
less time-consuming than a graphical construction. 

The problem becomes more difficult if the circuit includes energy­
storage elements since differential equations are then necessary to 
express circuit equilibrium conditions. Except for a few special cases, 
nonlinear differential equations cannot be solved by analytic methods. 

3.5 The Ideal Rectifier as a Diode Model 

The desirability of applying the powerful analytical tools of linear 
circuit theory to nonlinear problems provides the motivation for approxi­
mating nonlinear curves by straight-line segments; that is, by piecewise 
linear approximations. One additional type of circuit element, the ideal 
rectifier, enables us to represent a nonHnear curve in this manner with 
any desired degree of accuracy. Surprisingly enough, we shall see that a 
two-segment approximation often provides results of acceptable accu­
racy. By making piecewise linear approximations to nonlinear curves, 
a nonlinear problem is reduced to two or more connected linear problems 
for which solutions can be obtained by means of linear circuit theory. 

The ideal rectifier is the basic piecewise linear circuit element. It is 
a resistive element in the sense that there is no energy-storage associated 
with it. As :shown in Fig. 3.11 (a), this element develops no voltage drop 
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for current in the forward direction (zero resistance) and permits no 
current for reverse voltages (infinite resistance). In contrast with the 
linear circuit elements R, L, C, E, and I, the ideal rectifier has no 
numerical value associated with it, only a preferred direction of con-
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Fig. 3.11. Comparison of ideal rectifier and typical diode in a simple clipping circuit. 

duction. Note also that the ideal rectifier is lossless, since the product 
of v and i is zero for all possible values of v and i. 

Since the ideal rectifier is an idealization of a physical diode, it is 
interesting to see how well it approximates such a diode in a typical 
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circuit. An arbitrary diode curve ib = f(eb) is shown in Fig. 3.11 (b ). 
Two simple rectifier cfrcuits are shown, using in (c) an ideal rectifier 
and in (d) an actual diode. The circuits reproduce the positive portions 
of the input voltage waveform but do not pass the negative portions 
to the output so that the output is unidirectional or "rectified." This 
circuit is also the basic prototype of amplitude wave-shaping circuits. 
It is called a diode clipper, since it removes or clips a portion of the 
input waveform. The plots of e2 vs. e1 shown in Fig. 3.11 (e) and (f), 
called transfer curves, present graphically the instantaneous relation 
between output and input voltages. The slope at any point (Lle2/ Ae1) 
is called the transfer ratio or gain, in this case a voltage ratio that cannot 
exceed unity. The sketches exaggerate the difference between the 
transfer curve for the circuit with the ideal rectifier and that of the 
circuit with an actual diode. In the high-conduction region (e1 < O), if 
the voltage drop across R is very large compared with the drop across 
the diode, the percentage error is small. For e1 greater than 0, the 
error is again small if eb » Rib. These are contradictory conditions 
on R, but an intermediate value of R can usually be found to satisfy 
the conditions reasonably well over a fair range of values for e1 and e2 • 

The close correspondence between these transfer curves is quite sur­
prising in view of the fact that the diode curve and the ideal rectifier 
curve differ considerably. The rectifying or wave-shaping action of the 
two circuits, Fig. 3.ll(g) and (h), also shows great similarity. 

In some circuits the ideal rectifier may be an inadequate approxima­
tion to the actual diode. The remedy adds very little complexity in 
return for a considerably better approximation as discussed in the follow­
ing articles. 

3.6 Piecewise-Linear Models for Vacuum Diodes 

Curves for vacuum diodes closely follow the three-halves power law 
(see Fig. 3.12), except at low voltages, where contact potential difference 
and the initial velocity of electrons become important. The geometry 
of this curve illustrates the considerations involved in approximating a 
nonlinear curve. Suppose the range of voltage over which the diode 
is to be operated includes negative values and extends to point P for 
positive values. For a particular point, such as P, let the voltage and 
current be designated as Eb and lb, respectively. 

The line OP through the origin determines a quantity rb, called the 
total plate resistance. A tangent drawn through P defines the quantity 
rp, called the incremental plate resistance. As indicated in Fig. 3.12, 
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the value of Tp determined at any point on a three-halves power curve is 
2rb/3. The tangent-line intercept E 0 occurs at the value Eb/3. Note 
that the curve lies between the Tb line and the Tp line for O < eb < Eb. 
The tangent line T P always lies below the curve, whereas the chord Tb 

crosses the curve at point P. 
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/2 
Total plate / 
resistance rb = f:---v/ 

(1) 

/ 
/ 

/ 
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/ 7 . '/ 
I Incremental 

4. plate resistance 
/ r = deb] · 

I p dib E I I b• b 

I 

deb 2 (ib)-¼ 2 2 
(2) rp - dib - 3K K - 3KEb½ - 3 rb 

(3) Eo = Eb - lbrp = ¼ Eb 

Fig. 3.12. Geometrical properties of three-halves power curve for vacuum diode. 

The equation for the tangent line represents the first two terms of 
the Taylor series expansion of the diode curve about point P. Expand­
ing ib = Keb% at point P yields a constant term, and a linear term. 
Expressed in terms of the coordinates of point P, this becomes 
ib = - I b/2 + 31 beb/2Eb, This tangent line may be considered to be a 
linear approximation to the diode curve. The corresponding circuit 
model is either a battery of value E 0 = Eb/3 in series with a resistance 
rP = 2Eb/3Ib or a current source of magnitude h/2 in parallel with the 
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resistance. The tangent line approximates ib reasonably well near P. 
In fact, it yields current values within 0.015h of the actual diode curve 
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Fig. 3.13. Piecewise-linear models for vacuum diodes. 

for 0.8Eb < eb < l.2Eb. The addition of an ideal rectifier to this model 
yields the piecewise-linear model shown in Fig. 3.13(a). 

A better fit over the· specified range eb < Eb is obtained by changing 
cireuit parameters as shown in Fig. 3.13 (b). Obtaining such a straight-
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line fit to a nonlinear curve can best be done by eye. Minimizing by 
calculus the difference between a nonlinear curve and the equation of a 
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Fig. 3.14. Multiple-segment approximations. 

straight line, with floating values for the intercept and slope, can be 
time-consuming. 

A simpler circuit model results from the use of rb in conjunction with 
an ideal rectifier. As shown in Fig. 3.13(c), the errors for this model are 
somewhat larger than those of the previous two. Again, a better fit 
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may be obtained for the same circuit configuration by modifying the 
parameters to the values shown in Fig. 3.13(d). 

The approximation to the vacuum diode obtained with any of these 
models is much better than that obtained with only an ideal recWier. 
When one of these models is used to analyze the clipper circuit described 
in Article 3.5, the results obtained can hardly be distinguished from 
those obtained with the actual nonlinear curve. In fact, for almost any 
application of a vacuum diode, these models will yield adequately 
accurate results for the resistive-circuit problem. Nevertheless, if the 
need should arise, the concept can be extended to yield even better 
approximations. The circuit models and corresponding curves shown 
in Fig. 3.14 illustrate this point. Any number of segments can be pro­
duced by paralleling additional circuit branches made up of battery, 
resistance, and ideal rectifier in series. The relations between the resis­
tive slopes of the piecewise-linear curve and the resistances or conduct­
ances used in the circuit model are indicated in the figure. 

Each parallel branch in the circuit models shown in Fig. 3.14 includes 
a "back-biased" ideal rectifier. The applied voltage must exceed the 
reverse bias voltage in a branch in order for conduction to take place 
in that branch. Thus, as the applied voltage eb is increased, successive 
branches of the circuit conduct. 

The models used thus far approximate i vs. v curves that are concave 
upward; that is, conductance increases as applied voltage increases. 
However, some ib vs. eb curves have concave downward regions, for 
example, the more complete vacuum-diode curve shown in Fig. 3.15(a). 
Since the conductance decreases with increasing voltage in the satura­
tion region, a new form of circuit is required to add a resistance in 
series when the voltage or current has increased to a given level. This 
effect can be achieved by using a "forward-biased" ideal rectifier. As 
indicated in Fig. 3.15 (b), the rectifier must be so directed that the 
applied current eventually overcomes the current due to the forward 
bias. When the ideal rectifier is conducting, the voltage drop across its 
terminals is zero. When the applied current equals the bias current, 
the total current through the ideal rectifier is zero. This is the break 
point at which the rectifier becomes an open circuit, and current then 
passes through the resistance. An alternate form of this model is shown 
in Fig. 3.15(c). The complete vacuum-diode model is shown in (d). 

3.7 Piecewise-Linear Models for Semiconductor Diodes 

The semiconductor diode has a current versus voltage curve that 
differs in functional form from that of the vacuum diode. However, 
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Fig. 3.15. Representing temperature saturation in a vacuum diode. 

aside from the fact that reverse current may have to be considered, the 
problem of devising a circuit model is similar to that already solved for 
the vacuum diode. 

The curve of current versus voltage for a semiconductor junction alone 
is exponential. The effective forward resistance may be as low as a few 
ohms and is ordinarily not more than a few hundred ohms, whereas the 
reverse resistance is likely to be hundreds of kilohms or even a few 
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megohms for reverse voltages up to the value required to produce 
reverse-voltage breakdown. 

The sketch in Fig. 3.16(a) is a typical semiconductor-diode curve. 
The magnitude of the reverse current has been exaggerated in order to 

(c) 

i = I0 (Ev/Vo - 1) 

Where Vo= kT/e 
V0 = \l026 volts at 
room temperature 
(300 K) 

V 

k = Boltzmann constant 
= 1.38 x 10-23 joule/°K 

T = degrees Kelvin 
e = electronic charge 

= 1.6 x 10-19 coulomb 

V 

Fig. 3.16. Approximating semiconductor diodes with forward and reverse resistances. 

clarify the drawings. An approximation to the curve based on two 
resistive lines is shown in Fig. 3.16(b). A number of alternative forms 
are possible for this circuit model. The models shown with a single 
ideal rectifier are equally convenient. Since reverse resistance rr is 
much larger than forward resistance r1, the two resistances (or con­
ductances) in the model are very nearly those corresponding to the 
graphical slopes. 
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If the ratio of Tr to T1 is not sufficient to justify the simplifying approxi­
mation Tr - T1 ~ Tr or YI - Yr ~ YI, the graphical slopes can be placed 
in evidence by introducing another ideal rectifier as shown. Since no 
sources are included in this two-rectifier model, the break point for 
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Fig. 3.17. Additional semiconductor diode models. 

each of the diodes occurs at i = 0, v = 0 (one opening and the other 
closing). 

The model with two ideal rectifiers is more complicated, but if it 
clarifies the resulting circuit _problem, its use is justified. When circuit 
complexity increases, caution should be e:xercised in choosing rn9dels 
containing extra~eous ideal. rec~ifiers, as e~ch _ reqtifi~r may _cr~ate 
additional · circuit states. · · 
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It will usually be more convenient to designate a two-segment 
resistive approximation by the simple symbol shown in Fig. 3.16(c). 
Circuit equations for this approximation can be written as though the 
element were a resistance r with specific values Tr or r1, depending upon 
the polarity of voltage v or current i. 

If the reverse current of a semiconductor diode is critical to the 
behavior of a particular circuit, a better representation is obtained by the 
model shown in Fig. 3.17(a). For negative voltages, v < ( -I0r), 
the ideal rectifier is open, and the model represents the constant-current 
line (-10 ). For v > (-I0r), the diode closes, and the diode is repre­
sented by the small resistance r. An additional segment can be added to 
improve the approximation over a wider range of v and i by a parallel 
branch, as shown in Fig. 3.17(b). The effect of reverse-voltage break­
down can be included by a circuit that holds the voltage nearly constant 
at the appropriate value (say -25 volts) for a particular diode. A circuit 
model that suffices is shown in Fig. 3.17(c). There are no extraneous 
ideal rectifiers in this model, since each one corresponds to a different 
break point in the i vs. v curve. Nevertheless, it is apparent that this 
is an elaborate model to represent only the resistive behavior of a single 
circuit element, the semiconductor diode. 

As familiarity with the subject develops, it is seldom necessary to 
draw the complete circuit model. For any particular value of v or i, 
we are concerned only with the relation between v and i, and in piece­
wise linear models this is always a straight line. Thus, if we keep track 
of the segment of the curve on which the diode is operating at any given 
time, the maximum complexity of the relation is i = av + b. Corre­
spondingly, the circuit model for any one segment reduces to (at most) 
a resistance and a source (current or voltage). A series of single-seg­
ment models is shown in Fig. 3.18 for the same circuit model shown in 
Fig. 3.17 ( c). The slopes and intercepts for the linear segments corre­
spond to those on the complete i vs. v curve, but do not necessarily 
correspond to the sources or resistances in the complete model. Note, 
for example, V 1 and V 1

1
• 

3.8 Piecewise-Linear Models for Gas-Filled Diodes 

The curve of ib vs. eb for a gas-filled thermionic diode is shown quali­
tatively in Fig. 3.19(a), together with the usual symbol for a gas-filled 
tube. The dot within the circle distinguishes the gas-filled tube from 
the corresponding type of vacuum tube ( diode, in this case). Conduc­
tion in the tube is very small until eb reaches the value Em, At this_ 
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point the molecules of the gas become completely ionized and form a 
plasma. The plasma consists of a nearly field-free region in which the 
charges of the electrons are essentially neutralized by positive-ion 
charge. Conduction is sustained for a wide range of currents with an 
almost constant voltage drop E across the tube. The voltage E may 
be substantially less than Em, In the conduction state the curve is 
fairly well approximated by the simple model shown in Fig. 3.19(b). 
The onset of conduction may be represented by a resistance r in series 
with an ideal rectifier. This model is good up to voltage Em, as indi­
cated by the line of sloper in Fig. 3.19(c). When the two simple models 
are combined, as indicated in Fig. 3.19(c), the curve is as shown by 
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the solid line. Tt is therefore preferable to use each of these parallel 
branches as a separate model. The resistance applies prior to ionization, 
and the voltage source E applies after ionization. 

The transition from one model to the other is left indeterminate by 
this use of two separate models. It is apparent that a piecewise-linear 
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Fig. 3. 19. Piecewise-linear models for gas-filled diodes. 

approximation made to follow the curve more closely must consist of 
resistance r for O < eb < Em, Then a line of negative slope is required 
in order to return to the vertical line at eb = E. This negative slope 
implies the necessity for an element corresponding to negative resist­
ance. A discussion of negative resistance and its properties is deferred 
until Chapter 9. 
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Fig. 3.20. Piecewise-linear model for an arbitrary nonlinear resistance. 

3.9 Piecewise-Linear Model for Arbitrary Nonlinear Resistance 

The basic ideas presented thus far can be extended to the representa­
tion of an arbitrary nonlinear resistance or conductance, provided we 
restrict ourselves to positive slopes or allow the use of negative resistance 
in the models. 

The simple circuits shown in Fig. 3.20(a) and (b) yield concave-up 
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and concave-down breaks, respectively, on a plot of current versus 
voltage. A combination of such sections can be used for a succession of 
increasing or decreasing conductance segments, as shown in Fig. 
3.20(c) and (d). 

Representation of an "arbitrary" curve is shown in Fig. 3.20(e ). 
The procedure followed here simply amounts to grouping together 
those segments that form concave-up regions of the curve. Similarly, 
concave-down regions are grouped together. Models of the successive 
"up" and "down" regions are then put together in series and parallel 
as required. The form of the resulting model is the familiar ladder 
network with "up" and "down" regions represented by shunt and series 
ladder network elements, respectively. 

Suppose the sequence of segments in Fig. 3.20(e) represents the piece­
wise-linear approximation to some general resistive curve i = f (v ). As v 
increases from zero, the first segment of slope G0 = 1/R0 is represented 
directly by the shunt branch on the right end of the model. The second 
segment has conductance Ga; hence conductance G1 :::; Ga - G0 must 
be added in parallel, beginning at v = E 1. The same considerations 
apply to the next segment, where G2 = Gb - Ga must be added, begin­
ning at v = E 2• 

At current I 3, the slope decreases; hence series resistance must be 
added. It is apparent from the graph that Re > Rb; hence R3 is positive. 
The relations between circuit elements and slopes on the graph are 
tabulated in Fig. 3.20(e). 

The sequence of diode operation for increasing v proceeds from right 
to left in the circuit model. Designating the diodes by the subscripts of 
the associated resistances, D0 closes as v goes from negative to positive 
values. D1 closes for v = E 1, and D2 closes for v = E 2 • Then, D3 

opens when v reaches the value corresponding to i = 13, and D4 opens 
when i = 14• Finally, D5 closes when v = E 5• 

A few pertinent comments are in order about the basic shunt and 
series elements used in this ladder-network development of the arbitrary 
i = f(v) curve. The form of the shunt element shown in Fig. 3.20(a) 
is convenient because it places the voltage coordinate of the break point 
in evidence. Also, since currents are added for shunt elements, it is 
convenient to have the break point at i = 0 so that no contribution of 
current from this element exists to the left of the break point. Similarly, 
the series element shown in (b) of the same figure places the current 
coordinate of the break point in evidence, and contributes no voltage 
drop to the left of the break point. 

The variations of the basic forms shown in Fig. 3.21 serve to emphasize 
the important point that reference directions for v and i are part of the 



RESISTIVE DIODE CIRCUITS 71 

TL Tf II • II l +E l-E - T- - T-
(a) (b) 

TI~ Tf -E 
II II R 

0 II 

l-E l-E - T+ 
(c) - :r+ 

(cl) 

t' ti 

u 

(9) m 

ti G= ti 
+I +I 

· 11 II 0 u 

L= 
(g) (h) 

Fig. 3.21. Variations of basic resistive diode circuit forms. 

circuit model. The series E and r forms shown in (a), (b), (c), and (d) 
yield a break point on the i = 0 axis. The shunt J and r forms shown 
in (e), (!), (g), and (h) yield a break point on the v = 0 axis. The 
position of the nonzero coordinate of the break point in each case depends 
only on the magnitude and polarization of E or I. The fact that the 
break joins two segments that are concave up or concave down depends 
only on the direction in which the diode is oriented relative to the 
assigned reference directions. 

Circuits of the basic forms can be combined to yield a break point 
with both v and i nonzero. Examples of such forms are shown in 
Fig. 3.22. In the circuits shown in (a) through (!), the sources are 
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Fig. 3.22. Circuits with nonzero break-point coordinates. 

polarized to position the break point in the first quadrant. By appro­
priate choice of polarities for E and J the breaks can be placed in the 
second, third, or fourth quadrants. The circuits shown in (g) and (h) 
are general forms that permit positioning of break coordinates and 
control of slopes. 

More formal synthesis procedures can be used to realize a general 
nonlinear curve with resistive-diode circuits.* However, a remarkable 
degree of generality can be achieved using only the few simple ideas 
discussed thus far. 

* T. E. Stern, Piecewise-Linear Network Theory, Technical Report No. 315, 
Research Laboratory of Electronics, M.I.T., June 15, 1956. 
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3.10 Analysis of Piecewise-Linear Circuits 

Devising piecewise-linear circuits to approximate specified curves of 
voltage versus current, as illustrated by the several preceding articles, 
is an elementary form of synthesis or design. The analysis problem 
applies to a circuit that already exists and may require determination 
of voltage and current at a pair of terminals (driving-point problem), 
or the voltage or current response at one pair of terminals due to a 
voltage or current applied at another pair of terminals (transfer problem). 
For example, the response at the output of a circuit to a sinusoidal or 
square-wave input may be desired. 

In the following articles, the principal methods of analyzing nonlinear 
resistive diode circuits will be used to derive piecewise-linear curves for 
a few simple circuits. These methods are based either on the determi­
nation of slopes and intercepts for each state or of coordinates for the 
break points between states. 

3.11 The Method of Assumed Diode States 

The method of assumed diode states is based on the fact that over 
any linear segment of a piecewise-linear curve, each diode in the cor­
responding circuit remains in a specific state, either on or off. Circuits 
are analyzed by assuming all possible combinations of states of the 
ideal rectifiers and finding the corresponding linear relation of i vs. v for 
each combination. In Fig. 3.23(a) the assumed states and the con­
straints on variables imposed by these assumptions are listed next to 
the circuit diagram. The linear relation for i vs. v in each assumed 
state is calculated from the simplified circuits shown in (b) and sketched 
as a dotted line in ( c). The desired curve must consist of portions of 
these linear relations. Determination of the appropriate portions of the 
Enes requires consideration of what is happening in the circuit. This 
b best accomplished by deducing circuit behavior while mentally 
varying v (or i) from large negative to large positive values. 

To begin, let us consider values of v much more negative than -E. 
This condition :would mak~. D1 nq:q.conducting (i = 0); therefore, it 
corresponds to state I or II. When D1 is off, the input is disconnected 
from the remainder of the circuit, and D2 is held on by the current 
E/R; ·supplied from source E. Thus, state I can never actually exist 
and the circuit must be in state II when- v is less than zero. Diode D1 
will switch froin off to on wheri V = 0 (since V1 ~ V _· V2), At that 
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point, current i = 0; hence, there is no possible effect on D2, Thus, D2 
remains closed, and the circuit proceeds to state IV as v crosses zero. 
Now as v increases, the current i will increase; and since i passes through 

1-
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+j Di R1 R2 I Off Off (i = 0, i2 = 0) 
II Off On (i = 0, V2 = 0) 

V D2 V2 III On Off (v1 = 0, i2 = 0) 

-! + IV On On (v1 = 0, V2 = 0) 
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I and II 

V 
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Fig. 3.23. Linear analysis based on assumed diode states. 

D2 in a direction opposite to that of the bias current, the net current i2 

is diminished. When i = E / R2 , the current i 2 is zero, and D2 opens, 
putting the circuit into state III. Thus, as. we vary v from large negativ!.3 
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values to large positive values, we proceed from state II to state IV, 
and then to state III. 

If several diodes are involved in a circuit, the order of occurrence of 
the various states may be indefinite unless numerical values are specified 
for the resistances and batteries. With numerical values known, let the 
input variable (v or i) be increased from negative values to positive ones. 
Now suppose a given circuit is in a particular state with several diodes 
on and several off. To determine which state occurs next as the input 
variable (v or i) is increased, consider the negative voltage across each 
diode that is off and the positive current through each diode that is on. 
The first one of these quantities to reach zero determines the next state. 
Note when a diode is on that the positive current tells us how much it is 
conducting while the fact that the voltage is zero tells us only that the 
diode is on. Similarly, when a diode is off, the negative voltage tells us 
how far the diode is biased away from the break point, whereas the fact 
that the current is zero tells us only that the diode is off. 

The method just outlined has a distinct shortcoming. It grows 
cumbersome very rapidly as circuit complexity increases. With three 
ideal diodes, there are eight combinations of on and off, and four diodes 
lead to sixteen combinations. In general, n diodes have 2n combinations 
of on and off. Thus, even though preliminary reasoning eliminates 
some of the possible states, the problem mushrooms rapidly. 

3.12 The Break-Point Method 

The second approach is called the break-point method. It is based 
on the fact that a circuit containing only linear or piecewise-linear 
elements-such as batteries, resistances, and ideal rectifiers-must 
yield driving-point and transfer curves that are piecewise linear. The 
coordinates of the break points specify the character of the entire curve 
except for each of the end segments, which must be determined by the 
outermost break point and a resistive slope. Two adjacent break points 
(in terms of the independent variable) specify the state line joining the 
break points. Thus each break point joins two states, so that a circuit 
with n states has n - 1 break points. 

The usefulness of the method stems from the fact that both the 
current and the voltage for a particular ideal rectifier are constrained 
to zero at the break point of that rectifier. These two constraints when 
applied to the circuit reduce an n-diode circuit to one containing 
only ( n - 1) diodes. 

Let us illustrate the break-point method with the same circuit used 
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in the previous section. At the break point of D 1, v1 = i = 0. Since R1 

carries no current, the right-hand loop of the circuit behaves as though 
R 1 were removed. Thus D2 conducts a current i2 = E/R2 with voltage 

V E==. 
+ J 0--------------

(a) 

Break point 2 

i=O u 

(b) 

Break point 1 

(cJ 

Fig. 3.24. Break-point method of analysis. 

v2 = 0. Now, since both v1 and v2 = 0, the input voltage vis zero, and 
the first break point is thus established at the origin where v = i = 0. 

The break point of D2 corresponds to v2 = i2 = 0. The current in 
R2 must then be E/R2 ; and since i2 = 0, current i entering the circuit 
must also be E / R2, and the first diode must be closed. Now, since 
v1 = v2 = 0, we have v = iR1 = ERi/ R2 for the voltage coordinate 
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of the break point, as shown in Fig. 3.24 (b). The circuits that determine 
the break-point coordinates are shown in (c). To the left of break 
point 1 the first diode is open, and i = 0. The curve therefore pro­
ceeds to the left along the horizontal axis. To the right of break point 2 
the first diode D 1 is closed, and the second diode D 2 is open, so that 
!lv/ !li = R1 + R2• Between the two break points the circuit is linear, 
so the curve must be a straight line joining points 1 and 2. 
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Let us now illustrate the determination of a transfer curve by the 
break-point method. The circuit shown in Fig. 3.25(a) is called a 
double-ended clipper or limiter. Before proceeding with the analysis, 
let us simplify the linear portion of the circuit, redrawn in (b) to empha­
size the separation of the linear and nonlinear parts. From the terminals 
at which e2 is to be obtained, the source ei, its internal resistance Ri, 
and the load resistance R2 may be replaced by a new source voltage ea 
with a new internal re~istance Rs, as shown in (c). The voltage es is 
the open-circuit effect of e1, considering the two shunt-diode circuits as 
loads external to the linear circuit. The resistance Rs is the apparent 
resistance between the output terminals. 

For the circuit of Fig. 3.25(c) each vacuum diode has been approxi­
mated by an ideal rectifier in series with a small resistance. The 
break point for ideal diode D1 occurs at e2 = +E1• At this point, D 2 

must obviously be off; hence, e2 = es = E 1 and e1 = E 1 (R1 + R 2)/R2. 
For e2 greater than +Ei, D1 is on, D2 is off, and the slope tJ,.e2/ !J,.es = 
ri/(Rs + r 1). The break point for D2 occurs at -E2 , and at this 
point D1 is off; hence, e2 = es = -E2 and e1 = -E2(R1 + R 2)/R2, 
For e2 more negative than - E2, diode D2 is on, and slope !J,.e2/ tJ,.es = 
r2/ (r2 + Rs), The slope of the line joining the two break points can 
always be calculated from the break-point coordinates, but in this case 
the circuit is so simple (both diodes are off) that the value can be found 
by inspection. 

3.13 Simple Multidiode Circuits 

When a diode circuit contains no internal batteries or current sources, 
all break points occur at the origin. The analysis problem then becomes 
relatively simple, even when more than two ideal diodes are present. 
For illustration, consider the three full-wave rectifier circuits shown in 
Fig. 3.26. These circuits are so named because both positive and 
negative values of the input voltage e1 produce a positive output 
voltage e2, If a sinusoidal waveform of voltage is applied at e1, the 
output e2 consists of adjacent half-sinusoids of the same polarity. 

Inspection of Fig. 3.26 indicates that the transfer curve for all three 
circuits should have even symmetry, that is, f( -e1 ) = f( +e1 ). The 
circuits shown in (a), (b), and (c) have successively greater transfer 
slopes, as indicated by the corresponding curves of e2 vs. e1. However, 
the slope of the transfer curve is not the only basis for judging the 
relative merits of the three circuits. The input resistance Rin = ei/i1 
lies between R1 and 2R1 for circuit (a) and between Ri/2 and R1 for 
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circuit (b ). Hence more power must be supplied to circuit (b) for the 
same input voltage e1• Circuit (c) provides maximum transfer slope 

(a) 
R2 1 

Slope R1 + 2R2 < 2 

0 e1 

e2 
R2 

Slope R1 + R2 < 1 

(b) 

R1 

0 e1 

(c) 

0 

(d) 

Fig. 3.26. Full-wave rectifier circuits. 

(unity) and an arbitrary input resistance Rin = R2 , at the cost of two 
additional diodes. 

Waveforms of input and corresponding output are shown in Fig. 
3.26(d) for the circuit of (c). The output for circuit (a) or (b) would 
be similar in form but with smaller amplitude. The full-wave rectifier 
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Fig. 3.27. Diode gate circuit (AND circuit). 

circuits described here, or variations thereof, find many applications 
in electronic systems. 

Another ·class of resistive diode circuits, called gate circuits, are used 
to permit or prevent the passage of electrical signals. Switching circuits 
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of all kinds and digital computers, in particular, use gate circuits to 
perform a variety of operations. 

The gate circuit shown in Fig. 3.27(a) is called an AND circuit 
because it requires coincidence of signals at ei, e2, and e3 to produce 
an output. Examination of the circuit shows that in the absence of 
inputs all diodes conduct (and the output voltage is zero) if the diodes 

D1 

D2 

Da 

+ 
e1 

(a) .. Ul 
0 

n....___ ____ n_t 
l_~ 

0 
~ 

ea 

(b) 

Fig. 3.28. Diode gate circuit (OR circuit). 

and sources are assumed to be ideal (zero resistance). A positive pulse 
from any one or two of the sources simply turns off the corresponding 
diodes, but e0 remains zero. Thus, e1 and e2 raise the cathodes of 
their diodes to a positive value, while the anodes are held at zero by 
the conduction of D3 • If a positive voltage is present at all three inputs, 
an output voltage occurs. This action of the circuit is illustrated in 
Fig. 3.27 (b) for input voltages consisting of rectangular pulses. The 
output-pulse duration corresponds to the "overlap" of the input pulses. 
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If the input signals are unequal but less than E, the output voltage 
will have an amplitude very nearly equal to the amplitude of the smallest 
input signal. Thus the circuit is a basic form of pulse amplitude modu­
lator, as indicated in (c). Alternatively, it may be called a sampling 
circuit, since each rectangular pulse, in effect, samples the instantaneous 
value of the sine wave. Only two inputs are necessary in this case; 
hence we may assume that source e3 and diode D3 have been disconnected 
from resistor R. The maximum positive value of the voltage e2 should 
be slightly less than the peak pulse height; otherwise the pulse height 
will partially determine the output amplitude. Either of the circuit 
functions illustrated in Fig. 3.27(b) and (c) can be carried out with 
negative voltages by reversing the polarity of source E and reversing 
the diodes. 

Another type of gate circuit, often called an OR circuit, is shown in 
Fig. 3.28(a). In this case, an input voltage at ei, e2, or e3 will produce 
a corresponding output voltage. The circuit therefore performs the 
function of combining signals from various sources. As indicated in 
Fig. 3.28(b), the output amplitude will be dictated by the maximum 
input amplitude, in the event that several inputs occur simultaneously, 
because the largest input amplitude biases the remaining diodes in the 
reverse direction. 

3.14 Stepwise Approximation 

The circuit models devised for piecewise-linear approximations of 
nonlinear curves use resistances, ideal rectifiers, voltage sources, and 
current sources. If we eliminate resistances from this list of elements, 
the circuit models that can be devised result in stepwise approximations. 

The ideal rectifier is actually a stepwise approximation to an actual 
diode rather than a piecewise-linear approximation, for neither segment 
of its i vs. v curve is really resistive. In the conducting direction, the 
ideal rectifier is a short circuit, which can be interpreted as a special 
case of voltage source (E = 0). In the reverse direction we have 
infinite resistance, which can be interpreted as a special case of current 
source (I = O). Thus, the ideal rectifier can be considered to have a 
bit of the character of ideal sources. In fact, connected in series with 
a voltage source or in parallel with a current source it merely makes the 
ideal linear sources unidirectional. 

The stepwise representation of a smooth curve, as shown in Fig. 
3.29(a), may seem to be a rather gross approximation. Actually it can 
provide a very good average fit to the nonlinear curve. Since the area 
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under a stepwise approximation increases in a series of linear ramps, as 
shown in Fig. 3.29 (b), we observe that the integral of a stepwise approxi­
mation leads to a piecewise-linear curve. A circuit model for the stepwise 
approximation is shown in (c ). 

i = f(v) fidv 

]4 ----------

Ia 

0 E1 E2 Ea V 

(a) 

0 V 

(b) 

i 
~ 

+ 

i 
V 

(c) 

Fig. 3.29. Stepwise approximation. 

3.15 Parabolic Approximation 

A square-law curve can obviously be used to approximate some portion 
of a general nonlinear curve. As shown in Fig. 3.30(a), the parabola 
i = K 2e2 fits the vacuum-diode curve ib = K 1eb% about as well as the 
linear resistance rb over a given range of values. A somewhat better 
fit is obtained over the range of voltage and current indicated, by shifting 
the curve upward, as in (b), to place some of the parabola above and 
some below the vacuum-diode curve. By inspection of this curve we 
see that a reduction in the constant, accompanied by a shift to the 
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(a) 

1.llb---

lb -----------

rb = Eb/lb 

K1 = lb/Eb¾ 

K2 = Ib/Eb2 

0 

1.091b ---

(b) (c) 

Fig. 3.30. Parabolic approximations to %-power curve. 

left, should provide an even better fit, as shown in (c). This curve 
matches the diode curve very well over the range of values indicated. 

If a nonlinear curve of i vs. e were approximated by several parabolic 
segments (concave up and down), the derivative curve di/de vs. e would 
be piecewise-linear, provided the slopes of the parabolic segments match 
at their junctions. If the slopes did not match, the curve of di/de vs. e 
would contain steps. 

The square-law relation i = Ke2 is often used in analyzing detector 
circuits, mixer circuits, and the like. See Art. 4.14. 

3.16 · A Simple Electrical Transient 

· · · Thus far in this chapter we have examined s9me- of the properties of 
resistive-dfode circuits·. , We have considered· method,s of app1:oximating 
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the current versus voltage curves of various types of diodes or of an 
arbitrary nonlinear resistance. In this article we shall consider a circuit 
with one energy-storage element to show that functions of time or 
frequency also can be approximated to good advantage. Usually the 
resulting simplification of the analysis problem justifies the use of such 
approximations. 

Let us consider the most elementary example possible. Suppose · a 
capacitor Chas been charged to a voltage Eb = Q/C. Let us determine 
the waveforms e(t) and i(t) resulting when the capacitor is discharged 
through various resistive circuits, both linear and nonlinear. 

The circuit, equations, and waveforms shown in Fig. 3.31 (a) illustrate 
the familiar linear circuit problem. The solution of the linear differen­
tial equation is a decaying exponential characterized by the time con­
stant T = RC. 

Now suppose the capacitor C is to be discharged through a vacuum 
diode described by a three-halves power curve, as indicated in Fig, 
3.31 (b ). The simple nonlinear differential equation, when solved, shows 
that the voltage and current no longer vary exponentially with time, 
but rather, in an inverse square manner. The solution for v(t) is given 
analytically and graphically in (b). If now the diode is approximated 
by Tb, the solution has the same form as in (a). This exponential 
waveform is shown as a dashed line in the waveform plot of Fig. 3.31 (b ). 
Since the Tb approximation lies entirely above the three-halves power 
curve, and since i = -Cde/dt, the discharge by the vacuum diode 
actually proceeds more slowly than the exponential determined by the 
Tb approximation. It is apparent that the exponential waveform can 
be matched to the inverse square expression more closely by using a 
closer approximation to the diode curve than that given by the Tb line. 

In Fig. 3.31 (c) the waveform v(t) is plotted for a square-law curve 
of i vs. v. Again the expression for v(t) is readily obtained by separation 
of variables and integration of the simple expression. The exponential 
discharge produced by an Tb approximation is shown for comparison. 
Since the square-law curve of i vs. v lies farther below the Tb line than 
does the three-halves power law, the discharge proceeds more slowly 
in this case than in (b). 

For each of the examples given in (a), (b), and (c), the waveform of 
current i(t) can be obtained from v(t) by substitution. in the appropriate 
i vs. v equation, or by differentiation, since i = -Cdv/dt. 

Let us now consider the waveforms that result from a two-segment 
piecewise linear approximation for a diode curve, as shown in Fig. 
3.32(a) (a three-halves power curve is assumed for convenience). 
Each segment of this piecewise-linear approximation yields an exponen-
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i = v/R = -Cdv/dt {at t = O, 
V = Eb 

(~) 

i = -Cdv/dt = Kv¾ {at t E= O, 
V = b 

Cb) 

'\ i = Kv2 = -Cdv/dt 
\ 

\, 

I'~ ........ 
e-tJr6C ,, ...... _ __ 

.......... ___ .... ___ _ 
-::-O+----~l----i2----"31.----t/rb C 

(c) 

Fig. 3.31. Discharge of capacitor by linear and nonlinear resistances. 

tial curve. The time constant and final value are different for each 
exponential; but since i is continuous at the break point, the slope of 
the voltage waveform (dv/dt) is also continuous at the transition from 
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one exponential to the other. The slope of the approximation wave­
form of current, see Fig. 3.32(b), is not continuous at the break point. 

Note that the approximations match the true waveforms quite closely. 
Since most of the applications of electronic circuits involve time-varying 

A 

E1!Eb 
EolEb 

B 

_j__ 0 1 2 3 4 tfrbC 

+ 

riro 
V 

i/16 

1 

(a) 

lb) 

Fig. 3.32. Use of a piecewise-linear approximation for calculating capacitor discharge. 

voltages and currents in circuits containing inductance or capacitance 
or both, it is encouraging to find that simple representations of 
nonlinear i vs. v curves yield adequate approximations to time-vary­
ing behavior. 

3.17 Solution of Transient Problem Using 
Stepwise Diode Approximation 

If a nonlinear element exerts a major influence on the current or 
voltage, a simple one- or two-segment piecewise-linear approximation 
may be judged inadequate. However, the piecewise-linear model 
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loses some of its convenience if more than one or two break points 
occur within the range of expected current or voltage variation. In 
such cases the stepwise approximation for i vs. vis often useful. 

Let the diode curve in Fig. 3.33 be approximated by a stepwise curve. 
The diode curve could be any function i = f (v); but in order to have the 
true solution available for comparison, assume i = Kv%. The true 

0.7 
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0.25 

0.1 

t = 0 

i = Kv3/2 
I 

WhereK = ¼ 
Eb 
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4 

Fl-ti, 3.33. Stepwise diode approximations to obtain piecewise-linear waveform 
approximations. 

waveforms v(t) and i(t) for the capacitor discharge are shown by the 
dashed lines. The waveforms resulting from the stepwise approxima­
tion are shown by the solid line. Since i = -Cdv/dt, the waveform 
v(t) is piecewise-linear, whereas i(t) is a stepwise curve. 

In the example shown in Fig. 3.33, the stepwise curve was literally 
drawn to "look right." Despite this seemingly haphazard approach to 
the approximation problem, the resulting piecewise-linear waveform of 
v(t) is almost everywhere within 10 per cent of the true curve derived 
from the three-halves power law. The waveform of v(t) may be drawn 
very rapidly by beginning at t = 0, and drawing a line from the initial 
value of voltage to the value at break point A, with slope determined 
by the current, 
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The example shown in Fig. 3.33 includes many more segments than 
are required for making a reasonably good approximation. The sketches 
in Fig. 3.34 show the results obtained with smaller numbers of segments. 

- 4 -<v!Eb- (2 + t/rbc,2 

A Slope = -0.14 
Slope= --"0.02 

(a) 
0 1 2 3 

(b) 
0 0.25 

Fig. 3.34. Simple piecewise-linear waveform approximations. 

3.18 Approximations for the Exponential Curve 

The current and voltage transients of linear or piecewise00linear circuits 
are exponential in character. Since such transients will occur repeatedly 
in the analysis of electronic circuits, the properties of exponential wave­
forms, and a few simple approximations to them are important. 

The function with which we shall most often be concerned is the form 
E-x as shown in Fig. 3.35(a). In this expression, x = t/1'. The constant T 

is merely a normalizing factor for the time scale. An exponential curve 
is completely determined when the initial and final values are known, 
together with the time constant. At each point on the curve, the slope 
is proportional to the magnitude (relative to the final value); that is, 
the slope at any specific value E 1 is -Ei/T. The area under the curve 
is finite and equal to the product of the initial value and the time con­
stant. Mathematically, the value of the exponential approaches zero 
as time approaches infinity. For engineering purposes, however, the 
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exponential has reached completion after an elapsed time corresponding 
to several time constants. For example, when t/r = 5, the value of 
the exponential is 0.6 per cent of the initial value at t = 0. 

The first term of the series expansion of the exp on en tial makes a 
convenient approximation to the initial part of the exponential curve. 

1.0 y 

0.8 E-x - 1 - % + z2 - .!! + •••••• 
- 2! 31 

0.6 
Where x = t/RC, t/-j etc. 
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0.2 

(b} 0 3 4 5 % 
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0.2 

(c) 0 2 3 4 5 % 

Fig. 3.35. Approximating exponential curves. 

• When x is small, the higher-order terms x2
, x3

, etc. may be neglected. 
This approximation is shown in Fig. 3.35(a). 

The area under the exponential of (a) is unity, whereas the area under 
the triangle representing the approximation in (a) is only ½; Hence, 
if a linear approximation is desired to match total area instead of initial 
slope, the line must reach zero at x = 2, as shown in Fig. 3.35 (b ). 
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The approximation given in Fig. 3.35(c) matches initial slope but 
not total area. It follows the true curve more closely than either of 
the other approximations. Higher-order approximations may be 
justified in some special cases, but since the exponential itself is fairly 
convenient to manipulate, one either uses simple approximations or 
the function itself. 
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PROBLEMS 

3.1. Find the Thevenin equivalent of each of the circuits in Figs. P3.1-P3.4. 
Note that the two-terminal circuits can be simplified to a single resistor and 
single source, whereas the three-terminal circuits require two sources and 
three resistors. 

.i._ 
__i:___ + 
+ 

+ 1 1 

V 1 
V 1 

+ 
1 

i1 

Fig. P3.1 Fig. P3.2 

3.2. Reciprocity for a two-terminal-pair network can be expressed as a 
relation between two sets of measurements (A and B) performed on the same 
network (Fig. P3.5). If the networks are reciprocal, the following deter­
minants must be equal. 

I 
V lA lfA I = I V 2A ] 2A I 
V1B J1B V2B f2B. 



92 ELECTRONIC CIRCUIT THEORY 

ii -

Fig. P3.3 Fig. P3,4 . 

l ---1+- 2 
- --:-::-

I: Reciprocal :I network 
- -

Fig. P3.5 

This equation implies that 

~, - !_{I and ·v21 - Vil 
V1 V2=0 - V 2Vi=0 J 112=0 - / H1=0 

1 

Thus any purely resistive, reciprocal two-terminal-pair network can be simpli­
fied to three resistors in a "T" or "1r" configuration, as in Figs. P3.6 and P3. 7. 

11 12 11 lz - - - Wv -
1+ f+ t ! ! t Vi l'2 or 

L 
Fig. P3,6 Fig. P3.7 

11 - . 1 lz --+ + 

Fig. P3.8 
j .'• .. •·.. ."•~_- \~· \ I _\,. •.. ~. -:_· 

Using reciprocity, simp~ify the netwo.rks in Figs. P3.8, P3.9, and P3.10 to 
a T and 1r equivalent. Can yoti'~uggest l}.ow·\·the~1,tbdve determinant expression 
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I1 12 - -+ + 

Vi 1 ½ 

1 l 

Fig. P3.9 

11 12 - -+ +1 
Vi ½ 

Fig. P3.10 

of reciprocity might be proved for a purely resistive circuit using basic con­
siderations (i.e., Ohm's law, conservation of energy, Kirchhoff's law, etc.)? 

3.3. How many basically different circuits can be designed using a single 
battery, resistor, and ideal diode? Draw the circuits and sketch their asso­
ciated. e-i characteristics. Some of the possible circuits are redundant, in­
determinant, or merely special cases of another circuit. 

3.4. (a) What is meant by the dual of a two-terminal linear circuit element? 
(b) What is the dual of an ideal rectifier? 

ib 
~ 

ib' ma 

+ 
66.7 

eb 

0 100 
eb' volts 

Fig. P3.11 Fig. P3. 12 

3.5. A vacuum diode, Fig. P3.11, has the characteristic shown in Fig. P3.12. 
Determine suitable values of R and E to represent the diode by the circuit of 
Fig. P3.13, so that the approximation to the actual characteristic is very good 
in the neighborhood of eb = 100 volts. (The ideal rectifier in Fig. P3.13 has 
the characteristic shown by Fig. P3.14.) 

3.6. (a) Plot e2 against e1 for the circuit of Fig. P3.15, in which the diode 
characteristic is that of Fig. P3.12. Cover the range -100 < e1 < +200. 
Also plot e2 versus e1 for Fig. P3.16. 
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Fig. P3.13 

Ideal rectifier 
characteristic 

----0...+----e 

Fig. P3.14 

(b) How serious is the error in the e2 vs. e1 characteristic due to replacement 
of the diode by an ideal rectifier? How would the error be affected by a 
change in the load resistance from lOkO to some smaller value? Some larger 
value? 

+ + 

lOkO t lOkO 

,__ ______ ,.._ __ -0 

Fig. P3. 15 Fig. P3, 16 

3.7. A high-vacuum diode curve is closely approximated by the function 
ib = Keb%, It is known that ib = 100 ma (milliamperes) when eb = 20 volts. 

(a) Determine Kand specify its dimensions. 
(b) Plot ib vs. eb over the range from O to 20 volts. 
(c) It is desired to approximate the actual diode by a model consisting of an 

ideal rectifier in series with a resistance R. By adjusting a straightedge on the 
plot of part (b), find the value of R which makes the maximum magnitude of 
error in ib a minimum in the region of interest lying between O and 20 volts. 
The error referred to is ib (diode) minus ib (model) at any given eb, 

(d) What is the maximum magnitude of error, expressed as a percentage of 
the maximum diode current in the region of interest? 

3.8. The diode of Problem 3.7 is connected in series with a resistance RL, 
and a voltage V 1 is applied across the combination. Let V 2 be the resulting 
voltage across R L• 

lOkO 

Ftg. P3.17 

(a) Plot V 2 vs. V 1 for RL == 4800 ohms over the range of V 1 from O to 500 
volts. 
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(b) Repeat part (a) with the diode replaced by its approximate model 
as in Problem 3.7 (c). 

(c) Does the approximation introduce an appreciable error? Explain. 
3.9. Find the operating point for each diode in the circuit shown in Fig. 

P3.17. The characteristics for D1 and D2 are plotted in Figs. P3.18 and 
P3.19. 
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Fig. P3.18 
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Fig. P3.19 

/ 
/ 

I 

150 

3.10. If y = x~\ the linear approximation y = 0.9x is correct at x = 0, 
roughly 0.1 too high at x = ½, correct at about x = ¾, and 0.1 too low at 
x = 1. If a space-charge-limited (i.e., operating somewhere between cut-off 
and saturation) high-vacuum diode draws 10 ma at 100 volts, what size linear 
resistor might you use as an approximate model of the diode over the region 
between 0 and 10 ma? 

3.11. A voltage e1 = E 1 cos wt is applied to the circuit of Fig. P3.20, and a 
voltage e2 is measured at the output. The load resistance R is adjustable. 

R 

Fig. P3.20 

In terms of the forward and reverse diode resistances, r1 and rr, find the value 
of the load resistance R which gives the largest d-c component of output 



96 ELECTRONIC CIRCUIT THEORY 

voltage. What is the d-c value in terms of E1, rr, and r,? (e1 and e2 are 
voltages measured with respect to ground.) 

+ 
40v 

Fig. P3.21 

+ 

3.12. The high-vacuum diode shown in Fig. P3.21 is assumed to obey the 
three-halves power law (ib = Keb1·5) and ib = 50 ma when eb = 20 volts. 
Compute eo as a function of R. 

3.13. A one-farad capacitor charged to 2 volts is suddenly connected to the 
terminals of a black box (Fig. P3.22). The capacitor voltage decreases lin-

Black 
box 

Fig. P3.22 

S 

early (not exponentially) to 1 volt in 1 second, after which it continues ex­
ponentially toward zero, with no discontinuity in either the voltage or its 
time derivative. Using sources, resistances, and ideal diodes, synthesize a 
possible circuit for the black box. 

R1 

+ 

Fig. P3.23 

3.14. Plot the driving-point curve (e1 vs. i1) for the circuit of Fig. P3.23. 
Indicate slopes and break points. 

3.15. Draw the transfer relations between the variables indicated in Figs. 
P3.24 through P3.28. 

3.16. Sketch the responses of the ideal circuits shown in Figs. P3.29 and 
P3.30. 
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...---------~...,_---o+ 

R 

Fig. P3.24 

...-----------------0+ 

R 

Fig. P3.25 

R + 

Fig. P3.26 

R 

E ( 
•1 r 

Fig. P3.27 

R 

E ( 
i1 i r 

Fig. P3.28 
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•,C ilv ! l~ 
Fig. P3,29 

2volts 

•• ~_..___.....•I + ii---! [ 
3 
2 
1 

Fig. P3.30 

3.17. Sketch thee vs. i characteristic of the circuits shown in Figs. P3.31-
P3.34. 

i t R - -
f+ I 1 e e V 

!- v,1 J+\'2 + 

Fig. P3.31 Fig. P3.32 

.i_ 

r ----;,i 
e Ro R1 ~ 

L + + + 
l'o=r V1 :( V2=r v_=r 

0 

Fig. P3.33 
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11 12 
~ -

i -r 
e Io~ In---;. 

Fig. P3.34 

3.18. Sketch v2 vs. v1 for the circuit shown in Fig. P3.35. 

V 

I 
Vl R V2 

~ 
Fig. P3.35 

3.19. Sketch and dimension the driving-point curve (v vs. i) for each of the 
circuits shown in Figs. P3.36-P3.38. 

r 
V V R1 R2 

o-!-____ T_.___:_E_1 __ _,; E 2 

Fig. P3.36 Fig. P3.37 

3.20. Plot v vs. i for the circuit shown in Fig. P3.39, showing slopes and the 
dimensions of break points. 

3.21. Sketch the graphs of e vs. i for the circuits shown in Figs. P3.40-P3.43. 
All components are ideal. 

3.22. Plot the e vs. i graph for the circuit shown in Fig. P3.44. 
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3.23. In the circuit shown in Fig. P3.45, C is initially charged to the voltage E 
as shown. At time t = 0 the switch S is closed. Sketch e(t) for the three 
cases: R = O; 0 < R < E/I; and R > E/1. 

Fig. P3.45 

3.24. (a) Synthesize a piecewise-linear circuit for the vacuum diode with 
the current-voltage characteristic (Fig. P3.46): i = 10-3e¾ with the approxi­
mation tangent to the curve at the points e = O; 1 v; 2v (for e < 0, i = 0). 
(Two break points.) 

103
i, amps 

2 e, volts 

Fig. P3.46 

(b) Using the circuit model found in part (a) for the diode in the circuit 
shown in Fig. P3.47, find the voltage transfer characteristic, e2 vs. e1. 

l
-----'Wv 

•: R=lk!l 

Fig. P3.47 

i 6 5 
3.25. The resistive-diode cir- .-----.-- .---~+ r 1,L--..&...----1- ,1.__+ ___..,_..._ 

cuit shown in Fig. P3.48 has 
three ideal diodes, two of which 
have no influence on the driving e 
point characteristic. Redraw 
the circuit with only one di­
ode, and sketch i vs. e, 

fl9. P3,4f 
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3.26. Sketch and dimension e2 vs. e1 curves for the circuits shown in Figs. 
P3.49-P3.52. In each case e1 is the applied voltage, e2 is the measured output 
voltage, and Ro is several times larger than R. 

el u----<1~----------, 

R R 

R 

Fig. P3.49 Fig. P3.50 

elo-------------, 

R· R 

-=-
Fig. P3.51 Fig, P3.52 

3.27. Find the piecewise-linear e2 vs. e1 characteristic of the circuit shown 
in Fig. P3.53. 

i = 1/2 -
10 

Fig. P3.53 

3.28. (a) Find i vs. e for the circuit in Fig. P3.54. Give values of all slopes 
and break points. 

(b) Assuming IV2I < IV1I repeat (a) with V2 reversed. 



RESISTIVE DIODE CIRCUITS 103 

-
r 
e 

L 
Fig. P3.54 

3.29. Both rectifiers in the circuit shown in Fig. P3.55 may be considered 
ideal. Find i as a function of v, and sketch the result. 

Fig. P3.55 

E = 20 volts 
R1 = lOkn 
R2 = 30kn 
Ra= 40kn 

3.30. Sketch and dimension the current versus voltage curve of the circuit 
11hown in Fig. P3.56. 

Fig. P3.56 

3.31. The general form of the current-voltage characteristics of semi­
conductor diodes may be represented by a variety of piecewise-linear curves. 
A number of such curves are shown with numerical values chosen for con­
venience (Figs. P3.57-P3.59). Draw the piecewise-linear circuits corre­
sponding to each of the above characteristics. Give numerical values for all 
resistances, and for any voltage or current sources which may be used. 
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e e 

-0.10 

Fig. P3.57 Fig. P3.58 

1 

-10 
e 

1 

Fig. P3.59 

3.32. Determine the e vs. i characteristic of the circuit shown in Fig. P3.60. 

ii + 
------- e e----

Fig. P3.60 Fig. P3.61 

3.33. Determine the e vs. i characteristic of the circuit shown in Fig. P3.61. 
3.34. Plot the v vs. i characteristic of the circuit shown in Fig. P3.62 (there 

are three break points). 
3.35. The scheme of Fig. P3.63 is used in a function generator to obtain low 

frequency, low distortion sine waves. Design a four-diode, four-break point, 
piecewise-linear network which will give a reasonable approximation to a sine 
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Fig. P3,63 
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wave for v2• V should be on the order of 5 volts. The characteristic of the 
network should look somewhat like Fig. P3.64. 

Fig. P3.64 

3.36. Two nonlinear functions Y1 = Ji (x1) and Y2 = f2(x2) are tabulated 
below: 

X1 I O 11 I 2 I 3 I 4 16 I 8 110 
Y1 0 2 3.5 4.5 5.25 6 6.25 6.5 

:: I ~ I ~ 13\ 15\ I ~ I 1~ I ~~ 
Make a graphical simultaneous solution of these equations for the conditions 
that 

Y1 = Y2; 

Find the values of x1 and _x2-_ . 
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3.37. If in Problem 3.36 x1 and x 2 are currents in two circuit elements, 
Y1 and Y2 are the voltages across them, and Ji (x1) and /2 (x2) are their volt­
ampere characteristics, drawn an equivalent electric circuit. 

3.38. If in Problem 3.36 x1 and x 2 are the elongations of two springs, Y1 

and y 2 are the spring forces, and Ji (x1) and /2 (x2) are the nonlinear force 
characteristics of the springs, draw an equivalent mechanical system. 

3.39. A type of nonlinear resistor has a volt-ampere characteristic given 
approximately by i = Kv4• For a certain resistor 

i = 1.0 amp for v = 100 volts. 

This resistor is to be used in a circuit where the operating range will be about 
1.0 ± 0.5 amp. 

(a) Find a linear incremental model at the 1.0-amp operating point. 
(b) Find the percent error in voltage across the resistor at the two extremes 

of the current range if the linear model of (a) is used. 
(c) Find a linear model which would have zero error at the two extremes. 

Also find the corresponding per cent error at i = 1.00 amp. 
(d) The nonlinear resistor is now connected in series with a 100-ohm linear 

resistor and a 200-volt battery. Find the current. 
(e) A sinusoidal voltage e = 25 sin wt is now applied in series with the cir­

cuit of (d). Use an incremental model to find the a-c component of current. 

V 

3.40. Plot i vs. v for the circuit shown in Fig. P3.65. 

+ 

Fig. P3.65 Fig. P3.66 

3.41. Find the i vs. e curve for the circuit shown in Fig. P3.66. 
(a) by assumed state method; 
(b) by break-point method. 
3.42. It is desired to construct a diode limiter circuit which clips any input 

waveform in such a way that the magnitude of the voltage of the output 
waveform never exceeds ±2 volts. The idealized transfer curve for this device 
is shown in Fig. P3.67. 

Synthesize this curve using ideal diodes and linear elements. What modi­
fication of the transfer curve would result if vacuum diodes were used in place 
of the ideal diodes? 

3.43. Devise one or more circuit models to represent the piecewise-linear 
driving-point curves shown in Figs. P3.68-P3.73. Use ideal rectifiers, re­
sistance!, batteries, and (if necessary) current sources; · 
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Fig. P3.67 

V 

V2 ------

0 
0 

Fig. P3.68 Fig, P3.69 

V 
V 

-I +I 

Fig. P3.70 Fig. P3.71 
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1 
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-~f- -1 

-2 -2 

Fig. P3.72 Fig. P3.73 

3.44. Using ideal rectifiers, resistors, voltage sources, and (if needed) 
current sources, design a circuit whose input i vs.vis as shown in Fig. P3.74. 

V 

-I 

Fig. P3.74 Fig. P3,75 

3.45. Using ideal rectifiers, positive resistances, and batteries, design circuits 
to give the i vs. v curves shown in Figs. P3.75-P3.77. Curve of Fig. P3.77 

0 

Fig. P3.76 Fig. P3.77 

can be realized with only two ideal rectifiers in a bridge-type circuit, or with 
three ideal rectifiers. 
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3.46. Write a set of linear equations for the curves in Fig. P3.77 and specify 
the range of validity of each equation. 

3.47. It is desired to design a piecewise-linear circuit that will approximate 
the characteristic i = e2 over the range 0 < e < 10 with a maximum current 
error of ±1 percent full scale, e.g., i = (e 2 ± 1) for 0 < e < 10. What is the 
smallest number of diodes needed and what circuit do you propose? 

Fig. P3.78 Fig. P3.79 

3.48. (a) Using linear circuit elements and ideal diodes, design circuits 
that will have the terminal volt-ampere relationships shown in Figs. P3. 78 
and P3.79. 

(b) Sketch the terminal volt-ampere relationship that will result if the two 
circuits devised in (a) are connected in series. 

(c) Repeat (b) for the circuits connected in parallel. 
3.49. A gas diode is placed in series with a 100 kilohm resistance and the 

combination is connected to a variable voltage source. The voltage is slowly 
raised from zero. The circuit draws negligible current until the source voltage 
reaches 100 volts, at which time the current jumps to nearly 1 ma. The voltage 
i!'! now slowly reduced, whence the current decreases slowly to the value 
0.05 ma and then suddenly jumps back to zero. What information does this 
experiment give you about the i vs. e curve of the gas diode? 

--V I 
I 

Slope=G 

Fig. P3,80 

Slope= G 

I 
G>v 

3.50. Using batteries, positive resistances, and ideal rectifiers, design a 
circuit to give the volt-ampere curve shown in Fig. P3.80, 
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3.51. Sketch and dimension i1 vs. e1 and e2 vs. e1 for the circuit shown in 
Fig. P3.81. 

Fig. P3.81 
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Rectification and Detection 

4.1 Introduction 

Rectification can be defined rather broadly as the process that 
modifies the direct component of a voltage or current. Since rectifica­
tion can occur in any circuit that contains a nonlinear element, this 
process plays a very important role in electronic circuits. In some 
cases the effect is desired, as in converting an alternating current to a 
direct current. In others the effect is undesirable: for example, the 
distortion of voltage or current waveforms in circuits that are supposedly 
linear but contain unavoidable nonlinearities. Since nonlinearities will 
be represented in circuit models by diodes or diode approximations, the 
circuit concepts and methods of analysis introduced in this chapter 
(as well as those of the preceding chapter) apply to circuits using triodes, 
transistors, and other devices. 

Rectifier circuits usually include energy-storage elements to smooth 
the ripples in the output voltage, thus producing a more effective con­
version of alternating current to direct current. Such rectifier-filter 
circuits are used in most electronic systems. They serve to convert a-c 
voltages from the power distribution system to d-c voltages required 
for the operation of most electronic devices. 

In rectifier circuits used for power conversion, the input a-c voltage 
amplitude is fixed, but the output power varies with the changing de-

111 
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mands of the d-c load. Important design considerations for this case 
are: the ratio of d-c load power to a-c input power (efficiency), variation 
of output voltage with load current (regulation), and residual a-c 
fluctuations present in the output (ripple). 

Where the speed of response of the rectifier is important (as it may 
be in a recording voltmeter), we are concerned with the detection 
problem. Detection (often called demodulation) is closely related to 
the rectification process. The amplitude of an a-c voltage may be time­
varying, as is the case with the amplitude-modulated carrier of a broad­
casting station. The amplitude varies in accordance with the sound 
level of the speech or music being broadcast. The demodulator or 
detector in an a-m receiver must produce an output that follows the 
audio-frequency variations faithfully. 

Fore 1> 0, e2 = e1 

For e1 < 0, e2 = 0 

(a) 

(bJ 

0 

Fig. 4.1. Basic rectifier circuit. 

4.2 The Basic Rectifier Circuit 

The resistive portion of the basic rectifier circuit, consisting of an 
ideal diode and a load resistance, is shown in Fig. 4.1 (a), together with 
the voltage transfer curve e2 vs. e1 and output waveform e2 for a sinus­
oidal input waveform. 
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Although the circuit converts a sinusoidal input voltage to a unidirec­
tional voltage consisting of half-sinusoids, the efficiency of conversion 
from a-c to d-c is poor (the ratio of peak a-c to average d-c is 1/,r) 
and e2 would hardly be considered a usable d-c voltage. The waveform 
passes through the average value instantaneously, twice during each 
cycle, and obviously has a large time-varying component. However, 
there is a direct component or avera'."",e value. We need only pass the 
waveform through a low-pass filter [R2 and C in Fig. 4.l(b)] to enhance 
thQ unidirectional character of the output voltage and suppress the 
time-varying part. This smoothing or filtering may be considered to be 
a selective separation of alternating and direct components of voltage 
and current. With R2 » R 1 the filter does not appreciably load the 
rectifier circuit, hence the waveform of voltage e2 remains nearly un­
changed. This condition permits us to analyze the circuit as a cascade 
of two separate units, the rectifier circuit and the filter circuit. 

4.3 Capacitor Smoothing 

A single capacitor alone may be connected as in Fig. 4.2 to smooth the 
output of the basic rectifier circuit, but in this case the capacitor greatly 
modifies the current and voltage waveforms of the basic circuit, hence 
the circuit must be analyzed as a unit. The output of the circuit is very 
nearly a smooth d-c voltage, and the conversion from a-c to d-c has been 
materially improved by the addition of the capacitor. The residual 
ripple or fluctuation of the output voltage, which is a function of R, C, 
and the period T, will be calculated quantitatively, together with the 
average value or d-c component of the output voltage. 

The waveform of output voltage e2 with C disconnected is shown in 
the figure as a dotted line. This ·waveform, determined by the resistive 
circuit, forms the skeleton or framework for the complete solution. The 
input voltage is zero for t < 0. 

The output voltage and capacitor current waveforms, with the 
capacitor connected to the circuit, are shown as solid lines. The current 
i~ is nearly constant, since e2 has very little ripple. The ideal diode 
conducts during the first quarter-cycle to charge capacitor C to a voltage 
E 1. As the input voltage falls below E 1, the ideal diode opens. Capac­
itor C then discharges slowly through the large resistance R to the 
value designated as E 2 • This value is reached at an increment of 
time o before the peak of the next cycle. Since for small values of 
ripple the value of o is much less than T, we can approximate (T - o) 
by T to determine E 2 , as indicated in Fig. 4.2. This approximation 
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For RC» T 
E1E-t/RO ~Ei[l-t/RC] 

\ E1 E-t/RC / ""f '\ /' 
__,__ ___ \_ ______ )_' _E ...... t2 __ \ ______ j __ _ 

Ando« T 1: --,+-1:.~ 
2 2 

0 

Hence 
E2 ~ E1[l - T/RC] CE1 w cos wt (for O < t < T/4) 

Ripple (peak-to-peak) 
Ae2 = E1 - E2 

E1T 

CwE1 cos wt {T/4 _ 0 ~rt< T/4 

= RC 
- E1 E-t{RC 

R 

_ Lle2 1 ) E [i T ] D-C output = e2 = E1 - 2 = 2(E1 + E2 = 1 -
2
RC 

R 
'fi . ffi . d-c output 1 T 

ecti cation e c1ency = 11 = k . = -
2

RC 
pea a-c mput 

E1 - E2 T 
Per-unit ripple = ~ ~ RC 

Fundamental ripple frequency = w 

Fig. 4.2. Basic rectifier circuit with smoothing capacitor. 

eliminates the need for solving a transcendental equation to find 8, and 
yields adequate accuracy for most purposes. 

If the values of Rand Care chosen so that RC» T, the exponential 
capacitor-discharge curve can be approximated by a linear relation that 
matches the initial slope. Using these two approximations, we find that 

E2 = E1 (1- :c) (4.1) 

The ripple is thus a sawtooth voltage with a peak-to-peak amplitude 

T 
Ae2 = E1 RC 

The average value of e2 or the d-c voltage is 

"2 = E, - d;2 = E, (1 - 2!c) 

(4.2) 

(4.3) 
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and the per-unit ripple is 

T 
::::: RC 

115 

(4.4) 

The rectification efficiency (11) may be defined as the d-c output divided 
by the peak value of the a-c input (E1). In terms of the input angular 
frequency (w = 21rf), it is apparent that the condition for small values 
of ripple and maximum efficiency will be wRC » 1. In the limit the 
d-c output becomes equal to the peak value of the a-c input, and the 
circuit becomes a perfect peak detector. 

An alternative approach to the calculation of the ripple voltage is 
based on the fact that the output voltage is very nearly constant and 
approximately equal to E1, the peak value of the input voltage. The 
current through R, very nearly constant at Ei/R, removes a total 
charge 

(4.5) 

from the capacitor when the diode is off. When the capacitor voltage 
has reached a steady-state value, the charge added to the capacitor 
during the interval o in each cycle must equal the charge lost through R 
during the remainder of each cycle. In order to add a given amount of 
charge AQ to the capacitor, the voltage must change in accordance with 
the relation AQ = C Ae2 • Substituting for AQ in Eq. 4.5 leads to the 
same value of peak-to-peak ripple voltage obtained by the previous 
method (Eq. 4.2). 

The results of Fig. 4.2 are substantially unchanged if a diode with 
nonzero forward and finite back resistance is substituted for the ideal 
diode, provided that the forward resistance is small, and the back 
resistance large, compared with the load resistance R. 

Rectifiers intended for power applications cannot always be operated 
with a very large value of R. With lower values of load resistance, the 
d-c output voltage drops further from the peak a-c input voltage and 
ripple voltage increases. Then a more elaborate smoothing circuit must 
be used in order to maintain low output ripple and good voltage regula­
tion. 

4.4 Rectifier Circuit with d-c and a-c Input Voltages 

The analysis of nonlinear circuits with both a d-c source and an a-c 
source simultaneously applied is a problem of general interest. Whereas 
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the individual sources can be considered separately in linear circuit 
analysis, and the solution obtained by superposition, the total applied 
voltage must be considered (at least initially) in nonlinear or piecewise­
linear circuits. The rectifier circuit under consideration will illustrate 
this fact. 

(a) 

\ I \ / \ 
\ I \ I \ 

Eo --\---; --\---; -'-

\_/ \_/ 

0 
(c) 

0 

Maximum positive} 
peak of e1 

(b) 

E -t/RC 
mE 

\ I \ I \ 

---~\--~-'---------'- t 
0 

(d) 

Fig. 4.3. Rectifier circuit with d-c and a-c input. 

The circuit shown in Fig. 4.3(a) is identical to the one in Fig. 4.~, 
except that the input voltage now has both a d-c and an a-c component. 
The a-c voltage waveform is again assumed to begin at t = 0. From the 
considerations of the preceding article, the transfer curve of Fig. 4.3 (b) 
can be deduced. The unity slope shown for e2 (the d-c component of e2 ) 

vs. the positive peak of e1 is an idealization which assumes negligibly 
small ripple, source resistance, and diode forward resistance. The output 
waveforms for particular input combinations of a-c and d-c components 
follow directly from this transfer curve. Two examples are shown in 
-F,ig, 4.3 (c-) and -(d). 
-, ,In-Fig. 4.3(c); the d-:c_-source E0 exceeds the:m~nitude Ei- and-is-so 
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polarized that e1 is never negative. Thus the resistive circuit operates 
entirely on the unity slope portion of its transfer curve. In the absence 
of the capacitor, the input sine wave would be reproduced at the output, 
as shown by the dotted curve in Fig. 4.3(c). With the capacitor con­
nected, the output voltage is nearly constant at Em, Here E0 may be 
assumed to apply a static charge to the capacitor, after which the circuit 
behaves like the one in Fig. 4.2. The reference level for the sine wave 
is + E 0 instead of zero. 

With the polarity of E0 reversed, the waveforms are as shown in 
Fig. 4.3 (d). The source E 0 biases the sine wave negatively so that only 
the positive peaks cause diode conduction in the resistive case. Obviously, 
if E0 exceeds E 1 in magnitude, the diode will never conduct and the 
output will be zero. The capacitor smooths the waveform and produces 
a d-c voltage near the maximum positive peak Em, 

4.5 The Clamping Circuit 

Suppose the voltage acros~ the diode of the basic rectifier circuit is 
considered to be the output of the circuit. The circuit is rearranged as 
shown in Fig. 4.4(a), to call attention to this fact, but it is still the same 
circuit. Results obtained previously can therefore be used directly. 
The waveform of diode voltage was not plotted in the previous figures, 
but it is readily deduced as the difference between the input voltage and 
the voltage across load resistance and capacitor. The voltage wave­
forms for the circuit are shown in Fig. 4.4(a), assuming that the sinus­
oidal input voltage begins at t = 0, and that the capacitor has no initial 
charge. 

The output waveform consists of the input waveform pushed up by 
the d-c voltage across the capacitor. Since this voltage is approximately 
equal to the peak value of the input voltage (E1), the negative peak of 
the output waveform is held or clamped at reference level (zero potential). 
With an ideal rectifier in the circuit, e2 cannot be negative by even a 
small amount. Conduction of the diode immediately charges the 
capacitor to the value required to maintain the output voltage at zero 
as e1 goes to its negative peaks. With an actual diode in the circuit, the 
output voltage i~ very slightly negative when the capacitor is being 
recharged. 

Reversing the direction of the diode reverses the polarity of the charge 
on the capacitor and depresses the output waveform by an amount 
approximately equal to E 1• In this case, Fig. 4.4 (b), the positive peak 
of the output waveform is clamped to the reference potential. 
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Fig. 4.4. Clamping circuit. 
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The reference potential can be shifted up or down by putting a d-c 
source in series with the diode, as shown in Fig. 4. 5 (a) and (b). The 
voltage level at which the output waveform is held depends on the 
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Fig. 4.5. Clamper with d-c source included. 

magnitude and polarity of the d-c. However, once equilibrium has been 
established, the shape of the output waveform is the same as before. 

The circuit under discussion is commonly called a clamping circuit 
or clamper, since it holds one peak of a waveform at a fixed potential. 
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Such descriptive names are frequently used because they are helpful 
in discussing the functional behavior of complex electronic systems. 
However, descriptive names may obscure basic similarities. Recog-

eo=Eo+e1 +e2 
e1 =E1 sin wt 

(a) 

R 

eo=Eo+e1 +e2 
e1 =E1 sin wt 

(b) 

+Eo 

0 

Fig. 4.6. Variations of clamping circuit. 

nition of basic similarities between circuits, as in the case of the clamper 
and the basic rectifier, leads to a better understanding of both circuits 
and also saves analysis time. To emphasize this point, two other 
variations of the clamper circuit are shown in Fig. 4.6. The circuit 
ehown in Fig. 4.6(a) has a d-c source in series with the input sinusoid, u. 
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trivial variation of Fig. 4.5(a). Obviously the output is clamped at 
zero, and the charge on the capacitor takes up the effect of the d-c 
source. The circuit shown in Fig. 4.6 (b) is a-c coupled. Since the 
capacitor blocks direct current, the d-c source cannot influence the 
output after a charge has been established. 

4.6 The Voltage Doubler 

The clamper of Fig. 4.6(b) yields an a-c output voltage that reaches 
a maximum value very nearly equal to the peak-to-peak value of the 
a-c input. The basic rectifier circuit, Fig. 4.3, produces a d-c output 
nearly equal to the maximum peak of the input voltage (a-c plus d-c). 
If the rectifier circuit is connected to the output of the clamper, a d-c 
output voltage is obtained which is nearly equal to the peak-to-peak 
value of the a-c input. Since this is nearly twice the d-c voltage output 
from a single-diode rectifier and smoothing capacitor, the circuit is called 
a voltage doubler. 

The voltage-doubler circuit shown in Fig. 4.7 is seen to consist of a 
clamper followed by a basic rectifier circuit with a smoothing capacitor 
C2 • The resistance R1 associated with the clamper is usually omitted 
from the complete circuit, since it tends to reduce the voltage across C1. 

The waveforms shown in Fig. 4.7 depict the steady-state operation of the 
circuit. It is assumed that the rectifier circuit and smoothing capacitor 
C2 constitute insufficient load to affect the operation of the clamper 
circuit. Thus voltage e01 is assumed to be a sine wave of peak amplitude 
E 1 added to a d-c component of value E 1, as in Fig. 4. 6 (b). The rectifier 
circuit, with e01 as an input, gives a nearly constant d-c voltage e2 , with 
a per-unit ripple equal to T /R2C2• 

If the load resistance R2 in Fig. 4. 7 corresponds to the high resistance 
of an ordinary d-c voltmeter,* the combination constitutes an a-c volt­
meter which reads the peak-to-peak value of the a-c input wave directly 
and linearly in terms of the d-c output voltage. · 

One terminal of the input source e1 in Fig. 4. 7 is common to one 
terminal of the output voltage e0 . Such a common terminal or node is 
usually very desirable in a circuit, since it permits the establishment of 
a common reference potential. 

By way of contrast, a variation of the voltage-doubler circuit is shown 
in Fig. 4.8. In this case there is no terminal common to the a-c input 

* For example, a d-c milliammeter (0 to 1 ma) with a series resistance of 1000 ohms 
per volt of d-c voltage to be measured; or a Oto 50 d-c microammeter in series with 
20,000 ohms per volt. 
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Fig. 4.7. Voltage doubler. 

C2 
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eo 

l 

source and the d-c output voltage. The circuit of Fig. 4.8 has a sym­
metrical appearance, and if Ca = Cb, the usual case, the circuit is also 
electrically symmetrical. The d-c potential difference is the same 
between input terminal (B) and either output terminal. Since one 
diode conducts only on the positive peak of the a-c voltage, and the 
other conducts on the negative peak, input terminal (A) is alternately 
"connected" to the positive and negative output terminals. Thus e0 

has a magnitude approaching the peak-to-peak value of the input sine 
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wave, but the output voltage relative to the input terminal (B) extends 
from +E1 to -E1, e,h E, 

]"+ 0nf\f'fjE1
sinw: 
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CaCb RrlJ \ / \ / \ 
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eo = eb + ea 

2E1 eo 

0 

T 
2E1 RoC T 

Per-unit ripple = - = -
2E1 RoC 

Fundamental ripple frequency = 2w 

Fig. 4.8. Balanced voltage doubler. 

The circuit consists of two basic rectifiers connected back to back. 
The sum of waveforms ea and eb yields the output waveform e0• Because 
ea and eb are "out of step" by half a cycle, the output ripple is the same 
as the ripple on either ea or eb. The per-unit ripple is 

2E1T/R0C T (4.6) 

identical to that obtained for the unbalanced doubler. However, the 
fundamental ripple frequency is twice the input frequency in this case, 
whereas in the circuit of Fig. 4.7 the ripple frequency is equal to the 
input frequency. 
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Fig. 4.9. Voltage doubler build-up. 

4.7 Voltage-Doubler Build-Up 

· As indicat~d by ·the waveforms of Fig. 4.8, the transient build-up of 
voltage -at- the output- of the balanced voltage doubler is very simple. 
The first positive half-cycle of e1 applied to the circuit charges capacitor 
Ca to a voltage of about E 1 volts. The first negative half-cycle does the 
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same for Cb; after that the circuit is in a steady-state condition. Only 
the small charge lost through the load resistances must be supplied 
by successive cycles. 

For the unbalanced voltage-doubler circuit of Fig. 4.7, the transient 
build-up proceeds more or less stepwise toward the final value, as 
indicated in Fig. 4. 9. Initially, let us assume the load resistance to be 
so large that the current through it can be neglected. Two of the four 
possible diode states are shown in the figure. A third state, that with 
both diodes non-conducting, occurs twice every cycle. The state 
with both diodes closed does not occur. With the input waveform shown, 
the circuit alternates between the two states for which the simplified 
circuits apply. The waveforms are drawn for the special case of C1 = C2. 

