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FOREWORD 

The rate of scientific discoveries and important engineering applica
tions during and following World War II has presented a peculiar chal
lenge to electrical engineering education. Though originally rooted in 
the physical discoveries of Faraday and the embracing theory of Maxwell, 
electrical engineering had for many years been absorbed in narrow and 
specialized areas of this potentially most powerful field of engineering 
endeavor. The linkage of network theory with the mathematical field of 
functions of a complex variable, the successful monitoring of electron flow 
in solids aided by the judicious implantation of impurities, and the per
ception of the broad principles of controlled feedback for automatic 
regulation of processes have enlarged the scope of electrical engineering 
to the point where a fundamental reorientation of the entire undergradu
ate curriculum appears necessary. 

In fairness to students as well as to instructors, it is important to incor
porate the practically inescapable emphasis on sound and rigorous engi
neering science-as contrasted with the basic sciences of physics, chemis
try, and mathematics-in measured steps and with careful evaluation of 
the learning capacity on the one hand and the ability for constructive use 
on the other hand. We have thus embarked at the Polytechnic Institute 
of Brooklyn on a comprehensive program of revision of all the courses in 
the electrical engineering program. Upon discussion with McGraw-Hill 
representatives, we conceived of a series of basic textbooks portraying the 
essential concepts of the evolutionary process rather than detailed design 
procedures still in the process of maturation. This series will carry in the 
title the name of the Institute and will cover the fields of electronic cir
cuits, communication theory, electromechanical transduction, digital 
techniques, feedback principles, and others, jointly comprising the essence 
of the undergraduate course program in electrical engineering. 

The present volume by Professor E. J. Angelo, Jr. is the first tangible 
result of this long-range planning started more than eight years ago. It 
contains all the elements of the basic approach we have chosen. We hope 
that it can serve as catalyst as well as a helpful guide for many who have 
accepted the challenge of the new developments in technology, and in 
particular the trend toward scientific engineering. 

Ernst Weber 
vii 





PREFACE 

The study of electronics is currently considered to include studies of 
physical electronics, solid-state physics, linear amplifiers, nonlinear 
amplifiers, pulse circuits, rectifiers, and a variety of other related topics. 
Any attempt to cover all these topics in detail in a single volume must 
inevitably result in a large and unwieldy book. Partly for the purpose 
of avoiding such a result, this book does not undertake a thorough 
development of all these subjects; it does, however, attempt to establish 
the fundamental concepts and techniques that are basic to all of them. 
The subject matter of the book has served for several years as the basis 
for a one-year first course in electronics for juniors in electrical engineer
ing. The important topics not treated in detail in this course are studied 
in a subsequent course. 

The first half of the book is concerned primarily with the development 
of linear and piecewise-linear circuit characterizations for tubes and 
transistors and with examining the behavior of these devices in the basic 
amplifier configurations; thus it is concerned with the properties of active 
devices and with circuit representations for such devices. The techniques 
employed are quite general and are used in a subsequent course to obtain 
circuit representations for mechanical, electromechanical, and hydraulic 
devices. The second half of the book is concerned almost solely with 
linear tube and transistor circuits; thus it is an introduction to active
circuit theory. This study is closely correlated with the study of pas
sive-circuit theory; in fact, it is an extension of passive-circuit theory to 
include active circuits. The methods employed in characterizing the 
active devices make it both feasible and desirable to treat tubes and 
transistors simultaneously. As implied above, these two devices are 
seen to be special cases of a large class of amplifying devices. 

Physical electronics and solid-state physics are presented in just 
enough detail to give the student some understanding of the properties 
of the devices and to acquaint him with the principal factors limiting the 
performance that can be obtained. It is believed that the student is 
better motivated and better equipped for a detailed study of these 
subjects after he has studied the applications of the devices and has 
learned of the annoying limitations on their performance. Similarly, 
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X PREFACE 

nonlinear electronic circuits are treated only in an introductory manner 
in this book; thus power amplifiers, pulse circuits, modulators, and 
related circuits are not presented in detail. 

Even with this restricted scope, the book contains more material than 
can be covered comfortably in a one-year course. Thus it is appropriate 
to mention certain sections that can be omitted without eliminating 
material that is prerequisite to later portions of the text. Chapters 11 
and 16 can be omitted entirely; however, if Chap. 16 is omitted it may be 
necessary to present the Nyquist test of Chap. 17 without proof. The 
following sections can also be omitted: 3-7, 3-8, 13-5, 15-8, 15-9, and 
15-10. In addition, various sections in Chap. 2 can be omitted in 
accordance with the desires of the instructor. 

The author is indebted to many people among his colleagues and his 
students for their contributions to this work. The course for which the 
book was developed has been taught by more than 20 different instructors, 
and each of these has aided the development of the subject matter in one 
way or another. Special acknowledgment is due Professor Athanasios 
Papoulis for the resonant-peaking circle of Sec. 15-7 and for the central 
features in the analysis of the double-tuned amplifier. 

E. J. Angelo, Jr. 
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CHAPTER 1 

INTRODUCTION 

The manner in which electronic circuits are presented in this book is 
the result of an effort to unify and systematize the study of such circuits 
through the use of some of the elementary but powerful techniques of 
modern network theory. The result is a somewhat unconventional treat
ment of the subject matter. This introductory chapter presents a quali
tative discussion of the principal objectives of the book. 

1-1. Basic Premises. The variety of circuits using electronic devices 
is so great that it is not possible, because of the limited time available, 
to discuss each of them separately. Moreover, the study of electronics 
on such a basis is unsatisfactory in many respects, for it tends to become 
the study of a large collection of more or less unrelated circuits. A more 
effective basis for the study is provided by certain fundamental concepts 
and analytical techniques that are applicable to large classes of circuits 
and that therefore bring unity into the study. 

The unifying concepts that are the principal concern of this book apply 
equally well to transistor and vacuum-tube circuits; hence it is feasible 
to study these two types of circuits simultaneously. In fact, these con
cepts are fundamental to linear networks in general; hence they are 
currently used in the analysis of mechanical, electromechanical, hydraulic, 
and thermal systems as well as electronic circuits. Of particular impor
tance is the fact that these concepts provide a kind of insight and under
standing that is especially useful in the design of electronic circuits. 

Encyclopedias of electronic circuits and handbooks of factual infor
mation have important uses in engineering work; however, as a rule they 
do not provide the best guidance for an organized basic study. A text
book should concentrate on the reasoning processes used in analysis and 
design; when the reasoning processes are mastered, no special tutoring 
is needed to utilize the factual information contained in handbooks. 

The belief that learning proceeds from familiar things and specific cases 
to new things and general cases dictates that new concepts be introduced 
in terms of specific and, wherever possible, familiar circuits. This 
practice has, in addition, the desirable properties of motivating the study 
and of relating theoretical developments to engineering applications. A 
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2 ELECTRONIC CIRCUITS 

body of powerful theory has questionable value to the engineer (in con
trast with the mathematician) unless he can interpret it in terms of a 
physical system. This is not to say that an elegant theory must be 
defiled by a diluted expression in practical terms; however, the physicist 
and the engineer must go one step beyond the mathematician and relate 
their theories to physical phenomena. This, in fact, is the chief function 
of the physicist. The chief function of the engineer is to use these 
relations to design systems which technicians then build. Most engineers 
are part physicist and part technician, with altogether too little true 
mathematical competence (as distinct from skill in manipulation and 
computation). 

In beginning the study of a new concept, the student is confronted 
with two distinct difficulties, neither of which is necessarily serious. The 
first of these is the difficulty of grasping the concept and understanding 
its significance; the second is associated with the computational effort 
required in the quantitative application of the concept. It is essential 
that these two difficulties be separated; in particular, the purely com
putational difficulties must not be permitted to obscure the concept. 
As a general rule, the properly prepared student has less trouble with 
the conceptual difficulties than with those of computational origin, even 
though the new concept be quite abstract, provided that the concept is 
clearly related to other concepts that are familiar from previous studies 
or experiences. It is not necessary that these familiar concepts be 
practical or physical; they can be completely abstract so long as they are 
familiar. Thus a competent electrical-engineering student can in a very 
few weeks become proficient in analyzing the dynamics of linear mechani
cal systems, provided that he relates the mechanical system, which is 
completely physical, to its electrical analog, which is quite abstract in its 
electrical properties. If the new concept is truly fundamental, however, 
the student is not likely to perceive all its implications at once. Com
putational difficulties should be avoided whenever possible by judicious 
choice of the method of analysis; however, in many cases laborious 
computations cannot be avoided. Here the human propensity for error 
takes a heavy toll. The principal cause of errors is not a lack of knowl
edge, but carelessness. Nevertheless, the engineer must learn to face 
computational difficulties and to carry out lengthy calculations with 
accuracy. In this connection, a thorough understanding of the concepts 
involved and a clear picture of the fundamental relations do much to 
relieve the tedium of computation, to expose computational errors, and 
to reveal the most efficient computational procedure. 

For reasons stated above, problems intended to illustrate a basic 
principle should be clearly formulated, and the principle should not be 
obscured by computational difficulties or vague design consideration. 
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Such problems may, however, be expressed in terms; of carefully chosen 
practical applications for the purpose of motivation and to provide 
factual information. Having mastered the principle, the student should 
advance to problems involving more computational effort and including 
some aspects of design. 

1-2. Analysis and Design. The problem of calculating the perform
ance characteristics of a specified circuit is the problem of analysis. In 
the case of linear circuits, both electronic and otherwise, there are 
systematic methods for solving any analysis problem. These methods 
of solution can be learned by rote, and with their aid the solution of 
analysis problems does not necessarily require any imagination. Never
theless, as is shown in the following paragraph, analysis is fundamental 
in the more challenging problem of design, and in this connection it is 
often desirable to discard the systematic methods of analysis mentioned 
above. 

The problem of specifying in detail a circuit to meet a given set of 
performance specifications is the problem of design. In general, there 
is no systematic method for solving this problem, and usually there are 
many different solutions to any given design problem. (This latter fact 
means that more conditions could have been included in the specifica
tions.) Accordingly, the solution of the design problem requires imagi
nation and is therefore stimulating to the mind. Systems are usually 
designed by a cut-and-try procedure. First, a circuit is chosen tenta
tively on the basis of factual knowledge and past experience. This 
circuit is then analyzed, and its performance characteristics are compared 
with the specifications that must be met. The comparison often shows 
that the original circuit must be modified in some way, or it may even 
show that the choice of a different basic circuit is necessary. After 
these changes are made, the circuit is again analyzed, and the results 
are compared with the specifications. This process is repeated until a 
final design is selected. (Occasionally it is necessary to terminate the 
process before the optimum design is reached in order to meet a produc
tion deadline.) Thus efficiency in design depends upon a good store of 
useful factual information to serve as a guide in making the initial 
choice and upon skill in analysis to permit evaluation of the choice with 
a minimum of labor. Of special importance is the kind of factual infor
mation used to characterize various circuits, for this consideration governs 
to a large extent the effectiveness of the initial choice of a circuit and the 
facility with which the initial choice can be modified to obtain improved 
performance. 

In view of these facts, analysis problems can be divided into two classes. 
In the first class, the objective is to determine some specific quantity 
such as the number of volts appearing at the output terminals of a given 
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circuit. In this case the method of analysis is chosen to provide the 
answer with the least effort and with the smallest probability of numerical 
error; elementary systematic methods are usually satisfactory for the 
solution of this problem. In the second class of analysis problem, the 
objective is to examine the general properties of the circuit and to obtain 
factual information about these properties that will subsequently be 
useful in circuit design. In this case the method of analysis should be 
chosen to give the greatest insight into the properties of the circuit and 
to present the factual information in the form that is the most useful to 
the designer. Elementary methods of analysis are usually not suitable 
for this purpose, for they usually provide little insight. On the other 
hand, the network theorems, for example, are particularly valuable tools 
in this class of analysis. In this type of analysis, the method used for 
characterizing the properties of the circuit is especially important. In 
this connection, the logarithmic frequency characteristics and the pole
zero patterns of network functions are particularly effective for char
acterizing the dynamic properties of circuits. 

1-3. Analysis of Physical Systems. It is shown in Sec. 1-2 that the 
analysis of physical systems is an important part of the design of such 
systems and that therefore the engineer, who is ultimately concerned. 
with design, should be a skilled analyst. The analysis of a physical 
system usually consists of three steps: ( 1) A study of the physics of the 
system, either theoretical or experimental, leading to a set of relations 
that describe the behavior of the system. These relations, which may 
take the form of a set of equations or a set of curves, constitute a mathe
matical model for the system. In the case of electrical systems, this 
study is usually accompanied by the formulation of an electric network 
model corresponding to the mathematical model. (2) The mathematical 
solution of the model. (3) The interpretation of the solution in terms of 
the physical behavior of the system. 

Approximately the first half of this book is concerned primarily with 
the application of step 1 of the analysis procedure to vacuum-tube and 
semiconductor devices of engineering importance. The analysis of cer
tain simple but basic circuits is carried through to completion, however, 
in order to show their characteristics and limitations. In formulating 
network models for physical systems it is usually necessary to make 
certain simplifying approximations; thus the models correspond approxi
mately to the physical system over a restricted range of operating condi
tions. This is true of the models developed for vacuum tubes and 
transistors. For example, most of these models are valid only in a 
restricted range of operating voltages and frequencies. These models, 
which are electric-circuit representations for tubes and transistors, are 
purposely called models rather than equivalent circuits to emphasize the 



INTRODUCTION 5 

fact that they are not exactly equivalent to the physical device but 
that they represent the device approximately over a certain range of 
operating conditions. 

Passive, linear, bilateral, lumped-parameter circuits are commonly 
characterized in terms of ideal resistance, inductance, and capacitance. 
However, these ideal components are not sufficient for the character
ization of systems containing transistors and vacuum tubes. The study 
of these devices shows that in most of their important applications they 
can be characterized in terms of ideal R, L, and C plus two additional 
elements, the ideal diode and the ideal controlled source. 

The second half of the book is concerned primarily with steps 2 and 3 
of the analysis procedure. Most of this study is restricted to the case of 
small-signal operation in which the circuits are linear and can be described 
in terms of ideal R, L, C and controlled sources. Thus the study is 
concerned with the extension of passive-network theory to the analysis 
of circuits containing controlled sources. The methods of analysis are 
chosen to give the greatest insight into the important properties of the 
circuits and therefore to be of the greatest help in circuit design. The 
means used to characterize the properties of the circuits are also chosen 
on the basis of utility in design. 

In conclusion, it should be said that for the engineer there are no 
problems of analysis that cannot be solved; he must obtain a solution by 
one means or another. If the mathematics becomes too cumbersome to 
be useful, he must make acceptable approximations to reduce the mathe
matical complexity. If circuits are nonlinear, he must use linear or 
piecewise-linear approximations, or he may be forced to use graphical 
methods of analysis. In many circumstances he must be prepared to 
use electronic computers in obtaining solutions to the more difficult 
problems. In the worst cases he may be forced to use empirical methods. 
In no case, however, should he abandon his theoretical knowledge; this 
knowledge provides valuable guidance in obtaining a solution by any 
means. When complete analytical solutions are not feasible, partial 
solutions usually serve as valuable complements to experimental studies. 

1-4. Summary. The study of electronic circuits presented in this 
book has as its p~imary objective the development of certain fundamental, 
unifying concepts that give useful insight into the properties of electronic 
circuits and that serve as valuable guides in circuit design. The more 
important phases of the study can be summarized as follows: (1) an 
examination of the electrical characteristics of tubes and transistors; 
(2) the formulation of network models for tubes and transistors and the 
emergence of the ideal diode and the ideal controlled source as network 
components; (3) the extension of passive-network theory to circuits con
taining controlled sources; (4) the characterization of the dynamic 
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properties of circuits in terms of the logarithmic frequency characteristics; 
( 5) the characterization of the dynamic properties of circuits in terms of 
the poles and zeros of the network functions; (6) an examination of the 
effect of feedback on circuit properties. 

A secondary objective of the study is to provide the student with a 
store of factual information about the more important electronic circuits. 
There are several reasons for presenting this information, among which 
are (1) motivating the study, (2) providing a nucleus of factual infor
mation to serve as a basis for circuit design, and (3) strengthening the 
grasp of basic concepts by expressing them quantitatively in a realistic 
context. The factual information is kept subordinate to the basic 
principles, however, and it is presented, for the most part, through the 
illustrative examples in the text and through the problems included at 
the end of each chapter. 



CHAPTER 2 

THE IDEAL DIODE 

It is explained in Chap. 1 that the set of ideal elements consisting of 
resistors, capacitors, inductors, and constant current or voltage sources 
is not adequate for the representation of the electrical properties of 
electronic circuits. However, the addition to the set of two new elements, 
the ideal diode and the ideal controlled source, removes this limitation 
and makes possible the network representation of most of the important 
electronic circuits. The objective of this chapter is to introduce the 
ideal diode as a circuit element and to investigate some of the useful 
things that can be done with its aid. 

The ideal diode is a nonlinear, two-terminal element; it is used to 
represent the nonlinear properties of electronic devices such as vacuum 
tubes and transistors. Circuits containing diodes are therefore non
linear, and for this reason they can perform operations that cannot be 
performed by circuits containing linear R's, L's, and C's alone. Thus a 
wide range of new and useful circuits is made possible by the diode. 
Some of these circuits are analyzed in the pages that follow. 

2-1. Characteristics of the Ideal Diode. The ideal diode is repre
sented symbolically in Fig. 2-la; its volt-ampere characteristic is given 
by the heavy lines in Fig. 2-lb. This characteristic shows that the ideal 
diode behaves in the following 
way. When the diode current 
id is positive, the voltage drop ed ia 

across the diode is zero, regard-
less of the magnitude of the cur
rent; that is, the diode behaves as 
a short circuit to current in the 
forward direction. On the other 

(al (bl 
hand, when the voltage drop across Frn. 2_1, The ideal diode. (a) Symbol; 
the diode is negative, the current (b) volt-ampere characteristic. 
through the diode is zero, regard-
less of the magnitude of the voltage; that is, the diode behaves as 
an open circuit to voltage in the reverse direction. The diode changes 

7 
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from the open-circuit to the short-circuit condition at the point where 
both the current through the diode and the voltage drop across it are 
zero. Of course, no physical device has exactly these characteristics; 
however, a number of devices have characteristics that approximate the 
ideal very closely. 

The upper terminal of the diode in Fig. 2-la is called the anode terminal 
because positive charge flows into the diode at that terminal. The lower 
terminal is called the cathode terminal because positive charge flows out 
of the diode at that terminal. 

The most important feature of the ideal diode is the fact that its 
volt-ampere characteristic is not a straight line; it consists of two straight
line segments joined at right angles. The ideal diode is therefore a non
linear device, and for this reason it can produce results that cannot be 
obtained with the linear elements R, L, and C. The importance of the 
diode lies in this fact. 

e 

{al (bl 
Frn. 2-2. A diode rectifier circuit with supply voltage es = Ea sin wat. (a) Circuit; 
(b) waveforms. 

Devices having volt-ampere characteristics consisting of straight-line 
segments are called piecewise-linear devices because they are linear along 
each separate piece of the characteristic. If the combinations of current 
and voltage are restricted to values lying entirely on one piece of the 
characteristic, the device behaves as a linear device. Its nonlinear 
nature comes into consideration only if the ranges of current and voltage 
involved extend across a break point in the characteristic. 

2-2. The Half-wave Rectifier. A resistive half-wave rectifier circuit 
is shown in Fig. 2-2a. The voltage source e8 supplies a sinusoidal voltage 
to the circuit; RL represents a resistive load being supplied with power, 
and RB represents the source resistance. When e8 is positive it _produces 
a current in the positive direction indicated in the diagram. Since this 
is the forward direction for the diode, it acts as a short circuit, and the 
magnitude of the current is determined by es, Rs, and RL. When es is 
negative it acts to produce a current in the opposite direction. However, 
since this is the reverse direction for the diode, it behaves as an open 
circuit, and no current flows. The waveforms of supply voltage and 
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load voltage, eL = RLid, are shown in Fig. 2-2b. Under these conditions 
the load voltage is 

eL = Rs+ RL es 

eL = 0 

for e8 positive 

for es negative 

(2-1) 

(2-2) 

The load voltage pictured in Fig. 2-2b is periodic; therefore it can be 
represented by a Fourier series. If the peak instantaneous value of eL 
is designated by EL, the series is 

eL = ~EL+½ EL sin Wst = :1T EL cos 2wst - l~1T EL cos 4wst + · · · 
(2-3) 

Thus eL consists of a d-c component and sinusoidal components at the 
fundamental radian frequency ws and at integer multiples of Ws. The 
voltage across the load therefore contains components at frequencies not 

(a) (bl 
Frn. 2-3. A battery charger with supply voltage e. = E. sin w.t. (a) Circuit; (b) 
waveforms. 

present in the voltage applied to the circuit. The appearance of these 
new frequencies is a consequence of the nonlinearity of the diode. In 
circuits consisting entirely of linear elements the only frequencies appear
ing are those present in the applied voltages and currents. One of the 
primary uses of the diode is the production of these new frequencies; 
often the d-c component generated by the diode is the quantity of 
interest. The action by which a diode generates a direct voltage from 
an alternating supply voltage is called rectification. 

The rectifier circuit shown in Fig. 2-3a is a battery charger. In order 
for charge to be accumulated in the battery it is necessary that id have 
some positive average value; that is, id must have a positive d-c com
ponent. The action of the diode in generating a d-c component is there
fore essential in the charging of a battery from an a-c supply. The action 
of the circuit can be understood from the waveforms shown in Fig. 2-3b. 
At those instants when the curve of es lies below E (es less than E) the 
net voltage around the loop acts to send current in the reverse direction 
through the diode. At such instants the diode therefore acts as an open 
circuit, and no current flows. At those instants when the curve of es 
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is above E (ea greater than E) the net voltage acts to send current in the 
forward direction through the diode, the diode acts as a short circuit, 
and current flows in the proper direction to charge the battery. The 
variable resistance R can be adjusted to give the desired value of charging 
current. The charging current at each instant is given by 

• E 8 sin Wst - E 
1,d=------

Rs +R 
for es> E 

for ea < E 

(2-4) 

(2-5) 

An ideal diode can conduct any value of current in the forward direc
tion, and it remains an open circuit for all values of inverse voltage. 
This is not the case, however, with physical diodes. In general, there 
is a limit to the peak instantaneous current that can be passed without 
damage, and there is a limit to the peak instantaneous inverse voltage 
that can be applied. It is therefore necessary to ensure that these two 
quantities do not exceed the maximum permissible values. 

No current flows in the circuit of Fig. 2-2a when an inverse voltage 
exists across the diode; hence there is no voltage drop across the circuit 
resistances, and the peak inverse voltage is simply Es. The peak forward 
current occurs when ea has its maximum positive value; the magnitude 
of this current is (id)max = Es/(Rs + RL). Similarly, there is no current 
in the circuit of Fig. 2-3a when an inverse voltage exists across the diode; 
hence the peak inverse voltage occurs when es = -Ea (Fig. 2-3b), and its 
value is Epi = Es+ E. The peak current occurs when es has its maxi
mum positive value, and it is given by (id)max = (Es - E)/(Rs + R). 

It is clear from Fig. 2-3b that the diode in the battery-charging rectifier 
conducts for somewhat less than half the cycle of es. If Es is only slightly 
larger than E, the diode will conduct for only a very small fraction of the 
time. Under these conditions the average current, which measures the 
charging rate, will be much smaller than the peak current, which must 
be limited to a safe value. This operating condition corresponds to poor 
utilization of the diode. 

The calculation of instantaneous and average power in circuits in 
which all currents and voltages are d-c or are sinusoids of the same 
frequency is a relatively simple matter. In circuits such as those dis
cussed above the currents and voltages have complex waveforms, and 
computations of power must be made with care. In particular, it 1s 
usually desirable to base power calculations on the fundamental law 

p = ei (2-6) 

If e is the instantaneous potential difference in volts across the terminals 
of any two-terminal device, and if i is the current in amperes into the 
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positive terminal at the same instant, then p 1s the power in watts 
delivered to the pair of terminals at that instant. This relation is always 
true; it comes directly from the definitions of potential difference and 
current and is independent of the circuit. If e and i are time-varying 
quantities, p is a time-varying quantity. The average value of p over 
any interval T is given by 

1 {T . 
P&v = P = T }o ei dt (2-7) 

To find P this integral must be evaluated. If analytic expressions for 
e and i as functions of time are known, then it may be possible to evaluate 
the integral analytically. If analytic expressions for e and i are not 
known, or if they are too complicated for easy integration, the integral 
can be evaluated by approximate methods such as Simpson's rule or by 
counting squares on a graphical plot. In any case it must be stated 
most emphatically that, in general, 

(2-8) 

In other words, the average of the product of any two time-varying 
quantities x and y is not, in general, the product of the averages of x and 
y; however, it reduces to the product of the averages in the special case 
that either x or y or both are constant in the integration. 

Example 2-1. In a diode rectifier circuit like that shown in Fig. 2-2 the supply 
voltage is es = 475 sin 377t volts, the load resistance is RL = 1000 ohms, and the 
source resistance is R. = 500 ohms. Determine (a) the d-c component of the load 
voltage, (b) the peak instantaneous diode current, (c) the peak inverse voltage across 
the diode, and (d) the average power absorbed by the load. 

Solution. a. During the negative half cycle of e. the diode acts as an open circuit 
and eL = 0. During the positive half cycle of es the diode acts as a short circuit, 
and the load voltage is 

RL lOOO 475 . 316 . 
eL = R. + RL e. = 1500 sm e = sm e 

The d-c component of eL is the average value of the voltage over a full cycle of opera
tion: 

1 1 211" 1 111" 316 
Ede = -2 eL de = -2 316 sin e de = - ~ 100 volts 

11"0 11"0 1r 

b. The peak diode current occurs when e8 has its maximum positive value; hence 

( . ) (e.)max 475 0 
id max = R. + RL = lS00 = .316 amp 

c The peak inverse voltage across the diode occurs when e, has its maximum nega
tive value; hence 

Epi = (e.)max = 475 volts 
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d. During the negative half cycle of es the load absorbs no power. During the 
positive half cycle of ea the power absorbed by the load at each instant is 

eL2 3162 

PL = RL = 1000 sin2 
() = 100 sin2 

() 

The average power absorbed in one full cycle is 

PL = __!_ f 21r PL d() = lOO [1r sin2 () d0 = 50 ! [1r sin2 () d0 
21r Jo 21r Jo 1r Jo 

= 50 (sin2 0)av = 50[H(l - cos 20)av] 

But the average value of cos 20 in the interval O < 0 < 1r is zero. Hence 

PL = 25 watts 

Example 2-2. The supply voltage in the battery charger of Fig. 2-3 is es = 10 sin 
377t volts, the battery voltage is E = 7 volts, and the total series resistance is R + R. 
= 1 ohm. Determine (a) the charge delivered to the battery in 1 hr, (b) the peak 
diode current, and (c) the peak inverse voltage across the diode. 

e 

E 

()=wt 

Frn. 2-4. Waveform for the battery charger of Example 2-2. 

Solution. a. The charge delivered to the battery in 1 hr is 

When e. is less than E, the diode current is zero. When e. is greater than E (the 
interval 01 < 0 < 02 in Fig. 2-4), the diode current is 

. e. - E 
ia = R. + R 

The average diode current over a complete cycle is thus 

(.) = _!_ flh[E.sin (0) - E] d0 
ia av 21r } 01 R. + R 

Integrating and substituting the numerical value of Rs + R yields 

1 
(ia)av = - [ -E. cos (0) - E0]i~ 

21r 

But 02 = 1r - 01. Hence 

(ia)av = 2~ [ -E. cos (1r - 01) - E(1r - 01) + E. cos (01) + E01] 

1 
= 21r [2E. cos (01) + 2E01 - 1rE] 
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When 0 = 01, e. = E. sin 01 = E; hence 01 = sin-1 (E/E.) = sin-1 0.7, and 01 = 
0. 775 radian. Substituting numerical values in the above expression yields 

(id)av = ;7r [20 COS (01) + 1401 - 71r] 

= 0.50 amp 

The charge delivered to the battery in 1 hr is thus 

Q = (3600) (0.4 78) = 1720 coulombs 

b. The peak diode current occurs when e. has its positive maximum value and is 

. E3 - E 10 - 7 
(id)max = R3 + R = --1- = 3 amp 

The ratio of peak to average diode current is thus 

(id)max_ 3 _
63 (id)av - 0.478 - • 

c. The peak inverse voltage across the diode occurs when e. has its maximum nega
tive value and is 

Epi = E. + E = 10 + 7 = 17 volts 

2-3. The Diode Limiter. The circuit shown in Fig. 2-5a is a diode 
limiter. It has the property that no matter how wide the range over 

R 

+ 

(al (bl 

Fm. 2-5. The diode limiter. (a) Circuit; (b) transfer characteristic. 

which e. varies, the output voltage eo is restricted to the range between 
the values of E1 and -E2. The voltage transfer characteristic of Fig. 
2-5b shows how the output voltage varies as a function of the input 
voltage. When the input voltage is greater than E1, diode D1 conducts, 
and Co = E1. When the input voltage is less than (more negative than) 
-E2, diode D2 conducts, and Co = -E2. For values of c. between these 
two limits both diodes are biased in the reverse direction and therefore 
behave as open circuits; hence in this range the output voltage varies 
with the input voltage as shown in Fig. 2-5b. If no load is connected 
across the output terminals, eo = e. when es is in the range between 
-E2 and E1. The diode limiter might be used to protect a circuit 
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against the application of excessive voltage, or it might be used to alter 
the waveform of the input voltage. For example, if E 1 = E 2, and if es 
is a sinusoid with an amplitude much larger than E 1, then the output 
will be very nearly a square wave of voltage. 

The battery symbols are used in Fig. 2-5 to emphasize the fact that 
E1 and E2 are direct voltages; they do not imply that batteries are 
necessarily used to obtain these voltages. This practice will be followed 
throughout this book. It is to be understood that the battery symbols 
designate ideal sources of direct voltage. 

2-4. The Peak Rectifier. The half-wave rectifier discussed in Sec. 2-2 
delivers a pulsating, unidirectional current to the load. Such circuits 
are satisfactory for many applications such as battery charging and 
electrolytic processes. There are many other applications, however, 
where it is desired to obtain a pure direct voltage from the standard a-c 

e 

~ w 
Frn. 2-6. A peak rectifier with supply voltage ea = Ea sin wat. (a) Circuit; (b) wave
forms. 

power mains. The peak rectifier circuit shown in Fig. 2-6a is often used 
for this purpose when the load current iL is small, a few milliamperes or 
less. 

The operation of the circuit1* can be understood with the aid of the 
waveforms in Fig. 2-6b. If C initially has no charge, and if es is applied 
at time t = 0, then as es increases from zero to its positive maximum, 
current flows in the forward direction through the diode, and charge is 
stored in the capacitor. If the source resistance Rs is very small, the 
voltage drop across it is negligibly small, and eL, the voltage across C, 
is essentially equal to es at every instant until es reaches its maximum 
positive value. Thus C charges to a voltage equal to the maximum 
positive value of es. Now if iL = 0, there is no way for C to discharge, 
for the diode does not conduct current in the reverse direction. Thus 
the charge accumulated by C during the first quarter cycle is trapped and 
cannot escape. This trapped charge maintains the voltage across the 
capacitor at the value Es. The circuit of Fig. 2-6a is called a peak rectifier 

* Superior numbers designate references listed at the end of the chapter. 
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because its output voltage is equal to the positive peak value of the 
input voltage. 

If the load on the peak rectifier consists of a large resistance RL, as 
shown in Fig. 2-7a, then the capacitor can discharge slowly through RL 
while the diode is not conducting. Under these conditions the load 
voltage and current will consist of a small ripple component superimposed 
upon a large d-c component. As RL is made smaller, the capacitor 
discharges by a greater amount each cycle, and the ripple becomes greater 

e 

(al (bl 
Fm. 2-7. A peak rectifier with resistive load and supply voltage ea = Es sin wat. (a) 
Circuit; (b) waveforms. 

in magnitude. During a brief interval near the positive peak of es in 
each cycle a pulse of charging current flows through the diode; this pulse 
restores to the capacitor the charge lost through RL during the interval 
when the diode is not conducting. 

It follows from the discussion above and from Figs. 2-3b and 2-7b that 
the peak rectifier acts, in some respects, like the battery charger. The 
charge trapped on the capacitor 
makes the capacitor behave some-
what like a battery. As in the case 
of the battery charger, current flows 
through the diode in short pulses, 
and the peak diode current is much 
greater than the direct component -2E8 

of current delivered to the load. 
Again, this condition represents in
effective utilization of the diode. 

Fm. 2-8. Voltage across the diode in the 
peak rectifier. 

If the voltage drop across Rs is negligibly small, the voltage across the 
diode is ed = es - eL, The waveform of this voltage is shown in Fig. 2-8 
for the case where the ripple component of eL is very small. It is clear 
from this waveform that the peak inverse voltage across the diode is 2Es, 

2-5. The Diode Clamper. The circuit of a diode clamper2 is shown in 
Fig. 2-9a. This circuit is identical with that of the peak rectifier shown 
ju Fig. 2-6a except that the positions of the capacitor and the diode are 
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interchanged. Thus the operation of the clamper is like that of the 
peak rectifier; however, the output voltage is taken from a different pair 
of terminals. Accordingly, if the voltage drop across Rs is negligibly 
small, the capacitor charges to the positive peak value of es as indicated 
in Fig. 2-9a, and the output voltage, which in this case is the voltage 
across the diode, is ed = es - Es. Thus the waveform of the output 

+ 
ea 

(a) (b) 

FIG. 2-9. A diode clamper with input voltage es = Es sin wst. (a) Circuit; (b) wave
forms. 

E2 
- 1-+.___ ____ --n 

(bl 

(al 

(cl 
FIG. 2-10. Another diode clamper. (a) Circuit; (b) input voltage; (c) output voltage. 

voltage is the same as the waveform of the input voltage, but the wave 
is shifted down by an amount equal to the positive peak value of the 
input voltage as illustrated in Fig. 2-9b. Since the output voltage rises 
just to the value zero when es has its positive peak value, the circuit is 
said to clamp the positive peak of es at zero volts. 

The diode clamper has a number of useful applications. For example, 
in TV receivers it is necessary that the voltages appearing at certain 
points in the circuit have fixed peak values. Clamping circuits are used 
to meet this need. As another example, clamping circuits are often 
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used in a-c vacuum-tube voltmeters; this application is discussed further 
in Sec. 2-6. 

Another form of the diode clamper is shown in Fig. 2-lOa. This 
circuit is like that of Fig. 2-9a except that the diode is reversed. For 
variety, a rectangular waveform of input voltage, shown in Fig. 2-lOb, is 
assumed. \Vhen Cs is negative, the diode conducts and charges the 
capacitor to the maximum negative value of Cs with the polarity shown. 
Thus the voltage across the diode in this circuit is ed = es + E2, and, 
as shown in Fig. 2-l0c, the waveform of the input voltage is shifted up by 
an amount equal to its negative 

peak value. This circuit clamps the rl t ~ l 
negative peak of the signal wave- es+_ Rs C + 
form at zero volts. R ed 

It is usually necessary to connect -
a large resistance across the output Fm. 2-11. A diode clamper with a 
terminals of a diode clamper as shown resistive load. 
in Fig. 2-11 so that the charge 
trapped on the capacitor will not be trapped indefinitely. This resistance 
usually draws negligible current and does not alter the analysis given 
above. 

2-6. The A-C Vacuum-tube Voltmeter. The a-c vacuum-tube volt
meter2 consists basically of two parts, a diode circuit to rectify the alter
nating voltage and a d-c voltmeter to measure the rectified voltage. The 
rectifier often consists of a diode clamper and an RC filter forming a circuit 
like that shown in Fig. 2-12a. The resistances R1 and R2 are very large 
and draw a negligible current; hence the diode and C1 form a diode 
clamper like that of Fig. 2-9a. If R is small, the waveform of c is clamped 
with its positive peak at zero, as indicated by the waveform of ea in 
Fig. 2-12b. This voltage consists of a sinusoidal component equal to c 
and a d-c component equal to the positive peak value of c. The filter 
capacitor C2 is chosen so that it acts as a short circuit in comparison 
with R2 at the frequency of the voltage e that is being measured; C2 acts, 
of course, as an open circuit to the d-c component. Hence the a-c compo
nent of ed does not appear at the output terminals of the filter, and the volt
age eo is equal to the d-c component of Cd, which in turn is equal to the peak 
value of e. If the voltage eo is measured with a d-c vacuum-tube volt
meter, the value obtained will be the positive peak value of c. Such 
voltmeters are called peak-above-average voltmeters. 

Vacuum-tube voltmeters like the one described above are often cali
brated to read the effective, or rms, value for sinusoidal voltages. This 
result is accomplished by designing the scale to indicate the peak value 
of the unknown voltage divided by ,v2. When such an instrument is 
used to measure nonsinusoidal voltages, the reading obtained is not the 
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rms value of the voltage, it is simply the positive peak value of the voltage 
divided by 0. The peak value of the nonsinusoidal voltage, which is 
usually the quantity of interest, is obtained by multiplying the voltmeter 
reading by 0. 

In the above discussion it is assumed that the resistance R in series 
with the voltage being measured is small. If this resistance is large, as 
often is the case, the current drawn by the voltmeter may cause an 
appreciable voltage drop across R so that the voltage at the terminals of 
the voltmeter is not the desired voltage. The result will be an appreciable 
error in the measurement unless a correction is made for the loading effect 

'---y---/ -------
Clamper Filter 

(a) 

e 

(bl 
Frn. 2-12. A diode clamper with a filter. (a) Circuit; (b) waveforms. 

of the instrument. For this reason it is important that the voltmeter 
circuit be designed to draw the least possible current from the circuit 
in which voltages are being measured. 

2-7. The Voltage Doubler. The rectifier shown in Fig. 2-13 has the 
interesting and useful property that it develops a direct voltage equal 
to the peak-to-peak value of the input voltage. 1•4 Hence, if the input 
is sinusoidal, the direct voltage at the output is twice the peak value of 
the sinusoid. The operation of the circuit can be explained as follows. 
The peak rectifier consisting of D2 and C2 draws negligible current from 
the diode clamper consisting of D1 and C1. Therefore the clamper 
operates like the one shown in Fig. 2-IOa. Capacitor C1 charges to Es 
volts with the polarity shown, and the voltage across D1 is ed1 = es + Es. 
The waveform of this voltage is shown in Fig. 2-13b; it constitutes the 
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input voltage to the peak rectifier. The peak rectifier then charges C2 
to the peak value of ed 1, which is 2Es as indicated in Fig. 2-13b. This 
voltage appears at the output terminals of the circuit. 

By extending the basic ideas involved in the voltage doubler, diode 
circuits can be devised to act as voltage triplers, quadruplers, ... , 
n-tuplers. 1, 4 A voltage quadrupler, shown in Fig. 2-14, consists of two 
conventional voltage doublers. If another voltage doubler is added in 
the same manner, the output voltage will be 6Es. Circuits giving odd 

Clamper Peak 
rectifier 

(a) (bl 
Frn. 2-13. A voltage doubler. (a) Circuit; (b) waveforms. 

+2E
8 

Fm. 2-14. A voltage quadrupler with supply voltage e. = E. sin w.t. 

multiples of E. are obtained by removing the capacitor and diode on the 
left and continuing with voltage doublers as in Fig. 2-14. 

2-8. The Full-wave Rectifier. A full-wave rectifier circuit supplying 
power to a resistive load is shown in Fig. 2-15a. The circuit consists 
basically of two half-wave rectifiers connected to a single load resistor 
and supplied with sinusoidal input voltages that are equal in magnitude 
but opposite in phase. During the positive half cycle of es, D 1 acts as a 
short circuit, D2 acts as an open circuit, and CL = es. During the nega
tive half cycle of e., D2 acts as a short circuit, D1 acts as an open circuit, 
and eL = -e.. The waveform of eL is shown in Fig. 2-15b. The advan
tage of full-wave rectification over half-wave rectification in this applica
tion is that for a given peak diode current the average current in the load 
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is twice as great. The full-wave rectifier offers additional advantages in 
other applications that are discussed later. 

The load voltage in the circuit of Fig. 2-15 can be expressed mathe
matically as 

CL = lesl 
= IEs sin Wstl 

(2-9) 
(2-10) 

Alternatively, since eL is periodic it can be expressed in the form of a 
Fourier series : 

eL - E, G - 3~ cos 2w,t - 1:._ cos 4w,t - · · -) (2-11) 

Thus the load voltage consists of a d-c component of magnitude (2/1r)Es, 
which is the average value of each half cycle of es, and a set of sinusoidal 

• 
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Frn. 2-15. A full-wave rectifier with supply voltage e. = E. sin w,t. (a) Circuit; (b) 
waveforms. 

components at frequencies that are even multiples of the frequency of es. 
Thus if es is a 60-cycle voltage with an rms value of 115 volts, eL will con
tain a d-c component of (115) (2 -v2/7r) = 103.5 volts plus sinusoidal com
ponents at 120, 240, 360, ... cps. 

In the discussion above it is assumed that the center tap on the power 
transformer in Fig. 2-15 is exactly at the center and that the voltages 
across the two halves of the transformer are therefore equal. In practice 
these two voltages are likely to be slightly unbalanced, with the result 
that the successive peaks in the load-voltage waveform shown in Fig. 
2-15b are not exactly equal. In this case the fundamental frequency of 
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the periodic voltage across the load is 60 cps, and eL contains components 
at 60 cps and its harmonics. 

The peak inverse voltage across the diodes in Fig. 2-15a can be deter
mined in the following way. The sum of the voltages across the two 
diodes is equal to the full secondary voltage of the transformer, 2e8 • 

However, at each instant of time one of the diodes acts as a short cir
cuit and the other acts as an open circuit; hence the voltage 2e8 appears 
across the diode that acts as an open circuit, and the maximum inverse 
voltage that appears across either diode is 2Es, 

Another full-wave rectifier circuit is shown in Fig. 2-16. This circuit, 
which is called the bridge rectifier, requires four diodes, but it has the 
advantage that a center-tapped transformer 
is not required. During the positive half 
cycle of es current flows through D1, RL, and 
D 3 and during the negative half cycle current 
flows through D4, RL, and D2. In both 
cases current flows in the same direction 
through RL, During the positive half cycle 

] 
RL is connected across the transformer by D 1 Frn. 2-16. A bridge rectifier 
and D3; during the negative half cycle it is with supply voltage es = 

Ea sin wst. 
connected across the transformer by D2 and 
D4 with the terminals reversed. It follows that the waveform of volt
age across RL is the same as that shown in Fig. 2-15b and that eL is given 
by Eqs. (2-9) to (2-11). 

The peak inverse voltage across the diodes can be determined by noting 
that the sum of the voltages across D1 and D4 equals the supply voltage 
es and that likewise the sum of the voltages across D2 and D3 equals es, 
Thus during the positive half cycle of es, when D1 and D 3 act as short cir
cuits, the voltage es appears across both D4 and D2 in the inverse direc
tion, and the peak inverse voltage is Es for each of these diodes. During 
the negative half cycle D2 and D4 act as short circuits, the voltage es 
appears across both D1 and D3 in the inverse direction, and the peak 
inverse voltage is Es for each of these diodes. Thus, for a specified d-c 
component of voltage at the load, the diodes in the bridge rectifier need 
withstand only half as much inverse voltage as those in the rectifier of 
Fig. 2-15. This is an important consideration when semiconductor diodes 
are used. 

2-9. The Full-wave Rectifier with an Inductive Load. Figure 2-17a 
shows a full-wave rectifier supplying power to a load consisting of a series 
connection of resistance and inductance. Circuits of this type occur, for 
example, when a full-wave rectifier is used to supply field current to a d-c 
generator from an a-c source of power. The load current, shown in Fig. 
2-17b, consists of a d-c component and a time-varying component. The 
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inductive part of the load tends to prevent any change in the load cur
rent; hence the time-varying component of load current is smaller than 
in the case of the full-wave rectifier with a resistive load. In particular, 
the load current never drops to zero, and either one or the other of the 
diodes conducts at every instant. 

Since one or the other of the diodes conducts at every instant, the load 
voltage has the form shown in Fig. 2-17b, and it can be expressed mathe
matically by Eq. (2-11). This fact makes the calculation of the load cur
rent a relatively simple matter. Each sinusoidal component of the load 

(al 

(b) 

Frn. 2-17. A full-wave rectifier with an inductive load and supply voltage ea = 
Ea sin wat, (a) Circuit; (b) waveforms. 

voltage given by (2-11) can be treated separately by superposition, and 
the impedance of the load at any frequency is ZL = R + jwL. Hence 
the d-c component of iL is 

Jd = 2E8 

C 1rR (2-12) 

If the frequency of the supply voltage is 60 cps, then w8 = 377 rps, and 
the load reactance at the fundamental frequency of iL is 2wsL = 754L. 
Thus the amplitude of the fundamental-frequency component of iL is 

('½1r)E11 
/ i = [R2 + (754£)2]¼ (2-13) 

The amplitude of each sinusoidal component of iL can be evaluated in 
this manner. It is clear that the inductive reactance increases as the 
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order of the harmonic increases; hence the amplitudes of higher harmonics 
are relatively small. 

Figure 2-18 shows a circuit that is used to control the speed of a small 
d-c motor such as might be used to drive a lathe, an application in which 
close speed control is often required. The bridge rectifier R 1 supplies a 
constant current to the shunt field. Its load consists of a series connec
tion of the resistance and inductance of the shunt field; hence the circuit 
is a full-wave rectifier with an RL load, and the field current can be deter
mined in the manner outlined in the preceding paragraph. 

Transformer T2 and rectifier R2 supply an adjustable direct voltage to 
the armature of the motor; the rotational speed of the armature is roughly 
proportional to this voltage. The load on rectifier R2 consists of a series 

j' 

Series 
field 

D-c motor 

Shunt 
field 

Frn. 2-18. An adjustable-speed d-c-motor circuit. 

connection of the armature-circuit resistance, the armature-circuit induct
ance, the series-field inductance, the added inductance L, and _a voltage 
source accounting for the back emf generated by the rotation of the arma
ture. The inductance L is added to limit the alternating components of 
armature current to small magnitudes, for these components generate 
heat in the armature but do not produce any average torque. 

The analysis of the armature circuit is complicated by the simultaneous 
presence of an inductance and a voltage source in the load. If the induct
ance were present alone, the armature current could be calculated in the 
same way as the field current; if the voltage source were present alone, 
the current could be calculated by the method used in the analysis of the 
battery charger of Example 2-2. The voltage source tends to restrict 
the conducting interval of the diodes to a fraction of a cycle of the input 
voltage, as in the case of the battery charger, whereas the inductance 
tends to maintain a constant flow of current. The inductance prevails 
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when the direct current in the load is large; the voltage source prevails 
when the direct current in the load is small. This problem is studied in 
greater detail in Sec. 2-11. 

It is pointed out in Sec. 2-4 that there are many applications in which 
it is desired to obtain a direct voltage ( or current) with negligible ripple 
from the standard a-c power mains. In that section it is shown that 
when only a small direct current is required, the desired result can be 
obtained by connecting a capacitor in parallel with the output terminals. 
It follows from the discussion in the first part of this section that when 
large direct currents are required the desired results can be obtained by 
connecting an inductor in series with the output. Thus the circuit in 
Fig. 2-17a can be viewed as a full-wave rectifier delivering a nearly pure 
direct current to the resistor R. The inductor L serves as a choke, or 
filter choke, to limit the alternating components of current in the load. 

C 

(a) (bl 

Fm. 2-19. A full-wave rectifier with a capacitor filter and supply voltage es = Es sin wat. 
(a) Circuit; (b) waveforms. 

The alternating components cannot be made zero, but if the direct com
ponent, which is limited only by R, is large, then the alternating compo
nents, which are limited primarily by L, can be made relatively small. 

The use of an inductor to reduce the ripple in the load current has the 
advantage, compared with the use of a capacitor, that each diode con
ducts for a full half cycle. Hence the ratio of average to peak diode 
current is much larger than in the case of the capacitor filter, and better 
use is made of the diodes. However, in many applications the d-c out
put current required is so small that suitable smoothing cannot be 
obtained with an inductor of reasonable size. Hence it is often neces
sary to use a capacitor for the smoothing or, in many cases, to use more 
elaborate low-pass filters consisting of combinations of L and C. 

2-10. The Full-wave Rectifier with a Capacitor Filter. Figure 2-19a 
shows a full-wave rectifier with a smoothing capacitor connected across 
its output terminals. This circuit is similar to the single-diode peak 
rectifier discussed in Sec. 2-4; in this case, however, the capacitor 
receives two charging pulses in each cycle of the input voltage instead of 
one. Consequently, for the same values of RL and C, the full-wave peak 
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rectifier has less ripple in its output voltage than does the half-wave 
rectifier of Sec. 2-4. 

When the ripple component of voltage is small compared with the d-c 
component, the magnitude of the ripple can be estimated easily. The 
peak value of eL is Es; hence eL can be written as 

(2-14) 

where er is the saw-tooth ripple voltage shown in Fig. 2-19b. The ripple 
voltage results from the capacitor discharging through the load resistor 
during the interval between charging pulses. During this interval, which 
is approximately Ts/2, half the period of es, eL is nearly constant at the 
value E 8 • Hence the current discharging C is approximately constant 
at the value 

The charge lost by C while the diodes are not conducting is, then, 

A TsiL q=2 

and the corresponding change in the capacitor voltage is 

AeL = E = Aq = TsiL = TsEs 
r C 2C 2CRL 

(2-15) 

(2-16) 

(2-17) 

where Er represents the peak-to-peak value of the ripple component of 
eL. The quantity CRL is the time constant r of the combination of load 
resistor and filter capacitor; thus (2-17) can be written as 

Er=;; Es (2-18) 

The ratio of peak-to-peak ripple voltage to d-c output voltage is thus 
approximately 

Er Ts 1 7r 

Es = 2r = 2rfs = WsCRL (2-19) 

where fs .= 1/Ts = ws/21r is the frequency of the a-c supply. 

Example 2-3. The half-wave peak rectifier of Fig. 2-20a is supplied with the square 
wave of voltage shown in Fig. 2-20b. Determine the approximate values of the d-c 
component and the ripple component of the load voltage. 

Solution. When the capacitor is charging, the diode acts as a short circuit, and the 
circuit connected to the capacitor can be replaced by a Thevenin equivalent as shown 
in Fig. 2-20c. The time constant of the charging circuit is 

Tc = (99) (10-6) = 0.000099 sec 
~ 0.1 msec 
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Frn. 2-20. Diode rectifier for Example 2-3. (a) Circuit; (b) waveform, T = 0.5 
millisecond; (c) charging circuit; (d) discharging circuit. 

Since Tc is approximately T /5, C charges essentially to 49.5 volts during the positive 
half cycle of es. 

When the capacitor is discharging, the diode acts as an open circuit and the load 
voltage is given by the circuit of Fig. 2-20d. The time constant of the discharging 
circuit is 

Td = (104)(10-6) = 0.01 sec = 10 msec 

Since Td = 20T, C discharges only a small amount, and eL remains nearly constant 
during the negative half cycle of es, 

The amplitude of the ripple voltage is given approximately by 

E = ll.q = TiL = TeL = (5) (10-4
) (49.5) = 2 48 lt 

r C C 1Q4Q (104) (lQ-6) . VO S 

As a first approximation, the d-c component of the output voltage can be taken as 
49.5 volts. For a closer approximation, 

1 ( 2.48T) Ede = 2T 49.5T + 49.5T - - 2 - = 49 volts 

2-11. The Full-wave Rectifier with an LC Filter. The parallel-capaci
tor filter of Sec. 2-10 gives satisfactory smoothing in applications where 
the direct current required is less than a few milliamperes, and the series
inductor filter of Sec. 2-9 is satisfactory in applications where the direct 
current required is greater than a few amperes. In the host of appli
cations where the direct current required lies between these two ranges, 
a more elaborate filter circuit must be used. One filter circuit that is 
widely used in these applications is shown in Fig. 2-21. This filter, 
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which combines the series-inductor and shunt-capacitor actions, is known 
as the choke-input filter. 1- 3 

The inductor in the filter of Fig. 2-21 tends to maintain the input cur
rent to the filter, i1, constant, and the capacitor tends to maintain the load 
voltage CL constant. At no load, with RL = oo and iL = 0, the capacitor 
charges to the peak value of es as in the case of the peak rectifier. This 
fact is indicated in Fig. 2-22a, where the d-c component of load voltage 
is plotted against the d-c component of load current. As the load current 

L 

C 

FIG. 2-21. A full-wave rectifier with a choke-input filter and supply voltage e, = 
E, sin w.t. 

Ide 
(al (bl 

FIG. 2-22. Characteristics of the full-wave rectifier with a choke-input filter. (a) 
Output characteristic; (b) waveforms. 

is increased from zero, the load voltage decreases rather rapidly and one 
or the other of the diodes conducts during a portion of each half cycle 
of es. When the d-c component of load current exceeds a certain value, 
the diodes conduct for a full half cycle, and the input to the filter is 
connected to the transformer at each instant through one diode or the 
other. Under these conditions e1, the voltage at the input to the filter, 
is a full-wave rectified sinusoid like that shown in Fig. 2-15b. These 
conditions exist for all load currents greater than this value, and the d-c 
component of load voltage remains constant at the average value of iesl as 
shown in Fig. 2-22a. (In actual rectifier circuits the load voltage 
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decreases slightly with increasing load current because of the series 
resistance associated with the inductor and the diodes.) 

The minimum value of Ide for which the diodes conduct during a full 
half cycle can be determined rather easily, and the method of analysis 
is basic in the study of a number of electronic circuits. When the diodes 
conduct for a full half cycle, the input voltage to the filter e, is given by 
the right-hand side of Eq. (2-11). The input current to the filter can 
be calculated from this expression and the input impedance to the filter 
by considering each sinusoidal component of applied voltage separately. 
The input impedance at any frequency is 

z, = jwL + 1 + ~:cRL (2-20) 

As shown in Fig. 2-22b, the input current i1 consists of the d-c load cur
rent plus a time-varying component. Ordinarily the time-varying com
ponent consists primarily of the fundamental-frequency component in 
the Fourier series. In a well-designed filter, the capacitor C is so large 
that at the frequency of this component the second term in Eq. (2-20) is 
negligible compared with the first term; hence the time-varying com
ponent of i1 is approximately sinusoidal with an amplitude given by 

(2-21) 

This amplitude is independent of the load resistance and the load current. 
It is clear from Fig. 2-22b that for all values of Ide greater than I 1, the 

input current to the filter never drops to zero, and one or other of the 
diodes must therefore conduct at all times. If I de is reduced to a value 
equal to 11, i1 drops just to zero at its minimum value. The current i1 
cannot have any negative values, for the diodes in Fig. 2-21 cannot 
conduct in the reverse direction. Hence if I de is less than I 1, both diodes 
become nonconducting during certain portions of the cycle, and neither 
diode conducts for a full half cycle of the input voltage. Thus the 
minimum value of Ide for which the diodes conduct for a full half cycle 
corresponds to the condition 

2 
lac = I1 = 3-L Es (2-22) 

'lrWs 

But Ide = Edc/RL, and in the range of load currents where both diodes 
conduct for a full half cycle, Eac = 2Es/1r (Fig. 2-22a). Substituting 
these relations in (2-22) yields 

and 

(2-23) 

(2-24) 
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Equation (2-24) gives the maximum value of RL for which both diodes 
conduct for a full half cycle of the a-c supply voltage. In order to avoid 
operating on the steeply rising portion of the volt-ampere characteristic 
of Fig. 2-22a, it is common practice to connect a resistance of this value, 
called a bleeder, across the output terminals of the filter. When the 
frequency of the a-c supply is 60 cps, Eq. (2-24) becomes 

RL = 1130£ (2-25) 

where RL is in ohms, and Lis in henrys. 
When the d-c load current is greater than the critical value determined 

above, both diodes conduct for a full half cycle, and the input voltage to 
the filter is given by Eq. (2-11). The ripple voltage appearing at the 
output of the filter can be calculated by considering each Fourier com
ponent of the input voltage separately. In a well-designed filter the 
ripple voltage at the output consists primarily of a sinusoidal component 
at the fundamental ripple frequency. The fundamental-frequency 

Fm. 2-23. The full-wave rectifier including diode and inductor resistances. 

component of voltage at the input to the filter is given by Eq. (2-11) as 
4Es/31r, and its radian frequency is 2w8 • It then follows from the circuit 
shown in Fig. 2-21 that the complex amplitude of the fundamental
frequency component of output voltage is 

Ei = . RL/(1 + j2ws~~L) 4E8 

J2wsL + Rd (1 + J2wsCRL) 31r 
(2-26) 

RL 4Es 
RL(l - 4w8

2LC) + j2wsL ~ 
(2-27) 

For good filtering, Land C should be chosen to make 4w8
2LC much greater 

than unity. 
If there is a series resistance rd associated with each diode in the circuit 

of Fig. 2-21, the input current to the filter must flow through rd, and the 
input voltage to the filter is reduced accordingly. Since only one diode 
conducts at any instant, the effect of the two diode resistances can be 
accounted for conveniently by a single resistance at the input to the filter 
as shown in Fig. 2-23. This circuit shows also a resistance Re that 
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accounts for the resistance of the filter inductor. The d-c component of 
the load voltage is reduced by the voltage divider action of rd, Re, and RL. 

Example 2-4. The supply voltage for the circuit of Fig. 2-23 is es = 550 sin 377t 
volts, and the circuit parameters are rd = 400 ohms, Re = 100 ohms, RL = 3000 ohms, 
L = 10 henrys, and C = 16 µf. Determine the d-c component and the 120-cps 
component of voltage across the load. 

Solution. The d-c load current is limited by the resistance rd + Re + RL = 3500 
ohms. Since this resistance is less than 1130L = 11,300 ohms, both diodes conduct 
for a full half cycle, and the voltage at the input to the filter (including rd) is 

e1 = j550 sin 377tj 

The d-c component of e1 is therefore 

(e1 )de = (0.636) (550) = 350 volts 

and the d-c load voltage is 

Ede= (350)(300 %500) = 300 volts 

Ignoring the small effect of rd and Re on the 120-cps component of voltage, Eq. 
(2-27) gives 

3000 (4)(550) 
Ei = 3000[1 - 4(377)2(10) (16) (10- 6)] + j2(3770) ~ 

3000 
-(27)(104) +j7540 <234) 

Thus the amplitude of the 120-cps component of load voltage is 

E1 ~ 2.6 volts 

2-12. The Full-wave Rectifier with a CLC Filter. The full-wave 
rectifier with a CLC filter is shown in Fig. 2-24a. This is perhaps the 
most widely used rectifier-filter combination. In comparison with the 
LC filter, the CLC filter gives better filtering and higher output voltage 
for a given supply voltage; however, the voltage regulation of the CLC 
filter is not as good as that of the LC filter. A typical output volt
ampere characteristic for a CLC, or capacitor-input, filter is shown in 
Fig. 2-24b. 

The action in this circuit is somewhat like the action in the full-wave 
peak rectifier discussed in Sec. 2-10. A pulse of current flows through 
one or the other of the diodes when es is near its peak value in each half 
cycle. Because the inductor L tends to hold its own current constant, 
the pulses of current serve primarily to charge C1• When the load current 
is small, C1 is charged nearly to the peak value of es. The voltage across 
C1 has a saw-tooth waveform similar to that shown in Fig. 2-19b; the 
combination of L and C2 then acts like an LC filter to transmit the d-c 
component of voltage across C1 to the load. 

The quantitative analysis1•3 of the rectifier with a capacitor-input 
filter is complicated by the fact that the diodes conduct for less than a 
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Frn. 2-24. A full-wave rectifier with a capacitor-input filter and supply voltage ea = 
Ea sin wat, (a) Circuit; (b) output characteristic. 

half cycle of the supply voltage; thus the voltage at the input to the 
filter is one of the unknowns that must be determined. An analysis can 
be made with the aid of certain simplifying approximations; however, it 
will not be undertaken here. The design of such rectifiers is usually 
based on families of output characteristics, similar to that of Fig. 2-24b, 
published by the tube manufacturer for the particular diode to be used. 
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PROBLEMS 

2-1. A battery charger like that shown in Fig. 2-3 is used to charge a 6.3-volt 
automobile battery. The supply voltage is e. = 20 sin 377t. 

a. What value of R +Rais required to limit the peak diode current to 5 amp? 
b. With the adjustment of part a, what is the direct current delivered to the battery? 
c. What is the average power delivered to the battery, the average power dissipated 

in the resistors, and the average power delivered by the source? 
d. What is the peak inverse voltage that appears across the diode? 
2-2. The supply voltage for a peak rectifier like that shown in Fig. 2-7 is ea = 

100 sin 377t. The capacitor and the load resistor are large so that there is no appreci
able ripple voltage across the load, and eL is 90 volts. Under these conditions the 
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action of the capacitor is similar to that of a 90-volt battery. What value of R. is 
required to limit the peak diode current to 2 ma? 

2-3. The periodic voltage shown in Fig. 2-25 is applied at the input of the diode 

volts 

100 

50 

clamper shown in Fig. 2-11. The source re
sistance R. is negligibly small, and R and C 
are large so that the capacitor cannot dis
charge appreciably through R during one 
cycle of the signal voltage. 

a. When the circuit is in the steady state, 
what is the value of the voltage across the 
capacitor? 

b. Sketch the waveform of the output volt-
Frn. 2-25. Waveform for Prob. 2_3_ age ed. Show on this sketch the values of all 

significant voltages. 
2-4. The field current for a d-c motor is supplied by a bridge rectifier like that 

shown in Fig. 2-18. The a-c supply voltage at the secondary of T1 is 115 volts, rms, 
at 60 cps. The inductance of the field winding is 100 henrys, and its resistance is 
75 ohms. 

a. Determine the d-c component of the field current. 
b. Determine the amplitude of the 120-cps component of the field current. 
2-6. The load on a bridge rectifier like that in Fig. 2-16 is a parallel RC combination 

like that shown in Fig. 2-19. The supply voltage is e. = 10 sin 200t, the load capaci
tance is 1 µ,f, and the load resistance is 3 megohms. Under these conditions the ripple 
voltage across the load is small. 

a. What is the average current in the load resistor? 
b. What is the average current in each diode? 
c. What is the peak inverse voltage appearing across each diode? 
2-6. In a peak rectifier like that shown in Fig. 2-19 the filter capacitance is 8 µ,f, 

and the d-c component of the load current is 1 ma. The supply voltage is sinusoidal 
with a frequency of 60 cps. Under these conditions the ripple voltage across the load 
is small. 

a. What value of supply voltage E. is required to give a d-c load voltage of 100 volts? 
Give the rms value. 

b. What is the peak-to-peak value of the ripple component in the load voltage? 
c. What is the peak inverse voltage appearing across the diodes? 
2-7. The choke in a rectifier circuit like that shown in Fig. 2-23 has an inductance of 

8 henrys and a resistance of 100 ohms. The filter capacitance is 32 µ,f, the series 
resistance associated with each diode is 400 ohms, the load resistance is 4000 ohms, 
and the supply voltage is sinusoidal with a frequency of 60 cps. 

a. What must be the value of the supply voltage E. to give a d-c load voltage of 
250 volts? Give therms value. 

b. Calculate the amplitude of the 120-cps component of the load voltage. (Neglect 
the resistances of the choke and the diodes in this calculation.) 

c. What is the largest value of bleeder resistance that will ensure that the diodes 
conduct for a full half cycle? 

2-8. A certain rectifier is identical with the one analyzed in Example 2-4 except 
that the diodes are reversed. What is the value of the d-c component of eL for this 
circuit? 

2-9. The supply voltage for a rectifier like that shown in Fig. 2-17 is es = 200 sin 
8001rt. The filter choke has an inductance of 10 henrys and a series resistance of 
100 ohms. The load resistance is 1000 ohms. The diode resistance is negligible. 

a. What is the d-c component of voltage across the load resistance? 
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b. What are the amplitude and the frequency (in cycles per second) of the funda
mental-frequency component of the ripple voltage at the load? 

c. What is the peak inverse voltage appearing across the diodes? 
2-10. The voltage applied to the diode limiter of Fig. 2-5 is e8 = 10 sin 20007rt. 

The resistance R is 1000 ohms, and the battery voltages are E1 = E 2 = 5 volts. 
a. Sketch two full cycles of the supply voltage e., the output voltage e0 , and the 

voltage drop across R. Mark on this sketch the values of all significant voltages. 
b. What is the peak current through the diodes and the peak inverse voltage across 

the diodes? 
2-11. A full-wave rectifier like the one shown in Fig. 2-23 is supplied with a 400-cps 

sinusoidal voltage. The inductance of the choke is 1 henry, its resistance is 25 ohms, 
and the series resistance associated with the diodes is 200 ohms. What is the largest 
value of bleeder resistance that will ensure that the diodes conduct for a full half cycle? 

ei r,---20 µsec 
volts 7 f--1 µsec 

10 - + 
eo 

0.002 _l 
µt 

(a) (b) (c) 

Fm. 2-26. Circuits and waveform for Prob. 2-12. (a) Voltage waveform; (b) first 
circuit; (c) second circuit. 

2-12. The periodic voltage shown in Fig. 2-26a is applied to the two circuits shown 
in Figs. 2-26b and c. The d-c microammeter M has negligible resistance, and it 
indicates the average value of current. 

a. Determine the steady-state meter reading in each case. 
b. Sketch the waveform of eo for steady-state conditions in each circuit. Mark 

the values of all significant voltages and time intervals. 
2-13. Peak rectifiers like the one shown in Fig. 2-19 are sometimes supplied with 

alternating voltages having the waveform 
shown in Fig. 2-27. The filter capacitor 
required in such cases is much smaller than volts 
would be needed with a sinusoidal supply 
voltage of the same frequency. 

a. Sketch the waveform of load voltage 
for C = 0. 

b. If the d-c load current is 100 ma, and 
if the peak-to-peak value of ripple voltage 
is to be less than 1 volt, what is the smallest 
value of C that can be used? Sketch the 

300 

r-1000µsec ~ 
I 10 µsec 7 r 

I 
I 
I 
I 
I 

waveform of the ripple voltage. Frn. 2-27. Supply-voltage waveform for 
c. Using the fact that the current in a the full-wave rectifier of Prob. 2-13. 

capacitor is i = Cde/dt, determine the peak 
diode current. (In practice, a resistor in series with each diode would limit the diode 
current to a much smaller value than this.) 

d. Repeat part b for the case where e. is a 1000-cps sinusoid with an amplitude of 
300 volts. Assume that the load voltage is approximately equal to the peak value 
of e •• 



CHAPTER 3 

PRACTICAL RECTIFIERS 

It is shown in Chap. 2 that the addition of a nonlinear component, the 
diode, to the collection of components used in electric circuits permits a 
number of valuable results to be achieved, results that cannot be obtained 
with the linear elements R, L, and C alone. The discussions of Chap. 2 
are based on the assumption that ideal diodes are available. Before the 
circuits of Chap. 2 can be built, however, it is necessary to devise some 
physical component that behaves at least approximately like the ideal 
diode. It is the purpose of this chapter to study several physical devices 
that can be used in the construction of the circuits discussed in Chap. 2. 
The physical laws governing these devices are examined so that, among 
other things, it can be seen how and why the physical diodes do not 
behave exactly like ideal diodes. 

The properties of the ideal diode are given by the volt-ampere char
acteristic of Fig. 2-lb; in fact, this characteristic can be looked upon as 
the definition of the ideal diode. The extent to which any physical 
device behaves like an ideal diode can be perceived by comparing its 
volt-ampere characteristic with that of the ideal diode. Hence the 
study of physical diodes is concerned largely with the study of their 
volt-ampere characteristics and the physical laws underlying them. 

3-1. The Vacuum Diode. A vacuum diode is shown schematically in 
Fig. 3-la. It consists of two active electrodes, an anode ( or plate) and a 
cathode, designated p and k, respectively, in Fig. 3-1, and a cathode 
heater that does not enter directly into the action of the tube. These 
elements are enclosed in an envelope of metal or glass from which as much 
air has been removed as is economically practical, leaving a very high 
vacuum in the interelectrode space. 

When the electrodes are at room temperature the current his extremely 
small, no matter how large Eb is made and regardless of the polarity of 
Eb (assuming, of course, that the insulation of the wiring outside the 
tube does not break down). If, however, sufficient power is applied to 
the cathode heater to raise the cathode temperature to about 750°C (for 
typical small diodes), the behavior of the diode changes. At this temper
ature electrons escape from the cathode in large numbers in somewhat 

34 
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the same way that water molecules evaporate from the surface of a con
tainer of hot water. This phenomenon of electron emission is con
sidered in greater detail in Sec. 3-6. The electrons issuing from the 
cathode emerge with some kinetic energy; hence, if Eb is zero, electrons 
arrive at the anode at an appreciable rate, and the meter Min Fig. 3-la 
indicates an appreciable current. This phenomenon, first observed by 
Edison in his studies of the incandescent lamp, is known as the Edison 
effect. It is shown, somewhat exaggerated, in the volt-ampere character
istic of Fig. 3-lb. 

If the polarity of the battery in Fig. 3-la is reversed, the plate of the 
diode is held at a negative potential relative to the cathode, and there is 
an electric field in the space between the plate and cathode that opposes 

lb 

lb 
100 

ma 

J + 50 
Ea 

10 20 30 volts Eb 

!al (bl 
Fm. 3-1. The vacuum diode. (a) Diode and supply voltages; (b) volt-ampere 
characteristic. 

the flow of electrons from cathode to anode. Moreover, since the plate 
is at a relatively low temperature, it emits electrons at a negligible rate. 
Hence there is no flow of electrons from plate to cathode, for there is no 
source of free electrons at the plate. If the reverse voltage applied to 
the diode is greater than about½ volt, the diode current his essentially 
zero. Thus there can be no reverse current through the diode, and in 
this respect it behaves as an ideal diode. 

If the battery is connected in the circuit with the polarity shown in 
Fig. 3-la, the plate is held positive relative to the cathode, and the 
electric field in the interelectrode space accelerates the electrons emitted 
from the cathode toward the plate. The current lb therefore increases 
·with increasing Eb as shown by the characteristic curve of Fig. 3-lb. 
When Eb reaches a sufficiently high value, about 10 volts for the con
ditions pictured in Fig. 3-1, electrons are drawn to the plate as fast as 
they are normally emitted from the cathode, and the diode current 
increases relatively slowly with further increases in Eb, The slow increase 
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in lb in this region results from the fact that increasing Eb increases 
the emission from the cathode somewhat. In this region the diode 
current is limited by the cathode emission. Prolonged operation in 
this region usually results in permanent damage to the cathode; hence 
vacuum diodes are normally operated on that part of the characteristic 
curve lying below the knee. It is clear from a comparison of the volt
ampere characteristics of Figs. 2-lb and 3-lb that the vacuum diode 
differs from the ideal diode primarily in that there is a voltage drop 
across the vacuum diode when it conducts in the forward direction; it 
does not act as a short circuit to forward current. 

The representation of the vacuum diode used in Fig. 3-la is a symbolic, 
or schematic, representation; it does not picture the physical structure of 
the tube. The cathode of such tubes usually takes the form of a small 
hollow nickel rod, coated on its outer surface with a thin layer of barium 
and strontium oxides to increase the electronic emission. The heater is 
a tungsten wire, like the filament of an ordinary incandescent lamp, 
placed inside the hollow rod. The plate is usually a metal cylinder 
surrounding and concentric with the cathode. When the heater power 
is supplied through a transformer from an a-c source it is common practice 
to provide the transformer with a center-tap connection. This center 
tap is usually connected to the negative terminal of the plate power 
supply, as shown in Fig. 3-la, to fix the potential of the heater relative 
to the cathode. Sometimes the heater is held 20 or 30 volts positive 
relative to the cathode to prevent electrons emitted by the heater from 
reaching the surrounding cathode and interfering with the operation of 
the tube. 

Another type of construction that is occasionally used does not employ 
a separate filament to heat the cathode. The filament is made of nickel 
wire or ribbon, and the oxides of barium and strontium are applied 
directly to the surface of the filament. These are termed directly heated 
cathodes in contrast to the indirectly heated cathodes described above. 

Oxide-coated cathodes are not suitable in certain applications involving 
voltages greater than about 1000 volts. Tubes built for these applica
tions often employ an ordinary tungsten filament as the cathode. In 
order to obtain sufficient emission from these filaments, the tungsten 
must be raised to a much higher temperature than is required by oxide
coated cathodes, usually about 2100°C. The emission from such fila
ments can be increased by mixing thorium with the tungsten, giving rise 
to thoriated-tungsten filaments. These more efficient filaments are 
usually operated at about 1700°C. 

3-2. Semiconductor Diodes. A semiconductor diode of the junction 
type is shown pictorially in Fig. 3-2a and schematically in Fig. 3-2b. 
The diode consists of two semiconducting materials having different 
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electrical properties that are joined together along a common boundary 
known as a junction. The volt-ampere characteristic for a typical 
junction diode is shown in Fig. 3-2c. There is no obvious reason why 
the device should have such a characteristic; hence no explanation will 
be attempted until the physical laws governing the flow of electrons in 
semiconductors have been examined. Nevertheless, it is clear from 
Fig. 3-2c that the characteristics of the semiconductor diode are very 
much like those of the ideal diode provided the inverse voltage does not 
exceed a certain critical value. The inverse voltage at which the diode 
breaks down is sometimes referred to as the Zener voltage. The char
acteristic of the junction diode is so good that, in order to display clearly 
the imperfections, it is necessary to plot the reverse voltage and current 
to a different scale from that used for the forward voltage and current. 
For many applications the characteristics of the junction diode are 
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Frn. 3-2. The semiconductor diode. (a) Pictorial representation; (b) schematic 
representation; (c) volt-ampere characteristic. 

superior to those of the vacuum diode. In addition, the junction diode 
can be made much smaller than the vacuum diode, and it requires no heater 
power. The principle disadvantage of the junction diode is that its 
characteristics deteriorate rapidly when the junction temperature rises 
above about 75°C for diodes made from germanium and about 200°C for 
diodes made from silicon. 

Semiconductor diodes can also be made in forms different from the 
junction type described above. The point-contact diode consists of a 
germanium or silicon crystal to which one of the two contacts is made by 
the tip of a fine wire. The action that takes place at this contact leads 
to a volt-ampere characteristic that is a good approximation to the ideal 
diode characteristic, although it is not as good an approximation as is 
provided by the junction diode. The point-contact diode is superior 
to other diodes at high frequencies, however, for the parasitic capacitances 
associated with it are extremely small. Such diodes are used primarily 
in high-frequency, low-power applications. 
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Another type of semiconductor diode that is of engineering importance 
consists of a layer of semiconducting material in contact with a metal. 
When this contact is formed in a certain way it behaves like the junction 
of a junction diode and produces a diode characteristic. Diodes of this 
type are usually referred to as metallic rectifiers. The semiconductors 
commonly used in metallic rectifiers are selenium and cuprous oxide. 
Although the metallic rectifier is a much poorer approximation to the 
ideal diode than is the junction diode, it nevertheless finds wide applica
tion in the field of power rectification. 

The physical theory underlying semiconductor diodes is rather complex, 
and little can be said quantitatively about their performance except in 
the case of the junction diode. Therefore only the junction diode will 
be treated in the pages that follow. The junction diode is simpler than 
the other types because it is made of a single crystal; its structure is 
therefore uniform and simple. 

3-3. The Motion of Charged Particles in Electrostatic Fields. In 
most vacuum-tube and semiconductor electronic devices the flow of 
electric current is associated with the movement of charged particles 
under the influence of forces exerted by electrostatic fields. A study of 
the basic physical laws governing this motion aids in understanding the 
volt-ampere characteristics of electronic devices. Complete quantita
tive solutions can be obtained in only a few simple cases; however, a 
valuable qualitative insight of wide applicability can be obtained from 
this study. 

Figure 3-3 shows a pair of metal electrodes that can be thought of as 

-------1111--+ ___ 
representing symbolically the electrodes 
of a vacuum diode. A potential differ
ence is established between these elec

ds b 

Cathode F;f 
a 

trodes by a battery as shown in the 
figure. If a small particle carrying a 

Anode charge of electricity is placed in the inter
electrode space, it experiences a force 
that results from the action of the battery 
and the electrodes. Since this force is 
experienced at every point in the space, 

Fm. 3-3- A charged particle mov- a field of force is said to exist in the space,· 
ing in an electrostatic field. 

since the force is electric in nature, the 
field is called an electric field. If the strength of the force at all points 
is independent of time, the field is a static field. 

Certain important properties of the electrostatic field can be formulated 
mathematically in terms of the charged particle mentioned above, pro
vided that the particle is so small compared with the dimensions of the 
electrodes that it can be considered to occupy a point in space. 1 The 
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magnitude of the charge is designated by q, as indicated in Fig. 3-3; it 
is always a positive number. If the charge is negative electricity, a 
minus sign is prefixed to the symbol. The force on the particle depends 
on the position of the particle, the voltage applied between the electrodes, 
and the magnitude of the charge; the direction of the force reverses when 
the sign of the charge is reversed. Work must be done on the particle 
by some external agent to move it against this force. In moving the 
particle an infinitesimal distance ds the work done by the external agent 
on the particle is 

dW = -F(cos 0) ds (3-1) 

where, as indicated in Fig. 3-3, Fis the magnitude of the force, ds is the 
magnitude of the displacement, and 0 is the angle between the direction 
of the force and the direction of the displacement. The quantity 

-F(cos 8) 

a b s 
Fm. 3-4. Electrostatic force versus distance along a path. 

F(cos 0) is the component of the electric force in the direction of ds; 
-F(cos 0) is the force applied by the external agent in the direction of 
ds. When the particle moves against the electric field, cos 0 is negative 
and dW is positive; that is, positive work is done by the external agent. 

The total work that must be done by an external agent in moving the 
charged particle along the path s from point a to point b is found by 
summing the increments of work required in each increment of distance. 
Thus 

W = - ls F ( cos 0) ds (3-2) 

The integral in (3-2) is called a line integral because the values of F(cos 0) 
are taken along the specified path s in Fig. 3-3. This integral can be 
interpreted in the usual sense with the aid of the diagram shown in 
Fig. 3-4. Here the values of -F(cos 0) have been determined at various 
points along the specified path and have been plotted as a function of 
distance along the path. The value of the integral in (3-2) is equal to 
the area under this curve between the points s = a ands = b. 

In general, the values of F(cos 0) will not be the same along any two 



40 ELECTRONIC CIRCUITS 

paths connecting a and bin Fig. 3-3, and the curve in Fig. 3-4 will have a 
different shape for each different path. It is a fundamental property of 
the electrostatic field, however, that the net area under the curve between 
s = a and 8 = b is the same for all paths between a and b. Thus the 
value of the integral in Eq. (3-2) is independent of the path. This 
remarkable property cannot be deduced from the discussion leading to 
(3-2), but it can be shown by a further study, based on experimental 
observations, of the nature of electrostatic forces. Line integrals arising 
in the study of a number of physical phenomena possess this property. 
For example, line integrals encountered in the study of the gravitational 
field possess the property; however, those encountered in the study of 
magnetic fields do not possess it unless the paths are chosen in a special 
way. When this property exists it greatly simplifies the solution of field 
problems. 

Two possible paths between points a and b are shown in Fig. 3-5. The 
same amount of work must be done on a charge to move it from a to b 
along either path. If the charge is moved in the reverse direction from 
b to a along one of the paths, the integrand in Eq. (3-2) is the same at 
each point as when the charge is moved in the forward direction except 
for a 180° change in 0; thus the work done on the particle in moving it 
from b to a is the same as that done in moving it from a to b except for 
a change in sign. Hence if a charged particle moves from a to b and 

....----~,,..._+ __ _ then back to a along 81 in Fig. 3-5, the 
net work done on the charge is zero. 
Moreover, since the work done in travers-

Cathode 

Eb 

a
b 

2 

a 

ing paths 81 and s2 is the same, the net 
work done on the charge in moving it from 

Anode a to b along 81 and then back to a along 
82 is zero. From these facts it follows 
that the net work required to move a 
charged particle through one complete 

Frn. 3-5. Alternative paths be- circuit around any closed path in an elec
tween two points. trostatic field is zero. Since no net work 

is required, the particle neither gains nor 
loses energy in making the circuit; that is, the energy of the particle is 
conserved. Hence the electrostatic field is called a conservative field. 
The gravitational field is also a conservative field; the magnetic field is 
not conservative except in certain restricted regions. 

If the size of the charge and the magnitude of the voltage applied 
between the electrodes in Fig. 3-5 are fixed, then the work done in moving 
the charge from point a to point b depends only on the locations of the 
two points; it is a property of the space in which the points lie. More
over, the energy given to the particle in moving it from a to b can always 
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be recovered by returning the particle to a. Therefore the work increases 
the potential energy of the particle, just as lifting a mass against the 
force of gravity increases the potential energy of the mass. The quantity 
W given by Eq. (3-2) is the increase in potential energy of the particle 
as it moves from a to b. 

At any point in an electrostatic field the force on a charged particle is 
directly proportional to the magnitude of the charge. Hence the force 
per unit charge, F / q, depends only on the location of the point if the 
field is fixed. This ratio is the magnitude of the electric-field strength; 
it is a property given to the point under discussion by the electric field. 

From the above discussion it follows that the work done in moving a 
fixed charge between two fixed points is directly proportional to the 
magnitude of the charge. Therefore the work per unit charge done in 
moving the charge between two given points, 

Wab -l 1b Eab = - = - F(cos 0) ds 
q q a 

(3-3) 

is independent of the magnitude of the charge; it is a property given to 
the space in which the points lie by the electric field. This quantity 
Eab is the electric potential of point b with respect to point a. It is also 
described as the potential difference between a and b, or the rise in 
potential from a to b, or the fall in potential from b to a. The value of 
the integral in (3-3) is independent of the path taken between a and b. 
Hence if point a is a fixed reference point and if b refers to any point in 
space, then the potential Eab has a unique (single) value for each point 
in space. The concept of potential would not be useful if this were not 
the case. In a uniform gravitational field, elevation corresponds to 
potential. Since the magnetic field is not in general conservative, the 
integral corresponding to that in Eq. (3-3) does not in general have a 
unique value, and the notion of potential is not applicable except in 
restricted regions. 

Potential energy and electric potential are quantities relating conditions 
at one point in space to those at another point. It is usually desirable 
to pick one point as the reference point and to relate conditions at all 
other points to conditions at the reference. The reference point is often 
chosen as some point infinitely remote from the region of interest. In 
vacuum-tube studies it is convenient, in most cases, to choose a point on 
the cathode as the reference. Since the cathode (and also the anode) 
is assumed to be a perfect conductor, no work is required to move a charge 
from one point to another on its surface, and all points on the cathode 
are at the same potential. The potential at the cathode is therefore 
assigned the value zero, and the potential energy of a charge on the 
cathode is likewise assigned the value zero. 
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The potential energy gained by a charge q in moving from the cathode 
in Fig. 3-5 to any point in the interelectrode space, given by Eq. (3-3), 
is W = qE, where Eis the potential of the point relative to the cathode. 
The potential energy gained by q in moving from the cathode to the 
anode is W = qEb, If the charge is released at the surface of the anode, 
it is accelerated toward the cathode by the electric force, and it gains 
kinetic energy as its velocity increases. When the only force acting on 
a positively charged body at rest is an electrostatic force, the particle 
must move toward points of lower electric potential, for it can gain 
kinetic energy only by losing potential energy. 

If a charged particle is placed in an electric field, it has a certain amount 
of potential energy by virtue of its position in the field. If no force 
other than the electric-field force acts on the particle, it cannot lose any 
of this energy, although all or part of its potential energy can be converted 
to kinetic energy and vice versa. The sum of potential and kinetic 
energies must remain constant. Denoting potential energy by W and 
kinetic energy by T, this fact is expressed by 

W + T = C = const (3-4) 

If the cathode is taken as the reference for potential and potential energy, 
then W = 0 when the particle is at the cathode, and if the kinetic 
energy of the particle at the cathode is designated by Tk, then 

and 
Tk = C 

w + T = Tk 
(3-5) 

If a positively charged particle is at rest at the anode, it has zero kinetic 
energy, and its potential energy relative to the cathode is qEb, Equation 
(3-5), evaluated for the particle at the anode, gives 

(3-6) 
and, in general, 

w + T = qEb (3-7) 

If the particle is free to move, it moves to the cathode, and its kinetic 
energy on reaching the cathode is T = Tk = qEb. If the mass of the 
particle is m and its velocity is v, then (3-7) can be written as 

mv2 mvk2 
qE + 2 = 2 = qEb (3-8) 

where Eis the potential of the point at which the particle happens to be. 
If q, m, Eb, and E are known, the magnitude of the velocity, v, can be 
found from this relation; the direction of the velocity remains unknown, 
however. Equations (3-6) to (3-8) apply only to a particle that starts 
from rest at the anode. 
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Suppose that the charged particle under observation is an electron. 
The mass of the electron is me = 9.11 X 10-31 kg, and its charge is 
-qe = -1.60 X 10-19 coulomb. The electron is charged with negative 
electricity; therefore the force exerted on it by an electric field is opposite 
in direction to that which the field would exert on a positive charge. 
The equations in the preceding paragraphs apply to the electron when 
the charge is written as - qe. It follows, therefore, that the electron 
loses potential energy and gains kinetic energy as it moves from a point 
of low electric potential to a point of high electric potential. If its 
potential energy is taken as zero at the cathode, then its potential energy 
is negative at points of higher electric potential. 

If an electron at rest at the cathode in Fig. 3-5 is released, it is acceler
ated by the electric field toward points of higher potential; by this action 
it loses potential energy and gains kinetic energy. 2 Since this electron 
was at rest at the cathode, Tk = 0, and 

W+ T = 0 (3-9) 

holds at all times while the electron moves through the field. If the 
potential at any point is E and the velocity of the electron at that point 
is v, then (3-9) yields 

(3-10) 

If the electron goes to the anode, it arrives with a kinetic energy given by 

(3-11) 

where Va is the velocity of the electron when it reaches the anode. The 
kinetic energy of the electron is converted to heat by the impact of the 
electron on the anode. 

Suppose that the path s shown in Fig. 3-6 lies in an electric field that 
is directed along s (either forward or backward) at every point but varies 
in strength from point to point along the path. If the potential at 
point a is taken as zero and the potential at each point along the path 
is plotted versus distance from a, then a curve such as A or B in Fig. 3-6 
might result. This curve shows the distribution of potential along path 
s; potential-distribution curves are very helpful in studying the motion of 
charged particles in electronic devices. If the potential along the path 
to the right of a rises as indicated by either curve A or B, then an electron 
released at a with no initial kinetic energy is accelerated along the path 
toward b by the electric field. The ordinate to the curve at each point 
is proportional to the potential energy lost and the kinetic energy gained 
by an electron in moving from a to that point. Thus if curve B describes 
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the potential along s, the potential and kinetic energies of the electron 
at points where curve B crosses the axis have the same values as at 
point a. 

It follows from the definition of electric potential in Eq. (3-3) that the 
slope of the potential-distribution curve is 

dE ldW 
ds=qds 

(3-12) 

Solving (3-1) for dW /ds and substituting the result in (3-12) yields 

dE 1 - = - -F cos 8 
ds q 

(3-13) 

where F cos 0 is the component of electric force on the charge q in the 
positive s direction. If the path is chosen so that the total electric force 
on the charge is in the positive s direction, then cos 0 = 1, and 

F dE 
q = - ds (3-14) 

Thus the slope of the potential-distribution curve along this particular 
a----------.... b path, which is called the potential 
E 

8 I gradient, is the negative of the force 
Eb --------------- per unit charge in the positive s 

l direction on a positively charged 
A I particle. 

I The electric field in Fig. 3-6 is spec-
ified to be directed along the paths, 

s either in the positive or the negative 
Frn. 3-6. Potential-distribution curves. s direction, at each point. Accord-
ingly, the force on an electron at any point on the path is given by (3-13) 
as 

dE 
F cos 0 = qe ds (3-15) 

where cos 0 is either 1 or -1. Since F is the magnitude of the force on 
the electron, it is a positive quantity. Hence if dE / ds is negative, cos 0 
is negative, and the force on the electron is in the negative s direction. 
If dE / ds is positive, the force on the electron is in the positive s direction. 
In short, the magnitude of the force on any electron at any point on 
paths is proportional to the magnitude of the potential gradient at that 
point, and it is directed toward the region of higher potential. The 
force on a positive charge is also proportional to the potential gradient, 
but it is directed toward the region of lower potential. 
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If an electron starts from rest at point a in Fig. 3-6, it moves along 
paths toward point b, and its velocity at each point, given by Eq. (3-10), is 

V = /2qJE = 5.93 X 105 yE '\Jm: m/sec (3-16) 

where Eis in volts. Thus the velocity at each point along the path is 
proportional to the square root of the potential at that point, and it is 
zero at points where the potential-distribution curve crosses the axis. 
The velocity is imaginary at points where the curve lies below the axis; 
an electron starting from rest at point a can never reach points of negative 
potential. Equation (3-15) shows that the force on the electron is 
directly proportional to the slope of the potential-distribution curve. 
The force is to the right when the slope is positive and to the left when 
the slope is negative; it is zero at points of maximum and minimum 
potential (except when these occur at the end points). If the potential 
distribution along s corresponds to curve Bin Fig. 3-6, an electron starting 
from rest at point a is accelerated along the path until it reaches the first 
point of maximum potential. Beyond this point it slows down and comes 
to a standstill where the potential-distribution curve crosses the axis. 
There is a force on the electron at this point directed backward along 
the path; hence the electron does not remain at this point but moves 
back to point a. This electron oscillates back and forth indefinitely 
along this segment of the path. 

Suppose that the potential at the minimum point on curve Bin Fig. 3-6 
is - Em. The kinetic energy of an electron at this point is given by 
(3-5) as 

(3-17) 

where Tk is in this case understood to represent the kinetic energy of the 
electron at point a. If an electron is to pass the potential minimum and 
continue to point b, its kinetic energy must always be greater than zero. 
This is possible only if it leaves point a with an initial kinetic energy 
Tk that is greater than qeEm, 

When MKS units are used in the various equations developed above, 
the unit of energy is the joule. The amounts of energy encountered in 
the study of the motion of charged particles often are a very small 
fraction of a joule. For this and other reasons of convenience it is 
desirable to use a different unit of energy, the electron volt, given by 

W (ev) = W (j;tes) (3-18j 

where q: is a dimensionless number equal to the magnitude of the charge 
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on the electron. Thus the potential energy of a charge q at a point where 
the potential is E given by 

W = qE (joules) 

W = !l E (ev) 
q~ 

For an electron, Eq. (3-20) becomes 

-qe 
W=-E=-E 

q~ 
(ev) 

(3-19) 

(3-20) 

(3-21) 

Thus the potential energy of an electron at a point where the potential 
is E, when expressed in electron volts, is numerically equal to E. The 
change in potential energy experienced by an electron in moving through 
a potential difference of E volts is E electron volts. Thus in moving 
through a potential rise of 100 volts in going from cathode to anode, an 
electron loses 100 electron volts of potential energy. 

3.4. Electrical Conduction in Crystalline Solids. The quantitative 
study of the conduction of electricity through solids is a broad field that 
requires the use of some relatively advanced notions from physics and 
mathematics. For this reason it is not feasible to discuss the topic in 
detail here. It is possible, however, to give a semiquantitative picture 
of the conduction mechanism that permits the important phenomena 
involved to be understood in a superficial way ;3 that is, the results of 
detailed theoretical and experimental studies conducted primarily by 
physicists can be presented and described. In this way a useful insight 
into the important properties of semiconductor devices can be gained. 
Such knowledge is helpful to the engineer who is interested in using 
semiconductor devices in electronic circuits; however, it is not likely to 
enable him to develop new devices or to improve on those already in 
existence. 

Two crystalline solids that are important in electronics because of 
their physical properties are germanium and silicon. The discussion 
that follows is concerned primarily with germanium; however, it applies 
equally well, in a qualitative sense, to silicon and other crystalline 
materials. 

The normal germanium atom consists of 32 electrons circulating in 
orbits around a nucleus made up of 32 protons and 41 neutrons; since 
it contains equal amounts of positive and negative charge it is electrically 
neutral. Twenty-eight of the electrons are very closely bound to the 
nucleus; however, the four electrons in the outermost orbits are relatively 
loosely associated with the atom. These outer four electrons are the 
valence electrons; they are primarily responsible for the chemical prop
erties of the atom, and it is their presence that permits chemical com-
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pounds to be formed. They are required to make the atom electrically 
neutral, but they represent an excess beyond a preferred chemical state. 
By way of contrast, the oxygen atom is electrically neutral, but it is 
deficient by two electrons from a preferred chemical state. If two oxygen 
atoms and one germanium atom are brought together under favorable 
conditions, the germanium atom will share 
two of its excess electrons with each of the ~ 
oxygen atoms, as illustrated schematically in 
Fig. 3-7a. These three atoms are bound 
together in a chemical compound called ger
manium dioxide. This very stable com
pound, a white powder, is the principal form 
in which germanium occurs in nature. When 
joined in this compound and sharing elec
trons in the manner described, all three of 
the atoms are closer to a preferred chemical 
state than when they are separated. The 
chemical bonds attaching the oxygen atoms 
to the germanium atom are called electron
pair bonds, or covalent bonds. 

If an aggregation of germanium atoms 
is brought together under favorable con
ditions, similar sharing of electrons among 
the germanium atoms will take place. Each 
atom will share two electrons in a covalent 

(a) 

(bl 
Fm. 3-7. Valence bonds be
tween atoms. (a) Germa
nium dioxide molecule; (b) 
germanium crystal (schematic 
representation.) 

bond with four of its neighbors in a manner diagramed schematically in 
Fig. 3-7b. Under this condition each atom is closer to a preferred 
chemical state than when there is no sharing. The covalent bonds hold 
the atoms fixed in space relative to one another so that the aggregation 
forms a regular structure, or lattice, in space. This lattice is, of course, 
a three-dimensional structure; the two-dimensional representation in 
Fig. 3-7b is intended only to represent schematically the relations among 
the atoms. The entirety of such a regular lattice structure is a crystal. 
Any particular piece of germanium may consist of a single crystal, or it 
may consist of many separate crystals oriented in a random manner and 
joined together at their boundaries. In the latter case the germanium 
is said to be polycrystalline. The best electronic devices are made from 
single crystals, although polycrystalline forms can also be used. For 
example, metallic rectifiers employ polycrystalline forms of the semi
conducting material. 

If the valence electrons in the crystal of Fig. 3-7b are tightly bound in 
the covalent bonds, there are no free carriers of charge in the crystal and 
it acts as an insulator. A perfect carbon crystal (diamond) behaves in 
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this manner. If, however, a very strong electric field is applied to such 
an insulator, the electric forces will tear electrons out of the valence bonds, 
thereby setting them free and providing mobile carriers of charge; that 
is, the insulator will break down and become a conductor. 

In some materials, such as copper and aluminum, the crystal structure 
is of such a nature that some of the valence electrons are not bound to 
any particular location in the crystal. These electrons are free to move 
through the crystal, and the crystal therefore contains many free charge 
carriers. Such materials are electrical conductors. 

Semiconductors have properties lying between the two extremes 
described above. At very low temperatures virtually all the valence 
electrons are bound, and there are essentially no charge carriers present. 
At room temperature, however, an appreciable number of carriers are 
created somewhat artificially by thermal energy and similar agents in 
a manner described below. 

In a germanium crystal the valence electrons are not very tightly 
held in the covalent bonds; only 0. 75 electron volt of energy is required 
to remove an electron from the bond. At room temperatures the particles 
in the crystal are in constant motion by virtue of thermal energy, and as 
a result of interactions among the particles, energy is continuously inter
changed among them. As a result, many electrons acquire energies in 
excess of 0.75 electron volt and thereby escape from their bonds. These 
electrons are free charge carriers. Conditions existing in the crystal 
when an electron escapes from its bond are pictured in Fig. 3-8. The 
free electron is represented by the minus sign that is not associated with 
a covalent bond. An electron is now missing from one of the bonds, and 
an imperfection, or hole, exists in the regular lattice structure. Associ

ated with this hole, or missing electron, is 
an excess of positive charge, indicated in 
Fig. 3-8 by the plus sign in one of the bonds. 
It is a relatively easy matter for an electron 
in a nearby valence bond to leave its position 
and move into the hole left by the thermally 
ejected electron. When this happens a hole 
appears in the nearby valence bond just 
vacated, and in this manner the hole can 
move from point to point in the crystal, 
carrying with it a positive charge. Thus 

Fm. 3-8. Electron and hole 
created by thermal agitation. there are two carriers of electric charge that 

are free to move about in the crystal, the free 
electron with a negative charge and the hole with a positive charge. If 
there are enough of these carriers present, the crystal may act as a 
fairly good conductor. 