As is often the case for nonlinear circuits, the build-up transient of e0 is 
simpler to analyze if a square wave is applied to the circuit instead of a 
sme wave. 

4.8 Step-Charging Circuit with Rectangular-Wave Input 

Suppose the input voltage e1 of the voltage doubler consists of a d-c 
component Ea and a rectangular waveform eb having a peak-to-peak 
value Eb and an average value eb equal to Ebboi/ (01 + 02) as shown in 
Fig. 4.10. The total direct component of input voltage e1, the sum of 
the d-c source voltage ea and eb, influences the d-c component of wave­
form e2 but has no effect on e3 or e0. For the waveforms shown, eb is 
assumed to start from a positive peak, with a voltage Ea+ Eb on C1. The 
waveforms are again drawn for C1 = C2 , but are labeled for the general 
case. 

The sequence of events ( diodes opening and closing) proceeds in the 
same manner as with the sine wave input. On the negative-going steps 
of the input waveform, diode D 1 closes and capacitance C1 is charged 
to the voltage Ea, On the positive-going steps of ei, diode D2 closes, 
D 1 opens, and a portion of the charge on C1 is placed on C2 • With 
ideal rectangular waves, the events on each rise or fall occur at the same 
time. Since the transitions are instantaneous, the capacitors are charged 
or discharged instantaneously in the absence of resistance. This requires 
an impulse of current (an infinite amplitude, zero duration pulse). The 
effective area of the impulse corresponds to the charge AQ = C !l.E 
added to or subtracted from the effective capacitance C by a voltage 
change AE. 

The waveforms of Fig. 4.10 show considerable similarity to those of 
Fig. 4.9, aside from the effects of the d-c component. The time of open-
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ing and closing of diodes, in this case, will coincide with the switching 
instants of the rectangular wave. As in the case here, the square-wave 
response of a circuit can often be determined and sketched more easily 

T 
(.1eo)i 

Let Ci/(C1 + C2) = k 

Then for the nth pulse 
(Aeo)n = Eb(l - kr-1k. 

After the nth pulse 
eo = }:; (Aeo)n = Eb [I - (1 - k)n] 

4 

_o __ ...___ __ ._ __ _. __ ""'--_ _..._--4 __ _...__ f--t 

Eb------------------i-----------~ -
(t:i.e 0 )n = Eb(l - k)n-lk 

(.1e0 ) 2 = Eb(l - k)k T 
2 T (.1e0 )3 = Eb(l - k) k 

(t:i.e0 ) 1 = Ebk 
o·l---__.__., ___________________ t 

Fig. 4.10. Step-charging circuit with rectangular input waveform. 

than the sine-wave response. In such cases it is not amiss to consider 
the square wave as a rough approximation to a sine wave. If a better 
straight-line or piecewise-linear approximation to a sine wave is desired, 
a trapezoidal waveform can be used. The trapezoidal waveform sepa-
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rates diode events in time, and also results in constant charge or discharge 
current, since dei/dt is constant during the rise or fall. 

4.9 An Electronic Frequency Meter 

In discussing the voltage doubler, the use of the circuit as a voltmeter 
to read peak-to-peak a-c voltages was suggested. This application 
requires a very high value of load resistance to approach the true 
reading. The capacitors C1 and C2 were logically, but not necessarily, 
equal. In the step-charging application, a ratio Ci/C2 less than one 
yields smaller step increments and the ref ore a slower rise. Ratios of 
the order of 0.1 to 0.5 are common in practical circuits. 

Let us now consider the same circuit, with C2 very large (Ci/C2 small) 
and with the output load resistance small. Let this resistance include 
the resistance of a 0-1 ma d-c milliammeter, as shown in Fig. 4.11. 
Since there can be no average current through C2 , the milliammeter 
registers the average value of charging current supplied to C2 through 
diode D2 and capacitor C1. 

If the discharge of C1 goes to completion during the time the input 
voltage is at a minimum, then virtually the entire peak-to-peak change 
of voltage e1 occurs across C1. Actually, the change Lle2 equals 
EbCi/ (C1 + C2) which is somewhat less than one per cent of Eb if 
C2 ~ 100C1. Thus each positive-going change increases the charge on 
C 1 and C 2 by a fixed amount 

(4.7) 

This amount of charge is added once during each cycle of the input wave. 
Thus the average current through the meter (assuming e0 « Eb) is 
i = LlQ/rr = LlQfr; hence fr = i/EbC1. So long as LlQ remains con­
stant, i is proportional to fr, and the instrument can be calibrated to 
read fr directly. The charge LlQ per cycle is constant so long as peak­
to-peak voltage is constant; hence the circuit is often preceded by an 
amplitude limiter. The reading is independent, of waveform, provided 
the charge or discharge of C 1 has time to reach completion each time 
the voltage swings positive or negative. It is also assumed that the 
meter reading is not affected by the pulsations of the current. The 
current could be further smoothed by another large capacitor connected 
directly across the milliammeter. 

Deviation from linearity in the relation fr vs. i may be expected for 
very low values of i. Contact potentials, increase in actual diode 
resistances, or a variety of stray effects influence the behavior near zero 
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current. At the upper end of the scale, the curve will deviate from 
linearity if output voltage e0 becomes comparable to Ae1. 

C2>>C1 

k=C1l<C1 +C2)~0 

...---1------------------t 

1 

Fig. 4.11. An electronic frequency met.er. 

4.10 Full-Wave Rectifier with Smoothing Capacitor 

The analysis of the full-wave rectifier circuit poses no new problems, 
but this class of circuits is sufficiently important to justify consideration. 
The transfer curves for several variations of the full-wave rectifier circuit 
were presented in Chapter 3. The addition of a smoothing capacitor to 
the circuit yields results similar to those obtained for the basic rectifier 
circuit. With a given capacitor, load resistance, and input frequency, 
the ripple is smaller for the full-wave rectifier, since each half-cycle 
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recharges the smoothing capacitor. The capacitor discharge involves 
an interval approximating T /2, compared with T for the half-wave 
rectifier. 
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For each circuit: e2 =E2 sin wt, (.,)R0C >> 1 

Fig. 4.12. Full-wave rectifier circuits with smoothing capacitor. 

A very common form of the circuit is shown in Fig. 4.12(a). Here, 
half of the voltage available from the transformer secondary is applied 
to each half of the circuit. If the transformer center tap is not used, or 
if the source has no center tap available, the circuit may take the form 
shown in Fig. 4.12(b) or (c). These two forms are not well suited to 
power-rectifier applications because of the power lost in the resistors R1. 

The circuit of Fig. 4.12(c) produces a slightly larger d-c voltage than 
the circuit of (b). When no center tap is available, the bridge circuit 
shown in Fig. 4.12(d) is preferable for power-rectifier applications. Of 
the circuits (b), (c), and (d), this one is unique in providing an output 
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that approaches the peak of the a-c supply voltage without wasting 
power in resistances (R1). 

4.11 Ripple Filter with Capacitance Input 

A single smoothing capacitor used in conjunction with a rectifier is 
usually adequate for low-current loads such as those encountered in 
instrument applications, but when a d-c source is required to supply 
larger currents, additional filtering may be necessary. Typical examples 
are the power supplies that provide the d-c operating voltages for 
vacuum-tube electrodes in electronic systems. Voltages of 100 to 300 
volts and currents of the order of 100 ma or more are common for low­
power triode and pentode circuits. The effects of a poorly filtered 
power supply on an audio system can be heard directly in the form of 
an objectionable hum. The effects of ripple on the behavior of other 
types of circuits can be equally serious. 

When ripple reduction is important, a full-wave rectifier - such as 
the one shown in Fig. 4.12(a) - is the logical choice. Consider the 
rectifier and filter circuit shown in Fig. 4.13, where an inductor and a 
capacitor have been added between the original smoothing capacitor 
and the resistive load. With these energy-storage elements in the 
circuit, a general solution is lengthy. However, in the design of a 
power-supply ripple filter we are obviously interested in making the 
ripple output very small comp~red with the d-c output. Using this as 
an assumption, we can reduce the problem to much simpler proportions. 

It is convenient to resolve each current and voltage into a steady 
component (d-c) and a ripple component (a-c), as indicated in Fig. 
4.13. This is possible for any periodic time function, regardless of the 
relative amplitudes of the d-c and a-c components. 

We can establish the d-c condition by inspection. Because the 
capacitors cannot pass d-c 

(4.8) 

If we assume that the inductor L has zero resistance, then there can be 
no d-c drop across it, and 

(4.9) 

The ripple waveforms can be readily derived if the assumption of 
small percentage ripple is carefully exploited. First, C1 must be large 
enough to make e2 r much smaller than Ei, in which case the current i 1 

will consist of brief pulses occurring every half-period. Since there are 
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Let i1(t) = i1 + i1r(t) 

i2(t) = i2 + i2r(t) 

is(t) = is + isr(t) 

e2(t) = e2 + e2r(t) 

ea(t) = ea + esr(t) 

Where, for example, 

· i1 = _! (T i1(t) dt 
1 rlo 

and i1r(t) = i1(t) - i1 1 

hence "i7 foT i1r(t) dt = 0 

Assume: o ~ 0 

Note: 

E1 >> e2r >> ear 

i1r » i2r » iar 

- - -
i1 = i2 = is = ea/ R 
_ _ Ti1 
ea= e2 = E1 - -

4C1 

0 

0 

Tit 
-4C1 

0 

[I E1 sin wt I 
".:/ /-

\ I 
\ I 
\ I 
\1 

288 --y3C1 LC2 

peak to peak 

Fig. 4.13. Ripple filter with capacitance input. 

two pulses in the period T the charge conducted during each pulse is 
related to the average current as follows: 

T-
Q1 = - i1 (4.10) 

2 

The amplitude of the equivalent rectangular current pulse of duration 
o is 

(4.11) 
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Three additional closely related assumptions are necessary to complete 
the solution, all based on the assumption of adequate filtering. The 
ripple current i2r must be much smaller than i 1r, so all of i 1r can be 
considered to flow through C1. The ripple voltage ear must be much 
smaller than e2r, so all of voltage e2r c,an be considered to be across L. 
The ripple current through the load R must be much smaller than i2r, 

so all of i2r flows through C2 • Integration of the current waveform i1r 

then gives the ripple voltage across C 1 : 

••• = ~
1 
f i,, dt + K 1 (4.12) 

The constant K 1 is adjusted to give e2r zero mean value. Successive 
integrations yield i2r and ear thus 

i2, = -1-, J e2,dt + K2 (4.13) 

ea,= ~
2 
J i2, dt + Ks (4.14) 

Note that the peak value of ear, the output ripple, is directly proportional 
to the load current for this circuit. 

The per-unit ripple (peak-to-peak) of the output voltage is 

ear Ta 
-= 

288 v3C 1LC2R ea 
(4.15) 

or 

ear 0.5 C~,) C~J 
-= 
ea wLR 

(4.16) 

where w is the angular frequency of e1 . 

Equation 4.15 shows that increasing any of the elements C1, L, 
or C2 will decrease per-unit ripple. These three elements must be 
chosen to yield the desired value of ripple. Since an increase in power-

' supply frequency eases the filtering problem, portable, mobile, or air­
borne electronic systems (which are not bound to a 60-cps a-c supply 
frequency) usually make use of much higher primary a-c supply fre­
quencies, for example 400 cps or 1200 cps. 

Note that because of the successive integrations, the final ripple 
waveform is very nearly sinusoidal. If the peaks occurred at 0.125T 
instead of 0.105T from the zero crossings, the wave would approach a 
sine wave. In any event, ear is close enough to sinusoidal to assume 
it to be a sine wave if further filter elements are to be added. 
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Assume: i2 > 0 
i2r » iar 
e2r >> ear 

Note: i2 = i3 

e1 = E 1 sin wt 
w = 21r/T 
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Fig. 4.14. Ripple filter with inductance input. 

4.12 A Ripple Filter with Inductance Input 

The capacitance-input filter described in the previous article requires 
large peak currents from the rectifying diodes in order to supply a 
nominal average or direct current. Since these peak currents are caused 
by the input capacitor Ci, let us remove C1 from the filter of Fig. 4.13, 
leaving the configuration shown in Fig. 4.14. If the inductance L is 
large enough to make the ripple amplitude i2rcmax) smaller than the 
average value 12, then the current i 2 is always positive, and one diode 
or the other is always conducting. In addition to assuming i2 always 
positive, let us assume effective filtering so that i2r is much greater 
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than iar and e2r is much greater than ear, as in the previous discussion. 
Also as before, we have 

But here 

(4.17) 

(4.18) 

(4.19) 

As in the case of the capacitor-input filter, successive integrations of the 
ripple voltage e2r yield the output ripple waveform ear: . 1; 

t2r = £ e2r dt + k1 (4.20) 

ea, = ~ f i2, dt + k2 (4.21) 

A ripple filter with inductance input yields a d-c output voltage approxi­
mating the average value of the rectified waveform; whereas, with 
capacitance input, the d-c output approaches the peak value of the 
rectified sine wave. 

If the total ripple current i2r is assumed to be sinusoidal and much 
greater than iar, then it follows directly that the ripple output ear is 
approximately sinusoidal (at frequency 2w) and has an amplitude 

ear max = i2r max/ 2wC 

1 
E1-

wC 
~0.1~ 

where w is the angular frequency of e1. 

(4.22) 

The ripple voltage ear is nominally independent of load current I a for 
the inductance-input filter. This means that the inductance-input filter 
is well suited to applications requiring high output currents. In contrast, 
the ripple output from a capacitor-input filter is directly proportional to 
the useful load current or inversely proportional to load resistance 
(assuming that d-c voltage remains nearly constant). 

The inductance-input filter requires a minimum load to sustain the 
mode of operation just described. As shown in Fig. 4.15, the d-c output 
voltage tends to rise sharply below a certain critical load current. Below 
this value of current, the diodes are both off during part of the cycle and 
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our analysis does not apply. For zero load current (infinite R), the d-c 
output voltage approaches E 1. The critical value of load resistance for 
which i2 just reaches zero at one point in each half-cycle corresponds to 
the condition 

From Fig. 4.14 

. 0 2 E1 
i2r max = • 1 wL 

E1~=~-::.:-==:.=.:~~:======-\ Excessive C input 

0.636E1 
\Voltage rise 

', 
Excessive 

ripple 

~-------------/ 
I 

I 
/Rmax 

I 
I 

L input 

o.__ ________________ ia 

Fig. 4. 15. Qualitative comparison of C-input and L-input filters. 

(4.23) 

(4.24) 

The maximum value of load resistance which will maintain continuous 
diode conduction and thus good regulation and low ripple, as calculated 
from Eqs. 4.17--4.24, is 

Rma.x ~ 3wL (4.25) 

Operation in the flat region of the curve of output voltage versus output 
current can be assured by permanently connecting a resistance Rmax in 
parallel with the useful load. Then, even if the load resistance becomes 
infinite, the inductor current never goes to zero. 

4.13 Amplitude-Modulation Detector 

The basic rectifier circuit is also the basic amplitude-modulation 
(a-m) detector. Thus far we have considered several aspects of the 
behavior of this circuit, but always with a fixed-amplitude input signal. 
An amplitude-modulated sinusoid used as the input signal introduces 
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another variable: namely, the time-varying peak value. The waveform 
and the mathematical representation of a simple amplitude-modulated 
voltage are shown in Fig. 4.16(a). The wave has a sinusoidal "carrier" 
(frequency we), the amplitude of which is varied or modulated by a signal 

e 

(a) 

e = E(l + m sin Wmt) sin Wet 

= E [sin Wet+~ cos (We - Wm)t - ~ COS (We+ Wm)t] 

(b) 
I I I I w 

0 (We - Wm) We (We + Wm) 

(e) 0 

Fig. 4.16. Basic amplitude-modulation detector. 

of lower frequency wm, The modulation index, m, is the fractional 
variation of E. For m = 1 (100 per cent modulation), the envelope 
rises to 2E0 and decreases to zero. The frequency spectrum shown in 
Fig. 4.16 (b) is a graph of the amplitude versus frequency of the three 
components of a simple a-m wave. 
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The basic rectifier circuit is a widely used a-m detector; almost every 
a-m radio receiver uses one. The output of a resistive rectifier circuit 
with an a-m signal input is shown in Fig. 4.16(c). Either the peak 
amplitude (envelope) or the average value of each half-cycle contains 
the variation due to the modulating signal. The use of a capacitor to 
smooth out the high-frequency variations is shown in Fig. 4.16(d). To 
eliminate ripple and produce d-c output, we stated in Art. 4.3 that the 
capacitance C should be made as large as possible. We now desire to 
remove as much of the ripple as possible while preserving the modulation 
frequency. This imposes conflicting requirements on the size of capaci­
tance C, and therefore requires a compromise. As the amplitude of the 
modulated wave builds up, the capacitance C is readily charged to nearly 
peak voltage by the diode. As the amplitude diminishes, the capacitance 
must discharge rapidly enough to follow the envelope. Too large a 
capacitance results in envelope distortion, as indicated in Fig. 4.16 (e ). 
Obviously, for we» wm, the removal of ripple from the output can be 
made more complete without causing enyelope distortion. 

Let us consider in more detail the factors that influence the choice of 
an appropriate value for capacitance C. To avoid envelope distortion, 
the downward slope of the exponential discharge of capacitance C must 
exceed the downward slope of the modulation envelope. Assume the 
envelope to have reached a value Ea at time ta during the downward 
swing as indicated in Fig. 4.17(a), and assume that the capacitor Chas 
been charged to this peak value. Then the capacitor voltage during 
discharge is 

and the initial slope is 

dee 
dt 

t = ta 

-Ea/RC 

-E(l + m sin wmta) 

RC 

(4.26) 

(4.27) 

Let us postulate that the design value of RC will prove to be much larger 
than the period of the carrier frequency (RC» Tc = 21r/wc), so that the 
initial slope applies during the entire interval between carrier-frequency 
cycles. The slope of the modulation envelope is 

de 
- = 1n<IJmE COS Wmt 
dt 

(4.28) 
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Modulation envelope: . 
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mWmE cos Wmta l 
-Ea/RC < ; 

mwmRC cos Wmta l 
- (1 + m sin Wmta) < 

(b) 

Fig. 4.17. Envelope distortion and ripple in diode detectors. 

To avoid distortion, therefore, 

(1 + m sin wmta) 
-mwm cos Wmta < RC (4.29) 

For the least favorable value of wmta, 

RC~ VI - m2 

mwm 
(4.30) 

Note that for m = 1 the inequality cannot be satisfied no matter how 
small RC is made (RC = 0 is of no practical value). For m ~ 1, a 
small amount of envelope distortion will inevitably occur near minimum 
envelope amplitude, since the exponential slope approaches zero linearly 
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with amplitude, whereas the slope of the envelope goes as a cosine 
function. The specific value of RC, then, is chosen on the basis of maxi­
mum modulation index m and the maximum Wm for which freedom from 
distortion is desired. 

For we» wm, ripple is relatively small; but if this condition does not 
hold, the ripple may dictate a lower limit for RC. The peak-to-peak 
ripple calculation is shown in Fig. 4.17 (b). 

4.14 Square-Law Detection 

Another method of detecting amplitude-modulated signals is called 
square-law detection. Any nonlinear curve can be represented by a 
power series expansion about a given point; and by proper selection of 
this operating point the square-law term can be enhanced. We shall 
therefore limit the present discussion to a square-law approximation. 
Introduction of higher-order terms refines the result, but adds to the 
algebraic complexity. Square-law detection is the fundamental process 
involved in frequency conversion or mixing. In addition, square-law 
analysis is useful for calculating harmonic distortion introduced by 
amplifiers or other circuits that are supposed to be linear. 

Suppose the diode shown in Fig. 4.18 can be represented with reason­
able accuracy by i = Ke2 over some range of i and e. To obtain square­
law detection the source and load resistances should be small so that the 
input voltage appears almost entirely across the diode and the current 
is proportional to the square of the voltage. (If R were made very large, 
current and voltage would be nearly linearly related.) 

Let us first consider a sine wave applied to the circuit. As shown in 
Fig. 4.18, a d-c bias is used to insure operation in the square-law region 
of the diode curve. The voltage Ea produces a small d-c output voltage 
equal to RKEa2 , Application of the sinusoidal input of frequency we 
results in an output at we, a double-frequency term at 2we, and an 
additional d-c term due to carrier rectification. 

The sinusoidal input corresponds to an amplitude-modulated wave 
with m = 0. Now, letting m have nonzero values, we obtain more 
complicated waveforms and trigonometric expressions, as shown in 
Fig. 4.19. Considering the expression for e2 , after squaring the expres­
sion within the bracket, we see that the first term KREa 2 = IaR merely 
represents the quiescent d-c output. The next term is the original 
amplitude-modulated sine-wave input multiplied by 2KREa. For 
detection, the useful output comes from the last term designated by (A). 
The expansion for this term is shown in Fig. 4.19 as e2 (A). The two 
terms in bold-face type represent the low-frequency output. The prod-
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uct terms, if fully expanded, would yield frequencies (2wc + wm), 
(2wc - wm) and (2wc + 2wm), (2wc - 2wm), These, together with all 

e2 = iR-::::,RKe1
2 

____ __,~- for e2 << e 

e1 = Ea 
fort< O 

0 

0 

Emin Ea Emax 

e2~RK[Er.? + 2EaEsin Wet+ E 2 sin2 Wet] 

~RK [Ea2 + E2
2 + 2EaEsin Wet - E2

2 
cos 2wet] 

Fig. 4.1 B. Square-law rectification of a sine wave. 

e 

terms other than the two low-frequency terms and the d-c term, can be 
removed from the output by means of a low-pass filter. A capacitor C 
with negligible reactance at carrier frequency (I/wcC « R), but large 
reactance at modulation frequency (I/wmC » R), would suffice. The 
frequency spectrum shown in Fig. 4.19 places in evidence each term of 
the trigonometric expansion of e2 (t). It is much more readily drawn 
than the time function, and helps in visualizing the frequency distribu­
tion and relative amplitudes of the individual sinusoidal terms. 

Actually, the desired output is KRE2 m sin wmt, For a sinusoidal 
modulating signal, the second-harmonic term KRE2 (m2/4) cos 2wmt 
may often be largely eliminated from the output by a suitable filter. 
However, if the modulation extends over a range of frequencies (as, for 
example, the speech or music broadcast by a radio station), then 
harmonic distortion is inevitable. The ratio of the undesired term to 
the desired term is m/4; thus the square-law detector must be used in 
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R 

T+ 
e2 = iR :=::::RKe12 

1- for e2 <<e 

foro/ Emin < e < Emax 
i=Ke2 

ei =Ea+ E(l + m sin 6'mt) sin 6'et 

0 

e2 = RK [Ea + E (1 + m sin Wm t) sin We t]2 

= RK [Ea2 + 2EaE (1 + m sin Wmt) (sin 6'e t) 
+ E 2 (1 + m sin Wm t)2 (sin We t)2] 

(A) 

~ = RKE2 [ 1 + 2m sin wmt + '%
2 -1¥: cos 2wmt] [½ - ½ cos 2wct] 

[
1 m2 m2 1 

= RKE2 

2 + m sinwmt + 4 - 4 cos2wmt - 2 cos 2wct 

m2 m2 ] 
- m sin wmt cos 2wct - - COS 2wct + - cos 2wmt COS 2wct 

4 4 

Fig. 4.19. Square-law detection of an a-m sine wave. 
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applications where the modulation index of the applied wave is likely 
to be small. 

4.15 Balanced Modulator Circuits 

Modulation of a time function e1 (t) by another time function e2 (t) is 
a nonlinear process. The resulting modulated wave contains frequencies 
that were not present in the original time functions. If the two time 

DB rB 
(a) 

DB 

(c) 

rB DB 
(b) 

DB 

(d) 

Fig. 4.20. Balanced modulator and demodulator circuits. 

+ 

functions are sine waves of angular frequency w1 and w2 , the modulated 
wave may contain frequencies w1 and w2, (w1 + w2) and (w1 - w2), 
2wi, 2w2 and many others. The components present in the frequency 
spectrum of the output depend upon the circuit and the degree of 
nonlinearity. 

Demodulation (detection) is a variation of the modulation process, 
usually aimed at recovering one of the signals in a modulated wave. 
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Both the diode detector and the square-law circuit carry out the 
demodulation process by rectifying and then filtering the modulated 
wave. When a low-frequency signal is to be recovered, the required 

jt------+----+----+--
· -p • • •DD 

DOD ••· 
(b) 

Fig. 4,21. Waveforms for the circuit of Fig. 4.20(a). 

filter is low-pass and may be a simple smoothing capacitor. A band-pass 
filter is used if one desires to select a particular high-frequency com-
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ponent of the modulated wave. Such a filter might well consist of a 
parallel RLC circuit resonant at the desired frequency. 

Balanced modulator or demodulator circuits make use of symmetry 
to eliminate undesired frequency components. These circuits are 
sometimes called keyed rectifiers since they are full-wave rectifiers with 
two input signals. See Fig. 4.20. The important point to observe is 
that in all of the circuits one input is applied to the diodes symmetrically, 
whereas the other is applied antisymmetrically. The character of the 
input signals and the degree of diode nonlinearity determine which of 
several functions such a circuit performs. Among the possibilities are 
suppressed-carrier modulation, synchronous detection, pulse-amplitude 
modulation, waveform sampling, and phase sensing. 

In the circuit of Fig. 4.20(a) the source e1 alone tends to switch both 
diodes on and off together. The small resistance r A and rB may be 
actual diode resistances or resistances added to the circuit to improve 
balance so that e1 alone yields no output. The source e2 alone appears 
directly at the output (or nearly so for rA and rB « R0 ). When e2 is 
positive DA conducts and when e2 is negative DB conducts. 

With both e1 and e2 applied to the circuit at the same time we note 
that conduction through DA depends on (e1 + e2 ), whereas conduction 
through DB depends on (e1 - e2 ). Output waveforms for two different 
sets of input waveforms are shown in Fig. 4.21(a) and (b). In both 
cases le1I > le2', 

The circuit of Fig. 4.20 (b) is like that of (a) but with ideal diode DB 
reversed. Reversing a diode, in effect, interchanges the roles of e1 and 
e2 , since now e2 drives the two diodes on and off simultaneously, while 
e1 alternately cause's conduction through one diode and then the other. 
With e2 alone applied, e0 is a half-wave rectified version of e2, whereas 
in the circuit of (a), e2 appears directly at e0. The circuits shown in 
Fig. 4.20(a) and (b) have a common ground terminal for the output 
and one of the sources. The circuits in (c) and (d) have a balanced 
output with respect to ground. 
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PROBLEMS 

4.1. Given the input e1 (t) of Fig. P4.1, find the steady-state waveform of 
e2 (t) for each of the circuits shown in Figs. P4.2-P4. 7. 

e1(t) 

2 r-
1 
I 
I 

0 1 2 3 4 5 6 7 8 9 10 t 
--1 -

Fig. P4.2 

fig. P4.4 

C 

+ u-t --i~---ot 
e1(t) e2(t) 

-i t 
fig. P4.6 

Fig, P4.1 

Fig. P4.3 

+ 0-0 -~11111----1----00 + 

1(1} C .ti,) 
! I L 

fig. P4.5 

C 

fig. P4.7 

4.2. Sketch e2 (t) for the diode circuits shown in Figs. P4.8-P4.14, assuming 
that wRC is much larger than unity so that the capacitor ripple voltage is 
negligible. 

fig. P4.8 
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A+Bcoswt R e2<t> 

..._ _______ ---0 - ½ 

Fig. P4.9 

A +Bcoswt 

Fig. P4.10 

R 

A+BcoswtL Cr :+ 
Fig. P4.11 

A+Bcoswtc Cr Ri '. ··l•J 
Fig. P4.12 

C 

A+B=w•r=? 
R 

f 
Wv 

J ~ t 
e2(t) 

I - i 0 

Fig. P4.13 

C 

+ t 
A +Bcoswt R C e2(t) 

- i 
Fig. P4.14 
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4.3. The input voltage e1 (t) is a periodic square wave of peak-to-peak am­
plitude 2E1 and period T. Assume that RC is many times larger than the 
period of the square wave. Find the approximate peak-to-peak ripple voltage 
in the output e2(t), expressed as a percentage of the d-c output voltage for 
(a) the circuit of Fig. P4.15, (b) the circuit of Fig. P4.15 with a resistance R 
in parallel with the capacitor, (c) the circuit of Fig. P4.15 with a resistance R 
in parallel with the diode, (d) the circuit of Fig. P4.16, and (e) the circuit of 
Fig. P4.16 with an additional resistance R across the e2 terminals. 

C R 

·,C j+ 
e1 C CJ]_ 

Fig. P4.15 Fig. P4.16 

4.4. The voltage pulse e1 (t) shown in Fig. P4.17 is applied to the circuit of 
Fig. P4.18. Find e2 (t). 

10 

+ 

10 30..,_ __ _ 

0 
IOi t-1' 

Fig. P4.17 

4.5. The waveform e1 (t) in 
Fig. P4.19 is applied to the cir­
cuit of Fig. P4.20. Sketch e2(t). 

Fig. P4.18 

Fig. P4.19 

V 

·~:rn +~ + 

e1(t) V + CT e2(t) _1 ___ 1_ 
Fig. P.20 
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4.6. For the circuit of Fig. P4.21, sketch and dimension the waveforms e1 (t) 
and e2(t) when a single brief pulse of current i1(t) is applied (ch« VLC1), 

_L f+ r 1 

t el L C1 C2 e2 

~ ~01 ·t !- L 
Fig. P4.21 

4.7. A full-wave rectifier is driven by an ideal transformer, supplying 100 
volts at a frequency of 200/1r cps to each half of the circuit shown in Fig. P4.22. 
The diodes are assumed to be ideal rectifiers. The capacitor C is 1 microfarad. 
For a certain value of R each diode conducts for -h of each half period. (Note: 
sin x ~ x for small values of x.) 

C 

Fig. P4.22 

(a) Sketch and dimension the diode current id as a function of time. 
(b) Find the average value of id, 
(c) Find the value of R. 
(d) Find the ripple voltage. 
(e) Find therms value of id, 
4.8. The circuit shown in Fig. P4.23 is used to demodulate an amplitude 

modulated signal e1. The carrier frequency is 106 cps, the highest modulation 
frequency 5000 cps. The modulation factor m is never larger than 0.8. 

C R 

Fig. P4.23 

(a) Determine the maximum allowable value for the product RC when the cir­
cuit is :required to detect the modulation without incurring envelope distortion. 
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(b) For a carrier signal of 10 volts peak, modulated with 1000 cps at 
m = 0.3, list the approximate (average) ripple and audio output voltages 
under the following conditions: 

RC = 0.5 times critical value 
RC = 0.1 times critical value 
RC = 0.01 times critical value. 

4.9. In Fig. P4.24, e1 is a square wave that jumps between plus and minus 
75 volts every T /2 seconds. 

(a) Plot e2 as a time function if T « RC. 
(b) Repeat (a) if T » RC. 

C 

Fig. P4.24 

C 

+ 
el 

Fig. P4.25 

r 
C e2 

L 
4.10. In Fig. P4.25, e1 is a rectangular wave that jumps between ±E1 

every T /2 seconds starting at t = 0. Plot e2 as a function of time until steady­
state conditions exist. Assume ideal diodes, and the capacitors initially 
uncharged. 

4.11. In the circuit shown in Fig. P4.26, 

C 

E2 

Fig. P4.26 

C 

~1 
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(a) Find the steady-state value of E2, 
(b) What is the maximum peak inverse voltage the diodes have to stand? 
(c) What is the maximum voltage on each capacitor? 

Fig. P4.27 

4.12. The capacitor C 1 in Fig. P4.27 rotates about an axis normal to the 
plane of the diagram, its terminals alternately making contacts 1, 2 and 1, 3. 

(a) Find the steady-state value of E. 

Fig. P4.28 

(b) Show the analogy between the switching circuit of Fig. P4.27 and the 
rectifier circuit of Fig. P4.28, which produces a steady-state output E when 
attached to a sinusoidal voltage V. 

Fig. P4,29 

4.13. The rectifier circuit shown in Fig. P4.29 produces a steady-state out­
put voltage e2 containing a time-average component e'; and a periodic ripple 
component. The design specifications require the peak-to-peak ripple to be 
no more than 0.00le';. Consider two designs. First let C2 be zero and find 
the required value of C1• Second, find C1 and 0 2 such that the specifications 
are satisfied and at the same time Ci+ C2 is minimized. Which design re­
quires less total capacitance? 

4.14. The circuit shown in Fig. P4.30 is at rest when the square wave shown 
in Fig. P4.31 is suddenly applied. Assume that the capacitor C is sufficiently 
large so that the periodic ripple in the output voltage is small and e2 may be 
replaced by a ripple-free average value E2, At an arbitrary time t the value 
of E2 is undetermined. Formulate, in terms of E 1, r, R, T, and E2, 

(a) The net charge per cycle flowing through resistances rand R. 
(b) The net charge per cycle delivered to C. 
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(c) Using the results of parts (a) and (b), formulate and solve a differential 
equation to find e2(t). 

(d) What is the value of E2? 

r 
e..,o .. , .J\N' 

RPC 
oe2 

Fig. P4.30 

el 

E1 
T T 
2 2 

0 

-E1-

Fig. P4.31 

(e) On the basis of the charge delivered to C during the first and second 
halves of the cycle, what is the approximate peak-to-peak steady-state ripple? 

4.15. It is desired to supply a current i to an instrument m whose resistance 
is negligibly small. The direct component of i is to be as large as possible 
and the ripple (ratio of a-c amplitude to d-c) must not exceed some specified 

Vcoswt~ 

.. , 

Fig. P4.32 

limit, say one-tenth per cent. Quantities V, w, and the total capacitance 
C = C1 + C2 are known constants, being fixed by cost and convenience 
considerations. Find optimum values of R1, R2, C1, and C2 in Fig. P4.32. 
Use any approximations which appear reasonable. 

4.16. In the detector circuit of Fig. P4.33 the product wRC is so large that 
capacitor ripple voltage may be ignored. Sketch and dimension the curve of 

(a) E versus A, with B positive and fixed. 
(b) E versus B, with A positive and fixed. 
4.17. The circuit shown in Fig. P4.34 is a piecewise-linear model of a micro­

wave detector. For simplicity of analysis, assume that the high-frequency 
input voltage e1(t) is a square wave of amplitude E 1. Capacitance C and 
inductance L are so large that the ripple voltage across C and the ripple 
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current in L are negligible. Hence i1 (t) must be a square wave of some ampli­
tude I 1• Derive relations giving I 1 and I 2 in terms of E1 and E2. Show that 

A cos wt 

Fig, P4.33 

C L 

Fig. P4.34 

these relations may be represented as the d-c circuit (Fig. P4.35). Find ra, rb, 
and re in terms of r1 and r2. Now let source e1(t) have a series resistance R1 
and let E2 be replaced by a resistance R2. Find R1 and R2 in terms of r1 and 
r2 so as to maximize the load power I 22R2 per unit available source power 
E12/4R1. 

I I L __________ J 

Fig. P4.35 

4.18. The square waves of voltage e1(t) and e2(t) in Fig. P4.36 are applied 
to the circuit in Fig. P4.37. Sketch the output waveform e3(t). 

4.19. For the circuit shown in Fig. P4.38 with e1 (t) = 100 sin wt, 
(a) Sketch and dimension as a function of time the voltage e2(t) with 

switch open. 
(b) Find the approximate peak-to-peak ripple voltage component of ea 

after the switch ha:;; beell closed a long time, (Assume wRC» 1.) 
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rl -J j-2µsec 

+
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e2 

+10 

-10 O 
t 

., 20µsec 

Fig. P4.36 

50 r-r:11 
50 + 
11 + 

C1 e2 el 

Fig. P4.38 

4.20. From the circuit shown in Fig. P4.39: 

0.10 
µf 

Fig. P4.37 

+ 

R C2 e3 

(a) Determine approximately the secondary voltage required in the input 
transformer for Ed-c = 400 v and I d-c = 0.030 amp. 

Fig. P4.39 

(b) Determine approximately the output rms hum voltage for power fre-
quencies of 60 cps and 800 cps. 

Justify all approximations clearly. 

4.21. From Figs. P4.40 and P4.41 (making reasonable approximations) 
(a) Determine the direct output voltage for a load current of 125 ma. 
(b) Determine the value of the 120 cps hum voltage. 
(c) Determine the minimum load current for which Ed-c is relatively 

independent of I d-c as the load resistance is varied. 
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Fig. P4.40 

10 20 30 40 50 60 
Plate voltage, volts 

Fig. P4.41 

Diode 
characteristic 

4.22. For the circuit shown in Fig. P4.42, what can be said in general 
about the relationship of the output voltage eo to the three input voltages 
Va, Vb, and Ve? 

V. + b r b 

V. + a 
a R ea 

V, + C 

,_ 
e 

i-
Fig. P4,42 

4.23. (a) Sketch the output voltage eo, for the circuit of Problem 4.22, if 
the input voltages are balanced three phase voltages, that is, 

V1 = Vb - Va = V sin wt 

V2 = Ve - Vb = V sin (wt - 120°) 

V3 = Va - Ve = V sin (wt - 240°) 

(b) What is the fundamental frequency of the ripple voltage in the output 
with the input of (a)? 

(c) What is the per-unit ripple? 
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4.24. The elements in the circuit of Fig. P4.43(a) are ideal. In addition, 
VL/C is small enough so that the tuned circuit voltage is, for all practical 
purposes, sinusoidal, and wR 1 C 1 >> 1. As far as can be determined from bridge 
measurements over a range of frequencies in the vicinity of the tuned circuit 
resonant frequency, the terminal behavior of the circuit facing the current 
source is the same as that of the circuit shown in Fig. P4.43 (b ). 

L 

(a) 

Fig. P4.43 

(a) What power is dissipated in R1? 
(b) What power is dissipated in the diode? 
(c) Relate I to E. 

L R 

(b) 

(d) What value of R was determined from the bridge measurements? 

C 

4.25. In Fig. P4.44, voltage e1 is a square wave of amplitude E 1 and capac­
itor C is so large that ripple in the output voltage E2 may be ignored. Derive 
the relation between E1 and E2. Show that E2 = f (E1 2) is asymptotic to a 

--v~ 
+ 

i\ I 
C E2 i=I

0
(e"1Va-I) 

._________,_l 
Fig. P4.44 

parabola for small E1 and to a straight line for large E1. Plot the two asymp­
totes in the EdVo versus Ei/V O plane. Find one or two points in the transi­
tion region between asymptotes, and sketch the curve E 2 = f (E1). 

4.26. The process called frequency conversion is a form of modulation used 
in superheterodyne radio receivers and in other parts of communication 
systems where the sum or difference of two frequencies is needed. The use of a 
square-law curve for the diode in Fig. P4.45 simplifies the determination of 
output voltage e0• The square-law approximation can be justified by noting 
that this term (of a series representation of the diode curve) yields the desired 
difference frequency. In a practical circuit, resistance R is replaced by a filter 
to enhance the desired frequency component and reject all others, including 
those generated by the terms other than square law. Find all of the frequencies 
generated in the output, assuming Ea> E1 + E2. 

4.27. For the balanced modulator circuit shown in Fig. P4.46, assume ~1 =. 
E 1 sinw1t and e2 = E~ sin w2t, with E2 >> E1 and w2 >>w1. Sketch the wave­
form of output voltage eo. 
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i = ke 2 for e > 0 
i=0fore<0 

e0 = iR~Rke2 for e0 < < e 

Fig. P4.45 

D1 
+ 

I 
eo 

l 
Dz 

Fig. P4.46 

4.28. Repeat Problem 4.27 with e2 consisting of brief rectangular pulses as 
shown in Fig. P4.47. Assume the repetition frequency !2 = 1/<h exceeds 

--t 

Fig. P4.47 

ft = wi/2-tr. Note that the output consists of "samples" of the input taken 
at the time of each rectangular pulse. 

4.29. The phase sensitive detector shown in Fig. P4.48 is driven by a refer­
ence voltage Vr and a signal voltage v,, where 

Vr = V r COS 800,rt 

Assume ideal diodes and investigate the circuit's characteristics under the 
following conditions. 

(a) Plot th~ output voltage as a time function if Vr = 100 cos 800rl volts and 
v, = 50 cos 8007rt volts. 
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(b) Plot the output voltage as a time function if Vr = 100 cos 800n-t volts 
and v. = 50 sin 800n-t volts. 

Fig. P4.48 

+ 

R•l megO 
11

0 C•0.025 µ.f 

(c) Plot a vector diagram that illustrates how the output of this circuit 
varies with the phase angle cJ, for 

v. = V, cos (800n-t + cJ,) 

Vr = V r COS 800n-t 
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Transistor Models and Circuits 

5.1 Introduction 

In its most familiar form the transistor is a semiconductor triode. 
Like the semiconductor diode, it was first developed as a point-contact 
device. The point-contact transistor consists of a base of semiconductor 
material, say n-type germanium, on which two fine, pointed wires rest 
in close proximity. One of these is called the emitter, and the other is 
the collector. As shown in Fig. 5.1 (a) the unit appears to be two point­
contact diodes using the same base. The emitter and the collector are 
not identical, since the latter is treated by a process called "forming" 
to modify the base material near the collector. 

The junction transistor, evolved several years after the point-contact 
transistor, can be described qualitatively as two junction diodes utiliz­
ing a common base. Junction transistors are made in a variety of 
ways. In one method a single crystal of germanium or other semi­
conductor is grown by applying a seed crystal to the top of a molten 
bath of the semiconductor material. Withdrawing the crystal at the 
proper rate results in cooling and crystallization. As the crystal is 
withdrawn, electron-donor or electron-acceptor impurities are added 
in carefully controlled amounts to form alternate layers of n-type and 
p-type semiconductors. The crystal is then cut into small slabs, and 
leads are attached by soldering. The result is a grown-junction tran-

158 
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sistor indicated in Fig. 5.1 (b ). The dimensions of the semiconductor 
slab are usually small fractions of an inch, and the thickness of the base 
layer is likely to be of the order of 0.001 inch. Locating the base layer 
and attaching the connecting lead to it requires precise fabrication 
techniques. 

Emitter 

Emitter~ Collector 

~ 
(b) 

Emitter~ Collector 

n-p-n 

Bas~ 

(d) 

n-type 

Base 

(a} 

Collector 

Emitter 

n-type 
germanium 

Collector 

(c) 

Emitter~ Collector 

p-n-p 

Base 

(e} 

Fig. 5.1. Transistor configuration. 

The alloy-junction transistor, Fig. 5.1 (c), is made by placing small 
amounts of an acceptor like indium on opposite sides of a piece of 
n-type semiconductor, say n-type germanium. When the unit is heated 
to high temperatures, an alloy of the indium and germanium is formed 
on each side of the germanium. The result is the formation of p-type 
material on each side of the n-type and, hence, a p-n-p transistor. 
A p-type semiconductor material can be alloyed with a donor impurity 
such as arsenic to make n-p-n transistors. Figure 5.l(d) and (e) shows 
circuit symbols. 

There are numerous other fabrication processes used to make tran-
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sistors, some of which result in substantially different kinds of units. 
The reader is referred to other books and to the literature for details, 
since the subject is already a broad one and continues to evolve as 
new techniques and new materials are exploited. A few references are 
listed at the end of the chapter. 

The qualitative discussion of transistor behavior in the following 
article is based on the treatment of semiconductor diodes in Chapter 2 
and will be limited to the junction transistor. The physics of the point­
contact transistor is more involved, but it leads to a circuit model of 
the same type. This brief account is included as a means of relating 
the basic physical processes to the electrical behavior and to the circuit 
models. 

5.2 Electrical Conduction in p-n-p Junction Transistors 

In both p- and n-type semiconductor material, hole-electron pairs are 
created by thermal agitation. At equilibrium, just as many pairs 
disappear by recombination as are formed by thermal agitation. In 
p-type material, holes are the majority carriers and the free electrons 
that exist are called minority carriers, since they are outnumbered by 
the free holes provided by the acceptor impurity. Inn-type material 
electrons are the majority carriers and the holes are minority carriers, 
since the donor impurity provides a large number of free electrons. 
Diffusion of the majority carriers across a p-n junction (holes from p 
to n and electrons from n to p) establishes a potential barrier which 
eventually brings the diffusion process into equilibrium in the absence 
of applied fields. 

When a small forward bias voltage is applied to a p-n junction (plus 
to minus from p ton), the potential barrier is effectively lowered, and a 
large current flows as the result of both kinds of majority carriers mov­
ing in opposite directions. The mobility of electrons differs from that 
of holes, and the number of holes and electrons may be unequal; hence, 
the contributions of the two types of majority carriers to the total 
conduction current are not necessarily equal. In fact, the operation of 
a transistor is based on current flow from only one type of majority 
carrier. For a p-n-p transistor, let us make the first junction (p-n) 
from emitter to base with the p-type material having more acceptor 
impurity content than then-type has donor impurity. Then the forward 
current from emitter to base will consist largely of holes ( +) going 
from emitter to base, rather than electrons (-) going from base to 
emitter. This is illustrated in Fig. 5.2(a). 
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Now recall that a reverse bias voltage on a p-n junction results in a 
small current caused by the minority carriers. This current reaches a 
saturation value that is temperature dependent, but remains constant 
over a fairly wide range of reverse voltages, as shown in Fig. 5.2(b ). 
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(c) 
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- 0 
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ie = 2 ie = 1 

(d) 

ie = 0 

Fig. 5.2. Injection of holee by the emitter in p-n-p type transistors. (a) Forward 
bias ( Veb > 0) ; (b) Reverse bias ( v cb < 0) ; ( c) p-n-p transistor; ( d) Collector curves 

(Vcb VS. ic), 

Combining these two diodes to form a p-n-p transistor, as shown in 
Fig. 5.2(c), we find that the emitter injects holes into the base across 
the forward-biased p-n junction. Once across the junction, the holes 
diffuse through the base. Those that diffuse across to the n-p junction 
are then in a field of attraction caused by the reverse bias on that 
junction, and thus flow across to the collector, causing a large increase 
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in collector current. In most junction transistors, 95 per cent or more 
of the holes injected into the base from the emitter will reach the col­
lector. The distance across the base is made very small, and in the alloy 
junction the collector cross-section is often made larger than that of 
the emitter in order to enhance the collection of the majority carriers. 

The sketch of Vcb vs. ic shown in Fig. 5.2(d) is typical of junction­
transistor collector curves. If ie equals 0, the current - I O is the same 
as for the diode shown in Fig. 5.2(b). When ie is greater than 0, we can 
envisage the majority-carrier injection as providing a current source of 
magnitude aie in the collector circuit, producing a change in current 
ic = -aie, This shifts the Vcb vs. -ic curve parallel to itself, as shown 
for a number of values of ie, For each value of ie the curve of Vcb vs. ic 

is just like a diode curve with a shift controlled by ie, 

5.3 Electrical Conduction in n-p-n Junction Transistor 

In n-p-n transistors, electrons are the majority carriers; hence, a 
discussion of these units is like that for the p-n-p transistors provided all 
polarities are reversed and the roles of electrons and holes are inter­
changed. The possibility of exploiting either a positive or a negative 
charge carrier provides a great deal of flexibility in transistor circuit 
design. 

Referring to Fig. 5.3 we see that the n-p-n unit can be envisioned as 
two n-p junctions, one from emitter to base and the other from collector 
to base. Reference directions for currents and voltages are the same 
as those in Fig. 5.2, so that Veb in Fig. 5.3(a) must now be negative to 
cause the majority carriers (electrons) to migrate freely from emitter 
to base. Since conventional current (motion of positive charge) is 
opposite to electron current, the emitter current is negative in this 
case. To provide reverse bias for the collector junction, the voltage 
Vcb in Fig. 5.3 (b) must be positive so that electrons are attracted to the 
collector after diffusing through the base. Electrons emerging from 
the collector terminal constitute a current into the terminal; hence, 
ic is positive. The polarity changes are indicated by the curves of 
Fig. 5.3, which should be compared with the corresponding curves 
in Fig. 5.2. 

Ability to deal with both p-n-p and n-p-n transistors is important in 
circuit design; but since the difference between them is really one of 
detail, no purpose is served by duplicate analyses of p-n-p and n-p-n 
transistor circuits. In the remainder of the chapter, we shall discuss 
·circuit models and basic circuits for p-n-p transistors. The methods and 
results are readily transferred to n-p-n transistors. 
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Fig. 5.3. Injection of electrons by the emitter in n-p-n type junction transistors. 
(a) Forward bias (veb < O); (b) Reverse bias (Vcb > 0); (c) n-p-n transistor; 

(d) Collector curves (Vcb vs. ic). 

5.4 Variational Voltage Gain and Power Gain 

The foregoing discussion indicated the basic structure of a transistor 
to be two diodes with a common element, namely the base. Further­
more, the curves relating collector current and collector-to-base voltage 
are merely diode curves biased or polarized by an amount depending 
on emitter current. Transistors are therefore transfer or control valves 
in contrast with diodes, which can be called self-operated valves. The 
property of a control valve that is of greatest interest is the capability 
for producing variational power amplification. The resistance re between 
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emitter and base with forward bias applied is likely to be as low as 
50 to 100 ohms. On the other hand, the resistance between collector 
and base when the output circuit is reverse biased may be as large as 
1 megohm or more. Thus a series resistor Re of a few kilohms (say, lOkn) 
could be inserted in the collector circuit, as in Fig. 5.4, without appre­
ciably altering the current flow. In this example, the current gain 
might be 0.95. However, for a large ratio of Re to Rin, the variational 
voltage gain and the variational power gain are both considerably 
greater than unity, as can be seen from the expressions in Fig. 5.4. 

n p 

t ib 

Vc 
+ 11 -

Variational current gain = a = - il.ie/ Aie 
Input resistance = Rin = t:J.eif il.ie 

Re 

. . . il.Vc Rcail.ie aRa 
Variat10nal voltage gam = - = --. = -

t:J.e1 Rinil.ie Rin 

1+ 
Ve 

1-

V 
• • I • -AVcil.io Rca2(il.i6 )

2 a 2R0 
ariationa power gam = --- = ---- = --

t:J.e1il.ie Rin (il.ie) 2 Rin 

Fig. 5.4. Variational gain. 

Variational power amplification leads to the more useful functions 
performed by transistors or other control valves. Voltage or current 
amplification is often an important function, but the existence of one 
or both is really an incidental by-product of power amplification. After 
all, an ordinary linear transformer with a turns ratio of n yields a 
voltage ratio of n (actually, slightly less) and a current ratio of 1/n. 
If n is greater than 1, this corresponds to a voltage gain and current 
attenuation. If n is less than 1, the transformer has a current gain and 
voltage attenuation. In either case, the power gain (e2i 2/e1i 1 ) from 
primary to secondary is less than unity and approaches unity only for 
an ideal transformer. The power amplification attributed to transistors 
( or other control valves, such as vacuum triodes and pentodes) must 
satisfy the conservation-of-energy principle. Power must be supplied 
to the transistor and its associated circuit by means of bias-voltage 
sources. The transistor ( or any other control valve) merely permits a 
small source of power to control a large source of power. Thus, the 
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input-to-output power gain exists in the variational sense but not in 
terms of total voltages and currents. 

5.5 Ideal-Diode Model for p-n-p Junction Transistor 

Let us postulate a simple circuit model to approximate the behavior 
of the p-n-p transistor discussed in Article 5.2. The model shown in 

aie + Io -

Base 
(a) 

-(3a+I0 ) -(a+lo) 
Vcb = !2(i6 ,ic) 

----t-o ____ i. I -(2a+lo) I -lo o 
-.....---.--~--..r-+---ic 

i,= +3 ie = +2 ie = +1 

(b) 

Note: Since ie + ib + ic = 0, we have the following relations for D. closed and 
De open: 

ic = -Io - aie, liic/ liie = -a 
ib = Io - (1 - a)ie, liie/t:,.ib = -1/(1 - a) 

ic = (-Io+ aib)/(1 - a), liic/liib = a/(1 - a) 
(c) 

Fig. 5.5. Ideal-diode model for p-n-p junction transistor. 

Fig. 5.5(a), based on the physical structure of the p-n-p junction 
transistor, contains two ideal diodes, one from emitter to base and one 
from collector to base. The dependent current source aie accounts for the 
influence of the emitter current on the collector current. The constant a 
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is chosen to match the variational current gain a (aijaie for Vcb constant) 
of the transistor being represented by the model. The model has a 
constant current of magnitude 10 to represent the small reverse current 
in the collector diode. The constant current I O will be omitted from 

Emitter+\ D, 

~ 
Collector 

+ 

h 
tleb tlcb 

~~ 
- Base-

(a) 

Vcb = f2(ie,ic) 

ie=O -1 -2 -3 

-------"""o-----ie 

_...+-_____ ___..___...._ ____ ic 

0 I0 (I0 +a) (I0 +2a) (I0 +3a) 

(b) 

Note: Since i, + ib + ic = 0, we have the following relations for D6 closed and 
De open: 

ic = +Io - aie, t.ic/Me = -a 

ib = -Io - (1 - a)ie, Me/ t.ib = -1/ (1 '- a) 

tc = (+Io + aib)/(1 - a), t.ic/t.ib = a/(1 - a) 

(c) 

Fig. 5.6. Ideal-diode model for n-p-n junction transistor. 

the dependent generator for the sake of simplicity in some of the follow­
ing articles. The piecewise-linear curves shown in Fig. 5. 5 (b), readily 
derived from the model by diode break-point analysis, are remarkably 
similar to typical transistor collector curves, such as those shown in 
Appendix A. The normal operating state of the transistor occurs when 
the emitter diode De is closed and the collector diode De is open. This 
state represents a region called the amplification region on the Vcb vs. ic 
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plane, which for this model is the entire third quadrant to the left of 
- Io Cic < - Io, v cb < 0). If De is opened, the transistor is said to be 
cut off, and in this simple model the cut-off region degenerates to the 
line ie = 0. Similarly, the saturation state, when De is closed, is here 
represented by the Vcb = 0 axis. The corresponding ideal-diode model 
of an n-p-n transistor, and its curves, are shown in Fig. 5.6. 

a'ic aie - -
ic 

!Collector 

l'eb ~b 

~~ 
Base 

(a) 

-3a -2a -a 0 -,----.---.----+------ic 

ic =0 
. + 3 ie = + 2 ie = + 1 . - 0 ie = te -

(b> 

Fig. 5.7. Ideal-diode model with two dependent generators 
(neglecting reverse diode current Io). 

These ideal-diode models provide a convenient way of remembering 
the ideal current gains between various terminal pairs when the transistor 
is operating in the normal amplification state (emitter diode closed and 
collector diode open). As indicated in Fig. 5.5(c) and Fig. 5.6(c), the 
relations between the various currents lead directly to expressions for 
variational current gain. When resistive parameters are included in 
the circuit model, the current gains are smaller, but the ideal values 
given here provide limits for checking the more involved expressions. 

Thus far we have considered positive emitter currents that cause 
holes· to diffuse through the base to the collector. The physical structure 
of the transistor suggests the possibility of interchanging the roles of 
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emitter and collector by sending the hole current through the device 
in the opposite direction. If emitter and collector are made identical, 
as they are in a "symmetrical" transistor, the emitter and collector can 
be interchanged at will. Most transistors, however, are designed to 
have a much smaller current gain when emitter and collector are inter­
changed. Whether the transistor is symmetrical or not, it is apparent 
that the model shown in Fig. 5.7(a) is more general than the previous 
ones, since it includes the effect of collector current on the emitter 
current. The corresponding curves are shown in Fig. 5. 7 (b). A model 
of this type is useful when the voltages or currents applied to the device 
are likely to have large amplitudes of arbitrary polarity. 

5.6 Ideal-Diode Model for Common Emitter Connection 

In the models of Figs. 5.5, 5.6, and 5.7, the voltages are referred to the 
base. The plots can be expressed in functional notation as Veb = Ji (ie, ie) 
and Veb = f2(ie, ie), a convenient representation for transistor circuits 
in which the base is the terminal common to input and output. How­
ever, in many transistor circuits, the emitter is the common terminal. 
Although the curves in the previous figures contain all the required 
information and thus can still be used for this "common emitter" 
connection, it may be more instructive to present the data in another 
form, namely base-to-emitter voltage versus base current and collector­
to-emitter voltage versus collector current. These curves are shown 
in Fig. 5.8(b). It is desirable to redraw the model to the form shown in 
(a) to emphasize the fact that the base current ib is now the control 
parameter. To calculate the current gain, the ratio of collector current 
to base current, assume that the emitter current is 1 ma. Then if 
De is open and De closed (forward gain or amplification region) the 
collector current is -a ma, and, by summing currents at the common 
node, the base current must be - (1 - a) ma. Thus the current gain 
for the common emitter connection is a/(1 - a), which for a close to 
unity can be a large number. For example, if a is 0.98, the current 
gain is 49. 

The transistor states, as defined in the previous article, are located 
on the Vee versus ie plane as follows: 

Forward gain or amplification 
Saturation 
Cutoff 

Third quadrant 
Vee = 0 line 

ib = 0 line, Vee < 0 

The figure shows a set of lines ( dotted in the first quadrant), which 
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Fig. 5.8. Simple ideal-diode model for common emitter connection of p-n-p junction 
transistors (neglecting reverse current lo), 

have not appeared in previous curves. These lines represent the region 
where the reverse-current generator a' ic comes into play. 

5.7 Effect of a Coupling Resistance in the Transistor Model 

Making better resistive approximations to the junctions in a transistor 
tends to improve the accuracy of the model. Thus, we might replace 
each ideal diode by the exponential approximation to a junction diode 
as in Chapter 2. There are many cases in which an exponential diode 
model is useful. However, the linear-circuit methods are so powerful 
that we shall emphasize piecewise-linear models in order to use linear 
circuit theory in each diode state. For examining general circuit be­
havior, the accuracy will be adequate with a two-segment piecewise­
linear approximation to the junctions. Resistive approximations for 
the diodes give the corresponding curves finite and nonzero slopes as 
might be expected by analogy to the diode models discussed in Chapter 3. 
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However, before including resistive diodes, let us consider first the effect 
of base resistance alone. 

In the simple common-base transistor model, a current in the emitter 
circuit can influence the collector circuit only by means of the dependent 
current generator. In an actual transistor the ohmic resistance of the 

------ Vee _____ + 
a'ic -

(a) 

Slope: - rb (l:, a') 

[ Slope: rb v,b 

+3 
+2 

+1 

ic= 0 

Intercepts: ic rb 

Slope: 00 

(b) 

+3 

aie -

+2 
ie= +1 

Fig. 5.9. Transistor model with ideal diodes and base resistance. 

base material, 50 to 100 ohms for most transistors, causes a resistive 
coupling effect between the two circuits. Including a base resistance 
in the ideal-diode model as shown in Fig. 5.9(a) leads to the curves in 
(b) for the common-base connection. The collector curves are a rea­
sonable approximation to the collector curves for an actual transistor. 

If the polarizing voltages together with the applied signal do not 
drive the transistor into all of the diode states, it is well to use the less 
complete form for the model. Thus, if collector current is never likely 
to assume positive values in a given application, the a' ic generator can 
be omitted, since for negative values of ic. the a' ic generator is, shorted 
by.tl,ie ideal.diode. Another. way. of sa,yipg this is that :the tw9 curr,~nt 
generators- ai~ and. a' ic can usually be considered one· at a tim~.· . If 
both ie and ic are positive, we simply have two diodes using the same 
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base, and the dependent generators are both shorted by the ideal 
diodes in the model. 

ic = 3 2 
I I 
I I 
I I 
I I 

ib = -(1-a)ie -
. -a . 

~"f=aib 

(a) 

-3 -2 

(b) 

ic -

-1 

Vee 

-1-2_3 
I I I 
I I I 
I I I 

O I I I 

3 
1-a' 

Fig. 5.10. Model for common-emitter connection with nonzero emitter-diode 
forward resistance. 

Resistive coupling between the input and output circuits in the com­
mon emitter connection is caused by the resistance of the emitter diode. 
For simplicity let us add to the ideal diode model only a forward re­
sistance ref in the emitter diode as shown in Fig. 5.IO(a). The corre­
sponding input and output curves are shown in (b). 

5.8 Piecewise-Linear Resistive Model 

A piecewise-linear resistive approximation to each of the semicon­
ductor junctions in a p-n-p transistor yields the model shown in 
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a'ic aie --- ~ 
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+\ De De / rb 

(a) 

(b) 

(c) 

Fig. 5.11. Transistor model using piecewise-linear resistive diodes. 

Fig. 5.11 (a). The piecewise-linear diodes De and De are specified by for­
ward and reverse resistances as indicated in Fig. 5.11 (b ). Typical 
values of forward resistances are 50 to 200 ohms, whereas reverse re­
sistances are of the order of a megohm. The numerous parameters 
available in this model afford more than enough flexibility to approxi­
mate a set of transistor curves very well. In fact, the complete model 
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shown in Fig. 5.11 (c) is more involved than necessary for most circuit 
analysis or design problems. 
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Fig. 5.12. Simplified piecewise-linear resistive model 

The analytical complexity encountered with the general model can 
be reduced by using a model in which the emitter and the collector 
diodes are made semi-ideal. As shown in Fig. 5.12(a) only forward 
emitter resistance and reverse collector resistance are included. To 
solve a given circuit problem, one should choose the simplest possible 
model that will give the required accuracy. Often the best approach 
is to solve the problem first with the ideal-diode model, and then add 

• This is the inverted-gain state which corresponds to State II with emitter and 
collector interchanged. Use model of Fig. 5.9 or 5.12(b). 
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appropriate resistances to the model and refine the solution. Similarly, 
the model with the aie generator alone is convenient if collector current 
is always negative, but if ic is positive at any time, the a' ie generator 
must also be included. 
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Fig. 5.13. Typical curves for a p-n-p junction transistor for common-base connection. 

5.9 Approximating Transistor Curves 

Typical measured curves specifying the "static" or resistive terminal 
behavior of a p-n-p junction transistor are shown in Fig. 5.13. This is 
only one of a number of forms in which a manufacturer may present 
average characteristics. The family of collector curves shown in Fig. 
5.13(a) is repeated in (b) with an expanded voltage scale to emphasize 
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the exponential character of the curves for small values of collector 
voltage. From the expanded scale it is apparent that each curve in the 
collector family resembles the curve for a semiconductor diode, with 
successive curves shifted along the current axis by an amount corre­
sponding approximately to the majority-carrier injection provided by 
the emitter. 
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+0.1 
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-40 

fig. 5.14. Approximate curves for a p-n-p transistor using the model of Fig. 5.12, 
with Te/ = 50 ohms, Tb = 50 ohms, Tcr = 200 kn, a = 0.95. 

Since two voltages and two currents are needed to specify the terminal 
behavior of the transistor, another plot is necessary. Either the plot in 
Fig. 5.13(c) or that in (d) links the fourth variable Veb to the other three. 
The graphical data can also be presented in a variety of other forms, some 
of which will be introduced later. 

Comparing the typical collector curves of Fig. 5.13(a) with those for 
the ideal diode model in Fig. 5.5 (b), we see the possibility of reasonable 
quantitative agreement. The inclusion of base resistance in the ideal­
diode model makes the collector family approximation somewhat better 
[compare curves in Fig. 5.13(b) and Fig 5.9(b)]. 
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The piecewise-linear curves in Fig. 5.14 are plotted for the model 
in Fig. 5. IO using the following values : ref = 50 ohms, rb = 50 ohms, 
T er = 200 kilohms and a = 0. 95. The corresponding parts of Figs. 5. 13 
and 5.14 are seen to be in very close agreement except in the vicinity 

+3 +2 +l 
(a) 

(b) 

ie= 0 

+3 
+2 
+l 
ie = 0 

ic 
Short-circuit 
current gain 

oicl 
a = - oi, cb-conat, 

arcr + Tb 

Tcr + Tb 

= a for Tcr >> r,, 

Ocb =O 
-40 

-.....;;.;,C--..::~-------ie 
-40m 

(c) 

Fig. 5.15. Slopes and intercepts of common-base curves for p-n-p transistor, using 
the piecewise-linear model of Fig. 5.10. (a) Vcb vs. ic, parameter ie; (b) Veb vs. ie, 

parameter ic; (c) Veb vs. ie, parameter Vcb. 

of break points. This model then affords a fairly good approximation 
of the resistive behavior of a transistor. The heavy lines in Fig. 5.14(c) 
show the normal range of operation for the unit being described. 

The curves of Fig. 5.14 were plotted from a break-point analysis of 
the model shown in Fig. 5.12(a). The curves are redrawn in Fig. 5.15 
without regard to relative numerical values in order to show the general 
values of slopes and intercepts. These plots show the effects of Tb, Te/, Tor, 



TRANSISTOR MODELS AND CIRCUITS 177 

and a, so that suitable values of these parameters can be chosen to 
approximate a set of actual curves. 

An alternative method of analyzing circuits that contain models like 
those of Figs. 5.11 or 5.12 emphasizes the resistive character of the 
junction approximations. The model shown in Fig. 5.16(a) is purely 
resistive and, hence, applies in any one diode state when the appropriate 

(a) 

aie -

Ve1, = ie(re + Tb) + icTb 

Vcb = ie(Tb + arc) + ic(rc + Tb) 

(b) 

Note: 

re =Te/or rw 
re = Tcr or Tc/ 

Fig. 5.16. Resistive representation of piecewise-linear model. 

values are used for re and re, namely, Tef or rer and ref and rer• A single 
current generator is shown in the interests of simplicity. The need for 
including a' ic atid removing aie in state IV is no more difficult to re­
member than is the appropriate value to be used for each parameter. 
Actually, when the forward diode resistances are nonzero, omission of 
the second generator modifies the results somewhat. The resistive 
model of Fig. 5.16(a) is convenient to use because the same equations 
apply to all of the circuit states. 

5.10 Total and Incremental Models 

The voltages and currents on graphical plots describing an electronic 
device like a transistor are total quantities. Thus, such symbols as ie 
or Vcb refer to the total instantaneous values of the variables. However, 
it is often possible to base an analysis on only the variational portions 
of the currents and voltages. Circuit models for calculating only 
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variational currents and voltages are called incremental models or 
small-signal models. 

Although the form of the model for any one state of a piecewise-linear 
approximation may be similar to that of an incremental model, the 

(b) 

(a) (c) 

(d) 

(e) 

V = f (i) 
CVa + Av) =f (la+ Ai) 

(v - Va) = r(i - la) 
Av= rAi 

v = Eo + ri 
V 0 +Av = Eo+r(Ia+Ai) 
where r = t:w/ Ai 
and Eo = (Va - rla) 

For 
i > 0, 
v < Eo, 

v = Eo + ri 
i = 0 

Fig. 5.17. Total and incremental circuit models for a nonlinear function of one 
variable, v = f (i). 

numerical values of the parameters may or may not be the same. The 
major difference in the two models stems from the use of total quantities 
in one and variational quantities in the other. 

The mathematical basis for the incremental model is the Taylor 
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Series expansion for a nonlinear curve. The constant term fixes the 
"operating point" since this is the point about which the expansion is 
made. The first-order term gives the slope of the curve at the operating 
point and, hence, determines the change in current produced by a given 
change in voltage. The ratio ~v / M is called the incremental resistance. 
For small signals the higher-order terms can be neglected. 

The foregoing remarks are illustrated in Fig. 5.17. A nonlinear diode 
curve is shown in (a), together with the Taylor Series expansion about 
the point a and the expression for the tangent. The diode symbol 
is shown in (b) with voltages and currents expressed as variations or 
increments around the operating point. The incremental model shown 
in (c) effectively amounts to a shift of coordinates from the origin to 
the quiescent point. Once the circuit is reduced to linear incremental 
form, the symbol ~ has no significance, since the linear relation extends 
indefinitely. 

The linear incremental relation between current and voltage effectively 
drops the fixed reference potential whereas a linear model based on total 
quantities preserves a unique origin of coordinates as indicated by 
Fig. 5.17 (d). A piecewise-linear model like that in (e) places in evidence 
the range of values of v and i for which a linear approximation applies. 

5.11 Linear Incremental Models for Transistors 

The terminal behavior of any three-terminal device is specified by 
two voltages and two currents. As shown in Fig. 5.18(a), the general 
function is usually separated into two functions for convenience in 
graphical or analytical manipulations. If each of the variables is ex­
pressed as a constant plus an increment, the ·constant values of the 
independent variables determine the constant values of the dependent 
variables. This· assumes the increments to be zero. The differentials 
of the equations relate the variational components as shown in Fig. 5.18 (b). 
If the circuit is linear, the various partial derivatives are constants; 
that is, independent of the operating point set by the direct components 
of currents and voltages. These results are merely extensions of those 
given in Fig. 5.17 for the simpler function v = f(i). 

For the linear incremental three-terminal circuit, there are many 
possible ways of specifying the relations between currents and voltages, 
but all involve four constant parameters. For the choice of variables 
used here there are six basic forms the equations can take as indicated 

· in Fig. 5.19. All of these are related by simple linear transformations. 
· As a matter of convenience the symbol ~ is omitted in Fig. 5.19, leaving 
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the symbols for incremental voltages and currents the same as those 
used for total quantities. If both total and incremental values are 
involved in an analysis, primes or deltas or other distinguishing symbols 
must be used to avoid ambiguity. 
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Fir,. 5. 1 a. General equations for a three-terminal device. 

The circuit models for the first two sets of equations in Fig. 5.19 
involve driving-point resistances or conductances (ru, r22, Un, U22) and 
transfer resistances or conductances (r12, r21, g1 2, Y21). The remaining 
sets involve parameters in various other categories. For instance, the 
h parameters involve a driving-point resistance h11, reverse voltage 
gain h12, forward current gain h2i, and a driving-point conductance h22• 

These linear circuit formulations are not restricted to resistances and 
conductances, but also apply to impedances and admittances. 

In Fig. 5.20 the resistive circuit of Fig. 5.16 is used as an incremental 
model of a transistor in the common-base connection. Since the model 
contains no d-c sources, the circuit and the equations are valid for 
either total or incremental calcuiations. Identification of corresponding 
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{
~1 = guv1 + g12v2} 
i2 = g21tJ1 + g22tJ2 

{
v1 = h11i1 + h12v2} 
i2 = h21i1 + h22v2 

(d) 

{
"1 = Av2 - Bi2} 
i1 = Cv2 - Di2 

(e) 

(a) 

(b) 

(c) 

{
v2 = ku v1 + k12i2} 
i1 = k21 v1 + k22i2 

(j) 

{
v2 = Dv1 - Bi1} 
i2 = Cv1 - Ai1 

(g) 

Fig. 5.19. Incremental models for a three-terminal device. 
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terms in the impedance formulation and in the T circuit relates the 
generalized parameters (r11, r12, r 21, r 22 ) to the T parameters (re, rb, 

re, a). 
Several formulations of the incremental model for the common-emitter 

connection are shown in Fig. 5.21 together with the corresponding 
equations. The circuit in (a) is the same as that of Fig. 5.20, but the 



182 ELECTRONIC CIRCUIT THEORY 

equations involve the common-emitter variables (vbe, Vee, ib, ic). The 
circuit and equations in (b) result when the dependent generator is 
specified in terms of base current. The model in (c) involves the so­
called hybrid parameters or h parameters. One current and one voltage 
(ib and Vee) are independent variables and the other current and voltage 

aie -
l 

{
v1 = rui1 + r12i2 

v2 = r21i1 + r22i2 
{

Veb = ie(re + Tb) + icTb 

Vcb = ie(Tb + arc) + ic(rc + Tb) 

ru =re+ Tb 

T12 = Tb 

r21 =Tb+ arc 

r22 =Tc+ Tb 

re = ru - r12 

rb = r12 

re = r22 - r12 

r21 - r12 
a=---

r22 - r12 

Fig. 5.20. Incremental models for a transistor in the common-base connection. 

(vbe, ie) are dependent variables. For typical numerical values (re>> re 
or rb) the hybrid parameters are as follows: 

hn ~Tb+ rel (1 - a) 

h21 = aeb ~ a/(l - a) 

h22 = 1/ (re + rd) 

{5.1) 

{5.2) 

(5.3) 

{5.4) 

The h parameter formulation for the common-emitter connection is not as 
obviously related to the physical conduction processes in the transistor 
as is the common-base T formulation involving re, rb, re, and a. How­
ever, the h parameters can be measured conveniently and accurately. 
The current gain is significant, but the other three constants are small 
and can often be neglected. For circuit design purposes, the h parameters 
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are very convenient. Each of the parameters in this formulation places 
in evidence a quantity significant in transistor amplifier circuits; namely, 

..!],_ 

+\ rb 

_!.!z_ hu 

re 

aie -

-acbib -
7d 

~ 

r 

la} 

(b) 

Vbe = ib(rb + re) + icre 
Vee = ib(re - arc) + ic[r., + rc(l - a)] 

Vbe = ib(rb + re) + icre 

Vee = ib(re - acbrd) + ic(r., + rd) 

Where rd = rc(l - a) 

acb = a/(1 - a) 

. [ r er c ] [ re ] Vbe = 1,b Tb + ----- + Vee 
re + rc(l - a) re+ re(l - a) 

• . [ -re + arc ] [ 1 ] 
'l-e = ib ----- + Vee 

re + r c (1 - a) re + re (1 - a) 

(c) 

hu = Tb + r,/(1 - a) 
h12 = re/rd , • 
h21 = acb = a/(1 - a) 

h22 = 1/(r., + rd) 

Fig. 5.21. Incremental models for a transistor in the common-emitter connection. 

an input impedance (h11 = avbe/aib with Vee fixed), a reverse voltage gain 
(h12 = avbe/avee with ib fixed), a forward current gain (h21 = aie/aib with 
Vee fixed), and an output admittance (h22 = aie/avee with ib fixed). Most 
manufacturers' data on transistors are presented in these terms. 
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Assume: a = 0.95 

{
Veb = ie(re + Tb) + icrb 

Vcb = ie(rb + arc) + ic(r, + Tb) 

{
Veb = Ve+ V1 ~ ieRe 
Vcb = - V c - icRc 

(c) 

Vcb (volts) Veb 

Tb= 50 ohms 

Tef = 50 ohms 

Ter = 00 

Tcr = 200 kn 
_ref= 0 

Vcb = 0) 
ic = 0 -1-2-3 .¥-

-2 -1 0 
---..--,------,~--.-~-,, / 

'y 
✓-40 

~ 
-1 

B 

--............. A -2 p 

~ ,.. 
0 ------------+---i ie 

(ma) 

-30 

ie = 0 

3 2 1. \.. 
-40 -0.3 L..---.J-----'-----'-3--J4L.----' 

(d) 

Fig. 5.22. Determination of operating point in common-base circuit. 

5.12 Determination of Operating Point in the 
Common-Base Circuit 

A common-base resistive transistor circuit is shown in Fig. 5.22(a). 
The piecewise-linear model is shown in (b); and since this is a total 
model, the variables v1, v2, v(lQ, i<l, etc. represent total quantities, The 
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element values are the same as those assumed in Fig. 5.14. To determine 
the operating point of the transistor, we can write two equations per­
taining to the input terminals. One expresses the constraint on terminal 
voltage and current imposed by the external circuit, and the other 
expresses the constraints imposed by the transistor. A similar pair of 
equations can be written for the output circuit. For the circuit in (b) 
the equations relating the terminal voltages to terminal currents in 
terms of the transistor parameters are: 

Veb = ie(Te + Tb) + icTb ·-

Vcb = ie(Tb +arc)+ ic(Tc + Tb) 

(5.5) 

(5.6) 

The equations relating the terminal voltages to currents in terms of the 
external circuit parameters are 

Vcb = - V c - icRc 

(5.7) 

(5.8) 

Equations 5.5, 5.6, 5.7, and 5.8 can be solved simultaneously to find 
the four coordinates of the operating point. 