PRACTICAL RECTIFIERS 49 

The free electron and the hole move in a random manner through the 
crystal as a result of thermal energy and collisions with other particles. 
The negative electron is not attracted to the positive hole for the following 
reason. The bound electrons in the vicinity of the hole are attracted 
by the positive charge of the hole, and the valence bonds are distorted 
somewhat to permit them to move toward the hole. This negative 
charge that is displaced toward the hole acts as a screen that masks the 
presence of the positive hole. In a like manner, bound electrons in the 
vicinity of the free electron recede somewhat from the free electron, 
leaving in effect a screen of positive charge that masks the presence of 
the negative electron. If in their random wandering the hole and 
electron come close to each other, it is possible that the free electron 
may move into the empty valence bond represented by the hole. The 
electron and the hole cancel each other by this recombination process, 
and charge carriers disappear from the scene in this way. 

When the crystal is in thermal equilibrium, the density of the carriers 
is such that they disappear by recombination just as fast as they are 
generated by thermal agitation. From a study of the distribution of 
thermal energy among the particles in the crystal it can be shown that 
the density of charge carriers (holes plus electrons) is given by 

-qE n = AT~2 exp __ e_o 
2kT 

(3-22) 

where the symbolism used is to be read as exp x = e~, and where T is 
the absolute temperature, qe is the magnitude of the electronic charge, 
E 0 is the energy in electron volts required to break the covalent bond 
(0.75 ev for germanium), k is the Boltzmann constant, and A is a constant 
that characterizes the material from which the crystal is made. It can 
be shown that the conductivity of the material is directly proportional 
to the density of carriers, n; hence it follows from (3-22) that the con
ductivity of a semiconductor depends strongly on temperature. This 
fact has been put to useful application in some devices; however, it is 
principally a source of trouble in semiconductor diodes and transistors 
because it prevents them from functioning properly at high temperatures. 

At room temperature the conductivity of the pure germanium crystal 
described above is much smaller than the conductivity of an electrical 
conductor like copper. It is possible, however, to make crystals having 
a relatively high conductivity at room temperature by building into the 
crystal lattice a few atoms of another element that differ in a certain 
way from the basic atoms of germanium. These crystals have an inherent 
supply of free charge carriers that does not depend on temperature; their 
conductivity is built in. Crystals that have an inherent supply of free 
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electrons are called N-type crystals because conduction occurs through 
the flow of negative charge. Crystals that have an inherent supply of 
holes are called P-type crystals. These two types of crystals provide 
the basis for diode and transistor action. 

A crystal of N-type germanium is illustrated in Fig. 3-9; the N char
acter of this crystal results from the presence of a few arsenic atoms in 

the crystal lattice. In a typical case 
there is about one arsenic atom for 
each 107 germanium atoms. One of 
the ways in which the arsenic atom 
is different from the germanium atom 
is that it has five rather than four 
valence electrons. When it enters 
the lattice structure of the germanium 
crystal, four of the valence electrons 
form covalent bonds with adjacent 

FIG. 3-9. A germanium crystal with germanium atoms. The fifth valence 
arsenic impurity. electron is then only very lightly 
attached to the parent atom; only 0.01 ev of energy is required to separate 
it from the atom. Hence at temperatures greater than about 20°K 
essentially all these excess electrons become free electrons, and the 
crystal behaves somewhat as a conductor. The conductivity of the 
crystal depends on the density of carriers, which in turn depends on the 
density of impurity atoms. Since the normal arsenic atom is electrically 
neutral, the loss of the free electron leaves a net positive charge associated 
with the atomic nucleus. This positive charge cannot move through 
the crystal because the atom is tightly bound in the lattice by the covalent 
bonds; the circle around the plus 
sign in Fig. 3-9 signifies that this 
is a bound charge. The free elec
tron is not attracted to the bound 
positive charge because of the 
shielding action described previ
ously. Since the arsenic impurity 
in the crystal contributes free elec
trons for conduction, it is called a 
donor material. Other pentavalent 
atoms, such as those of antimony FIG. 3-10. A germanium crystal with 
and phosphorous, can also be used indium impurity. 

as donors. 
A crystal of P-type germanium is shown in Fig. 3-10; the P character 

of this crystal results from the presence of indium atoms in the crystal 
lattice. One of the ways in which the indium atom differs from the 
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germanium atom is that it has three rather than four valence electrons. 
When it enters the lattice structure of the germanium crystal, its three 
valence electrons enter covalent bonds with adjacent germanium atoms; 
however, there is no electron to form the fourth bond of the normal 
lattice structure, and therefore a hole exists. This hole is free to move 
through the crystal in the manner described previously, carrying a 
positive charge. When the hole moves away from the indium atom an 
electron has moved into the empty valence bond associated with the 
indium atom. As a result there is an excess of negative charge associated 
with this atom; this bound negative charge is indicated in Fig. 3-10 by 
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Frn. 3-11. The fl.ow of charged particles in semiconductors. (a) Random motion; 
(b) random motion plus drift; (c) fl.ow in N-type crystal; (d) fl.ow in P-type crystal. 

the encircled minus sign. Since the indium impurity captures electrons 
from the germanium atoms it is called an acceptor material. Other 
trivalent atoms, such as those of aluminum, gallium, and boron, can 
also be used as acceptors. 

The type of path described by a free charge carrier in a crystal is 
illustrated in Fig. 3-lla; on the average the particle goes nowhere. The 
discontinuities in direction correspond to collisions with other particles. 
If an electric field is applied to the crystal as indicated in Figs. 3-llc and 
d, the particle moves under the influence of the field and describes a 
path such as that shown in Fig. 3-llb. The electric field superimposes a 
drift on the random wanderings of the particle. Figures 3-1 lc and d 
indicate the net motion of charge through N and P types of germanium 
under the influence of an applied field. 
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Holes and electrons are created by thermal agitation in N- and P-type 
crystals just as they are in the intrinsic (pure) crystal shown in Fig. 3-8. 
In an N-type crystal, however, there are many free electrons present; 
hence thermally generated holes quickly recombine with an electron, and 
as a result there are very few holes present in N-type crystals. Electrons 
are the majority carriers in an N-type crystal, and holes are the minority 
carriers. The converse is true for P-type crystals; thermally generated 
electrons quickly recombine with holes that are present in abundance. 
Holes are the majority carriers in a P-type crystal, and electrons are 
the minority carriers. 

3-5. The P-N Junction Diode. The characteristics of semiconductor 
diodes are described qualitatively in Sec. 3-2. The internal mechanism 
of the P-N junction diode can be explained qualitatively in terms of the 
properties of semiconductors presented in the preceding section. Two 
forms of the P-N junction are illustrated in Fig. 3-12. In each case the 
diode is formed from a single crystal of either silicon or germanium, one 
section of which is P-type and one section of which is N-type. 

The method of making germanium diodes of the two types shown in 
Fig. 3-12 is first described briefly; similar methods are used in making 

Indium 

(a) (b) 

silicon diodes. The grown junction 
diode is made by touching a single
crystal seed of germanium to the 
liquid surface of molten germanium 
and then slowly withdrawing it. As 

N the seed is withdrawn, the molten 
germanium crystallizes onto the seed 
in the form of additional lattice 
layers, and the crystal grows. By 
adding an acceptor impurity such as 

Frn. 3-12. P-N junction diodes. (a) · d' t h 1 p l 
Grown junction; (b) alloy junction. m mm O t e met, a -type crysta 

is obtained. When the P-type crys-
tal has attained a suitable size, a donor impurity such as arsenic is 
added to the melt in quantity sufficient to neutralize and override the 
acceptor, and the portion of the crystal grown thereafter is N-type. 

The alloy junction diode is made4 by placing a dot of indium on the 
surface of a wafer of N-type germanium and heating the combination 
to a temperature well above the melting point of indium. Germanium 
then dissolves into the indium. When the combination is cooled, the 
dissolved germanium recrystalliz~s on the original crystal, and the result 
is again a single crystal of germanium. However, the recrystallized 
volume is P-type germanium because of the presence of indium atoms 
in the lattice structure. 

Figure 3-13a shows a junction diode with no voltage applied; the free 
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charge carriers are indicated by the plus and minus signs. Any hole 
that wanders by diffusion into the N region is quickly canceled by recom
bination with one of the many free electrons present; hence there are few 
holes in this region, and the majority carriers are electrons. Similarly, 
any electron that wanders by diffusion into the P region quickly recom
bines with one of the many holes present; hence there are few electrons 
in this region, and the majority carriers are holes. When this system is 
in equilibrium there is no net flow of charge across the junction. 

If a forward voltage is applied to the diode as shown in Fig. 3-13b, 
holes in the P region move across the junction into the N region,, and 
electrons in the N region move across the junction into the P region. 
These carriers recombine and cancel each other very quickly in the 
vicinity of the junction so that neither carrier penetrates very deeply 
into the domain of the other. The view can be taken that electrons flow 
from the external circuit into the N region and holes flow from the 
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Frn. 3-13. Conduction through a P-N junction diode. 
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external circuit into the P region; these two carriers move through the 
crystal to the vicinity of the junction where they cancel each other. 
This is the condition of easy conduction; it corresponds to the portion 
of the volt-ampere characteristic in the first quadrant of Fig. 3-2c. 

If a reverse voltage is applied to the diode as shown in Fig. 3-13c, 
holes in the P region and electrons in the N region both move away from 
the junction. Minority carriers cannot flow from the external circuit 
into either the Nor the P regions with normal applied voltage, for this 
action requires the breaking of covalent bonds. Hence ideally there 
would be no current flow with reverse voltage applied. However, 
electron-hole pairs are generated continously by thermal agitation in 
both the N and the P regions. A hole so generated in the N region 
moves toward the junction, and the associated electron moves into the 
external circuit. Similarly, a thermally generated electron in the P 
region moves toward the junction, and the associated hole moves into 
the external circuit. These thermally generated carriers thereby give 
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rise to a small reverse current. Since this reverse current depends on 
the rate at which carriers are generated thermally, it is strongly dependent 
on temperature and is essentially independent of the applied voltage. 
This current is shown in the third quadrant of the diode characteristic 
of Fig. 3-2c. 

The foregoing discussion explains the behavior of an ideal P-N junction 
diode. The characteristics of physical diodes often differ appreciably 
from those of the ideal P-N junction, especially for reverse currents and 
voltages. These differences result to a large extent from leakage currents 
on the external surface of the diode and from other more complicated 
surface phenomena that are not fully understood. Usually the reverse 
current, called the saturation current, is observed to increase slowly with 
increasing reverse voltage until the breakdown voltage is reached. 

The equation of the volt-ampere characteristic for an ideal junction 
diode ( exclusive of the breakdown region) is simple and can be developed 
from a consideration of the potential distribution inside the diode. 3 

Figure 3-14a shows a diode with its external terminals short-circuited; 
the potential distribution inside the crystal under conditions of thermal 
equilibrium is shown by the curve beneath the diode. The shape of the 
potential-distribution curve can be explained in the following way. 
Holes diffusing from right to left across the junction recombine with free 
electrons just to the left of the junction, and electrons diffusing from left 
to right across the junction recombine with holes just to the right of the 
junction. Thus there are practically no free carriers in a small region 
on either side of the junction. Thi~ region is called the carrier-depletion 
region. The portion of the depletion region in the N-type crystal con
tains bound positive charges that are not neutralized by negative carriers, 
and the portion in the P-type crystal contains bound negative charges 
that are not neutralized by positive carriers. These bound charges are 
said to be uncovered. An electric field extends across the junction 
between these uncovered charges, and its direction is such as to oppose 
the diffusion of holes into the N region and of electrons into the P region. 
Because of the field across the junction, the potential in the diode has the 
distribution shown in Fig. 3-14a; the potential hill, or potential barrier, 
in this curve is associated with the field between the uncovered charges. 
Free positive charges in the crystal tend to move to points of lower 
potential, and free negative charges tend to move to points of higher 
potential. 

The potential-distribution curves of Fig. 3-14 do not show what 
happens to the potential at the metallic terminals through which external 
connections are made with the diode. The nature of these connections 
is not fully understood. However, negligible current flows in the external 
circuit when no voltage is applied to the diode; hence there is negligible 
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potential drop across the external circuit. Therefore the potential drops 
at the metallic contacts with the crystal just compensate for the potential 
difference across the P-N junction, and the metallic terminals are at 
equal potentials. When the contacts are properly formed they do not 
enter into the analysis of the diode behavior; the diode characteristic 
depends only on the potential barrier at the P-N junction. 

The height of the potential hill at the P-N junction is determined by 
an equilibrium between two factors: (1) the generation of electron-hole 
pairs on both sides of the junction by thermal agitation, and (2) the 
diffusion of carriers across the junction against the potential barrier 
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Frn. 3-14. Potential distribution in a junction diode. (a) No voltage applied; (b) 
forward voltage applied. 

by virtue of thermal energy. Under equilibrium conditions, with no cur
rent in the external circuit, these two factors result in equal and opposite 
currents across the junction as indicated in Fig. 3-14a. The thermally 
generated electron-hole pairs result in a small stream of electrons from 
the low to the high potential region and a similar small stream of holes 
from the high to the low potential region. This current, which is also 
the saturation current, is symbolized by 18 • It depends on the density 
of thermally generated carriers; hence it depends strongly on temperature 
and is independent of the voltage applied to the diode. 

The second component of current across the junction is associated 
with those free electrons in the N region and holes in the P region that 
gain enough kinetic energy from thermal agitation to climb the potential 
hill. If the height of the potential hill is ¢0 volts, the potential energy 
gained by a hole in climbing the hill is, from Eq. (3-3), 

(3-23) 
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Any hole having more than this amount of kinetic energy directed toward 
the junction can move from the P region into the N region. A similar 
condition applies to the electrons in the N region. From a more detailed 
study of the random motion of such particles it can be shown that if no 
is the total number of carriers starting across the potential barrier per 
second, then the number capable of getting all the way across in each 
second is 

(3-24) 

where k is the Boltzmann constant and T is the absolute temperature. 
Multiplying (3-24) by qe gives the amount of charge crossing the junction 
per second as a fraction of the total amount of charge that attempts the 
crossing in each second; thus 

I I 
-qecf,o 

i = a exp ~ (3-25) 

When no voltage is applied to the diode, negligible current flows in 
the external circuit, and the two components of current across the junction 
are equal in magnitude and opposite in direction. Thus 

I I I 
-qecf,o 

s= i= aexp~ (3-26) 

The value of ls is fixed by the rate at which electron-hole pairs are 
generated by thermal agitation. Under thermal equilibrium with no 
voltage applied, the height of the potential barrier adjusts itself so that 
the current Ii just equals the saturation current Is. If ¢a is too small, 
more holes move into the N region and more electrons move into the 
P region, more bound charges are uncovered, and the height of the barrier 
is increased. If cf,o is too large, the converse occurs. 

When a forward voltage is applied to the diode as shown in Fig. 3-14b, 
the height of the potential hill is reduced by the amount of the applied 
voltage, E. Many more carriers have enough kinetic energy to cross 
this reduced barrier, and Ii increases accordingly. Under this condition 
Eq. (3-25) becomes 

I ._ I -qe(cpo - E) 
i - a exp kT 

I ( 
- qecf,o) ( qeE} = a exp~ expkT, 

Substituting (3-26) into (3-27) yields 

I I 
qeE 

i = s exp kT 

(3-27) 

(3-28) 
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With Ea positive number, Ii is greater than Ia, and the current in the 
external circuit is the difference: 

I = I, - I, = I, exp (tff) - I, 

= I, [ exp (tff) - 1] (3-29) 

When a reverse voltage is applied to the diode, the height of the 
potential barrier is increased to cf>o - E, where E is now a negative 
number. The number of carriers capable of crossing the barrier is thereby 
reduced, Ii becomes less than Ia, and a reverse current flows through the 
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Frn. 3-15. A junction-diode characteristic. 
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diode. The value of the reverse current is given by (3-29) when the 
proper negative value is substituted for E. 

Equation (3-29) gives the diode terminal current as a function of the 
applied voltage; it is the equation of the diode volt-ampere character
istic. The typical diode characteristic of Fig. 3-2 is repeated in Fig. 3-15; 
for clarity the forward voltage and current are not plotted to the same 
scale as the reverse voltage and current. Substituting numerical values 
for qe and k and taking room temperature to be 300°K yields 

I = Is(E39E - 1) (3-30) 

When E is more positive than about 0.1 volt, (3-30) becomes 

(3-31) 

This is the equation for the forward-current portion of the volt-ampere 
characteristic. When E is more negative than about -0.1 volt, (3-30) 
becomes 

(3-32) 
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This is the equation for the reverse-current portion of the volt-ampere 
characteristic up to the point of breakdown. 

The equations developed above show the dependence of the diode 
current on temperature. The effect of temperature on the reverse 
current is of primary importance, for the reverse current represents a 
departure from the ideal characteristic. The reverse current in a 
germanium diode approximately doubles for each 10°0 rise in tempera
ture; the rectifying properties of these diodes is seriously impaired at 
temperatures above 75°0. It is in this respect that silicon is far superior 
to germanium. Although the reverse current in a silicon diode increases 
with temperature at about the same rate, the value of the reverse 
current is several orders of magnitude less than that in a germanium 
diode. Hence the silicon diode retains its rectifying properties up to 
temperatures as high as 200°0. The ratio of forward to reverse current, 
which is a measure of the diode quality, is given by Eq. (3-29) as 

!_ = exp (qeE) - 1 (3-33) 
I, kT 

The mechanism of the breakdown that occurs when excessive inverse 
voltage is applied to the diode can also be explained in terms of the 
potential distribution in the diode. With a small inverse voltage applied 
to the diode, a potential difference exists across the depletion region at 
the junction; this potential difference is equal to the height of the potential 
hill shown in Fig. 3-14. Thermally generated holes in the N region and 
thermally generated electrons in the P region are accelerated across the 
depletion region, and they gain kinetic energy in the process. These 
carriers collide with bound particles in the depletion region and near its 
boundaries, and they exchange energy with the bound particles. If the 
reverse voltage applied to the diode is increased sufficiently, the thermally 
generated carriers crossing the depletion region will gain enough kinetic 
energy from the strong electric field to knock bound electrons out of the 
covalent bonds. This process is called ionization. The free carriers 
created by ionization are in turn accelerated by the field and may them
selves have ionizing collisions, creating still more free carriers. Thus 
the originally small saturation current is greatly multiplied by this process, 
which is described as avalanche breakdown. When the reverse voltage 
applied to the diode is sufficient to make efficient ionizing agents of the 
free carriers, further increases in diode current require negligible increases 
in reverse voltage; in fact, the voltage drop across the diode may decrease 
slightly with further increases in current. The voltage at which break
down occurs is often called 'the Zener voltage, for originally the break
down was erroneously thought to result from the Zener effect, in which 
electrons are torn out of covalent bonds by a strong electric field. 
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When junction diodes are used in the circuits described in Chap. 2, 
the peak inverse voltage appearing across the diodes must not exceed the 
breakdown voltage. This fact limits the direct voltage that can be 
obtained from rectifiers using junction diodes. On the other hand, how
ever, if the current through the diode under breakdown conditions is 
limited to a value giving a safe power dissipation, the diode is not dam
aged in any way by operation in the breakdown region. This fact 
suggests new applications for the diode. For example, a properly made 
diode can be used to provide a constant voltage drop that is nearly 
independent of diode current and temperature. The breakdown voltage 
can be controlled over the range between one or two volts and several 
hundred volts by controlling the appropriate factors in the manufacturing 
process. 

The abrupt change in the diode characteristic at the breakdown voltage 
is similar to that occurring at the zero voltage point. Hence the device 
can be operated as a diode about the breakdown point. When the 
inverse voltage exceeds the breakdown value, the diode conducts readily; 
when the inverse voltage is less than the breakdown value the diode 
behaves essentially as an open circuit. This mode of operation has the 
advantage that the diode can switch from the conducting to the non
conducting state at the breakdown point much faster than it can at the 
zero voltage point; thus the high-frequency performance of the diode is 
improved greatly. It has the disadvantage that for safe power dissipation 
the diode current must be limited to a relatively small value, for the 
conducting voltage drop across the diode is relatively large. 

When a forward voltage is applied to the junction diode, charges are 
distributed in the diode as shown in Fig. 3-13b. Many holes cross the 
junction and enter the N region as minority carriers, and many electrons 
enter the P region as minority carriers. When the voltage applied to 
the diode is reversed, the steady-state conditions are as pictured in 
Fig. 3-13c. A depletion region exists in the vicinity of the junction, and 
there is a very small flow of thermally generated carriers across the 
junction. This new condition is not reached instantaneously, however. 
When the applied voltage is reversed, a reverse current flows until the 
minority carriers on each side of the junction either disappear by recom
bination or return to their natural domain. This reverse current may 
last for several microseconds. Thus the diode acts very much as a 
capacitor that must be charged to a new voltage when the applied voltage 
is reversed. The capacitance is associated with presence of minority 
carriers on each side of the junction, and it is often referred to as the 
junction storage capacitance. It is this capacitance that limits the 
high-frequency performance of the diode when it is operated in the normal 
mode. When the diode is operated in the breakdown region, the distri-
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bution of carriers is like that shown in Fig. 3-13c with the addition of 
many carriers generated by ionization in the depletion region, which is a 
region of high field strength. When the applied voltage is abruptly 
reduced below the breakdown value, the carriers in the depletion region 
are rapidly swept out by the strong field, and there is no reverse current. 
As a result, the switching action is much faster than when the diode is 
operated in the normal mode. 

The junction diodes described above can be used in any of the circuits 
presented in Chap. 2 provided the peak inverse voltage does not exceed 
the breakdown voltage and provided the forward current does not cause 
excessive heating. In many cases the forward voltage drop across the 
diode and the reverse current through the diode are so small that they 
can be neglected. In such cases the diode can be represented as an 
ideal diode, and the circuits behave in the manner described in Chap. 2. 

3-6. Conduction through Vacuum Diodes. The study of the conduc
tion of electric current through vacuum diodes consists of two more or 
less separate parts, a study of the emission of electrons from solids and a 
study of the flow of current in a vacuum. Both of these parts have 
features in common with the study of conduction through semiconductor 
diodes. 

In accordance with the discussion of Sec. 3-1, the action in a vacuum 
diode depends on the copious emission of electrons from the cathode. 
The cathode is made of a metallic conductor which, as described in 
Sec. 3-4, consists of atoms bound in crystal lattices, valence electrons 
bound in valence bonds, and free electrons that are not bound to any 
particular place in the metal. Electronic emission is the process by 

(al 

E 

ro 
:;::; 
C 

~ 
0 
c.. 

'Po s 

(b) 

Fm. 3-16. Electron emission from a metal. 
(a) An electron escaping from the surface 
of a metal; (b) potential-distribution dia
gram for the region near the surface of a 
metal. 

which the free electrons escape 
from the surface of the metal. 

Figure 3-16a pictures symboli
cally a free electron in the process 
of escaping from a metal. As 
indicated in the figure, the escap
ing · electron leaves behind an ex
cess of positive charge associated 
with the atomic nuclei in the 
metal. Since there is a force of 
attraction between these charges, 
work must be done on the electron 
to move it away from the metal; 

the electron therefore gains potential energy in leaving the metal. If 
the potential energy of an electron at any point relative to the cathode 
is W and the electric potential at that point is E, then W = - qeE, If 
the magnitude of the potential at points remote from the metal is desig-
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nated 'Po, as indicated in Fig. 3-16b, the potential energy gained by an 
electron in escaping completely from the metal is Wo = -qe( - 'Po) = qe'Po• 
The energy required for a complete escape is a property of the metal 
and is called the work function of the metal; cf>o is the work function 
expressed in electron volts. 2 

The potential barrier encountered by an escaping electron at the 
surface of a metal is similar to the potential barrier at the junction of a 
semiconductor diode. As in the case of the junction diode, only those 
electrons having kinetic energies directed toward the barrier in excess of 
'Po ev can surmount the barrier. The number of electrons capable of 
crossing such a barrier in each second is given by Eq. (3-24). Hence the 
emission current is 

(3-34) 

This equation has exactly the same form as (3-25), for the two equations 
describe the same phenomenon. The factor Io, which is the emission 
current that would exist if cf>o were zero, can be evaluated from further 
considerations of the motion of electrons inside the metal. The resulting 
equation for the emission current per unit of cathode area is 

le= AT2 exp -l7/ 0 (3-35) 

where A is a constant depending on the metal from which the cathode is 
made. 

The work functions of common materials range from 1 to 5 ev, and 
the emission coefficients A range from values much less than unity up 
to about 100 amp/(cm2)(°K2

). It follows from these facts that emission 
currents are extremely small at room temperatures; to obtain useful 
emission currents, vacuum-tube cathodes must be heated to a suitable 
temperature. The list of materials that can be used as thermionic 
cathodes is quite restricted, for materials that have small work functions 
tend to have low melting points, and vice versa. Almost all thermionic 
cathodes are made of either nickel coated with barium and strontium 
oxides, thoriated tungsten, or pure tungsten. The work functions of 
these cathodes are, respectively, 1.0, 2.6, and 4.52 ev. The relatively 
small differences in the work functions of these cathodes make very great 
differences in emission current because of the exponential relationship 
given by (3-35). The normal operating temperatures for these three 
cathodes are, respectively, 750, 1700, and 2100°0. Since the oxide
coated cathode is the most efficient, -it is by far the most widely used. 
It is not isuitable for high-voltage applications, however; thoriated-
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tungsten and pure-tungsten cathodes are used in such applications. 
Tubes in which the current fl.ow depends on the emission of electrons from 
a hot cathode are called thermionic tubes. 

A phenomenon related to the foregoing discussion, that of contact 
potential difference,2 is illustrated in Fig. 3-17. Figure 3-17a shows a 
vacuum diode with its electrodes connected together by a short circuit. 
Now suppose that the work function of the cathode is <l>oc = 1.0 ev. The 
potential just outside the cathode is - 1.0 volt relative to the cathode, 
as shown in Fig. 3-17b. Suppose further that the work function of the 
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Frn. 3-17. Contact potential difference. 
(a) A vacuum diode with electrodes short 
circuited; (b) potential distribution in 
the interelectrode space. 

anode is <l>oa = 4.0 ev. The po
tential just outside the anode is 
-4.0 volts relative to the anode 
( and ca th ode), as also shown in 
Fig. 3-17b. It then follows that 
there is a potential difference of 
3.0 volts between a point just out-
side the cathode and one just out
side the anode and that there is an 
electric field in the interelectrode 
space. This electric field exerts a 
force on electrons in the interelec
trode space and thereby affects 

their motion. In the particular case described, the field resulting from 
the contact potential difference opposes the fl.ow of electrons from cathode 
to anode. 

If a battery is connected between the electrodes, making the potential 
of the anode Eb volts relative to the cathode, the apparent anode potential 
in so far as an electron in the interelectrode space is concerned is 

(3-36) 

The contact potential is often small compared with the applied voltage, 
and the usual practice is to ignore it, even in some cases where it is not 
really negligible. 

The factors regulating the fl.ow of current through a diode can be 
examined with the aid of the diagrams in Fig. 3-18. Figure 3-18a repre
sents a diode in which the electrodes are parallel planes of infinite extent. 
When there is no emission from the cathode in this simple geometry, 
the electric force on a charged particle has the same strength at every 
point in the interelectrode space, and its direction at every point is 
perpendicular to the electrodes. Hence an electron starting from rest 
at the cathode moves toward the anode along a straight path, such as s, 
that is normal to the electrodes. The equation for the electric potential, 
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(3-37) 

takes a simple form along this path because both F and 0 are constant, 
the latter being 180°. Thus 

E = !:_ J ds = f_ s (3-38) 
q q 

Using the fact that E = Eb whens = d yields 

Eb 
E = ds (3-39) 

The potential-distribution curve for the paths when there is no emission 
from the cathode is thus a straight line as shown by curve A in Fig. 3-18c. 
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Fm. 3-18. Conduction through a vacuum diode. (a) The diode; (b) the volt-ampere 
characteristic; (c) potential-distribution curves with and without space charge; (d) 
potential-distribution curves for other plate voltages. 

If the cathode is heated to normal operating temperature, the diode 
exhibits a volt-ampere characteristic of the form shown in Fig. 3-18b. 
The shape of this curve can be explained qualitatively in terms of the 
potential distribution along path s. With the cathode at operating 
temperature and the anode held positive relative to the cathode, elec
trons issuing from the cathode move across the interelectrode space in 
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large numbers, and the space contains many electrons in transit to the 
anode. Since each electron carries a charge, there is a space charge in 
the interelectrode space; this space charge alters the potential distribution 
in the space. Consider the work required to move a small positive 
charge from the cathode toward the anode when appreciable space charge 
is present. Since the negative space charge exerts an attractive force 
on the positive charge, less work is required to move the test charge away 
from the cathode than would be required in the absence of negative 
space charge. Hence the potential of points in the interelectrode space 
is reduced by negative space charge, and the potential-distribution 
curve is depressed as illustrated by curve B in Fig. 3-18c. 

Equilibrium is reached under the conditions described above with the 
potential-distribution curve depressed so that a potential minimum is 
established a short distance in front of the cathode; the magnitude of 
this potential minimum is indicated in Fig. 3-18c as Em, In this way a 
potential barrier for electrons is established in front of the cathode, and 
only those electrons having kinetic energies greater than Em ev directed 
toward the barrier can pass the potential minimum and continue to the 
anode; the remainder are stopped by the potential hill and return to the 
cathode. Again, the number of electrons capable of crossing the barrier 
is given by Eq. (3-24), and the current through the diode is 

(3-40) 

If the current tends to increase from this value, the space charge becomes 
greater, Em increases, and lb is restored to the equilibrium value. If the 
current tends to decrease, the converse action takes place. Since the 
current is limited by the potential minimum, which in turn is established 
by the space charge, the current is said to be space-charge-limited under 
these conditions. The corresponding point on the diode volt-ampere 
characteristic is shown at Eb1 in Fig. 3-18b. 

If the anode potential is increased, the potential-distribution curve 
is raised, and a new equilibrium is reached at a larger value of anode 
current. If the anode potential is made sufficiently great, however, a 
point will be reached at which the potential minimum is fixed by the 
work function of the cathode rather than by the space charge. The 
potential-distribution curve for this condition has the form shown by 
curve A in Fig. 3-18d; the corresponding point on the diode characteristic 
is indicated at Eb2, Under these conditions the value of the minimum 
potential is more or less firmly set by the properties of the cathode, and 
all electrons with energies greater than the work function of the cathode 
flow to the anode. Accordingly, the anode current is given by Eq. (3-34): 
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(3-41) 

To the extent that the potential minimum is fixed by the work function 
of the cathode and is not influenced by the anode potential, h is inde
pendent of Eb. In the case of pure-tungsten cathodes the potential 
minimum is very firmly fixed, and the diode current does not increase 
very rapidly with further increases in Eb; a pronounced saturation is 
observed. As indicated by (3-41), however, h increases rapidly with 
temperature. Under these conditions the current is said to be tempera
ture-limited. In the case of oxide-coated cathodes the potential mini
mum is not firmly fixed, and no pronounced saturation occurs. However, 
prolonged operation with the current limited by the cathode rather than 
by space charge usually results in permanent damage to oxide-coated 
cathodes. Vacuum tubes are normally operated in the space-charge
limited regions of their characteristics. 

As the anode potential is reduced under space-charge-limited con
ditions, the potential minimum drops lower, and it moves toward the 
anode. When Eb is made sufficiently negative (a fraction of a volt), the 
potential minimum occurs at the anode, as illustrated by curve B in 
Fig. 3-18d. Under this condition, Em = -Eb, since Em is the magnitude 
of the potential minimum. It then follows from Eq. (3-40) that 

I I qeEb 
b = o exp kT (3-42) 

A point on the diode characteristic corresponding to this condition is 
shown at Eba in Fig. 3-18b. In the region where (3-42) applies, Eb is 
negative. In this range of Eb the plate current is relatively small and 
is an exponential function of the plate voltage. There are a few useful 
applications for this exponential volt-ampere relation. 

As mentioned above, vacuum tubes are usually operated with space
charge-limited current. Under this condition the plate current is given 
by Eq. (3-40). Equation (3-40) reveals the mechanism by which space 
charge limits the flow of current in a vacuum diode, but it is not useful in 
calculating the diode current, for the value of the potential at the mini
mum is not known. Moreover, Em depends in a complicated way on the 
applied voltage, the cathode temperature, and the current lb that is to 
be calculated. However, another approach to the problem which makes 
use of certain reasonable approximations leads to the three-halves-power 
law, 

(3-43) 

for the volt-ampere law of the vacuum diode. 2•6 The perveance of the 
tub~, K, is~ ppnstant depending on the ~eometr,y of th~ ~l~~tr99~~.. The 



66 ELECTRONIC CIRCUITS 

derivation of (3-43) assumes, among other things, that the potential 
minimum lies at the surface of the cathode, that the minimum potential 
is zero, and that all electrons emerge from the cathode with zero initial 
velocity. It is shown in Sec. 3-9 that this equation is of very limited value 
in the analysis and design of vacuum-tube circuits because it is a non
linear relation between hand Eb. 

If a diode is in operation with Eb volts applied and with lb amp flowing, 
it is clear that it absorbs energy at the rate of 

watts (3-44) 

The effect of this power absorption may not be so clear; therefore it 
merits further consideration. According to Eq. (3-11), an electron 
emerging from the cathode with negligible initial velocity arrives at the 
anode with a kinetic energy given by 

(3-45) 

This energy is converted to thermal energy by the impact of the electron 
on the anode. If the number of electrons reaching the anode each second 
is n, then the rate at which heat is generated at the anode by electron 
impacts is 

(3-46) 

But nqe is the amount of charge that arrives at the plate each second; 
that is, it is the plate current h. Hence 

(3-47) 

Thus the electrical energy delivered to the diode is all converted to 
thermal energy at the anode by electron impacts. 

The thermal energy generated at the anode is associated with a rise 
in temperature of the anode. Since the diode is in an evacuated envelope, 
little heat is lost by conduction or convection. However, with the 
temperature of the anode higher than that of surrounding objects, heat 
energy is radiated from the plate to the environment at a rate depending 
on the temperature difference. An equilibrium is established at that 
temperature at which heat energy is radiated to the surroundings just as 
fast as it is generated. (The total heat energy appearing at the anode 
includes radiant heat from the cathode as well as heat generated by 
electron impacts.) If heat is generated at too great a rate, the temper
ature rise will be excessive, and the anode will vaporize or melt. Thus 
there is a limit on the permissible power dissipation of a tube. For most 
small tubes the maximum permissible plate dissipation, Amax, is in the 
range of 1 to 10 watts, average value. 

In addition to the limitation on the permissible plate dissipation, there 
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are separate limitations on the maximum permissible plate voltage and 
current. The maximum instantaneous plate current must be limited to 
a value that will not damage the cathode if the tube has an oxide-coated 
cathode, and the maximum instantaneous plate voltage must not be 
great enough to break down the insulation between the external leads 
connecting to the electrodes. The maximum permissible plate current, 
voltage, and power dissipation ar.e specified by the manufacturer. 

The foregoing discussion of the vacuum diode is concerned with static 
conditions in which the currents and voltages do not vary with time. 
When very-high-frequency voltages are applied to the diode, it is neces
sary to take into account the fact that the plate and cathode serve as the 
electrodes of a capacitor and that the total diode current is the sum of 
the conduction current and the capacitive current. At high frequencies 
the capacitive current may be comparable with the conduction current, 
and since it flows equally well in both directions, it impairs the diode 
characteristics. The nature of the interelectrode capacitance is rather 
complicated, for it depends on the amount and distribution of the space 
charge. It is customary to represent the capacitive effect approximately 
by a fixed capacitance of a few micromicrofarads connected in parallel 
with the diode. 

The vacuum diode is discussed above in terms of the idealized case of 
infinite, plane, parallel electrodes. Practical diodes cannot use such a 
simple geometry. The details of electron flow in a practical geometry 
are considerably more complicated; indeed, it is not possible to make a 
complete study of the electron flow in any but the simplest geometries. 
Nevertheless, the basic principles developed in terms of the idealized 
diode apply equally well to diodes of all geometries. 

3-7. Gas-filled Thermionic Diodes. When the anode of a vacuum 
diode is made positive relative to its cathode, electrons move across the 
interelectrode space from cathode to anode, and there is a negative space 
charge in the interelectrode space. This negative space charge depresses 
the potential-distribution curve in the interelectrode space and thereby 
limits the current that flows with a given applied voltage. Larger cur
rents can be obtained with a given applied voltage and tube size if the 
negative space charge can be neutralized in some way. For example, 
if a grid of fine wires is placed in the region of high negative space 
charge and is held positive relative to the surrounding space, then the 
negative space charge is partially neutralized by the positive charge 
on the wires, the potential distribution curve is raised, and the anode 
current increases. A few tubes using such a space-charge grid were 
built in the early days of electronics. However, better results can be 
obtained in rectifiers intended for low-frequency operation by the method 
described below. 
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If a small amount of liquid mercury is included inside the envelope of 
a thermionic diode such as the one discussed in Sec. 3-6, the space inside 
the envelope will contain mercury vapor, mercury atoms that have 
evap~rated from the surface of the liquid mercury. If the anode is then 
made positive relative to the cathode, electrons move from the cathode 
toward the anode, and many of them collide with mercury atoms on 
the way. If the colliding electron has enough kinetic energy (10.39 ev 
for mercury vapor), the collision may separate a valence electron from 
its parent atom. Thus two new charged particles, a negatively charged 
electron and an incomplete, positively charged mercury atom called a 
positive ion, are created by ionization of a mercury atom that was origi
nally neutral. The relatively light electron created by ionization moves 
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FIG. 3-19. The gas-filled diode. (a) The diode; (b) the volt-ampere characteristic; 
(c) the potential distribution in the interelectrode space. 

rapidly to the anode, while the much heavier positive ion moves slowly 
toward the cathode. If many positive ions are created in this way, they 
neutralize the negative space charge of the electrons in most of the 
interelectrode space, the potential-distribution curve inside the tube is 
raised, and large currents flow with small impressed voltages. 

There is very little recombination of electrons with positive ions in 
the space inside the tube, for it turns out that it is highly improbable 
that an electron and a positive ion will meet under conditions that will 
allow them to recombine and at the same time conserve both momemtum 
and energy. Recombination takes place primarily at the surfaces of the 
electrodes and the surrounding envelope; the presence of the third body 
permits both momentum and energy to be conserved when the recom
bination takes place. 

A gas-filled diode is represented schematically in Fig. 3-19a; Fig. 3-19b 
shows a typical volt-ampere characteristic for such a diode, and Fig. 3-19c 
shows the potential distribution along a typical path between the cathode 
.and anode when the tube i~ conducting a norm.al Gummt. 2 The volt-
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ttmpete characteristic shows that when the tube conducts, the voltage 
drop across the tube is nearly independent of the plate current; it decreases 
slightly with increasing plate current, especially at low currents. This 
characteristic is quite similar to that of the ideal diode except that it is 
shifted to the right by about 10 volts, the conducting tube drop. The 
potential distribution curve shows that throughout most of the interelec
trode space, from the plate almost to the cathode, the potential gradient, 
and hence the electric-field strength, is very small. In this region, called 
the plasma, the electronic and the positive-ion space charges neutralize 
each other, and the particles move in a random manner, colliding with 
each other and exchanging energy, in much the same way that holes and 
electrons move in a semiconductor. Superimposed on this random 
motion is a drift of electrons toward the anode and of positive ions 
toward the cathode. For a short distance in front of the cathode, 
greatly exaggerated in Fig. 3-19c, the potential distribution is much like 
that in a vacuum diode with very small plate-to-cathode spacing; nearly 
all the tube drop appears across this region. Positive ions fl.owing across 
this cathode sheath tend to raise the potential-distribution curve and 
prevent the potential minimum in front of the cathode from being very 
large in spite of a large electron current fl.owing across the sheath into the 
plasma. Any amount of current, up to the limit of emission from the 
cathode, can flow across the tube if positive ions are generated in sufficient 
numbers in the plasma. 

The kinetic energy gained by an electron in moving across the cathode 
sheath into the plasma is almost Eb ev. This energy is approximately 
equal to the minimum energy that an electron must have in order to 
ionize an atom of the gas in the tube, although, because of multiple-step 
ionizations, it is often slightly less than this amount. It corresponds to 
a tube drop of approximately 10 volts in mercury-vapor tubes and 
between 10 and 20 volts for other gases that are commonly used. After 
entering the plasma some of the electrons have ionizing collisions after 
traveling a short distance, others must travel almost to the plate before 
having such a collision, and still others reach the plate without having 
a collision. Thus ions are generated in all parts of the plasma. 

At small values of plate current there are few electrons in transit, 
and the rate of ion production would drop to a low value were it not for 
the fact that the tube drop rises somewhat, thereby increasing the 
ionizing efficiency of the electrons and maintaining the rate of ion 
production at the value needed to sustain the plasma. At very small 
values of current, however, the plasma cannot be sustained, the ions 
disappear by surface recombination, and the tube behaves somewhat 
like a vacuum diode. The current flowing under this condition is too 
small to show on the volt-ampere characteristic of Fig. 3-19b. 
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Certain precautions that must be observed in the use of gas-filled tubes 
can be explained in terms of the simple rectifier circuit shown in Fig. 3-20. 
When the supply voltage es is greater than the conducting tube drop Eo, 
the diode conducts, and as shown by the volt-ampere characteristic of 
Fig. 3-19b, the voltage drop across the tube is approximately constant 
at the value Eo regardless of the value of the tube current. Thus the 
circuit of Fig. 3-20b is approximately equivalent to the rectifier circuit 
when es is greater than Eo, It is clear from this circuit that when es is 
greater than Eo, the diode current is limited only by the resistance RL. 
If this resistance is too small, excessive current flows and the diode is 
destroyed. It is always necessary to ensure that the current through 
gas-filled rectifiers is limited to a safe value by an external impedance 
in series with the tube. 

Another precaution that must be observed in the use of gas-filled tubes 
arises when power is applied to the circuit. When the circuit of Fig. 3-20a 
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FIG. 3-20. A gas-diode rectifier. (a) Circuit; (b) an approximately equivalent cir
cuit for ea > E o, 

is in normal operation, the load resistance limits the tube current to a safe 
value. The voltage drop across the tube when it is conducting is about 
10 volts, and the remainder of the applied voltage appears as an IR drop 
across the load resistance. However, if the a-c supply is applied at the 
same time that the cathode-heating power is turned on, the ensuing 
sequence of events may lead to the destruction of the cathode. The 
cathode temperature rises slowly after the heater power is applied, and 
there is negligible electron emission until some time has elapsed. During 
this time there is no current in RL, and the full voltage of the a-c source 
appears across the diode. As the cathode approaches its operating 
temperature a small temperature-limited current begins to flow during 
the positive half cycles of the supply voltage, there is a small drop across 
RL, and the drop across the tube is still relatively large. Electrons 
moving toward the plate of the tube ionize gas atoms, and the resulting 
positive ions are accelerated toward the cathode by the electric field in 
the interelectrode space. Since the drop across the tube is still relatively 
large, some of these ions move through a large potential difference and 
strike the cathode with correspondingly large kinetic energies. This 
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positive-ion bombardment is very likely to destroy the delicate oxide 
coating of the cathode. Experiment shows that the destructiveness of 
positive-ion bombardment increases rapidly when the conducting tube 
drop exceeds about 22 volts. 2 In order to avoid cathode damage from 
this source it is necessary to allow the cathodes of gas-filled rectifiers to 
reach normal operating temperature, so that normal current can flow 
and normal voltage drop can appear across the load, before applying 
power to the plate circuit. The warm-up time required varies from 
30 sec to 5 min, depending on the type of tube. 

Circuits using gas-filled diodes must be designed so that the maximum 
permissible instantaneous current and the maximum permissible inverse 
voltage are not exceeded. As in the case of the vacuum diode, the maxi
mum permissible current is limited by the emission capabilities of the 
cathode; typical values range from a few hundred milliamperes to a few 
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Frn. 3-21. The thyratron. (a) The tube; (b) the volt-ampere characteristic. 

hundred amperes. The maximum permissible inverse voltage is limited 
by the possibility of an arc-over in the reverse direction through the gas 
inside the tube; typical values range from a few hundred volts to several 
thousand volts. Both the maximum current and the maximum inverse 
voltage that the tube can tolerate depend rather strongly on the gas 
pressure inside the tube, and hence on the temperature of the tube. 

3-8. Gas-filled Thermionic Triodes. The gas-filled triode, or thyra
tron, is a rectifier that behaves much like the gas-filled diode, but through 
the action of a third electrode, or grid, it permits simple, efficient control 
over the current that it conducts. 2 Therefore rectifier circuits using 
thyratrons can be arranged to give an adjustable output voltage. The 
thyratron is shown schematically in Fig. 3-21a. The anode and cathode 
are similar to those of the gas-filled diode; the grid is a metal electrode 
containing one or more holes that is placed between the cathode and 
anode in the region occupied by the plasma when the tube is conducting. 
When the tube conducts, electrons flow to the plate and positive ions 
flow to the cathode through the holes in the grid. The volt-ampere 
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characteristic for the plate-cathode terminals is shown in Fig. 3-21b; it 
is similar to that of the gas diode. The potential distribution in the 
thyratron when it is conducting is similar to that in the gas diode, shown 
in Fig. 3-19c, and the mechanism of conduction is the same as in the gas 
diode. The thyratron differs from the gas diode primarily in the action 
of the grid when the tube is not conducting. 

The utility of the grid lies in the fact that the grid-cathode voltage 
can be used to control the potential that must be applied between the 
plate and cathode to cause the gas to be ionized and a plasma to be formed. 
If the grid is made negative relative to the cathode, it lowers the potential
distribution curve in front of the cathode, and virtually no electrons 
are able to pass the potential minimum and move to the anode, even 
though the anode be positive relative to the cathode. Under these 
conditions no current flows in the plate circuit. If the plate is now made 
more positive, it raises the potential-distribution curve and may make 
it possible for an appreciable number of electrons to pass the potential 
minimum in front of the cathode and proceed to the anode. The 
positive ions generated by these electrons in transit move toward the 
grid, which is the most negative point in the tube. If positive ions are 
generated fast enough, the negative charge on the grid is partially 
shielded by the approaching positive ions, and the potential in front of 
the cathode rises further. More electron flow to the plate results, more 
ions are generated, and finally the grid is completely shielded by the 
great number of positive ions surrounding and moving toward it. The 
grid then has no further effect on the current, a plasma forms, and the 
thyratron behaves like a gas diode. 

The cumulative action described above that leads to the formation of 
a plasma is known as ignition, or firing. The minimum plate-to-cathode 
potential necessary for ignition depends on the grid-to-cathode potential; 
the more negative the grid the more positive the plate must be for 
ignition. Figure 3-22 shows the minimum plate voltage required for 
ignition as a function of the grid potential for a typical thyratron; this 
curve is the starting, or control, characteristic for the tube. Points lying 
above this curve correspond to combinations of grid and plate potentials 
that cause the ~tube to fire. The time required for the formation of the 
plasma, usually a few microseconds, is called the ionization time; it 
limits the speed with which the tube can be turned on. 

After the tube fires the grid is surrounded and neutralized by a sheath 
of positive ions moving toward it. If the grid is made more negative, 
it merely attracts more ions from the plasma and remains electrically 
p.eutralized. Hence after the tube fires the grid has no further effect 
on the current flowing between plate and cathode; in particular, the 
pltlt{} <;rurr~nt Q~nnot be ~topped by the applicatioll of any reasonable 
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voltage to the grid except in the case of certain small thyratrons con
ducting currents of a few milliamperes or less. To extinguish the arc 
and restore the tube to the nonconducting state it is usually necessary 
to reduce the plate current to a value too low to maintain the plasma. 
This is the extinction current; it is of the order of microamperes for small 
thyratrons. If the current remains below this value long enough, 
usually a few tens or hundreds of microseconds, the positive ions in the 
tube disappear by surface recombination, the grid regains control, and 
the tube does not conduct again until the plate voltage exceeds the 
critical value given by the control characteristic. The time required 
for the positive ions to disappear is the deionization time for the tube; 
it places an upper limit on the speed at which the tube can be operated 
in repetitive cyclic action. 
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FIG. 3-22. Thyratron control characteristic. 

The properties of a thyratron depend on the gas pressure inside the 
tube. When the gas is mercury vapor obtained by evaporation from 
liquid mercury in the tube, the gas pressure increases exponentially with 
the temperature of the coldest spot in the tube; hence the properties of 
mercury-vapor thyratrons are rather sensitive to the temperature of the 
tube. In particular, the control characteristic may change appreciably 
with the changes in temperature encountered in normal operation. This 
factor must be taken into account in the design of circuits for mercury
vapor thyratrons. 

Temperature dependence is often avoided in small, low-power thyra
trons through the use of a noble gas such as argon or neon in place of 
mercury vapor. Since these gases are not derived by evaporation from a 
liquid source, the density of gas atoms in the tube is independent of 
temperature, and the tube characteristics are essentially unaffected by 
changes in temperature. The density of gas atoms in the tube is a 
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function of time, however, for the gas is slowly adsorbed by the electrodes 
and the inner walls of the envelope. This action is called cleanup. As 
a consequence of cleanup, the tube characteristics change slowly with 
time, and eventually the tube is no longer able to perform properly. 
This fact limits the life of tubes using inert gases. Cleanup is not a 
factor in mercury-vapor tubes, for additional mercury vapor is always 
available from the supply of liquid mercury in the tube. Large thyra
trons intended for high-voltage, high-power applications almost always 
use mercury vapor as the gas. 

In certain applications, such as in the electronic flash lamps used in 
high-speed photography and in high-power pulse generators for radar, 
thyratrons having very short ionization and deionization times are 
required. This need is met by a group of thyratrons in which hydrogen 
is the gas used. The relatively light hydrogen ions diffuse through the 
tube much more rapidly than the heavy mercury ions and give much 
faster action in the tube. 

As in the case of other rectifiers, the maximum instantaneous current 
and the maximum inverse voltage ratings of the thyratron must be 
respected. The current and voltage ratings for thyratrons lie in the 
same ranges as those given for gas-filled diodes. 

3-9. The Analysis of Diode Circuits. It is shown in the preceding 
sections that several physical rectifiers behave very much as ideal diodes. 
When these physical diodes are used in the circuits presented in Chap. 2, 
it is often permissible to assume that the physical diodes are ideal. In 
certain applications, however, especially where vacuum diodes are used, 
it is necessary to take into account the actual diode characteristics. It 
is therefore appropriate to examine certain techniques for the detailed 
analysis of diode circuits. Of even greater importance is the fact that 
the techniques to be devloped here in terms of relatively simple diode 
circuits are of fundamental importance in the analysis of vacuum-tube 
Jind semiconductor amplifier circuits to be considered later. 

Figure 3-23a shows a vacuum diode in the half-wave rectifier circuit 
of Sec. 2-2. (The cathode heater and its power supply are not shown; 
in this and all subsequent circuits it is to be understood that all thermionic 
tubes must have a cathode heater and a source of heating power.) The 
usable part of the diode volt-ampere characteristic is shown in Fig. 3-23b. 
The problem is to find the current and the load voltage as functions of 
time when the value of Es is given. 

The loop equation relating the current to the voltages in the circuit is 

(3-48) 

In this form it contains two unknowns, eb and ib; it can be solved only 
with the aid of an additional relation between eb and ib. The required 
relation is the volt-ampere law for the diode given by Eq. (3-43); when 
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(3-43) is substituted in (3-48) the result is 

(R, + RL)i, + (~Y' = e, = E, sin wt 

75 

(3-49) 

This equation gives ib implicitly in terms of the circuit parameters and 
the applied voltage; however, it is nonlinear and cannot be solved analy
tically for ib without considerable difficulty. For this reason graphical 
methods of solution are almost always used. The graphical solution is 
based on the measured volt-ampere characteristic of the diode; this 
characteristic is the counterpart of the three-halves-power law given by 
Eq. (3-43). The measured characteristic will in general deviate some
what from (3-43), and it will in general vary considerably for different 
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Load line 

•• 

2+Ul~:RL)i:1 
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~ ~ 
Frn. 3-23. A half-wave rectifier with supply voltage ea = Ea sin w8t. 
(b) graphical analysis. 

100 eb 
volts 

(a) Circuit; 

tubes of a given type. Therefore the results are approximate unless 
the characteristic is measured for the particular diode to be used. How
ever, the approximate solution obtained by using the average character
istic for the type of diode employed (obtained from the manufacturer) 
is satisfactory in practically all cases. 

The diode characteristic shown in Fig. 3-23b represents a functional 
relation between ib and eb: 

(3-50) 

A second relation between these variables is given by (3-48); this equation 
can also be written as 

(Rs + RL)ib = ea - eb 

and as 
. ea eb 

1,b = Rs + RL - Rs + RL 
1 

= Io - R. + RL eb 

(3-51) 

(3-52) 

(3-53) 
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For any fixed value of es, Io is fixed, and (3-53) plots as a straight line 
on the eb - ib coordinates. This line, known as the load line, is shown 
in Fig. 3-23b for one value of es, Equation (3-50) is a relation between 
ib and eb imposed by the tube; (3-53) is a relation imposed by the circuit 
connected to the tube; both relations must be satisfied simultaneously. 
The diode characteristic gives all combinations of ib and eb that satisfy 
(3-50), and the load line gives all combinations that satisfy (3-53) for 
one value of es, The intersection of these two curves gives the operating 
point p; both (3-50) and (3-53) are satisfied simultaneously at this 
point. 

As time passes and es goes through its cycle of values the load line 
shifts horizontally in accordance with the value of es at each instant, and 
the operating point p moves along the diode characteristic as the load 
line shifts. The corresponding values of ib can be read from the scale 

(a) (bJ 

Frn. 3-24. The piecewise-linear approximation for vacuum diodes. 
acteristics; (b) model; (c) model for rectifier circuit. 

(c) 

(a) Diode char-

of ordinates, and the waveform of ib can be plotted if desired. The 
load voltage can be calculated at each instant from the corresponding 
value of ib. 

The graphical analysis described above is somewhat tedious, and it 
requires a considerable inve5tment of time and labor, especially when 
the circuit contains several diodes. As an alternative procedure, the 
analysis of many diode circuits can be greatly simplified by approximating 
the diode characteristic with two straight line segments. One such 
approximation is shown in Fig. 3-24a superimposed on the actual diode 
characteristic. Characteristics consisting of a series of linear segments 
are called piecewise-linear characteristics; they are used in approximating 
the characteristics of a wide variety of nonlinear devices. To be sure, 
an analysis based on this idealized characteristic will not give exactly 
the results that would be measured experimentally; however, in many 
applications the results of the idealized analysis are quite close to the 
experimental results in all important respects. The fact that individual 
tubes may vary considerably from the published characteristics further 
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justifies the use of idealized characteristics. The value of the idealized 
characteristics resides in the fact that it greatly simplifies the analysis 
of many diode circuits and gives results that are quite satisfactory in so 
far as circuit performance is concerned. 

When the behavior of the physical diode is to be represented approxi
mately by the idealized characteristic, it is helpful to have some way 
of symbolizing the fact in the circuit diagram, and it is desirable to do 
so by the use of conventional parameters, ideal R, L, C, diodes, and 
sources. It is readily seen that the volt-ampere characteristic of the 
circuit in Fig. 3-24b corresponds exactly to the idealized characteristic 
of Fig. 3-24a if the resistance rb has the correct value. For negative 
values of eb the ideal diode is an open circuit, and ib is zero; for positive 
values of eb the ideal diode is a short circuit, and the volt-ampere char
acteristic is a straight line with a slope depending on rb. If rb = 1/ A, 
the circuit will correspond to the piecewise-linear characteristic of Fig. 
3-24a. The circuit of Fig. 3-24b is a network model for the physical 
diode that behaves approximately like the physical diode. More specifi
cally, the circuit is a piecewise-linear model for the physical diode. The 
nonlinear nature of the circuit is concentrated at the break point in the 
characteristic. The fact that the segments of the characteristic are 
linear simplifies the analysis problem. 

If the piecewise-linear model is substituted for the diode in the half
wave rectifier of Fig. 3-23, the circuit of Fig. 3-24c results. It is clear 
that this circuit can be analyzed by the simple procedure used in Sec. 2-2. 
Thus the half-wave rectifier using a vacuum diode behaves essentially 
as if the diode were ideal; the principal difference is that the circuit 
resistance is increased by the diode resistance rb, In a like manner, when 
vacuum diodes are used in any of the circuits presented in Chap. 2, 
the behavior can be analyzed approximately by using piecewise-linear 
models for the diodes. If the diode resistances are small, the results 
of the analysis will be essentially the same as those obtained for ideal 
diodes. 

Figure 3-25 shows volt-ampere characteristics and piecewise-linear 
approximations for two typical vacuum diodes. The 6AX5-GT is 
intended primarily for use in power supplies for electronic equipment. 
The piecewise-linear model corresponding to the piecewise-linear char
acteristic shown in the figure consists of an ideal diode in series with a 
resistance of 400 ohms. The 6AL5 is a small tube intended for low
power applications such as AM detectors, diode clampers, and rectifiers 
to supply small direct currents. The piecewise-linear model implied by 
the approximating straight-line characteristic consists of an ideal diode 
in series with a resistance of 200 ohms. Figure 3-26 shows the piecewise
linear model for the 6AL5, including the interelectrode capacitance. 
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All the preceding discussion regarding the analysis of circuits containing 
vacuum diodes applies in a qualitative sense to circuits containing semi
conductor diodes. If a semiconductor diode is used in the half-wave 
rectifier of Fig. 3-23, the circuit can be analyzed by the same graphical 
procedure as that used with the vacuum diode. Figure 3-27a shows the 
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Frn. 3-25. Typical diode characteristics. (a) 6AX5-GT twin diode, peak permis
sible inverse voltage 1250 volts, maximum permissible instantaneous plate current 
375 ma; (b) 6AL5 twin diode, peak permissible inverse voltage 330 volts, maximum 
permissible instantaneous plate current 54 ma, plate-to-cathode capacitance, 3 p,µ.f. 
(approximately). 

volt-ampere characteristic for a typical silicon P-N junction diode and 
the graphical construction appropriate to the analysis of the half-wave 
rectifier. The scale of voltages would be suitable if the peak value of e8 

were less than about 10 volts. Fig-

[ :::: l 
ure 3-27b shows the same construc-

3 µµf 
tion for the case where the peak 

po------- +-I ----40 k value of es is of the order of 100 
2000 volts. The scale of voltage and 

Frn. 3-26. Piecewise-linear model for 
the 6AL5. current required is such that the 

diode characteristic cannot be dis
tinguished from the axes; hence the performance of the diode cannot be 
distinguished from that of an ideal diode in so far as the load voltage and 
current are concerned. 

In some circuits such as AM detectors and diode clampers, where small 
currents and voltages are involved, it may not be desirable to treat the 
semiconductor diode as ideal. On the other hand, the piecewise-linear 
representation is often suitable. One approximation to the diode char
acteristic is shown in Fig. 3-28a. The corresponding model is shown in 
Fig. 3-28b. When eb is less than Eo, a reverse voltage is applied to the 
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ideal diode and it acts as an open circuit. When eb is greater than 
Eo, a forward current flows through the ideal diode; its magnitude is 
ib = (eb - Eo)/rb. If rb and Eo are given suitable values, the model will 
correspond to the characteristic in Fig. 3-28a. Figure 3-28c represents 
the diode approximately at high frequencies; the capacitance C represents 
the capacitance across the junction of the diode. 

It is worthwhile to note that adding the source Eo to the model has the 
effect of shifting the piecewise-linear characteristic to the right by Eo 
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Fm. 3-27. Graphical analysis of a silicon-diode rectifier circuit. (a) Low voltage; 
(b) high voltage. 
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(b) (c) 
FIG. 3-28. Piecewise-linear models for semiconductor diodes. (a) Piecewise-linear 
characteristic; (b) low-frequency model; (c) high-frequency model. 

volts when the source has the polarity shown in Fig. 3-28b. If the 
polarity of the source is reversed, the characteristic is shifted to the left 
by Eo volts. These facts indicate that a variety of piecewise-linear 
characteristics can be generated by various combinations of sources and 
ideal diodes. For example, volt-ampere characteristics having several 
linear segments can be generated by using several diodes and associated 
voltage sources. This feature is useful in the formulation of models for 
more complicated devices. It is also interesting to note that electronic 
analog computers often use combinations of physical diodes, resistors, 
and batteries to generate nonlinear relations between two variables. 
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The volt-ampere characteristic for a gas-filled diode shown in Fig. 3-29a 
is approximated satisfactorily by the piecewise-linear characteristic of 
Fig. 3-29b. It is clear that the piecewise-linear model of Fig. 3-28b 
corresponds to the characteristic of Fig. 3-29b if rb is made zero. (In some 
instances it may be desirable to give rb a small negative value to account 
for the slight decrease in tube drop with increasing tube current. The 
apparent negative resistance associated with conduction through gases 
finds useful applications.) 

The thyratron can also be represented by a piecewise-linear model, 
but the complications needed to account properly for the action of the 
grid make the model unwieldy. Therefore it is usually simpler to repre
sent the plate circuit of the thyratron by two separate models, an open 
circuit when the tube is nonconducting and a constant voltage drop 
(battery) when it is conducting. · 

(a) (bl 

Fm. 3-29. Piecewise-linear approximation for gas-filled diodes. (a) Volt-ampere 
characteristic; (b) piecewise-linear approximate characteristic. 

The use of grid control to provide an adjustable load voltage in a 
thyratron rectifier is illustrated by the circuit shown in Fig. 3-30a. 2 The 
a-c supply voltage is es, and the control voltage for the grid is the series 
combination of e1 and e2. The voltage e1 is an adjustable direct voltage 
by means of which the load voltage is adjusted, and e2 is a fixed sinusoidal 
voltage that lags 90° behind es. The relations among these voltages 
are pictured in Fig. 3-30b. The load resistance is RL; as in the case of 
the gas-filled diode, it must be large enough to limit the plate current 
to a safe value. In addition, when the grid is positive relative to the 
cathode by an amount greater than the conducting tube drop, the grid 
and cathode act as a conducting diode. Therefore it is necessary to 
include a resistance in series with the grid to limit the grid current to a 
safe value; this resistance is Re in Fig. 3-30a. 

Two simplifying assumptions are made to remove distracting second
order effects from the analysis. They are (1) that the negative grid 
potential needed to hold the tube nonconducting is negligibly small, and 
(2) that the conducting tube drop is negligibly small. Thus if the tube 
is nonconducting with a positive plate potential and a negative grid 
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potential, as during the first portion of the cycle of operation shown in 
Fig. 3-30b, then it cannot fire (begin conduction) as long as the grid 
potential is negative. With the grid negative relative to the cathode, 
electrons emitted by the cathode cannot go to the grid, and since there 
are no positive ions in a nonconducting tube, there is no ion flow to the 
grid. Hence the grid current is zero, there is no voltage drop across 
Re, and the grid voltage is e1 + e2. At the instant t1 the grid potential, 
e1 + e2, changes from negative to positive, the grid is no longer able to 
hold the tube nonconducting, and the tube fires. Since the conducting 
tube drop is assumed to be zero, the tube acts as a short circuit and the 
full supply voltage appears across the load during conduction. Since 
ordinarily the grid cannot stop the flow of plate current, conduction 
continues until the plate potential becomes negative, regardless of the 
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Frn. 3-30. A half-wave thyratron rectifier with d-c plus a-c control. (a) Circuit, 
es = E. sin wi and e2 = E 2 sin (w.t - 90°); (b) waveforms. 

value of the grid potential. The corresponding waveform of load voltage 
is shown in Fig. 3-30b. 

The duration of the conducting interval, and hence the average and 
effective values of the load voltage, can be controlled by the adjustable 
direct voltage e1. If e1 is adjusted over a range of positive and negative 
values, the waveform of e1 + e2 shifts up or down, and the instant of 
firing can be made to occur at any point in the positive half cycle of es, 
For example, if e1 is made zero, the tube fires when es has its positive 
peak value; if e1 is made equal to E2, the tube fires at the beginning of 
the cycle. The tube deionizes and the grid regains control during each 
negative half cycle of e8 • The average value, or d-c component, of the 
load voltage is 

l (T/2 . 
Eac = T lt1 (Es sm Wst) dt (3-54) 

where T is the period of the. supply voltage. 
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A thyratron rectifier circuit of more practical importance is shown in 
Fig. 3-31; it is the full-wave counterpart of the half-wave rectifier circuit 
in Fig. 3-30. The a-c component of the control voltage e2 lags 90° behind 
the supply voltage ea, and the d-c component of the control voltage e1 is 
adjustable. The primary of the transformer supplying e2 is not shown 
in Fig. 3-31. The firing of each thyratron is controlled separately in 
the manner described in connection with Fig. 3-30; the two tubes con
duct on alternate half cycles. 

The load indicated in Fig. 3-31 is the armature of a d-c motor. The 
voltage applied to the armature, and hence the speed of the motor, can 
be controlled by controlling e1. If a magneto tachometer is connected 
to the shaft of the motor as indicated in Fig. 3-31, it gives an output 
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Frn. 3-31. A full-wave thyratron rectifier. 

voltage et that is directly proportional to the speed of the motor. With 
the aid of some additional circuitry this tachometer voltage can be used 
to provide a control voltage e1 that will automatically adjust the armature 
voltage so as to keep the motor speed constant in the face of wide vari
ations in load on the motor. Such systems have been used for the con
trol of motors powering machine lathes and for other adjustable-speed 
applications. 

3-10. Summary. Semiconductor, vacuum, and gas-filled rectifiers 
are satisfactory approximations to the ideal diode, at least over a certain 
range of voltages and currents. Hence they can be used in the physical 
realization of the circuits presented in Chap. 2. In the process of 
examining these physical diodes, certain concepts of fundamental impor
tance emerge. Now that the over-all picture is completed, it is desirable 
to restate these basic ideas in a brief form. 

Current flow in practical rectifiers can be studied in terms of the 
potential distribution inside the devices. The amount of current flowing 
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in each case depends on the number of carriers that have enough kinetic 
energy to surmount a potential energy barrier that exists inside the 
device. When the carriers are in random motion under conditions of 
thermal equilibrium, the energies of the carriers can be determined from 
probability theory. From this study the current crossing the potential 
energy barrier is found to be 

where q = charge on carrier 

-qE 
I= Io exp kT 

E = height of barrier, ev 
k = Boltzmann constant 
T = absolute temperature 
Io = current that would flow if E were zero 

In the semiconductor diode, E is a direct function of the applied voltage; 
hence the volt-ampere law is an exponential function. Under normal 
operating conditions in the vacuum diode, the value of E depends in a 
complicated way on the space charge and the applied voltage. It can 
be shown that the current through the vacuum diode increases approxi
mately as the applied voltage raised to the three-halves power. The 
conduction process is even more complicated in gas-filled rectifiers. 

It follows from the foregoing statements that the volt-ampere laws for 
practical rectifiers are nonlinear relations between the voltage and current. 
Indeed, the rectifying property of the diode depends entirely on this 
nonlinearity; a linear device cannot rectify. However, as a result of 
this nonlinearity the analysis of diode circuits is complicated, and exact 
analytical solutions are not often attempted. 

Circuits that are not too complicated can be analyzed by simple graphi
cal methods. Alternatively, the analysis can often be simplified by 
representing the diode approximately by a suitable piecewise-linear 
model. The approximation of nonlinear devices by piecewise-linear 
models is a general technique that has been applied to a wide variety of 
devices in addition to diode rectifiers. The technique does not provide 
a simple solution to all nonlinear problems, however. If the circuit is 
very complicated, or if it contains several reactive elements, the piecewise
linear model may be of little help. 
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PROBLEMS 

3-1. A certain vacuum diode has parallel-plane electrodes that are large compared 
with the spacing between them. Hence when there is a negligible charge in the space 
between the electrodes, the field in the interelectrode space is essentially uniform and 
perpendicular to the electrodes. The potential-distribution curve for a straight path 
between cathode and plate is thus a straight line. The total potential difference across 
the interelectrode space is 100 volts, with the anode positive relative to the cathode. 

a. If a single electron starts from rest at the cathode, what is its velocity when it 
reaches the anode? Give the answer in millions of feet per second. The mass of the 
electron is 9.11 X 10-31 kg, and the magnitude of its charge is 1.6 X 10-19 coulomb. 

b. If the electrodes are separated by 1 cm, how long is the electron in transit? 
Note that the velocity of the electron is not constant. 

3-2. The work functions of the cathode and anode of the diode of Prob. 3-1 are 
1 and 2 ev, respectively. 

a. What is the contact difference of potential between the electrodes? 
b. An electron is emitted from the cathode with 1.5 ev of kinetic energy directed 

toward the anode. What potential must be applied between the electrodes from an 
external battery to prevent this electron from reaching the anode? 

3-3. Electrons emitted from the cathode of the diode shown in Fig. 3-18a move 
toward the anode along the paths shown in the diagram. The potential distribution 
along the path is given by curve B in Fig. 3-18c, and the value of the potential at the 
minimum is -1 volt. 

a. What is the minimum initial velocity directed along the paths that an electron 
issuing from the cathode must have if it is to reach the anode? 

b The number of electrons leaving the cathode each second with kinetic energies 
greater than E ev directed along paths is given by n = l018e-5E. What current flows 
through the tube? 

3-4. Circuits similar to that shown in Fig. 3-32 have been used as multipliers in 
certain elementary types of electronic analog computers. The three identical silicon 
diodes are operated so that their volt-ampere relations are given by Eq. (3-31). The 
input voltages to the amplifier are e1 and e2; the input currents are zero. The output 
voltage from the amplifier is ea = e1 + e2. Show that the output current i 3 is propor
tional to the product of the diode currents i1 and i2. 

i3 --

Amplifier 

Frn. 3-32. An electronic analog multiplier for Prob. 3-4. 

3-6. One diode section of a 6AX5 twin diode is used in a half-wave reactifier like 
that shown in Fig. 3-23. The supply voltage is e8 = 120 sin 377t volts, and the circuit 
resistances are Rs = 0 and RL = 200 ohms. 
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a. Plot the diode characteristic on a suitable sheet of graph paper (Fig. 3-25). 
Determine graphically the value of ib for various values of es, and plot one full cycle 
of the waveform of ib. 

b. Replace the tube by a piecewise-linear model consisting of a 400-ohm rerilistor in 
series with an ideal diode. Plot one cycle of ib for this model on the same coordinates 
as those used for the waveform of part a. 

c. Would a different value of series resistance in the model give closer agreement 
between the results of parts a and b? If so, what value of rb would you recommend? 

3-6. A power supply to deliver 300 volts d-c to a load drawing 100 ma is required. 
A 6AX5 twin diode is to be used in a full-wave rectifier with a capacitor-input filter 
(Fig. 2-24). The power source is a 115-volt 60-cps a-c line. 

a. If the input capacitance is 10 µf, how much voltage must the transformer supply 
on each side of the center tap? Refer to the tube manual for the 6AX5 rectifier 
characteristics, and assume that the filter choke will have a resistance of 100 ohms. 

b. In an alternative design, the same tube is to be used in a choke input filter (Fig. 
2-21) with L = 10 henrys and C = 16 µf. Repeat the calculation of part a and 
compare. 

c. At what frequency (in cycles per second) is w 2LC = 1 for the filter of part b? 
Is this a suitable design? Explain. 

3-7. Two silicon diodes are used in a full-wave rectifier to charge 6.3-volt automobile 
batteries. The diode characteristics are given in Fig. 3-27a. Power is obtained from 
a transformer delivering e8 = 27 sin 377t volts on each side of the center tap, and a 
resistor is connected in series with the battery to limit the charging current. 

a. Give a circuit diagram for this battery charger showing the polarities of all 
voltages. 

b. The diodes are to be represented by piecewise-linear models like that shown 
in Fig. 3-28b. From the diode characteristics determine suitable values for n and Ea. 

c. What value must the series resistance have to limit the peak diode current to 
20 amp? Would a serious error be made in this calculation by assuming the diodes 
to be ideal? 
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Fm. 3-33. A piecewise-linear device for Prob. 3-8. (a) Device; (b) volt-ampere 
characteristic. 

3-8. The measured volt-ampere characteristic of an unknown device, represented 
symbolically in Fig. 3-33a, can be approximated closely by the piecewise-linear 
characteristic shown in Fig. 3-33b. 
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a. Find a piecewise-linear model for the unknown device that has the given piece
wise-linear volt-ampere characteristic. The model may contain resistors, ideal 
diodes, batteries, and d-c current sources. 

b. Repeat part a when i is replaced bye and e is replaced by ion the volt-ampere 
characteristic. 

3-9. Two gas-filled diodes are used in a full-wave rectifier to charge a 12.6-volt 
storage battery. Power is obtained from a transformer that delivers es = 35 sin 377t 
volts on each side of the center tap. The voltage drop across each diode when it is 
conducting is approximately 10 volts for all values of current. The charger is con
nected to the battery by a long pair of leads having a resistance of 2 ohms. 

a. Give a circuit diagram for this battery charger showing the polarities of all 
voltages 

b. Give a piecewise-linear model for the circuit showing the numerical values of all 
circuit parameters. 

c. What is· the peak instantaneous current through each diode? 
d. During what fraction of each half cycle does current flow into the battery? 
e. If the leads connecting the charges to the battery are shortened to one-quarter 

of their original length, what is the peak instantaneous current through each diode? 
The leads are of uniform cross section throughout their length. 

3-10. The supply voltage for the thyratron rectifier of Fig. 3-30 is es = 300 sin wat 
volts, the supply frequency is Js = 400 cps, and the a-c component of grid voltage is 
e2 = -50 cos wsl volts. For all positive values of plate-to-cathode voltage the tube 
fires when the grid becomes positive relative to the cathode; that is, the critical grid 
voltage is zero for all positive values of plate voltage. The tube drop is negligible 
when the tube is conducting. 

a. What value of control voltage e1 causes the tube to fire when wat = 45°? 
b. What is the value of the d-c component of load voltage under the conditions of 

part a? 
c. What value of e1 just reduces the load voltage to zero? 
3-11. The load on a full-wave thyratron rectifier like the one shown in Fig 3-31 is 

the resistance heating element of an oven in which the temperature is controlled 
automatically. The control voltage e1 is obtained from a thermocouple and an 
amplifier in such a way that if the temperature in the oven rises, e1 decreases, and the 
rms value of the voltage applied to the heating element decreases. If the tempera
ture in the oven drops, the opposite action takes place. In this way the temperature 
in the oven can be held nearly constant, or it can be caused to vary in some desired 
way. 

The supply voltage for the rectifier is es = 200 sin w.t volts, and the a-c component 
of the grid voltage is e2 = -50 cos w.t volts. For all positive values of plate voltage, 
the tube fires when the grid voltage becomes positive; that is, the critical grid voltage 
is zero for all positive values of plate voltage. The voltage drop across the tube is 
negligible when the tube is conducting. 

a. What value of e1 will cause each tube to conduct for one-quarter of a cycle of the 
supply voltage? 

b. What is therms value of the load voltage under the condition of part a? 
c. An increase in oven temperature of one degree causes e1 to decrease by 10 volts. 

If the temperature increases by one degree from the value corresponding to the condi
tions of part a, what is the new rms value of voltage applied to the load? 



CHAPTER 4 

IDEAL AMPLIFIERS 

In Chap. 2 a new circuit component, the ideal diode, is introduced, 
and it is shown that circuits containing ideal diodes can perform certain 
useful functions that are not possible when only ideal R, L, and C are 
employed. The principal objective of this present chapter is to introduce 
another circuit component, the ideal amplifier, and to examine some of 
its useful functions. In this connection certain fundamental ideas related 
to amplification are presented. 

The study of amplifiers is initiated with an examination of the prop
erties of ideal amplifiers, for in this way attention can be focused on the 
process of amplifications without the distractions imposed by physical 
reality. By concentrating first on the process of amplification, one is 
conditioned to accept any kind of physical device that may be proposed 
as an amplifier. Of equal importance, having established the properties 
of the ideal amplifier, a basis exists for perceiving and evaluating the 
good and bad features of any physical amplifier and thus, perhaps, for 
improving the physical amplifier. 

The need for power amplification in the field of electric communication 
is obvious. A telephone instrument delivers a few milliwatts of power 
to a pair of wires, but only a fraction of this power reaches the receiving 
end because of losses in the line. For telephone communication over 
long distances it is necessary to amplify the signal power at more or less 
regular intervals along the line. In some transcontinental communi
cation circuits the signal power is amplified billions of billions of times 
in transit from the sending end to the receiving end. A radio transmitter 
may radiate many kilowatts of power into space, but only a microscopic 
amount of this power is intercepted by any particular radio receiver. 
This power must be amplified greatly to give a suitable volume of sound 
from a loudspeaker. The need for power amplification is equally great 
in many other fields, as, for example, in electrical instrumentation and 
in the automatic control machinery. 

4-1. The Ideal Voltage Amplifier. One form of ideal electric amplifier 
is shown enclosed in dotted lines in Fig. 4-la; it consists simply of a volt
age source whose output voltage is at every instant directly proportional 
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to its input voltage. For each value of e1, the output voltage has the 
value µe 1 and is independent of the output current. The output volt
ampere characteristic is shown in Fig. 4-lb; it consists of a family of 
vertical straight lines, one for each value of the input voltage. If the 
values of e1 corresponding to the curves are separated by 1 volt, then the 
curves are separated by µ volts on the output-voltage axis. Since this 
ideal amplifier consists of a source whose output voltage is controlled by 
the input voltage to the amplifier, it is called a controlled source, or a 
voltage-controlled source. 

If the input voltage e1 is specified, then the output voltage e2 = µe1 is 
fixed and is independent of the load current. Hence any amount of power 
can be drawn from the output terminals by the proper choice of RL 
(assuming, of course, that e1 ~ 0). The input current to the amplifier 
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Frn. 4-1. The ideal voltage amplifier. (a) Circuit diagram; (b) output volt-ampere 
characteristic. 

is zero regardless of the value of e1; hence the input power is zero under 
all conditions. From these facts it follows that the power gain, which 
is the ratio of the output power to the input power, is infinite. The 
output power from the amplifier at any instant is 

(4-1) 

Equation (4-1) shows that with a fixed load resistance the output power 
depends on the input voltage e1; the greater e1, the greater the output 
power. With a given value of amplification factorµ, the small voltage 
received from a telephone line (for example) may not be great enough to 
give the required power output. This difficulty can be overcome by 
amplifying the signal voltage before applying it to the power-output 
amplifier. It is clear that the ideal amplifier of Fig. 4-la can be used 
as a voltage amplifier providedµ is greater than unity. Figure 4-2 shows 
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a cascade of three amplifier liltages for use in this situation. The input 
and the output power in the first 
two stages are zero, but the output e1 e2 e3 e4 

0---0 
voltage from each is greater than the 
input voltage; hence these stages µ 1e1 
are voltage amplifiers. The third 
stage gives the required power out-
put,· hence it is a power amplifier. F -4 2 c d d 1 1·fi IG. - . asca e vo tage amp 1 ers. 
The third stage may or may not give 
voltage amplification also, depending on the value of µ3. The output 
voltage is 

(4-2) 
and the output power is 

(4-3) 

Vacuum-tube amplifiers are conveniently characterized as voltage-con
trolled amplifiers like those described above, although they fall somewhat 
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Frn. 4-3. The ideal current amplifier. (a) Circuit diagram; (b) output volt-ampere 
characteristic. 

short of being ideal. A typical vacuum-tube radio may employ a cascade 
of five stages similar to those in Fig. 4-2. The first four of these are 
voltage amplifiers and are designed to give the greatest possible voltage 
amplification. The fifth stage is a power amplifier and is designed to 
give the greatest possible power output. 

4-2. The Ideal Current Amplifier. Another form of ideal electric 
amplifier is shown in Fig. 4-3a. This amplifier is a current-controlled 
current source; its output volt-ampere characteristic is shown in Fig. 4-3b. 
For each value of input current i 1 the output current has the value ai1 
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and is independent of the value of the load voltage. The ideal current 
amplifier is thus the dual of the ideal voltage amplifier. 

Since the output current is independent of the load voltage, any amount 
of power can be drawn from the output terminals by the proper choice 
of RL, provided i1 ¢. 0. Moreover, the input voltage is zero regardless 
of the value of the input current; hence the input power is zero under 
all conditions. It follows from these facts that the power gain of the 
ideal current amplifier is infinite. The power output from the amplifier 
at any instant is 

(4-4) 

For a given value of a the input signal current may not be great 
enough to give the required power in a specified load resistance RL; thus 
the need for current amplification arises. The amplifier of Fig. 4-3a 
can be used for current amplification provided a is greater than unity. 
A cascade of three current-controlled amplifier stages is shown in Fig. 
4-4. The first two stages are current amplifiers; the input and output 
powers in these stages are zero. The third stage provides the required 
power output; it is a power amplifier. This cascade of current amplifiers 
is the dual of the cascade of voltage amplifiers shown in Fig. 4-2. 

FIG. 4-4. Cascaded current amplifiers. FIG. 4-5. A nonideal amplifier. 

Transistor amplifiers are conveniently characterized as current-con
trolled amplifiers, although they fall somewhat short of being ideal. A 
typical transistor radio may employ a cascade of five amplifier stages. 
The first four of these are current amplifiers and are designed to give 
the greatest possible current amplification. The fifth stage is a power 
amplifier and is designed to give the greatest possible power output. 

4-3. Gain and Amplification in Decibels. Figure 4-5 shows a voltage 
amplifier that is not ideal; its input resistance is R1, not infinity, and its 
output resistance is R 2, not zero. The power input to this amplifier 
at any instant is p 1 = e1

2/R 1, and the output power at any instant is 
PL = e22/RL, The power gain in this case, pL/p1, is finite, and it serves 
as a measure of the effectiveness of the amplifier. Another measure that 
proves to be more useful in many respects is the power gain in decibels 
(db), defined by 

G = 10 log PL 
Pl 

(4-5) 
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where log is understood to designate the common logarithm. Thus if 
PL is 500 watts and P1 is 5 watts, the power gain is 20 db. The power 
gain of the circuit in Fig. 4-5 can also be written as 

(4-6) 

If R1 = RL, as often is the case in communication circuits, log Ri/RL = 0; 
in this case, and only in this case, the power gain of the amplifier becomes 

(4-7) 

The logarithm of the voltage amplification proves to be useful in 
several respects, regardless of whether R1 = RL or not. For this purpose 
Eq. (4-7) is appropriated, and the voltage amplification in db is defined as 

A= 20 log~ 
e1 

(4-8) 

Thus if R1 = RL, the voltage amplification in decibels is equal to the 
power gain in decibels. These two quantities are not equal, however, 
when R1 ~ RL; Eq. (4-6) shows that in general the power gain in decibels 
and the voltage amplification in decibels differ by the amount 10 log 
Ri/RL, In order to emphasize the distinction between the quantities 
given by (4-6) and (4-8), several distinguishing names have been proposed 
for the logarithmic unit of amplification; among these are decibels of 
voltage amplification (dbv), and decilog, although the multiplier of 20 
in (4-8) renders the prefix deci- somewhat incongruous. Nevertheless, 
common practice is to use decibel as the name for the logarithmic unit 
of amplification as well as gain. The logarithmic unit of current amplifi
cation is defined in a manner similar to that of voltage amplification. 

The standard definitions designate the ratio of two powers, or its 
logarithm, as power gain, and they designate the ratio of two voltages 
or two currents, or their logarithms, as voltage or current amplification. 
However, standards to the contrary notwithstanding, it is common 
practice to use the term gain to designate current, voltage, and power 
ratios and their logarithms. The standard definitions will be followed 
in this book except in a few special cases where it is desirable to con
form to well-established usage. Since according to the standard defi
nitions gain and amplification refer to both a numerical ratio and the 
logarithm of that ratio, an ambiguity exists unless a clarifying statement 
is appended. In this book these terms will refer to the numerical ratio 
unless decibels are specified. 

When the output power and voltage of an amplifier are greater than 
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the input power and voltage, the gain and the voltage amplification in 
decibels are positive numbers. When the output power and voltage are 
smaller than the input power and voltage, the gain and the voltage 
amplification in decibels are negative numbers. When the output power 
and voltage are equal to the input power and voltage, the gain and the 
voltage amplification in decibels are zero. It is, of course, possible for 
the gain in decibels to be positive while the amplification in decibels is 
negative, and vice versa, if R1 and RL are not equal. 

The decibel is a convenient measure of voltage, current, and power 
ratios for a number of reasons. One of the most important of these is 
the fact that the frequency characteristics of electric networks, both 
electronic and otherwise, have especially simple forms when the response 
in decibels is plotted against frequency on a logarithmic scale. In 
addition, the over-all response of a cascade of stages such as those 
discussed in the preceding section is obtained by a simple addition of the 

C 

~ ~, 
Frn. 4-6. An application of the ideal amplifier. (a) Circuit; (b) an equivalent circuit. 

responses of the individual stages when the response is expressed in 
decibels. 

4-4. Other Applications for Voltage and Current Amplifiers. Ideal 
amplifiers are capable of a number of interesting and useful operations 
that seem at first glance to bear little relation to signal amplification. 
Consider, for example, the combination of capacitor and voltage-con
trolled voltage source shown in Fig. 4-6a. The input current to this 
circuit is 

(4-9) 

Thus the input current is the same as the current that flows into a 
capacitor of capacitance (1 + µ) C having the voltage e1 impressed across 
its terminals; that is, the circuit of Fig. 4-6b is equivalent to that of 
Fig. 4-6a in so far as the input terminals are concerned. Circuits of 
this type are used to obtain the effect of very large capacitors in certain 
engineering applications. 

As another example, consider the combination of resistor and current-
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controlled current source shown in Fig. 4-7a. The current through the 
resistor is (1 - a)i1, and the voltage drop across the resistor is 

e1 = (1 - a)i1R 

Since this voltage is also the voltage -across the input terminals, the 
apparent resistance at the input terminals is (1 - a)R; that is, the circuit 
of Fig. 4-7b is equivalent to that of Fig. 4-7a in so far as the input ter
minals are concerned. Thus the current source acts as a resistance con
verter, for it converts a given resistance to a different value. In particu
lar, if a is greater than unity, a positive resistance is converted to a 
negative resistance. If R is replaced by a complex impedance, the 
impedance can be converted to a negative impedance. In this case the 
current-controlled current source is called a negative impedance con
verter. Negative impedance converters realized with the aid of tran
sistors are important in the design of certain types of electrical filters. 

(a) 

Frn. 4-7. An impedance converter. (a) Circuit; (b) an equivalent circuit. 

It should be noted that the circuit of Fig. 4-6 can also be viewed as an 
impedance converter. 

4-5. Summary. The fundamental notions of voltage, current, and 
power amplification are presented in the preceding sections, and the 
concepts of ideal voltage and current amplifiers are established. The 
basic features of these latter concepts can be summarized as follows. 

The ideal voltage amplifier is a voltage-controlled voltage source. Its 
input impedance is infinite, and its output impedance is zero. Since 
infinite input impedance permits the greatest possible input voltage to be 
developed, and since zero output impedance permits the greatest possible 
output voltage to be developed across any given load, the ideal voltage 
amplifier provides the greatest possible voltage amplification (for a given 
amplification factor, µ). The input voltage is independent of the load 
connected to the output terminals; that is, the input circuit is isolated 
from the output circuit. Signals can be transmitted through an ideal 
voltage amplifier in one direction only, from the input to the output. 

The ideal current amplifier is the dual of the ideal voltage amplifier. 
It is a current-controlled current source having zero input impedance 
and infinite output impedance; these conditions permit the greatest 
possible c~r:rent amplifio~tiQn for a given amplification foctor1 a. As 
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in the case of the voltage amplifier, the input circuit is isolated from the 
output circuit, and signals can be transmitted in one direction only. 

There are many physical devices that are capable of amplifying signals; 
of special importance among these are the vacuum tube and the transistor. 
To a certain extent the merits of a physical amplifier can be evaluated by 
comparing its properties with those of either the ideal voltage amplifier 
or the ideal current amplifier. Such a comparison may also indicate 
how the physical device should be modified in order to obtain improved 
performance. 

PROBLEMS 

4-1. A three-stage amplifier is shown in Fig. 4-8. The symbol K designates 
kilohms, and the symbol M designates megohms. 

a. Find the voltage amplification and the power gain of each stage in decibels. 
b. Find the over-all voltage amplification and power gain in decibels. 

e3 

IM 100 

FIG. 4-8. Amplifier for Prob. 4-1. 

4-2. A certain phonograph pickup delivers a sinusoidal voltage of 10 mv, rms value, 
on open circuit, and it has an internal resistance of 500 ohms. This pickup is to 
deliver a signal to a loudspeaker having a resistance of 10 ohms. 

a. If the pickup is connected directly to the loudspeaker, how much power does it 
deliver to the speaker? 

b. A cascade of amplifier stages similar to that shown in Fig. 4-2 is to be used to 
amplify the signal from the pickup and deliver 10 watts to the loudspeaker. Two 
types of amplifiers, shown in Fig. 4-9, are available for the cascade connection. These 

lOK 100 

(al (bl 
FIG. 4-9. Amplifiers for Prob. 4-2. (a) Type 1; (b) type 2. 

are not ideal voltage amplifiers, for they do not have zero output impedance. Which 
of these amplifiers can deliver 10 watts to the loudspeaker with the smallest input 
voltage? 

c. Which of the amplifiers in Fig. 4-9 gives the greatest no-load voltage amplifica-
tion? · 

d. Give the circuit diagram for a cascade of stages like those in Fig. 4-9 that will 
zpeet {he specifi9ati911s of part b, Use the sm,l:\,lll;let possible number of stages, and 
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show the exact number of stages in the diagram. Show how a 1-megohm poten
tiometer can be used in the first stage as a volume control. 

4-3. The capacitor in the circuit of Fig. 4-6 is replaced by a resistor with R 
1000 ohms, and the amplification factor isµ = 20. 

a. Determine the input resistance, Rn = ei/i1. 
b. What is the value of Rn if the polarity of the controlled source is reversed? Give 

the correct algebraic sign. 
4-4. A 10-mh inductor is to be simulated with a 1-mh inductor and a voltage

controlled voltage source. 
a. Prove that the desired result can be accomplished by a circuit similar to that 

shown in Fig. 4-6. 
b. What value of amplification factor is required? 
4-5. In a certain series resonant circuit the parameters are L = 10 mh, C = 0.01 µf, 

and R = 100 ohms. The resonant Q of the circuit is woL/R, where wo is the resonant 
frequency in radians per second. 

a. Determine the resonant Q of the circuit. 
b Show how the negative impedance converter of Fig. 4-7 can be used with a 

resistance R' to increase the resonant Q of the circuit to 100. If the amplification 
factor of the negative impedance converter is a = 2, what value of R' is required? 

4-6. The circuit shown in Fig. 4-10 is the idealized form of a type of voltage regula
tor that is commonly used in electronic power supplies. The function of the regulator 
s, among other things, to hold the output voltage constant in the face of changes in 

a-c line voltage and changes in load connected across E2. Any change in the output 
voltage is amplified and causes a change in the voltage 6Es that tends to compensate 
for the initial change in E2. By taking Ea from a potentiometer instead of the fixed 
voltage divider shown in Fig. 4-10, the output voltage can be made adjustable. 

a. Let E1 be 350 volts, d-c. Starting with the relation E2 = Ei + 6Es, find the 
value of E2. (Be careful with the signs.) 

Rectifier 
of 

Fig. 2-19 

6E5 
+ 

Ra 
250K 

Frn. 4-10. An idealized voltage regulator for Prob. 4-6. 

b. If E1 increases by 50 volts, what is the new value of E2? 
c. What is the value of the ratio !::J.Ed !::J.E1? 
d. If the peak-to-peak ripple in E1 is 25 volts, what is the peak-to-peak value of the 

ripple in E 2 ? The results of the previous parts can be used in this calculation. On 
the basis of these results, would you say that the rectifier of Fig. 2-19 can use a smaller 
filter capacitor when it is used with a voltage regulator than when it is used alone? 

4-7. Control of the output voltage from the regulator of Prob. 4-6 by means of the 
output voltage-divider ratio is to be studied. The sum of the voltage-divider resist
ances is to remain fixed at 300 kilohms, but the tap is to be moved. These conditions 
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correspond to the case in which a potentiometer is used for the voltage divider. The 
input voltage to the regulator is constant at E1 = 400 volts, d-c. 

a. Starting with the relation 6E5 = E 2 - E1, find the values of Ra and Rb required 
to make E,. = 300 volts. (Be careful with the signs.) 

b. Repeat part a for E2 = 200 volts. 
c. The output voltage has its smallest possible value when Ra = 0, Rb = 300 

kilohms, and E3 = E2. Starting with the relation E2 = Ei + 6E6, determine the 
smallest value to which E 2 can be adjusted. 



CHAPTER 5 

THE BASIC VACUUM-TRIODE AMPLIFIER 

The concept of the ideal amplifier is presented and some of the useful 
things that can be done with such a device are discussed in Chap. 4. The 
next step is to consider what physical devices might be used as amplifiers. 
There are a great many devices that can amplify, each one deviating in 
certain ways from the ideal. For example, the d-c generator is capable of 
amplification; a small amount of power applied to the field winding can 
control a large amount of power in the armature circuit. Therefore the 
d-c generator is used as a power amplifier in certain applications. One 
of the principal limitations on the d-c generator as an amplifier is the 
slowness with which it responds to input signals; one of its advantages 
is the relatively large output power that it can deliver. The vacuum 
tube is a better amplifier for many applications because its response to 
input signals is extremely fast. 

The first objective of this chapter is to examine the vacuum triode as 
an amplifier and to compare its characteristics with those of the ideal 
amplifier. The physical laws governing the behavior of the triode are 
studied qualitatively so that the reasons for departure from the ideal 
characteristics can be perceived and so that the limitations on the use of 
the triode can be understood. Finally, an introduction to the analysis 
and design of elementary triode circuits is presented. In this latter 
phase of the study, the vacuum tube is the specific amplifier involved. 
The methods are quite general, however, and apply equally well, with 
minor modifications, to other amplifiers, both electrical and nonelectrical. 

6-1. The Vacuum Triode as an Amplifier. The vacuum triode is 
shown schematically in a simple amplifier circuit in Fig. 5-1. The 
cathode and anode in small triodes intended for low-power applications 
are usually similar to those described in Sec. 3-1 for the vacuum diode. 
The grid is usually a spiral of wire surrounding the cathode and lying 
in the space between the cathode and anode. When the plate of the 
tube is held at a suitable positive potential relative to the cathode, 
electrons flow from the cathode to the anode through the space between 
the grid wires. If es is always negative so that the grid is negative rela
tive to the cathode by half of a volt or more, very few electrons have 
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enough kinetic energy to reach the grid wires and the grid current is 
essentially zero. Thus there is negligible power input to the grid-cathode 
terminal pair, and the first requirement of a good amplifier is met. How
ever, the grid is able to control the relatively large amount of power 
delivered to the load resistance RL. 

If the grid is made more negative in the circuit of Fig. 5-1, the potential
distribution curve in the space between the grid and cathode is lowered, 

+ 

Frn. 5-1. The basic triode amplifier 
circuit. 

and as a consequence the plate cur
rent, the load current, the load volt
age, and the load power are all 
decreased. The tube acts as a valve 
for current in the plate circuit. For 
this reason the British use the term 
"valve" instead of "vacuum tube" 
in referring to electron tubes. In a 
typical circuit a 1-volt change in es 
causes ib to change by 0.3 ma and 

causes the load voltage to change by 15 volts. Thus there is both voltage 
and power amplification. 

The performance of the triode as an amplifier can be examined further 
by comparing its input and output volt-ampere characteristics with the 
characteristics of the ideal voltage amplifier presented in Chap. 4. A 
typical set of experimentally measured triode characteristics is shown in 
Fig. 5-2; the symbols used on these characteristics are defined in the 
circuit diagram of Fig. 5-1. If the grid and plate voltages, e0 and eb, are 
specified, the input current to the triode, ic, is fixed. Similarly, if ec and 
eb are specified, the plate current ib is also fixed; that is, 

ic· = fc(eb,ec) and ib = fb(eb,ec) 

The input and output characteristics of Fig. 5-2 are graphs of these 
functional relations. The input characteristic is a family of curves of 
ic versus ec for various fixed values of eb; the output characteristic is a 
family of curves of ib versus eb for various fixed values of ec. These 
two families of curves contain complete information as to the relations 
between the tube voltages and currents. 

The input, or grid, characteristic shows that the input current and 
power are negligibly small provided the grid is kept sufficiently negative 
relative to the cathode. In this respect the triode behaves like the ideal 
voltage amplifier. Vacuum-tube amplifiers are operated with negative 
grid voltage in the great majority of their applications. 

The output, or plate, characteristic shows that the plate current 
depends strongly on the grid voltage when the plate voltage is sufficiently 
positive; this fact is the basis for amplifier action in the triode. As in 



THE BASIC VACUUM-TRIODE AMPLIFIER 99 

the case of the vacuum diode, the plate current can never be negative; 
hence the plate characteristic shows the plate current different from 
zero only in the first quadrant. These characteristics are quite similar 
in certain important respects to the output characteristic of the ideal 
voltage amplifier shown in Fig. 4-lb. The triode characteristics form a 
useful family only in the first quadrant, and compared with the ideal 
characteristics, they are rotated clockwise so that they are not vertical. 
This rotation is evidence of the fact that the triode does not have zero 
internal resistance. The triode differs from the ideal voltage amplifier 
further in that its characteristics are not straight lines and they are not 
exactly uniformly spaced for equal increments in grid voltage. These 
facts mean that the plate current does not vary linearly with the grid and 
plate voltages; hence the waveform of variations in input voltage is not 
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Frn. 5-2. Static triode characteristics. (a) Input characteristic, ic = fc(eb,ec); (b) 
output characteristic, ib = fb(eb,ec). 

reproduced exactly in the plate circuit. This nonlinearity may result 
in appreciable distortion of the signal waveform. A minor difference 
between the triode and the ideal amplifier of Fig. 4-1 is that a positive 
increment of input voltage shifts the triode characteristic to the left 
rather than to the right. 

5-2. Current Flow in Vacuum Triodes. The flow of current in the 
triode and its control by the grid potential can be studied with the aid of 
potential-distribution curves for the space between the plate and cathode. 
Figure 5-3a represents a triode whose plate and cathode are infinite 
parallel planes; the grid is a set of parallel wires located in a plane parallel 
to and between the plate and cathode. Figure 5-3b shows the potential 
distribution along two paths between the plate and cathode for typical 
operating conditions with the grid at a small negative potential and the 
plate at a larger positive potential relative to the cathode. Path A 
passes midway between two grid wires, and path B passes through one 
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of the grid wires. Both of these paths are lines of geometric symmetry; 
hence the electric field, and the force on an electron at all points on each 
path, is directed along the path either toward the plate or toward the 
cathode. 

Under conditions of space-charge-limited current, the potential along 
path A has a minimum value just in front of the cathode; those electrons 
emitted from the cathode with enough kinetic energy pass the potential 
minimum and proceed to the plate. Along path B the minimum potential 
occurs at the grid and is equal to the applied grid voltage. Very few 
electrons leave the cathode with enough kinetic energy to reach the 
grid; hence the grid current is negligible. If the grid is made more 
negative, the potential-distribution curve between the grid and the 
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FIG. 5-3. Potential distribution in a triode. (a) The triode; (b) the potential dis
tribution. 

cathode is lowered, fewer electrons are able to pass the potential mini
mum, and the plate current is decreased. If the grid is made sufficiently 
negative, practically no electrons are able to pass the potential minimum, 
and the plate current is essentially zero; this condition is called plate
current cutoff. 

With the grid voltage held constant, the plate current varies with the 
plate voltage in much the same manner as in the vacuum diode; thus 
the individual characteristic curves in Fig. 5-2b are similar in shape to 
the diode characteristic. As the grid is made more negative, the plate 
must be made more positive to give the same plate current; hence the 
curves in Fig. 5-2b are shifted to the right for more negative grid volt
ages. Since the grid is more effective than the plate in controlling the 
potential in the grid-cathode space, a large change in plate voltage is 
required to counteract the effect of a small change in grid voltage. 

Figure 5-4a shows the potential distribution in a triode when the grid 
is positive, but less positive than the plate. The space-charge-limited 
current that flows is relatively large under these conditions. Since the 
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grid is positive relative to the cathode, any electron leaving the cathode 
can reach the grid, and there is an appreciable grid current as indicated 
in Fig. 5-2a. However, most of the electrons pass between the grid 
wires and continue to the plate. Figure 5-4b shows the kind of potential 
distribution that can exist when the grid is more positive than the plate. 
Electrons corresponding to a large plate current move relatively slowly 
across the interelectrode space, and a large space charge exists in the 
space between the grid and plate. This space charge depresses the 
potential in the grid-plate space and may cause a minimum to occur at 
a small negative potential as shown at point b in Fig. 5-4b. This potential 
minimum affects the electron flow in exactly the same way as the mini
mum in front of the cathode at point a. Those electrons that leave the 
cathode with sufficient kinetic energy pass the potential minimum at b 

e 
e 

s 8 

(a) (b) 

Frn. 5-4. Potential distribution in a triode with positive grid voltage. (a) eb > ec > O; 
(b) ec > eb > 0. 

and continue to the plate; the remainder are turned back and are ulti
mately collected by the grid. Thus a virtual cathode exists at point b, 
and the plate current varies with plate voltage much as it would in a 
diode with its cathode at point b. This condition corresponds to that 
portion of the plate characteristic in Fig. 5-2b at low plate voltage where 
the characteristics for various grid voltages merge into a single curve. 
This single curve is much like a diode characteristic. The points at 
which the individual characteristic curves break away from the com
mon curve correspond to plate voltages at which the virtual cathode 
disappears. 

In addition to the input and output characteristics of Fig. 5-2, there 
are other triode characteristics that display the properties of the tube in 
different ways. One of these is the constant-current voltage transfer 
characteristic shown in Fig. 5-5. Each curve in this family shows the 
combinations of grid and plate voltage that give a certain fixed value of 
plate current. This family can be plotted from the data contained in 
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the plate characteristic of Fig. 5-2b, or it can be measured directly. 
Since these characteristics are quite linear over a wide range of grid 
voltage, it follows that a highly linear voltage amplifier could be built 
by using a current source for the plate-circuit power supply in the ampli
fier of Fig. 5-1. Unfortunately, practical considerations usually rule 
this possibility out. 
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Frn. 5-5. Static triode constant-current characteristic. 
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The constant-current characteristics are not only linear, but they are 
also nearly parallel except at low values of plate current, and as shown 
by Fig. 5-5, they are approximately equally spaced for equal increments 
of (ib)¾. Thus the equation for the straight portion of any one of the 
curves is the equation of a straight line, 

(5-1) 

where A is the intercept on the eb axis and - µ is the slope of the line. 
It is shown later that the factor µ is the voltage amplification factor of 
the triode; it corresponds to the amplification factor of the ideal ampli
fier in Sec. 4-1. Since the curve for ib = 0 passes through the origin, 
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and since the curves are approximately equally spaced for equal incre
ments of (ib)'\ the intercept A is proportional to (ib)%. Hence 

(5-2) 

and ( 5-1) takes the form 

Solving for ib gives 
(5-3) 

where K, the perveance of the triode, depends on the size and shape of 
the electrodes. This is the three-halves-power law for the triode; it 
holds reasonably well over the 
range of voltages corresponding to 
the linear portion of the constant
current characteristic, including 
both positive and negative values 
of grid voltage. However, it is of 
limited value in the analysis and 
design of triode circuits because it 
is a nonlinear relation between the 
current and the voltages. 

Another set of triode character-
istics, the constant-voltage transfer Frn. 5-6. Static triode constant-voltage 

characteristic. 
characteristics, is shown in Fig. 5-6. 
This set of curves is useful in the study of certain types of triode cir
cuits; it can be constructed from the data contained in the plate charac
teristics of Fig. 5-2b. 

The discussion of the triode up to this point is concerned with static 
conditions of voltage and current. When the tube is used to amplify 
signals at frequencies greater than a few tens of kilocycles per second, it 
is found that the capacitances between the electrodes may have an 
important effect. For example, the capacitance between plate and 
cathode is in parallel with the output terminals, and at sufficiently high 
frequencies it tends to short-circuit the output terminals. The inter
electrode capacitances are the primary factors limiting the high-frequency 
performance of the tube. These capacitances are rather complicated in 
nature, for they depend on the amount and location of the space charge 
in the tube. It follows from this fact that the capacitance values depend 
on the currents and voltages in the tube. It is customary to represent 
the interelectrode capacitances approximately by three fixed capacitances, 
one between grid and cathode, one between plate and cathode, and one 
between grid and plate. In typical small triodes these capacitances are 
roughly equal, and their values usually lie in the range between 1 and 
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5 µµf. However, the amplifying property of the tube has the effect of 
magnifying the action of the grid-plate capacitance in the manner 
discussed in connection with Fig. 4-6; this important matter is considered 
in more detail in Sec. 14-3. 

Another imperfection of the triode amplifier is the noise current that 
is generated by the tube. The charge arriving at the plate of the tube 
does not come as the smooth flow of a continuous medium; it is associated 
with the flow of discrete electrons showering on the plate. Moreover, 
the emission from the cathode is not exactly the same at every instant of 
time, and the electrons arrive at the plate in clouds. The result is that 
the plate current consists of an average value plus a very small time
varying noise component. 3 The time variations of the noise component 
of current are of a random nature, and they can be represented as the 
summation of small sinusoidal currents with frequencies distributed con
tinuously over a wide band from zero to very high frequencies. It is 
customary to account for the noise component of current by assuming 
the tube to be noiseless and connecting in series with the grid circuit a 
noise-voltage source to give the noise component of plate current. It 
is clear that the tube noise places a lower limit on the magnitude of 
signal that can be amplified by the tube. If the signal magnitude is 
less than the magnitude of the equivalent noise voltage, it is masked by 
the noise. 

As in the case of the diode, heat is generated at the plate of the triode 
by the impact of electrons arriving from the cathode, and as in the case 
of the diode, the rate at which heat energy is generated at any instant is 

(5-4) 

For any tube there is a maximum rate at which heat can be generated at 
the plate without an excessive 

ib temperature rise. This is the 
maximum permissible average plate 
dissipation. Under static operat
ing conditions, with eb and ib con
stant at the values Eb and lb, the 
average power dissipated at the 
plate is P = Ebh• Setting this 
quantity equal to the maximum 
permissible plate dissipation gives 

eb a relation between Eb and h that 
Fm. 5-7. Static plate-dissipation hyper- describes a hyperbola on the plate 
bola. 

characteristic. The general form 
of this maximum-plate-dissipation hyperbola is shown in Fig. 5-7. 
Under static operating conditions, combinations of Eb and lb correspond-
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ing to points lying above this curve give excessive plate dissipation and 
will damage the tube. Under dynamic operating conditions, the plate 
dissipation depends on the waveforms of eb and ib, Analyses of typical 
dynamic operating conditions yield operating constraints similar to the 
static dissipation hyperbola shown in Fig. 5-7. Typical values of maxi
mum permissible plate dissipation for small triodes range roughly from 
1 to 15 watts. 

The cathodes used in small vacuum triodes are like those used in small 
diodes, and, as in the case of the diode, there is a limit to the amount of 
current that can be drawn from the cathode without damage to the oxide 
coating. The tube manufacturer usually specifies the maximum per
missible cathode current. In addition, maximum permissible values of 
electrode voltages are usually specified. 

+ + 

Frn. 5-8. The basic triode amplifier. 

5-3. Graphical Analysis. The basic triode amplifier is shown in Fig. 
5-8. The signal to be amplified, es ( t), is in general a time-varying voltage; 
indeed, there would be no point in amplifying a voltage that remains 
constant for all time. Furthermore, es usually has no d-c component 
(its average value is zero); if the average value of es is not zero in any 
particular case, the d-c component will be associated with the direct 
voltage Ecc• In the most common mode of operation the grid-bias volt
age Ecc is negative and of such magnitude that the signal can never make 
the grid positive relative to the cathode; hence no grid current flows, and 
no power is drawn from the signal source. The plate supply voltage 
Ebb is chosen so that with no signal applied, the plate voltage eb and the 
plate current ib correspond to a point in the useful region of the plate
characteristic curves; such a point is indicated at Q in Fig. 5-9. Thus 
the grid-bias and the plate-supply voltages shift the operating point for 
the tube from the origin of the plate characteristic to a more suitable 
location. In all four quadrants surrounding this shifted operating point, 
the tube characteristics are much like the characteristics of the ideal 
voltage amplifier, except for a rotation. 

The circuit of Fig. 5-8 can be used either as a power amplifier or as a 
voltage amplifier. When it is used as a power amplifier the resistance 
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RL is usually the load. When it is used as a voltage amplifier the volt
age between plate and ground is usually taken as the output voltage eo, 
The variations in e8 are amplified and reproduced approximately as vari
ations in voltage drop across RL. It is interesting to view RL and Ebb as 
an approximation to a current source for the plate-circuit power supply; 
the larger the RL the better the approximation and the more linear the 
amplifier, provided ib is not too small. The resistance RB in Fig. 5-8 
accounts for any resistance associated with the signal source. 

The analysis problem consists of finding the power delivered to the 
load or the voltage delivered to the output terminals when the tube, the 
circuit resistances, and the applied voltages are specified. The plate 
current is given by Eq. (5-3) as a nonlinear function of the plate and 
grid voltages; hence an algebraic solution is difficult. For this reason 
it is customary to resort to a graphical solution1•2 as is done in the case 
of the vacuum diode. In the analysis of simple circuits like that of 
Fig. 5-8 it is also customary to follow certain conventions regarding the 
symbols used. These conventions are listed as follows: 

Ecc = grid-bias voltage 
ee = instantaneous potential of the grid relative to the cathode 
e0 = instantaneous value of the time-varying component of ec 

Ee = average value of ec 
ie = instantaneous value of the grid current 
i0 = instantaneous value of the time-varying component of ic 
le = average value of ic 

Ebb = plate-supply voltage 
eb = instantaneous potential of the plate relative to the cathode 
ep = instantaneous value of the time-varying component of eb 
Eb = average value of eb 
ib = instantaneous value of the plate current 
ip = instantaneous value of the time-varying component of ib 
lb = average value of ib 

Certain additional symbols will be introduced as the need for them arises. 
The circuit of Fig. 5-8 has two loops; the voltage-law equations for 

these loops are 

and 
ec = Eec + es - Rsic 
eb = Ebb - RLib 

(5-5) 
(5-6) 

These two equations contain four unknowns, ec, ie, eb, and ib; two addi
tional relations among these variables are needed to obtain a solution. 
The necessary additional relations are given by the input and output 
characteristics of the tube; they represent graphically the relations 

and (5-7) 
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These four relations can be solved simultaneously by graphical construc
tions on the tube characteristics. 

Consider first the case in which Ecc is chosen so that the grid is always 
negative relative to the cathode and the grid current is always zero. 
The grid voltage is then given by (5-5) in terms of the known applied 
voltages, and only two unknowns, 
ib and eb, remain to be found. The ib 
plate-characteristic family gives a 
relation between these two variables 10 

that is imposed by the tube. For 
any given value of ec the relation 
between ib and eb is one curve of 
the family. Equation (5-6) gives 
another relation between ib and eb; 
this relation is imposed by the exter

Load line 
slope=-=-L 

RL 
ec=Ecc 

nal circuit connected to the tube. 
Frn. 5-9. Graphical analysis of the 

The fact that these two relations triode amplifier. 
must be satisfied simultaneously 
fixes ib and eb; the graphical solution is shown in Fig. 5-9. This construc
tion can be interpreted by writing (5-6) as 

This is the equation of the load line. Only those combinations of ib and 
eb that lie on this line are permitted by the external circuit connected to 
the tube. When es = 0, the grid voltage is Ecc, and only those combina
tions of ib and eb that lie on the plate characteristic for ec = Ecc are per
mitted by the tube. Hence the intersection of these two lines at Q gives 
the simultaneous solution for es = 0. 

The operating point of the tube is at Q when there is no signal input; 
thus it is called the quiescent operating point, and ho and Ebo are the 
quiescent plate current and voltage. If a signal is applied so that ec 
varies with time, the operating point must move along the load line, 
occupying at each instant the point at which the load line intersects the 
appropriate plate-characteristic curve. One such point is designated P 
in Fig. 5-9. The path covered by the operating point while the input 
signal varies is called the operating path; for many amplifier circuits it 
never extends into the positive-grid region and never reaches the ib = 0 
point. If es is given as a function of time, waveforms of ib and eb can 
be constructed by this graphical process, the load voltage and load power 
can be evaluated, and the waveform distortion introduced by the non
linearity of the tube can be studied. 
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If the combination of e8 and Ecc is such that grid current flows during 
part or all of the time, the analysis is slightly more complicated, for in 

this case ec and ic are also un
knowns. However, the grid circuit 

Load line 
slope=.=.!. 

Rs 

Frn. 5-10. Grid-circuit analysis. 

can be solved graphically for ec in 
exactly the same manner as the 
plate circuit is solved for eb. The 
appropriate construction is shown 
in Fig. 5-10 with the assumption 
that the input characteristic can 
be represented with suitable accu
racy by a single curve for all values 
of plate voltage. Having deter
mined ec by this construction, the 

plate current and voltage can be determined by the construction shown 
in Fig. 5-9. 

The construction shown in Fig. 5-10 is typical when Rs is a few hundred 
ohms. If Rs is 10,000 or 100,000 ohms, as often is the case, the grid
circuit load line is almost horizontal, and ec remains essentially zero for 
all reasonable positive values of e8. Thus if es has occasional peaks that 
tend to drive the grid positive, these peaks do not appear in the grid 
voltage ec; they are clipped off by the action of the grid. Such clipping 
is sometimes used deliberately. 

Example 5-1. A triode amplifier is shown in Fig. 5-lla; the input and output volt
ampere characteristics of the tube are shown in Figs. 5-llb and c. The maximum 
permissible plate dissipation is 1.5 watts, and the maximum permissible grid dissipa
tion is 0.5 watt. 

a. Find the quiescent tube voltages and currents. 
b. Is the maximum permissible plate dissipation exceeded? 
c. Is the maximum permissible grid dissipation exceeded? 
Solution. a. Under quiescent conditions the grid-circuit load line is given by Eq. 

(5-5) with es = 0. This line crosses the grid-voltage axis at ec = Ecc = 10 volts, 
and it crosses the grid-current axis at ic = Eccl Rs = 1 ~{ = 10 ma. The correspond
ing load line is shown in Fig. 5-llb. The load line intersects all the grid-characteristic 
curves at approximately the same point; hence the quiescent grid voltage is approxi
mately 3 volts, and the quiescent grid current is approximately 7 ma. 

The plate-circuit load line is given by Eq. (5-6). It crosses the plate-voltage axis 
at eb = Ebb = 300 volts, and it crosses the plate-current axis at ib = Ebb/RL = 30 91 o = 
30 ma. This load line is shown in Fig. 5-llc. The grid voltage, determined above, 
is 3 volts; hence the operating point for the plate circuit is at the intersection of the 
load line with the plate characteristic for ec = 3 volts. This point is appr0ximately 
midway between the characteristics for ec = 2 volts and ec = 4 volts; it is shown 
at Q in Fig. 5-llc. Thus the quiescent plate voltage is approximately 60 volts, and 
the quiescent plate current is approximately 25 ma. 

b. The plate dissipation is 

A = Ebh = (60) (25) (10)-3 = 1.5 watts 

This is exactly the ma~hnum permissible plate dissipation, 
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' c. The grid dissipation is 

Pc = EJc = (3)(7)(10)-3 = 0.021 watt 

Thus the maximum permissible value of 0.5 watt is not exceeded. 
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The signal transmission properties of the triode amplifier are summar
ized and conveniently displayed by the voltage transfer characteristic 
shown in Fig. 5-12. This characteristic shows the output voltage eo as 
a function of the input-signal voltage es for a particular circuit. It is 
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Frn. 5-11. Graphical analysis of a triode amplifier. (a) Circuit; (b) grid-circuit 
relations; (c) plate-circuit relations. 

constructed by reading values of eo = eb from the load line on the plate 
characteristic for values of es chosen over a wide range from the positive 
grid region to plate-current cutoff. In the positive grid region, ec as well 
as eb must be determined graphically. For large negative values of es the 
plate current is cut off, and eo is constant at the value Ebb· For positive 
values of es, grid current flows and ec remains approximately constant 
at zero volts. The most common mode of operation is on the steep, 
linear part of the curve where a relatively small change in es gives a large 
change in ea. The ratio of the change in eo to the change in es is the 
voltage amplification of the circuit; thus the small-signal amplification 
is equal to the slope of the transfer characteristic at the operating point. 
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It is interesting to compare the voltage transfer characteristic of the 
amplifier with the constant-current transfer characteristics of the tube 
given in Fig. 5-5. 

If the voltage transfer characteristic were perfectly linear in the oper
ating region, the variations in eo would be a magnified copy of the vari
ations in es, and the amplification would be distortionless. Over the 
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Frn. 5-12. Voltage transfer characteristic for the triode amplifier. 

large-signal range, unfortunately, the curve is not linear because the 
plate characteristics for equal increments of grid voltage do not intersect 
the load line at equal intervals. Thus the waveform of es is not exactly 
duplicated in eo. The worst distortion occurs at small plate currents 
where the plate characteristics are quite crowded; this fact appears in 
Fig. 5-12 as the rounding of the upper knee of the characteristic. The 
construction in Fig. 5-12 shows how the voltage transfer characteristic 
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can be used to determine the waveform of the output eo when the wave
form of the input es is given. It is clear from the type of curvature in 
the characteristic that the peaks in the output voltage are somewhat 
flattened and the valleys are somewhat exaggerated. 

When the voltages applied to an amplifier are chosen so that the plate 
current is never cut off, the mode of operation is designated Class A. 
Class B designates the mode of operation in which Ecc and Ebb are chosen 
so that the plate current is just cut off when no signal is applied. When 
the tube is biased beyond the Class B condition, the operation is desig
nated Class C. In addition, the term Class AB is used to describe 
operating conditions that are intermediate between Classes A and B. 
When no grid current flows, the fact is signified by adding the subscript 
1 to the class letter; the subscript 2 indicates that grid current flows. 
Voltage amplifiers of all types almost always operate in the Class A1 

mode. Power amplifiers for audio frequencies usually operate in either 
the Class A1 or the Class AB2 mode. Power amplifiers for radio fre
quencies usually operate in the Class C2 mode. 

The distortion resulting from the nonlinear properties of the triode is 
a matter of basic importance, for it often limits the performance obtain
able from the tube. Therefore it is necessary to examine more closely 
some of the consequences of distortion. 1•3 One aspect of distortion is 
illustrated in Fig. 5-13. The input signal to the basic amplifier is 
assumed to be a square wave with an amplitude of 5 volts; the grid 
bias is assumed to be - 5 volts. The resulting current and voltage 
relations are revealed by the graphical construction on the plate char
acteristics. With no signal applied, the plate current is constant at the 
value ho = 6.5 ma. When the signal is applied, the plate current 
increases by 5.5 ma during the positive half cycle of es, and it decreases 
by 4.5 ma during the negative half cycle. Thus equal positive and 
negative swings in es do not give equal swings in ib and eo. As a result, 
the average current increases from ho = 6.5 ma with no signal to h = 7.0 
ma with signal applied. This change in h results from the distortion 
introduced by the tube; it is often used as an indication that distortion 
is occurring, and it is occasionally used as a rough measure of the amount 
of distortion. 

Another aspect of signal distortion can be examined by assuming a 
sinusoidal input signal like that pictured in Fig. 5-12. The output volt
age is periodic, but is not sinusoidal; therefore it can be represented by a 
Fourier series of the form 

eo = Eo + E1 COS (wit + 01) + E2 COS (w2t + 02) + · · · (5-9) 

The second and higher-order harmonic terms represent distortion, for 
they are not present in the input. In the usual power amplifier intended 
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for the amplification of sound, therms value of the distortion components 
is of the order of 1 to 5 per cent of the rms signal component when the 
amplifier is delivering rated output with a sinusoidal signal. In voltage 
amplifiers, where the signal voltages may be quite small, the distortion 
is much smaller and is ordinarily neglected. 

In the practical case where the signals are not sinusoidal, a type of 
distortion appears that is not contained in Eq. ( 5-9). Suppose, for 
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Frn. 5-13. Nonlinearity in triode amplifiers. (a) Input signal; (b) graphical analysis; 
(c) plate-current waveform. 

example, that the signal voltage consists of two sinusoids that are not 
harmonically related: 

(5-10) 

The problem is to find the distortion components that appear in the out
put. Since the voltage transfer characteristic of Fig. 5-12 is not linear, 
ea cannot be expressed as a linear function of es; it must depend also on 
higher powers of es. In fact, ea can be expressed as a power series in es 
over a range of es; hence 

(5-11) 

These three terms are enough to illustrate the nature of the distortion. 
The first term is a constant, the second term is an undistorted reproduc
tion of the signal, and the third term is all distortion. From (5-10), 
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But cos2 wit = ½ (1 + cos 2w1t) 
cos2 w2t = ½ (1 + cos 2w2t) 

and (cos w1t)(cos w2t) = ½ cos (w1 + w2)t +½cos (w1 - w2)t 

(5-13) 
(5-14) 
(5-15) 

Thus the distortion not only produces harmonics of the input sinusoids, 
but it also produces components at the sum and difference frequencies. 
The higher-order terms in (5-11) produce similar distortion components. 
The mechanism by which the sum and difference frequencies are gen
erated is called intermodulation. Since it results in components that 
are not harmonically related to the signal, it is one of the most objection
able types of distortion in audio amplifiers. On the other hand, however, 
it has many useful engineering applications. 

5-4. Power Relations in the Triode Amplifier. The plate current in 
the triode amplifier can be expressed as 

(5-16) 

where his the average value of the current, and iP Js the time-varying 
component having zero average value. Similarly, 

(5-17) 

where Eb is the average value of the voltage, and ep is the time-varying 
component having zero average value. The power drawn from the plate 
supply in the basic amplifier circuit at each instant is thus 

(5-18) 

Since Ebb is constant and ip has zero average value, the average value of 
Ebbip is zero; hence the average power drawn from the plate supply is 

(5-19) 

If the distortion in the amplifier is negligible, and if the input signal has 
zero average value, then h is equal to the quiescent current ho and is 
independent of the signal amplitude. Under these conditions the power 
d'rawn from the plate supply is also independent of the signal level. 

The power absorbed by the load at each instant is 

PL = RLib2 

The average power absorbed by the load is 

PL = RL(ib2)av = RL(Jb rll!-s) 2 = Rdb2 + RL(Ip rms) 2 

The power dissipated at the plate of the tube at each instant is 

Pb = ebib = (Ebb - ibRL)ib = Ebbib - RLib2 

(5-20) 

(5-21) 

(5-22) 
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Pb= Pbb - PL 

and the average power dissipated at the plate is 

Pb= pbb - PL 

(5-23) 

(5-24) 

Since Pbb and PL are always positive, and since PL has its minimum value 
when no signal is applied, it follows from (5-24) that the power dissipated 
by the tube has its maximum value under no-signal conditions. When 
signal is applied, PL increases, and Pb decreases by exactly the same 
amount; the power drawn from the plate supply remains constant as 
long as the distortion is negligible. 

It follows from these relations that in designing an amplifier to operate 
with low distortion, the circuit parameters must be chosen so that the 
quiescent point on the plate characteristic lies on or below the hyperbola 
of maximum permissible plate dissipation shown in Fig. 5-7. Then, for 
siu;nals of any magnitude or waveform, it is ensured that the plate 
dissipation will not.exceed the permissible value, provided that distortion 
does not cause a change in the average value of the current. 

The currents and voltages in electronic circuits usually consist of a 
d-c component plus a time-varying component, and the time-varying 
components may have a wide variety of waveforms. Therefore compu
tations of average power must be made with care. If e is the potential 
difference between any pair of terminals, and if i is the current from the 
high- to the low-potential terminal, then the power delivered to the 
terminals at any instant is 

p = ei (5-25) 

This relation is always true; it results directly from the definitions of 
voltage and current. The average power delivered to the terminals, 
which is often the quantity of most interest, is accordingly 

P = (ei)av (5-26) 

The average of the product ei must be found by proper means. In 
general, 

(5-27) 

The average power equals the product eaviav only in the special cases 
where either e or i or both do not vary with time. If e = E + es and 
i = I + is, where E and I are d-c components and es and is are time
varying components with zero average value, then the instantaneous 
power is 

p = (E +es)(]+ is) = EI+ Eis+ esl + esis (5-28) 



TRE BASIC V ACUUM-'!IRIODE AMPLIFIER 115 

Since es and is have zero average value and E and I do not vary with time, 
the average power is 

(5-29) 

Thus the signal power and the d-c power can be calculated separately if 
it is convenient or otherwise desirable to do so. If the current i flows 
through a resistance R, the instantaneous power absorbed by the resistor 
IS 

p = R(I + is) 2 = R(I2 + 2f is + is2
) 

and the average power absorbed is 

P = RJ2 + R(is2)av = RJ2 + R(Is rms) 2 

(5-30) 

(5-31) 

where Is rms is the effective value of the signal component of current is, 

Example 6-2. The plate characteristics for the triode in the amplifier of Fig. 5-14 
are shown in Fig. 5-13b, and the graphical construction for determining the plate 
current and voltage is superimposed on 
the characteristics. 

a. Determine the average power drawn 
from the plate supply, the average plate 
dissipation, and the average power ab- Sl_S 
.sorbed by the load under quiescent operat-
ing conditions. 

b. Determine the quantities listed in 
part a under the condition that the square 

RL 
9.2K 

wave of signal voltage shown in Fig. 5-13a Frn. 5-14. Triode amplifier for Example 
is applied at the input. 5-2. 

Solution. a. The quiescent operating 
point for the amplifier is the point labeled Q in Fig. 5-13b. Accordingly, the quies
cent average power drawn from the plate supply is 

pbbo = Ebblbo = (250) (6.5) (l0)-3 = 1.62 watts 

The quiescent average plate dissipation is 

Ao = Eboho = (190)(6.5)(10)- 3 = 1.23 watts 

The quiescent average power absorbed by the load is 

P Lo = Pbbo - Pbo = 0.39 watt 

b. With the specified signal applied, the plate current is 12 ma during the positive 
half cycle of e. and it is 2 ma during the negative half cycle of e.. Hence the average 
plate current is 

lb= H(12 + 2) = 7.0 ma 

The average plate current with signal applied is larger than the quiescent plate current 
because of tube nonlinearities. From Eq. (5-19), the average power drawn from the 
plate supply with signal applied is 

Ab = Ebdb = (250)(7.0)(l0)-3 = 1.75 watts 
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This value is larger than the quiescent power drawn from the plate supply because of 
the increase in average plate current when the signal is applied. 

Because of the fact that the plate current and voltage are square waves, the average 
plate dissipation with signal applied can be determined in a simple manner. The 
power dissipated in the tube is constant during each half cycle; during the positive 
half cycle of es it is 

Pb1 = (140) (12) (10)-3 = 1.68 watts 

and during the negative half cycle it is 

Pb2 = (232) (2) (l0)-3 = 0.464 watt 

The average plate dissipation is the average of these two values, 

Pb = ½ (1.68 + 0.464) = 1.07 watts 

Thus the average plate dissipation with signal applied is less than the quiescent plate 
dissipation, even though the average plate current increases somewhat when signal 
is applied. 

The average power absorbed by the load with signal applied is 

PL = Ab - Pb = 0.68 watt 

Example 6-3. The input signal to the amplifier of Fig. 5-14 is adjusted so that th1:1 
plate current is ib = h + ip = 7 + 5 cos 20001rt ma. Determine the average power 
drawn from the plate supply, the average power absorbed by the load, and the average 
power dissipated at the plate of the tube. 

Solution. The average power drawn from the plate supply is given by Eq. (5-19) as 

Ab = Ebblb = (250)(7.0)(10)-3 = 1.75 watts 

The average power absorbed by the load is given by Eq. (5-21) as 

PL = RLh2 + RL(lp rms) 2 

In this case h = 7 ma, lp rms = 5/y2 ma, and RL = 9200 ohms; thus 

PL = (9.2) (49) (10)-3 + (9.2) (25/2)(10)- 3 

= 0.565 watt 

The average power dissipated in the tube is 

Pb = Pbb - PL = 1.18 watts 

The maximum and minimum values of plate current in this example have the same 
values as in Example 5-2. However, the values of the various powers in this example 
are different from the values of the corresponding powers in Example 5-2 because the 
waveforms of current and voltage are different. 

6-6. Piecewise-linear Analysis. The graphical analysis of triode cir
cuits is likely to prove tedious and time-consuming, especially if there 
are two or more tubes in the circuit. In many cases the problem of 
analysis can be greatly simplified by using an approximate representation 
of the tube that eliminates the need for graphical procedures. 

Figure 5-15 shows the input and output characteristics for a typical 
triode voltage-amplifier tube; superimposed upon these is a set of piece-
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wise-linear characteristics that match the tube characteristics quite 
well except at small values of plate current or plate voltage. The piece
wise-linear grid characteristic is very much like that of the vacuum diode 
shown in Fig. 3-24a. The piecewise-linear plate characteristic consists 
of a family of straight lines in the first quadrant that are parallel and 
equally spaced for equal increments of grid voltage. 

The piecewise-linear approximation simplifies the analysis of many 
circuits by making possible the use of algebraic rather than graphical 
methods. The accuracy of such analyses is quite satisfactory for most 
needs. In this connection it is pertinent to note that the characteristics 
of any particular tube may deviate by 10 or 20 per cent from the published 
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FIG. 5-15. Piecewise-linear approximations for vacuum triodes. (a) Grid charac
teristics; (b) plate characteristics. 

characteristics for that tube type. Therefore the accuracy of the graph
ical solution is, in most respects, unlikely to be much better than that of 
the piecewise-linear solution. The piecewise-linear characteristics, how
ever, give no indication of distortion if the path of operation is restricted 
to the central portion of the characteristics. In the piecewise-linear 
representation the nonlinearities of the tube are accounted for only by 
the breaks in the characteristics. 

It is possible to devise a network composed of ideal resistances, diodes, 
and sources that has a volt-ampere characteristic identical with the 
piecewise-linear approximate characteristics of the triode. This net
work is a piecewise-linear model for the triode; it provides additional 
insight into the behavior of triode amplifiers, and it aids in simplifying 
the analysis of many triode circuits. The piecewise-linear grid char
acteristic of Fig. 5-15a is like that for the vacuum diode shown in 
Fig. 3-24a. This fact implies that the grid circuit can be represented 
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approximately by an ideal diode in series with an appropriate resistance, 
as shown in Fig. 5-16a. 

The piecewise-linear plate characteristic for ec = 0 is also similar to 
that for the vacuum diode; therefore for ec = 0 the plate circuit can also 
be represented approximately by an ideal diode in series with a suitable 
resistance. For other values of ec the characteristic is shifted to the 
right or the left, depending on the polarity of ec, by an amount propor
tional to ec, As in the case of the semiconductor diode shown in Fig. 
3-28, this shift can be accounted for by adding a voltage source in series 
with the circuit as shown in Fig. 5-16b; the voltage of this source is 
directly proportional to e0 and of such polarity that the plate character
istic is shifted to the right when ec is negative. 

Since the grid and plate currents both flow out of the tube at the 
cathode terminal, the circuits of Figs. 5-16a and b can be combined as 

ic rb ib - -g g p 

ic l 
+ 

ec eb eb 

re -1 µec 

(a) (bl k (c) 

Frn. 5-16. The piecewise-linear model for the vacuum triode, valid for positive ec 
provided eb > 2ec, (a) Grid circuit; (b) plate circuit; (c) combined circuit. 

shown in Fig. 5-16c to give a complete model for the triode. It is 
instructive to compare this model with the ideal voltage amplifier shown 
in Fig. 4-1. When the grid is negative relative to the cathode, the 
diode in the grid circuit acts as an open circuit; in this respect the model 
behaves as the ideal amplifier. When the grid is positive relative to the 
cathode, the grid diode conducts, and the model is quite different from 
the ideal amplifier. When the plate voltage eb is greater than - µe 0 , the 
plate diode conducts, and the model behaves as the ideal amplifier 
except for the series resistance rb, which is rarely negligible. The plate 
resistance is a measure of the amount by which the plate characteristics 
are rotated from the ideal, vertical position. When% is less than - µec, 
the plate diode is an open circuit, the plate current is cut off, and the 
model does not behave at all like the ideal amplifier. 

As noted in Fig. 5-16, the models in that figure are valid for positive 
ec only for values of eb lying well to the right of the region where the 
plate characteristics merge into a single diode-like curve. For the char
acteristics shown in Fig. 5-15b, this condition is met if eb > 2ec. 
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The parameters µ, rb, and re of the model must be given numerical 
values that will make the volt-ampere characteristics of the model 
coincide as closely as possible with those of the triode. One of several 
possible procedures for determining these values is the following. To 
determine re, choose a suitable straight line on the grid characteristic. 
The equation of this line is 

(5-32) 

if the line passes through the origin of the coordinates. By substituting 
values of ee and ic for one point on this line (such as the point at which 
the line crosses the grid characteristic) in ( 5-32) the value or re can be 
found. It is usually adequate to specify re with one or two significant 
figures. 

The horizontal separation between the plate-characteristic curves is 
usually quite uniform for equal increments of grid voltage except at 
small values of plate current or plate voltage, a fact which is evident 
from the characteristics of Fig. 5-15b. Thus an average value for the 
horizontal separation of the curves can be determined easily. The inter
cepts on the plate-voltage axis µec for the piecewise-linear plate character
istics can then be located. These intercepts are, of course, equally 
spaced for equal increments of ee. If the piecewise-linear characteristic 
for a particular grid voltage ec1 intersects the plate-voltage axis at the 
plate voltage eb1, then the amplification factorµ can be calculated from 
the relation eb1 = -µeel• 

The slope of the family of piecewise-linear plate characteristics is 
adjusted graphically (with the aid of a straightedge and a triangle) to 
give the best fit in the region of greatest interest. All curves of the 
family must have the same slope. The value of the resistance rb in the 
model can then be determined from the piecewise-linear characteristic 
for ec = 0. The equation for this curve, 

(5-33) 

yields the value of rb when the values of eb and ib for one point on the 
characteristic are inserted. 

The nature of the fit obtained by the piecewise-linear approximation 
can be modified by adjusting the values of µ and rb; hence, since the 
procedure outlined above can be completed in a short time, it may be 
desirable to try several different values for the parameters. It is often 
possible to adjust the approximation so that the parameter values can 
be expressed with one or two significant figures. 

The parameter values for triodes of various types are spread over a 
considerable range. For typical small triodes the grid resistance r c lies 
in the range between 100 and 1000 ohms, the plate resistance rb lies in 
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the range between 1000 and 100,000 ohms, and the amplification factor 
µ, lies between 1 and 100. The approximate values of the parameters 
corresponding to the piecewise-linear characteristics in Fig. 5-15 are 
r0 = 0.9 kilohm, rb = 10 kilohms, andµ, = 20. 

When the tube is operated in the Class A1 mode, the grid-circuit diode 
always acts as an open circuit and the plate-circuit diode always acts as 
a short circuit. In this case the diodes can be eliminated from the circuit, 
and the model takes the simple form shown in Fig. 5-17a. This model 
should be compared with the ideal voltage amplifier of Fig. 4-1. At high 
frequencies the interelectrode capacitances cannot be ignored, and at low 

Cgp 

p 

k k 
(a) (bl 

FIG. 5-17. Triode models for Class A1 operation. (a) Basic model; (b) model account
ing for noise and interelectrode capacitance. 

FIG. 5-18. Model for the basic triode amplifier. 

signal levels the noise generated by the tube cannot be ignored. The 
model in Fig. 5-17b includes a set of capacitances and a noise-voltage 
source to account for these effects. It is customary to omit these ele
ments from the model when they have negligible effects on the perform
ance of the circuit. 

When the tube in the basic amplifier circuit of Fig. 5-8 is replaced by 
its piecewise-linear model, the result is the circuit shown in Fig. 5-18. 
This representation is appropriate when the signal lies in a range of 
frequencies where the parasitic capacitances are negligible, such as the 
band of audio frequencies, for example. The analysis of this circuit 
when the parameters and the applied voltages are known is perfectly 
straightforward; when the mode of operation is Class A1, so that the 
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grid and plate diodes act respectively as an open circuit and a short 
circuit, the analysis can be done by inspection. 

In general, the grid voltage is given by 

(5-34) 

When the sum Ecc + Cs is negative, however, the grid diode acts as an 
open circuit, and ic is zero. For this condition 

(5-35) 

When the sum Ecc + Cs is positive, the grid diode acts as a short circuit, 
and 

(5-36) 

Having found Cc from (5-36) or (5-35), whichever is appropriate, the 
plate circuit can be analyzed. The plate voltage is given by 

(5-37) 

This is also the output voltage Co. When -µec is greater than Ebb, a 
reversed voltage is impressed across the plate diode, and it acts as an 
open circuit. Thus the plate current is cut off and ib = 0. For this 
condition 

(5-38) 

When the grid is not sufficiently negative to cut the tube off, the plate 
current is 

. Ebb+ µec 
ib = _R_L_+_r_b (5-39) 

The output voltage can be found by substituting (5-39) into (5-37); it is 

Ebb+ µCc 
eo = Cb = Ebb - RL R + L rb 

(5-40) 

Further understanding of the way in which the piecewise-linear model 
approximates the triode amplifier can be obtained by comparing the 
voltage transfer characteristic of the model with that of the amplifier 
determined by graphical analysis. A typical transfer characteristic 
obtained by graphical analysis is shown in Fig. 5-12; a typical transfer 
characteristic for the piecewise-linear model of Fig. 5-18 is shown in 
Fig. 5-19. The circuit is linear except for the diodes, which are either 
open or short circuits; therefore the characteristic consists of a set of 
straight-line segments. The breaks in the characteristic occur where 
one or the other of the diodes changes from a short circuit to an open 
circuit. It is a simple matter to calculate the coordinates of the break 
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points; the characteristic can then be completed by adding appropriate 
straight lines. 

The break on the left is the point of plate-current cutoff. At this 
point the plate diode changes from a short circuit to an open circuit as 
es becomes more negative; hence at this point there is no current through 
and no voltage across the plate diode. It is clear from the circuit in 
Fig. 5-18 that with no current through the plate diode, the output 
voltage is eo = Ebb· It also follows from Fig. 5-18 that with no voltage 

Plate diode acts a~ 
an open circuit I 

I 
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I 
I 
I 
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I 
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r b + R L bb I 
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I 
I 
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r Grid diode acts as 
I a short circuit 

Frn. 5-19. Voltage transfer characteristic for the piecewise-linear model of a triode 
amplifier. 

across the plate diode and ib = 0, - µec = Ebb• Since Ebb is positive, 
ec is negative at this break, and the grid diode acts as an open circuit. 
Under these conditions ec = es + Ecc, and the value of es at the break is 

Ebb 
es= - - - Ecc 

µ 
(5-41) 

At all values of es lying to the left of this point the plate diode acts as an 
open circuit, and eo is constant at the value Ebb• 

The break on the right is the point at which grid current begins to flow. 
At this point the grid diode changes from an open circuit to a short 
circuit as es becomes more positive; hence at this point there is no current 
through and no voltage across the grid diode. It is clear from the circuit 
that under these conditions ec = 0 and ec = es + Ecc; hence es = -Ecc at 
this break point. It also follows from the circuit that when ec = 0, 
µec = 0, and 
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(5-42) 

Both break points are now located, and they can be joined by a straight 
line. For values of e, greater than -Ecc, grid current flows. In this 
region Cc is given by Eq. (5-36); when ec has been found, Co is given by 
(5-40). The right-hand segment of the characteristic can be completed 
by calculating one point for any convenient Cs greater than -Ecc• It 
follows from Fig. 5-18 that if Rs is much greater than re, Cc is essentially 
zero for all reasonable values of es greater than - Ecc• In this case the 
right-hand segment of the characteristic is essentially horizontal. 

Example 6-4. The triode amplifier shown in Fig. 5-20a can be represented approxi
mately by the piecewise-linear model shown in Fig. 5-20b. A voltage transfer charac
teristic for the amplifier, determined by graphical analysis, is shown in Fig. 5-12. 
Determine the voltage transfer characteristic for the model of Fig. 5-20b, and compare 
it with the results obtained by graphical analysis of the amplifier. 

(al (bl 
Fm. 5-20. Triode amplifier for Example 5-4. (a) Circuit; (b) piecewise-linear model. 

Solution. The desired characteristic has the general form shown in Fig. 5-19. 
Hence the first step in the analysis is to determine the coordinates of the break points 
in the characteristic. At the point of plate-current cutoff, µ,e 0 = -Ebb; thus 

e0 = - 30%0 = -15 volts 
and e, = ec - Ecc = - 15 + 5 = -10 volts 

Also, at plate-current cutoff, ib = 0, and 

eb = Ebb = 300 volts 

Thus the coordinates of the left-hand break are es = - IO volts, eo = 300 volts. 
At the point where grid current begins to flow, ec = O, ic = 0, and 

e. = -Ecc = 5 volts 

Also, at this point µ,ec = 0, and 

Tb IO 
eb = Tb + RL Ebb = 10 + 50 (300) = 50 volts 

Thus the coordinates of the right-hand break point are e. = 5 volts, eo = 50 volts. 
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For an additional point in the positive grid region, let ea = 10 volts. Then, from 
Eq. (5-36), 

Ecc + es (1) 10 - 5 5 0 05 1 
ec = re Ra + re = 100 + 1 = 101 = · VO t 

Under this condition, µec = 1.0 volt, and from Eq. (5-40), 

The coordinates of this point in the positive grid region are ea = 10 volts, ea = 50 volts. 
The piecewise-linear characteristic corresponding to the points determined above 

is shown in Fig. 5-21. Superimposed upon this characteristic for comparison is the 
graphically determined characteristic taken from Fig. 5-12. The correspondence 
between these two curves is good except in the vicinity of plate-current cutoff. 

ea 
volts 

-15 -10 -5 0 5 10 es 
volts 

Fm. 5-21. Piecewise-linear and graphical voltage transfer characteristics. 

Example 5-5. The circuit shown in Fig. 5-22a consists of a full-wave rectifier 
and an electronic voltage regulator. The problem is to analyze the behavior of the 
regulator. Any change in output voltage is amplified by triode Ti and causes the 
voltage drop across T2 to change in such a way as to compensate almost entirely for the 
initial change in E 2• The semiconductor diode in the cathode circuit of Ti is operated 
under conditions of avalanche breakdown; thus it provides a constant voltage drop 
that is essentially independent of the current it carries (Sec. 3-5). Under normal 
conditions both of the triodes operate in the Class A1 mode. 

A model for the regulator circuit is shown in Fig. 5-22b for the condition that both 
triodes are in Class A1. The constant voltage drop across the diode is represented 
by the battery Ea. The parameter values for the circuit are Ea = 50 volts, µ1 = 100, 
rb1 = 70 kilohms, µ2 = 4, rb2 = 0.8 kilohm, R1 = 250 kilohms, R2 = 50 kilohms, and 
Ra = 200 kilohms. 

a. Determine the output voltage from the regulator when the input voltage is 
400 volts, d-c, and the load current is 100 ma. 

b. If the input voltage rises to 450 volts when the load current is reduced to zero, 
what is the no-load output voltage? 

c. Making the reasonable assumption that the output voltage from the rectifier, 
E 1, varies linearly with I 2, give Thevenin equivalent circuits for the rectifier alone 
and for the rectifier with the voltage regulator. 
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J 
(al (bl 

Fm. 5-22. Electronic voltage regulator for Example 5-5. (a) Circuit; (b) model. 

Solution. a. The output voltage is given by 

But Ec2 = E, - E2; hence 

E2 = E1 - Iarb2 + µ2E4 - µ2E2 

The voltage E, is given by 

E E [ R E R E1 + µ1Ec1 - Eo 
4 = 1 - 4 a = 1 - a rbt + Ra 

and Ec1 = Ea - Eo = Ed6 - Eo. Using this last relation and substituting numeri
cal values in the expression for E 4 yields 

E4 = 0.259E1 - 12.35E2 + 3737 

Substituting this relation for E4 into the equation for E2 yields 

E2 = E1 - larb2 + l.036E1 - 53.4E2 + 14,948 
2.036E1 - 800/a + 14,948 

54.4 

when /3 is in amperes. The terms 2.036E1 amd 800/a are small compared to 14,948; 
hence they have a relatively small effect on the value of E2 as long as the tubes remain 
in Class A1 operation. In addition, ]5 is approximately 1 ma; therefore /3 = 12 + l& 
~ / 2 = 100 ma. Thus for 12 = 100 ma and E1 = 400 volts, 

E = 814.4 - 80 + 14,948 = 288 3 It 
2 54.4 . VO S 

b. With I 2 = 0, I 3 can be taken as zero. Thus with I 2 = 0 and E 1 = 450 volts, 

E = 913.5 + 14,948 = 291 4 It 
2 54.4 . VO S 

c. For the rectifier alone, the no-load voltage is 450 volts; this is the voltage of the 
source in the Thevenin equivalent circuit. With a load current of 100 ma, the termi
nal voltage is 400 volts; hence the internal resistance is 

R = 50/0.1 = 500 ohms 

The corresponding equivalent circuit is shown in Fig. 5-23a. 
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For the rectifier with the voltage regulator, the no-load voltage is 291.4 volts; this 

(al 

is the voltage of the source in the 
Thevenin equivalent circuit. With a 
load current of 100 ma, the terminal volt
age is 288.3 volts; hence the internal 
resistance is 

R' = 3.1/0.1 = 31 ohms 

The corresponding equivalent circuit is 
shown in Fig. 5-23b. 

The piecewise-linear triode model 

Frn. 5-23. Thevenin equivalent circuits 
for the regulated power supply of Fig. 
5-22. (a) For the rectifier alone; (b) for 
the rectifier with the voltage regulator. 

of Fig. 5-16c gives a good approxi
mation for many types of commonly used triodes. However, certain 
other triodes have plate characteristics of a slightly different shape so 
that this model does not give a good approximation. For example, 

(a) (b) 
Frn. 5-24. An alternative piecewise-linear approximation for vacuum triodes. (a) 
Characteristics; (b) approximation. 

certain high-µ triodes have characteristics of the general shape shown in 
Fig. 5-24a. A reasonable piecewise-linear approximation to these char
acteristics is shown in Fig. 5-24b. The important feature of this approxi
mation is that the ec = 0 character
istic does not pass through the 
origin; when extended, it intersects 
the plate-voltage axis at a negative 
voltage, eb = - Eo, Such a charac
teristic cannot be obtained with the 
model of Fig. 5-16c, for its ec = 0 

~ r 4 

eci)-~•• 
-E 

+ 0 

k 

characteristic must pass through the Frn. 5-25. An alternative triode model. 
origin. 

The model shown in Fig. 5-25 gives the characteristics of Fig. 5-24b 
when the parameters are given suitable numerical values. The source 
Eo shifts the entire family of characteristics to the left by Eo volts, as 
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can be seen by considering the value of eb that will just produce plate
current cutoff for each value of ec. This model is more general than 
the one given in Fig. 5-16c, although the latter is quite satisfactory in 
many applications. In every case it is important to remember that the 
model is a suitable representation of the triode for positive grid voltages 
only if the plate voltage is greater than the grid voltage by a sufficient 
amount. It is also true, however, that there are not many triode appli
cations in which this condition is violated in the normal operation of the 
circuit. 
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PROBLEMS 

6-1. One section of a 12AT7 twin triode is used in the basic amplifier circuit shown 
in Fig. 5-8. The plate supply voltage is Ebb = 300 volts, and the resistance in the 
grid circuit is Ra = 100 kilohms. 

a. What values of RL and Ecc are needed to place the quiescent operating point at 
Ibo = 5 ma and Ebo = 200 volts? 

b. Calculate the quiescent plate dissipation and compare it with the maximum 
permissible value specified by the manufacturer. 

6-2. One section of a 12AX7 twin triode is used in the basic amplifier circuit shown 
in Fig. 5-8. The applied voltages and the circuit parameters are Ebb = 300 volts, 
RL = 200 kilohms, Ra = 100 kilohms, and Ecc = -1.5 volts. 

a. Trace a set of plate characteristics for the tube. On these curves construct 
the hyperbola of constant plate dissipation corresponding to the maximum permissible 
value of plate dissipation. 

b. Locate the quiescent operating point 
for the tube. Is the quiescent plate dissipa-
tion less than the maximum permissible 
value? 

6-3. The signal applied to the am
plifier of Prob. 5-2 has the waveform 
shown in Fig. 5-26. The problem is to 
study the response of the amplifier to this 
signal. 

a. Trace a set of plate characteristics 

1.5 

-1.5 

for the tube, and construct the load line Frn. 5-26. Signal waveform for Prob. 
for the plate circuit. 5-3. 

b. Construct the voltage transfer char-
acteristic (Fig. 5-12) for es between -5 and + 1.5 volts. 

c. Using the curve of part b, plot the waveform of eo when the signal of Fig. 5-26 
is applied to the amplifier. 

6-4. One section of a 12AT7 twin triode is used in the basic amplifier circuit shown 
in Fig. 5-8. The applied voltages and the circuit parameters are Ebb = 300 volts, 
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Ecc = -2 volts, RL = 15 kilohms, and Ra = 100 kilohms. Calculate the change in 
output voltage eo that results from a change in es from 0 to 1 volt. By what factor 
is the change in input voltage amplified? 

6-6. One section of a 12AX7 twin triode is used in the basic amplifier circuit of 
Fig. 5-8. The plate supply voltage is Ebb = 600 volts, and the load resistance is 
RL = 800 kilohms. In addition, another 800-kilohm resistor is connected across the 
output terminals from plate to ground. 

a. Give a circuit diagram in which the circuit connected between plate and cathode 
of the tube is replaced by its Thevenin equivalent. 

b. Construct the load line for the tube on its plate-characteristic curves. 
c. What value of the grid bias is required to make the quiescent plate voltage be 

100 volts? 
d. If es increases from Oto 0.5 volt, what is the change in output voltage, eo? Give 

the sign as well as the magnitude of the change. 
6-6. One section of a 12AX7 is used in the circuit of Fig. 5-8 with Ebb = 300 volts, 

Ecc = -1.5 volts, RL = 250 kilohms, and Ra = 0. 
a. Find the quiescent power dissipated at the plate of the tube. 
b. Sketch and dimension the waveform of eb versus t when the signal shown in Fig. 

5-27 is applied at the input. 
c. Calculate the average power dissipated at the plate under the conditions of part b. 

Compare this value with the quiescent dissipation found in part a. 

ib 
ma es 

15 

1.5 

-T--T-
T 4T T 

t 5 

-1.5 -

Frn. 5-27. Signal waveform for Prob. 5-6. Frn. 5-28. Plate-current waveform for 
Prob. 5-7. 

6-7. A 6J5 triode is used in the basic amplifier circuit with Ebb = 250 volts and 
RL = 10 kilohms. The grid bias and the input signal are adjusted so that the plate 

ma 

5 

current has the waveform shown in Fig. 
5-28. Find the power delivered by the 
battery, the power absorbed by RL, and 
the power dissipated in the tube. What 
is the rms value of ib? 

6-8. One section of a 6SN7 twin triode is 
used in the circuit of Fig. 5-8 with Ebb = 
300 volts and RL = 50 kilohms. The grid 
bias and the input signal are adjusted so 
that the plate current has the waveform 

t shown in Fig. 5-29. The objective of the 
Frn. 5-29. Plate-current waveform for problem is to study the power relations in 
Prob. 5-8. the circuit under nonsinusoidal operating 

0 T 2T 3T 

conditions. 
a. Prove that the average power delivered by the plate-circuit power supply is 

Pbb = Ebb(ib)a.v• 
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b. Prove that the average power absorbed by RL is PL = RL(lbrme) 2, where 

c. In the interval O < t < T, ib varies linearly with time. Hence in this interval 
ibis related tot by an equation of the form ib = A + Bt, where A and Bare constants. 
Find the values of A and B in terms of T. 

d. Find the average power absorbed by RL, 
6-9. A 6J5 triode is to be represented by the piecewise-linear model shown in Fig. 

5-16c. The problem is to determine values for the parameters in the model that 
will give a suitable approximation. 

a. When ec = 5 volts, the grid current is 5 ma. Find the value of re that will make 
the model draw the same grid current as the tube when ec = 5 volts. 

b. Find the values ofµ and rb that will make the model draw the same plate current 
as the tube at two points on the plate characteristic: ec = 0, eb = 80 volts and ec = 
-16 volts, eb = 360 volts. 

c. Trace the plate-characteristic curves for the tube with ec = 0, -4, -8, -12, and 
-16 volts. Superimpose on these characteristics the characteristics for the model 
with the same set of grid voltages. 

6-10. The 2A3 triode is to be represented by a piecewise-linear model of the form 
shown in Fig. 5-25 in the region of negative grid voltages. Determine values of µ, 

rb, and Eo that will give a good approximation. Sketch the model showing the 
polarities of the voltage sources. 

6-11. The piecewise-linear model for a certain amplifier has the form shown in 
Fig. 5-18. The plate supply voltage is Ebb = 300 volts, and the circuit parameters 
are RL = 100 kilohms, Tb = 10 kilohms, re = 1 kilohm, µ = 20, and Rs = 10 kilohms. 
The input voltage is es = Ea cos wt. The problem is to adjust Es and Ecc to give the 
largest possible sinusoidal component of voltage at eo with operation in the Class A1 

mode. 
a. What are the required values of Ecc and Es? 
b. With the adjustment of part a, what is the amplitude of the sinusoidal com

ponent of eo? What is the quiescent plate dissipation? 
6-12. A piecewise-linear circuit is shown in Fig. 5-30. For this circuit construct 

the input volt-ampere characteristic, E1 versus 11, and the family of output volt
ampere characteristics, E2 versus 12, for E1 held constant at 1, 0, and -1 volt. Show 
the coordinates of all break points and the slopes of all lines. 

lK 

!OK 

Frn. 5-30. Piece\\;ise-linear circuit for Prob. 5-12. (Note: gE1 = 5E1 ma.) 

6-13. The cascode amplifier shown in Fig. 5-31 is used in certain applications as a 
voltage amplifier. (For example, it is occasionally used in the voltage regulator of 
Fig. 5-22a in place of the one-tube amplifier consisting of T1 and Ra to provide more 
amplification and better regulation.) The grid current in each tube is zero, and the 
plate circuits can be represented by piecewise-linear models with µ = 20 and rb = 
10 kilohms. 
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lOOK 

+ 
-=-96v 

Fm. 5-31. Cascode amplifier for Prob. 5-13. 

+ 

a. With the aid of the model, determine the quiescent values of ib, ebl, eb2, and eo. 
Note that ec2 = 96 - %1 volts. 

b. If e01 is given an increment of 0.1 volt, what is the resulting increment in eo? 
By what factor is the increment in input voltage amplified? 

c. Sketch a diagram showing how the grid voltage for the upper tube can be derived 
from the plate-supply battery with the aid of a voltage divider. Give the values of 
resistance required in the voltage divider if the total resistance is 100 kilohms. 

] 
Fm. 5-32. Regulated power supply for Prob. 5-14. 

6-14. The circuit of Fig. 5-32 is a full-wave rectifier with a triode used as an elemen
tary voltage regulator. The function of the regulator is, among other things, to hold 
the load voltage nearly constant in the face of changes in line voltage and to reduce 
the ripple voltage across the load. As an additional feature, the output voltage can 
be adjusted over a range of values by adjusting the voltage applied to the grid of the 
triode. (The performance of this elementary regulator should be compared with 
that of the more elaborate regulator analyzed in Example 5-5.) The triode can be 
represented by a piecewise-linear model of the form shown in Fig. 5-16c withµ. = 60, 
Tb = 12 kilohms, and Tc = 500 ohms. 

a. Determine the load voltage EL. Suggestion: For the first trial, assume that the 
grid current is zero, since this is the case in normal operation. Then, when the solu
tion is completed, check the assumption. 

b. If the output voltage from the rectifier decreases by 10 per cent, by what per
centage does the load voltage change? 
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c. If the peak-to-peak value of the ripple in the rectifier output is 1 volt, what is the 
peak-to-peak value of the ripple voltage across the load? The results of the previous 
parts can be used in this calculation if desired. 

6-16. Figure 5-33 shows a circuit that is occasionally used as a voltage amplifier and 
in which grid bias is developed by grid rectification. Specifically, the grid circuit 

Frn. 5-33. A triode amplifier with grid-leak bias for Prob. 5-15. 

acts as a diode clamper. The tube can be represented by a piecewise-linear model 
of the form shown in Fig. 5-16c with µ = 20, rb = 10 kilohms, and re = 0 (for this 
application). The input signalise. = 2 cos w.t, and Cu is so large that it cannot dis
charge appreciably through the 1-megohm grid leak in one cycle of the signal. 

a. What is the value of the direct voltage across the capacitor? 
b. Sketch and dimension the waveform of the grid voltage ec. 
c. What is the value of the grid bias (d-c component of ec)? 
d. A short burst of noise (such as static) makes e. = 30 volts for a brief period. 

Describe the action of the circuit after the noise has passed. This phenomenon is 
called grid blocking. 



CHAPTER 6 

PRACTICAL TRIODE AMPLIFIERS 

The basic triode amplifier of Chap. 5 is a perfectly good amplifier; 
however, certain practical considerations make it desirable to modify 
the circuit in various ways for different specific applications. For 
example, it is usually desirable to remove any d-c component in the 
input signal before applying it to the tube, for the d-c component usually 
contributes nothing useful to the signal. Another consideration is the 
fact that it is usually desirable for all the voltage sources used in an 
amplifier circuit to have one terminal in common; this is not the case 
with the signal source and the grid-bias source in the basic amplifier 
circuit of Chap. 5. It is shown below that this latter difficulty can be 
overcome by a simple circuit modification that provides bias in a con
venient and inexpensive way. As still another consideration, the load 
to which an amplifier is required to deliver power, such as a loudspeaker 
or a broadcasting antenna, often has a volt-ampere characteristic (impe
dance, for sinusoidal operation) that does not match the output char
acteristic of the tube in a suitable manner. In such cases the load may 
be coupled to the tube through an impedance-matching network; in 
audio amplifiers an iron-core transformer is commonly used to match the 
low impedance of the loudspeaker to the tube characteristics. 

The first objective of this chapter is to extend the graphical and piece
wise-linear methods of analysis introduced in Chap. 5 to more elaborate 
circuits and to generalize them somewhat. Since the circuits considered 
contain reactive elements C and L, a second objective is to extend the 
methods of analysis to include the effects of reactive elements on currents 
and voltages containing both d-c and time-varying components. The 
third objective is to examine some of the important properties of certain 
widely used amplifier circuits. 

6-1. Cathode-resistor Bias. Figure 6-1 shows a triode amplifier in 
which grid bias is provided by the voltage drop across a resistor in the 
cathode lead. Since conventional current can only flow out of the tube 
at the cathode, the cathode is always positive with respect to ground. 
Hence with no signal applied the grid is negative relative to the cathode, 

132 
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negligible grid current flows, there is negligible voltage drop across R0 , 

and the grid-to-cathode voltage is 

(6-1) 

If the quiescent operating point is specified, both Ee and lb are known, 
and the value of Rk required to give this operating point can be calculated 
from (6-1). 

The signal voltage is usually applied to such amplifiers through a series 
capacitor, as shown in Fig. 6-1, to remove any d-c component that the 
signal may contain. Such d-c components are generally of no interest, 
and they may shift the operating point to an unsuitable location on the 
plate characteristic. For the present it is assumed that the capacitor 
is chosen to act as a short circuit to the time-varying component of e •. 

p ib 

C 
+ 

eb + 
eo 

e8 (t) Rg 

Fm. 6-1. A triode amplifier with cathode-resistor bias. 

Under these circumstances the analysis is not altered by assuming that 
ea contains no d-c component. 

The grid return resistance Ru is necessitated by the fact that in any 
practical tube there is some flow of charge to the grid, no matter how 
negative the grid may be. This charge consists in part of high-energy 
electrons and in part of positive ions created from molecules of residual 
gas in the tube. If the grid return resistor is omitted, there can be no 
net flow of charge out of the grid terminal, and the grid assumes a poten
tial such that the flow of positive charge to the grid inside the tube equals 
the flow of negative charge to the grid. This grid potential usually does 
not give a satisfactory quiescent operating point. When the grid return 
resistance is added, a small grid current, usually a fraction of a micro
anipere, flows, and if Ru is not too large, the grid is held at approximately 
ground potential. For small voltage-amplifier tubes it is usually recom
mended that Ru not exceed 1 megohm; for larger power-amplifier tubes 
a maximum value of 50 kilohms may be specified. When proper pre
cautions are taken, however, voltage amplifiers can be operated with 
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values of Ru far in excess of 1 megohm; in some special applications they 
are operated without any return path at all. 

When a time-varying signal to which C acts as a short circuit is applied 
to the circuit in Fig. 6-1, the signal voltage appears across Ru. If ic is 
negligible in comparison with ib, as normally is the case, the potential 
of the grid relative to the cathode is 

(6-2) 

A positive increase in es gives a positive increase in ec, which in turn gives 
a positive increase in ib. The increase in ib results in an increase in the 
voltage drop across Rk which, as indicated by (6-2), subtracts from the 
change in es. Hence the increase in ec is not as great as the increase in 
es, and the tube behaves as if the input signal were smaller than es. 
The result is a smaller change in the output voltage and a smaller voltage 

ib= lb+ip 

C 

RL 
+ 

+ ip 
i!o 

es Rg 

Rk Ck 

Fm. 6-2. A triode amplifier with a bypassed cathode resistor. 

amplification. The cathode resistor provides bias, but it also provides 
degeneration that reduces the voltage amplification. 

The degeneration introduced by the cathode resistor can be removed 
in so far as the signal is concerned by connecting in parallel with Rk a 
capacitor that acts as a short circuit to the time-varying component of ib. 
This bypass capacitor is shown in Fig. 6-2. In the steady state, the 
average value of the current through the capacitor must be zero; other~ 
wise the charge on the capacitor and the voltage across the capacitor 
would increase indefinitely with time. Also, since Ck acts as a short 
circuit to the time-varying component of ib, there is no time-varying 
current through Rk. Hence the current in Rk is h, and the current in 
Ck is ip. The voltage drop across the parallel combination is Ek = Rkh; 
if there is negligible waveform distortion, I b is independent of the signal 
amplitude, and Ek = Rklbo• 

With the bypass capacitor Ck added to the circuit, its behavior for 
the d-c components of current and voltage is different from its behavior 
for the time-varying components. In so far as the d-c components are 
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concerned, the circuit is that shown in Fig. 6-3a. For the total currents 
and voltages (d-c plus the time-varying component) the circuit behaves 
as the one shown in Fig. 6-3b. The battery Ek accounts for the voltage 
drop across Ck; its voltage is Ek = Rkl b· The circuit of Fig. 6-3a can 
be solved graphically to find the quiescent point, and the circuit of 
Fig. 6-3b can be solved graphically to find the dynamic path of operation 
and the output voltage. 

+ 

(a) (bl 

Fm. 6-3. Representation of an amplifier with a bypassed cathode resistor. (a) Circuit 
for d-c components; (b) circuit for total currents and voltages. 

The graphical construction that gives the quiescent point is shown in 
Fig. 6-4a. The relations that serve as the basis for the construction 
are obtained by inspection of the circuit in Fig. 6-3a: 

le= 0 
Ee= -RkJb = -Ek 

and Eb = Ebb - (RL + Rk)h 

(6-3) 
(6-4) 
(6-5) 

Equation (6-5) is the equation of the static load line; its intercept with 
the plate-current axis is at Io = Ebb/(RL + Rk), Equation (6-4) gives 
the grid-bias line. This curve is constructed by assuming various con
venient values of Ee and computing the corresponding value of lb from 
(6-4). These points are plotted on the plate characteristic using the 
usual scale for plate current and using the grid-voltage scale marked on 
the individual plate characteristics. The resulting curve is, in most 
cases, almost a straight line. All points that satisfy (6-4) lie on the grid
bias line, and all points that satisfy (6-5) lie on the static load line. The 
intersection of these curves satisfies both equations simultaneously and 
is the quiescent point. 

The graphical construction for the operating path with signal applied 
is shown in Fig. 6-4b. The equation of this dynamic operating path is 
written by inspection of the circuit in Fig. 6-3b. It is 

(6-6) 
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By defining E~b = Ebb - Ek, (6-6) can be written as 

eb = E~b - Rdb (6-7) 

Thus the dynamic operating path intersects the plate-voltage axis at E~b, 
and it intersects the plate-current axis at I~ = E~iRL. All combinations 
of eb and ib that satisfy Eq. (6-6) lie on this line. Thus, as the signal goes 
through its sequence of values, the grid voltage, ec = es - Ek, goes 
through a similar sequence of values and the operating point moves along 
the dynamic operating path specified by Eq. (6-7). 

-10 

(a) (bl 

FIG. 6-4. Graphical analysis of an amplifier with a bypassed cathode resistor. (a) 
D-C components; (b) total currents and voltages. 

At any instant when ib = h, the plate voltage given by (6-6) is 

eb = Ebb - Ek - Rdb = Ebb - (RL + Rk)h (6-8) 

Substituting (6-5) in (6-8) yields 

(6-9) 

for the value of eb at any instant when ib = h When there is negligible 
waveform distortion in the amplifier, lb = Ibo and Eb = Ebo; hence under 
this condition the dynamic operating path passes through the quiescent 
operating point as indicated in Fig. 6-4b. Thus when there is negligible 
distortion, the dynamic operating path can be constructed by passing 
a line with slope -1/RL through the quiescent point. This is usually 
the easiest way to construct the operating path, but it does not give as 
much insight as the more detailed construction shown in Fig. 6-4b. It 
is significant to note that the slope of the dynamic operating path is 
greater than that of the static load line. Since the bypass capacitor 
acts as a short circuit to the time-varying component of ib, the plate
circuit resistance is less for the time-varying component than for the 
d-c component. 
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The foregoing analysis shows that if the average value of the plate 
current changes as a result of signal distortion, the operating path shifts 
on the plate characteristic. For example, if Rk = 1000 ohms, and if 
I b increases by 1 ma as the signal level is increased, then Ek will increase 
by 1 volt, and the operating path will shift to the left by 1 volt measured 
on the plate-voltage axis. This shift is ordinarily negligible in Class A1 
operation. 

As a useful alternative to the graphical analysis, the circuit of Fig. 6-2 
can be analyzed with the aid of the piecewise-linear model for the tube. 

g rb ip 

+ 
es RL eos 
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Frn. 6-5. Piecewise-linear models for the triode amplifier with a bypassed cathode 
resistor. (a) Model for d-c components; (b) model for signal components. 

Figure 6-5a shows a model that is valid for the d-c components of current 
and voltage under the assumption of Class A1 operation. The quiescent 
plate current can be found from the two-loop equations for the circuit: 

Ee= -Rdb 
and Ebb + µEe = (rb + RL + Rk)h 

Substituting (6-10) into (6-11) and collecting terms yields 

Ebb = h + RL + (1 + µ)Rk]Ib 

(6-10) 
(6-11) 

(6-12) 

After calculating h from this relation, the quiescent plate and grid 
voltages can be calculated easily. 

When the mode of operation is Class A1, the model is a linear circuit, 
and the applied voltages can be treated separately by superposition. 
Figure 6-5b shows the circuit that results when the signal voltage is con
sidered alone and when the capacitors in the circuit act as short circuits 
to the signal components of current. The signal component of the out
put voltage can be calculated by inspection of this circuit when the input 
signal is given. 

For a realistic evaluation of the vacuum triode as a voltage amplifier, 
the circuit of Fig. 6-5b should be compared with the ideal voltage ampli
fier in Fig. 4-1, for this is about the simplest practical circuit in which the 
triode can be used. The resistors R 0 and RL appear in addition to Tb as 
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departures from the ideal. As has been explained previously, both of 
these resistors are needed to ensure proper operation of the tube. 

The circuit of Fig. 6-5a contains a controlled source µEe, whose con
trolling voltage Ee depends on h. Buth in turn depends on µEe, Thus 
the controlling voltage for the controlled source depends on the output 
from the controlled source. This action, in which the output of a con
trolled source is transmitted through the circuit in such a way that it 
affects the controlling quantity, is called feedback. Feedback can have 
a profound effect on the behavior of an amplifier. Feedback in the 
circuit of Fig. 6-1 is responsible for the degeneration and consequent 
reduction in the voltage amplification. The bypass capacitor in the 
circuit of .Fig. 6-2 removes the feedback in so far as the signal components 
of voltage and current are concerned. 

ib ec=O 
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Frn. 6-6. Graphical study of the power output from a triode amplifier. (a) Dynamic 
operating path; (b) dynamic operating path for maximum power_output. 

6-2. Transformer-coupled Loads. With a fixed input signal to a given 
amplifier, the dynamic operating path on the plate characteristics is a 
line segment such as ab in Fig. 6-6a. The peak-to-peak value of the 
time-varying current through the load is I, and the peak-to-peak value 
of voltage across the load is E. The power delivered to the load by the 
time-varying signal is proportional to the product EI. For example, if 
the signal voltage and current are sinusoidal, the average power delivered 
to the load by the signal is PL = EI /8. In order to maximize the signal 
power to the load it is therefore necessary to maximize the product EI. 
This fact influences the design of amplifiers when the output power, 
rather than the output voltage or current, is of primary interest. 

The product EI, and hence the output power from the amplifier, 
depends on the slope of the operating path and on the amplitude of the 
input-signal voltage. In designing an amplifier, these two quantities 
cannot be chosen at will, however, for the operating path must always 
be restricted to a certain region on the plate characteristics. A typical 
set of boundaries for the permissible operating region is shown in Fig. 
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6-6b. In this case, operation is restricted to the negative grid region, 
the maximum permissible cathode current must not be exceeded, the 
quiescent point must lie below the hyperbola of maximum permissible 
plate dissipation, the maximum safe plate voltage must not be exceeded, 
and the operating path must not extend into the region of low plate 
current and high distortion. For the conditions pictured in Fig. 6-6b it 
is easy to see that of all the possible operating paths, the one shown in 
the figure gives the largest value for the product EI, and hence the largest 
power output. Thus designing an amplifier for maximum power output 
involves choosing the load resistance to give the optimum slope to the 
operating path and choosing the plate-supply voltage, the grid bias, and 
the input-signal amplitude so that each end of the operating path lies 
at the proper point on the boundary of the permitted region. 

In many applications the load resistance is fixed and therefore cannot 
be adjusted for the optimum value. For example, the nominal impedance 
of typical loudspeakers lies in the range between 4 and 16 ohms, and 
this impedance cannot be changed easily. Such a load resistance corre
sponds to an operating path that is nearly vertical on the plate character
istics of typical vacuum tubes. With the maximum permissible peak-to
peak current through such a load, the peak-to-peak voltage across the 
load is quite small, and little signal power is delivered to the load. It 
is customary to remedy this undesirable situation by coupling the loud
speaker to the amplifier through an iron-core transformer. The turn 
ratio of the transformer is chosen to step up the apparent impedance of 
the loudspeaker and thereby to give the desired slope to the dynamic 
opera ting pa th. 

Another advantage of coupling the load to the amplifier through a 
transformer is that the d-c component of plate current does not flow 
through the load. Ordinarily this component serves no useful function 
in the load, and the power that it delivers to the load is wasted. More
over, the d-c component may seriously impair the performance of certain 
types of loads. There are, of course, certain disadvantages associated 
with the use of transformer coupling. For example, the transformer 
does not behave well at very low frequencies because the magnetizing 
inductance is not infinite, and it does not behave well at very high fre
quencies because the leakage inductance is not zero. In addition, 
parasitic winding capacitances usually affect the high-frequency per
formance adversely. Another disadvantage is that the nonlinear nature 
of the magnetic circuit may cause distortion of the signal waveform. 

The circuit diagram of a typical amplifier using transformer coupling 
to the load is shown in Fig. 6-7. In order to facilitate the analysis of 
this amplifier it is necessary to devise a linear circuit model to represent 
the transformer approximately. The model shown in Fig. 6-8 neglects 



140 ELECTRONIC CIRCUITS 

all second-order effects and thereby permits attention to be focused on 
the first-order effect, namely, the fact that the transformer behaves dif
ferently for the d-c and the time-varying components of current and 
voltage. The model used in Fig. 6-8 represents the transformer as 
consisting of a magnetizing inductance Land an ideal transformer having 
a turn ratio Ni/N 2 ; it ignores winding resistance, leakage inductance, 
core losses, and distributed capacitance. The inductance L acts as a 

short circuit to the d-c component 
of plate current, and it is assumed 
to act as an open circuit to the 
time-varying component. In the 
steady state, the voltage across L, 
which is given by L di/ dt, must 
have zero average value; otherwise 
the current through the inductor 
would increase indefinitely. It 

Frn. 6-7. A triode amplifier with a trans- follows from these facts that if Ck 
former-coupled load. 

acts as a short circuit to time-
varying currents, then the voltage across L is ep, the current through 
L is lb, and the current through the primary of the ideal transformer is 

FIG. 6-8. An approximate model for the iron-core transformer. 

The ideal transformer is completely governed by two equations: 

and 

(6-13) 

(6-14) 

These relations hold at every instant of time and are independent of 
frequency and all other considerations. 

The circuit of Fig. 6-8 reduces to that shown in Fig. 6-9a for the d-c 
components of current and voltage. The quiescent point for this circuit 
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can be found by the method presented in Sec. 6-1. The equation of the 
static load line is 

Eb = Ebb - Rdb (6-15) 

This load line is shown in Fig. 6-10; its intersection with the grid-bias 
line gives the quiescent operating point. 

p 

(al (bl 
Frn. 6-9. Representation of an amplifier with a transformer-coupled load. (a) Circuit 
for d-c components; (b) circuit for total currents and voltages. 

For total voltages and currents the circuit can be represented as 
shown in Fig. 6-9b. The voltage across Ck is represented by the battery 
Ek = Rdb, and the current through L is represented by the current 
source lb, The resistance R{ is the load resistance transferred to the 
primary side of the ideal transformer. From this circuit it follows that 

Substituting ip = ib - h yields ib 

eb = Ebb - Ek+ Rlh - Rlib 
(6-17) 10 

and defining E;b = Ebb - Ek+ Rlh 
leads to 

(6-18) 

(6-16) 

Dynamic operating path, 
I 

-1 
s ope= R'r, 

ec=O Static load line, 

slope=..=..!_ 
Rk 

This is the equation of the dynamic Ebb Ei,b eb 

operating path shown in Fig. 6-10. Frn. 6-10. Graphical analysis of an 
It intersects the plate current axis amplifier with a transformer-coupled 

at Io = E;b/R{, and it intersects the load. 

plate voltage axis at Etb· As the signal voltage es takes on various values, 
the operating point moves along the operating path. 

It is clear from the construction in Fig. 6-10 that with signal applied 
to the amplifier it is possible for the instantaneous value of plate voltage 
to exceed the plate-supply voltage. This result can be attributed to the 
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fact, shown in Fig. 6-8, that the induced voltage in the magnetizing 
inductance, L di/ dt, adds in series with Ebb· The construction in Fig. 
6-10, along with the definition E;b = Ebb - Ek + RUb, also shows that 
the position of the operating path will shift if lb changes with signal level 
as a result of waveform distortion. 

At any instant when ib = lb, the plate voltage given by Eq. (6-17) is 

Cb = Ebb - Ek + RUb - RUb = Ebb - Rdb 

Substituting Eq. (6-15) in (6-19) yields 

(6-19) 

(6-20) 

for the value of eb at any instant when ib = lb. When there is negligible 
waveform distortion in the amplifier, lb = Ibo and Eb = Ebo; hence under 

rb p 
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Frn. 6-11. Models for the triode amplifier with a transformer-coupled load. (a) 
Model for d-c components; (b) model for signal components. 

this condition the dynamic operating path passes through the quiescent 
operating point as indicated in Fig. 6-10. Accordingly, a simple pro
cedure for constructing the dynamic operating path is to pass a line 
through the quiescent point with a slope -l/R{. 

As an alternative procedure, the amplifier of Fig. 6-7 can be analyzed 
by replacing the tube with its piecewise-linear model. For Class A1 
operation, the model for the circuit that shows the relations among the 
d-c components of current and voltage has the form shown in Fig. 6-lla. 
The quiescent operating point can be calculated from this circuit. In 
Class A1 operation the signal source can be treated separately from the 
direct voltages in the circuit. The model for signal components of 
current and voltage is shown in Fig. 6-llb; the load voltage and power 
can be computed from this circuit. The d-c and the signal currents and 
voltages calculated from the two circuits in Fig. 6-11 can be combined 
by superposition to obtain the total instantaneous currents and voltages. 

Example 6-1. Plate characteristics for the triode in the amplifier circuit of Fig. 
6-12a are shown in Fig. 6-12b. The maximum permissible plate dissipation for the 



PRACTICAL TRIODE AMPLIFIERS 143 

triode is 20 watts. The circuit is to be adjusted so that the quiescent operating point 
is at ib = 75 ma and Cc = -40 volts. The problem is to determine suitable values 
for the circuit parameters and the supply voltage and to study the performance of the 
amplifier when signal is applied. 

a. Determine the values of Ebb and Rk that will give the specified quiescent operating 
point. 

b. Determine whether or not the quiescent plate dissipation exceeds the maximum 
permissible value. 

c. The optimum load resistance for the tube is 2250 ohms. What turn ratio should 
the transformer have? 

ib 
ma 

150 
Slope= 2;t0 

11880 
100 

N1 

es 
Ck 50 

Slope=~~ 

- 1, + - Ebb 
0 100 200 300 400 eb 

volts 
(a) (bl 

Frn. 6-12. Amplifier with a transformer-coupled load for Example 6-1. (a) Circuit; 
(b) graphical construction. 

d. A signal voltage, Cs = 40 cos 20001rt volts, is applied at the input. Neglecting 
the small shift in dynamic operating path caused by distortion, determine the maxi
mum and minimum instantaneous values of Cb. 

e. For the conditions of part d, determine PL and Pb, 
Solution. a. The value of cathode resistance required is fixed by the specified 

values of Cc and ib at the quiescent point. Thus 

Rk = -Eco = 40 = 0.53 kilohm 
ho 75 

The supply voltage required is 

From the plate characteristics, the quiescent plate voltage is Ebo = 240 volts. Hence 

Ebb = 240 + 40 = 280 volts 

b. The quiescent plate dissipation is 

Ao = Ebolbo = (240) (75) (l0)-3 = 18 watts 

Hence the maximum permissible dissipation is not exceeded. 
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c. The required turn ratio is given by 

R~ = (;:)' RL 

Ni= VR~/RL = ~ = 16.8 
N2 

d. The dynamic operating path is shown in Fig. 6-12b. With the specified signal 
applied, the operating point moves along this path between the plate characteristics 
for ec = 0 and ec = -80 volts. Thus 

For ec = 0: 
For ec = -80: 

eb = eb min = 120 volts 
% = eb max = 340 volts 

Note that the maximum instantaneous plate voltage exceeds the plate-supply voltage 
by 60 volts. 

e. Under the specified conditions, ep ~ 110 cos 20007rt volts. Neglecting the losses 
in the transformer, the power delivered to the primary is also the power delivered to 
the load. Hence 

( 110) 2 l PL = V
2 2250 = 2.7 watts 

The plate dissipation is the power delivered by the battery minus the power delivered 
to the load and the power dissipated in the cathode resistor. Thus 

A = pbb - pk - PL 

But Ab and Pk dre independent of the signal as long as the distortion is small, and 
Pbb - Pk is the quiescent plate dissipation. Hence, using the result of part b, 

A = Ao - PL = 18 - 2.7 = 15.3 watts 

It is clear from these results that the efficiency of this amplifier is not very large. 

6-3. RC Plate-circuit Loads. Another important amplifier circuit is 
shown in Fig. 6-13. This circuit is commonly used when amplifiers are 

Cz 

Rg 

connected in cascade as indicated 
in Fig. 4-2; the blocking capacitor 
C2 prevents the direct voltage at 
the plate of the first amplifier from 
affecting the quiescent conditions 
in the second stage. 

The static load line and the dy
namic operating path can be deter
mined by considering separately 
the d-c and the time-varying com-

Frn. 6-13. An amplifier with an RC plate 
load. ponents of current and voltage in 

the circuit connected to the tube. 
The capacitors in the circuit act as open circuits to the d-c components; 
hence these components are related by 

(6-21) 
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The capacitors are assumed to act as short circuits for the time-varying 
components; hence the time-varying components are related by 

ep = - R~ip (6-22) 

where R~ is the resistance of RL and R0 in parallel. Superimposing these 
two solutions gives 

Eb + ep = eb = Ebb - (RL + Rk)Ib - R~iP 

Substituting ip = ib - lb and collecting terms gives 

eb = Ebb - (RL + Rk - R~)Ib - R~ib 

Finally, if Eib = Ebb - (RL + Rk - R~)h, then 

eb = E;b - R~ib 

(6-23) 

(6-24) 

(6-25) 

Equation (6-21) gives the static load line; its intersection with the grid 
bias line gives the quiescent point, as indicated in Fig. 6-14. Equation 
(6-25) gives the dynamic operating 
path; this path is most easily con
structed by passing a line through ib 

the quiescent point with a slope 
-l/R~. 

6-4. Amplifiers with Reactive 1o 

Loads. In the examples con
sidered in the preceding sections, 
all capacitors and inductors have 
been considered to act either as 

Static load line, 
I -1 

s ope= (RL +Rk) 

Dynamic operating path, 
slope=-=.!... 

Ri; 

open circuits or short circuits to Ei,b Ebb eb 

time-varying currents. Thus the Frn. 6-14. Graphical analysis of an ampli
circuits have been in fact resistive fier with an RC plate load. 
circuits. When these conditions 
are not fulfilled, the relatively simple results obtained above do not 
hold. Suppose, for example, that ip in Fig. 6-13 is sinusoidal and of such 
a frequency that the reactance of C2 is comparable with the resistance 
of R 0 and RL. Then ep is sinusoidal but not in phase with ip, and if the 
combinations of ib and eb existing at various instants of time are plotted 
on the plate characteristics, an elliptical operating path (Lissajous 
pattern) is obtained. In general, the signals to be amplified can be 
represented as the superposition of sinusoidal components of many dif
ferent frequencies. If the reactance cannot be neglected in such cases, 
each sinusoidal component of the signal causes an elliptical movement 
of the operating point, and the dynamic operating path consists of the 
superposition of many elliptical motions. Thus the dynamic operating 
path under these conditions is very complicated indeed. 
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The dynamic operation of an amplifier with a reactive load can be 
studied further by considering the circuit shown in Fig. 6-15b. The 
signal applied to the amplifier, which in this simple circuit is also the 
grid-to-cathode voltage, is shown in Fig. 6-15a, and the time constant 
of the RL load is such that the circuit reaches the steady state during 
each half cycle of the signal voltage. Thus at the end of each half cycle 
the operating point is on the static load line shown in Fig. 6-15c; for 
example, at the end of the time interval between O and T, the operating 

es 
volts 

T 2T 3T 
0 

-6 

(a) 
(b) 

ib 

-8 

150 eb 
volts 

(cl 

Frn. 6-15. Graphical analysis of a triode amplifier with a reactive load. (a) Input 
signal waveform; (b) circuit; (c) graphical construction. 

point is at a in Fig. 6-15c. During the interval between T and 2T, the 
grid voltage is - 6 volts, and at the end of the interval the operating 
point is at c in Fig. 6-15c; however, it does not move along the static 
load line from a to c. The current in the inductor cannot change instan
taneously. Therefore, when C8 changes abruptly from O to -6 volts 
at the instant t = T, the operating point moves instantaneously along 
a line of constant ib to point b on the plate characteristic for Cc = - 6 
volts. The plate current then decays to its new steady-state value with 
the operating point moving along the line of constant Cc = -6 volts to 
point c. Similarly, when the grid voltage changes abruptly to O volts at 
t = 2T, the operating point moves abruptly along a line of constant ib 

to point d on the ec = 0 characteristic, and then it moves along the line 
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of constant ec = 0 to point a. Thus the complete dynamic operating 
path for one full cycle of the signal is the contour abed shown in Fig. 6-15c. 

6-6. The Use of Thevenin's Theorem in Graphical Analyses. The 
circuits that have been analyzed in the preceding sections have been 
simple in form. However, any resistive circuit containing only one tube, 
no matter how complicated, can be reduced to such a simple form by a 
slight extension of Thevenin's theorem. Figure 6-I6a shows a tube con
nected to a general linear resistive 
network; Fig. 6-16b shows a network 
that is equivalent to the one of Fig. 
6-16a in so far as the tube is con
cerned, provided the parameters are 
given appropriate values. If no 
grid current flows, this equivalent 
circuit can be analyzed graphically 
by the methods developed in the 
foregoing sections. The graphical 
procedures must be developed fur
ther if the case in which grid current 
flows is to be considered. 

g k p 

Linear resistive network 

(a) 

Frn. 6-16. Thevenin's theorem applied 
to vacuum-tube circuits. (a) Vacuum
tube circuit; (b) an equivalent circuit. 

The voltage sources and resistances in the equivalent network can be 
determined by open-circuit and short-circuit measurements ( or calcula
tions) made at the terminals of the linear network. The internal volt
ages are determined directly from open-circuit measurements. With p-k 

e' s 

(a) (b) 

FIG. 6-17. Simplification of an amplifier circuit. (a) Amplifier; (b) an equivalent 
circuit. 

short-circuited and g-k open-circuited, Rb and Rk are determined by the 
current in the short circuit and the voltage across the open circuit. 
Then Re is determined from the short-circuit current between g and k 
when p-k is open-circuited. 

The circuit of Fig. 6-17a is presented as an example. The grid circuit 
in this amplifier is arranged so that the two sources e8 and E 1 have a 
common terminal with each other and with the sources in the plate 
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circuit. The voltage source Es and the voltage divider Rs-R4 at the out
put permit the d-c component of the output voltage to be adjusted to a 
desired value. For example, it may be desired that Co = 0 when Cs = 0. 

An equivalent circuit for the amplifier is shown in Fig. 6-17b. In this 
relatively simple circuit there is no coupling between the grid and plate 
circuits in the network external to the tube; hence the equivalent circuit 
is obtained by the simple process of applying Thevenin's theorem sepa
rately to the grid and plate circuits. The form of this circuit is identical 
with that of the basic triode amplifier, and it can therefore be solved for 
ib and Cb by graphical methods already developed. Then, knowing ib and 
cb, all voltages and currents in the plate circuit can be found. For 
example, the current i in resistor R4 is 

(6-26) 

and the output voltage is 
Co= Ri - Es (6-27) 

6-6. Summary. Most practical vacuum-tube circuits contain reactive 
elements, either L or C or both. The former acts as a short circuit, and 
the latter acts as an open circuit to the d-c components of voltage and 
current. In many cases it is permissible to consider the L's to be open 
circuits and the C's to be short circuits to the signal components of 
voltage and current. In this case the amplifier can be represented by 
two different resistive circuits, one for the d-c components and the other 
for the signal components. When such circuits are analyzed by graphical 
constructions on the tube characteristics, two different load lines, or 
operating paths, are required, one for the d-c components and the other 
for the signal components. These operating paths are straight lines 
because the corresponding circuits connected to the tube are linear 
resistive networks. If the networks are not resistive or are not linear, 
the operating paths will in general not be straight lines. 

PROBLEMS 

6-1. A 6J5 triode is used in the amplifier of Fig. 6-2. The plate-supply voltage is 
300 volts, and the values of the circuit resistances are RL = 22 kilohms, Rk = 2 
kilohms, and Ru = 1 megohm. 

a. Find the quiescent plate voltage and plate current by a graphical construction on 
the plate characteristics. 

b. What is the quiescent value of eo? 
c. Determine the quiescent plate dissipation. 
d. The signal voltage eB is a square wave having half cycles of equal duration and 

having a peak-to-peak value of 16 volts, and the capacitors in the circuit act as short 
circuits to the time-varying components of voltage and current. Determine the 
average value of the plate dissipation with this signal applied, and compare it with 
the quiescent dissipation. 
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6-2. One section of a 12AX7 twin triode is used in the amplifier of Fig. 6-2. The 
plate-supply voltage is 300 volts, and the quiescent operating point is to be at h 0 = 
0.5 ma and Ebo = 150 volts. What values of RL and Rk are required? With this 
adjustment, what is the greatest peak-to-peak variation that the output voltage e0 

can have in Class A1 operation? 
6-3. A 6B4-G power triode is used in the transformer-coupled amplifier shown in 

Fig. 6-7. (The plate characteristics for this tube are identical with those for the 2A3.) 
The load resistance RL is 6 ohms, and the transformer turn ratio is Ni/N2 = 20: 1. 

a. What values of Ebb and Rk are required to place the quiescent operating point at 
Ebo = 200 volts, ho = 70 ma, and Eco = -30 volts? 

b. Draw the plate characteristics for Ee = 0, -30, and -60 volts. Construct the 
static load line and the dynamic operating path on these curves under the assumption 
that h = ho, The transformer can be represented by the model shown in Fig. 6-8. 

c. A square-wave signal voltage having half cycles of equal duration and having 
a peak-to-peak amplitude of 60 volts is applied at es, The capacitors in the circuit 
act as short circuits, and the magnetizing inductance of the transformer acts as an 
open circuit to the time-varying components of voltage and current. With this 
signal applied, determine the average plate current h and check the assumption of 
part b that h = Ibo, 

d. Sketch the waveform of current in the load; show on this sketch the amplitude 
of the load current. 

e. Calculate the average power delivered to the load resistor. 
f. Calculate the average plate dissipation, and compare it with the quiescent plate 

dissipation. 
6-4. A 2A3 power triode is used in the amplifier of Fig. 6-7. The input signal is 

e8 = 30 cos 20001rt volts, and the load resistance is RL = 500 ohms. The capacitors 
act as short circuits, and the magnetizing inductance of the transformer acts as an 
open circuit to the time-varying components of voltage and current. 

a. What values of Ebb and Rk are required to place the quiescent operating point at 
Ibo = 75 ma and Eco = -30 volts? 

b. What is the smallest value of turn ratio Ni/N2 that will give reasonably linear 
operation with the specified signal applied? The answer to this question is a matter 
of judgment; some guidance is given in Sec. 6-2 and Fig. 6-6b. 

c. If the load is removed from the transformer secondary, the dynamic operating 
path becomes a horizontal line. Under this condition, and with other conditions as in 
part b, what is the peak value of voltage across the transformer primary? 

d. What is the average power delivered to the load under the conditions of part b? 
The small effects of waveform distortion can be neglected. 

6-5. An amplifier with an RC plate load is shown in Fig. 6-18. The operation of the 
circuit is to be studied with the aid of graphical constructions on the plate charac
teristics. 

Frn. 6-18. Amplifier for Prob. 6-5. 
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a, Construct the static load line and locate the quiescent operating point. 
b. Construct the dynamic operating path, assuming h = Ibo, so that this path 

passes through the quiescent point. 
c. For linear Class A1 operation, the dynamic operating point should not go into the 

positive grid region and it should not go below the ib = 1 ma line. Subject to these 
restrictions, what is the greatest amplitude that a sinusoidal input signal can have? 

d. What is the maximum amplitude of output voltage that can be obtained from the 
amplifier under the conditions of part c? 

6-6. In high-gain multistage amplifiers it is usually necessary to use decoupling 
networks, like that formed by the 100-kilohm resistor and capacitor C in the circuit 
of Fig. 6-19, to reduce interaction among the stages. The effect of the decoupling 
network on the procedures of graphical analysis is to be examined. 

C 

Frn. 6-19. Amplifier with a plate-decoupling network for Prob. 6-6. 

a. Sketch the static load line on the eb, ib coordinates, and locate the quiescent 
operating point. The plate-characteristic curves can be omitted from this sketch. 

b. Add the dynamic operating path to the sketch of part a, making the assumption 
that h = ho• A simple procedure is to pass a line having the proper slope through 
the quiescent point. Indicate the voltage at which this path intersects the eb axis. 

6-7. The amplifier shown in Fig. 6-20 is identical with the one shown in Fig. 6-18 
except that the plate load resistor is replaced with an inductor. With this arrange
ment the plate-supply voltage required for a given quiescent point is smaller than in 
the circuit of Fig. 6-18, and slightly higher gain is obtained; on the other hand, the 
size, weight, and cost are greater, and, as a rule, the performance is poorer at very 
high and very low frequencies. Certain features of this amplifier are to be examined 
by graphical analysis. 

+ 

Frn. 6-20. Amplifier for Prob. 6-7. 

a. The quiescent operating point for the amplifier in Fig. 6-18 is approximately at 
ib = 4 ma and ec = -4 volts. Assuming that the inductor has negligible resistance, 
what value of Ebb is required to give this quiescent point in the amplifier of Fig. 6-20? 
Compare this result with the plate-supply voltage used in the circuit of Fig. 6-18. 
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b. Sketch the static load line and the dynamic operating path on the eb, ib coordi

nates. Assume that the inductor acts as an open circuit and the capacitors act as 
short circuits to the time-varying components of current and voltage. The charac
teristic curves can be omitted from this sketch, but the voltage at which each operating 
path intersects the eb axis should be indicated. A simple procedure for constructing 
the dynamic operating path when h = ho is to pass a line having the proper slope 
through the quiescent point. 

c. If the input signal is sinusoidal, what is the greatest amplitude that it can have 
in Class A1 operation? What is the amplitude of the output voltage under this 
condition? 

6-8. The characteristics of the 6SN7 triode used in the amplifier of Fig. 6-21 can be 
approximated by a piecewise-linear model in which µ = 20 and r1, = 10 kilohms. 
Certain features of the amplifier are to be examined by piecewise-linear analysis. 

Fm. 6-21. Amplifier for Prob. 6-8. 

a. Find the quiescent operating point. 
b. Construct the curve of eo versus es, Cover the range of e. between -20 and 

6 volts. Give the coordinates of all break points, and give the slope of each segment 
of the curve. 

c. By what factor does this circuit amplify the input signal when the operation is 
Class A1? 

6-9. The circuit shown in Fig. 6-22a is an elementary d-c vacuum-tube voltmeter. 
The resistance of the d-c milliammeter M is negligibly small. The problem is to 
determine the meter reading as a function of the input voltage. 