Operating points of actual transistor circuits are usually determined 
graphically using the nonlinear characteristic curves for the device, but 
to illustrate the procedure, we will perform the graphical construction 
on the piecewise-linear curves of Fig. 5.22(d), which correspond to the 
model in (b). The output load equation (Eq. 5.8) is plotted on the 
Vcb vs. ic plane, and the input load equation (Eq. 5.7) is plotted on the 
Veb vs. ie plane. The points A', B', and C' on the input plane correspond 
to A, B, and Con the output plane, so a line through A', B', and C' 
corresponds to the output load line transferred to the input plane. An 
exact solution of the operating point problem requires finding the inter­
section in the input plane of the input load line with the transferred 
output load line. However, the transistor curves are so restricted in 
this plane that the operating point can be determined with reasonable 
accuracy from the input load line alone. A more significant simplifica­
tion results when Ve is of the order of V c, and Re is much larger than 
(re + rb), On the scale shown, the input load equation will appear 
as a nearly vertical line on the input plane. In other words Veb, the 
drop across the transistor input terminals, can be neglected relative to 
V 6 • Then the input load equation becomes 

(5.9) 

and this equation, together with Eqs. 5.6 and 5.8, solved simultaneously 
or graphically on the output plane alone, determines the operating point. 
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With Ve, Re, Ve, and Re specified, the graphical or analytical solution 
for the quiescent operating point (v1 = 0) is unique. As v1 varies, the 
input load line actually translates parallel to itself, and the operating 
point moves along the output load line. This situation corresponds to 
the analysis of a specified circuit. The design or synthesis problem is not 
unique, since it is readily apparent that any number of lines can be 
passed through point B by varying Ve and Re appropriately, and any 
number of lines can be passed through point B' by choosing different 
values of Ve and Re. In some instances additional requirements on the 
circuit narrow the possible choice of values, but often there is still 
considerable freedom. 

In the design of a transistor circuit, an operating point must be 
selected to suit the design conditions. To illustrate this kind of problem, 
suppose we have available a type of transistor specified by the curves 
given in Fig. 5.23 parts (a) and (c). The first set of curves are in terms 
of the variables most useful for the common-base circuit shown in (b ), 
whereas the second set relates the variables pertinent to the common­
emitter circuit shown in (d). Suppose we wish to develop a peak-to-peak 
a-c output of ten volts across resistance R2 without distorting the input 
signal appreciably. For the common-base curves and circuit shown in 
Fig. 5.23(a) and (b) the entire range of design possibilities is readily 
envisioned. First of all we need a collector supply voltage V c > 10 
volts. We shall choose a value of 12 or more volts (say 15) to avoid 
the distortion that would be produced by the nonlinearity of the curves 
near Veb = 0. The value of 2 kilohms for R2 is the minimum that will 
produce the required output, assuming the maximum available emitter 
current is 6 ma. For this value of R2 the operating point must be placed 
at Pi, where ie = 3 ma. If the emitter and base resistances of the 
transistor can be neglected relative to Ri, we merely require the ratio 
Ve/R1 to be 3 ma. 

For R2 = 3.75 kilohms the 10 volt peak-to-peak output is obtained 
with an emitter current variation of only about 3 ma. With the operating 
point set at P 2 (where ie = 2 ma) we have ie ranging from about 0.5 
to about 3.5 ma to produce the required output. The location of the 
operating point in this case is somewhat less critical since the portion of 
the load curve shown as a solid line can be shifted along the load line 
somewhat. The same is true for R2 = 7 .5 kilohms. In either of these 
cases the required values of R 1 and Ve can be determined as before. 

The choice between possible values of R2 is determined by gain and 
frequency-response requirements. With a larger value of R2 the circuit 
has more voltage gain or power gain but over a smaller range of fre­
quencies. With a small value of R2 , the gain is less but the frequency 
response is better. 
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Fig. 5.23. Stabilization of bias for transistor amplifiers. 
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Referring to the curves of Fig. 5.23, part (c), we might proceed with a 
circuit like that shown in (d) in a manner analogous to that described 
for the common-base circuit. However, the drcuit shown in (d) is poor 
from a practical standpoint because it exhibits a tendency toward in­
stability of the operating point. In the common-base circuit (a), the 
current I O passes primarily through the collector-base loop. For the 
circuit of (d), most of I 0 will be driven through the emitter-collector 
loop by the polarizing battery V c• The reverse current I O in a semi­
conductor junction is due to minority carriers. The number of such 
carriers available depends on the rate of hole-electron pair formation, 
which varies exponentially with temperature. Thus, any heating of the 
collector junction will increase I 0 , which will further raise the tempera­
ture of the junction and increase I O still more. This may result in "ther­
mal runaway." The result of collector junction heating may be a 
damaged transistor unless V c and R 2 limit the current to a safe value. 
Even if the transistor is not damaged, an increase in I O shifts the entire 
set of collector characteristics so that the operating point is no longer 
properly located. 

A circuit like that shown in Fig. 5.23(e) can be used to avoid this 
unstable operation. In this circuit C and Ce are assumed to be so large 
that they have negligibly small impedances for the lowest signal fre­
quency involved. They are, nevertheless, open circuits for d-c. Thus 
for signal frequencies the incremental circuit reduces to a common­
emitter circuit as shown in (g), but to represent the effects of the polar­
izing voltage and I 0 we have the circuit of (/). In (!) let the parallel 
combination of resistances in series with the base be designated Rb 
and let the equivalent battery be Vb· Assuming Rb » rb, Re »re/, 
and r er very large, we can write the equations 

Vb+ Rbib = Reis (5.10) 
and 

(5.11) 

These can be solved to obtain the dependence of ic on Vb and I O as 
follows: 

(Rb+ Re)Io + a Vb 
(1 - a)Rb + Re 

-ic = (5.12) 

For Re= 0, we have aic/aI0 = -1/(1 - a), the situation that exists 
in the undesirable circuit of (d). With a very near unity (say 0.99) an 
increase of I O by an amount t::.I O will cause a change of - lOOt::.I O in the 
value of ic. The resulting increase in collector junction temperature 
may be sufficient to cause thermal rurniway. With Re ¢. 0, ·we have the 
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situation that exists in the circuit represented by (e) or(!). If Re equals 
Rb a change d/0 yields only a change of -2dl0 in collector current. 
This represents a fifty-fold reduction in the sensitivity of ic to changes 
in 10 • The point is that Re must not be too small relative to Rb in the 
circuit of Fig. 5.23(!). 

Three-terminal device 

----, 
I 

½ 

(a) 

l 
---, 

I 

-!-

(E1-Es)-=-

lb) 

Fig. 5.24. General polarizing circuit. 

Stability of the operating point is only one of many possible design 
considerations. The parameter values Rm, Rn, R2 , and Re in the circuit 
of Fig. 5.23(e) determine (1) the d-c stability of the operating point, 
(2) the location of the operating point, (3) the a-c operating path upon 
the transistor curves, (4) the current and voltage gains, and (5) the 
input and output impedances of the amplifier. The circuit design starts 
with a trial specification of items such as (1) through (5) above and 
proceeds toward suitable values of the circuit resistances, usually through 
a number of successive approximations. A straightforward analytical 
solution of the problem is convenient only for very simple circuit con-
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figurations. In any case, we must remember that individual transistor 
characteristics may deviate greatly from the published "average" 
curves, and that all other circuit elements are likewise known only 
within certain tolerances. 

The circuits used to provide d-c polarizing voltages or currents for 
transistors or vacuum tubes appear to take many different forms. They 
may make use of one or more sources and resistive voltage-dividers. 
However, for any three-terminal device all polarizing circuits are varia-

C 

Fig. 5.25. Capacitive coupling of source. 

tions of the general form shown in Fig. 5.24(a). The inclusion of a third 
battery as in (b) adds nothing significant, since an adjustment of the 
other two reduces the circuit to that shown in (a). 

The use of capacitive coupling as shown in Fig. 5.23 (e) permits 
separate determination of polarizing source and signal source require­
ments. In the circuit of Fig. 5.22(b), the d-c and signal currents must 
pass through the same resistance (R1 ), so that the polarizing and signal 
source requirements are interdependent. The circuit of Fig. 5.25 shows 
a method of "isolating" the d-c and signal currents in a common­
base circuit. 

5.13 Driving-Point and Transfer Curves for 
Common-Base Circuit 

The succession of operating points between X and Y in the input 
plane of Veb versus ie of Fig. 5.22(d), defines the driving-point curve 
seen at the emitter-to-ground terminals. This curve is shown in Fig. 
5.26(a). Since V1 = Veb - Ve + ieRe, the corresponding curve of input 
voltage v1 versus emitter current ie can be obtained readily from the 
driving-point curve by shifting the intercept an amount Ve and increasing 
the slope by Re, as shown in (a). 

The transfer curve v2 vs. Veb and v2 vs. v1 can be obtained by solving 
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Eqs. 5.5, 5.6, 5. 7, and 5.8 for ic in terms of v1 or Veb• Then since 

(5.13) 

the curve can be plotted by using the appropriate values of re and re 
for each state. This procedure yields the equations for each segment 

/ 

0.3 r-----.----,-----,---.~---. 

0.2 t---+---1----b,-,,,'-l----l 

4 

-0.2 -~-+------+---+--~ 

-0.3 X 

(a) 

-0.3 -0.2 

y"Veb VS. ie 

_ . [ R + + Tb { Re + re (1 - a)}] 
V1 - ie e re 

Re+ re+ Tb 

ie [ V + Verb ] 
-

6 
Re+ re+ rb 

Veb = VI + Ve - ieRe 

. [ Tb { Re + re (1 - a) } ] = ie re+ 
Re+ re+ Tb 

[ Verb ] 
Re+ re+ Tb 

V2 = - icRc = °Vc + Vcb 

-0.1 0 0.1 0.2 0.3 v1 or Veb 

t---+---+- -20 l---t----1---1 

(b) 

Fig. 5.26. Driving point and transfer curves for the circuit of Fig. 5.22. 

of the curve. For the specific conditions illustrated in Fig. 5.22(d), 
graphical location of break points X and Y yields the transfer curves 
directly. At point X the emitter diode breaks, marking the transition 
between the cutoff and active or amplification region. At Y the collector 
diode breaks, marking the transition from active to saturation. The 
plot in Fig. 5.26 (b) shows the resulting curves. The slopes are the 
voltage gains from the v1 or Veb terminals to the output terminals. The 
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effect of resistance Re is to reduce the gain dv2/dveb relative to dv2/dv 1• 

For the numerical values used in the example, the reduction is approxi­
mately a factor of three. 

Numerical values of the gains can be measured from the curves, and 
general gain expressions can be computed from the equations of Fig. 
5.22(c). However, the incremental model is more convenient for gain 
calculations, since the constant terms do not enter the expressions. 

5.14 Comparison of the Basic Transistor Circuits 

Current gain, voltage gain, and power gain, as well as the input and 
output resistances of transistor circuits, are important in nearly all 
transistor applications. These properties of common-base, common­
emitter, and common-collector circuits can be found by measuring the 
slopes of the appropriate transfer or driving-point curves as mentioned 
in Article 5.13. They can also be calculated by analysis of the appro­
priate incremental circuit, for example, the circuit in Fig. 5.20. However, 
the resulting expressions are usually cumbersome, and considerable 
simplification results when numerical values are substituted. Thus, 
rather than work out complicated exact expressions, it is more appro­
priate to calculate the approximate values of current gain, voltage gain, 
etc., using the ideal diode models to find approximate relative values 
of these quantities for the three basic transistor circuits in any one 
diode state. For example consider the most interesting state, namely 
that for which amplification is obtained. 

The values of the gains and resistances tabulated in Fig. 5.27 are 
based on the use of an ideal incremental model for the transistor in the 
active amplification region (re = rb = 0, re = oo, and a = a). The 
quantities in the table can be obtained directly from the simple circuits 
that result from this model. 

The relative values of the emitter, base and collector currents provide 
the key to the determination of the gains and resistances. Since the 
value of emitter-to-collector current gain is slightly less than unity for 
a junction transistor, the common-base circuit has a current gain less 
.than unity, whereas the current gains of the other two circuits are large 
(approximately 20 for a = 0.95). The voltage gain is nearly R2/R 1 for 
the common-base circuit, considerably higher for the common-emitter 
circuit and slightly less than unity for the common-collector circuit. 
The latter is sometimes called an "emitter-follower," since the incre­
mental changes in emitter voltage follow incremental changes in base 
voltage quite closely. 
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In terms of power gain the common-emitter circuit is clearly superior 
to the common-base circuit. The power gain of the common-collector 
circuit also appears likely to be smaller than that of the common emitter, 
but the relative merits of the two depend on the ratio R2/R1. In fact, 
the common-collector circuit is most useful for coupling a high resistance 

Common Common Common 
Base Emitter Collector 

;~ '~ ;~ 

- - -+ - + --- + 
Circuits 

R1 
R1 R V2 R1 R V2 + R2 V2 + 2 + 2 

vl Vl vl - - - -
Current i2 a 1 
gain -a -- ---

i1 1 - a 1 - a 

Voltage ~ R2 ( a ) R2 R2 
=1 gain 

a-
1 - a R1 R2 + R1(l - a) VJ. R1 

C ~ a) ( R2 + R~;l - a) Power 112i2 a2 R2 ( a y R2 
gain --

v1i1 R1 1 -a R1 1 
=--

1 - a 

Input VI 
R1 +o = R1 

R2 
R1 +o = R1 R1+--

resistance i1 1 - a 

Output v2 
(R2 II oo) = R2 (R2 II 00 ) = R2 R2 II R1(l - a) resistance io 

Fig. 5.27. Comparison of basic circuits using an ideal transistor model 
(re = Tb = 0, re = oo ). 

source to a low resistance load [R2/R 1 « 1], since the circuit has a 
relatively high input resistance and a low output resistance. Under 
these conditions the power gain of the common-collector circuit becomes 
slightly larger than that of the common-emitter circuit. 

The values given in Fig. 5.28 imply R1 to be much greater than the 
input resistance contributed by the nonzero values of re and rb. Also, 
R2 must be much less than the effective output resistance. For a more 
accurate comparison of the three circuits, the complete expressions, 
involving all the transistor parameters, should be used. 

For n-p-n transistors, diode polarities and the corresponding bias 
voltage polarities must be reversed. From the standpoint of the circuit 
models, the only difference between point-contact and junction transis­
tors is in numerical values; for example, with point-contact transistors 
we may have a short-circuit-current gain from emitter to collector greater 



194 ELECTRONIC CIRCUIT THEORY 

than unity, so that values of a are in the vicinity of 2 or 3. Also, the 
characteristic curves are such that diodes in the piecewise-linear circuit 
model are likely to have slightly larger forward resistances (ref and Tc/ 

of the order of a few hundred ohms) and considerably smaller reverse 
resistances (r er and r er of the order of 20 kilohms to 100 kilohms). In 
addition, the individual curves of the family Vcb = f(ic, ie) have greater 
variation in slope and spacing throughout the Vcb vs. ic plane. · 

Common r Common Common 
Base Emitter Collector 

·~ '• ,, ·~ ·~ - --
R1 -!) R2: +V2 

- + - + 

Circuits R1 R V2 R1 R2 vz + • > + 2 
v{ Re _ V1 : Rb - Vi Re -

..,_ 

Current i2 a 1 
gain -a -- - --

i1 1 -a 1 - a 

Voltage 112 aR2 -aR2 R2 
gain 111 R1 + Rb(l - a) (l-a)R1+R, R2 + R1(l - a) 

Power v2i2 a2R2 a2R2 R2 --gain 111i1 R1 + Rb(l - a) (1 - a)[(l - a)R1 + R.] (1 - a)[R2 + R1(l - a)) 

Input 111 
R1 + Rb(l - a) 

R, R2 
R1 + (1 - a) Ri+--

resistance i1 1 - a 

Output ~ R2 II 00 = R2 R2 II 00 = R2 R2 II R1(l - a) = R1(l - a) resistance io 

Fig. 5.28. Effects of coupling resistance in the basic cucuits (r 6 = Tb = 0, re = 00 ). 

The ideal-diode model, the piecewise-linear diode model, and the 
linear-incremental model have one very important feature in common. 
They all yield "linear" circuits and therefore linear differential equations 
when combined with energy-storage elements. To be sure, the diode 
models have multiple states and therefore will yield different linear 
equations for each state traversed during operation of the circuit. 

Various resistive models can be devised for transistors in addition to 
those already discussed. As soon as we deviate from the use of linear 
segments to match the curves, we have many possible functions to 
consider. One that is often useful is based on the use of exponential 
diodes, and it is in keeping with the exponential relation between current 
and voltage in a semiconductor junction. Although exponential models 
(or other nonlinear models) may result in a better fit to the graphical 
curves or a better interpretation of the physical behavior of the transistor, 
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they are usually less useful in circuit analysis and will not be pursued 
here. It is important to keep in mind the fact that no circuit model is 
the "right one" or the "best one" for all purposes. A model that is too 
general may be very cumbersome for analysis of circuit behavior. It 
is usually preferable to use the simplest model that adequately describes 
a device in a specific operational environment. 

Thus far no mention has been made of the effects of high-frequency 
variations of the currents and voltages applied to a transistor, nor has 
anything been said about the effects of temperature changes. Both of 
these materially influence transistor behavior. 

5.15 High-Frequency Circuit Model 

Resistive models are valid only for d-c or low-frequency operation. 
Modification of the models is necessary if they are to be used to determine 
circuit behavior at high frequencies. We shall here define high fre­
quencies rather loosely as those for which the resistive models no longer 
represent the transistor adequately. Depending on the type of transistor 
involved and the circuit configuration, this may mean frequencies as low 
as tens of kilocycles per second, or as high as a few megacycles per 
second. 

Semiconductor junctions exhibit an effective capacitance that in­
fluences transistor behavior when rapid variations of voltage or current 
occur. This capacitance depends upon the cross-sectional dimensions of 
the junction, the materials, the applied voltage, and other factors related 
to the method of fabrication. Typical values run from 10 to 100 µµf. 

The incremental model shown in Fig. 5.29(a) includes such a capacitance 
Cc in the collector circuit to represent the base-to-collector junction. 
For frequencies where the capacitive reactance is appreciably less than 
the collector resistance, 1/21rfCc « re, the resistance can be omitted, as 
shown in (b ). The corresponding capacitance across the emitter-to-base 
junction can usually be neglected if the emitter diode is closed, since this 
capacitor is shunted by the very small emitter resistance. The equations 
previously given for resistive models apply to the circuit in (a) if re is 
replaced by complex impedance zc, i by I and v by V. 

The presence of the capacitance at the collector junction can be 
visualized in terms of the charge and potential distributions. Diffusion 
of majority carriers across the base-to-collector junction builds up a 
potential difference, which is characteristic of a capacitance. The charge 
distribution, electric field and potential difference near the junction are 
shown in Fig. 5.30. The reverse bias applied for normal operation 



196 

~ 
+ 

Veb 

+ 

re 

Tb 

ELECTRONIC 

aie --

(aJ 

(b) 

re 

Cc 

aie -

CIRCUIT THEORY 

ic ...,....._ 

+ 

V eb = le(Te + Tb) + lcTb 

Vcb = le(Tb + azc) + lc(Zc + Tb) 
V,:b 1 1 

Ye = - = - + jwCc 
Zc Tc 

+ 

Veb = le(Te + rb) + lcTb 

Vcb Vcb = l{Tb-j w~)+1{rb-j w~) 

Fig. 5.29. Incremental model including collector capacitance. 

merely serves to charge this capacitance further. Conversely the for­
ward bias applied to the emitter-to-base junction results in a large 
conduction current that virtually swamps the capacitance effect. 

5.16 Effect of Collector Capacitance on the 
Gain of the Grounded-Base Circuit 

The collector capacitance tends to reduce the magnitude of the current 
gain of the transistor and also introduces a phase shift. Referring to the 
circuit of Fig. 5.29(a), it is evident that a load resistance Re, connected 
between collector and ground, will receive almost the entire current aie 
at zero frequency and a small fraction ierb/ (rb + Re) at infinite fre­
quency where the capacitive reactance reaches zero. 
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A grounded-base circuit with collector capacitance in the transistor 
model is shown in Fig. 5.31(a), together with a vector diagram. The 
expression for complex current gain I cl I e is given in (b), and the absolute 

p n 

Majority 
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Electric field 
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Potential 
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(±)8 
(±) e 

p 

Fig. 5.30. Charge, electric field, and potential distribution near the collector junction 
of a p-n-p transistor. 

magnitude Ile/lei is given in (c). The phase angle £J, representing the 
amount by which le leads le, is given in (d). Sketches of Ile/lei vs. w, 

and £J vs.ware given in (e), using rectangular coordinates for the plots. 
The polar coordinate sketch in (f) indicates II cl I el as the length of the 
radius vector, and the phase angle appears as the polar angle. This is 
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Fig. 5.31. Current gain versus frequency for grounded-base circuit. 
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drawn from a succession of vector diagrams for different frequencies; 
hence, w is a parameter along the curve. This polar plot is called a 
Nyquist diagram and is frequently used to describe transfer ratios. 

The dependence of current gain on frequency, due to collector capaci­
tance, can be determined in a similar manner for the common-emitter 
and common-collector circuits. The effective reactance is modified in 
these circuits by the current gain. Thus, in the common-emitter circuit, 
since rd = rc(l - a), we have Cd = Cc/ (1 - a). 

5.17 Frequency Dependence of Current Gain 

Another factor that influences the gain of transistor amplifiers at high 
frequencies is the frequency dependence of a, the short-circuit current 
gain of the transistor. This effect can be attributed in the p-n-p transis­
tor to the time required for holes to diffuse through the base region. If 
the emitter current is varied incrementally at frequencies for which the 
period is comparable to the diffusion time, the collector current suffers 
a phase lag and a reduction in amplitude. The phase shift or time lag 
can be visualized as a delay in the effect of an increase ( or decrease) of 
the hole current injected into the base. If the variation is sinusoidal, 
the peak (or any other reference point) in the waveform of ie has passed 
before the corresponding variation is transmitted through the base by 
diffusion. The reduction in the effective amplitude can be attributed to 
dispersion of transit times of the individual carriers because of the 
randomness of the hole motion. Thus, for good high-frequency per­
formance, the base layer should be kept very thin to keep diffusion time 
low. 

A power series in frequency can be used to approximate an experi­
mental curve of short-circuit current gain versus frequency. For most 
purposes the first two terms of the expansion suffice to give reasonable 
results. A circuit model with a frequency-dependent current generator, 
as shown in Fig. 5.32(a), yields an approximate representation of this 
effect. The quantity a0 is the d-c or low-frequency value of a and 
corresponds to the a used in all previous circuit models. The frequency 
dependence can be included in all previous discussions by letting a = 
a0/[1 + j(w/w0 )]. The frequency w0 is the frequency for which !al = 
0.707 ao, 

If the frequency-dependent model is used in a grounded-base circuit, 
as shown in Fig. 5.32, the basic expressions in (c) lead to the expression 
for current gain shown in (d). The expressions for the grounded-emitter 
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Fig. 5.32. Frequency dependence of current source. 

and grounded-collector circuits can be modified in like manner by 
using the expression a0/[1 + j(w/w0 )] for the parameter a. 

5.18 Variation of Transistor Parameters 

A piecewise-linear circuit model implies constancy of the parameters 
that specify the transistor throughout a given state of the diodes in the 
model. Actual transistor curves deviate from this idealization to some 
extent, and if the deviation is important the variation of parameters 
must be considered. Figure 5.33 gives an example of the parameter 
changes that may occur as a function of the operating point location in 
the amplification ·state. Such data are useful in circuit design. For 
instance, we may wish to choose an operating point in a region where a 
parameter variation is smallest; or we may wish to obtain maximum 
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gain, or meet some other condition. The specific numerical values of 
the parameters at the appropriate point can then be used in the design 
calculations. In large-signal applications the parameter variations are 
usually less important, and a piecewise-linear model can be based on 
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Fig. 5.33. Typical variations of transistor parameters with collector current. 

average values of the parameters. In either case one of the design con­
siderations is reduction of the effects of parameter variations. 

The temperature dependence of transistor parameters poses another 
problem, since the environment in which a circuit is to be used may not 
be under the control of the circuit designer. The seriousness of tempera­
ture effects depends upon the semiconductor material and upon the 
fabrication process used by the transistor manufacturer. One critical 
effect of ambient temperature on transistor characteristics is a shift of 
the entire V1;b vs. ic family, which results because the saturation current 
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Ico through the collector junction increases exponentially with tempera­
ture. This is the effect that was mentioned in connection with d-c 
polarization of the common-emitter circuit. A semilog plot of a typical 
variation with temperature of the reverse collector-junction current for 
zero emitter current is shown in Fig. 5.34(a). We recall from the dis-
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Fig. 5.34. Effect of temperature on parameters of typical germanium junction 
transistors. 

cussion of semiconductor diodes in Chapter 2 that this reverse current 
is due to minority-carrier conduction that depends on the rate of forma­
tion of hole-electron pairs by thermal agitation. Once formed, such 
pairs exist (on the average) for a fraction of a millisecond before re­
combining. The number of charge carriers, and consequently the 
conductivity, increases exponentially with temperature. This effect 
places a definite temperature limitation on semiconductor devices 
(60 to 80°C for germanium and 120° to 150°C for silicon). 

A plot of conductivity versus temperature for minority-carrier con­
duction can be expected to resemble the curve of I(::0 vs, T. Corre~ 
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spondingly, resistivity, or a resistance such as Tcr, should diminish with 
temperature, as indicated by the typical curve of T er vs. Tin Fig. 5.34 (b). 
Resistance due to majority-carrier conduction, such as Te/ or Tb, tends 
to rise with temperature, as indicated in Fig. 5.34(c) and (d), because 
the resistivity of p-type or n-type semiconductor material generally 
tends to rise with temperature. This is true only up to the temperature 
for which the conduction of the intrinsic material becomes comparable 
to that of the donor or acceptor charge carriers. For still higher tempera­
tures, the resistivity of such materials decreases, as does the resistivity 
of intrinsic semiconductor material. 

5.19 Transistor Curves 

In plotting transistor collector curves we have used collector current 
as the independent variable, collector voltage as the dependent variable, 
and either emitter current or base current as the parameter. These 
choices are based on the fact that the transistor is a current-controlled 
device. The use of standard four-terminal-circuit reference directions 
for currents and voltages results in third-quadrant curves for the p-n-p 
types and first-quadrant curves for the n-p-n types. These forms are 
the natural result of combining the physical behavior of transistors with 
circuit theory standards. Transistor data supplied by most manufac­
turers usually places collector curves in the first quadrant by reversing 
reference directions (in effect) for p-n-p units. Furthermore, manu­
facturers' data usually appear as a plot of current versus voltage, for 
ease of comparison with vacuum triode and pentode data. 

Electronic circuit design may involve transistors, vacuum tubes, and 
other devices specified by manufacturers' graphical data. The designer 
must be prepared to relate the data to his analysis or synthesis pro­
cedures. The transistor curves given in Appendix A for use in connec­
tion with some of the problems are patterned after typical manufacturers' 
curves. 
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PROBLEMS (See Appendix A for transistor curves) 

5.1. The resistive-diode circuit of Fig. P5.l contains two dependent sources. 
(a) Find the breakpoints of the two diodes. 
(b) Sketch and dimension i1 vs. e1, 
(c) What is the incremental impedance, Aei/ Ai1, at e1 = -3 volts. 

+ 

2kf2 

Fig. P5.1 

5.2. Using an ideal-diode transistor model in Fig. P5.2: 
(a) Sketch and dimension e2 vs. e1• 

(b) Sketch and dimension i 2 vs. i 1• 

+ 

(c) Determine the incremental voltage gain Aed Ae 1 and the incremental 
current gain Aid Ai1 for the region of operation in which the emitter diode is 
closed and the collector diode is open. 

-V 
Fig. P5.2 
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5.3. Repeat Problem 5.2 for the common-emitter (JOnnection (Fig. P5.3). 

+V 

r R2 
e2 

el 

l ti2 
-=-

-V 
Fig. P5.3 Fig. P5.4 

5.4. Repeat Problem 5.2 for the common-emitter connection shown in 
Fig. P5.4. 

5.5. Repeat Problem 5.2 for the common-collector connection shown in 
Fig. P5.5. 

+v 

Fig. P5.5 

5.6. For the Type I transistor operated with the base common determine 
the least load resistance that may be used with a collector supply voltage of 
-10 volts without exceeding the rated collector dissipation of 4 X 10-3 watts 
when the emitter current may be any value in the range Oto 5 ma. 

5.7. From the Type I curves estimate the parameters ref, r er, Tb, and a 

belonging to the piecewise-linear circuit model of Fig. 5.12(a). 
5.8. For a transistor operated with the base common determine the vari­

ational power gain on the basis of these data: 
(a) Model is the piecewise-linear one of Fig. 5.12(a) operated with the col-

lector in the reverse region and the emitter in the forward region. 
(b) ref = 50 ohms, rb = 50 ohms, rcr = 2 X 105 ohms, a = 0.95. 
(c) Emitter source resistance = 100 ohms, load resistance = 2000 ohms. 
5.9. For a transistor operated with the emitter common determine the. 

variational power gain on the basis of the data of Problem 5.8. 
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5.10. (a) Show that all possible transistor d-c polarizing circuits are 
equivalent to the circuit shown in Fig. P5.6. 

(b) For the idealized transistor model in Fig. P5.7, how does ie depend on 
V_,, Ve, and the minority-carrier current Io, 

(c) Find fiie/ !if 0, and discuss the significance of the result in the design 
of a d-c polarizing network. 

Re Re 

Fig. P5.6 Fig, P5.7 

5.11. A common-base transistor circuit drives a load R 2 from a source 
with internal resistance R 1• For incremental voltages and currents, in the 
amplification region, the transistor model includes re, rb, re, and a. Derive 
expressions for the following quantities in terms of R1, R2, re, rb, re and a: 

(a) Current gain. 
(b) Voltage gain. 
(c) Power gain. 
(d) Input resistance. 
(e) Output resistance. 
5.12. Repeat Problem 5.11 for a common-emitter circuit. 
5.13. Repeat Problem 5.11 for a common-collector circuit. 

R1 ~ -,.iE_ R2 

\ ) 
Veb Vcb -=-l'c 

'--- / + 

Fig. P5.8 

Ve = 5 volts 
l1c = 10 volts 
R 1 = 2 kilohms 
R2 = 2 kilohms 

5.14. The p-n-p junction transistor in the common-base amplifier circuit 
shown in Fig. P5.8 can be approximated by an ideal-diode model in which the 
emitter-to-collector current gain is given by a = 0.95. Neglect the reverse 
saturation current of the collector junction (I 0 ) and assume the current gain 
from collector to emitter is zero (a' = 0). 



TRANSISTOR MODELS AND CIRCUITS 207 

(a) Sketch and dimension the following transistor curves based on the 
ideal-diode model 

Vcb vs, ic with ie as the parameter 
Veb vs. ie with ic as the parameter 

(b) Find the values of ie, ic, Vcb, and Veb at the quiescent operating point of 
the circuit (v1 = 0). 

(c) Plot the driving-point curve, v1 vs. ie, 

(d) Plot the transfer curves Vcb vs. Veb and Vcb vs. v1, 

+ 
C 

.__---------+-------------0 
Fig. PS.9 

r 
V2 

l_ 

Vc = 10 volts 
R2 = 2 kilohms 
R1 = 2 kilohms 
Ve = 5 volts 
Re=? 
C =? 

5.15. The transistor of Problem 5.14 is connected in the common-emitter 
circuit shown in Fig. P5.9. 

(a) Determine the value of Re needed to make the emitter current (ie) at 
the quiescent operating point (v1 = 0) the same as in Problem 5.14. 

(b) Plot the transfer curve v2 vs. v1, assuming Ve, Re and C can be replaced 
by an appropriate battery. 

(c) Determine the incremental voltage gain Livd Liv 1 for the circuit assum­
ing the increments in v1 are small and the capacitance is very large. 

(d) If v1 = V 1 sin w 1t, find the maximum value of V 1 that permits linear 
amplification for the quiescent conditions established in (a). 

(e) For w1 = 104 radians/sec, determine the approximate value of C 
needed to hold the peak-to-peak variation of capacitor voltage to 2 per cent 
of the average capacitor voltage. 

Model 1 

Fig. PS.10 

Model 2 

Fig. PS.11 

5.16. (a) From the information on the common-emitter characteristics of 
the Type II transistor determine the values of a, Tc, and Te that you would 
use in each of the two models shown in Figs. P5.10 and P5.ll at an operating 
point Vee = -4, ib = -0.6. (Tb = 100 ohms from independent measurement) 
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(b) Using the circuit of Fig. P5.8, determine for which of the following 
calculations Model 1 (Fig. P5.10) can be used as a good approximation for 
the transistor rather than the more complete Model 2 (Fig. P5.11). 

(1) Current gain Aic/ Me 
(2) Voltage gain Avcb/ Aveb, and Avcb/ Av1 
(3) Input impedance Aveb/ Aie 
( 4) Output impedance Av cb/ A ic 
5.17. Repeat Problem 5.16(b) for the Type III n-p-n transistor. 

Vc 

Vc = -15 volts 
R 1 = 1 kilohm 
Rb= 750 kilohms 
R2 = 5 kifohms 

Fig. P5.12 

Model for transistor 

5.18. The circuit of Fig. P5.12 uses a Type I transistor in the common emitter 
connection. The emitter bias is established by a base current I b obtained 
through Rb, Thus V c biases both the emitter and collector. 

(a) Assuming that the base-to-emitter voltage is small compared to V0 , 

determine the quiescent collector voltage (V ce) and collector current (J 0 ) 

from the characteristics of the common-emitter connection. 
(b) Graphically determine the incremental current gain Aic/ Ai1• From 

this value of current gain, compute the value of a to be used in the idealized 
model shown in Fig. P5.12. 

t 

Ve Vc 
Fig. P5. 13 

5.19. Using the ideal-diode transistor model shown in Fig. P5.13, obtain 
the i2 vs. i1 characteristic. Repeat for the grounded emitter and grounded 
collector connections. 
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5.20. A Type IV point-contact transistor is used in the circuit of Fig. P5.14. 
(a) State the condition of the diodes in the normal operating region (open 

or closed). 

Vc = 50 volts 
Re = 5 kilohms 

e C 

b 

Fig. P5. 14 

Ye = 0.5 volt 
Re= 100 ohms 

(b) On the emitter characteristics (veb vs. ie) of the Type IV transistor, plot 
the input load line equation. Similarly, on the collector characteristics plot 
the output load line. 

(c) Locate the quiescent operating point by transferring the load line on 
the collector characteristics onto the emitter characteristics. Also locate the 
operating point on the collector characteristics. 

(d) Determine the small signal parameters (re, rb, re and a) at the operating 
point. 

(e) Determine the small signal voltage gain D.vcb/ D.Veb at the operating point. 

Fig, PS. 15 

5.21. In the circuit of Fig. P5.15, assume the transistor has negligibly small 
forward emitter resistance and negligibly small reverse collector conductance. 

(a) With e1 and e2 set equal to zero, sketch and dimension, in the Va versus 
V 1 plane, the boundaries of the region within which the transistor is operating 
in the usual amplification region (emitter conducting and collector non­
conducting). 

(b) For operation in such region, find the a-c signal at ea when small a-c 
signals e1 (t) and e2 (t) are applied. 

5.22. The variable resistance of Fig. P5.16, RM (a carbon button microphone) 
has a resistance of 400 ohms± 10 per cent (RM = Ro+ 6.r). What would 
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be a suitable value of R 1 for an operating point of 200 microamperes base cur­
rent. Determinev0 as a function of ilr. Use the data for the Type I transistor. 

+20v -v 

n-p-n 

Fig. PS. 16 Fig. P5.17 

5.23. The circuit shown in Fig. P5.17 is used to measure the h-parameters 
of a transistor. Small a-c voltages of adjustable amplitudes V 1 and V 2 are 
applied as shown. The resulting a-c voltages E 1 and E 2 are measured with 
a high-impedance voltmeter. Assume that R 1 is much greater than 
rb + re/(1-a), and R2 is much less than rc(l-a). 

(a) Determine the h-parameters in terms of the external voltages and 
resistances. 

(b) Determine re, rb, r c, and a. 

-Vc 

+ 

Fig. PS.18 

5.24. An emitter-follower circuit using a p-n-p junction transistor is shown 
in Fig. P5.18. The transistor is biased in the forward gain region and may 
be represented by the idealized linear incremental circuit model with 
re = Tb = 0 and r C = 00 • 

(a) Find the incremental voltage gain, £led ile 1• 

(b) Find the incremental input resistance facing the signal source, e1• 

(c) Find the incremental output resistance facing the load resistance, R2. 
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5.25. The circuit shown in Fig. P5.19 is used as the output stage of a 
transistor audio amplifier. Note that by combining p-n-p and n-p-n transis-

- V +v 

Rg 

Fig. PS.19 

tors, push-pull operation is obtained without the use of transformers. Assum­
ing that in the transistor model Te = Tb = 0 and Tc = oo, a = 0.95. 

(a) Plot and dimension the transfer curve e2 vs. e1. 
(b) Assuming e1 = E 1 sin wt; plot e2, i1, and i2 vs. time for E1 < V. 
5.26. Using piecewise-linear models for the n-p-n and p-n-p transistors in 

the circuit shown in Fig. P5.20, find e2 as a function of e1, and show the result 
in graphical form (transfer plot). Assume that Tc = oo, Te = Tb = 0, and 
that the a for both transistors is 0.95. 

Fig. PS,20 

-=-V 
+ 

5.27. The signal from a source having an internal resistance of 350 ohms 
is amplified by a single-stage amplifier which uses a p-n-p junction transistor 
in the common-base connection. The amplified signal is delivered to a purely 
resistive 5000-ohm load. Assume that the transistor is sufficiently well 
represented by the circuit of Fig. P5.21. 

(a) At the d-c operating point, with es(t) = 0, compute the power :flowing 
out of Ve and Ve, the power flowing into the load (RL), the power flowing 
into the source terminals, and the power flowing into the transistor. 

(b) When amplifying a signal from a source of square waves with an 
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open-circuit voltage varying between +1 and -1, compute the average 
power flowing into RL, the average power flowing out of the source terminals, 
and the average power flowing into the transistor. 

(c) Is the average power flowing into the transistor greater or less in part 
(b) than in part (a)? Explain briefly. 

(d) What is the maximum possible power which could be supplied by the 
source if it were disconnected from the transistor amplifier and reconnected 
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to a resistance which matches its internal resistance? Is this greater or less 
than the power flow from the source in part (b)? 

(e) Construct an incremental circuit for the source, transistor, and load, 
and compute the ratio of signal power in the lo.ad to the signal power flowing 
out of the somce terminals in your equivalent circuit. This is one possible 
definition of power gain (called "network efficiency," and for most practical 
amplifiers is a number greater than unity and a function of the load impedance). 
Compute the ratio of signal power in the load to the maximum signal power 
available at the source terminals. This is the usual definition of "power gain." 
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Vacuum Triodes 

6.1 Introduction 

The vacuum triode can be described as a vacuum diode with a control 
element, called the grid, interposed between the heated cathode and the 
anode. Thermionic emission of electrons from the heated cathode 
provides the free electrical charges necessary for conduction through the 
vacuum. Although the physical laws of conduction in vacuum differ in 
many details from those applying to semiconductors, the gross behavior 
of vacuum triodes bears considerable resemblance to that of transistors. 
From the standpoint of electronic circuit analysis, both triodes and tran­
sistors can be classified as control valves that are essentially linear in 
restricted regions of operation. Both are primarily resistive in character, 
but with reactive properties at high frequencies. In the forward-gain 
region the operation of a transistor can be described qualitatively by 
considering the collector-to-base circuit as a semiconductor diode, 
normally polarized in the reverse direction. Control of conduction in 
this circuit is provided by charge carriers (holes or electrons) injected into 
the base by the emitter. The anode-to-cathode circuit of a vacuum 
triode is a vacuum diode, normally polarized in the forward direction. 
Control of anode current is accomplished by modifying the -potential 
distribution between anode and cathode. The voltage applied to the 
grid relative to the cathode provides the mechanism for varying this 
potential distribution. 

213 
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6.2 Triode Structure 

Vacuum triodes are made in a wide range of sizes and have various 
electrode configurations. A subminiature tube is about one inch long 
and has a diameter comparable to that of an ordinary pencil. The 
dimensions of a large transmitting tube are more likely to be expressed 

o---=Anode 
-,....-Grid 

000~ 

~Cathode 

11 jf--Heater 

(a) 

p G 
(b) 

Fig. 6. 1. Typical triode electrode structures. 

in feet. The size is determined primarily by the power levels required in 
a given application. The great majority of electronic control valves 
operate at power levels of a few watts, but large high-power tubes used 

G 

FF 

P = plate or anode 
G = grid 
F= filament 

(a) 

G 

KHH 

P = plate or anode 
G = grid 
K = cathode 
H = heater 

(b) 

Fig. 6.2. Triode circuit symbols. 

(cJ 

in broadcast transmitters may be required to handle many kilowatts 
of power. 

A few of the more common electrode structures are shown in Fig. 6.1. 
The cathode, grid, and anode may be parallel planes, as shown in (a), or 
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concentric cylinders, as in (b ). Triodes may have a filamentary cathode, 
as shown in ( c). Elliptical cross sections are also used, as are various 
hybrid combinations of simple geometrical shapes. 

Circuit symbols commonly used to represent a vacuum triode are 
shown in Fig. 6.2. The symbol for a triode using a heated filament as the 
electron emitter is shown in (a). The symbol for a triode with an in­
directly heated cathode is shown in (b ). For our purposes, the abbre­
viated symbol shown in (c) is most convenient. The heater is implied 
but not shown, since the heater power merely maintains the cath­
ode at an operating temperature suitable for thermionic emission of 
electrons. 

6.3 Current Versus Voltage Relations 

Conventional designations and reference directions for total electrode 
currents and voltages are shown in Fig. 6.3(a). The triode is a three­
terminal circuit element, hence we can specify terminal behavior by 
means of four variables: eb, ec, ib, and ic. One commonly used functional 
representation of triode terminal relations is given in (b ). The graphs of 
these functions, shown in (c), are static curves typical of the d-c or low­
frequency behavior of a vacuum triode. The qualitative form is in­
dependent of triode size or electrode geometry. The plot of ic vs. ec is 
commonly called the "grid family," and the plot of ib vs. eb is called the 
"plate family." 

For fixed values of ec (zero or negative), the plate circuit conduction 
(ib vs. eb) is like that of a diode in series with a voltage source proportional 
to ec. Thus, for a constant value of ib, the voltage eb is nearly linearly 
dependent on ec, for ec less than zero. For ec greater than zero, the 
variation of eb with ec is smaller and not nearly as constant. Each 
line of the grid family also resembles a diode curve. The grid and cathode 
constitute an auxiliary diode whose conduction is somewhat influenced 
by the anode voltage eb, The influence of eb on ic is considerably less 
than the influence of ec on ib, 

On the basis of the above consideration, we can postulate an ap­
proximate model of the triode, as indicated in Fig. 6.3 (d). The grid-to­
cathode circuit can be represented by a simple vacuum diode, and the 
plate-to-cathode circuit by a vacuum diode in series with a source 
proportional to ec. For ec less than zero, the proportionality factor µ is 
very nearly constant. 

The simple piecewise-linear models shown in Fig. 6.4, together with 
their graphical representations, are obtained by replacing the vacuum 
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{µ = - Eb/Ee for ec < 0 
µ - 0 for ec increasingly positive 

eb = - µec + (ib/K)% 

ib = K (eb + µec)¾ 

Fig. 6.3. Qualitative triode curves. 

eb 

diodes by ideal rectifiers or piecewise-linear diodes. These curves and 
circuit models are basically the same as the piecewise-linear transistor 
curves and models, discussed in the preceding chapter. 

Before proceeding with a more quantitative discussion of triode models 
and circuits, let us examine the physical basis for the current-versus­
voltage relations. As we shall see in the succeeding articles, triode 
behavior can be explained by an extension of the results obtained in 
Chapter 2 for conduction in a vacuum diode. 
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{
eb = ibrp - µec for ib > 0, ec ~ 0 

ib = 0 for eb < - µec or eb < 0 

ec 0 

(b) 

Fig. 6.4. Piecewise-linear triode models. 

6.4 The Cold Parallel-Plane Triode 

As mentioned above, the applied grid voltage affects the electric 
potential distribution in the interelectrode space and thereby influences 
the flow of electrons from cathode to plate. For a more detailed explana-
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tion of this effect, let us first examine the electric potential distribution 
within a "cold" triode with the heater disconnected so that the cathode 
emits no electrons. The cold tube, having no interelectrode space 
charge, is essentially a three-electrode capacitor in which the inter-
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Fig. 6.5. Potential distribution in a cold-cathode planar triode. 

electrode electric fields are governed by linear electrostatic laws. The 
applied electrode voltages determine the interelectrode fields of the cold 
tube, from which we can deduce something about the amount of current 
which flows when the cathode is heated. For simplicity, we shall choose 
parallel-plane geometry with electrodes of infinite extent. This is an 
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idealization of the parallel-plane triode illustrated in Fig. 6.1 (a). The 
anode and cathode of our structure are assumed to be metallic planes, 
and the grid structure consists of parallel rods or wires, as shown in 
Fig. 6.5(a). The grid wires are spaced a distance s apart and have a 
diameter d. 

Cathode Grid 
I 
I 
I 
I 
I 
IQc 
I 
I 
I 
I 

(a) 

(d) 

Plate 

(b) (c) 

-Ckgec - Cpkeb = Qk = -Ck<!>c 

Ckgec + Cgp (ec - eb) = Qc = C0 (ec - <Pc) 

Cpkeb + C0p(eb - ec) = Qb = Cp(eb - </>c) 

(e) (f) 

Fig. 6.6. The electrostatic model of the cold triode. 

The grid wires are fixed at a potential ec with respect to the cathode, 
and the anode is fixed at a potential eb with respect to the cathode. In 
the absence of the grid wires, the potential varies linearly between 
cathode and anode, as shown by the dotted line¢' in Fig. 6.5(b). With 
the grid wires present, the potential cp (x,y) drops sharply in the vicinity 
of each wire (y/ s = 0, 1, 2, ... ), as shown in Fig. 6.5 (b ), and negative 
induced charge appears on the grid wires. Midway between grid wires 
(y/s = ½, !, f, ... ), the potential curve is relatively smooth. At 
distance greater than s to the left or right of the grid plane, the potential 
approaches a curve corresponding to a uniform planar distribution of 
grid charge. A sketch indicating a uniform sheet of charge in the grid 
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plane is shown in Fig. 6.5(c), and the corresponding distribution of 
potential is shown in (d). 

When voltages ec and eb are applied to the parallel-plane cold triode, 
Fig. 6.6(a), induced charges Qk, Qc, and Qb appear on the electrodes. 
We assume here that each electrode has unit area and that the spacing 
is small, so that fringing at the edges of the electrodes is a negligible 
effect. Since the charge-voltage relationships are linear, we can always 
represent the cold tube as the system of three capacitors shown in 
Fig. 6.6(b). This is the general circuit model for any configuration of 
three perfect conductors in free space; one grounded and the other 
two driven by d-c voltages. 

A three-terminal "mesh" or "delta" network of three capacitances is 
always replaceable by an equivalent "star" configuration, as indicated 
in Fig. 6.6(c). The pertinent relationships are 

Cgp = CgCp/(Cg + Gp + Ck) (6.1) 

and, by symmetry, two similar forms for Cpk and Cka• These relation­
ships can be deduced from the charge-voltage equations given in Fig. 
6.6. Thus the cold triode can be represented by the circuit model in 
Fig. 6.6(c). We must now identify the potential <l>c appearing in. the 
circuit model and relate this potential to the electric field at the cathode 
to deduce the amount of cathode current which will flow when the heater 
is reconnected. 

Assume, first, that Qc is zero. With no charge on the grid, the grid 
becomes "electrically transparent" and the potential curve has the same 
slope throughout the cathode-to-plate region as indicated in Fig. 6.6(d). 
Hence ec/Xc = %/Xb, By inspection of the circuit model, we see that Qc 
equal to zero implies that ec is equal to <l>c, and this identifies <l>c in 
Fig. 6. 6 ( d). Now let us decrease ec exactly one volt and, at the same 
time, raise eb just enough to keep <l>c unchanged, as shown in Fig. 6.6(e). 
This particular increase in% we shall define asµ, the electrostatic ampli­
fication factor or screening factor of the triode. By inspection of the 
circuit model, Fig. 6.6(c), we see that 

µ = Cu/Gp (6.2) 

Moreover, it follows from the star-mesh relationships that 

Cg/Gp = Cgk/Cpk (6.3) 
Hence 

µ = Cak/Cpk (6.4) 

Finally, from the above definition ofµ and from Fig. 6.6(e), 

eb - (xb/Xc)<l>c = µ(</>c - ec) (6.5) 
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so that 
(6.6) 

Figure 6.6 (f) offers a slightly different, but equivalent, interpretation 
of the triode parameter µ. We can say that µ is the plate voltage re­
quired to produce zero electric field at the cathode when the grid is one 
volt negative. It is apparent from this interpretation that µ remains 
unchanged if we move the cathode to a different location, keeping the 
grid and plate fixed. In other words, µ depends upon the grid-to-plate 
separation Xb - Xe and upon the grid-wire diameter d and spacing s, 
but does not depend upon the grid-to-cathode separation. The calcula­
tion ofµ from xb - Xe, d, ands is a problem in electrostatics which, for 
certain geometries, is often very conveniently solved by conformal 
mapping methods. 

6.5 The Thermionic Triode 

When the cathode is heated to operating temperature, thermionic 
emission provides large numbers of free electrons in the space between 
cathode and anode. As in the case of the vacuum diode, the anode 
current of a triode in normal operation is limited by space charge rather 
than by temperature saturation. The space charge due to the cloud of 
electrons in the interelectrode space modifies the potential distribution 
that exists for the cold-cathode condition. 

A qualitative sketch of potential distribution in a hot triode is shown 
in Fig. 6.7(a). The relative magnitude of <l>e and the grid-to-cathode 
spacing Xe have both been exaggerated in order to show the curvature 
of the potential distribution in this region. The small sharp potential 
dip just outside the cathode is attributable to initial emission velocities. 
The potential minimum normally occurs very close to the actual cathode 
and is only a few volts below cathode potential. This minimum is often 
called a virtual cathode. Since most electrons reach the potential mini­
mum with relatively low velocity, the effect is like that of a slightly 
negative cathode located at the potential minimum and emitting zero 
velocity electrons. For this discussion we shall assume that the location 
and potential of the virtual cathode coincide with those of the aetual 
cathode. 

Under the usual operating conditions, eb is large and positive, whereas 
ee is small and negative, and the current is space-charge limited. Elec­
trons are subject to a large acceleration in the grid-plate region because 
of the large positive value of eb, They arrive at the anode with a velocity 
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vb, determined by equating kinetic energy (½mvb2) to potential energy 
(qeb), The current density is the product of the electronic charge, the 
electron density and the electron velocity. A given anode current 
therefore produces little space charge in regions where velocity is high. 
Thus the potential curve near the anode is approximately a straight 
line, as it was for the cold (space-charge-free) triode. 

Actual 
cathode 

Virtual 
cathode 

(b) 

(c) 

I 
I 
I 
I 

Xe 

Effective 
cold 

cathode 

Xe 
Grid 

(a) 

eb + µec ,Pc = -[X_b ___ X_e]--
-- +µ 
Xe - Xe 

Xb 
Plate 

Fig. 6.7. Potential distribution in a triode with heated cathode. 

Near the heated cathode, the electron velocities are small and space 
charge is appreciable. The space charge produces curvature in the 
potential distribution as in the space-charge-limited diode. For the 
calculation of potentials farther to the right, the cloud of space charge 
near the cathode can be represented by a concentrated sheet of charge 
located at some point Xe, as indicated in Fig. 6.7(a). In other words, a 
heated cathode can be replaced by a cold cathode located closer to the 
grid without altering the potential distribution in the grid-plate region 
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where space charge is negligible. For plane-parallel geometry, the 
potential cj, in a hot space-charge-limited triode varies approximately as 
the four-thirds power of the distance from the cathode. (This is a con­
sequence of the plane-parallel-diode law. Since the current density is 
independent of x, we have cj,% proportional to x2

, so that cj, is proportional 
to xH.) It follows that Xe= Xc/4. Hence the equation for <l>c given in the 
preceding article applies to the triode with heated cathode, provided Xe 
and Xb are each decreased by an amount Xe, as indicated in Fig. 6. 7 (b ). 

The region between the cathode and grid of the triode forms a diode 
whose anode voltage is the effective grid-plane potential <l>c• Thus the 
cathode current ik of the triode is proportional to the three-halves power 
of (<l>c + cj,0 ), where cj,0 is a correction voltage accounting for the small 
initial-velocity potential dip, and also for contact-potential differences 
between the electrodes. For zero grid current (ec negative) we have 
ib equal to ik so that anode current ib is proportional to (<l>c + cj,0 )%. 
Since <l>c is proportional to eb + µ,ec, as indicated in Fig. 6. 7 (b) the 
anode current ib can be expressed by the relation given in Fig. 6.7(c), 
where K, k, andµ, are constants of the tube. This relation holds for any 
triode geometry (parallel-plane, cylindrical, etc.), provided (1) the grid 
current is negligible, (2) the anode current is space-charge limited, 
(3) the grid-to-plate space charge is negligible, and (4) the grid-wire 
spacing is uniform and small compared with interelectrode spacing. 
The quantity k may amount to several volts, since it includes a grid­
correction voltage multiplied byµ,. However, a satisfactory approxima­
tion is usually obtainable without including k, so that 

(6.7) 

6.6 Plate-Current Curves for a Typical Triode 

The relation for plate current given in Fig. 6. 7 ( c) confirms the plate­
circuit model postulated in Fig. 6.3(d). For a fixed value of grid voltage 
ec, the plate current varies as in a biased vacuum diode. The plot 
given in Fig. 6.8(a) shows this relation for several values of ec, Note 
that the curves are spaced a distance µ,E along the plate-voltage axis, 
where E is the grid-voltage increment. On this plot the correction 
voltage k (for initial velocities and contact potential) is assumed to be 
zero, so the curve for ec = 0 passes through the origin. 

The plot of Fig. 6.8 (b) shows experimental plate-current curves for a 
typical triode, with the theoretical three-halves power curves of (a) 
shown as dotted lines for comparison. The constants K and µ, must be 
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chosen appropriately to fit the curves of a given triode. The difference 
between actual measured curves and the theoretical curves can be 
visualized more readily from the plot of i/3 vs. eb shown in ( c). Here 
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Fig. 6.8. Theoretical and actual plate-current curves. 

the theoretical curves are straight lines. Within the central region 
contained between lines OA and OB, the experimental curves follow the 
theoretical curves very well. Above line OA, the actual plate current is 
less than that given by the three-halves power idealization because the 
potential distribution is modified by the presence of substantial space 
charge in the grid-to-plate region. When eb is negative, the plate current 
vanishes, since the emitted electrons are retarded to zero velocity 
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(<J, = O) before reaching the plate. The entire cathode current is then 
collected by the grid. Below line OB in Fig. 6.8(c), the actual current 
lies above that predicted by the idealized theory. This departure can 
be attributed primarily to unavoidable nonuniformities in grid-wire 
spacing and grid-to-plate spacing. In effect, the "local" µ varies slightly 
from one part of the grid to another. The plate current can be visualized 
as the sum of the currents in a number of smaller triodes connected in 
parallel, each with a slightly different value ofµ. The total current of 
such a parallel combination does not cut off abruptly as the plate voltage 
is lowered, because of the dispersion of cutoff voltages for the various 
small triodes. In some tubes the grid-wire spacing is purposely made 
nonuniform to make the plate-current cutoff gradual. These tubes, 
called remote-cutoff tubes (in contrast to sharp cutoff), are used exten­
sively in applications where control of gain by means of grid bias is 
desired. A common example of such use is an automatic gain control 
circuit in a radio receiver. 

6.7 Grid-Current Curves for a Typical Triode 

The grid and cathode of a triode form a subsidiary diode which con­
ducts current for positive values of grid voltage. Grid-current curves 
for a typical triode are shown in Fig. 6.9(a), where plate voltage eb is 
the parameter on a plot of grid current ic versus grid voltage ec, For 
ec small and eb large, the grid current for constant ec is nearly inde­
pendent of plate voltage, and a simple diode model represents the 
grid-to-cathode behavior. Figure 6.9 (b) shows another way of presenting 
the same data. Below line OA the grid current. is essentially independent 
of plate voltage. Either of these presentations of the input data can be 
combined with the plate-current curves to specify the resistive behavior 
of a vacuum triode. Another useful form for the plate-circuit data is a 
plot of eb vs. ec, with ih as a parameter. Nonlinear vacuum-tube curves 
are useful for locating operating points and for determining numerical 
values for the parameters that appear in circuit models. However, 
piecewise-linear or linear-incremental models will be our main concern 
in this chapter. 

6.8 Piecewise-Linear Approximations to Triode Curves 

The qualitative character of typical triode curves suggested the 
resistive models postulated in Article 6.3. These included the simple 
piecewise-linear models shown in Fig. 6.4. Our brief discussion of the 
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theoretical basis for the resistive properties of triodes indicates that the 
model of Fig. 6.4 (b) should provide a fairly good quantitative approxima-

eb = µE 2µE 3µE 

0 E 2E 3E 4E 5E 6E ec 
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----- 4E 

---- 3E 
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0 µE 2µE 3µE 4µE 5µE eb 

(b) 

Fig. 6.9. Typical grid-current curves. 

tion to triode curves. If a better fit is desired, we can make use of the 
fact that the triode has the same plate current versus plate voltage 
relation as the vacuum diode. Thus any of the vacuum diode models 
developed in Chapter 3 can be easily modified for use as triode models. 
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For example, the model of Fig. 6.lO(a) is an adaptation of the model in 
Fig. 3.13(a). The curves in Fig. 6.lO(b) have sufficient flexibility to 
match triode plate curves over a large portion of the ib vs. eb plane. 
Letting the intercept E0 equal zero reduces the model to the simpler one 
postulated in Fig. 6.4 (b). It is repeated for convenient reference in 

(a) (b) 

+E 

K 

(c) (d) 

fig. 6.10. Approximating triode curves with piecewise-linear models. 

Fig. 6.10 ( c). The parameters µ and r P can usually be chosen to provide 
a good fit to the actual curves over most of the negative-grid region. 
The model is not particularly accurate in the positive-grid region, nor 
does it do more than provide a crude approximation to the grid-current 
curves. Models more suitable for the positive-grid region can be devised, 
but the simple one suffices for most analysis or design problems involving 
triode circuits. 
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Referring to the model of Fig. 6.lO(c), we note that ru and ideal 
rectifier Du form a piecewise-linear approximation to the grid-cathode 
diode, whereas rp and Dp approximate the plate-cathode diode. The 
dependent voltage source µ.ec shifts the plate-circuit curve along the 
plate-voltage axis in the manner predicted by the effect of ec upon </Jc 
and therefore upon ib, The ideal rectifier DB is included to prevent 
the dependent source from driving eb negative. This diode roughly 
approximates the reduction in the effective value of µ. which takes place 
in the actual triode for low values of plate voltage. The ideal rectifier 
DB is connected by dotted lines in Fig. 6.lO(c), because it is somewhat 
less directly related to the physical behavior of triodes than are the 
other elements in the model. We could realize the same set of curves 
[Fig. 6.lO(d)] by omitting DB from the model and specifyingµ. = 0 for 
eb < 0. This restriction on the source µ.ec is, in effect, a piecewise-linear 
(actually a stepwise-linear) approximation to the gradual reduction in 
µ. as eb approaches zero. 

With three diodes in the model, there are eight diode states; four with 
DB open, and four with DB closed. We can eliminate the four with D 8 

closed as being of no practical interest. Three of the remaining four 
diode states define the regions of major interest in triode operation. 
With Du and DP off, both grid current and plate current are zero. This 
current cutoff (state I) exists for ec more negative than - eb/ µ.. For 
values of ec between O and -eb/µ., Dp is on and Du is off. This results 
in plate current but no grid current, and is the normal forward-gain or 
amplification region (state II). For ec greater than 0, both Dp and Du 
are on; hence both plate current and grid current exist. This is vari­
ously called the grid-current, positive-grid, or saturation region, and 
can be designated as state III. The remaining possibility (state IV) 
calls for Du on and Dp off. In this state, which cannot be achieved 
without applying an appropriate source between plate and cathode to 
make eb negative, a reverse gain occurs in the actual triode, and our 
simple model does not describe the behavior adequately. Since this 
state is of interest only in rather special instances, it will not be dis­
cussed in detail. It can be represented by a generator µ.' eb in the grid 
circuit. 

6.9 Linear Incremental Triode Models 

In some circuit applications the range of values for terminal currents 
and voltages is contained within a single state of the piecewise-linear 
model, that is, Dp and D9 are at all times either on or off, and can be 
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replaced by short circuits or open circuits. The piecewise-linear model 
then reduces to a linear model. The linear model can be further simpli­
fied by ignoring the fixed voltages and currents at the operating point 
( established by d-c polarizing sources) and considering only the incre-

(a) 

ib = h + l1ib, ic = 0 
eb = Eb+ Aeb, ec = -Ee+ Aec 

Aebl rp =-
Aib ec constant 

Aeb I 
µ = - Aec ib constant 

Aib I g --
m - Aec eb constant 

(c) 

Enlargement of region 
about point M 

-Ee+ Aec 

(b) 

r pAib = Aeb + µAec 

Aib = gpAeb + gmAec 

Where gp = 1/rp 

(d) 

FJg. 6. 11. Linear incremental model of plate circuit. 

\ 
\ 
\ 

+ 

mental variations about the operating point. The shift from total 
quantities to incremental quantities amounts to shifting the origin of 
coordinates to the operating point. In terms of the plate curves, the 
operation takes place in a small region containing the operating point 
M, as shown in Fig. 6.11 (a). The plate curves in this restricted region 
appear as nearly straight, parallel, equidistant lines, as shown in (b ). 
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The values of rp andµ can be chosen for maximum accuracy in the small 
region involved. In general, these values may differ slightly from those 
used in the piecewise linear model, which must provide a reasonable 
approximation over the entire first quadrant of the ib vs. eb plane. 

The slope of the plate curves determines the parameter rp in the 
incremental model. This slope is usually taken as the tangent to the 
curve passing through the operating point. The horizontal spacing 
between lines can be specified by the parameter µ, or the vertical spacing 
can be specified by a parameter gm. The definitions of rp, µ, and gm in 
terms of incremental quantities are given in Fig. 6.11 (c). From the 
expressions, or from the geometry indicated in (b), it is evident that 
µ = rpgm. 

Let us now consider the relations among the incremental quantities 
as the instantaneous values of currents and voltages change. Referring 
to Fig. 6.11 (b), assume that the change corresponds to a shift from 
point M to the nearby point N. From the geometry of the figure, we see: 

(6.8) 

and 
(6.9) 

The two circuits shown in Fig. 6.11 (d) are pictorial representations of 
the two equations. Either one can be taken as an incremental model 
for the triode plate circuit, since the two circuits are equivalent. 

The incremental circuit can also be obtained by application of differen­
tial calculus. Referring to the general piecewise-linear model of Fig. 
6.IO(a) and (b), we see that 

(6.10) 

expresses the relation between%, ib, and ec. Assume now that bothµ 
and rp have been chosen to match slope and spacing in some particular 
region. Total differentiation yields 

(6.11) 

which is the same as the corresponding incremental relation, Eq. 6.8. 
The incremental plate-circuit equation can also be obtained by 

expanding the plate current in a Taylor's series about the desired 
operating point (Eb, -Ee). This derivation is given in Fig. 6.12. The 
series approach is not needed here, but it is important because of its 
generality. It is useful for incremental analysis when linear analysis 
is inadequate, since higher-order terms can be included. It is also 
helpful in analyzing the linear incremental behavior of tubes having 
more electrodes (tetrodes, pentodes, etc.). Since the behavior of these 
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tubes involves more variables, a simple geometrical interpretation such 
as that of Fig. 6.11 (b) is not possible. 

At this point we shall introduce symbols that have become associated 
with incremental grid and plate variables through common usage. 

(a) 

(b) 

aib(Eb, - Ee) 
a10 = ¼•aeb = gp 

aib(Eb, - Ee) 
ao1 = = Ym 

aee 

For small excursions from the operating point, 

(c) ib(eb,ee) = aoo + a1o(eb - Eb) + ao1(ee + Ee) 

(d) ib(eb,ee) - lb = gp(eb - Eb) + Ym(ee + Ee) 

(e) Aib = gpAeb + YmAee 

Fig. 6.12. Series representation of triode plate curves. 

These symbols and their equivalents are: 

i0 = t:,,.ic 

eg = 1::,,.ec 

ip = Mb 

ep = t:i.eb 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

Let us now consider more complete models than those just shown for 
the plate circuit alone. The circuit of Fig. 6.13(a) is a linear resistive 
incremental model for a triode whose grid-to-cathode voltage is negative; 
the circuit of (b) is for positive values of ec. Here we have added an 
incremental representation for the grid circuit. Of course, the shunt 
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model for the plate circuit (gp in parallel with source gmeg) could be 
used instead of the series model. 

More complete linear models for negative and positive values of ec 
are shown in Fig. 6.13(c) and (d). These include interelectrode capaci­
tances (grid-to-cathode Cuk, grid-to-plate Cup, and plate-to-cathode 

p p 

ipi 
~+ ig 

ipt r7+ G -r G 
ep ep -eg 

eg rg ~ 

~ + -
K 

(a) 
K 
(b) 

~ Cgp ip 

II --+r I !G~ gp! gmec)~ [ eg r· -l 
(c) 

(d) 

Fig. 6. 13. Incremental triode models. Note: e0 = Aec, i0 = Aic, ep = Aeb, and 
ip = Aib, 

Cpk), which become important when voltage variations occur at high 
frequencies. As frequency is raised to still higher values, it may be­
come necessary to introduce circuit elements representing the induct­
ance of the leads that support the electrodes. For sufficiently high 
frequencies, it is also necessary to use complex values of 9m or µ in order 
to introduce a phase lag that accounts for the transit time of electrons 
through the interelectrode space. We have been vague in specifying 
frequencies for which interelectrode capacitances, lead inductances, 
or transit-time effects become important. Quantitative discussion of 
these effects is better deferred until required in connection with specific 
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circuit problems. The relative influence of the capacitances and induct­
ances depends heavily on the values of external circuit parameters as 
well as on frequency. Transit-time effects depend on tube geometry 
and operating voltages. 

6.10 Grounded-Cathode Amplifier Circuit 

The simplest triode circuit is the grounded-cathode amplifier, some­
times called the plate-loaded amplifier. The circuit shown in Fig. 6.14(a) 
includes a triode, the plate polarizing battery Ebb, and the plate load 
resistance Rb. Resistance Re may be considered as part of the amplifier, 
or it may be associated with the source e1 . Either the source e1 or 
auxiliary circuitry provides a d-c polarizing grid voltage -Eee which 
establishes a quiescent operating point Q. 

Let the triode plate-circuit behavior be specified by the curves of 
Fig. 6.14(b). Then the load resistance Rb and source Ebb impose the 
linear load constraint, which can be expressed by the relation 

(6.16) 

This equation plots as a straight line on the triode curves and is desig­
nated by Rb, The quiescent operating point Q is determined by the 
condition ee = -Eee, together with the load constraint. By assuming 
various values for ee, we can plot the transfer curves ib vs. ee and eb vs. ee 
shown in (c) and (d). Point P, the intersection of the load line and the 
ee = 0 line, marks the boundary between the amplification region and 
the grid-current region. If we wish to relate ib and @b to the input voltage 
e1, rather than ee, we must consider the effects of the source resistance 
Re, The curve of % vs. e1 shown in (f) is identical with the eb vs. ee 
curve of part (d) in the region where ee is negative, since ie is then 
negligible and Re has no effect. However, where ee is positive the curves 
will differ, and the triode input curves shown in part (e) must be used 
to effect a solution in this region. Since ee = e1 - ieRe, the resistance 
Re imposes a linear constraint that can be plotted on the input curves 
by locating two points. A given value of ee determines eb on the plate 
curves. Then eb and ee locate a point such as A on the input curves. 
A line of slope I/Re through this point locates the value of e1 correspond­
ing to the assumed value of ee. In Fig. 6.14 (f) the dotted line designated 
Re = 0 is the same as the curve in (d), since e1 = ee when Re = 0. 
The dotted line Re = oo indicates perfect limiting at ee = 0. For any 
value of Re, the positive-grid portion of the transfer curve must lie 
between these two extremes. 
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-Ecc 0 
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p 
---------Re large 

-.:,',,, 

'-~-Re= 0 

-Eco -Ecc 0 

(f) 

Fig. 6. 14. Grounded-cathode amplifier-graphical analysis using nonlinear triode 
curves. 

The nonlinear relations shown in Fig. 6.14(c), (d), and (f) must be 
plotted point by point in order to obtain reasonable accuracy. The 
graphical triode curves, furnished by the manufacturer or measured 
experimentally, are the basis for determining any such relations between 
current and voltage variables. 

For comparison with the nonlinear graphical analysis, let us carry 
out a graphical analysis of the same circuit, using a piecewise-linear 



+ 

(a) 

-Eco -Ecc 0 

(c) 

(e) 

-=-

ib 

VACUUM TRIODES 235 

Ea E' b Ebb eb 

(b) 

eb 

Ebb 

Eb' 

-Eco -Ecc 0 

(d) 

Eb 

P Re large 
E --------a" 

-Eco -Ecc 0 

(f) 

Fig. 6.15. Graphical analysis of grounded-cathode circuit using a piecewise-linear 
triode model. 

model for the triode, as indicated by Fig. 6.15. The circuit is shown 
schematically in (a), and the piecewise-linear triode curves are given 
in (b). The actual triode curves are shown by dotted lines. In making 
this particular piecewise-linear approximation to the actual tube curves, 
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the slope r P was made such that the ec = 0 line intersects the actual 
ec = 0 curve at the point P. Thus Ia and Ea will have the same values 
in both solutions. The value of µ was adjusted to yield the same grid 
voltage ( -Eco) for plate-current cutoff when eb = Ebb· We have thereby 
matched the approximation to the actual curves at the transition be­
tween states I and II and between II and III. This yields a fairly 
good average match over the region of major interest: namely, the 
amplification region (state II). 

Rb 

Re ~ G 
µec 

+ 
rg 

ec 
Dg 

-Ebb/µ 0 e1 
K I 

Cutoff I Amplification Grid-current 
(state 1) I (state II) (state III) 

State I II III 

Do Off Off On 
Dp Off On On 

ic = 0 0 ec/r0 = (e1 - ec)/Rc = ei/(Rc + r0 ) 

( µTg ) 

Ebb+ µec Ebb+ µec 
Ebb+ --- e1 

ib = 0 
r0 + Re 

= 
rp + Rb rp + Rb rp + Rb 

( Rbµr0 ) 

EbbTp - µecRb EbbTp - µecRb 
EbbTp - --- e1 

eb = Ebb - ibRb = Ebb = 
r0 + Re 

rp + Rb rp + Rb rp + Rb 

Fig. 6.16. Relations between total voltages and currents in grounded-cathode 
circuit (using a piecewise-linear triode model). 

The curves of Fig. 6.15(c), (d), (e), and (!) can be compared directly 
with the corresponding curves of Fig. 6.14. Note that the graphical 
constructions for the piecewise-linear circuits are greatly simplified by 
the fact that all variables must be related by piecewise-linear curves, 
so that two points (break points) suffice to plot each segment. In 
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Fig. 6.15(c) and (d), the dotted lines show the nonlinear solution ob­
tained from Fig. 6.14(c) and (d). The quiescent point Q' for the approxi­
mation does not coincide with Q for the actual curves. For some 
applications it may be preferable to match the piecewise-linear model 
to the actual curves at the desired quiescent point rather than at P, 
and to let other portions of the approximate transfer curves deviate 
from the actual ones. 

The use of piecewise-linear models permits simple algebraic solution 
of resistive-circuit problems. Nevertheless, free-hand graphical sketches 
provide a worth-while visual supplement. For the grounded-cathode 
circuit, algebraic results can be written by inspection. They are pre­
sented in tabular form in Fig. 6.16. The sketch of eb vs. e1 in Fig. 6.16 
shows the influence of the various circuit parameters on the dimensions 
of the transfer curve eb vs. e1• Observe from the tabulation that state I 
corresponds to removal of the triode from the circuit, and is analytically 
trivial. Nevertheless, in many circuit applications the cutoff state 
occurs during the cycle of operation. 

6.11 Polarizing the Grounded-Cathode Circuit 

The grounded-cathode circuit is useful for virtually all of the functions 
performed by electronic circuits; namely, voltage amplification, power 
amplification, wave shaping, waveform generation, modulation, and 
demodulation. Various modes of operation are determined by the rela­
tive values of polarizing voltages and signal voltages applied to the 
circuit. Energy-storage elements also play a vital role in the behavior 
of the circuit but detailed consideration of these effects is deferred to 
Chapters 8 and 9. For the present we shall use capacitances only as 
"ideal coupling elements" to illustrate practical methods of providing 
polarizing voltages and of coupling one amplifier circuit to another. 

Ideal coupling implies a capacitance (or an inductance) so large that 
the stored energy does not change appreciably due to a-c signal varia­
tions. The capacitance is then effectively a short circuit for a-c but an 
open circuit for d-c. A reasonable model for the capacitor in this case 
is a battery whose voltage equals the capacitor voltage. Such a battery 
provides a zero resistance path for a-c and holds the average current 
at the proper value (zero). 

If a polarizing battery or voltage source carries direct current in the 
reverse direction, the source can be replaced by a parallel combination of 
resistance and capacitance. The resistance is chosen to produce a 
voltage drop equal to the battery voltage when the specified d-c current 
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ec = 0 
ib 

+1 
eb IQ 

-t 
Ecc -=-

0 EQ Ebb eb 

(a) (b) 

Ebb ib ec = 0 

+1 IQ 

1' e2 = eb+ Ek Q 

J 0 I Ebb 
I 

-=- (Ebb- Ek) 

(c) (d) 

Ebb 
ib 

+i 
IQ 

e2 =eb+ Ek 

c-1 
0 I Ebb eb 

I 

-=- (Ebb-Ek') 

(e) (f) 

Fig. 6.17. Grounded-cathode circuit polarized for linear amplification. 

is flowing. The capacitance provides a path for alternating currents 
and must be large enough to maintain a nearly constant voltage. Grid 
polarizing voltages are normally provided in this way, since it is more 
economical than a separate source. 
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The circuit shown in Fig. 6.17(a) uses a separate source Ecc to 
polarize the grid somewhere between plate-current cutoff and grid­
current conduction. To provide the maximum range of linear operation 
the value of Ecc should be approximately Ebb/2µ, which results in the 
quiescent point Q shown in (b) of Fig. 6.17. The circuit shown in ( c) 
yields essentially the same result if we let Ek have the same value as 
Ecc• Since Ebb/2µ is appreciably smaller than Ebb, the operating point 

R 

+ + 

C 
C 

(a) (b) 

Fig. 6.1 a. Polarizing circuit that permits plate-current cutoff. 

Q' shown in (d) differs only slightly from that of (b ). Since plate 
current passes through Ek we can replace the battery by a resistance 
Ek/IQ, in parallel with a large capacitance, as shown in (e). Alter­
natively, the operating point can be maintained at the current IQ by 
reducing Ek to the value E/ as shown in (f). The value of Rk required 
is then Ek'/ IQ• 

The values of Rk, Rb, and Ebb in Fig. 6.17(e) can be chosen to place 
the operating point at nearly any point in the first quadrant. How­
ever, since the cathode voltage depends on plate current, this circuit 
can never produce plate-current cutoff under quiescent conditions. 
Current ibis positive for all finite values of Rk, A circuit that yields a 
greater range of possibilities in this regard is shown in Fig. 6.18(a). 
The equivalent form (b) places in evidence the effective battery pro­
duced by the current through Rand Rk with plate current equal to zero. 
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6.12 Incremental Analysis of Grounded-Cathode Amplifier 

Within a given state of the piecewise-linear model, we can further 
simplify calculations by using a linear incremental model. The equations 
relating incremental voltages and currents in Fig. 6.19(a) and (b) can 
be obtained by total differentiation of the appropriate equations in 

i0 = O; e1 = e0 

• µeg 
ip=---

rp + Rb 
µeoRb 

ep=----
rp + Rb 

G=f!.J?_=-~ 
e0 rp + Rb 

Ro= f!.J?_ = Rbrp 
io Rb+ rp 

Ri='!!-=oo 
'l.g 

(a) 

io - + 

-=-
• e11 e1 - e0 e1 
'l.g=-=--=---

Tg Re Re+ ro 
• µe,, 

'l.p =---
rp + Rb 

µe0Rb ~=---­
rp + Rb 

G = f!.J?_ = -µRb 
e0 rp + Rb 

+ 

G1-f!.J?_--(~)(-r11 
) 

e1 rp + Rb r0 + Re 

Ro= f!.J?_ = Rbrp 
io rp + Rb 
e1 

Ri =---;- = Tg + Re 
'lg 

(b) 

Fig. 6.19. Incremental analysis of grounded-cathode circuit. (a) Negative grid, 
ec < 0 (state II). (b) Positive grid, ec > 0 (state III). 