6J5 

X 

75 K 

75K 

(a) 

+ 
-=-225v 

(b) 

Fm. 6-22. Elementary vacuum-tube voltmeter for Prob. 6-9. 

a. Find R,, and E:b in the Thevenin equivalent circuit of Fig. 6-22b. 
b. Construct an accurate curve of i1, versus e1 in the range between plate-current 

cutoff and e1 = 0. Points on this curve can be determined by graphical analysis with 
the aid of the equivalent circuit in Fig. 6-22b. 
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c. Since the circuit connected to the tube is linear, ib and im are related by a linear 
equation of the form im = A + Bib, Find the numerical values of the constants 
A and B. (Consider whether two special cases, ib = 0 and im = 0, might permit an 
easy solution.) 

d. Plot im versus e1 on the same coordinates as the curve of part b. This curve is a 
calibration curve for the voltmeter. 

e. What value of grid bias must be inserted at x to make im = 0 when e1 = O? 
This voltage provides the zero adjustment for the voltmeter. 

6-10. A 6J5 triode is used in the circuit of Fig. 6-15b to control the operation of a 
relay. The plate-supply voltage is 150 volts, and the signal voltage has the waveform 
shown in Fig. 6-15a. The inductance of the relay coil is represented by L, and the 
resistance of the coil plus an additional current limiting resistor is R = 10 kilohms. 
The behavior of the circuit is to be examined by graphical analysis under the assump
tion that the steady state is reached during each half cycle. 

a. Plot the plate characteristics for ec = 0 and ec = -6 volts. Construct the 
dynamic operating path, and give the coordinates of each corner of the path. 

b. At each corner of the dynamic operating path, determine the voltage drops across 
the tube, the inductor, and the resistor. Give the polarity of each voltage by assign
ing a negative sign to voltage rises in the direction of ib, 

c. Compare the maximum instantaneous value of eb with the plate-supply voltage. 



CHAPTER 7 

INCREMENTAL LINEAR MODELS FOR THE 

VACUUM TRIODE 

The analysis and design of voltage amplifiers can be separated into 
two distinct parts. The first part is concerned with the location of the 
quiescent operating point; this point must lie in a suitable region of the 
plate characteristic if the tube is to be effective as a voltage amplifier. 
The second part is concerned with the signal components of voltage and 
current. The voltage amplification provided by the circuit is usually 
the feature of primary interest in this second part of the study. 

Calculations related to the quiescent operation of the circuit are usually 
based on either a graphical or a piecewise-linear analysis of the circuit. 
Calculations related to the signal are practically always based on a 
suitable linear network model for the circuit, for voltage amplifiers 
usually operate in the linear Class A1 mode. In linear circuits such as 
these it is permissible to treat the signal components of voltage and cur
rent separately by superposition; this fact permits a degree of simpli
fication in the models used to represent the circuits. Models that account 
only for the signal components of voltage and current are called incre
mental models. 

The input signals to voltage amplifiers are in many cases measured 
in millivolts or microvolts. Such voltages are too small to be used in 
graphical analyses unless the usual tube characteristics are redrawn on an 
expanded scale. Of perhaps even more importance, if the circuit con
tains reactances that cannot be considered to act either as open circuits 
or short circuits, as often is the case, then the operating path on the 
plate characteristic is no longer a straight line, and graphical analysis 
becomes very tedious indeed. For these and other reasons, incremental 
models for voltage amplifiers provide the most convenient basis for 
analysis and design. 

The objective of this chapter is to present the incremental models that 
are most commonly used to represent the vacuum triode and to examine 
their properties in some detail. These models are derived by general 
methods that are applicable to other physical devices used as components 
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in electrical circuits. In particular, these same methods are used in 
deriving models for the transistor amplifier. 

7 -1. Derivation of Incremental Triode Models. An incremental linear 
model for the triode can be developed from the piecewise-linear model 
used in Chaps. 5 and 6. Figure 7-1 shows the plate characteristics of a 
typical triode and a piecewise-linear model for the tube. The parameters 
of the model are ordinarily chosen to give the best approximate fit to 
the tube characteristics over the entire usable portion of the character
istics. Under conditions of small-signal operation, however, the excur
sions of the operating point are restricted to a small region surrounding 
the quiescent operating point; such a region is enclosed by a dotted line 
and labeled R in Fig. 7-la. If operation is to be restricted to the region 
R, then the parameters of the model in Fig. 7-lb should be chosen to give 

k 

(a) lb} 
Frn. 7-1. Small-signal operation of a triode. (a) Plate characteristic; (b) piecewise
linear model. 

the best fit inside R. A detailed examination would show that the plate 
characteristics inside any small region are nearly straight, parallel, and 
equally spaced for equal increments of grid voltage; hence a very good 
fit can be obtained inside any such small region. If the quiescent point 
is moved to a new location, a new set of parameter values is needed to 
give a good fit inside the new operating region R'. 

The tube currents ib = lb + ip and ie = le + iu resulting from the tube 
voltages eb = Eb+ ep and ee = Ee + eu can be calculated from the piece
wise-linear model when the operation is restricted to the region R and 
the parameters are chosen accordingly. When the signal components 
only are of interest, they can be calculated separately by setting the d-c 
components equal to zero. When the region R corresponds to Class A1 

operation, the corresponding incremental model has the form shown in 
Fig. 7-2. The plate resistance is symbolized rP instead of rb to indicate 
that it is chosen to give the best representation in the small region R 



INCREMENTAL LINEAR MODELS FOR THE VACUUM TRIODE 155 

surrounding the quiescent point; rp is referred to as the incremental 
plate resistance of the tube. 

The incremental linear model for the triode can be derived by an 
·alternative procedure that does not depend on a piecewise-linear model 
for the starting point. The basic principles used in this derivation have 
wide application in the physical sciences and therefore merit careful 
consideration. The input and output 
characteristics of the triode give the g 

electrode currents as functions of the ~ 
electrode voltages: 

ip p 

ib = fb( Cb,ec) 
ic = fc(eb,ec) 

Also, the cathode current is given by 

(7-1) 
(7-2) 

Fm. 7-2. Incremental model for a 
(7-3) triode in Class A1 operation. 

Thus if the electrode voltages are known, the electrode currents can be 
found. If eb is given a small increment, the corresponding increment in 
ib can be expressed as 

(7-4) 

where aib/aeb is the rate of change of ib with respect to eb with ec held 
constant. It is easily shown from Fig. 7-2 that this partial derivative is 
1/rP; hence it is designated gp and called the incremental plate conductance. 

If the mode of operation is Class 
g 
0----0 

ip P A1, ic is always zero and dik = dib. 
.-----_..,.--0 

ep Thus Eq. (7-4) can be symbolized 

(a) {bl 
Fm. 7-3. Incremental model for a triode 
in Class A1 operation. (a) Increment in 
plate voltage only; (b) increments in both 
grid and plate voltages. 

by the simple circuit shown in Fig. 
7-3a. 

Suppose now that in Class A1 
operation both eb and ec are given 
small increments; the resulting 
increment in ibis 

(7-5) 

If the partial derivatives, which have the dimensions of conductance, 
are given suitable symbols, and if the increments in ib, eb, and ec are 
designated iP, ep, and eg, then Eq. (7-5) becomes 

(7-6) 

where gp is again the incremental plate conductance, and Um is the incre-
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rnental grid-to-plate transconductance, or, more briefly, the rnutual con
ductance. Again, ic is identically zero, die is zero, and from (7-3) 

(7-7) 

Equations (7-6) and (7-7) correspond to the circuit shown in Fig. 7-3b. 
Figures 7-3b and 7-2 show two different linear incremental models for 

the vacuum triode in Class A1 operation. These circuits give the correct 
relations among small increments in the currents and voltages around a 
stated quiescent point. They cannot in general be used in calculating total 
voltages and currents, for they match the tube characteristics over only a 

C2 

Ro 
+ 

eo 
es 

Ck 

- (a) 

g p 

+ + + 
!!s i gp RL Ro eo 

- (bl 
Fm. 7-4. A Class A1 triode voltage amplifier and its incremental model. (a) Circuit; 
(b) incremental model. 

small region. The model of Fig. 7-3b can be put in the same form as that 
in Fig. 7-2 by the simple process of a source transformation. The trans
formation shows that if the two models are to be equivalent, the relation 

(7-8) 

must hold. Both of these models are suitable representations for the 
triode, and both are widely used. The choice between them is dictated 
by convenience. A typical triode amplifier and its incremental linear 
model for the condition that the capacitors act as short circuits to the 
signal components of current and voltage are shown in Fig. 7-4. The 
capacitors and the direct voltage source Ebb are replaced by short circuits 
in the model. The output voltage resulting from any specified input 
signal voltage is easily evaluated from the model in Fig. 7-4b. 
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When the vacuum triode is used at high frequencies, above a few tens 
of kilocycles per second, the effects of the interelectrode capacitances 
must be accounted for. Figure 7-5 shows an incremental model for the 
triode that accounts approximately for these effects. This model is 
useful in the band of frequencies up to a few tens of megacycles per second. 
At higher frequencies, lead inductance and the transit time required by 
the electrons in passing from the 
cathode to the plate must also be 
accounted for. It is well to re
member that the actual values of 
the interelectrode capacitances are 
not constant but depend on the 
tube voltages and currents. This 
fact can often be ignored, but in Frn. 7-5. Triode model accounting for 

tube capacitances and tube noise. 
some instances it becomes quite 
important. For example, it imposes the principal limitation on the 
frequency stability that can be obtained with many types of vacuum
tube oscillators. 

The voltage source en in Fig. 7-5 accounts for the noise generated in 
the tube. The noise source and the interelectrode capacitances are 
usually not included in the model unless they have a significant effect on 
the performance of the circuit. 

7 -2. Incremental Triode Parameters. The parameters µ, Ym, and 
rp = 1/gp are the incremental parameters, or the differential coefficients, 
of the vacuum tube. They are closely related to the volt-ampere char
acteristics of the tube, as is brought out in the development that follows. 
The plate conductance, 

aib dib / 
gp = aeb = deb eo Const 

(7-9) 

is the slope of the plate characteristic at the quiescent operating point. 
The mutual conductance, 

aib dib / 
Ym = aec = dee eb const 

(7-10) 

is the slope of the constant-voltage transfer characteristic (Fig. 5-6) at 
the quiescent point. The connection between the amplification factor 
and the characteristic curves can be found by writing (7-5) in the form 

dib = gp deb + Ym dee (7-11) 

Jf eb and ee take on increments of such magnitude and sign that ib remains 
CQn~tant? then di-9 =;; o? and (7-11) yields 

deb I Om __ , =,...__=(Jr =.u. . . - . m .P ~ 

(lei; i. ponst (/p, 
(7-l~) 
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Thus the amplification factor is equal to the magnitude of the slope of 
the constant-current transfer characteristic shown in Fig. 5-5. The 
minus sign in (7-12) results from the fact that eb and ec must take on 
increments of opposite sign if ibis to remain constant. 

Certain important facts about the incremental parameters of the triode 
can be deduced from their relations to the slopes of the characteristic 
curves for the tube. When the slopes of the plate characteristics and the 
constant-voltage transfer characteristics are positive, gm and rp are 
positive; when the slope of the constant-current characteristic is negative, 
the amplification factor is positive. These parameters are usually, but 
not always, positive. The plate characteristics of certain types of 
vacuum tubes have negative slopes in certain ranges of voltage and 
current. The incremental plate resistance for such tubes is negative in 
the vicinity of quiescent points in this region. The slopes of the constant
current characteristics are relatively constant over a wide range of 
currents and voltages (except at low values of plate current); hence the 
amplification factor is relatively constant except at low values of plate 
current. The slopes of the plate characteristics and the constant-voltage 
characteristics vary widely over the normal operating range, however; 
hence gm and rp depend strongly on the location of the quiescent point. 
New values of gm and rp must be determined for each new quiescent point. 
Moreover, the quiescent point must be chosen with some care if optimum 
performance of the tube is to be realized. 

It follows from Eqs. (7-9) to (7-12) that the incremental parameters 
can be evaluated by measuring the slopes of the various characteristics 
at the quiescent point. It often happens, however, that only the plate 
characteristics are available. In such cases the tube parameters must 
be evaluated from the plate characteristics alone; a procedure that 
yields satisfactory results in this evaluation is presented in Example 7-1. 

Example 7-1. The triode in the voltage amplifier of Fig. 7-6a has the plate charac
teristics shown in Fig. 7-6b. The problem is to choose the circuit parameters to give 
a specified quiescent operating point and to study the behavior of the circuit under 
small-signal operating conditions. 

a. Determine the values of RL and Rk that are required to locate the quiescent point 
at ib = 4 ma and ec = -4 volts. 

b. Determine the incremental parameters for the triode at the quiescent point. 
c. The applied signal is a small time-varying voltage, and the capacitors in the 

circuit behave as short circuits to the signal components of voltage and current. By 
what factor is the signal voltage amplified? 

d. By what factor is the signal of part c amplified if the bypass capacitor Ck is 
removed? 

Solution. a. The relations between the quiescent operating point and the circuit 
parameters are illustrated in Fig. 6-4. The voltage drop across Rk must be 4 volts 
under quiescent conditions; hence, 
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R -Eco 4 k"l h k=--=-=1 10m 
Ibo 4 

The dynamic operating path passes through the quiescent point and intersects the 
plate-voltage axis at Cb = Ebb - Ek = 296 volts. The graphical construction of 
Fig. 7-6b shows that this path intersects the plate-current axis at 

1 = Ebb - Ek = 7 ma 
O RL 

Thus RL = Ebb - Ek 296 . 
10 

= 1 = 42.3 k1lohms 

b. The amplification factor is nearly constant over most of the area of the plate 
characteristics shown in Fig. 7-6b; hence it can be evaluated with sufficient accuracy 

(a) 

15 

10-

lo=7 
5 

4 

Ibo =4 +1--1-----_, 

I I 
I I ) , 

50v 90v 194v 210v 

(bl 

eb 
volts 

FIG. 7-6. Analysis of a triode amplifier under small-signal conditions. (a) Circuit; 
(b) graphical construction. 

by substituting relatively large increments of Cb and Cc in Eq. (7-12) provided they are 
chosen so that ibis held constant at its quiescent value. In addition, the increments 
should be chosen so that the quiescent point lies near the center of the range covered. 
Following this procedure, Fig. 7-6b shows that a change of grid voltage from Oto -8 
volts requires a change of plate voltage from 50 to 210 volts to maintain the plate 
current in the triode constant at its quiescent value. Accordingly, Eq. (7-12) yields 

µ, ~ _ Llcb = _ 210 - 50 = 160 = 20 
Llcc -8 - 0 8 

Equation (7-9) shows that the plate conductance is equal to the slope of the plate 
characteristic at the quiescent point. To facilitate the evaluation of this slope, a 
tangent to the plate characteristic at the quiescent point is constructed as shown in 
Fig. 7-6b. The slope is thus 

lO-O 10 01 ilrh 
gp = 194 - 90 = 104 ~ · m im 0 

and rp = 10 kilohms 



160 ELECTRONIC CIRCUITS 

Finally, the transconductance is given by Eq. (7-12) as 

Ym = !!:_ = µgp = (20)(0.1) = 2 millimhos 
rp 

If an attempt is made to evaluate the transconductance directly from the plate c:barac• 
teristics, it is necessary to take relatively 
large inc,r,ements of ib and ec along •~ line of 
constant ei,. :Sinoe the transconductance 
varies considerably with changes in i1,,, 

es this procedure is likely to yield inaccurate 

{a) 

{b) 

results. 
c. The incremental model for the ampli

fier is shown in Fig. 7-7a. The output 
voltage from this circuit, eos, is the signal 
component of the output voltage e0 shown 
in Fig. 7-6a. Since e0 = e., the output 
signal voltage, is 

42.3 ( ) eo• = - 10 + 42_3 20e. = -16.2e. 

and eo• = A = -16.2 
e. 

FIG. 7-7. Incremental models for the 
amplifier of Fig. 7-6. (a) With cathode 
bypass capacitor; (b) without cathode 
bypass capacitor. 

d. With the bypass capacitor removed, 
the incremental model takes the form 
shown in Fig. 7-7b. In this case the out
put signal voltage is 

eos = -42.3ip 

and the loop equation for the plate circuit is 

But 
Thus 

and 

The amplification is thus 

(42.3 + 10 + l)ip = 20e0 

e0 = e. - (l)ip 
(53.3)ip = 20e. - 20ip 

73.3ip = 20e. 
eo• = ( -42.3) (20/73.3)e. 

-11.5e. 

A = eos = -11.5 
e. 

Removing the cathode bypass capacitor reduces the voltage amplification by an 
appreciable amount. 

The dependence of the incremental tube parameters on the quiescent 
operating point can be displayed in a variety of ways; one of these is 
shown in Fig. 7-8. The dotted lines superimposed on typical triode 
plate characteristics are lines of constant rp; that is, the incremental 
plate resistance is the same at every point lying on any one of these lines. 
The plate resistance corresponding to each line is marked in kilohms at 
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the end of the line. Since µ = gmrp, it follows that in so far as µ is 
constant over the plate characteristic, the lines of constant rp are also 
lines of constant Um• The values of gm corresponding to a constant value 
of 20 for µ are indicated in parentheses on Fig. 7-8. These values of 
gm based on the assumption of a constant amplification factor are reason
ably accurate except at low values of plate current. 

It is well to be realistic about the values of the incremental tube 
parameters, no matter how they are determined. It has been stated 
previously that the characteristics of any particular tube of a given type 
may deviate considerably from the published characteristics. For exam
ple, values of gm may differ by as much as 2: 1 in two tubes of the same 
type. It should be noted also that careless drafting in the preparation 

15 

10 

5 

0 

Fm. 7-8. Dependence of tube parameters 
on the quiescent operating point. 

Fm. 7-9. Incremental model for a triode 
amplifier. 

of characteristic curves is sometimes responsible for significant aberrations 
in these curves. 

7 -3. Choice of Quiescent Point. It is clear from the preceding sec
tions that the performance of a vacuum tube depends upon the location of 
the quiescent point. Therefore it is appropriate to summarize the more 
important factors entering into the choice of the quiescent point. For 
Class A1 operation the quiescent point must be chosen so that the signal 
voltage does not make the grid positive relative to the cathode and so 
that it does not cut the plate current off. In addition, it is often necessary 
to choose the quiescent point so that the operating path lies wholly in a 
region of low distortion. 

Further considerations in the choice of the quiescent point follow from1 
Fig. 7-9, which is the incremental model for a common ,triode amplifi~ri· 
The voltage amplification· of this circuit 1 can be written, by inspection. 
It is __ 

ea -µRL -µ 
A = ea·-= r-P-. +--R-L -= _1 _+_r_p~(~R-1.i (7-13) 
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To the extent thatµ remains constant, maximum amplification is obtained 
by making the ratio rp/RL as small as possible. But for a fixed plate
supply voltage and a fixed grid bias, the larger the RL, the smaller the 
quiescent plate current, and the larger rp. Hence an optimum compro
mise among these variables must be sought. In some instances the 
greatest amplification is obtained with a quiescent point that lies at 
very low values of plate current and voltage. Such ope~ation is called 
starved operation. 

PROBLEMS 

7-1. One section of a 12AX7 twin triode is used in the voltage-amplifier circuit 
shown in Fig. 7-4a. The plate-supply voltage is 250 volts, the source resistance is 
R 8 = 25 kilohms, the grid return resistance is Ru = 330 kilohms, and the resistance 
connected across the output terminals is Ro = 500 kilohms. The problem is to choose 
RL and R,. to give a specified quiescent operating point and to study the behavior of 
the circuit under small-signal conditions. 

a. Determine the values of RL and Rk that will locate the quiescent operating point 
at eb = 150 volts and ib = 0.5 ma. 

b. Evaluate the three incremental triode parameters at the quiescent point. 
c. Give an incremental linear model for the amplifier using the current source repre

sentation for the tube. The mode of operation is understood to be Class A1, the 
bypass and coupling capacitors act as short circuits to the signal components of 
current and voltage, and the parasitic capacitances are negligibly small. 

d. Determine the voltage amplification, A = eo/ea. 
7-2. One section of a 12AT7 is used in the voltage-amplifier circuit of Fig. 7-4a. 

The circuit parameters and the supply voltage are Rs = 500 ohms, Ru = 500 kilohms, 
Rk = 200 ohms, RL = 10 kilohms, Ro = 100 kilohms, and Ebb = 350 volts. The 
mode of operation is Class A1, parasitic capacitances are negligibly small, and the 
bypass and coupling capacitors act as short circuits to the signal components of 
current and voltage. The behavior of the circuit is to be studied under small-signal 
conditions. 

a. Determine the quiescent operating point, and evaluate the incremental tube 
parameters at this point. 

b. The input-signal voltage is a train of pulses having a waveform similar to that 
shown in Fig. 5-28. The amplitude of each pulse is 50 mv. What is the amplitude 
of the pulses at the output of the amplifier? 

c. How could the circuit be modified to give greater voltage amplification using the 
same tube? 

7-3. There are important applications for each of the circuits shown in Fig. 7-10. 
The grid current in each tube is zero, and the parasitic capacitances are negligibly 
small. Give an incremental linear model for each circuit. Show clearly the con
trolling voltage for each controlled source. Do not assume that the bypass and 
coupling capacitors are short circuits. 

7-4. The amplifiers of Figs. 7-lOa and care to be compared with respect to voltage 
amplification under the condition that Rs = 0. 

a. Give an incremental model for each circuit with Rs = 0 and with the coupling 
and bypass capacitors treated as short circuits for signal components of current and 
voltage. 

b. Derive an expression for the y_olt~,ge ~mpli£ic.atjon 9f ~ach cir91Jit hJ. term~ of the 
tJJ.b!cl ~»d circµit pa;r~roeters, 
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+ 
+ 

(cl (dl 
Frn. 7-10. Triode amplifier configurations for Prob. 7-3. (a) Grounded-cathode 
amplifier; (b) grounded-plate amplifier; (c) grounded-grid amplifier; (d) cathode
coupled amplifier. 

7-5. One section of a 6SN7 twin triode is used in the ampli:fier shown in Fig. 6-15b. 
The tube parameters are µ = 20 and rp = 10 kilohms; the circuit parameters are 
R = 25 kilohms and L = 4 henrys. The signal voltage is es = -5 + cos 20001rt. 

a. What is the class of operation? 
b. Give an incremental model for the amplifier. Parasitic capacitances are negligi

bly small. 
c. Determine the amplitude and phase of the voltage across the inductor, using the 

sinusoidal component of es as the phase reference. 
7-6. One section of a 12AX7 is used in the circuit shown in Fig. 7-4a. The circuit 

parameters and supply voltage are Rs = 0, R,1 = 1 megohm, Rk = 1 kilohm, Ro = 

p 

Fio. 7-11. Triodes in _parallel for Prob. 7-7, 
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1 megohm, and Ebb = 300 volts. The problem is to investigate the dependence of the 
voltage amplification on the value of RL. 

a. Construct the grid bias line on the plate characteristics, and locate the quiescent 
operating point for RL = 100, 200, 300, 600, and 1000 kilohms. 

b. Evaluate rp at each of the points located in part a. 
c. Plot a curve of voltage amplification versus RL for the range of RL covered in 

part a. Assume thatµ, remains constant as RL is changed. 
d. For each value of RL specified in part a, what is the greatest peak value that a 

sinusoidal input signal can have without making ec positive? 
7-7. Two triodes are connected in parallel as shown in Fig. 7-11. The incremental 

parameters for Ti are (Jm = 2 millimhos and gp = 0.1 millimho; the parameters for 
T 2 and µ, = 60 and rp = 15 kilohms. What are the incremental parameters for the 
composite tube formed by the parallel connection of T1 and T2? 



CHAPTER 8 

THE BASIC TRANSISTOR AMPLIFIER 

The preceding chapters have shown that the vacuum triode is a physicaI 
device that behaves approximately like an ideal voltage amplifier. The· 
transistor, which is a semiconductor triode, behaves very much like an 
ideal current amplifier; hence in many respects it acts like the dual of the· 
vacuum triode. Both vacuum tubes and transistors can be used to, 
amplify electrical signals in general. Vacuum tubes are superior in 
certain respects, and transistors are superior in others. 

Transistors are inherently tiny devices, and they can operate effectively
with bias voltages of only one or two volts. In addition, they have noi 
power requirement corresponding to the cathode-heating power required! 
by the vacuum tube. These facts are of great importance in the design 
of portable equipment such as hearing aids and mobile equipment such 
as automatic pilots, navigational aids, and communication radios for 
aircraft and small boats. They are also important in the design of large 
equipment such as electronic computers, in which amplifiers are used by 
the thousands. Another factor of importance where many amplifiers 
are required is the fact that the life of the transistor is unlimited, at 
least in principle, whereas that of the average vacuum tube is limited to 
a few thousand hours by deterioration of the cathode. 

On the other hand, the transistor, being a semiconductor device, is 
quite sensitive to changes in temperature, and it cannot be used at all 
at temperatures above about 75°0 in the case of germanium and 200°C 
in the case of silicon. Since the Zener voltage is ordinarily a few tens 
of volts, the transistor cannot be used where large signal voltages are 
required; they can, however, deliver large signal currents and substantial 
amounts of power. 

Transistors are made in both the junction and the point-contact forms. 
However, since the internal mechanism of the point-contact transistor 
is not very well understood, and since the junction transistor is superior 
to the point-contact type in most applications, only the junction transistor 
is discussed in the following sections. 

8-1. The Transistor as an Amplifier. The transistor is shown pic
torially in the basic amplifier circuit in Fig. 8-la; the schematic repre-

165 
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sentation of this amplifier is shown in Fig. 8-lb. The physical make-up 
of the transistor is much like that of the semiconductor diode presented 
in Sec. 3-2. The N-P-N transistor shown in Fig. 8-1 consists of a thin 
slice of P-type semiconductor sandwiched between two pieces of N-type 
semiconductor; thus it has two P-N junctions like those discussed in 
Sec. 3-5. The behavior of the transistor depends primarily on the flow 
of current across these junctions. 

In normal amplifier operation the lower junction in Fig. 8-la is biased 
in the forward direction; hence electrons in the lower piece of N-type 
material, called the emitter, move m the forward direction across this 

ic 

+ 

(a) 

C 

(b} 

Frn. 8-1. The basic transistor amplifier circuit. (a) Pictorial representation; (b) 
schematic representation. 

junction into the slice of P-type material, called the base. These elec
trons behave much like electrons generated by thermal agitation in the 
base, and they diffuse through the base in a random manner. In normal 
amplifier operation the upper junction is biased in the reverse direction; 
hence the free electrons in the base that wander into the vicinity of the 
upper junction are swept across the junction into the upper piece of 
N-type material, called the collector, creating a reverse current across 
this junction. Since the width of the base is very small, almost all the 
electrons injected by the emitter into the base are collected by the collec
tor, and the collector current ia is approximately equal to the electron 
current across the emitter junction. The base current iB is approximately 
equal to the hole current across the emitter junction. This current can 
be made much smaller than the electron current by proper adjustment 
of the impurity concentrations in the emitter and base. Since the ratio 
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of electron current to hole current across the emitter junction 
remains nearly constant over a wide range of currents, it follows that a 
small input current, iB, can control a large output current, ic, and current 
amplification is realized. Typical values of current amplification lie in 
the range between 20 and 100. 

The P-N-P transistor is made by sandwiching a piece of N-type 
material between two pieces of P-type material. The behavior of the 
P-N-P transistor is essentially the same as that of the N-P-N transistor. 
The principal difference in so far as transistor circuits are concerned is 
that in order to bias the emitter junction in the forward direction and 
the collector junction in the reverse direction, the voltages applied to the 
P-N-P transistor must be opposite in polarity from those shown in Fig. 

iB ecE=O ic 
ma \ ma 250 

10 

0.2 ecE>2 volts 150 

5~ 
100 

0.1 . ,,,,,- iB=50µa 

0 -0.5 1.0 eBE 0 5 10 15 ecE 
volts volts 

(a) (b) 

Frn. 8-2. Transistor characteristics. (a) Input characteristic, iB = JB(ecE,eBE); (b) 
output characteristic, ic = Jc(ecE,iB). 

8-1. The N-P-N transistor is used in most of the discussion that follows 
for the reason that sign conventions are simpler and more natural than 
in P-N-P transistor circuits. It should be understood that the behavior 
of the two transistors is essentially identical in so far as signal components 
of voltage and current are concerned. The arrow at the emitter in the 
schematic representation of Fig. 8-lb indicates the direction of forward 
current for the emitter junction; hence it indicates the type of transistor. 

The performance of the transistor as an amplifier can be examined 
further by comparing its input and output characteristics with the char
acteristics of the ideal current amplifier shown in Fig. 4-3. A typical 
set of experimentally measured transistor characteristics is shown in 
Fig. 8-2; the symbols used on these characteristics are defined in the 
circuit diagrams of Fig. 8-1. The input characteristic for any fixed 
value of positive collector voltage is essentially the same as the volt
ampere characteristic of a semiconductor diode; it deviates from the 
ideal input characteristic in that the input voltage is not zero. When 
the base is biased positively, however, the input voltage is relatively small. 
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The output characteristics in the first quadrant are very much like 
those of an ideal current amplifier. The fact that they are nearly 
uniformly spaced for equal increments of base current shows that the 
output current varies almost linearly with the input current. The fact 
that the output characteristics are rotated slightly from the horizontal 
indicates that the transistor has a finite output resistance. It should be 
noted that the dependence of the collector current on the base current 
varies considerably among different transistors of the same type. Hence 
~he output characteristic for any particular transistor may be appreciably 
different from the published characteristics for that transistor type. The 
published characteristics are the average characteristics for the transistor 
type. 

Transistors can be made in several ways. Grown-junction and alloy
junction transistors are made in the same way as grown-junction and 