Fig. 6.16 and replacement of dib by ip, deb by ep, etc. The circuit models 
in Fig. 6.19 follow directly from these incremental equations. When the 
equations relating total quantities are totally differentiated, the direct 
components of voltage and current always disappear. Thus the linear 
incremental model can be obtained directly from the linear model by 
short-circuiting all d-c voltage sources and open-circuiting all d-c current 
sources. 
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The voltage gain 
G = deb/ dee = ep/ eg 

is the slope of the transfer curve eb vs. ec, and 

G1 = deb/ de1 = ep/ e1 

241 

(6.17) 

(6.18) 

is the slope of eb vs. e1. Referring to the graphical plots of these transfer 
curves [Fig. 6.15(d) and (!)], we see that in state I 

and in state II 

whereas in state III 

and 

G = G1 = 0 (6.19) 

G = _-_µ_R_b_ 
Rb+ rp 

Tg 
Gi=G +R 

Tg e 

(6.20) 

(6.21) 

(6.22) 

For the nonlinear transfer curves eb vs. ee, or eb vs. ei, we see that the 
slope varies smoothly instead of abruptly as the triode operation pasises 
from one region to another. Such discrepancy is the price we must pay 
in return for the convenience of linear approximation. When necessary, 
a better approximation can be made at the transition between two 
regions of operation. 

Expressions for incremental input resistance Ri and output resistance 
Ro are also given in Fig. 6.19. Assuming Re to be part of the amplifier, 
we see that the incremental input resistance faced by the source ei is 

(6.23) 

If Re is considered as part of the source, the input resistance to the 
amplifier will be simply 

(6.24) 

The output resistance Ro may be interpreted as the increment of output 
voltage produced by a unit change of external current i0 • This is 
clearly equal to the output conductance G0 = 1/R0 • Alternatively, we 
may calculate R 0 by applying Thevenin's theorem to the output ter­
minals, whence Ro is the ratio of open-circuit voltage µegRb/ (Rb + rp) 
to short-circuit current µeu/rp at the output terminals. In either case 
the result is 

(6.25) 
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Voltage amplification for the grounded-cathode circuit is seen to be 
a fraction of the triode amplification factor µ. The range of values of 
µ in different types of readily available triodes is quite large, say from 
3 to 100. The incremental plate resistance is apt to be nearly propor­
tional to µ for triodes of comparable size and power rating. In other 
words, gm = µ/rp is largely determined by the power rating of the tube. 
For triodes operating at power levels of a few watts, gm ranges from 
1000 to 10,000 micromhos. The value of plate-load resistance Rb, 
relative to rp, determines the fraction ofµ available as voltage amplifi­
cation. For triode amplifier circuits Rb is commonly made comparable 
to Tp. 

6.13 The Cathode-Follower Circuit 

Slight rearrangement of the circuit elements used in the plate-loaded 
amplifier yields the cathode-follower circuit shown in Fig. 6.20(a). 
The load resistance Rk and the polarizing battery Ebb are connected in 
series with the plate and cathode, just as before. The terminal common 
to input and output voltage is at a different position in the plate-circuit 
loop, but this does not affect the determination of plate current ib for a 
given grid-to-cathode voltage ec. 

Assume that the triode plate current is specified by the curves of 
Fig. 6.20(b). The linear load constraint is given (as before) by 

(6.26) 

When plotted on the tube curves, this constraint is exactly the same 
(for Rb = Rk) as for the plate-loaded case. Accordingly, for negative 
values of ec the transfer curve ib vs. ec shown in Fig. 6.20(c) is the same 
as that of Fig. 6.14(c). For positive ec the grid current ic must be taken 
into account, since ib + ic is the current in the load resistor Rk. The 
effect on the transfer curve is shown by the dotted line in Fig. 6.20(c). 
The curve of e2 vs. ec in (d) corresponds to the curve of eb vs. ec in Fig. 
6.14(d), except that it rises from zero (e2 = ibRk) instead of falling from 
Ebb as ec increases from -Eco• In the positive-grid region, 

(6.27) 

hence, the curve can rise above the value Ebb· If e2 is greater than Ebb, 
then eb is less than 0 and ib = 0, so that 

(6.28) 

This circuit state, with the grid-cathode diode conducting and the plate-
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Fig. 6.20. Cathode-follower circuit-transfer curves. 

cathode diode cut off, was not realizable in the plate-loaded circuit 
merely by varying e1 . Although possible in the cathode follower, it is 
neither a useful nor a likely mode of operation. In the positive-grid 
region, grid-current curves such as those shown in Fig. 6.20(e), or some 
equivalent grid-circuit data, are required for quantitative determination 
of the (ib + ic) vs. ec or e2 vs. ec curves. 

The over-all voltage transfer curve (e2 vs. e1 ) for the cathode follower 
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is plotted in Fig. 6.20 (f). The voltage e1 = ec + e2 is obtained from 
the curve of e2 vs. ec plotted in (d) by adding output voltage e2 to ec to 
find the new abscissa e1 . This effectively shears the original curve to the 
right. The unity-slope dashed line through the origin indicates the 
amount by which the curve in (d) is sheared to the right for various 
values of e2; for example, e2 = 0 means ib = 0; hence e1 = ec = - Eco, a 
common point on the two curves. The curve of e2 vs. e1 can also be 
derived directly from the ib vs. eb curve (b) as follows: 

1. Assume a value of ec. 
2. From Fig. 6.20 (b) find the corresponding value of ib. 
3. Find e2 using e2 = ibRk, 
4. Find e1 using e1 = ec + e2. 

At point P, ec = 0 and e1 = (Ebb - Ea). For e1 greater than this 
value, the curve is horizontal if Re is large, since ec remains zero 
regardless of e1. If Re = 0, the slope of the curve remains about the 
same, or it may actually increase slightly because of grid current through 
Rk, If r0 is negligibly small compared with Rk, then for Re = 0 

e2 = e1Rk!(Rk + r0 ) ~ e1 (6.29) 

In this case the curve would approach the unity-slope line very closely. 
The transfer curve e2 vs. e1 shown in Fig. 6.20 (f) specifies the circuit 

behavior over a range of values of the input voltage. If only a single 
operating point is sought (say for e1 = E 1 ), we can determine e2 by the 
procedure outlined in Fig. 6.21. Assuming ec is less than zero, we must 
satisfy the three conditions 

E1 = ec + e2 (6.30) 

ib = 
Ebb - eb 

(6.31) 
Rk 

ib = f (eb, ec) (6.32) 

In Fig. 6.21, the load line (Eq. 6.31) is designated by Rk, Equation 6.30 
can be plotted on the tube curves by substituting ibRk for e2 , so that 

(6.33) 
er 

(6.34) 

Equation 6.34 thus assumes the same form as Eq. 6.31, but with ec 
appearing in place of eb, We might therefore designate this as a transfer 
line, since one input and one output variable are involved. The relation, 
shown by dotted lines on the tube curves of Fig. 6.21, is commonly 
called a "bias line." Intersection of this line with the plate-circuit load 
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line determines the required operating point. If E 1 is greater than 
(Ebb - Ea), so that ec is greater than zero at the required operating 
point, any of several similar procedures can be followed to effect a 
solution. Note that in this case 

(6.35) 
and 

(6.36) 

+ 

I 
Load line 

, Ebb- eb 
'b = R1,. 

0 
(a) Ebb 6 b 

(b) 

Fig. 6.21. Cathode-follower operating-point determination. 

Thus, if we have available the graphical plots of ib = fb(eb, ec) and 
ic = fc(eb, ec), we can replot the curves as ik = (ib + ic) = fk(eb, ec), 
The load line and bias line can then be plotted on the curves of ik vs. eb as 
before to locate the operating point. If we do not replot the triode 
data, a cut-and'."try solution is required. Since this proceeds best if 
values of ec are assumed, it is almost as simple to form the complete 
transfer curve as to find a single operating point. 

A piecewise-linear triode model in a cathode-follower circuit is shown 
in Fig. 6.22(a). Plate-current curves corresponding to the model 
are shown in (b), and the simple grid-current curve appears in (c). The 
voltage transfer curve e2 vs. e1 is shown in (d), and pertinent algebraic 
relations for each diode state are tabulated in (e). A fifth state, with 
D(J ON, Dp OFF, and Ds ON, is not listed in the table. In state V the 
circuit reduces to a simple voltage divider. 

6.14 Incremental Analysis of the Cathode Follower 

Having determined various modes of circuit operation from the 
relations between total voltages and total currents, analytical simplifi-
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Fig. 6.22. Piecewise-linear analysis of the cathode follower. 

cation again results from the use of incremental quantities. We cannot 
emphasize too often the fact that nonlinear graphical analysis or its 
substitute, the piecewise-linear approximation, implicitly precedes 
incremental analysis. The total voltages and currents determine the 
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operating region (the diode state in the piecewise-linear model), and on 
this basis an appropriate incremental model can be chosen. 

Referring to the tabulation in Fig. 6.22(e), it is apparent that the 
incremental model for state I is completely trivial, since the triode is 
effectively removed, whereas the circuit for state IV merely amounts 
to a resistive voltage divider consisting of Re, r0 , and Rk in series. 

The differentials of the expressions for state II lead to the equations 
relating the incremental components of the variables for negative-grid 
operation. These equations are given in Fig. 6.23, together with incre­
mental circuit models that represent the equations. Symbols ei' and 
e/ are used here to designate incremental quantities. The incremental 
circuit based on these equations does not represent the output behavior 
of the circuit, if an external load is connected, because Rk appears as 
part of the source resistance. 

Dividing numerator and denominator of the equations in Fig. 6.23(a) 
by the quantity (µ + 1) leads to the equations and incremental circuit 
shown in (b ). Since Rk now appears only at the output, this model is 
reasonable, provided we can justify the modification in apparent plate 
resistance and source value. Reference to the actual circuit [Fig. 
6.21 (a)] helps us to visualize the physical basis for a low output re­
sistance. Suppose that the circuit is operating in the negative-grid 
region and that the output voltage is raised an increment .6.e2 by con­
necting a battery Ek + .6.ek to the output terminals. If e1 is held con­
stant, then ec must become more negative by an amount .6.ek, The net 
change in voltage across rp must then be 

-rp.6.ib = .6.ek + µ .6.ek 

causing a corresponding decrease in plate current 

. (µ + 1).6.ek 
-.6.1,b=----

rp 

The net change in external current (in the Ek + .6.ek battery) is 

. .6.ek (µ + 1) .6.ek .6.ek 
-.6.ib+-= ----+-

Rk rp Rk 

The incremental output resistance is therefore 

de• 1 R•(¾i) 
Aek µ + 1 1 rp 

-Mb+- --+- Rk+µ+l 
Rk rp Rk 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

An alternate method of calculating output resistance is indicated m 
Fig. 6.23 (c). 
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Rk + r p/ (µ + 1) 

G = e2: = [µ/(µ + l)]Rk 
e1 Rk + r p/ (µ + 1) 

(c) 

µ, ': 1 = Rm i gp ~ im. forµ,>> 1 

(b) 

(io - gme2') = e/ (Gk + gp) 

io µ + 1 
Go = 1 = Gk + gp + gm = Gk + --

e2 rp 

-ip Ro= 1/Go = (Rkl!rplll/gm) = Rkrp/(µ+1) 
.----,/\1'~"''...__---. Rk +r p/ (µ + 1 ) 

,,:::::=. ____ -0 

for Ra» Rk(or i1' « ip) 

ea= i11Rg = ei' - e2' = ei'(l - G) 
+ . ei' Ra .,R·=-=--

i i1' 1 - G 

(d) 

Fig. 6.23. Incrementa.l a,nalysis of cathode follower for -Er,r,/µ < ec: < 0 (state II). 



VACUUM TRIODES 249 

For ec less than 0, the incremental input resistance of the cathode­
follower circuit is theoretically infinite, since the grid-cathode diode does 
not conduct. Suppose, however, that a resistance Rg is connected 
between grid and cathode, as indicated in the incremental circuit shown 
in Fig. 6.23(d). Let us assume that Rg is much greater than Rk and rp, 
or that ii' is much less than ip. Then the incremental current ii' will 
not appreciably affect the gain or other quantities previously calculated 
for the cathode follower. Since an increment of input voltage ei' results 
in a nearly equal increment in output voltage e2 ' = Gei', we have 

eg = ei' - e/ = ei' (1 - G) (6.41) 

But eg = ii' Ru; hence the input resistance is 

Ri = et' /ii' = Rg/(1 - G) (6.42) 

Since G is nearly unity, the input resistance appearing between grid and 
ground is Ru multiplied by the large factor 1/ (1 - G). If Ru is connected 
between the grid and any arbitrary tap point on Rk, the effective input 
resistance is Ry/ (1 - Gt), where Gt is the gain from input ei' to output 
e2/, with the latter measured between the tap point and ground. 

An incremental circuit for positive-grid operation (state III) is shown 
in Fig. 6.24 (a), together with the voltage equations for the two loops of 
the circuit. The incremental expressions for the currents and the gain 
are shown in (b ). 

The incremental input resistance Ri given in Fig. 6.24(c) can be 
obtained directly from the first equation in (b ). The incremental output 
resistance is determined by the circuit and equations of Fig. 6.24(d). 
In making this calculation, the incremental source ei' is set equal to 
zero, and the circuit is effectively being driven by a current source i0• 

6.15 Properties of the Cathode Follower 

The important properties of the cathode follower circuit are its 
linearity, its low output resistance, and its high input resistance. 
Although the incremental voltage gain is always less than unity (see 
Fig. 6.24) the circuit yields power amplification since there is a current 
gain. The cathode follower is often used as an isolating circuit since it 
permits a source (even of relatively high internal resistance) to drive a 
low resistance load without the load reacting on the source. 

To make maximum use of the linear range (O > ec > - Ebb/µ.), 
the cathode follower can be polarized near ec = 0 for signals that are 
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essentially negative-going, near - Ebb/µ, for signals that are essentially 
positive-going, and near the center of the range for symmetrical signals 
like sine waves. These possibilities are illustrated in Fig. 6.25. The 

(a) 

(b) 

(c) 

Re rg 
+ 

+ + eg - ei' = i0 (Re + r0 + Rk) + ipRk 

~ Rk ez' (f µ.e0 = i0Rk + ip(rp + Rk) 
rP e0 = i0r0 

io -

- e0 = e/r0 / (r0 +Re); Let G1 = 1/ (Re + r0 ) 

io - gme/r0 / (r0 + Re) = e/ (Gk + gp + Gi) 

• 1 1 1 1 1 + gmrg 
Go = io/e2 = - = - + - + ---

Ro Rk rp Re + r0 

Fig. 6.24. Incremental analysis of cathode follower for ee > 0 (state III). 

capacitors are assumed to be so large that they are ideal coupling ele­
ments. The determination of R2 for the symmetrical case illustrated in 
(c) is no different than the corresponding problem for the grounded­
cathode circuit. [See graphical constructions of Fig. 6.17 (d) and (f).] 



VACUUM TRIODES 

+ 
e2 Ebb 0 ---------t----o- -µ 

(a) 
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(b) 

+ 

(c) 

Fig. 6.25. Polarizing the cathode follower. 

6.16 General Grid-Driven Triode Circuit 

/ 
/ 

/ 
/ 

ec = 0 

/ Q 
/ 

251 

The cathode-follower circuit (grounded plate) and the plate-loaded 
circuit (grounded cathode) are special cases of a more general circuit 
with both plate and cathode loads. The circuit is shown schematically 
in Fig. 6.26(a) with outputs indicated between cathode and ground as 
well as between plate and ground. A simplified schematic diagram for 
the circuit is shown in Fig. 6.26(b). The voltages Ebb, ei, e2 , and e3 

designated at the various terminals are assumed to be measured from 
ground. Voltages like eb and ec that are not measured from ground must 
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be designated as before. This form of circuit diagram can, of course, be 
applied to the cathode follower, the plate-loaded amplifier, transistor 
circuits, etc. It will be used extensively in subsequent articles and 
chapters. 

(d) 

(a) (b) 

p 

--7 
I 

f 
µec I 

+ __ .J 

EbbRk I 
Rb+rp+Rk I 

I 

(c) 

rp+µr11(~+1) 

I 
I 

Transfer curves 
for Re= 0 

I 
I 
I 

Ebb 
---4F----+--,___-~-----1------1-----1--e1 

-~ EbhRI, Ebb(rR + R11) 
µ Rh+ rp+ Rk Rk 

rp+µrR(~ + 1) _J__Ebb[rp+(µ +,t;,:)r11] ~l 
---1 II III IV V---

Flg. 6.26. Piecewise-linear analysis of grid-driven circuit with plate and cathode load. 

The piecewise-linear analysis, Fig. 6.26(d), and the incremental 
analysis, Fig. 6.27, follow the same pattern as the corresponding apalyses 
in the preceding articles. If we let Rb = Rk, then from Fig. 6.27' we see 
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02 
_ e2' _ µRk 

- ei' - Rb + r P + Rk (µ + 1) 

[µ/ (µ + l)]Rk 

(Rb+ rp)/(µ + 1) + Rk 

(c) 

(e) 
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(b) 

(d) 

(f) 

Fig. 6.27. Incremental analysis of circuit with plate and cathode load for ec < 0 
(state II). 

that G2 equals G3 for ec less than zero. With this choice of element 
values the circuit is used extensively in audio amplifiers to drive bal­
anced circuits. 
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Note: ek = -ec 

i1 = -ik = -ib(for ek > 0) 

+ 

-::-

(a) 
(b) 

(c) 

0 

(e) 

Fig. 6.28. Grounded-grid amplifier. 

6.17 Grounded-Grid Amplifier 

The grounded-grid amplifier shown in Fig. 6.28(a) and (b) can also 
be described as a cathode-driven triode with plate load. For negative­
grid operation, we see from Fig. 6.28 (b) that 

eb = Ebb - ek - ibRb 

Solving this equation for ib we obtain 

ib = (Ebb - ek - eb)/Rb 

(6.43) 

(6.44) 
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or 
(6.45) 

Equation 6.45 can be plotted on the ib vs. eb plane, as indicated in Fig. 
6.28(c). Note that the load-line moves as ee is varied. Foree = 0, the 
operating point Pis determined by the solid load-line. Foree = -Ee 
(ek = +Ee) the operating point is at Q, as indicated by the dotted 
load-line. The path of operation, shown by the heavy line, is the locus 
of intersections of the tube curves with load-lines that shift to the left 
as ee is made more negative. 

Since ib = -i1, this locus of the operating point can be replotted as 
i 1 vs. ek, The plot of i 1 vs. ek, shown in Fig. 6.28(d), represents the 
driving-point relation for the circuit. The slope of the curve determines 
the incremental resistance at the cathode terminal: 

(6.46) 

The resistance between the input terminal and ground is merely the sum 
of Ri and Rk. 

The transfer curve (e2 vs. ek) shown in Fig. 6.28(e) is related to the 
input curve by the linear equation 

e2 = Ebb + i1Rb (6.47) 

The gain G2k = de2/ dek is slightly higher than the corresponding gain 
G2e = de2 / dee for a grounded-cathode amplifier, assuming the same 
tube, load resistance, and operating point. This fact may be seen from 
Fig. 6.28(c), where a given change of ee produces a slightly larger change 
in ib along the PQ locus than along the load-line. 

The incremental form of Eq. 6.47 is 

!le2 = M1Rb 

Solving Eqs. 6.46 and 6.48 for Ae2/ !lek yields 

Ae2 _Gk_ Rb 
- 2 -

Aek Ri 

(6.48) 

(6.49) 

Equation 6.49 indicates that if G2k = 10 and Rb = 10k, then Ri = lk. 
We see, therefore, that the grounded-grid connection exhibits a relatively 
low incremental input resistance. 

If the cathode voltage ek is produced by a source e1 driving the circuit 
through a resistance Rk, the transfer curve of interest is e2 vs. e1. From 
the circuit diagram of Fig. 6.28(a) or (b), we see that 

(6.50) 

Equation 6.50 is plotted on the i1 vs. ek plane in Fig. 6.28 (d). The 
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intersection x with the input curve relates e1 to ek and therefore also 
relates e2 to e1, since the transfer curve in Fig. 6.25(e) relates e2 to ek, 
Since the input_ and transfer curves have the same general shape, this 

-ec 

r 
(a) 

l 
e1 = ek + i1Rk 

ec = -ek 

i1 = -ib, since ic = 0 for ec < 0 

Ebb = 1·b(Rb + rp) - µec + ek 

= ib(Rb + rp) + (µ + l)ek 

(b) 

Aek rp + Rb 
Ri=-=---

t.i1 µ + 1 

02
k = .6.e2 = (µ + l)Rb = Rb 

Aek rp + Rb Ri 

021 
= .6.e2 = (µ + l)Rb 

.6.e1 r p + Rb + Rk (µ + 1) 

,,.. __.!!j_ . (µ + l)Rb = __.!!j_ G2k 
Ri + Rk rp + Rb Ri + Rk 

(e) 

(c) 

0 

(d) 

Fig. 6.29. Piecewise-linear analysis of grounded-grid circuit for ec < 0. 

source line can be transferred directly to the e2 vs. ek plane, where its 
slope is determined by Rb/Rk, and e1 is its intercept on the line e2 = Ebb· 

Reference to the curves shown in Fig. 6.28(d) and (e) shows, for a 
given operating point, that the incremental gains are related as follows: 

and 

Therefore 

Gk1 = dek/de1 = Ri/(Ri + Rk) (6.51) 

G21 = de2/de1 = G2kRi/(Ri + Rk) = Rb/(Ri + Rk) 

(6.52) 

(6.53) 
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A piecewise-linear model of a grounded-grid amplifier, applicable in 
the negative-grid region (ec < 0), is shown in Fig. 6.29(a). Inspection 
of this circuit yields the equations given in (b ). Application of the break­
point method of analysis leads directly to the driving-point curve plotted 
in (c) and the voltage transfer curve given in (d). · 

The incremental quantities given in Fig. 6.29(e) are for state II which 
is determined by the conditions 

Ebb/(µ+ 1) > ek > 0 (6.54) 

These limits on state II are readily determined from the dimensions of 
the curves in (c) and (d). Note particularly the fact that the circuit has 
a very low input resistance Ri, which enters directly into the expression 
for incremental voltage gain. 

Although the grounded-grid amplifier requires driving power at the 
input terminals, the input signal controls a much larger incremental 
power variation in the load. Because the input and load currents are 
identical (for ec < 0), the ratio of incremental output power to incre­
mental input power is numerically equal to the voltage gain Gp = G21 . 

The more general piecewise-linear model for the grounded-grid circuit 
shown in Fig. 6.30(a) applies to both the negative-grid and the positive­
grid regions. The equations given in (b) are written for ec greater than 0. 
The transfer curve e2 vs. ek, plotted in Fig. 6.30(c), shows the negative­
grid behavior in dashed lines. 

The grounded-grid circuit is less widely used than the grounded­
cathode or grounded-anode (cathode follower) circuits. It is used in the 
input stage of the intermediate-frequency amplifier of many receivers. 
It is also used in high-frequency amplifier circuits where the grounded 
grid provides a natural isolation between input and output circuits. 
The electrostatic shielding action of a grounded grid is discussed further 
in Chapter 7. 

In conjunction with a cathode-follower, the grounded-grid circuit 
forms a commonly used two-triode circuit called a cathode-coupled 
amplifier. This circuit is widely used as an inverting amplifier and as 
the basis for a relaxation oscillator called the cathode-coupled multi­
vibrator. 

6.18 Direct-coupled Grounded-Cathode Circuits 

The basic circuits discussed above can be coupled together in a variety 
of ways when more than one triode is to be used. A few of the possible 
two-triode configurations will be described here and in succeeding articles. 
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Ds 
r-+1------, 
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I I 
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+ 
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(a) 
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ec = icrg 

e1 = - ibRk - ic(Rc + r0 + Rk) 

Ebb = ib(Rb + rp) - ic(Rc + r0 ) - µec 

= ib(Rb + rp) - ic[Rc + r0 (µ + 1)) 

(b) 

R 
Slope(µ'+ lJ R :r 

b P 
where 

u. = __!!.!j_ 
.,,,Re targe · rg + Re 

.J!::._ ________ _ 

(c) 

Fig. 6.30. Piecewise-linear analysis of grounded-grid circuit for ec > 0. 

In thiR chapter, we shall restrict ourselves to interstage coupling net­
works that involve only resistive circuit elements: namely, resistances, 
batteries, and diodes. Such circuits are said to be direct-coupled, since 
they respond to frequencies down to and including zero ; in other words, 
they can be used to amplify d-c as well as a-c signals. The assumption 
of "ideal coupling" by a large capacitor, as mentioned in Article 6.11, does 
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not apply for d-c voltages. The use of energy-storage elements for inter­
stage coupling is discussed in Chapter 8. 

One of the main reasons for using two or more triodes ( or other 
electronic devices) in a circuit is to obtain greater amplification than a 
single triode can supply. The particular combination of basic single­
triode circuits chosen for this purpose usually depends upon factors 
other than amplification. Among these may be linearity, dynamic range, 
input resistance, output resistance, interchangeability of triodes, etc. 

A simple two-triode circuit is shown in Fig. 6.31 (a). It consists of 
two plate-loaded, grounded-cathode circuits coupled together by means 
of a battery E. The transfer curve eb1 vs. e1 for the first triode circuit, 
shown in (b ), assumes the battery E to be disconnected. The transfer 
curve e2 vs. ec2 for the second circuit alone is similar in form and is shown 
in (c). 

Since the maximum value of eb1 is Ebb, the maximum value of ec2 is 
(Ebb - E) when the two circuits are coupled together. If we choose 
E equal to Ebb, then the maximum value of ec2 is equal to zero, a con­
venient choice for preliminary consideration, since the second circuit 
never loads the first one. Thus, the curve of ec2 vs. e1 shown in ( d) is 
the same as (b) with a change in reference level. The over-all transfer 
curve e2 vs. ei, plotted in (e), is obtained from the curves in (c) and (d). 
The break point P corresponds to plate-current cutoff in the first triode, 
and Q corresponds to cutoff in the second. The choice of a grid-polariz­
ing voltage E that avoids the grid-current states of both of the triodes is 
highly desirable becauseµ and rp are more nearly constant in the nega­
tive-grid region. Thus, selecting the voltage E in this manner favors 
linearity in the amplification state of the circuit (both triodes con­
ducting plate current) and yields good clipping (due to cutoff). 

A variation of this circuit is shown in Fig. 6.32(a). If we again wish 
to have zero as the maximum excursion of ec2 , as in the previous circuit, 
we require that Ecc/R(J equal Ebb/R, assuming Rbi is much less than R. 
The individual transfer curves eb 1 vs. e1 and e2 vs. ec2 are the same as 
those shown in Fig. 6.31 (b) and (c). However, in this case there is a 
loss of amplification in going from the plate of the first triode to the grid 
of the second : 

.6.ec2 
- =A= R(J/(R(J + R) 
.:lebl 

(6.55) 

The over-all transfer curve is shown in Fig. 6.32 (b) with break points 
and slopes dimensioned. The over-all gain of this amplifier in the range 
between break points P and Q is G1 G2A, where G1 and G2 are the gains 
of the individual stages and A is the resistive attenuation. These values 
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apply for signal frequencies sufficiently low to permit omission of the 
effects of interelectrode capacitances. The inadequacy of resistive-

-Ebb 
~ 

0 

(b) 

ec2 

0 

e1 

e1 

Slope: G1 
-Ebb 

---7i"2 

-EbbRb1 
--- Rbt +rpl 

(d) 

(c) 

I 0 

I ( 1 1 ) 
-Ebb µi- G1µ2 

(e) 

Fig. 6.31. Direct-coupled grounded-cathode circuits. 

circuit models for representing high-frequency circuit behavior 1s 
con~idered in Chapter 8. 
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Fig. 6.32. Grounded-cathode circuits coupled by resistance attenuator. 

6.19 Cathode-Coupled Circuit 

261 

The cathode-coupled circuit shown schematically in Fig. 6.33(a) can 
be considered to consist of a cathode follower driving a grounded-grid 
amplifier. The plate load Rb1 has only a minor effect on the over-all 
transfer curve e3 vs. e1, since it merely augments the plate resistance rpI• 

However, inclusion of Rbi makes the circuit somewhat more general, 
since an additional output voltage e2 may be taken from the plate of the 
first triode. The grid of the second triode is shown · connected to a 
polarizing source Ecc- For incremental voltages, this amounts.• to 
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for ec2 < O, ib1 = 0 

A e2·,ek 
Ebb---...._---+---­

{
Ecc = ec2 + ib2Rk 

Ebb = ib2 (Rb2 + rp2 + Rk) - µ2ec2 

(b) 
...._...._ 

e3, ek B 
Ebb -+----r-----,-----

c---

{ 

/
. Ebb + µ2Ecc 
b2 = 

Rb2 + Tp2 + Rk(µ2 + 1) 

-Ec2 = Ecc - h2Rk 
(c) 

At break point A: 

e2 = Ebb 

\

ek = lb2Rk 

ea = Ebb - I b2Rb2 

e1 = [h2Rk(µ1 + 1) - Ebb1/µ1 

(d) 

At break point B: 

\

ek = EkB = h1Rk 

e2 = Ebb - Ib1Rb1 

ea = Ebb 

e1 = -Ec1 + lb1Rk 

EkB (Ebb+ µ2Ecc) 
where h1 = - = -----

Rk Rk(µ2 + 1) 
______ ec1=-Ecl dE Ebb-h1(Rb1+rp1+Rk) 

-=:::..---+-_..... _________ an c1 = 
-Ebb O el µ1 
I½ 

(/) (e) 

Fig. 6.33. Cathode-coupled circuit. 

grounding the grid. The effects of Ecc on the behavior of the circuit will 
become apparent as the analysis proceeds. 

Use of the break-point method facilitates the determination of the 
transfer curves e2 vs. e1 and e3 vs. e1. Although we shall use piecewise-
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linear models for the triodes, the graphical sketches could be applied 
equally well to the actual triode curves if a nonlinear resistive analysis 
is required. As always, some judicious physical reasoning about the 
circuit behavior results in a considerable reduction of algebraic effort. 
Rather than analyze all possible states, let us first determine which ones 
are likely to occur. We can then calculate break points from the simplest 
of these and thus avoid making any calculations at all for the more com­
plicated circuit-model configurations. For example, let e1 take on a 
negative value sufficiently large to cut off plate current in the first triode. 
Then the second triode conducts at a fixed operating point P, determined 
only by Ebb, Ecc, Rb2, and Rk. 

As e1 is made less negative, carried through zero, and finally made 
positive, no changes can occur until the first triode conducts. This must 
occur when e1 is slightly less than Ecc, since the conduction of the second 
triode establishes a quiescent value of ek near Ecc• Now if e1 is increased 
further, the conduction of the first triode tends to increase ek. Since 
Ecc is fixed, this tends to make ec2 more negative and will eventually 
cause plate-current cutoff in the second triode. At that point the first 
triode operates as a basic grid-driven circuit with plate and cathode load. 
We see, therefore, that for large positive or negative values of e1 the 
circuit behavior is determined by single-triode circuits, which we have 
already analyzed. Break points between each of these circuit states and 
the one in which both triodes conduct plate current can be determined 
from the analysis of the two single-triode circuits. Since the transfer 
relations e3 vs. e1 or e2 vs. e1 must be piecewise-linear, we can join the 
break points to complete the curve. 

The transfer curves e2 vs. e1 and e3 vs. e1 are shown in Fig. 6.33 (f). 
In each case, ek vs. e1 is plotted on the same coordinates. The differences 
between the two curves on each plot are eb1 and eb2, respectively. Note 
that e3 is independent of e1 to the left of break point A and to the right 
of break point B. The break point B lies on the transfer curves of e2 vs. 
e1 and ek vs. e1 for the first triode alone (with Rb1 and Rk as loads). For 
values of e1 beyond those at break point C (ec 1 = 0), the detailed 
behavior of e2 and ek may be obtained from Fig. 6.26. One is usually 
interested in having a linear range between A and B; hence Ecc and the 
circuit elements are chosen so that break point B occurs before the grid­
current point for tube 1. The quiescent conduction level of tube 2 is 
usually set at ec2 ~ 0; hence the grid-current states do not affect the 
output e3 • The voltage amplification in the region AB can be expressed 
in terms of the break-point coordinates; for example, 

(6.56) 
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In a numerical problem, the voltages at the break points yield the gain 
very readily. The literal expressions for Ga1 and G21 are somewhat 
cumbersome. 

(a) 

\

µ1e01 = ip1 (Rb1 + rp1 + Rk) + ip2Rk 

µ2e0 2 = ip1Rk + ip2(Rb2 + rp2 + Rk) 

e01 = e1 - (ipt + ip2)Rk 

eg2 = -ek = - (ip1 + ip2)Rk 

(b) 

µ1e1 = ip1[Rb1 + rp1 + Rk(µ1 + 1)] + ip2Rk(µ1 + 1) 
0 = ip1Rk(µ2 + 1) + ip2[Rb2 + Tp2 + Rk(µ2 + 1)] 

(c) 

G21 = ~ = -ip1Rb1 

e1 e1 

[Rb1 + rp1 + Rk(µ1 + l)J [Rb2 + rp2 + Rk(µ2 + l)] - Rk2(µ1 + l)(µ2 + 1) 

G31 = ~ = -ip2Rb2 

e1 e1 

[Rb1 + TpI + Rk(µ1 + l)J [Rb2 + Tp2 + Rk(µ2 + 1)] - Rk2(µ1 + 1) (µ2 + 1) 

(A1 = ~ = (ip1 + ip2)Rk 

e1 e1 

[Rb1 + TpI + Rk(µ1 + 1)] [Rb2 + Tp2 + Rk(µ2 + l)] - Rk2(µ1 + 1) (µ2 + 1) 
(d) 

Fig. 6.34. Incremental analysis of cathode-coupled amplifier. 

The circuit of Fig. 6.34(a) is a linear incremental model for the 
cathode-coupled amplifier in the region AB, where both triodes conduct 
plate current but with negative grid-to-cathode voltages. The four 
equations given in (b) are rmtdily reduced to the two given in (c), and 
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these in turn lead to the desired expressions for gain given in (d). Al­
though the two triodes are normally of the same type, subscripts are 
used to designate µ. and rp, so that the contributions of each triode can 
be traced in the final results. 
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PROBLEMS (See Appendix B for triode curves) 

6.1. (a) Two high-vacuum triodes have the same grid-to-plate spacing, 
but triode B has a larger cathode-to-grid spacing than triode A. What are 
the qualitative differences between their plate curves? 

(b) Two high-vacuum triodes are identical except that the grid wires of 
triode Bare smaller in diameter than the grid wires of triode A, the center-to­
center grid-wire spacing being the same in both tubes. What are the qualita­
tive differences between their plate curves? 

(c) Triode Bis exactly twice as large in all dimensions as triode A. What 
are the differences between their plate curves? 

6.2. In what regions of the eb vs. ec plane is the approximation 
ib = K(eb + µ.ec)%, where Kandµ. are constants, not valid for a high-vacuum 
triode, and why? Consider the entire plane. 

6.3. Describe the measurements necessary to determine the capacitances 
Cpk, Ckg, and Cgp in Fig. 6.6. 

6.4. The volt-ampere characteristics of a triode vacuum tube are character­
ized by the expression 

ib = 10-5(eb + 20ec)% (amperes, volts) 
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(a) Plot on graph paper a family of plate characteristics for this tube over 
the region 

0 < eb < 400 volts 
0 < ib < 14 ma 
ec = 0, -2, -4, · · · -16 volts 

(Note that when one curve for a given grid potential has been constructed, 
the other curves can be obtained by properly displacing this curve along the 
eb axis.) 

(b) From the graphical plot of part (a), determine the values ofµ, gm, and 
Tp at the following operating points 

(i) ib = 2.5 ma (ii) ib = ? (iii) ib = 13 ma 
eb = 360 volts eb = 240 volts eb =? 

ec = -8 volts ec = 0 volts 

Doesµ = gmrp at each point? 
(c) Determine from the analytical function above, expressions for rp and 

gm of the form 
Tp = f(ib) 

gm = g(ib) 

Plot both quantities as a function of ib on one set of coordinates over the 
range 0 < ib < 14 ma. Locate on this plot the values of rp and gm determined 
graphically in part (b). 

6.5. From the Type I triode plate characteristics: 
(a) Plot constant-current characteristics (eb vs. ec) for ib = 0.2, 2, 4, 6, 8, 

and 10 ma. 
(b) Plot transfer characteristics (ib vs. ec) for eb = 20, 100, 200, and 300 

volts. 
At the operating point eb = 200, ec = -6, determine: 
(c) Tp andµ from the plate characteristics. 
(d) gm from the transfer characteristics. 
(e) Check the relation Tpgm = µ. 

Fig. P6.1 

6.6. A Type I triode is to be approximated by the piecewise-linear model 
shown in Fig. P6.1. 
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(a) Choose the constants rp andµ, so that the model draws the same plate 
current as the actual tube at each of the two points (eb = 80, ec = 0) and 
(eb = 360, ec = -16 volts). 

(b) Plot the plate curves of the model upon the plate curves of the tube. 
Outline the area within which the plate current in the model is in error by 
about 1 ma. 

+ 

+ --==- 300 volts 

t 

Fig. P6.2 

6.7. Using the circuit of Fig. P6.2 and the results obtained in Problem 
6.6 (a) plot the the curve of ib versus e1 for the negative-grid-voltage region of 
operation. 

L C 

------1"\.,~+ _______ u----~ 
e = E sin wt 

Fig. P6.3 

6.8. With the circuit of Fig. P6.3 the µ of a triode can be measured by ad­
justing r 1 and r2 until the ammeter A reads zero. Assume that amplitude Eis 
sufficiently small so that operation is linear. Assume wL > > 1/wC so that 
ammeter A reads all of the alternating component of plate current. The 
reactances of C and Cc are very small at the frequency of operation. The 
ammeter offers negligible resistance. 

(a) Draw the a-c linear incremental equivalent circuit of the system. 
(b) Suppose that resistances r 1 and r2 are adjusted to yield zero ammeter 

current. Under this condition, derive an expression for µ in terms of the 
parameters of the equivalent circuit. 
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(c) If r 1 = 200 ohms, r2 = 20 kilohms and rp = 80 kilohms when the 
ammeter A reads zero, find the µ of the tube. 

,------------7 . 
I rp I~ 

+fT~ µec J + 
I I 

ec I I eb 

\ I -=-Eo I \ 

-! I I 1 
~-

1 I L ___________ _J 

Fig. P6.4 

6.9. Determine the values of the constants in the linear circuit model 
of Fig. P6.4 such that it behaves like the Type II triode in the neighborhood 
of eb = 200 volts, ec = - 2 volts. 

(b) Sketch and give values for the corresponding current-source model. 
6.10. A certain triode which can be described by the equations 

ib = (eb + lBec)
2 

for eb > 0, eb + 18ec ~ 0 
lo Eo ' 

ib = 0 for eb < 0 
lo ' 

J
0 

= 0, for eb + 18ec ~ 0 

is to be used as an amplifier in the circuit shown in Fig. P6.5 (Eo and 1 0 are 
positive constants). 

+12Eo 

r 
e2 

It--+ --+----oL 
Ecc 

Fig. P6.5 

(a) Sketch and dimension the eb/Eo vs. ib/1 0 characteristics for this tube 
and find a linear model that describes the tube in the vicinity of the operating 
point for Ecc = ½Eo. 

(b) Determine the incremental gain de2/de1 for Ecc!Eo = ½, and sketch 
this incremental gain as a function of Ecc/Eo. 
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6.11. Using the Type I triode characteristics, plot the load line and locate 
the operating point for the circuit in Fig. P6.6. Plot the transfer curve c2 

versus e1 for negative grid-to-cathode voltage only. 

Fig. P6.6 

6.12. Construct a set of piecewise-linear curves which approximates the 
Type I curves. Make the piecewise-linear curve for Cc = -6v tangent to the 
actual Cc = -6v curve at the operating point. 

Locate the load line and operating point of the circuit shown in Fig. P6.6 
on these piecewise-linear curves. Plot the transfer curve c2 versus c1 obtained 
from these curves on the same graph used in Problem 6.11. 

Draw the piecewise-linear model for total currents and voltages, using 
the values for the triode parameters determined above. Determine the slope 
of the e2 versus e1 curve. 

+v 

i -

Fig. P6.7 

6.13. (a) Referring to the Type II triode curves, show how you would 
choose Ro in Fig. P6.7 to make i have the value zero when e1 has the value 
zero. 

(b) Using a piecewise-linear triode model, adjusted to match the conditions 
of part (a), and assuming that Ro is fixed at the value found in part (a), sketch 
and dimension a curve of i versus e1• Show only the region in which grid 
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voltage is negative and plate current is positive. How does this approximate 
curve differ (qualitatively) from the actual i vs. e1 relationship? 

(c) For small values of e1 a linear incremental circuit model may be used 
to calculate i from e1• Explain how you would determine suitable values for 
the tube parameters rp andµ to be used in this incremental model. 

(d) Calculate i/e1 in terms of the constants of the incremental circuit model. 

--------I I I I I---+ ___, 
4 volts 140 voits 

Fig. P6.8 

0.2 sin 377t 
volts 

6.14. Write an expression for ib in milliamperes as a function of time for the 
circuit shown in Fig. P6.8. Use a piecewise-linear model for the Type I triode. 

200 volts 

+ 

+ 

Fig. P6.9 

6.15. Assume the triode in the circuit shown in Fig. P6.9 can be represented 
by linear characteristics with µ = 20 and Tp = 10 kilohms. The following 
conditions are to be met: 

For -10 < e1 < -5, G = I Ae2/Ae1 I = 15 
For -5 < e1 < 0, G = I Ae2/Ae1 I = 10 

The diode may be assumed to be ideal. Determine the required values of 
Rb, R1, and R2. 
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6.16. In the circuit of Fig. P6.10 the transformer is assumed to be ideal, 
that is e1dc = 0, e2a.c = e1a.c;n, and e1a.c/i1a,c = n 2R2, Also let ck be so large 
that the cathode potential is nearly constant. Assumeµ = 40, rp = 12 kilohms. 

Ebb 

i1---. n:1 -------.o • • 

Ideal 

Fig. P6.10 

(a) With e0 a small sine wave voltage of fixed amplitude E 0, find the value 
of the turns-ratio n which maximizes the a-c output voltage e2• 

(b) With n and Eo fixed, find the value of R2 for maximum power delivered 
to R2. Compare with the results of part (a). 

6.17. As the grid voltage of a triode passes from positive to negative, the 
grid current becomes very small. In some applications even an exceedingly 
small grid current is significant, however, and the following scheme is proposed 
for finding out something about the low grid currents flowing in the negative­
grid-voltage region of operation. The triode is connected as a grounded­
cathode amplifier and a point-by-point plot of eb versus ec is made. The 
adjustable input source is then removed and an uncharged 0.1 µf capacitor is 
connected from ground to grid at time zero. The capacitor was previously 
checked for low leakage by observing that it would hold a charge for many 
minutes without appreciable diminution. Voltage eb is recorded and plotted 
as a function of time. How do you find the grid-current versus grid-voltage 
curve of the amplifier from the available data and what portions of the curve 
are reliably determined by this method? 

6.18. Sketch and dimension the static e2 vs. e1 curve of the amplifier shown 
in Fig. P6.11. Assume piecewise-linear behavior of the tube. The external 
diode is to be treated as an ideal rectifier. 

6. 19. Using the Type I triode characteristic.fl, find eo for the circuit shown 
in Fig. P6.12 when (a) ei = 0 and (b) e1 = 50 volts. 
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Fig. P6.11 

+300 volts 

r 
eo 

L ~-------+--------o 

Fig. P6.12 

· · ·6.20. (a) Plot the load line and find the operating point of the cathode 
follower circuit in Fig;P6.13 on.the Type II triode curves. · · 

. Type 11 

. .ii. 
--· + 

e,2 

Fls.P6.1J 

(b) Determine graphicaily and' plot· the transfer characteristic e2 vs. e1, 
(1) assuming that Rs :. 10 kilohms and:that the grid-fo .. cathode circuit 
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of the tube can be represented by a 1-kilohm resistance in series with an 
ideal diode, and 
(2) assuming Rs = 0, r0 = 1 k~l 

6.21. From Fig. P6.14: 
(a) If e1(t) = 250 sin wt, sketch and dimension e2(t). 
(b) If e1(t) = 0.1 sin wt, sketch and dimension e2(t). 

+200 volts 

Fig. P6.14 Fig, P6.15 

-----~l~O-~O ____ +_l....1..00--ein 

Fig. P6.16 

6.22. Approximating the tube in Fig. P6.15 by linearized plate character­
istics havingrp = 10 kilohms, µ, = 20, and cutoff at eb = -20ec, find the values 
of Rk and Ebb which yield the output-input characteristic shown in Fig. P6.i6. 
Assume that the limiting resistance R is large. What is the value of e' out in 
Fig. P6.16? 

6.23. The cathode-follower circuit shown in Fig. P6.17 is required to handle 
input signals with peak-to-peak amplitudes up to 140 volts. Grid limiting 
and cutoff clipping are to be avoided. The total cathode load (R 1 + R2) is 
20, kilohms. Determine appropriate values of R1 and R2. The transfer 
charact~ristip, IIlay be assumed linear between cutoff and ec = 0. 
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200 volts 

0.01 o------1 .,.__..,__..._ 
-, j+-100.usec 

1iwffil 2MO 

Fig. P6.17 

6.24. Assume ib = 2ec + 0.leb for the triode in Fig. P6.18, where units are 
volts and milliamperes. 

(a) Find that value of resistor R for which the curve of meter current i 
versus input voltage e passes through the origin in the i versus e plane. Use 

+300 volts 

Fig. P6.18 

this value of R in parts (b) and (c) of the problem. Remember that e is 
measured from ground. 

(b) Calculate the sensitivity Ai/ Ae. Assume that the meter resistance is 
negligible. 

(c) Sketch and dimension the curve of i vs. e, showing the entire region 
within which grid voltage is negative and plate current is positive. 

6.25. For the circuit shown in Fig. P6.19, sketch the transfer characteristic 
e2 as a function of e1 for Vb positive and also for Vb negative. Give the slope 
of the characteristic in terms of the circuit parameters. 

6.26. For the circuit shown in Fig. P6.20, plot the path of the operating 
point on the eb vs. ib plane as e, is varied from - oo to + oo . Assume a piece­
wise-linear triode model where r11 = 1000 ohms,µ = 5. 



+300 volts 

soon 
+o----"'r\f\.fv----' 

e, 
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Fig. P6.19 
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+ 

+200 volts 

Fig. P6.21 

6.27. For the circuit of Fig. P6.21 plot the complete output-input character­
istic for an input voltage range from -250 to +50 volts. Assume the plate 
characteristics are piecewise-linear with µ, = 100, r P = 50 kilohms. When 
grid current flows, the voltage drop through resistance R is sufficiently large 
to hold ec at a value very nearly equal to zero. Show the locus of operation on 
the plate characteristics. 

+ T 
R

2 
e2 = E2 cos wt 

_J_ 
Fig. P6.22 

6.28. The transformers shown in Fig. P6.22 are ideal at frequency w but 
each winding is a short circuit for d-c. Assume that E1 is small, so that the 
operation of the circuit is linear. 

(a) Derive an expression for the power gain G = PL/PA, where the avail­
able source power PA and the load power PL are defined as: PA = E 12/ 4R 1, 

PL= E,,.2/R2. Gain G is a function of R1, R2, m, n, µ,, and rp, 
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(b) The maximum gain obtainable by adjustment of turns-ratio n is 
defined as the available gain GA, Find GA in terms of R1, m, µ, and rp. Plot 
GA!(µ + 1) vs. (M 2R1)/rp/ (µ + 1). 

(c) The maximum gain obtainable by simultaneous adjustment of both 
m and n is defined as the maxin,:mm available gain GAm• Find GAm in terms 
ofµ and rp. · 

(d) Show that for fixed E1, R1, and R2, but adjustable m and n, the power­
gain maximization also maximizes the voltage amplification E 2/ E 1• 

6.29. Sketch the e vs. i characteristics of the circuit shown in Fig. P6.23. 
A piecewise-linear· model should be assumed. 

200 volts 

i -
+ 

50kO 

e r 
e2 ___ _.,_ ___ _.:,L 

Fig. P6.23 Fig. P6.24 

6.30. (a) Sketch and dimension the static transfer curve e2 vs. e1 for the 
cathode follower circuit shown in Fig. P6.24. Assume a piecewise-linear 
triode withµ = 20, rp = 10 kilohms, and r0 = 0 . 
. (b) Determin.e e2(t) for the circuit shown in Fig_. P6.24 with e1(t) = +35 + 

50 sin wot. 
(c) If e1(t) = E 1 + 40 sin w0t is applied to the circuit ot Fig. P6.24, choose 

a value of E 1 that will result in a sinusoidal output e2 = E2 + Em sin wot. 
Determine E 2 and Em. 

6.31. Sketch approximate piecewise-linear curves of e2 and ea versus e1, on 
the same coordinates, for the circuit shown in Fig. P6.25. Show only the 
negative grid-voltage region. Choose the constantsµ, and rp for the piecewise­
linear triode model in order to give a reasonable approximation to the Type I 
triode curves. Let Ebb = 300 volts and let both Rb and Rk equal 10 kilohms. 

6.32. Tabulate the states of each of the three diodes in Fig. 6.26 for the five 
regions of operation. 

6.33. A Type I triode is connected as shown in Fig. P6.26. Confining 
attention to the negative-grid-voltage region of operation, plot on the plate 
curves the locue of (a) varying e1 for Rb = 15 kilohms, Rk = 5 kilohms, 
(b) varying Rb for e1 = 25 volts, Rk = 5 kilohms, (c) varying Rk for e1 = 25 
volts, Rb = 15 kilohms, (d) What is the value of ib for e1 = 25 volts, Rb = 15 
kilohms, Rk = 5 kilohms? (e) Plot ib vs. e1 for Rk = 5 kilohms, Rb = 15 
kilohms. 
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+300volts 

Fig. P6.25 Fig. P6.26 

6.34. (a) For the circuit shown in Fig. P6.27, graphically find the quiescent 
operating point. 

+200 volts 

l00kO Type II 

l00kO 

-50 volts 

Flg.·P6.27 

(b) At the quiescent operating point, calculate the incremental parameters 
µ, r Pf and Um• , Show the piecewise-linear model of the circuit of Fig. P6.27. 

(c) For a small signal Ae1, calculate the incremental gain of the circuit. 
:6 .. 35. For, the Type II triode connected as in Fig·. P6.28, plot the complete 

output-input characteristic for an input voltage range from .-20 to +30 
volts. When grid current flows, the voltage drop through resistance R is 
sufficiently large to hold ec at :a value very nearly equal to zero. 

,6.~6. ~ind the operati~g_ poin~: (if,. ib a,n4 eb) J9r the Type I triode .in _the 
~i:qajJ7 9(_Fig. _f6.29. Use ~h~_p}a~e ~n~gri.d·char_acte~i~tics for positive values 
of grid voltage. · A cut-and-try process is necessary ... 

,: 6.3!,: (P;) :Usin~ th~ ... :Type .. 1 triode .:.characteristics, plot th~ J>u..tp!lt-iqput 
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+300 volts 

20k0 
r r o------+-------------0 

Fig. P6.28 

4k0 

Type I 

f:lg. P6.29 

+ 
-=-250v 

characteristic (eout vs. ein) of the circuit shown in Fig. P6.30 over the range 
-20 < ein < + 10 volts. The suggested method is to make a table of values 
of ec, eb, ek, (300 - eb)/50, ein == ec + ek, eout = eb + ek, for ec = 0, -4, -8, 
-12, -14, -16, from which the characteristic may be plotted. 

(b) At ein = 0, compute the plate dissipation ebib and the power supplied by 
the 300-volt source. 

6.38. (a) For an input voltage ein = 8 cos lOOOt volts in Fig. P6.30, make 
a sketch (not a plot) of the manner in which the output voltage waveform is 
distorted from a true sinusoidal shape. 

(b) If harmonics higher than the second are ignored, the output voltage 
may be written in the form 

eout =Ao+ A1 cos(lO00t + 01) + A2 cos(2000t + 02) 

Evaluate the constants by sampling the wave at lO00t = -1r, -r/2, 0, r/2, 'II". 
(Hint: show that 01 = 02 = 0.) Express the ratio of A2 to A 1 as a percentage 
second-harmonic distortion. 

(c) Ignoring the second harmonic and approximating the plate voltage by 
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the expression 

eb = (eb max t eb min) - (eb max; eb min) cos lOOOt 

compute the time-average a-c power delivered to the 49-kilohm load, and also 
the time-average plate dissipation. 

+300 volts 

Fig. P6.30 

(d) How does the time-average plate dissipation compare with the no­
signal value found in Problem 6.37? Explain the difference. 

6.39. For an input voltage ein = 0.8 cos lO00t volts in Fig. P6.30, the output 
voltage may be written as eout = Ao + A 1 cos lO00t. 

(a) Using the appropriate linear incremental equivalent circuit, find the 
value of A1. 

(b) How does the voltage amplification A 1/0.8 compare with the corre­
sponding ratio (A i/8) in Problem 6.38? 

(c) How does the voltage amplification compare with the slope of the 
output-input characteristic found in Problem 6.37? At what point should the 
slope be compared? 

(d) How does the value of Ao compare with the value found in Problem 
6.38? Explain the difference. 

6.40. In Fig. P6.31, a triangular waveform e1 (t) is to be converted into a 
trapezoidal wave e2 (t) by the circuit shown in Fig. P6.32. Assume a piecewise­
linear model for the triode (µ = 20, rp = 10 kilohms, Tg = 0), and assume 
grid current is negligible in comparison with plate current. Determine the 
values required for Rb, Rk, and R. 

6.41. (a) For the circuit shown in Fig. P6.33, locate the operating point of 
the tube on Type I triode characteristics. Use a systematic procedure and not 
pure trial and error. Assume i1 = 0. 

(b) For the circuit of Fig. P6.33, determine the tube parameters at the 
operating point and calculate incremental voltage gain Ae2/ Ae1, input im­
pedance Aei/ Ai 1, and output impedance. 

6.42. The circuit in Fig. P6.34 is called a phase inverter. It provides two 
outputs e2 and e3. The input voltage ei is sinusoidal and of a high enough 
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0 50 90 110 150 250 t (J.£sec) 

Fig. P6.31 

250 V 

R 

+ 

Fig. P6,32 
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o-----------_.,-----oe2 

Fig. P6.33 

frequency that the reactance of the capacitors C 1 can be neglected. The 
circuit operates only in the negative-grid region. Using a linear incremental 
circuit (µ = 100, rp = 50 kilohms) find the gains e2/e1 and ea/e1, and the 
phase angle between e2 and ea. 

300 V 

+ r r rv e1 

lM!l e2 lMO ea 

L 
-=-

Fig. P6.34 

6.43. For the cascode circuit of Fig. P6.35, in which the tubes are assumed 
to be identical and piecewise-linear: 

(a) Sketch and dimension the boundary of the region in the V /Ebb versus 
ei/ Ebb plane within which both tubes conduct plate current but no grid 
current. 

(b) Sketch and dimension the curve of e2 vs. e1. Use the value of V giving 
the widest range of e1 between cutoff and grid current. What is the value of 
A = ll.e2/ll.e1? 
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Fig. P6.35 

6.44. When operating in the negative grid-voltage region the vacuum 
triodes in the circuit shown in Fig. P6.36 can both be represented by a linear 
circuit model with plate resistance rp, and amplification factorµ. Find the 

r 
83 

]_ 
---------.--------0 

Fig. P6.36 

incremental output voltage as a function of the input voltages e1 and e2. 
Assume that the biasing voltages are such that the triodes operate in the 
negative grid region. 

6.45. Assuming that the tubes are operating linearly and have equal µ 
and rp, determine the gain e2/e1, and the output impedance of the circuit 
shown in Fig. P6.37. 
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Fig. P6.37 

6.46. Locate the static operating point of the circuit in Fig. P6.38. 

+ 
200v 

Fig. P6.38 

+ 
300v 
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6.47. In Fig. P6.39, determine the incremental amplification e2f e1 as a 
function of the circuit constants. The two tures are identical. Find the 
output impedance. 

6.48. Using the tube characteristics find the operating points by trial and 
error for the two Type I triodes in the cathode coupled amplifier shown in 
Fig. P6.40. Find the incremental parameters for the two tubes at their 
respective operating points and using these values, determine the incremental 
output impedance of the amplifier. (R2 is to be regarded as the output load.) 
Derive your results using suitable literal symbols for the circuit coefficients. 
Substitute nu.m~ri~~l quantities only after obtaining your results in literal 
form. 



284 ELECTRONIC CIRCUIT THEORY 

Fig. P6.39 

-------....... ----0300 V 

Fig. P6.40 

+300v 

3 kO 

Fig, P6.41 

+ R1 = 5,000 ohms 

R2 = 10,000 ohms 

eout 
Rk = 1,000 ohms 

ein = +8vd-c 
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6.49. Using a piecewise-linear triode model withµ, = 40, rp = 40 kilohms, 
plot e2 versus e1 for the cathode-coupled amplifier shown in Fig. P6.41. Use 
that value of V which yields the widest amplification region (both tubes con­
ducting) subject to the restriction that neither tube shall draw grid current 
in this region. 

+200v 

eout 

Fig. P6.42 

6.50. For the circuit of Fig. P6.42, plot the complete output-input charac­
teristic for an input voltage range from -15 to + 10 volts. Both tubes have 
µ = 50, rp = 40 kilohms. 

6.51. Using a piecewise-linear model of a triode with µ = 20 and rp =-
10 kilohms, design single-stage amplifiers to fulfill the following requirements: 

Amplifier No. 1: The incremental voltage gain is to be 19. The input 
signal, derived from a generator with a 20-kilohm source impedance, has a 
maximum amplitude of 15 volts peak to peak. 

Amplifier No. 2: For a fixed value of e 1, this amplifier containing no trans­
formers must deliver the maximum possible power to a 500-ohm load. 

Amplifier No. 3: This amplifier is to have an incremental gain of 5, and 
must be designed to reduce the dependence of the gain on the µ of the tube. 

r 
30:• 

40 

Fig. P6.43 

· 6.52. The quiescent operating point of the Type IV triode in the amplifier 
circuit of Fig. P6.43 is at ib = 60 ma, ec = -60 volts. For the purpose of 
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this problem, the transformer may be considered ideal and the capacitor to 
have zero impedance. 

(a) Determine the quiescent plate dissipation. 
(b) Assuming essentially linear operation, determine the amplitude of the 

sinusoidal grid signal required to develop ½ watt in the 4-ohm resistor. 
(c) Determine the average plate dissipation when the signal specified in 

part (b) is applied. (The slight change in average plate current which occurs 
when the signal is impressed may be neglected.) 

n:1 

+ 

-=-
Fig. P6.44 

Ebb= 250v 
Rk = 200 0 
RL= 4Q 

+ 

6.53. In Fig. P6.44 is shown the circuit of a shunt-fed amplifier. At the 
frequency of operation, the reactance of the inductor L is very large, and the 
reactances of the capacitors CK and Cc are very small. The inductor resist­
ance is negligible and the transformer is ideal. 

(a) Determine on the Type V triode characteristics the operating point 
(eb and ib) when e1 = 0. 

(b) If e1 = 0.1 sin wt, what is the turns ration for maximum power transfer 
to the load RL? 

(c) Draw on the characteristics the operating path of the tube when 
e1 = 5sinwt. 

(d) Determine from the incremental equivalent circuit the voltage gain of 
the circuit, A = Lle 2/ Lle 1, at the operating point. 

6.54. The circuit shown in Fig. P6.45 provides an adjustable supply voltage 
V for a resistive vacuum-tube load that draws a current varying between 
0 and 10 ma. Determine the value of E 1 required to make V = 150 volts 
when I = 5 ma. With this value of E 1, determine V for I = 0 and 10 ma, 
and calculate the percent regulation. 

6.55. The circuit shown in Fig. P6.46 provides an adjustable supply voltage 
for the variable load R. Assume the triode to be linear with µ. = 40 and 
Tp = 20 kilohms. For a given value of E 1 and with ec ~ 0 the circuit provides 
some voltage regulation. Determine (a) and (b) as functions of E 1• 
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Fig. P6.45 

Type I 
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V 

(a) Open-circuit voltage available at the load. 

287 

Load 

(b) Maximum load current for which reasonable voltage regulation is 
obtained. 

r--------..------<i300v 

.--- ---7 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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---- ___ ...J 

µ = 40 
rp = 20 kO 
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6.56. In the circuit shown in Fig. P6.47, assume the internal resistance of 
the power supply to be zero (R = 0). 

(a) With I = 0, determine the value of E1 needed to make E2 = 250. 
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(b) With a resistive load connected, plot E2 vs. I. 
(c) Over what range of I is the voltage "regulated"? 
6.57. Repeat Problem 6.56 with R = 1 kilohm. 
6.58. The series regulator circuit shown in Fig. P6.48 is used to maintain 

a fixed output voltage essentially independent of supply and load fluctuations. 
The questions below are concerned with the operation and limitations of 
this regulator. 

+ 
300v 

Type III 

Type IV 
A 

A' 

Fig, P6.48 

Type IV Maximum Ratings 

ib avg = 120 ma 

eb avg = 300 volts 

(a) Determine the quiescent operating points and the bias, Ee, necessary 
to deliver 200 volts at 70 ma. to the load. 

(b) For the conditions of (a) determine the Thevenin equivalent of the 
circuit to the left of terminals A - A' (i.e., the circuit seen by R L) valid for 
small changes in load current. 

(c) For a load voltage of 200 volts, what is the maximum power output 
that can be obtained without exceeding the tube ratings? 
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Other Control Valves and their 

Circuit Models 

7.1 Introduction 

N 

In the preceding chapters the properties of diodes, vacuum triodes, 
and transistors have been treated in some detail. There are, of course, 
many other electronic devices, each with its own peculiarities. In this 
chapter some of the fundamental properties of control valves are dis­
cussed and three specific devices, the vacuum pentode, the cryotron, * and 
the thyratron, are considered as examples. The purpose of this chapter 
is to suggest the generality and usefulness of a few simple ideas in the 
process of characterizing an electronic device. 

7.2 The Control Valve 

By the word "valve" we mean a physical device which imposes some 
constraint or relationship between two physical variables whose product 
is power. If the relationship does not involve time, then the valve is 
said to be "amnesic" or "memoryless." Figure 7.1 shows (a) an anmesic 
valve for which the flow-versus-pressure relationship may be either 
linear, as in (b), or nonlinear, as in (c). In each case, (b) or (c), the 
valve is passive, since the curve never enters the second or fourth quad-

* D. A. Buck, The Cryotron - A Superconductive Computer Component, Proc. 
I.R.E., Vol. 44, p. 482 (1956). 

289 
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rants of the flow-pressure plane, and the instantaneous power absorbed 
by the valve is therefore never negative. 

By a control valve we mean a valve whose flow-versus-pressure relation­
ship is influenced by some other physical variable called the control 

Flow, f 

Q
:-r+ 

Pressure diTce 

(a) (b) (c) 

f f 

(dJ (eJ m 

Fig. 7.1. Valves and valve curves. 

parameter or control variable. The control variable is itself either a 
pressure or a flow and is applied to the valve at some auxiliary terminal­
pair as indicated in Fig. 7.1 (d). Hence the control variable is one of a 
pair of variables whose product is power, and the relationship between 
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these two variables is fixed by the characteristics of the control valve. 
We shall say that the control valve is unilateral if the control-variable­
pair relationship is unaffected by the value of the pressure or flow in the 
main part of the valve. In other words, the control influences the valve 
but there is no reaction or influence in the reverse direction. If applica­
tion and maintenance of the control signal require negligible power, then 
the valve has ideal control. 

An ideal unilateral amnesic control valve is completely described by a 
family of valve curves such as that shown in Fig. 7.l(e), one curve for 
each of a number of different values of the control parameter c, with the 
tacit assumption that we can interpolate between these curves for other 
values of c. (If the valve is not unilateral, we require another such 
family of curves to relate the two variables at the control point, with 
either f or p playing the role of a control parameter in the reverse 
direction.) 

The ideal unilateral control valve of Fig. 7.l(e) is passive (at least for 
the range of c shown), since none of the curves enter the second or fourth 
quadrants. For any fixed c, the relationship between f and pis linear, 
but the complete function f (p, c) is nonlinear. An ideal multiplier 
(f = pc) or divider (f = p / c) has characteristic curves like those in 
Fig. 7 .1 ( e). The carbon microphone and the kitchen faucet fall roughly 
into this category. 

If the function f (p, c) is linear, then the valve curves are parallel 
straight lines with equal spacing for equal increments of the control 
parameter, as shown in Fig. 7.1 (f). It is apparent, therefore, that an 
ideal unilateral control valve cannot be passive if it is linear. 

Many devices exhibit a control effect arising from physical laws that 
are inherently linear over a significant region of operation. In the 
vacuum triode, for example, grid control is governed, essentially, by 
electrostatic field equations. The uniform horizontal spacing µ of the 
triode curves in the central region of operation is a consequence of the 
linearity of these field equations. Similarly, the emitter-to-collector 
current-control ratio of a transistor is essentially a constant dependent 
upon the transistor geometry, with the result that the transistor collector 
curves are very nearly parallel and equally spaced in the usual region 
of interest. Thus we have some reason to be concerned with control 
devices which are regionally-linear as indicated by the curves within the 
dashed contour in Fig. 7.1 (g). The point is that if an ideal unilateral 
amnesic control valve is linear in some region, then it must necessarily 
become nonlinear outside this region in order to remain passive, as 
illustrated in Fig. 7 .1 (g). 

The above discussion gives us the background for a better under-
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standing of the circuit models for such devices. In the next two articles 
we shall see how the circuit model of an ideal unilateral amnesic passive 
regionally-linear control valve can be represented as a combination of two 
parts, one providing ideal unilateral linear control and the other pro­
viding the nonlinearities necessary to insure passivity. 

7.3 The Energy Valve 

Figure 7.2(a) shows the ideal diode or ideal rectifier, a circuit element 
that has appeared repeatedly in the preceding chapters. The ideal diode 
is not only passive but also lossless, since the product vi is always iden­
tically equal to zero. The ideal diode can be completely characterized 
by statements that its current is never negative, its voltage is never 
positive, and the product vi is always zero. The combination of two 
diodes indicated in Fig. 7.2(b) is a two-terminal-pair "filter" having the 
marvelous property that energy can flow through the filter from left to 
right but never from right to left! To see this, first observe that i 1 is never 
negative and that v1 cannot be negative when i 1 is positive. Thus, the 
instantaneous power v1i1 can never be negative. Now, since each of the 
diodes is lossless, the complete circuit must be lossless and the output 
power v2i2 must be equal to the input power vii1. Hence the circuit 
shown in Fig. 7 .2 (b) is a trapdoor or valve through which energy can 
pass in only one direction. 

Parts (c) and (d) of Fig. 7.2 offer two additional forms of the lossless 
energy valve. The lattice structure (d) is recognizable as a diode bridge 
circuit and is obtainable by connecting two circuits of the type shown 
in part (c) with their outputs in parallel and their inputs in series 
opposition. 

The energy valve is a useful building block in the construction of a 
circuit model for a passive device. No matter what we may connect to 
the output terminals, the complete circuit, as viewed from the input 
terminals, v1 and ii, is automatically passive. 

7.4 Circuit Models for Control Valves 

Figure 7.3 (a) shows the circuit model for an ideal unilateral linear 
(but not passive) control valve. The voltage source V is assumed to be 
unilaterally controlled by some physical variable at an ideal control 
point not shown in the figure. The associated valve curves are indicated 
in (b). The model is obviously not passive since power can be extracted 
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Fig. 7.2. Ideal valves. (a) The ideal diode valve, into which no energy flows. 
(b), (c), (d) Energy valves, through which energy can flow in only one direction. 

from it for any nonzero V by proper adjustment of an applied voltage v 
or current i. 

Insertion of an energy valve, as shown in Fig. 7.3(c), assures passivity 
without disturbing the character of the valve c~rv~s within the first 



294 ELECTRONIC CIRCUIT THEORY 

quadrant of the i vs. v plane. The energy valve introduces the non­
linearity indicated in (d) and makes the second and fourth (nonpassive) 
quadrants forbidden ground. With V replaced by the negative of µec, 
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Fig. 7.3. Ideal control valves and associated curves. 

where ec is the grid control voltage of a vacuum triode, we recognize 
Fig. 7.3(d) as the piecewise-linear approximation to the plate curves of 
that triode [see Fig. 6.lO(d)]. 
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Two added possibilities, corresponding to the other basic forms of 
the energy valve, are shown in Fig. 7 .3 ( e) and (g), and the associated 
curves are given in (f) and (h). The main point here is that resolution 
of the circuit model into two parts, each having an easily interpretable 
function, makes the complete circuit appear much less formidable and 
also suggests the generality of such models for the representation of a 
wide variety of devices. 

7.5 The Pentode 

From generalities we now shift to the discussion of some specific 
electronic devices. The first of these is the pentode, a triode with two 
additional grids. Development of the pentode arose from the desire to 
overcome certain disadvantages inherent in the vacuum triode. Figure 
7.4(a) shows a simple triode amplifier with the grid-to-plate inter­
electrode capacitance C placed in evidence as a circuit element. At 
high frequencies the susceptance of this capacitance becomes appreciable. 

-=-

(a) (b) (c) 

Fig. 7.4. Transition from triode to tetrode. (a) Grid-to-plate interelectrode 
capacitance which reduces triode gain at high frequencies; (b) Introduction of a 
screen grid to shield the plate from the control grid; (c) Addition of a screen-grid 

supply voltage to maintain the flow of plate current. 

Signal current flowing in the capacitor must also flow through the source 
resistance R and the resulting voltage drop from e1 to ec reduces the 
voltage amplification between e1 and the output eb. The loss of ampli­
fication is aggravated by the so-called "Miller effect." The essence of 
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the Miller effect is as follows. For one volt of a-c signal at the grid a 
considerably larger a-c signal appears at the plate, say A volts, and the 
polarity of the plate signal is opposite to that of the grid signal. Hence 
the voltage across the capacitance C is larger than the grid signal by a 
factor 1 + A and the capacitive current is therefore (1 + A) times 
greater than it would be with the same capacitance connected between 
grid and cathode. The capacitance C therefore has an effect comparable 
to that of a larger capacitance C (1 + A) between grid and cathode. 
Thus we see that grid-to-plate capacitance severely limits the operation 
of a vacuum triode as a high-frequency voltage amplifier. 

The capacitance between grid and plate can be greatly reduced by the 
insertion of an electrostatic shield or screen between the grid and the 
plate as indicated in Fig. 7.4(b). This shield cannot, of course, be a 
solid sheet, for then no current could flow between cathode and plate. 
Hence a perforated screen is used and this is called the screen grid. If 
we experiment upon the circuit shown in Fig. 7.4 (b), we find that the 
capacitance between the control grid and the plate is indeed very small, 
but that hardly any plate current flows unless the plate voltage is raised 
to a tremendously high value. The reason is that the grounded screen 
grid not only shields the plate from the control grid but also further 
shields the plate from the cathode, thereby eliminating the motive force 
for normal current flow in the tube. The remedy is shown in Fig. 7.4(c). 
Here the screen grid is held at some fixed positive potential which pro­
duces much the same electric field in the region between the screen grid 
and the cathode as that in a triode. The cathode, control grid, and 
screen grid are in fact a triode; a triode with holes in its "plate." The 
large majority of electrons pass through the openings between the 
screen-grid wires into the drift space beyond and are eventually collected 
by the true plate of the tube. 

The tube in Fig. 7.4 ( c) has four electrodes and is therefore called a 
tetrode. In examining its properties we shall find reasons for the intro­
duction of still another grid and the tube will then become a pentode. 
Figure 7.5(a) shows the variation of electric potential between the 
cathode and plate of a plane-parallel tetrode. Conditions within the 
"electron gun" portion of the tetrode are much the same as those in a 
triode. The "gun" shoots electrons through the drift space and into the 
plate. The "muzzle velocity" of the electron gun is mainly determined 
by the screen-grid voltage V c2 whereas the number of bullets per second 
( the cathode current) is mainly fixed by the control grid voltage. For 
the purposes of this discussion we shall hold the control grid at zero 
voltage. 

Because of the electrostatic shielding effect of the two grids, the 
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Fig. 7.5. Tetrode curves. (a) Electric potential in a plane-parallel tetrode; 
(b) Current versus plate voltage for ec1 = 0 and ec2 = Vc2 = constant. 

cathode current is influenced very little by variations in the plate voltage, 
as indicated by the cathode-current curve in Fig. 7.5(b ). The screen­
grid current decreases slightly with increasing plate voltage because of 
minor modifications in the electric field pattern near the screen-grid 
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wires. When the plate beckons more strongly, the electrons are not 
quite as likely to be captured by a screen-grid wire. Hence, plate 
current increases slightly with increasing plate voltage, screen-grid 
current decreases, and cathode current remains essentially unchanged, 
as shown in Fig. 7 .5 (b). 

The kinetic energy of an electron is proportional to the height of the 
potential curve in Fig. 7.5(a), hence the electrons strike the plate with 
considerable speed. When an electron enters the plate, it can "splash" 

(a) (b) 

Fig. 7.6. Pentode symbols. (a) Pentode, with suppressor grid internally connected 
to the cathode; (b) Beam tetrode, with beam-forming electrodes internally connected 
to the cathode. 

several other electrons out of the plate. Such liberation of electrons by 
bombardment is called secondary emission. The secondary electrons 
are emitted with less kinetic energy than that of the impinging electron 
but this energy frees the secondaries from the attraction of the plate. 
When the plate voltage is higher than the screen-grid voltage, as in the 
solid curve of Fig. 7.5(a), the secondary electrons find themselves in an 
electric field which quickly returns them to the plate. However, if the 
plate voltage is reduced from e/ to a lower value e/', the secondary 
electrons ride upward along the potential curve and are eventually 
collected by the screen grid. The result is a dip in the plate-current 
curve as shown in Fig. 7.5(b). At still lower plate voltages the electrons 
are greatly decelerated in the drift space and arrive at the plate with 
insufficient energy to produce appreciable secondary emission. Finally, 
as the plate voltage is reduced to zero, the plate current is cut off and 
all "bullets" fall back into the "muzzle" of the "gun." As the elec­
trons are decelerated and turned back from the plate, they return to 
the screen grid at high velocity and may oscillate through the screen 
many times before being collected. The electron cloud produces a 
relatively heavy negative space charge that depresses the potential 
cwve and reduces the cathode current as indicated in Fig. 7 .5 (b). 
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The effects of secondary emission can be suppressed by the introduc­
tion of a third grid, called the suppressor grid, between the screen grid 
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Fig. 1.1. Pentode curves. (a) Formation of a virtual cathode near the suppressor 
grid at low plate voltage; (b) Pentode plate curve for ec1 = 0 and ec2 = V c2• 

and the plate as shown in Fig. 7.6(a). In most pentodes the suppressor 
is internally connected to the cathode. The induced negative charge on 
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the suppressor grid wires depresses the potential curve as indicated by 
the broken line in Fig. 7. 7 (a) and thereby prevents secondary electrons 
from travelling to the screen grid. At the same time the suppressor grid 
does not interfere with the passage of high-energy electrons from the 
gun. Unless one of these electrons happens to be aimed directly at the 
center of a suppressor-grid wire, it will reach the suppressor-grid plane 
with sufficient velocity to carry it between the wires and onward to 
the plate. 

The beam tetrode shown in Fig. 7.6(b) accomplishes the same result 
in a different way. Beam-forming electrodes are located in such a 
position that their induced negative charge focusses the electron stream 
into a relatively compact beam. This increases the space-charge density 
within the electron stream and therefore depresses the potential curve. 
Also, by aligning screen and control-grid wires, electrons are directed 
between screen wires, thereby reducing screen current. 

Figure 7.7(b) shows the pentode plate curve for zero control-grid 
voltage. Just as in the tetrode the plate current decreases slightly with 
decreasing plate voltage, but the secondary-emission dip is no longer 
present. When the plate voltage drops to some critical value ev.c. the 
plate current begins to drop much more sharply. The onset of this 
break point can be explained as follows. As eb decreases, electrons are 
decelerated more drastically in the drift space between the screen 
grid and the plate. Deceleration means that the electrons bunch more 
closely together, with an attendant increase in their space-charge density. 
This increase in space-charge density further depresses the potential 
curve which, in turn, enhances the deceleration. The effects are cumula­
tive, and, as eb decreases, a point is reached at which the potential curve 
drops to zero in the neighborhood of the suppressor grid. Under these 
conditions the electrons arrive at the suppressor grid with zero velocity, 
forming a local reservoir of stationary electrons. Some of them fall 
backward to the screen and some fall toward the plate. The situation 
is really the same as that which exists just outside a hot cathode under 
conditions of space-charge-limited current flow. Some of the electrons 
are returned to the cathode and some proceed onward past the potential 
minimum. A reservoir of stationary electrons at some surface in space 
is equivalent to an ideal cathode located on that surface. When the 
potential within the pentode drops to zero, we say that a virtual cathode 
has been formed at the suppressor grid. The region between the sup­
pressor and the plate then behaves much like a high-vacuum diode. For 
plate voltages below the critical value ev.c. the diode is unsaturated; 
that is, the diode demands less current than that supplied by the electron 
gun. For values of plate voltage above the critical value, the diode is 
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saturated. All of the "emission current" available at the virtual cathode 
is exhausted and the "diode curve" levels off, as shown in Fig. 7.7 (b ). 

7.6 Pentode Curves and Pentode Circuit Models 

Since the electron-gun portion of the pentode behaves like a triode, 
we might expect the plate current to be proportional to the three-halves 
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Fig. 7.8. Idealized pentode curves, showing the effect of a change in screen-grid 
potential. Note that ib½ is the scale, not ib. 

power of the quantity (ec2 + /ec1), whereµ' is the amplification factor 
of the electron gun. This is a fair approximation, and it leads to the 
idealized pentode curves plotted in Fig. 7 .8 with the two-thirds power of 
ib, rather than ib itself, as the vertical co-ordinate. The idealized curves 
are horizontal and equally spaced. In the virtual-cathode region the 
curves all join on a line of slope B/ A, representing the three-halves 
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power law for unsaturated operation of the diode portion of the pentode. 
Comparison of Fig. 7.8 (a) and (b) shows the effect of a change in the 
screen-grid supply voltage. To convert a set of pentode curves from 
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E 

Fig. 7.9. A typical family of pentode plate curves (ec2 = E = constant). 

one fixed value of screen-grid voltage to another, simply multiply each 
of the voltage scales by the scale factor k and multiply the current scale 
by the three-halves power of the scale factor k. 

Figure 7.9 shows a family of pentode plate curves for some fixed screen 
grid voltage. Here the first power of the current is plotted and the 
curves therefore exhibit a crowding at low values of current. In the 
central region of the curves the control-grid-to-plate transconductance 
g1p is approximately proportional to the cube root of the plate current, 
for if i/s ,...._, (ec2 + µ21ec1), then g1p = aib/aec1 ,...._, (ib)½. 

Figure 7.10 shows a typical pentode amplifier circuit. The by-pass 
capacitors Ck and Cc2 are assumed to have negligible reactance at all 
signal frequencies of interest. Hence the cathode and screen-grid 
potentials are essentially constant. In such a circuit the pentode oper­
ates as a good high-frequency voltage amplifier. The pentode has one 
disadvantage not present in the triode. The cathode current divides into 
two portions; a small fraction to the screen grid and the remainder to 
the plate. The slight inherent random fluctuation in this division ratio 
produces an additional fluctuation in plate current which is not present 
in the cathode current. This extra component of plate current is called 
"partition noise" or "division noise" and, other things being equal, it 
makes the pentode slightly noisier than the triode. Nevertheless the 
pentode has found wide use in high-frequency applications where 
extreme sensitivity is not required. 

In some special purpose pentodes, called "gate" tubes, the suppressor-
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grid terminal is externally available as shown in Fig. 7.11 (a). If the 
suppressor-grid voltage is made several volts negative with respect to 
the cathode, the interelectrode potential between screen-grid and plate 
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Fig, 7.10. A pentode amplifier operating from a single supply voltage, 
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Fig. 7. 11. Gate circuit. (a) A "gate" tube, having an externally available sup­
pressor-grid terminal; (b) Control action at negative values of suppressor-grid 

voltage. 

comes down like a curtain and begins to cut off the flow of plate current. 
Hence a region exists within which the suppressor grid acts like a control 
grid, as illustrated in Fig. 7.11 (b ). A sufficiently large negative signal 
at the suppressor grid can therefore be utilized to "close the gate" and 
interrupt the flow of signals from the control grid to the plate in a 
pentode amplifier. 

Figure 7.12(a) shows a piecewise-linear model which approximates 
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the behavior of the pentode plate circuit. We assume here that the 
suppressor grid is connected to the cathode. The associated plate curves 
are shown in Fig. 7.12(c). If parameter g is allowed to approach infinity, 
the curves occupy the entire first quadrant of the ib vs. eb plane, and the 
circuit model becomes equivalent to the one shown in Fig. 7.3(c). For 
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Fig. 7. 12. Pentode model and curves. (a) A piecewise-linear model for the pentode 
plate circuit (eca = 0, ec2 = constant); (b) The linear model, applicable in the 
central region of the plate curves, to which (a) reduces with the shunt diode open 
and the series diode closed; (c) The associated piecewise-linear plate-current curves. 

operation in the central region of the plate curves, a suitable linear model 
can be obtained from Fig. 7.12(a) by short-circuiting the series diode 
and open-circuiting the shunt diode. Also, the conductance (g - (}p) 

may be ignored in this case, since it is in series with a current source. In 
short, the linear model for the plate circuit of a pentode amplifier con­
sists of a transconductance current g1pec1 + I O in parallel with a con­
ductance gp. This is the same as the current-source form of the triode 
model, except for the fact that gp is considerably smaller in the pentode 
than in the triode, and except for the additional term I 0 • Current I 0 is 
determined largely by the screen-grid voltage ec2• For a gross approxi-
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mation to this effect we can write I O = g2pec2, where g2p is the screen­
grid-to-plate transconductance of the model, a constant chosen to 
approximate the actual tube data over a range of ec2 , 

7.7 The Cryotron 

The cryotron, shown in Fig. 7.13, is an ideal control valve which 
depends for its operation upon the phenomenon of superconductivity. 
As the temperature of a material is decreased, its resistance in general 

+ 

Fig. 7.13. The cryotron. 
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also decreases. For a certain class of materials called superconductors, 
the curve of resistivity versus absolute temperature levels off at a few 
degrees above absolute zero and then drops sharply and completely to 
zero, as indicated in Fig. 7.14. In the superconducting region lying 
below the critical temperature Kc the resistivity is not merely small but 
actually zero insofar as the most advanced and refined measurements 
can show. Moreover, the application of a magnetic field H to the ma­
terial alters the critical temperature, and it is upon this effect that the 
operation of the cryotron is based. 

A cryotron can be constructed by simply winding a "control" coil of 
insulated niobium wire upon a short length of tantalum wire. Let us 
now enclose the cryotron in a container surrounded by liquid helium 
which reduces its temperature below the critical value for both tantalum 
and niobium. If we pass a current through the tantalum "valve" wire 
(by means of leads brought out through the mouth of the container), 
the voltage drop across the valve will remain at the value zero until the 
current is raised to some critical value. At this point the self-induced 
magnetic field within the wire reaches the superconductivity limit for 
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that temperature and the superconductivity is suddenly destroyed. 
What happens is that one small portion of the wire near the surface first 
becomes resistive. This distorts the lines of current flow and increases 
the magnetic field nearby. The result is a self-propagating wave of 
increased resistivity which quickly destroys superconductivity through­
out the short piece of valve wire. Let us assume that the short length 
of tantalum valve wire is electrically connected to the remainder of 
the system through leads of niobium hook-up wire. The hook-up wire 

Resistance 

H"> H'>O 

,---,--
1 I 
I I 

w:H'l H= o 
I I ! ! Absolute --~-.....___.___, ____________ temperature 

0 K; K~ Kc oK 

Fig. 7, 14. Resistance of a piece of wire versus absolute temperature °K, showing 
superconductivity below some critical temperature, Kc, A magnetic field H within 

the wire reduces the critical temperature. 

and the control winding will remain superconducting since niobium has 
a critical temperature roughly twice that of tantalum. This gives us 
the zero-control-current curve shown in Fig. 7.15. Let us now return 
the valve current to zero and repeat the experiment with a nonzero value 
of the control current ic, For a nonzero value of control current, the 
control winding produces an initial magnetic field within the valve wire. 
As the valve current i is again increased from zero, the critical magnetic 
field will be reached at a smaller value of valve current. The two com­
ponents of magnetic field caused by the two currents i and ic are at 
right angles to each other and the critical magnetic field of which we 
speak is the vector sum of these two components. Hence we may expect 
to find a quadratic relationship between the critical valve current I and 
the control current ic, This relationship is given in Fig. 7.15. A straight­
forward calculation of the magnetic field due to the two currents yields 
the values of the constants 10 and i0• The values are 1rdH0 and H0/n, 
respectively, where H 0 is the critical value of H for tantalum at the 
experimental temperature, dis the diameter of the valve wire, and n is 
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the number of turns per unit length in the control winding. The constant 
i0 is that value of control current required to destroy superconductivity 
with no valve current flowing, and the constant I O is the critical value of 
valve current when no control current is flowing. 

Because superconducting niobium can tolerate a much higher magnetic 
field than superconducting tantalum, the control winding remains 

V 

±6 

Fig. 7.15. Cryotron valve curves. 

superconducting throughout the ranges of operation indicated in Fig. 
7.15. The cryotron therefore is truly an ideal unilateral control valve. 

Economical modern methods of producing liquid helium in large 
quantities make practical cryotron systems a reality. Cryotrons are 
very small and hundreds of them can be connected together to form a 
complicated valve system such as a computer network. The entire 
network can then be enclosed in a relatively small container, with the 
cost of maintaining the helium no worse than the cost of air-conditioning 
a similar computer made up of semiconductor or vacuum tube com­
ponents. At present, the main drawbacks of cryotron systems are that 
the cryotron cannot be switched or pulsed as rapidly as some other 
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electronic devices and that a cryotron system requiring many different 
access leads to the outside world presents some problems of heat 
insulation. 

V 
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Fig. 7.16. Construction of a piecewise-linear model for the cryotron. 

For a circuit model of the cryotron let us begin with the curve shown 
in Fig. 7.16(a), which can be synthesized as the circuit indicated in (b). 
Connection of two such circuits in series opposition yields a single 
symmetric cryotron curve. It is interesting to observe that the circuit 
in Fig. 7.16(b) is a very close cousin of that in Fig. 7.3(e); If the current 
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source I were connected across the resistance R instead of across the 
diode, the two circuits would be equivalent. We really should not expect 
them to be twins because the cryotron curves do not sweep out the 
entire passive first and third quadrants of the valve plane. 

An alternative synthesis of the circuit model, which utilizes more 
diodes but only one controlled current source I, begins with the curve 
of Fig. 7.16(c) and the associated elementary circuit indicated in (d). 
Connection of this circuit to the bridge-type energy valve yields a 
satisfactory cryotron model (f) which has the representative curve 
shown in (e ). 

7.8 The Thyratron 

The thyratron is a hot-cathode gas triode which is used as a switch or 
relay. In preparation for the discussion of the thyratron, Fig. 7.17 re­
iterates the characteristics of a simple gas diode circuit. The black 
dot in the circuit symbol for the diode represents a gas molecule and 
indicates that the gas pressure, though much smaller than atmospheric 
pressure, is nevertheless much greater than that in a good vacuum 
diode. The applied voltage e/ must be connected to the diode through 
some load resistance Rb in order to limit the value of plate current when 
the tube conducts. The presence of resistance Rb in Fig. 7.17(a) also 
permits us to describe the operation of the circuit in terms of the applied 
voltage variable e/ alone, as illustrated in Fig. 7.17 (b ). If the tube is 
not already conducting, then it fires upon crossing from region B into 
region C; and if it is not already nonconducting, then it extinguishes 
upon crossing from region B into region A. In the memory region B the 
tube retains either state A or state C, whichever of the two was experi­
enced most recently. 

The explanation is as follows. With no gas in the tube the diode 
curve has a shape indicated by the dashed curve in Fig. 7.17(c). When 
gas is introduced, any plate current larger than some critical value ibo 
produces significant ionization of the gas molecules. These positive ions 
are heavy and remain in the interelectrode space for a relatively long 
time, thereby producing a heavy positive space charge which helps the 
plate voltage draw electrons out of the cathode. The hysteresis or 
"memory" exhibited by the circuit becomes apparent when we plot the 
applied voltage e/, rather than the plate voltage eb, as shown in Fig. 
7.17(d). Increasing the applied voltage from zero, we reach point a, at 
which the tube fires and the operating point jumps to b. A decrease in 
the applied voltage then brings us to point c, whence a slight further 
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decrease causes the tube to extinguish and the operating point returns 
to the low-current portion of the curve at point d. 

The basic thyratron circuit is depicted in Fig. 7.18(a). With no gas 
in the tube we should have the ordinary vacuum-triode curves shown 
in (d). For values of plate current less than the critical ionization 
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B, memory 

A, extinction 

(b) 
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Fig. 7.17. Gas diode properties. (a) Gas diode; (b) State-transition voltages; 
(c) The diode curve; (d) The curve of applied voltage, showing transition thresholds. 

current ibo the vacuum-triode curves (d) and the thyratron curves (c) 
are very much the same. However, once there is appreciable ionization, 
the thyratron curves drop rapidly to a very low value of plate voltage. 
Once the thyratron fires or conducts, a sheet of positive ions forms around 
the grid wires and the grid therefore losses control-a control which 
cannot be regained until the thyratron is once more extinguished by 
lowering the applied plate voltage e/ to a sufficiently small value. 
Figure 7.18(b) shows the three regions of operation in the plane of 
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applied plate voltage e/ versus applied control voltage ec'. For negative 
values of ec', a larger e/ is required in order to fire the tube. Just as 
before, the tube remains nonconducting until the operating point crosses 
the boundary from region B into region C and then remains conducting 

(aJ 

(c) 

e I 

b e' b 

C, conduction 

A, extinction 

(bJ 

e6 , vacuum 

-1 

ec = 0 

---it-+--------ib 
0 libo 

Fig. 7.1 a. Thyratron properties. (a) The thyratron; (b) State-transition curves in 
the plane of applied voltages; (c) Thyratron curves; (d) Vacuum-triode curves, 

for comparison. 

until the operating point next crosses from region B into region A. 
Thus the thyratron is a self-holding relay, its advantage over similar 
electromechanical relays being its speed of operation. 

Parts (a) and (b) of Fig. 7.19 show two possible combinations of 
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applied voltage with which thyratrons are sometimes operated. In each 
case the locus of operation is indicated by a dashed line. In Fig. 7.19(a) 
the tube fires at point p and extinguishes at point q, hence the con­
duction angle 0 can be changed by varying the d-c component E of the 

Firing curve, 
slope= - µ Seate 

adjusted 
to make 
locus a 

\ 
\ 
\. ',.._ __ ,.,,...,,.,,,,, 

I 
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eb = ~ cos wt 

circle 

ed = + Vc sin wt - E 

(a) 

eb = ~ cos wt 

e~ = + Vc cos wt - E 

(b) 
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() ' / \. / ,_,,, ..... .,,.,,. 
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Fig. 7.19. (a), (b) Loci of operation in the applied-voltage plane; (c) Waveform of 
plate-load voltage Rbib, showing the conduction angle O. 

control signal e/. In this manner the average power delivered to the 
load Rb is adjustable by varying the control signal E. 

When the two applied a-c signals are in phase, the locus of operation 
is a straight line as indicated in Fig. 7.19(b). However, the tube still 
fires at point p and then extinguishes upon next reaching point q, so that 
the conduction angle is still under the influence of the control signal E. 
For ZE:)ro E in Fi~. 7.19(b), cc;m<:luction takes place over the complet~ 
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positive half cycle of e/ and maximum power is delivered to the load. 
As E becomes larger in Fig. 7 .19 (b), the conduction angle decreases to 
one quarter cycle and then drops suddenly to zero when the locus of 
operation no longer touches the firing curve. The scheme in Fig. 7.19(a) 
has the advantage of continuous control of the conduction angle through 
all values from zero to 1r. 

Figure 7.19(c) shows the waveform of plate current for a resistive load 
Rb, Thyratrons are often used for speed control of small d-c motors, 
in which case the load (the motor winding) is not representable as a pure 
resistance. Nevertheless, the signal at the thyratron grid still effects 
wide control over the time-average current supplied to the motor. 
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PROBLEMS (See Appendix C for Pentode Curves) 

7.1. If we imagine that each electron in the interelectrode space of a pentode 
is replaced by two electrons, then (by superposition) the electric potential 
is everywhere doubled and, since the electrons are moving freely under the 
action of the electric field, their kinetic energy at a chosen point in the tube 
must also double. Hence electron velocity (at a given point on the electron 
path) is multiplied by the square root of two. Now, in the light of the above 
discussion, what can you say about the change in the electrode currents of a 
pentode if all electrode potentials, relative to the cathode, are doubled? 
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7.2. Pentodes A and B are identical but B is operated at twice the screen­
grid voltage of A. Sketch and compare their plate curves. (The suppressor 
grid is internally connected to the cathode.) 

7.3. (a) Sketch a pentode curve of ib vs. ee1 for fixed eb and ec2, (eca is 
zero.) Use a value of eb only slightly to the right of the knee of the zero­
control-grid-voltage plate curve. Carry your sketch far enough positive and 
negative in ee 1 to show three distinctly different portions of the curve. 

(b) The central portion may be closely approximated by a three-halves 
power law ib = K1(ee1 + k2) 72. Why? 

(c) How do you account for the two outer portions of the curve? 
(d) How does the incremental transconductance gm (the slope of the curve) 

vary with ib in the central portion? 
(e) If ib reaches cutoff when ec 1 is about 10 volts negative and if ib equals 

30 ma when ec 1 is zero, what is the incremental transconductance at 20 ma? 
At 2.5 ma? 

7.4. Suppose that the control grid, suppressor grid, and cathode of a 
pentode are grounded, the screen grid is held at a fixed positive potential, and 
the plate voltage is slowly increased, starting with a value several volts 
negative. Sketch the curve of ib vs. eb and explain its shape. For each of the 
three principal regions of this curve, describe the motion of an electron after 
it leaves the cathode. 

7.5. The plate current of a pentode with the suppressor connected to the 
cathode is a function of three voltages ib = f(ec1, ec2, eb), The general three­
halves power law states that if we change these voltages in proportion, the 
current will vary as the three-halves power of any of the voltages. In short, if 
ib' = f(ee1', ee2', eb'), and if any three of the four ratios 

I I I c• ')% ~-~-~- ~ 
' ' ' . eel ec2 eb 'l,b 

are equal, then the fourth equals the other three. 
(a) Using Type II pentode plate curves measured at ec2 = 250 volts, 

+ 
ec' 

Fig. P7. l 

determine ib, rp, and gm at the op­
erating point ec1 = -6, ec2 = 150, 
eb = 180 volts. 

(b) Give directions for relabel­
ing the ib, eb, and ec1 scales of a set 

R >> rg of pentode plate curves in order to 
make the same set of curves ap­
plicable at a new fixed ec2, 

7.6. Two identical triodes are 
to be used in the circuit shown in 
Fig. P7.1 to replace a pentode. 
(This is often called a "cascode" 
circuit.) For purpose of design 
it is desirable to know the ap­
proximate composite characteris­
tics of this circuit. 

(a) Sketch and dimension the composite curves eb' vs. ib', with ec' as a 
parameter, using piecewise-linear models for the triodes. Use idealized curves 
for the individual triodes withµ = 50, rp = 40 kilohms. 
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(b) For the amplifier circuit shown in Fig. P7.2, what is the incremental 
voltage gain f;!j.ed f;!j.e1? Be sure to justify your assumptions as to the con­
ditions of the diodes in the piecewise-linear models. The by-pass capacitor C 
is a short circuit for frequencies of interest. 

+3E 

0-----,11 t----+----_. ___ __, 
- + 
E/2µ. 

Fig. P7.2 

7.7. (a) Using the plate characteristics for the Type I pentode, determine 
the values and proper algebraic signs of the constants I 0, Ym, and r P such that 
the linear equivalent circuit of Fig. P7.3 closely represents the actual tube in 
the neighborhood of the following operating point: 

eb = 125 volts, ec1 = -1 volt, ec2 = 100 volts, eca = 0 

Fig. P7.3 

the last two being fixed voltages. Be sure to specify proper units, as well as 
the numerical values and algebraic signs. 

(b) Repeat part (a) at the operating point: 

eb = 187.5 volts, ec1 = -1.5 volts, ec2 = 150 volts, eca = 0 

the last two being fixed voltages. Use the generalized three-halves power law. 
7.8. In the circuit of Fig. P7.4, quantity A is a positive constant determin­

ing the dependent current source Aio in terms of current io, and quantity I 2 
is a fixed positive supply current. 

(a) Sketch and dimension the curve of i2 vs. i1 for the region in which io 
is positive. 
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Fig. P7.4 

(b) Simplify your result for the special case in which the conductance G1 
is zero. 

(c) Compare your results with the voltage transfer curves of certain 
vacuum-tube amplifiers. 

7.9. In some pentodes (called gate tubes) the suppressor grid is brought to 
an external terminal instead of being internally connected to the cathode. 

(a) Using physical reasoning, sketch a qualitative curve of plate current 
ib vs. suppressor-grid voltage ec 3 for eb and ec 2 fixed positive and ec1 zero. 
Show only the negative ec 3 region. 

(b) How would you connect the pentode and how would you bias the 
control and suppressor grids so that a positive signal pulse applied to one of 
them will produce a negative output pulse at the plate if and only if a positive 
"gating" pulse is simultaneously applied to the other grid? 

(c) Discuss the "pedestal" effect, where part of the gating waveform 
appears at the output along with the waveform to be gated. 

+30Qv 

Rs 

Cl C2 

~ e2 

Rl cs R2 

Ck 

Fig. P7.5 

7.10. In the pentode circuit of Fig. P7.5, e1 is a small a-c signal and the 
capacitors shown are large enough so that their a-c reactances are neg]igible 
at the frequency of e1. 

(a) How would you choose R1, Rk, Rs, R2, and Rb to obtain a desired d-c 
operating point? 
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(b) How would you choose suitable values of C1, Ck, CB, and C2? 
(c) How would you determine the constants rp and Um of the linear incre­

mental pentode model appropriate to this operating region? 
(d) Calculate the incremental a-c voltage gain of the amplifier in terms of 

appropriate constants. Assume that interelectrode and stray wiring capaci­
tance offers negligibly small susceptance at the frequency of interest. 

+ 

Fig. P7.6 

7.11. A pentode is connected as shown in Fig. P7.6. Find the gain .1e2/.1e1 
in terms of Rb, Re, and tube parameters. 

40 kQ 

+ 
-=- 400v = Ebb 

el 

-~ 111--+ ~,______.__ ____ 
1.5v 

Fig. P7.7 

7.12. A Type I pentode is connected in the voltage amplifier circuit shown 
in Fig. P7.7. 

(a) When e1 is a sinusoidal voltage of 1 volt rms, determine the maximum 
and minimum values of the plate voltage eb, 
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(b) When e1 is a sinusoidal voltage of 0.01 volt rms, determine the maximum 
and minimum values of the plate voltage eb, 

(c) If the screen supply voltage Ec2 should fall to 90 volts, find the values 
of plate voltage eb and plate current ib for e1 = 0. 

+300v 

Fig. P7.8 

7.13. The cathode bias resistor Rk in the pentode circuit shown in Fig. P7.8 
produces a grid bias voltage of -1.5 volts and the quiescent screen-grid 
current through Rs reduces the screen grid voltage to 100 volt. Find: 

(a) The quiescent plate current and plate voltage. 
(b) The quiescent screen-grid current on the assumption that the ratio of 

the screen grid current to the plate current is independent of the negative 
grid-bias voltage for any plate voltage well above that at the knee of the 
curves. 

(c) The required value of Rs, 
(d) The required value of Rk, 
(e) The gain eo/ein• 

Assume Ck and Cs are short circuits for alternating currents. Use the Type I 
pentode characteristics. 

7.14. The thyratron shown in Fig. P7.9 may be assumed ideal so that it 
is replaceable by the model shown in Fig. P7 .10. The relay closes only when 

Fig. P7.9 
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current flows in either or both of the coils. Coil inductance and resistance are 
negligible in this idealization. Let 

e1 = V 1 sin wt 

e2 = V2 cos wt 

Relay 
,----...... 1-----oeb 

Fig, P7.10 

(a) Plot the time-average value of eL as a function of Vee over the control 
range. 

(b) Repeat part (a) for e1 = - V1 sin wt. 
7.15. A negative-grid thyratron has a firing curve specified by the following 

data: 
Ee (volts) Eb (volts) 
+2 40 

0 62 
-2 110 
-4 200 
-6 310 
-8 440 

The thyratron is used in the circuit shown in Fig. P7.11. Find the firing angle 
of the thyratron. Find the average d-c current through the 100-ohm load 
resistor assuming that the thyratron when conducting has a constant voltage 

+ 

400 sin (1201rt) 

Fig. P7.11 

drop of 10 volts. Draw the waveform of the current through the load. If 
the positions of R and C are interchanged, what is the new firing angle? The 
average load current? 
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7.16. In the thyratron rectifier circuit shown in Fig. P7.12, it is desired to 
achieve plate current conduction for exactly one-twelfth of each cycle of e1, 
The applied potentials are: 

e1 = 300 sin wt 

e2 = -10 + 10 sin(wt + rp) 

RL 

+ 

Fig. P7.12 

The critical grid potential is given as e1 crit = - eb/50. Neglect the tube 
drop during conduction. 

(a) Sketch the locus of firing points in the e2 vs. t plane as 'P varies. 
(b) Find the value of 'P to produce plate conduction for exactly one-twelfth 

of each cycle of e1, 

(c) If the plate circuit conducts for one-twelfth of each cycle of e1, find 
the rms value of the current in R L, 

200v 

µ,=20 
1j,=lOk 

Fig. P7.13 

7.17. The circuit shown in Fig. P7.13 can be used for phase-shifting the 
grid voltage of a thyratron. Derive an expression for phase shift as a function 
of the variable resistance for switch position A. Sketch the general appearance 
of the curve of <J> vs. R for switch positions A and B. Let the input frequency 
be 60 cycles and let the capacitive reactance be 100 kilohms. Assume the 
triode operates in the linear amplification region and neglect the loading 
effects of the RC circuit. 

7.18. A pair of phototubes are used in a bridge circuit (Fig. P7.14) to 
obtain an output response dependent on the position of a light beam. 
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When the beam is centrally positioned with respect to the phototubes, 
0.08 lumen falls on each tube and the output voltage is zero. Suppose the 

45v 

: 1-¥• Oulpul 
45v 

+ 

light beam 
------- 0.16 lumen 

Phototube characteristic 8-----------------.....-----

0 20 40 60 80 
Anode volts 

Fig. P7.14 

beam is shifted so that 0.10 lumen falls on the upper phototube, the remainder 
falling on the lower tube. Determine the magnitude of the output voltage 
and its polarity with respect to ground potential. 
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Wave Shaping and Amplification 

8.1 Introduction 

Wave shaping describes the function performed by a wide variety of 
electronic circuits. For example, a limiter may produce a rectangular 
output waveform from a sinusoidal input waveform. An integrating 
circuit converts a rectangular wave to a triangular wave. Linear 
amplification of voltage or current time functions calls for an increase in 
amplitude without distortion of waveform and can be regarded as a 
special case of wave shaping. The basic aspects of linear amplification 
are considered here, along with wave shaping, because many of the 
circuits that modify or shape a waveform can be used to amplify without 
modifying the waveform. The difference in function depends on the 
values of circuit elements and on the input waveform. Analysis of the 
wave-shaping properties of a circuit determines the conditions necessary 
for linear amplification. 

In the piecewise-linear approximation of a resistive circuit, the condi­
tion for linear amplification amounts to restricting the operation to a 
single state of the ideal diodes in the circuit model. This can be done 
by restricting both the direct component and the alternating component 
of the input voltage to suitable values. With one or more energy-storage 
elements in the circuit, the wave-shaping properties are frequency 
dependent, in which case both the frequency and the amplitude of the 
input waveform affect the result. 

322 
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8.2 The Role of Energy-Storage Elements 

In this chapter we shall concern ourselves with the basic effects of a 
single energy-storage element on nonlinear or piecewise-linear circuit 
operation. The results of our calculations will apply to more complicated 
circuits when the effects of a single energy-storage element can be 
isolated in frequency or in time; for example, if a circuit includes two 
capacitors, one very large and one very small, the circuit behavior can 
usually be specified with adequate accuracy by considering the effects of 
each capacitor separately. 

Since electronic devices normally require polarizing voltages, the 
interconnection of circuits becomes a problem. Direct coupling with 
resistances and batteries is cumbersome and costly. When the direct 
component of a signal need not be preserved, the d-c isolation provided 
by a capacitor or a transformer results in considerable circuit simpli­
fication. We shall examine simple coupling circuits and their influence 
on wave shaping and amplification. We shall also examine the effects 
of small energy-storage elements (such as interelectrode capacitances) 
which are inherent in all physical devices. Adding these appropriately 
to a resistive model extends the range of frequencies for which the 
model is valid. 

8.3 Wave Shaping with Nonlinear Resistive Circuits 

The wave-shaping properties of resistive circuits depend upon the 
non-linearities in driving-point or transfer curves. Many of the circuits 
discussed in the previous chapters illustrate amplitude limiting, clipping, 
or slicing. These terms denote only a difference in degree, since they all 
imply a removal of some portion of the input time function. 

The basic limiter circuit is shown in Fig. 8.1 (a). The corresponding 
transfer curve, (b ), has slopes of zero and R 2 / (R1 + R 2 ). When the 
slope between the break points is required to be greater than unity, 
linear amplification is necessary. In comparing Fig. 8.1 (c) and (d) with 
(e) and (f), note that the end result depends upon the order in which 
limiting and amplifications are performed. For linear operations the 
end result is not affected by reversing the order. 

To avoid considering resistive loading effects, assume that the amplifier 
has a very large input resistance and negligible output resistance. The 
amplifier required in (c) must, of course, have a greater range of linear 
operation than the one in (e). We note from the curve in (d) that the 
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Fig. a. 1. Amplitude limiters. 

input voltage range between break points has not changed but the 
output range has expanded. On the other hand, in the curve of (f) 
the output range is unchanged, and the range of input voltage between 
break points is compressed. The cathode-coupled circuit shown in 
Fig. 8.1 (g) is often used as a limiter. Its transfer curve is shown in (h). 
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The effects of a limiter on a variety of electrical time functions e (t) are 
shown in Fig. 8.2. Note that the amplitude of the waveform, together 
with the d-c level, determines the character of the output wave. For 

(a) 

(c) 

(a) (b) (c) 

For e1 = Eo + Em sin wt 

L. l'fi . . {Eo + Em) < Eb mear amp 1 cation reqmres 
(Eo - Em) > -Ea. 

Negative peaks limit for (Eo - Em) < -Ea 

Positive peaks limit for (Eo + Em) > Eb 

Fig. 8.2. Linear amplification and limiting. 

this limiter-amplifier curve, linear amplification is obtained if the time­
varying signal can be fitted between the break points, as shown in part 
(a). Symmetrical and unsymmetrical limiting or clipping are illustrated 
by (b) and (c). If the distance between break points along the input 
axis is very small compared to the total amplitude of the input signal, 
the operation is called "slicing." This amounts to passing only a thin 
slice of the input waveform, and results in a very nearly rectangular 
output waveform. Slicing amounts to "hard limiting," and effectively 
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determines the instant at which the input time function crosses a given 
voltage level. 

8.4 Wave Shaping with Linear Energy-Storage Elements 

The relation between current and voltage for a resistance is independ­
ent of time. The terminal relations between current and voltage for 
inductance or capacitance are time dependent (v = L di/dt and i = 
C dv/dt). The simple voltage and current waveforms shown in Fig. 8.3 (b) 
and (c) illustrate the wave-shaping properties of inductance and capaci­
tance. Whether we consider current to be the cause and voltage the 
effect, or vice versa, the shapes of the time functions v(t) and i(t) are 

Resistance Capacitance Inductance 

iip+ ii 11+ i=C :~ p+ di (a) 
v=iR ii v u=Ldi 

R V i=v/R 11- v = bfidt ~- L l.- i= tf udt 

:r J l (b) ~,· ~f k:'-1: 0 t 

JL_, 'i 1v 

17 lo=Q 17 
(c) IJL-t ~ok- ~ok. 

~ 
±Q/C 

~ 

l\f \ ffiP\ ~. 0 t t 
I 

I I I 
(d) 

~' 

~ !--T/4 [~AA 
~t 

0 t 

Fig. 8.3. Current-voltage relations for R, L, and C. 
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different for Land C, but identical for R. For the idealized waveforms 
shown, the necessary differentiation or integration can be carried out by 
inspection. In (d), note that v(t) or i(t) is subject to a time delay (or 
advance) rather than a change in shape. 

8.5 Series RC Circuit with Sine-Wave Input 

The response of a series RC circuit to a sinusoidal input is summarized 
in Fig. 8.4. This circuit is of considerable importance, since it represents 
the basic capacitive coupling network used for d-c isolation. The direct 
component of the input voltage charges the capacitance to the value 
Q0 = CE0 , but does not affect the st{.;~dy-state a-c voltage across the 
resistor; nor does the static capacitor voltage E 0 affect the variational 
capacitor voltage. The separability of these d-c and a-c effects is a 
consequence of the fact that the principle of superposition applies to 

• linear systems. The voltage waveforms appear in (d). We have tacitly 
assumed that the d-c and a-c component~ of e1 were applied to the circuit 
at some time in the past, and that ~teady-state conditions already 
existed at our arbitrary time reference t = 0. 

The vector diagram [Fig. 8.4(e)] shows the relative amplitudes and 
phase relations of the three voltages involved. The direction of the 
current vector Im coincides with that of E 2 = ImR. This vector diagram 
is drawn for a particular value of angular frequency w. Since the current 
is common, a 90° phase relation exists between resistive voltage and 
capacitive voltage for any value of frequency. Thus the locus of point 
P is a semicircle if w is varied from zero to infinity while Em is held 
constant. The vector diagram also shows that the magnitude of ex or 
e2 cannot exceed that of ei, since the diameter of the circle is larger than 
any chord. 

8.6 Step Response of a Series RC Circuit 

Let us now review the short-time or transient effect of suddenly apply­
ing a d-c voltage to a series RC circuit, Fig. 8.5(a). The basic equations 
are given in (b ). The requirement that e1 shall equal zero fort less than 
zero, and equal E for t greater than zero, is met by the circuit given in 
(c), where switch S closes at t = 0 to apply the battery E to the RC 
combination. This is equivalent to a time-varying generator e1 (t) 
whose output waveform is a step of voltage from O to E at t = 0. If the 
time tis plotted in units RC = r (the time constant), the voltage wave-
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e1 = ez + e2 

= ~fiat +iR 

or 
(b) de1 i di 

dt =c+Rdt 
For e1 = Eo + Em sin wt 
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dt 
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cf>, 
I .,,.o+----------------c,,t 
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Fig. 8.4. Linear RC circuit with d-c and a-c voltages applied. 

• 

forms are independent of R and C, and the current waveform involves 
R only in the amplitude scale. Alternatively, we may plot normalized 
time (x = t/RC = t/T), in which case the units are 1, 2, 3 etc., instead 
of T, 2T, 3T, etc. (See exponential curves in Appendix D.) 

The slope of an exponential waveform at any point is the remaining 
amplitude divided by the time constant. Thus, at t = 0 the slope has 
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a magnitude E/r; and if the initial slope is extended tot= r, the final 
value is reached. 

Integration of the current waveform from t = 0 to t = oo yields 
Er/R = EC= Q, the charge required to change ex from zero to E. It 

l:,c 

+ 
+ 7+ 

(a) e2 

(b) 

- J_ 
r=RC 

j 
e1 = ez + e2 

= ! f dt +iR 
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e1 = E fort> 0 
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Fort> 0 
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dt 
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E = _ f.-t/RC 
R 
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E i 
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~-~3~ l 
~/.. slope de.,7 = .! 

I dt J,=o IT 

0 T 2T 3T t 
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Fig. 8.5. Step response of series RC circuit. 

follows that the total area under the waveform of e2 is this value times R: 
namely, Er. With reference to the waveform of e2 in part (e), this means 
that half of the area under the e2 curve is under the dotted line between 
t = 0 and t = r, while the remaining half is bounded by the waveform, 
the dotted line, and the horizontal axis. 

Since superposition applies to linear circuits, it is convenient tq 
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normalize the amplitude as well as the time scale. Thus, if we divide 
all voltage and current values by E, the results are those that would be 

ex 

Cc~ T+ 
~1-

Let R and C = unity 
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l.Or~:::;1------
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I 
I 
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I 
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0 0.5 1.0 1.5 2.0 2.5 I.OWJJ 
0.5 ---! 
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0.125= 

0 0.5 1.0 1.5 2.0 2.5 
(d) 

~--------------t 1.0 2.0 0 0.2 

1.0~ 
0.8 

~ t::::, 
0 0.2 1.0 2.0 

(e) 

Fig. 8.6. Approximating the step response of the series RC circuit. 

obtained with a step of unit amplitude applied to the circuit. Then, 
using a normalized time variable (x = t/RC), we have initial slopes 
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equal to unity ( or minus one), the area under e2 equal to unity, and the 
area under the current waveform equal to 1/R. 

The step and ramp waveforms for individual elements (R and C) 
given in Fig. 8.3 (b) can be used to approximate the behavior of a circuit 
such as the series RC circuit of Fig. 8.6(a). For convenience, we shall 
assume R is 1 ohm and C is 1 farad. Also, let the input step have 
unit amplitude. 

The sketches in Fig. 8.6 (b) represent a very crude approximation to 
the exponential curves. The upper sketch shows waveforms of e1 

( dotted line) and ex (solid line), whereas the second sketch shows e2 or i. 
Application of a unit step e1 causes unit voltage e2, since ex cannot change 
instantaneously unless there is an impulse of current (a finite charge 
deposited on the capacitor by means of an infinite current lasting for 
zero time). The unit voltage e2 causes unit current i. This current 
causes ex to increase with unit slope (dex/ dt = i/C). If this situation 
persists for unit time, the capacitor voltage reaches unity, the steady­
state value, which corresponds to a steady-state current i = 0. Thus 
we are assuming a rectangular pulse of current i, which leads to the 
ramp ex. However, adding ex to e2 yields an input voltage which exceeds 
the unit step by the ramp voltage ex. This is obviously a very poor 
representation of the step input. The pulse and ramp are equally poor 
approximations to the desired exponentials. 

The waveforms shown in Fig. 8.6(c) begin in the same fashion as those 
in (b), but persist only until t = 0.5. Now, since ex = 0.5 at t = 0.5, the 
current i should correspondingly be reduced to 0.5, since i = (e1 -- ex)/R. 
If this current persists for one time constant, ex rises with slope 0.5 and 
reaches unity at t = 1.5. The current waveform is still very crude, but 
the integration has given ex some semblance of realism. The waveforms 
in Fig. 8.6 (d) and (e) are more accurate approximations, obtained by 
simple extension of the above techniques. 

8.7 Step, Ramp, and Pulse Waveforms 

The ramp waveform, like the step, is convenient to use in electronic 
circuit analysis. As indicated in Fig. 8.7(a) and (b), the integral of a 
step with an amplitude of E volts is a ramp with a slope of E volts per 
unit time. The impulse waveform indicated in Fig. 8.7(c) can be re­
garded as the derivative of the step waveform. Since the step rises to 
amplitude E in zero time, the slope is infinite. Interpreting the impulse 
as the derivative of the step requires that it have infinite amplitude for 
zero time with an area equal to the step amplitude E. This is more 
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readily visualized if we regard the step as the limiting case of a truncated 
ramp with an amplitude E. The sequence of waveforms in Fig. 8.7(d) 
indicates the trend of the pulse toward the impulse as the slope of the 
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(b) fl 
0 

(c) 

0 
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x(t) = J y(t) dt 

y(t) = Ofort < 0 
y(t)=Kfort>O 

y(t) = Jz(t) dt 

z (t) = 0 for t ~ 0 

i(t) = oo fort= 0 

f_«J• z(t) dt = K 

t 

% 

0 0.5 

1:1 
0 0.25 t 

Fig. 8.7. Relations among step, ramp, and impulse waveforms. 

limited ramp approaches that of the step. The area of the pulse remains 
constant and equal to the amplitude E of the ramp waveform as the 
limiting process takes place. 
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The impulse waveform is very useful in linear circuit analysis. In 
analyzing an electronic circuit, we can replace a pulse of amplitude E 
and duration o by an impulse of area Eo, provided the amplitude Eis 
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E I 

I J (a) 

0 0 

l 
(b) 0 

~· 0 

I -E 

le) Jz ..... 1 __ 
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JL o------t 
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ea + eb :cs e 

eb (t) = 0 for t < o 

eb(t) = -E fort > o 

e(t) = 0 fort < 0 

e(t) = Et/o for O < t < o 
e(t) ""' E fort > o 

ea(t) = 0 for t < 0 

ea(t) = Et/o fort > 0 

eb(t) = 0 fort < o 
eb(t) = -E(t-o)/o fort > o 

Fig. 8.8. Composite waveforms. 

such that the electronic device operates essentially linearly, and the 
duration o is small compared with the time constants associated with 
the energy-storage elements. 

The pulse e(t) shown in Fig. 8.S(a) is an example of a composite 
waveform, since it can be made up of a positive step ea (t) and a negative 
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step eb (t) delayed by the pulse duration o. The limited ramp is another 
composite waveform. As shown by ( c) and ( d), it is equivalent to a 
positive continuous ramp and a delayed negative ramp. Similarly, 
the waveform given in Fig. 8.8(e) can be composed of continuous 
ramp functions. 

0
., t+ 

(a) ez 

_J_-
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(bib_ 
0 o t 
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(d) 
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-EL--L----
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1'ex < + > = E (1 - E -t/RC) 

I O t 
0 \-ex<->= -E[l - E-(t-o)/RC] ,, _______ _ 

Fig. 8.9. Response of a series RC circuit to a rectangular pulse having a duration o 
much greater than the time constant (o > 5RC). 

8.8 Pulse Response of a Series RC Circuit 

Since superposition applies to linear circuits, the response of a given 
circuit to a composite waveform can be expressed as the sum of the 
responses to the basic elements of the driving waveform. Thus, if the 
input voltage e1 for the circuit of Fig. 8.9(a) consists of a rectangular 
pulse, we can use the results given in Fig. 8.5(d) and (e) to find the 
output voltage e2• 
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The waveforms shown in Fig. 8.9 correspond to the case in which the 
circuit time constant is much less than the duration of the input pulse, 
hence the transient due to the positive step is "complete" before the de­
layed negative step occurs. The capacitor voltage E at t = o merely 

~J=--17+ 
(a) ZL5j~ 

E 

(b) 

(c) 

(d) 

T=RC 
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,/' 0 
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Fig. 8.10. Response of a series RC circuit to a rectangular pulse (o < 5RC). 

shifts the zero level for the exponential resulting from the negative step. 
The waveforms for ei, e2, and ex are shown in composite form in (b), (c), 
and (d). The separate components resulting from individual step re­
sponses are shown at the right of each waveform. The analytic expres­
sion for the composite of e2 is at every point equal to one component or 
the other, since only one transient is in progress at any one time. 

When the pulse duration is insufficient to permit the first transient to 
die out before the next one begins, the results are slightly more com­
plicated. The waveforms for this case are shown in Fig. 8.10. During 
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the pulse, the expressions for e2 and ex are the same as before. Numerical 
values and the shapes of the waveforms differ from those of Fig. 8.9, 
since the transients do not reach their final values. In general, the 
value reached by the capacitor voltage at t = o is 

Ey = E(l - E-o/RC) (8.1) 

At this point e2 is (E - Ey), Fort greater than o, the remaining portions 
of the waveforms due to e1+ subtract from those initiated at t = o by e1-. 

Simple algebraic manipulations reduce the results of the summing opera­
tion to the forms shown on the composite waveforms; that is, for t 
greater than o 

(8.2) 
and 

(8.3) 

The fact that e2 = - ex for t greater than o is immediately obvious, since 
e1 = 0 here. More important is the fact that the final expressions involve 
only Ey in the amplitude factor. Thus, fort greater than o, the wave­
forms depend only on the capacitor voltage at t = o. If the source 
voltage e1 is nonzero for t greater than o, the waveforms will include 
another term corresponding to the source voltage. Regardless of the 
source applied for t greater than o, the residual effects of anything that 
transpired for t less than o are all accounted for by the capacitor voltage 
Ey at t = o. We can thus conveniently use a new time reference for each 
discrete section of a waveform. For the wavefo~ms of e2 and ex in 
Fig. 8.10, we could express the voltage variations somewhat more simply 
fort greater than o by counting time from t = o: in other words, replace 
(t - o) by t' or simply by t. The latter amounts to considering o = 0, 
in which case o disappears from the expressions. The numeric Ey com­
puted in the interval O < t < o is, of course, not subject to this modifica­
tion. Although the dropping of one symbol may_ seem trivial here, the 
extension of this idea to repetitive waveforms saves time and effort 
during the course of a calculation. A delay factor can be reinserted in 
the final result to refer to a specific time reference if desired. 

8.9 Ramp Response of a Series RC Circuit 

The series RC circuit with a ramp input is shown in Fig. 8.11, and the 
differential equation for the current is established in (b). The solution 
for the current is 

i = KC(l - E-t/RC) (8.4) 

For t » RC, the current approaches KC, the value that would exist if 
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the ramp were applied to the capacitance alone. Expressions for the 
waveforms of voltages e2 and ex follow immediately from the expression 
for current, since e2 equals iR and ex equals (e1 - e2 ). The RC circuit 
response to a limited ramp is shown in Fig. 8.12 for o greater than 5r 
and o less than 5r, where r = RC. 

(b) 

(•,ill I 
r=RC 

Fort> 0 

e1 = Kt = t Ji dt + Ri 

de1 i di 
dt=K=c+Rdt 

di i K 
dt +RC= R 

- +Py= Q 
(c) dx 

{ 

dy 

y = E-J P dx J QJ p dx dx + k 

i = E-i/RC (~) [RCEi/RCJ'o 

= KcE-uac [E,,ac _ 11 
= KC[l - E-l/RCJ 

(e) 

(g) 

T 

e1 = 0 fort< 0 
e1 = Kt for t > O 

2T 3T 4T 

Fig. a.11. Response of a series RC circuit to a ramp waveform. 

8.10 Integration and Differentiation 
of Excitation and Response Waveforms 

Differentiation of the expressions for ei, i, e2, and ex in Fig. 8.11 leads 
to the expressions obtained for a step waveform of e1 (Fig. 8.5(d)] if we 
identify the constant K with the amplitude of the step. This calculation 
is summarized in Fig. 8.13. Conversely, the ramp response waveforms 
can be obtained directly from those for the step response by integrating 
each of the expressions in Fig. 8.5. 

The generalization of this statement may be expressed as follows: If, 
for a linear system, the response function for a given excitation function 
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Fig. 8.12. Response of a series RC circuit to a limited ramp. 

is known, the integrals of each-or the derivatives of each-form addi­
tional excitation-response pairs for that system. By mathematical 
induction we see that the process can be repeated so that the 2nd, 3rd, 
· · ·, nth integrals or derivatives also form excitation-response pairs of 
the system. The validity of these statements is one of the many useful 
consequences of linearity. 

8.11 Square-Wave Response of a 
Linear Series RC Circuit 

The response of the series RC circuit to a step waveform led directly 
to the response for a single pulse. This solution, in turn, can be extended 



WAVE SHAPING AND AMPLIFICATION 339 

T=RC 

i' =~=-ff E-t/T 

Fig. 8.13. Relation between ramp and step response of a linear RC circuit. 

to the square wave. The circuit and the input waveform are shown in 
Fig. 8.14(a). Let us assume that the square wave has been applied for 
a long time prior to t = 0, so that steady-state conditions exist. Since 
the average value of current i is zero, the average value of e2 must be 
zero. Since the average value or direct component of e1 is E/2, the 
average value of ex must also be E/2. Let us now consider the character 
of the waveforms of e2 and ex for various values of the time constant. 

For the waveforms of ex and e2 shown in Fig. 8.14(b), the RC time 
constant is chosen to be much less than o, so that the transient goes 
essentially to completion in each interval. The capacitor voltage can 
not change at the instant of switching; therefore ~e2 = ~e1 = ±E at 
the transitions of the square wave. As the time constant is made smaller, 
relative to the interval o, the waveform of ex approaches more closely 
the waveform of e1, while e2 approaches a succession of alternately posi­
tive and negative spikes. Since these spikes have a finite amplitude E, 
their area Er approaches zero as r approaches zero. In the limit, there­
fore, these spikes have a vanishingly small area. 

When the time constant r is comparable to the interval o, neither the 
charge nor the discharge of the capacitor goes to completion. The 
waveforms shown in Fig. 8.14(c) have been drawn for o less than r, the 
actual value being o ~ 0.7r. In this case the capacitor charges toward 
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E, but reaches only the value Ey, It then discharges toward zero, but 
falls only as low as Ex, With t = 0 taken at the beginning of a discharge 
interval, the expression for capacitor voltage during that interval is 

The final value at t = o is 
Ex = E11e--8/-r 

Ex = AE11 

(8.5) 

(8.6) 

(8.7) 
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where 
A = E-li/T (8.8) 

If we now take t = 0 at the beginning of the charge interval, the expres­
sion for the capacitor voltage during charge is 

ex = E - (E - Ex)E-t/T (8.9) 
or 

(8.10) 

At the end of the charge interval, ex = Ey, so that Eq. 8.10 becomes 

E - Ey = A(E - Ex) (8.11) 

Solving Eqs. 8. 7 and 8.11 simultaneously we obtain 

E 
Ey = 1 + A 

AE 
Ex= 

l+A 

If we express Ey as E/2 + ~1, and Ex as E/2 - ~2, we find 

~ _ ~ _ E(l - A) 
1 

-
2 

- 2(1 + A) 

Thus the peak-to-peak amplitude of the variation in ex is 

E(l - A)' 
~ex = Ey - Ex = (l + A) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

The sum of Ey and Ex is the input amplitude E, and the average of Ey 
and Ex is E /2. Since the exponentials have the same time constant and 
consequently the same form in the charge and discharge intervals, E/2 
is also the time average of ex. 

An exponential is completely specified by the time constant rand the 
values at two known instants of time. Hence, the waveform of e2 in 
Fig. 8.14(c) is completely determined once the values of Ey and Ex have 
been found, since these-together with the input waveform-fix the 
initial and final values of e2 in each interval. 

If RC is increased so that o/T further decreases, the waveforms of ex 
and e2 tend toward the shapes indicated in Fig. 8.14(d). The constant 
A approaches unity, both Ex and Ey approach E/2; and the exponential 
variations become nearly linear. The waveform of ex therefore approxi­
mates a triangular wave. For small values of o/r, the constant A 
can be approximated by (1 - o/r ). Substitution of this value into the 
expressions in Fig. 8.14(c) yields the approximate expressions given in 
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(d). The peak-to-peak amplitude of capacitor voltage is approximately 
Eo/2r in this case. The waveform of e2 is nearly a reproduction of ei, 
since the input waveform e1 is closely coupled to the output. However, 
there is a change in average value or direct component. The direct 
component of e1 appears across the capacitor. 

8.12 Rectangular-Wave Response 
of Piecewise-Linear Circuits 

The considerations in Article 8.11 imply no reasons for restrict­
ing the intervals for capacitor charge and discharge to equal values. 
Also, since the interval o and the time constant r enter the waveform 
expressions only as the ratio o/r, the time constant need not have the 
same value during the charge and discharge intervals. Finally, there is 
no reason to impose any restrictions on the direct component of the 
input waveform. It follows that the previous analysis can be extended 
to the circuit and input waveform shown in Fig. 8.15(a). The source e1 

can be envisioned as a switch that alternately applies the constant 
voltages E 1 and E2 to the circuit for the intervals o1 and o2 , respectively. 
The polarity of e2 ( or the direction of current flow) determines which 
diode conducts, and therefore determines the time constant for charge 
or discharge. The resistances R 1 and R2 , together with the two ideal 
rectifiers, might represent a piecewise-linear approximation to a semi­
conductor diode curve or similar nonlinear resistance. 

For the input waveform shown, the circuit of Fig. 8.15(a) can be 
represented as in (b) during the interval o2, and as in (c) during the 
interval o1• Since these circuits differ in no respect from the linear circuit 
already analyzed, we can postulate the general shape of the waveforms 
of e2 and ex to be similar to those given in Fig. 8.14 ( c). We are consider­
ing here the most general case: the one for which the exponential tran­
sients do not reach completion in their respective intervals, thus Ey and 
Ex are unknowns. The exponential expressions for ex are given in (b) 
and ( c). Using the methods of Article 11, we find the expressions for 
capacitor voltage at the transitions to be 

E _ E EA1 (1 - A 2 ) 

X -
1 + 1 - A1A2 

(8.16) 

E _ E E(l - A 2 ) 

Y -
1 + 1 - A1A2 

(8.17) 

As before, the end points of the waveform are fixed when Ey and Ex are 
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known. The upward and downward jumps in e2 are the same as the 
jumps in e1. Between initial and final values, the exponential variation 

T1 = R1C A1 = E-6i/ri 

T2 = R2C A2 = e-62/1'2 

(a) 

During interval o2 

(E2 - ez) = (E2 - Ez)E-l/1'2 

(E2 - E 11 ) = (E2 - Ex)A2 

(b) 

During interval o1 

(ez - E1) = (E11 - E 1)e-tfr1 

(Ez - E1) = (E11 - E1)A1 

(c) 

Ex = E2A1(l - A2) + E1(l - A1) = Ei + EA1(l - A2) 
(d) 1 - A 1A 2 1 - A1A2 

E2(l - A2) + E1A2(l - A1) E(l - A2) 
E 11 = ---------- = E1 + ----

1 - A 1A 2 1 - A 1A 2 

Fig. 8.15. Rectangular-wave response of a piecewise-linear RC circuit. 

is in accordance with the appropriate time constant ( T1 during <h and 
T 2 during 52 ). 

The average current through the capacitor must still be zero. How-
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ever, there is no longer any restriction on the average value of the output 
voltage e2, which now is 

1 [ill1 i.ll1+"2 ] ~ = - iR1 dt + iR2 dt 
Or O ll1 (8.18' 

But 

1
1l1 

0 
i dt = .6Q(discharge) = C (Ex - Ey) (8.18a) 

and 

(8.18b) 

Substituting Eqs. 8.18a and 8.18b in Eq. 8.18: 

ei = fr(R2 - R1)(Ey - Ex)C (8.19) 

Since Ey is greater than Ex, this average value will be positive for R2 

greater than R1 and negative for R2 less than R1. 
The calculations outlined in Fig. 8.15 can be simplified for the special 

cases in which either or both exponential transients essentially reach 
completion. The function e-t/r is unity at t = 0, and 0.006 at t = 5r. 
Thus we can consider the transient to be essentially complete after an 
interval of five time constants. Waveforms for three examples are 
showninFig.8.16. Whenoi/r1 > 5,asinFig.8.16(b),wehaveEx = E1 
and, hence, Ex is known immediately. The value of Ey can then be 
determined directly from the charge interval. Similarly, when o2/ r2 > 5, 
as in Fig. 8.16(c), we have Ey = E2 and, hence, Ey is known, and Ex can 
be determined easily. For the waveforms of Fig. 8.16(d), o1/r1 > 5 and 
o2/r2 > 5; hence the initial and final values for both intervals are known, 
and the exponentials can be sketched directly by using the known end 
points and the known time constants. 

8.13 Other Simple RC and RL Circuits 

The results of the foregoing analyses can be extended to any RC circuit 
that can be reduced to the same form by means of Thevenin's theorem 
or other network transformations. Since piecewise-linear circuit models 
are linear within a given state of the ideal rectifiers, these methods of 
linear circuit analysis can also be applied to the individual states of 
piecewise-linear circuits. For example, the previous results can be 
applied to any circuit which includes one linear capacitor and any 
number of linear or two-segment piecewise-linear resistances. Alterna­
tively, the circuit may include one such resist~ce and any number of 
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81 - = 6 
TI 

81 - = 0.1 
Tl 

«h - = 10 
T2 

~ =5 
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-(E2-E1) 
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-(Ex-E1) 

ex 
E 

0 
e2 

Fig. 8.16. Typical waveforms for piecewise-linear circuit with 
rectangular-wave input. 
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(d) (e) 

t 
(i) 

Fig. 8.17. Variations of the simple RC circuit. 

io -tffio+ 
-

(a) 

rn + 

t ·_ 
(b) 

io -
tilJ• L ••: 

(c) 

For equivalence; 

or 

e = iR = eo + ioR 
e eo 

i = - = - + io 
R R 

For equivalence; 

e = i Ji dt = eo + ~ J io dt 

deo 
or i = C de/dt = C dt + io 

For equivalence; 

di dio 
e = L- = eo + L-

dt dt 

or i = i J e dt = i J eo dt + io 

Summary of equivalent two-element linear source models. 
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linear capacitances. Several examples of circuits which can be reduced 
to the series RC circuit form are shown in Fig. 8.17. The Thevenin 
equivalents shown in Fig. 8.18 can be used to reduce the circuits in 
Fig. 8.17(!), (g), (h), (i) to the original voltage-source forms. 

e=Bi+L Ai 

"' 

Circuit Duals 

Voltage Current 
Resistance Conductance 
Inductance Capacitance 
Series Parallel 
Loop Node 

(a) 

(b) 
i=Ge+c!k clt 

tffi 
i=Ge+ ± J edt 

(c) 

i- C de+ Ge+ l. f edt - clt· L 
(d) 

fig. 8.19. Duality in simple circuits. 

e 

1-

e 

1-

The methods thus far applied to RC circuit analysis can be used 
equally well to analyze circuits containing a linear inductance and linear 
or piecewise-linear resistances. The student may wish to repeat some of 
the analyses for simple RL circuits in order to gain familiarity with the 
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methods. However, it is possible to apply the concept of duality* to 
extend the results of RC circuit analysis to RL circuits. Duality makes 
it possible to transfer the results of one analysis to a different situation 
merely by appropriate definition of dual quantities. A few useful pairs 
of dual quantities and concepts are listed in Fig. 8.19, together with dual 
pairs for simple three-element and four-element circuits. Any of the 
dual pairs in the columns of Fig. 8.19(a) can be interchanged. 

8.14 Graphical Analysis of Nonlinear Circuits 

The nonlinear analysis of a simple diode circuit with rectangular-wave 
input is outlined in Fig. 8.20. Consider diode Din Fig. 8.20(a) to be a 
semiconductor junction diode with the curve i = f (e2 ), as shown in (b ). 
The voltage equation for the circuit is 

(8.20) 

For a specific value of input voltage, say Eb, and an arbitrary value ex for 
the capacitor voltage, the graphical solution of the voltage equation 
specifies the operating point. The load-line form of the voltage equation 
lS 

(8.21) 

In this form, (e1 - ex) is the effective driving voltage on the series 
combination of R and D. With a rectangular wave input, e1 remains 
constant during each interval oa or ob, but ex is a function of time; hence 
the load line moves with time. If the capacitor charges and discharges 
completely during the intervals ob and oa, the capacitor voltage varies 
between -Ea and +Eb. The voltage across the resistive elements R 
and D varies, therefore, from (Eb + Ea) to zero during the interval ob, 
and from - (Eb+ Ea) to zero during oa. Correspondingly, the current 
and therefore the diode operating point moves from point Q to point 0, 
and from point P to point 0, as indicated in Fig. 8.20 (b). 

In carrying out a graphical integration process, we are essentially 
replacing differentials by increments: namely, replacing i = C dex/dt by 
i = C ll.ex/ At. We assume that current i remains constant for an in­
crement of time At, during which ex changes by the amount Aex. This 
results in a new value of current which is held constant for a second 
increment of time during which a second incremental change occurs in 

* E. A. Guillemin, Introductory Circuit Theory, John Wiley and Sons, New York, 
1953, pp.42-51, 241-243, 251-253, 373-374, 535-539. 
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ex, Repetition of this process determines ex as a smooth waveform which 
is a piecewise-linear approximation to the true waveform of ex. The 
waveform of current i is a stepwise approximation. Carrying out the 

0 

p O,Q 

r-
1 
I 
I 
I 
I 

JC lBt .. 
I kr-

1¼ 
(c) e2 l 

-(Eb+Ea) l -1-\ ____ .........,..........,~ ......... _,_----'I-___._ _ _,_ I 

(Eb+ Ea)~_____:::,,,,..,,-+'---:::,,,""----'~--""7""' 
0 : 

I 

'>A 

Fig. 8.20. Graphical analysis of a nonlinear diode circuit. 

analysis in systematic fashion, we can take equal increments for .6ex, as 
indicated by the sequence of dashed lines in Fig. 8.20 (b) ; or we can take 
equal increments in .6t, as implied by Fig. 8.20(c). The former provides 
a better approximation to the true waveforms near the beginning of each 
interval, while the latter provides more points near the end. A com­
bination of the two can also be used. In any case, it is readily seen that 
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the process is time-consuming even for this extremely simple circuit 
problem. To obtain reasonable accuracy, the nonlinear curve and wave­
form plots must be constructed carefully and drawn to a fairly large scale. 

8.15 Triode with Parallel RC Plate Load 
and Large-Amplitude Rectangular-Wave Input 

The instantaneous values of terminal current and voltage specify the 
locus of the operating point for a control valve like a transistor, triode 
or pentode. When a circuit contains energy-storage elements, the locus 
depends on time scale and amplitude of the input waveform as well as the 
circuit parameters. Although waveforms of current and voltage [ib (t) 
and eb(t) for a triode] contain all the necessary information, the locus of 
the instantaneous operating point (ib vs. eb) plotted directly on the 
ib vs. eb plane aids in visualizing the conditions imposed on the valve by 
the circuit and input signal. The relations between the path of operation 
of a triode and the current and voltage waveforms will be illustrated in 
terms of a simple plate-loaded triode with a capacitor in parallel with 
the load resistor. The same methods will then be applied to other basic 
circuits. For continuity and ease of comparison, the vacuum triode is 
used in a series of related examples of waveshaping circuits. The methods 
and circuits apply equally well to other control valves such as transistors, 
pentodes, etc. 

The two forms of the circuit shown in Fig. 8.21 (a) and (b) are identical 
insofar as the triode is concerned. There is only a difference in the direct 
component of the capacitor voltage for any particular set of circuit 
conditions. Since the physical behavior of the two circuits is identical, 
we shall confine our remarks to the circuit in (b ). 

Suppose the triode in the circuit of Fig. 8.21 (b) is described by the 
plate curves shown in Fig. 8.21 (c). The quiescent voltage Ea for e1 = 0 
is determined by drawing the resistive load line Rb on the ib vs. eb plane. 
Let the rectangular waveform of e1 shown in (d) have sufficient amplitude 
to result in plate-current cutoff during the interval o2, and assume both 
o1 and o2 to be of sufficient duration to permit complete charge and dis­
charge of capacitor C. Under these conditions, the voltage and current 
waveforms will be as shown in Fig. 8.21 (e) and (!). The dotted line in 
(e) is the waveform of e2 in the absence of the capacitor C. The locus 
of the operating point (ib vs. eb) for the triode is shown on the plate 
curves in Fig. 8.21 (c). The points designated as A, B, C, and Don the 
locus correspond to similarly marked points on the waveforms. The 
transitions from A to Band from C to Dare instantaneous. The path 
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(e) --------------0 

-=- ib=i1+ix 
= ii - C dexldt 

During o1 

Fig. 8.21. Triode with parallel RC load. Rectangular-wave input 
(01 > 5r1, 02 > 5r2). 
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from B to C is traversed at a rate corresponding to the discharge of the 
capacitor through the triode plate resistance in parallel with load resist~ 
ance Rb. The time along the path from D to A depends upon the 
exponential recharge of capacitor C to Ebb through Rb, as shown in 
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Fig. 8.21 (g). The triode does not affect this po.rtion of the path, since 
plate current is zero. 

A step-by-step graphical calculation of the waveform of e2 could be 
made during the interval o1. However, the use of a piecewise-linear 

r1 = C7j,Rb!(rp + R6) 

T2 = CRb 

(a) 

ib 
<>1 > 5rl 

<>2< 72 

0 E0 Ea Ey 

(c) 

ib 
<>1 < 71 

0 

-=-

e2=0 

Ebb eb 

-3Ec 

0 Eo Ea Ebb eb 

(b) 

ib 
<>1 < 71 

<>2 > 572 

eb 

ib 
<>1 << 71 

02<<r2 

0 

Fig. 8.22. Locus of operating point for various values of fJi/T1 and fJ2/T2. 

approximation to the triode yields a result that is well within the toler­
ances of the average plate characteristics. Let us approximate the 
ec = 0 curve by passing a line [shown dotted on Fig. 8.21 (c)] through 
points Band C, thereby matching initial points and end points on the 
waveforms. During o1 we now have the circuit model shown in 
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Fig. 8.2l(h). We see, from Fig. 8.2l(g) and (h), that the circuit is 
identical to the piecewise-linear RC circuit already analyzed. 

Referring to Fig. 8.21 (g) and (h), we see that the time constant of the 
exponential charge during interval o2 is 

T2 = RbC (8.22) 

For the discharge of capacitor C during interval o1, the time constant is 

T1 = C Rbrp (8.23) 
(rp + Rb) 

The sketches in Fig. 8.22 indicate the effects of changes in o1 and o2 

relative to T1 and T 2 • The locus given in (b) is the same as that in 
Fig. 8.21 (c)-namely, for complete charge and discharge. The locus 
shown in Fig. 8.22(c) is the intermediate case in which only the discharge 
goes to completion, and the locus in (d) is for complete charge only. 
The locus in (e) is the general case where neither charge nor discharge is 
completed. In the limit, as o1 becomes very small relative to Ti, and o2 

becomes very small relative to T 2 , the locus closes up, since Ey and Ez 
approach e2. 

8.16 Effect of Rectangular-Wave Amplitude on a 
Triode with Parallel RC Plate Load 

Let us now examine the locus of the operating point of the triode with 
parallel RC load for various values of the upper and lower values of the 
input waveform. For simplicity, the operating paths shown in Fig. 8.23 
are sketched assuming o1 > 5T1 and o2 > 5T2 so that charge and dis­
charge of the capacitor go to completion. The several input waveforms 
shown in the figure lead to the operating paths indicated on the plate 
curves. Note that, for each input waveform, the resistive output wave­
form (with capacitor removed) specifies the upper and lower bounds of 
capacitor voltage attainable. These bounds are indicated by the dotted 
line on the waveforms of e2• For any one locus specified by the input 
waveform amplitude bounds, the effect of smaller intervals o1 and o2 

will be to shrink the width of the locus, as in Fig. 8.22(c), (d), (e), and(!). 

8.17 Triode with Parallel RC Plate Load 
and Sine-Wave Input 

For the triode circuit with parallel RC load, the locus of the operating 
point when sinusoidal excitation is applied is closely related to the 
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Fig, 8.23. Locus of operating point and waveforms for various values of input 
amplitude (01 > 5r1 and 02 > 5r2). 

square-wave or rectangular-wave cases discussed in the preceding 
article. Let us consider an input voltage of the form 

e1 = - Eo + E sin wt (8.24) 

where E0 polarizes the grid negative with respect to cathode to a value 
about midway between zero and cutoff. Let us also assume E small 
enough to insure operation in the normal amplification region of the 
triode. The circuit and plate-current curves are shown in Fig. 8.24 (a). 

The locus of the operating point for a low-frequency square wave is 
indicated by the letters ABCDA, as before. If the square-wave fre­
quency is raised to a sufficiently high value, the parallel dotted lines 
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AB and CD move together, and in the limit they merge into the single 
vertical line through quiescent point Q. * If each interval of the square 
wave is greater than five time constants, the locus reaches maximum 
size. Since the low-frequency square wave includes both very slow and 

e1 = -E0 +E sin wt 
ib= i1 + ix 

= Ebb-eb .- Cdeb 
Rb dt 

< 

(a) 

< < < 
(b) 

Fig. 8.24. Locus of operation for triode with parallel RC load and sine wave input. 
(a) Zero and infinite frequency locus of operating point. (b) Effect of successively 

increasing frequency. 

very fast variations of input voltage, it actually represents many fre­
quencies. During any one interval the square wave has a constant value 
and therefore changes as little as any other waveform could change 

* This statement assumes linearity. Nonlinearities cause rectification and there­
fore a shift in the quiescent values (direct components). 
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within that interval. At each transition, the square wave changes as 
rapidly as any other waveform could. It can therefore be looked upon 
as the limiting condition for any waveform with the same upper and 
lower amplitude bounds. 

If we now consider a sinusoidal input voltage with a very low frequency, 
w, the capacitor current ix = -C de2/dt is negligible, since the rate of 
change of voltage is negligible. The locus of the operating point for 
the limiting case as w approaches zero is therefore along the Rb load line 
QCQAQ. For a sinusoidal input voltage of very high frequency, the 
locus will be the vertical line through point Q. Thus the high-frequency 
limit is the same for both sine waves and square waves. 

So long as the input sine-wave amplitude is held constant, the locus 
for sine-wave operation must have a point of tangency on each of two 
lines of constant grid voltage. We can therefore postulate that the 
points of tangency must slide along from C to X and from A to Y as w 

is increased from zero to infinity. Referring to Fig. 8.24(b ), we see that 
for a very low frequency w1 the ellipse represents only a slight departure 
from the zero-frequency locus. For a slightly higher value w2, the 
ellipse has fattened, and the points of tangency have moved away 
from A and C. This tendency continues to w3 • At w4 , the ellipse has 
narrowed again, but the points of tangency have continued to move 
toward X and Y. At w5, the locus is beginning to approach the line 
XY, which is the limiting condition as w approaches infinity. These 
qualitative considerations are extended by the following incremental 
analysis. 

8.18 Incremental Analysis of the Triode 
with RC Plate Load and Sine-Wave Input 

For small-signal operation in the vicinity of the quiescent point Q, 
shown in Fig. 8.24(a), the triode circuit can be represented by the in­
cremental model given in Fig. 8.25(a). We are dealing with incremental 
quantities here instead of total quantities, and for convenience we shall 
use complex notation. If only output voltage and capacitor current 
are of interest, the equivalent model given in Fig. 8.25 (b) simplifies 
calculations. The current-source model given in Fig. 8.25(c) is an 
alternative to the description given in (a) and the corresponding simpli­
fied equivalent is given in Fig. 8.25(d). These current-source models 
are almost always used as incremental models for pentodes since r P is 
so high that it does not appreciably shunt Rb, and G simplifies to Gb, 

The expressions for various voltages and currents in terms of e" are 
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Fig. 8.25. Incremental analysis of triode with parallel RC load and sine wave input. 

given in Fig. 8.25(e). Plots of !Ep/Egl and lip/Egl vs. ware drawn in 
Fig. 8.25(!) for Gb = gp. The voltage gain at w = 0 has a magnitude 

gm 
(8.25) 

and diminishes to zero as w approaches infinity. The bandwidth, w0 , is 
d~fin~d ~s the point at which the ~ain Ep/E9 has diminished to Q.707K, 
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This point occurs when 

(8.26) 

Since power gain is proportional to the square of voltage gain, this point 
is usually called the half-power point. 

I 
Locus -1--1-- -

f I ', / orw•w0 
I I /Y 

Locus for I 1 / 
low-frequency ~ ~/ 

square wave 

1 vl -+I 0.707KB 
(w=w0) 

KE 
(w=O) 

Fig. 8.26. Locus of operating point for incremental analysis. 

In the locus plot (ip vs. ep) given in Fig. 8.26, the origin O for incre­
mental quantities corresponds to the quiescent point Q for total quan­
tities. This plot is drawn for Gb = gp, and shows again the bounding 
locus ABCDA corresponding to a square wave with a low repetition 
frequency and the same peak-to-peak amplitude as the sine wave. 

The elliptical locus shown is drawn for w = w0 • The peak value of 
ep is 0.707KE, and the peak value of ip is determined from the expression 
for ip with w = w0 • The ellipse must be tangent to the lines of constant 
ec corresponding to the peak-to-peak input voltage variation. The 
maximum horizontal excursion of the ellipse occurs on the Rb load line. 
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Since the plate voltage is not changing at the voltage peaks (deb/dt = 0), 
the capacitor current is zero and the plate current is determined solely 
by Rb. 

8.19 RC-Coupled Triodes with Rectangular Input Waveform 
(Intervals Large Compared with Time Constants) 

The analysis of the triode with parallel RC load is readily extended to 
the RC-coupled amplifier. The coupling capacitor serves primarily to 
provide d-c isolation between coupled stages. This eases the problem 
of providing appropriate polarizing voltages for the electrodes of succes­
sive stages. If d-c isolation is the only function performed by the 
capacitor, the time constants are made large compared with the in­
tervals, and hence the calculations are needed only to determine the 
distorting effects of the capacitor on the output waveform. In other 
cases the value of the capacitor is a design parameter calculated to 
produce a given wave-shaping effect. 

In the circuit of Fig. 8.27(a), we are merely connecting a resistance in 
series with the capacitor instead of connecting the capacitor directly to 
ground as in Fig. 8.23 or 8.24. The load on the plate circuit of the first 
triode is therefore the d-c load resistance Rb in parallel with a series 
combination of C and the piecewise-linear resistance R, where 

R = R0 

R = R0r0 

R0 + r0 

(ec < 0) 

(ec > O) 

(8.27) 

(8.28) 

This piecewise-linear resistive load is indicated graphically by the sketch 
of ix vs. e2. 

Pertinent equations for a graphical analysis of the circuit are given in 
Fig. 8.27 (b ). The total tube current ib is here expressed in terms of i 1 

and ix. The current i1 is represented graphically by the d-c load line 
plotted in Fig. 8.27(c). The capacitor current 

. ex - eb 
i =---

x R (8.29) 

is represented by a piecewise-linear load line drawn from the voltage ex, 
as indicated by dotted lines in Fig. 8.27 (c ). Since the capacitor voltage 
is time-varying, this load line slides back and forth along the horizontal 
axis. With a rectangular input voltage, indicated by the waveform ei, 

the maximum excursion of ex lies between Ebb and Ea. 
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Let us now examine the operation of the circuit, assuming that the 
intervals o1 and o2 are long enough to permit completion of the RC 
'transients. At point A the tube is cut off; hence ib = 0, eb = Ebb, 
ex = Ebb, and e2 = 0. The instantaneous transition to point B, where 

(a) 

-Eco 

A/ 
0 Eo Ea. \ ex \ Ebb\ eb 

(c) ~R,IIRb ~'BIIR, 

During ch During ch 
ex discharges ex charges 
from Ebb to Ea. from Ea to Ebb 

ex 

~ ~-
C C 

-=-Ea. Rg 
_ E rgllRg 
-- bb -

r1 = C(Rg + Rbllrp) r2 :c C (Rb + rgllRa) 
(d) (e) 

0 

Ea. 

0 

Where 

R = Rg for e2 < 0 

and 

R = rgllRg for e2 > 0 

{b) 

---,~-c~--t 
D 

T2 

D D 

(/) 

Fig. 8.27. Rectangular-wave behavior of RC coupling circuit (ch > 5r1, 82 > 5r2). 

ec = 0, occurs along the load line AB. The change in plate voltage 
(Aeb) must equal the change in the grid voltage Ae2 , since Aex = 0. 
Thus e2 is driven negative. 

The input voltage remains constant from B to C. Since the plate 
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voltage is less than the capacitor voltage, ix is positive, and capacitor C 
discharges in accordance with the circuit shown in Fig. 8.27(d). As ex 
decreases from Ebb to Ea, the Ru load line for ix slides to the left, and the 
composite load line Rbl !Ru shifts downward parallel to itself. Since 
ee = 0 during the interval o1, the operating point moves along the line 
ec = 0 from B to C. 

At the end of interval o1, e1 changes instantaneously (C to D) to a 
value more negative than is required to effect plate-current cutoff. This 
change causes the plate voltage to rise toward Ebb· Again, since Aex = 0, 
we must have Aeb = Ae2 at the transition. The circuit given in Fig. 
8.27 (e) applies during the interval o2 • For the instantaneous transition 
from C to D, the variational resistive load on the tube is rul!Rul IRb, 
because e2 is positive during the interval o2• As the capacitor recharges, 
ex rises from Ea to Ebb (D to A) to complete the operating cycle. The 
triode does not enter into the calculations during the interval o2, since 
ib = 0 and therefore ix = -i1. The operating point moves along the 
ib = 0 axis as the ix load line slides to the right, and maintains i 1 = -ix 
as ex increases. 