N 
N 

~~~~..,;.,.;;,..,,.,..;~ 
p 

(b) 

Frn. 8-3. Junction transistor structures. (a) Alloy junction; (b) diffused base. 

alloy-junction diodes;1 these processes are described briefly in Sec. 3-5. 
The structure of a grown-junction transistor is illustrated in Fig. 8-la, 
and that of an alloy-junction transistor is shown in Fig. 8-3a. 2 Figure 
8-3b shows the structure of still another type, known as the diffused-base 
transistor. 3, 4 The base of this latter transistor is formed by diffusing a 
suitable donor impurity into the surface of a P-type wafer from the vapor 
state to form a thin N-type layer. This base layer is separated from 
the original wafer, which serves as the collector, by a P-N junction. 
The emitter and its P-N junction are formed by alloying a film of alum
inum with the base layer. Forming the base of the transistor by this 
diffusion process provides two important features: it permits very thin 
base layers to be formed ( of the order of one ten-thousandth of a centi
meter), and it provides a nonuniform distribution of the impurity in the 
base layer. It will be seen that both of these factors act to enhance 
greatly the high-frequency performance of the transistor. 5 

8-2. Current Flow in Transistors. The flow of current in junction 
transistors can be studied with the aid of the potential-distribution 
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diagrams in Fig. 8-4. With no voltages applied to the transistor, an 
equilibrium is established, as in the case of the junction diode, with a 
potential barrier across each P-N junction; the corresponding potential 
distribution is shown in Fig. 8-4b. If ecB is then made positive, the 
collector junction is biased in the reverse direction, and the height of 
the potential barrier at the collector junction increases to <l>o + ecs volts. 
A small reverse current flows across this junction as a result of carriers 
generated by thermal agitation in the collector and base and as a result 
of electrons in the emitter that have enough energy to pass over the 
barrier at the emitter junction. 

If esE is now given a small positive value, the potential distribution 
takes the form shown in Fig. 8-4c, and the height of the potential barrier 

e _ eBE + b - ecB + C 

iE 
iB ic 

- + -
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Frn. 8-4. Potential distributions in a transistor. (a) Transistor; (b) potential dis
tribution for eBE = ecB = O; (c) potential distribution for O < eBE < ecB, 

at the emitter junction decreases to <l>o - eBE volts. The electron flow 
from the emitter into the base therefore increases, and practically all 
these electrons diffuse across the base and enter the collector; hence the 
reverse collector current increases. The component of current across 
the emitter junction associated with the flow of holes from the base into 
the emitter flows out of the emitter terminal, through the source of 
eBE, and into the base terminal; the base current is approximately equal 
to the hole current flowing across the emitter junction. 1 As mentioned 
in Sec. 8-1, this current is made much smaller than the electron current 
across the emitter junction by controlling the impurity concentrations 
in the emitter and base. 

The currents that flow in the transistor depend on the number of 
charge carriers that are able to cross the potential barriers in each second. 
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The voltage eBE shown in Fig. 8-4a is a forward voltage impressed across 
the emitter junction. Hence the conventional current that would flow 
across this junction from the base to the emitter if the collector were 
removed is given by the volt-ampere law for theP-N junction [Eq. (3-29)]: 

(8-1) 

where A = qe/kT. Similarly, the conventional current that would flow 
across the collector junction from the base to the collector if the emitter 
were removed is 

(8-2) 

The minus sign is required in the exponent because ecB is a reverse volt
age applied across the collector junction, whereas Eq. (3-29) gives the 
current in terms of a voltage applied in the forward direction. 

The total current across the collector junction consists of the current 
i2 and a portion of i1. The first of these components is a conventional 
flow from base to collector. The second component, p1i1, results from 
electrons that flow from the emitter into the base and then into the 
collector. The collector current ic is the net flow of conventional current 
across the collector junction from collector to base; hence 

ic = p1i1 - i2 
= pif 1[exp (AeBE) - 1] - l2[exp (-AecB) - 1] (8-3) 

When ecB is more positive than about 0.1 volt, as is normally the case, 
the second exponential term in (8-3) is much smaller than unity, and 

ic ~ p1l1[exp (AeBE) - 1] + 12 

In a similar manner the emitter current is found to be 

iE = l1[exp (AeBE) - 1] - p2l2[exp (-AecB) 
~ 11 [exp (AeBE) - 1] + p2l2 

1] 

(8-4) 

(8-5) 
(8-6) 

where p2 is the fraction of i2 that flows into the emitter. The current 
flowing into the base terminal of the transistor is given by 

iB = iE - ic 
= (1 - p1)I 1[exp (AeBE) - 1] + (1 - p2)J 2 [exp ( -AecB) - 1] (8-7) 

The collector current in a transistor results primarily from the diffusion 
of charge carriers by random motion across the base of the transistor. 
When a signal current is applied between the base and emitter terminals, 
the collector current does not respond until some time has elapsed. This 
fact seriously impairs the performance of the transistor at high fre
quencies. In addition, the capacitance across the collector junction, 
discussed in Sec. 3-5, tends to short-circuit the output at high frequencies. 
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In grown-junction and alloy-junction transistors these effects become 
appreciable at frequencies just above the audible band. To minimize 
these effects the base must be made as thin as possible to reduce the 
transit time of carriers across the base, and the depletion region at the 
collector junction must be made as wide as possible to reduce the collector 
capacitance. Both of these ends are accomplished in the diffused-base 
transistor, with the result that the behavior of the transistor is in some 
cases independent of frequency up to a few tens of megacycles per second 
in the basic amplifier circuit. 

The superior high-frequency performance of the diffused-base transistor 
results from the following facts: First, the process by which base is formed 
permits a high degree of control over the thickness of the base layer; 
hence very thin base layers are possible. Secondly, the diffusion process 
results in a much higher concentration of impurity atoms on the emitter 
side of the base than on the collector side. This nonuniformity results 
in an electric field in the base that accelerates the charge carriers from 
the emitter to the collector, and a uniform drift toward the collector is 
thereby superimposed on the random diffusion of the carriers. For this 
reason these transistors are also called drift transistors. Finally, the 
small concentration of impurity atoms 
in the base near the collector results 
in a wide depletion layer at the col
lector junction and a correspondingly 
small collector capacitance. 

The potential distribution in the 
drift transistor6 and the mechanism 
by which it is developed are illus
trated in Fig. 8-5. The concentration 
of acceptor atoms in the base, and 
hence the concentration of bound 
negative charges, is much greater at 
the emitter junction than at the col
lector junction. The free carriers in 
the base tend by the random motion 
of diffusion to assume a uniform 
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concentration, and as a result there Frn. 8-5. Potential distribution in a 
is an excess of negative charge near drift transistor. (a) Charge distri-

bution; (b) potential distribution. 
the emitter junction and an excess 
of positive charge near the collector junction. This charge distribution, 
indicated in Fig. 8-5a, sets up an electric field that accelerates free 
electrons across the base from the emitter to the collector. The 
nature of the potential distribution in the transistor is indicated in Fig. 
8-5b. The excess of negative charge Pel:!ir the emitter junction depresses 
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the potential in that region, and the excess of positive charge near the 
collector junction raises the potential in that region. Free electrons in 
the base are accelerated toward the region of high potential. 

A carrier-depletion region exists in the vicinity of each junction in the 
transistor in accordance with the discussion of the P-N junction in 
Sec. 3-5. As a result of the relatively small impurity concentration in 
the base at the collector junction, the depletion region extends relatively 
far into the base of the drift transistor. It follows from this fact that 
the capacitance across the collector junction of the drift transistor is 
quite small when a suitable reverse voltage (bias) is applied. 

The power input to the transistor in the basic amplifier of Fig. 8-1 
at the collector-to-emitter terminals is 

(8-8) 

This collector dissipation appears as heat in the transistor. Since iB 
and eBE are normally much smaller than ic and ecE, respectively, the 
power input at the base-to-emitter terminals is normally negligible in 
comparison with pc. Since the transistor is damaged if the temperature 
becomes excessive, there is a maximum permissible collector dissipation 
that must not be exceeded. For typical small current-amplifier tran
sistors, the collector dissipation must not exceed a few tens or hundreds of 
milliwatts. As in the case of the vacuum triode, the maximum permis
sible collector dissipation fixes a hyperbola on the collector-characteristic 
family; ordinarily the quiescent operating point for the transistor must 
lie below this hyperbola. 

8-3. Graphical Analysis of the Basic Transistor Amplifier. The 
graphical analysis of the transistor amplifier is essentially identical with 
the graphical analysis of the vacuum triode. The circuit and the graphi
cal construction are shown in Fig. 8-6. The base-to-emitter voltage is 

(8-9) 

In normal operation eBE is negligibly small in comparison with E 1 ; hence 
(8-9) gives iB approximately as 

(8-10) 

where I B = Ei/R1 is the average value of iB under the assumption that is 
is a time-varying current with zero average value. 

The collector-to-emitter voltage is given by 

from which 

ecE = E2 - RLic 

ic = E 2 _ ecE = I _ ecE 
Ri Ri O R1, 

(8-11) 

(8-12) 
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This is the equation of the load line shown in Fig. 8-6b. The intersection 
of the load line with the collector characteristic corresponding to the value 
of iB given by (8-10) is the operating point. Under quiescent conditions, 
is = 0 and is = Is = Ei/R1; the corresponding quiescent point is indi
cated in Fig. 8-6b. 

C ic 

(al (b) 

FIG. 8-6. Graphical analysis of the basic transistor amplifier. (a) Circuit; (b) 
graphical construction. 

The current-transfer characteristic for the amplifier in Fig. 8-6a can 
be constructed by assuming various values of is and reading the resulting 
value of ia from the load line in Fig. 8-6b. The transfer characteristic 
for a typical amplifier is shown in Fig. 8-7. When is is negative and 
larger than IB, the emitter junction 
is biased in the reverse direction, 
and both iB and ia are essentially 
zero. This condition corresponds to 
the right-hand end of the load line 
in Fig. 8-6b. When is has large 
positive values, the collector satu
rates, and further increases in is do 
not produce further increases in ic. 
This condition corresponds to the 
left-hand end of the load line. The 
central linear portion of the transfer 
characteristic is the region in which 
amplifiers normally operate. 

It is clear from the transfer char

ic 
ma 

-40 -20 20 

\ i8 =-IB 

Collector 
saturation 

40 is 
µa 

acteristic that if the signal applied FIG. 8-7. Current transfer characteristic. 
to the amplifier is too large, there 
will be waveform distortion as a result of collector cutoff and collector 
saturation. The discussion of distortion presented in connection with the 
vacuum triode applies qualitatively to the transistor as well. 
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Transistors can be operated in Class A, B, and C modes. In Class A 
the collector current is never cut off; in Class B the transistor is biased 
approximately at the cutoff point; and in Class C the transistor is biased 
beyond cutoff. 

8-4. Power Relations in the Basic Transistor Amplifier. The power 
relations in the transistor amplifier are completely analogous to those 
in the vacuum-triode amplifier. The collector current and the collector
to-emitter voltage can be expressed as 

ia =la+ ic and (8-13) 

where I c and EaE are the average values of current and voltage, and ic 
and ece are the time-varying components. The time-varying components 
have zero average value. The power drawn from the collector supply in 
the circuit of Fig. 8-6a at each instant is thus 

(8-14) 

Since E2 is constant and ic has zero average value, the average value of 
E 2ic is zero, and the average power drawn from the collector supply is 

(8-15) 

If there is negligible waveform distortion, I a and P cc are both independent 
of the signal amplitude. 

The power absorbed by the load at each instant is 

PL = RLi'J = RL(Ia + ic) 2 

=Rd&+ 2Rdcic + RLi! (8-16) 

The quantity 2RLia is constant, and the average value of ic is zero; 
hence the average value of the second term in (8-16) is zero, and the 
average power absorbed by the load is 

The power dissipated by the transistor at each instant is 

Pc = ecEia = (E2 - RLia)ia = E2ia - Rd'J 
= Pee - PL 

The average power dissipated by the transistor is therefore 

Pa= Paa - PL 

(8-17) 

(8-18) 

(8-19) 

Thus in distortionless Class A operation, the collector dissipation is 
maximum under quiescent operating conditions, and it decreases as the 
signal level is increased. 
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8-5. Piecewise-linear Analysis. A piecewise-linear model that repre
sents the transistor quite well for many purposes is shown in Fig. 8-Sa. 
This model is quite simple, for in certain respects the transistor is a 
good approximation to the ideal current amplifier. The output 
characteristics, shown in Fig. 8-2, are nearly straight, horizontal lines, 
equally spaced for equal increments of base current; this fact is accounted 
for by the current-controlled current source in the model. Since the 
emitter and collector junctions act in somewhat the same manner as 
junction diodes, the base cannot have any appreciable positive potential 
relative to either the emitter or the collector (in N-P-N transistors). 
The action of these two junctions is accounted for, to a suitable approxi
mation for most purposes, by the two ideal diodes in the model. In 
normal amplifier operation the emitter diode is biased in the forward 

e e 

(a) (bl 
Fm. 8-8. Piecewise-linear models for the N-P-N transistor. (a) Source controlled 
by iB; (b) source controlled by iE. 

direction, and the collector diode is biased in the reverse direction; hence 
in normal operation the former acts as a short circuit and the latter 
acts as an open circuit. 

There is only one parameter, cxcn, to be determined in the piecewise
linear model for the transistor. The value of cxcn is chosen to make the 
collector current in the model have the same value as the collector current 
in the transistor at a suitable point on the collector characteristic. Thus 
if the base current is ina and the collector current is ica at the chosen 
point, then cxcn = icalina gives a satisfactory approximation. Typical 
values for cxcn lie in the range between 20 and 100. 

The model of Fig. 8-8a is usually quite satisfactory for calculating total 
currents and voltages in transistor circuits. However, for certain pur
poses it is desirable to have the current of the controlled source expressed 
as a function of the emitter current iE rather than the base current iB, 
The currents in the model are related by 

and 
iE =in+ ic 
ic = CXcBiB 

(8-20) 
(8-21) 
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Eliminating iB between these two equations yields 

(8-22) 

The quantity 

(8-23) 

is the emitter-to-collector current-amplification factor, and 

is the base-to-collector 

<:X.CE 
<:X.CB = ---

1 - acE 
(8-24) 

current-amplification factor. Thus ·the model 
shown in Fig. 8-8b is equivalent to 
the one shown in Fig. 8-8a. 

FIG. 8-9. Transistor model for linear 
Class A operation. 

Piecewise-linear models for the 
P-N-P transistor are derived in the 
same manner. The results are 
the same except for the fact that the 
two diodes in the model are reversed. 
For linear Class A operation, the 

emitter diode acts as a short circuit and the collector diode acts as an 
open circuit in both N-P-N and P-N-P transistors. Hence for this mode 

(a) 
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diode open 

ci:cuitl 
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FIG. 8-10. Current transfer characteristic for the piecewise-linear model of a transistor 
amplifier. (a) Model; (b) transfer characteristic. 

of operation the model of Fig. 8-9 represents both types of transistors. 
This model is identical with the ideal current amplifier; however, it is 
only an approximate representation for the transistor. 

If the transistor in the amplifier of Fig. 8-6a is replaced by its piecewise
linear model, the circuit shown in Fig. 8-lOa results. This circuit can 
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be analyzed in a straightforward manner. The current-transfer char
acteristic for the amplifier can be constructed by determining the points 
at which the diodes change from the conducting to the nonconducting 
state; the result is shown in Fig. 8-lOb. The left-hand break occurs 
when the voltage across the emitter diode and the current through 
both diodes are zero. Hence at this point the base terminal is at ground 
potential, and iB = -io = -aoBiB. The condition iB = -aoBiB can 
be satisfied only if iB = 0. It follows from these facts that at the left
hand break in the transfer characteristic ia = -Ei/R1 = -IB, 

The right-hand break in the characteristic occurs when the current 
through the collector diode and the voltage across both diodes are zero. 

J 
40iB -

+ 
25 volts ....__ ___ ---u 
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e 

Fm. 8-11. Transistor-regulated power supply for Example 8-1. (a) Circuit; (b) 
model for regulator. 

Hence at this point both the collector and the emitter are at ground 
potential, and aaBiB = i0 = E2/RL. It follows from these facts that 
iB = Ed aaBRL and, since the base is at ground potential, 

is = iB - le = E2/ aaBRL - I B 

The piecewise-linear transfer characteristic of Fig. 8-lOb should be com
pared with the graphically determined characteristic shown in Fig. 8-7. 

Example 8-1. A d-c power supply with a transistor voltage regulator is shown in 
Fig. 8-lla. The rectifier consists of four junction diodes connected in a bridge circuit. 
The diode Din the regulator is operated in the avalanche-breakdown region; it pro
vides a voltage drop of 10 volts that is essentially independent of the current through 
the diode. Any change in load voltage causes a compensating change in the voltage 
drop across the transistor from collector to base, and the load voltage is thereby held 
nearly constant in spite of changes in input voltage or load resistance. Determine the 
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load voltage, the transistor currents, and the voltage drop across the transistor when 
the load resistance is 500 ohms and when the current amplification factor for the 
transistor is acB = 40. 

Solution. For an approximate solution the transistor can be replaced with its 
piecewise-linear model as shown in Fig. 8-llb. The avalanche diode is represented 
by a 10-volt battery in this model; it makes the base of the transistor 10 volts positive 
relative to the ground. Thus if EL is less than 10 volts, the emitter diode acts as a 
short circuit and current flows into the base, out of the emitter, and through the 
load. This current causes a current that is 40 times as great to flow into the collector. 
Hence the load voltage is held constant at 10 volts, and the voltage across the tran
sistor from collector to base is 25 - 10 = 15 volts. 

The load current is 
. EL 10 
iE = - = - = 20 ma 

RL 0.5 
The base current is given by 

iB + 40iB = 20 
iB = 2 %1 = 0.488 ma 

and the collector current is 

ic = iE - iB = 20 - 0.488 = 19.5 ma 

The true load voltage in the circuit of Fig. 8-lla is less than the voltage across the 
avalanche diode by the amount of the base-to-emitter voltage drop in the transistor. 
It is clear from the input characteristic of Fig. 8-2a, however, that in normal operation 
the load voltage is never more than a fraction of a volt less than the avalanche voltage. 

8-6. Incremental Linear Models for Transistors. When considering 
total voltages and currents in the piecewise-linear model for the transistor 
amplifier, the small voltage drop between base and emitter is usually 
negligible in comparison with the applied bias voltage. When only the 
increments of voltage and current are considered, however, such a com
parison is usually not possible, and the base-to-emitter voltage drop may 
have an appreciable effect on the performance of the circuit. Further
more, when calculating increments of current and voltage it is usually 
desirable to account for the small effects of variations in collector voltage 
on both the input and output circuits. For these reasons the incremental 
model for the transistor is somewhat more complicated than the piece
wise-linear approximation. 

The base-to-emitter voltage and the collector current can be expressed 
as functions of the base current and the collector-to-emitter voltage: 

and 
CBE = f B(iB,ecE) 

ic = f c(iB,ecE) 
(8-25) 
(8-26) 

If iB and ecE are given small increments, the resulting increment in eBE 
can be expressed as 

(8-27) 
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The partial derivative in the first term of (8-27) has the dimensions of 
resistance, and that in the second term is a dimensionless voltage ratio. 
Replacing these derivatives by suitable symbols and using lower-case 
subscripts to denote incremental quantities yields 

(8-28) 

In a similar manner, the increment in ic can be written as 

(8-29) 

Defining suitable symbols for the quantities in (8-29) and using lower
case subscripts to denote incremental quantities yields 

(8-30) 

Equations (8-28) and (8-30), along with the relation ie = ib + ic, imply 
the circuit shown in Fig. 8-12a. This circuit is an incremental network 
model for the transistor. 

ic C 

~ w 
Frn. 8-12. The hybrid incremental model for the transistor. (a) Model; (b) model 
when µbe can be taken as zero. 

The model of Fig. 8-12a is known as the hybrid model1• 6 for the tran
sistor because a mixed set of voltages and currents is chosen as the set 
of independent variables in Eqs. (8-25) and (8-26). This model is 
convenient for several reasons, among which are the facts that the hybrid 
parameters are easily measured and that they are related in a simple way 
to the input and output characteristics shown in Fig. 8-2. The input 
resistance rn is related to the slope of the input characteristic, and the 
output conductance go is related to the slope of the output characteristic. 
The reverse voltage amplification factor µbe is related to the horizontal 
displacement of the input characteristic resulting from a change in ecE, 
and the forward current amplification factor acb is related to the vertical 
displacement of the output characteristic resulting from a change in iB. 
These incremental parameters must, of course, be evaluated at the 
quiescent operating point; a change in the quiescent point calls for a 
reevaluation of the incremental parameters. 
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A further useful feature of the hybrid parameters is the fact that they 
give a measure of the extent to which the transistor approximates the 
ideal current amplifier. The parameters rn, go, and µbe are all zero in 
the ideal case; to the extent that these parameters for a given transistor 
are negligibly small in comparison with the parameters of the external 
circuit, the transistor behaves as an ideal current amplifier. The values 
of the hybrid parameters for a typical alloy-junction transistor are 
rn = 2.5 kilohms, µbe = 3 X 10-4, acb = 50, and go = 7'50 millimho. For 
the drift transistor, µbe and go are much smaller (in theory, at least) than 
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FIG. 8-13. Transistor-amplifier analysis. (a) Incremental model; (b) equivalent 
circuit. 

for the alloy-junction transistor, while acb and rn have about the same 
values as for the alloy-junction transistor. The reverse voltage-ampli
fication factor is always a small number, and in many cases the voltage 
source µbceee can be replaced by a short circuit in the incremental model. 
In such cases the model reduces to that shown in Fig. 8-12b, and the 
problem of circuit analysis is considerably simplified thereby. 

The hybrid model provides a simple means for evaluating the effects 
of the reverse transmission through the transistor. Consider, for exam
ple, the circuit in Fig. 8-13a, which is an incremental model for the 
transistor amplifier of Fig. 8-6a. If the resistance RL in parallel with 
go is designated by R, then the collector voltage is given by 

Hence 
ece = - acbibR 

µbcece = - µbcacbRib 

(8-31) 
(8-32) 

It follows that if the voltage source in the input circuit of the transistor 
model is replaced by a resistance - µbcacbR, the current and voltage rela
tions in the input circuit are not changed; thus the input circuit can be 
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represented as shown in Fig. 8-13b. It is clear from the Thevenin 
equivalent of the circuit connected to the negative resistance in Fig. 
8-13b that if µbcacbR is much smaller than rn + R 1, the negative resistance 
can be replaced by a short circuit without affecting ib appreciably. If 
ibis unaffected by this change, the currents and voltages in the collector 
circuit are not affected. In this way a quick estimate can be made of 
the effect of neglecting the voltage source in the input circuit of the 
transistor model. When this source is negligible, the current amplifica
tion of the circuit is, by inspection, 

A ·;· R1 ~ 
c = ic is = + R C¥.eb + R rn I ro L 

(8-33) 

where ro = I/go, 

Values for the hybrid parameters at a typical quiescent operating 
point are often provided by the manufacturer of the transistor. The 
symbols used in the preceding paragraphs are not commonly employed 
in transistor specifications, however; the hybrid parameters are often 
designated6 by rn = hn, µbe = h12, C¥.cb = h21, and Uo = h22, These symbols, 
along with the additional definitions ebe = e1, ib = i1, eee = e2, and ic = i2, 
result in a symmetrical form for Eqs. (8-28) and (8-30): 

e1 = h11i1 + h12e2 
i2 = h2ii1 + h22e2 

(8-34) 
(8-35) 

Alternatively, the hybrid parameters may be designated by rn = hie, 
µbe = hre, C¥.eb = hie, and Uo = hoe• The letter e in the subscripts indicates 
that the parameters apply for the transistor operated with its emitter 
terminal grounded, as in the basic amplifier circuit of Fig. 8-6. A similar 
set of symbols with the letter b replacing the letter e designates the hybrid 
parameters for the transistor operated with its base terminal grounded 
and the input signal applied to the emitter. The value of the symbols 
used in Eqs. (8-28) and (8-30) lies in the fact that they show at a glance 
the dimensions of the parameters when it is understood that µ and a 

always represent dimensionless amplification factors. 
It is often necessary to evaluate the transistor parameters for a particu

lar quiescent operating point, for the parameters may vary appreciably 
from one quiescent point to another and from one transistor to another 
of the same type. The parameters can be evaluated from the character
istic curves, or they can be measured experimentally. If the parameters 
are to be determined experimentally, it is important to understand their 
significance in terms of open-circuit and short-circuit measurements. If 
an incremental current ibis applied between the base and emitter termi
nals in the model of Fig. 8-12a with the collector terminal short-circuited 
to the emitter, then eee = 0, and the input voltage is ebe = rnib, Thus 
rri is the input resistance with the output short-circuited. Under these 
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same conditions the current in the short circuit between the collector 
and emitter terminals is ic = acbib. Hence acb is the forward current 
amplification factor with the output short-circuited. In a similar manner 
it can be seen that go is the output conductance with the input terminals 
open-circuited and that µbe is the reverse voltage amplification factor 
with the input terminals open-circuited. 

Example 8-2. A transistor amplifier is shown in Fig. 8-14a. The input signal is i., 
a small time-varying current, and the signal component of current in the load is h,. 

C 

(a) (bl 

FIG. 8-14. Transistor amplifier for Example 8-2. (a) Circuit; (b) incremental model. 

The transistor parameters are acb = 50, rn = 2.5 kilohms, µbe = 3 X 10-4, and go = 
0.02 millimho. Determine the small-signal current amplification h./i •. 

Solution. The incremental model for the amplifier is shown in Fig. 8-14b. The 
effect of the reverse voltage-amplification factor on the behavior of the circuit is to be 
examined first. The net resistance connected across the output terminals is the 
resistance of RL in parallel with go: 

R = roRL = (50)(2) = l 92 k'l h 
ro + R L 50 + 2 · 1 0 ms 

The equivalent resistance reflected into the input circuit is 

- µbc<XcbR = - (3) c10-4) (50) (1.92) = -0.0282 kilohm 

This resistance is much less than 1 per cent of rn + R 1 = 2.5 + 50 = 52.5 kilohms; 
hence its effect on the behavior of the circuit is entirely negligible. 

+ 

FIG. 8-15. The 1r model for the transistor. 

The signal component of the load current 
is then 

. 50i. (50) 50 45 8 . 
tLs = 50 + 2.5 50 + 2 = . i. 

and the current amplification is 

Ac = i~• = 45.8 
i. 

The hybrid model of Fig. 8-12 is especially convenient when the reverse 
voltage-amplification factor is negligibly small. When this parameter is 
not negligible, it is always possible, and of ten desirable, to replace the 
hybrid model with an equivalent model having only one controlled 
source. The 1r model shown in Fig. 8-15 is one such that is frequently 
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useful; in particular, it is useful in representing the dependence of the 
transistor behavior on frequency at high frequencies. 

The 7f' parameters can be expressed in terms of the hybrid parameters 
by equating the short-circuit input and transfer conductances for the 
two models. These relations can often be simplified by the fact that, 
as a rule, ga « g2 « g1 « g. Thus, with the output terminals short
circuited, ece = 0, and the 7f' model yields 

(8-36) 

Under these conditions the hybrid model yields 

ib I 1 
ebe ece=O = rn 

(8-37) 

If the models are to be equivalent, these ratios must be equal, and 

1 
g1 + g3 = - (8-38) 

rn 

Using the inequalities listed above, (8-38) becomes 

1 
g1 ~ -

rn 
(8-39) 

Equating the short-circuit transfer conductances in the forward direction 
yields 

ic \ lXcb - = g - g3 = -
ebe ece=O rn 

or 
lXcb g ~ -
rn 

(8-40) 

(8-41) 

Equating the short-circuit transfer conductances in the reverse direc
tion yields 

(8-42) 

or (8-43) 

Finally, equating the short-circuit output conductances of the two 
circuits yields 

(8-44) 

or (8-45) 

When the reverse voltage transmission through the transistor is so small 
that µbe can be taken as zero, Eq. (8-43) yields ga = 0. Under these 
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conditions the 1r and hybrid models become identical except for the con
trolling quantities for the controlled sources in the models. This is 
usually the case when the model represents a drift transistor. 

The T model shown in Fig. 8-16 is another widely used representation 
for the transistor. The resistances in this model can be related directly 
to the base, emitter, and collector of the transistor; historically, it was 
the first model used to represent the transistor. The parameters of the 
T model can be expressed in terms of the hybrid parameters by equating 
the open-circuit input and transfer resistances for the two models. 

acbib These relations can often be simpli-
- fied by the fact that, as a rule, re« 

rb « ra. Thus, equating the open
ic ece 

circuit output resistances of the two 
C circuits yields 

Frn. 8-16. The T model for the transistor. 

(8-46) 

(8-47) 

Equating the open-circuit transfer resistances m the reverse direction 
gives 

or 

e~e I = re = µbe 

ie ib=O go 

re 
- ~ µbe 
ra 

Equating the open-circuit input resistances yields 

e_be \ = rb + re = rn _ <Xcbµbc 

¾ ~=0 ~ 

from which <Xcbµbc rb ~ rn - --
go 

(8-48) 

(8-49) 

(8-50) 

(8-51) 

Finally, equating the open-circuit transfer resistances m the forward 
direction yields 

(8-52) 

Using the inequalities listed above, along with Eq. (8-47), this relation 
reduces to 

(8-53) 

Thus aeb is nearly equal to the short-circuit current amplification factor 
acb; it is customary to ignore the distinction between these two quantities 
and to use the symbol aro in both cases. 
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It is sometimes convenient to have the controlled source m the T 
model expressed in terms of its dependence on the emitter current ie 
rather than the base current ib, The transistor currents are related by 

Also, from Fig. 8-16, the collector current is 

where the distinction between acb and acb 1s dropped. 
between (8-54) and (8-55) leads to 

, CXcb • + e 
ic = ---1, 

1 + CXcb e (1 + CXeb)rd 

(8-54) 

(8-55) 

Eliminating ib 

(8-56) 

Defining two new symbols, CXce = CXcb/(1 + CXeb) and re = (1 + CXcb)rd, 

gives 

(8-57) 

Thus the current source and shunt resistance in the model of Fig. 8-16 
can be replaced by the equivalent current source and shunt resistance 
shown in Fig. 8-17. The quantity 
ace is the emitter-to-collector cur
rent amplification factor. 

8-7. Choice of the Quiescent 
Operating Point. The incremental 
parameters of the transistor depend 
on the location of the quiescent 
operating point on the transistor 
characteristics. The dependence 

C 

of the hybrid parameters of a typical Fm. 8-17. Alternative form for the T 
model. small alloy-junction transistor on 

the quiescent emitter current is shown by the curves1 of Fig. 8-18. The 
best approximation to an ideal current amplifier is obtained when rn, µbe, 

and go are as small as possible and acb is as large as possible. However, 
since the parameters do not all change in the same way with changes in IE, 
conflicting requirements arise, and a compromise must be made. This 
compromise depends on the nature of the external circuit and the magni
tude of the supply voltage available as well as on the transistor itself. 
As a general rule, the optimum quiescent point for small-signal amplifiers 
corresponds to an emitter current of 1 or 2 ma. For large-signal opera
tion this statement is not true, of course, for in Class A operation the 
quiescent emitter current must be at least as large as the peak output 
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Frn. 8-18. Dependence of the hybrid parameters of an alloy-junction transistor on 
emitter current. 

signal current. Additional factors enter into consideration when the 
transistor is to be operated at high frequencies; these are discussed in the 
following section. 

8-8. High-frequency Transistor Models. 6 The incremental models 
presented in Sec. 8-6 do not account for the high-frequency effects in the 
transistor. Therefore these models are valid only at frequencies less 
than about 1 megacycle in the case of drift transistors and less than 
about 10 or 20 kilocycles in the case of alloy-junction transistors. The 
hybrid model can be modified easily to account for the high-frequency 
effects in the transistor when µbe = 0, as usually is the case with the 
drift transistor. The resulting model, shown in Fig. 8-19a, provides a 
suitable representation of the drift transistor at frequencies up to some 
tens of megacycles. 

The first step in developing the model of Fig. 8-19a from the hybrid 
model of Fig. 8-12b is to separate the short-circuit input resistance into 
two parts, r~ and rbe• The resistance r~ accounts for that portion of the 
base resistance that is associated with the base-lead connection and the 
part of the base that does not lie in the active region between the emitter 
and collector. The terminal b' in the model is the internal base terminal; 
it is not available for measurements or for connection to external cir
cuitry. The model is then completed by adding the capacitors Ce and 
Cc as shown in Fig. 8-19a. The capacitance Ce, the emitter storage 
capacitance, accounts for the diffusion and transit-time effects at the 
emitter junction; the capacitance Cc is the capacitance across the deple
tion region at the collector junction. Typical values for these capaci
tances are Cc = 2 µµf and Ce = 200 µµf for drift transistors, and Cc = 30 
µ,µf and Ce = 3000 µµf for alloy-junction transistors. 
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It is important to note that the controlled source in the circuit of 
Fig. 8-19a depends on i, the current through rbe, rather than on the input 
current ib. At low frequencies, where Ce and Cc act as open circuits, 
i = ib; at high frequencies, however, these two currents are not equal. 
In particular, if the input current is a sinusoid of constant amplitude, 
then the amplitude of the current i is a function of the signal frequency. 
The short-circuit current amplification of the transistor at high fre
quencies can be evaluated from the circuit of Fig. 8-19a for sinusoidal 

b 

(al (bl 

Frn. 8-19. High-frequency models for the drift transistor. (a) Current-controlled 
source; (b) voltage-controlled source. 

operating conditions. For a typical transistor, Ce is about 100 times as 
big as Cc; therefore when the output terminals are short-circuited, the 
current in Cc is negligible in comparison with ib and ic at frequencies 
where the model of Fig. 8-19a is valid. Thus if the complex amplitude 
of a sinusoidal input current is designated lb, the complex amplitude of 
the sinusoidal current in rbe is, when the output terminals are short
circuited, 

I= l lb 
1 + jwCerbe 

(8-58) 

The short-circuit output current is then 

(8-59) 

Thus, if the amplitude of the input current is held constant as the fre
quency of the current is increased, the output current decreases ancl 
tends to zero at very high frequencies. This result is associated with the 
fact that at high frequencies the signal current tends to flow through Ce 
rather than through rbe• 

The quantity 1/Cerbe has the dimensions of frequency, and it has a 
useful interpretation as a frequency. Thus, defining a new symbol, 
Web = 1/Cerbe, yields for the short-circuit output current 

(8-60) 
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The amplitude of this current is 

le = Ctcb lb 
y'l + (w/Wcb)

2 
(8-61) 

Thus at the frequency w = Web, le is reduced to 1/ y'2 times its low
frequency value; web is known as the cutoff frequency for the short
circuit forward current amplification. This cutoff frequency, which is 
also referred to as the beta cutoff frequency and symbolized Wf3, provides 
a useful means for specifying the bandwidth over which the short-circuit 
current amplification remains reasonably close to its low-frequency 
value. Typical values of Web are of the order of 20 kcps for alloy-junction 
transistors and of the order of 1 megacycle for drift transistors; the theo
retical limit for drift transistors appears to be of the order of several 
tens of megacycles. 5 

When the output terminals of the transistor are not short-circuited, 
the effects of the collector capacitance Cc are amplified by the transistor 
(Sec. 4-4) and may not be negligible; in such a case, the high-frequency 
performance of the transistor depends on both Ce and Cc. Both of these 
capacitances decrease with increasing collector voltage; hence, in general, 
the high-frequency cutoff depends on the choice of the quiescent operating 
point. 

An alternative form for the high-frequency transistor model, shown in 
Fig. 8-19b, is often more convenient in circuit analysis than the model of 
Fig. 8-19a. The only difference between the two circuits is that the 
source in Fig. 8-19b is controlled by the voltage across rbe rather than by 
the current through rbe• The current in rbe is 

(8-62) 

and the current of the controlled source in Fig. 8-19a is 

(8-63) 

Thus the controlled source in Fig. 8-19b 1s equivalent to the one in 
Fig. 8-19a if 

Ctcb gm= -
rbe 

"'(8-64) 

The models of Fig. 8-19 are applicable when the reverse voltage 
amplification factor µbe is zero. When this amplification factor is not 
negligible, as often is the case with alloy-junction transistors, a voltage 
source µbcece appears in series with rbe• However, this voltage source 
can be eliminated by the use of a 1r model, like that in Fig. 8-15, for the 
intrinsic transistor, that part of the transistor exclusive of r~. The 
resulting model is shown in Fig. 8-20. 

Equation (8-60) gives the short-circuit output current from the transis-
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tor le as a function of the base current lb under sinusoidal operating 
conditions. An alternative expression for le can be obtained from the 
fact that the collector, base, and emitter currents are related by 

le = le + lb 

Using (8-65) to eliminate h in (8-60) and collecting terms yields 

le = <Xeb I 
1 + <Xcb + jw/Wcb e 

a~ 1 I 
1 + <Xcb 1 + jw/ Wcb(l + <Xcb) e 

Defining a new quantity, Wee = (1 + <Xcb)Wcb, and recalling that 

<Xeb 
<Xce = ----

(1 + <Xcb) 

leads to 

le = <Xce I 
1 + jw/Wce e 

(8-68) 

Thus the quantity Wee = (1 + a~)wcb 

is the cutoff frequency for the transis
tor when the amplitude of the emitter 

(8-65) 

(8-66) 

(8-67) 

C 

current is held constant; it is also Frn. 8-20. High-frequency model for 
referred to as the alpha cutoff fre- alloy-junction transistors. 

quency and symbolized wa. Since <Xcb usually lies in the range between 20 
and 100, Wee is much larger than Web• The value of Wee is often given in 
transistor specifications as an indication of the high-frequency perform
ance of the device. 

A complete set of parameter values for the high-frequency 1r model of 
a typical small alloy-junction transistor is r~ = 250 ohms, rbe = 2600 ohms, 
Tee = 220 kilohms, rbc = 5 megohms, Ce = 4500 µµf, Cc = 17 µµf, and 
Ym = 21 millimhos. The corresponding set of parameter values for a 
typical small drift transistor is r~ = 40 ohms, rbe = 1550 ohms, Tee = oo, 

rbc = 00' Ce = 200 µµf, Cc = 1.7 µµf, and Ym = 37 millimhos. 
8-9. Summary. The transistor is a physical amplifier that behaves 

somewhat as the dual of the vacuum triode. The emitter injects charge 
carriers into the base of the transistor, and the magnitude of the current 
flowing from the emitter into the base is controlled by the height of the 
potential barrier across the emitter junction. In the alloy-junction 
transistor the carriers injected into the base by the emitter move by 
diffusion to the collector and give rise to a reverse collector current that 
is controlled by the height of the potential barrier at the emitter junction. 
In the drift transistor a built-in electric field in the base region accelerates 
the carriers across the base toward the collector, thereby reducing the 
transit time of the charges crossing the base and improving the high-
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frequency response of the transistor. The transistor can provide current 
amplification because the collector current is much larger than the base 
current and is almost directly proportional to it. The transistor also 
provides voltage and power amplification. 

The basic transistor amplifier has the same general form as the basic 
vacuum-triode amplifier, and it can be analyzed by graphical methods 
that are fundamentally the same as those used with the vacuum-triode 
amplifier. Alternatively, total voltages and currents in the transistor 
amplifier can be calculated approximately with the aid of a simple 
piecewise-linear model for the transistor. 

When the transistor is operated in the linear Class A mode, the signal 
components of voltage and current can be calculated with the aid of an 
incremental linear model for the transistor. A variety of incremental 
models for the transistor can be formulated. Three of these, the hybrid 
model, the T model, and the 1r model, are the most useful. 

Only alloy-junction and drift transistors are discussed specifically in 
the preceding sections. Transistors are made in a variety of other types, 1 

among which are grown-junction, surface-barrier, and four-terminal, 
or tetrode, transistors. The basic principles and the methods of analysis 
are essentially the same for all these transistors. In so far as circuit 
analysis is concerned, the principal differences among the various transis
tor types lie in the parameter values to be used in the models representing 
them. 
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PROBLEMS 

8-1. A 2Nl 70 N-P-N transistor is used in the basic amplifier circuit shown in 
Fig. 8-6. The supply voltages are E1 = E2 = 12.6 volts, and the circuit resistances 
are R1 = 252 kilohms and RL = 4.2 kilohms. 

a. The output volt-ampere characteristic curves for the transistor are approximately 
horizontal lines with ia = 30iB, Sketch a family of these curves for iB = 20, 40, 60, 
and 80µa. Construct the load line for the amplifier on these characteristics. 

b. Determine the quiescent collector current and collector-to-emitter voltage. 
Is the maximum permissible collector dissipation of 25 mw exceeded? 
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c. Determine graphically and plot ic versus is for -75 < i& < 75 µa. Note: See 
Eq. (8-10). 

d. Repeat part c for the condition that the battery voltages are both reduced to 
6.3 volts. Plot this curve on the same coordinates with the curve of part c. 

8-2. A 2Nl04 P-N-P transistor is used in the basic amplifier circuit shown in Fig. 
8-6. The supply voltages are E1 = E2 = -22.5 volts. The circuit resistances are 
to be chosen to give a specified quiescent operating point. 

a. The output volt-ampere characteristic curves for the transistor are approximately 
horizontal lines with ic = 45iB. Sketch a family of these curves for iB = -25, -50, 
-75, -100, and -125 µa. 

b. Determine the values of R1 and RL required to locate the quiescent operating 
point at ic = -2 ma and ecE = -10 volts. Is the maximum permissible collector 
dissipation of 35 mw exceeded at the quiescent point? 

c. If the input signal is a sinusoidal current, approximately what is the greatest 
amplitude that the signal component of ic can have without serious waveform distor
tion? Is the limit set by collector cutoff or collector saturation? 

8-3. An amplifier having the form shown in Fig. 8-6 uses a 2N301 P-N-P transistor. 
The supply voltages are E 1 = E2 = -12.6 volts, and the circuit resistances are 
R1 = 1 kilohm and RL = 8 ohms. The 
output volt-ampere characteristics for the 
transistor are approximately horizontal 
lines with ic = 70iB. The input signal is 
the square wave of current shown in Fig. 
8-21. 

a. Sketch a family of output charac
teristics for 5-ma steps in iB between 0 and 
-30 ma. Construct the load line on 
these characteristics, and locate the quies
cent operating point. 

b. Determine the power dissipated at 

is 
ma 

8 

T 
2 

T 
2 

-8--------------

the collector, the power absorbed by the Frn. 8-21. Signal waveform for Prob. 8-3. 
load, and the power drawn from the 
battery E2 under quiescent conditions. Is the maximum permissible collector dissipa
tion of 5.5 watts exceeded? 

c. Repeat the calculations of part b with the specified signal applied. Compare 
these values with those found in part b. Note: See Eq. (8-10). 

8-4. The transistor in the amplifier of Prob. 8-1 is to be represented approximately 
by the piecewise-linear model shown in Fig. 8-8a. 

a. Determine the value of acB to be used in the model. 
b. Give the piecewise-linear model for the amplifier; show the numerical values of 

all parameters and applied voltages. 
c. Construct the current transfer characteristic for the model, and give the coordi

nates of each break point. 
8-5. Give the circuit diagram for a piecewise-linear model to represent the P-N-P 

transistor of Prob. 8-3. Show the value of acB on this diagram. 
8-6. A 2N247 P-N-P drift transistor is used in the amplifier shown in Fig. 8-6. The 

supply voltages are E1 = -2 volts and E2 = -12.6 volts; the resistances are R1 = 
60 kilohms and RL = 2 kilohms. The transistor can be represented by a piecewise
linear model with acB = 60. 

a. Find the quiescent collector current and collector-to-emitter voltRge. Is 
the maximum permissible collector dissipation of 35 mw exceeded under quiescent 
conditions? 
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b. If the input signal is i. = 10 cos w.t µa, what is the peak value of the signal com
ponent of the collector current? 

8-7. Four useful transistor circuits are shown in Fig. 8-22. Give an incremental 
linear model for each of these circuits that is valid in the frequency range where the 
behavior of the transistor is independent of frequency. Use the hybrid model for the 
transistors, and assume µbe = 0. Do not assume that the capacitors shown act as 
short circuits. Show clearly the controlling current for each controlled source. 

is t is t Rs 

- -
(a) (bl 

Enc 
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is ist 
Rs 

Rs 

- -
(c) (d) 

FIG. 8-22. Transistor amplifiers for Prob. 8-7. (a) Current amplifier; (b) current 
amplifier; (c) grounded-collector amplifier; (d) grounded-base amplifier. 

8-8. The hybrid parameters for a 2N105 P-N-P transistor are rn = 2880 ohms, 
µbe = 5.5 X 10-4, acb = 55, and go = 16.3 micromhos. 

a. Determine the parameters of the 1r model shown in Fig. 8-15. 
b. Determine the parameters of the T model shown in Fig. 8-16. 
8-9. The T parameters for a 2N77 P-N-P transistor are re = 23 ohms, rb = 1430 

ohms, rd = 70 kilohms, and acb = 55. Determine the hybrid parameters. 
8-10. A 2N105 P-N-P transistor is used in the amplifier circuit shown in Fig. 8-6. 

The supply voltages are E1 = E2 = -12.6 volts. 
a. Determine the values of R1 and RL that will place the quiescent operating point 

at ecE = -4 volts and ic = -0.7 ma. 
b. Give an incremental model for the amplifier using the hybrid representation for 

the transistor. The parameters have the values given in Prob. 8-8 for the operating 
point specified in part a. 

c. Determine the incremental current amplification of the circuit, icalia, where ica is 
the signal component of ic. 



CHAPTER 9 

PRACTICAL TRANSISTOR AMPLIFIERS 

The basic amplifier circuit presented in Chap. 8 is the prototype 
transistor amplifier. Practical amplifiers usually consist of this circuit 
with certain modifications and additions that simplify the physical 
realization and improve the performance of the amplifier. For example, 
it is possible and desirable to derive the bias voltages for both the collector 
and the base from a single d-c supply, and, furthermore, it is often 
necessary to incorporate in the circuit some mechanism to reduce the 
effect of temperature on the current in the collector circuit. As in the 
case of the triode amplifier, when the transistor is required to deliver 
large amounts of power to a load there is an optimum dynamic path of 
operation on the collector characteristic; hence, when the load resistance 
is fixed, it may be desirable to use transformer coupling to transform 
the load impedance to the optimum value. The objective this chapter 
is to examine the modifications of the basic amplifier circuit that are 
often required for the satisfactory operation of practical transistor 
circuits. 

9-1. Transistor Amplifier with a Single Battery. When a transistor 
is used in normal amplifier operation, the collector junction is biased in 
the reverse direction, and the emitter junction is biased in the forward 
direction. Thus for N-P-N transistors, both the collector and the base 
are at positive potentials relative to the emitter, and both bias voltages 
can be obtained from a single d-c supply in the manner illustrated in 
Fig. 9-la. The voltage EDc is a positive direct voltage; its value is 
usually of the order of 10 or 20 volts. The circuit of Fig. 9-la is equally 
useful with P-N-P transistors, the only difference being that in this case 
the voltage EDc is negative. 

Although only one physical battery is used in the actual circuit, it is 
clear that the circuit in Fig. 9-lb is entirely equivalent to the actual 
circuit. This equivalent circuit has the same form as the basic amplifier 
circuit presented in Chap. 8, and the procedures for graphical, piecewise
linear, and incremental analyses are the same as those developed in 
Chap. 8. 

193 
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(al (bl 
FIG. 9-1. Transistor amplifier with a single battery. (a) Circuit; (b) equivalent 
circuit. 

9-2. Temperature Effects in Transistor Amplifiers. 1•2 In normal 
amplifier operation, the collector junction of the transistor is biased in 
the reverse direction, and ideally there would be no collector current when 
the base current is zero. This is the condition implied by the piecewise
linear model of Fig. 8-Sa. In reality, however, a small reverse current 
flows across the collector junction when the base current is zero, just 
as a small reverse current flows in the P-N junction diode when a reverse 
voltage is applied. This current is much larger than that in the junction 
diode, for in addition to the current resulting from thermally generated 
carriers in the collector and base, it consists of a relatively large current 
resulting from free carriers in the emitter that have enough thermal 
energy to diffuse across the emitter junction into the base. The collector 
current that flows in typical small transistors with zero base current is 
of the order of 100 µa; however, the value of this current may vary 
considerably from one transistor to another. 

To account for the collector current that flows when the base current 
is zero, the piecewise-linear model for the transistor must be modified as 
shown in Fig. 9-2a. The current I cEo is the current that flows from 
collector to emitter with iB = 0; the total collector current is 

ic = I cEo + acBiB 

The current I cEo is itself no cause for concern, but the fact that it increases 
more or less exponentially with the temperature of the transistor intro
duces a problem. The solid lines in Fig. 9-2b are the collector character
istics for a transistor at one temperature. If the temperature of the 
transistor increases, J cEo increases, and the entire. family of collector 
characteristics is shifted upward by the amount of the increase in I cEo, 

As the characteristic curves move upward, the quiescent operating point 
moves along the static load line, as shown in Fig. 9-2b, from its original 
position at Q to a new position at Q'. The new location of the quiescent 
point may be unsatisfactory. 
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The increase in transistor temperature may be caused either by an 
increase in ambient temperature or by self-heating in the transistor. 
When power is applied to the amplifier, the quiescent collector dissipation, 
which goes into heat, is given by 

(9-1) 

This quantity has a maximum value when EcE = EDc/2. When RL is 
large, and especially when EcE < EDc/2, the self-heating in the transistor 

-----oc 
ic 

e 
(a) (b) 

Fm. 9-2. Effect of temperature on collector current. (a) Piecewise-linear model; 
(b) collector characteristic. 

Enc2 

¾Pc max 
Pc=Pcmax 

~--=::::---½Pc max 

Fm. 9-3. Effect of temperature on collector current. The curves are contours of con
stant Pc, and Pc max = maximum permissible value of Pc. 

will cause only a small shift in the quiescent point, as shown in Fig. 9-3 
for RL = RL1- This small shift can often be tolerated. However, when 
RL is small and EcE is greater than EDc/2, as shown in Fig. 9-3 for 
RL = RL2, the shift in the quiescent point may be considerable, and the 
increase in collector current further increases the collector dissipation, 
which in turn increases the transistor temperature further. This cumu
lative action usually leads to excessive collector dissipation. In the 
worst cases, no thermal equilibrium is possible at any safe collector cur
rent, and destruction of the transistor is certain. Thus it is often neces-
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sary to incorporate in the amplifier some mechanism to stabilize the 
quiescent point against the effects of self-heating and changes in ambient 
temperature. 

9-3. Stabilization of the Quiescent Operating Point. The circuit 
arrangement most commonly used 1 to stabilize the quiescent point is 
shown in Fig.· 9-4a. Stabilization results primarily from the presence of 
Re, a resistor connected in series with the emitter lead. The base bias 
is provided through the voltage divider Ra-Rb, rather than through a 
series resistor as in Fig. 9-la, for the reason that a relatively low-resistance 
path from base to ground is required. A model for the circuit with 
ia = 0 is shown in Fig. 9-4b. The emitter diode is represented as a short 
circuit, and the collector diode is represented as an open circuit in this 

lcEO 

(a) {bl 
Frn. 9-4. Quiescent-point stabilization with emitter-lead resistance. (a) Circuit; 
(b) model. 

model; the source E1 and the resistance R1 constitute a Thevenin equiva
lent for EDc and the voltage divider Ra-Rb. It is clear from this circuit 
that a positive increment in I cEo divides between R1 and Re; hence it 
causes a negative increment in iB and a corresponding negative increment 
in acBiB. This negative increment in acBiB tends to compensate for 
the original increment in I cEo, and the net change in ic is smaller than 
the increment in I cEo- The shift in the quiescent operating point with 
changes in temperature is thereby reduced. 

The addition of the resistance Re to the amplifier introduces feedback, 
according to the definition presented in Sec. 6-1, into the circuit. This 
circuit provides an example of the use of feedback to reduce undesirable 
effects associated with imperfect circuit components. 

Further insight into the action of Re in stabilizing the quiescent 
operating point can be gained by an alternative interpretation. If the 
voltage drop across R 1 in Fig. 9-4b caused by the small current iB is 
negligible in comparison with E1, then 

EE::::::: E1 
and IERe ::::::: IcRe ::::::: E1 

(9-2) 
(9-3) 
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Thus if Re and E1 are constant, le remains approximately constant 
irrespective of changes in temperature. In addition, if it is necessary to 
change transistors, the new quiescent point will be at approximately the 
same location as the old, even if the characteristics of the new transistor 
are appreciably different from those of the old transistor. 

The effectiveness of Re in stabilizing ic, and hence the quiescent point, 
can be formulated quantitatively with the aid of the model in Fig. 9-4b. 
The collector current is 

and the loop equation for the base circuit is 

R1iB + Re(iB + ic) = E1 

Solving (9-5) for iB yields 
. E1 Reic 

1,B = Re + R1 - Re + R1 

and substituting this expression in (9-4) gives 

. _ acBE 1 _ acBReic + I 
ic - Re + R1 Re + R1 CEO 

(
l acBRe ) . acB E + I + Re + R1 ic = Re + R1 l CEO 

(9-4) 

(9-5) 

(9-6) 

(9-7) 

(9-8) 

The coefficient on ic in (9-8) is closely related to the feedback in the 
circuit, and as is shown in the chapter on feedback amplifiers, it is widely 
used in the study of feedback systems. If this quantity is designated by 

(9-9) 

then (9-8) can be put in the form 

acB IcEo 
ic =(Re+ R1)FE1 + F (9-10) 

Thus the effect of changes in I cEo on ic is reduced by the factor F. The 
effect of changes in acB on ic, such as might be associated with replacing 
the transistor, is also reduced by this factor. It is clear from (9-9) and 
(9-10) that small Ri/Re gives large F and good stabilization; for other 
reasons, however, it is usually not practical to make Ri/Re less than 
about 5. Under this condition, and with acB = 50, F = 1 + 5.% = 9.33. 

The degenerative feedback that reduces the effect of changes in I cEo 
also reduces the signal amplification by the factor F. This fact is 
evident from Eq. (9-10), for an input signal is equivalent to a variation 
in E 1• This reduction in amplification can be eliminated for time-vary-
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ing currents in the same way that cathode degeneration is eliminated in 
the triode amplifier, namely, by connecting a bypass capacitor in parallel 
with Re. A typical circuit with an emitter bypass capacitor and an 
input coupling capacitor is shown in Fig. 9-5a. 

The capacitors in the amplifier of Fig. 9-5a are normally chosen to act 
as short circuits to the time-varying components of current and voltage. 
Accordingly, the dynamic operating path on the collector characteristic 

c le 

(a) 

Frn. 9-5. A typical transistor amplifier. 
components of voltage and current. 

(a) Complete circuit; (b) circuit for d-c 

is different from the static load line. For the d-c components of current 
and voltage, the circuit reduces to that shown in Fig. 9-5b; the base 
biasing circuit is replaced by its Thevenin equivalent, E 1 and R 1, in this 
representation. The loop equation for the collector circuit yields 

EcE = EDc - Rdc - RelE 

But normally IE = le; thus 

EcE = EDc - (RL + Re)I c 

and EDc EcE 
JC = RL + Re RL + R 

EcE 
= Io - RL + Re 

This is the equation of the static load line shown in Fig. 9-6. 

(9-11) 

(9-12) 

(9-13) 

(9-14) 

The quiescent operating point can be located by determining the 
collector current. If the base-to-emitter voltage drop EBE and the drop 
in R1 caused by the small base current I B are small compared with E 1, 

then as a first approximation 

and 

(9-15) 

(9-16) 
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This relation gives a first approximation to the quiescent collector current. 
If a second, closer approximation is desired, the base current can be 
read from the characteristics for the approximate quiescent point, and 
the base-to-ground voltage can be determined approximately from 

(9-17) 

Again neglecting the small voltage EBE, the second approximation to the 
quiescent collector current is 

E~ 
le= -

Re 
(9-18) 

The process can be repeated to obtain a still closer approximation; how
ever, it is seldom necessary to go beyond the second approximation. 

Locating the quiescent point by successive approximations as described 
above gives a useful insight into the 
behavior of the circuit. Successive ic DOP, slope= i~ 
approximations can be avoided if 
desired, however, by the solution 
of two simultaneous equations. 
Neglecting the small base-to-emit
ter voltage, the loop equation for 
the base circuit is 

E1 = R1h + Re(h + le) (9-19) 

and the collector characteristics are 
approximated by 

(9-20) 

FIG. 9-6. Graphical analysis of a tran
sistor amplifier showing the static load 
line (SLL) and the dynamic operating 
path (DOP). 

Eliminating I B between these two equations and solving for l c yields 

l _ aeBE1 (9 21) 
e - R1 + (1 + aeB)Re -

Since aeB occurs in both the numerator and the denominator of this 
expression, and since (1 + aen)Re is usually considerably larger than R 1, 

the inaccuracy involved in the approximation of (9-20) tends to cancel 
in (9-21). 

The capacitors C1 and Ce in the circuit of Fig. 9-5a act as short circuits 
to the time-varying components of current and voltage. Thus the 
voltage across Re is a nonvarying voltage of magnitude EE = RelE, 
where l E is the average value of the emitter current; if there is negligible 
distortion, l E is the quiescent emitter current. The loop equation for 
the collector circuit is thus 

(9-22) 
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This is the equation of the dynamic operating path; it is a line with 
slope -1/RL that passes through the quiescent point if there is negligible 
distortion. The dynamic operating path is shown on the collector 
characteristic of Fig. 9-6. 

Example 9-1. The transistor in the amplifier of Fig. 9-7a has the collector charac
teristics shown in Fig. 9-7b. Construct the static load line on the collector charac
teristic, locate the quiescent operating point, and construct the dynamic operating 
path. 

-15v,d-c 

la) 

ic 
ma -50 

·~-40 

-2 

-1 

-5 -10 

(b) 

SLL 

-15 ecE 
volts 

FIG. 9-7. Transistor amplifier for Example 9-1. (a) Circuit; (b) characteristic curves. 

Solution. The static load line has a slope of - H 2 ma /volt; it is shown (SLL) in 
Fig. 9-7b. The base biasing circuit is equivalent to a battery E1 = -1.77 volts in 
series with a resistance of 17. 7 kilohms. 

First approximation to the quiescent collector current: Assuming that EE = E 1, 

le = Ei = -1.77 = -0.89 ma 
Re 2 

Second approximation: The point on SLL at le = -0.89 ma corresponds to 
Is ~ -0.018 ma. Thus 

E~ = E1 - RilB = -1.77 + (17.7) (0.018) 

Assuming that EE = E~, 

-1.45 volts 

le = E~ = -l.45 
= -0.73 ma 

Re 2 

Third approximation: The point on SLL at le = -0.73 ma corresponds to IB ~ 
-0.014 ma. Thus 

and 

E~ = E1 -RilB = -1.77 + (17.7)(0.014) = -1.52volts 

E~ 
le = - = -0.76 ma 

Re 

This value is not very different from the value obtained on the second approximation; 
further approximations yield substantially the same value for le. 

Altern~tively, le can be determined directly from Eq. (9-21). The collector 
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characteristics indicate that acB is approximately 50 for this transistor. Hence 

-(50)(1.77) 
le = 17.7 + (51)(2) = -0.74 ma 

The quiescent point corresponding to this collector current is shown in Fig. 9-7b. 
The capacitors C. and C2 act as short circuits to the signal components of current 

and voltage; hence the collector-circuit resistance for signal currents is the resistance 
of the 10-kilohm and the 2-kilohm resistors in parallel. This parallel resistance is 
1.67 kilohms. The dynamic operating path, shown in Fig. 9-7b (DOP), has a slope of 
-1/1.67 ma/volt, and it passes through the quiescent point when there is negligible 
distortion. 

9-4. Design for a Specified Quiescent Operating Point. If the ampli
fier of Fig. 9-5a is to be designed to give a specified operating point for 
the transistor, the resistors Ra, Rb, and Re must be chosen to give a 
suitable compromise among conflicting factors. The emitter circuit 
resistance Re should be made as large as possible to give good stabilization 
of the quiescent point; however, the larger the Re, the larger the voltage 
drop EE, and the larger the required power-supply voltage. Thus Re 
should be made as large as is permitted by the available power-supply 
voltage. 

In the interest of high amplification, the resistances Ra and Rb should 
be made as large as possible so that the input signal current will flow into 
the base of the transistor rather than through Ra and Rb. In the interest 
of good stabilization of the quiescent point, however, Ra and Rb should 
be made as small as possible so that any change in J cEo will cause a 
substantial change in iB. Thus Ra and Rb must be chosen to give a 
suitable compromise between these two requirements and to provide the 
desired bias voltage at the base of the transistor. Since the input 
resistance to typical small transistors is of the order of 2 kilohms, R 1, the 
resistance of Ra in parallel with R0, 

should be at least 10 or 20 kilohms 
if possible. 

Example 9-2. A typical transistor cur
rent amplifier is shown in Fig. 9-8. The 
d-c supply voltage and the circuit resist
ances are to be chosen so that the 
quiescent operating point is at approxi- t is 
mately Io = 1 ma and EoE = 5 volts. 
At this quiescent point the incremental 
parameters for the transistor are <Xcb = 50, 

2K 

rn = 2.5 kilohms, and Uo = 0.02 millimho; 
FIG. 9-8. Transistor amplifier for Exam

the reverse voltage amplification factor ple 9_2_ 
can be taken as zero. The coupling and 
bypass capacitors act as short circuits to the signal components of current. Determine 
the necessary parameter values, and calculate the current amplification h/i •. 

Solution. In the interest of current amplification, Re should be much larger than 
the 2-kilohm load resistance. Therefore choose Re = 20 kilohms. For the same 
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reason R1, the resistance of Ra and Rb in parallel, should be much larger than rn = 
2.5 kilohms. Therefore choose R1 = 20 kilohms. If Re is made 4 kilohms, Ri/R. = 

5, and the stabilization factor is F = 1 + 5 % = 9.3; this value is considered 
satisfactory. 

The voltage drop across Re is thus Rel c = 20 volts, the drop across Re is approxi
mately 4 volts, and the drop across the transistor from collector to emitter is 5 volts. 
Thus the d-c supply voltage must be 29 volts. 

lOK 
ib 

14.3K 
iL ,---'----... ,---A..-----, 

b C 

t 20K 2.5K i 50K 20K 2K 
is 

Fm. 9-9. Incremental model for the amplifier of Fig. 9-8. 

The equivalent base supply voltage E1 (Fig. 9-5) is 

Thus 

Also 

Thus 

E1 = EE + R1ls = 4 + (20)(½ 0 ) = 4.4 volts 
Rb 

E 1 = Ra + Rb 29 = 4.4 

24.6Rb = 4.4Ra 
Ra = 5.6Rb 

R 20 RaRb Ra Ra 
1 = = Ra + Rb 1 + Ra/ Rb = 6.6 

Ra = (6.6) (20) = 132 kilohms 
Rb = 132/5.6 = 23.6 kilohms 

An incremental model for the amplifier is shown in Fig. 9-9. The current amplifica
tion is, by inspection of the circuit, 

iL 10 14.3 
Ac = ¾ = - 10 + 2.5 (50) 14.3 + 2 

= -35 

Any design procedure involving stabilization of the quiescent point 
is necessarily a rule-of-thumb procedure. The temperature rise caused 
by any given power dissipation in a transistor depends strongly on the 
means provided for conducting heat away from the transistor; thus it 
depends on the environment of the transistor, and in particular on the 
way in which the transistor is mounted in its environment. When 
transistors are required to handle large amounts of current and power, it 
is usually necessary to mount them in close thermal contact with a large 
metal plate, termed a heat sink, to expedite the removal of heat from the 
transistor. Clearly, no detailed design can be made without taking 
these factors into account. Fortunately, rule-of-thumb procedures are 
satisfactory for all but the most exacting designs. 

9-5. Choice of Dynamic Operating Path for Maximum Output Power. 
The dynamic operating path for a transistor must be restricted to a 
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certain permitted region of the collector characteristics. The limitations 
are similar to those encountered with the vacuum triode and discussed in 
Sec. 6-2. The permitted operating region for a particular transistor is 
illustrated in Fig. 9-lOa. The collector voltage cannot exceed the 
indicated maximum value without the occurrence of avalanche break
down, and the operating path cannot extend into the region of very 
small collector voltages without excessive distortion. The collector 
characteristics are somewhat crowded together at large values of collec
tor current; hence the operating path cannot extend into the region of 
very large collector currents without excessive distortion. Similarly, 
there is a limit on the minimum collector current if excessive distortion 

(a) 

ic 
-3.0 
amp 

-2.0 

-1.0 

0 

Pc=lO watts 

-5 -10 -15 -20 -25 

(bl 
ecJE 
volts 

Fro. 9-10. Transistor characteristics. (a) Permitted operating region; (b) character
istics of a power transistor. 

is to be avoided. In addition to these limitations, the quiescent point 
must lie below the hyperbola of maximum permissible collector dissipation. 

If the waveform distortion is negligible, the signal power delivered to 
the load is proportional to the product of I, the peak-to-peak signal 
current in the load, and E, the peak-to-peak signal voltage across the 
load. The signal power delivered to the load is a maximum when the 
product EI is a maximum. It is clear that the dynamic operating path 
shown in Fig. 9-IOa corresponds to maximum signal power in the load 
under the specified limitations. 

The maximum permissible values of collector current, collector voltage, 
and collector dissipation for many transistors are such that the operating 
path extending from the upper left-hand corner of the permitted region 
to the lower right-hand corner results in excessive quiescent collector 
dissipation. Such a case is illustrated by the family of collector char
aderistics shown in Fig. 9-IOb. Further investigation is required to 
determine the operating path for this transistor that gives the maximum 
signal power in the load. 

The permitted operating region on the collector characteristic of a 
typical, high-power transistor is shown in Fig. 9-11. It is assumed, for 



204 ELECTRONIC CIRCUITS 

simplicity, that the region is bounded by a maximum collector current, 
a maximum collector voltage, a maximum collector dissipation, and the 
coordinate axes. It is further assumed that the operating point makes 
equal excursions on either side of the quiescent point; hence the quiescent 
point is the mid-point of the dynamic operating path. Under these 
conditions, if the quiescent point is fixed with the coordinates EcE and 
I c, the dynamic operating path must lie inside a rectangle whose base is 
2EcE and whose altitude is 21 c. It is clear that the operating path 
giving the maximum EI product, and hence the maximum signal power 
in the load, is the diagonal of the rectangle. This fact, together with a 
special property of the equilateral hyperbola P, yields at once a solution 
to the problem of choosing an optimum path of operation. If the line 
segment IE terminating on the coordinate axes is tangent to P at any 
point, then the point of tangency is 
the mid-point of the line segment. 
This statement follows directly 

ic 

Slope==-!. 
from the fact that the slope of the l= 2Ic 

hyperbola at the point EcE, I c 

RL 

is -Ic/EcE. Then for all operat
ing paths tangent to P, the quies
cent point is at the point of tan-
gency, and the EI product is 
constant at the value 

EI = 4EcEic = 4Pcmax (9-23) 

le 

Frn. 9-11. Graphical construction related 
to maximum power output. 

where Pcmax is the collector dissipation at points on the hyperbola P. 
There is no operating path with a quiescent point on or below P that 
gives a greater El product, for all operating paths must lie inside a 
rectangle with dimensions 2EcE by 21 c. Hence the dynamic operating 
path that yields maximum signal power in the load must be tangent to the 
hyperbola of maximum permissible collector dissipation; however, the 
point of tangency may lie anywhere on the hyperbola provided the opera
ting path does not intersect the maximum current limit or the maximum 
voltage limit. 

Since the slope of the optimum operating path is the same as that of 
the hyperbola at the point of tangency, - I cl EcE, the optimum value 
for the load resistance is 

(9-24) 

The collector dissipation has its greatest value under quiescent conditions, 
and this value is Pc max, the maximum permissible value. If the signal 
is sinusoidal, the average signal power delivered to the load under 
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maximum signal conditions is 
PL = EcEic = Pcmax 

2 2 

205 

(9-25) 

The power drawn from the d-c supply is a constant, independent of the 
signal amplitude, and if there is no d-c voltage drop across the load, 
as in the case of a transformer-coupled load, then 

Pee = Pc max 

and the collector-circuit efficiency is 

lO0PL 
-p = 50 per cent 

cc 

(9-26) 

(9-27) 

If the signal is a square wave, the average signal power delivered to the 
load under maximum signal conditions is 

(9-28) 

and the collector-circuit efficiency is 100 per cent. 
All operating paths chosen according to the conditions stated above 

yield the same power to the load when there is negligible waveform 
distortion; hence a variety of designs yield the same maximum signal 
power to the load. If the power required by the load under sinusoidal 
operating conditions is specified, the first step in the design is to select 
a transistor having a collector dissipation at least twice the required PL. 
The next step is to choose a suitable quiescent operating point on the 
collector-dissipation hyperbola. Equation (9-24) then yields the opti
mum value for the load resistance, and the d-c supply voltage required 
can be determined from the details of the circuit. If the quiescent point 
is chosen at a small value of EcE, a small d-c supply voltage is required. 
With this choice, however, the operating path extends into the region 
of large collector current, and excessive waveform distortion may result. 
If the quiescent point is chosen at a large value of EcE, a large d-c supply 
voltage is required. However, the waveform distortion is less, and the 
input signal power required is somewhat less. 

9-6. Transformer-coupled Loads. Transistors are often required to 
deliver power to load resistances that do not give the optimum operating 
path discussed in Sec. 9-5. Iron-core transformers are often used in 
such cases to transform the load resistance to an optimum value. The 
circuit diagram of a transistor amplifier with a transformer-coupled load 
is shown in Fig. 9-12a. The graphical analysis of this amplifier runs 
exactly parallel to the graphical analysis of the transformer-coupled 
triode amplifier presented in Sec. 6-2. The primary of the transformer 
acts as a short circuit to the d-c component of collector current; hence 
the static load line is given by Eq. (9-14) with RL = 0. The quiescent 
operating point on this line corresponds to the value of I c given by Eq. 
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(9-21). The capacitors C1 and Ce are understood to act as short circuits 
to the time-varying components of current; hence the dynamic operating 
path is a line of slope -1/R~ = -(NdN1)2/RL passing through the 
quiescent point. The graphical construction is shown in Fig. 9-12b. 

In designing a transistor amplifier of the type shown in Fig. 9-12, the 
transformer turn ratio is chosen to give a suitable slope to the dynamic 
operating path. The collector supply voltage EDc, the stabilizing emitter 
resistance Re, and the bias resistances Ra and Rb are chosen to give a 
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Frn. 9-12. Graphical analysis of a transistor amplifier with a transformer-coupled load. 
(a) Circuit; (b) graphical construction. 

suitable quiescent point. The optimum quiescent point is usually 
located on the hyperbola of maximum permissible collector dissipation 
if maximum output power is required. For maximum output power, 
the amplitude of the input signal is adjusted to give the maximum per
missible excursion of the operating point along the dynamic operating 
path. 

9-7. Summary. Practical transistor amplifiers are usually somewhat 
different in form from the basic amplifier circuit, partly for reasons of 
convenience and partly for reasons of necessity. Practical circuits 
usually contain capacitors, and occasionally, as in the case of the trans
former-coupled load, they may contain inductors. The basic principles 
underlying the analysis and design of such circuits are the same as those 
developed for the triode amplifier, although the details of the calculations 
are different. Thevenin's theorem can be used in the manner described 
in Sec. 6-4 to reduce transistor amplifiers of various configurations to the 
standard form shown in Fig. 6-16b. This standard form is identical with 
the circuit shown in Fig. 9-5b and analyzed in Sec. 9-3. 
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PROBLEMS 

9-1. A 2Nl 70 N-P-N transistor is used in the amplifier circuit shown in Fig. 9-la. 
The transistor can be represented by a piecewise-linear model with acB = 30. 

a. If the d-c supply voltage is 12 volts, what values of RL and R1 are required to 
locate the quiescent operating point at le = 1 ma and EcE = 4 volts? 

b. If the input signal is sinusoidal, what is the maximum amplitude that the 
sinusoidal component of current in RL can have without excessive distortion? 

9-2. If the d-c supply voltage in the amplifier of Fig. 9-7a is reduced to -10 volts, 
what is the new quiescent operating point? Does this quiescent point appear to be 
satisfactory for small-signal operation? 

9-3. An N-P-N transistor is used in the amplifier circuit shown in Fig. 9-5a. The 
transistor can be represented by a piecewise-linear model with acB = 40. The d-c 
supply voltage is 22.5 volts, and Rb and R. are 10 and 2 kilohms, respectively. 

a. Sketch a set of approximate collector characteristics based on the piecewise
linear model. Show curves for iB = 50, 100, 150, 200, and 250 µa. 

b. Determine the values of Ra and RL that will locate the quiescent operating point 
at le = 4 ma and EcE = 7.5 volts. 

c. The coupling and bypass capacitors act as short circuits to the time-varying 
components of current. Sketch and dimension the static load line and the dynamic 
operating path on the collector characteristic constructed for part a. 

9-4. The effect of the emitter-circuit resistance in stabilizing the quiescent operat
ing point for the transistor in the amplifier of Fig. 9-7a is to be examined. 

a. Determine a suitable value for acB-
b. If I cEo increases by 200 µa as the result of an increase in temperature, by what 

amount does the quiescent collector current increase? 
9-5. The transistor described in Prob. 9-3 is used in the circuit shown in Fig. 9-5a 

with RL = 1.0 kilohm, Rb = 20 kilohms, and R. = 0.5 kilohm. The circuit is 
required to deliver a signal current to RL having a peak-to-peak value of 4 ma when a 
sinusoidal signal is applied at the input. The coupling and bypass capacitors act as 
short circuits to the time-varying components of current. 

a. Sketch the set of collector characteristics specified in part a of Prob. 9-3. 
b. What is the smallest value that Enc can have if the amplifier is to meet the design 

specifications? 
c. Determine approximately the required value of Ra. 
9-6. A 2N109 P-N-P transistor is used in the power amplifier of Fig. 9-12a with 

Enc = -9 volts, R. = 220 ohms, Rb = 5.6 kilohms, RL = 10 ohms, and Ni/N2 = 
7 0¾ 00 • The coupling and bypass capacitors act as short circuits to the time-varying 
components of current, and the transformer acts as an ideal transformer to the time
varying currents. 

a. What value of Ra is required to make the quiescent collector current 10 ma? 
The current amplification factor for the 2N109 is acB = 70. 

b. Sketch and label the static load line and the dynamic operating path on the 
ic-ecE coordinates. It is not necessary to show the collector characteristics on this 
sketch. 

c. If the signal is sinusoidal, what is the greatest amplitude that the current in RL 
can have without marked waveform distortion? Assume that the operating path 
can extend to the ic and the ecE axes. 

9-7. A transistor having the collector characteristics shown in Fig. 9-lOb is used in 
the amplifier of Fig. 9-12a with RL = 4 ohms and R. = 1 ohm. The circuit is to be 
designed for maximum power delivered to the load. The maximum permissible 
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collector current, voltage, and power dissipations are indicated on the characteristic 
curves. 

a. The dynamic operating path is to permit maximum power to the load, and one 
end is to terminate on the collector-voltage axis at ecE = -25 volts. What trans
former turn ratio is required? 

b. Sketch the collector characteristics, and locate the quiescent operating point that 
will permit maximum power output for a sinusoidal signal. What value of E De is 
required for this quiescent point? 

c. Assuming that the operating path can extend to the axes without producing 
waveform distortion, what is the maximum output power under sinusoidai conditions? 
Note: The actual output power obtainable with small distortion may be appreciably 
smaller than this value. 



CHAPTER 10 

MULTIGRID VACUUM TUBES 

One of the most troublesome defects of the vacuum triode is the para
sitic capacitance between the grid and the plate. Although this capaci
tance is only a few micromicrofarads, its effects become important at 
frequencies greater than a few tens of kilocycles per second. It reduces 
the amplification that can be obtained with the tube, and the feedback 
that it provides from the plate circuit to the grid circuit may cause 
self-sustaining oscillations to occur in radio-frequency amplifiers unless 
special circuit arrangements are employed. Self-sustaining oscillations 
interfere with the proper operation of an amplifier. 

The addition of a second grid in the space between the control grid 
and the plate provides an electrostatic shield that reduces the grid-to
plate capacitance to a small value and eliminates the faults described 
above. The plate characteristics of this tetrode vacuum tube are quite 
irregular, however, and the region corresponding to linear amplification 
is restricted. The irregularities in the plate characteristics are removed 
by the insertion of a third grid in the space between the second grid and 
the plate. Thus the pentode vacuum tube evolves. These additional 
grids increase the amplification factor and the plate resistance of the 
tube by a large factor; as a result, greater voltage amplification can be 
obtained with pentodes than with triodes. The circuitry is slightly 
more complicated, however. In certain applications, such as the voltage 
amplifiers in radio receivers, pentodes are used almost exclusively. 

The class of multigrid tubes includes other tubes with four or five 
grids. These are special-purpose tubes intended to perform other func
tions instead of or in addition to amplification. Such tubes can b0 
studied more effectively when their special functions are under consider
ation; hence they are not discussed here. 

The objective of this chapter is to correlate the characteristics of 
tetrodes, including beam power tubes, and pentodes with their internal 
physics, to present typical circuits in which these tubes are used, and 
to develop network models for the tubes. 

10-1. Vacuum Tetrodes and Pentodes. For reasons set forth above, 
it became necessary early in the history of vacuum tubes to seek some 

209 
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method of reducing the grid-to-plate capacitance inherent in the triode. 
A solution to this problem was found by inserting an additional grid in 
the interelectrode space between the control grid and the plate as indi
cated schematically in Fig. 10-la. If the second grid is held at a fixed 
potential, it acts as an electrostatic shield, or screen, between the control 
grid and plate; hence it is called a screen grid. The grid-plate capacitance 
can be reduced by a factor of 100 or more by the addition of a screen grid. 

Typical plate characteristics for a tetrode with a fixed screen-to-cathode 
voltage are shown in Fig. 10-lb. It is clear from a comparison of these 
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Frn. 10-1. Tetrode characteristics. (a) Tetrode vacuum tube; (b) static tetrode 
plate characteristics. 

curves with those for a triode that the addition of a screen grid has a 
pronounced effect on the plate characteristics. Particularly distressing 
is the fact that the characteristics are quite nonlinear for values of 
plate voltage smaller than the screen voltage, for waveform distortion 
will be severe if the operating path extends into this region. The 
potential distribution diagram for the tetrode reveals the reason for the 
irregularities in the plate characteristics and indicates how they can be 
eliminated. 1•2 

An idealized tetrode with infinite, parallel, plane electrodes is pictured 
in Fig. 10-2a; the potential-distribution diagrams for two paths between 
the cathode and plate are shown in Fig. 10-2b. The potential in the 
region betwe~n the cathode and control grid is determined primarily 
by the control-grid and screen-grid potentials and is much less dependent 
on the plate potential. Thus the potential minimum in front of the 
cathode and the current leaving the cathode depend primarily on the 
control-grid and screen-grid potentials, and the cathode, control grid, 
and screen grid act much like a triode with holes in its plate. A fraction 
of the current leaving the cathode is intercepted by the screen grid; 
the remainder passes through the space between the screen-grid wires 
and is collected by the plate. The screen grid must be held at a positive 
potential to give a suitable value of plate current; a typical value for the 
screen potential is Ec2 = 100 volts. 
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When the plate voltage is less than the screen-grid voltage, such as 
E~ in Fig. 10-2b, the following action takes place. Electrons from the 
cathode strike the plate with sufficient kinetic energy to release one or 
more electrons from the plate. These secondary electrons find them
selves in an electric field that accelerates them toward the screen grid; 
they are eventually collected by the screen grid because it is the most 
positive electrode in the tube. The loss of secondary electrons by the 
plate is manifest as a reduction in plate current, and it is the cause of 
the irregularities in the tetrode plate characteristics. 
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Frn. 10-2. Conduction through a tetrode. (a) Idealized tetrode; (b) potential 
distribution. 

Secondary emission takes place at the plate of the triode just as it 
does at the plate of the tetrode. In the triode case, however, the plate 
is normally the most positive electrode in the tube, and the secondary 
electrons all return to the plate. In the extreme case where the grid 
of the triode is more positive than the plate, the secondary electrons 
are collected by the grid, thereby increasing the grid current and reducing 
the plate current. 

If the potential-distribution curve in the space between the plate 
and screen grid were pulled down to some low level as illustrated in 
Fig. 10-3a, secondary electrons emitted from the plate would find them
selves in an electric field accelerating them back toward the plate, and 
they would return to the plate just as they do in the triode. The cause 
of the irregularities in the tetrode characteristic would thereby be 
removed. This desirable potential distribution can be realized by adding 
still another grid, called the suppressor grid, to the tube. The result 
is the pentode vacuum tube represented schematically in Fig. 10-3b. 

The pentode is normally operated with the suppressor grid connected 
to the cathode, the screen grid held at some fixed positive potential as in 
the case of the tetrode, and the control grid biased at a suitable negative 
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potential as in the case of the triode. Typical plate characteristics for a 
pentode with the suppressor grid connected to the cathode and with the 
screen held at a fixed positive potential are shown in Fig. 10-4. The action 
inside the tube leading to the sharp drop in plate current and the sharp rise 
in screen current at low values of plate voltage can be explained in terms 
of the potential-distribution diagram of Fig. 10-3a. Electrons in transit 

e 

s 

(bl 

Frn. 10-3. Evolution of the pentode vacuum tube. (a) Potential distribution; (b) 
the pentode vacuum tube. 
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Frn. 10-4. Static pentode plate characteristics; ec2 = 150 volts, eca = 0 volts, ib given 
by solid curves, and ic2 given by dotted curves. 

from the cathode to the plate move rather slowly in the vicinity of the 
suppressor grid because of the low potential in this region. At low plate 
voltages a large negative space charge accumulates in the vicinity of the 
suppressor, the potential is depressed to negative values, and a virtual 
cathode forms in the space between the suppressor-grid wires. The 
faster electrons arriving at the virtual cathode pass on to the plate; the 
slower ones are turned back and are eventually collected by the screen 
grid. The plate and the virtual cathode act very much like a diode, 
giving rise to the diode-like portion of the characteristic at low plate 
voltages. The point at which each sel?arate characteristic breaks away 
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from the diode characteristic is the point at which the virtual cathode 
disappears for the corresponding value of ec1. 

The addition of the suppressor grid has some further effects on the 
properties of the tube. For one thing, the additional grid gives additional 
shielding between the plate and the control grid, thereby reducing further 
the capacitance between these electrodes. The capacitance may be 
reduced by as much as 1000 by the shielding action of the screen and 
suppressor grids. Another result is that the plate current in the pentode 
is almost independent of the plate voltage when there is no virtual cathode 
at the suppressor grid. It follows from this fact that the amplification 
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FIG. 10-5. Static beam-power-tube plate characteristics; ec2 = 250 volts, ib given by 
solid curves, and ic2 given by dotted curve. 

factor and the plate resistance of the pentode are much greater than the 
corresponding parameters of the triode; as a result, greater voltage ampli
fication is possible with the pentode than with the triode. 

The addition of a suppressor grid is one way of producing the desired 
minimum shown in the potential-distribution curve of Fig. 10-3a. An 
alternative method, illustrated schematically in Fig. 10-5, is to add elec
tron-deflecting plates to a tetrode arranged so that the electron stream 
flowing to the plate is concentrated into a dense beam in the space 
between the screen grid and the plate. The dense negative space 
charge associated with. this concentration of electrons depresses the 
potential-distribution curve and develops the desired potential mini
mum. Since the action of the space charge is more or less uniform in 
space, the plate characteristics of such tubes have sharper knees than 
comparable pentodes, and the operating path can extend farther to the 
left than in the case of the pentode. This fact is important in power 
amplifiers where large voltage swings are necessary for large power out
put; hence the beam tetrode is used primarily in power amplifiers and 
is known as a beam power tube. 1•2 
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The plate current in multigrid tubes contains a small, randomly varying 
component like that described in connection with the triode. The noise 
component of current in tetrodes and pentodes is usually several times 
that in triodes, however. The greater noise in multigrid tubes is associ
ated with the division of current between the plate and the screen grid. 
This division is not constant, but varies randomly with time, giving rise 
to random variations in plate current. Noise originating in this manner 
is called partition noise. Since all the current in the triode is collected 
by the plate, there is no partition noise. For this reason triodes are 
often used in preference to pentodes when very feeble signals are to be 
amplified, even though the triode has a much smaller amplification factor. 

10-2. Pentode Voltage Amplifiers. A practical pentode voltage ampli
fier is shown in Fig. 10-6. All bias voltages are derived from a single 

FIG. 10-6. Pentode voltage amplifier. 

d-c source, Ebb• The control-grid 
bias is provided by the voltage drop 
across Rk, and the screen-grid bias is 
provided through the series resistor 
Rs which is chosen to give the desired 
potential at the screen grid. The 
bypass capacitors ck and Cs are 
chosen large enough to act as short 
circuits to the signal components of 
current; hence the voltages across 
them are direct voltages. It follows 

from these facts that only the control-grid and plate voltages vary with 
the signal. The screen and suppressor grids affect the shape of the tube 
characteristics, but they play no direct part in amplification of the signal; 
thus the pentode behaves like a triode having the characteristics shown 
in Fig. 10-4. 

The design of a pentode amplifier for a specified quiescent operating 
point is straightforward. The cathode resistor is chosen to give the 
desired grid bias: 

(10-1) 

The screen-grid resistor is chosen to give the specified screen-grid voltage: 

(10-2) 

and the plate load resistor is chosen to give the specified plate voltage: 

(10-3) 

The procedure for choosing the size of the bypass capacitors is developed 
in detail in Chap. 14. 
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The construction of the static load line on the plate characteristics and 
the determination of the quiescent operating point when the circuit 
is given is not a simple problem, for ec1, ec2, eb, ic2, and ib are all unknown. 
To make matters worse, a given set of plate characteristics applies for 
only one value of the unknown ec2- Fortunately, however, it is seldom 
necessary to solve this problem. The construction of the dynamic opera
ting path, which is of considerable importance when the signal is large, is 
often a much simpler problem, for under normal dynamic operating 
conditions Ek and ec2 are constant and ic2 is of no interest. When the 
quiescent operating point is known and when the screen-grid voltage has 
the value for which the plate characteristics are known, the dynamic 
operating path can be constructed by the same procedure as that used 
with the triode. The equation of the dynamic operating path is 

(10-4) 

This is the equation of a straight line with a slope -1/RL; it passes 
through the quiescent point if there is negligible waveform distortion. 

All the calculations discussed above require a knowledge of the quies
cent screen-grid current. The tube manufacturer often supplies informa
tion about this current in the form of a family of screen-grid characteristics 
superimposed on the plate characteristics as illustrated in Fig. 10-4. In 
many cases, however, only a single screen-grid characteristic for one 
fixed value of control-grid voltage is given. In such cases the screen
grid current for other values of control-grid voltage can be estimated with 
sufficient accuracy on the following basis. In the normal operating 
region, on the right of the knee of the plate characteristics, the fraction 
of the total current intercepted by the screen grid is nearly constant and 
independent of the electrode voltages;2 that is, 

(10-5) 

The constant of proportionality, p, is usually in the range between 0.3 and 
0.5 for typical small pentodes. Thus the screen-grid current for any 
combination of electrode voltages in the normal operating region of the 
plate characteristics can be determined if p and ib are known. If one 
screen-grid characteristic is shown on the plate characteristics, it suffices 
for the determination of p. 

Tube characteristics are usually supplied for one value of screen-grid 
voltage only. These curves cannot be used directly in the design of an 
amplifier to be operated with any other value of screen voltage. How
ever, the given characteristics can be converted rather easily to corre
spond to any other value of screen voltage in a fairly wide range. When 
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the suppressor grid is connected to the cathode, the plate and screen 
currents can be expressed as functions of the electrode voltages: 

and 
ic2 = fc2(ec1,Cc2,eb) 
ib = fb(Cc1,Cc2,eb) 

(10-6) 
(10-7) 

These functions are represented graphically by the tube characteristics. 
With the aid of certain simplifying assumptions it can be shown that in 
the normal operating range all electrode currents vary approximately as 
the three-halves power of the electrode voltages when the voltages are all 
changed in the same proportion; that is, if all electrode voltages are 
multiplied by a given factor k, then all electrode currents are multiplied 
by k¾. Thus (10-6) and (10-7) can be written as 

and 
k¾ic2 = fc2(kec1,kec2,keb) 
k'Hib = fb(kec1,kec2,keb) 

(10-8) 
(10-9) 

in which k is the variable. These relations hold reasonably well in the 
normal operating region of the characteristics; they do not hold when a 
virtual cathode exists at the suppressor or at low plate currents where 
current from parts of the cathode may be cut off. 

Suppose now that a set of pentode characteristics corresponding to a 
given screen voltage Ec2 is to be converted to a new screen voltage, 
E~2 = kEc2- It follows from (10-8) and (10-9) that the original char
acteristics will correspond to the new screen voltage if the plate voltage 
scale and the control-grid voltage scale are multiplied by k and if the 
plate current scale and the screen current scale are multiplied by k¾. 
Thus the tube characteristics can be converted to a different screen voltage 
by the simple expedient of changing the scales of current and voltage. 
The conversion is illustrated in Fig. 10-7. 

0 100k 200k 300k 400k 500k eb 

Fm. 10-7. Conversion of pentode char
acteristics to a new screen-grid voltage. 

Fm. 10-8. Pentode voltage amplifier for 
Example 10-1. 

Example 10-1. A typical pentode voltage amplifier is shown in Fig. 10-8. The 
resistances in the circuit are to be chosen to locate the quiescent operating point at 
Ebo = 100 volts and Ec1 = -2 volts when Ec2 = 100 volts. 
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Solution. The plate current given by the tube characteristics at the quiescent point 
is approximately 1.8 ma. The plate load resistance required is then 

hoRL = Ebb - eb - Ek = 300 - 100 - 2 = 198 volts 
RL = 198/1.8 = 110 kilohms 

The tube characteristics give only one curve of Ie2; this curve is for Ee1 = 0. Thus 
the screen-grid current at the quiescent point must be determined with the aid of 
Eq. (10-5). For Ec1 = 0 and Eb = 100 volts, h = 9.8 ma and Ic2 = 4.2 ma; hence 

P = Ic2 = 4.2 = 0.43 
lb 9.8 

Thus for Ee1 = - 2 volts and Eb = 100 volts, h = 1.8 ma, and 

I c2 = Ph = (0.4~~) (1.8) = 0. 77 ma 

The screen dropping resistance required is then 

Ic2Rs = Ebb - Ec2 - Ek = 300 - 100 - 2 = 198 volts 
Rs = 198/0.77 = 257 kilohms 

The cathode bias resistor required is given by 

Ek = -Ec1 = Rk(Iba + Id = 2 volts 

2 k" Rk = 1.8 + 0. 77 = 0. 78 1lohm = 780 ohms 

10-3. Beam Power Amplifiers. Beam power tubes are designed espe
cially for applications in which large output power is required. Figure 

FIG. 10-9. Beam power amplifier for 
Example 10-2. 

120 

80 

40 

I 00 200 300 400 500 eb 
volts 

FIG. 10-10. Beam-power-tube character
istics. 

10-9 shows a transformer-coupled power amplifier using a beam power 
tube. As is often the case with such tubes, the full plate-supply voltage 
is applied to the screen grid; cathode bias is provided in the usual manner. 

A set of plate-characteristic curves for the tube is shown in Fig. 10-10-
For Class A1 operation, the dynamic operating path must be restricted 
to a region bounded by the ec1 = 0 line, the maximum permissible plate 
voltage, and the plate-voltage axis. In addition, the quiescent oper
ating point must lie on or below the hyperbola of maximum permissible 
plate dissipation. Thus the design of a beam power amplifier is con
cerned largely with determining the operating path inside the permitted 
region that gives maximum signal power to the load. The permitted 
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region shown in Fig. 10-10 is quite similar to the permitted region on the 
transistor characteristic shown in Fig. 9-11. The principal difference is 
that the dynamic operating path for the beam power tube must terminate 
on the diode-like portion of the characteristics rather than on the plate
current axis. Nevertheless, the results deduced in connection with Fig. 
9-11 apply to the geometry in Fig. 10-10 within a reasonable approxi
mation, and they indicate directly the optimum design for the beam 
power amplifier. 

According to the foregoing discussion and the results obtained in 
Sec. 9-5, the optimum dynamic operating path for the beam power tube is 
tangent to the hyperbola of maximum permissible plate dissipation. If 
the operating point makes equal excursions on either side of the quiescent 
point, then the quiescent point should lie on the hyperbola. The output 
power is nearly independent of the point of tangency provided the oper
ating path terminates on the diode-like part of the plate characteristics. 
The optimum load resistance referred to the primary of the output trans
former is R~ = Ebo/ Ibo- If the signal is sinusoidal, then the maximum
signal output power is somewhat less than half of the maximum per
missible plate dissipation, and the plate-circuit efficiency is somewhat 
less than 50 per cent. 

Example 10-2. A 6CZ5 beam power tube is used in the power amplifier of Fig. 10-9. 
The plate characteristics and the hyperbola of maximum permissible plate dissipation 
for this tube are shown in Fig. 10-10. The cathode resistor, the transformer turn 
ratio, and the plate-supply voltage are to be determined for an optimum design. 

Solution. The quiescent operating point is chosen at Ebo = 250 volts as a com
promise between waveform distortion and the requirement of a large plate-supply 
voltage. The quiescent plate current is thus 

I 
Pbmax 12 

bo = Ebo = 250 = 0.048 amp = 48 ma 

The optimum load resistance referred to the primary of the output transformer is 

, Ebo 250 . 
RL= - = - = 5.2 k1lohms 

ho 48 

and the required transformer turn ratio is 

Ni= ✓5200 
N2 RL 

when RL is expressed in ohms. 
The plate characteristics indicate that for the chosen quiescent point, the grid bias 

must be approximately 14 volts; hence 

Rk = h~!cL = M = 0.27 kilohm= 270 ohms 

The plate-supply voltage must then be 

Ebb = 250 + 14 = 264 volts 

neglecting the small d-c drop across the resistance of the transformer winding. This 
design corresponds with the recommendations of the tube manufacturer. 
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For maximum power output with small distortion, the dynamic operating path 
should terminate approximately on the plate characteristic for ec1 = -5 volts; thus 
the input signal should have a peak instantaneous value 

E.peak = 14 - 5 = 9 volts 

With this signal applied, the peak-to-peak voltage across the transformer primary is 
E ::::: 460 volts, and the peak-to-peak current in the transformer primary is I ::::: 74 ma. 
If the signal waveform is sinusoidal, the power delivered to the load is 

PL = ~I = (460) ~0.074) = 4.25 watts 

This is somewhat less than Amax/2 = 6 watts because the path of operation does not 
extend to the coordinate axes. Greater power output can be obtained by applying a 
larger signal at the input; however, the waveform distortion is correspondingly greater. 

10-4. Pentode Models. The plate characteristics for a pentode with a 
fixed screen-grid voltage can be represented approximately by a set of 

ib ~ gl icl 

Io 
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(a) (bl 
Fm. 10-11. Piecewise-linear model for a pentode with fixed screen-grid voltage. (a) 
Characteristics; (b) model. 

piecewise-linear characteristic like those shown in Fig. 10-11a. These 
characteristics are straight parallel lines that are equally spaced for 
equal increments of grid voltage. Corresponding to these characteristics 
there is a piecewise-linear model for the pentode; the model is shown in 
Fig. 10-1lb. The extended plate characteristic for ec1 = 0 is a straight 
line that intersects the plate-current axis at ib = Io; hence for ec1 = 0, 
the plate circuit can be represented by a resistance in parallel with a 
current source I 0 • When grid voltage is applied, the plate characteristic 
is shifted vertically by a distance that is proportional to eel• Since this 
shift is equivalent to a change in the value of Io, it can be accounted for 
by a current source gmec1 connected in parallel with the source Io. The 
proportionality constant gm is the transconductance of the model. The 
volt-ampere characteristic for the grid circuit of the pentode is similar 
to that of a triode; hence the model for the grid circuit is like that used 
for the triode. The diodes in the model symbolize the fact that the grid 
and plate currents can never be negative. 

There are certain limitations on the applicability of the piecewise
linear model in Fig. 10-11b. First, it is valid only for values of eb lying 
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to the right of the knee of the plate characteristic; second, it is valid for 
one value of screen-grid voltage only; and finally, it does not account for 
the component of cathode current that flows in the screen-grid circuit. 
Because of the last of these facts, the model cannot be used to determine 
the quiescent point when the cathode-resistor bias is used. 

The incremental model for the pentode is useful in analyzing circuits 
in which the tube is used to amplify small signals. In the most common 

type of pentode voltage amplifier, the sup
pressor grid is connected to the cathode, the 
screen grid is held at a fixed potential rela
tive to the cathode, and the mode of opera
tion is Class A1, Under these conditions 
the screen and suppressor grids have no 
direct effect on the increments of voltage 

FIG. 10-12· An incremental and current in the circuit, and the tube 
model for the pentode. 

operates in the same general manner as a 
triode. Consequently, the incremental model for the pentode, shown in 
Fig. 10-12, has the same form as that developed in Chap. 7 and shown in 
Fig. 7-3 for the triode. The parameters in this model must be evaluated 
at the proper operating point; the transconductance especially will vary 
considerably from one operating point to another. The plate resistance 
can be determined from the slope of the plate characteristic at the operat
ing point, and the transconductance can be determined from the change 
in plate current resulting from a small change in grid voltage when the 
plate voltage is held constant. The plate characteristics used in these 
calculations must correspond to the quiescent screen-grid voltage. 

There are some applications for the pentode in which the screen and 
suppressor grids are not held at constant 
potentials relative to the cathode, and in 
such cases it is desirable to have an incre- k 3 13 
mental model that accounts for the effects 3 c>--------. 

of these electrodes on the currents flowing 
in the tube. A complete model for the 
pentode can be developed by a simple ex
tension of the method employed in Sec. 7-1. 
This general model can then be specialized 
to fit the operating conditions that arise in FIG. 10-13. Currents and volt
any particular case. ages in a pentode vacuum tube. 

To systematize the derivation, the electrodes are numbered and the 
currents and voltages are symbolized as shown in Fig. 10-13. Then, since 
only the cathode emits electrons, it follows that 

(10-10) 
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The plate current is a function of the four electrode voltages: 

J4 = f4(E1,E2,E3,E4) (10-11) 

and the increment in /4 resulting from increments in voltage applied to 
each of the electrodes can be expressed as 

aJ4 a14 aJ4 aJ4 
ll./4 ~ d/4 = aEi dE1 + aE2 dE2 + aE

3 
dEa + aE4 dE4 (10-12) 

The partial derivatives in (10-12) have the dimensions of conductance; 
hence giving them appropriate symbols and using lower-case letters for 
increments of current and voltage 
yields ....-----------ll-U4 

i4 

i4 = g41e1 + g42e2 + g43e3 + g44e4 
(10-13) 

'----+----1~----+---...---00 The circuit shown in Fig. 10-14 cor
responds to Eq. (10-13). The con-

Frn. 10-14. Incremental model for the 
ductance g44 is the incremental plate plate circuit of a pentode. 
conductance; g41, g42, and g43 are the 
incremental transconductances from grids 1, 2, and 3, respectively, to the 
plate. Each of the controlled sources in Fig. 10-14 accounts for the 
effect of one of the grids on the plate current; the conductance g44 accounts 
for the effect of the plate voltage on the plate current. 

Following this same procedure, models similar to that of Fig. 10-14 
can be developed for each of the three grids in the pen tode. When these 
models are combined in accordance with Eq. (10-10) a complete model for 
the pentode, shown in Fig. 10-15a, results. An equivalent model using 
voltage sources is shown in Fig. 10-15b; it is obtained from the circuit in 
Fig. 10-15a by the conventional process of source transformation. The 
relations among the parameters in the two models, which are given by the 
transformation process, can be summed up in two statements: 

and (10-14) 

When the pentode is used at high frequencies, the interelectrode capa
citances must be accounted for. In general, a capacitance is required 
between each pair of electrodes, including the cathode; however, some of 
these, such as the control-grid-to-plate capacitance, are usually negligible. 

The value of the models in Fig. 10-15 lies principally in the fact that 
they can be specialized to represent any particular operating condition. 
For example, Fig. 10-16 shows a pentode amplifier in which the screen 
voltage is obtained from an unbypassed resistor. The mode of oper-
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ation is Class A1, interelectrode capacitances are negligible at the signal 
frequency, and both C and Ck act as short circuits to the signal com
ponents of current. An incremental model for this circuit is shown in 
Fig. 10-17. Since no current flows in the control grid, the portion of the 

g41 e1 ! 

g31e1! 

2 
g21ei i 

g12e2 ~ 

io 
0 (a] 

-

(bl 
Frn. 10-15. The complete pentode model. (a) Current-source representation; (b) 
voltage-source representation. 

model representing the control grid is simply an open circuit. The 
suppressor grid is connected to the cathode; hence e3 = 0, and all sources 
controlled by eg are omitted from the model. Moreover, since e3 = 0, 
the portion of the model representing the suppressor grid is of no interest 
anci is omitted in Fig. 10-17, An analysis of this model shows that the 
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voltage amplification is materially reduced by the action of the screen 
grid on the plate current. 

The model in Fig. 10-17 can be simplified further by using the relation, 
presented in Sec. 10-2, between the plate and screen-grid currents. This 
relation is 

(10-15) 

Since p is a constant, it follows that 
the increments of plate and screen
grid current are related by 

(10-16) 

This relation can be symbolized as 
shown in the circuit of Fig. 10-18. FIG. 10-16. A pentode amplifier with no 
Calculations based on this simpli- screen-grid bypass capacitor. 

fled model are easy to make, and they usually compare quite satisfactorily 
with experimental results. 

It is clear from the circuits appearing in the last few illustrations that 
the circuit models for transistor and vacuum-tube amplifiers may con
tain a number of controlled sources and that these are controlled by 

1 

FIG. 10-17. Incremental model for the amplifier of Fig. 10-16. 

1 
e1 

i2 i4 

i es Rs r44 RL pi4 

Fm. 10-18. Simplified model for the amplifier of Fig. 10-16. 

currents or voltages appearing at various places in the circuit. It is 
appropriate at this point to call attention to the fact that when using 
circuit models for transistors or vacuum tubes, it is essential that the 
controlling current or voltage for each controlled source be clearly 
marked on the circuit diagram. Only in this way can errors and con
fusion be avoided. In this connection it should be noted that in the 
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pentode models of Fig. 10-15 the controlling voltages are the increments 
in the potentials of the various electrodes relative to the cathode. 
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PROBLEMS 

10-1. A 6AU6 pentode is used in the voltage amplifier circuit shown in Fig. 10-6. 
The d-c supply voltage is 300 volts, and the grid return resistance R0 is 1 megohm. 
The tube is to be biased so that under quiescent conditions Eb = Ec2 = 100 volts and 
lb = 5 ma. Under these conditions, Ic2 = 2.1 ma. Determine the required values of 
Rk, Rs, and RL, Do not overlook the fact that the screen-grid current flows through 
the cathode resistor. 

10-2. The amplifier of Prob. 10-1 is to be biased so that under quiescent conditions 
Eb = Ec2 = 100 volts and lb = 3 ma. 

a. Determine the screen-grid current at this quiescent point. Note: See Eq. (10-5). 
b. Determine the required values of Rk, R., and RL, 
c. Sketch the static load line and the dynamic operating path on the plate charac

teristics under the assumption that the coupling and bypass capacitors act as short 
circuits to the time-varying components of current. Estimate the voltage amplifica
tion provided by the circuit in linear Class A1 operation. 

10-3. A 6AQ5 beam power tube is used in the power amplifier shown in Fig. 10-9. 
The circuit is adjusted so that under quiescent conditions Eb = Ec2 = 200 volts and 
Ec1 = -8 volts. Determine the quiescent plate current. Note that the published 
tube characteristics must be converted to the value of screen-grid voltage given above. 

10-4. A 6AQ5 beam power tube is used in the power amplifier shown in Fig. 10-9. 
The circuit is to be designed to deliver the greatest possible power to an 8-ohm 
loudspeaker in Class A1 operation. 

a. Plot the plate characteristic for Ec1 = 0, Ec2 = 250 volts, and construct the 
hyperbola of maximum permissible plate dissipation on this plot. 

b. Under quiescent conditions, Eb and Ec2 are to be 250 volts. Construct the 
optimum dynamic operating path on the plot of part a. Determine the grid bias, 
the value of Rk, and the transformer turn ratio required for this operating path. 

c. If the input signal voltage is sinusoidal, what is the greatest peak value that it 
can have in Class A1 operation? With this signal applied, what is the power delivered 
to the loudspeaker? The small effects of waveform distortion can be neglected, and 
the transformer can be considered ideal in so far as signal currents are concerned. 

10-6. A 6AK5 pentode is used in the voltage amplifier of Fig. 10-6. The supply 
voltage is 250 volts, and the circuit elements are chosen to locate the quiescent operat
ing point at Ec1 = -3 volts, Ec2 = 120 volts, and Eb = 80 volts. 

a. Determine the values of Rk, R., and RL. 
b. Determine the incremental tube parameters at the quiescent operating point. 
c. Interelectrode capacitances are negligible, and the coupling and bypass capacitors 

act as short circuits to the signal components of current. Give an incremental model 
for the circuit, and determine the voltage amplification. 

10-6. Figure 10-19 shows two useful pentode circuits in which the electrodes are 
used in unconventional ways. Incremental models are required for these circuits. 
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In each case the interelectrode capacitances are negligible. The control grid and the 
suppressor grid can be omitted from the model for the circuit in Fig. 10-19a; the control 
grid and the plate can be omitted from the model for the circuit in Fig. 10-19b. Use 
the current-source representation for the tubes in both cases, and label the controlling 
voltages for the controlled sources. 

Frn. 10-19. Pentode circuits for Prob. 10-6. (a) Directly coupled amplifier; (b) 
transi tron oscillator. 

10-7. A pentode amplifier is designed in Example 10-1. The performance of this 
amplifier under small-signal operating conditions is to be studied, and the effect of 
omitting the screen-grid bypass capacitor is to be determined. 

a. Evaluate Um and gp at the quiescent operating point. 
b. Give an incremental model for the circuit using the circuit-parameter values 

determined in Example 10-1 and using the value Ro = 500 kilohms. The coupling 
and bypass capacitors are to be treated as short circuits to the time-varying com
ponents of voltage and current. 

c. Determine the voltage amplification of the circuit. 
d. Give a model for the circuit for the condition that the screen-grid bypass capaci

tor is removed (Fig. 10-18.) Assume g42 = 0.06 millimho and p = 0.4. 
e. Determine the voltage amplification of the circuit with the screen-grid bypass 

capacitor removed. 



CHAPTER 11 

ANALYSIS OF PIECEWISE-LINEAR CIRCUITS 

The electrical properties of tubes and transistors are presented in some 
detail in Chaps. 5 to 10, and the possibility of using these devices as 
voltage and current amplifiers is examined. Tubes and transistors are 
also used in a variety of important applications not directly concerned 
with amplification, and it is desirable to examine a few of these appli
cations before proceding with a more detailed study of linear amplifiers. 
Of particular importance in this connection are the methods of analysis 
that can be used to obtain quantitative information regarding circuit 
performance. 

It has been shown that in general the volt-ampere characteristics 
for tubes and transistors are nonlinear, although they are very nearly 
linear for small increments of current and voltage. These nonlinear 
relations are of such a nature that analysis by purely algebraic processes 
is impractical; hence graphical methods of analysis are often used. 
However, when a circuit contains more than one tube or transistor, the 
graphical methods become quite cumbersome. In such cases it becomes 
desirable to seek more efficient methods. In many applications the 
piecewise-linear approximations for the tubes or transistors provide 
effective bases for analysis. The piecewise-linear models for tubes and 
transistors are developed by approximating the volt-ampere character
istics of the devices by suitable families of straight line segments. The 
parameters of the models are chosen to give the best approximation over 
the range of voltage and current encountered in the application under 
study. Although the representation is approximate, it is quite satis
factory for many applications, and it often permits a great saving of time 
and effort. 

The nonlinear properties of tubes and transistors are undesirable in 
many applications, for they may lead to distortion of the signal wave
form. In other circumstances, however, these nonlinear properties are 
used to achieve results that cannot be obtained by any means with 
purely linear components. A number of such applications are presented 
in Chap. 2 in connection with the ideal diode; similar applications for 
triodes and transistors are discussed in the sections that follow. 

226 
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11-1. Quiescent-point Calculations. The determination of the qui