The circuit models for the two intervals o1 and o2 shown in (d) and 
(e) are similar to those discussed in Art. 8.12, so the dimensions on the 
e2 waveform in (j) may be found using the method discussed in that 
article. For the time constants chosen here, the e2 waveform is a series 
of alternately positive and negative spikes at the transitions of the input 
waveform. If T 1 and T 2 are made very much smaller than o1 and o2 , these 
spikes approximate the derivative of the input waveform. Under these 
conditions the circuit is also called a peaking circuit. In the following 
article we shall consider the long-time-constant case for which the 
transients do not go to completion. 

8.20 RC Coupled Triodes with Rectangular Input Waveform 
(Intervals Small Compared with Time Constants) 

Using the same circuit as that of Fig. 8.27 (a), let us consider the case 
where o1 is less than 5T1 and o2 is less than 5T2 • A piecewise-linear model 
of the circuit is shown in Fig. 8.28(a), and the two linear circuits that 
apply during the intervals o1 and o2 are shown in Fig. 8.28 (b) and ( c), 
respectively. The rectangular input waveform is again assumed to 
drive the first tube into the grid-current region during interval <'1 and 
into the plate-current cutoff region during o2• Correspondingly, the 
capacitor voltage will charge to a value Ev, and discharge to a value Ex. 
These values can be calculated from the two linear circuits by the 
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method outlined in Fig. 8.15. Note that output voltage e2 does not reach 
zero at the end of each interval, since the exponential charge and dis-

During 01 
ex discharges 
from Ey to Ex 

During 02 
ex charges 
from Ex to Ey 

-r1 = C[R0 + rpllRb] -r2 = C[Rb + r0 IIRaJ 

~) ~) 

ib tc=O 
R"i;--...C RgllR6 

(d) 

Open circuit value of eb: 

E _ E (Ebb - Eo)rp 
a- o+ +R 

Tp b 

Capacitor voltages Ex and E 11 

calculated as in Fig. 8.15 

C B ___ c_t 

D 

Fig. 8.28. Locus and waveforms for coupling circuit with rectangular-wave input 
(01 < 5r1 and 02 < 5r2). 

charge currents do not reach zero. For the same reason, eb reaches 
neither Ea nor Ebb· These effects may be seen both from the waveforms 
and from the locus plot given in Fig. 8.28(d). Since ex does not reach 
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its extreme values Ea and Ebb, the locus is restricted to a smaller portion 
of the ib vs. eb plane. 

As e1 switches from A to B, the plate voltage decreases. Since ex 
remains constant, e2 falls by the same amount as cb, When c2 crosses 
zero at point A', we have% = Cx = Ey, At this point the effective load 
resistance for the triode changes from rgl!Rgl !Rb to Rgl lRb, Note that 
whenever ib exceeds i 1, the locus is above the Rb load line and ix is 
positive. The piecewise-linear load lines shown by dotted lines at Ex 
and Ey represent the contribution of ix to ib for these specific values of 
Cx, For intermediate values of ex, the load line for ix slides along the 
horizontal axis. Correspondingly, the piecewise-linear load line deter­
mining total current ib slides along Rb with the break moving from A' 
toward C' as time elapses from B to C. During this time, the operating 
point is sliding along the ec = 0 line from B to C. When e1 switches 
from C to D, the load transition at C' corresponds to e2 = ix = 0 and 
Cb = Cx = Ex, Closing the locus from D to A, we have Cx increasing 
from Ex to Ey, with ib = 0 and ix = i1. 

Determination of pertinent voltage values on the waveforms of cb and 
e2 follow readily, once Ex and Ey are calculated. The circuits do not 
differ from those of Fig. 8.15, except that the resistive voltage drop is 
divided into two parts here. Thus the total resistances of the charge and 
discharge circuits in Fig. 8.28 correspond to R 1 and R2 in Fig. 8.15. 

8.21 Linear Amplification with RC-Coupled Triodes 

For the conditions described by Figs. 8.27 and 8.28, the waveform of 
c2 has a negative average value because the resistance between grid and 
cathode of the second triode is Rg for negative values of e2 , and rgl IRg for 
positive values of e2. This average voltage (sometimes called grid-leak 
bias) can be computed from Ex and Ey, as indicated in Fig. 8.15(c). The 
change in loading of the plate circuit of the first triode under these 
conditions, changes the voltage gain during the cycle and therefore 
results in waveform distortion. To amplify the input waveform without 
distortion, each triode must be operated in a single state: namely, 
with Cc between O and - Ebb/µ. In order that this requirement may 
be satisfied, the amplitude of the input waveform must be suitably 
restricted, and a negative polarizing voltage must be applied to the grid 
of the second triode. In addition, the coupling time constant must be 
large enough to prevent distortion of the input waveform. 

The circuit shown in Fig. 8.29(a) is like that of Fig. 8.27(a), with a 
polarizing voltage added for the grid of the second triode. This voltage 
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Fig. 8.29. Small-signal linear amplification with RC-coupled triodes. (a) Linear 
amplifier circuit; (b) Plate circuit of first triode for e1 = ea = -Eo + E sin wt; 
(c) Incremental model; (d) Waveforms (assuming ez approximately constant at 

Eb+ Ecc), 



WAVE SHAPING AND AMPLIFICATION 365 

has the effect of shifting the current at the break point of the piecewise­
linear load R to the point 

Ecc 
Ra 

(8.29) 

The locus plot for the plate circuit of the first triode, Fig. 8.29(b), 
assumes that the variational amplitude Eis small enough to preserve 
linear operation throughout the circuit. When the piecewise-linear load 
line is plotted on the ib vs. eb plane, the break point occurs at a voltage 
Eb+ Ecc• The polarizing voltage Ecc must be sufficiently negative to 
shift the break point of the broken load line outside the range of variation 
of eb shown by the heavy line. 

The incremental circuit model for the two triode stages is shown in 
Fig. 8.29(c). If the time constant 

(8.30) 

is many times greater than the period of the input waveform, the changes 
in ex will be very small during the cycle. In the limit, the capacitor 
voltage is constant (zero in the incremental circuit). In the circuit of 
Fig. 8.29(a) this amounts to replacement of the coupling capacitor C 
by a battery whose voltage is Eb + Ecc• 

Waveforms for linear operation are given in Fig. 8.29(d) for both 
sinusoidal and square-wave input voltage variations. The waveform of 
e3 (not shown) would be an inverted and amplified replica of e2• 

8.22 Effects of Shunt Capacitance on 
Coupling-Circuit Behavior 

The model of the RC coupled circuit used in the preceding articles has 
represented only the explicit circuit components (vacuum tubes, re­
sistors, and capacitors). However, any physical structure consisting of 
such components will also include implicit stray elements that have a 
significant effect on circuit operation when high frequencies or rapid 
changes are present in the input voltage. For example, the lines con­
necting elements on a circuit diagram usually signify ideal conductors 
that offer no impedance to the passage of current. Actual interconnect­
ing wires have both resistance and inductance. 

The major circuit elements themselves embody stray parameters (for 
example, the interelectrode capacitance of the triode). The capacitance 
between any component and the metal chassis (called ground) may also 
be important. The total capacitance between almost any node of the 
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circuit and the chassis will usually be several micromicrofarads for 
typical circuit construction. The principal effect of stray capacitances 
can be determined by simple approximate calculations. 

An incremental model for the RC coupling circuit is shown in Fig. 
8.30(a). This circuit assumes that the major effects of the stray ele­
ments are adequately represented by a capacitance C1 from the plate 
of the first triode to ground, and by a capacitance C2 from the grid of 
the second triode to ground. This model represents the actual circuit 
fairly well, particularly if the tubes used are pentodes. 

The complex expression for E2 in terms of E 1 and the circuit param­
eters is given in Fig. 8.30(a). Although the result can be written by 
inspection of the circuit, it is cumbersome for purposes of calculation or 
plotting. This expression can be reduced to three very simple expres­
sions by making a few assumptions. In a practical circuit we shall 
nearly always have C much larger than C1 or C2 • If C is large, it has a 
very low a-c impedance for all but low frequencies. If C1 and C2 are 
small, they have a very high impedance for all but high frequencies. 
We therefore expect to find a range of frequencies ( usually called mid­
band) for which the resistive elements alone yield a good approximation 
to e2 • Thus 

E 
_ -gmE1 

2-
Qp + Gg + Gb 

(8.31) 

for w in the vicinity of V wcw8 • The circuit and the corresponding plot 
of jE2/E1 [ vs.ware shown in Fig. 8.30(b). 

For values of w approaching zero, we know that the reactance of 
coupling capacitor C cannot be neglected; hence the circuit and curve 
given in Fig. 8.30(c) are more representative of the true situation for low 
frequencies. The equation for E 2 becomes 

(8.32) 

Similarly, for high frequencies the shunting effect of the decreasing 
impedances of C 1 and C 2 cannot be neglected. The circuit and curve 
shown in Fig. 8.30(d) are therefore more accurate for high frequencies. 
Here 

(8.33) 

where 

(8.34) 
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Fig. 8.30. Frequency response of the RC coupling circuit. 
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Fig. 8.31. Approximating the step response of a linear RC coupling circuit including 
stray capacitances. 

The combined effects of coupling capacitor and shunt capacitors appear 
in the curve shown in Fig. 8.30(e). This curve, obtained very easily 
from the three separate circuits, is a good approximation to the curve 
obtained by plotting the expression given in Fig. 8.30(a). If C, C1 , and 
C2 are comparable in magnitude, we and w, are not widely separated, 
and the approximations are not as good. 

The step response of the coupling circuit can be calculated in a similar 
manner, as outlined in Fig. 8.31. Since the circuit has two independent 
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capacitor voltages, we expect to find a transient solution with two 
exponential terms, each of which has a different time constant. 

For the resistive approximation given in Fig. 8.31 (b ), the step is 
reproduced with no change other than a polarity reversal and a change 
in amplitude. The circuit with the coupling capacitor alone, Fig. 8.31 (c), 
produces a slowly decaying exponential. The stray capacitances in the 
circuit of Fig. 8.31 (d) inhibit the instantaneous rise of the step input. 
The combined effects of C and Ca are shown in Fig. 8.31 (e); and for 
C » Ca, this is a very good approximation to the actual waveform. 
Calculating e2 from the complete circuit yields an expression consisting 
of the sum of two exponentials with time constants slightly different 
from Tc and T 8 • The exact plot would fall below the approximate one 
during the rapid rise and slightly above it during the long decay. Our 
approximation assumes no appreciable change in voltage on the coupling 
capacitor during the rise and neglects the current through the shunt 
capacitances during the decay. 

8.23 Locus of Operation with Coupling 
and Shunt Capacitances 

When C is much greater than C1 and C2 , it is convenient to combine 
the two shunt capacitances into a single capacitance Ca where 

(8.35) 

which appears only on one side of the coupling capacitor, as indicated in 
Fig. 8.32(a). This simplification makes only a minor difference in the 
voltage ex across the coupling capacitor. The extreme error in ex could 
not exceed (C2/C) (.:le~)max• This is the change in ex required to change 
the voltage across C2 over its maximum range of variation. 

For the circuit of Fig. 8.32(a), with the input waveform shown, the 
locus of operation is indicated in (b), (c), and (d) for three values of 
coupling capacitor time constant. The d-c load line with slope Rb 
is shown as a dotted line. The a-c load line, or locus without Ca, is 
shown by the solid lines AB'CD'. With shunt capacitance Ca added to 
the circuit, instantaneous changes in eb are prohibited. In Fig. 8.32 (b), 
the operating point moves instantaneously from A to B, and then rapidly 
to point C as the shunt capacitance discharges. Conditions are then 
very nearly quiescent at point C until the grid voltage switches negative 
to D. This causes the instantaneous change CD and the rapid charge 
from D to A, where the operating point remains (approximately) until 
the next switch from A to B. 
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Actually, the coupling capacitor charges and discharges slightly and 
for a somewhat larger value of o/ r c the effect is more pronounced, as 
shown in Fig. 8.32(c). Here the operating point moves instantaneously 
from A to B, very rapidly from B to B', and then slowly from B to C. 

'

el 

oH H ,t 
-Eoj~~~-u--

~o~ AD 

(b) 

ib = i1 + ix + i, 
. Ebb - eb (ex - Ecc) - eb C deb 

ib =---+------ -
Rb Ra dt 

Tc» 0 

Ts« 0 

(c) 

(a) 

Tc= 0 

Ta« 0 

for e2 < 0 and C » C, 

Tc = C[Ra + rpllRb] 
Ta = C,[rpllRbllRal 

(d) Tc <¼o 
Ts« 0 

Fig, 8.32. Locus of operation with shunt capacitance and various degrees of coupling 
capacitor charge and discharge (C » C. in all cases). 

When C is reached, there is an instantaneous transition to D, a rapid 
shift to D', and a slow shift back to A. Then the cycle repeats. The 
same general statements apply to Fig. 8.32(d), except that motion from 
B' to C and from D' to A is relatively more rapid, since o/rc is even 
larger. Also, since the coupling capacitor may charge and discharge to 
completion, the operating point may repose at C and A for some time 
prior to each switching transition. In this case, C and A are true 
quiescent points (on Rb load line), whereas in Fig. 8.32(b) these points 
were only "quasi-quiescent" as a result of the small value of o/rc, 

The methods we have used for determining waveforms and loci of 



WAVE SHAPING AND AMPLIFICATION 371 

operation apply to any of the basic circuits with inductive or tuned loads 
as well as capacitive loads. A few of the many possible combinations 
will be discussed in the following articles. 
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-E A D .....__---'! 
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e2 

Ebb+lmRb --- D 

[Ebb+ ImRbe-tfr2J 

(a) 

(b) 

Fig. 8.33. Triode with parallel RL plate load and rectangular-wave input 
(01 > 5ri, 02 > 5r2), 

8.24 Triode with Parallel RL Plate Load 

A triode with parallel RL load is shown in Fig. 8.33(a). Let the input 
waveform be as shown in (b ), with intervals long compared to time con­
stants. When triode conduction is initiated by the transition from A to 
B, the current in the inductance is zero; hence the apparent triode load 
is Rb, as indicated by the locus plot in Fig. 8.33(c). As current builds 
up in the inductance with a time constant 

(8.36) 
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(if we use a piecewise-linear model for the triode), the voltage across the 
load decreases toward zero and plate voltage increases toward Ebb· The 
triode current during this time is 

(8.37) 

The build-up of i:e corresponds to a translation of the Rb load line parallel 
to itself, so that the operating point moves along the ec = 0 line from 
B to C. In effect, ix is a time-varying current source acting on the 
resistive portion of the circuit. When ix has reached the quiescent 
value Im, the voltage across the load is zero and eb = Ebb· During the 
transition from C to D, the inductor current remains constant at Im; 
hence the variational load again appears to be Rb, The current Im is 
transferred from the triode to Rb as the triode cuts off, and results in an 
overshoot of eb above the value Ebb by the amount ImRb, The current 
now decays exponentially to zero with the time constant 

(8.38) 

If the intervals 51 and o2 are not sufficiently long to permit completion 
of transients, we must solve a pair of simultaneous algebraic equations 
as in the RC case. The current ix will vary between a maximum of I 11 

and a minimum of Ix instead of Im and zero. Once these values have 
been found from the two linear circuits that apply during o1 and o2 , 

respectively, the waveforms or locus of operation can be plotted very 
readily. The analysis is similar to the one outlined in Fig. 8.15 for the 
RC circuit. 

The waveforms and locus of operating point shown in Fig. 8.33 apply 
for an input waveform that has a sufficiently negative peak (-E1 ) to 
drive the triode to plate-current cutoff at the transition from C to D. 
This requirement specifies a value of e1 more negative than 
- (Ebb+ ImRb)/µ. For a negative excursion less than this value the 
triode plate current is not driven to zero instantaneously. 

The locus and waveforms in Fig. 8.34(a) and (b) apply to the circuit 
of Fig. 8.33 for -E 1 = - Ebb/µ. Assuming the intervals o1 and o2 long 
enough to permit completion of transients, the waveforms of e2 and the 
locus are the same as before for the transition A to B and the interval 
01 from B to C. However, since triode plate current is not cut off by the 
transition from C to D, the positive overshoot on the waveform of e2 has 
a time constant r 1 = L/(Rbl h). In the previous example the time 
constant was r 2 = L/Rb, The exponential decay of inductor current 
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ix (waveform not shown) also has the time constant r 1 . For -E1 = 
- Ebb/µ., as in this example, the triode plate current just reaches cutoff 
at the end of the overshoot exponential (D to A). 
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Fig. 8.34. Effect of input amplitude on triode with parallel RL load 
(<h > 5T1, ch > 5n). 

' 

The locus and waveforms shown in Fig. 8.34(c) and (d) have been 
drawn for a value of -E1 between -Ebb/µ. and - (Ebb + lmRb)/ µ.. 
For this intermediate case the overshoot waveform consists of an expo­
nential with a time constant r 1 from D to D' at which point the plate 
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current cuts off and the time constant is -r2 from D' to A. The current 
ix in the inductance (waveform not shown) decreases from Im with a 
time constant -r1 and is heading toward a final value - (En - Ebb)/rp, 
[See locus plot in Fig. 8.34(c).] However, when plate current reaches 
zero, we have ix = -i1 = (En - Ebb)/Rb and from this value ix 
heads toward zero with a time constant -r2 • Although the slope of wave­
form e2 changes at the break point, dix/dt must be continuous at the 
break, since e2 is continuous. 

8.25 Triode with Series RL Plate Load 

With a series resistance and inductance as the plate load on a triode, 
the response to a rectangular wave is as shown in Fig. 8.35. The effects 
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Fig. 8.35. Triode with series RL plate load (01 > 5ri and 02 > 5r2). 
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of stray capacitances are neglected, and the waveforms and locus are 
drawn for intervals, <'1 and 82 sufficiently long to permit completion of 
the transients. 

There is a great deal of similarity between this case and the previous 
one. If, for example, in the circuit of Fig. 8.35(a) we consider resistance 
Rb as part of the triode plate resistance, we effectively have a triode with 
plate resistance r/ = Rb+ rp and an inductive load L. This, then, 
corresponds to the circuit of Fig. 8.33(a) with the resistance Rb = oo. 

In the series circuit of Fig. 8.35(a), the plate current cannot be cut off 
no matter how negative E 1 is made. 

8.26 Cathode-Follower Circuit with Series RL Load 

A cathode follower with a series RL load is shown in Fig. 8.36(a). A 
piecewise-linear model is shown in (b), and an incremental model is 
shown in (c). The rectangular waveform of input voltage shown in (d) 
results in the output waveform also sketched in (d) and the locus of 
operation shown in (e). The amplitude of the input waveform has been 
chosen deliberately in order to avoid positive-grid operation; in fact, E 1 

was chosen equal to (Ebb - Ea). The intervals 81 and 82 are here being 
considered large compared with time constants, so that transients go 
to completion. 

With e1 = 0, the quiescent current is 

I - Ebb 
o-

Tp + Rk(µ + 1) 
(8.39) 

which may be found either analytically or graphically from the inter­
section of the load line and the bias line 

(8.40) 

Note that the inductance is effectively absent under quiescent conditions. 
However, when the input voltage is switched from A to B, the inductance 
L plays a predominant role. The current cannot change instantaneously; 
therefore, the incremental load impedance appears to be infinite. As a 
result, the point B on the locus can be located from the open-circuit 
voltage gain of the cathode follower: 

A.e2 = µ A.ei/(µ + 1) = µEif (µ + 1) (8.41) 

For the value of E 1 chosen here, (Ebb - Ea), the build-up of current 
leads to the quiescent point Cat the intersection of the Rk load line and 
the ec = 0 line. The variation in ib proceeds from Io to Im exponentially 
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Fig. 8.36. Cathode follower with series RL load. 

with the time constant 

L 
(8.42) 

On the locus plot, the variation from B to C corresponding to this 
build-up is a straight line of slope rr,/ (µ, + 1), 
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An alternate solution to this problem can be found by plotting a new 
set of ib vs. eb curves with e1 as parameter, rather than ec. These curves, 
readily derivable from the standard triode curves, are useful in the 
analysis of the cathode-follower circuit with any cathode load. 
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Fig. 8.37. Construction of cathode-output curves. 

~ 
I 

Consider the triode shown in Fig. 8.37(a). If the plate is held at a 
fixed potential Ebb, then from (b ), 

(8.43) 

To plot the e1 = 0 line, locate the intersection of the grid-voltage lines ec 
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with the corresponding plate voltage cb = Ebb + Cc. The line joining 
these intersections is the c1 = 0 line and, as shown in Fig. 8.37(c), it 
has a slope of rp/ (µ + I). 

The locus of operation can now be easily determined. At point A on 
the input waveform, c1 = 0; and if previous transients have died out, the 
operating point will be located at the intersection of the load line and the 
c1 = 0 line. When the input voltage is switched from zero to +E1 

(A to B), the current cannot change instantaneously; so the locus is a 
horizontal line from c1 = 0 to c1 = E 1. During the interval o1, c1 

remains constant at E 1 , the inductor current increases exponentially 
to Im, and the operating point moves up the c1 = E 1 curve. After the 
transient has died out, the operating point is at C, the intersection of 
the Rk load line with the c1 = E 1 curve. Similar arguments hold for the 
transitions from C to D and D to A. 

8.27 Cathode Follower with Parallel RL Load 

The circuit shown in Fig. 8.38(a) can be approximated by the piece­
wise-linear model given in (b ). For grid-to-cathode voltages between 
zero and plate current cutoff, the incremental models given in (c) can 
be used to determine .6c2 and Mx, 

Assume that the grid voltage c1 at point A is much more negative than 
the cutoff voltage - Ebb/µ. Then the point A is located on the ib vs. cb 
plane at. ib = 0, Cb = Ebb, as shown in Fig. 8.38 (d). The input transition 
from A to B drives the operating point along the Rk load line, since ix 
remains zero instantaneously. The point Bis located at the intersection 
of the Rk load line and the c1 = 0 line. As the current ix builds up 
exponentially to Im = Ebb/rp with a time constant 

L 

T1= R•ll~~i) 
(8.44) 

the output volfa:ge c2 falls exponentially to zero. As c1 = 0 during this 
interval (B to C)) the operating point moves up the c1 = 0 line to the 
Cc = 0 line (point C). Note that Cb equals Ebb at this point. 

The input transition from C to D again drives the operating point 
along a line of slope corresponding to Rk. The apparent large increase 
in Ebb results because the current through the inductance, ix = Im, 
instantaneously flows through Rk, driving the cathode to a large negative 
voltage -ImRk. If el is sufficiently negative at the point D to cut the 
tube off in spite of this greatly increased plate voltage, the operating 
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0 
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Fig. 8.38. Cathode follower with parallel RL load. 

point will follow the Rk line down to the ib = 0 axis. From the graph 
it can be seen that the required negative value of e1 for cutoff is 

(8.45) 
µ. 
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During the interval o2 (D to A), the current ix and voltage e2 decay to 
zero, and the locus returns to A along the ib = 0 axis. 

Figure 8.38(d) shows both the ec lines and the e1 lines. The locus can 
be plotted using either of the methods discussed in Article 26. 

(a) (b) 

(d) 

Fig. 8.39. Cathode follower with capacitive 
coupling. 

B C 

0--+--+----+---+--

A A 
0 

~B 

/ 
Tl= C[Rg+ Rk II 1j, /(µ + l)J 

C C t 

(c) 

8.28 Cathode Follower with Capacitive Coupling 

The circuit of Fig. 8.39(a) shows a cathode follower with d-c load 
resistance Rk and capacitive coupling to another resistance R0• In the 
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interests of brevity, we shall again confine our attention to the locus of 
operation with a rectangular input waveform having intervals large 
compared with the corresponding time constants. Recall that, for a 
given range of input waveform amplitudes, this case yields the bounding 
locus within which all others fall. 

Using the piecewise-linear model shown in Fig. 8.39 (b) and the input 
waveform shown in (c), we can determine pertinent waveforms and the 
locus of the operating point. The waveforms of cathode voltage ek, 
output voltage e2 , and the capacitor voltage ex are shown. 

Referring to the locus of operation in Fig. 8.39(d), we see that the 
transition from A to B follows a line whose slope is determined by 
Rul IRk, since ex is zero at this time and cannot change instantaneously. 
In this example, the value of +E has been chosen to avoid the positive­
grid region. Point Bis located at the intersection of the Ru! !Rk load line 
and the line e1 = E. As the capacitor begins to charge, the current ix 
through Ru decreases, and the operating point moves down the e1 = E 
line to the quiescent point C on the Rk load line. Again during the 
transition from C to D, the locus follows a line whose slope depends on 
Rul!Rk, The closure from D to A occurs with ib = 0 and i 1 = ix, 

Note that ek changes only very slightly between Band C, whereas e2 
changes very markedly. This is due to the fact that the incremental 
resistance between cathode and ground when the triode is conducting is 
Rk 11 [r Pl(µ + 1)], which is much smaller than Ru, 

As Ru is decreased, the locus transitions from A to Band from C to D 
tend to approach the vertical. In this case the upward transition 
(A to B) can drive the triode far into the positive-grid region. 

8.29 Cathode Follower with Parallel RC Load 

An important consideration in the operation of cathode followers at 
high frequencies is the effect on circuit performance of cathode-to-ground 
capacitance. In Fig. 8.40(a), C could be an actual capacitor, or it may 
represent tube and wiring capacitances. 

The piecewise-linear model is shown in Fig. 8.40(b ). The waveforms 
in (c) are drawn for two different input amplitudes, one small enough to 
keep the tube in the linear region, and the other sufficiently large to cut 
the tube off for a portion of the cycle. Let us treat the linear case first. 

Point A on the locus, Fig. 8.40(d), is located at the juncture of the 
Rk load line and the e1 = E 1 line. When the input voltage jumps to E2, 
the cathode voltage cannot change instantaneously; so the operating 
point moves vertically to the e1 = E 2 line. As the capacitor charges, 
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the operating point is constrained to the e1 = E 2 line, moving down to 
point Cat the intersection of the Rk load line. The return cycle CDA is 
constructed in a similar manner. As the tube is always conducting in 

Ebb 

C 

(a) 

e1 

Ea 

E2 

(b) 

(d) 

fn•c7 r--7 
I I 

I I I I 
I I I I 
B C 

Ti= [Rkll 1j,/(µ + 1)] C 

T2=T1 

T3=RkC 

(c) 

Fig. 8.40, Cathode follower with parallel RC load. 

this case, the time constants involved in the ek waveform are 

(8.46) 

The effect of shunt capacitance on linear cathode-follower operation can 
be seen by inspection of the locus. The vertical rise AB and vertical drop 
CD have the effect of greatly decreasing the magnitude of the input 
voltage that can be handled by the circuit if linear operation is desired. 
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If the input waveform amplitude is increased, the locus expands 
(A'B'C'D'); and if E 3 - E 1 is sufficiently large, the tube will be cut off 
immediately following the fast drop in input voltage (C'D'). In this 
case the time constant of discharge will be CRk until the tube again 
begins to conduct. Note, however, that although the time constant is 
larger when the tube is cut off, the final value of this exponential is zero 
rather than eko• The capacitor will be discharged to a given voltage 
more rapidly if the tube is cut off than if it remains conducting. This 
fact can be demonstrated by writing the current equation for the 
cathode circuit. From Fig. 8.40(a), 

and 

Therefore 

ix= -Cdek 
dt 

(8.47) 

(8.48) 

(8.49) 

Since ib can never be negative, the capacitor will be discharged to a given 
voltage most rapidly if ib = O; that is, if the tube is cut off. 

The loci shown in Fig. 8.40(d) extend into the positive-grid region if 
e1 is greater than E 3 . In this case the grid diode closes and the capacitor 
is charged by grid current in addition to plate current. 

8.30 Grounded-Base Transistor with 
Inductive Collector Load 

The methods for determining waveforms and locus of operation for a 
triode circuit can be applied to pentode or transistor circuits. For 
example, let the p-n-p junction transistor in the grounded-base circuit 
of Fig. 8.41 (a) be represented by the ideal-diode model shown in (b ). 
The shunt diode Dz and source Vz, shown by dotted lines between 
collector and ground, provide the voltage limiting due to the avalanche 
effect in the semiconductor. The collector curves (vcb vs. ic) for this 
model are shown in (c). The locus of the operating point (ABCDEA) 
corresponds to the rectangular waveform of current i 1 shown in (d), 
where waveforms of ic and Vcb are also shown. Intervals o1 and o2 are 
assumed large compared with the time constant L/R. 

The idealization of the transistor model greatly simplifies the locus 
and waveform determinations. When the input current switches from 
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A to B, ie = ix is held at zero instantaneously because of inductance L. 
Since ie remains at zero, the source aie closes the collector diode De; 
hence voltage Veb switches instantaneously to zero. This voltage remains 
zero until ie builds up exponentially (r1 = L/R) to the value - Vc/R. 

e C 
r---o---.t------...... --...--0----~--o vcb ,c 

t 

(a) 

Vcb 
_ _,___... ____ -_a __ l O • 

B-ic 

3 2 
D 

(c) 

1 

b 

(b) 

B C 

I 

Dz* 
I 

-J_ 
~-=­+r 

I 

-'Vc A 
A 

Fig. 8.41. Grounded-base transistor 
with inductive collector load. D E 

(d) 

B C 

D E 

The input transition from C to D reduces aie to zero and therefore 
opens De, Now the collector current is zero, but the inductor current ix 
tries to remain constant at - Ve/R; hence the voltage Veb drops to - Vz, 
thus closing Dz. The current ix now varies exponentially ( r2 = r 1 = 
L/R) from - Vc/R toward + (V21 - Vc)/R. When i:r: reaches zero, 
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however, the diode Dz opens and permits Vcb to rise instantaneously from 
- V • to - V c in order to complete the cycle. 

j: :1 I [ 
Ebb 

-E1f-- o1 )I( 024 

L ED 

e2 

Ee= Ebb 

e1 

EB 

-=- 0 
(a) (c) 

(b) 

Fig. 8.42. Pentode with parallel RL plate load (ch, ch > 5T). 

8.31 Pentode with Parallel RL Load 

With the exception of the preceding article, we have used triodes in 
the single-time-constant circuits analyzed in this chapter. It was con-
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venient to use one type of device in order to show the effects of load and 
input waveform variations with a minimum of other changes. However, 
once we specify a device by means of characteristic curves or a circuit 
model, the analysis proceeds in the same manner for any of the devices 
we have discussed. By way of illustration, Fig. 8.42 shows a pentode 
with parallel RL load. The locus and output waveform should be com­
pared with those in Figs. 8.33 and 8.34. The shape of the locus appears 
to be different principally because the pentode is very nearly a voltage­
controlled current source, whereas a triode more nearly resembles a 
voltage-controlled voltage source. 

Since Rb is much less than the plate resistance of a pentode, the 
apparent resistance faced by the inductance is very nearly Rb whether 
or not the pentode conducts. 

Another difference that may be important is the magnitude of inter­
electrode capacitances. The grid-to-plate capacitance of the triode 
couples some of the input signal to the output (and vice versa). In the 
pentode, this capacitance is small enough to be neglected at all but very 
high frequencies. 

As in the case of the RC coupling circuit we can approximate the 
effects of tube and wiring capacitances fairly readily. If the small 
capacitance (say 10 µµf) is assumed to exist between plate and ground 
in Fig. 8.41 the load on the pentode is effectively a parallel RLC circuit. 
For such a small value of C the waveform of e2 is only slightly modified. 
The instantaneous jumps become finite slopes and the sharp peaks are 
slightly rounded. 

8.32 Pentode with Parallel RLC Load 

A pentode with a parallel RLC load is shown in Fig. 8.43(a). For 
a typical pentode in the normal region of operation the plate current 
is nearly independent of the plate voltage. Thus the rectangular 
waveform of plate current shown in Fig. 8.43(d), as determined by the 
resistive load alone, remains virtually unchanged when the inductance 
and capacitance are connected. The behavior, therefore, can be deter­
mined from the general linear circuit shown in (c). Whether or not 
the input waveform causes plate-current cutoff makes relatively little 
difference in incremental behavior, since the plate resistance for a 
pentode is very large compared with load resistance R. Thus we need 
only examine the behavior of the parallel RLC circuit with a rectangular 
waveform of current applied as indicated in (d), The differential equa-



WAVE SHAPING AND AMPLIFICATION 

tion for the circuit is 

The roots of the characteristic equation are 

81 = - 2~C + ✓(¾a)' 
••= -~c- ✓C~c)' 

1 

LC 

1 

LC 

387 

(8.50) 

(8.51) 

(8.51a) 

The first three of the following modes correspond to positive, zero, and 
negative values of the radical, for R positive,* while the fourth or un­
damped mode occurs for R = oo 

1. 

2. 

3. 

4. 

1 /L 
Overdamped: R < 2 ~ C 

Critically damped: R = ~ ~ 
U nderdamped: R > ! ~ 2~c 
Undamped: R = oo 

(8.52) 

The waveforms in Fig. 8.43(e) and (f) correspond to underdamped 
cases with (e) being near the critically damped case. The locus in (b) 
is drawn for the critically damped mode of operation. The locus 
corresponding to the waveform in (f) will be like that shown in (b) 
except that the horizontal portions will extend nearly equally on both 
sides of the vertical line at Ebb· 

The expressions for the incremental voltage across the tuned circuit 
are given below. Adding v to Ebb or subtracting it from Ebb yields e2 in 
the two intervals. 

1. Overdamped 

(8.53) 

2. Critically damped 

V = Ia te-t/2RC 

C 
(8.54) 

* If R is negative there are three negatively-damped modes. These are pertinent 
to oscillator theory and are treated in Chapter 10. 
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Assume 
-=- R<< 1j, 

(a) 

G 

Fig. 8.43. Rectangular-wave response of 
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pen tode with parallel RLC load. 



390 ELECTRONIC CIRCUIT THEORY 

ol~l or----~~, 
::!Lfil-------n-------~ 

... -

0 
-t 

Fig. 8.44. Pulse response of pentode with RLC load for 5r == 2,r/wo = 1/fo. 

3. Underdamped 

1 
where a= --

2RC 

Ia/C t • 
V = -- E-a sm{Jf 

{3 

and /3 - ✓:c -(2~J• 
4. Undamped 

v = Ia V£C sin /1 t 
C \Jw 

(8.55) 

(8.56) 

In the nearly-undamped case, the transient lasts a long time. An 
important application of the RLC load with relatively small damping 
is the tuned, overdriven amplifier used both for power amplification and 
frequency multiplication. A simplified representation of the behavior 
of a nonlinear power amplifier is shown in Fig. 8.44, The rectangular 
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wave has been replaced by brief pulses and the LC circuit is tuned to a 
frequency w0 whose period is the same as the repetition interval of the 
pulses. If the RLC circuit is nearly undamped, the waveform of e2 is 

----Tl= 271"/c.>1----

(a) 

I I 
I I 
I I 

-f----1 
' I 

0 

Fig. 8.45. Overdriven sine wave amplifier waveforms (w1 = wo = 1/VLC). 

nearly sinusoidal. The brief pulses add charge to the capacitor and 
bring the amplitude above the sine wave value. Equilibrium amplitude 
occurs when each pulse adds an amount of energy just equal to that 
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dissipated in R per cycle. In particular, the voltage across the tuned 
circuit (Ebb - eb) is near its maximum Em and therefore nearly constant 
during the plate-current pulse interval. Thus the energy delivered to 
the tuned circuit per cycle is EmQb, where Qb is the area of one plate­
current pulse. Energy dissipated per cycle is (Em2/2R)r0 , where 

To = 21r vLC = 21r/wo. Thus EmQb = Em2ro/2R, or 

Em= 2Rh, (8.57) 

where h = Qb/ r0 is the d-c plate current. 
The practical embodiment of these ideas is the tuned, overdriven 

amplifier shown in Fig. 8.45. The large amplitude input waveform 
tends to drive the grid positive with respect to cathode. If Ru is very 
large, the input circuit is basically a clamper and develops a net charge 
on C1 corresponding very nearly to the amplitude of the input waveform. 
Thus the positive peaks of the wave ec (t) are clamped at zero. The 
plate-current pulses then produce the output waveform shown qualita­
tively in Fig. 8.45. The peak amplitude Em cannot exceed Ebb, be­
cause the amplitude of the plate-current pulse decreases markedly if 
minimum eb falls below the knee of the pentode plate curves. 

With the parallel-resonant circuit tuned to a frequency w0 = nw1, 

where n is an integer, the overdriven amplifier becomes a SQ-i,called 
ratio-n frequency multiplier. In this case, a current pulse is applied to 
the resonating circuit only once every n cycles, so that the average plate 
current is now h = Qb/nr0 • 

8.33 Frequency Response of Parallel RLC Circuit 

If the input waveform for the circuit in Fig. 8.43(a) is a sine wave that 
varies the grid voltage between zero and -E1, the pentode is essentially 
linear and the plate current varies sinusoidally with an rms value I. 
The admittance of the tuned circuit can be expressed as 

Y l 1 . C l { 'Q [ w w0]} = - + -. - + JW = - l + J - - -
R JwL R wo w 

(8.58) 

where the resonant frequency w0 = 1/VLC and the figure of merit* 

Q = R/VL/C. 

* Figure of merit or quality factor Q for a resonant circuit is defined as 

Q 
Peak stored energy = 271'" -------=--

Energy dissipated per cycle 
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(a) 

Q=l 

Q=5 
~-----.---Q = 10 w 

1.0 1.5 2.0 Wo 
(b) 

Fig. 8.46. Frequency response of pentode with parallel RLC load. 

The impedance (Z = E/1) is plotted as a function of win Fig. 8.46(b) 
for several values of Q. The RLC circuit is useful in frequency-selective 
amplifiers, since the output voltage E(w) has the same form as Z(w) 
when the circuit is driven by a current source. 
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PROBLEMS (See Appendices for device curves) 

8.1. Specify the waveform of Fig. 8.8(c) in terms of a combination of 
continuous ramp functions. 

25k0 +50v 
+ 

el 1000 e2 0 
µ.µf 

-50v 

(a) (b) 

Fig. P8.1 

8.2. For the circuit shown in Fig. P8.1 (a), sketch and dimension the wave­
form of voltage e1 required to produce the linear sawtooth voltage e2 shown 
in Fig. P8.1 (b ). 

+ 100 __ _ 

-100 

R1 C 

+~µ.µf 7+ 
el lOkO R e2 

0-------------~­
(a) 

(b) 

Fig. P8.2 

11,sec 

8.3. Sketch and dimension the waveform of output voltage e2 from the 
circuit of Fig. P8.2(a) for the input waveform shown in Fig. P8.2(b). Repeat 
with R1 = 0. 

8.4. The pulse transformer in the circuit of Fig. P8.3(a) has a magnetizing 
inductance Lm = 80 mh referred to the primary winding. Leakage inductances 
and stray capacitances may be neglected. Determine the waveform of input 
voltage e1 which produces a single rectangular output pulse e2 [Fig. P8.3(b)] 
having an amplitude of 20 volts and a duration of 2 microseconds. 

8.5. Sketch and dimension the output e2(t) for the circuit of Fig. P8.4(a) 
with input waveform e1 (t) as shown in Fig. P8.4(b). Let the triode be 
piecewise-linear withµ = 20, rp = 10 kilohms, and r0 = 1 kilohm. 
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(a) (b) 

fig. PB.3 

200v 

0 e1 t(µs) 
+ 

1000 e2 -5 
60~40j µ.µ{ 

(bJ 

-=- (a) 

Fig. PB.4 

8.6. In the circuit of Fig. P8.5 the capacitance C is so large that the ripple 
in e2 is negligible. The input voltage e1 is an audio-frequency square wave 
of amplitude E1. Use a piecewise-linear triode model with Tp = 30 kilohms, 
Tu= 0, andµ= 50. 

+300v 

C 

Fig. PB.5 

(a) Sketch and dimension the operating path of the tube on the piecewise­
linear plate curves. 

(b) Plot the d-c output voltage E2 vs. E 1• 

8.7. (a) What is the minimum value of E in Fig. P8.6(b) for which the 
tube in Fig. P8.6(a) remains cut off during the interval O < t < 0.01 sec.? 

(b) With E equal to the value found in part (a), sketch and dimension the 
output voltage waveform, indicating the values of time constants on expo­
nentials. 
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200v 

62 

f I i ' 81 0.02µ.fd 

Lo.oi-J 
-=- sec 

(a) (b) 

Fig. P8.6 

8.8. In the circuit of Fig. P8.7, assume a piecewise-linear triode model 
with plate resistance rp and cutoff for eb + µec negative. The input voltage e1 
is zero until a negative step of magnitude E1 is applied at time zero. 

R 

Fig. P8.7 

(a) What is the maximum value of E1 for which the tube never cuts off? 
(b) What is the minimum value of E 1 for which the tube is permanently 

cut off after the step is applied? 
(c) Sketch e2 (t) for a value of E 1 somewhere between the two values found 

in (a) and (b). 
8.9. Determine the plate power dissipated by the triode with and without C 

present in the circuit of Fig. P8.8(a) when the repetitive waveform e1 (t) 
shown in Fig. P8.8(b) is applied. The triode may be represented by a 
piecewise-linear model with µ = 20 and r P = 10 kilohms. 

8.10. Input and output voltage waveforms for the circuit of Fig. P8.9(a) 
are as shown in Fig. P8.9(b). Derive an expression for the average value of e2 
in terms of the time intervals, circuit parameters and voltages shown. 

8.11. In the circuit of Fig. PS.lO(a) the triode may be represented by a 
piecewise-linear model withµ = 20, rp = 10 kilohms, and r0 = 0. Determine 
the waveform of the output voltage eo with e1 as shown in Fig. P8.10(b). 

8.12. The circuit shown in Fig. P8.ll (a) is used as a pulse-width discrimi­
nator. For an input pulse duration <h ~ 4 µsec, the variational output is to 
be zero. For o 1 ~ 6 µsec, the output pulses are to have an amplitude of 60 volts. 
Find the values required for C, Rb 2, and Ek, Let the triodes be represented 
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Ebb= 200 volts 
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200 

0 

"1 

1000 
µµf 

(a) 

sof---100-I 
(b) 

Fig. PS. 10 

+ 

t(J.isec) 

by a piecewise-linear model with µ = 20, rp = 10 kilohms, r 0 = 1 kilohm. 
Make simplifying approximations but check their validity or indicate the 
limitations they impose on the accuracy of the solution. 

8.13. The 10 microsecond input pulse for the circuit of Fig. P8.12 has a 
repetition frequency of 5 kc. Sketch and dimension the waveform of output 
voltage e2. 

8.14. The triodes in the circuit of Fig. P8.13(a) can be approximated by a 
piecewise-linear model with µ = 25, rp = 20 kilohms, and r0 = 1 kilohm. 
The input waveform is as shown in Fig. P8.13(b). In terms of the circuit and 
triode parameters, what is the maximum ratio oi/02 that permits complete 
charging of capacitor C (5 time constants) during 02 while maintaining 
ec2 < -Ebb/µ during 01? 

8.15. Referring to the circuit and input waveform in Fig. P8.13, express 
the positive overshoot on ec2 in terms of circuit parameters. 

8.16. Referring to Problem 8.14, let o1 = 40 µsec, 02 = 60 µsec, Rb1 = 20 
kilohms, R0 = 200 kilohms and C = 1000 µµf. Sketch and dimension the 
waveforms eb1(t), ex(t) and ec2(t). 

8.17. For the conditione of Problem 8.16, sketch the locus of the triode 
operating point (ib vs. eb), 
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Ebb=200v 
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ex 

(a) 
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Fig. P8.13 
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8.18. The four-segment path in Fig. P8.16 is the locus of the operating 
point of triode V 1 in the ib vs. eb plane when the periodic waveform e1 (t) shown 
in Fig. P8.14 is applied between the grid and cathode. The intervals BC and 
DA are both long compared with the time constants of the circuit of Fig. PS.15. 

<U 
E 

25 

20 

;. 15 
.,::, 

10 

Fig. PB.16 

(a) What is the value of Rbi in ohms? 
(b) What is the value of R0 in ohms? 
(c) During which segment of the locus is capacitor C charging? 

-6 

(d) By what voltage does the voltage on capacitor C change during locus 
segment CD? 

(e) What is the resistance in ohms which determines the charging time 
constant? 

Fig. PB.17 

8.19. With the a-c sources e1 and e2 both set equal to zero, the triode circuit 
shown in Fig. PS.17 operates at certain d-c values of eb and ib, Show how 
you would find these d-c values 

(a) From the approximate piecewise-linear triode model, and 
(b) By graphical construction on the Type III triode curves. Let r P and µ. 

be the constants of the linear incremental triode model valid in the neighbor­
hood of the d-c operating point. 
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(c) With e1 a small fixed-amplitude a-c signal and with e2 set equal to zero, 
suppose that R is adjusted to make v2 (as measured by an a-c voltmeter) take 
exactly half of its open-circuit (infinite-R) value. Find this value of R in 
terms ofµ, rp, Rb, and Rk, Assume that the frequency of e1 (t) is high enough 
to give negligible ripple voltage across C1 and C2, but not so high as to make 
tube and stray wiring capacitances important. 

(d) With e1 set equal to zero and with e2 a small fixed-amplitude a-c signal 
at the same frequency as in part (c), suppose that R is adjusted to make v2 
take exactly half of its short-circuit (zero-R) value. Find this value of R in 
terms ofµ, rp, Rb, and Rk, 

(e) How are the values of R found in (c) and (d) related to the so-called 
incremental output resistance of the amplifier? 

(f) Repeat with the left-hand terminal of capacitor C2 connected to the 
cathode instead of the plate. 

+ 

e2 

L '-----------+--------+----
Fig. PS.18 

8.20. In Fig. P8.18 assume that the grid-cathode capacitance including 
wiring is 12 µµf. The grid-plate capacitance including wiring is 8 µµf. Neglect 
the plate-cathode capacitance. 

(a) Using the Type I triode plate characteristics, findµ, gm, and rp at the 
quiescent operating point for R2 = 20 kn. 

(b) Calculate the effective grid-to-ground capacitance assuming R1 and 
Ra large. 

t 
Iv 

0 

~----500 µ. sec ---•-' 

Fig. PS.19 

(c) With e1 a periodic square wave, as shown in Fig. P8.19, plot the output 
waveform e2, assuming that Cc is infinite and Cu has the value calculated in (b). 
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(d) With e1 as in Fig. P8.19, plot the output waveform e2, assuming that 
C0 is zero and Cc = 0.015 µf. 

(e) Sketch the waveform of e2 if C0 has the value in (b) and Cc = 0.015 µf. 
(/) Show on the plate characteristics the operating locus of the tube. 
8.21. Using the same circuit as in Problem 8.20, apply an input voltage 

e1 = 2 cos wt. 
(a) On semi-log paper plot the voltage gain in decibels as a function of 

frequency relative to the midband gain. What is the upper half-power 
frequency? What is the lower half-power frequency? 

Plot on the same coordinates the phase characteristics as a function of 
frequency. 

(b) Plot on polar coordinates the complex locus of the voltage gain. Show 
the location of points corresponding to the midband frequency, the lower half­
power frequency, the upper half-power frequency. 

0.001 µf ~--- µ=20 
1j, =6.5k0 

50 kn 

0.025 µf 

Fig. PS.20 

8.22. From the circuit of Fig. PS.20, sketch and dimension: 
(a) the response curve I A (jw) I ; 
(b) the transient response to a 1-volt step. 
8.23. Using an appropriate linear incremental circuit model, calculate 

the small-signal a-c voltage amplification A = e0/e1 of the circuit shown in 
Fig. PS.21. Assume that capacitances C1 and Ck are large. 

8.24. With the circuit of Fig. P8.21 initially at rest, a negative pulse of 
magnitude E 1 and short duration T is applied at the input terminals. Plot 
the magnitude of the output voltage pulse E o as a function of E 1. 

8.25. In Fig. P8.21 all parameters except Ebb and Rk are to remain as given. 
Ebb and Rk are to be determined for the following operating conditions. 

A periodic square wave having a peak-to-peak amplitude of 16 volts is to 
be applied to the input of the amplifier. Under steady-state conditions, the 
minimum allowable plate current is specified as ib = 2 ma and the maximum 
allowable grid voltage is specified as ec = 0 volts to avoid cutoff and grid 
current. 
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Find the peak-to-peak amplitude of the output voltage waveform and the 
required values of Rk and Ebb, 

Ebb= +250v 

+ 
• • 5k0 

C1 
Ideal 

• r--7 Type I 
triode 

el Rg 
Ck 

Fig. PB.21 

8.26. For the circuit and input waveform shown in Figs. P8.22(a) and (b), 
sketch and dimension the output waveform, using a Type IV triode. Compare 
the results with those obtained when a Type V triode is used. 

200v 

100 µµ./ 

lOOkO 

(a) 

+50 ,-----

-so I 100 --1- 100 I 
f'E- µsec µsec-, 

Fig. PS.22 

8.27. Using the Type II triode characteristics, plot the locus of the operating 
point for the circuit and input waveform shown in Fig. P8.23. 
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Fig. PS.23 

8.28. The triode in the cathode-follower circuit shown in Fig. P8.24 is 
Type I. 

(a) With es = O, graphically determine the quiescent operating point. 
(b) Determine the values ofµ, rp, and Ym at the operating point of part (a). 

250v 

--::-

Fig. PS.24 

(c) Derive the expression for the incremental voltage gain /::,.e 0//::,.e3 in terms 
of µ, r p, and Rk. 

(d) Determine the expression for complex voltage gain if a capacitor C is 
now connected across Rk. 

8.29. Assume a piecewise-linear triode model in the circuit of Fig. P8.25 
with R very much larger than rp and wRC very much larger than unity. 

(a) Sketch a qualitative curve of steady-state d-c output voltage E2 vs. 
the amplitude E 1 of the a-c input signal. 

(b) Sketch and dimension a quantitative curve of E2 vs. E1 based upon 
the piecewise-linear triode model. 

(c) How would you expect an experimental curve to differ from that of 
part (b)? 
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Fig. P8.25 

8.30. The tube represented by the linearized characteristics of Fig. P8.26 
is used as an "infinite-impedance" detector in the circuit shown in Fig. P8.27. 
With the circuit at rest, the two pulses shown in Fig. PS.28 are applied to 
the input. 

(a) Plot carefully the output voltage over the time interval O < t < 100 
µsec. 

20 

CV 

~ 10 
... '° 

100 200 300 
µ=20 1p= lOkO 

Fig. PS.26 

-5 

-10 

-15 

(b) Sketch the tube characteristics and indicate the operating locus for the 
tube during the interval 20 < t < 55 µsec. Locate, on the path, points corre­
sponding to the times t = 20-, 20+, 40-, 40+, 50- µsec. (Show an enlarged 
section of the characteristics, if necessary.) 

8.31. The circuit shown in Fig. P8.29(a) has the negative-step input 
indicated in Fig. P8.29(b). 

(a) Justify the piecewise-linear model given in Fig. P8.29(c). 
(b) Using this model, sketch and dimension e2 (t) for E 1 less than V /µ. 
(c) Repeat part (b) for E 1 greater than V /µ. Try to deduce the answers 

directly from the circuit model. 
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8.32. A cathode follower is used to couple pulses from a source to a capacitive 
load. The present design, shown in Fig. P8.30(a), yields a satisfactory rise 
time but the output fall time is too large. The circuit shown in Fig. P8.30 (b) 
has been proposed as one with better response for this application. Sketch 
and dimension the waveform e2 (t) for each of the two circuits. 

+ 100 

-100 

+250 

rp = l.5k0 
µ,= 15 
rg= lkO 

0.01µ.f 
+ 

ez 

200 50 J-
et I µsec lµ.se9 

+250 

Fig. PS.30 

8.33. A triode is operated as a cathode follower with a supply voltage 
Ebb = 250 volts. The circuit is used to drive a coaxial transmission line which 
can be represented here as a resistance Rk = 2 kilohms in parallel with a 
capacitance Ck = 100 µµf, the parallel combination being connected between 
cathode and ground. Other capacitances in the circuit are negligible. The 
input voltage e1 (from grid to ground) is originally zero and the system is at 
rest when a negative step of height E 1 is applied at t = 0. Assume that the 
tube is piecewise-linear with rp = 10 kilohms andµ = 20. 

(a) Sketch and dimension the cathode voltage ek(t) for E 1 = 1 volt. 
(b) Repeat for E1 = 20 volts. 
(c) What is the greatest initial rate of decrease (volts/sec) of ek(t) obtain­

able with this circuit for any value of E 1? 
8.34. In the circuit of Fig. P8.31, the input voltage e1 (t) is zero for negative 

time and minus one-tenth volt for positive time. Choose a suitable circuit 
model to represent the operation of the triode in this problem and explain 
how to determine suitable values for the parameters in the model. Calculate 
the output voltage e2 (t) for Rk not equal to zero, and Rk equal to zero. 

8.35. A small negative step voltage of height E 1 is applied to the input 
terminal of the amplifier shown in Fig. P8.32. The input voltage is zero 
(ground) before the step is applied. 

(a) Sketch and dimension the total output voltage e2 (t) as a function of 
time. Assume that triode plate curves are available and that capacitor C is 
the only important energy-storage element in the circuit. 

(b) Sketch and dimension the log-log plot of E 2 versus frequency when e1 
is a sinusoid of small fixed amplitude and E~ is the amplitude of th~ sinusoidal 
component of the output voltage. · 
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Fig. PS.31 Fig. PS.32 

(c) Sketch and dimension e2(t) for a small negative step applied at e1, 
using a piecewise-linear triode model instead of the nonlinear plate curves and 
with capacitor C replaced by an ideal inductor L. 

7:o= lOkO 
µ=20 

el 0 ,.__ ... 

_lL C 

Fig. PS.33 

8.36. A single 0.1-volt pulse of 100 µsec duration is applied at e1 in the 
circuit of Fig. P8.33. Sketch and dimension: 

(a) The cathode voltage ek(t). 
(b) The output voltage e2 (t), for a value of C which makes the time constant 

r five times the pulse duration. What is the value of C? What is the qualita­
tive effect of plate-to-cathode capacitance? 

8.37. (a) In discussing the response e2 (t) of the circuit in Fig. P8.34(a) to 
the input wave e1 (t) shown in Fig. P8.34(b), what time constant r is relevant, 
assuming that T is large enough so that interelectrode capacitances may be 
neglected, and that E is such that the tube operates in the linear region of 
its characteristics? Express r in terms of R1, R2, C, µ, rp. 
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Fig. PB.34 

(b) If r = 100T, i.e., if we can assume ideal coupling, sketch and dimension 
the output wave e2 (t). Consider e1 (t) to have been on for a long time so that 
the circuit is in the steady state. 

8.38. A triode is operated as a grounded-cathode amplifier with a plate load 
Rb = 20 kilohms. Assume linear operation with rp = 20 kilohms and 
µ = 40. Use the linear incremental equivalent circuit. A capacitance 
Cup = 100 µµf is purposely connected between the grid and plate terminals 
and a small input step voltage of height E1 is suddenly applied at the grid. 
Other capacitances may be ignored. Sketch and dimension the input current 
i 1 (t) drawn from the input voltage source. On the basis of this waveform 
deduce an equivalent passive RC circuit which would draw the same input 
current as the actual tube circuit. Evaluate the constants of this circuit both 
literally (in terms of rp, µ, Rb, Cup) and numerically. How much larger than 
Cup is the capacitance appearing in the equivalent input circuit? (This 
aggrandization of capacitance is called the Miller effect.) 

-V 

aie -h__ 

+ 

1c 
e1 + 

R C e2 

e C 

(a) 

rb 

b (b) 

Fig. PB.35 
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8.39. A transistor is to be used as a common-collector amplifier to drive a 
capacitive load, as shown in Fig. P8.35(a). If energy storage in the transistor 
is neglected: 

(a) What is the emitter voltage waveform for a small negative step of base 
current i1? 

(b) What is the small-signal frequency response? 

-Vc 

+ 

I sin wt= i1 f C 

r_ 
-----------------0 

Fig. PS.36 

8.40. From the circuit shown in Fig. P8.36, find the frequency at which the 
output voltage drops to 0.707 of its midband value (that is, its value when 
capacitor C can be neglected), in terms of re, rb, r c, a and the circuit parameters. 
Assume Ce is large enough to be considered an a-c short circuit for all frequen­
cies being considered. 

+ 100v 

(a) 

co 
E_ 4 i-----+--#----.1-
.,..0 

20 40 60 80 100 120 
eb, volts 

(b) 

Fig. PS.37 

8.41. The plate characteristics of the tube used in the circuit of Fig. 
P8.37(a) are shown in Fig. P8.37(b). A -4 volt step is applied at e1 at t = 0. 

(a) Sketch the operating path of the tube on the plate characteristics. 
(b) Sketch and dimension in voltage and time the response e2 (t). 
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8.42. A Type I triode is used in the amplifier circuit shown in Fig. P8.38. 
The tube is shunt fed and load is capacity coupled to the plate. A cathode re­
sistor is used to obtain self bias. Determine the operating point for the tube 
under zero signal conditions. 

.-------o250v 

+ 

15v to 
~ 

20kfl 

Fig. PS.38 

Application of a large grid signal causes the operating point to shift from 
its quiescent value. Find the new operating point when a square wave of 
15 volts peak-to-peak amplitude is applied to the grid. It may be assumed 
that C1 and C2 are sufficiently large so that there is no variation in voltage 
across their terminals during the signal cycle. Similarly, Lis so large that there 
is no current variation in the inductor during the signal cycle. 

Rb 

Ebb cos wt C 

Fig. PS.39 

8.43. A triode d-c amplifier has a plate supply voltage generated by a simple 
rectifier as shown in Fig. P8.39. Use a piecewise-linear triode model. 

(a) Calculate the approximate peak-to-peak value of the ripple appearing 
at the output e2. Notice that the amplitude of this hum or ripple will depend 
upon the value of the d-c input voltage e1. Assume that C is large enough 
so that the diode conducts during a very small portion of the cycle. 

(b) For Ebb = 300 v, Rb = 20 kilohms, rp = 10 kilohms, and w/21r = 60 
cycles, what capacitance would you use to keep the ripple below one-tenth 
volt over the entire range of amplifier operation lying between cutoff and grid 
current? 

(c) Where in the circuit would you insert an additional R and C or an 
additional Land C in order to obtain appreciable ripple reduction (or the same 
ripple with smaller total capacitance)? 

8.44. In the circuit of Fig. P8.40, e1 (t) is a square wave of period T, maxi­
mum value 0, and minimum value -2 volts. Sketch the operating path in the 



WAVE SHAPING AND AMPLIFICATION 413 

ib vs. eb plane and indicate the rates at which the instantaneous operating 
point moves about on this locus. Assume that the period Tis equal to twice 
the time constant associated with Cc and twenty times as large as the time 

300v 

20k0 

Fig. PS.40 

constant due to C8 • Also sketch the actual a-c waveforms of eb(t) and e2 (t) 
superimposed upon the idealized waveform which would result for Cc = oo 
and Cs = 0. 

8.45. In Fig. PS.41: 
(a) How large must Ebe in order to cut off the tube during the pulse shown 

in Fig. PS.42? 

rp= lK 
µ,'=20 

-=-
Fig. PS.41 

l
el 
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Fig. PS.42 

(b) With E equal to or greater than the value found in part (a), sketch and 
dimension the output voltage waveform. 

8.46. From Fig. PS.43, determine the amplification ede 1 in terms of the 
circuit parameters. Neglect Cc and the biasing filter (RkCk) but not R2. 

8.47. Figure P8.44 shows an amplifier whose input is a negative 2-volt step. 
(a) Derive an incremental expression for the transient of e0• 

(b) By graphical construction determine the initial and final values for the 
variation of eo and superimpose these on the solution to part (a). 

8.48. The amplifier in Fig. P8.45 is to deliver ¼ watt to the load. The 
constraints are as given on page 414. 
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L 

Type I 

+ 
'1 

(a) No grid current. 

C 

Fig, PS.43 

40k0 

Fig. PS.44 

(b) A minimum plate current of 3 ma. 

1µ,f 

(c) A maximum d-c plate power dissipation of 2 watts. 
Determine Ebb and n. 

+ 

+ 

8.49. Using a piecewise-linear model for the triode in the circuit shown in 
Fig. P8.46 with µ = 25, rp = 10 kilohms, determine the operating point. 
The signal source yields a sinusoidal voltage V8 = 6 cos wt. Find the following: 

(a) The amplitude of the sinusoidal component of the anode voltage (the 
so-called anode voltage swing). 

(b) The amplitude of the anode current swing. 
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Fig. PS.45 

(c) The signal power Ps dissipated in Ra, 
(d) The total power dissipated in Ra, 
(e) The total power Pt delivered by the plate supply. 
(f) The power dissipated in the tube. 
(g) The efficiency Pal Pt, 

Fig. PS.46 

415 

8.50. The triode of Prob. 8.49 is coupled to the load by means of an ideal 1: 1 
transformer, as in Fig. P8.47. The value of Ebb is chosen so that the tube has 
the same d-c operating point as in Prob. 8.49. Find, for the same Vs: 

(a) The amplitude of the anode voltage swing. 
(b) The amplitude of the anode current swing. 
(c) The (a-c) power PB dissipated in R . 

.-------, 1:1 

oR.=20kll 
6v 

Fig. PS.47 
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(d) The power Pt delivered by the plate supply. 
(e) The power dissipated in the tube. 
(f) The efficiency, Pal Pt. 

t+ 
e2 

L '--______ ...,_ ______ .,__--0 

Fig. PB.48 

8.51. The triode shown in Fig. P8.48 is to be represented by an incremental 
model. Operating conditions are such as to prevent flow of grid current. 

(a) Assume R 2 = oo. Calculate the incremental gain e2/e1 in terms ofµ, 
gm, and R1. 

(b) Find the value of R2 for which the gain e2/e1 is half of the value found 
in (a). 

(c) From these results, find the internal resistance of the cathode-follower 
circuit facing C and R2. 

(d) Check this value with the equivalent resistance of R 1 and rp/(µ + 1) in 
parallel. Neglect the effect of C. 

Fig. PB.49 

8.52. The triode shown in Fig. P8.49 has zero d-c bias at the grid. It is to 
be represented by a piecewise-linear model. The value of Rs is equal to ru 
for the model. Sketch the anode voltage when the grid circuit is driven by a 
sinusoidal voltage Vs, 

8.53. From Fig. P8.50, sketch e2 as a function of time, when e1 is a sinusoidal 
voltage. No grid current flows and the time constant RC is considerably 
larger than the period of the input signal. 

8.54. In the circuit of Fig. P8.51 the triodes are Type I and the input wave­
form is repetitive. Assume Tg = 1 kilohm for ec > 0. 
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Fig. PS.SO 

(a) Determine the minimum value of Co that will maintain plate-current 
cutoff in the first triode during interval 08 • 

(b) Determine values for Ek and C to cause the second triode to be driven 
from plate-current cutoff to the grid-current point during the interval os, 

+200v 
+200v 

+ 

+25 

0 

Fig. PB.51 

assuming the capacitor C discharges essentially completely during the inter­
val o. 

(c) What is the minimum value of o that will yield this condition? 
(d) Estimate the deviation from linearity of e2 (t) during the interval Os. 

8.55. A small-amplitude input signal e1 = E 1 cos wt is applied to the circuit 
of Fig. P8.52. Assume that wRkC and wL/Rb are very large. Sketch the 
operating path in the ib vs. eb plane. 

8.56. In the circuit of Fig. P8.53 assume that the susceptances of stray and 
interelectrode capacitances and the reactances of the large coupling capaci­
tances C 1, C 2, and Ck are negligibly small. Use a piecewise-linear triode 
model with rp = 10 kilohms, rg = 2 kilohms, and Ym = 2000 microhms. 
The input voltage e1 is a square wave of amplitude E 1• The resulting output 
voltage, under the above assumptions, is also a square wave, of amplitude E2. 

(a) For E 1 = 0, show that the static operating point lies at the intersection 
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C Ck 
50k0 

Fig. PS.52 Fig. PS.53 

of the d-c load line Ebb = eb + (20 + Rk)ib and the d-c bias curve ec + Rkib = 
0. On the piecewise-linear plate curves, what is the slope of the bias curve in 
terms of rp, µ, and Rk? 

(b) Choose Rk so that the tube will reach cutoff and grid current for the 
same value of E 1. What is this value of E 1? Sketch and dimension the operat­
ing path of the tube on the piecewise-linear plate curves. 

(c) Using the a-c incremental model, find the gain A = EdE1. 
(d) With Rk = 0, plot E 2 vs. E 1• The grid circuit now acts as a rectifier. 

Carry the plot beyond the value of E 1 for which cutoff occurs during the cycle. 

Ebb 

Fig. PS.54 

8.57. The circuit of Fig. P8.54 is a cathode-follower amplifier with a total 
effective shunt capacitance C8 • 

(a) What is the midband gain !:J,.e2f /:J,.e 1? 
(b) What is the lower half-power frequency w1? 
(c) What is the upper half-power frequency w 2? 
(d) Sketch and dimension log IE2/E1 1 vs. log w over the region of interest. 
8.58. Find the operating point for the Type II triode in the circuit of Fig. 

P8.55. Find the incremental parameters of the tube at this operating point. 
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Use the incremental parameters to find the amplitude and phase of the a-c 
components of ib, eb, and ek that are developed when a small sinusoidal signal 

+ 
\'c = 40-=-

Fig. PB.55 

+ 

+ 
-=-300v 

eo sin wt is connected in series with the voltage source V c• Summarize your 
results by drawing an appropriate vector diagram. 

The ,sinusoidal signal connected in series with Ve is replaced by a step 
function generator which produces a one-volt step at t = 0. Employing 
incremental analysis, find the expression for eb as a function of time. 

Ebb 

I 
1 
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I 

C 

:~:Cpk 
I 
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I 

Fig. PB.56 

ib ~ 2(ec1 + 4) ma 
ic2 ~ 0.75(ec1 + 4) ma 
ec2 = 67.5 V 

Ebb= 100 v 
Cpk ~ 3 µµf 

R2 = 1 megohm 

8.59. The pentode circuit shown in Fig. P8.56 is to be used to amplify 
rectangular pulses of duration T and height E1. Choose Rk and Rc2 so that 
the quiescent operating point (e1 = 0) lies halfway between ec1 = 0 and 
cutoff and so that ec2 = 67.5 volts. 

(a) With Cc 2 and C assumed arbitrarily large, the output voltage e2 rises 
with a time constant Tr toward a value E2, in response to the leading edge of 
a negative pulse of height E 1• Discuss the choice of Rb for maximum gain 
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A = E2/E1 and minimum rise time Tr. For a gain of 12.5, what are Rb and 
Tr? What are the quiescent values of plate voltage and plate current? What 
is the minimum pulse length T which can be amplified with reasonable fidelity? 

(b) Still assuming C c2 arbitrarily large, but ignoring C pk, explain the effect 
of C upon the shape of the output voltage response when a very long pulse 
is applied. Suggest approximate values for C c2 and C such that a pulse 100 µsec 
in length shall not droop by more than 20 per cent. 

Fig. PS.57 

8.60. Determine the incremental impedance Z for Fig. P8.57. Neglect the 
bias filter RkCk, 

300v 

+1+[",nna, ___ . n 
_J ~ '--
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-40 

Fig. PS.58 

8.61. The circuit of Fig. P8.58 is expected to yield a nearly linear sweep 
voltage during the interval 08 = 100 µsec. The triodes can be represented 
by a piecewise-linear model withµ = 20, rp = 10 kilohms and ru = 1 kilohm. 

(a) What is the maximum linear sweep amplitude Ea available at the 
output terminals? 

(b) What value of C will yield this amplitude Es in the interval 011 = 100 
µsec? 

(c) What is the sweep linearity? (Ratio of slope at t = Os to slope at t = 0.) 
8.62. The circuit shown in Fig. P8.59 is to be used as a frequency meter• 

Input voltage consists of a square wave that alternately drives the grid voltage 
to zero and beyond plate-current cutoff. The diodes have a resistance of 
1 kilohm when conducting. The rnilliarnrneter may be assumed to indicate 
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average current and the meter resistance is included in the 1-kilohm resistor 
shown. The effects of tube and wiring capacitances may be neglected. 

+ lµ.f 

Fig. PB.59 

Determine the values of C 1, C 2, and Ca required to yield full-scale meter 
deflection for input frequencies of 105, 104, and 103 cps, respectively. 

8.63. Referring to Problem 8.62, assume the milliammeter to be linear and 
to have a scale that can be read to within 0.5 per cent of the full scale reading. 

Determine the maximum percentage error in frequency determination result­
ing from an assumed linear relationship between frequency and meter current. 

Determine and plot a correction curve (deviation from linearity versus per 
cent of full scale deflection) for the high-frequency scale. Is the same curve 
applicable to the other two scales. 

8.64. The triodes in the circuit of Fig. P8.60 are Type I. Sketch and dimen­
sion the waveform of voltage e3 for input waveforms e1 and e2 as shown. The 
diodes may be assumed to have 1-kilohm forward resistance and infinite back 
resistance. 

8.65. The 2: 1 step-down transformer in the circuit of Fig. P8.61 has a 
magnetizing inductance Lm = 100 mh referred to the primary winding. 
Neglecting the effects of leakage inductance and stray capacitances, sketch 
and dimension the waveform of output voltage e2• The 2-µsec input pulses 
occur at a repetition frequency of 500 per second. 

8.66. The triode in the circuit of Fig. P8.62(a) can be represented by a 
simple piecewise-linear model with µ = 20, rp = 10 kilohms, and r 0 = 1 kil­
ohm. The 2: 1 turns-ratio pulse transformer has a magnetizing inductance 
Lm = 100 mh referred to the primary winding. Leakage inductance and 
stray capacitance can be neglected. 

The desired output is the repetitive flat-topped waveform shown in Fig. 
P8.62(b). 

(a) Sketch and dimension a suitable input waveform to yield the flat­
topped output pulse. 

(b) Determine the amplitude and time constant of the negative overshoot 
on the output waveform, " 
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8.67. Using the Type I triode curves, plot the locus of the operating point 
in the ib vs. eb plane of the first stage of the circuit shown in Fig. P8.63. 
Assume Lm = 100 mh as seen from the primary of the 2: 1 pulse transformer. 

?200v 300v 

SkO 

+ 

n .. : e2 

J2 µ.sec!-

-=-
Fig. PS.63 

Neglect leakage inductances and stray capacitances. The input waveform 
shown has a repetition rate of 1000 per second. Assume r0 = 1 kilohm for 
Cc ~ 0. 

8.68. The input voltage e1 for the circuit of Fig. P8.64 cuts off T1 for an 
interval Ts = 100 µsec and during the remainder of the 1000 µsec repetition 
interval T1 conducts with grid-cathode voltage equal to zero. The push-pull 
output, direct-coupled to the cathode-ray tube deflection plates, is required 
to produce a properly centered 4-inch sweep deflection. (Deflection factor 
is 50 volts per inch.) Using the Type I triode characteristics determine 
graphically the required value of E 3 and calculate the value of C required. 

8.69. The ringing circuit shown in Fig. P8.65 is coupled to a cathode follower 
to minimize loading of the tuned circuit. The rectangular input wave e1 has 
a repetition frequency of 5000 cycles per second. Type I triodes are used. 
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(a) Determine the values of L and C required to produce a ringing oscilla­
tion which has a frequency of 100 kc and a peak-to-peak amplitude of 100 volts 
(neglecting damping) at the output e2. 

(b) Determine the proper position for the bias tap on the cathode follower 
load resistor (total Rk = 10 kilohms) to avoid clipping. 

(c) Determine the minimum amplitude E required of the input pulse. 
(d) Determine the additional circuit elements required to provide the 

ringing tube plate voltage (100 volts) from a 200-volt supply. 

Ebbo------~-------1~---------..-----, 
300 volts 

C 

l_J el 

T2 

Fig. PB.64 

100 V 

Fig. PB.65 

5k0 

200 V 

+ 

8.70. Assume the diode in the circuit of Fig. PS.66 to be ideal (forward 
resistance zero and back resistance infinite). At t = 0, current in the induct­
ance Lis Io and capacitor voltages are zero. Sketch and dimension the wave­
forms of e1 and e2 for t > 0. 

8.71. The 100-µsec rectangular input pulse for the ringing circuit shown in 
Fig. PS.67 has a repetition frequency of 2000 cps. The output voltage is 
to be squared and peaked to form timing markers from the positive-going 
edge of each ringing cycle. 
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+ 

C 3C 

Fig. PS.66 

(a) What value of C is required to produce pulses at 10-µsec intervals? 
(b) What is the minimum value of input pulse amplitude E necessary for 

satisfactory operation? 

2Mn 

r u_/5

~ 

--l100 µ. sec 1--

+ 

C 

Fig. PS.67 

8.72. In the circuit shown in Fig. P8.68, current through the deflection coil is 
required to vary linearly with time from 10 ma to 110 ma during the interval 
Ta = 100 µsec. The repetition interval is Tr = 1000 µsec. 

Using the Type I triode and Type II pentode characteristics, determine the 
values of R and C required in the sweep generator circuit. 

8.73. Sketch and dimension the output voltage waveform e2 (t) for the circuit 
shown in Fig. P8.69. Magnetizing inductance seen from the primary of trans­
former T 1 is Lm = 100 mh. Neglect leakage inductances and stray capaci­
tances. Assume rg = 1 kilohm for ec > 0. The diode has 1 kilohm forward 
resistance and infinite back resistance. 

8.74. From the circuit given in Fig. P8.70, find, for the curve IA(jw)I, 
(a) resonant frequency (cps); 
(b) Q; 
(c) bandwidth (cps); 
(d) A at resonance. 
8.75. An inductor is representable by a pure inductance L in series with a 

resistance R L, Consider the impedance Z (jw) of the parallel combination of 
the inductor, a pure capacitance C, and a resistance Re. Let w 0 = 1/VLC, 
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Ro = VL7c, and assume RL <<Ro<< Re. For frequencies near w0, show 
that 

Z(jw) 

where 

300v 300v 

-150v 

Fig. P8.71 

Re 
Qc=­

Ro 

300v 

K 

160 

8.76. Complete the design of the amplifier circuit shown in Fig. P8. 71 by 
specifying the tube types, all resistors (ohms and watts), capacitors and turns 
ratio of the output transformer. The amplifier is to fulfill the following 
specifications: 

(a) The final stage is designed to deliver maximum power with small dis­
tortion and no grid current, this power to be 5-10 watts. 

(b) The transformer when in the circuit is expected to cause half-power 
frequencies of 50 cps and 10,000 cps. Make the rest of the amplifier flat in 
frequency response from 5 cps to at least 100,000 cps. 

After designing the amplifier calculate the value of maximum power into 
the load and the magnitude of sinusoidal voltage ein necessary to produce it. 

8.77. (a) Assume the amplifier of Problem 8.76 to be linear. Calculate the 
equivalent circuit faced by the 16-ohm load resistor. 

(b) Do the same with switch K closed. 
(c) If the gain of the driver stage should change (due to tube aging) 10 per 

cent, what per cent change in output power would this 10 per cent change 
cause for switch K open? Switch K closed? 



C H A p T E R N N E 

Waveform Generation 

9.1 Introduction 

The circuits that generate the various waveforms used in electronic 
systems are called oscillators. Very good approximations to the idealized 
waveforms such as rectangular waves and sine waves are readily gen­
erated by rather simple oscillator circuits. Other waveforms can be 
derived by wave-shaping operations performed on one of the basic wave­
forms. It is apparent that there is some overlap between the functions 
called wave shaping and actual waveform generation. We shall dis­
tinguish between them by considering the generator or oscillator to be 
the simplest circuit that will generate a sustained repetitive waveform 
of voltage or current. Additional circuitry then falls into the category 
of wave-shaping equipment. 

9.2 Properties of Oscillators 

Oscillators can be designed to produce power outputs ranging from a 
few microwatts to many kilowatts, frequencies ranging from a fraction 
of a cycle per second to thousands of megacycles per second, and wave­
forms ranging from sine waves to markedly discontinuous waves. The 

428 
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three components required for generating self-sustained oscillations are 
a power source, an energy-storage system, and a control valve capable 
of releasing power from the source to the energy-storage system. Con­
trol of the power source may be exercised by vacuum tubes, gas-filled 
tubes, transistors, or any other device that can provide incremental 
power gain. Inductors, capacitors, electromechanical transducers (such 
as piezoelectric crystals or magnetostriction rods), or combinations of 
these, can be used as energy-storage systems. In electromechanical 
transducers the oscillations are actually in the form of mechanical vibra­
tions, and the energy storage is in the form of potential and kinetic 
energy. Nevertheless, such devices display an equivalent inductance 
and capacitance at their electrical terminals. For our purposes we need 
not go beyond the electrical description of the energy-storage system in 
terms of inductance and capacitance. 

The energy-storage system plays a major role in determining the 
waveform of the oscillator output. For example, a single inductance or 
capacitance tends to produce distinctly nonsinusoidal waveforms called 
relaxation oscillations. When the energy-storage system includes both 
inductance and capacitance, the oscillator tends to produce a nearly 
sinusoidal waveform. An ideal lossless LC circuit will sustain sinusoidal 
oscillations if the capacitor is initially charged or if the inductance has 
an initial current. Since any physical circuit includes resistance, the 
natural oscillations are damped sinusoids for a physical inductor and 
capacitor. The incremental power gain provided by the control device 
must supply the loss of power due to dissipation in the resistance associ­
ated with the LC circuit, plus any power to be delivered to the oscillator 
load. The behavior of oscillator circuits with three- or four-terminal 
energy-storage circuits is conveniently represented by an amplifier 
coupled to the energy-storage elements as shown in Fig. 9.1 (a). The 
energy-storage elements are very likely to be integrally associated with 
the amplifier circuit. Detailed analysis of such oscillators evolves quite 
naturally from a consideration of the stability of linear amplifiers. 

An oscillator circuit in which the major energy-storage elements are 
connected between a single pair of terminals can be analyzed most 
conveniently in terms of incremental negative resistance. In contrast 
with positive resistance which dissipates power, negative resistance can 
be considered as a source of incremental power, thus providing a mech­
anism for sustaining oscillations. A physical circuit that produces a 
negative resistance must be nonlinear since a linear negative resistance 
implies an infinite source of power. 

In Chapters 5 through 8, we discussed a number of simple circuits that 
exhibit incremental power gain. When this transfer property exists in 



430 ELECTRONIC CIRCUIT THEORY 

a circuit, a negative driving-point resistance may also be obtained. 
If we include transformers among our circuit elements, any circuit 
that can provide inc rem en tal power gain from one pair of terminals to 
another pair can be modified to yield a negative incremental resistance 

A 

Input 
-
B 

-

d-c power 
supply 

t t 
Amplifier 

Energy-storage 

C 

system 

(a) 

d-c power 
supply 

Negative 
resistance 

C' 

Energy-storage 
system 

(b) 

A' 

Output 

B' 

-

-

Fig. 9.1. Waveform generation based on incremental power gain or incremental 
negative resistance. 

over a part of the driving-point curve that exists at a single pair of 
terminals. 

Relaxation oscillators and many types of sine wave oscillators fall into 
the category shown in Fig. 9.1 (b) and hence are readily analyzed by 
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using the negative-resistance concept. Before proceeding to the details 
of oscillator behavior, let us examine a number of circuits that produce 
a negative resistance. 

9.3 Negative Resistance in the Common-Base, 
Point-Contact Transistor Circuit 

A simple illustration of negative incremental resistance is provided by 
a common-base, point-contact transistor circuit. As shown in Fig. 9.2(a) 
it is a common-base circuit with an external resistance Rb added between 
base and ground. Because the short-circuit current gain of a point­
contact transistor is greater than unity (a = 2 to 3 for ie > O) any of 
the single-transistor circuits can exhibit a negative incremental resist­
ance. For a circuit that includes only one junction transistor (a < 1) 
a transformer is necessary to obtain negative resistance. 

The expressions given in Fig. 9.2 for slopes, intercepts, break points, 
and the relation between v1 and ie can be derived by break-point analysis. 

The curve shown in Fig. 9.2(d) determines voltage uniquely if the 
current ie is specified, but yields multiple values of current ie for some 
values of voltage v1. Such a curve is called a current-controlled negative 
resistance. 

9.4 Negative Resistance in a Common-Emitter, 
Point-Contact Transistor Circuit 

The input curve of a common-emitter circuit using a point-contact 
transistor provides another example of negative resistance. The sche­
matic diagram is shown in Fig. 9.3(a), and the circuit model is shown 
in (b ). The equation in (c) relating v1 and ib can be readily derived from 
the circuit model. The circuit differs only in numerical values (partic­
ularly that of current-gain a) from the corresponding junction tran­
sistor circuit. 

In this circuit, no values of the input variables v1 and ib ever yield the 
conditions for state I; hence, only II, III, and IV are pertinent. The 
curve of Fig. 9.3(d) shows that the current ibis a single-valued function 
of vi, whereas the voltage can have multiple values over a part of the 
range of ib, The unique specification of ib in terms of v1 leads to the 
designation of this type of curve as a voltage-controlled negative resistance. 

When piecewise-linear models are used to approximate nonlinear 
devices, break-point analysis must be supplemented by physical reason­
ing. Suppose two different circuits yield driving-point curves such as 
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-=- lb) 
(a) 

(c) . [ + (rb + Rb)[Rc + rc(l - a)J] (rb + Rb)Vcc 
V1 = '1,6 re --------- - ------

~ + ~ + ~ + & ~+~+~+& 
Slope R Intercept V 

State re re a 

I rer ref 0 

(d) II rer rcr 0 

III ref rcr a 

IV ref ref a 

Fig. 9.2. Common-base point-contact transistor circuit. 

those shown in Fig. 9.4(a) and (b). Analysis of these circuits might lead 
to the curves shown in (c) and (d) where break-point coordinates and 
slopes (resistances) are much the same. From the three state lines 
alone, it is impossible to tell whether the curve is voltage controlled as 
in (e) or current controlled as in (f). We must consider the physical 
behavior of the circuit to determine the sequence of linear states as 
current or voltage is varied. 
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II r er rcr 0 

III ref r,.r a 
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Fig. 9.3. Common emitter point-contact transistor circuit: 

9.5 Negative Resistance in a Series Triode Circuit 

The series-connected triodes shown in Fig. 9.5(a) provide another 
exa~ple of a simple circuit which exhibits a negative-resistance region 
in a driving-point curve. If the triodes are represented by piecewise­
linear models, the break-point method can be used to determine the 
state lines in the curve of i vs. v. Since total plate current (ib1 or ib2 ) is 
unidirectional, the only possible direction of current in either of the 
resistors R is downward. Thus ec1 and ~c2 cannot exceed zero, and the 
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only triode states that are of interest are those for ec ~ 0 as tabulated in 
Fig. 9.5(b). 

The circuit models shown in Fig. 9.5(c) and (d) specify the relation 
between v and i in states I and II. It is apparent from these models that 
triode T2 conducts with zero grid voltage when the circuit is in state I. 

(c) 

(e) Voltage 
controlled 

(b) 

(d) 

(f) Current 
controlled 

fig. 9.4. Voltage-controlled and current-controlled negative resistance. 

and T1 conducts with zero grid voltage when the circuit is in state II, 
The plate-current cutoff condition 

{9.1) 
µ 

marks the break point between states I and III, while 

(9.2) 
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Fig. 9,5, Series-connected triodes, 
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marks the break point between states II and III. The i vs. v curve 
plotted in Fig. 9.5(e) is obtained by drawing the lines for states I and II, 
locating the break points, and joining them to specify the state III line. 

Fig. 9.6. Effects of variations in Ron the i vs. v curve of the series-connected triode 
circuit. (a) R = O; (b) R = rp/(µ - 1); (c) R > rp/(µ - 1). 

The equation for i vs. v in state III can be written directly from the 
break-point coordinates. The intercept at Ebb/2 is logical, in view of 
the circuit symmetry with i = 0 in state III. The portions of the 
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state I and II lines that are pertinent are found by considering the 
values of v and i needed to hold the circuit in the specified state. 

The slope of the state III line will be negative for R greater than 
rp/(µ - 1). With R equal to rp/(µ - 1), the apparent resistance in 
state III is zero; and for R less than this yalue, the resistance becomes 
positive, as shown in Fig. 9.6. The variation of R shows the effect of a 
circuit parameter on the negative-resistance curve. The effect of 
changingµ or rp can be considered in a similar manner. 

V 

(a) 

(bJ 

dv 
RT = di = RN + R2 

= -R1 + R2 

RT=<!:!!_= RNR2 
di RN+ R2 

R1R2 
R1 - R2 

di 
GT= - = GN + G2 

dv 

Fig. 9.7. Series and parallel combination of positive and negative linear resistances. 

9.6 Some General Properties of Negative Resistance 

The properties of negative incremental resistance are clarified when 
contrasted with those of positive resistance. A current produces a 
voltage drop in a positive resistance, and a voltage rise in a negative 
resistance. Positive resistance dissipates power, hence negative resist­
ance acts as a power source in an incremental circuit model. Conserva­
tion of energy demands that any circuit that exhibits a negative resist­
ance at a pair of terminals must draw more power from a primary source 
than the negative resistance can supply to a load. From this statement 
we infer that for any physical circuit a driving-point curve that has a 
negative resistance region must be nonlinear. Thus the driving-point 
curve at a pair of terminals may exhibit negative resistance over a 
limited range of current or voltage, but the apparent resistance must 
eventually become positive as current or voltage is increased either in 
the positive or negative direction. However, for the purposes of circuit 
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analysis, it is no more artificial to postulate a linear negative resistance 
than to postulate a linear positive resistance. 

Resistive circuit theory is readily extended to include negative resist­
ance. For example, the sketches shown in Fig. 9.7(a) and (b) indicate 
series and parallel connections of positive and negative resistances. In 

Close at t = 0 \ ~ E:t Rt T 
- ~-

Fort> 0 

I 
I 
\ 0 
\ 
\ 
\ 
\ Eo 

0 

v = EoE-t/RC 

Eo i c: _ E-t/RC 
R 

I t 

1 2 3 4 lie 

(a) 

' RC 

Fort> 0 
v = EoE-tfRNc = EoEt/RC 

i = Eo E-tfRNc = - Eo Et/RC 
RN R 

---t-_....__..___.__.....__ .L 
1 2 3 4 RC 0 

t 
Iic 

(b) 

Fig. 9.8. Simple RC transients with positive and negative resistance. 

order to draw attention to a point that sometimes causes confusion, the 
linear negative resistance is designated both as RN and as -R1. Here 
the symbol RN contains the negative sign implicitly, while the symbol 
R1 is assumed to be a positive numeric, such as 10 kilohms. The designa­
tion with sign implicit is convenient because it leaves formulae un­
changed. The designation with sign explicit is sometimes preferred 
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because it emphasizes the presence of the negative resistance. From 
the equations we see that the total series resistance is negative if the 
magnitude of the negative resistance exceeds that of the positive resist­
ance. The total parallel resistance 
is negative if the magnitude of the 
negative resistance is smaller than 
that of the positive resistance (nega­
tive conductance exceeds positive 
conductance). 

The transient behavior of the 
basic RC circuit with negative R 
is indicated in Fig. 9.8. It is ap­
parent from the voltage waveforms 
in (a) and (b) that changing the 
sign of the resistance is mathemat­
ically equivalent to changing the 
sign associated with time t. The 
waveforms of current show an 
additional difference. The current 
for positive resistance is in the posi­
tive reference direction and is a de­
caying exponential for t greater than 
zero. Thus it is a replica of the 
voltage waveform except for the 
scale factor. For negative resist­
ance, the current is negative, since 
the resistance RN = - R appears 
in the scale factor as well as in the 
exponent. The direction of the cur­
rent flow bears out the fact that a 
negative resistance behaves like a 

0 

(a) 

V 

(b) 

i -~ 
V -=-E-

i--___,J- J 

j = I,II,III 

power source, since current emerges Fig. 9.9. Representation of a piece-
from the positive voltage terminal wise-linear driving-point resistance. 
just as it does from a battery. 
The corresponding transient behavior for a circuit consisting of induct­
ance and negative resistance is readily specified by duality. 

The general behavior of a circuit consisting of a negative resistance 
and one or more energy-storage elements can be explained without 
reference to the details of the electronic devices and associated circuit 
elements from which the driving-point curve is derived. The "black­
box" representation of a negative resistance circuit is shown in Fig. 
9.9(a). For graphical calculations, the piecewise-linear curve shown in 
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Fig. 9.9(b) is convenient. The analytical counterpart of this curve is 
the circuit model shown in (c), where the subscript J represents the 
various circuit states. This is the linear model for any one region of 
either a current-controlled or a voltage-controlled curve. 

(a) 

(c) 

Fort < 0, i = f(v); iz = -Cdez/dt 

For t ~ 0, iz = i and ez = V 

(e) 

01' = R1Cin(iA'liB) = R1Cln[(E1)/(E1 -VB)] 

02 = RnC In(ic/in) = RnC In [vc/vn] 

01 = R1C In(iA/iB) = R1C In [(E1 - VA)! (E1 - VB)] 

(f) 

Fig. 9.10. Current-controlled curve with capacitance load. 

9.7 A Simple Relaxation Oscillator 

Suppose an initially uncharged capacitance is connected to a current­
controlled negative resistance at t = 0 as indicated in Fig. 9.lO(a). 
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Since the capacitor voltage cannot be changed instantaneously by finite 
currents, at t = 0 we have capacitor voltage ex and therefore voltage v 
both equal to zero. This condition can be satisfied only at point A' on 
the i vs. v plane shown in (b). 

At point A', the current i has a large negative value; hence dv/dt is 
positive, and the capacitor tends to charge. Thus the operating point 
moves from A' through A toward B. We can see from the plot that, as 
the operating point moves along the state I line, the negative current 
diminishes as the voltage increases. This means that dv / dt decreases as 
v increases. The state I line corresponds to a resistance R1 in series with 
a battery E1. With a capacitor C connected, the voltage v will rise 
exponentially toward E1 as current i proceeds exponentially toward 
zero with a time constant of R1C. The waveforms of voltage v(t) and 
current i(t) are shown with the v and i axes aligned with the i vs. v plane 
[(c) and (d)]. For completeness, v(t) is also shown below i(t) with the 
time axes aligned. See Fig. 9.lO(e). 

When the operating point reaches Bin the i vs. v plane, the current i 
is still negative and dv/dt still positive, but any motion beyond point B 
(in state I) fails to satisfy the relation i = f (v). The relation between 
capacitor voltage and current cannot be satisfied by moving the operat­
ing point along the state III line from point B, since the necessary 
decrease in v cannot take place with negative current. We conclude, 
therefore, that the operating point of the resistive circuit must switch 
instantaneously from B to C, where equilibrium can again be established 
for both the capacitor and the negative-resistance circuit. The transition 
from B to C takes place along a vertical line, since the capacitor voltage 
cannot change instantaneously. In this idealized circuit there is no 
constraint to prevent the instantaneous change of current from a nega­
tive value at B to a positive value at C. 

At point C, dv/dt is negative, because the current i is positive. Since 
the state II line passes through the origin, the circuit model for this state 
is merely the positive resistance R11• Both v and i approach zero 
exponentially with a time constant R11C. The operating point moves 
from C to D, where a downward transition to A must occur. The 
reasoning is similar to that described for the B to C transition. At 
point A, the capacitor voltage begins to increase again and the operation 
proceeds continuously around the locus ABCD. Thus, except for the 
first interval, the waveforms i(t) and v(t) are repetitive. 

The intervals 51 and 52 , during which the resistive circuit is in state I 
and state II, respectively, can be calculated from the time constants 
R 1C and RnC and the initial and final values of the exponentials. The 
expressions for the intervals are given in (f). 

Let us take as a specific example of a relaxation oscillator the serjes 
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triode circuit of Fig. 9.5(a) with capacitor connected to the driving-point 
terminals, as shown in Fig. 9.11. It is evident that the amplitude 
dimensions on the waveforms of v(t) and i(t) are obtainable directly 

State I 
R+1p 

~ 
-=-Ebb Tc -=T ______ _ 

T1 =C(R+1p) 

Ebb - Ex µR 
ch= r1ln--- = r1ln--

Ebb - Ey R + Tp 

Ey µR 
02 = r2ln- = r2ln--

Ex R + rp 
µR 

or= 01 + 02 = 2C(R + rp) ln-­
R +rp 

B 

Fig. 9.11. Waveforms in series-triode relaxation oscillator. 

from the i vs. v curve given in Fig. 9.5(e). Dimensions of all other 
waveforms in the circuit are readily found from these. In a similar 
manner, the general results obtained in Fig. 9.10 can be applied to other 
circuits in which a capacitor faces a current-controlled driving-point 
curve. Using the duality principle, the results can also be applied to 
circuits with a voltage-controlled curve and inductance as the major 
energy-storage element. 
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9.8 Relaxation Oscillator Transition Time 

As the operating point moves around the locus ABCD in Fig. 9.lO(b ), 
the capacitor voltage is identical with the voltage across the negative 
resistance circuit during the intervals o1 (A to B) and o2 (C to D). 
However, during the instantaneous transitions (B to C and D to A), the 
capacitor voltage deviates from the voltage across the negative resist­
ance, even though the voltages are measured between the same two 
points. This irregularity was ignored in the preceding article on the 
basis that it literally did not exist with instantaneous transitions. The 
anomaly of two different voltages apparently existing between the same 
two points is the result of over-idealizing the circuit. 

In order to examine the transitions between state I and state II in 
detail, let us consider the circuit of Fig. 9.12(a). Here a small series 
inductance representing the inductance of the interconnecting wires is 
included to absorb the difference between v and ex when di/dt is large. 
With inductance L very small, the transitions will still be quite rapid, 
though not instantaneous. The charge on capacitor C will remain 
essentially constant during the transition time, hence the capacitor can 
be replaced by a battery for this interval. We see from the i vs. v plot 
that the transition occurs in two distinct stages corresponding to states 
III and II. The two circuits for the transition from B to C are shown 
in Fig. 9.12(b) and (c). Note that the plots of waveforms i(t) and 
eL (t) in this figure are drawn to a time scale which is radically expanded 
relative to the time scale used for the waveforms of Fig. 9.10 or 9.11. 
For convenience, assume t = 0 corresponds to the time the operating 
point (i vs. ex) reaches Bon the locus. 

We postulate L to be so small that it does not influence the behavior 
of the circuit during the intervals o1 and o2 • This implies that eL is 
negligibly small except at the transitions. The current i has a value 
-lB and a rate of change 

(9.3) 

at the break point B, so the actual value of eL at Bis 

LIB 
eL = - --

R1C 
(9.4) 

From these initial conditions, both eL and i build up along rising ex­
ponentials, since the circuit model for v = f(i) involves the negative 
resistance (-R1n) in state III, as indicated by (b ). The current goes 
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through zero and positive to In, while eL builds up to a maximum of 
(Ey - Ex) at break point D. When point P is reached on the locus, 

0 < t < tp 

(a) 

= Em -iRm -E11 

(b) 

----7 
I 
I 
I 
I 
I 
I ____ _j 

di 
eL = -L- = v - E 

dt u 

= iRn - Eu 

(c) 

+lei 

__ ...__ _________ t 
tp 

~ For O < t < tp t/( L )] 
i = _ I + ~1 - e Rm 

B RmR1C 
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I 
I 
I 
I Fort > tp 

-(Ey - Ex) 
~

! 

LIB t/(...L...) 
eL = - -e Rm R1C 

For O < t < tp 

m 
Fig. 9.12. Relaxation oscillator transition time. (t = 0 corresponds to point B.) 

the circuit switches from state III to state II. As the transition proceeds 
from P to C, voltage eL decays exponentially to zero with time constant 
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L/Rn, while i builds up to I c with the same time constant. The voltage 
eL is continuous at point P; hence di/dt must be continuous. The rate 
of change of voltage (deL/dt) has no such restraint, hence the cusp at 
point P. The time tp required to reach point P can be calculated as the 
time required for current i to go from -JB to +ID, or for eL to build up 
from (LIB/R1C) to (Ey - Ex), The total transition time can be taken 
to be approximately lp + 5 L/Ru. 

As L decreases, the time scale shrinks on the transition waveforms. 
As L approaches zero, di/dt increases toward infinity in a manner that 
makes eL always increase to (Ey - Ex) and return to zero. Hence, 
even when L does not appear in the circuit, we can envision the "in­
stantaneous" transition involving a voltage drop eL which just accounts 
for the difference between v and ex. 

The transition from D to A is readily obtained by the procedure just 
outlined for the transition from B to C. In the circuit model of Fig. 
9.12(b ), we need only change the voltage representing capacitor voltage 
from Ey to Ex. This change must also be made in the circuit of Fig. 
9.12(c); and, in addition, Rn must be replaced by R1. 

Separate consideration of the effects of the major energy-storage 
element C and the stray element L is valid when the time constant 
involving C is much greater than that involving L. The procedure is 
similar to that used in analyzing the RC coupling circuit in the preceding 
chapter, where the effects of coupling capacitance and shunt capacitances 
were considered separately. In a qualitative way, the stray inductance 
inserted in the oscillator circuit to make transition time nonzero approxi­
mates the effects of interelectrode and wiring capacitances within the 
circuit that produces the negative driving-point resistance. The analysis 
of stray effects in terms of a single series inductance is very much simpler 
than one that considers the energy-storage elements actually associated 
with the circuit that produces the negative resistance. 

9.9 Relaxation Oscillator Locus and Waveforms 
with Nonzero Transition Time 

From the results of Fig. 9.12 we can now see how the locus and wave­
forms of Fig. 9.10 must be modified when both a large capacitance C 
and a small inductance L are included in the oscillator circuit. Since 
the inductance is expected to produce only a minor modification, we 
begin from the locus and waveforms obtained with the inductance 
absent. This locus is indicated by the dashed lines in Fig. 9.13, while the 
solid line shows the qualitative effects of including a small inductance L. 
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The relations given in Fig. 9.13(a) suffice to trace the modified locus 
of i vs. ex shown in (b) and the waveforms shown in (c), (d), and (e). 
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Fig. 9.13. Relaxation oscillator with nonzero transition time. 

Beginning at t = 0 (point 0) with i = 0 and ex = 0, we have eL = E111, 

Since current i = 0, the slope of the capacitance voltage (dex/ dt) is 
zero at t = 0. The slope of the current waveform is di/dt = -E111/L, 
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hence current starts to build up in the negative direction. As it does, 
v increases faster than ex, causing eL to increase until it reaches a maxi­
mum nearly equal to Ey at point 1. Here the current waveform will 
have its maximum negative slope (di/dt :::::: -Ey/ L). During this rapid 
transition, the capacitor voltage changes only very slightly. 

Beyond point 1, eL diminishes; but since it is still positive, di/dt 
remains negative and decreases to zero with eL at point 2. The current 
i has its maximum negative value here so that dex/ dt is a maximum, and 
the waveform ex(t) has its point of maximum slope. With dex/ dt nonzero 
and di/ dt zero at this point, di/ dex is zero. In other words, the locus of 
i vs. ex crosses the curve v = f(i) with zero slope. Beyond point 2 the 
magnitude of the modified current exceeds that of the exponential 
obtained with only C in the circuit. This fact predicts a crossover of 
the exponential and the modified waveforms of ex, for the integral of the 
modified current will eventually exceed the integral of the exponential 
current. The crossover will occur where the areas under the two current 
waveforms become equal. 

We can logically say that point 2 marks the end of the rapid transition 
and after passing this point we have eL negative and di/dt positive. As 
the magnitude of the current diminishes, its rate of change must also 
diminish, since the exponential change of the capacitance dominates the 
circuit behavior during this portion of the charging interval. Thus we 
have a maximum of di/dt at point 3, a corresponding negative maximum 
for eL and a maximum of d2ex/ dt2

• 

Approaching break-point B, we have di/dt nearly the same for the 
exponential and the modified current waveforms. This gives us a good 
approximation for the value of eL at point 4 which is located at -JB 
and marks the beginning of another rapid transition. Beyond point 4, 
the inductance voltage eL goes rapidly to a large negative value, causing 
di/dt to increase rapidly. Prior to reaching point 5, the current has 
been negative; hence dex/ dt has been positive. At point 5, i = 0, dex/ dt = 
0, hence ex has reached a maximum. The locus of i vs. ex must be 
moving vertically (di/dex = oo) at point 5, since dex/ dt is zero, whereas 
di/dt is nonzero. 

Point 6 is at the negative peak of eL corresponding to a maximum of 
di/dt, and at point 7, eL and di/dt are zero. At point 8, eL reaches a 
maximum (analogous to point 3) and current i therefore has a maximum 
slope. Point 9, analogous to point 4, marks the beginning of a transition 
which takes the path of operation through points 10, 11, and 12 in rapid 
succession. At point 10 (analogous to 5) we have zero current and 
hence minimum ex; at point 11, a maximum eL which produces maximum 
di/dt. At point 12, di/dt, eL, and di/dex are all zero. Sometime after 
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point 12, the path of operation very nearly merges with the path followed 
previously and the waveforms and locus become essentially repetitive. 
The shape of the waveform of e L is seen to be a series of pulses which 
approximate impulses. If inductance L is allowed to approach zero, 
these pulses indeed approach impulses with area just equal to that 
required to jump the current i from point B to point C or from D to A. 
The voltage eL would then be zero between impulses, since Lis zero and 
di/dt is finite. 

We have described a general relaxation oscillator based on a current­
controlled negative resistance which, together with a capacitance, 
determines the intervals <> 1 and o2 . A small series inductance approxi­
mates the effects of stray energy-storage elements which limit the rate 
of transition from one state to another. Comparable results are obtained 
for the dual of this circuit which is a voltage-controlled negative resist­
ance and an inductance. A small parallel capacitance accounts for the 
finite transition time. 

9.10 Shifting from Astable to Monostable Operation 

Minor modification of the circuits used for generating relaxation 
oscillations (astable circuits) makes them operate in a monostable or 
bistable mode. A monostable circuit is stable in one state only. An 
external signal must be applied to switch to the unstable state. The 
circuit then switches itself back to the stable state and remains there 
until another external signal causes the cycle of operation to repeat. A 
bistable circuit has two stable states, and remains in either state unless 
an externally applied signal causes a transition. 

Relaxation oscillations occur when a circuit has no stable states. 
Referring to Fig. 9.10 or Fig. 9.13, we see that the charging of capacitor 
C tends to drive the circuit out of state I, through III, and into II. The 
capacitor then discharges, driving the circuit out of state II, through III, 
and into I, and the cycle repeats. To obtain monostable operation, we 
need only modify the circuit in such a way that the exponential charge 
or discharge of capacitor C can reach completion (i = O) before a 
transition occurs. 

As indicated in Fig. 9.14(a), the relaxation oscillator circuit is in 
equilibrium at point P, since we have ex = v, and i = -Cdv/dt = 0. 
This, however, is a point of unstable equilibrium, since the slightest 
deviation from P will result in a motion of the operating point away 
from P. A minute positive current tends to decrease the charge on 
capacitor C, thus diminishing v, and increasing the current. To produce 
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a stable equilibrium, the point P for which capacitor current is zero 
must be shifted to state I or state II. Such a shift requires a direct­
current bias source as indicated in Fig. 9.14(b). Here the capacitor 
current is (i + i 0 ), which will be zero when i = -i0 ; hence the point P 

V = f(i) 
i = -Cdv/dJ, 

(a) 

(i + io) i 
~ ~ 

C 
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Fig. 9.14. Use of current bias to shift from astable to monostable circuit conditions. 

has been shifted to state I. Now any change in current away from the 
point P results in a polarity for dv/dt that tends to return the operating 
point to P. Thus the point Pis stable. 

In the circuit and graphical plot of Fig. 9.14(b), we have assumed the 
fixed current i0 and the capacitance C as the load on the resistive 
circuit specified by v = f(i). The alternative viewpoint, illustrated by 
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Fig. 9.14(c), considers i0 as part of the resistive circuit. The result is a 
modification of the curve of v vs. i. The viewpoint expressed by Fig. 
9.14(c) is useful, since all of the resistive circuit elements are lumped 
together. 

Referring to Fig. 9.14(b) or (c), we conclude that the operating point 
must reach point P and remain there, regardless of its initial location in 
the i vs. v plane. For example, if by some means the circuit is put into 
state II, the capacitor voltage will decrease as the operating point moves 
toward point D. There, a transition to point A in state I takes place. 
Negative capacitor current then causes the voltage to increase until 
point P is reached and the circuit is in stable equilibrium. 

9.11 Triggering the Monostable Circuit 

A monostable circuit is usually "triggered" by a pulse which initiates 
a transition from the stable state to the unstable state. The time during 
which the circuit remains in the unstable state is determined by the 
exponential charge or discharge of the capacitor. During this interval 
the operation is like that of a free-running relaxation oscillator. At the 
end of the interval the circuit switches back to the stable state, and re­
mains there until the next triggering pulse initiates the cycle again, 
as illustrated by Fig. 9.15. 

The current-controlled resistance in the circuit of Fig. 9.15 (a) is 
assumed to have a stable equilibrium, as indicated by point P on the 
curve v = f(i) shown in (b ). The waveform of current from the syn­
chronizing source is is the train of pulses in Fig. 9.15. The circuit 
model shown in (c) indicates the circuit conditions just prior to the 
occurrence of one of the synchronizing pulses; thus all currents are zero, 
and the circuit is in stable equilibrium. 

In order to switch the circuit from state I to state II, the synchronizing 
pulse must drive the operating point from P to slightly beyond break 
point B. The operating point will return to point P when the trigger 
pulse ends, unless the capacitor voltage is increased by the amount 

!iv ~ (Eb - Ep) (9.5) 

which requires a charge content 

Q = lsos ~ C(Eb - Ep) for RrC » 08 (9.6) 

At break point B the circuit switches to state II and follows the operating 
path CDAP. Since the current pulses cannot change the capacitor 
voltage instantaneously, current i shows no jump at the trailing edge of 
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the trigger pulse. The negative jump at the end of the trigger pulse 
appears in ix, since 

t 

i -

(a) 

V = f(i) 

r 
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i:i; = i - is 
-C dv/dt 
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Fig. 9.15. Monostable operation with current pulse triggering. 

The interval during which the circuit is in state II can be calculated 
in the same way as the corresponding interval in the waveforms of the 
relaxation oscillator. In order to assure return to the stable point P 
after interval o2 , the repetition interval of the synchronizing signal 
should be 

(9.8) 
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Allowing about five time constants for recovery permits the capacitor 
to recharge to the voltage Ep, 

The time required to accomplish triggering will vary inversely with 
the trigger amplitude ls, because the larger the trigger amplitude, the 

V = f(i) 
eL = v - (ex+ e8 ) 

= - Ldi/dt 

(a) 

(c) 

Fig. 9.16. Monostable operation with voltage pulse triggering. 

larger the value of dv/dt. It is not proper to assume that instantaneous 
triggering could be had by letting the pulses approach impulses of the 
same area, since the effects of the stray parameters would then have to 
be included in the form of a small series inductance. We have tacitly 
assumed the pulse duration os to be large compared with the time 
required to build up current from O to 18 in the stray inductance. If 
inductance is included, the instantaneous changes of current shown in 
the waveforms of current in Fig. 9.15(d) must be rounded off to approxi­
mate exponentials as in Fig. 9.13. 

A circuit for obtaining faster triggering is shown in Fig. 9.16(a). 
Instead of trying to change the capacitor voltage from EP to Eb, we 
can bias the resistive curve in the opposite direction. This has the 
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effect of sliding the entire curve of v = f (i) to the left until break point 
B passes the capacitor voltage Ep. Then a transition must occur from 
B to some point C' in state II. This shift of the curve along the voltage 
axis is readily accomplished by a series voltage source e8 subtracted 
from v, as indicated in Fig. 9.16(a). Alternatively, we can think of the 
voltage es as being added to capacitor voltage ex instead of being sub­
tracted from v. The net result will be the same. 

If we idealize the circuit by neglecting the series inductance, the 
triggering transition occurs instantaneously. The only requirement is 
a series-connected voltage source producing pulses of amplitude E 8 > 
(Eb - Ep). With a nonzero inductance present, we shall see from 
Fig. 9.16 that a minimum pulse area Esos is required. This is the change 
in flux linkages required to change the current in the inductor sufficiently 
to trigger the circuit. 

Let us assume that the triggering transition takes place so rapidly 
that the charge on the capacitor remains essentially constant. Then 
we can use the method of calculation given in Fig. 9.12. For the circuit 
of Fig. 9.16(a), the values of eL during the transition are shown on the 
i vs. v plane in (b ). It is apparent that the voltage across the inductance 
(eL = -L di/dt) varies directly with Es; hence, the larger Es, the more 
rapid the transition. Transition waveforms for a specific value of E8 
are shown in Fig. 9.16 (c) for three values of synchronizing-pulse duration. 

The duration of the pulse must exceed 01, the value required to change 
the current from zero to / 1. Beyond that point the transition goes to 
completion without dependence on the trigger pulse, since the negative 
value of eL leaves di/dt positive. If the current has not reached Ii, 
removal of the synchronizing voltage pulse makes eL positive, a condition 
that makes di/ dt negative. Therefore, the operating point will be 
driven downward out of state III to point Pin state I. 

Maintaining the trigger pulse for the duration o2 required for the 
current to reach the value I 2 at point C results in minimum transition 
time for a given amplitude of e8 • If the trigger pulse persists for a 
duration o3 the current reaches too large a value (/3 at point C') and the 
transition time becomes considerably longer. However, these transition 
times are all short in comparison with those resulting from current-pulse 
triggering, particularly if capacitor C is large. 

9.12 Bistable Operation 

Since a current-controlled curve, v = f(i), is by definition a single­
valued function of current, it crosses the axis of zero current only once. 
Thus there can be only one stable point (i = 0) with capacitance as 
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the energy-storage element. However, if an inductance is used the 
transient is completed when the voltage across the inductor is zero. If 
we use a bias voltage to shift the curve along the voltage axis in order 
to obtain three intercepts on the axis of zero voltage, bistable operation 
is obtained. 

The location of the bias voltage E0 and the synchronizing voltage es 

is shown in Fig. 9 .17 (a). The curve v = f ( i) is assumed to be like the 
one used in preceding examples. The sketch in Fig. 9.17 (b) indicates 
E0 as a load on the negative-resistance device. Under steady-state 
conditions, with es and eL both zero, we have circuit equilibrium at 
points P, S1 , and S2 . Thus, for v = E0 we have three points for which 
e L is zero, and two of these are stable. 

The curve v' = f(i) shown in Fig. 9.17(c) is the curve of (b) with a 
change of variable (v' = v - E 0 ), which effectively includes the bias 
voltage E 0 as part of the resistive circuit. The alternative viewpoints, 
indicated in (b) and ( c), are related to specific circuits in ( d) and ( e). 
The circuit in (d) shows the necessary voltage translation achieved by 
an external battery of value E 0 = Ebb/2. The circuit in (e) makes the 
necessary internal modification to shift the axis of symmetry from 
v = Ebb/2 to v = 0. In either case we can indicate the circuit properties 
as in Fig. 9.17(!). 

To switch the circuit from state I to state II and back again requires 
alternately positive and negative pulses from the synchronizing source. 
The method of triggering is like that described in Fig. 9.16 for monostable 
operation. The waveforms drawn in Fig. 9.17 (f) assume that the stray 
inductance is very small. These waveforms can be modified to make 
the transitions more realistic by using the results obtained in Figs. 9.12 
and 9.16. 

9.13 Limitations of Negative-Resistance Methods 

A nonlinear driving-point resistance combined with one or more 
energy-storage elements is a very useful model for examining the be­
havior of many oscillator circuits. This general method of analysis 
shows directly the conditions for bistable, monostable or astable relaxa­
tion oscillations as well as sinusoidal oscillations. Equally important is 
the fact that a large number of actual circuits can be represented quite 
accurately by this simple but general model. In principle the concepts 
described thus far can be applied to any oscillator circuit, but as a 
practical matter it is inconvenient to try to fit all circuits into the same 
mold, The negative-r~sistance concept is not particularly convenient 
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for analyzing oscillator circuits in which major energy-storage elements 
appear at more than one pair of terminals. For example, consider the 
plate-coupled and collector-coupled multivibrators, shown in Fig. 9.18(a) 
and (b) respectively. The relaxation oscillations generated by these 
circuits depend upon two major energy-storage elements, C1 and C2 • 

At the terminals of either capacitor, the apparent driving-point relation 
is a family of negative-resistance curves involving the voltage across the 
other capacitor as a parameter. Thus, instead of a single resistive curve 
we have two families of curves, v1 = f1 (i1, v2 ) and v2 = f 2 (i2 , v1) describ­
ing the terminal conditions faced by the two capacitors. Tracing the 
corresponding trajectories ex1 vs. i 1 and ex2 vs. i 2 on the two planes is 
rather tedious. 

These circuits can be analyzed by the methods discussed in Chapter 8, 
since each is nothing more than a two-stage RC-coupled amplifier with 
the output of the second stage connected to the input of the first. 
Analysis of the coupling circuits permits calculation of the waveforms, 
but the conditions for relaxation oscillations must be established sepa­
rately. To establish relaxation oscillations, each stage must produce an 
output of sufficient amplitude (when driven from cutoff to quiescent 
conduction) to drive the other stage from conduction to cutoff. 

Another method for determining whether or not a circuit meets the 
conditions necessary to establish oscillations is based on an incremental 
power-gain calculation. For example, in the multivibrator of Fig. 9.18(a) 
assume both triodes are operating in the linear amplification region. 
Then apply a signal at one grid and calculate the return signal that 
would occur with the circuit opened at that point. If the return signal 
is greater than the signal applied, the circuit is unstable and can generate 
oscillations. 

The transformer-coupled circuits shown in Fig. 9.18(c), (d), and (e) 
are further examples of circuits with major energy-storage at more than 
one pair of terminals. The waveforms generated depend both upon the 
grid-coupling capacitor C0 and upon the properties of the transformer. 
In the blocking oscillator circuits shown in (c) and (d) the transformer 
is one designed to transmit brief (one- to ten-microsecond) rectangular 
pulses. The circuit wiil generate pulses whose duration depends largely 
on the pulse transformer magnetizing inductance. The spacing between 
pulses depends primarily on C and R. In the blocking oscillator, a single 
control valve provides the necessary power gain, whereas the transformer 
performs the essential function of polarity inversion. In the multi­
vibrator circuits, the second control valve provides the polarity inversion. 

The circuit shown in Fig. 9.18(e) is essentially the same as the blocking 
oscillator circuit of (c) but the co9fficient of coupling Mis considerably 
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less because an air-core coil is used instead of the iron-core coils. The 
resonant circuit consisting of capacitance C and the equivalent induct­
ance L of the coupled coils produces nearly sinusoidal oscillations at a 

frequency approximating Jo = I/21rVLC. In this mode of operation, 
C0 and R0 have relatively little effect on frequency but do influence the 
amplitude of oscillations. Rectification due to the difference between 
r0 and R0 produces an average voltage across C0 having the polarity 
shown. This "grid-leak" bias controls the amplitude of oscillations. 
If R0 is made too large, the average voltage across C0 builds up during 
each succeeding cycle of oscillation until eventually plate current is 
cut off and the oscillations cannot be sustained. Then the capacitor 
must be discharged through R0 until plate-current conduction begins 
and oscillations again build up. This "self-pulsed" mode of operation is 
analogous to blocking oscillator operation except that here each pulse 
consists of a number of cycles instead of approximately a half cycle. 

Three other common sine wave oscillators are shown in Fig. 9.18(!), 
(g), and (h). In the Hartley circuit the input (grid-to-cathode) voltage 
is a portion of the output (plate-to-cathode) voltage obtained by tapping 
the coil. In the Colpitts circuit the same thing is accomplished by a 
capacitive voltage divider. In the tuned-grid, tuned-plate circuit no 
coupling is apparent between output and input. The coupling occurs 
through the grid-to-plate interelectrode capacitance. 

9.14 Plate-Coupled Multivibrator 

The waveforms generated by the plate-coupled multivibrator circuit 
can be determined by the procedure used in Chapter 8 for calculating 
waveforms due to a rectangular-wave input to a resistance-capacitance­
coupled amplifier. Assume that the circuit of Fig. 9.19(a) is a relaxation 
oscillator that remains in state I for an interval <h and in state II for an 
interval o2. The transition from I to II or from II to I via state III 
occurs very rapidly (instantaneously if stray capacitances are neglected). 
The rapid transitions are reasonable in view of the high gain available 
in the circuit and the fact that the circuit is regenerative (output rein­
forces input). If the circuit is in state III, the "open-loop" voltage gain 
is G1 G2 ; namely, the gain of the two triode amplifier stages. Let the 
grid of triode 1 be disconnected from R 01 and let ec1 be changed by a 
small positive increment Llecl• Then 

(9.9) 
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Fig. 9.19. Waveforms for free-running (astable) plate-coupled multivibrator. 

This change is coupled to the grid of the second triode by 0 2 so that 

Aeb2 = -G2 Aec2 = G1G2 Aec1 (9.10) 

This change in turn is coupled through 0 1 and appears across Rut• For 
typical circuit parameters, G1 G2 might be 100. If the grid of the first 
triode is now reconnected to Rui the circuit is unstable in state III since 
any change in ec1 immediately calls for a change in ec1 100 times as 
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great. Thus the circuit will drive itself out of state III into one of the 
other states. 

If we assume the circuit to be in state I, the two circuit models given 
in Fig. 9.19(b) and (c) apply. In circuit (b) the capacitor 0 2 will tend 
to charge toward a voltage very nearly equal to Ebb· This is true since 
in most cases Rg2 » rg2 and hence the quiescent value of ec2 is approxi­
mately zero* in state I. Since this leaves triode 2 conducting, the 
assumption that the circuit is in state I is valid. Now, referring to (c), 
it is apparent that the voltage ex1 must approach the value (Ea2 - E 1 ) 

where Ea2 is the quiescent open-circuit plate voltage for tube 2 corre­
sponding to the quiescent grid voltage ec2 given by the circuit in (b). 
Circuit models similar to those of (b) and ( c) can be obtained for state II 
by the simple expedient of interchanging all subscripts. 

Since state I occurs just after state II, we expect the initial value 
of exi to be near Ebb· Hence in Fig. 9.19(c) capacitor 0 1 is discharging 
and voltage ec1 is rising toward E 1. But ec1 must be more negative than 
Ebb/µ to maintain plate-current cutoff in tube 1. This means that the 
current through R01 and hence the discharge current for 0 1 must exceed 
(E1 + Ebb/µ)/Rg 1 to maintain state I. When the current falls to this 
value, the grid voltage ec1 rises above the cutoff potential. The resulting 
onset of plate current ib1 causes a drop in eb1 and ec2, a rise in eb2 and 
hence a further rise in eel• Thus a rapid transition to state II occurs. 
In this state 0 1 recharges rapidly to a voltage Ebb, while 02 discharges 
until the second triode begins to conduct and initiates the transition 
returning the circuit to state I. This circuit behavior is illustrated by 
the waveforms in Fig. 9.19(d). 

The duration of the interval o1 is determined by the exponential 
expression for eel• The initial value of ex1 is assumed to be Ebb and this 
fixes the initial value of ec1 in the interval o1. The final value of ec1 is 
- Ecol = - Ebb/µ. Thus the expression for the interval o1 is 

1 [ 
Rgt ] [E1 + Ebb - Ea2] 01 = ra1 n 

R01 + (rp2IIRb2) E1 + Ecol 
(9.11) 

A similar expression is obtained for o2 by interchanging subscripts. 
Assuming the initial value of ex1 to be Ebb amounts to saying that each 
capacitor charges fully during the interval generated by the discharge of 
the other capacitor. For this condition to exist, we should have rc2 much 
less than ra1 and rc1 much less than ra2. If capacitors 0 1 and 02 have 
comparable values this requirement reduces to Rg1 much greater than 
Rb2 and R02 much greater than Rbt• With these restrictions, the resist-

• For simplicity assume r 111 = r 112 = 0 so that ec1 and ec2 do not exceed zero in 
states I and II, respectively. 
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ances rp1!1Rb1 and rp2JIRb2 can be neglected in the circuit models and in 
the expressions for o. The waveforms in (d) are drawn subject to this 
assumption so that eb1 = Ea1 during interval 82 and eb2 = Ea2 during 81 . 

Assuming that both r 01 and r 02 are zero, we obtain perfect limiting 
of ee1 and ee2 at zero. With a more realistic value of grid-to-cathode 
resistance, the recharge of capacitor C1 causes a positive overshoot on 
the waveform of ee1 at the beginning of interval 82 (shown as a dotted 
line). This variation in ee1 causes an amplified replica of the overshoot 
to appear on the waveform of %1 , The overshoot on eb1 is coupled by 
C2 to the waveform of ec2, Since this grid voltage is more negative than 
the cutoff value the overshoot has no effect on the plate voltage eb2 and 
hence proceeds no further in the circuit. In similar fashion an overshoot 
on ec2 at the beginning of interval 81 appears on eb2 and ec1 (shown in 
light line). We can include the effects of such an overshoot on the 
calculation of the interval by means of an exponentially time-varying 
generator G Liee1 in series with Ea2 in the circuit model of Fig. 9.19(c). 
If we approximate the overshoot by an impulse with the same area, we 
see that the effect of the overshoot is to remove some charge from the 
discharging capacitor and thus shorten the interval slightly. In most 
cases the error in o owing to neglecting overshoot is very small. 

The numerical values of pertine:.:.1t points on the waveforms of Fig. 
9.19(d) are readily determined once the extremes of the capacitor 
voltages are known. Thus if Te 2 < oi/5 and Tei < 82/5 we know the 
maximum value of capacitor voltage (ex 1 or ex2) is Ebb· The minimum 
values are (Ea2 + Ec0 1) and (Ea1 + Eco2) respectively. Since Liex1 = 
Liex2 = 0 at the transitions between states I and II, we have Lieb1 = Liec2 

and Lieb2 = Liec1 at these instants. 
During interval 81, grid voltage ec1 heads toward +E1 and during 82 , 

the waveform of ec2 heads toward + E 2 • So long as each of these end 
points lies above -Eco the circuit will be astable and hence will generate 
waveforms of the general character shown. If the polarity of either E 1 

or E 2 is reversed and made large enough so that the final value of one 
grid voltage is more negative than that required for plate-current cutoff, 
the circuit will be monostable. The triode with the negative grid-return 
voltage will be normally off and the other one will be conducting. An 
externally generated trigger pulse can then be used to initiate a transition 
to the unstable state. After an interval 81, the circuit will switch back 
to the stable state and remain dormant until another trigger pulse is 
applied. The circuit and typical waveforms for monostable operation 
are shown in Fig. 9.20 with state II stable and state I unstable. In the 
waveforms shown, the interval 81 is generated as before but 82 becomes 
o{J - ol, where o{J is the repetition interval of the synchronizing signal. 
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For this mode of operation we require C2Rg2 » C1Rg1 so that ec2 re­
mains near zero during the interval ,h. Otherwise 01 will depend on 
rc2<+) and rc2<-) more heavily than on TdI· 

(a) 

(b) 

~ni____ __ n_t 
0 i------ os ____ ___,_ 

e2I au--------u-t 
eel I 

O 
., 

~ 1-,',, 
-0~-----i------------t 

7c2(-)_),. --Ecol 

ec2k_.L7c2<+>= C2[Rb1 + ~2IIRg2l ~ C2Rb1 

0 --to -E2 t 

-E2 

'"c2{-) = C2[Rbl + Rg2l 
/ 1d2 = C2[Rg2 + pl IIRbl] 

I I 

i,~Tcl = C1[Rb2 + 7i,1II Rgi] 
eb2 
-Ebb------,=-------, 

(c) 

Fig. 9.20. Monostable operation of plate-coupled multivibrator. 

The synchronizing signal must be large enough to turn the off triode on 
in order to effect triggering. With positive-going pulses applied as shown 
in Fig. 9.20(a) the amplitude required must exceed the difference between 
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the grid voltage and the cutoff voltage. Alternatively, as shown in (b ), 
triggering can be accomplished with a negative-going pulse of smaller 
amplitude applied to the opposite side of the circuit. In this case the 
trigger pulse is amplified and inverted by the normally on triode and 
applied to the grid of the off triode. 

9.15 Plate-Coupled Bistable Circuit 

If both grids of a symmetrical two-stage plate-coupled circuit are 
returned to voltages more negative than - Ebb/µ, the circuit becomes 
bistable. One form of the circuit is shown in Fig. 9.21 (a). Direct-

_, 

Fig. 9.21. Bistable plate-coupled circuit. 
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current plate-to-grid couplings are provided by R1 and R2 • An alterna­
tive form of the circuit is shown in (b ). Here the negative supply 
voltage is avoided by operating the cathodes at a positive potential. 
Let Rk be chosen so that 

Ek= Ecc = laR,k (9.12) 

where I a is quiescent plate current for either triode. Then if 

Eb/ = Ebb + Ecc (9.13) 

and all element values correspond, the circuit of (b) is exactly like that 
of (a), except for the voltage reference level. 

The two circuit models shown in (c) correspond to state I (first triode 
off, second triode on). Similar circuits with subscripts 1 and 2 inter­
changed apply to state II. However, since the circuit is symmetrical 
we need only consider one of the two states. 

Transitions from state I to state II or from II to I can occur only when 
initiated by a trigger source. Two modes of bistable operation result 
from the two methods of triggering shown with dotted lines in Fig. 9.21 (a) 
and (b). Either method can be used with either circuit. As shown by 
the idealized waveforms, for the triggering circuit used in (a), each of the 
alternatively positive and negative pulses in the synchronizing wave­
form induces a transition, when es is applied at only one plate. When 
the synchronizing pulses are applied to both plates as in (b ), the positive 
pulses have no effect since they are not passed by the diodes. The on 
tube has a low plate voltage that back-biases the diode connected to its 
plate, so if Ebb = 200 and Ea = 100, negative synchronizing pulses of 
amplitude less than 100 volts will be coupled only to the plate of the off 
tube. Thus negative pulses are applied alternately to one plate and 
then the other so that transitions occur as indicated by the waveforms 
in (b ). In this mode of operation the circuit is a scale-of-two counter 
since two complete cycles of es are required to produce one cycle of 
eb1 or eb2• The compensating capacitor (C1 or C2 ) couples the negative 
pulse to the grid of the on tube where the pulse is amplified and inverted. 
It is then coupled to the grid of the off tube by the other capacitor. 
If we let CR = C0kRo in Fig. 9.22 (where Cok is the tube and wiring 
capacitance between grid and cathode), the coupling from plate to grid 
is "compensated." We then have a voltage divider with high-frequency 
attenuation equal to low-frequency attenuation. In a practical circuit, 
the coupling capacitors are made several times larger than the value 
thus specified (C > C0kRol R) in order to enhance circuit gain during 
the rapid transitions. However, a transition is not complete until one 
coupling capacitor has charged and the other discharged to the appro­
priate new values. This condition places a practical upper limit on the 
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value of C because the recovery time following a transition increases 
with the value of C. If we assume that C0k = 10 µµf, R = 400 kilohms, 
and R0 = 100 kilohms, then "compensation" would occur with C = 
2.5 µµf, whereas the value of C more likely to be used is 25 or 50 µµf. 

C E----------
ec r---

_ _,,,",,-----.......--a --~ 

' ,__ ____ ____. @ _!iQ_ > ERg '~@ 
C+C6 Rg+R ,......_ 

[ 
RR(l ] 

r =-= [C + Cuk] R + Ru 

(D C < CukRu/ R 
® C = C0 kR0/R 

@ C > CukRu/R 

r2 = CR = CukRu 
Tl < T2 < T3 

(a) 

f;;\ EC ERg. '-...........____ } 
\61 ~=- ----::--=--;:-----==--- e (t) 

C+Cg Rg+R ... -- "® C 

CD __E:_ < ERg /''-·CI) 
C+C8 R8 +R 

0 

E.-------------

r,~@ 
I ' 
I ', 
I '-...... 

ERg f_ {_~ ____ ......._-:-_-.:::--..] e (t) 
Rg+ R I,,. ------- C 

//~CI) 

[ 
CCgk ] 

T = Cp +--- Rb 
C + Cgk 

(b) 

Fig. 9.22. Step response of coupling circuit. 

The step response of the coupling circuit (neglecting source resistance 
Rb or Rbllrp) is indicated in Fig. 9.22(a) for capacitance C less than, 
equal to, and greater than the value required for "compensation." If 
source resistance (and capacitance) are included as in (b), the instan-
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taneous change in the voltages are replaced by finite rise or fall times. 
These can be determined approximately by neglecting the shunting 
effects of the large resistances R and Ru during the rapid rise. The 
simplified analysis of the coupling circuit outlined in Fig. 9.22 indicates 
the considerations involved in making a rapid determination of the 
approximate transition time of the plate-coupled bistable circuit. 

9.16 Blocking Oscillator 

Although the blocking oscillator circuit may take a variety of forms, 
either of the circuits shown in Fig. 9.18(c) or (d) can be used to describe 
typical circuit behavior. In a physical circuit, drastic nonlinearities can 
occur either in the active element due to cutoff, etc., or in the iron-core 
transformer due to saturation, or in both. Let us consider the case in 
which the transformer can be treated as a linear circuit element for the 
range of currents and voltages involved in the circuit operation and let 
the active element be a p-n-p junction transistor. 

With the polarity of the bias voltage E 1 as shown in Fig. 9.23(a), the 
transistor is normally in the off state, hence the circuit will be monostable. 
Triggering is accomplished by making the emitter diode conduct with a 
negative-going pulse applied between base and ground. This effect can 
be obtained by applying a positive-going pulse between collector and 
ground since the transformer will invert the pulse and apply it to the 
base. Alternatively, a third winding on the transformer can be used to 
couple the trigger pulse to the base circuit. 

The trigger pulse initiates the flow of base current which in turn pro­
duces a collector current a/ (1 - a) larger in the forward-gain state. 
With then: 1 turns ratio shown, the base current will be ideally n times 
the collector current and the total current gain available is approxi­
mately na/(1 - a). For nominal values of transformer turns ratio this 
gain will exceed unity by an appreciable amount. The circuit is there­
fore unstable in the forward-gain state, so that the transistor is driven 
into the saturation state (both emitter and collector diodes closed). 
Referring to the circuit model of Fig. 9.23(b), we see that the current ia 
in the collector diode is the excess over that required to sustain the 
circuit in the saturation state. Since the collector is at ground potential 
under these conditions, the voltage across the transformer primary is 
constant at Ecc, hence in this idealized case the magnetizing current im 
builds up linearly with time. As it does, there is less excess current. 
available for the collector diode, and when ia = 0 the saturation state 
can no longer be sustained. Then the transformer voltage v1 diminishes 
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Ideal 
transformer 

• • 

Assume rb « R and Rs; ez - E1 

i2 = (Ecc/n - E1)/rb 
= n[aie - id - imJ 
= ie (1 - a) + id 

o ____ os -----1 
Ve 01 
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-Eu -------~----

T =Lm/(R8 II n2R) 

--_Ecc -Im(R8 II n2R) 
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[
Ecc/n - E1] [ a 1] lmLm At t = o, id= 0 and im =Im= , -- - - ; o = --

rb 1- a n Ecc 
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Fig. 9.23. Monostable blocking oscillator (o controlled by Lm). 
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from the value Ecc and this change produces a regenerative transition 
through the forward-gain state to the inactive or off state. The mag­
netizing current then decays exponentially, and, if im reaches zero prior 
to the next trigger, the next cycle of operation will be identical. The 
assumption that the interval between trigger pulses is very long, com­
pared with the duration of the pulse generated by the circuit, permits im 
to return to zero and ex to return to the voltage E 1 prior to each trigger 
pulse. 

The duration of the pulse generated may depend on the capacitor, the 
transformer magnetizing inductance, or both. Which of these cases 
occurs is determined by the rate at which the capacitor charges relative 
to the rate at which current builds up in the magnetizing inductance of 
the transformer. For the case in which the build-up of magnetizing 
current is largely responsible for controlling the pulse duration, the 
analysis is simplified if we assume the capacitor voltage remains rela­
tively constant during the pulse and hence never departs appreciably 
from the value E 1 . In this case the capacitor C can be represented by 
a battery of voltage E 1 in the circuit model of (b ). The transformer is 
represented by an ideal transformer of ration: 1 shunted by the magnetiz­
ing inductance Lm. The effects of stray parameters such as leakage 
inductances and shunt capacitances are not included in this simplified 
analysis. One additional assumption made in deriving the equations of 
Fig. 9.23(c) is that Tb is much less than R or Rs. The current i2 immedi­
ately following the synchronizing pulse must be 

(9.14) 

Since i2 must be positive to drive the transistor through the forward 
gain state and into saturation we must satisfy the condition Ecc/n > E 1. 

Two other equations for i2 which express the continuity of current at 
the nodes x and y respectively are 

i2 = n[aie - id - im] 

i2 = ie ( 1 - a) + id 

(9.15) 

(9.16) 

When a trigger pulse occurs (t = 0), the magnetizing current is zero 
and the current equations can be solved for id. The fact that id must be 
greater than zero imposes another relationship on Ecc, Ei, and n. The 
pulse duration 

(9.17) 

is found by noting that the same current equation can be solved for Im, 
the value of im when id = 0. After the pulse, the current im decreases 
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exponentially with time constant 

(9.18) 

since the inductor faces resistance Rs in parallel with n2R reflected 
through the transformer. The waveforms of im and Ve shown in Fig. 
9.23 (d) illustrate these points. Note that the average voltage v1 across 
the inductor Lm must be zero. Thus the area of the rectangular pulse 
(Ecco) is also the area of the exponential overshoot measured with 
respect to -Ecc• This area is the amplitude of the exponential times 
the time constant, namely 

(9.19) 

The magnetizing current has an average value readily calculated from 
the waveform by computing the area and dividing by Os. 

The current i2 is constant during the pulse and small between pulses. 
With im known, Eqs. 9.15 and 9.16 can be used to determine ia and ie in 
terms of i2 and im to complete the specification of all pertinent variables 
in the circuit. 

We have calculated a pulse duration based on magnetizing current 
buildup, subject to the assumption that the coupling-capacitor voltage 
remains unchanged during the pulse. Let us now consider the other 
extreme case; namely, a pulse duration determined by the coupling 
capacitor alone. 

For simplicity let the pulse transformer be ideal so that magnetizing 
current is zero during the pulse. The circuit model of Fig. 9.23 (b) can 
be used for this calculation if we let the magnetizing inductance Lm be 
very large. 

At the instant a synchronizing pulse occurs, the transistor is driven 
through the active state to the saturation state. If the interval between 
synchronizing pulses is large, we can assume the initial capacitor voltage 
to be E 1• The equilibrium conditions calculated for the previous case 
at t = 0 also apply in this case. The circuit model for calculating the 
waveforms is shown in Fig. 9.24(a). The Thevenin equivalent in (b) 
applies only during the pulse interval o. 

As the capacitor charges, the charging current i2 diminishes exponen­
tially toward zero. The pulse terminates when capacitor voltage is 
nearly Ecc/n and charging current is approximately Ei/R. At these 
values, the current in the collector diode is zero so that the saturation 
state can no longer be sustained. When ia is zero we have -ic = i1 = 
i2/n = iba/ (1 - a), but since anR » (1 - a) (R + rb) the base voltage 
is nearly zero and Ei/R is a valid approximation for i2. At t = o the 
transistor returns rapidly to the off state and the capacitor discharges 



WAVEFORM GENERATION 471 

slowly through the large resistance R in series with Rs/n2 to the quiescent 
value E1. 

L 
(b) 

During interval o (i2 > Ei/R) 

(
Ecc E1rb ) -+---ex 
n R + rb 

i2 = --------
rbllR 

At t = 0, ex = E1 

(c) (
Ecc E,R ) 

n R + rb -t/C(rbllR) 
:. i2 = ------ E 

rbllR 

Ecc/n - E1 I C = ---- E-t rb for R » rb 
[

R (Ecc - nE1)] o ~ Crb ln -
rb nE1 

rb 

Fig. 9.24. Monostable blocking oscillator (o controlled by C). 

The pulse duration o depends on the capacitor charging current. 
This current is 

Since ex = E 1 at t = 0 we have 

Ecc E1R 

n R + rb E-t/C(rbllR) 

rbl\R 

(9.20) 

(9.21) 

The collector diode. current, which determines the end-point of the 
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interval, is given by 

Ecc 

. 7 - ex [( R ) ( a ) 1] E1 

'td = Tb[IR R + rb 1 - a - ; - nR (9.22) 

with magnetizing current assumed to be zero. If this expression is 
compared with the one given in Fig. 9.23(c), we see that the major 
difference is the replacement of the constant E 1 by the variable ex, The 
inclusion of R in parallel with rb makes relatively little difference numeri­
cally since we still assume R to be much greater than Tb. When id = 0 
in Eq. 9.22, the end value of ex is Ecc/n if the factor involving turns ratio 
and current gain is positive. The restriction imposed on the transformer 
turns ration by this requirement is easily satisfied in practice. 

The value of pulse duration calculated from the capacitor voltage 
waveform is 

8 = C(r,[IR) lnr ~--!t-;. 
/:',.(1 + ~)(~)-~) 

(9.23) 

Since R » rb and na » (1 - a) we have 

C 1 [
R (Ecc - nEi)] o ~ Tb n -
Tb nE1 

(9.24) 

Both the magnetizing-current and the capacitor voltage influence the 
astable behavior of the blocking oscillator circuit. To obtain continuous 
oscillations from the circuit of Fig. 9.23(a), we need only reverse the 
polarity of E 1, so that the transistor is normally biased on. The syn­
chro~izing source can then be removed as in Fig. 9.25(a). However, 
the resistance is retained to dissipate the energy in Lm after the pulse. 

In most free-running blocking oscillator circuits, the pulse duration 
is controlled largely by Lm, whereas the interval between pulses is con­
trolled largely by C. When a pulse occurs, the transistor switches to the 
saturation state and magnetizing current builds up in Lm, If we assume 
that i2 remains approximately constant as in the first case considered for 
monostable operation, the pulse duration o will be very nearly given by 
Lmlm/Ecc• The constant current i2 passing through C for the interval 
will produce a change Aex = i2o/C. Equations relating variables during 
the pulse are given in Fig. 9.25 (b ). 

The increment Aex must be small compared with Ecc/n to avoid 
reducing i2 during the pulse, and be slightly positive in order to hold 
the transistor off while C discharges through R(rc = RC). If the value 
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of E1 is made small, this condition can be met. An approximation for 
the interval between pulses is given in (c) and pertinent waveforms 
are shown in (d). In general, the calculation of pulse duration must 

Assume Tb « R, n 2R, 
.:lex small 

During pulse 

dim Ecc 
dt = Lm 

Im = (Ecc/n) [-a- _ !] 
Tb 1-a n 

0 = Lmlm/ Ecc 
. [Ecc/n] 
i2 = -- = constant 

Tb 

.-• .:lex = i20 = (oEcc) 
C nTbC 

(b) 

0 

(d) 

Interval between pulses 

(or - o) = RC 1n( Llex E: E1) 
(c) 

Fig. 9.25. Astable blocking oscillator. 

include the effects of both magnetizing current build-up and coupling 
capacitor charge. 

Practical free-running blocking oscillators readily generate very un­
symmetrical rectangular waveforms with large values of the ratio 
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oi/82 • Multivibrators, however, are more suitable for generating rec­
tangular waves with small values of oi/82 (say, less than 20). 

9.17 Sinusoidal Oscillations 

If we can predict that nearly sinusoidal oscillations will occur in a 
particular circuit, a linear incremental analysis can yield a rapid indica­
tion of the conditions for oscillation and the approximate frequency. 
As an illustrative example, consider the tuned-plate circuit shown in 
Fig. 9.26(a). The circuit is essentially the same as that of the blocking 
oscillator considered in the preceding article. However, the coefficient 
of mutual coupling in the transformer is relatively small here, whereas 
in the pulse transformer used in the blocking oscillator, the coupling 
coefficient is very close to unity. 

In the operation of the tuned-plate circuit the power to the load 
resistor R plus any incidental circuit losses are supplied by the incre­
mental power gain of the triode. The grid of the triode is driven suffi­
ciently negative to produce plate-current cutoff and sufficiently positive 
to cause grid current. Waveforms of plate current and grid voltage 
will be approximately as indicated in Fig. 9.26(b). The pulses of plate 
current can be thought of as current impulses that charge C and cause 
the circuit to oscillate at its natural frequency. The time constant 
CgRg is assumed large compared to the period so that ex remains nearly 
constant during a cycle. The energy given to the tuned circuit will build 
up the amplitude of oscillations until the energy dissipated equals the 
energy supplied. As the amplitude increases, the duration of plate­
current pulses diminishes, since the grid-cathode voltage is more negative 
than -Eco during a larger fraction of a cycle. This means that the 
"average amplification" of the triode decreases as the amplitude of 
oscillations increases and hence an equilibrium amplitude is established. 

Fourier analysis of the plate current ib shows the presence of a sinu­
soidal component ib1 at the fundamental frequency. The linear incre­
mental analysis indicated in Fig. 9.26(c) assumes each waveform of 
current or voltage to be represented by a sine wave at this funda­
mental frequency. We can therefore consider the circuit to be a single­
frequency amplifier with the incremental grid voltage eg being amplified 
by the triode and coupled back to the grid circuit. (See Article 8.32.) 
Self-oscillations occur when the voltage coupled back has the amplitude 
and phase required to sustain the oscillations. Under these conditions 
the linear incremental circuit shown in Fig. 9.26(c) sustains any value 
of eg and/or ep that has been established. Since this relation holds for 
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Tuned-plate circuit to generate sinusoidal oscillations. 
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any (nonzero) value of ep, the real and imaginary parts must separately 
equate to zero. These two equations yield the oscillation frequency 

1 
w = VLC (9.25) 

and the condition for oscillations to start, 

~ L [ 1 1] 
gm:--- M rp + R (9.26) 
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In an actual nonlinear circuit an appropriately weighted "average" 
current gain corresponds to the g,,,, appearing here. 
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PROBLEMS (See Appendices for device curves) 

9.1. Referring to Fig. 9.2, plot the driving-point curve (v1 vs. ie) for (Rb + rb) 
equal to 0.1 kilohm, 1 kilohm, 10 kilohms, and 100 kilohms. Let Vee = 50 
volts, Re = 10 kilohms, rel = r cf = 0, and r er = r er = 30 kilohms, and 
assume that a = 0 for ie < 0, and a = 2.5 for ie ~ 0. Determine the nu­
merical value of (rb + Rb) for which dv/di = 0 in the forward-gain state. 
Note that if the base resistance rb exceeds this value, the circuit has a negative­
resistance region even with Rb = 0. Alternatively, with Rb = 0, determine 
the range of values of Re for which a negative-resistance region is obtained. 

3i --

e 

Fig. P9. l 

9.2. Sketch and dimension the input e-i characteristics for the circuit shown 
in Fig. P9.1 assuming the idealized piecewise-linear model as given. 

9.3. From Fig. P9.2, sketch and dimension i(t) and v(t) assuming v = 0 
at t = 0. 
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V 

C 

+ 

V > 
Fig. P9.2 

9.4 Sketch and dimension the waveforms v(t) and i(t) for the relaxation 
oscillator shown in Fig. P9.3. 

i -
+ 

V 5 
Fig. P9.3 

9.5. A vacuum tube circuit exhibits a current-controlled negative-resistance 
characteristic that may be represented by segments of the following straight 
lines: 

V - 50i - 50 = 0 
V + 25i - 200 = 0 
V - 7 5i - 300 = 0 

Determine the free-running repetition frequency obtained when a 1000 µµf 
capacitor is connected to the terminals of the circuit. 
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9.6. The driving-point characteristic of an electronic device may be repre~ 
sented by the circuit model shown in Fig. P9.4. Determine the energy-storage 

i -
+ 

V -30k0 

Fig. P9.4 

element that should be connected to the terminals in order to generate 50 kcps 
relaxation oscillations. 

9.7. Sketch and dimension the waveforms of v and i for the circuit shown in 
Fig. P9.5. Let v = 10 volts and i = 1 ma at t = 0. 

-10 

R=O 

Fig, P9.5 

3 i, ma 

2 

R=O 

-2 

-3 

9.8. The driving-point characteristic of a circuit is shown in Fig. P9.6. 
Sketch and dimension the waveform v(t) that results when a 100 mh inductance 
(initial current 5 ma) is connected to the terminals at t = 0. 

i, ma 
+10 

R=+co 
Fig. P9.6 

+u-------1 

t 
V 

! 
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Fig. P9.7 
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9.9. The driving point characteristic for a circuit is shown in Fig. P9.7. 
Sketch and dimension the waveform of v obtained if: 

(a) An initially uncharged 1000 µµf capacitor is connected to the terminals; 
(b) An initially uncharged 1000 µµf capacitor in series with a 10-kilohm 

resistor is connected to the terminals. 

+l00ma --- + 
R= 100 ohms 

V VS. i V 

L = 0.1 henries 

Fig. P9.8 

9.10. The magnetic deflection coil for a cathode-ray tube is to be driven by 
a linearly varying current waveform as indicated in Fig. P9.8. It has been 
proposed that a two-terminal device with the appropriate negative resistance 
characteristic could be connected to the coil to produce this required waveform. 
If the coil has an inductance L = 0.1 hand resistance R = 100 ohms, sketch 
and dimension a v-i curve that would produce the desired inductor current 
waveform. 

9.11. Assume that Tubes T1 and T 2 in Fig. P9.9 are resistive and piecewise­
linear with cutoff for eb 1 + µ 1ec1 and eb2 + µ2ec2 negative, respectively. 

(a) Sketch and dimension the curve of i vs. v, as determined by the resistive 
portion of the circuit. 

(b) What are the conditions on R1 and R 2 that result in a negative-resist­
ance region? 

(c) Sketch the path of operation in the i vs. v plane when a negative 
resistance region is present. 
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+20v +lOv 

u C 40 kfl 

n-p-n 

----a~-v-~---
+ 

lkfl 

Fig. P9.9 Fig. P9.10 

(d) Calculate the period of oscillation and sketch the waveforms of v and i. 
(e) As capacitance C is made smaller, the frequency of oscillation increases. 

Why not, then, use this circuit to generate a frequency of 1000 megacycles, 
simply by choosing C small enough? 

(f) Will the circuit oscillate with a large resistance in series with C? 
(g) Will the circuit oscillate with large capacitances added in parallel with 

R1 and R2? 
9.12. Using ideal-diode models for the p-n-p and n-p-n transistors in the 

circuit of Fig. P9.10, sketch and dimension the driving-point curve v vs. i. 
Assume a = 0.98 for both transistors. 

9.13. Modify the result of the preceding problem to include the effects of 
a 100-ohm base resistance in each transistor model. 

9~14. Sketch and dimension the waveforms v(t) and i(t) obtained with a 
1000 µµf capacitance between the driving-point terminals in Fig. P9.10. 

i -

(b) 
(a) 

Fig. P9.11 

9.15. A gas diode curve is approximated as shown in Fig. P9.ll. Sketch 
and dimension the waveform of v(t) for V = 2Vo and R = 4 Vo/Io, 
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9.16. Each cold-cathode gas diode in the circuit of Fig. P9.12(a) has the 
odd-symmetric volt-ampere characteristic shown in Fig. P9.12(b). Let us 
assume the circuit has been at rest for some time with switch K closed. At 
time t = 0, K opens. Sketch and dimension e1 and e2 as functions of time. 

2E 2E 

+1 

t el 

j 
-::- -::-

(a) (b) 

fig. P9.12 

9.17. The eb vs. ib characteristic for the tetrode in the circuit of Fig. P9.13 
is shown in Fig. P9.14. 

(a) Sketch and dimension the i vs. e characteristic. 

e 

fig. P9.13 

o. 0.1 
E 0.08 
ro 

._:c 
0.02 

100 

fig. P9.14 

eb, volts 

(b) Let Ebb equal the value of e at the center of the negative resistance 
region. What is this value? 

(c) Show the operating path on the i vs. e characteristic with terminals 
A and B connected. 

(d) Sketch carefully i versus time for two cycles around the operating path. 
9.18. Determine the minimum value of current source required to insure 

monostable operation for the series triode relaxation oscillator in Fig. 9.11. 
Using a source having twice this magnitude, determine the required charge 

e 
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content of the trigger pulses. Sketch and dimension the resultin~ waveforms. 
(Let Ebb = 200, R = rp = 10 kilohms, andµ = 20.) 

V V 

(a) (b) 

V 

(c) (d) 

Fig. P9.15 

9.19. (a) Which of the v vs. i curves shown in Fig. P9.15 are astable or 
monostable with parallel capacitance? Why? 

(b) Show how the path of operation for the monostable cases always ends 
at the same point no matter what the capacitor voltage was initially. 

r---

Cp+ L ~ 
I 

v, i 

L ___ ,...___,.___. 

Fig. P9.16 
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9.20. Apply the results of Article 9.9 to the dual case of a small "parasitic" 
capacitance in parallel with an inductance in the voltage-controlled case 
(Fig. P9.16). 

9.21. The piecewise-linear representation of an active circuit is shown in 
Fig. P9.17. 

i 

:~ 

Fig. P9.17 

(a) If an inductor with an initial current I O = 6 ma and an inductance of 
1 millihenry is connected at time t = 0 to the terminals of the box, sketch 
and dimension the waveforms of i (t) and v (t). What is the path of operation 
on the v vs. i plane? 

(b) Repeat part (a) for a capacitor of 1 microfarad with zero initial voltage. 
Again find the path of operation on the v-i plane. 

Fig. P9,18 

9.22. (a) A nonlinear device having the volt-ampere characteristic shown 
in Fig. P9.18 is connected in series with a one-volt battery and a one-ohm 
resistor. Which of the two possible operating points is stable with shunt 
capacitance across the device terminals? Explain. 
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(b) The nonlinear device of Fig. P9.18 is replaced by one having the volt­
ampere characteristic of Fig. P9.19. Which of the operating points is stable 
with shunt capacitance across the device terminals? Explain. 

Fig, P9.19 

9.23. The triodes in the circuit of Fig. P9.20 can be represented by a 
piecewise-linear model with µ = 20, rp = 10 kilohms, and ru = 1 kilohm. 

200 V 

500kO 500kO 

Fig. P9.20 

The free-running repetition frequency is to be 1000 cps. Find the value of 
capacitance required. · 

9.24. Sketch and dimension the waveforms of pertinent voltages and 
currents for the transistor multivibrator circuit shown in Fig. P9.21. Assume 
each junction transistor can be represented by an ideal diode model with 
a= 0.98. ··· 

9.25. A multivibrator using a single point-contact transistor is shown in 
Fig. P9.22 together with the transistor model. Sketch and dimension all 
pertinent waveforms. 

9.26. Calculate the repetition frequency of the free-running multivibrator 
shown in Fig. P9.23. Assume ru = I kilohm for ec > 0. Neglect the effects 
of stray capacitances. 

9.27. Sketch and dimension the waveform of voltage e0 obtained from the 
free-running multivibrator shown- in Fig. P9.24. Each triode is Type L 



1000 
µµf 
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-20v 

Fig. P9.21 

e C 

l0kO 

----+11-
SOv 

Fig. P9.22 

200v 

-::-

Fig. P9.23 

e 

2k0 

l00kO 

a = 2 for ie > 0 

= 0 for ie < 0 
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300v 

lOkO 

Fig. P9.24 

Assume r0 = 1 kilohm for ec ~ 0 and neglect the effects of tube and wiring 
capacitances. 

9.28. Determine the repetition frequency of the free-running multivibrator 
shown in Fig. P9.25. Type I triodes are used. The effects of shunt capaci-

200v 

Fig. P9.25 

tances and grid-voltage overshoot may be neglected. Assume r0 = 1 kilohm 
for ec > 0. 

9.29. The triodes in the circuit of Fig. P9.26 can be represented by a 
piecewise-linear model with µ = 20, rp = 10 kilohms, and r 0 = 0. Triodes 
T1 and T2 constitute a monostable multivibrator triggered by e1 (t) applied 
to triode To. 

(a) What is the minimum value of input pulse amplitude E 1 that will 
effect triggering? 

(b) What is the maximum value of amplitude E 1 that will result in plate­
current cutoff in T 0 as soon as the circuit has been triggered? 

(c) What value of C (in µµf) will produce a 100 µsec positive-going pulse 
at e2 each time a trigger pulse occurs? 

(d) Sketch and dimension e2(t). 
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200v 

+ 

-25 

1000 µsec 

Fig. P9.26 

9.30. The monostable multivibrator shown in the diagram of Fig. P9.27 
is triggered through diode D1 by a brief negative voltage pulse. The plate 
characteristics for the triodes can be represented by piecewise-linear curves 
with the ec = 0 curve passing through the origin. Let ru = 1 kilohm . 