escent operating point is often an important step in the analysis of tube 
and transistor circuits. Graphical methods for determining the quiescent 
point in the basic amplifier circuits are presented in the preceding chap
ters. When the circuits become more complicated, however, graphical 
techniques become quite cumbersome. For example, the cathode
coupled amplifier of Fig. 11-la can be analyzed by graphical means, but 

Ebb 

e2 

T1 
g2 

ek 

es 

R2 

- (a) 

Rs e1 e2 

es 3 G 
g2 

Frn. 11-1. Cathode-coupled amplifier. 
eu1 = e1 - ek and eu2 = -ek-

(bl 
(a) Circuit; (b) piecewise-linear model. 

the procedure is time-consuming. On the other hand, the quiescent 
conditions can be determined easily by elementary circuit analysis if 
the tubes are replaced by suitable piecewise-linear models of the form 
shown in Fig. 5-16. 

A piecewise-linear model for the circuit of Fig. 11-la is shown in 
Fig. 11-lb. The plate-supply battery is shown in two places to simplify 
the form of the circuit. It is concluded from an inspection of the original 
circuit that both grids are biased negatively; hence both grid-circuit 
diodes are shown as open circuits in the model. It is further concluded 
from the original circuit that plate current flows in both tubes; hence the 
plate-circuit diodes are shown as short circuits in the model. It is 
necessary that these assumptions be verified when the calculations are 
completed. It is also assumed that the two triodes are identical. 

When the circuit parameters and the applied voltages are known, the 
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plate currents in the tubes can be determined from two loop equations. 
Under quiescent conditions e1 = 0, and the loop equations are 

and 
But 

(rb + R2)ib1 + R2ib2 = Ebb + µeu1 = Ebb - µek 
R2ib1 + (rb + R2 + R3)ib2 = Ebb + µeo2 = Ebb - µek 

ek = R2(ib1 + ib2) 

(11-1) 
(11-2) 
(11-3) 

Substituting this value for ek into (11-1) and (11-2) and collecting terms 
yields 

and 
[rb + (1 + µ)R2]ib1 + (1 + µ)R2ib2 = Ebb 

(1 + µ)R2ibl + h + (1 + µ)R2 + R3]ib2 = Ebb 
(11-4) 
(11-5) 

Given the numerical values of Ebb and the circuit parameters, these 
equations can be solved for the values of ibl and ib2, 

It should be mentioned at this point that the solution of this problem, 
and others like it, can be further simplified by the use of certain of the 
network theorems presented in Chap. 13. 

Example 11-1. The applied voltage and the parameter values in a circuit having 
the form shown in Fig. 11-la are Ebb = 300 volts, R. = 1 kilohm, R1 = 1 megohm, 
R2 = 2 kilohms, R3 = 20 kilohms, µ = 20, and rb = 10 kilohms. Determine the 
quiescent plate current and plate voltage for each tube. 

Solution. Substituting numerical values in (11-4) and (11-5) yields 

and 
52ib1 + 42ib2 = 300 
42ib1 + 72ib2 = 300 

in which the currents are expressed in milliamperes. Solving these equations yields 
ib1 = 4.55 ma and ib2 = 1.51 ma. 

Equation (11-3) gives the voltage at the cathodes as 

ek = (2) (6.06) = 12.1 volts 

Thus the plate voltage for T1 is 

eb1 = Ebb - ek = 300 - 12.1 = 288 volts 

The output voltage is 

e2 = Ebb - R3ib2 = 300 - (20) (1.51) = 270 volts 

and the plate voltage for T2 is 

eb2 = e2 - ek = 270 - 12.1 = 258 volts 

11-2. The Triode Limiter. A limiter circuit employing two diodes is 
presented and discussed in Sec. 2-3. A triode circuit for accomplishing 
the same result and providing a larger output voltage is shown in Fig. 
11-2a; a piecewise-linear model for the circuit is shown in Fig. 11-2b. 
The two diodes in this model are responsible for the limiting action. 
The voltage-transfer characteristic for a circuit similar to the one shown 
in Fig. 11-2b is presented in Example 5-4. When ec is made more negative 
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than a few volts, the plate current is cut off, the diode in the plate circuit 
acts as an open circuit, and the output voltage is limited to a maximum 
value equal to the plate-supply voltage. When the signal voltage goes 
positive, grid current flows, the diode in the grid circuit acts as a short 
circuit, and the voltage divider consisting of re and R acts to keep ec much 
smaller than es, Thus ec never rises much above zero for any reasonable 
value of es, and the output voltage is limited to a minimum value corre
sponding approximately to ec = 0. 

R 

(a) (bl 

Frn. 11-2. Triode limiter. (a) Circuit; (b) piecewise-linear model. µ, = 100,, 
Tb = 75 kilohms, and Tc = l kilohm. 

When es is positive, the grid voltage is 

(11-6) 

where the approximation is good if R » re, For the parameter values 
specified in Fig. 11-2, e0 = 0.00les, and even when es = 100 volts, ec is 
only 0.1 volt; hence ea is only slightly affected by es when es is positive. 
The value of ea corresponding to ec = 0 is easily determined, for under 
this condition the source µec is zero. Accordingly, 

rb 

Co = rb + RL Ebb 
(11-7) 

This is approximately the lower limit for eo, For the values given in 
Fig. 11-2, Co = 64.3 volts for Cc = 0. 

At the point of plate-current cutoff there is no voltage drop across the 
plate-circuit diode; hence at this point 

µec = -Ebb (11-8) 

and, since ib = 0 at this point, 

(11-9) 

This is the upper limit on eo, For the values given in Fig. 11-2, the 
upper limit on e0 is 150 volts, and the value of ec that gives plate-current 
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cutoff is ec = -Ebb/µ = -1.5 volts. Since no grid current flows at 
plate-current cutoff, es = ec, and e8 = -1.5 volts is required for cutoff. 
Thus the circuit of Fig. 11-2 limits, or clips, any signal that exceeds zero 
volts positively or -1.5 volts negatively. 

The triode limiter can be used to block the transmission of excessively 
large signals, and it is frequently used in waveform shaping circuits. 
For example, a sinusoidal signal of 15 volts amplitude applied to the 
limiter of Fig. 11-2 produces a reasonably good square wave at the output 
with a peak-to-peak amplitude of 150 - 64.3 = 85. 7 volts. 

11-3. The Triode with Grid-leak Bias. The use of a resistor in the 
cathode circuit to provide grid bias for triode amplifiers is treated in 

R 

(al (bl 

FIG. 11-3. A triode amplifier with grid-leak bias. (a) Circuit; (b) piecewise-linear 
model. 

Chap. 6. This is by far the most common method of obtaining bias in 
voltage amplifiers. In some applications, however, the cathode resistor 
and its bypass capacitor are omitted, as illustrated in Fig. 11-3a, and 
grid bias is provided by action that takes place in the grid circuit. Bias 
obtained in this way is called grid-leak bias. 

The action of the circuit of Fig. 11-3a can be analyzed with the aid of 
the piecewise-linear model shown in Fig. 11-3b. For the purpose of this 
analysis the small grid resistance of the triode, r c, is neglected. It is 
seen by referring to Fig. 2-11 that the grid circuit in Fig. 11-3b acts like 
the diode clamper analyzed in Sec. 2-5. Accordingly, if a periodic 
signal is applied to the amplifier, the capacitor charges up to the peak 
value of es with the polarity shown in Fig. 11-3b, and if R1 is large so that 
C cannot discharge appreciably in one cycle of es, the voltage across the 
capacitor remains essentially constant at the peak value of es. The grid 
voltage is then 

and the capacitor voltage Ee serves as grid bias for the tube. 
of es and e0 are shown in Fig. 11-4 for sinusoidal operation. 

(11-10) 

Waveforms 
If the ampli-
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tude of 88 changes, the value of Ee changes accordingly, and the positive 
peak of the waveform of es remains clamped at zero volts. 

If a very large signal is applied to the circuit at es, the capacitor charges 
to a correspondingly large voltage. This voltage may be large enough 
to cut off the plate current when the excessive signal is removed. Such 
action as this is called grid block:ing. The large voltage across C decays 
slowly as C discharges through the large resistance R; the rate of decay 
is governed by the time constant RC. If the time constant is very 
large, the plate current in the triode 
may be cut off for several seconds. 
Signal transmission through the ampli
fier is blocked during this time. 

It is important to note that grid 
blocking and the clamping of the input 
signal by grid action are not phenomena 
restricted to amplifiers with grid-leak 
bias. Both phenomena may occur in 
amplifiers with cathode-resistor bias if 
an input coupling capacitor is used and 
if the input signal is sufficiently large. Frn. ll-4. Waveforms of voltage in 

an amplifier with grid-leak bias. 
These actions may seriously interfere 
with the operation of the circuits in which they occur. 

11-4. The Cathode-coupled Limiter. A simple triode limiter is 
presented in Sec. 11-2. In many applications, however, it is necessary 
to couple the signal source to the limiter through a capacitor in order to 
remove a d-c component of voltage from the signal. In such cases a 
clamping action takes place in the grid circuit in the manner described 
in Sec. 11-3, and as a result the limiter may not be able to perform the 
desired function. For example, under this circumstance it is not possible 
for the limiter to generate a square wave from a sinusoidal input signal. 

The origin of the difficulty described above is the fact that the triode 
limiter depends on the flow of grid current for part of its limiting action; 
the clamping action would not occur if there were no grid current. The 
cathode-coupled limiter, which is the same circuit as the cathode-coupled 
amplifier shown in Fig. 11-1, provides this desirable feature. Limiting 
occurs at one signal level in this circuit because of plate-current cutoff in 
T1, and it occurs at another signal level because of plate-current cutoff 
in T 2• Grid current never flows in T2, and it flows in T1 only when 
very large input signals are applied. 

The voltage-transfer characteristic for the cathode-coupled limiter is 
shown in Fig. 11-5. It is evident from the circuit of Fig. 11-1 that T1 is 
cut off if the input signal is made sufficiently negative. Under this 
condition ek has its smallest value, the plate current in T 2 has its largest 
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value, and e2 has its smallest value as indicated in Fig. 11-5. With T1 
cut off, ek and e2 are unaffected by changes in e1. As e1 is increased above 
the value giving plate-current cutoff in T1, the current in T1 increases, 
and ek increases. Thus the grid of T2 becomes more negative with 

e2 respect to its cathode, the current in 

LT2 cutoff 

T 2 decreases, and the output voltage 
rises. As this action continues, ek 
eventually becomes so great that the 
plate current in T2 is cut off. Under 
this condition e2 has its maximum 
value, Ebb, and is unaffected by 

es further increases in e1. 
FIG. 11-5. Voltage transfer character- The analysis of the cathode-
istic for a cathode-coupled limiter. coupled limiter is greatly facilitated 
by the use of the piecewise-linear representation for the circuit shown in 
Fig.11-lb. In fact, to construct the piecewise-linear voltage transfer char
acteristic it is sufficient to determine the coordinates of the two break 
points. Each break corresponds to one tube reaching the point of plate
current cutoff. For further simplification the circuit is shown in Fig. 
11-6a for the condition that T 2 is at the cutoff point, and it is shown in 

(a) 

(bl 
FIG. 11-6. Piecewise-linear models for the cathode-coupled limiter. (a) T 2 cut off; 
(b) Ti cut off. 

Fig. ll-6b for the condition that T1 is at the cutoff point. The relations 
eu1 = e1 - ek and eu2 = -ek are used in these representations, and in 
each case it is assumed that there is no grid current in either tube. The 
validity of the assumption must be checked before the analysis is complete. 

When T2 is at the point of plate-current cutoff, i~2 = 0 and, from 
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Fig. 11-6a, 
e~ = Ebb (11-11) 

where the primes are used to denote that T 2 is at plate-current cutoff. 
Under this condition Fig. ll-6b indicates that there is no voltage drop 
across rb and Ra; accordingly 

and 

(11-12) 

(11-13) 

This is the value of ek required to produce plate-current cutoff in T 2• 

The plate current in T1 required to develop this value of ek is 

Also, a loop equation for the circuit in Fig. ll-6a yields 

ri~1 + (1 + µ)e~ = Ebb + µe~ 

Substituting (11-12) into (11-1.5) yields the simple relation 

and hence, using (11-14), 
, Tb ., TbEbb 

e1 = µ ib1 = µ(l + µ)R2 

(11-14) 

(11-15) 

(11-16) 

Thus the coordinates of one break in the transfer characteristic, e~ and 
e~, are established. 

When T1 is at the point of plate-current cutoff, i~~ = 0, and since there 
is no voltage drop across rb in Fig. ll-6a, 

(1 + µ)e~' = Ebb + µe~ (11-17) 

A loop equation for the circuit in Fig. ll-6b yields 

(rb + Ra)i~~ + (1 + µ)e~ = Ebb 

Substituting (11-17) into (11-18) yields the simple relation 

(rb + Ra)i;~ + µe~' = 0 

and hence 
,, rb + Ra .,, 

el - ---'lb2 
µ 

(11-18) 

(11-19) 

But with i~~ = 0, e~' = R2i~~- Substituting this relation into (11-18) 
yields 

h + Ra)i~~ + (1 + µ)R2i~~ = Ebb 

and 
.,, Ebb 

ib
2 = Tb + (l + µ)R2 + Ra 

(11-20) 
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Knowing i~~' e~ and e~' can be obtained at once. From (11-19) 

rb + R3 Ebb 

µ rb + ( 1 + µ) R 2 + R3 
(11-21) 

and from Fig. 11-6b 
,, E R .,, rb + (1 + µ)R2 E 

e2 = bb - 31,b2 = rb + ( 1 + µ) R 2 + R 3 bb 
(11-22) 

Thus the coordinates of the second break in the transfer characteristic 
are established, and the characteristic can be completed by constructing 
the appropriate straight line segments. 

Another point of interest is the value of e1 at which grid current begins 
to flow in T 1- Grid current begins to flow when e01 = 0, and under this 
condition in a properly designed limiter ib 2 = 0. Thus the circuit in 
Fig. 11-6a applies for this condition, and from the fact that e01 = 0 it 
follows that 

(11-23) 

when grid current begins to flow in T 1-

It should be noted in passing that certain of the network theorems pre
sented in Chap. 13 can be used to further simplify the analysis of the 
cathode-coupled limiter. 

Example 11-2. The grid of triode T2 in the limiter of Fig. ll-7a is provided with a 
bias ea = 20 volts relative to ground. This arrangement permits a larger resistance 
to be used for R2, which in turn permits larger values of e1 without grid current in T1• 

The coordinates of the breaks in the voltage-transfer characteristic, e2 versus e1, are 
to be determined, and the value of e1 at which grid current begins to flow is to be 
calculated. 

Solution. A piecewise-linear model for the circuit is shown in Fig. ll-7b. It is 
assumed that grid current does not flow in either tube, and the plate-circuit diodes are 
treated as short circuits. The voltage divider providing e3 is omitted from the model, 
for it plays no part in the operation of the circuit other than fixing the value of e3 at 
20 volts. The transfer characteristic has the same form as the one shown in Fig. 11-5, 
and the analysis follows the procedure outlined above with minor modifications to 
account for the source µea. 

When T2 is at the point of plate-current cutoff, i;2 = 0, and 

e~ = Ebb = 300 volts 

Under this condition there is no voltage drop across Ra and the plate resistance of T 2 ; 

hence 
(1 + µ)e~ - µes = Ebb 

giving 
, 300 + 400 

ek = 
21 

= 33.3 volts 

The current in R2 under this condition is i;1 ; thus 

., e; 33.3 
ib1 = R

2 
= ~ = 6.66 ma 
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The equation for the left-hand loop in Fig. ll-7b can be written as 

rbi;1 + (1 + µ)e; = Ebb + µe: 

Substituting the relation (1 + µ)e; = Ebb + µe3 yields 

rbi; 1 + µe3 = µe: 
(10) (6.66) + (20) (20) = 20e~ 

e~ = 23.3 volts 

235 

This solution yields e; = 33.3 volts, e~ = 23.3 volts, and ea = 20 volts. Thus both 
grids are negative relative to the cathodes, and the initial assumption of no grid 

300v 

(a) 

(bl 

Frn. 11-7. Limiter for Example 11-2. (a) Circuit; (b) model. rb = 10 kilohms, 
µ = 20, e01 = e1 - ek, and e02 = ea - ek. 

current is valid. The right-hand break in the transfer characteristic therefore occurs 
at e~ = 23.3 volts and e~ = 300 volts. 

When T1 is at the point of plate-current cutoff, i;~ = 0, and under this condition 
the equation for the right-hand loop in Fig. ll-7b can be written as 

(rb + Ra)i;~ + (1 + µ)e;' = Ebb + µea 

But with i;~ = 0, e~' = R2i;;. Substituting this relation in the loop equation yields 

30i;; + (21) (5)i;~ = 300 + 400 

Thus 
i;~ = 109-1 35 = 5.19 ma 

e;' = Ebb - Rai;~ = 300 - (20)(5.19) 
= 196 volts 

Also, with i;~ = 0, there is no voltage drop across the plate resistance of T1; hence 

(1 + µ)e;' = Ebb + µe~' 
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But 

Hence 
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e~' = R 2i;; = (5) (5.19) = 26 volts 
,, (21) (26) - 300 

el 
20 

= 12.3 volts 

This solution yields e;' = 26 volts, e~' = 12.3 volts, and e3 = 20 volts. Thus both 
grids are negative relative to the cathodes, and the initial assumption of no grid 
current is valid. The left-hand break in the transfer characteristic therefore occurs 

at e~' = 12.3 volts and e;' = 196 volts. 
Grid current begins to flow in T 1 when 

eu1 = 0; under this condition ib2 = 0, and 

R2 
e1 = Ck = --- Ebb = (½ s) (300) 

Tb+ R2 
= 100 volts 

R2 It is often necessary to have the limiting ac-
tion take place at equal increments of the signal 
voltage above and below zero. This result can 

FIG. 11-8. Modified form of the be achieved by providing a bias voltage for the 
limiter of Example 11-2. grid of T1 in the manner shown in Fig. 11-8. 

The coupling capacitor C prevents the source of 
signals from altering the bias voltage at e1. In the circuit under study, the voltage 
divider should be designed to make the quiescent value of e1 be 

e: + e~' 
e10 = --- = 17.8 volts 

2 

If the amplitude of e. in this circuit is such that e1 exceeds 100 volts, grid current flows, 
and the d-c component of e1 changes as a result of the clamping action of the grid. 

11-5. Saw-tooth Generators. There are many kinds of electronic 
equipment that require a voltage having a saw-tooth waveform. For 
example, such a voltage is used in the timing circuits of certain types of 

C 

(a) (bl 

FIG. 11-9. Triode saw-tooth generator. (a) Grid voltage; (b) circuit. 

radar receivers, and saw-tooth voltages are generated by the sweep 
circuits used in cathode-ray oscilloscopes. Because of the wide need for 
saw-tooth voltages, many kinds of saw-tooth generators have been devel
oped and find use in various applications. One of the simplest of these 
generators is shown in Fig. 11-9. With the indicated voltage e1 applied 



ANALYSIS OF PIECEWISE-LINEAR CIRCUITS 237 

between grid and cathode, the circuit acts in the following way. During 
the interval T 1, e1 is sufficiently negative to cut off the plate current in 
the triode. Thus during this interval the capacitor charges relatively 
slowly through the resistance R. During the interval T2, e1 has a value 
that permits a large plate current in the triode. Thus during this interval 
the capacitor discharges rapidly through the triode. The resulting out
put voltage, which is also the voltage across the capacitor, may have a 
waveform like the one pictured in Fig. 11-lOa. 

The triode saw-tooth generator can be analyzed quantitatively with 
the aid of the diagrams shown in Fig. 11-10. During the interval that 

-
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Frn. 11-10. Analysis of the triode saw-tooth generator. (a) Output voltage; (b) tube 
cut off; (c) tube conducting; (d) Thevenin equivalent circuit. 

the tube is cut off the circuit reduces to the one shown in Fig. 11-lOb; 
thus during this interval C charges through R toward a final voltage 
equal to Ebb• Choosing t = 0 at the beginning of the charging interval, 
the equation for e2 during this interval has the form 

(11-24) 

If C is permitted to charge indefinitely, e2 approaches Ebb; hence, letting 
t tend to infinity in (11-24) yields 

A= Ebb (11-25) 

When t = 0, e 2 has its minimum value, e2m, as indicated in Fig. 11-lOa; 
hence, letting t = 0 in (11-24), 

A+ B = e2m 

(11-26) 
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Thus while the tube is cut off 

(11-27) 

The exponential in (11-27) can be expanded in a power series to give 

e2 = Ebb - (Ebb - e2 ) [ 1 - _t + ! (-t )2 

- • • • ] (11-28) 
m RC 2 RC 

Thus it is clear that if e2 is to rise linearly with time, as is usually desired, 
the circuit must be designed so that the square and higher-degree terms 
int are negligibly small; that is, Rand C must be chosen so that t « RC 
for all values of tin the charging interval. If this is done, Eq. (11-28) 
reduces to 

t 
e2 ::::::: e2m + (Ebb - e2m) RC 

The peak value of e2 is then 
T1 

e2p ::::::: e2m + (Ebb - e2m) RC 

(11-29) 

(11-30) 

During the time the tube is conducting it can be represented by its 
piecewise-linear model, as shown in Fig. 11-lOc, provided the plate voltage 
always remains somewhat greater than the grid voltage. The evaluation 
of e2 as a function of time while the tube is conducting is facilitated by 
replacing the circuit connected to C by its Thevenin equivalent as shown 
in Fig. 11-lOd. The parameters of this circuit are 

R = ___!!!!!:__ (11-31) 
n rb + R 

and (11-32) 

It follows from Fig. 11-lOd that if t = 0 when the tube begins con
ducting, then while the tube is conducting e2 has the form 

(11-33) 

If the discharge continues indefinitely, e2 approaches the value En; hence, 
letting t tend to infinity in (11-33) yields 

A= En (11-34) 

With t = 0, e2 has its peak value, e2p, as indicated in Fig. 11-lOa; hence, 
letting t = 0 in (11-33), 

A+ B = C2p 
B = e2p - En (11-35) 

Thus while the tube is conducting 

e2 = En + (e2» - En)e-t/RnC (11-36) 
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The minimum value of e2 is, accordingly, 

If the discharge period is relatively long so that T2 » RnC, then 
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(11-37) 

(11-38) 

In most applications it is desirable that the charging portion of the 
saw tooth be as nearly linear as possible and that the discharging portion 
be completed as rapidly as possible. These objectives would be met 
completely if the capacitor were charged from an ideal current source 
and if it were discharged through a short circuit. The transistor saw
tooth generator shown in Fig. 11-11 provides an approximation to the 
ideal conditions. With the indicated voltage e1 applied to the circuit, 
the following action takes place. During the interval T 1 the transistor 
operates in the normal manner with a collector current that is nearly 

(a) (b) 

Frn. 11-11. Transistor saw-tooth generator. (a) Controlling voltage; (b) circuit. 

constant and independent of the collector voltage. This current charges 
the capacitor in a nearly linear manner with the polarity shown. During 
the interval T 2 the voltage on the capacitor biases the collector in the 
forward direction, the direction of easy conduction, and the capacitor 
discharges rapidly through this junction and the base terminal. 

The transistor saw-tooth generator can be analyzed quantitatively 
with the aid of the diagrams shown in Fig. 11-12. The circuit in Fig. 
11-12a is a piecewise-linear representation for the circuit during the 
interval T1• During this interval the controlling voltage E 1 is less than 
the d-c supply voltage E, and the emitter current is negative. As long 
as the output voltage e2 is less than E1, the collector-circuit diode is 
biased in the reverse direction, and ic = acEiE is negative and charges 
the capacitor with the polarity shown. Thus during this interval the 
charging current is 

With E1 less than E, this current is negative and constant. The output 
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voltage is therefore 
q ict acE ( ) e2 = - = - = - E1 - E t 
C C RC 

(11-40) 

If this voltage remains less than E1 during the interval T1, its peak value 
IS 

(11-41) 

During the interval T2 the controlling voltage is zero; thus during this 
interval the voltage on the capacitor biases the collector-circuit diode in 
the forward direction and the diode acts as a short circuit. The corre
sponding circuit representation is shown in Fig. 11-12b; it follows from 
this circuit that the capacitor discharges instantaneously when the control 
voltage drops to zero. The waveform of the output voltage, shown in 

ic 
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Frn. 11-12. Analysis of the transistor saw-tooth generator. (a) Circuit during 
charging interval; (b) circuit during discharging interval; (c) output voltage. 

Fig. ll-12c, is an ideal saw tooth with a perfectly linear rise during the 
interval T 1 and an instantaneous drop at the end of the interval. In 
practice this perfect waveform connot be obtained, of course, because 
of parasitic elements not included in the analysis, although the ideal 
may be approached rather closely. During the charging interval the 
transistor does not behave as a perfect current source, and, moreover, 
any leakage resistance shunting the capacitor and any load resistance 
connected to the circuit act to prevent the circuit connected to C from 
behaving as an ideal current source. In addition, the capacitor cannot 
in fact discharge instantaneously, for there is some resistance associated 
with the transistor and with the source supplying the control voltage e1• 

If the circuit is designed carefully, however, very good performance can 
be obtained. 

The two saw-tooth generators described above require a voltage of 
special waveform to control the action of the triode and the transistor. 
The thyratron saw-tooth generator shown in Fig. 11-13 has the ability 
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to generate a periodic saw-tooth voltage without the need for a special 
controlling voltage. The repetition rate for the saw tooth is determined 
by the circuit itself. Circuits of this type are often called free-running 
saw-tooth generators. 

If the thyratron is nonconducting when the voltage across C is small, 
the negative grid-to-cathode potential holds the tube cut off. The tube 
remains nonconducting while the capac
itor charges through the resistance Run
til the capacitor voltage, which is also 
the plate-to-cathode voltage, becomes 
great enough to cause the tube to ignite. 
The voltage at which ignition occurs 
depends on the grid voltage E, in ac
cordance with the control characteristic 

R 

ez 

for the thyratron. A typical control Fm. 11-13. Thyratron saw-tooth 
generator. 

characteristic is shown in Fig. 3-22. 
When the tube ignites and becomes conducting, the capacitor dis

charges through the. tube at a rate depending on the size of the current
limiting resistor, Rb, Near the end of the discharge the current becomes 
too small to maintain a plasma in the tube, the grid regains control of the 
tube, and the capacitor begins to charge again while the grid holds the 
tube cut off. This cycle of events is repeated periodically. 

ez 

0 
t 

!al (bl {cl 
Fm. 11-14. Analysis of the thyratron saw-tooth generator. (a) Charging circuit; (b) 
discharging circuit; (c) output voltage. 

The thyratron saw-tooth generator can be analyzed quantitatively 
with the aid of the diagrams shown in Fig. 11-14. During the charging 
interval T 1 the tube is nonconducting, and the output voltage can be 
determined from the circuit of Fig. ll-14a. This circuit has the same 
form as the one in Fig. 11-lOb representing the triode saw-tooth generator; 
hence the results of the triode analysis can be adapted to the present case 
yielding 

(11-42) 

provided t « RC. The peak value of the saw-tooth wave, which is also 
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the ignition voltage for the thyratron, is 

T1 
Ei ~ Eo + (Ebb - Eo) RC 

The duration of the charging interval is thus 

T1 ~ RC Ei - Eo 
Ebb - Eo 

(11-43) 

(11-44) 

If the discharge interval T2 is negligible in comparison with T1, the fre
quency of the saw-tooth wave is 

f ~ _ _!_ ~ _l_Ebb - Eo 
T1 RC E, - Eo 

(11-45) 

During the discharging interval the voltage drop across the tube is 
nearly constant and independent of the tube current (see Fig. 3-29 and 
the related discussion); hence the tube can be represented by a voltage 
source with a terminal voltage of Eo volts as shown in Fig. 11-14b. 

[a) (bl 

Frn. 11-15. Pulse-amplitude modulator. (a) Circuit; (b) piecewise-linear model. 

Typical values for Eo lie between 10 and 15 volts. The current through 
the thyratron during the discharge interval is limited to a safe value by 
the resistance Rb. In the usual case Rb is much smaller than R; thus C 
discharges toward a voltage that is approximately equal to Eo, and the 
tube deionizes and ceases conducting when the discharge current drops 
below the minimum value required to maintain ionization in the tube. 
In order for the tube to deionize it is necessary that the resistance 
of R in series with Rb limit the tube current to a value small enough to 
permit deionization. The waveform of the output voltage is shown in 
Fig. ll-14c. 

11-6. A Transistor Pulse-amplitude Modulator. A pulse-amplitude 
modulator using a transistor is shown in Fig. ll-15a; a piecewise-linear 
model for the circuit is shown in Fig. ll-15b. The function of this 
circuit is to cause the amplitude of a train of pulses, shown as e2 in Fig. 
11-16, to vary in accordance with a signal vo1tage, shown as e1 in Fig. 
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11-16. The result is an amplitude-modulated pulse train, shown as ea 
in Fig. 11-16, having an envelope that varies with time in the same manner 
as the signal voltage e1. In certain respects it is easier to work with the 
signal in the form of an amplitude-modulated wave than in its original 
form. The original signal can be recov
ered from the amplitude-modulated wave 
by the process of demodulation, or detec
tion, discussed in Sec. 11-7. 

The operation of the modulator can be 

;,~ n n n • • n n . 

%~DD D n n n [ ; 

analyzed with the aid of the model shown 
in Fig. 11-15b. The signal is applied at 
the input of the circuit, and the collector, 
instead of being supplied with a direct 
voltage as in an amplifier, is supplied with 
a train of voltage pulses of uniform am
plitude. During the intervals in which e2 
is zero, there is no reverse bias across the 
collector-circuit diode, the diode acts as a 
short circuit to the source acEiE, and the 
output voltage is zero. During the inter-

Frn. 11-16. Voltage waveforms in 
vals in which e2 has the value E2, the the pulse-amplitude modulator. 
transistor acts as a normal amplifier and 
gives an output voltage that is proportional to the input voltage. 
Specifically, when e2 = E2, 

e~ = E2 - acEiER2 
_ E + acER2 
- 2 ~el (11-46) 

This is the equation of the envelope of the modulated pulse train. If 

(11-47) 

the envelope is given by 
, acER2 

e 0 = E2 + ~ (E + E1 cos wit) 

= Eo(l + m cos wit) (11-48) 
The quantity 

E1acER2/R1 m = -=---,_-___,-=-
E 2 + EacER2/R1 

(11-49) 

is the modulation index; its value is normally less than unity so that the 
envelope never drops to zero. 

It is important to obtain and examine a complete expression for the 
output voltage, not just an expression for the envelope. This can be 
done easily by noting from Fig. 11-16 that the output voltage can be 
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obtained from the envelope by multiplying the envelope by a train of 
rectangular pulses in which the amplitude is alternately unity and zero. 
This pulse train can be expressed in terms of a Fourier series. If t = 0 
is chosen at the mid-point of a pulse, this series has the form 

(11-50) 

where w2 is the fundamental frequency of e2, the train of voltage pulses 
applied to the collector circuit. It then follows that the output voltage is 

eo = [e:(t)][f(t)] 

If the envelope has the form given by (11-48), then 

eo = [Eo(l + m cos w1t)][f(t)] 
= aoEo(l + m cos w 1t) 

+ a1Eo(l + m cos wit) (cos w2t) 
+ a3Eo(l + m cos wit) (cos 3w2t) 
+ ... 

(11-51) 

(11-52) 

This expression for eo is not very useful, for it would be difficult indeed 
to analyze the response of a circuit to a signal of this form. The difficulty 
can be avoided easily, however, for it is a simple matter to modify (11-52) 
so that eo is expressed as a sum of sinusoidal components. The response 
of linear circuits to this signal can then be analyzed by conventional 
means through treating each sinusoidal component separately and super
posing the results. Thus the first term in (11-52) can be written as 

(11-53) 

Multiplying out the second term and using the trigonometric identity 
for cos (A) cos (B) yields 

m 
eo2 = aiEo cos w2t + 2 aiEo cos (w2 + w1)t 

m + 2 aiEo cos (w2 - w1)t (11-54) 

Similarly, the third term becomes 

m 
eo3 = a3Eo cos 3w2t + 2 a3Eo cos (3w2 + w1)t 

m + 2 a3Eo cos (3w2 - wi)t (11-55) 

The higher-order terms in the expression for eo take similar forms. The 
diagram shown in Fig. 11-17 indicates the frequencies and relative ampli
tudes of the sinusoidal components associated with the first three terms 
of (11-52) under typical conditions. This pattern is repeated, with 
diminishing amplitude, at all odd multiples of w2, 
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Modulators are often used in conjunction with a bandpass filter as 
illustrated in Fig. 11-ISa. The filter is a circuit designed to pass signals 
having frequencies lying in a band centered at w2 and to reject signals 
at all other frequencies, including w1, 3w2, and so forth. Thus the output 
from the filter consists solely of the second term in (11-52), and 

(11-56) 

The waveform of this voltage is shown in Fig. 11-lSb. This signal 
consists of a sinusoidal voltage at the frequency w2, called the carrier 
voltage, and sinusoidal components at the frequencies w 2 + w1 and 
w2 - w1, called the sideband components. 

If the signal voltage e1 consists of the sum of many sinusoidal com
ponents, the analysis can be carried through in the same manner as that 

w1 /w2"-. /3,,.,~ 
w2 -w1 w2 +w1 3w2 -w1 3w2 +w1 

Frn. 11-17. Spectrum of a pulse-ampli
tude modulated wave. 

(a) 

(bl 

Fm. 11-18. Modulator with bandpass 
filter. (a) Blo'ck diagram; (b) filter 
o'utput. 

employed above; the only diff ercnce is that ther'e are more terms involved. 
The result shows that all the components in the original signal appear in 
the upper sideband with relative amplitudes preserved, and they appear 
again in the lower sideband. The envelope of the modulated wave has 
the same waveform as the original signal. Thus it is often useful to 
view modulation as a frequency translation. 1•2 A signal in the audio
frequency band, for example, can be translated by modulation to the 
radio-frequency band for efficient transmission by radio waves. One of 
the first operations performed on a signal by a s'upBrheterodyne radio 
receiver is to translate the signal from its original frequency to a hand 
centered at 455 kcps, the intermediate frequency, for efficient amplifica
tion. When interest is centered primarily on frequency translation, the 
term heterodyne is often used in place of modulate. As a further point 
of terminology, the difference frequencies produced by modulation are 
often called beat frequencies. 
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An important feature of modulation is that fact that the output of the 
modulator contains frequencies that are not present in the input. Mod
ulation is thus a nonlinear operation, and it cannot be performed by 
linear circuits. Equation (11-56), for example, shows that modulation 
involves the multiplication of two time functions. Thus an ideal 
multiplier is an ideal modulator. Unfortunately, ideal multipliers are 
not easy to contrive; hence modulators with appropriate filters have been 
used as multipliers in some analog computers. 

11-7. The Diode Detector. In most applications where modulated 
signals are employed it is necessary ultimately to recover the information, 
or original signal, carried by the modulated wave. The demodulator, 
or detector, is a device to recover the original signal. It is clear that the 
output of the demodulator must contain frequen~ies not contained in the 
input; hence it must be a nonlinear device. The information con
tained in the modulated wave cannot be recovered with a linear circuit. 
On the other hand, almost any nonlinearity produces some kind of 
demodulation. 

The most commonly used demodulator is the peak rectifier shown in 
Fig. 11-19. This circuit is discussed in Sec. 2-4, and the action of the 

FIG. 11-19. The diode detector. 

filter capacitor is analyzed in Sec. 2-10. Ideally, the output voltage 
from the peak rectifier is equal to the peak value of the input voltage. 
Thus, ideally, eo should follow the envelope of the modulated wave 
exactly, and eo should then be a duplicate of the original signal. The 
actual behavior of a well-designed detector is usually a good approxima
tion to this ideal. 

Any realistic analysis of the peak detector1•2 becomes rather compli
cated; hence an analysis is not undertaken here. It is possible, however, 
to point out one of the important considerations in the design of these 
circuits. In order to minimize the ripple in the output of the detector, 
it is desirable to make R and C as large as possible. However, with R and 
C large, eo cannot decrease rapidly when the envelope of the modulated 
wave decreases. If Rand Care very large, and if the envelope decreases 
rapidly, then eo is unable to follow the envelope, and the output voltage 
is no longer a duplicate of the original signal. This form of signal 
distortion is known as diagonal clipping. The values _of R and C must 
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therefore be chosen on the basis of a reasonable compromise between 
good filtering and the danger of diagonal clipping. 

11-8. Summary. Tubes and transistors find important applications 
as linear amplifiers. They also find many important uses that are not 
related to amplification. A few of these applications are presented in the 
preceding sections; they include limiters, clampers, waveform generators, 
modulators, and detectors. 

In each of these applications the nonlinear nature of the tube or 
transistor is an essential feature of the circuit; hence the methods of 
linear circuit analysis cannot be employed. These circuits can be ana
lyzed and designed by graphical methods, but the process is likely to 
be laborious and tedious. On the other hand, piecewise-linear approxi
mations are often permissible. These approximations usually provide 
added insight into the properties of the circuits, and in many cases they 
simplify the procedures of analysis and design. 
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PROBLEMS 

11-1. The quiescent operating conditions in the circuit of Fig. 11-20 are to be deter
mined. For this purpose the piecewise-linear representation for the circuit can be 
used. The tubes are identical with µ = 70 and rb = 50 kilohms. Find the quiescent 
values of the output voltage, ea, the plate currents, and the plate-to-cathode 
voltages. 

Fm. 11-20. Circuit for Prob. 11-1. 

11-2. The plate-supply voltage in an amplifier like the one shown in Fig. 11-3 is 
200 volts, and the load resistance is RL = 200 kilohms. The input signal is e. = 
2 cos w.t volts, and R and Care so large that C cannot discharge appreciably through R 
during one cycle of the signal. The behavior of the circuit is to be studied with the 
aid of the piecewise-linear representation with µ = 100 and rb = 70 kilohms. 
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a. Sketch and dimension the waveform of the grid voltage, ec. 
b. Sketch and dimension the waveform of the output voltage, eb. 
c. What is the greatest amplitude that the sinusoidal input signal can have without 

waveform distortion? 
11-3. A certain cathode-coupled limiter has the form shown in Fig. ll-7a with 

R 2 = 5 kilohms, Ra = 15 kilohms, and Ebb = 300 volts. The circuit is further 
adjusted so that ea = 46.5 volts. The characteristics of this circuit are to be 
determined with the aid of the piecewise-linear model. The tubes are identical ,vith 
µ = 40 and rb = 7 kilohms. The voltage transfer characteristic has the form shown in 
Fig. 11-5. Determine the coordinates of the breaks in this characteristic. Sketch 
the characteristic approximately to scale. At what value of e1 does grid current begin 
to flow in T1? 

11-4. The behavior of the thyratron saw-tooth generator shown in Fig. 11-13 is to be 
examined. When the tube is conducting the plate-to-cathode voltage drop is 15 volts, 
and the tube ceases to conduct when the plate current becomes less than 0.5 ma. The 
plate-supply voltage is Ebb = 300 volts, and the control characteristic for the thyratron 
is a straight line having the equation eb = - lOec. 

a. If the peak value of the output voltage is to be 75 volts, what must be the voltage 
of the grid-bias battery, E? 

b. If R = 1 megohm, what value of C is required to make the charging interval 
last for 1 msec? This adjustment gives a repetition rate for the sa,v-tooth wave of 
about 1000 cps. 

c. Describe briefly three ways in which the repetition rate can be made adjustable. 
Which of these affect the amplitude of the saw tooth? 

11-6. The saw-tooth generator of Prob. 11-4 is adjusted in accordance with parts 
a and b of that problem. However, as the capacitor ages, its insulation becomes leaky, 
and after a period of time it behaves as an ideal capacitor in parallel with a resistance 
of 200 kilohms. The operation of the circuit is seriously affected by this change. 

Show by a sketch the form of the output voltage as a function of time under this 
condition, and explain the action of the circuit. The Thevenin equivalent for the 
circuit connected to the ideal capacitor during the charging interval may be helpful 
in this analysis. Note that Eq. (11-42) does not describe the action of the circuit in 
this case, but an equation of the form of (11-24) is applicable if it should be needed. 

11-6. The signal voltage applied to a modulator of the form shown in Fig. 11-15 has 
the form 

e1 = E + Ea cos (2001rt) + Eb cos (3001rt) 

The voltage e2 has the form shown in Fig. 11-16, and its repetition rate is 10,000 cps. 
List all the frequencies less than 20,000 cps that appear at the output. Give these in 
cycles per second. 

11-7. An AM radio signal at I-megacycle/sec picked up by a radio receiver is to be 
translated to the intermediate frequency of 45,5 kcps. The operation is to be per
formed by a modulator similar to the one shown in Fig. 11-15 used in conjunction with 
a filter as shown in Fig. 11-18. The voltage e2 required by the modulator is generated 
by a local oscillator in the receiver. What must be the repetition rate of the local 
oscillator if the desired result is to be achieved? There are several possible answers; 
the frequency commonly used is the smallest one of these that is greater than the 
frequency of the radio signal. 



CHAPTER 12 

SYSTEMATIC ANALYSIS OF LINEAR 

ELECTRONIC CIRCUITS 

The problem of circuit analysis is that of determining the currents 
and voltages existing in a specified circuit. The first step in the analysis 
of electronic circuits is to formulate a suitable network model representing 
the physical system; Chaps. 4 to 10 are largely concerned with the 
physical behavior of tubes and transistors and with the network models 
that can be used to represent them. The models for linear electronic 
circuits in general contain R, L, C, independent current and voltage 
sources, and controlled current and voltage sources. Since these circuits 
are linear and obey Kirchhoff's laws, the loop and node methods of analysis 
provide general systematic procedures for analyzing any circuit, no 
matter how complicated. One of the objectives of this chapter is to 
review these systematic methods of analysis and to examine the way in 
which the presence of controlled sources affects the forms of the equations 
and the procedures of analysis. 

The problem of electronic circuit design is that of specifying in detail 
a circuit to perform some stated function. It usually involves choosing 
a type of circuit on the basis of previous experience and then using the 
techniques of analysis to determine suitable values for the circuit com
ponents. Thus the engineer should know as much as possible about the 
characteristics of various circuits so that he may make the best initial 
choice of circuit type, and he should be skilled in circuit analysis to 
facilitate the detailed computations. Both of these ends are usually 
served best by the analytical procedure that gives the most insight into the 
behavior of the circuit. Hence effort invested in developing insight is 
considered well spent. 

12-1. Source Transformations. Network models for electronic cir
cuits contain two basically different kinds of sources, independent sources 
and controlled sources. An independent source is one whose output 
voltage or current is entirely independent of the circuit in which the 
source is connected; the output of such a source is one of the independent 
variables of the network. A controlled source is one whose output volt
age or current depends on a controlling voltage or current, which in turn 

249 
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depends on the network in which the source is connected; the output 
of such a source is one of the dependent variables of the network. Four 
kinds of controlled sources are encountered in electronic circuits. They 
are voltage-controlled voltage sources, voltage-controlled current sources, 
current-controlled current sources, and current-controlled voltage sources. 
These sources can be transformed from one kind to another just as an 
independent current source and shunt resistance can be transformed to 
an equivalent voltage source and series resistance. A simple example 
illustrates a few of these transformations. 

The triode voltage amplifier of Fig. 12-la can be represented, in so far 
as increments of current and voltage are concerned, by the incremental 

- (al 

µe3 
e1 

~ 
- (c) 

Frn. 12-1. Equivalent representations for a voltage amplifier. 
(c) equivalent circuit; (d) equivalent circuit. 

(bl 

(dl 

(a) Circuit; (b) model; 

linear model of Fig. 12-lb. The voltage e0 is the incremental potential 
of the grid relative to the cathode. It follows from the circuit of Fig. 
12-lb that 

(12-1) 

Hence the voltage source µe0 in Fig. 12-lb can be replaced by the equiva
lent series connection of two voltage sources shown in Fig. 12-lc. Either 
one or both of the sources in Fig. 12-lc can be associated with rp and 
converted to equivalent voltage-controlled current sources; one possibility 
is shown in Fig. 12-ld. 

It is clear from Fig. 12-lc that 

ea= -Rai and µea= -µRai (12-2) 
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Thus the µes source in Fig. 12-lc can be replaced by an equivalent source 
having the terminal voltage µR 3i. The result, shown in Fig. 12-2a, 
is that a voltage-controlled voltage source is converted to a current
controlled voltage source. If this source is now associated with the 
resistance rp and converted to an equivalent current source, the circuit 
shown in Fig. 12-2b, which contains a current-controlled current source, 
results. 

µR3i 
-cmR3i 

µel 
e1 e2 

0 R2 

- (a) - (bl 

Fm. 12-2. Circuits equivalent to the one in Fig. 12-lb. (a) With a current-controlled 
voltage source; (b) with a current-controlled current source. 

Another circuit that is equivalent to the one in Fig. 12-lb is shown in 
Fig. 12-3a; this circuit is obtained by using the current-source representa
tion for the tube. A transformation that is often useful in circuit 
analysis yields the equivalent circuit of Fig. 12-3b. One of the current 
sources in Fig. 12-3b delivers a current gme0 to the ground node, and the 
other current source takes the same current away from that node. 

(a) (bl 

Fm. 12-3. Circuits equivalent to the one in Fig. 12-lb. (a) Current-source form; (b) 
equivalent current-source form. 

Hence the currents flowing into the nodes in Fig. 12-3b are the same as 
the currents flowing into the corresponding nodes in Fig. 12-3a, the 
corresponding voltages and currents in the two circuits are the same, 
and the two circuits are therefore equivalent. 

Each of the transformations described above illustrates a mutual 
equivalence and can be applied in either direction. Each transformation 
corresponds to an algebraic rearrangement of the equations relating the 
currents and voltages in the circuit, and equivalent results can be obtained 
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in each case by rearranging the equations rather than the network. 
However, operating on the network usually provides more insight into 
the properties of the circuit than manipulating the equations, and it is 
usually easier to discern helpful transformations by inspection of the 
circuit than by inspection of the equations. 

12-2. Analysis on the Node Basis. The analysis of simple circuits 
such as those presented in Chaps. 6 and 9 is a simple mn,tter that can 
often be done by inspection of the circuit. When circuits become more 

gl e1 
g2 

R1 

- (a) - (bl 

-+-gme2 

e1 ez 

G1 gp G2 

(c) 

Frn. 12-4. Analysis of the cathode-coupled amplifier. (a) Circuit; (b) incremental 
model; (c) rearranged model. 

complex, however, and especially when they contain feedback, a sys
tematic method of analysis is highly desirable. Consider, for example, 
the cathode-coupled voltage amplifier shown in Fig. 12-4a. An incre
mental model for this circuit, shown in Fig. 12-4b, is obtained by replac
ing each triode with its current-source model and replacing the d-c supply 
with a short circuit. This model is redrawn in Fig. 12-4c in a more 
orderly form, and the relations eu1 = e1 - e2 and eu2 = -e2 are used to 
eliminate eu1 and e17 2. 

The node method of analysis1- 3 provides a straightforward solution 
of the circuit in Fig. 12-4c for the unknown voltages and currents as 
functions of the input signal e1, The circuit contains four nodes, desig
nated e1, e2, e3, and ground, and it contains two separate parts. The 
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separate parts of a network are parts between which there can be no 
flow of current; hence the part containing node e1 in Fig. 12-4c is separate 
from the rest of the network. Network models for electronic circuits 
often contain several separate parts, each of which can be analyzed 
separately from the rest of the network. 

The solution of the left-hand part of the network in Fig. 12-4c is 
trivial. The right-hand part contains three nodes, e2, e3, and ground. 
If the potentials of any two of these relative to the third are known, then 
the potential across each branch can be found from Kirchhoff's voltage 
law, and the current in each branch can be computed. Systematic 
application of the node method of analysis begins with the choice of one 
node as the reference, or datum, node. Any node can be chosen, and it 
is marked with the ground symbol. A current-law equation is then 
written, in terms of the node-to-datum voltages, for each node at which 
the potential is unknown. The primary unknowns in a systematic 
application of the node method of analysis are therefore the node volt
ages. The unknown node voltages are found by simultaneous solution 
of the set of current-law equations. 

A systematic procedure for writing the current-law equations is to 
equate the sum of the currents away from a node in passive branches to 
the sum of the currents toward the node in source branches. Thus for 
the nodes e2 and C3 in Fig. 12-4c, 

and 
(gp + G2)e2 + gp(e2 - C3) = {lm(C1 - C2) - gme2 

Gses + gp(Cs - e2) = gme'2 

Collecting terms separately on each side of these equations yields 

(2gp + G2)e2 -- gpe3 = gmel - 2gme2 
and -gpe2 + (gp + Gs)es = gme2 

(12-3) 
(12---4) 

(12-5) 
(12-6) 

The terms on the left of these equations account for the passive branches 
in the circuit; the matrix (array) of the coefficients of these terms is 
symmetrical with respect to the principal diagonal, as is always the case 
for circuits composed of linear, bilateral, passive elements. The terms 
on the right account for the action of the sources in the circuit; the terms 
involving e2 are unknowns, however. Collecting all terms in (12-5) and 
(12-6) gives 

and 
(2gm + 2gp + G2)e2 - gpes = gme1 

-(gm + gp)e2 + (gp + Gs)es = 0 
(12-7) 
(12-8) 

It is to be noted that transfer'ring the unknown source terms to the left
hand side of these equations destroys the symmetry of the matrix of 
coefficients. In general, controlled sources introduce unidirectional 
coupling between various parts of the network, and they thereby destroy 
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the symmetry of the matrix. As a result of this fact, the reciprocity 
theorem does not apply in general to circuits containing controlled 
sources. 

Equations (12-7) and (12-8) can be solved for the unknown voltages in 
terms of the input signal. Solving for e3 with the aid of determinants1- 3 

yields 
Ym(Ym + g11)e1 

ea = -,-(g_p _+_G~a)-,-(2_g_m -+-2gp + G-2) ___ g_p_(g_m_+_g-p) (12-9) 

and after simplification, 

gme1 ea = -----,.----,--~-=-c-

+ 2G + G2((Jp + Ga) 
gp 3 Om+ gp 

(12-10) 

Now consider any network in general consisting of a single part, or 
of one separate part of a larger network, and containing R, L, C, inde
pendent current sources, and voltage-controlled current sources. This 
network has Nt total nodes, and when one of these is designated the 
reference node, N = Nt - 1 unknown node voltages remain. But 
exactly N independent current-law equations can be written, providing 
a set of equations that can be solved for the N unknown voltages. If 
the currents and voltages in the network are all sinusoidal and of the 
same frequency, then the node equations have the following form when 
terms are collected separately on each side of the equations: 

Y11E1 + Y12E2 + ' ' ' + Y1NEN = l1 + g11E1 + ' . ' + Y1NEN 
y21E1 + Y22E2 + ' ' ' + Y2NEN = l2 + Y21E1 + . ' ' + g2NEN 

YN1E1 + YN2E2 + . ' ' + YNNEN = IN + gNIE1 + . ' ' + YNNEN 
(12-11) 

The y's are combinations of the admittances of various R, L, and C 
branches, the I's are the complex amplitudes of the total currents from 
independent sources into the various nodes, and the g's are combinations 
of the transconductances of controlled current sources. In any particu
lar case, many of the y's, I's, and g's may be zero. Equations (12-11) 
should be compared with Eqs. (12-5) and (12-6). The matrix of the 
y coefficients in (12-11) is symmetrical around the principal diagonal; 
the matrix of the g coefficients is, in general, not symmetrical. 

To solve Eqs. (12-11) for the unknown voltages, all terms are collected, 
yielding 

Y~1E1 + Y~2E2 + + Y~NEN = l1 
Y;1E1 + Y;2E2 + + Y;NEN = l2 (12-12) .. 

Y~v1E1 + Y~2E2 + + Y~NEN = IN 
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The solution of these equations for any unknown, say Eh is given by 
Cramer's rule1•3 as 

Yi1 Y1~ 11 YiN 
Y~1 Y~2 l2 Y~N 

E1 = Y~1 Y~2 IN Y~N (12-13) 
A 

where A is the determinant of coefficients in Eqs. (12-12). Expanding 
the numerator determinant on the column of l's and designating the 
cofactor on the element in the kth row and jth column by Aki gives 

E _ A11 I + A2j I + . + ANil 1-A1 A2 .. TN (12-14) 

The coefficients in this equation, Aki/ A, have the dimensions of imped
ance; hence defining new symbols, (12-14) can be written as 

where 

E1 = Z11l1 + Z12l2 + ' ' ' + Z1NIN 

Zjk = ~j 

(12-15) 

(12-16) 

Solving (12-12) in this manner for each of the unknown voltages yields 
a set of equations expressing each unknown voltage in terms of the known 
applied currents. These equations are 

Z11l1 + Z12l2 + 
Z21l1 + Z22l2 + 

+ Z1NIN = E1 
+ Z2NIN = E2 (12-17) 

This set of equations represents the solution of the network for the 
unknown node voltages. The Z coefficients are the open-circuit driving
point and transfer impedances1•2 of the network; they can be evaluated 
either from the y' determinant by means of Eq. (12-16) or from the 
network itself. As an illustration of this latter procedure, it is clear 
from (12-17) that Z12 is the ratio of E1 to l2 when all the l's except 12 are 
zero. 

Suppose that the general network considered above contains one or 
more current-controlled sources. Equations (12-11) then contain the N 
unknown voltages, and, in addition, the current-controlled sources intro
duce terms on the right-hand side containing unknown currents. Thus 
there are N equations relating more than N unknowns. This difficulty 
can be met by eliminating the unknown currents with the help of auxil
iary branch equations such as (12-1) and (12-2). Or, alternatively, the 
current-controlled sources can be transformed to equivalent voltage-con
trolled sources, as outlined in Sec. 12-1, before the equations are written. 
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12-3. Analysis on the Loop Basis. Analysis on the loop basis1- 3 is an 
alternative procedure that is the dual of analysis on the node basis. 
The two methods serve the same end and, in general, are of equal impor
tance in network analysis. The configurations most commonly used in 
electronic circuits are such that the node basis usually provides the 
simplest solution; however, there are cases in which the loop basis is 
preferable. 

A transistor amplifier with an unbypassed resistor in series with the 
emitter lead is shown in Fig. 12-5a, and an incremental model for the 

R2 

ib 

t 
R1 is 

R3 

(a) - (bl 

(c) 

Frn. 12-5. Analysis of a transistor amplifier. (a) Circuit; (b) incremental model; (c) 
alternative model. 

circuit that is valid in the band of frequencies where the coupling capacitor 
C acts as a short circuit, and where the transistor is independent of 
frequency, is shown in Fig. 12-5b. The resistance R1 in this circuit 
represents Rs, Ra, and Rb in parallel. This circuit is put in a more 
natural form for loop analysis by converting the two current sources 
to equivalent voltage sources as shown in Fig. 12-5c. If the two loop 
currents in this circuit are known, the current in each branch can be 
found from Kirchhoff's current law, and the voltage drop across each 
branch can be computed. The loop method of analysis provides a solu
tion for these loop currents. 

Systematic application of the loop method of analysis begins with the 
choice of a set of independent loop currents. A voltage-law equation is 



SYSTEMATIC ANALYSIS OF LINEAR ELECTRONIC CIRCUITS 257 

then written, in terms of the loop currents, for each loop in which the 
current is unknown. The primary unknowns in a systematic application 
of the loop method of analysis are therefore the loop currents. The 
unknown loop currents are found by simultaneous solution of the set of 
voltage-law equations. 

A systematic procedure for writing the voltage-law equations is to 
equate the sum of the voltage drops across passive branches in the 
arrow direction around each loop to the sum of the voltage rises across 
source branches in the arrow direction around the loop. Thus, when 
terms are collected separately on each side of the equations for the two 
loops in Fig. 12-5c, 

h + re + R1 + R3)i1 - (re + R3)i2 = e1 
and - (re + R3)i1 + (re + rd + R2 + R3)i2 = -rmi1 

(12-18) 
(12-19) 

The terms on the left of these equations account for the passive branches 
in the circuit; the matrix (array) of the coefficients of these terms is 
symmetrical with respect to the principal diagonal. The terms on the 
right account for the action of the sources in the circuit; the term involv
ing i1 IS unknown, however. Collecting all terms in these equations 
yields 

and 
h + re + R1 + R3)i1 - (re + R3)i2 = e1 

- (re + R3 - rm)i1 + (re + rd + R2 + R3)i2 = 0 
(12-20) 
(12-21) 

Transferring the source term in (12-19) to the left-hand side destroys 
the symmetry of the matrix of coefficients. Equations (12-20) and 
(12-21) can be solved simultaneously for the unknown currents i 1 and i 2• 

In the node method of analysis there is no problem in identifying the 
unknown node voltages and in writing the proper number of independent 
equations. In the loop method, however, matters are not so clear. 
First, the number of unknown loop currents required to characterize 
the network is not always obvious. A more detailed study shows that 
if the network contains only one part having a total of B branches, Nt 
nodes, and Sc current sources, then the number of loop currents required 
IS 

L = B - Nt - Sc + 1 (12-22) 

For comparison, the number of unknown node voltages required to 
characterize a single-part network is 

N = Nt - 1 - Sv (12-23) 

where Sv is the number of voltage sources. Second, although the loops 
can be chosen in a variety of ways, they cannot be chosen completely 
at random, for some choices lead to a set of L equations that are not 
independent and that therefore cannot be solved for the unknown cur-
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rents. The independence of these equations can be ensured by choosing 
the loops so that every branch is included in at least one loop and so that 
each loop contains at least one branch that is not contained in any other 
loop. 

Now consider any network consisting of a single part, or of one separate 
part of a larger network, and containing R, L, C, independent voltage 
sources, and current-controlled voltage sources. This network has L 
independent loops, and exactly L independent voltage-law equations can 
be written providing a set of equations that can be solved for the L 
unknown currents. If the currents and voltages in the network are 
sinusoidal and of the same frequency, then the loop equations have the 
following form when terms are collected separately on each side of the 
equations: 

z11I1 + Z12I2 + · · · + Z1Lh = E1 + r11I1 + · · · + r1Lh 
Z21I1 + Z22I2 + · · · + Z2Lh = E2 + r21I1 + · · · + r2Lh (12-24) 

ZL1I1 + ZL2I2 + • . • + ZLLh = EL + TL1I1 + • • • + TLLh 

The z's are combinations of the impedances of the various R, L, and C 
branches, the E's are the complex amplitudes of the total voltages from 
independent sources summed around the various loops, and the r's are 
combinations of the transfer resistances of the controlled sources. In 
any particular case, many of the z's, E's, and r's may be zero. Equations 
(12-24) should be compared with Eqs. (12-18) and (12-19). The matrix 
of the z coefficients in (12-24) is symmetrical around the principal 
diagonal; the matrix of the r coefficients is in general not symmetrical. 

Collecting all terms in (12-24) yields 

z~1I1 + z~2I2 + · · · + z~Lh = E1 
z~1I1 + z~2I2 + · · · + z~Lh = E2 (12-25) 

z~1I1 + z~2I2 + · · · + z~Lh = EL 

Solving these equations by determinants as the node equations in Sec. 12-2 
were solved, and defining 

(12-26) 

where A. is the determinant of the coefficients in (12-25) and A.k; is the 
cofactor of z~;, yields a set of equations for the unknown loop currents 
in terms of the applied voltages: 

Y11E1 + Y12E2 + . • • + Y1LEL = I1 

Y21E1 + Y22E2 + . • . + Y2LEL = I2 (12-27) 
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The Y coefficients of (12-27) are the short-circuit driving-point and trans
fer admittances of the network; they can be evaluated either from the 
z' determinant by means of Eq. (12-26) or from the network itself. As 
an illustration of this latter procedure, it is clear from (12-27) that Y 12 

is the ratio of l1 to E2 when all the E's except E2 are zero. 
If the general network contains one or more voltage-controlled sources, 

Eqs. (12-24) contain the L unknown loop currents, and, in addition, the 
voltage-controlled sources introduce terms on the right-hand side con
taining unknown voltages. Thus there are L equations relating more 
than L unknowns. This difficulty can be met by eliminating the unknown 
voltages with the help of auxiliary branch equations such as (12-1) and 
(12-2). Or, alternatively, the voltage-controlled sources can be trans
formed to equivalent current-controlled sources, as outlined in Sec. 12-1, 
before the equations are written. 

12-4. Two-terminal-pair Networks. In the study of circuits arising 
in electronic and communication systems, attention is often focused 
primarily on two pairs of terminals that are designated as input and 
output terminal pairs. Such a net
work, known as a two-terminal
pair,1·3 or two-port, network, is 
represented in Fig. 12-6. In many 
cases the details of the currents and 
voltages inside such networks are Frn. 12-6. A two-terminal-pair network. 
of secondary interest; primary in-
terest is centered on the external behavior, as, for example, on the out
put voltage under specified conditions of load and input voltage. More 
generally speaking, attention is centered on the relations among E1, l1, 
E2, and l2. 

Suppose that E1 and E2 are known and that l1 and l2 are to be found. 
If the network contains no internal independent sources, so that 11 and 
12 depend only on the network parameters and the values of E1 and E2, 
then 11 and l2 are given by a set of equations like (12-27). Specifically, 
they are given by 

11 = Y11E1 + Y12E2 
12 = Y21E1 + Y22E2 

(12-28) 

These equations completely specify the external behavior of the network; 
when E1 and E2 are known, l1 and l2 can be found. 

Equations (12-28) can be derived in another manner that is in some 
respects more convenient. Since the network under consideration is 
understood to be linear, the principle of superposition can be applied. 
It follows from this fact that the unknown current l1 can be evaluated by 
summing the component resulting from E1 when E2 is zero and the 
o.omI?onent re_s_ulting from E2_ when E1.._ is zero. The. first eq~ation in set. 
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(12-28) is just a statement of this fact. The second equation in set 
(12-28) can be derived in the same manner. 

Now suppose that I1 and I2 are known and that E1 and E2 are to be 
found. The unknown voltages can be computed from a knowledge of 
the circuit parameters and the values of I1 and h The voltage E1 is the 
superposition of two components, one resulting from I1 when I2 is zero 
and the other resulting from I2 when l1 is zero; that is, 

E1 = Z11I1 + Z12I2 
Similarly, E2 = Z21I1 + Z22I2 

(12-29) 

These equations can also be obtained from (12-17). 
Equations (12-28) characterize the external behavior of the network 

in terms of the short-circuit driving-point and transfer admittances; 
Eqs. (12-29) characterize the behavior in terms of the open-circuit 
impedances. For circuits made up of ideal R, L, C, and independent 
sources, 

and Y12 = Y21 (12-30) 

The principle of reciprocity 1•3 applies to such circuits. In the usual 
case with circuits containing controlled sources, however, 

and Y12 ~ Y21 (12-31) 

The principle of reciprocity does not apply in such cases. 
12-6. The Hybrid Voltage-amplifier and Current-amplifier Coeffi

cients. In the study of vacuum-tube circuits a third manner of char
acterizing the external behavior of two-terminal-pair networks is of 
considerable utility, especially in providing further insight into the 
properties of voltage amplifiers. Suppose that E1 and 12 in Fig. 12-6 
are known and that I1 and E2 are to be found. The current I1 can be 
expressed as the superposition of two components, one resulting from 
E1 when I2 is zero and the other resulting from I2 when E1 is zero; that is, 

11 = Y noE1 + Bcsl2 

In a similar manner E2 can be expressed as 

E2 = AvoE1 + Zosl2 

(12-32) 

(12-33) 

The coefficients in these equations are the hybrid voltage-amplifier coef
ficients. The first of these, 

(12-34) 

is the input admittance with the output open-circuited, or, more briefly, 
it is the open-circuit input admittance. Similarly, 

Bes= -11 I 
12 E1 =0 

(12-35) 
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is the reverse current transmittance with the input short-circuited, or 
simply the short-circuit reverse current transmittance, 

(12-3G) 

is the open-circuit forward voltage trnnsmitbncc, and 

(12-37) 

is the short-circuit output impedance. These coefficients provide a con
venient means for describing the properties of voltage amplifiers and 
for comparing them with the ideal voltage amplifier. In the ideal case, 
shown in Fig. 4-1, Y no, Bes, and Zos are all zero. 

The hybrid coefficients can be evaluated directly from the network 
with the aid of Eqs. (12-34) to (12-37). As an illustration, consider the 

r----------------~ 
Ii I k _ µE\ rp P i I2 

R2 
g 

~----------------~ 
[a) (b) 

+ 
Ez 

Fm. 12-7. The grounded-grid amplifier. (a) Circuit; (b) incremental model. 

grounded-grid, or cathode-driven, amplifier shown in Fig. 12-7a. This 
circuit, with certain refinements, is widely used as the first amplifier 
stage in FM and television receivers because it generates relatively little 
noise. An incremental model that is valid over the band of frequencies 
in which the coupling capacitor acts as a short circuit and in which the 
parasitic capacitances act as open circuits is shown in Fig. 12-7b. The 
fact that E g = - E 1 is used in this model. 

The hybrid coefficients for the model in Fig. 12-7b are to be evaluated. 
According to (12-34), Yno is the ratio Ii/E1 with 12 = 0. Under the 
condition that I 2 = 0, 

(12-38) 

from which (12-39) 

Also, with I 2 = 0, 

(12-40) 
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which, in accordance with (12-36), yields 

Avo = (1 + µ)R2 
rp + R2 

With E1 = 0 and a current applied at I 2, 

11 = R 2 I 
rp + R2 

2 

and E _ rpR2 I 
2 

- rp + R2 
2 

These two equations, along with (12-35) and (12-37), yield 

I r--------------, I 
1 I I 2 

I 
+ I 

E1 I Yno 
I 

and 
- I 

(12-41) 

(12-42) 

(12-43) 

(12-44) 

Equations (12-32) and (12-33) im
ply that the external behavior of 

FIG. 12-8. Equivalent circuit for the any two-terminal-pair network can 
network of Fig. 12-6. 

be represented by the equivalent 

I 
L - - - - - - - - - - - - _ _J 

network shown in Fig. 12-8. This equivalent network provides a com-

Zs 
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11 I Zos I lz 
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I 
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FIG. 12-9. Voltage-amplifier equivalent circuits. (a) Network; (b) equivalent net
work for input relations. 

pact means of representing the behavior of any network at the external 
terminal pairs. 

When the output terminals in the circuit of Fig. 12-8 are open-circuited, 
l2 = 0, and the input admittance to the circuit is Y no• When the circuit 
is loaded with an impedance ZL as illustrated in Fig. 12-9a, however, the 
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input admittance is affected through the source Bcal2 by the load imped
ance and in general is not Y no• Similarly, the output impedance is Zotl 
only if the input signal ia tilupplied by a voltage source with no series 
impedance. If the load and source impedances are known in advance, 
they can be accounted for by including them in the network as part of 
the circuit. When it is desired to study the effects of the terminating 
impedances on the behavior of the network, however, the alternative 
procedure described in the following paragraphs provides more insight. 

The load current in the circuit of Fig. 12-9a is 

(12-45) 

Therefore (12-46) 

The current source Bcal2 in Fig. 12-9a is connected across the voltage 
E1 ; therefore it follows from (12-46) that if this source is replaced by a 
series connection of two impedances, - Zos!BcsAvo and - ZL/BcsAvo, then 
the current I1 is not changed. Hence the circuit in Fig. 12-9b is equiva
lent to that in Fig. 12-9a in so far as the input terminals are concerned. 
The input admittance to the circuit when it is loaded with an impedance 
ZL is, therefore, 

(12-47) 

The advantage of this representation is that it permits the effect of ZL on 
Y n to be evaluated easily. 

The equivalent circuit of Fig. 12-9b shows that impedances can be 
transferred from the output to the input side of the network in much the 
same way as they are transferred across an ideal transformer; the imped
ance-transformation ratio in this case 
is -1/BcBAvo• In a similar manner, 
the circuit on the input side of the + 
network can be transferred to the 
output side with the result shown in -
Fig. 12-10. In this case, impedances 

Zos 12 

+ 
E2 

are multiplied by - BcsAvo and volt- Frn. 12-10. The effect of source imped-

ages are multiplied by Avo in being ance. 

transferred; it follows that admittances are multiplied by -1/BcsAvo 
and currents are multiplied by -1/Bcs• The circuit of Fig. 12-10 is 
equivalent to that of Fig. 12-9a in so far as the output terminals are 
concerned. The output impedance is, therefore, 

(12-48) 

where Y, = 1/Z,. 
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Example 12-1. The circuit of a grounded-grid amplifier is shown in Fig. 12-11. 
The incremental parameters for the triode at the quiescent operating point areµ = 60 
and rp = 15 kilohms. The coupling capacitors can be treated as short circuits and the 
parasitic tube capacitances can be treated as open circuits in the band of frequencies 
of interest. 

a. Determine the hybrid voltage-amplifier coefficients for the circuit. 
b. Determine the forward voltage transmittance, Av = ELIE,, when R. = 50 ohms 

and R L = 100 kilohms. 
Solution. a. Figure 12-7b shows an incremental model for the circuit, and Eqs. 

(12-39) to (12-44) give the required coefficients in terms of the circuit parameters. 
Thus 

Yno = 0\ + 15 ~~ 33 = 3.33 + 1.27 = 4.6 millimhos 

(61) (33) 
Avo = 15 + 33 = 42 

33 
B,. = - ~+ 33 = -0.69 

(15) (33) . 
Zoo = 15 + 33 = 10.3 kilohms 

b. The impedance reflected into the input circuit by the reverse current transmit
tance (Fig. 12-9) is 

- ~. + ZL = 10.3 + 100 = 3 81 k'l h 
BcsAvo (0.69)(42) • 1 

O ms 

But the impedance of Zs in parallel with 

Rs 

E ~ 300Q 

--0 <>--=r· 
FIG. 12-11. Grounded-grid amplifier for 
Example 12-1. 

Frn. 12-12. Equivalent circuit for the 
grounded-g'rid amplifier. 

Yno is less than Rs = 50 ohms. Hence when Rs is 50 ohms or less and RL is 100 
kilohms or more, the reflected impedance has a negligible effect on the behavior of 
the circuit and can be treated as a.n open circuit. Under these conditions the ampli
fier can be represented by the circuit shown in Fig. 12-12, and the voltage transmit
tance is, by inspection of this circuit, 

EL 218 100 
Av = E. = 50 + 218 (42) 100 + 10.3 

= 31 

The terminal oharacteristics of any two-port network can be describect 
by Eqs. (12--29): 

and 
E1 = Z11l1 + Z12l2 
E2 = Z21I1 + Z22I2 

If the network obeys the principle of reciprocity, then 

Z12 = Z21 

(12-49) 
(12-50) 

(12-51) 
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and only three of the open-circuit impedances need be determined. It 
is therefore of interest to determine what relation exists among the hybrid 
voltage-amplifier coefficients for reciprocal networks. 

For the condition that I2 = 0, dividing Eqs. (12-49) and (12-50) yields 

E2 _ _ Z21 
- Avo - --

E1 I2=0 Zn 

For the condition that E1 = 0, Eq. (12-49) yields 

!~ I _ B __ Z12 
I2 E1=0 - CB - Z11 

(12-52) 

(12-53) 

But Z12 = Z21 for reciprocal networks; hence the condition among the 
hybrid voltage-amplifier coefficients for reciprocal networks is 

(12-54) 

That is, the forward voltage transmittance is the negative of the reverse 
current transmittance for reciprocal networks. 

An alternative set of hybrid coefficients that is useful in describing 
current amplifiers is obtained by taking I1 and E2 as the known variables 
in the general network of Fig. 12-6. The two unknown variables, E1 and 
12, are then given by 

and 
E1 = Znsl1 + BvoE2 
I2 = Acsl1 + YooE2 

(12-55) 
(12-56) 

The coefficients in these equations are the hybrid current-amplifier coef
ficients. The first of these, Zns, is the short-circuit input impedance; 
similarly, Bvo is the open-circuit reverse voltage transmittance, Acs is the 
short-circuit forward current transmittance, and Yoo is the open-circuit 
output admittance. It is clear that the hybrid parameters used in 
describing the terminal volt-ampere relations for the transistor are the 
current-amplifier coefficients for the transistor. Equations (12-55) and 
(12-56) are the duals of (12-32) and (12-33); the coefficients in (12-55) and 
(12-56) can be evaluated in terms of the network parameters from the 
appropriate short-circuit and open-circuit relations in the network. In 
the ideal current amplifier, Zns, Bvo, and Yoo are all zero. 

Equations (12-55) and (12-56) imply that the general network of Fig. 
12-6 can be represented by the equivalent circuit inside the box shown 
in Fig. 12-13a. This circuit is the dual of the voltage-amplifier equivalent 
circuit of Fig. 12-8, and it is the same as the circuit in Fig. 12-8 with the 
input and output terminals interchanged. Thus all the results derived 
from the circuit of Fig. 12-8 apply to the circuit of Fig. 12-13a; it is 
merely necessary to interchange the subscripts 1 and 2 on the voltages 
and currents, to interchange the subscripts n (for input), and o (for 
output) on the coefficients, and to interchange A and B. For example, 
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reflecting the output-circuit admittance into the input circuit of the 
current amplifier, shown in Fig. 12-13b, corresponds to reflecting the 
source admittance (with Es = 0) into the output circuit of the voltage 
amplifier, shown in Fig. 12-10. 

The value of the hybrid coefficients is largely conceptual; they provide 
useful insights into the properties of electronic circuits and into the 
interaction between the circuits and the external sources and loads 
connected to them. They provide, in addition, a set of clearly defined 
coefficients that are sufficient to describe completely the external behavior 
of two-port networks and that permit such networks to be compared with 
ideal voltage and current amplifiers. They are particularly useful when 
it is necessary to determine the performance of a circuit under a variety 
of terminal conditions, just as Thevenin's theorem is useful in calculating 

11 ,--------------- 7 12 
.-------n-----+--..J \ 
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FIG. 12-13. Current-amplifier equivalent circuits. (a) Network; (b) equivalent 
network for input relations. 

the terminal conditions in a one-port network under various load con
ditions. But, as is the case with Thevenin's theorem, the hybrid coef
ficients usually do not simplify the analysis of circuits for a single set of 
terminal conditions. 

12-6. Summary. The currents and voltages in elementary electronic 
circuits can often be evaluated by inspection of the circuit. When the 
circuits are more elaborate, however, a systematic method of analysis is 
essential for orderly, efficient solutions of circuit problems. Both loop 
and node methods fill this need. The controlled sources that occur in 
the models for electronic circuits affect the form of the loop and node 
equations in certain significant ways, and in certain cases they require 
that auxiliary equations be written to augment the normal set of loop 
or node equations. 

In the study of electronic circuits, attention is often focused on the 
voltage and current relations at two terminal pairs that are usually 
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designated as input and output terminal pairs. In such cases it is often 
convenient to characterize the external behavior of electronic circuits 
in terms of the hybrid voltage-amplifier coefficients or the hybrid current
amplifier coefficients, for these characterizations provide useful insight 
into the properties of electronic amplifiers and permit practical amplifiers 
to be compared with the ideal. 
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PROBLEMS 

12-1. The circuit shown in Fig. 12-14 is sometimes used in the measurement of very 
small currents. The tube and circuit parameters are gm = 1.0 millimho, gp = 0.1 
millimho, and G = 0.1 millimho. Grid currents and parasitic capacitances are negligi
ble for the purposes of this problem. 

a. Give an incremental model for the circuit using the current-source representation 
for the tubes. 

b. Write a set of node equations for the circuit, and determine the numerical values 
of E2/E1 and E3/E1. 

Frn. 12-14. Circuit for Prob. 12-1. Fm. 12-15. Transistor amplifier for Prob. 
12-2. 

12-2. The transistor amplifier shown in Fig. 12-15 is used occasionally. The resist
ance RF provides the bias current for the base, and it provides feedback that stabilizes 
the quiescent operating point and reduces the amplification somewhat. The coupling 
capacitor acts as a short circuit, and the parasitic capacitances of the transistor are 
negligible at all frequencies of interest. The circuit and transistor parameters are 
Rs = 20 kilohms, RL = 10 kilohms, RF = 150 kilohms, rn = 2.0 kilohms, acb = 50, 
and µbe = go = 0. 

a. Give an incremental model for the circuit using the hybrid representation for the 
transistor. 

b. Write a set of node equations for the circuit, and give the necessary auxiliary 
equation relating the base current to the unknown node voltages. 
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c. Determine the numerical value of the current amplification Ac = IL/Is, where 
IL is the signal component of current in RL, 

12-3. The circuit shown in Fig. 12-16 is used as a voltage amplifier in some cathode
ray oscilloscopes. It has the property that changes which occur identically in the two 

+ 

tubes tend to cancel in so far as the output is 
concerned. (Note that the circuit is a bridge.) 
Parasitic capacitances and grid currents are 
negligible for the purposes of this problem. 

a. Give an incremental model for the circuit 
R2 using the voltage-source representation for the 

tubes. 
b. Write the loop equation for the circuit 

with no load connected to the output terminals. 
Give the necessary auxiliary equations relating 
the grid-to-cathode voltages for the tubes to the 

R2 unknown loop current. 
c. Determine the voltage amplification, A = 

ea/es, in terms of the tube and circuit parame
ters. Assume that the two tubes are identical. 

_ 12-4. The effect of the unbypassed resistor in 
Fm. 12-16. Series-balanced ampli- the emitter lead of the amplifier shown in Fig. 
fier for Prob. 12-3. 12-5a is to be evaluated. The coupling capaci-

tor acts as a short circuit, and the parasitic tran
sistor capacitances are negligible at all frequencies of interest. The circuit and tran
sistor parameters are Rs = 20 kilohms, Ra = 150 kilohms, Rb = 20 kilohms, R2 = 10 
kilohms, R 3 = 2 kilohms, rn = 2 kilohms, µbe = 0, Olcb = 60, and ro = 1/go = 70 kil
ohms. The input signal is sinusoidal with an amplitude of 1 µa. 

a. Give an incremental model for the circuit using the hybrid representation for the 
transistor. Represent the parallel combination of Rs, Ra, and Rb with a single resist
ance, and convert all current sources to voltage sources to obtain a two-loop circuit. 

b. Write the loop equations for the circuit, and determine the amplitude of the 
sinusoidal current in R2. 

c. What is the amplitude of the sinusoidal current in R2 if Ra is reduced to zero with 
all other circuit parameters remaining at their original values? What is the ratio of 
the current amplification with Ra = 2 kilohms to its value with Ra = 0? 

12-5. A triode is used in a voltage-amplifier circuit with an unbypassed cathode 
resistor (Fig. 6-1). The input coupling capacitor acts as a short circuit, and the 
parasitic capacitances are negligible. The tube and circuit parameters are µ = 100, 
rp = 60 kilohms, R 0 = 330 kilohms, RL = 220 kilohms, and Rk = 1 kilohm. 

a. Give an incremental model for the circuit. 
b. Evaluate the hybrid voltage-amplifier coefficients in terms of the tube and circuit 

parameters by solving the appropriate loop or node equations. 
c. Determine the numerical values of the coefficients evaluated in part b. 
d. Repeat part c for Rk = 0, assuming that all other circuit parameters retain their 

original values. What is the ratio of the voltage amplifications for R1v = 1 kilohm and 
R1v = O? 

12-6. A certain transistor current amplifier has the form shown in Fig. 12-5a with a 
bypass capacitor added in parallel with Ra. The amplifier is used in tho frequency 
range in which the coupling and bypass capacitors act as short circuits and in which 
the parasitic capacitances of the transistor are negligible. The circuit and transistor 
parameters are Ra = 150 kilohms, Rb = 20 kilohms, R2 = 10 kilohms Ra = 2 kilohms, 
rn = 2 kilohms, µbe = 0.0005, Olcb = 50, and r0 = 70 kilohms. 
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a. Give an incremental model for the amplifier using the hybrid representation for 
the transistor. 

b. Evaluate the hybrid current-amplifier coefficients for the circuit, not including 
the resistance of the signal source, R •. 

c. What is the input resistance to the amplifier, exclusive of R,,, when a 2-kilohm 
load resistance is connected from collector to ground in series with a coupling capacitor 
that acts as a short circuit to signal currents? 

12-7. A certain pentode amplifier has the form shown in Fig. 10-16. The circuit 
parameters are Ru = 500 kilohms, R,, = 30 kilohms, and RL = 50 kilohms. The 
cathode bypass capacitor acts as a short circuit at all frequencies of interest. The 
pentode can be represented by the incremental model shown in Fig. 10-18 with g41 

4.6 millimhos, g42 = 0.16 millimho, r44 = 1 megohm, and p = 0.3. 
a. Determine the open-circuit voltage transmittance A 11 0. 

b. If a bypass capacitor that acts as a short circuit to signal currents is connected 
from the screen grid to ground, what is the value of A,,o? What is the ratio of these 
two values of A,,o? 

12-8. A 6J5 triode is used in a conventional voltage amplifier (Fig. 6-2). The plate
supply voltage is obtained from a rectifier, and it consists of a direct voltage plus a 
ripple voltage of 1 mv peak-to-peak amplitude. The power supply can thus be repre
sented as a battery, Ebb, in series with a voltage source to account for the ripple. The 
coupling and bypass capacitors act as short circuits in the frequency range of interest, 
and the parasitic capacitances are negligible. The tube parameters are µ = 20, 
rp = 10 kilohms, and RL = 50 kilohms. 

It is required that the peak-to-peak signal voltage at the output of the amplifier be 
at least ten times the peak-to-peak ripple voltage at the output. If this requirement 
is satisfied, what is the smallest peak-to-peak amplitude that the input signal voltage 
e. can have? Note that the ripple voltage sets a lower limit on the amplitude of input 
signals that can be amplified satisfactorily. 

12-9. A 12AU7 twin triode is used in the cathode-coupled amplifier of Fig. 12-4. 
The two triode sections are identical, and the parasitic capacitances are negligible. 
Determine the hybrid voltage-amplifier coefficients in terms of the tube and circuit 
parameters by solving the appropriate node equations. 

Frn. 12-17. Amplifier for Prob. 12-10. 

12-10. Figure 12-17 shows a triode amplifier in which feedback is introduced 
through R 3 to improve the performance of the circuit in certain respects. The 
coupling and bypass capacitors act as short circuits in the frequency range of interest, 
and the parnsitic capacitances are negligible. 

a. Give an incremental model for the circuit using the current-source representation 
for the tube. It is instructive to compare this model with the 1r model for the transis
tor shown in Fig. 8-15. 
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b. Determine the voltage-amplifier coefficients in terms of the tube and circuit 
parameters by solving the appropriate set of node equations. Let G1 = l/R1, G2 = 
l/R2, Ga = 1/Ra. 

FIG. 12-18. Circuit for Prob. 12-11. 

12-11. The circuit shown in Fig. 12-18 has certain useful engineering applications. 
The two triodes are identical, there is no grid current, and parasitic capacitances are 
negligible. Determine the forward voltage transmittance A,,o in terms of the tube 
and circuit parameters. 

FIG. 12-19. Circuit for Prob. 12-12. 

12-12. A transistor amplifier using the grounded-base connection of the transistor is 
shown in Fig. 12-19. The coupling capacitors act as short circuits to the signal 
components of current, and the parasitic capacitances are negligible. 

a. Give an incremental model for the circuit using the hybrid representation for the 
transistor. Assume µbe = 0. 

b. Determine the current-amplifier coefficients for the circuit in terms of the transis
tor and circuit parameters. 

c. Can the forward current transmittance Aca ever exceed unity? 
d. Can the circuit give voltage amplification in the forward direction? 



CHAPTER 13 

NETWORK THEOREMS 

The loop and node methods of analysis presented in Chap. 12 provide 
completely general procedures for the analysis of any linear network, no 
matter how complicated. These general methods of analysis are of 
fundamental importance to network theory; however, being systematic 
and mechanistic, they give a limited amount of insight into the properties 
of specific networks, and they do not necessarily provide the simplest 
and most direct solution in any specific case. Electrical networks possess 
certain special properties, expressed in the form of network theorems, 
that can often be employed to gain useful insight and to obtain direct 
solutions of particular problems. 

A number of valuable theorems have been developed for networks made 
up of R, L, C, and independent sources. The objective of this chapter 
is to reexamine these theorems and to determine their applicability to 
networks containing controlled sources. It is shown in Cb,p. 12 that 
the reciprocity theorem does not apply in general to networks containing 
controlled sources. It is shown in the following sections that certain 
theorems take on a new significance when controlled sources are present, 
and a new theorem pertaining directly to controlled sources is presented. 

13-1. The Superposition Principle. The node equations for electronic 
circuits under sinusoidal operating conditions can be put in either of the 
two general forms expressed by Eqs. (12-11) and (12-12). In these equa
tions the E's are unknown node voltages and the I's are known currents 
applied to the network. It follows from the fact that these equations 
are linear that the principle of superposition is applicable. Specifically, 
let E~, E~, ... , E'iv be solutions of (12-11) and (12-12) for the applied 
currents I~, I~, ... , I'iv, and let E~', E~', ... , E'!, be solutions for the 
applied currents I~, I~', . . . , I';. Then (E~ + E~), (E~ + E~'), . . . , 
(E'iv + E'/;) are the solutions for the applied currents (I~ + I~'), (I~ + I~'), 
. . . , (I'iv + I'/,). The proof of this statement is obtained directly by 
substitution in either (12-11) or (12-12). A similar argument can be 
based on the loop equations (12-24) and (12-25). 

As a special case of superposition, any unknown voltage, say E1, can 
be found by summing the components of E1 resulting from each of the 
J's acting one at a time with all other I's made zero. 

271 
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13-2. The Substitution Theorem. A reexamination of the substitu
tion, or compensation, theorem reveals it to be especially useful in the 
simplification of circuits containing controlled sources. The circum
stances in which it can be used are illustrated in Figs. 13-la and b. 

The network Nin Fig. 13-la can be any network having the terminal 
current i(t), an arbitrary function of time, and Ai(t) is the voltage of a 
current-controlled voltage source. The constant A can be any real 
number. If the network and the source are connected so that the current 

(a) (bl 
Fm. 13-1. Configurations in which the substitution theorem can be used. (a) Cur
rent-controlled voltage source; (b) voltage-controlled current source. 

i flows through the controlled source in the direction of the fall in poten
tial, then the currents and voltages in the network remain unchanged when 
the controlled source is replaced by a resistance of A ohms. The proof 
of this theorem follows at once from the general loop equations (12-24). 

Figure 13-lb illustrates conditions under which the dual form of the 
theorem can be applied. In this case the voltage-controlled current 
source Ae(t), which is connected across the voltage e(t), can be replaced 
by a conductance of A mhos without changing the currents and voltages 

}ffi 
:r . 
-=- {a) (bl 

FIG. 13-2. An application of the substitution theorem. (a) Circuit; (b) equivalent 
circuit. 

in the network. The proof in this case follows directly from the general 
node equations (12-11). 

As a specific e:xample, consider the amplifier of Fig. 12-la. By using 
the fact that µeg = µe1 + µRsi, the model shown in Fig. 12-2a and 
repeated in Fig. 13-2a is obtained. The currents and voltages in this 
circuit are not changed if the controlled source µRsi is replaced by a 
resistance µRs; the resulting circuit is shown in Fig. 13-2b. It is signif
icant that the application of the substitution theorem converts a feed
back circuit to a nonfeedback circuit. For this reason the circuit of 
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Fig. 13-2b can be analyzed by inspection, whereas that of Fig. 13-2a can
not. It is important to note that the substitution theorem can be 
applied in this case only if the current through the controlled source is 
the same as the current through R3. Thus, for example, it cannot be 
applied if a resistor is connected in parallel with the tube between plate 
and cathode. 

The circuit shown in Fig. 13-3a, which is the prototype for the cathode 
follower, provides another illustration of the substitution theorem. This 
important circuit merits a few preliminary remarks. The input voltage 
1s applied between grid and ground, and the output voltage is taken 

p 

- (a) - (b) 

e1 ez e1 

t gp G2 gmel 

- (cl - (d) 

Fm. 13-3. Another application of the substitution theorem. (a) Circuit; (b) model; 
(c) equivalent circuit; (d) simplified equivalent circuit. 

between cathode and ground. The plate of the tube is at ground poten
tial in so far as increments of voltage are concerned. A positive incre
ment of input voltage causes a positive increment of plate current and 
a positive increment of output voltage; hence the cathode potential 
tends to follow changes in the grid potential. However, the increment 
of input voltage is always larger than the increment of cathode voltage; 
it is this fact that permits an increment of plate current. It follows that 
the voltage amplification of this circuit is always less than unity. The 
cathode follower has a small input admittance, zero reverse transmittance, 
and a small output impedance; it therefore serves an important function 
as an isolating, or buffer, stage between high-impedance sources and low
impedance loads. 

A model for the cathode follower that is valid at frequencies where the 
coupling capacitor acts as a short circuit and where the parasitic capaci
tances act as open circuits is shown in Fig. 13-3b. It is clear from this 



274 EL~CTR0N1C C1RCO1~$ 

circuit that e0 = e1 - e2; thus the controlled current source can be 
replaced by the equivalent pair of sources shown in Fig. 13-3c. The 
substitution theorem then permits the current source gme2 to be replaced 
by a conductance gm, leading to the circuit of Fig. 13-3d. Again feed
back is eliminated, and the properties of the cathode follower can be 
perceived by inspection of the circuit in Fig. 13-3d. 

Example 13-1. A practical cathode follower is shown in Fig. 13-4. This circuit 
arrangement permits a somewhat better circuit design than is possible with the proto

type of Fig. 13-3. The resistance R2 + Ra is chosen 
to give a suitable operating path on the plate charac
teristics, and the individual values of R2 and Ra are 
chosen to bias the tube for a suitable quiescent operat
ing point. Since no direct current flows in R1, the 
grid bias is the d-c drop across Ra. 

The tube used in the particular circuit to be exam
ined is one section of a 12A U7 twin triode; the tube 
and circuit parameters are rp = 10 kilohms, gm = 2.0 
millimhos, R1 = 1 megohm, R2 = 50 kilohms, and 
Ra = 1 kilohm. The plate-supply voltage is 300 volts. 
The problem is to evaluate the hybrid voltage-amplifier 
coefficients with the aid of the substitution theorem. 

Solution. A model for the circuit that is valid in 
Fm. 13-4. A practical cath- the range of frequencies in which C acts as a short 
ode follower for Example circuit and in which the parasitic capacitances are 
13-1. 

negligible is shown in Fig. 13-5a. After applying the 
substitution theorem in the manner illustrated in Fig. 13-3, the equivalent circuit of 
Fig. 13-5 is obtained; application of the theorem removes the feedback from the circuit. 

k i2 e2 

R3 
e1 i1 R1 R3 i2 e2 

e3 t gp 

!l,2 
gp 

p 

(a) - (bl 
Frn. 13-5. Incremental models for the cathode follower of Fig. 13-4. (a) Model for 
frequencies at which C acts as a short circuit, eu = e1 - e2; (b) model after applying 
the substitution theorem. 

The current in R1 is much smaller than the current in R2 and Ra for two reasons: 
First, R1 is much larger than R2 + Ra; and second, an increment of voltage at the grid 
end of R1 is accompanied by an almost equal increment at the cathode end, with the 
result that the increment of voltage across R1 is much smaller than the increment 
across R2 + Ra. Thus with i2 = 0, and neglecting the current in R 1, the node equa
tion at the output terminal is 

(gm+ gp + R2 ~ R)e2 = gme1 
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and Avo = ~ I = gm 
e1 i2=0 1 

gm + gp + R2 + Ra 
2 

2 + 0.1 + 0.0196 = o.9-15 

This value is somewhat larger than can be obtained with the prototype circuit when 
the cathode resistor is chosen to give a suitable quiescent point. 

With i2 = 0, the input current is 

. e1 - ea 
i1=~ 

But, neglecting the small current in R1 in comparison with the current in R2, 

R2 
ea = R

2 
+ Ra e2 = 0.98e2 = 0.98Av 0 e1 

Thus 
. e1 - 0.98AvoCl 
i1 = R1 

and Yno = i!_ I = 1 - 0.98Avo 0.074 
e1 i2=0 R1 = R1 

= 7.4 X 10-s mho 

The corresponding resistance is 

1 
Rno = - = 13.5 megohms 

Yno 

Since Rno = R1 in the prototype circuit, it is always much smaller than the value 
obtained with the circuit of Fig. 13-4. Large values for Rno are usually desirable. 

With e1 = 0, and again neglecting the current in R1, a current applied at i2 causes a 
voltage at e2 given by 

Hence the short-circuit output impedance is 

Z - ~ I - Avo - 0.945 - 0 473 k'l h 
08 

- i2 e1=0 - U:: - 2.0 - · 1 0 m 

Roughly this same value is realized with the prototype circuit. 
The resistance of R1 in parallel with R2 is approximately R 2 ; hence, with e1 = 0, a 

current applied at i2 causes a current at i1 given by 

Thus the reverse current transmittance is 

(R2 + Ra) (R1 + R2) 
(0.473) (50) 
(51) (10.50) 

- 4.41 X 10-4 

The value of Bea for the prototype circuit is zero. 
Since the reverse current transmittance affects i1, and hence the load imposed upon 

the source of signals, it is important to examine its effect more carefully. Figure 13-6 
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shows the two-port representation of the cathode follower with a load of 600 ohms. 
The admittance reflected from the output circuit into the input circuit (F'ig. 12-9) is 

Y' = _ BesAvo 
Zos + RL 

= 3.88 X 10-7 mho 

(0.945) ( -4.41) (lQ-4) 
1073 

Thus the input admittance to the circuit of Fig. 13-6 is 

Yn = Yno + Y' = (7.4 + 38.8)(10-8) 

= 46.2 X 10-s mho = 0.462 micromho 

The input resistance is 
1 

Rn = Yn = 2.16 megohms 

Thus the input admittance is determined principally by Bes, rather than Yno, when 
the load resistance is 600 ohms. The effect of Bes becomes smztller as the load resist
ance is made larger; however, in many cases the load resistance is fixed at a relatively 
small value and cannot be changed. 

e1 i1 473{2 i2 e2 

Yn- 0.074 t RL 
µmho Bcsi2 600{2 

- Bes= -4.41XI0-4 

Fm. 13-6. Two-port representation for the cathode follower of Fig. 13-4. 

An alternative procedure for examining the effect of the load resistance on the input 
admittance is to combine RL in parallel with gp in the circuit of Fig. 13-5b. The 
voltage amplification obtained in this case is 0.528, and the input admittance is 
given by 

y 1 - 0.98Avo 0.482 O 482 . h 
n = Ri = ~ = . microm o 

The discrepancy between this value and the one obtained previously is largely the 
result of the approximation made in calculating Bes; accordingly, the last value is the 
more nearly correct. 

13-3. Thevenin's Theorem. The circuit in Fig. 13-7a is an incre
mental linear model for the triode amplifier with an unbypassed cathode 
resistor shown in Fig. 12-1. The fact that it is a linear circuit ensures 
that it can be represented, in so far as the output terminals are concerned, 
by the Thevenin equivalent circuit1•2 shown in Fig. 13-7b. The circuit 
in Fig. 12-8 and the related discussion show this statement to be true 
for two-terminal-pair networks; the extension of the proof to the general 
case is not difficult. 

Special considerations arise, however, in the evaluation of the internal 
voltage and resistance of the Thevenin equivalents for circuits contain
ing controlled sources. These considerations can be illustrated by an 
examination of the circuits in Fig. 13-7. The open-circuit voltage in the 
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circuit of Fig. 13-7 a is 

(13-1) 

An expression for the current i as a function of the circuit parameters 
and the input voltage c1 is obtained from the facts that 

and 
-µcu = (rP + R2 + R3)i 

µcu = µ(c1 + Rai) 

Substituting (13-3) and (13-2) and collecting terms gives 

- µc1 = [rp + R2 + (1 + µ)R3Ji 

Solving this expression for i and substituting in (13-1) yields 

-R2µc1 
Coe = rp + R 2 + (l + µ)R

3 
= AvoC1 

(13-2) 
(13-3) 

(13-4) 

(13-5) 

This is the voltage of the source in the equivalent circuit of Fig. 13-7b. 
A procedure that is commonly used in evaluating the internal resistance 

for Thevenin equivalent circuits is to determine the resistance between 

(a) (bl 

Frn. 13-7. The Thevenin equivalent for a vacuum-tube circuit. (a) Circuit; (b) 
equivalent circuit. 

the output terminals with all sources made zero; for the circuit in Fig. 
13-4a this resistance is 

R _ R2(rp + R3) 
0 

- rp + R2 + R3 
(13-6) 

Another commonly used procedure is to evaluate Ro from the ratio of 
open-circuit voltage to short-circuit current. The current in a short 
circuit connected across the output terminals is given by Eq. (13-4) with 
R2 = O; hence 

. -µc1 
ise = --~------,--=-

r p + (1 + µ)R3 
(13-7) 

and R = Coe = R2[rp + (1 + µ)R3] 
0 ise rp + R2 + (1 + µ)R3 

(13-8) 

Equations (13-6) and (13-8) do not give the same value for R0 • Thus 
two conventional procedures for evaluating the internal resistance of 
Thevenin equivalent circuits, which always give identical results when 
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applied to circuits composed of R, L, C, and independent sources, yield 
different results when applied to a circuit containing controlled sources. 
Two important questions must therefore be answered: First, does either 
of the values of Ro obtained above give a correct representation of the 
circuit; and second, if one of the values obtained above is correct, why is 
the other incorrect? 

Evaluating Ro from the ratio of open-circuit voltage to short-circuit 
current involves only measurements made at the output terminals of the 
circuit; hence this procedure gives a correct measure of the output-termi
nal characteristics of the circuit, and the value of Ro obtained in this 
manner yields a correct representation, in so far as the output terminals 
are concerned, when used in the equivalent circuit of Fig. 13-7b. When 
the resistance between the output terminals is evaluated with all sources 
in the circuit made zero, the circuit is modified internally, and the value 
of resistance so obtained does not give a correct representation when used 
in the circuit of Fig. 13-7b. The effect of setting the voltage of the µe 0 

source in Fig. 13-7a equal to zero is illustrated clearly by the two circuits 
of Fig. 13-2; these circuits are entirely equivalent to that of Fig. 13-7a 
in so far as the output terminals are concerned. It is clear from these 
circuits that the µe0 source behaves as a voltage source µe1 in series with 
a resistance µR 3• Thus, replacing the µe0 source with a short circuit is 
equivalent to short-circuiting a voltage source µe1 and a resistance µR 3• 

The constant voltage source in the Thevenin equivalent circuit, eoc, 
accounts for the effects of the constant voltage source µe1, but it cannot 
account for the effects of the resistance µR3. These considerations lead 
to the following general rule: The Thevenin equivalent for a circuit con
taining controlled sources consists of a source of voltage equal to the 
open-circuit voltage appearing at the output terminals of the circuit, 
acting in series with the impedance appearing between the output 
terminals, with all independent sources in the circuit adjusted for zero 
volts or amperes. The controlled sources in the circuit must not be 
removed when the impedance of the Thevenin equivalent circuit is 
evaluated. 

The impedance to be used in the Thevenin equivalent for a circuit con
taining controlled sources can be evaluated correctly in a variety of ways; 
however, the determination based on the open-circuit voltage and the 
short-circuit current is often the simplest, especially since the open-circuit . 
voltage must be determined in any event. 

13-4. A Reduction Theorem for Controlled Sources. The reduction 
theorem presented in the following paragraphs is in effect an extension of 
the substitution theorem. The substitution theorem permits the elimi
nation of current-controlled voltage sources and voltage-controlled cur
rent sources in certain configurations; the reduction theorem permits the 
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elimination of voltage-controlled voltage sources and current-controlled 
current sources in certain other configurations. The reduction theorem, 
like the substitution theorem, eliminates feedback and often makes circuit 
analysis possible by inspection. 

The reduction theorem applies to the network configurations shown in 
Fig. 13-8. The network N 1 in Fig. 13-8a is any linear two-terminal 
network having the terminal voltage e1(t), an arbitrary function of time, 
and N 2 is any other linear two-terminal network. The constant A of the 
voltage-controlled voltage source Ae1(t) is any real number, positive or 
negative. The two networks and the voltage source are connected in 

i1(tl (1 +Ali1(tl 

I : I 
A:11t¢ • I : + + 

N1 e1(tl (1 +A)e1(t) N2 N1 N2 

+ 
Ae1(tl 

{a) (b) 

Frn. 13-8. Circuits that can be simplified by the reduction theorem. (a) Voltage
controlled voltage source; (b) current-controlled current source. 

series so that the voltages e1 and Ae1 are additive with respect to the 
loop that they form. The theorem states that all currents in N1 and N2 
remain unchanged if the source Ae1 is replaced with a short circuit and if: 

or 

(a) Each resistance, inductance, elastance (elastance is S = 1/C, the 
reciprocal of capacitance), and voltage source in N1 is multiplied 
by 1 + A 

(b) Each resistance, inductance, elastance, and voltage source in N 2 

is divided by 1 + A 

Proof of the theorem is based on the form of the loop equations [see 
Eqs. (12-24) for the case of sinusoidal operation]. It is clear that if all 
resistances, inductances, elastances, and voltage sources are multiplied 
by the same arbitrary factor, then every term in the set of loop equa
tions is multiplied by the same factor, and all the loop currents remain 
unchanged. Thus if all the parameters and voltage sources in N 1 are 
multiplied by 1 + A as specified in part a of the theorem, and if Ae1 is 
replaced with a short circuit, then the voltage applied to N 2 is still 
(1 + A)e1, and all currents in N1 and N2 remain unchanged. All volt
ages in N 1 are multiplied by the factor 1 + A, but the voltages in N2 
are not changed. Any current sources in N 1 and N 2 are left unchanged 
in the reduction process. 

By the same reasoning process, after the transformation described 
above is completed, all resistances, inductances, elastances, and voltage 



280 ELECTRONIC CIRCUITS 

sources in the composite network N 1-N 2 can be divided by the factor 
1 + A without changing any of the currents in N 1-N 2- Thus part b of 
the theorem is proved. 

When all currents and voltages in the network are sinusoidal and of 
the same frequency, the constant of the controlled source may be expressed 
as a complex number; the reduction theorem holds in this case also. 

The dual form of the reduction theorem is applicable to the network 
configuration shown in Fig. 13-8b. It states that all voltages in the 
network of Fig. 13-8b remain unchanged if the current source Ai1 is 
replaced with an open circuit and if: 

or 

(a) All conductances, capacitances, reciprocal inductances, and current 
sources in N 1 are multiplied by 1 + A 

(b) All conductances, capacitances, reciprocal inductances, and current 
sources in N 2 are divided by 1 + A 

Proof of the dual form of the theorem follows from the node equations 
(12-11) and is dual to the proof outlined above. 

In applying the reduction theorem it is essential that the two net
works N 1 and N 2 be properly identified at the outset. The two necessary 
requirements are: (1) the terminal voltage (or current) of the network 
identified as N 1 must be the controlling quantity for the source to be 
eliminated; and (2) no current may enter or leave either network through 
any terminal other than the two terminals by which the networks and 
controlled source are joined in series ( or parallel). It should be noted 
that connections joining separate parts of a network carry no current 
and can therefore be ignored in respect to item 2. 

A useful application of the reduction theorem is provided by the cascade 
amplifier shown in Fig. 13-9a. This circuit employs two identical triodes, 
T1 and T2; the resistors R4 and R 5 provide a suitable grid bias for T2. 
An incremental model for the amplifier is shown in Fig. 13-9b. Since 
no signal current flows in R4 and R5, these resistors play no active part 
in the operation of the circuit, and they are omitted from the model. 

The incremental grid voltage for T1 is e0 1 = e1 + R 3i; hence the circuit 
can be simplified at the outset by applying the substitution theorem to 
obtain the equivalent circuit shown in Fig. 13-lOa. This circuit has been 
separated into two networks, N 1 and N 2, connected in series with the 
controlled source µe 3, in preparation for the reduction theorem. All the 
conditions of the reduction theorem are satisfied by this circuit; hence 
invoking part a of the voltage-source form of the theorem yields the 
reduced network shown in Fig. 13-lOb. All feedback is eliminated from 
the circuit, and the reduced network can be analyzed by inspection. It 
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(a) 

(b) 

Frn. 13-9. The cascode amplifier. (a) Circuit; (b) model. 
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Frn. 13-10. Simplification of the cascode amplifier circuit by application of the reduc
tion _theorem. (a) Network prepared for the theorem; (b) reduced network. 

is clear from the reduced network that if µ is much larger than unity, 
the two triodes in cascode act very much as a pentode with an amplifi
cation factor µ 2 and a plate resistance µrP. 

The dual form of the reduction theorem can be illustrated with the 
amplifier shown in Fig. 13-1 la. This circuit uses a transistor in the 
grounded-collector connection. Figure 13-llb shows an incremental 
model for the amplifier, using the T representation for the transistor, in 
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which it is assumed that the coupling capacitors are short circuits and 
that the transistor is independent of frequency. The resistance R1 repre
sents the parallel combination of Rs, Ra, and Rb, and the network is 
separated into two parts in preparation for the reduction theorem. 

Invoking part a of the current-source form of the theorem yields the 
reduced network shown in Fig. 13-llc; for compactness the factor 
1 + acb is symbolized by k in this diagram. Dividing the resistances 
R1 and rb by k is equivalent to multiplying the corresponding conductances 
by this factor. Application of the reduction theorem removes all feed
back from the circuit; accordingly, the properties of the amplifier can be 

Fm. 13-11. Another application of the reduction theorem. (a) Circuit; (b) model; (c) 
reduced network, k = 1 + acb; (d) alternative reduced network, k = 1 + acb• 

seen more clearly from the reduced network than from the original model. 
The current amplification of the circuit is accounted for by the fact that 
the input signal current is multiplied by the factor k in the reduced 
network. 

If part b of the theorem is applied instead of part a, the circuit of 
Fig. 13-lld results. Again all feedback is removed, and a simpler repre
sentation results. 

The circuit of Fig. 13-llb consists of a ladder network having as one 
of its shunt branches a current source controlled by the current in an 
adjacent series branch. Applying the reduction theorem to this con
figuration shows that the controlled current source has the effect of 
transforming all impedances and currents on one side of the source with 
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respect to the impedances and currents on the other side. Hence current
controlled current sources, realized with the aid of transistors, find useful 
applications as impedance converters. 

It is to be expected that the dual of the configuration shown in Fig. 
13-llb performs a similar function of impedance conversion. The dual 
configuration consists of a ladder network having as one of its series 
branches a voltage source controlled by the voltage across an adjacent 
shunt branch; it is realized with the grounded-grid triode shown in 
Fig. 13-12a. An incremental model for the circuit is shown in Fig. 
13-12b. Applying the reduction theorem to the model yields the reduced 

(al 

(c) 

Frn. 13-12. The grounded-grid amplifier as an impedance converter. (a) Circuit; 
(b) model; (c) reduced network. 

network shown in Fig. 13-12c; the impedance-transforming property 
of the grounded-grid triode is exhibited clearly by this circuit. 

13-6. The Bisection Theorem. Figure 13-13 illustrates symbolically 
a network that can be separated into two parts which are mirror images 
about an axis of symmetry. Many electronic circuits are given this 
form deliberately, for certain advantages result from the symmetry. 
The bisection theorem 2 provides a means for using the symmetry of the 
circuit to reduce the labor required in analysis. It provides, in addition, 
a point of view that gives further useful insight into the properties of 
symmetrical networks. Use of the bisection theorem requires that the 
network contain no internal independent sources; there may, however, 
be any number of links connecting homologous points in the two parts of 
the network. The distinguishing feature of such networks, apart from 
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the excitations e1 and e~, is the fact that a rotation of 180° about the 
axis of symmetry produces no change in the network configuration. A 
circuit meeting these conditions is shown in Fig. 13-14b. 

The bisection theorem is concerned with the behavior of symmetrical 
networks with symmetrical and antisymmetrical excitations. Specifi
cally, it states that when the network is excited in the common mode with 
e1 = e~ = ec, the currents and voltages throughout the network are not 
disturbed if the links joining the two parts of the network are cut, and 
when the network is excited in the differential mode with e1 = - e~ = ed, 
the currents and voltages are not disturbed if the links are cut and joined 
together separately in the two parts. 

Proof of the theorem is obtained by applying superposition to the two 
input voltages e1 and e~. With a certain voltage, say ea, applied at 
e1 with e~ = 0, there is a certain current in each link and a certain poten
tial difference between each pair of links. Let the current in link k 
be designated ik, and let the potential of link k with respect to link j be 

Axis of symmetry 

a 
I 
I 

I 
I 
a' 

FIG. 13-13. A symmetrical network. 

designated eki• If the voltage ea is now applied at e~ with e1 = 0, the 
current in link k is -ik, and the potential of link k with respect to link j 
is again eki• This statement follows from the symmetry of the network, 
for shifting the excitation ea from the e1 terminals to the e~ terminals is 
equivalent to rotating the network 180° about the axis of symmetry. 
When the network is excited in the common mode with e1 = e~ = ea, the 
voltages and currents in the network are obtained by superposing the 
contributions from the two excitations; hence the total current in link k 
with common-mode excitation is 

(13-9) 

and the total potential of link k relative to link j is 

(13-10) 

Equation (13-9) shows that there is no current in the links with common
mode excitation; therefore under this condition the links can be cut 
without disturbing the currents and voltages. 
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If a voltage - ea is applied at the e~ terminals with e1 = 0, the current 
in link k is ik, and the potential of link k relative to link j is - eki• This 
statement follows from the symmetry of the network and from the fact 
that reversing the excitation to any network reverses the currents and 
voltages throughout the network. When the network is excited in the 
differential mode with e1 = -e~ = ea, the voltages and currents in the 
network are obtained by superposing the contributions from the two 
excitations; hence the total current in link k with differential-mode 
excitation is 

(13-11) 

and the total potential of link k relative to link j is 

(13-12) 

Equation (13-12) shows that there is no potential difference between the 
links with differential-mode excitation; therefore under this condition 
the links can be joined together on each side of the axis of symmetry 
and then cut on the axis without disturbing the currents and voltages 
in the network. 

Any symmetrical network with either common-mode or differential
mode excitation can be bisected, and the analysis of the circuit is con
cerned with only half of the original network. The analysis of the 
bisected network is further simplified by the fact that either the link 
currents or the link-to-link voltages are zero. When the excitation 
voltages are arbitrary and bear no special relation to one another, the 
bisection theorem can still be used if the network is symmetrical, for 
any pair of input voltages can be represented as the superposition of a 
common-mode pair and a differential-mode pair. Thus any pair of 
input voltages can be expressed as 

and (13-13) 

where ec anded are, respectively, the common-mode and the differential
mode components. When the input voltages e1 and e~ are known, the 
common-mode and differential-mode components can be found by first 
adding and then subtracting Eqs. (13-13) to obtain 

and ' ed = e1 - e1 
2 

(13-14) 

If the network is linear, it can be analyzed separately for each of these 
symmetrical components of excitation with the aid of the bisection 
theorem, and the results can be combined by superposition to obtain 
total quantities. 

The application of the bisection theorem can be illustrated with the 
circuit shown in Fig. 13-14a. This circuit is the prototype for a d-c 
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vacuum-tube voltmeter; the deflection of the ammeter Mis proportional 
to the potential difference e1 - e~. An incremental model for the circuit 
is shown in Fig. 13-14b. In this model the resistance of the ammeter is 
represented by Rm, and the circuit is prepared for bisection by separating 
Rm into an equivalent pair of series resistors and by separating R 3 into 
an equivalent pair of paraIIel resistors. 

e 

(a) (b) 

(c) (d) 

f'rn. 13-14. An application of the bisection theorem. (a) Circuit; (b) model; (c) model 
for the common mode; (d) model for the differential mode. 

For the common-mode components of current and voltage, the model 
can be simplified by the bisection theorem to that shown in Fig. 13-14c. 
The currents and voltages in the right-hand half of the circuit are mirror 
images of those in the left-hand half; hence they need not be calculated 
separately. The analysis can be further simplified by using the sub
stitution theorem to eliminate the cathode degeneration. It is clear 
that the common-mode component of the meter current is zero in all 
events. 

For the differential-mode components of current and voltage, the model 
can be ~hnplified by the bisection theorem to that shown in Fig. 13-14d, 
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In this case also it is sufficient to analyze only half of the circuit. There 
is no cathode degeneration in the model for the differential-mode com
ponents, for the cathode resistor in this model, 2R 3, is short-circuited. 
The differential-mode component of the meter current, which is also 
the total meter current, can be evaluated by inspection of the circuit 
in Fig. 13-14d. Since this current depends only on the differential-mode 
component of excitation, ed = (e1 - e~) /2, the circuit of Fig. 13-14a is 
often referred to as a difference amplifier. 

The unknown voltage to be measured by the vacuum-tube voltmeter 
of Fig. 13-14a is usually applied at e1. In this case e~ is zero, and the 
differential-mode component of the input voltages is ed = ei/2. The 
common-mode component in this case is ec = ei/2 also; it contributes 
nothing to the meter current, however. 

13-6. Summary. Most of the theorems that are useful in the study of 
nonelectronic circuits can also be applied to linear circuits containing 
controlled sources. A notable exception is the reciprocity theorem. 
When applying Thevenin's theorem to circuits with controlled sources, 
care must be taken to ensure that the elements of the equivalent circuit 
are evaluated by a proper method. Certain methods that are useful in 
the analysis of nonelectronic circuits are not valid when controlled 
sources are present. 

The substitution theorem is especially useful in the study of circuits 
with controlled sources. Occasions for using this theorem arise fre
quently, and its application always leads to a simpler network repre
sentation by removing part or all of the feedback in the circuit. The 
reduction theorem is similar in many respects to the substitution theorem, 
and its value is even greater, for there are more opportunities to use it. 

The bisection theorem, which is based upon symmetrical components 
of current and voltage in symmetrical circuits, permits advantage to be 
taken of the symmetry that exists in certain types of electronic circuits. 
The amount of labor involved in the analysis of these circuits may be 
greatly reduced by the use of the bisection theorem. 

The network theorems can be applied only to circuits meeting the 
conditions specified by the theorem. In using these theorems it is 
necessary to ascertain that each condition required by the theorem is 
satisfied. In some cases a rearrangement of the circuit is required before 
a theorem can be applied, and in other cases it may not be possible to 
apply a given theorem at all. The principle of superposition and 
Thevenin's theorem require only that the circuit be linear; however, the 
substitution, reduction, and bisection theorems can be applied only to 
circuits having particular configurations. 

The application of any network theorem is equivalent to an algebraic 
rearrangement of the equations relating the currents and voltages in the 
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network, and equivalent results can be obtained in each case by rearrang
ing the equations rather than the network. However, operating on the 
network usually provides more insight into the properties of the circuit 
than manipulating the equations, and it is usually easier to discern 
helpful manipulations by inspection of the network than by inspection of 
the equations. 
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PROBLEMS 

13-1. Two identical triodes are used in the circuit of Fig. 12-18. The tube and 
circuit parameters areµ = 20, rp = 10 kilohms, R1 = 5 kilohms, and R2 = 50 kilohms. 
Grid currents and parasitic capacitances are negligible. Give an incremental model 
for the circuit, and determine the internal voltage (in terms of e.) and the impedance 
of the Thevenin equivalent circuit with respect to the indicated output terminals. 
Note: This problem can be solved in a straightforward way by the use of loop or node 
equations; alternatively, the theorems of Chap. 13 can be used in a variety of ways to 
obtain a solution. 

13-2. The transistor amplifier shown in Fig. 12-15 is used with signals lying in the 
band of frequencies in which the coupling capacitor acts as a short circuit and in 
which the parasitic transistor capacitances are negligible. The circuit parameters 
have the values given in Prob. 12-2. Give an incremental model for the amplifier, 
and determine the internal current (in terms of I.) and the impedance of the Norton 

equivalent of the circuit connected to RL. 
13-3. The circuit shown in Fig. 13-15 is 

a single-tube phase inverter. Its function 
is to convert a single signal voltage into two 
signal voltages that are equal in amplitude 
but opposite in sign. In normal operation, 
the same current flows in each of the resis
tors designated R; hence if these resistors 

C2 are identical, IE1I = IE2I. The resistors Ra 
1------1~E2- and Rb provide a suitable grid bias for the 

Frn. 13-15. Single-tube phase inverter 
for Prob. 13-3. 

tube. The coupling capacitors act as short 
circuits at all frequencies of interest, the 
parasitic capacitances are negligible, and 
there is no grid current. 

a. Give an incremental model for the 
circuit using the voltage-source represen-
tation for the tube. 

b. Noting that the incremental grid voltage is E 0 = E. - E 2, apply the reduction 
theorem to obtain an equivalent circuit in which the voltage E 1 remains unchanged 
(part a of the theorem). 

c. Use the reduction theorem to obtain an equivalent circuit in which E 2 remains 
unchanged. 
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d. Evaluate the voltage ratios Ei/E. and EdE. in terms of the tube and circuit 
parameters. 

13-4. The grounded-collector transistor amplifier shown in Fig. 13-lla is used in the 
range of frequencies in which the coupling capacitors act as short circuits and in which 
the parasitic capacitances are negligible. 

a. Give an incremental model for the amplifier using the hybrid representation for 
the transistor with µbe ~ 0. Designate the parallel combination of Ra, Rb, and 
R. by R1. 

b. By successive applications of the reduction theorem, obtain an equivalent circuit 
having no controlled sources. Let 1 + aeb = k1 and 1 - µbe = k 2 • 

13-6. Problem 5-13 is concerned with determining the quiescent operating condi
tions in a cascode amplifier. Use the reduction theorem to simplify the piecewise
linear model for this circuit, and solve 
parts a and b of Prob. 5-13. 

13-6. The circuit shown in Fig. 13-16 
is the prototype for a d-c vacuum-tube 
voltmeter. The tubes are identical, there 
is no grid current, and parasitic capaci
tances are negligible. 

a. Give an incremental model for the 
circuit using the current-source represen
tation for the tubes. 

b. Apply the substitution theorem to 
eliminate all controlled sources except Frn. 13-16. Vacuum-tube voltmeter for 
one controlled by Ae1. Prob. 13-6. 

c. Assuming that the ammeter has zero 
resistance, evaluate the transfer conductance, Gt = Aim/ Ae1. If the tube is a 6SN7 
twin triode, roughly how many volts are required at Ae1 to make Aim = 1 ma? 

13-7. The circuit shown in Fig. 13-17 is a sensitive d-c microammeter. If a resist
ance is connected in series with the input and adjusted to a suitable value, the circuit 
serves as a high-resistance voltmeter that can substitute for a vacuum-tube voltmeter. 

30K 30K 

A' A" 

t 
+ 

Frn. 13-17. Transistorized microammeter for Prob. 13-7. 

The calibrating resistor R3 is so located in the circuit that it does not affect the quies
cent operating point. The problem is to examine the properties of the circuit. 

a. Give an incremental model for the circuit that is valid at low frequencies. Use 
the hybrid representation for the transistors with µbe = 0, rn = 2.5 kilohms, aeb = 50, 
and ro = 1/go = 70 kilohms. 

b. Replace the current source i with an equivalent pair of sources, one between 
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terminals A'-A and the other between terminals A"-A (Fig. 12-3). Eliminate all 
controlled sources from the circuit by successive applications of the reduction theorem 
to the portion of the circuit on the right of the controlled source (Fig. 13-11). 

c. If 250 µa is required for full-scale deflection of the meter, and if Ra and the meter 
resistance are negligible, what input current is required for full-scale deflection? 

13-8. A 12A T7 twin triode is used in a cathode-coupled amplifier similar to the one 
shown in Fig. 12-4; d-c sources are added in the grid circuits to provide suitable bias. 
The triodes are identical, there is no grid current, and parasitic capacitances are 
negligible. The tube and circuit parameters are µ = 60, rp = 15 kilohms, R1 = 
500 kilohms, R 2 = 5 kilohms, and Ra = 50 kilohms. 

a. Give an incremental model for the amplifier using the current-source representa
tion for the input tube and the voltage-source representation for the output tube. 

b. Apply the substitution and reduction theorems to obtain an equivalent circuit 
having a single controlled source depending only on the input voltage e1. 

c. Determine the numerical values of the hybrid voltage-amplifier coefficients. 
13-9. The high-impedance source in Fig. 13-18 is required to deliver a signal voltage 

to the relatively low-impedance load. The purpose of the problem is to study, with 
the aid of the substitution theorem, the use of a cathode follower to isolate the load 

Source Load 
Frn. 13-18. A high-impedance source 
and a low-impedance load for Prob. 
13-9. es = cos w.t. 

from the source. 
a. If the load is connected directly to 

the source, and if the coupling capacitor 
acts as a short circuit, what is the ampli
tude of the signal voltage across the load? 

b. The load is to be isolated from the 
source by a cathode follower of the form 
shown in Fig. 13-3; the tube is to be a 6J 5 
triode, and the grid return resistance R1 is 
to be 1 megohm. Determine the values of 
R2 and Ebb required for a quiescent oper

ating point at ho = 4 ma and Eco = -8 volts. The techniques presented in Chap. 
6 can be adapted to this problem. 

c. Give an incremental model for the cathode follower, treating the coupling capaci
tor as a short circuit and neglecting the parasitic capacitances. Determine the 
voltage-amplifier coefficients for this circuit. The tube parameters can be approxi
mated by µ = 20 and rp = IO kilohms. 

d. Using the results of part c, determine the signal voltage at the input to the 
cathode follower and the signal voltage across the load when the cathode follower is 
connected between the source and the load in Fig. 13-18. Explain briefly the function 
performed by the cathode follower in this application. 

13-10. The cathode follower of Example 13-1 is modified by the addition of a bypass 
capacitor in parallel with the bias resistor Ra. This capacitor acts as a short circuit 
in the frequency range of interest, and parasitic capacitances are negligible. Evaluate 
the voltage-amplifier coefficients for the circuit, and compare them with the values 
obtained in Example 13-1. 

13-11. The current source and 5-megohm shunt resistance shown in Fig. 13-19 repre
sent the electrical properties of a photoelectric tube used in measuring light intensity. 
The signal from the photoelectric tube is transmitted to a cathode follower through a 
shielded cable that is used to minimize the introduction of stray voltages into the 
circuit by electrostatic induction. The coupling capacitor acts as a short circuit at 
the signal frequency, and the parasitic capacitances are negligible. The insulation 
resistance between the conductor and the shield of the cable is 5 megohms. 
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a. Find the values of R1 and R2 required for a quiescent operating point at ho = 
6 ma and Ebo = 150 volts. 

b. If I = 1 µa, what is the value of E1 when the shield of the cable is grounded as 
shown in Fig. 13-19? Note that the insulation resistance of the cable cannot be 
neglected. The tube parameters can be approximated by µ = 20 and rp = 10 kilohms. 

c. Repeat part b for the case where the shield is connected to the junction of R 1 

and R2• Comment on the relative merits of these two connections. 

t 
I 

5M 

FIG. 13-19. Cathode-follower circuit for 
Prob. 13-11. 

Fm. 13-20. Single-tube phase inverter for 
Prob. 13-12. 

13-12. The circuit shown in Fig. 13-20 is a modified form of the single-tube phase 
inverter discussed in Prob. 13-3. The tube parameters are µ = 17, rp = 20 kilohms; 
the coupling capacitors can be treated as short circuits for the signal components of 
current, and the parasitic capacitances can be neglected. The objective of the 
problem is to study the properties of the circuit with the aid of the reduction theorem. 

a. Determine the amplitudes of E2 and Ea when E1 is a sinusoid with an amplitude 
of 10 volts. Note that as in the case of the cathode follower analyzed in Example 13-1, 
the current in the I-megohm grid return resistor can be neglected. Part a of the 
reduction theorem is useful in evaluating E2; part bis useful in evaluating Ea. 

b. The output voltages E2 and Ea are measured one at a time with a voltmeter 
having a resistance of 100 kilohms. What is the reading of the meter in each case? 

c. Why are the two voltmeter readings of part b unequal? Suggestion: Consider 
the Thevenin equivalent circuit for each of the two output terminal pairs. 

Frn. 13-21. Circuit employing controlled sources for Prob. 13-13. Ea = E1 - E2, 
gm1 = 2.5 millimhos, gm2 = 0.5 millimho, and µ = 0.5. 

13-13. Simplify the circuit of Fig. 13-21 as muct1 as possible by the use of network 
theorems, and evaluate Avo = E4/E1. 
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13-14. The transistorized microammeter of Prob. 13-7 is a symmetrical circuit that 
can be simplified by the bisection theorem. 

a. Give an incremental model for the circuit, and replace the current source i with 
an equivalent pair of sources as specified in part b of Prob. 13-7. 

b. Give a simplified circuit for the differential-mode components of current and 
voltage. 

c. If the sum of Ra and the ammeter resistance is 500 ohms, what is the ratio of 
im to i? Use the circuit and transistor parameters given in Prob. 13-7. 

13-16. The prototype vacuum-tube voltmeter of Prob. 13-6 is a symmetrical circuit 
that can be simplified by the bisection theorem. The input voltage can be repre
sented as the superposition of a common-mode pair and a differential-mode pair 
applied to the two grids (refer to the discussion related to Fig. 13-14). 

a. Give simplified incremental models of the circuit for the differential-mode and 
common-mode components of current and voltage. Designate the meter resistance 
by Rm, 

b. Determine the ratio of Mm to Lle1 in terms of the tube and circuit parameters. 
13-16. The difference amplifier shown in Fig. 13-22 is to be used in an analog 

computer to perform the operation of subtraction. The two triodes are identical, 
there are no grid currents, and the parasitic capacitances are negligible. 

a. Give incremental models for the differential-mode and the common-mode com
ponents of current and voltage. 

b. Show that the output voltage is given by an expression of the form eo = 
A(e1 - e~). Determine the value of A in terms of the tube and circuit parameters. 

200v, d-c 

-l00v, d-c 

Fm. 13-22. Difference amplifier for 
Prob. 13-16. 

-l00v 
Frn. 13-23. Gain control for the difference 
amplifier of Fig. 13-22. 

13-17. The cathode circuit in the difference amplifier of Fig. 13-22 is rearranged as 
shown in Fig. 13-23. With the aid of the bisection theorem, show that R4 can be used 
as a gain control without disturbing the quiescent operating conditions. Give the 
maximum and minimum values of amplification, A = eo/(e1 - e~), that can be 
obtained by adjustment of R 4• Give the result in terms of the tube and circuit 
parameters. 



CHAPTER 14 

FREQUENCY DEPENDENCE OF 

SINGLE-STAGE AMPLIFIERS 

Electronic circuits are considered in the preceding chapters only under 
conditions in which their behavior is independent of frequency in so far 
as the signal is concerned. However, frequency dependence enters at 
high frequencies where the parasitic capacitances associated with the 
tube or transistor and the circuit wiring become important, and it 
enters at low frequencies where bypass and coupling capacitors do not 
act as short circuits. An understanding of the basic principles of this 
dependence is an essential prerequisite for the effective design and utiliza
tion of most electronic circuits. This fact is especially important in 
connection with radar, television, and related fields where high-frequency 
operation and uniform performance over wide-frequency bands are 
required. 

The primary objectives of this chapter are to present certain basic 
concepts and techniques that are quite generally applicable in frequency 
analyses and to develop the concept of the logarithmic amplitude and 
phase characteristics as a simple and effective means of presenting the 
results of frequency analysis. A secondary objective is to develop cer
tain factual information about the properties of important vacuum-tube 
and transistor circuits; for this reason the basic notions are presented 
in terms of specific circuits. 

The term frequency analysis as used here means a study of the response 
of a circuit to sinusoidal signals of various frequencies; hence sinusoidal 
operating conditions are to be understood in the sections that follow. 
The response of a circuit to periodic but nonsinusoidal signals can be 
deduced from the frequency characteristics of the circuit by considering 
separately each sinusoidal component in the Fourier series for the signal. 
Similarly, the response of a circuit to a nonperiodic signal can be deduced 
from the Fourier transform of the signal. 

14-1. The Pentode Voltage Amplifier at High Frequencies. The cir
cuit of a typical pentode voltage amplifier is shown in Fig. 14-la. In 
the usual case the bypass capacitors Co and C2 can be considered short 
circuits at frequencies greater than a few hundred cycles per second; 

293 
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hence at frequencies above this limit the amplifier can be represented by 
the incremental model shown in Fig. 14-lb. This model is valid at 
frequencies up to several tens of megacycles per second. The capacitance 
C 1 accounts for the total capacitance between grid and ground, including 
the wiring capacitance as well as the tube capacitances, and C4 accounts 

(a) 

t 

4 

for the total capacitance between 
plate and ground. The grid-to
plate capacitance of the pentode is 
assumed to be negligibly small. 
The behavior of the amplifier at 
medium and high frequencies can 
be calculated from this model; the 
low-frequency behavior is treated 
in Sec. 14-5. This technique of 
treating the low and high frequen
cies separately reduces the amount 
of labor required in the analysis 
and, by simplifying the problem, 
permits a clearer understanding of 
the circuit behavior. 

gm E1 The open-circuit input admit-
tance Y no of the pentode amplifier 

- is the admittance of G1 in parallel 
Frn. 14-1. The pentode amplifier at high with C1; the short-circuit output 
frequencies. (a) Circuit; (b) high-fre- impedance Z 08 is the impedance of 
quency model. gp, G4, and C4 in parallel; and the 
short-circuit reverse current transmittance Bes is zero. Since 

Bes = 0, 

for all values of load impedance, and Zo = Zos for all values of source 
impedance. The forward voltage transmittance of the circuit is ordi
narily of much greater interest than the other three coefficients; by inspec
tion of the model it is 

_ E2 _ -gm 
Avo(w) - E1 - gp + G4 + jwC4 (14-1) 

-gm 1 

gp + G4 1 + jw C4 
gp +G4 

(14-2) 

where E 1 and E 2 are the complex amplitudes of the sinusoidal input and 
output voltages. At medium frequencies w becomes relatively small, and 
the second factor in (14-2) is approximately unity; hence the first factor 
in (14-2) is the voltage transmittance at medium frequencies. Fu:rther-
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more, the quantity (gP + G4)/C4 has the dimensions of frequency, and 
it has an important interpretation in terms of frequency. Hence it is 
desirable to define two new symbols: 

and (14-3) 

Substituting these expressions in (14-2) leads to a compact and convenient 
expression for the voltage transmittance: 

1 
Avo( W) = - Am l + . / JW W4 

(14-4) 

The magnitude of A 110 is the ratio of the magnitudes of E1 and E2; it is 
therefore the voltage amplification of the circuit. The angle 0 is the 
phase angle between E 1 and E 2, except for the sign reversal associated 
with the minus sign; thus 0 is the phase 

Im 
shift of the amplifier apart from the sign 
reversal. Both IAvol and 0 are functions j ;

4 
of w. The minus sign is carried explic-
itly in (14-4) in order to avoid adding 
a constant phase shift of 180° to the 
angle 0. 

The dependence of the amplification 
and the phase shift on frequency arises 
entirely from the factor 1 + jw/ w4 in 
the denominator of the expression for 
Avo• This factor is a complex number 
as well as a function of frequency; the 

Re 
FIG. 14-2. Diagram for the com
plex number 1 + jw / w4. R = 
-Vl + (w/w4) 2 and -0 = tan-1 
(w/w4). 

way in which its magnitude and angle vary with frequency is illus
trated by the simple geometric diagram of Fig. 14-2. Thus when w = w4, 

0 = - 45°, R = v'2, and IA vol = Am/ y2; it follows from these relations 
that w4 is the half-power frequency for the amplifier. 

The manner in which Avo varies with frequency can be displayed by 
calculating Avo for a number of frequencies and plotting the frequency 
characteristics, IAvol and phase shift versus frequency. A more useful 
and far simpler procedure, however, is to plot the voltage amplification 
in decibels, 

Adh(w) = 20 log IAvo(w) l (14-5) 

and the phase shift as a function of log w. These logarithmic character
istics possess certain especially simple asymptotic properties that make 
it possible to construct the complete frequency characteristics without 
plotting any points in the usual sense. These properties can be developed 
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by substituting (14-4) in (14-5) to obtain 

Adb(w) = 20 log Am 
yl + (w/w4) 2 

(14-6) 

Defining Adbm = 20 log Am gives 

Adb(w) = Adbm - 20 log yl + (w/w4) 2 

= Adbm - 20 log yl + (f /f4) 2 
(14-7) 

(14-8) 

where w = 21rf. 
The asymptotic behavior of Adh can be examined by considering very 

small and very large values of w. Thus for w « w4, 

(14-9) 

and the low-frequency asymptote of the amplitude characteristic is a 
constant, Adbm, as shown in Fig. 14-3. At high frequencies w >> w4, and 

(14-10) 

Thus the high-frequency asymptote is a linear function of log (w/ w 4); it 
is a straight line when plotted as a function of that variable or when 
plotted as a function of w using a logarithmic scale. This asymptote is 

Low-frequency 
asymptote 

shown in Fig. 14-3. 
The equations of the two asymp

totes are (14-9) and (14-10); the 
intersection of the asymptotes oc

High-frequency curs at the value of w that gives 
asymptote 

w or f 
(log scale) 

the same value of Adb in these two 
expressions. Equating ( 14-9) and 
(14-10) gives 

Frn. 14-3. Asymptotic behavior of Adb(w). 
w 

Adbm = Adbm - 20 log -
W4 

The value of w that satisfies this relation is w = w4 ; hence the intersection, 
or break point, of the asymptotes occurs at the half-power frequency for 
the circuit. When w = w4, the value of the high-frequency asymptote 
[Eq. (14-10)] is Adb = Adbm; when w = l0w4, the value of the high-fre
quency asymptote is Adh = Adbm - 20; hence the slope of the high
frequency asymptote is -20 db/decade of frequency, where a decade 
of frequency is any interval on the frequency scale covering a 10: 1 
frequency ratio. Frequencies that stand in the ratio 2: 1 are separated 
by one octave; it follows directly from (14-10) that the slope of the high
frequency asymptote is -6.02 = -6 db/octave. 

The transition of the amplitude characteristic from one asymptote to 
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the other is very simple in form. From Eq. (14-7), when w = w4, 

Adb(w) = Adbm - 20 log y2 ~ Adbm - 3 (14-11) 

Thus at the break frequency the amplitude characteristic is 3 db below 
the low-frequency asymptote. When w = 2w4, 

Adb(w) = Adbm - 20 log yl + 4 ~ Adbm - 10 log 5 
~ Adbm - 7 (14-12) 

Therefore one octave above the break frequency the amplitude character
istic lies 7 db below the low-frequency asymptote. Since the high-fre
quency asymptote has a slope of -6 db/octave, the characteristic lies 
1 db below it at w = 2w4. And finally, when w = w4/2, 

Adb(w) = Adbm - 20 log yl + 7'.4 = Adbm - 10 log (¾) 
~ Adbm - 7 + 6 = Adbm - 1 (14-13) 

Thus one octave below the break frequency the amplitude characteristic 
lies 1 db below the low-frequency asymptote. 

.0 

-45° 

..;;goo 

Slope - 6 db /octave 

I 

w or f 
(log scale) 

I 
Slope 45° /d~cade 

I 
I 

(a) 

(b) 

Frn. 14-4. Logarithmic amplitude and phase characteristics for the pentode amplifier 
at high frequencies. (a) Amplitude characteristic; (b) phase characteristic. 

The amplitude characteristic and its relation to its asymptotes are 
shown in Fig. 14-4a. With the aid of these simple relations the amplitude 
characteristic can be constructed with negligible effort. For any particu
lar amplifier it is necessary to calculate only the values of Adbm and w 4 ; 

the asymptotes for the amplitude characteristic can be constructed with 
these two numbers, and the characteristic can be constructed by applying 
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the corrections shown in Fig. 14-4a. The corrections are the same for all 
amplitude characteristics of this form. It is also true that for many 
needs it is sufficient to construct only the asymptotes of the characteristic. 

The phase-shift characteristic, shown in Fig. 14-4b, has equally simple 
properties. As indicated by the diagram in Fig. 14-2, the phase shift is 

w 
0(w) = - tan-1 -

W4 
(14-14) 

The low- and high-frequency asymptotes of the phase shift are O and 
-90°, respectively, and the phase shift at the break frequency, w4, is 
-45°. The phase character:i.stic is symmetrical about the point at 

W = W4. 

Figure 14-4b shows that the transition of the phase characteristic 
from the low- to the high-frequency asymptote can be approximated 
closely by a straight line beginning one decade below the break frequency 

Co 

{a) 

at the low-frequency asymptote and 
ending one decade above the break 
frequency at the high-frequency as
ymptote. The exact phase shifts 
for w = w4/2 and w = w4/l0 are 
shown in Fig. 14-4b; the phase shifts 
at w = 2w4 and w = l0w4 are, re
spectively, the complements of 
these angles. It is clear from Fig. 
14-4 that the transition of the phase 
characteristic from one asymptote 
to the other occupies a much wider 
band of frequencies than the tran
sition of the amplitude character
istic. In certain applications this 
fact is important and requires that 
careful attention be paid to the. 
phase characteristic. 

14-2. The Triode Voltage Ampli
fier at Low Frequencies. A triode 
voltage amplifier with a bypassed 

Fm. 14-5. The triode amplifier at low fre- cathode resistor is shown in Fig. 
quencies. (a) Circuit; (b) low-frequency 14_5a. The incremental model 
model. 

..__,,_, 
(l+µ)Z 

(bl 

shown in Fig. 14-5b represents the 
amplifier for increments of current and voltage in the band of frequen
cies where the parasitic capacitances are negligible; that is, from zero to 
a few tens of kilocycles per second. This model is obtained by using 
the reduction theorem in the manner illustrated in Fig. 13-10. 
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The reverse current transmittance of the model in Fig. 14-5b, Bes, is 
zero; the input admittance Yna is l/R1; and the output impedance Zas is 
the impedance seen at the output terminals with µE 1 = 0. The forward 
voltage transmittance, which is usually of much greater interest, is 

(1 + µ)Ro 
rp + R2 + 1 + jwRoCo 

(14-15) 

This expression can be put in a form similar to Eq. (14-4) by an algebraic 
, rearrangement. Such a rearrangement permits the amplitude and phase 

characteristics to be constructed by the simplie methods developed in 
Sec. 14-1; hence it is well worth the small effort required. 

Factoring rp + R2 out of the denominator of (14-15) and multiplying 
numerator and denominator by 1 + jwRoC o yields 

-µR2 1 + jwRoCo 
Ava= rp + R2 1 + (1 +µ)Ro+ . RC 

rp + R2 Jw o o 

(14-16) 

In the medium-frequency range, w becomes relatively large, and the 
second factor in (14-16) tends to unity; hence the first factor is the 
voltage transmittance at medium frequencies. Furthermore, the quan
tity 1/ RoC o has the dimensions of frequencies. Therefore, in the interest 
of compactness, it is desirable to define the following new symbols: 

1 
Wo = -~, 

RoCo 
and ko = (l + µ)Ro (14-17) 

rp + R2 

Substituting these relations in (14-16) and factoring 1 + ko out of the 
denominator yields 

Ava= -Am 1_ + jw/wo 
· 1 + ko 1 + Jw/(1 + ko)wo 

(14-18) 

where !Aval is the voltage amplification, and () is the phase shift of the 
amplifier (excluding the sign reversal). The form of Eq. (14-18) is 
similar to that of Eq. (14-4). 

Both the amplification and the phase shift of the amplifier depend on 
frequency; this dependence is associated with the factors 1 + jw/ wo and 
1 + jw/(1 + k 0)wo, respectively, in the numerator and the denominator 
of Eq. (14-18). These factors, which are complex numbers, are dia
gramed in Fig. 14-6. The amplification varies in proportion to the ratio 
Rn/ Rd; for small values of w this ratio approaches unity, and for large 
w it approaches 1 + k0• The phase shift of the amplifier is() = 0n - 0d; 
it approaches zero for both very small and very large w. As in the case 
of the pentode amplifier of Sec. 14-1, however, the frequency character-
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istics of the circuit can be presented more clearly by means of the loga
rithmic amplitude and phase characteristics. 

The voltage amplification in decibels is 

Adb = 20 log IAvol = 20 log l !mko + 20 log yl + (w/wo) 2 

- 20 log yl + [w/(1 + ko)w 0]2 (14-19) 

The first term in (14-19) is a constant, and the third term has the same 
form as the second term in Eq. (14-7); hence the asymptotes of the third 
term plotted as a function of log w (or log f) have the form shown by 
curve A in Fig. 14-7a. The low-frequency asymptote is constant at 
zero db, and the high-frequency asymptote crosses the low-frequency 
asymptote at w = (1 + k 0)wo with a slope of -6 db/octave. The second 

Im Im 

•W lwo 

Re Re 
(a) (b) 

Frn. 14-6. Diagrams of the complex numbers in Eq. (14-18). (a) Numerator, 
Rn = yl + (w/w0) 2 and On = tan-1 (w/wo); (b) denominator, 

Rd = yl + [w/(1 + ko)wo] 2 

and 0d = tan-1 [w/(1 + ko)wo]. 

term in (14-19) has the same form as the third except for the minus sign; 
hence its asymptotes have the same form as those of the third term 
except that the slope of the high-frequency asymptote is +6 db/octave. 
The asymptotes for this term are shown by curve B in Fig. 14-7a. In 
the interest of clarity, only the asymptotes are shown in Fig. 14-7a; 
the amplitude characteristic for each term can be constructed by apply
ing the corrections shown in Fig. 14-4a. 

The complete amplitude characteristic is given by the sum of the 
characteristics of the three terms in Eq. (14--19). The asymptotic 
approximation to the complete characteristic is shown in Fig. 14-7b. 
The amplitude characteristic follows the general shape of the asymptotic 
approximation except for a rounding of the corners at the break fre
quencies; it crosses the approximate curve at a point midway between 
the break frequencies. The exact amplitude characteristic can be 
constructed either by constructing the exact characteristics in Fig. 14-7a 
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and adding them, or by adding the appropriate corrections to the approxi
mate curve in Fig. 14-7b. 

The phase shift of the amplifier, apart from a sign reversal, is given by 

0 = 0n - 0a 

= tan-
1 ~~ - tan-

1 
(1 + \o)wo (14-20) 

Each of these terms has the same form as Eq. (14-14) except for a 
difference of sign in the first term; 
hence each term has a characteristic 
like that in Fig. 14-4b except for the 
difference in sign. The construc
tion of a straight-line approxima
tion to the phase characteristic is 
illustrated in Fig. 14-8, where curves 
A and B correspond, respectively, 
to the second and first terms in 
(14-20). The exact phase charac
teristic is obtained by adding the 

(a)' 

6 db/octave 

appropriate corrections to this ap- Adbm ___ T _______ --
proximate curve. 20 log (1 +kol 

The foregoing analysis provides a 
basis for choosing the size of bypass 
capacitor to be used in the ampli
fier of Fig. l 4-5a. In the usual case 
it is desired that the amplifier pro
vide a large uniform amplification in 
the band of frequencies occupied 
by the signal; hence it should be 

(bl 

(1 +k0 )w0 w or f 
(log scale) 

Frn. 14-7. Logarithmic amplitude char
acteristic for the triode with cathode 
degeneration. (a) Individual terms; (b) 
complete characteristic. 

designed so that the ramp in the amplitude characteristic of Fig. 
occurs at frequencies below the band occupied by the signal. 

14-7b 
This 

8 

go• 

45° 

-45° 

-90° 

10 

B 

Net phase shift 

10w0 10(1 +k0)w0 w or f 
I (log scale) 

I 
I 
I 

Fro. 14-8. Phase characteristic for the triode with cathode degeneration. 
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result is accomplished by choosing the circuit parameters so that the 
break at w = (l + ko)wo lies below the signal band. 

If the tube, the supply voltage, and the quiescent point are specified, 
then R2 and Ro in the circuit of Fig. 14-5a must be chosen to give the 
required quiescent point. This choice fixes ko according to Eq. (14-17). 
The bypass capacitor must then be chosen to give a suitable value of wo 
according to ( 14-17). Changes in Co affect only the value of wo; hence 
they shift the ramp in the amplitude characteristic parallel to the fre
quency axis without changing its shape. 

Example 14-1. One section of a 12AU7 twin triode is used in the amplifier circuit 
shown in Fig. 14-5. The circuit parameters are R1 = 220 kilohms, R2 = 47 kilohms, 
Ro = 1.5 kilohms, and Co = 2.4 µ,f. Construct the logarithmic amplitude charac
teristic for the amplifier in the low- and medium-frequency range. 

Solution. A graphical analysis on the plate characteristics shows that the quiescent 
operating point is at approximately Eco = -5 volts and ho = 3.3 ma. The incre
mental tube parameters at this point are µ, = 17, rp = 11 kilohms. 

With these tube and circuit parameters, the amplification at medium frequencies is 

which in decibels is 

Adbm = 20 log 13.8 = (20)(1.14) = 22.8 

The break frequency for the numerator of Avo(w) is 

1 106 

wo = RoCo = (1.5) (103) (2.4) = 278 rps 

wo Jo = 2,r = 44.3 cps 

The factor ko is 

ko = (1 + µ,)Ro = (18) (1.5) = 0.465 
rp + R2 58 

and the break frequency for the denominator of A,,o(w) is 

Adbl 
22.8 ~ 

19.5 +---=-_, 

T20 40 60 so 100 160 
1 

f 
cps 

Frn. 14-9. Logarithmic amplitude char
acteristic for the amplifier of Example 
14-1. 

(1 + ko)wo = (1.465)(278) = 407 rps 
(1 + ko)fo = (1.465)(44.3) = 65 cps 

The amount by which the amplification at 
low frequencies is less than its value at 
medium frequencies is 

20 log (1 + ko) = (20) (0.166) = 3.32 db 

The logarithmic amplitude characteristic 
and its asymptotes are shown in Fig. 14-9. 
Note the expanded amplification scale. 

14-3. The Triode Voltage Amplifier at High Frequencies. An incre
mental model for the triode amplifier of Fig. 14-5 that applies in the 
range of high frequencies where the cathode bypass capacitor is a short 
circuit is shown in Fig. 14-10. The capacitor C1 accounts for the total 
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capacitance between grid and ground, including the interelectrode capaci
tance of the tube and the stray capacitance associated with the circuit 
wiring; C2 accounts for the capacitance between plate and ground, and 
C 12 accounts for the capacitance be
tween the grid and plate circuits. 
Since these capacitances are usually 
a few micromicrofarads, the stray 
wiring capacitance may have an im
portant effect unless the physical 
components of the circuit are ar-
ranged with care. Frn. 14-10. The triode amplifier at high 

frequencies. 
The forward voltage transmit-

tance of the circuit in Fig. 14-10 can be obtained from a single node equa
tion for node E 2- With I 2 = 0, 

(gp + G2 + jwC2)E2 + jwC12(E2 - E1) = -gmE1 

and E2 I = A = -gm + jwC12 
E1 I 2 =0 vo gP + G2 + jw(C12 + C2) 

This equation can be rearranged to obtain 

(14-21) 

(14-22) 

(14-23) 

Equation (14-23) can be put in a compact form similar to (14-18) by 
defining new symbols as follows: 

gp + G2 
w2 = -C-12_+_C_2 (14-24) 

The quantity Am is again the voltage transmittance at medium frequen
cies. Substituting these relations in (14-23) yields 

A - A 1 - jw/w12 - IA I ·9 
vo - - m 1 + jw / W2 - - vo e1 (14-25) 

Equation (14-25) has the same form as Eq. (14-18) except for the sign 
in the numerator; diagrams for the numerator and denominator factors 
are shown in Fig. 14-11. The amplification varies with frequency in 
proportion to the ratio Rn/ Rd; at very low frequencies this ratio approaches 
unity, and at very high frequencies it approaches w2/ w12. The phase 
shift is 0 = On - 0d. 

The logarithmic amplitude and phase characteristics associated with 
Eq. (14-25) are constructed in the same manner as the characteristics 
of Figs. 14-7 and 14-8. In the usual case the break in the amplitude 
characteristic at w12 lies one or two decades above the break at w2; hence 
the amplitude characteristic for a typical triode amplifier at high fre-
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Im Im 
.w 
Jwi 

1 
Re 1 Re 

.w 
-J w12 

(a) (bl -

FIG. 14-11. Diagrams for the complex numbers in Eq. (14-25). (a) Numerator; (b) 
denominator. 

quencies has the asymptotic form shown in Fig. 14-12a. The break 
frequency w12, which usually corresponds to a frequency of the order of 
100 megacycles/sec, lies well above the usual frequency range for the 
amplifier; indeed, at such frequencies the model of Fig. 14-10 is likely to 
be a poor representation for the circuit because of additional parasitic 

(} 
(a) 

w 

-90° 

-180° 

(b) 

FIG. 14-12. Logarithmic amplitude and 
phase characteristics for the triode am
plifier at high frequency. (a) Ampli
tude; (b) phase. 

effects not accounted for. For these 
reasons the break at w12 is often ig
nored, and the numerator factor in 
(14-25) is taken as unity. Such an 
approximation is valid for all values 
of w that are much smaller than w12-

The minus sign in the numerator 
of (14-25) affects only the phase char
acteristic. The phase shift is 

0 = On - 0d = tan-1 - w - tan-1 ~ 
W12 W2 

(14-26) 

The straight-line approximation to 
this phase characteristic is shown 
in Fig. 14-12b for a typical triode 
amplifier. 

The input admittance of the triode 
amplifier at high frequencies is im
portant, for it places a serious limi
tation on the performance of the 

circuit. In addition, the way in which the amplifying action of the 
tube increases the input admittance at high frequencies is of interest. 
The input admittance is evaluated by summing the currents at node E1 
with I 2 = 0; the result is 

(14-27) 
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But 
Hence 

E2 = AvoE1 
f 1 = (G1 + jwC1)E1 + jwC12(l - Avo)E1 (14-28) 

Thus if the voltage amplification is much larger than unity, the volt
age across C12 and the current through it are relatively large. The input 
admittance is obtained by dividing (14-28) by E 1 ; the result is 

(14-29) 

In general, Avo is a function of frequency given by Eq. (14-25); in 
the useful frequency range of the amplifier, however, w/ w12 « 1, and 
(14-25) reduces to 

1 
Avo = - Am l + . / JW W2 

Substituting this expression in (14-29) yields 

Y G + , C + . C + jwC12Am 
no = 1 JW 1 Jw 12 l + • / JW W2 

(14-30) 

(14-31) 

The last term in (14-31) is an admittance corresponding to an impedance 

Thus Z is the impedance of the 
R = l/w2C12Am and a capacitance 
C = AmC12. Substituting the values 
of w2 and Am given by (14-24) into 
the expression for R and simplifying 
yields 

R = 1 + CdC12 (14-34) 
Om 

It follows from these facts and from 
(14-31) that the input admittance to 
the amplifier is the admittance of the 

series connection 

E1 Ii 

Yno~ G1 

-

of a 

C1 

(14-32) 

(14-33) 

resistance 

C12 

C 

Frn. 14-13. Equivalent input circuit for 
the triode at high frequencies. R = 
l/w2C12Am = (1 + C2/C12)/gm and C = 
AmC12, 

circuit shown in Fig. 14-13; this is an equivalent circuit for the ampli
fier of Fig. 14-10 in so far as the input terminals are concerned. 

For typical triode amplifiers, the value of R in the circuit of Fig. 14-13 
is of the order of 1000 ohms; it is much smaller than the reactance of C 
in the useful frequency range of the amplifier. It is common prac
tice, therefore, to neglect this resistance, leaving only the capacitance 
C = AmC12 in the right-hand branch of Fig. 14-13. It follows from this 
simplified representation that, in so far as the input terminals are con-
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cerned, the grid-to-plate capacitance C12 acts as if it were multiplied by 
the factor 1 + Am and connected beween grid and ground. This result 
should be compared with the similar result obtained for the ideal voltage 
amplifier shown in Fig. 4-6. The action by which the amplifying property 
of the tube increases the apparent value of the grid-to-plate capacitance 
is known as the MiIIer effect. As a result of the MiIIer effect, the triode 
may present an excessive load to the source of signals at high frequencies. 

Example 14-2. One unit of a 6SL7 twin triode is used in the amplifier of Fig. 14-10. 
The circuit parameters are R1 = l/G1 = 330 kilohms, R2 = 100 kilohms, Ym = 1.6 
millimhos, gp = 0.023 millimho, C1 = C2 = 10 µµf, and C12 = 5 µµf. These parasitic 
capacitances include both wiring and interelectrode capacitances. The signal source 
can be represented by a voltage source Ea in series with a resistance Ra of 100 kilohms. 

With the amplitude of Ea held constant, the input voltage to the amplifier E 1 

decreases at high frequencies as a result of loading by the input capacitance of the 
amplifier, and the output voltage from the amplifier decreases accordingly. The 
problem is to examine this effect by constructing the logarithmic amplitude charac

Frn. 14-14. Equivalent input circuit for 
the amplifier of Example 14-2. Gs = 
1/Rs = 0.01 millimho and ls = 0.0lE. 
milliamperes when Es is in volts. 

teristic of the voltage ratio Ei/Ea, 
Solution. The analysis is simplified 

slightly by converting the specified signal 
source to an equivalent current source in 
parallel with the source resistance Ra. 
Thus, neglecting the small resistance R in 
Fig. 14-13, the input circuit can be repre
sented by the equivalent circuit shown in 
Fig. 14-14. 

The constant Am is, from Eqs. (14-24), 

A Ym 1.6 48 5 
m = gp + G2 = 0.023 + 0.01 = . 

Hence the total shunt capacitance in Fig. 14-14 is 

Co = C1 + 49.5C12 = 10 + (49.5)(5) = 257.5 µµf 

The total shunt conductance is 

G0 = G. + G1 = 0.01 + 0.00303 = 0.013 millimho 

The input voltage to the amplifier is 

Ei = ls 0.0lE. 
Go + jwCo Go + jwCo 

and the desired voltage ratio is 

E1 = 0.01 1 = 0 77 1 
Es Go 1 + jwCo/Go · 1 + jw/wo 

where Wo = Go/Co = 50,500 rps. 
The expression for the ratio Ei/E. has the same form as the expression for the 

forward voltage transmittance of the pentode amplifier at high frequencies; hence its 
logarithmic amplitude characteristic has the form shown in Fig. 14-4a. The ampli
tude at medium and low frequencies is 

Adbm = 20 log 0.77 = -20 log (1/0.77) = -(20)(0.114) 
;;:= -2.28 db 
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The break frequency is wo = 50,500 rps, corresponding to Jo = wo/21r = 8050 cps. 
Thus, with a constant signal E., the input voltage to the amplifier E 1, and hence the 
output voltage E2, decreases appreciably at frequencies greater then about 8 kcps. 
This deterioration of performance results from the action of the shunt capacitance C0 • 

It is significant to note that Co is made up almost entirely of the Miller capacitance, 
(1 + Am)C12. 

The equivalent circuit given in Fig. 14-13 is valid only when the forward 
voltage transmittance has the particular form of Eq. (14-30); thus it is 
not valid when the plate circuit of the amplifier contains additional 
reactive elements, for these elements alter the form of the expression 
for Ava• An example of interest that reveals another property of the 
triode amplifier is obtained by replacing the plate load resistance in the 
circuit of Fig. 14-10 by an inductance L. In this case the forward volt
age transmittance is given by 

A = -gm+jwC12 
110 

gp + jw(C12 + C2) + 1/jwL 
(14-35) 

Neglecting wC12 in comparison with gm as in Eq. (14-30) yields 

-gm . 
Avo = gp + jw(C12 + C2) + 1/jwL (14-36) 

Substituting this expression in (14-29) yields for the input admittance 

Y G + . C + . C + jwC12gm 
no = 1 Jw 1 Jw 12 gp + jw(C12 + C2) + 1/jwL (14-37) 

The last term in (14-37) is an admittance corresponding to an impedance 

z = 1 + C2/C12 _ 1 . + gp 
Ym w 2gmC1~ jwC12Ym 

(14-38) 

If the resonant frequency of Land C12 connected in parallel is designated 
Wr, then C1~ = 1/wr2 ; using this fact, and noting that µ = Ym/gp, the 
expression for Z can be written as 

Z = 1 + C2/C12 _ (wr/w) 2 + -. _1_ 
Ym Ym JwµC12 

(14-39) 

= R - R'(w) + J_ 
JwC 

(14-40) 

Thus Z is the impedance of the series connection of a resistance R, a 
resistive impedance -R' that is negative and a function of frequency, 
and a capacitance C. It follows from these facts and from (14-37) that 
the input admittance to the amplifier with an inductive plate load is 
the admittance of the circuit shown in Fig. 14-15. 

The negative resistance that appears in Fig. 14-15 is of special sig-
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nificance. A positive resistance absorbs electrical energy and converts 
it into heat; a negative resistance acts as a source of electrical energy. 
The occurrence of a negative resistance in the circuit of Fig. 14-15 is a 
result of the action of the controlled source associated with the tube. If 
the negative resistance is sufficiently large, but not too large, it will 
cause growing transients to occur in the amplifier. When the triode is 
used with tuned circuits at radio frequencies, these growing transients 
take the form of self-sustaining oscillations. The mechanism by which 

these oscillations are generated is ex
amined in greater detail in Chaps. 16 
and 17. Similar conditions are en
countered with transistors when they 
are used with tuned circuits at high 

-R'(wl frequencies. 

C 

Frn. 14-15. Equivalent input circuit 
for a triode with an inductive plate 
load. R = (1 + C2/Cu)/gm, -R' (w) 
= -(wr/w) 2/gm, C = µC12, and Wr2 = 
l/LC12. 

If C12 is zero, the branch containing 
the negative resistance in Fig. 14-15 
becomes an open circuit, and the pos
sibility of growing transients and self
sustaining oscillations disappears. It 
is for this reason that the pentode was 
developed; the pentode is generally 
preferred over the triode for high-fre

quency applications. It should be noted, however, that careless wiring 
can introduce enough stray capacitance between the grid and plate cir
cuits to cause oscillations even in pentode amplifiers. 

14-4. The Cathode Follower at High Frequencies. Figure 14-16a 
shows a triode in a practical cathode-follower circuit (Example 13-1). 
Of particular interest in this section is the fact that the action of the tube 
in the cathode follower is such as to reduce the input admittance of the 
circuit. Hence the cathode follower can be designed to have a small 
input admittance over a relatively wide band of frequencies. The circuit 
of Fig. 14-16b is an incremental model for the cathode follower that 
accounts for the effects of parasitic capacitances at high frequencies; 
it is a valid representation at frequencies up to several tens of megacycles 
per second. The capacitor 0 1 accounts for the total capacitance between 
grid and ground, including the grid-to-plate capacitance of the tube; 
C 2 accounts for the total capacitance between cathode and ground, 
including the cathode-to-heater capacitance; and C12 is the total capaci
tance between grid and cathode. 

In the usual cathode follower the current in R 1 is very small and can 
be neglected in comparison with the current in R2 and Ra. The forward 
voltage transmittance can therefore be evaluated from a single node equa
tion by treating R2 and Ra as a single resistance, R~ = R2 + Ra = 1/G~. 
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With I 2 = 0, this node equation is 

(gm + gp + G~ + jwC2)E2 + jwC12(E2 - E1) = gmE1 (14-41) 

Collecting terms and solving for Ed E1 yields 

A = gm + jwC12 = A 1 + jw/w12 (l4 4 ) 
vo gm+ gp + G~ + jw(C12 + C2) m 1 + jw/w2 -

2 

W12 = gm; 
C12 

It is clear from Eqs. (14-43) that the midband voltage transmittance Am 
must always be smaller than unity. However, in a well-designed cathode 
follower gm is much greater than gp + {};, and Am approaches unity. 

- (a) 
C12 

R1 R3 
k 12 E2 

t gp gm C2 

(b) 

FIG. 14-16. The cathode follower at high frequencies. (a) Circuit; (b) model for 
medium and high frequencies. 

Also, in a well-designed cathode follower w12 is greater than w2; hence the 
voltage transmittance decreases at high frequencies toward the limiting 
value of Amw2/ W12, 

Equation (14-42) has the same form as (14-25) except for a minus sign 
in the numerator; therefore the amplitude characteristic for the cathode 
follower has the same form as the characteristic shown in Fig. 14-12a for 
the triode amplifier. The cathode-follower characteristic lies entirely 
below the zero-db axis, however, for the voltage amplification is less 
than unity at all frequencies. In the case of the cathode follower, the 
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break frequencies are usually several tens of megacycles per second. The 
phase characteristics for the cathode follower is different from that shown 
in Fig. 14-12b for the triode amplifier because of the difference in sign 
between Eqs. (14-42) and (14-25); however, the phase characteristic can 
be constructed easily by adding the separate characteristics for the 
numerator and the denominator of (14-42). 

The tube in the cathode follower acts in the following way to reduce 
the input admittance. A positive increment of voltage applied at E1 
in Fig. 14-16 causes slightly smaller positive increments of voltage at E2 
and Ea. The corresponding increments of voltage across R1 and C12 are 
very small, and as a result the input current I 1 is relatively small. The 
input admittance can be evaluated in terms of the circuit parameters 
by summing the currents at node E1. With I 2 = 0, 

But 
11 = jwC1E1 + jwC12(E1 - E2) + G1(E1 - Ea) 
E2 = AvoE1 

and, neglecting the current in R1 in comparison with that in R2, 

E R2 E R2Ava E A' E 
a = R 2 + Ra 2 = R 2 + Ra l = VO l 

(14-44) 
(14-45) 

(14-46) 

Substituting these two expressions in (14-44) and dividing by E1 yields 

Yna = jwC1 + jwC12(l - Ava) + G1(l - A:a) (14-47) 

In the middle band of frequencies both Ava and A~0 are positive real 
numbers that are slightly smaller than unity; hence the second and third 
terms in (14-47) are quite small. If Eq. (14-42) is substituted for Ava in 
(14-47), it is seen that the second term in (14-47) contributes a negative 
component of conductance to the input admittance; if this component is 
large enough, it may be a source of self-sustaining oscillations. 

The output impedance of the cathode follower can be evaluated in 
terms of the circuit parameters by inspection of the model in Fig. 14-16b. 
The current in R1 can be neglected; hence, with E1 = 0, 

1 
ZoB = Ym + gp + G~ + jw(C12 + C2) 

(14-48) 

where G~ = 1/ (R2 + Ra). In the middle band of frequencies the capaci
tive term is negligible, and ordinarily Ym is much larger than g P -t- a;; 
hence in the mid-band, Za8 ~ l/ Ym• Typical values of Zas lie in the 
range between 100 and 1000 ohms. 

14-6. The Pentode Voltage Amplifier at Low Frequencies. The 
behavior of the pentode amplifier shown in Fig. 14-1 is affected in the 
low-frequency range by both the cathode-bypass and the screen-grid
bypass capacitors; the effect of each of these capacitors is much like the 
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effect of the cathode-bypass capacitor in the triode amplifier (Fig, 14-7). 
The amplifier can be analyzed in the low-frequency range with the aid of 
an incremental model for the tube that accounts for the action of the 
screen grid. The complete model shown in Fig. 10-17 can be used for 
this purpose; however, it leads to results that are algebraically cumber
some and that therefore provide little insight into the behavior of the 
circuit. Moreover, these complexities result largely from the presence 
of several factors that have a negligible effect on the over-all behavior 
of the circuit. It is therefore appropriate to make certain strategic 
simplifications in the circuit to eliminate the superfluous factors before 
beginning the analysis. When this is done it is possible to make a 
relatively simple analysis that shows clearly the way in which each 
parameter affects the behavior of the circuit and that gives results 
checking quite well with experimental observations. It is, of course, 
not obvious at the outset which simplifications are both profitable and 
permissible; this knowledge is the result of preliminary studies of the 
problem. 

Fm.14-17. Thepentodeamplifieratlowfrequencies. E10 = E1 - Eo,E20 = E2 - Eo, 
and T44 = 00. 

The simplifications referred to above are embodied in the low-frequency 
model for the pentode amplifier shown in Fig. 14-17. This model is 
based on the approximate pentode model of Fig. 10-18, and it includes 
the further assumption that the plate resistance is very large and can 
be treated as an open circuit. The voltages of the control and screen 
grids relative to the cathode are, respectively, E10 = E1 - Eo and 
E 20 = E 2 - E 0• The impedances in the cathode and screen-grid cir
cuits are 

and 

(14-49) 

(14-50) 

The forward voltage transmittance of the pentode amplifier at low 
frequencies can be evaluated from the circuit in Fig. 14-17. With the 
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output terminals open-circuited, the output voltage is 

E4 = -R4J4 
But J4 = g41E10 + g42E20 

= g41E1 + g42E2 - (g41 + g42)Eo 

and the cathode and screen-grid voltages are given by 

Eo = Zo(l + p)J4 and 

(14-51) 

(14-52) 

(14-53) 

Substituting (14-53) in (14-52), solving for J4 and substituting the result 
in ( 14-51) yields 

A - -g41R4 (14-54) 
110 

- 1 + pg42Z2 + (1 + p)(g41 + g42)Zo 

But from Eq. (10-5), which is the basis for the pentode model used in 
Fig. 14-17, the total plate and screen-grid currents are related by 

(14-55) 

Differentiating this equation partially with respect to the screen-grid 
potential e2 yields 

or g22 = pg42 (14-56) 

Equation (14-54) can now be put in a compact and useful form with the 
aid of (14-56) and two additional definitions: 

Am= g41R4 

and Yo - (1 + p)(gu + g,,) - (1 + p)g41 + (1 +;) g,, 
(14-57) 

Since Zo and Z2 are zero in the middle band of frequencies, Am = g41R4 is 
the voltage transmittance in the middle band. Substituting (14-56) and 
(14-57) in (14-54) gives 

Avo = l + g
2
~z~+ goZo (14-58) 

The behavior of Avo as a function of w is examined for the special 
cases of cathode degeneration only and screen-grid degeneration only 
before considering the general case. Therefore, suppose first that Z2 = 0 
at all frequencies of interest; then, substituting (14-49) in (14-58), 

Avo = -Am -Am (l + jw/wo) (14-59) 
l + goRo 1 + goRo + jw/wo 

1 + jw/wo 

Defining ko = goRo leads to 

Avo = -Am 1 + jw/wo 
1 + ko 1 + jw/(1 + ko)wo 

(14-60) 
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This equation has exactly the same form as Eq. (14-18), describing cathode 
degeneration in the triode amplifier; hence the amplitude and phase 
characteristics associated with (14-60) have the same form as those 
shown in Figs. 14-7 and 14-8. 

Now suppose that Zo = 0 at all frequencies of interest and that 
Z2 ~ 0; then substituting (14-50) in (14-58) and defining k2 = g22R2 
yields 

(14-61) 

Thus screen-grid degeneration has the same effect on the voltage trans
mittance as cathode degeneration, and the amplitude and phase character
istics in this case are similar to those resulting from cathode degeneration. 

In the general case when neither Zo nor Z2 is zero, 

-Am Avo = -----------
l + g22R2 + goRo 

1 + Jw/w2 1 + Jw/wo 

(14-62) 

Substituting ko = goRo and k2 = g22R2, clearing fractions in the denom
inator, and collecting terms in like powers of Jw in the denominator yields 

Avo = (14-63) 
-A wow2(l + jw/wo)(l + jw/w 2) 

m (jw) 2 + [(1 + k0)w 0 + (1 + k2)w2](jw) + (1 + ko + k2)wow2 

The two factors in parentheses in the numerator are in a familiar form, 
and their amplitude and phase characteristics can be constructed by the 
simple, rapid methods developed in the preceding sections. The denomi
nator, on the other hand, is a quadratic rather than a linear function of 
frequency, and the simple techniques that are applicable to linear func
tions cannot be used directly. However, any polynomial, such as the 
quadratic denominator in (14-63), can be factored and expressed as the 
product of a set of linear factors like those in the numerator of (14-63). 
Since this operation makes it possible to construct the complete amplitude 
and phase characteristics associated with Avo by the simple methods 
already developed, it is well worth the effort. 

The quadratic expression in (14-63) can be factored with the aid of 
the quadratic formula. If the coefficients of jw are left in literal form, 
however, the factors are complicated irrational functions of the circuit 
parameters. Therefore, in the interest of simplicity the procedure is 
illustrated by giving typical values to the coefficients. The parameter 
values in a certain pentode amplifier of conventional design yield the 
following numerical results: Am = 100, ko = 1.3, k2 = 15, wo = 200 rps, 
and w2 = 30 rps. Substituting these values in (14-63) yields 

Avo = _ (6) (l0 5) (1 + jw/200) (1 + jw/30) 
(jw) 2 + 940(jw) + 103,800 

(14-64) 
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If the denominator of (14-64) is factored with the variable expressed as 
jw, the roots obtained are of the form jw = -150, for example, and in 
ether circumstances roots of the form jw = - 2 + j y3 occur. These 
results are perfectly proper, but they look strange. In order to avoid 
these unfamiliar forms, and in order to provide a formulation that is 
consistent with common practice in other phases of circuit theory, it is 
desirable to substitute the symbol m for jw in (14-64). The resulting 
expression is 

A ( ) = _ (6) (l05) (1 + m/200) (1 + m/30) 
vo m m2 + 940m + 103,800 (14-65) 

The voltage transmittance for steady-state sinusoidal operation at any 
radian frequency w is obtained from (14-65) by replacing m with jw. 

The roots of the equation m2 + 940m + 103,800 = 0, which are the 
values of m that make the denominator of (14-65) zero, are found from 
the quadratic formula to be 

m1 = -128 and m2 = -812 (14-66) 

Therefore (14-65) can be written as 

Av0 (m) = - (6) (105
) (\! -~\22°8~)(~ t ;(JO) (14-67) 

This relation holds for all values of m; therefore it holds for m = jw. 
Hence if the sinusoidal steady-state voltage transmittance is desired, it 
can be obtained from 

A ( . ) = _ (6) (l0 5) (1 + jw/200) (1 + jw/30) 
110 Jw (jw + 128) (jw + 812) 

(14-68) 

Factoring 128 and 812 out of the denominator yields 

. (1 + jw/200) (1 + jw/30) 
Avo(Jw) = - 5-77 (1 + jw/128)(1 + jw/812) (14-69) 

This expression consists entirely of factors having a familiar form. The 
amplitude and phase characteristics for each factor is constructed in the 
manner developed in Sec. 14-1, and the individual characteristics are 
added to obtain the characteristics for AvoUw). The asymptotes for the 
resulting amplitude characteristic are shown in Fig. 14-18. 

The calculations required in the construction of the gain character
istic in Fig. 14-18 are entirely straightforward with one exception, namely, 
that the value of the incremental screen-grid conductance, Y22, must be 
known. If this parameter is not given by the tube manufacturer, it 
must be determined or approximated by one means or another, perhaps 
by experimental measurement. In addition, the value of this parameter 
can be expected to vary considerably from one tube to another of a given 
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type. The values of g22 for typical small pentodes lie in the range between 
0.1 and 0.01 millimho; that is, r22 = l/g22 is usually a few tens of kilohms. 

The value of g22 can be determined empirically by direct measurement. 
For this measurement, the tube is biased at the appropriate quiescent 
operating point, a small increment of voltage is applied between the 
screen grid and the cathode with all other tube voltages held constant, 
and the resulting increment in screen-grid current is measured; g22 is then 
the ratio of the increment in screen-grid current to the increment in 
screen-grid voltage. Alternatively, an indirect measurement may be 
more convenient. With the tube connected in the conventional amplifier 
circuit of Fig. 14-1 and adjusted for the appropriate quiescent operating 
point, the values of Am, ko, and k2 

Adb are determined by three measure-

40 
ments. With a signal of suitable 
frequency applied at the input to 
the amplifier and with both the 
screen grid and the cathode com
pletely bypassed (Z2 = Zo = 0), 
the input and output voltages are 15

·
2 

measured. The ratio of these two 
voltages is Am [Eq. (14-58)]. Next, 
the cathode bypass capacitor is re

0 30 
4.8 

128 200 
20 32 

812 
129 

w-rps 
{-cps 

moved to give the condition Z2 = 0, Fm. 14-18. Logarithmic amplitude char
Zo = R 0• Under these conditions, acteristic for a typical pentode amplifier 
Eq. (14-60) gives the ratio E4/ E1 as at low frequencies. 

-Am/(1 + ko); since Am is known from the previous measurement, k0 is 
determined by this measurement. In a like manner, the value of k 2 is 
determined by (14-61) from a measurement made with the screen-grid 
capacitor removed and the cathode resistor completely bypassed. The 
values of g22, g41, and go (or p) can be determined from these values of Am, 
ko, and k2 together with the values of the circuit resistances. Alterna
tively, the values of Am, ko, and k2 can be used directly in Eq. (14-63) to 
construct the frequency characteristics of the amplifier or to choose opti
mum values for the bypass capacitors. It should be noted that the 
values of Am, ko, and k2 depend on the values of the circuit resistances and 
on the quiescent operating point for the tube. 

The analysis presented above illustrates the fact that factors of the 
form jw + wa = wa(l + jw/wa) are basic elements in the analysis and 
design of electric circuits. The technique of expressing a higher-order 
polynomial as the product of a set of linear factors is one of fundamental 
importance and wide applicability. In many respects the properties of 
higher-order polynomials are perceived more easily when the polynomials 
are expressed in the factored form than when they are multiplied out. 
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The expressions for the two-port coefficients of electrical networks, 
such as the forward voltage or current transmittance, consist, in general, 
of the ratio of two polynomials in the variable jw; the proof of this 
statement follows from the form of the general solutions of the loop and 
node equations presented in Secs. 12-2 and 12-3. The coefficients in 
these polynomials are combinations of the circuit-parameter values; 
hence the coefficients are real numbers. The fundamental theorem 
of algebra ensures that these polynomials can be expressed as a product 
of linear factors; in particular, for any polynomial of degree n, 

anmn + an-lmn-l + . . . + a2m2 + a1m + ao 
= a1Jmn + bn-1mn-l + ' ' ' + b2m2 + b1m + bo) 
= an(m - mn)(m - mn-1) · · · (m - m2)(m - m1) (14-70) 

The quantities m1, m2, ... , mn are the values of the variable m that 
make the polynomial zero; there are exactly n of these, and they are 
called the zeros of the polynomial. The circuits considered in Secs. 14-1 
to 14-4 are special cases in which the polynomials arising are of first 
degree or are merely constants. 

The zeros of a polynomial having real coefficients may be real, or 
they may occur in complex conjugate pairs. The method presented in 
this chapter for constructing the amplitude and phase characteristics 
cannot be applied directly to factors associated with complex zeros. A 
method for dealing with complex zeros is presented in Chap. 15. 

In the design of pentode amplifiers, the circuit resistances must be 
chosen to give a suitable quiescent operating point for the tube. This 
choice fixes the factors Am, ko, and k2. The bypass capacitors are then 
to be chosen to give suitable frequency characteristics. In the usual 
case, the capacitors are chosen so that the highest break frequency in 
the amplitude characteristic lies below the band of frequencies occupied 
by the signal (Fig. 14-18). Since two parameters, Co and C2, are to be 
chosen to satisfy only one requirement, one of the choices can be made 
with a certain amount of freedom. As a rule, Co is much larger than C 2; 
hence the design procedure should aim at keeping CO reasonably small. 
A suitable procedure is therefore to first choose Co so that (1 + ko)wo is 
somewhat below the band of frequencies occupied by the signal. This 
would be a satisfactory design if there were no screen-grid degeneration. 
Then a value of w2, and hence a value of C2, can be found from Eq. (14-63) 
to locate the largest break frequency in the amplitude characteristic 
at a suitable point. Since the quadratic factor in (14-63) is unwieldy, 
this calculation is facilitated by using numerical values for wo, ko, and 
k2. The procedure can be illustrated in terms of the specific amplifier 
analyzed previously. 

Suppose that the highest break frequency in the amplitude character-
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istic of Fig. 14-18 is to be located at 50 cps rather than 129 cps. Then 
it is reasonable to choose Co so that (1 + ko)wo = 2.3wo corresponds to 
25 cps, which is somewhat below 50 cps; this choice makes w0 = 68.2 rps. 
Substituting numerical values in the denominator of (14-63) and writing 
m in place of jw yields 

(14-71) 

This polynomial has two zeros, m1 and m2; in order to meet the design 
requirement, a value of w2 must be found that makes the largest of these 
zeros correspond to 50 cps; that is, the zeros must be 

m1 = -21r(50) = -314 rps 

and m2 = -a rps, where a is a positive real number less than 314. The 
required value of w2 can be found from the relations between the zeros 
of (14-71) and its coefficients. The coefficient on m is the negative of 
the sum of the zeros, and the constant term is the product of the zeros. 
Hence 

and 
157 + l6w2 = 314 + a 

l180w2 = 314a 
(14-72) 

Eliminating a between these two equations yields w2 = 12.9 rps, and the 
second equation then yields a = 48.5 rps. The required value of C2 is 
given by the relation w2 = l/C2R2 = 12.9. 

When the design requirements are not critical, the procedure can be 
simplified by the following rule of thumb: Choose Co so that the break 
at (1 + ko)wo lies below the signal-frequency band. Then choose C2 so 
that (1 + k2)w2 lies well below wo. 

14-6. The Transistor Current Amplifier at High Frequencies. The 
circuit of a typical transistor amplifier is shown in Fig. 14-19a. For 
the case where a drift transistor is employed, the high-frequency transistor 
model of Fig. 8-19b yields the circuit of Fig. 14-19b to represent the 
amplifier in the middle- and high-frequency ranges. The bypass capaci
tor is treated as a short circuit in this model, and the resistance R 1 

accounts for the parallel combination of Ra and Rb. The behavior of 
the amplifier depends on frequency as a result of the parasitic capaci
tances Ce and Cc. In particular, at high frequencies Ce tends to short
circuit node b' to ground, with a consequent reduction of the voltage E~e 
and the current gmE~e• The method of analysis employed here with the 
drift transistor is also applicable to the alloy-junction transistor with a 
minor modification to account for the effects of the base-to-collector 
resistance rbc (Fig. 8-20). The principal difference between the drift 
and the alloy-junction transistors is that the values of Ce and Cc are 
perhaps 100 times larger in the latter than in the former; the high-
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frequency behavior of the latter is accordingly much poorer than that 
of the former. 

As a result of the collector capacitance Cc, the input circuit in the 
transistor amplifier is not isolated from the output circuit at high fre
quencies. In addition, this capacitance introduces feedback that makes 
analysis by inspection difficult, if not impossible. It is clear that the 
role of the collector capacitance in the transistor amplifier is similar to 
that of the grid-to-plate capacitance in the triode amplifier (Fig. 14-10); 
it follows that the Miller effect is present in the transistor amplifier as 
well as in the triode amplifier. It is shown in the following paragraphs 
that, as in the case of the triode amplifier, the collector capacitance can 
in many cases be replaced by an equivalent capacitance connected from 

lb 
r' 

E'be Cc I1 b b I C 12 

R1 rbe Ce t go R2 
C3 

- (a) - (b) 

FIG. 14-19. Drift-transistor amplifier at high frequencies. (a) Circuit; (b) model. 

node b' to ground. This modification of the circuit eliminates the ana
lytical difficulties mentioned above. 

The current I in the collector capacitance under steady-state sinusoidal 
operating conditions is given by 

J = jwCc(E~e - Ece) (14-73) 

In order to exploit this relation, it is necessary to obtain an expression 
for Ece in terms of E~e• The parameter values in most transistor ampli
fiers are such that the current I is much smaller than gmE~e in the useful 
frequency range of the amplifier; thus, neglecting I in comparison with 
YmE~e, 

E = - YmE~e = -AE' 
ce Yo+ G2 be 

(14-74) 

As a general rule, the value of A depends strongly on the value of R 2 ; 

if G2 » Yo, A :=;:: gmR2. The value of A may be as small as 10 or as large 
as 1000. 

Substituting (14-74) into (14-73) yields 

I = jwCc(l + A)E~e (14-75) 
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Since this current has a negligible effect on the output circuit in the useful 
frequency range of the amplifier, the relations in the model of Fig. 14-19b 
remain substantially unchanged if Cc is removed and a capacitance 
(1 + A)Cc is connected between node b' and ground. The factor 1 + A, 
which accounts for the Miller effect, may make (1 + A)Cc a relatively 
large capacitance. 

Another simplification of the model is permitted by the fact that r~ 
is of the order of 50 ohms in the usual drift transistor. Since this resist
ance is normally much smaller than R1, it has a negligible effect on the 
behavior of the circuit ( consider the Norton or Thevenin equivalent of 
the portion of the circuit on the left of rbe). Thus r~ can be omitted from 
the model for the circuit of Fig. 14-19a. (When the transistor is used 
with an impedance-matching network between the signal source and the 
input terminals, as is usually the case at radio frequencies, r~ becomes 
important and cannot be omitted.) 

(I+A)Cc i 

Fm. 14-20. Simplified model for the transistor amplifier at high frequencies. 

When the simplifications developed above are introduced into the 
model for the amplifier, the circuit takes the form shown in Fig. 14-20. 
In this circuit the input is isolated from the output and there is no feed
back; the significant effects of the reverse transmittance and the feedback 
are accounted for by the capacitance (1 + A)Cc. This circuit can be ana
lyzed by inspection (that is, without solving simultaneous equations). 

Denoting the total shunt capacitance in the input circuit by 

Ct = Ce + (1 + A)Cc 

and the total shunt conductance by Gt = gbe + G1, the base voltage can 
be expressed as 

E' 11 1 11 
be = Gt + jwCt - Gt 1 + jwCt/Gt (14-76) 

This equation can be written in a more useful form by defining 

Gt gbe + G1 
Wl = Ct= Ce+ (1 + A)Cc (14-77) 

Thus (14-76) becomes 

E~ = _!_ 11 
e Gt 1 + jw/w1 

(14-78) 
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The output current from the amplifier can be expressed, with the aid 
of (14-74), as 

(14-79) 

Substituting (14-78) in (14-79) yields 

12 = AG2 11 
Gt 1 + jw/w1 

(14-80) 

The forward current transmittance is, accordingly, 

12 1 
l- = Ac = Am 1 + . / 

1 JW WI 
(14-81) 

where A = AG2 = G2 gm 
m Gt 9o + G2 9be + G1 

(14-82) 

is the current transmittance in the middle band of frequencies. When 
G2 » go, as is often the case, (14-82) reduces to 

A ~ gm (14-83) 
m ~ 9be + G1 

Equation (14-81) has the same form as Eq. (14-4) for the voltage 
transmittance of the pentode amplifier at high frequencies; hence the 
logarithmic amplitude and phase characteristics for the transistor ampli
fier at high frequencies have the form shown in Fig. 14-4. The mid-band 
amplification is given by (14-82), and the half-power frequency is given 
by (14-77). Since Ce and (1 + A)Cc are usually of the same order of 
magnitude, it follows from (14-77) that the half-power frequency usually 
depends rather strongly on the load resistance R2. 

Another useful relation is obtained from (14-77) by factoring 9be out 
of the numerator and Ce out of the denominator to obtain 

gbe 1 + Gi/ 9be 
WI = Ce 1 + (1 + A)Cc/Ce 

1 + Gi/gbe 
= Web 1 + (1 + A)Cc/Ce (14-84) 

where Web = Ybe/Ce, defined in Chap. 8, is the intrinsic cutoff frequency 
of the transistor in the grounded-emitter connection. In most transistor 
amplifiers of the type shown in Fig. 14-19a, the circuit parameters are 
such that the numerator of (14-84) is smaller than the denominator; in 
such cases the cutoff frequency for the amplifier is somewhat less than 
the intrinsic cutoff frequency of the transistor. With a given transistor, 
the only adjustable quantities in (14-84) are G1 and A = gm/(go + G2); 
Eq. (14-84) shows that the 1-ialf-power frequency can be controlled with 
the adjustable circuit parameters G1 and G2. 



FREQUENCY DEPENDENCE OF SINGLE-STAGE AMPLIFIERS 321 

14-7. The Transistor Current Amplifier at Low Frequencies. The 
behavior of the transistor amplifier of Fig. 14-19a depends on the action 
of the bypass capacitor O 3 at low frequencies. An incremental model 
for the amplifier that is valid in the low- and medium-frequency ranges 
is shown in Fig. 14-2la. The hybrid representation for the transistor is 
used with Pbc = Uo = 0. These approximations, which are justifiable 
with drift transistors when R2 does not exceed 10 or 20 kilohms, result 
in considerable algebraic simplifi
cation without affecting the results 
perceptibly. 

The current source Otcbh in the 
circuit of Fig. 14-21a is replaced by 
an equivalent pair of sources (Fig. 
12-3) to obtain the equivalent cir
cuit shown in Fig. 14-2lb. The 
symbol k is used to designate the 
quantity 1 + acb in this figure. 
Eliminating the controlled source 
on the left by application of the 
reduction theorem leads to the re
duced equivalent circuit shown in 
Fig. 14-2lc. This last operation 
eliminates all feedback and permits 
the circuit to be analyzed by inspec
tion. In a typical circuit, R1 may 
be 10 kilohms and kR3 may be 100 
kilohms; hence at very low frequen
cies, where 03 acts as an open cir
cuit, most of the signal current flows 
through R1 rather than into the base 
of the transistor. The current am-
plification is reduced accordingly. 

(a) 

-
(b) 

11 rn 

C3 i R1 k 
Clcblb 

- (cl 

Frn. 14-21. The transistor amplifier at 
low frequencies. (a) Model; (b) an 
equivalent circuit, k = l + acb; (c) re
duced equivalent circuit, k = l + acb• 

It follows that 0 3 should be chosen to act as a short circuit at all fre
quencies in the band occupied by the signal. 

A quantitative formulation of the forward current transmittance 
provides the relations that are pertinent in the design of the transistor 
amplifier for suitable frequency characteristics. By inspection of the 
circuit in Fig. 14-21c, 

and 

(14-85) 

(14-86) 
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Defining wa = 1/CaRa, factoring rn + R1 out of the denominator, and 
multiplying above and below by (1 + jw/w3) yields 

I _ R 1 1 + jw/wa I 
b - R 1 

rn + 1 l + kRa + . / 
+ R JW W3 

rn 1 

(14-87) 

Substituting (14-87) into (14-85) and defining 

and k 
_ kRa 

3 -
rn + R1 

(14-88) 

leads to an expression of familiar form: 

A = ~ 1 +jw/wa 
c 1 + k3 1 + jw/(1 + ka)w3 

(14-89) 

Equation (14-89) has the same form as Eq. (14-18) for the voltage 
transmittance of a triode amplifier with cathode degeneration; hence the 
logarithmic amplitude and phase characteristics for the transistor at 
low frequencies have the forms shown in Figs. 14-7 and 14-8. 

Equation (14-89) can be used as a guide in the design of transistor 
amplifiers for suitable low-frequency response. The resistances in the 
circuit are usually chosen to provide a suitable quiescent operating point 
for the transistor and to provide adequate stabilization of the quiescent 
point against changes in temperature and transistor parameters. These 
resistances, together with the transistor parameters, fix k3• The bypass 
capacitor is then chosen to make the highest break frequency in the 
amplitude characteristic occur at a suitable point below the signal
frequency band. 

14-8. Combined Low- and High-frequency Characteristics. In exam
ining the frequency dependence of various electronic circuits in the 
preceding sections, the low-frequency phenomena are treated separately 
from the high-frequency phenomena. In this way the algebraic formu
lation of the circuit properties has been kept relatively simple. Under
lying this technique, however, is the tacit assumption that the high
frequency breaks in the amplitude characteristic are separated by a 
decade of frequency or more from the low-frequency breaks; this con
dition is satisfied in many important electronic circuits. 

The complete frequency characteristic for a circuit can be displayed 
by plotting the low-frequency and high-frequency characteristics on a 
single set of coordinates. As an example, the asymptotic approximation 
for the complete amplitude characteristic of a pentode amplifier, obtained 
by combining Figs. 14-3 and 14-18, is shown in Fig. 14-22. The numeri
cal values of amplification (in decibels) and frequency shown in this 
figure indicate orders of magnitude that may be expected in a typical 
pentode amplifier. It should be clear1 however, that in any particular 
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amplifier the break frequencies and the amplifications can be adjusted 
over fairly wide ranges by adjusting the circuit parameters. It should 
be noted that the high-frequency break point in the typical characteristic 
of Fig. 14-22 is three decades above the highest low-frequency break 
point. This three-decade range is the mid-band for the amplifier. 

The complete phase characteristic for the amplifier can be constructed 
in a similar manner by combining the 
low- and high-frequency characteris- Adb 

tics in a single plot. 40 
14-9. Gain-Bandwidth Relations. 

0 10 100 1 10 100 1 10 .._,_,_, '-----"" ...___,, 
cps kcps mcps 

The amplifier having the amplitude 20 

characteristic shown in Fig. 14-22 
amplifies signals lying anywhere in its 
mid-band (between 100 cps and 100 
kcps) by approximately the same 
amount. This · is, therefore, the use

Frn. 14-22. Combined low- and high
frequency amplitude characteristics. 

ful band of the amplifier, and the bandwidth of the amplifier is 
100,000 - 100 = 99,900 cps. In practice it is customary to ignore the 
100 cps of bandwidth lost at the low-frequency end of the spectrum and 
to identify the bandwidth with the upper break, or half-power, frequency, 
which is 100 kcps in this case. 

An important relation exists between the mid-band amplification and 
the bandwidth of such amplifiers. These two quantities are given by 
Eqs. (14-3) for pentode amplifiers and by Eqs. (14-24) for triode ampli
fiers; their product in the case of the pentode is 

AmW4 = gm gp + G4 = gm = Wgb 
gp+a4 c4 c4 (14-90) 

This quantity, known as the gain-bandwidth product, is designated as a 
frequency, Wgb, because it has those dimensions and because it has an 
important interpretation as a frequency. 

Equation (14-90) shows that the gain-bandwidth products for circuits 
like that in Fig. 14-1 depend only on the transconductance of the tube 
and the parasitic capacitance shunting the output terminals. The ampli
fication and the bandwidth of such an amplifier can be adjusted over 
wide ranges by changing R4; however, the gain-bandwidth product must 
remain constant as long as gm and C 4 remain constant. The asymptotes 
for the high-frequency amplitude characteristic of such an amplifier are 
shown in Fig. 14-23 for two different values of R4. If R4 is changed so 
as to reduce the mid-band amplification by a factor of 2, the mid-band 
amplification in decibels becomes 

A~bm = 20 log 1m = 20 log Am - 20 log 2 

= Adbm - 6 db (14-91) 
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That is,, the mid-band amplification is reduced by 6 db. But this change 
in R4 also doubles the bandwidth, corresponding to an increase in band
width of one octave. Thus the break point in amplitude characteristic 
moves down by 6 db on the amplification scale and it moves to the right 
by one octave on the frequency scale; hence the new break frequency w~ 

lies on the original high-frequency asymptote as illustrated in Fig. 14-23. 

Slope -6 db/octave 

R4 I 

FIG. 14-23. Gain-bandwidth relations. 

It follows from the above discus-
sion that the high-frequency asymp
tote is independent of the mid-band 
amplification provided gm and C 4 re
main constant. It is appropriate, 
therefore, to examine the factors 
that fix the position of the high
frequency asymptote. The equa
tion of this asymptote, (14-10), is 

w 
Adb = Adbm - 20 log - (14-92) 

W4 

The position of the asymptote can be specified by giving the frequency 
at which it crosses the axis of zero db. This frequency is found by 
equating (14-92) to zero, giving 

Adbm = 20 log ~ = 20 log Am 
W4 

(14-93) 

Solving (14-93) for w gives the frequency of the zero crossing as 

(14-94) 

Thus the gain-bandwidth product is also the frequency at which the 
high-frequency asymptote crosses the axis of zero db; at this frequency 
the voltage amplification is unity. 

The foregoing developments suggest a straightforward procedure for 
the design of amplifiers such as that shown in Fig. 14-1. If gm and C4 
are known, the high-frequency asymptote of the amplitude character
istic can be constructed at once; it is a line passing through zero db at 
w = Wgb = gm/C4 with a slope of -6 db/octave. The plate load resist
ance is then chosen to give a suitable compromise between amplification 
and bandwidth. For each 6 db of mid-band amplification, the bandwidth 

, is reduced one octave from the value Wgb• 

1 In practice the design procedure is complicated slightly by the fact 
that gm and C4 are not known exactly at the outset. The transconduct
ance depends somewhat on the quiescent operating point of the tube, 
which in turn depends on the value of the plate load resistance, and the 
shunt capacitance depends somewhat on the physical layout of the circuit 
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components and wiring. Nevertheless, the procedure outlined in the 
preceding paragraph serves as a guide to effective design. 

The gain-bandwidth relation presented above, sometimes called the 
gain-bandwidth theorem, states that the gain-bandwidth product of the 
amplifier in Fig. 14-1 is constant if the ratio Ym/C4 remains constant. 
It must be noted that the proof applies only to circuits having the form 
shown in Fig. 14-1, namely, circuits consisting of a simple parallel com
bination of R's and C's. Although this property may be found in circuits 
having other forms, it does not, apply in general. As an illustration 
of the limited applicability of the gain-bandwidth theorem, consider the 
transistor amplifier of Sec. 14-6. The gain-bandwidth product, obtained 
from Eqs. (14-77) and (14-82), is 

A YmG2 
Wgb = mWl = (go + G2)[Ce + (1 + A)Cc] (14-95) 

This product is seen to be independent of G1, but it is not independent 
of G2. Even if G2 is much larger than go, so that it does not appear 
explicitly in (14-95), it still affects the value of Wub through the factor A. 
Furthermore, the constancy of wub in the face of _changes in G1 is not valid 
for all values of G1, for the analysis leading to (14-95) is based on the 
assumption that r~ can be neglected in comparison with R 1• If R 1 is 
made very small in order to obtain a large bandwidth, r~ cannot be 
neglected. It is easily shown that the value of wg-i, depends on R1 when 
r~ is not neglected. 

14-10. Summary. The behavior of many important electronic ampli
fiers depends upon frequency in both the high-frequency and the low
frequency ranges because unavoidable parasitic elements become effective 
at high frequencies and auxiliary circuit elements such as bypass capaci
tors become effective at low frequencies. When the high-frequency 
phenomena are separated from the low-frequency phenomena by a 
decade of frequency or more, these two sets of phenomena can be analyzed 
separately. The analysis is simplified by this separate treatment, with 
the result that in many cases a clear understanding of the relations 
between circuit parameters and circuit performance is obtained. This 
valuable technique finds application in many fields other than electronics. 

The presentation of frequency characteristics is greatly facilitated by 
the use of the logarithmic amplitude and phase characteristics. The 
value of these characteristics lies in the fact that they have simple 
asymptotic properties and in the fact that complicated characteristics 
can be constructed by the addition of simple component characteristics. 

The simplicity of the logarithmic amplitude and phase characteristics 
is associated with factors of the form jw + wa = wa(l + jw/wa), which 
are linear functions of frequency. These linear factors are the basic 
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building blocks in network functions such as the two-port coefficients. 
The study of these network functions is facilitated in several ways by 
resolving them into their constituent linear factors. 

Network functions in general can be expressed as a ratio of two poly
nomials in the variable jw, as is illustrated by Eq. (14-63). The truth 
of this statement follows from the form of the general solutions of the 
loop and node equations presented in Secs. 12-2 and 12-3. The funda
mental theorem of algebra ensures that these polynomials can be expressed 
as the product of a set of linear factors as illustrated by Eq. (14-69); 
it does not, unfortunately, provide an easy way of finding these factors 
when the degree of the polynomial exceeds 2. The linear factors com
posing a network function not only aid in understanding the behavior 
of the network under steady-state sinusoidal operating conditions, but 
they also provide critical information about the transient response of 
the network, a fact that is treated in Chap. 16. For these reasons an 
important part of network theory is concerned with interpreting the 
behavior of networks in terms of the linear factors constituting the net
work functions. 

PROBLEMS 

14-1. A certain pentacle amplifier has the form shown in Fig. 14-1. The plate load 
resistance is R4 = 220 kilohms, and the incremental tube parameters are Ym = 1.2 
millimhos and rp = 1 megohm. The total capacitance between plate and ground, 
including wiring capacitance, is 15 µµf. 

a. Determine the mid-band amplification in decibels and the half-power frequency 
in cycles per second for the high-frequency model. 

b. Plot the logarithmic amplitude and phase characteristics for the high-frequency 
model. Give the true characteristics, not just the asymptotes. Use semilog coordi
nate paper, and calibrate thefrequency scale in kilocycles per second. 

14-2. A 6AU6 pentode is used in the voltage amplifier of Fig. 14-1. The plate
supply voltage is 300 volts, and the quiescent operating point is to be Eb = Ec2 = 
100 volts and lb = 2 ma. 

a. Find the values of Ro, R2, and R4 required to give the specified operating point. 
Refer to Sec. 10-2 for a discussion of the screen-grid current. 

b. The tube parameters can be approximated by Ym = 2.4 millimhos and rp = 
10 megohms. Ten micromicrofarads are to be added to the output capacitance of the 
tube to account for wiring capacitance. Evaluate the mid-band amplification in 
decibels and the high-frequency half-power point in cycles per second. 

c. Sketch and dimension the asymptotes for the high-frequency logarithmic ampli
tude and phase characteristics. 

14-3. The triode section of a 6AV6 is used in the amplifier shown in Fig. 14-5. The 
quiescent operating point is to be at Eb = 100 volts and h = 0.5 ma; the plate supply 
voltage is 300 volts. 

a. Determine the values of Ro and R2 required to give the specified quiescent point. 
b. Evaluateµ and rp at the quiescent point, and determine the mid-band amplifica

tion in db. 
c. The highest break frequency in the logarithmic amplitude characteristic for the 
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low-frequency model is to be 159 cps. What must be the size of the cathode bypass 
capacitor? 

d. Sketch and dimension the asymptotes for the low-frequency amplitude and phase 
characteristics. Give amplitudes in decibels and frequencies in cycles per second. 

14-4. The forward voltage transmittance of a certain triode amplifier with cathode 
degeneration is 

1 + jw/100 
Av~ = (l5) 1 + jw/200 

Plot the logarithmic amplitude and phase characteristics. Use semilog coordinate 
paper, and show both the asymptotes and the true characteristics. Calibrate the 
frequency scale in cycles per second. Note: The objective of this problem is to 
provide practice in applying the corrections to the asymptotes when two break 
frequencies occur close together. 

14-6. The input admittance to the amplifier described in Example 14-1 at high 
frequencies is to be examined. 

a. Give an incremental model for the circuit that is valid at high frequencies. The 
parasitic capacitances are C1 = C2 = 10 µµf and C12 = 2.5 µµf when the stray wiring 
capacitances are added to the tube capacitances. 

b. Determine the parameter values in the equivalent input circuit shown in Fig. 
14-13. 

c. The resistance R in Fig. 14-13 can be neglected, for most purposes, as long as it is 
less than one-tenth the reactance of C = AmC12. Over what frequency range is R 
negligible? 

14-6. One section of a 12AU7 is used in the cathode follower of Fig. 14-16. The 
circuit parameters are R2 = 33 kilohms, Ra = 1 kilohm, R1 = 1 megohm, µ = 17, 
rp = 10 kilohms, C1 = 3.0 µµf, C2 = 10 µµf, and C12 = 2.0 µµf. Sketch and dimen
sion the asymptotes for the high-frequency logarithmic amplitude and phase charac
teristics. Give amplitudes in decibels and frequencies in kilocycles per second. 

14-7. A pentode having the incremental parameters gm = 5 millimhos and Tp = 
1 megohm is to be used in an amplifier of the form shown in Fig. 14-1. The high
frequency half-power point is to be at 1 mcps. 

a. If C4 is 15 µµf, what value of R4 is required? 
b. With this design, what is the mid-band amplification in decibels? 
c. If h = 5 ma, Eb = 100 volts, and Ec1 = -3 volts at the quiescent operating 

point, what plate-supply voltage is required? 
14-8. The low-frequency behavior of a pentode amplifier like the one shown in Fig. 

14-1 is to be studied. The circuit parameters are R 4 = 50 kilohms, R2 = 300 kilohms, 
Ro = 1 kilohm, Co = 2 µf, and C2 = 0.05 µf. The following data are obtained from 
measurements made in the mid-band: With both Co and C2 in place, the amplification 
is 75; with only C2 present, the amplification is 25; and with only Co present, the 
amplification is 9. 

a. Determine the values of the constants Am, 1 + ko, and 1 + k2 that appear in the 
expression for Avo at low frequencies. Determine wo and wz. 

b. Sketch and dimension the asymptotes for the low-frequency logarithmic ampli
tude characteristic for the amplifier when both bypass capacitors are present. Give 
amplitudes in decibels and frequencies in cycles per second. 

14-9. A pentode having the parameters g41 = 1.5 millimhos, g22 = 0.022 millimho, 
g44 = 0, and p = 0.3 is used in the amplifier of Fig. 14-1. The circuit parameters are 
R4 = 100 kilohms, R2 = 330 kilohms, Ro = 1.5 kilohm, and C2 = 0.05 µf. 

a. Assuming that Co is a short circuit for all frequencies of interest1 sketch and 
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dimension the asymptotes for the low-frequency amplitude characteristic. Give 
amplitudes in decibels and frequencies in cycles per second. 

b. Repeat part a for Co = 5 µf. 

14-10. The forward voltage transmittance of a certain pentode amplifier at low 
frequencies is 

(1 + jw/50) (1 + jw/200) 
A1>o = - 20 (1 + jw/100)(1 + jw/400) 

Plot the corresponding amplitude characteristic. Use semilog-coordinate paper, and 
show both the asymptotes and the true characteristic. Calibrate the frequency scale 
in cycles per second. Note: The objective of this problem is to provide practice in 
applying the corrections to the asymptotes when several break frequencies occur close 
together. 

14-11. A drift transistor is used in the current amplifier shown in Fig. 14-19a. The 
circuit parameters are Ra = 180 kilohms, Rb = 20 kilohms, R2 = 16 kilohms, and 
Ra = 2 kilohms; the transistor parameters are r~ = 40 ohms, Tbe = 1.6 kilohms, gm = 
37 millimhos, Ce = 200 µµf, Cc = 2 µµf, and go = 0. 

a. Give an incremental model for the amplifier that is valid in the middle- and high- , 
frequency ranges where Ca acts as a short circuit. 

b. Evaluate the parameters for a simplified representation of the form shown in 
Fig. 14-20, treating r; as a short circuit. 

c. Sketch and dimension the asymptotes for the logarithmic amplitude and phase 
characteristics in the middle- and high-frequency ranges. Give amplitudes in decibels 
and frequencies in kilocycles per second. 

14-12. The validity of treating r; as a short circuit in the amplifier of Prob. 14-11 
is to be examined. From the data given in Prob. 14-11, determine the value of R1 
in the model of Fig. 14-19b. Assuming a current source I 1 applied at the input, find 
the Norton equivalent of the circuit on the left of node b' in the circuit of Fig. 14-19b. 
Is this equivalent circuit affected appreciably by assuming r~ = 0? 

14-13. An alloy-junction transistor is used in the amplifier of Prob. 14-11. The 
circuit parameters are Ra = 100 kilohms, Rb = 22 kilohms, R2 = 20 kilohms, and 
Ra = 4 kilohms; the transistor parameters for the high-frequency model of Fig. 8-20 
are r~ = 250 ohms, Tbe = 2.5 kilohms, Tbc = 7 megohms, Tee = 150 kilohms, gm = 20 
millimhos, Ce = 5000 µµf, and Cc = 50 µµf. 

Following the procedure outlined in Prob. 14-11, construct and dimension the 
asymptotes for the amplitude characteristic in the middle- and high-frequency ranges. 

14-14. The low-frequency behavior of the amplifier described in Prob. 14-11 is to be 
examined. 

a. From the data given in Prob. 14-11, determine the parameters in the low-fre-
quency hybrid model for the transistor. · 

b. What value of Ca is required if the largest break frequency in the amplitude 
characteristic is to be 100 cps? Sketch and dimension the asymptotes for the low
frequency amplitude characteristic with this value of Ca. Give amplitudes in decibels 
and frequencies in cycles per second. 

14-15. The triode amplifier shown in Fig. 14-24 is provided with a 1-megohm 
potentiometer to serve as a volume control. The effect of the volume control on the 
high-frequency characteristics is to be examined. The incremental parameters for 
the tube areµ. = 100 and rp = 80 kilohms; the parasitic capacitances of the. tube and 
wiring are Ci = C2 = 5 µµf and C12 = a µµf; and the coupling and bypass capacitors 
~ct as short circuits at all frequencies of interest. 

a. Tµ,e input to the triode can be represented by an equivalent circuit of the form 
r.ihQw:µ !~ :fi~. H:-13. Determin{} Hi@ Y?Jµes of the par~rp,eterl'! in, this circuitt 
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b. Sketch and dimension the asymptotes for the high-frequency amplitude charac
teristic of the voltage ratio Ei/Es for the condition that the volume control is set for 
maximum output voltage. Give amplitudes in decibels and frequencies in kilocycles 
per second. As in Example 14-2, the resistance R in the equivalent input circuit can 
be treated as a short circuit in the frequency range of interest. 

c. Repeat part b with the volume control set at its mid-point (that is, so that the 
potentiometer has 500 kilohms on each side of the slider). 

d. Discuss briefly the significance of the results obtained in parts band c. 

Frn. 14-24. Amplifier for Prob. 14-15. Fm. 14-25. Amplifier for Prob. 14-16. 

14-16. The combination of R2 and C in the pentode amplifier of Fig. 14-25 forms a 
decoupling network of a type commonly used to reduce the interaction among amplifier 
stages using a common power supply. The effect of the decoupling network on the 
low-frequency amplitude characteristic is to be examined. 

a. Give an incremental model for the circuit in which rp is treated as an open circuit 
and Co and G2 are treated as short circuits. 

b. Show that the forward voltage transmittance for this model has the form 

A _Kl+ jw/wa 
"

0 
- 1 + jw/wb 

in the low- and middle-frequency ranges. 
c. Sketch and dimension the logarithmic amplitude characteristic for gm = 2 milli

mhos, R1 = 100 kilohms, R2 = 33 kilohms, and C = 0.05 µf. Give the dimensions in 
decibels and cycles per second. 

Adb 
db 

24 

12 

;6 db/octave 6 db/ t 
f..,.----... ✓- oc ave 

I I -12 db/octave 

l I 
I I 

1 2 8 16 w-rps 
(log scale) 

Frn. 14-26. Amplitude characteristic for Prob. 14-17. 

14-17. The amplitude characteristic for a certain amplifier is determined experi
mentally and found to have the asymptotes shown in Fig. 14-26. The corresponding 
voltage transmittance consists of a constant multiplier and a number of linear factors 
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of the form 1 + jw/wa [see Eq. (14-69), for example]. Determine an expression for 
this transmittance in which all constants are expressed as numbers. (Note that if the 
signs in some or all of the linear factors are changed, the amplitude characteristic is not 
changed; information about the signs is contained only in the phase characteristics.) 

14-18. The incremental parameters for the pentode in the amplifier shown in Fig. 
14-27 are Um = 5 millimhos and gp = 0. The parasitic capacitances are negligible, 
and the coupling and bypass capacitors act as short circuits at all frequencies of 
mterest. Sketch and dimension the asymptotes for the amplitude characteristic. 
Give amplitudes in decibels and frequencies in cycles per second. 

Fm. 14-27. Amplifier for Prob. 14-18. 

14-19. The high-frequency behavior of the circuit presented in Prob. 13-11 is to be 
examined. The tube parameters areµ = 20 and rp = 10 kilohms; the circuit resist
ances are R1 = 667 ohms and R2 = 25 kilohms. The characteristics of the circuit are 
dominated at high frequencies by the capacitance between the conductor of the cable 
and the shield surrounding it; the value of this capacitance is 100 µµf. The coupling 
capacitor acts as a short circuit, and the parasitic capacitances are negligible in the 
frequency range of interest. 

a. Give an incremental model for the circuit, and determine the total admittance 
Y(w) in parallel with the current source I. 

b. The input voltage to the cathode follower is E1 = l/Y. Using the results of 
part a, sketch and dimension the asymptotes for the logarithmic amplitude charac
teristic of the ratio Ei/l. 

c. Repeat parts a and b for the case where the cable shield is connected to the junc
tion of R1 and R2. 

d. Discuss briefly the significance of the results obtained in parts band c. 



CHAPTER 15 

FREQUENCY DEPENDENCE OF CASCADED AMPLIFIERS 

The signal amplification obtainable from most single-stage voltage 
and current amplifiers is limited to a factor of a few hundred or less, 
depending on the type of tube or transistor employed. Since there are 
many applications requiring greater signal amplifications than this, it is 
common practice to connect a number of stages in cascade so that each 
stage amplifies the signal in succession; the total amplification is then 
the product of the amplifications of the individual stages. Cascading 
amplifiers in this manner introduces some additional problems in circuit 
design, and it requires the use of additional circuit components that affect 
the behavior of the circuit. 

In many cases it is possible to analyze ( or design) each stage in a 
multistage amplifier as a separate part of the over-all circuit and to 
determine the over-all properties of the amplifier by combining the 
results of these separate analyses. Thus the results obtained in Chap. 14 
are to a large extent directly applicable in the analysis of cascaded 
amplifiers; they are usually modified in some respects, however, by the 
networks used to couple the individual stages in cascade. 

The properties of cascaded amplifiers are usually such that the signal 
transmission tends to zero at both low and high frequencies; hence these 
amplifiers are bandpass networks. In some cases cascaded amplifiers 
are required to amplify signals occupying a wide band o! frequencies; 
the principal design problem is then to obtain uniform amplification 
over a sufficiently wide band of frequencies. In other cases the band
pass nature of the amplifier is turned to profit by using the circuit to 
amplify signals in a certain frequency range to the exclusion of all other 
signals; the design problem in these cases is to obtain uniform amplifica
tion in the desired band with sufficiently strong discrimination against 
signals in adjacent bands. 

The objective of this chapter is to continue the development of the 
basic techniques of frequency analysis initiated in Chap. 14. In the 
course of this development the pole-zero diagrams for the voltage and 
current transmittances of amplifiers are introduced. These diagrams 
permit simple geometric representations of the factors of polynomials, 
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and they present in a different form the information contained in the 
amplitude and phase characteristics. The pole-zero diagrams permit 
certain important circuit properties to be examined and characterized 
more directly and more simply than is possible by other means. 

15-1. General Considerations in Cascading Amplifiers. 1 A cascade of 
two pentode voltage-amplifier stages coupled together by an RC network 
is shown in Fig. 15-la; an incremental model for this amplifier that is 
valid in the frequency range where the bypass capacitors are short 
circuits is shown in Fig. 15-lb. The bypass capacitors are initially 

Rg 

(al 

E C3 E E 
' II o2 lira 
: f I ~i~R,f f 1 cf f R2 J~ f I I o 

(bl 

Frn. 15-1. RC-coupled pentode stages. (a) Circuit; (b) model. 

assumed to Ile short circuits so that attention may be focused on the 
coupling network without distracting complications from other circuit 
components. This assumption is removed after a preliminary examina
tion of the circuit. The resistance R1 in the model represents the parallel 
combination of the plate resistance of the tube and the plate load resist
ance, C1 represents the output capacitance of the first tube plus parasitic 
wiring capacitance, and C2 represents the input capacitance of the second 
tube plus wiring capacitance. The pentodes have negligible grid-to
plate capacitance, and it is assumed that the circuit components are 
arranged so that there is negligible wiring capacitance between the grid 
and plate circuits. Hence there is no coupling between the grid and plate 
circuits except through the transconductance of the tube, and each stage 
of the amplifier can be analyzed as a separate part of the circuit. The 
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capacitor Ca is the interstage coupling capacitor; its function is discussed 
in the following paragraph. 

The analysis and the design of cascaded amplifiers are concerned 
chiefly with the transmission of signals through the interstage coupling 
networks. The nature of the coupling network is dictated in part by the 
following considerations. There is a large positive direct voltage at 
the plate of the first tube, whereas it is usually required that there be no 
d-c component of voltage between the grid of the second tube and ground. 
Therefore it is usually desired that there be no d-c transmission through 
the interstage network. The capacitor Ca serves to block the d-c trans
mission through the RC coupling network in the circuit of Fig. 15-1. 

A variety of interstage networks is available to meet the needs of 
various types of amplifiers. The RC network is probably the simplest 
of them all, however, and it is certainly the most widely used for signals 
in the frequency range between roughly 10 cps and 100 kcps. Radio
frequency amplifiers, which operate at frequencies above this band, 
usually employ parallel resonant circuits or inductively coupled resonant 
circuits in the interstage network. Amplifiers for signals with frequencies 
less than 10 cps often use resistive coupling networks with passbands 
extending to zero frequency; these are referred to as directly coupled 
amplifiers. 

It is appropriate to inquire whether or not there is any limitation 
on the number of stages that can be connected in cascade, and therefore 
whether or not there is any limitation on the over-all signal amplifica
tion that can be realized. The noise voltage generated in the first 
stage of a multistage amplifier is amplified in succession by each stage 
of the amplifier. As more stages are connected in cascade, the noise 
voltage at the output of the amplifier increases until eventually it becomes 
excessive. For this reason it is usually not possible to realize amplifi
cations in excess of about one million in the usual multistage amplifier. 
In order to increase the amplification that can be obtained, special low
noise circuits, such as the grounded-grid amplifier and the cascode 
amplifier, are often used for the input stage of cascaded amplifiers. In 
addition, since the noise voltage is more or less uniformly distributed 
over s. wide band of frequencies, the effective noise voltage at the output 
can be reduced by restricting the bandwidth of the amplifier. High-gain 
amplifiers should therefore be designed to have bandwidths just great 
enough to accommodate the signal. 

15-2. RC-coupled Pentode Amplifiers. The behavior of the RC
coupled amplifier of Fig. 15-1 is affected at high frequencies by the para
sitic shunt capacitances C1 and C2, and its behavior at low frequencies 
is affected by the coupling capacitor Ca. However, the mid-band for 
such amolifiers usually extends over much more than one decade of 
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frequency; hence the high-frequency performance can be studied sepa
rately from the low-frequency performance. The model for one stage 
of the amplifier, shown in Fig. 15-lb, reduces to the circuit shown in Fig. 
15-2a at high frequencies. The coupling capacitor is treated as a short 
circuit, the total conductance shunting the output is Gt = 1/ R1 + 1/ R 2, 

and the total capacitance shunting the output is Ct = C1 + C2. At low 
frequencies the model reduces to the circuit shown in Fig. 15-2b; the 
shunt capacitances are treated as open circuits at low frequencies. 

(a) (bl 
Fm. 15-2. Models for the RC-coupled pentode amplifier. (a) High-frequency model; 
(b) low-frequency model. 

The high-frequency model in Fig. 15-2a has the same form as the 
circuit in Fig. 14-lb; hence the forward voltage transmittance has the 
same form as Eq. (14-4) and can be written as 

1 
Ava = -Am l + . / 

JW WH 
(15-1) 

where wn = Gt/Ct = 1/RtCt is the high-frequency half-power point. 
The amplitude and phase characteristics associated with (15-1) have the 
same form as those shown in Fig. 14-4. 

At low frequencies the output voltage, obtained from Fig. 15-2b, is 
E2 = R2I, and I is related to the current gmE1 by a current-divider ratio; 
hence 

-gmR1R2 jwCa(R1 + R2) 
R1 + R2 1 + jwCa(R1 + R2) 

(15-2) 

where WL = l/Ca(R1 + R2) is the low-frequency half-power point. 
Equation (15-2) can be written in an alternative form that is often useful: 

1 
Ava= -Am l . / 

- JWL W 
(15-3) 

The amplitude characteristic associated with the numerator in Eq. (15-2) 
is a straight line crossing the frequency axis at w = WL with a slope of 
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6 db/octave, and the phase shift is constant at 90°; the amplitude and 
phase characteristics of the denominator have the same form as those 
shown in Fig. 14-4. The complete characteristics for the low-frequency 
model are obtained by adding the characteristics for these factors. By 
plotting the characteristics for both the high- and low-frequency models 
on the same set of coordinates, the combined characteristics are obtained; 
the asymptotic approximations for the combined characteristics are 
shown in Fig. 15-3. 

The gain-bandwidth product for ~tb 
the amplifier analyzed above is 

If the parasitic wiring capacitance is 
zero, G1 is the output capacitance of 
the first pentode in Fig. 15-1, and G2 
is the input capacitance of the sec
ond pentode. If the two pentodes 
are of the same type, the quantity 
(gm/Gin+ Gout), which is the maxi
mum value that the gain-bandwidth 
product can have, is a figure of merit 
for the tube. Much effort has been 
devoted to increasing this ratio; 
values corresponding to frequencies 
of several hundred megacycles per 
second are realized in the better 
pentodes. 
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FIG. 15-3. Frequency characteristics 
for a typical RC-coupled pentode ampli
fier stage. (a) Amplitude; (b) phase 
shift. 

It is usually not permissible to assume, as is done above, that the 
bypass capacitors are short circuits in the vicinity of the low-frequency 
half-power point. Figure 15-4 shows an incremental model adapted from 
the circuit in Fig. 14-17 to account for the action of the bypass capacitors 

0,___-1 ......... ------------------------~----o 
FIG. 15-4. Low-frequency model for the RC-coupled pentode amplifier with screen
grid and cathode degeneration, adapted from Fig. 14-17. 
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as well as the coupling capacitor at low frequencies. The algebra 
involved in determining the amplitude and phase characteristics of this 
circuit in general is complicated, however, by the fact that the denomi
nator of Avo is a third-degree polynomial in jw. The characteristics can 
be constructed in the usual manner after the cubic polynomial has been 
factored, but the factoring process itself it tedious, and the results yield 
little insight. The usual method of factoring such polynomials is to 
substitute numerical values for the circuit parameters and to seek the 
factors by trial and error with synthetic division. 

The parameter values in many pentode amplifiers permit a simplifica
tion in the analysis that greatly reduces the labor required in constructing 
the frequency characteristics and that provides useful insight. The grid 
return resistance Ra is often much larger than the plate load resistance 
R 4, with the result that the current in Ra is much smaller than /4. In 
such cases E~ can be evaluated with Ra treated as an open circuit, and the 
ratio E~/E1 is given by Eq. (14-63). The output voltage is then given 
by the voltage-divider relation: 

E _ jwCaRa E' _ jw/wa E' 
4 

- 1 + jwCaRa 4 
- 1 + jw/wa 4 (15-5) 

It follows from Eqs. (14-63) and (15-5) that at low frequencies 

A ( • ) = -A (jw + wo)(jw + w2) jw/wa 
vo Jw m (jw + w1) (jw + w4) (1 + jw/ wa) 

(15-6) 

where the denominator of (14-63) has been expressed as the product of 
its linear factors. Rearranging (15-6) yields 

A (. ) _ -A wow2 (jw/wa)(l + jw/wo)(l + jw/w2) 
vo Jw - m w1w4 (1 + jw/w1)(l + jw/w4)(l + jw/wa) 

(15-7) 

The amplitude and phase characteristics associated with (15-7) can be 
constructed by adding the characteristics of the constituent factors. The 
amplitude characteristic corresponds to the sum of the characteristic in 
Fig. 14-18 and the low-frequency part of the characteristic in Fig. 15-3a. 

15-3. RC-coupled Transistor Amplifiers. A cascade of two transistor 
stages is shown in Fig. 15-5a. The general considerations in cascading 
transistor stages are similar to those discussed in Sec. 15-1 in connection 
with the pentode amplifier; hence an RC interstage network is used in 
the circuit of Fig. 15-5a to block the transmission of direct current from 
one stage to the next. Transistors can also be directly coupled, or more 
elaborate interstage networks may be used to achieve certain desired 
results. 

A high-frequency model for the cascaded transistor stages is shown in 
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Fig. 15-5b under the assumption that drift transistors are employed and 
that the resistance r~ is negligible. The conductances Gn, Gt2, and Gt3 
are the total conductances connected between the three nodes and ground. 
The analysis of this circuit is complicated by the fact that at high fre
quencies, in contrast with the pentode amplifier, there is no isolation 
between the input and output of each stage; thus it is not possible to 
analyze each stage separately as was done with the pentode amplifier. 
Alternatively, the circuit can be analyzed in a straightforward way by 
solving the appropriate node equations; however, the results so obtained 
have a complicated algebraic form, and consequently provide little or no 
insight or guidance to aid in circuit design. Some understanding of the 

(a) 

(bl 

Frn. 15-5. RC-coupled transistor stages. (a) Circuit; (b) high-frequency model. 

nature of the problem can be gained, however, by adapting the techniques 
developed in Secs. 14-3 and 14-6 to the analysis of the cascaded transistor 
amplifier. 

The model for the second stage of the amplifier has the same form as 
the model for a single-stage amplifier shown in Fig. 14-19b; hence the 
effect of the collector capacitance in this stage can be accounted for by 
a Miller capacitance as shown in Fig. 14-20. When this is done, the 
second stage has the simplified representation shown in Fig. 15-6; the 
Miller capacitance is C2 = (1 + A2)Cc, where A2 = IE3/E2I-

The model for the first stage of the amplifier differs from that for the 
second stage in that its load has a capacitive component as well as a 
resistive component; hence the Miller effect is slightly more complicated 
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in the first stage. However, this stage has the same form as the triode 
amplifier shown in Fig. 14-10. It follows from this fact that the Miller 
effect in the first stage can be accounted for by a circuit of the form shown 
in Fig. 14-13. When this is done, the first stage has the simplified repre
sentation shown in Fig. 15-6. The capacitance Cc is neglected in com
parison with Ce in this circuit; hence the impedance accounting for the 
Miller effect is, from Eq. (14-32), 

Z = R1 + __!_ = - 1- + _l_ 
jwC1 w2A1Cc jwA1Cc 

(15-8) 

where A1 is the mid-band value of the ratio IE2/E1I and 

If the resistance R1 in the circuit of Fig. 15-6 were negligible in com
parison with the reactance l/wC1, the simplified representation for the 
first stage would reduce to the same form as that for the second stage, 
and the process could be repeated in each stage for a cascade of any num
ber of stages. Equation (15-8) shows, however, that R1 = l/wC1 when 

E1 12 ·E2 13 E3 

R1 t Ce Gt2 Ce C2 Gt3 

C1 

-
Frn. 15-6. Simplified high-frequency model for cascaded tra.nsistor stages. 

w = w2, where w2 is the half-power frequency for the output circuit of 
the first stage. Thus it is a rather crude approximation to neglect R 1 

at frequencies up to w2. If R1 is not neglected, and if the amplifier of 
Fig. 15-6 is preceded by yet another transistor stage, the Miller effect 
in this stage has a still more complicated form. Matters become progres
sively more complicated as more stages are cascaded. When the crude 
approximation of neglecting R1 is acceptable, the representation for 
each stage in the cascade takes the simple form of one stage of a pentode 
amplifier, and the stage-by-stage analysis is simple. 

Example 16-1. Two identical drift transistors having the incremental parameters 
r~ = 40 ohms, Tbe = 1.6 kilohms, gm = 37 millimhos, C. = 200 µµf, Cc = 2 µµf, and 
go = 0 are used in the circuit of Fig. 15-5a with Ra = 180 kilohms, Rb = 20 kilohms, 
R2 = 16 kilohms, Ra = 2 kilohms, and R 4 = 2 kilohms. Determine the parameter 
values for the simplified model shown in Fig. 15-6, and evaluate the forward current 
transmittance I 3/ I 1. 
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Solution. The parameter values for the simplified model, retaining only two 
significant figures, are: 

G I I I I 0 ·11· h t3 = - + - = - + - = .56 ml Im 0 
R2 R4 16 2 

A2 =gm= _E_ = 66 
Gt3 0.56 

C2 = (I + A2)Cc = (67) (2) = 134 µµf 

I I I I I I I I 
Gt 2 = R2 + Ra + Rb + Tbe = 16 + 180 + 20 + 1.6 

= 0.74 millimho 
_ G12 _ (0.74)(10-3) _ 

6 w2 - c. + C2 - (334) (10-12) - (2.2) (IO ) rps 

Ai = gm = _lZ_ = 50 
G12 0.74 

Ci = A1Cc = (50)(2) = 100 µµf 

I I 
Ri = w2A1Cc = (2.2) (10 6) (50) (2) (IQ-12) = 45oo ohms 

G11 = RI + RI + _!__ = 0.68 millimho 
a b Tbe 

Since I/Gu = 1/0.68 = 1.47 kilohms, and since R1 = 4.5 kilohms, the R1C1 branch 
in the simplified model can be treated as an open circuit to obtain a first approxima
tion to the forward current transmittance. With this simplification, 

A _ Ia _ I2 Ia _ -gmE1 -gmE2 
c - l,_ - l,_ y; - _I_i __ I_2_ 

-gm -gm 
Gn + jwC. G12 + jw(C. + C2) 

gm2 1 
= Gt1Gt2 (I + jwC./Gn)[I + jw(C. + C2)/Gt2] 

Substituting numerical values in this relation and expressing all frequencies in mega
radians per second yields 

I 
Ac = 2700 (1 + jw/3.4)(1 + jw/2.2) 

Thus the high-frequency amplitude characteristic has two breaks, one at 3.4/2,r = 
0.54 mcps and the other at 2.2/2,r = 0.35 mcps. The slope of the final asymptote is 
- 12 db /octave. 

When the R 1C1 branch is not treated as an open circuit, the analysis yields 

A _ -gmEi -gmE2 
c - I1 I2 

-gm -gm 
G + . C + jwC1G1 G12 + jw(C. + C2) 

11 Jw • Gi +jwC1 

A particular relation exists among the parameters of the circuit that simplifies the 
expression for Ac. From the definitions of R1, Ci, and w2, 

and 

G1 +jwC1 = Gi (1 +j7I:1) = G1 (1 +~~) 

G12 + jw(C. + C2) = G12 ( I + ~~) 
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Thus the expression for Ac reduces to 

- gm2 

Ac - (Gt1 + jwCe)[Gt2 + jw(Ce + C2)] + jwC1Gt2 

By comparing this expression for Ac with the one obtained previously, it is seen that 
the effect of the R1C1 branch is accounted for entirely by the term jwC1Gt2. It is of 
interest to determine the extent to which the current transmittance of the amplifier 
under study is modified by this term. Replacing jw by m and rearranging the denomi
nator of Ac yields 

A g~ 
c = Ce(Ce + C2)m2 + [CeGt2 + (Ce + C2)Gt1 + C1Gt2]m + GuGt2 

g~ 1 
Ce(Ce + C2) m2 + [~ + Gn + C1Gt2 ] m + G0Gt2 

Ce + C2 Ce C.(Ce + C2) C.(C. + C2) 

Substituting numerical values for the parameters in this equation with all frequencies 
expressed in megaradians per second yields 

Ac = 2(104) m2 + 6) 
The zeros of the denominator are m1 = -1.4 and m2 = -5.3; hence 

Ac = (2)(10)
4 

(m + 1.4)\m + 
Replacing m with jw and rearranging yields 

1 
Ac = 2700 (1 + jw/1.4)(1 + jw/5.3) 

The amplitude characteristic associated with this expression has breaks at l.4/21r = 
0.22 mcps and at 5.3/21r = 0.83 mcps. It follows from a comparison of these results 
with those obtained by the approximate analysis that the R1C1 branch reduces the 
lower break frequency and increases the upper break frequency. 

The Miller effect reduces the bandwidth of transistor amplifiers, and 
it causes serious algebraic complications in the analysis and design of 
amplifiers having more than two stages. It is important, therefore, 
that the consequences of the Miller effect can be simplified and the band
width of the amplifier can be increased by the addition of a simple 
compensating network to the circuit of Fig. 15-6. The required com
pensating network is a series RL branch connected from node E1 to 
ground as shown in Fig. 15-7a. If this network is adjusted so that 

and 

R = R1 = (Ce+ C2)/Cc 
Ym 

R 1 
£ = R1C1 = w2 

(15-9) 

(15-10) 

then the impedance of the two branches RL and R1C1 in parallel reduces 
to a constant resistance equal to R1. In this case the input circuit of 
the amplifier reduces to the simple form shown in Fig. 15-7b, and the 
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analysis of the circuit is considerably simplified. It follows at once that 
if each stage of a multistage amplifier is compensated in this way, the 
parallel combination of the Miller effect and the compensating branch 
in each stage is accounted for by a simple shunt resistance 

(15-11) 

for the load on each stage consists of the simple parallel connection of a 
resistance and the capacitance Ce. This is an important result, for, 
when it is applicable, it permits each stage of a multistage amplifier to 
be designed independently of all the rest. 

Ii E1 

R 

Ce 

C1 

- (a) (b) 

FIG. 15-7. Compensation of the Miller effect in a transistor amplifier. (a) Circuit; 
(b) equivalent circuit. 

When the two branches RL and R1C1 in Fig. 15-7a are adjusted in 
accordance with Eqs. (15-9) and (15-10), they form a constant-resistance 
network. Networks having constant-resistance properties play an 
important role in the design of certain types of electric wave filters, for 
they make it possible to build complicated filters by designing and 
building simple sections that are subsequently connected in cascade. 

A general analysis of the transistor amplifier of Fig. 15-5a at low 
frequencies is encumbered by unwieldy algebra. In some circumstances, 

C4 
Ibl 

C4 
lb2 

C4 

~ 

rn R2 R1 rn R2 R4 

0 

-
FIG. 15-8. RC-coupled transistor stages at low frequencies with no emitter impedance. 

however, such amplifiers are operated without stabilization of the qui
escent operating points. In such cases R3 = 0, and the amplifier can be 
represented at low frequencies by the simple circuit shown in Fig. 
15-8. The hybrid model for the transistor is used in this circuit with 
µ,be = go = 0. The resistance R1 designates the parallel combination of 
Ra and Rb, 
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The circuit of Fig. 15-8 can be analyzed stage by stage. Designating 
the resistance of rn in parallel with R1 by R~, the forward current trans
mittance of one stage is 

A = lb2 = -acbR2 R1 
c h1 R2 + R~ + l/jwC4 R1 + Tn 

-acbR1R2 jwC4(R2 + RD 
= (R2 + RD(R1 + rn) 1 + jwC4(R2 + RD 

Defining 

yields 

(15-12) 

(15-13) 

(15-14) 

where Am is the mid-band amplification, and WL is the low-frequency 
half-power point for the amplifier. This equation has the same form as 
(15-2) for the pentode amplifier at low frequencies. 

If Ra ~ 0 in the amplifier of Fig. 15-5a, a low-frequency model based 
on the circuit of Fig. 14-21c must be employed. Again, the amplifier 
can be analyzed stage by stage, and the current transmittance of one 
stage has the form 

A = Ib2 = -A wa (jw/w1)(l + jw/w3) 

c Ib1 m w2 (1 + jw/w1)(l + jw/w2) 
(15-15) 

Unfortunately, however, the break frequencies w1, w2, and wa are compli
cated functions of the circuit parameters; hence (15-15) gives little 
guidance in the design of the amplifier. 

15-4. RC-coupled Triode Amplifiers. Figure 15-9 shows the high
frequency model for two stages of a chain of cascaded triode amplifiers; 
C12 and C2a represent the grid-to-plate capacitances of the tubes. Since 
this circuit has the same form as the high-frequency model for the 
transistor amplifier of Fig. 15-5, the difficulties encountered in the analysis 
and design of RC-coupled triode amplifiers are similar to those discussed 
in connection with the transistor amplifier. 

An equivalent high-frequency model is shown in Fig. 15-9b; in this 
representation, the Miller effect in each stage is accounted for by an 
appropriate shunt branch. The element values in these branches are 
indicated in Fig. 14-13 and the associated discussion. If Ca consists of 
the small output capacitance of the last tube plus stray wiring capaci
tance, Rb may be negligibly small. However, since the output of the 
first stage is shunted by the large Miller capacitance Cb, the resistance 