.------------------olOOv 

-lOOv 

Fig. P9.27 

+E 

µ=30 
rp=5kll 

(a) What must be the value of bias potential E to make the duration of 
the unstable state equal to 100 µsec? 

(b) What is the time constant of recovery of the circuit at the end of the 
unstable state? 

9.31. For the free-running multivibrator circuit shown in Fig. P9.28, express 
the repetition interval Or in terms of Rb, R, C, and the triode constantsµ and 
rp, Assume ru = 0 when grid current flows. 

9.32. Type I triodes are used in the monostable circuit shown in Fig. P9.29. 
The circuit is synchronized by brief pulses having a repetition frequency of 
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R R 

Fig. P9.28 

--------------o200v 

180k0 
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.,lfL 
I I 

t = 0 300,usec 

Fig. P9.29 
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+ 

i i. 
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transformer 

-=- Ebb -=-
Fig. P9.30 
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1000 per second. The output pulse resulting from each input pules is required 
to have a peak-to-peak amplitude of 70 volts and a duration of 300 µsec. 

Determine the required values of Rb2 and C. Assume ec2 = 0 during con­
duction of thQ output triode. 

9.33. A tuned-plate oscillator is shown in Fig. P9.30. The transformer is 
represented by an ideal inductor L and an ideal transformer. The losses Clf 
the tuned circuit are represented by R. Find the turns ratio n required for 
sustained oscillations in the linear region of the tube. What is the frequency 
of oscillations? 



C H A p T E R T E N 

Oscillations in RLC Circuits 

10.1 Introduction 

The LC circuit is the basic electrical oscillator. Since the circuit is 
lossless, the total stored energy remains constant with time. However, 
the current and voltage oscillate sinusoidally as the stored energy is 
transferred back and forth from capacitor to inductor. Such ideal 
oscillations can actually occur at very low temperatures (say 4° Kelvin) 
where superconductivity exists in certain materials such as lead. How­
ever, no power can be supplied to a useful load by the ideal oscillator, 
because any power output results in a decrease in current and voltage 
amplitudes. 

The linear RLC circuit is a more general oscillatory circuit than the 
LC circuit. If all elements are linear, continuous oscillations cannot be 
sustained. If the resistance is positive, any energy initially stored in 
the inductance or capacitance is eventually dissipated, hence currents 
and voltages approach zero. If the resistance is negative, currents and 
voltages increase without limit. With nonlinear resistance, positive 
during part of the cycle and negative during part of the cycle, continuous 
oscillations can occur. The amplitudes of currents and voltages stabilize 
at the level for which energy given to the LC circuit by the negative 
resistance each cycle equals energy dissipated in the positive resistance. 

The relaxation oscillations described in Chapter 9 are special cases in 
490 
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which only one energy-storage element need be considered at any one 
time. For this approximation, the circuit operation can be represented 
by first-order equations. When sinusoidal (or nearly sinusoidal) wave­
forms are being generated, two energy-storage elements are important 
throughout the cycle. The equilibrium conditions for the circuit are 
therefore described by a second-order differential equation. For actual 
circuits such equations will be nonlinear. The use of a piecewise-linear 
model for a nonlinear resistance is very helpful in simplifying the analysis. 

~ . r-----------~ 
--- + --.!._ I I 

+ I R + I 
V I .==..E I 

Li I i l I I - L ____________ J 

v=E+Ri 
=e:c+eL 

i=-C dez 
dt 

eL= -L ~ 

Fig. 10.1. Linear oscillatory circuit. 

10.2 Series Oscillatory Circuit 

The series circuit shown in Fig. 10.1 is a general linear oscillatory 
circuit. Since any one state of a piecewise-linear resistive circuit reduces 
to a resistance and a source, the behavior of this circuit is an aid to 
understanding the generation of continuous "sinusoidal" oscillations. 

From the terminal relations given in Fig. 10.1 we can write the 
equilibrium equation for the circuit as follows: 

E + Ri + L !! + ~ f i dt = 0 (10.1) 

The homogeneous equation, obtained by differentiation, is 

d2i R di i 
dt2 + L dt + LC = 0 (10.2) 

From this equation, the characteristic equation is 

2 R 1 
s +Ls+Lc=O (10.3) 
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which has the roots 
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81 = --~ -.J(~Y 
- ~ + .J(~Y 

1 
LC 

1 

LC 

{10.4) 

(10.5) 

The solution of Eq. 10.2 has the form 

i = __!!:_ (eait _ Ea2t) 
82 - 81 

(10.6) 

for the initial condition i = 0 at t = 0. Any of the voltages can be 
obtained once the current is known. 

The character of the current and voltage waveforms depends on the 
values of the roots s1 and s2• * For comparison with the results obtained 
for relaxation oscillators in Chapter 9 we shall consider the waveforms 
i(t) and ex(t). In addition, a plot of i vs. ex for corresponding instants 
of time yields a compact representation of oscillatory circuit behavior. 
If the waveforms i(t) and ex(t) have been determined, the phase-planet 
trajectory (i vs. ex) can be plotted point-by-point for successive values 
of time t. The expressions for i(t) and ex(t) are thus seen to be a para­
metric-equation representation of i(ex), 

The functional relation between i and ex can also be expressed as a 
differential equation written directly from the equations given in 
Fig. 10.1. 

eL E + Ri - e:i: L di 
-=-----=--
i i C de:i: 

(10.7) 

Thus the differential equation relating i and ez is a first-order equation, 
whereas the equilibrium equation is second-order. In general, the 
equation for the phase trajectory is one order lower than the equilibrium 
equation. 

Taking the undamped circuit (R = 0) as a simple example, we have 

(E - e:i:) de:i: = ~ i di {10.8) 

If w~ let E - e:,; = e, then de = -de:,; so that (Eq. 10.7) reduces to 

~ i di+ e de = 0 (10.9) 

* Note that the series RLC circuit under discussion is the dual of the parallel 
RLC circuit described in Article 8.32. 

t A plane in which the axes represent a variable and its time derivative is called 
a phase-plane. 
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eL • 

- + j 
+~~ 

ex!:LC -L- ~E =r -,-=-
.£-

t' 

Fig. 10.2. The undamped oscillatory circuit. 

Integrating this equation and substituting for e, we obtain 

L. 
- i2 + (E - ex)2 = A 2 
C 
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(10.10) 

The corresponding undamped differential equation for the current is 

d2i i 
dt2 + LC = 0 (10.11) 

which yields 

i = I cos (t/YLC) (10.12) 

and 

(E - ex) = I vfJc sin (t/VLC) (10.13) 
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Comparing Eq. 10.10 with Eqs. 10.12 and 10.13 we can establish A = 
I VL/C. The waveforms of current and voltage as well as the elliptical 
phase-plane trajectory are shown in Fig. 10.2 for one specific value of A. 
For different values of A, corresponding to different values of stored 
energy in the system, the trajectories are concentric ellipses. 

10.3 Scale Factors and Normalization 

In any analysis, normalization of variables is usually desirable because 
the results are somewhat more general. When graphical methods are 
to be used, as in oscillator analysis, either normalization or a suitable 
choice of scale factors is virtually a necessity. For example, in a circuit 
like that of Fig. 10.2, the ratio L/C may be of the order of 106 or more, 
so that in terms of volts and amperes the major and minor axes of the 
ellipse may have a ratio of 103 or more. Thus, comparable scales for 
volts and milliamperes yield reasonable plots. Actually, the most con­
venient form for the elliptical trajectory is a circle, which can be obtained 

TABLE 10.1 NORMALIZATION OF OSCILLATOR EQUATIONS 

Let 

Then 

i' = vLi, 

eL' = VCeL, 

v' = VCv, and t' = t/\/LC 

and R' = R/VL/C 

and wo' = wo'VLC = 1 

Original Equation 

i = -C dex 
dt 

CL= -L<!!: 
dt 

d2i R di i 
dt 2 + L dt + LC = 0 

•• = - 2~ - ✓GD' - -le 
82 = - 2~ + ✓C2~Y - le 

v - ex=!:,_ di 
i C de:i: 

E' = VCE, etc. 

Normalized Equation 

de/ 
i' = -di' 

di' 
CL

1 = - dt' 

d2•1 d'' 
_i + R' _!:_ + ., = 0 
dt' 2 dt' i 

s1' = - ~, - ✓C½Y - 1 

••' = - ~' + ✓(~')' - 1 

v' - ex' di' 
--i,- = de/ 
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by expanding the current scale by vL/C or (more symmetrically) by 

multiplying current by VL and voltage by VG. It is also convenient 

to express time in terms of vLC. The effects of normalization on all 
of the quantities involved in the more general oscillatory circuit of 
Fig. 10.1 are given in Table 10.1. Note that the normalized variables i' 
and e' actually have different dimensions than voltage and current. 

The normalization in Table 10.1 changes the dimensions of the varia­
bles used to describe the oscillations. The same form of equations 
can be obtained by setting L and C equal to unity, in which case the 
variables are still current and voltage. Since it is more convenient to 
think in terms of current and voltage than in terms of the square root 

of joules ( VL i or VG e) we shall assume L and C equal to unity in the 
following discussions. We know from the normalization procedure that 
there is no loss of generality in this simplification, since we can always 
replace current and voltage by the normalized variables in any of the 
equations. 

10.4 Oscillations in Linear Circuits 

In the simplified RLC circuit shown in Fig. 10.3, the only adjustable 
parameter is the damping resistance R. We shall select a number of 
resistance values to illustrate the distinctly different character of current 

. r------------, 
+ ~ I 1 _......,.._ I 

I 
I 
I 

"'-------1- L _________ J 
Fig. 10.3. Simplified linear RLC circuit. 

and voltage waveforms for various amounts of damping. In addition, 
we shall plot the trajectories in the phase plane (i vs. ex), since these 
curves are generally more useful than the waveforms when we examine 
nonlinear or piecewise-linear oscillatory circuits. 

For the circuit of Fig. 10.3, the homogeneous differential equation is 

d2 ' d' 
-.!:+R-.!:+i = 0 
dt2 dt 

(10.14) 
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The roots of the characteristic equation are 

s1 = - !!:_ - v' (R/2) 2 - 1 
2 

82 = - !!:_ + v(R/2)2 - 1 
2 

Case I: Overdamped (R > 2, 81 and 82 both negative real) 
The solution for the current is 

. 1 i = ___ (Es1t _ Es2t) 

82 - 81 

and the capacitor voltage is 

e:,; = _1_ [.!.. (1 - Es1t) - !_ (1 - Es2t)] 
82 - 81 81 82 

i 
o 0.2 o.4 b.6 0.8 1.0 o 1 2 3 4 5 6 

--t,----r---,---r---,~-ex ~---.--.--.---.--.--..,....-

-0.2 
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-0.6 -0.6 

-0.8 -0.8 

-1.0 

0 0.2 0.4 0.6 0.8 1.0 
--+--.----,--...----,---.--es 
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6 

7 

t 

~ I 
~, I 

'-~R=2.5 I 
"- I 

'\ I 
\ I 

\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ : 

(10.15) 

(10.16) 

(10.17) 

(10.18) 

Fig. 10.4. Normalized response of overdamped linear circuit (R > 2). 

These waveforms are plotted in Fig. 10.4 together with i vs. e:x: for R = 4 
and R = 2.5. The plot of i vs. e:x: is most readily obtained by taking 
corresponding values of i and ex from the waveforms. 



OSCILLATIONS IN RLC CIRCUITS 497 

Case II: Critically Damped (R = 2, 81 = 82 = -1) 
Since in this case 81 equals 82 , the expression for current given in 

Eq. 10.17 is indeterminate. Evaluating the limit for the indeterminacy 
(0/0) as R approaches the critical value, we have 

and 
ex = 1 - E-t (1 + t) 

(10.19) 

(10.20) 

Critical damping yields the most rapid return to zero possible for the 
current waveform without an overshoot or reversal. 

0 
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I 
I 
I 
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I 

6 t 

Fig. 10.5. Normalized response of critically-damped linear circuit (R = 2). 

The waveforms i (t) and ex (t) are shown in Fig. 10.5 along with the 
plot of i vs. ex. The resistive relation v = 1 + 2i is al~o shown on the 
current versus voltage plane. 

Case Ill: Underdamped (0 < R < 2, 81 and 82 are complex conjugate.q 
with negative real parts) 

For values of R between zero and two, the waveforms are oscillatory. 
Since 81 and 82 are complex, it is convenient to express them as 

81 = -a -j{j 

82 = -a+ j{j 
(10.21) 

(10.22) 
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Fig. 10.6. Normalized response of underdamped linear circuit (R = ½). 

where a = R/2 and /3 = VI - (R/2) 2
• In terms of a and /3 the current 

1S 

E-jfjt - E+jf3t 
i = E-at -----

2j{3 
-at 

E • - -sm/3t 
/3 

The expression for capacitor voltage is 
-at 

ex = 1 - e_ [a sin {3t + /3 cos /3t] 
/3 

(10.23) 

(10.24) 

(10.25) 

The curves in Fig. 10.6 are drawn for R = ½, whereas those in Fig. 10.7 
are drawn for R = -k, For the latter we have a = 0.1 and /3 = 0.995 
(closely approaching the undamped case, a = 0, f3 = I). 
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0 2.0 es 

2 __ ,, 
4 

6 

Fig. 10.7. Normalized response of underdamped linear circuit (R == ½). 

Case IV: Undamped (R = 0, s1 and s2 imaginary) 
Although we have already discussed the undamped case (see Fig. 10.2) 

it is desirable to include the normalized representation here for the sake 
of completeness. Furthermore, it is instructive to obtain the expressions 
for current and voltage as limiting forms of the underdamped case 
as R approaches zero. We see from Eqs. 10.21 and 10.22 that a ap­
proaches zero and {3 approaches unity. Therefore, we have 

i= -sint 
and 

ex= 1 - cost 

(10.26) 

(10.27) 

These waveforms and the circular locus of i vs. ex are shown in Fig. 10.8. 
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Fig. 10.a. Normalized response of undamped linear circuit (R = 0). 

Case V: Negative Underdamped (O > R > - 2, 81 and 82 complex con­
jugates with positive real parts) 

A negative damping resistance reverses the sign of a but does not 
change /3. Thus, just as in Case III, we have 

81 = -a -j{j; 82 = -a +ifJ (10.28) 

but now 

a<O (10.29) 

The general equations for current and capacitor voltage are the same 
as Eqs. 10.23-10.25. In Fig. 10.9 we have chosen R = -¼ for com­
parison with the corresponding positive underdamped circuit (Case III) 
illustrated in Fig. 10.7. The exponential envelope for the waveforms of 
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current and voltage describing the negative-underdamped circuit are 
like negative extensions of those for the positive-underdamped circuit 
because a reversal of the sign of a or t has the same effect. Howevoc, in 
both cases the sine wave begins with the negative half cycle. 
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...... , 
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Fig. 10.9. Normalized response of linear circuit with negative damping (R = - ¼). 

Case VI: Negative Critically Damped (R = - 2, 81 = s2 = + 1) 
The current and capacitor voltage in this case tend to increase in­

definitely without ever being oscillatory. The pertinent equations are 

i = -ti (10.30) 
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ex = 1 + et ( t - 1) (10.31) 

Case VII: Negative Overdamped (R < -2, s1 and s2 both positive) 
As resistance becomes more negative, the current and capacitor 

voltage merely tend toward infinite values more rapidly than in t!~e 
previous case. The expressions given in Eqs. 10.17 and 10.18 apply 
directly, but we note that the values of s1 and s2 are now positive. 

Fig. 10.10. Normalized operating paths for various values of R. 

Summary. For ease of comparison, the trajectories of current versus 
capacitor voltage for both positive and negative damping resistances are 
shown in Fig. 10.10. For the initial conditions used here (i = ex = 0 at 
t = 0) all trajectories start at the origin. All values of positive damping 
lead to the final value i = 0, ex = 1. With no damping the trajectory 
is a circle (continuous sinusoidal waveforms) while for negative damping 
the final values are infinite. 



OSCILLATIONS IN RLC CIRCUITS 503 

10.5 Some Properties of Phase-Plane Trajectories 

In Article 10.4, phase-plane trajectories for a linear series RLC circuit 
are obtained from the waveforms i(t) and ex(t) by eliminating the time t. 
In nonlinear circuit problems, phase-plane trajectories are often easier 
to determine than waveforms. The phase-plane trajectories determine 
the character of the solution and can be used to plot waveforms if these 
are desired. 

As an aid to determining trajectories in more complicated systems, let 
us deduce some basic properties of phase-plane plots. From the differ­
ential equation for the trajectories, 

V - ex di ---- (10.32) 

it is apparent that the slope di/dex is everywhere unique except at the 
point ex = v, i = 0. At this point the slope is indeterminate since 0/0 
can have any value. The slope of any given trajectory in the vicinity 
of such a "singular" point must be found by a limiting process as the 
trajectory approaches or recedes from the point. 

From the uniqueness of slope di/dex at all but singular points we 
conclude the following : 

A. A specific trajectory can never cross itself at a nonsingular point 
in the finite plane. 

B. Two different trajectories cannot cross each other at a nonsingular 
point in the finite plane. 

These points are illustrated by Fig. 10.11 (a), where three trajectories 
corresponding to different initial conditions are drawn for R = ¼­
Different starting points on the same trajectory (like points B and C) 
correspond only to a shift of the time reference, but an initial point not 
on any trajectory shown, must result in a separate curve. 

For the undamped case illustrated in Fig. 10.11 (b ), different initial 
conditions may produce a change in the phase of current and voltage 
waveforms, or a change of amplitude or both. For initial conditions 
exo and i0 the amplitude of ex or i for the normalized case will be 
V ( exo - 1) 2 + i0 

2
, since the trajectories are circles centered at ex = 1, 

i = 0. Initial points 0, Band Con the same trajectory merely represent 
different time origins but the same total energy in the system. The 
trajectory starting at point A yields waveforms having the same phase 
relations but smaller amplitudes than those for the circle through point C. 
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Fig. 10.11. Effect of initial conditions on operating path with R constant. 

10.6 Circular-Arc Construction of Trajectories 

The circular phase-plane trajectories of the undamped circuit [Fig. 
10.11 (b)] lead to an approximate method of constructing trajectories for 
damped circuits using only a compass.* Suppose we make a stepwise 

• R. D. Thornton (M.I.T. Research Laboratory of Electronics, Quarterly Progress 
Report, July 1955, pp. 95-100). 
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approximation to a resistive curve as indicated in Fig. 10.12(a). This 
amounts to replacing the resistance by a number of voltage sources, each 
of which applies over a small range of current. The circuit is therefore 

(a) 

(c) 

eL +~ 
,t.+ 
u 

t-

V = Ej 
for - .2 < i < + .2 

- .6 < i < -.2 
-1.0 < i < -.6 
etc. 

(b) 

+ 
- Ej 

V = 1.0 
V = .92 
V = .84 

f g All tenters 

(d) 
i i h actually on 

k l x axis 
n m 

0 

Fig. 10.12. Circular-arc approximation to trajectory resulting from stepwise 
approximation to resistance. 

undamped as indicated by the model shown in (b) and the approximate 
trajectory will consist of segments of circular arcs. 

At a transition from one range of currents to the next, the step change 
in voltage amounts to nothing more than a corresponding change in 
the circle center and radius. Compare the change from E1 to E2 in 
Fig. 10.12(c) with the change from initial point A to Bin fig. 10.ll(b). 
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The step change of voltage appears across the inductance which holds 
current i constant at the instant of change. 

The circular-arc method is indicated in Fig. 10.12(d). Beginning with 
ex = i = 0, the centers used and the extremities of the corresponding 
circular arcs have been given the same letter designations. Following 
the letters in sequence leads to the complete trajectory for R = -g-. As 
the trajectory re-enters a current interval that has been encountered 
previously, the center used before is used again. Thus, if the arcs are 

1.0 

0:6 

0.2 

-0.2 

-0.6 

-1.0 

v=l+ i 

(a) 

i = 11 

for 1.0 < V < 1.08, 
1.08 < V < 1.16, 
etc. 
0.92 < V < 1.0, 
etc. 

(b) 

i = 0.2 
i = 0.6 

i-= -.2 

Fig. 10.13. Current-source model for stepwise-resistance approximation. 

labelled in sequence, the centers will each have several designations for 
an oscillatory case such as the one illustrated. Comparing the complete 
trajectory in (d) with that in Fig. 10. 7, we see that a relatively coarse 
stepwise approximation to the resistance yields a fairly good approxima­
tion to the trajectory until the size of the spiral becomes comparable to 
the size of the steps. Since the steps need not be uniform, more can be 
used where needed to obtain greater accuracy. 

It is apparent that an alternate representation for a stepwise approxi­
mation to a resistance is a series of current sources, each of which applies 
over a small range of voltage. Use of a current-source model like that 
shown in Fig. 10.13 is not appropriate for the series circuit, since i and 
ex will be independent of inductance L. Connecting a circuit element in 
series with a current source has no effect on the terminal current. With 
the current source model, the voltage across the' inductance will be zero 
while the current is constant and will have an impulse discontinuity as 
each step in current occurs. This is obviously not a good approximation 
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to the actual current waveform in a series RLC circuit. The current­
source model is the appropriate one to use for a parallel LC circuit 
connected to a stepwise resistance approximation. 

10.7 Oscillator Limit Cycles by Circular-Arc Method 

With a current-controlled negative resistance connected to a series 
LC circuit, continuous oscillations can be obtained. When repetitive 
waveforms are thus generated, the corresponding phase-plane trajectory 
must also repeat itself. The resulting closed path in the phase plane is 
called a limit cycle. If specific trajectories approach such a limit cycle 
from both sides, the limit cycle is stable. The free-running relaxation 
oscillators described in Chapter 9 exhibited closed trajectories (limit 
cycles) in the phase plane. 

The physical argument for the existence of a limit cycle is based on 
the fact that negative resistance acts as a power source and causes 
growing transients while positive resistance dissipates power and causes 
decaying transients. Equilibrium occurs when the amplitude of the 
oscillations reaches the value for which the energy dissipated during 
each cycle just equals the energy given to the tuned circuit each cycle. 
Although simple in physical concept, an analytical solution of this 
problem is difficult (even for a piecewise-linear negative resistance). 
However, various techniques permit rapid construction of limit cycles. 
The circular-arc method is particularly convenient for comparing 
oscillatory systems. The stepwise approximation can be applied directly 
to a nonlinear curve or to a piecewise-linear curve. For ease of com­
parison with results already obtained in Chapter 9, we shall assume a 
symmetrical current-controlled negative resistance. 

The character of the waveforms and phase-plane trajectories of an 
oscillator circuit depends on the positive and negative damping resist­
ances. Furthermore, since a linear negative resistance causes a growing 
transient we know that a limit cycle can only exist somewhere outside of 
the break points, so the trajectory spends some time in the positive­
damped regions (states I and II) as well as in the negative-damped 
region (state III). As a convenience, and without loss of generality, the 
break points are set at i = ± 1 for all of the following analyses. The 
construction of the limit cycle proceeds in the same manner as the 
construction for the linear circuits considered in the preceding article. 

The limit cycles shown in Fig. 10.14 correspond to a negative resistance 
R1rr = - ¼ and positive resistances ranging over the values oo, 4, 2, and 
½. This sequence of limit cycles goes from a relaxation oscillation in (a) 
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to a nearly sinusoidal oscillation in (d). Thus with a specific negative 
resistance, the value of positive resistance alone sets the mode of opera­
tion. If states I and II are heavily overdamped we tend to have relaxa­
tion oscillations, whereas the underdamped case yields nearly sine 

\ 
\ 
\ 
\ 

(a) R1 = Ru= oo 

Rm= -1/s 

(c) R1 = R11 = 2 
Rm=-½ 

II 

II 

(d) R1 =Rn= ½ 
Rm= -Y5 

Fig. 10.14. Limit cycles by circular-arc method for Rur = - ½. 

waves. Note that as the positive damping is decreased the size of the 
limit cycle increases, as might be expected. 

For small damping resistances (both positive and negative) the curve 
1· ;;:::: f(i) approaches the vertical line that corresponds to no damping. 
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1.0 

(a) R1=R11 = co 

Rm=-1.0 

(b) R1=Rrr = 2 
Rm=-1.0 

II 

I 

II 

Fig. 10.15. Limit cycles by circular-arc method for Rur = -1.0. 

509 

Note how nearly circular the limit cycle is in Fig. 10.14(d). The corre­
sponding waveforms will be nearly sinusoidal. However for such small 
values of damping, the oscillation amplitude is sensitive to changes in 
load. 

The limit cycles constructed in Fig. 10.15 have a negative resistance 
R1n = -1 (a stronger power source than the Rrn = -½ of Fig. 10.14). 
The positive damping is infinite in (a) and critical in (b). Note the 
tendency of both limit cycles to "elongate." The waveforms will be 
relaxation oscillations in both cases. If a positive underdamped resist­
ance is used here [say½ as in Fig. 10.14(d)], the limit cycle will be very 
large and will again tend to be nearly circular. 
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10.8 The Method of lsoclines 

An isocline is a line in the phase plane along which the slope of a 
trajectory must have a fixed value. Any trajectory must intersect the 
isocline with a unique slope anywhere along the line except at a singular 
point. Let us apply the method of isoclines to the series RLC circuit, 
first with linear and then piecewise linear resistance. 

The differential equation for RLC circuit trajectories shows slopes 
explicitly. Thus we merely let di/dex take on a succession of constant 
values 

V - ex di k 
--=-= 

i dex 

The equation for an isocline in this case is 

V - ex= k i 

(10.33) 

(10.34) 

We note immediately that for k equal to zero we have ex equal to v, 
whereas for infinite k we must have i equal to zero. Other convenient 
values for k, such as plus and minus one, two, three, etc., are then 
selected. As indicated in Fig. 10.16 the slope for each isocline is in­
dicated at frequent intervals along the isocline by a short line called a 
"director." When a number of these have been drawn, a trajectory can 
be sketched relatively easily beginning from any initial point. 

Note that the directors do not specify the direction of rotation of the 
trajectory for positive time. The direction is readily obtained from the 
terminal relations such as those specified by Fig. 10.3. In this case, 
eL = -di/dt and i = -dex/dt and thus the rotation is counterclockwise 
with increasing time. 

The values of damping resistance and initial conditions in Fig. 10.16(a) 
and (b) correspond to those used in Figs. 10. 7 and 10.8, whereas ( c) is 
drawn for R = -1 and the singular point as the starting place. Each 
trajectory emerges from the singular point with a different slope. 

The method of isoclines is readily extended to nonlinear or piecewise­
linear resistance curves. For a piecewise-linear curve we merely treat 
each state like the linear examples shown in Fig. 10.16, hence the isoclines 
form a family of radial lines centered at the voltage intercept for that 
state. As shown in Fig. 10.17, the negative-resistance region (state III) 
for the current-controlled curve extends between break points. States I 
and II flank this region. The isoclines in this case form a set of curves 
like the negative-resistance curve v = f (i) but distorted or "sheared" 
clockwise. 
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In Fig. 10.17, Rm = -1, hence the trajectories within state III will 
be like those of Fig. 10.16(c). The positive damping is critical, hence 
the resulting oscillations tend to be fairly nonsinusoidal. The particular 
value R 1 = R 11 = 2 make the isocline for k = 1 in states I and II 

v=l 

k = oo 
-l--l-::cft--+--fl-+--t-='~~f---41--+----H-+-!-1--ex 

k=O k=½ 

(b) R= 0 

(c) R = -1 

Fig. 1 o. 16. Phase-plane trajectories by the method of isoclines. 

different from all the others, because the directors lie along the isocline. 
This means that a trajectory cannot cross these lines; the operating 
point can be tangent or move along this isocline until a break point is 
reached. See, for example, the trajectory originating at point Q. 

The trajectories starting at O and M in Fig. 10.17 illustrate the 
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formation of a limit cycle. The trajectory that begins at the or1gm 
spirals inward while the trajectory beginning at point M spirals outward. 
The limit cycle is the repetitive path approached by the two. A third 
trajectory from an initial point N would fall between the successive 

R1=2 

Ru:=2 
Rm=-1 
E1=2 
E11 =0 

Em•l 

R / 
k=-f =1°)'/ 

/ 
/ 

k=½ 

/ 
/ 

/ .& 

Fig. 10.17. Limit cycle by the method of isoclines. 

rotations of the trajectory starting at the origin since two trajectories 
cannot cross each other. 

The limit cycle in Fig. 10.17 resembles that of a relaxation oscillator. 
If the positive and negative damping is reduced, the trajectory becomes 
more nearly circular as in Fig. 10.14(d) and the current and voltage 
waveforms will be nearly sinusoidal. 
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PROBLEMS 

10.1. A current generator connected across the terminals of capacitance C 
in Fig. 10.2 applies a brief pulse of current (approximately an impulse) to 
change the voltage e,:. Assume the area of the pulse I oOo = Q0 changes the 
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vo]tage e:i: by an amount Lle:i: = Eo = Qo/C. Sketch waveforms i(t), e:i:(t) 
and the locus of i vs. e:i: for E 0 = 0, E/2, E, 3E/2 and 2E if the pulse is applied 
at t = 0. 

10.2. Plot waveforms i(t), e:i:(t) and the locus of i vs. e:i: for the circuit of 
Fig. 10.3 with R = l. 

10.3. Referring to Fig. 10.5, indicate the effect of an initial capacitor voltage 
e:i:(0) 0n the waveforms and locus of i vs. e:i:. Let ex(O) = -1, -0.5, 0, 0.5, 
1.0, 1.5, and 2.0. 

Fig. Pl0.1 

10.4. Write the.differential equations relating v and iL for the linear RLC 
circuit shown in Fig. PIO. I. 

10.5. Normalize the equations for the circuit of Fig. PIO.I so that the only 
parameter appearing in the oscillatory equation is the damping factor. 

10.6. By means of duality, relate the results of Problems 10.4 and 10.5 to 
the corresponding results for the series RLC circuit. 

10.7. What values of damping resistance R (or conductance G = 1/R) 
yield the seven possible cases of damping for the parallel RLC circuit? 

10.8. Consider a parallel RLC circuit with Land C equal to unity and with 
an initial unit current in the inductor. Let R assume convenient values such 

-2/R 

2.5 

2.0 

1.5 

1.0 

V 

1/R 2/R 
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

Fig. Pl0.2 
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as ±0.25, ±0.5, ±1, and ±2. In each case the resistance is to be approxi­
mated by a stepwise-linear curve as indicated in Fig. Pl0.2. Construct 
phase-plane trajectories. 

10.9. In what region (or regions) of the phase plane is the approximation 
used in Problem 10.8 inadequate for each value of R considered? 

Fig. Pl0.3 

10.10. Compare the results of Problem 10.8 with the results obtained from 
the approximation shown in Fig. Pl0.3. 

L 

v, i 

V C 

-1 L=C•l 

Fig. Pl0.4 

10.11. (a) For the device illustrated in Fig. Pl0.4, write the differential 
equations governing v, ex, and i, and construct a limit cycle. 

(b) Sketch and dimension the waveforms of ex and i vs. t. 
(c) Using the information in parts (a) and (b), sketch v(t) and ex(t). 
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-----.11 i~~ cf] v,i I 
C=L=l 

-1 V 

Fig. Pl0.5 

10.12. (a) Find the limit cycle for the circuit shown in Fig. Pl0.5. 
(b) What is the maximum energy stored in the tuned circuit at any instant 

of time? 
(c) By utilizing the differential equations for the circuit and the limit cycle, 

carefully plot and dimension the waveforms, v(t) and i(t). 

i, ma 

-10 10 u, volts 

Fig. Pl0.6 

10.13. For L = 10-4h, C = 1 µf, find from Fig. Pl0.6 (by using step ap­
proximation for the linear slope) the limit cycle of x = VCv and y = VLfr. 
What is the maximum energy in the circuit? 
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10.14. (a) From Fig. Pl0.7, find the differential equations relating h with 
v and i. 

(b) Using isoclines, find the phase-plane trajectory for v vs. h with an 
initial charge q0 on C (giving v = VO at t = 0). 

Slope=G 
i -· r 

C V 

L 
v, i 

Vo V 

Fig. Pl0.7 

10.15. A number of phase-plane trajectories for various initial conditions 
constitutes the "phase-plane portrait" of a circuit [Fig. 10.16(c) is an example]. 
l; sing the method of isoclines, construct phase-plane portraits for various 
values of positive damping in a linear parallel RLC circuit with Land C equal 
to unity. Use v and h for the phase-plane variables and distribute initial 
conditions equally around a unit circle. 

10.16. From the results of Problem 10.15 deduce and sketch the phase­
plane portraits for the corresponding values of negative damping. 

10.17. Using the method of isoclines, find the limit cycle for the oscillator 
represented by the normalized circuit shown in Fig. Pl0.8. 

Fig. Pl0.8 

10.18. Modify the resistive curve of Problem 10.17 to include the effects 
of a 1-ohm load resistance connected in parallel with the tuned circuit. Deter­
mine the limit cycle. For what value of load resistance will the circuit cease 
to sustain oscillations? 
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10.19. (a) Making reasonable approximations, find the piecewise-linear 
representation of v vs. i (as a function of R) for the circuit of Fig. P10.9(a). 

u 

+ 
Yc 

(a) 

i 
~ 

r 
C Ro L V 

L 
(b) 

Fig. Pl0.9 

p-n-p 

+ 
Ve 

re= 1 meg 
Tb= 200 ohms 
re = 20 ohms 
a= 0.98 
R »re 

Ve= 10 volts 

(b) If the actual resonant circuit consists of a parallel RLC combination 
with Ro= 10 kilohms as shown in Fig. Pl0.9(b), sketch the phase-plane 
operation for the ranges of R from nonoscillation, to barely sustained, to over­
driven. What value of R will just sustain sinusoidal oscillations? 
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Symmetry and 

Balanced Circuits 

11.1 Introduction 

E N 

The exploitation of symmetry is a basic principle of circuit analysis 
and design-a revealing principle whose foundations lie in the mathe­
matical theory of transformation groups. In circuit problems the 
recognition of some form of symmetry is almost certain to lighten 
the work of analysis. By restricting attention mainly to one or two 
forms of symmetry that are very common in electronic circuits we can 
avoid much of the formalism required in a general theory and at the 
same time illustrate the simplicity, precision, and power of the funda­
mental idea. 

11.2 Symmetry, Symmetrical Components, 
and Superposition 

Figure U.1 shows an elementary balanced circuit exhibiting "lateral 
symmetry." Indeed, the left is the same as the right. This is too crude 
a notion of symmetry, however, and intuition will fail in more compli­
cated examples unless we make the concept of symmetry more precise. 
Fortunately, a definition of symmetry does exist and it is both precise 
and simple. In the circuit of Fig. 11.1 the situation is unchanged by 

518 
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turning the diagram over as one turns the page of a book. A mathe­
matician might say that the geometrical entity is invariant under 
half-revolution about the y axis, or, for that matter, under any integral 
number of half revolutions. Inversion about the yz plane, equivalent to 
reflection in a mirror, would do just as well. These remarks give the key. 
Let it be understood henceforth that symmetry is exhibited by, consists 
of, and can be defined rigorously only as the invariance of a structure 

Fig. 11.1. A balanced circuit. 

under some transformation or group of transformations. In the simple 
problems to be treated here, the structure is a circuit model and the 
transformations are rotations, translations, or inversions, all in three­
dimensional space. 

Having identified certain geometrical symmetries in a given circuit 
model, our next step is to look for electrical symmetry. Electrical 
symmetry is exhibited by, consists of, and can be defined rigorously only 
as the invariance of an electrical experiment under some transformation 
or group of transformations. 

In particular, let Xi represent the voltage (or current) in the ith 
branch of the network. Assume that the transformation not only moves 
branch i to the position originally occupied by branch j, but that it also 
multiplies Xi by some number K. Thus the transformation can be repre­
sented as 

for various pairs ij (11.1) 

If the electrical experiment is to be invariant, then we must have 

Kxi = xi, for the pairs ij (11.2) 

Solution of the Eqs. 11.2 gives, in general, a set of permissible values 
K<O, K<2), K<3 ), • • ·, K<n), for the parameter K, and each of these values 
of K defines a related set of voltages (or currents) x<k) which is sym-
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metric; that is, invariant under the transformation. In particular 

(11.3) 

In Fig. 11.1, for example, mirror-reflection about the y axis and 
multiplication of each voltage and current by K gives 

Kva = Vb (11.4) 

Kvb = Va (11.5) 

Kv0 = Vo (11.6) 

Kio= -io (11.7) 

Eliminating Vb from Eqs. 11.4 and 11.5, we obtain 

K 2va = Va (11.8) 

or 
K 2 = 1 (11.9) 

Hence 
K(l) = 1 (11.10) 

K<2) = -1 (11.11) 

Taking the first value K<1) we find, from Eq. 11.3, 

v/1) = Vb(l) (11.12) 

iQ<l) = -io(l) (11.13) 

with the result that 

io<0 = 0 {11.14) 

The second value K<2) gives 

-Va(2) = Vb(2) (11.15) 

-vo<2) = vo<2> (11.16) 

so that 
Vo(2) = 0 (11.17) 

Figure 11.2 shows the circuit-model interpretation of Eqs. 11.12 through 
11.17. 

Now back to the general case. The variables x<k> are called sym­
metrical components. The advantage of symmetrical components lies in 
the fact that the circuit equations become simpler, as illustrated in 
Fig. 11.2. Moreover, since superposition is valid in linear circuits, the 
solution of any problem can be represented as a superposition of sym­
metrical components. 
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Using Fig. 11.1 once more as the example, we see that all possible 
solutions for Va and Vb can be represented as 

Va = Va(l) + Va( 2) 

C' i0°> = 0 C' 

(11.18) 

(11.10) 

---....... -~t-=o 1+ 
L C vo<2>=0 

__ --<>_j__ 
L C 

(a) (b) 

Fig. 11.2. Circuit models for (a) even-symmetric voltages v<O and 
(b) odd-symmetric voltages v< 2>. 

where va<I) and va<2) are solutions of the simpler circuit problems posed 
in Fig. 11.2. In view of Eqs. 11.12 and 11.15, it follows from Eqs. 11.18 
and 11.19 that 

Va(l) = ½ (va + Vb) 

Va(
2

) = ½ (Va - Vb) 

Hence we could have written Eq. 11.19 as 

Vb = Va(I) - Va(2 ) 

vodd 
------I -- ---------,--r 

Vodd 

- -----
Veven 

(11.20) 

(11.21) 

(11.22) 

Fig. 11.3. Resolution of an arbitrary pair (va, Vb) into even and odd components. 

In a laterally symmetric circuit, therefore, the electrical variables are 
associated in pairs (va and vb in Fig. 11.1) or degenerate pairs (v0 "and" 
v0, or i 0 "and" -i0). An arbitrary pair can always be resolved into 
even and odd components, as indicated in Fig. 11.3, in terms of which 
the circuit problem reduces to an independent pair of simpler problems. 
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11.3 Some Elementary Symmetries 

In the preceding article, the general definition of symmetry was 
introduced and "lateral" symmetry was used as a running example. 
Lateral symmetry leads to even-symmetric and odd-symmetric com-

Ra Ra 

11, 

1,) f 1, 1,f 

(a) (b) 

1k-l lk - ---+ + 

~+1 

~d-1 
(d) 

13 
(c) 

Fig. 11.4. Various elementary symmetries. (a) Inversion about the vertical center 
line; (b) 71"-rotation (or inversion about the center point); (c) 271"/3-rotation (or 

three different line inversions); (d) Translation (through distance d). 

ponents. Other symmetries yield other components, but the principle 
is the same. The networks shown in Fig. 11.4 off er a few illustrations. 

The experiment shown in Fig. 11.4(b) is invariant under 7r-rotation 
(180° rotation about an axis normal to the paper), provided I 2 = KI 1 

and / 1 = K/2 (and the same for the other current pairs and voltage 
pairs). Hence both lateral symmetry, Fig. 11.4(a), and 71'-rotation 
symmetry, Fig. 11.4(b), lead to even and odd symmetric components. 

In Fig. 11.4(c) we see a slightly different symmetry. Consider a 
transformation which rotates the diagram counterclockwise through 
120° and at the same time multiplies all currents and voltages in the 
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circuit by some factor K. If the experiment is to be invariant, then 

12 = K/1 (11.23) 

(11.24) 

(11.25) 

with similar triple-relationships holding for the other symmetrically 
disposed current or voltage triplets in the circuit. It follows directly that 
the permissible values of K are the cube roots of unity; three complex 
numbers lying 120° apart in the complex plane. Each value of K deter­
mines a symmetric-component-set. The three possible symmetric 
triplets are, therefore, 

where 

/1(1) = 12(1) = J/1> 

J/2) = a/2<2) = a2J3(2) 

I /3> = a2 I 2(3) = af 3(3) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

Any distribution of voltage and current which satisfies the circuit 
equations can be represented as a superposition of such components. 
Symmetric-triplets are a basic tool in the study of unbalanced faults, 
loads, or interconnections on three-phase power transmission systems. 

Figure 11.4(d) offers a final example. The structure is an extended 
ladder network, only two of whose sections are shown. Assume that all 
sections are identical. The symmetry test here involves translation of 
the diagram through a distance d together with multiplication of all 
currents and voltages by some complex factor K as yet unspecified. The 
set of symmetrical components is therefore determined by the invariance 
relations 

Ik = Klk-1 = I 0Kk 

vk = KVk-1 = KZh-1 = ZloKk 

(11.30) 

(11.31) 

for any section k, where I O and Z are convenient constants to be deter­
mined later. A study of Fig. 11.4(d) yields the circuit equations 

vk-1 - vk = R1Ik-1 

R2(h-1 - h) = vk 

which become, with the aid of Eqs. 11.30 and 11.31, 

Z(l - K) = R1 

R2 (1 - K) = ZK 

(11.32) 

(11.33) 

(11.34) 

(11.35) 
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Quantity I O has cancelled and thus is relegated to the role of an arbitrary 
constant. Equations 11.34 and 11.35 lead to a quadratic in K, 

K2 -(!: + 2)K + 1 = 0 (11.36) 

and the two solutions determine two sets of symmetrical components. 
Each set has its own value of Z, found from K through Eqs. 11.34 or 
11.35. Thus, all possible currents in the extended ladder network are 
simple superpositions of two basic components of the form 

Jk(l) = A[K<l)t (11.37) 

(11.38) 

The arbitrary constants A and B can be adjusted to meet the specified 
boundary conditions at the left and right terminations of the ladder. 

e 

Fig. 11.s. A balanced vacuum-tube voltmeter circuit. 

11.4 A Balanced Vacuum-Tube Voltmeter Circuit 

The circuit of Fig. 11.5 may be used as a d-c vacuum-tube voltmeter, 
with the milliammeter m calibrated to indicate values of the applied 
voltage e. Let us assume that the two tubes are identical and that the 
meter m has negligible internal resistance. Moreover, we shall consider 
only small values of e so that operation is linear and superposition is 
consequently valid. 

When e takes the value zero, the circuit is perfectly symmetrical 
and i, having no preferred direction, must also vanish. The immediate 
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result of symmetry, therefore, is that the voltmeter transfer curve, 
i = f(e), must pass through the origin. Let us now see how symmetry 
can be exploited to calculate the slope of this curve at the origin. First 
observe that the grid-to-ground voltages shown in Fig. 11.5 can be 
resolved into the even and odd components indicated in Fig. 11.6. 
Current i remains zero for even grid excitation [Fig. ll.6(a)]. Further­
more, the common cathode voltage ek is unchanged by odd grid inputs 

C 
-=-

(a) (b) 

Fig. 11.6. Symmetrical components in the voltmeter circuit. (a) Even components; 
(b) Odd components. 

(b), provided e is small enough so that operation is linear. Since ek is 
fixed in (b), the two plate voltages are fixed and the grid-to-cathode 
voltage increments are just equal to the corresponding applied grid-to­
ground voltages, e/2 and minus e/2. Hence the plate current of the 
left tube increases by 

. e 
Aib = Um 2 (11.39) 

and the right tube current decreases by the same amount. Since no 
change can occur in the current carried by either of the cathode resistors 
R, it follows that the flow of incremental current takes the circulatory 
pattern shown in (b), down through the left tube, across through the 
meter and up in the right-hand triode. Hence we have the very simple 
result, 

i _=Um 
e 2 

(11.40) 

giving the slope of the voltmeter transfer curve at the origin. Sym-



526 ELECTRONIC CIRCUIT THEORY 

metry considerations have been much help here, offering a simple path 
to the simple answer. Failure to exploit symmetry would have detoured 
us along a more complicated path to the same answer. 

11.5 A Balanced Power Amplifier with Direct-Coupled Load 

Figure 11.7(a) shows an amplifier designed for good linearity at a 
relatively high level of output power to the load R. The three-winding 
input transformer applies the input signal e0 to the two grids with the 

(a) 

+ 

:---7+ -
R e 
_l-

Fig. 11.7. A balanced power amplifier. 

+ 

(b) 

polarities indicated in the figure. Recognition of symmetry is facilitated 
by interchanging the series connection of the lower tube and its plate 
supply voltage Ebb, to obtain the modified circuit shown in (b). This 
does not affect the operation of the amplifier. The input transformer 
and grid-biasing batteries are omitted from (b) for simplicity and the 
effect of internal plate-supply resistance is accounted for by the resist­
ances Rbb· Circuit (b) exhibits the same form of symmetry as that 
shown in Fig. 11.4(b). 

For a qualitative description of performance, suppose that the tubes 
are biased almost to cutoff, so that neither tube conducts much current 
when e0 is zero. Now apply a large signal e0 varying sinusoidally with 
time. As eu swings positive, the lower tube cuts off and the upper tube 
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conducts, producing a nearly-sinusoidal positive load current i during 
the first half cycle of the sine wave. In the following half cycle, eg goes 
negative, the upper tube is cut off, and the lower tube supplies a nearly 
sinusoidal negative surge of load current. The load current, therefore, 
is nearly sinusoidal over the entire cycle, although the operation of each 
tube is grossly nonlinear. This permits more than twice the amplitude of 
load current obtainable with one tube alone for a specified amount 
of distortion. 

So much for the qualitative behavior; now to calculate the precise 
manner in which the load current i varies with the input voltage eg, 
taking into account the actual nonlinearity of the tubes. By inspection 
of Fig. 11.7 (b ), 

eb = Ebb - Rbbib - Ri 

e/ = Ebb - Rbbi/ + Ri 

(11.41) 

(11.42) 

(11.43) 

Now let us resolve the plate currents and plate voltages into even and 
odd symmetrical components 

eb = ebe + ebo 

e/ = ebe - Cbo 

• I • • 
Zb = Zbe - Zbo 

(11.44) 

(11.45) 

(11.46) 

(11.47) 

Substitution into Eqs. 11.41 and 11.42 and elimination of i with the aid 
of Eq. 11.43 gives a pair of equations which may be added and subtracted 
to obtain 

(11.48) 

(11.49) 

The even-symmetric current component may be visualized as a current 
running counterclockwise around the outside loop of circuit in Fig. 
11. 7 (b), whereas the odd component appears as two loop currents, 
counterclockwise in the upper loop of the circuit and clockwise in the 
lower loop. Resistance R is doubled in Eq. 11.49 because both odd 
currents flow in the same direction through R, thereby doubling the 
voltage drop. Voltages Ebb form an even pair and hence are absent 
from Eq. 11.49. Even-component current does not flow in the load so 
that R does not appear in Eq. 11.48. Thus, Eqs. 11.48 and 11.49 could 
have been deduced directly from the pattern of symmetrical components 
in the circuit. 
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Equations 11.48 and 11.49 have the advantage over 11.41 and 11.42 
in that they lend themselves to a much simpler interpretation as a 

. graphical construction on the triode plate curves. The construction 
is shown in Fig. 11.8. For a specified pair of grid-voltage values the 
upper tube operates at point A and the lower tube at point A'. The 
resistance in Eq. 11.49 determines the slope of the "odd" load line AA', 
but does not say where this line should be located. The constants in 

ib 

lee 
I 

I 
I 

ib 
Al 

le' 
ibO I I C 

I I 
ibe I 

ibo I I 
I / 

ib 
/ 

0 
.,,,,,,, 

eb 

ebO ebO 

eb ebe e' b 

Fig. 11.8. Construction of symmetrical components on the triode plate curves. 

Eq. 11.48, on the other hand, completely fix the "even" load line as 
shown on the diagram, giving its resistance-slope Rbb and its intercept 
Ebb· The odd load line intersects the even load line at some point Q. If 
we now slide the odd load line up and down, maintaining the specified 
resistance-slope Rbb + 2R, we will find one position for which point Q 
lies midway between A and A'. This is the proper location, since Eqs. 
11.44 through 11.47 are then satisfied, as indicated by the constructions 
and dimensions below and to the left in Fig. 11.8. 

For a different pair of grid-voltage values point Q would shift to a new 
position along the even load line and two new operating points A and 
A' would be found. The actual construction is not as time consuming 
as it may appear. A pair of draftsman's triangles may be used to shift 
the odd load line parallel to itself and the proper position can be esti­
mated by eye and checked with a pair of dividers. For a given input 
signal ea, the two grid voltages are 

ec = -Ecc + ea 

ec' = -Ecc - e,, 
(11.50) 

(11.51) 
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Choosing a number of different values of e0 , we compute the correspond­
ing grid-voltage pairs and locate A and A' for each pair. A smooth 
curve drawn through the various points A (shown in Fig. 11.9 but not 
in Fig. 11.8) represents the operating locus of the upper tube as e0 is 
varied, and the same for points A' along the operating locus of the 
lower tube. 

Fig. 11.9. Common operating locus of the two tubes. 

It is tacitly assumed that the tubes are identical, although the con­
struction of operating loci could be carried out on the superimposed 
plate curves of two different tubes in just the same manner. For identical 
tubes, and for the balanced input specified by Eqs. 11.50 and 11.51, the 
two operating loci coincide, as shown by the dashed curve in Fig. 11.9. 
This is assured by symmetry. When e0 is zero both tubes operate at 
pointf. As e0 goes positive, the operating point of the upper tube moves 
up the locus toward b and that of the lower tube slides down toward 
cutoff at c. For a value of e0 greater than about 7.5 volts, the lower tube 
is cut off and has no effect upon current flow in the upper loop of the 
circuit. Hence the upper tube operates along the straight load line ba, 
whose resistance-slope is just Rbb + R. At 15 volts input the odd load 
line has shifted upward as far as position ad. For a sinusoidal input 
signal the operating points of the two tubes run back and forth along the 
locus in opposite directions, meeting at point f twice during each cycle. 

Once the locus is determined, the amplifier transfer curve shown in 
Fig. 11.10 may be plotted by taking values of ib and ib' directly from 
the locus. An odd grid-signal pair e0 produces both even and odd changes 
in the plate currents since the circuit of Fig. 11.7 is not linear. Only the 
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odd component of plate current appears in the load, however, so that 
the transfer curve is odd-symmetric. The curvature of triode char­
acteristics is such that for proper choice of Ecc the transfer curve is 
actually very nearly linear. 

Fig. 11. 1 O. Voltage transfer curve of the balanced amplifier. 

The slope of the transfer curve at the origin is 

G 
_ 2µoR 

o-
rpo + Rbb + 2R 

(11.52) 

where µ0 and r po are the triode amplification factor and plate resistance 
measured at point fin Fig. 11.9. At the upper extremity of operation, 
in region ab of the locus, the amplifier voltage gain is 

G = µR 
rp + Rbb + R 

(11.53) 

whereµ and rp are measured in region ab. The bias voltage Ecc may be 
increased so long as the approximation 

Go= G (11.54) 

is valid. A further increase in Ecc would then cause the transfer curve 
to depart more drastically from linearity. 

11.6 The Transformer-Coupled Push-Pull Amplifier 

No discussion of balanced amplifiers would be complete without 
mention of the push-pull amplifier, which is widely used as a driver for 
loudspeakers. The basic circuit is shown in Fig. 11.11, with the output 
transformer idealized except for resistances Rw, which account for 
transformer winding resistances. The transformer has n turns in each 
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half of the primary winding, per turn on the secondary winding, as 
indicated in the figure. In comparison with the circuit of Fig. 11.7(a), 
the push-pull amplifier in Fig. 11.11 has its two tubes in parallel (rather 
than in series) with respect to the plate-voltage supply Ebb, and in series 
(rather than in parallel) with respect to the output load. 

+ i = n(ib' - ib) 
~ 

el OT J_ 

Fig. 11.11. A push-pull amplifier with transformer-coupled load. 

The grid-biasing circuit in Fig. 11.11, consisting of Rk and Ck, may be 
replaced by a battery Ek for purposes of analysis. The bias actually 
increases somewhat for large input signal amplitudes but we shall 
assume that Rk has been adjusted to produce the proper value of Ek 
with a given signal applied. 

The equations of the two principal loops of the push-pull circuit are 

eb = (Ebb - Ek) + ne - Rwib - Rbb(ib + i/) (11.55) 

(11.56) 

Addition and subtraction of these, together with substitution of the 
transformer relation 

(11.57) 

leads to the symmetrical equations 

2 ( ib + i/) (Ebb - Ek) - (Rw + 2Rbb) 
2 

(11.58) 

(11.59) 
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With even and odd subscript notation, these become 

ebe = (Ebb - Ek) - (Rw + 2Rbb)ibe 

ebo = - (Rw + 2n2R)ibo 

(11.60) 

(11.61) 

From here on the analysis picks up the previous trail at Eqs. 11.48 and 
11.49 and follows exactly the same path to a transfer curve of output 
voltage nR (i/ - ib) versus input voltage e1. Notice that in the push­
pull circuit the odd component of grid signal is only half of the input 
voltage, since e1 splits equally across the two resistors Ru, For the push­
pull form of symmetry the even component of plate current flows 
counterclockwise in the upper loop and clockwise in the lower, producing 
no magnetization of the transformer core. Hence output voltage arises 
entirely from the odd component of plate current, which runs downward 
through both tubes in series and returns upward through the transformer 
primary winding. 

Before leaving the push-pull circuit we should say something about 
the choice of the transformer turns-ratio n. The optimum n will depend, 
of course, upon the particular conditions and restrictions laid down, and 
these are somewhat arbitrary. One possible set of conditions is the 
following. 

1. Load power to be a maximum 
2. Grid voltage never positive 
3. Plate supply voltage (Ebb - Ek) fixed 
4. Rbb and Rw negligible 
5. Input signal adjustable to any desired amplitude 
6. Grid bias near cutoff 

Under these conditions the operating path has the general shape shown 
in Fig. 11.9, with the special dimensions indicated in Fig. 11.12. For 
any given waveform, the output power is proportional to the product 
of the output current and voltage amplitudes. Examination of Figs. 
11. 11 and 11.12 shows that 

X = neroax 

1 
Y = - imax 

n 

(11.62) 

(11.63) 

so that (for a specified signal waveform) output power is proportional to 
the product 

p = xy (11.64) 

Since grid voltage is restricted to nonpositive values, the greatest power 
output will occur when the extremity of the operating path lies some-
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where along the zero-grid-voltage curve; at point q in Fig. 11.12. Geo­
metrically speaking, our job is to maximize the area of the triangular 
region xy by varying the resistance-slope n2R. As point q moves upward 
along the zero-grid-voltage curve, a position is reached at which y is 
increasing percentagewise just as fast as xis decreasing percentagewise. 

ibmax ___ _ 

Fig. 11.12. Maximization of push-pull power output. 

At this point the product xy is stationary and also evidently a maximum. 
In short, 

dy = 
y 

dx 
X 

(11.65) 

The relation given in Eq. 11.65 can be obtained formally by setting the 
total differential of Eq. 11.64 equal to zero. By inspection of Fig. 11.12, 

dx 
r = - - (11.66) 

P dy 

X 
n2R = -

y 
(11.67) 

and from Eq. 11.65 we see that the condition for maximum output 
power is 

(11.68) 

where rp is measured at point q. Thus the transformer turns-ratio n 
should be chosen to "match" the load resistance R to the value of the 
incremental plate resistance rp at the extremity of the operating swing, 
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where one tube is cut off and only half of the transformer primary 
winding is effective. The load resistance reflected into the plate circuit 
by half of the winding is, of course, just equal to n2 R. 

11.7 A Classical Puzzle 

The story is told of a classical puzzle put to a famous mathematician. 
Two players sit at a rectangular table, each with a pile of identical ideal 
short sticks in his lap. The first player takes his turn by placing one 
little stick on the table. The second player then places another stick so 
that it does not overlie or otherwise disturb the first. The turns alternate 
and the last player able to place a stick legally on the table wins the game. 
The problem is to give a plan for winning, if possible, and to decide 
whether or not it is advantageous to have the first move. The famous 
mathematician, so the story goes, came to the solution in twelve seconds. 
This problem would be hopeless without help from the elegant and 
powerful concept of symmetry. [Solution: The first player places his 
first stick in the center of the table; the orientation is immaterial. 
Thereafter, he simply matches every move of the second player, main­
taining symmetry about the center.] An interesting extension of the 
problem arises from the question, "Can the first player win without 
placing his first stick in the center?" 
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PROBLEMS 

11.1. In the circuit of Fig. Pll.1 (a), let v1 = v10) + v1C2), V2 = v10) - v1C2>, 
and similarly for i 1 and i 2• Show that v1<0 , v1<2l, i/O, and i/ 2l are related as 
in the circuits of Fig. Pll.1 (b) and (c). Using superposition of symmetrical 
components, find vi/i1 when V2 is zero. Find v1/i1 when i 2 is zero. 

11.2. Show that the construction in Fig. Pll.2(b) determines the currents 
and voltages in the circuit of Fig. Pll.2(a) .. The conditions are: v and i are 
the coordinates of point p; v' and i' are the coordinates of point p'; and 0 
bisects pp'. Show how you would find v1 and v2 from the construction. 
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11.3. For the push-pull class A power amplifier circuit shown in Fig. Pll.3, 
determine Rand Ecc for maximum undistorted power output without exceed-

Fig. P11.3 

Type IV ratings per triode: 

Ebb max = 250 volts 
lb max = 120 ma 

Pb max = 13 watts 

ing the tube ratings. For this load locate the path of operation in the eb vs. ib 
plane and determine the maximum power output. 

_.!!_ 1250 

+ 
l00kO 2.50 

+ + eb + 
ec 

- ,,,, + 450 
ec' 250v 

+ e, 
b 

l00kO 
+ 
---=. 

ib 1250 

Fig. Pl 1.4 

11.4. Two Type V triodes are used in the push-pull amplifier of Fig. Pll.4. 
Under operating conditions with the input signal applied, show that the 
instantaneous plate voltages and currents are: 

E = (eb + eb') + R (ib + ib') sum 2 sum 
2 

0 = eb ~ e/) + Rdif Cb ~ ib') 

where E,mm = 250 volts, Raum = 125 ohms, Rdif = 2500 ohms. 
11.5. For the circuit of Fig. Pll.4, 
(a) Show that point Q must be the mid-point of line segment AA' in Fig. 

Pll.5. 
(b) Using the Type V curves compute ec, ec', ib, ib', and ib-i/ for e1 = 0, 

15, 30, 45, 60. Notice that the operating path is a straight line for ec > -15. 
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Fig. Pll.5 

11.6. For the circuit of Fig. Pl 1.4, 
(a) Show that e2 = 225(i/ - ib); 
(b) Show that the transfer curve e2 = f(e1) is an odd function. 

537 

(c) Plot e2 = f(e1) for 0 < e1 < 60. Use roughly 10 volts per inch for e1 
and 2.5 volts per inch for e2• This curve can be used to find the output wave­
form e2 (t) due to any symmetrical input wave e1 (t); 

(d) Approximate e2 = f (e1) by a straight line e2 = Ae1, choosing A for 
least magnitude of error in e2 over the range 0 < e1 < 60. Now sketch and 
dimension the output distortion voltage e2d = e2 - Ae1 versus t for one-half 
cycle of the input e1 = 60 sin wt. What distortion frequency is strongly 
evident? What is the distortion amplitude in per cent of th8 e2(t) amplitude? 
What is the gain A? What is the output power? 

Fig. Pl 1.6 

11.7. The basic circuit for a push-pull amplifier is shown in Fig. Pll.6. 
The input transformer has a turns ratio of 1 : 2 from primary to each half of 
the secondary. The turns ratio n: 1 of the output transformer from either 
half of the primary to the secondary is to be determined for a load resistance 
of 8 ohms. 

Determine E 1, Ecc, and n to yield maximum power output with each triode 
conducting plate current during approximately one-half cycle, with ec < 0 
(class B). What is the power output? 
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Fig. A.1. Type I transistor (p-n-p junction) collector curves: (a) Common base; 
(b) Common emitter. 



-80 

-70 

-60 

co 
E -50 
_j 
..... 
C 
Cl) 

~ -40 
(J ... .s 
~ 
8 -30 

-20 

-10 

00 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 
Collector voltage Vee , volts 

Fig. A.2. Type II transistor (p-n-p junction) collector curves: common emitter. 

-11 -12 

• .,, .,, 
m z 
0 
5< 

• 

I.II 
.a:. 



542 

.... 
C 
Cl.) 

100 

90 

80 

70 

~ 50 
u 

.$ 
j 40 

8 
30 

20 

? 
~ 
V 

~ 

y 

~ 

--~ 

~ 

ELECTRONIC CIRCUIT THEORY 

~ --
«o~ 

~ 
1 {'(\a .,:_.,;..-

----
..--

6 {'(\a 

---
----
~ 

5ma ----
~ 

....------ -~ 
~ ---~ 3 ma· ---

i----~ -~ i----- 2ma_ --

ib= 1 ma 
10 

0 
0 10 20 30 40 50 60 70 80 90 100 

Collector voltage Vee, volts 

Fig, A.3, Type III transistor (n-p-n junction) collector curves: common emitter. 
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Fig. A.4. Type IV transistor (point-contact) collector and emitter curves: 
common base. 
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Fig. A.5. Type V transistor (p-n-p junction) collector curves: common emitter. 
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Acceptor, 16, 159 
A-c load line, 355, 369 
Alpha cutoff frequency, 199 
Amnesic control valve, 289 
Amplification, linear, 238, 322 
Amplification factor, 242 
Amplifier, balanced, 524 

cathode-coupled, 324 
cathode-follower, 242 
common-base, 182, 190, 193 
common-collector, 193 
common-emitter, 183, 193 
direct-coupled, 323 
emitter-follower, 192 
frequency-selective, 393 
grid-driven, general, 252 
grounded-cathode, 233, 238 
grounded-grid, 254 
overdriven, 391 
plate-loaded, 233 
push-pull, 530 
tuned, 393 

N 

Amplitude-modulation detector, 136 
AND circuit, 80 
Astable circuit, 448 
Avalanche effect, 20, 383 

Balanced circuits, 518 
Balanced modulator, 142 
Balanced power amplifier, 526 
l3ase resistance1 170 

D E X 

Beam tetrode, 298 
Bias, 189, 237 

see also Polarization 
Bias line, 244, 375 
Bilateral coupling, 3 
Bistable circuit, 448, 464 
Bistable operation, 453, 455 
Blocking oscillator, 457, 467 

astable, 473 
monostable, 471 

Break-point coordinates, synthesis of, 
72 

Break-point method, 75 
Bridge rectifier, 79 

Capacitance, interelectrode, 232, 295 
Capacitance-input filter, 131 
Capacitive coupling, 190, 327 
Capacitor smoothing, 113 
Carrier frequency, 136 
Carriers, majority and minority, 15 
Cathode, 25 

ideal, 28 
virtual, 221, 299 

Cathode-coupled circuit, 261 
Cathode-follower, 242 

input resistance, 249 
operating-point determination, 245 
output resistance, 247 
properties of, 249 
transfer curves, 243 
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Cathode-follower, voltage gain, 375 
with capacitive coupling, 380 
with parallel RC load, 381 
with parallel RL load, 378 
with series RL load, 375 

Charge carriers, majority, 15, 160 
minority, 15, 18, 160 

Child-Langmuir ( three-halves power) 
law, 33, 222 

Clamping circuit, 117 
Clipping circuit, 57, 78, 325 
Collector junction, 197 
Colpitts oscillator, 457 
Common-base circuit, 191 
Common-base curves for p-n-p trans-

istor, 176 
Common-collector circuit, 192 
Common-emitter circuit, 183, 193 
Components, symmetrical, 525 
Composite curve, 53 
Conduction, in a metal, 11 

in an intrinsic semiconductor, 14 
in a semiconductor, 12 
in gases, 21 
in p-n-p junction transistors, 160, 162 
processes, 9 

Conductivity, 11 
Controlled source, 2 
Control valves, 213, 289 
Coupling circuit, 323, 466 

capacitive, 190, 327, 362 
sinusoidal response of, 353 
square-wave response of, 361 
step response, 466 
transformer, 468, 526 

Critical damping, 387, 497, 501 
Critical resistance, 134 
Cryotron, 289, 305 

piecewise-linear model, 308 
valve curves, 307 

Crystal lattice, 12 
Current-controlled curve, 440 
Current gain, 164 
Current source, 48 

current-controlled, 3 
dependent, 4, 6 

Damping, RLC circuits, 387, 492 
D-c load line, 187, 233, 369 
Demodulation, 112, 142 

Dependent source, 4, 6 
Detection, 112, 142 

amplitude-modulation, 136 
synchronous, 144 

Differentiation, 337 
Diffusion of charge carriers, 17, 160 
Diode, 44 

clipper, 58 
detector, 138 
gas-filled, 34 
gate-circuit, 80 
ideal, 2 
junction, 18 
mercury-vapor, 34 
parallel-plane, 29 
photo, 37 
p-n junction, 19 
point-contact, 20 
vacuum, 26 

Director, for phase plane traject0ries, 
510 

Distortion, amplifier, 527 
envelope, 137 

Donor, 15 
Doubler, voltage, 121 
Drift velocity, 10 
Driving-point curves, 191 
Duality, 47, 347 

Electron gun, 296 
Electron-hole pairs, 16 
Electrons, 10, 12 
Electron volt, 23 
Electrostatic amplification factor, 220 
Electrostatic shielding (screen grid), 

296 
Emission, field, 24 

photoelectric, 37 
secondary, 39 
temperature-limited, 26 
thermionic, 25 

Emitter, 158 
Emitter-follower, 192 
Energy valve, 292 
Envelope distortion, 137 
Excitation-response pairs, 338 

Filter, power supply, capacitance input, 
130 

inductance input, 133 
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Filtering, 113 
Free-running blocking oscillator, 472 
Free-running relaxation oscillator, 450 
Frequency-dependent current gener-

ator, 199 
Frequency meter, 127 
Frequency multipliers, 392 
Frequency response, grounded-base 

transistor, 198 
RC-coupled triode, 367 

Full-wave rectifier, resistive circuits, 79 
with smoothing capacitor, 128 

Gain, current, 194, 198 
power, 194 
voltage, 194, 246, 253 

Gas diode, 34, 310 
Gas discharge, 21 
Gas-discharge voltage regulator, 25 
Gate circuit, 80 
Gate tube, 303 
Germanium, 10 
Glow discharge, 36 
Graphical analysis of nonlinear circuits, 

45, 51, 348 
Grid-current curves, 226 
Grid-leak bias, 459 
Grounded-base circuit, 190 

frequency response, 198 
with inductive load, 383 

Grounded-cathode amplifier, 233, 257, 
356 

transfer curves, 234 
Grounded-collector circuit, 183, 193 
Grounded-emitter circuit, 192 
Grounded-grid amplifier, 254 

transfer curves, 154 

Half-power frequency, 367 
Half-wave rectifier, 57, 112 
Hartley oscillator, 457 
High-frequency transistor model, 195 
Hole, 13, 15 
Hole injection, 161 
h parameters, transistor, 180, 182 
Hybrid parameters, 182 
Hysteresis (memory), 309 

Ideal control valve, 291 
Ideal coupling, 258 

Ideal coupling elements, 237 
Ideal diode (rectifier), 2, 56 
Incremental analysis, cathode-coupled 

circuit, 264 
cathode follower, 245 
common-base circuit, 183 
common-collector circuit, 183 
common-emitter circuit, 183 
grounded-cathode circuit, 240 
grounded-grid circuit, 256 
triodes, RC-coupled, 363 

Inductance-input filter, 133 
Instability, 188 
Integration, 337 
Inter-electrode capacitance, 232, 295 
Intrinsic semiconductor, 12 
Inverted-gain state, transistor, 173 
Ionization, 22 
Isoclines, 510 

Junction, p-n, 17 

Keyed rectifier, 144 
Kinetic energy, electron, 30; 298 

LC circuit, 429 
Limit cycle, 507-512 
Limiters (amplitude), 78, 324 
Linear amplification, 363 

stability of amplifier, 429 
with RC-coupled triodes, 363 
with transistors, 192 

Load, choice of, 532 
Load lines, 52, 244, 363 

a-c, 355, 364, 369 
d-c, 187, 233, 369 
for even and odd signal components, 

528 
piecewise-linear, 363 
sliding, 528 

Locus of operation, 352 
elliptical, 358 
in balanced amplifier, 529 
trapezoidal, 350-362 
with shunt capacitance, 370 

Majority carriers, 160 
Matched load, 533 
Miller effect, 295 
Minority carriers, 160 
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Mobility of charge carriers, 11, 160 
Models, 1 

arbitrary nonlinear resistance, 69 
cry<,1 run, 308 
diode, 65 
gas-filled diodes, 66 
incremental, 178 
incremental triode, 232 
pentode, 304 
piecewise-linear, 3, 5, 58 
semiconductor diodes, 62 
temperature-saturated diode, 63 
transistor, 170, 172 
triode, 216 
two-element linear source, 346 

Modulation, 136, 144 
Modulator, 82 

balanced, 142 
pulse amplitude, 82 

Monostable circuit operation, 448, 450 
Multidiode circuits, 78 
Multivibrator, 457, 474 

Negative damping, 500 
Negative resistance, 49, 429, 431, 437 

current-controlled, 431, 434 
incremental, 437 
piecewise-linear, 439 
series triode circuit, 433, 435 
voltage-controlled, 431, 434 

Noise, pentode partition, 302 
Normalization, RLC circuit, 494 
n-p-n transistors, 159 

Operating point, 52, 178, 186 
locus of, 352-364, 370-385 

OR circuit, 81 
Oscillations, RLC circuit, critically 

damped, 497 
negative critically damped, 501 
negative overdamped, 502 
negative underdamped, 500 
overdamped, 496 
undamped, 499 
underdamped, 497 

Oscillator, 428 
limit cycles, 507, 512 
linear, 491 
normalization of equations, 494 
typical circuits, 457 

Partition noise in pentode, 302 
Path of operation, 351 

see also Locus 
Peak detector, 115 
Pentode, 289, 295 

piecewise-linear model, 304 
plate curves, 302 
with parallel RLC load, 386-390 
with parallel RL load, 385 

Permittivity, 31 
Perveance, 29 
Phase-plane, for linear RLC circuit, 

492 
critically damped, 497 
negative critically damped, 501 
negative overdamped, 502 
negative underdamped, 500 
overdamped, 496 
undamped, 499 
underdamped, 497 

Phase-plane trajectory, 494 
circular-arc construction, 504 
directors, 510 
isocline construction, 510, 511 
limit cycles, 507 
some properties of, 503 

Photoelectric emission, 37 
Phototube, 37 
Piecewise-linear analysis, of resistive 

diode circuits, 73 
of resistive transistor circuits, 190 
of resistive triode circuits, 236 
with energy storage elements, 342 

Piecewise-linear approximation, to cry-
otron curves, 308 

to pentode curves, 304 
to transistor curves, 174 
to triode curves, 225 
to a waveform, 89, 349 

Piecewise-linear curve, 67 
Piecewise-linear load line, 365 
Piecewise-linear models, 3, 56, 294 

cryotron, 308 
pentode, 304 
transistor, 171 
triode, 227 

Planck's constant, 36 
Plasma region, 35 
Plate-coupled multivibrator, 459 

free-running, 460 
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Plate-coupled multivibrator, overshoot, 
462, 463 

synchronizing, 463 
p-n-p transistor, 159 
Poisson's equation, 31 
Polarization, of cathode follower, 251 

of common-base circuit, 184 
of common-emitter circuit, 187 
of general circuit, 189 
of grounded-cathode circuit, 237 

Power amplifier, balanced, 526 
push-pull, 531 

Pulse transformer, 470 
Push-pull amplifier, 530 
Puzzle, 534 

Q (quality factor), 392 
Quiescent operating point, 355 

Ramp waveforms, 334 
RC circuit, 344 

approximate-step response, 331 
ramp response, 337 
rectangular-pulse response, 335 
square-wave response, 338-340 
step response, 329 
with d-c and a-c voltages applied, 328 

RC-coupled amplifier, 361 
RC transients, 438 
Reciprocal coupling, 3 
Rectification, 111 

efficiency, 114 
square-law, 236 

Rectifier, 56 
basic circuit, 112 
circuit with d-c and a.-c input volt­

ages, 115 
filter circuits, 111 
full-wave rectifier circuits with 

smoothing capacitor, 129 
keyed, 144 
smoothing-capacitor circuit, 114 

Regenerative circuit, 459 
Regulation, 112 
Relaxation oscillators, 430, 440, 458, 512 

locus of operation, 445 
series-triode, 442 
transition time, 443 
waveforms, 445 

Resisti vi ty-1 U 

Ripple filters, 130, 133 
Ripple voltage, 112, 114 
RLC circuit, 386, 490 
RL circuits, 344 

Sampling circuit, 82 
Saturation state, diode, 63 

transistor, 168 
triode, 228 

Scale factors (normalization), 494 
Screen grid, 295, 296 
Screening factor in pentode, 220 
Secondary emission, 39, 298 
Self-pulsed oscillation, 459 
Semiconductor, 10-15 

diode, 18, 20 
diode model, 62 
intrinsic, 12 
n-type and p-type, 15 

Silicon, 10 
Singular point in a phase plane, 503 
Slicing circuit, 325 
Small-signal amplification, 364 
Space charge, 28, 31, 222 
Square-law detection, 138 
State diagram for thyratron, 311 
Step-charging circuit, 125, 126 
Step response, RC circuit, 327, 368 

RLC circuit, 389 
RL circuit, 371 

Stepwise approximation of a curve, 82, 
87, 504 

Stray capacitances, 232, 295 
effect on frequency response, 366 
effect on step response, 368 

Superconductors, 305 
Superposition, 518 
Suppressor grid, 298 
Symmetrical components, 518, 520 
Symmetrical transistor, 168 
Symmetry, 519 

even and odd signal components, 521, 
525 

Synchronizing pulses, 450 

Temperature dependence of transistor 
parameters, 201 

Temperature-limited emission, 26 
Tetrode, 295 

beam tube, 298, 300 
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Tetrode, curves, 297 
Thermal runaway, transistor, 188 
Thermionic emission, 25, 213 
Thermionic gas diode, 35 
Thevenin equivalent circuit, 51, 347 
Thevenin's theorem, 6 
Three-halves power law, 29, 32 

vacuum diode, 59 
vacuum triode, 223 

Three-terminal devices, general equa­
tions, 180 

incremental models, 181 
Thyratron, 289, 309 
Transformer coupling, 458, 531 
Transformer magnetizing inductance, 

458 
Transistor, blocking oscillator, 467 

collector curves, 166 
common emitter connection, 168 
curves, 203, 539 
curves for a p-n-p junction, 174 
design of polarizing circuits, 188 
incremental models, 179, 182 
junction, 158 
n-p-n, 159 
parameter variations, 201 
point-contact, 158 
p-n-p, 159 
symmetrical, 168 
two-diode model, 163 
typical p-n-p collector curves, 187 

Triggering, monostable circuit, 450 
transition time, 452 

Triode, characteristics, 215 
electrostatic model, 219 

Triode, grid-current curves, 225 
parallel-plane, 217 
parameters, 227 
piecewise-linear models, 217 
potential distribution, 221 
vacuum-diode model, 216 
with parallel RC load, 350, 353 
with parallel RL load, 371, 373 
with series RL load, 374 

Tuned-plate oscillator, 475 

Unilateral control valve, 291 
Unilateral coupling, 3 

Valve, control, 4, 213, 289 
Valve energy, 292 
Variational gain, 164 
Variation of transistor parameters, 200 
Virtual cathode, 221, 300 
Voltage-controlled source, 7 
Voltage doubler, 121, 123 
Voltage gain, 164, 193, 248 
Voltage source, 6, 48 

Waveform, 331 
composite, 333 
pulse, 331-332 
ramp, 331-332 
sampling, 144 
step, 331-332 

Wave shaping, 58, 322, 428 
nonlinear, 323 
with linear energy-storage elements, 

326 
Work function, 23 
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