Ra in the input circuit to the first stage is usually not negligible; in fact, 
Ra = 1/ wCa at the half-power frequency for the first stage. Hence, if 
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the amplifier consists of more than three stages, the analysis becomes 
complicated, as in the case of the transistor amplifier. 

Triodes are usually not employed in amplifiers that must be designed 
for precise high-frequency response; thus the topic is not pursued further 
here. It is noted in passing, however, that the method presented in 
Sec. 15-3 of compensating for the Miller effect applies in theory to the 

[al 

(b) 

FIG. 15-9. RC-coupled triodes at high frequencies. (a) High-frequency model; (b) 
equivalent circuit. 

triode amplifier. In order to obtain reasonable element values, however, 
it is necessary to modify the circuit in some way, such as by loading each 
stage with a suitably chosen shunt capacitance. 

At low frequencies each stage of the RC coupled triode amplifier can 
be analyzed as a separate part; the low-frequency model for one stage 
is shown in Fig. 15-10. The general analysis of this circuit is complicated 

(l+µ)Ro 

E2 

FIG. 15-10. Low-frequency model for RC-coupled triodes. 

by the same features that complicate the low-frequency analysis of the 
transistor amplifier. In the case of the triode amplifier, however, the 
grid return resistance R1 in Fig. 15-10 is often much larger than the 
plate load resistance R2. Under these conditions, the current in R1 is 
negligible in comparison with that in R2, and the signal voltage E~ at the 
plate of the tube can be evaluated with R1 treated as an open circuit. 
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Since E 2 is related to E~ by the voltage-divider relation 

R1 E' jw/ w1 E' 
E 2 = R1 + l/jwC1 2 = 1 + jw/w1 2 (15-16) 

where w1 = l/C1R1, it follows from Eq. (14-18) that 

A = -Am 1 + jw/wo jw/w1 
vo 1 + k0 1 + jw/(1 + ko)wo 1 + jw/w1 

(15-17) 

The amplitude and phase characteristics, and the effects of the various 

12 db/oct 

35 

6 db/oct 

~~f 
cps kcps 

Fm. 15-11. Low-frequency amplitude 
characteristic for a typical high-gain 
RC-coupled triode stage. 

circuit parameters on them, can 
be determined from this expression. 
The asymptotes for the low-fre
quency amplitude characteristic of 
a typical triode amplifier are shown 
in Fig. 15-11. 

Example 16-2. A certain two-stage RC
coupled amplifier uses a 12AU7 twin triode 
with one triode unit serving in each stage. 
The stages are identical, and the param
eters for the high-frequency model shown in 
Fig. 15-9a are Um = 1. 7 millimhos, Gt2 = 

Gta = 0.12 millimho, C1 = C2 = Ca = 15 µµf, and C12 = C2a = 2 µµf. Determine 
the parameters for the equivalent circuit of Fig. 15-9b. 

Solution. The mid-band amplification for each stage is 

Am= gm= Q = 14 
Gt 0.12 

The branch accounting for the Miller effect in the last stage consists of 

Cb = AmC2a = (14) (2) = 28 µµf 

and Rb = 1 + Ca/C2a = 1 + 7.5 = 5.0 kilohms 
gm 1.7 

Neglecting Rh as a rather crude approximation, the total capacitance shunting the 
output of the first stage is 

Ct = C2 + C2a + Cb = 15 + 2 + 28 = 45 µµf 

Accordingly, the branch accounting for the Miller effect in the first stage consists of 

Ca = AmC12 = (14)(2) = 28 µµf 

and R 1 + Ct!C12 _ 1 + 22.5 _ 14 k"l h 
a ::c gm - 1.7 - 1 0 ms 

16-6. Over-all Characteristics of Multistage Amplifiers. The asymp
totes for the amplitude and phase characteristics for one stage of an 
amplifier are shown in Fig. 15-3. The high-frequency portion of these 
characteristics is given by Eq. (15-1), and the low-frequency portion is 
given by Eq. (15-2). It follows that the complete characteristics are 
given by 
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A = -A jw/wL ( ) 
vo m (l + jw/wL)(l + jw/wn) 15-18 

This equation can be obtained directly by analyzing the circuit in Fig. 
15-lb without treating the low- and high-frequency ranges separately; 
however, the break frequencies WL and wn are in this case related to the 
circuit parameters in a somewhat complicated way. 

If two identical stages like the one in Fig. 15-lb are connected in cas
cade, then the over-all forward voltage transmittance is given by 

A = A 2 (jw/wL)2 ( ) 
vo m (l + jw/wL)2(l + jw/wn)2 15-19 

The over-all amplitude and phase 
characteristics of the individual 
stages; the asymptotes for a typi
cal amplitude characteristic are 
shown in Fig. 15-12a. The half
power frequencies, which are the 
frequencies at which the amplifica
tion is 3 db less than its mid-band 
value, do not correspond to the 
break frequencies in the case of two 
cascaded stages. In fact, the am
plification at the break frequencies 
is 6 db below its mid-band value. 
It follows that the bandwidth be
tween the half-power points de
creases as more identical stages are 
connected in cascade. 

If two nonidentical stages like 
that in Fig. 15-lb are connected in 

characteristics are the sums of the 

2Actbm -12 db/oct 

12 db/oct 

w 

(a) 

Actb 

w 

(b) 

Fm. 15-12. Over-all amplitude charac
teristic for two stages in cascade. 
(a) Identical stages; (b) nonidentical 
stages. 

cascade, then the over-all forward voltage transmittance is given by 

A = A A UcdwL1J_(J_·w-,---/_w~L2__,),-------;:--;--:---::---:--
vo ml m

2 (1 + jw/ WLt) (1 + jw/ WL2) (1 + jw/ wm) (1 + jw/ wn2) 
(15-20) 

The over-all amplitude and phase characteristics are obtained by adding 
the constituent characteristics; the asymptotes for a typical amplitude 
characteristic are shown in Fig. 15-12b. 

16-6. Pole-zero Patterns. The amplitude and phase characteristics 
associated with the voltage and current transmittances provide a con
venient and useful means for displaying the variations of these trans
mittances with frequency. The pole-zero patterns2 •3 associated with 
these transmittances display the same information in a different and 
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more compact way. Certain important properties of the transmittances 
and of the networks which they describe can be perceived more easily 
from the pole-zero patterns than from the amplitude and phase char
acteristics, and as a general rule the pole-zero patterns are of greater 
fundamental importance than the frequency characteristics. However, 
given the frequency characteristics, the pole-zero pattern can be con
structed, and vice versa. 

The concept of the pole-zero pattern can be developed in terms of 
Eq. (15-18) for the voltage transmittance of a single-stage pentode 
amplifier. This equation can be written as 

Avo(jw) = K C + ~(. + ) 
JW WL JW WH 

(15-21) 

where K = -AmwH, For reasons set forth in Chap. 14, it is desirable 
to replace the symbol jw with m and to define mL = -wL and mH = -wH. 
Thus (15-21) can be written as 

m 
Av0 (m) = K ( ) ( ) (15-22) m - mL m - mH 

The steady-state sinusoidal voltage transmittance for any frequency w 

is obtained from (15-22) by letting m = jw. 
All the network functions encountered in the study of the dynamics 

of linear, lumped parameter systems, like the voltage transmittance 
given by (15-22), can be expressed as the ratio of two polynomials in 
the variable m. Functions of this type are called rational functions. 
The values of m that make such functions zero are called zeros of the 
function; hence m = 0 is a zero of the function given by ( 15-22). Simi
larly, the values of m that make rational functions infinite are called 
poles of the function; hence mL and mH are poles of the function given 
by (15-22). As indicated by the form of (15-22), if all the poles and 
zeros of a rational function are known, the function is completely speci
fied except for a constant multiplier. For example, if the zeros of a 
certain voltage transmittance are -1 and - 3, and if the poles are - 2 
and - 4, then the transmittance is 

A = K ( m + 1) ( m + 3) = K m 2 + 4m + 3 
vo (m + 2)(m + 4) m2 + 6m + 8 

(15-23) 

and for steady-state sinusoidal conditions 

A = K (jw + 1) (jw + 3) = 3K (1 + jw/1) (1 + jw/3) (l5_24) 
vo (jw + 2)(jw + 4) 8 (1 + jw/2)(1 + jw/4) 

Thus if the poles and zeros of a rational function are known, the loga
rithmic amplitude and phase characteristics can be constructed, except for 
the effect of the constant multiplier. If the constant multiplier is not 
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unity, it adds a constant number of decibels to the amplitude character
istic; if it is not positive, it adds a constant angle of 180° to the phase 
shift. (The constant angle is usually omitted from the phase character
istics.) It is also significant to note that the poles and zeros of Avo 
correspond to the break frequencies expressed in radians per second. A 
zero corresponds to a break of 6 db/octave upward in the asymptotic 
characteristic, and a pole corresponds to a break of 6 db/ octave downward. 

The connection between the poles and zeros of the signal transmittance 
and the frequency characteristics is displayed in a useful way by the 
pole-zero diagram. As an example, Fig. 15-13a shows the pole-zero 
diagram for the voltage transmittance of a single-stage amplifier; this 
transmittance is given analytically by Eq. (15-22). The steady-state 
sinusoidal transmittance is obtained from (15-22) by letting m = jw. 
Hence, since mL and mH are real numbers, Avo(Jw) contains both real 

Imaginary 

m=,jw 

Im 
m=jw 

p 

-x------x-~r---'• -x-:::...._--'----->t·-'--O---• 

mH mL Real mH Re 

~ w 
Frn. 15-13. Pole-zero pattern for Eq. (15-22). (a) Diagram; (b) interpretation. 

and imaginary numbers, and it is desirable to plot the pole-zero diagram 
on a set of rectangular coordinates known as the plane of complex 
numbers or, simply, the complex plane. Thus the zero of Avo, which 
occurs when m = 0, is designated by a circle at the origin of the complex 
plane. The poles of Avo, which occur when 

1 
m = mL = -wL = 

and when 

are represented by crosses on the negative real axis. For steady-state 
sinusoidal operation, the variable m = jw corresponds to a point on the 
imaginary axis. 

The important relations between the poles and zeros of Avo(m) and the 
variable m = jw are diagramed in Fig. 15-13b. The imaginary number 
m = jw has a magnitude p and an angle 1r /2; hence it can be expressed 
in polar form as 

m = pe;,.-12 (15-25) 

As shown in Fig. 15-13b, the magnitude pis the length of a radius vector 
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from the origin of the complex plane to the point m = jw on the imagi
nary axis. Similarly, the two factors in the denominator of (15-22) 
are complex numbers having magnitudes that can be designated PL and 
PH and angles that can be designated 0L and OH; accordingly, they can be 
expressed in polar form as 

and (15-26) 

The magnitude and angle of each of these complex numbers are shown 
geometrically in Fig. 15-13b. As w is varied from zero to infinity, the 
point m moves up the imaginary axis from the origin to infinity, and the 
magnitudes and angles of the vectors vary accordingly. The diagram 
in Fig. 15-13b is essentially the same as the diagrams presented in Figs. 
14-2 and 14-6 to illustrate frequency dependence in connection with the 
amplitude and phase characteristics; it is simply the diagram of a set of 
complex numbers that vary with frequency. 

The way in which the amplitude and phase of Avo vary with frequency 
can be evaluated qualitatively by inspection of the pole-zero diagram. 
The exact relations can be formulated by noting first that 

Substituting (15-25) and (15-26) with m = jw into (15-27) yields 

IAvol = K-p
PLPH 

and 

(15-27) 

(15-28) 

where 0 is the angle of Avo(jw) in radians. For any given frequency w, 
the corresponding amplification and phase angle can be estimated by 
inspection or determined exactly by measurement of the diagram in 
Fig. 15-13b. 

One of the more useful features of the pole-zero diagram is that in 
several important circumstances it shows that cfl,lculations can be simpli
fied by neglecting certain factors for values of frequency lying in certain 
ranges, and it provides an estimate of the error resulting from the use of 
such approximations. This fact is used to advantage at several points 
in the sections that follow. The diagram of Fig. 15-13 illustrates this 
feature in terms of a familiar circuit, the RC-coupled amplifier. The 
high-frequency break in the amplitude characteristic of a typical RC
coupled amplifier is usually separated from the low-frequency break by 
two or three decades of frequency. Accordingly, the pole at mH is 
usually 100 to 1000 times as far from the origin of the complex plane 
as the pole at mL. Thus in the range of very low frequencies the vector 
PH remains essentially constant, and the dependence of A110 on frequency 
is determined entirely by the vectors p and PL· In the intermediate 
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range of frequencies, PH is still essentially constant, and p and PL are 
approximately equal; hence, according to (15-28), Ava is independent of 
w in the intermediate frequency range. Since it is not feasible to draw 
the pole-zero diagram to scale with mH = IOOmL, the mid-band relations 
do not show clearly the diagram of Fig. 15-13b. At frequencies above 
the mid-band, p and PL cancel, PH becomes dependent on w, and the high
frequency behavior of Ava is determined entirely by PH· It follows from 
this discussion that the upper half-power point occurs when OH = 45° 
and the lower half-power point occurs when OL = 45°. 

As another illustration of the way in which the pole-zero pattern 
displays the properties of networks, consider the high-frequency model 
of a triode amplifier shown in Fig. 14-10. The forward voltage trans
mittance of this circuit is given by (14-25); after replacing jw with m and 
clearing of fractions, it has the form 

A,,o(m) = Km - m12 

m - m2 
(15-29) 

where m12 = w12 = Um/C12 and m2 = -w2 = -(gP + G2)/(C12 + C2). 
The pole-zero pattern for Avo(m) has the form shown in Fig. 15-14a. The 
amplitude and angle of A,,o(jw) can 
be determined from the magnitudes 
and angles of the two vectors in this 
diagram along with the constant 
multiplier K in (15-29). 

Im Im 

m=jw m=jw 

An interesting condition results m2 

when the parameters in the circuit 

Re 

described by (15-29) are adjusted so 
that m12 is equal in magnitude to m2. 
Under this condition the two vectors 
in Fig. 15-14a are of equal length for 
all values of w, and jA,,o(jw) I is con
stant at the value K for all w. The 

(a) (b) 

FIG. 15-14. Minimum- and non-mini
mum-phase-shift networks. (a) Pole
zero pattern for Eq. (15-29); (b) mini
mum-phase-shift counterpart of the 
pattern in (a). 

phase shift is a function of w, however. Since networks having this type 
of pole-zero pattern amplify (or attenuate) signals of all frequencies uni
formly, they are called all-pass networks. 

Another network property is illustrated by the two pole-zero patterns 
of Figs. 15-14a and b. The zero in Fig. 15-14b is the mirror image about 
the imaginary axis of the zero in Fig. 15-14a; otherwise the two patterns 
are identical. It follows that for any given value of w, the two vectors 
in (b) are equal in length to their counterparts in (a); their angles 
are not the same, however. Therefore the amplitude characteristics 
associated with the two patterns are identical, but the phase character
istics are different. Thus, in general, a number of different pole-zero 
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patterns can be associated with a given amplitude characteristic. These 
patterns differ from one another in that some or all of their zeros are 
mirror images about the imaginary axis. It is shown in Chap. 16 that 
poles in the right-hand half of the complex plane are associated with 
growing transients; hence all the poles of stable networks, which are the 
only networks of interest here, must lie in the left half of the plane. Of 
all the pole-zero patterns that can be associated with a given amplitude 
characteristic, the one having all its zeros in the left half plane produces 
the smallest change in phase angle as w varies from zero to infinity. 
Hence it is the minimum-phase-shift pattern, and the corresponding 
network is the minimum-phase-shift network, associated with the given 
amplitude characteristic. 

The design of networks to provide a desired frequency characteristic 
often begins with the choice of a pole-zero pattern that yields a suitable 
approximation to the desired performance. The design is then completed 
by finding a network configuration and the parameter values that yield 
the desired pole-zero pattern. When the desired pole-zero pattern is 
simple, having no more than two or three poles and zeros, experience 
often indicates a suitable network. When more complicated patterns 
are desired, more advanced methods must be employed. Much effort 
has been devoted to the development of systematic procedures for solving 
this problem of network synthesis. 

Example 16-3. The pole-zero pattern for the voltage transmittance of a certain 
amplifier is shown in Fig. 15-15. The amplification at high frequencies is 40 db. 
Construct the asymptotes for the logarithmic amplitude characteristic. 

Solution. The amplitude characteristic can be constructed by inspection of the 

Frn. 15-15. Pole-zero pattern for a 
particular voltage transmittance. 

pole-zero pattern. It is instructive, how
ever, to go through the intermediate steps. 
The voltage transmittance is given by 

(jw + 30) (jw + 200) 
Avo = K (jw + 128) (jw + 812) 

For very large w, this expression reduces to 

Avo = K 

Therefore, since the amplification at high frequencies is 40 db, K = 100. Substitut
ing this value in the equation for Avo(jw) and rearranging yields 

(1 + jw/30)(1 + jw/200) 
Avo = 5·77 (1 + jw/128)(1 + jw/812) 

This equation is identical with (14-69) for the transmittance of a pentode amplifier at 
low frequencies; the asymptotes for the logarithmic amplitude characteristic are 
shown in Fig. 14-18. 

15-7. Single-tuned Pentode Amplifiers. The performance of the 
RC-coupled vacuum-tube and transi~tor ~mplifiers oo:usidered in the 
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preceding sections is affected adversely at high frequencies by the parasitic 
capacitance shunting each stage. The shunt capacitance tends to short
circuit the signal at high frequencies, and it places an upper limit on the 
frequencies at which signals can be amplified satisfactorily. In many 
important applications it is possible to incorporate inductances in the 
circuit in such a way that the inductive effects cancel, in part, the capaci
tive effects over a band of frequencies; as a result, large amplifications 
can be obtained over a band of high frequencies. Since the amplifica
tion of such circuits is large only in a certain band of frequencies, these 
circuits can be used to amplify selectively signals in one band and to 
exclude signals at other frequencies. This selective amplification makes 
it possible for radio receivers to respond to signals from only one of the 
many stations broadcasting radio signals. 

The single-tuned pentode amplifier1 is the simplest amplifier of the 
type described above; an incremental model for one such amplifier stage 
is shown in Fig. 15-16. The circuit is similar to that for the RC-coupled 
pentode amplifier of Fig. 15-1 except that the plate load resistor is 
replaced by a parallel combination of L and C. The load impedance in 
the circuit of Fig. 15-16 is large at frequencies near the resonant fre
quency of the tuned circuit, and the amplification is correspondingly 
large at those frequencies. The band of frequencies over which the 
amplification is large depends on the 
Q of the circuit, and the location L Ez 

of this band in the frequency spec- 1 i I ~ : 
trum can be shifted by changing t G C L 

either L or C. Since this simple gmE~ · 

circuit illustrates certain important O ::L 
basic principles, it merits a detailed Frn. 15-16. A tuned pentode amplifier. 
examination. 

The voltage transmittance of the circuit in Fig. 15-16 is the impedance 
connected across the output terminals multiplied by the transconductance 
of the tube; hence it varies with frequency in the same way as the imped
ance of the parallel resonant circuit. Specifically, 

-gm 
Avo(m) = G + mC + 1/mL (15-30) 

When m is given the value jw, (15-30) gives the forward voltage trans
mittance for sinusoidal operation. Factoring C /m out of the denominator 
and denoting the resonant frequency by wo 2 = I/LC yields 

-gm m 
Avo(m) = (} m2 + (G/C)m + Wo2 (15-31) 

The denominator in (15-31) can be expressed as the product of two linear 
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factors, giving 
-gm m 

A11o(m) = -C ( )( ) m - m1 m - m2 
(15-32) 

The poles of Avo are obtained from (15-31) with the aid of the quadratic 
formula; they are 

and 

m,= -2~+ ✓(£)'-w.' 
m, = - ~ - ..}(2~ )' - w.' 

(15-33) 

These poles may be either real or complex, depending on the relative 
values of the circuit parameters. If they are real, (15-32) has the same 
form as Eq. (15-22) for the voltage transmittance of the RC-coupled 
amplifier; hence the pole-zero pattern and the frequency response of the 
tuned amplifier with real poles are the same as those for the RC-coupled 
amplifier. If the poles are complex, they form a conjugate pair, and they 
can be expressed as 

and 

where 

m2 = -a1 - j/31 
G 

a1 = 2C and 

(15-34) 

(15-35) 

(15-36) 

When the poles of Avo(m) are complex, its pole-zero pattern has the 
form shown in Fig. 15-17a. It follows from the definitions of a1 and /31 
that 

(15-37) 
and hence that 

(15-38) 

Thus a1 is the distance of m1 from the imaginary axis, /31 is its distance 
from the real axis, and wo is its distance from the origin of the complex 
plane. 

Figure 15-17b illustrates the relations that exist in Eq. (15-32) when 
the resonant Q of the circuit is 5. The frequency dependence of Avo(jw) 
can be determined from the vectors shown in this figure, and, moreover, 
the geometry of the diagram shows how the pertinent relations can be 
simplified. 2•3 For Q's of 5 or more, the poles of Avo are much closer to 
the imaginary axis than they are to the origin; hence as the variable point 
m = jw moves along the imaginary axis in the vicinity of m1, the factor 
m - m1 experiences large variations, while the small variations in the 
factors m and m - m2 tend to cancel. Thus when mis in the vicinity 
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of m1, m ~ jwo and m - m2 ~ j2wo, Substituting these values in (15-32) 
yields 

Avo(m) = - 2gmC 1 
m- m1 (15-39) 

Thus the pole-zero diagram shows that for Q's greater than 5, the ratio 
m/(m - m2) can be treated as a constant, ½, and the frequency char
acteristics can be determined from the simplified expression (15-39). 
The corresponding amplitude characteristic is shown in Fig. 15-17c. 

(a) 

Im 

1 
1 

~' I \ \ 
/ I ' 

/ I ' _.,,,✓ I ,, 
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(c) 
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Im 
mix 

/ m=j"' (m-m1) 

Re 
(m-m2) 

mzx 

lb) 

Im 

(d) 

Frn. 15-17. Pole-zero patterns and resonance in tuned amplifiers. (a) Pole-zero pat
tern; (b) graphical representation of the factors in Eq. (15-32); (c) amplitude charac
teristic; (d) expanded view of the pole-zero pattern in the vicinity of m1, 

An expanded view of the region in the vicinity of m1 showing how the 
factor m - m1, and consequently Ava, varies with frequency is given in 
Fig. 15-17d. The half-power frequencies are those at which IAvol is 
reduced by the factor y2 from its maximum value; hence at the half
power frequencies the magnitude of m - m1 is increased by 0 from its 
minimum value. It therefore follows from Fig. 15-17d that the half
power frequencies are w = wo + a1 and w = wo - a1, The bandwidth 
between the half-power points is, accordingly, 

G G 
B = 2a1 = 2 

2
G = C radians/sec (15-40) 

Thus the coefficient on the linear term in the denominator of (15-31) is 
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the half-power bandwidth of the amplifier in radians per second. In 
addition, the constant term in the denominator of (15-31) is the square 
of the resonant frequency in radians per second. If the resonant Q of 
the circuit is defined as Qo = woC /G, then 

Q _ WoC _ Wo _ Wo 
0 

- G - B - 2a1 (15-41) 

That is, the resonant Q is also the ratio of the resonant frequency to the 
half-power bandwidth. 

The pole-zero pattern provides a compact way of displaying the effects 
of varying the circuit parameters on the characteristics of tuned ampli
fiers. For example, if L is increased while G and C are held constant, and 
if the poles are complex, it follows from Eqs. (15-36) that wo and /31 
decrease while a:1 remains constant. Thus the poles must move on a 

Im Im Im 
I 
I 
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Re 

r2 
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FIG. 15-18. The effect of variations in circuit parameters on the pole-zero pattern. 
(a) Increasing L; (b) increasing G; (c) increasing C. 

path parallel to the imaginary axis as shown in Fig. 15-18a. If the poles 
are real, Eqs. (15-34) and (15-35) show that with increasing Lone of them 
moves toward the origin and the other moves away from the origin; 
in the limit, as L tends to infinity, the pole approaching the origin 
cancels the zero there, and the pole receding from the origin approaches 
the point -G/C on the axis of negative real numbers. In this limit 
the pole-zero pattern becomes that of a capacitance in parallel with a 
conductance, for the inductor behaves as an open circuit in the limit. 

For one value of L the poles coincide on the negative real axis forming 
a double pole at that point. This condition, which occurs when the 
radical in Eq. (15-34) is zero, corresponds to critical damping of the 
resonant circuit; more is said about this last fact in Chap. 16. When L 
is greater than the value giving critical damping, the circuit is over
damped, and the poles lie on the negative real axis. Under these con
ditions the amplitude and phase characteristics of the tuned amplifier 
have the same form as those of the RC-coupled amplifier. When Lis less 
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than the critical value the circuit is underdamped, and the amplitude 
and phase characteristics may be quite different from those of the RC 
amplifier. 

If the conductance G is increased while L and C are held constant, and 
if the poles are complex, then /31 and a1 vary while wo remains constant. 
As a consequence the poles move on the circular path shown in Fig. 15-lSb. 
At a certain value of G the poles meet on the negative real axis, and if G 
is increased further, one pole moves toward the origin and the other 
moves toward infinity. 

If the capacitance C is increased while L and G are held constant, and 
if the poles are complex, then /31, a1, and wo all vary; however, the path 
along which the poles move has a simple form. If the real part of m1 

is denoted by x and the imaginary part by y, then it follows from Eq. 
(15-34) that 

G 
x = - 2C and (15-42) 

Eliminating C between these two expressions, adding and subtracting 
(I/LG) 2 to complete the square, and rearranging the terms leads to 

y' + (x + L~)' ~ Vfl)' (15-43) 

If L and G are held constant while C is varied, x and y, the real and 
imaginary parts of m1, must vary in accordance with (15-43), which 
describes a circle with its center on the x (real) axis at - I/LG and with a 
radius equal to I/LG. This circle is shown in Fig. 15-lSc. When the 
poles are complex, m2 is the conjugate of m1 and hence moves on a similar 
circle. If C is made less than a certain value, the poles become real, 
and if C is reduced further, one pole recedes toward infinity and the 
other approaches the center of the circular path at -I/LG. When C 
becomes zero, the pole-zero pattern becomes that of an inductance in 
parallel with a conductance. 

There are many circumstances in which the results developed above 
and illustrated in Fig. 15-18 can be used to gain insight into circuit 
properties and to simplify the problems of analysis and design. There
fore it is desirable to state the results in a more general form. Any 
quadratic polynomial in m can be expressed as 

am' + bm + c ~ a ( m' + ~ m + ~) (15-44) 

This polynomial has two zeros, or roots; if the coefficients a, b, and c 
are real numbers, the roots must either be real or they must occur in 
conjugate pairs. The locations of the roots in the complex plane depend 
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on the values of the coefficients. If c is decreased while a and bare held 
constant, the roots move in the indicated direction along the paths shown 
in Fig. 15-18a; the distance of the vertical paths from the imaginary 
axis is a 1 = b/2a. If b is increased while a and c are held constant, the 
roots move in the indicated direction along the paths shown in Fig. 
15-18b; the radius of the circular portions of the paths is vc1a,. If a 
is increased while b and c are held constant, the roots move in the indi
cated direction along the paths shown in Fig. 15-18c; the radius of the 
circular portions of the paths is c/b, and the center of the circle is at 
-c/b. If two or more of the coefficients are varied simultaneously, the 
paths do not, in general, have simple forms; in such cases the paths are 
combinations of the paths shown in Fig. 15-18. The paths along which 
the roots move are usually called loci, and the procedures by which they 
are constructed are known as root-locus techniques. Generalized root
locus techniques for higher-order polynomials have been developed to a 
rather high degree, and they serve as valuable guides in the analysis and 
design of complicated circuits. 

The design of tuned amplifiers such as the one analyzed in the pre
ceding paragraphs is concerned largely with choosing the circuit param
eters so that the desired signals are amplified with suitable uniformity 
and so that undesired signals are rejected to the greatest possible extent. 
Thus the parameters must be chosen to give suitable values of wo and 
Q0 • For example, the signals transmitted by standard AM broadcasting 
stations lie in the frequency range between 535 and 1605 kcps, and the 
signal from each station occupies a band 10 kcps wide. If the signal 
to be amplified is centered at 1 mcps, and if the signal is to lie within the 
half-power bandwidth of the amplifier, then the circuit parameters must 
be chosen to give resonance at 1 mcps and to give a bandwidth of 10 kcps. 
The pertinent relations are 

Wo = )re = (211")(10 6) rps 

and B = g = (271') (104) rps 

(15-45) 

(15-46) 

Thus one of the three parameters can be chosen at will. The corre
sponding resonant Q is 

Q0 = ';; = 100 (15-47) 

and the amplification at resonance is, from (15-31), 

(15-48) 
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It is interesting to note that the product of the resonant amplification and 
the half-power bandwidth is 

AoB = YmQo Wo = Ym 
WoC Qo C 

(15-49) 

Thus the gain-bandwidth product for the tuned amplifier has the same 
form as that for the RC-coupled amplifier. 

The pole-zero pattern for the voltage transmittance of a tuned ampli
fier and the associated amplitude characteristic are shown in Fig. 15-17. 
The pole-zero pattern in that case consists of a pair of complex poles and 
a zero at the origin of the complex plane. Since complex poles associated 
with electric circuits always occur in conjugate pairs, it is of interest to 

1:a 

11c 

(bl 

IAuol 
p:-

3 

Fm. 15-19. Dynamic behavior associated with a pair of poles. 
frequency model; (c) amplitude characteristic. 

(cl 

w 
(linear scale) 

(a) Circuit; (b) high-

examine the properties of a single pair of such poles. Moreover, signal 
transmittances characterized by a single pair of complex poles are 
encountered in a number of important circuits. One stage of a cascade 
of transformer-coupled voltage amplifiers, shown in Fig. 15-19a, serves 
as a simple example. This amplifier can be represented approximately 
in the middle- and high-frequency ranges by the incremental model shown 
in Fig. 15-19b; the resistance R represents the plate resistance of the tube 
and the transformer winding resistance, L is the leakage inductance of 
the transformer, and C accounts for the parasitic capacitances of the 
transformer and the stage that follows. 1 The voltage transmittance of 
the high-frequency model is 

µ 1 
A,,o(m) = - LC m 2 + (R/L)m + (1/LC) (l5-50) 

Defining w0
2 = 1/LC and expressing the quadratic in its factored form 

yields 
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1 
A,10(m) = -µwo 2 

( )( ) m - m1 m - m2 
(15-51) 

When the circuit parameters have values such that the poles are complex 
and relatively close to the imaginary axis, the amplitude characteristic 
has the form shown by curve 1 in Fig. 15-19c. The high resonant peak 
in this characteristic is usually undesirable in amplifiers of this type, for 
it results in an overemphasis of signals with frequencies near wo. If the 
resistance R is increased, the poles move away from the imaginary axis 
on a circular path with w0 constant (Fig. 15-18b); as a result, the form 
of the amplitude characteristic may change to that shown by curve 2 
in Fig. 15-19c. The resonant peak in the characteristic is greatly reduced; 
with further increases in R, the peak disappears altogether. 

The pole-zero pattern for the voltage transmittance of the circuit in 
Fig. 15-19b is shown in Fig. 15-20a; it consists of a single pair of poles 

Im 

r-a1 Im 
m1 m1 T P1 

m=jw m=jw 
~l cf, 

\ 
\ 
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Re I Re I 
I 

I 
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Jt 

m2 m2 

(a) (b) 

FIG. 15-20. Diagrams related to the amplitude characteristic of a pair of complex poles. 
(a) Pole-zero pattern; (b) resonant-peaking circle. 

that are assumed to be complex. The amplitude characteristic can be 
constructed by determining the lengths of the vectors p1 and p2 as the 
variable point m = jw moves along the imaginary axis. It is of con
siderable importance that the height of the peak in the amplitude char
acteristic and the frequency at which the peak occurs can be determined 
by a simple construction on the pole-zero diagram. The amplification, 
given by (15-51), is 

2 

IAvo(jw)I = A = µwo 
P1P2 

(15-52) 

As the variable point moves along the imaginary axis, the area of the 
triangle m1m2m remains constant at the value 

(15-53) 

This area is also given in terms of two sides and the included angle by 

P1P2 sin </> a= 
2 

(15-54) 
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Thus 2a 2a1/31 
PIP 2 = sin ¢ = sin ¢ 

Substituting (15-55) into (15-52) yields for the amplification 

µwo 2 • 
A=--sm<f, 

2ai/31 

(15-55) 

(15-56) 

The factor sin ¢ is the only variable in this expression as long as the 
poles remain in a fixed location. 

The amplification given by (15-56) has its maximum value when sin ¢ 

has its maximum value, unity; this occurs when ¢ = 90°. But when 
<f, = 90°, the triangle m1m2m can be inscribed in a semicircle as shown in 
Fig. 15-20b. Thus the point at which the semicircle intersects the 
imaginary axis gives the frequency of peak amplification wp. For 
m = jwp, sin ¢ = 1, and the peak amplification is 

(15-57) 

If the amplification form = 0 is designated Ao, and if the corresponding 
value of ¢ is designated <Po, then 

Ao . 
A= sm <Po 

p 
(15-58) 

Since the semicircle in Fig. 15-20b yields information about the resonant 
peak in the amplitude characteristic, it is referred to hereafter as the 
resonant-peaking circle. 

If the resistance R in the circuit of Fig. 15-19b is increased so as to move 
the poles sufficiently far from the imaginary axis, the resonant-peaking 
circle does not intersect the imaginary axis, the amplification has its 
maximum value at m = 0, and there is no resonant peak in the amplitude 
characteristic. The maximum value of A under these conditions is less 
than the value of AP given by (15-57). A case of special interest arises 
when R is adjusted so that the peaking circle is tangent to the imaginary 
axis. This is the minimum value that R can have without a peak appear
ing in the amplitude characteristic, and it results in the maximum band
width obtainable without a resonant peak. When the circuit is adjusted 
for this condition it is said to be maximally flat. It follows at once from 
Fig. 15-20 that this circuit is maximally flat when a1 = /31. With the 
circuit adjusted for maximal flatness, the half-power point occurs when 
<P = 45°. It is easy to show that under this condition the triangle 
m 1m 2m is inscribed in a semicircle centered at the origin of the complex 
plane; hence, with the maximally flat adjustment, the half-power fre
quency is wo. 

The frequency of the resonant peak in the amplitude characteristic is 
given by the intersection of the peaking circle with the imaginary axis. 
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Since the radius of the peaking circle is {3 1, it follows that 

w.' = f:31
2 

- a,•= w.' [ 1 - 2 (::)'] (15-59) 

The quantity ai/wo is customarily symbolized by t and is known as the 
damping ratio for the pair of poles. 3 If Eq. (15-41) is taken as the 
definition of the Q of a pair of poles, then 

a1 1 t =- =-
Wo 2Q 

(15-60) 

There are many circumstances in which the logarithmic amplitude and 
phase characteristics for a pair of complex poles are required. As in 
the case of the real poles discussed in Chap. 14, the asymptotic behavior 
of these characteristics is simple; however, the transition of the char
acteristics from one asymptote to the other is not as simple as in the 
case of the real pole. Nevertheless, the logarithmic amplitude char
acteristic can be constructed in a relatively easy manner with the aid of 
the asymptotes and the information provided by the peaking circle. 

Under steady-state sinusoidal operating conditions, Eq. (15-50) 
becomes 

For very small values of w this expression reduces to 

Avo = -µ 

and the amplification in decibels is 

Adb = 20 logµ 

(15-61) 

(15-62) 

(15-63) 

Thus the low-frequency asymptote for the logarithmic amplitude char
acteristic is a horizontal line corresponding to the constant (20 log µ). 
For very large values of w, the voltage transmittance reduces to 

2 A _ µwo vo-7 

.tnd the amplification in decibels is 

Adb = 20 log µ - 40 log !:!.. 
Wo 

(15-64) 

(15-65) 

The high-frequency asymptote is therefore a straight line with a slope 
of -40 db/decade, or -12 db/octave. It follows directly from (15-63) 
and (15-65) that the asymptotes intersect at w = wo. These asymptotes 
are shown in Fig. 15-21. 

The transition of the amplitude characteristic from the low- to the 
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high-frequency asymptote depends on the location of the poles, and thus 
on the value of the parameter r = ai/ wo, If the characteristic has a 
peak (r less than 0. 707), two points on the characteristic in the transition 
region can be determined easily. It follows directly from (15-61) that 
for W = Wo, 

IA ( . ) I µwo µwo µ 
VO JWo = R/L = 2a1 = 2r (15-66) 

In addition, the peak in the curve occurs at the radian frequency wp 

given by (15-59), and the amplification at the peak is given by (15-57). 
These amplifications, when converted to decibels, permit the character
istic to be sketched with sufficient accuracy for many purposes.* The 
characteristic for r = 0.4 is shown in Fig. 15-21. 

If the value of r is greater than 0. 707, the characteristic has no peak. 
Equation (15-66), which gives the amplification at wo, provides one point 

"' (log 
scale) 

FIG. 15-21. Logarithmic amplitude char
acteristic for Eq. (15-61) with r = ai/wo = 
0.4. 

FIG. 15-22. Phase characteristic for Eq. 
(15-61). s = ai/wo, 

on the characteristic. If the value of r is greater than unity, the poles 
are real, and they can be treated separately in accordance with the 
techniques presented in Chap. 14. 

It is clear from Eq. (15-61) that, apart from the minus sign, the phase 
shift approaches 0° at very low frequencies and that it approaches - 180° 
at very high frequencies. In addition, the phase shift is -90° at w = wo. 

The details of the phase characteristic cannot be summarized in a simple 
form, however. Phase characteristics for two values of r are shown in 
Fig. 15-22. 

Example 16-4. The performance of a particular transformer-coupled audio ampli
fier of the form shown in Fig. 15-19a is to be examined in the middle- and high
frequency ranges. The circuit can be represented by the high-frequency model 
shown in Fig. 15-19b with µ. = 20, R = 8 kilohms, L = 0.4 h, and C = 600 µµf. 

* The author has recently been shown that an additional point on the amplitude 
characteristic can be obtained with no effort, for the high frequency at which the 
amplification is the same as at zero frequency is -y2 wp, On a logarithmic scale this 
point is half an octave above wp. The geometric proof is simple but not obvious. 
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Solution. The voltage transmittance is given by (15-51); the pole-zero pattern 
has the form shown in Fig. 15-20. The pertinent dimensions of the pole-zero pattern 
are 

R 8000 
a1 = 2L = 0_8 = 10,000 

1 
Wo = _ ;- = 64,500 

vLC 
/31 = v~w-02---a-12 = Wo vl - (a1/wo)2 = Wo yl - 0.024 

Using the binomial expansion for the radical, 

/31 ~ w0 (l - 0.012) = 0.988wo = 63,800 

Also of interest is the resonant frequency in cycles per second: 

f o = ;: = 10.3 kcps 

Since (31 is larger than a 1, the amplitude characteristic has a resonant peak; the fre
quency of the peak is 

and 

Wp = Wo yl - 2(ai/w0 )
2 = Wo yl - 0.048 

= wo(l - 0.024) = 0.976wo = 63,000 rps 

f P = ;; ~ 10 kcps 

The amplification at the resonant peak is 

A _ µwo2 _ µwo2 

P - 2a1/31 - 2a1(0.988wo) 
= 3.26 µ = 65.4 

64.5 µ 

(2) (10) (0.988) 

The peak amplification is 3.26 times the amplification in the mid-band, and the peak 
occurs well inside the band of audio frequencies. 

The amplifier can be made maximally flat by increasing the equivalent resistance 
of the transformer. The value of R required for maximal flatness is determined from 
the fact that for maximal flatness, 

R 
Wo = v2a1 = ---

y2L 
Thus the required value of R is 

R = y2 Lwo = y2L/C = 36.4 kilohms 

If a resistance is added in series with the primary of the transformer to achieve maxi
mal flatness, the low-frequency performance of the amplifier is affected adversely. 
It is customary to use high-resistance wire for the secondary winding of such trans
formers to realize a suitable equivalent transformer resistance without affecting the 
low-frequency performance. 

15-8. Cascaded Tuned Amplifiers with Synchronous and Staggered 
Tuning. Tuned amplifiers can be connected in cascade by means of a 
coupling capacitor like that used in RC amplifiers. Ordinarily the 
coupling capacitor is a short circuit over the entire useful band of the 
amplifier. When two identical stages like that in Fig. 15-16 are cas
caded, the over-all voltage transmittance is given by the square of 
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Eq. (15-31) or Eq. (15-32); hence the zero at the origin appears twice in 
the over-all transmittance, and the poles m1 and m2 each appear twice. 
The corresponding pole-zero diagram for the over-all transmittance has 
the form shown in Fig. 15-23a; the double symbols used in this diagram 
indicate double poles and zeros. The two stages in this amplifier are 
said to be synchronously tuned. 

If the two cascaded stages are adjusted so that their poles are not 
identical, a better design can be obtained in the sense that for the same 
half-power bandwidth the amplitude characteristic is flatter in the 
middle of the passband and it drops more steeply at the edge of the 
passband. This characteristic gives more uniform amplification of the 
desired signal and better rejection of signals just outside the passband. 
A very important form of stagger tuning is illustrated in Fig. 15-23b. 
The poles m1 and m4 are associated with one of the stages, and m2 and 

Im Im 

mpc 

m==jw 

Re Re 
iwc 

mzx 

(a) (bl (c) 

FIG. 15-23. Pole-zero patterns for two tuned amplifiers in cascade. (a) Synchronously 
tuned; (b) stagger tuned; (c) expanded view of the region near m1 and m2 in the pattern 
of (b). 

m3 are associated with the other stage; all four poles lie on a line parallel 
to the imaginary axis. The frequency characteristics of such stagger
tuned amplifiers depend rather critically on the spacing between the 
poles associated with the two stages; however, the important relations 
are revealed quite clearly by the pole-zero diagram. 

The frequency characteristics of the stagger-tuned amplifier are deter
mined by the set of vectors from the poles and zeros in Fig. 15-23b 
to the variable point m as m moves along the imaginary axis. In practi
cally all cases the poles of the voltage transmittance are much closer 
to the imaginary axis than they are to the origin of the complex plane; 
hence as m moves along the axis in the vicinity of m1 and m2, which is 
the portion of the axis corresponding to the passband of the amplifier, 
the vectors from the zeros at the origin and from the poles at m3 and 
m4 remain essentially constant. Under these conditions the voltage 
transmittance of each stage is given by an equation having the form of 
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(15-39). Thus the transmittance of two stages in cascade is 

A,.(jw) = (t;J (jw - m,)\w - m,) (15-67) 

and the frequency characteristics in the passband of the amplifier are 
determined entirely by two poles, m1 and m2. This is another instance 
in which the pole-zero diagram indicates the strategic approximation to 
be made in simplifying a network problem; in this case a four-pole 
transmittance is reduced to a much simpler two-pole transmittance that 
is equivalent to the former for values of w inside the passband of the 
amplifier. 

An enlarged view of the region near the poles m1 and m2 is shown in 
Fig. 15-23c. The frequency we, which is the center frequency of the 
passband, corresponds to a point on the imaginary axis equidistant from 
m1 and m2. The vectors p1 and p2 correspond to the factors jw - m1 and 
jw - m2 in Eq. (15-67). Equation (15-67) has the same form as (15-51), 
and if the point on the imaginary axis at we is treated as the origin of the 
complex plane, the pole-zero pattern of Fig. 15-23c has the same form 
as the pattern in Fig. 15-20. It is clear, therefore, that the discussion 
related to the pole-zero pattern of Fig. 15-20 applies in the present case 
as well. In particular, the resonant-peaking circle shown in Fig. 15-24a 
yields important information about the amplitude characteristic of the 
amplifier. The amplification is 

!A •• (Jw)I = (:rJ P:, (15-68) 

and a1A 
(1.5-69) P1P2 = -.--

sm </> 

Thus IA,.(jw l I = (t;J sin</> 
(15-70) 

a1A 

in which sin </> is the only factor depending on w. If a1 is less than A/2, 
the peaking circle intersects the imaginary axis, and the amplitude 
characteristic has two peaks as shown in Fig. 15-24b, one corresponding 
to each intersection of the peaking circle with the axis. The frequencies 
at which the peaks occur are designated 

(15-71) 

and since the radius of the peaking circle is A/2, 

X2 = (i)2 - a 1
2 (15-72) 

A= ~ ✓1 -(
2
~')' (15-73) 
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The amplification at the peaks is 

A• = (:2 )' a~d (15-74) 

and the amplification at the center frequency is 

Ac = AP sin </>c (15-75) 

where <f>c is the value of <f, when w = we. The peak-to-valley ratio for 
the amplitude characteristic is 

AP l (15-76) 
Ac = sin <l>c 

If the two stages of the amplifier are adjusted so that t::./2 is less than 
a1, a single peak appears in the. amplitude characteristic, and it occurs 
at w = we• If the stages are adjusted so that a1 = !:,,./2, the peaking 

Im IAuol 

(a) (bl 

A f-

w 
(linear scale1 

FIG. 15-24. Frequency characteristic for two stagger-tuned stages. (a) Geometric 
construction; (b) amplitude characteristic. 

circle is tangent to the imaginary axis at w = w0 , the amplitude char
acteristic is maximally flat, and the stages are said to be flat-staggered. 
When the amplitude characteristic has two peaks, the stages are said to 
be overstaggered. Both flat-staggered and overstaggered adjustments 
are used in various applications. 

When the amplitude characteristic is maximally flat, 

and Ac = AP= (ta)' 2!i2 (15-77) 

In accordance with the discussion associated with Fig. 15-20, the band
width between half-power points for the maximally flat adjustment is 
twice the length of the vector from jwc to m1; hence 

B = 2 [ (i)' + («1),r = 2 y'2 a1 (15-78) 
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For comparison, the half-power bandwidth for one stage alone, given by 
( 15-40), is B = 2a1. 

The first step in the design of a pair of stagger-tuned stages is to choose 
locations for the poles m1 and m2 that provide the desired center fre
quency, the desired bandwidth, and a suitable peak-to-valley ratio, 
AP/ Ac. When these poles are located, the tuned circuit in each stage is 
designed to provide the required resonant frequency and resonant Q. 

When three or more tuned stages are to be connected in cascade, 
similar considerations apply. In particular, when the bandwidth of the 
amplifier is small compared to the center frequency, the frequency 
characteristics are determined entirely by the poles of the signal trans
mittance lying near the segment of the imaginary axis corresponding to 

Im the passband. Thus, in the usual case, all 
the zeros and half of the poles of the trans
mittance can be ignored. The peaking cir
cle does not apply, however, to pole-zero 
configurations having more than two poles. 
Nevertheless, it can be shown that for a 
maximally flat amplitude characteristic, the 

Re poles of the signal transmittance must be 
uniformly spaced on a semicircle having its 
center on the imaginary axis. The pole
zero pattern for a maximally flat three-stage 
amplifier is shown in Fig. 15-25. No mat
ter how many stages are cascaded in this 

Fm. 15-25. Pole-zero pattern manner, the center frequency of the pass
for a maximally flat three-stage band we corresponds to the center of the cir
tuned amplifier. cle on which the poles are located, and the 
half-power frequencies are the frequencies at which the circle intersects 
the imaginary axis. The more stages cascaded in this way, the flatter the 
amplitude characteristic in the passband and the steeper the characteris
tic at the edges of the band; the half-power bandwidth remains constant, 
however, if the radius of the circle of poles remains constant. This dis
tribution of poles is known as the Butterworth configuration.2 •3 

15-9. Double-tuned Amplifiers. The incremental model for a double
tuned amplifier is shown in Fig. 15-26a. A parallel LC combination 
is connected in the plate circuit just as in the case of the single-tuned 
amplifier, and the output is taken from a second tuned circuit that is 
inductively coupled to the first. The equivalent shunt resistances of 
the coils are included in G1 and G2. This double-tuned circuit permits 
the superior frequency characteristics of the stagger-tuned pair to be 
realized in a single stage; it is used in practically every vacuum-tube 
radio receiver. It should be noted that the mutual inductance is not 
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essential in realizing this objective; however, it does aid in matching 
impedances, it simplifies the tuning procedure, and it blocks the d-c 
transmission between stages. 

The forward voltage transmittance of the double-tuned amplifier can 
be obtained in the most convenient form for the study that follows by 
using the loop method of analysis. Thus, defining 

1 1 
Z1 = ---- and Z2 = ---- (15-79) 

G1 + mC1 G2 + mC2 

where m is written for jw, and making a source conversion in Fig. 15-26a, 

E1 E2 
o----0 

i G1 C1 G2 

- (a) 

Ei, h 12 E2 
0--0 

M • 
8mZ1E1 L2 

+ 

(bl 
Fm. 15-26. The double-tuned amplifier. (a) Circuit; (b) an equivalent circuit. 

the equivalent circuit of Fig. 15-26b is obtained. The loop equations for 
this circuit are 

(Z1 + mL1)I1 - mMI2 = -gmZ1E1 
-mMI1 + (Z2 + mL2)I2 = 0 

Solving for I 2 yields 
I _ -gmZ1mME1 

2 
- (Z1 + mL1)(Z2 + mL2) - (mM) 2 

The output voltage is thus 

E _ z I _ -gmZ1Z2mME1 
2 

-
2 2 

- (Z1 + mL1)(Z2 + mL2) - (mM) 2 

(15-80) 

(15-81) 

(15-82) 

Substituting (15-79) into (15-82), simplifying, and solving for the voltage 
transmittance yields 

A = -gmmM (15 83) 
110 (m2L 1C1 + mL1G1 + l)(m2L2C2 + mL2G2 + 1) -

- (mM) 2 (G1 + mC1)(G2 + mC2) 
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The mutual inductance is related to the self-inductances of the coils by 
the relation M 2 = k2L1L2, where k is the coefficient of coupling. Sub
stituting this relation in the denominator of (15-83) and factoring 
L1L2C1C2 out of the denominator yields 

(15-84) 

(m' + ~: m + L,~.) ( m' + ~:m + L,~,)- (mlc)' ( m + ~:) ( m + ~:) 

The next step in the normal analysis procedure is to carry out the mul
tiplications indicated in the denominator of (15-84) and to collect terms 
on like powers of m. The result is a rather cumbersome expression that 

Im 

m'4x 

(a} 

Im 

(b) 

gives little insight into the prop
erties of the circuit. This diffi
culty can be avoided and a particu
larly useful expression for Ava can 
be obtained, however, by making 
certain strategic approximations in 
(15-84) before the denominator is 
multiplied out. The pole-zero pat
tern for Ava shows clearly which 
approximations are both permis
sible and useful. Figure 15-27a 
shows the pole-zero diagram for the 
signal transmittance of a typical 

Frn. 15-27. Pole-zero patterns for the double-tuned amplifier; it is similar 
double-tuned amplifier. (a) Pole-zero 
pattern; (b) expanded view. to the pole-zero diagram for the 

stagger-tuned amplifier except that 
it has only one zero at the origin, a difference of little consequence. It is 
to be expected, therefore, that the simplifications employed in analyzing 
the stagger-tuned amplifier are applicable in the present case. 

Sinusoidal operation in the passband of the amplifier corresponds to 
the variable m lying on the imaginary axis in the vicinity of the poles 
m~ and m;. If the bandwidth of the amplifier is small compared with 
the center frequency, as usually is the case, then, for sinusoidal operation 
in the passband, m = jw ::::: jwc, where we is a constant corresponding to 
the center frequency of the passband. Under this condition, several 
factors in the denominator of (15-84) can be treated as constants. The 
Q's of the primary and secondary circuits at the center frequency can be 
expressed as 

and Q _ WcC2 c2-a;: (15-85) 
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Hence 

and (15-86) 

Since Qc1 and Qc2 are normally of the order of 100, it follows that 

+ G1 . + We , 
m -c ~ JWc -Q ~ JWc 

1 cl 

+ G2 . + We , 
m Q 

2 
~ Jwc Q-:-; ~ JWc and 

(15-87) 

Equations (15-87), together with the fact that m ~ jwc, show that the 
second term in the denominator of (15-84) is approximately constant at 
the value (jwc) 4k 2 for sinusoidal operation in the passband of the amplifier. 

The product of quadratic factors in the denominator of (15-84) can 
be written in factored form as 

(15-88) 

in which m1 and m4 are complex conjugate numbers associated with the 
primary side of the coupled coils and m2 and m3 are complex conjugates 
associated with the secondary side. It follows from (15-84) that these 
are the poles of Ava when the coefficient of coupling, k, is zero. As k 
is increased from zero, the poles move to new positions, m~, m~, m~, and 
m~, in a manner similar to that illustrated in Fig. 15-18; in normal circum
stances they do not move far, however. If m1 and m2 designate the 
poles in the upper half plane, it follows from the pole-zero pattern in 
Fig. 15-27 a that for sinusoidal operation in the passband m ~ jwc and 
the factors m - ma and m - m4 are approximately constant at the value 
2jwc, 

When the simplifications developed above are applied to Eq. (15-84), 
the voltage transmittance of the double-tuned amplifier reduces to 

A = -gmjwcM 1 
vo L1L2C1C2 (2jwc) 2(m - m1)(m - m2) - (jwc) 4k 2 

-gmM 1 
4jwcL1L2C1C2 (m - m1)(m - m2) + k 2wc2/4 

Defining 
K = -gmM 

4jwcL1L2C1C2 

the transmittance can be written in the alternative forms: 

1 
Ava = K m2 - (m1 + m2)m + m1m2 + k2wc2/4 

= K 1 
(m - m~)(m - m;) 

(15-89) 

(15-90) 

(15-91) 

(15-92) 



370 ELECTRONIC CIRCUITS 

The quantities m1 and m2 are poles of Avo when k = 0; m~ and m~ are 
poles of Avo when k ~ 0. Since the frequency dependence of the ampli
fier in the passband is governed by a single pair of poles, it follows that 
the behavior of the amplifier in the passband can be examined with 
the aid of the diagram shown in Fig. 15-27b. 

If the parameter values in the double-tuned amplifier are given, the 
poles m~ and m~ can be determined, and the frequency characteristics 
can be constructed. However, one of the more interesting features of 
this amplifier is the way in which the pole locations depend on the coef
ficient of coupling. To investigate this feature it is necessary to make 
a slight extension of the root-locus techniques presented in connection 
with Fig. 15-18. This extension is simplified by assuming that the 
primary and secondary circuits are adjusted separately to have the same 
resonant frequencies and the same resonant Q's. This adjustment is 
often used in practice, and it implies that m1 = m2. With m1 = m2, the 
denominator of (15-89) becomes 

k2w 2 
D = (m - m1) 2 + T (15-93) 

and the poles of Avo are the values of the variable m that make this 
denominator zero. Thus if m' is a pole of Avo, substituting it for m in 
(15-93) yields D = 0. Hence 

k2 2 

( ' )2 + We 0 m - m1 -
4
- = 

and , _ + /-k 2wc2 
_ + jkwc 

m - m1 - _ "J--
4
- - _ 2 (15-94) 

But m' - m1 is a vector extending from m1 to m1 as shown in Fig. 15-28a. 
Thus there are two values of m', 

and (15-95) 

that make D = 0. These are the poles of Avo when k ~ 0. With k = 0, 
the pole-zero pattern for Avo is the same as that for a cascade of two 
synchronously tuned stages; by adjustment of k, the pole-zero pattern 
for two stagger-tuned stages is obtained. 

The root loci shown in Fig. 15-28a are based on the assumption of 
equal Q's and equal resonant frequencies in the two tuned circuits. It 
can be shown by an extension of the technique used above that if the 
poles m1 and m2 lie anywhere on the same vertical line, they move apart 
along that line with increasing k. Thus separating m1 and m2 on a vertical 
line is equivalent to starting with an initial value of k different from zero. 
If m1 and m2 lie on the same horizontal line, they move along that line 
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toward each other with increasing k as shown in Fig. 15-28b. The poles 
coincide when k = (m2 - m1)/2. If k is increased beyond this value, 
the poles move apart along a vertical line. Thus separating m1 and m 2 
along a horizontal line is equivalent to starting with an initial value of k 
that is imaginary. If m1 and m2 do not lie on either the same vertical 
or the same horizontal line, the loci are not straight lines, and more 
advanced techniques are required for their construction. 

The usual objective in the design of double-tuned amplifiers is to 
realize a pole-zero pattern like that shown in Fig. 15-27b. Thus the 
condition of equal Q's and equal 
resonant frequencies is ordinarily a 
satisfactory starting point. Since 
the separation of the poles in this 
case depends on the coefficient of 
coupling, it is clear that the tuning is 
flat-staggered, overstaggered, or un
derstaggered, depending on the coef
ficient of coupling. The important 
relations in the flat-staggered and 
overstaggered cases are provided by 
the resonant-peaking circle shown 
in Fig. 15-27b. It follows directly 
from Fig. 15-28a that the separation 
of the poles is 

(15-96) 

Im 

m'1 tx. kwc 
J-

2 

m1 =m2•1 . kwc 

-12 

m2x 

(a) 

mi i;c 
I 

ti 

Im 

I _1_ 
>c--+--x. 
m1 I m2 

i: 
I 
I 

m2~ 

(b) 

Frn. 15-28. Effect of the coefficient of 
coupling on the pole-zero pattern for a 
double-tuned amplifier. (a) Motion of 
poles for equal Q's and equal resonant 
frequencies; (b) motion of poles when 
m1 and m2 have equal imaginary parts. 

Thus for a specified center frequency and pole separation, the coefficient 
of coupling is fixed. The condition for maximal flatness is A = 2a1, where 
a1 is the magnitude of the real part of m1; the corresponding value of k, 
which is known as the critical coupling coefficient, is 

A 2a1 1 1 k ·t - - - - - - - -
er, We We Qel Qe2 

(15-97) 

The voltage amplification is obtained from (15-92); with the aid of 
(15-69) it is put in the form 

IAvo(jw) I = IKI sin/ (15-98) 
a1u 

in which the value of K is given by (15-90). Substituting (15-96) into 
(15-90) and using the relations M = k vLiL2 and L1C1 = L2C2 = l/we2 

yields 

(15-99) 

J.'ypical amplitude characteristics for critical coupling, overcoupling, and 
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undercoupling are shown in Fig. 15-29. When the circuit is overcoupled, 
the amplitude characteristic has two peaks, each corresponding to 
sin cf, = 1 in (15-99). The amplification at the peaks is 

(15-100) 

Thus the height of the peaks in the overcoupled characteristic is inde
pendent of k. The frequencies at which the peaks occur do depend on k, 

however. If these frequencies are 
designated 

Wp = We ± A (15-101) 

then X, given by ( 15-73), is 

w 
We (linear scale) A= ~ ✓1-(~)' 

Frn. 15-29. Amplitude characteristic for 
a double-tuned amplifier with various 
degrees of coupling. 

= k;, ✓1 - (k~J (15-102) 

The amplification at the center frequency is 

Ac = H gmQc1We vL1L2 sin </>e (15-103) 

where </>e is the value of cf> when w = we. This angle is given by 

(15-104) 

The peak-to-valley ratio for the amplitude characteristic is 

AP 1 
Ac = sin cf>e 

(15-105) 

When the circuit is critically coupled, the half-power bandwidth, as m 
the case of the stagger-tuned amplifier, is* 

B = 2 y2a1 = y2 We 
Qc1 

(15-106) 

When several double-tuned stages are connected in cascade, the pole
zero patterns of the individual stages are adjusted to give the desired 
over-all frequency characteristic. For example, if a maximally fl.at over
all characteristic is desired, the individual stages are adjusted so that 
the poles of the over-all transmittance have the Butterworth configuration 

* In accordance with the footnote in Sec. 15-7, when the circuit is overcoupled the 
frequencies outside the resonant peaks at which the amplification has the same value 
as at the center frequency are w = we ± "'-12 X. 
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discussed in connection with Fig. 15-25. The half-power bandwidth is 
then equal to the diameter of the circle on which the poles lie, regard
less of the number of stages. It should be noted that if there is an odd 
number of stages, one of the stages must be single-tuned to realize the 
Butterworth configuration. 

Example 16-6. A double-tuned amplifier having the form shown in Fig. 15-26a 
is to be used as an intermediate-frequency amplifier in an AM broadcast receiver. 
The center frequency is to be 455 kcps, and the half-power bandwidth is to be 10 kcps. 
The two tuned circuits are to be resonant at we when they are not coupled, and their 
resonant Q's are to be 100. Find the coefficient of coupling required, and if the circuit 
is overcoupled, find the ratio of peak to valley in the amplitude characteristic. 
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FIG. 15-30. Half-power-point relations for a pair of poles. (a) Diagram; (b) construc
tion; (c) required relation. 

Solution. The coefficient of coupling must be chosen to provide the proper separa
tion of the poles of Avo, and hence to provide the required bandwidth. Thus an 
expression relating the separation of the poles to the given data is needed. Equations 
(15-99) and (15-100) show that if the circuit is overcoupled, the amplification is 
Ap/y2 when cf> = 45°; the pertinent relations are pictured in Fig. 15-30a. If the 
triangle m~m~m in Fig. 15-30a is inscribed in a circle, the line segment joining the poles 
subtends a central angle 2<t> = 90° as shown in Fig. 15-30b. It follows that the radius 
of the circle is Y2 (tJ../2) and that the center of the circle lies a distance tJ../2 - a1 on 
the right of the imaginary axis. Fig. 15-30b contains a small triangle, oab, shown 
separately in Fig. 15-30c, that provides the desired relation, 

Solving this expression for tJ.. yields 

tJ.. = -2a1 ± v8a12 + B 2 

= - ~ ± ✓ 2 ( We ) 2 + B2 
Qc1 Qc1 

Inserting numerical values in this expression and choosing the positive value of the 
root to obtain a positive value for tJ.. yields 

tJ.. = 46,500 rps 
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The separation of the poles expressed in cycles per second is 

.1. 
21r = 7 400 cps 

The required coefficient of coupling is given by (15-96); it is 

.1. 46.5 
k = ;_;,; = (21r)(455) = 0.0163 

This value is greater than l/Qc1 = 0.01; hence the circuit is overcoupled. 
The ratio of peak to valley in the amplitude characteristic is 

Ap 1 
Ac = sin cf>c 

and tan tc = kQc1 = (0.0163) (100) = 1.63 

Thus cf>c = 117°, and 

!: = o.19 = 1.12 

The displacement of the peaks in the amplitude characteristic from the center fre
quency is given by (15-102); it is 

>. = (23,250) yl - (1/1.63) 2 

= 18,400 rps 

The corresponding value in cycles per second is 

>. - = 2930 cps 
21r 

15-10. High-frequency Compensation of RC Amplifiers. There are 
many applications for electronic amplifiers that require a uniform ampli
fication over a very wide band of frequencies. For example, television 
and radar systems must amplify rectangular pulses having durations 
of the order of 1 µsec and occurring at a rate of a few tens of pulses per 
second. It follows from a consideration of the Fourier series for such 
pulse trains that to amplify them without excessive waveform distortion 
an amplifier must provide uniform amplification in the band of frequencies 
extending from a few tens of cycles per second to several megacycles 
per second. 

The amplification of RC-coupled amplifiers is limited at low frequencies 
by the action of the coupling and bypass capacitors, and it is limited at 
high frequencies by the parasitic capacitance shunting the output. The 
high-frequency performance of vacuum-tube amplifiers can be improved 
by reducing the value of the plate load resistance and thereby increasing 
the high-frequency half-power point; however, there is an attendant 
reduction of amplification in accordance with the gain-bandwidth theo
rem. The high-frequency response can be extended somewhat without 
reducing the mid-band amplification through the use of more elaborate 
interstage coupling networks. 
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One simple method of extending the high-frequency response that is 
widely used in vacuum-tube amplifiers is to add an inductance of appro
priate size in series with the plate load resistor as illustrated in the 
incremental model of Fig. 15-31. It is assumed in this model that the 
load resistance R is much smaller than 
the plate resistance of the tube so that E1 

~ 
the latter can be considered an open 
circuit in the band of frequencies 
where the amplifier is useful, and it 
is assumed that there is negligible 
parasitic capacitance associated with 
the coil. The inductive effects cancel 

R 

C 

L 

in part the capacitive effects over a Frn. 15-31. A shunt-peaked amplifier. 
band of frequencies, thereby improv-
ing the high-frequency performance. This method of high-frequency 
compensation is known as shunt peaking. 

The forward voltage transmittance of the shunt-peaked amplifier is 

Avo = 

= 

(I/mC)(R + mL) 
-gm R + mL + I/mC 

Ym m + R/L 
- C m 2 + (R/L)m + I/LC 

Equation (15-107) is put in a more useful form by defining: 

2 - I 
Wo - LC' 

I 
WH = RC 

(15-107) 

(15-108) 

where wn is the high-frequency half-power point with no compensation, 
L = 0. It follows from the definitions in (15-108) that 

and R - WH 

L - Qo2 

Substituting these relations in (15-107) yields 

Ym m + wn/Qo2 

Avo = - C m2 + (wn/Qo2)m + (wn/QQ)'l 

This expression can also be written as 

gm m - m3 
Avo = - C (m - m1) (m - m2) 

where 
WH R 

m3 = -w3 = Q
02 

= L 

and m,, m, = - 2Q:, ± j ✓('Q:)' - (l<J} 
= - ;(Jo2 ± ~Qo2 y4Qo2 

- 1 

(15-109) 

(15-110) 

(15-111) 

(15-112) 

(15-113) 
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The pole-zero pattern for Avo under typical conditions with complex 
poles is shown in Fig. 15-32a; it is clear from Eqs. (15-112) and (15-113) 
that the zero is equal to the sum of the poles and that therefore it is always 
twice as far from the imaginary axis as the poles when the latter are 
complex. 

It follows from (15-110) that the poles of Avo depend upon Q0
2 in the 

same way that the zeros of Eq. (15-44) depend on a. Hence as Q0 is 
varied the poles move along paths like those shown in Fig. 15-18c. As 
shown in Fig. 15-32b, when the poles are complex they move on a circle 
of radius WH having its center on the negative real axis at -wH. When 
Q0 = ½, the poles coincide on the negative real axis, and for Q0 = 1/ y2, 
they lie on lines radiating from the origin at angles of 45° with the negative 
real axis. For values of Qo less than ½, the poles are real, and as Q0 

tends to zero as a result of decreasing L with R held constant, one pole 

Im 

Re 

(a) 

Im 

\ 
\ 
\ 

1 
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FIG. 15-32. Pole-zero diagram for the shunt-peaked amplifier. (a) Typical pattern; 
(b) motion of poles with increasing Qo. 

recedes toward infinity and the other approaches WH· With L = 0 the 
pole-zero pattern is that of an uncompensated amplifier. 

The logarithmic amplitude and phase characteristics of the shunt
peaked amplifier can be constructed by adding the characteristics of the 
numerator and denominator of Eq. (15-110). The amplitude character
istic of the quadratic denominator is similar in form to the characteristic 
shown in Fig. 15-21; when it is combined with the characteristic of the 
numerator, the result has the form shown in Fig. 15-33. Two char
acteristics are shown in Fig. 15-33, one for no compensation, Qo = 0, and 
the other for Qo = 1/ y2. When Q0 = 1/ y2, the amplification at WH 

has the same value as the amplification in the mid-band, and the half
power frequency is almost 2wH. 

The amplitude characteristic for Qo = 1/ y2 rises at high frequencies 
to values slightly above the mid-band value. It is clear from the way 
in which the poles move with changing Q0 , however, that the circuit can 
be adjusted for maximal flatness. The condition for maximal flatness 
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when the voltage transmittance has a zero in addition to a pair of poles 
is somewhat different from the condition applying to a pair of poles alone. 
It can be shown, however, that Qo2 = y'2 - I produces maximal flat
ness in the shunt-peaked amplifier. 

It is to be noted that shunt peaking does not change the ultimate 
high-frequency asymptote in any way; it simply changes the shape of the 
gain characteristic in the vicinity of WH and thereby extends the range of 
uniform amplification. 

15-11. Summary. When vacuum-tube and transistor amplifiers are 
connected in cascade it is usually desirable to have no transmission 
through the interstage coupling network at zero frequency. The RC 
interstage network is the most widely used coupling network in low
frequency applications. The interstage network reduces the amplifica
tion to zero at zero frequency, and the parasitic capacitance reduces it to 

Adb 

w 

.::!H_ WH 
(log scale) 

Qo Q; 

Fm. 15-33. Amplitude characteristic for an amplifier with and without high-frequency 
compensation. 

zero at infinite frequency; hence it follows that cascaded amplifiers are 
usually bandpass networks. The design of cascaded amplifiers is there
fore concerned in part with obtaining large amplification in the appro
priate band of frequencies. Some applications require high amplification 
in a relatively narrow band of frequencies with small amplification outside 
this band, whereas other applications require uniform amplification over 
very wide bands of frequencies. More or less elaborate interstage net
works may be used to obtain superior performance in these respects. 

Tuned circuits are often used in vacuum-tube and transistor amplifiers 
in order to obtain large amplification at high frequencies; in these cases 
the parasitic capacitances become parts of the tuned circuits. The 
tuned amplifier usually has a relatively narrow passband, and it provides 
selective amplification of signals in this band to the exclusion of signals 
at other frequencies. It is this feature that makes it possible for a radio 
receiver to receive one signal while hundreds of transmitters are broad-
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casting simultaneously in different frequency bands. Tuned amplifiers 
are often provided with a variable capacitor or a variable inductor to 
permit the passband to be shifted from one point to another in the 
frequency spectrum. 

When tuned amplifiers are to be cascaded they can all be of identical 
design, or the tuning of the individual stages can be staggered in various 
ways to obtain improved over-all frequency characteristics. Double
tuned circuits are widely used at radio frequencies to provide the advant
ages of stagger tuning in a single amplifier stage. 

The amplitude and phase characteristics provide a useful way of dis
playing the frequency dependence of amplifiers. The pole-zero pattern 
provides an alternative way of displaying the same information that is 
in many respects more useful and more fundamental. The pole-zero 
pattern often shows in a simple way the effect of changes in circuit 
parameters on the behavoir of the circuit, and certain important relations 
that have discouragingly cumbersome algebraic forms prove to have 
simple geometric forms in terms of the poles and zeros of the network 
function. In the case of narrow-band circuits, in which the bandwidth 
is much smaller than the center frequency, the pole-zero diagram shows 
clearly how strategic simplifications can be made and leads therefore 
not only to a substantial reduction in the labor required in analysis and 
design, but also to a clearer understanding of the behavior of the circuit. 
For example, in the analysis of the single-tuned amplifier an examination 
of the pole-zero pattern leads to the reduction of a quadratic polynomial 
to a linear factor, and in the analysis of the double-tuned amplifier a 
quartic polynomial is reduced to a quadratic form. These simplifications 
eliminate a great deal of unenlightening algebraic labor. 
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PROBLEMS 

16-1. Two 6SJ7 pentodes are used in an RC-coupled amplifier like the one shown in 
Fig. 15-1. The circuit parameters are RL = 250 kilohms, R 0 = 1 megohm, and C3 = 
0.01 µf. The tube parameters are Ym = 1.2 millimhos and rp = 1 megohm; the total 
parasitic capacitance shunting each stage, including the stray wiring capacitance, is 
15 µµf. The screen-grid and cathode bypass capacitors can be treated as short circuits 
in the frequency range of interest. 

a. Sketch the dimension the asymptotic amplitude characteristic for one stage. 
Give the half-power frequencies in cycles per second. 

b. Sketch and dimension the asymptotes for the phase characteristic of one stage. 
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16-2. The low-frequency behavior of one stage in a cascade of pentodes is to be 
studied with the aid of the representation shown in Fig. 15-4. The circuit parameters 
are Ro = 750 ohms, R2 = 150 kilohms, Ra = 1 megohm, R4 = 50 kilohms, Co = 5 µf, 
and C2 = 0.05 µf. The tube parameters yield g41 = 3 millimhos, ko = 3, and k 2 = 10, 
where ko and k2 are the quantities defined in Sec. 14-5. Since Ra is much larger than 
R4, E~ can be calculated under the assumption that the current in Ra is negligible. 

a. What value of Ca is required to make wa = 1/CaRa = 27r(200) rps? 
b. With Ca at the value determined in part a, sketch and dimension the asymptotes 

for the amplitude characteristic in the low- and medium-frequency ranges. Give 
amplitudes in decibels and frequencies in cycles per second. 

16-3. The high-frequency response of a two-stage cascade of drift transistors, shown 
in Fig. 15-5a, is to be studied. The transistor parameters are r; = 50 ohms, rb• = 
2 kilohms, gm = 30 millimhos, C. = 200 µµf, Cc = 2 µµf, and go = 0. The circuit 
parameters are Ra = 200 kilohms, Rb = 22 kilohms, R 2 = 15 kilohms, Ra = 0 (no 
stabilization required), R4 = 2 kilohms, and C4 = 1 µf. 

a. Determine the parameter values in a simplified high-frequency model (Fig. 15-6) 
for the amplifier. 

b. Determine the current transmittance, ls/11. Do not neglect the R1C1 branch 
in the simplified model. 

c. Sketch and dimension the asymptotes for the high-frequency logarithmic ampli
tude characteristic. Give amplitudes in decibels and frequencies in cycles per second. 

16-4. The Miller effect in the first stage of the amplifier in Example 15-1 is com-
pensated by an RL branch having the form shown in Fig. 15-7. 

a. Determine the values of R and L required. 
b. Determine the current transmittance Ia/11 for the compensated amplifier. 
c. Sketch and dimension the asymptotes for the logarithmic amplitude character

istic at medium and high frequencies. 
d. Using the results obtained in Example 15-1, sketch and dimension the asymp

totes for the amplitude characteristic of the uncompensated amplifier. 
16-6. The low-frequency behavior of the amplifier described in Prob. 15-3 is to be 

examined. 
a. Construct and dimension the asymptotes for the amplitude characteristic of one 

stage in the low and middle range of frequencies. Note: acb = gmrb•· 
b. If the amplifier is modified by changing C4 to make the low-frequency half-power 

point occur at 80 cps, what value of C4 is required? 
16-6. The two-stage triode amplifier shown in Fig. 15-34 uses one section of a 

12AX7 in each stage. The tube parameters are approximately gm = 1 millimho and 

IM 

Frn. 15-34. Two-stage triode amplifier for Prob. 15-6. 
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gp = 0.01 millimho. The grid-to-plate capacitance in each tube is 2 µµf, and the total 
capacitance shunting the output of each stage at high frequencies, including the stray 
wiring capacitance, is lOµµf. The cathode bypass capacitors can be treated as short 
circuits at all frequencies of interest. The objective of the problem is to study the 
frequency response of the amplifier. 

a. Determine the parameter values for a high-frequency model of the form shown in 
Fig. 15-9b. As an approximation, Rb can be treated as a short circuit when evaluating 
Ra and Ca. 

b. Neglecting Rb in the frequency range of interest, sketch and dimension the 
asymptotes for the logarithmic amplitude characteristic covering low, medium, and 
high frequencies. Give amplitudes in decibels and frequencies in cycles per second. 
Note: The amplitude characteristic is unaffected by the elements Ra and Ca in the 
high-frequency model. 

16-7. The effect of poor wiring layout on the high-frequency performance of the 
pentode amplifier of Prob. 15-1 is to be examined. For this purpose, suppose that 
poor layout results in 5 µµf of capacitance between the plate and grid circuits in the 
second stage and that the remainder of the circuit parameters have the values given 
in Prob. 15-1. 

a. Determine the mid-band amplification in decibels and the high-frequency half
power point in cycles per second for the second stage. Note that the grid-to-plate 
capacitance acts as part of the load on this stage [Eq. (14-22)]. 

b. The load on the first stage is to be accounted for by an equivalent circuit of the 
form shown in Fig. 15-9b. Determine the values of Rb and Cb for this circuit. 

c. Neglecting the resistive part of the Miller effect (Rb = 0), determine the mid
band amplification in decibels and the high-frequency half-power point in cycles per 
second for the first stage. 

d. Sketch and dimension the asymptotes for the amplitude characteristic of each 
stage. Comment briefly on the consequences of careless wiring layout. 

16-8. Three pentodes, 6SJ7, 6AK5, and 6AC7, are to be compared with respect to 
high-frequency performance in voltage amplifiers. 

a. Compare the figures of merit and the quiescent plate currents of the tubes. 
Assume the quiescent operating point corresponding to the largest value of Ym listed 
under typical operation in the tube manual. 

b. Each tube is to be used in an RC-coupled amplifier having a bandwidth (upper 
half-power frequency) of 1.59 mcps. The stray wiring capacitance shunting the 
output of each amplifier is 5 µµf. Determine the mid-band voltage amplification for 
each amplifier. 

16-9. Two stages of an RC-coupled pentode amplifier have the following mid-band 
amplifications and half-power frequencies. Stage 1: Am = 100, fL = 100 cps, and 
JH = 100 kcps. Stage 2: Am = 140, fL = 200 cps, and fH = 50 kcps. The bypass 
capacitors act as short circuits at all frequencies of interest. 

Plot the over-all logarithmic amplitude characteristic. Use semilog-coordinate 
paper, and show both the asymptotes and the true characteristic. Calibrate the 
frequency scale in cycles per second. 

16-10. A two-stage pentode amplifier having the form shown in Fig. 15-1 employs 
6AK5 tubes. The cathode and screen-grid bypass capacitors act as short circuits 
at all frequencies of interest. The input and output capacitances of the tubes are 
4.0 µµf and 2.8 µµf, respectively, and 10 µµf is to be allowed for stray wiring capaci
tance. The two stages are identical with upper and lower half-power frequencies at 
600 kcps and 50 cps, respectively. The circuit parameters are to be chosen to meet 
these specifications. 

a. Choose the resistances in the plate, cathode, and screen-grid circuits to locate 
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the quiescent operating point at Eb = 120 volts, Ec2 = 120 volts, and h = 7.5 ma 
when the supply voltage is 300 volts. Note that this is one of the typical operating 
points listed in the tube manual. 

b. Choose the grid return resistance to give the desired high-frequency behavior. 
Choose the coupling capacitor to give the desired low-frequency behavior. 

c. Sketch and dimension the over-all asymptotic amplitude characteristic for the 
two stages. 

16-11. The incremental model for two transistor stages coupled by a transformer is 
shown in Fig. 15-35. The parasitic capacitances of the transistor are negligible in 
the useful frequency range of the amplifier. The coupling transformer is represented 
as an ideal transformer plus a leakage inductance Ls and a magnetizing inductance 
LM (the parasitic transformer capacitances are assumed to be negligible). The 

1 :a 
Ideal 

FIG. 15-35. Transformer-coupled transistor amplifier for Prob. 15-11. 

leakage inductance acts as a short circuit at low and medium frequencies, and the 
magnetizing inductance acts as an open circuit at medium and high frequencies. 

a. Give a simplified model that is valid at low and medium frequencies. Transfer 
the load resistance for the transformer to the primary side, and designate it by RL1. 

b. Repeat part a for the medium- and high-frequency ranges. 
c. Show that the current transmittance for one transformer-coupled stage, h2/ h1, 

has the same form as Eq. (15-2) at low frequencies and the same form as Eq. (15-1) 
at high frequencies. 

d. Sketch the asymptotes of the amplitude characteristic for hdh1. Give the 
mid-band amplification and the half-power frequencies in terms of the circuit 
parameters. 

C t 
G 

Frn. 15-36. Amplifier for Prob. 15-12. 

16-12. The incremental model for a simple amplifier circuit is shown in Fig. 15-36. 
The circuit parameters are Um = 1.0 millimho, gp = 0.1 millimho, G = 0.9 millimho, 
and C = 1.0 µf. 

a. Sketch and dimension the pole-zero pattern for the voltage transmittance, 
EdE1. 

b. Sketch and dimension the asymptotes for the logarithmic amplitude and phase 
characteristics of the voltage transmittance. 

16-13. The pole-zero patterns for the current transmittance of three transistor 
amplifiers are shown in Fig. 15-37. 

a Which of these amplifiers will and which will not transmit d-c signals? Why? 
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b. Sketch the asymptotes for the amplitude characteristic corresponding to the 
pole-zero pattern of Fig. 15-37b. The amplification at zero frequency is 20 db, and 
w1 = 100 rps. Give the coordinates of each break in the characteristic and the slope 
of each segment. 

c. If the two amplifiers corresponding to Figs. 15-37 a and bare connected in cascade, 
what is the pole-zero pattern of the over-all transmittance? The frequency w1 has 
the same value in the two amplifiers. 
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Frn. 15-37. Pole-zero patterns for Prob. 15-13. 

16-14. The shunt branch R 2C2 is added to the amplifier shown in Fig. 15-38 to 
improve the low-frequency response. The circuit parameters are gm = 4.0 millimhos, 
gp = 0, Ri = R2 = IO kilohms, C2 = 5.0 µf, Ca = 0.1 µf, and Ra = 1 megohm. The 

E bypass capacitors can be treated as short 
bb circuits, and the loading effect of Ra is 

Frn. 15-38. Circuit for Prob. 15-14. 

negligible. 
a. Give an incremental model for the 

circuit that is valid at low and medium 
frequencies. 

b. Describe briefly in physical terms why 
the shunt branch composed of R2 and C2 

improves the low-frequency response. 
c. Using the fact that the loading by Ra 

is negligible, evaluate Avo as a function of 
frequency. 

d. Sketch and dimension the pole-zero 
pattern for Avo, Sketch and dimension the 
asymptotes of the amplitude characteristic. 

16-16. The triode amplifier shown in Fig. 15-39 is to be designed to meet the follow
ing specifications: (1) Am = 40, (2) "'L = 300 rps, and (3) wn = 80,000 rps. The 
total parasitic capacitance is C1 + C2 = 500 µµf, and Cs is an added capacitance that 
may be needed to permit the specifications to be met. 

I 
I 
I 

...L 
~ ,cs 

I 
·1 
I 

Frn. 15-39. Triode amplifier for Prob. 15-15. 
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a. Which of the following tubes can be used? Give reasons. 

Tube 1 Tube 2 Tube 3 

gm, millimhos ............ 5.0 1.2 4.0 
rp, kilohms .............. 8.0 70 15 

b. The cathode bypass capacitor is to be treated as a short circuit, and Ru is to be 
500 kilohms. For the tube chosen in part a, specify the values of RL, Cc, and Cs 
required to meet the specifications. 

16-16. A 6A U6 pentode tube is used in the tuned radio-frequency amplifier of Fig. 
15-16. This amplifier is to amplify signals occupying a band of frequencies 10 kcps 
wide and centered at 800 kcps. The tube parameters are gm = 4.5 millimhos and 
gp = 0.67 micromho; the capacitance C is 300 µµf. 

a. What value of Lis required to give maximum amplification at 800 kcps? 
b. What value of Qo is required for a half-power bandwidth of 10 kcps? 
c. What must be the Q of the coil? Note: If the equivalent shunt conductance of the 

coil is GL, the Q of the coil at wo is Q = 1/woLGL. The total shunt conductance in 
Fig. 15-16 is G: = gp + GL. 

d. Sketch and dimension the pole-zero pattern for Avo. 
16-17. The voltage transmittance of a certain tuned amplifier is given by 

A ( ) 20m 20m 
vo m = m2 + 2m + 25 (m - m1) (m - m2) 

The relations between the pole-zero pattern for Avo and the frequency characteristics 
of the amplifier are to be examined closely. 

a. Plot the pole-zero pattern for Avo on a sheet of graph paper. Let the imaginary 
axis extend from -jlO to jlO. 

b. For m = jwo = j5, determine the magnitudes of the vectors m, m - m1, and 
m - m2• These magnitudes can be scaled off with dividers if desired. Calculate 
the voltage amplification form = jwo. 

c Repeat part b for several other values of m on the imaginary axis between j2 and 
jlO, and plot the curve of IAvol versus w. 

Ebb 

·c 

Fm. 15-40. Tuned pentode amplifier for Prob. 15-18. 

16-18. The circuit in Fig. 15-40 is a tuned pentode voltage amplifier. The bypass 
capacitors Go and G2 act as short circuits at all frequencies of interest, and parasitic 
capacitances are negligible in comparison with C. The tube parameters are Um = 
5 millimhos and r P = 500 kilohms. 
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a. Evaluate the forward voltage transmittance of the amplifier as a function of jw in 
terms of the circuit parameters. Do not neglect the effect of rp. This transmit
tance should have the form 

(jw + a) 
Avo = K (jw) 2 + b(jw) + d 

b. What value of C is required to make wo = 1/,vLC = 106 rps? 
c. For the value of C found in part b, sketch the pole-zero pattern for A.,o. Giv6 

the value of each pole and zero. 
d. Find the bandwidth between the half-power points, the resonant Q of the circuit, 

and the Q of the coil at w = wo. Use Eq. (15-41), Qo = wo/B, as the definition for the 
resonant Q of the circuit. 

16-19. The parameter values in a circuit of the form shown in Fig. 15-19b are 
µ = 10, R = 1 kilohm, L = 1 henry, and C = 1 µf. The frequency response of the 
circuit is to be studied. 

a. Sketch approximately to scale the pole-zero pattern for the voltage transmit
tance. Show the peaking circle on this sketch. 

b. Determine the frequency at which the peak amplification occurs, the value of the 
peak amplification, the amplification at resonance w = wo, and the amplification at 
zero frequency. 

c. Make a reasonably accurate sketch of the logarithmic amplitude characteristic. 
Show both the asymptotes and the true characteristic. 

Cable 

FIG. 15-41. Phonograph amplifier for Prob. 15-20. 

16-20. The voltage source and the series RL branch in the circuit of Fig. 15-41 
represent the electrical properties of a certain magnetic phonograph pickup. The 
pickup is connected to a triode amplifier through a 5-ft length of shielded cable that 
has a shunt capacitance of 70 µµf/ft. The tube and circuit parameters are gm = 
1.4 millimhos, gp = 0.02 millimho, RL = 150 kilohms, Cgk = 5 µµf, Cp1c = 5 µµf, 
Cap = 4 µµf, R = 300 ohms, and L = 0.1 henry. The bypass capacitor acts as a 
short circuit at all frequencies of interest. The amplitude characteristic of the 
voltage ratio Eg/E1 is to be determined; for good performance this characteristic 
should be as nearly uniform as possible. 

a. The input admittance to the triode can be represented by the Miller capacitance 
of Fig. 14-13 with the small resistance R neglected. When this is done, the pickup 
and the input circuit take the form shown in Fig. 15-19b. Determine the parameter 
values for this circuit. Do not neglect the capacitance of the cable. 

b. Sketch the pole-zero pattern for the voltage ratio Eg/E1. Show the peaking 
circle on this diagram. 
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c. Sketch the amplitude characteristic I Eu/ Erl versus f. Give the frequency of the 
peak in cycles per second and the amplitude of the voltage ratio at the peak. Discuss 
briefly the significance of these results. 

d. What value of resistance must be added in series with the pickup to produce a 
maximally flat characteristic? Note: The manufacturer of the pickup usually specifies 
a resistance to be connected in parallel with C to remove the resonant peak. 

16-21. The incremental model for a two-stage amplifier is shown in Fig. 15-42. 
The behavior of the amplifier is affected at high frequencies by Land at low frequencies 
by C; however, the values of the circuit parameters are such that the half-power 
frequencies are well separated. 

a. Determine the over-all voltage transmittance in the mid-band in terms of the 
ci.:i:cuit parameters. 

b. Determine the upper and lower half-power frequencies in terms of the circuit 
parameters. 

c, Sketch the pole-zero pattern for the voltage transmittance. 
d. Sketch the asymptotes for the amplitude characteristic. 

Fm. 15-42. Amplifier circuit for Prob. 15-21. 

16-22. Two tuned pentode amplifiers like the one shown in Fig. 15-16 are con
nected in cascade, and their tuning is staggered to give an over-all transmittance 
having a pole-zero pattern like the one sho\vn in Fig. 15-23b. The tuning is adjusted 
to give a center frequency fc = 455 kcps, corresponding to we = (2.85) (106) rps. The 
two poles in the upper half plane are separated vertically by t:. = (44.4)(103) rps, and 
the distance of each pole from the imaginary axis is (11.1) (103) rps. 

Sketch the amplitude characteristic IAvol versus f. Give the frequencies in cycles 
per second at which the peaks in this characteristic occur. Determine the peak-to
valley ratio Ap/ Ac. 

16-23. Two tuned pentode amplifiers like the one shown in Fig. 15-16 are con
nected in cascade. The two stages are to be designed so that the center frequency 
of the passband is 100 kcps, and they are to be overstaggered so that the peaks in the 
amplitude characteristic are located 2.5 kcps above and below the center frequency. 
In addition, the peak-to-valley ratio for the amplitude characteristic is to be y2. 

a. Determine the value of the angle ¢ in Fig. 15-24 form = jwc• 
b. From the requirement on the location of the peaks in the amplitude characteristic, 

along with the results of part a, determine the locations of the poles of Ava• Note that 
t:./2 = cq tan (c/>c/2). 

c. Determine the resonant frequency and the resonant Q for each stage of the 
amplifier. 

d. Determine the half-power frequencies for the stagger-tuned pair (Example 15-5). 
Note that there are more than two of these. 

16-24. A double-tuned amplifier like the one shown in Fig. 15-26a is used as an 
intermediate-frequency amplifier in a radio receiver. The circuit is to be adjusted to 
give a center frequency of 455 kcps, the coefficient of coupling is to be adjusted for 
maximal flatness, and the bandwidth between the half-power points is to be 10 kcps. 
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The two tuned circuits are to be adjusted for equal resonant frequencies and equal 
resonant Q's when they are not coupled. 

a. Show that the bandwidth is B = 2 V2 a1 = ,v2 .:l when the amplifier is 
adjusted for maximal flatness (Example 15-5). 

b. From the center frequency and the bandwidth requirements, determine the 
resonant frequencies and resonant Q's that the primary and secondary circuits must 
have. 

c. Determine the coefficient of coupling required for maximal flatness. 
16-26. The primary and secondary circuits in a double-tuned amplifier are tuned 

separately to resonance at 500 kcps when they are not coupled, and the resonant Q of 
each circuit is 50. The coefficient of coupling is adjusted to make the peak-to-valley 
ratio in the amplitude characteristic have the value ,v2. 

a. Determine the locations of the poles of Avo with these adjustments. 
b. What coefficient of coupling is required? 
c. At what frequencies do the peaks in the amplitude characteristic occur? 
d. What are the half-power frequencies for the amplifier? 
16-26. The pole-zero pattern for the signal transmittance of a certain amplifier is 

shown in Fig. 15-43. The amplification at zero frequency is 100. 
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Fm. 15-43. Pole-zero pattern for Prob. 15-26. 

a. Sketch the asymptotes for the logarithmic amplitude characteristic. Give the 
coordinates (amplitude in decibels and frequency in radians per second) of each break 
point, and give the slope of each section of the characteristic. 

b. Determine directly from the pole-zero pattern the amplification and the phase 
shift of the amplifier for m = jw = jlOO. 

16-27. The amplitude characteristic for a certain voltage amplifier is measured and 
found to have the asymptotes shown in Fig. 14-26. 

a. Sketch and dimension the pole-zero pattern of a minimum-phase-shift voltage 
transmittance having all its poles in the left half of the complex plane and having this 
amplitude characteristic. 

b. Sketch and dimension the pole-zero pattern of a non-minimum-phase-shift 
voltage transmittance having all its poles in the left half of the complex plane and 
having this amplitude characteristic. 



CHAPTER 16 

NONSINUSOIDAL SIGNALS AND TRANSIENT RESPONSE 

The behavior of electronic circuits is studied in Chaps. 14 and 15 under 
conditions of sinusoidal operation in the steady state. The results of 
that study can be used, with the aid of the Fourier series and the_ Fourier 
transform, to determine the response of circuits to other types of signals. 
Alternatively, if the input signal is specified as a function of time, it is 
possible, at least in theory, to calculate the output signal directly from 
the differential equations for the circuit. This latter method of analysis 
leads to additional valuable insights into the properties of circuits. Of 
particular interest are the cases in which the nonsinusoidal input signal 
can be expressed as the sum of a set of components that vary exponentially 
with time. In these cases the output signal can be determined from the 
pole-zero pattern for the signal transmittance of the circuit by the 
methods used for sinusoidal analysis in Chap. 15; thus the response of 
the circuit to nonsinusoidal signals is related to its behavior in the 
sinusoidal steady state. 

From the study of the differential equations governing the behavior 
of electric circuits the fact emerges that in general the response of a cir
cuit to a signal applied at some instant of time consists of certain terms 
related to the applied signal plus certain additional terms arising from 
the properties of the circuit itself. These additional terms, known as the 
transient components of the response, may have an important effect on 
the behavior of the circuit. It often turns out that the transient terms 
in the response can also be determined from the poles and zeros of the 
signal transmittance; thus the transient response of the circuit is related 
to its behavior in the sinusoidal steady state. 

It is shown in the theory of passive networks that the transient terms 
in the response of circuits consisting of R, L, and C alone must either 
die out with time or, in the case of L and C only, they must remain 
constant in amplitude. When controlled sources are added to the cir
cuit, however, the transient components of the response may grow with 
time. For this reason it is necessary to reexamine the transient response 
and to investigate the way in which it is affected by the presence of 
controlled sources in the circuit. Growing transients may interfere 

387 
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with the proper operation of the circuit; on the other hand, they serve 
as the basis for oscillator circuits used to generate sinusoidal signals. 
The presence or absence of growing transients in the response of a circuit 
can be determined by inspection of the pole-zero pattern of the signal 
transmittance. 

The principal objective of this chapter is to study the response of 
circuits to nonsinusoidal signals and to relate these responses to the 
pole-zero pattern of the signal transmittance. In particular, the pos
sibility of growing transients and the conditions under which they can 
occur are examined. Some familiarity with the exponential form of the 
solution of homogeneous linear differential equations is assumed at the 
outset of this study. 

16-1. The Response of Circuits to N onsinusoidal Signals : the Par
ticular Integral. The circuit shown in Fig.16-1 is similar to the model for 
one stage in a cascade of RC-coupled amplifiers. The input signal es(t) 
is a specified, nonsinusoidal function of time, and the problem is to 
determine the output voltage e2(t) as a function of time. The desired 
result can be obtained from the two node equations that govern the 
behavior of the circuit; these equations are 

de1 de2 
G1e1 + (C1 + C2) dt - C2 dt = -gmes(t) (16-1) 

and (16-2) 

The solution of these equations involves finding e1(t) and e2(t) such that 
the equations are satisfied. Thus e1(t) and e2(t) must be of such a nature 

Go 

Fm. 16-1. An amplifier circuit. 

that the sum of the terms on the 
left of (16-1) varies with time in the 
same way as the applied signal es(t), 
and of such a nature that the sum 
of the terms on the left of (16-2) 
is identically zero. The terms in
volved in these constraints contain 
the functions e1(t) and e2(t), their 

time derivatives, and, in the more general case, their time integrals; thus 
finding the solutions is not a simple matter in general. 

Finding the solutions of differential equations such as (16-1) and (16-2) 
can be simplified in many important cases by making use of a special 
property of the exponential function emt. This function retains its 
exponential form regardless of how many times it is differentiated or 
integrated. It follows from this fact that if the signal applied to the 
circuit in Fig. 16-1 is exponential in form, exponential forms for e1(t) 
and e2(t) can be found that satisfy Eqs. (16-1) and (16-2). Thus if the 
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input signal is 
(16-3) 

then solutions to (16-1) and (16-2) can be found having the form 

and (16-4) 

When these solutions are substituted into (16-1) and (16-2), every term 
in the equations varies in accordance with Emt; thus the equations are 
satisfied for all values oft provided the amplitudes E1 and E2 have suit
able values. 

The amplitudes E1 and E2 of the solutions are found by substituting 
(16-3) and (16-4) into (16-1) and (16-2) and determining the values 
required to satisfy the resulting equations: 

G1E1Emt + (C1 + C2)mE1Emt - C2mE2Emt = -umEsEmt 
- C2mE1Emt + G2E2Emt + C2mE2emt = 0 

(16-5) 
(16-6) 

Each term in (16-5) and (16-6) varies with time as Emt, and the common 
factor can be canceled to obtain simpler equations: 

[G1 + (C1 + C2)m]E1 - C2mE2 = -uJEs 
-C2mE1 + (G2 + C2m)E2 = 0 

(16-7) 
(16-8) 

The amplitudes E1 and E2 must satisfy these equations. Solving by 
determinants for the amplitude of the exponential output voltage E2 
yields 

(16-9) 

Rearranging this expression leads to 

E Um m E 
2 = - C1 m 2 + am + b 8 (16-10) 

When the denominator of (16-10) is factored, the resulting expression has 
the form 

(16-11) 

The forward voltage transmittance relating the exponential input signal 
to the exponential output signal of the same form is therefore 

A(m) = E2 = _ Um m 
Es C1 (m - m1)(m - m2) 

(16-12) 

Thus when the input signal is an exponential given by (16-3), the ampli
tude of the exponential output voltage can be determined from (16-11) 
or (16-12). 
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Example 16-1. The parameters in the circuit of Fig. 16-1 are such that m1 = -5, 
m2 = -50, and gm/C1 = 1000. The input signal is ea = 2e-10t. Determine the 
output voltage e2(t). 

Solution. The forward voltage transmittance, given by (16-12), is 

A = -1000 (-10 + 5)/~10 + 50) = (-/~05~)ci~)10) = -50 

The amplitude of the output voltage is 

E2 = AEs = (-50)(2) = -100 

and the output voltage as a function of time is 

e2(t) = E2emt = - l00e-lOt 

The pole-zero pattern for the voltage transmittance given by (16-12) 
can be plotted, and the relations specified by (16-12) can be represented 
graphically as is done in Chap. 15 for sinusoidal operation in the steady 
state. A typical construction for the case where m is a negative real 
number is shown in Fig. 16-2a. 
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Frn. 16-2. Diagrams related to the voltage transmittance. (a) Exponential signal; 
(b) sinusoidal signal. 

It is easily verified that if the variable min (16-12) is given an imaginary 
value, m = jw, then (16-12) gives the voltage transmittance for sinusoidal 
steady-state operation. The graphical representation of (16-12) for this 
case is shown in Fig. 16-2b. The relations between the signal trans
mittances for exponential signals and sinusoidal signals is discussed in 
greater detail in Sec. 16-2. 

If the input signal to the circuit of Fig. 16-1 consists of the sum of a 
number of exponential components, the responses of the circuit having 
the same exponential forms can be found in the manner presented 
above with the aid of the superposition principle. For example, if the 
signal consists of two exponential terms, then it has the form 

(16-13) 

The response of the circuit to this signal can be determined by consider-
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ing each term in (16-13) separately. The response to the first term 
acting alone is an exponential voltage 

(16-14) 

The amplitude of this voltage, E2a, is given by (16-11) with m = ma; 
thus 

E2 = - gm ma E 
a C1 (ma - m1) (ma - m2) sa (16-15) 

Similarly, the response to the second term in (16-13) is 

(16-16) 
in which the amplitude is 

E2b = - gm mb Eb 
C1 (mb - m1) (mb - m2) s 

(16-17) 

Since the circuit is linear, the principle of superposition applies, and the 
response of the circuit when both terms in (16-13) are acting is the sum 
of the responses to the separate terms. Thus the response to the signal 
given by (16-13) is 

(16-18) 

where E2a and E2b are given by (16-15) and (16-17), respectively. 

Example 16-2. The parameters in the circuit of Fig. 16-1 are such that m1 = -5, 
m 2 = -50, and gm/Ci = 1000. The input signal is es = e-101 + 2e-201• Determine 
the output voltage e2(t). 

Solution. The response of the circuit to the first term, esa = e-101, is e2a = E 2ae-10t, 
where the amplitude is given by (16-15) as 

-10 
E2a = -1000 (-lO + 5)(-lO + 50) (1) = -50 

The response of the circuit to the second term is e2b = E2be-201 , where 

-20 
E2b = -1000 (-20 + 5)(-20 + 50) (2) = -88.8 

The complete response is thus 

e2(t) = -50-101 - 88.Se-201 

16-2. Representation of Signals by Sums of Exponential Terms. In 
Sec. 16-1 the response of a linear circuit to exponential input signals is 
studied. The ease with which the differential equations for the circuit 
are solved when the input signal is a sum of exponential terms suggests 
that the analysis for signals of other waveforms can be simplified if these 
signals can be expressed as a sum of exponential terms. This does indeed 
prove to be the case, and it also happens that exponential representations 
for several important types of signals can be found quite easily. For 
example, a decaying exponential signal applied at some instant designated 
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as t = 0, shown in Fig. 16-3a, is given by 

for O < t (16-19) 

where a: is a positive real number. The rate at which the exponential 
decays depends on the value of a:; the smaller a: the smaller the rate of 

:t :_: -
~o 

decay. In the limit as a: appoaches 
zero, (16-19) becomes 

for 0 < t 
(16-20) 

(al (bl Thus a step of voltage applied at 
Frn. 16-3. Signals beginning at t = 0. t = 0, shown in Fig. 16-3b, is repre
(a) Decaying exponential; (b) step sented for 0 < t by an exponential 
signal. having a zero exponential coefficient. 
An important part of the analysis and design of many electrical systems 
is concerned with the response of the systems to step input signals. 

Additional signals for which exponential representations can be found 
easily are: 

Hyperbolic cosine: 

es = Es cosh (3t = Es (i3t + E-f3t) 
2 

Damped hyperbolic cosine: 

Cosine: 

Damped cosine: 

es = Es cos wt = Es (iwt + E-jwt) 
2 

es = EsE-at COS wt = ~ 8 E-at(Eiwt + E-jwt) 

= Es [E(-a+jw)t + E(-a-jw)t] 
2 

Periodic signal: 

es = Eso + Es1 COS (wt + 01) + Es2 COS (2wt + 02) + 

(16-21) 

(16-22) 

{16-23) 

(16-24) 

(16-25) 

Exponential representations can be found by elementary me9,ns for 
only a limited number of signals. The Laplace transform provides a 
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formal mathematical procedure for finding exponential representations 
for a much larger collection of signals; for this reason (among others) it 
plays an important role in the study of electrical systems. It often 
turns out, however, that the exponential representation for a given signal, 
obtained by the Laplace transform or equivalent means, consists of an 
infinite number of exponential terms; one such case is the representation 
for a periodic signal given by (16-25). Since in many respects it is 
awkward to work with an infinite number of terms, much research effort 
has been spent in developing procedures for representing signals approxi
mately by the sum of a few carefully chosen exponential terms. 

When a sinusoidal signal of a constant amplitude is applied to the cir
cuit of Fig. 16-1, the signal can be represented as the sum of two exponen
tials in accordance with (16-23). The response of the circuit having the 
same form as this signal can be determined by superimposing the response 
to each exponential term considered separately. The amplitude of the 
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Fm. 16-4. Graphical constructions related to sinusoidal excitation. (a} Positive 
exponential; (b) negative exponential. 

response to the term with the positive exponent is given by (16-11) with 
m = jw. Accordingly, 

E2a = - Cgm (" ~(. ) Es 
1 Jw - m1 Jw - m2 2 

= A(jw) Ji! = [[A(jw) jei8a] Es 
2 2 

(16-26) 

where 0a is the angle associated with A(jw). The graphical construction 
in the complex plane corresponding to A (}w) is shown in Fig. 16-4a. 
Similarly, the amplitude of the response to the term with the negative 
exponential is given by (16-11) with m = - jw; thus 

E Zb = _ gm -jw Es 
C1 (-jw - m1)(-jw - m2) 2 

= A( -jw) ~ = [IA( -jw) jei8b] Es 
2 2 

(16-27) 

where Ob is the angle associated with A( - jw). The graphical construe-



394 ELECTRONIC CIRCUITS 

tion in the complex plane corresponding to A ( - jw) is shown in Fig. 
16-4b. The complete response of the circuit to the sinusoidal input 
signal is the superposition of the responses to these two exponential 
terms: 

e2(t) = E2aefwt + E2bcfwt 

= [IA(jw)jeiBaeiwt + IA(-jw)lei8he-fwt]E8 

2 

(16-28) 

(16-29) 

It is clear from the diagrams of Fig. 16-4 that IA (jw) I = IA ( - jw) I and 
that 0b = -0a; thus there is actually no need to consider the exponential 
term with the negative exponent, for all the required information is 
provided by the term with the positive exponent. Using these relations 
and designating the phase shift by 0 = 0a = - 0b yields 

where 

e2(t) = IA(jw)I ~ 8 
[ei(wt+B) + e-i(wt+B)] 

= IA(jw)I Es COS (wt+ 0) 
= IE2I cos (wt + 0) 

IE2I = IE2(jw)I = IA(jw)IEs 

(16-30) 

(16-31) 
(16-32) 
(16-33) 

is the amplitude of the output voltage. Complete information about 
e2(t) is provided by the knowledge of Es, IA(jw)I, and 0; thus the complex 
amplitude of e2, defined by 

(16-34) 

contains complete information about e2(t). 
16-3. Transient Response : the Complementary Function. The behav

ior of the circuit shown in Fig. 16-1 is described by the two differential 
equations (16-1) and (16-2). Methods of solving these equations for the 
unknown node voltages e1(t) and e2(t) are discussed in Sec. 16-1. When 
an exponential voltage 

(16-35) 

is applied at the input, the output voltage of the same form is given 
by (16-4) as 

(16-36) 

in which E2, the amplitude of the exponential response, is given by (16-10) 
or (16-11) as 

E
2 

= _ Ym ms E 
C1 (ms - m1) (ms - m2) s 

(16-37) 

The solutions of the differential equations obtained by the methods 
of Sec. 16-1, an example of which is given above, are not complete 
solutions of the equations; such solutions are particular integrals for the 
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equations. If Eqs. (16-1) and (16-2) have nonzero solutions for e1 and 
e2 when the right-hand sides are made zero, then th~se solutions can be 
added to the particular integral and the result also satisfies the original 
equations (see the discussion of superposition in Sec. 13-1). The solu
tions of the differential equations with the right-hand sides made zero 
are called complementary functions. Thus the complete solution for 
the unknown voltage e1 or e2 consists of a particular integral plus a 
complementary function. 

Since the complementary function is a solution of the differential 
equations with the right-hand sides made zero, it is a response that can 
exist when no excitation is applied to the circuit. For example, if the 
capacitor C2 in Fig. 16-1 is charged before it is connected in the circuit, 
then e1 and e2 will not be zero when it is connected in the circuit, even 
though no signal voltage is applied at the input. The complementary 
function in the solution of the equations gives the voltages that exist 
as a result of the initial charge on the capacitor. In many circumstances 
the complementary function has an important effect on the response of 
electric circuits; hence it is necessary to examine the nature of the com
plementary function in some detail. 

As a result of the nature of linear differential equations, the comple
mentary function can always be expressed as an exponential function 
or as a sum of exponential terms. Thus the complete response of the 
circuit in Fig. 16-1 to an excitation consisting of a single exponential 
term is of the form 

e1 = E lsEm.t + E laEmat + E lbEmbt + 
e2 = E2sEm,t + E2aEmat + E2bEmbt + (16-38) 

The first term in these equations is the particular integral, and the remain
ing terms constitute the complementary function. It is clear that the 
complementary function may decay with time, remain constant in 
amplitude, or grow with time depending on the values of ma, mb, . . . . 
If the complementary function grows with time, the energy stored in 
the capacitors and the energy dissipated in the resistors must increase 
with time. It follows that the complementary function can grow with 
time only if sources of energy are present. But the complementary 
function describes a response that can exist with no excitation applied 
to the circuit; therefore complementary functions associated with circuits 
composed of R, L, and C only must decay with time. Accordingly, 
since the complementary function has a short life, it is often referred to 
as the transient response of the circuit. If the signal applied to the 
circuit is a periodic wave or a constant, the particular integral may persist 
long after the transient response has become negligible; hence the particu
lar integral is often referred to as the steady-state response of the circuit. 
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In accordance with the discussion above, it is ensured that the transient 
response of a circuit consisting only of R, L, and C decays with time. On 
the other hand, growing transients can occur in circuits containing con
trolled sources. Controlled sources are sources of energy and are there
fore capable of supplying the increasing energy demanded by growing 
transients. Such transients continue to grow until the circuit becomes 
nonlinear or until some component fails as a consequence of excessive 
voltage or current; hence growing transients usually interfere with the 
proper operation of the circuit. One of the principal objectives of this 
study is to determine the circumstances under which growing transients 
may occur in electronic circuits. 

The nature of the complementary function, or transient response, can 
be examined further by returning to the circuit of Fig. 16-1. Each term 
in the transient response is of the form 

(16-39) 

The amplitude ET and the exponential coefficient m must be deter
mined for each term. The exponential coefficients can be determined 
from the fact that each exponential transient term must satisfy the 
differential equations (16-1) and (16-2) with the right-hand sides made 
zero. Substituting 

and (16-40) 

into (16-1) and (16-2) for e1 and e2 with Es = 0, and solving for E 2r, the 
amplitude of the transient term in e2, yields Eq. (16-11) with Es = 0: 

(16-41) 

(16-42) 

Thus the amplitude of the transient must be zero unless the voltage 
transmittance Ava is infinite. If Ava is infinite, (16-42) becomes inde
terminate and yields no information about E2r, the amplitude of the 
transient; however, it does yield the permissible values of the exponential 
coefficient m in the transient response. Specifically, Ava can be infinite, 
giving a nonzero value for the amplitude of the transient, only if m = m1 

or m = m2. Exponential terms with these values of m satisfy the dif
ferential equations with Es = 0, and the complete solution for the output 
voltage when the input signal consists of a single exponential term is 

(16-43) 

The values of m that make Ava infinite are by definition the poles of 
Avoi thus the transient response contains one exponential term for each 
pole of Ava, and the poles are the exponential coefficients. (The zeros 
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of Avo do not give rise to terms in the transient response, but they do 
affect the amplitudes of the transient terms in accordance with the dis
cussion that follows.) This is a significant fact. The forward voltage 
transmittance, determined by sinusoidal steady-state analysis or by 
analysis for the response of the circuit to a single exponential input, 
yields immediately the number of exponential terms in the transient 
response and the exponential coefficient for each term. Much useful 
information about the transient response can be deduced from these 
results. In particular, these results are sufficient to determine whether 
or not the transient response grows with time; this fact is discussed in 
more detail in the paragraphs that follow. 

To complete the solution for the response of the circuit, it is still 
necessary to determine the amplitudes of the exponential terms in (16-43). 
The amplitude of the particular integral, given by (16-11), is 

E2 = - fl1!!. ms E 
s C1 (ms - m1)(ms - m2) 8 (16-44) 

A useful geometric interpretation of this relation is provided by the 
construction on the pole-zero pattern shown in Fig. 16-5a. Each tran
sient term in (16-43) has the same mathematical form as the particular 

Im Im Im 

• I 
-x x:--r.--,... --x--o--;-x·--n------;• --x----x·-o---

m2 m 8 m 1 Re m2 ms m1 Re m2 ms m1 Re 

(a) (b} (cl 

FIG. 16-5. Graphical constructions related to the amplitudes of the terms in Eq. 
(16-43). (a) Particular integral; (b) transient term associated with the pole at m1; 
(c) transient term associated with the pole at m2. 

integral. This fact suggests that it might be possible to determine the 
amplitudes of the transient terms by a similar calculation. This does 
indeed prove to be the case, and under certain restricted conditions the 
procedure is quite simple. If the input signal consists of a single expo
nential term (which may be a step signal), and if there is no energy 
stored in the circuit when the signal is applied, then E 21, the amplitude 
of the transient term associated with the pole at m1, is obtained from 
(16-44) by interchanging ms and m1. Thus 

(16-45) 
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The corresponding construction on the pole-zero pattern is shown in 
Fig. 16-5b. The amplitude of the transient term associated with the 
pole at m2 is obtained similarly by interchanging ms and m2 in (16-44). 
Hence 

(16-46) 

The corresponding construction on the pole-zero pattern is shown in 
Fig. 16-5c. 

This method for evaluating the amplitudes of the transient terms in 
the response of a circuit to an exponential signal applied at a certain 
instant is presented here without proof, and it is applicable only under 
the restricted conditions stated above. The Laplace transform provides 
a rigorous proof of the method, and it extends the method to the case 
of arbitrary initial conditions and to the case of applied signals having 
more complicated forms. Thus it is usually desirable to utilize the 
Laplace transform when detailed transient studies are to be made. 

The results contained in Eqs. (16-44) to (16-46) can be obtained from 
a single compact expression: 

E2 = - gm m E 
C1 (m - m1)(m - m2)(m - ma) a 

= Avo(m) Es 
m - ma 

(16-47) 

(16-48) 

The view may be taken that Avo(m) accounts for the properties of the 
circuit and that the factor Es/ (m - ms) accounts for the applied signal, 
which is given as a function of time by (16-35). Equation (16-45) for 
E21, the amplitude of the transient term associated with the pole at m1, 
is obtained from (16-47) by removing the factor m - m1 and setting 
m = m1. Equations (16-44) and (16-46) for E2s and E22 are obtained 
from ( 16-4 7) in a similar manner. The pole-zero diagram corresponding 
to Eqs. (16-47) and (16-48) for E2 is the same as the pole-zero diagram 
for Avo except that it contains in addition a pole at m = ms. This 
additional pole accounts for the exponential signal applied to the circuit. 

When the signal applied to the circuit of Fig. 16-1 is a step of amplitude 
Es, it can be represented as an exponential signal with ms = 0 [Eq. 
(16-20)]. In this case the pole accounting for the signal lies at the origin 
of the complex plane, and it coincides with the zero of Avo at that point. 
Under this condition the factor m - ms = m - 0 in the denominator of 
(16-47) cancels the factor min the numerator, and the expression for E 2 
has neither a pole nor a zero at the origin; the pole associated with the 
signal cancels the zero associated with the voltage transmittance of the 
circuit. 
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Example 16-3. The parameters in the circuit of Fig. 16-1 are such that m1 = -5, 
m2 = -50, and g11./C1 = 1000. The input signal is a unit step of voltage applied at 
t = 0 with no initial energy stored in the capacitors. Determine the complete 
response, e2(t). 

Solution. The response of the circuit to any exponential signal can be determined 
from Eq. (16-47); for the specified circuit parameters with a unit-step signal this 
equation reduces to 

m 
E 2 = -lOOO (m + 5)(m + 50)(m - 0) (l) 

-1000 
(m + 5)(m + 50) 

The corresponding pole-zero pattern is shown in Fig. 16-6. 
The response contains an exponential term corresponding to each pole in the expres

sion for E2; hence it has the form 

t > 0 

The amplitude of the first term is obtained 
from the expression for E2 by removing the 
factor m + 5 and setting m = -5; thus 

-1000 
E21 = 45 = -22.2 

The corresponding graphical construction 
on the pole-zero pattern for E2 is shown 
in Fig. 16-6a. The amplitude of the sec
ond term is found in a similar manner; 
thus 

-1000 
E22 = _

45 
= 22.2 

Im Im 

->c---:)( ->c---;)( 

-50 -5 Re -50 -5 Re 

(a) (bl 
Fm. 16-6. Graphical constructions related 
to the step response of the amplifier of 
Example 16-3. (a) Response associated 
with the pole at m = -5; (b) response 
associated with the pole at m = -50. 

The corresponding graphical construction is shown in Fig. 16-6b. The complete 
response of the circuit to a unit-step signal is therefore 

e2 = -22.2E-5t + 22.2e-00 t t > 0 

The particular integral, or steady-state component, in this solution is zero. This 
result is in accordance with the physical fact that the circuit does not transmit d-c. 

Further features of the transient response of electric circuits are 
revealed by an examination of the step response of the single-tuned 
pentode amplifier shown in Fig. 15-16. The forward voltage trans
mittance of this circuit is given by Eqs. (15-31) and (15-32) as 

gm m 
Avo = - (] m2 + (G/C)m + Wo2 

gm m 
C (m - m1)(m - m2) 

(16-49) 

where 

(16-50) 

When the poles are real, the step response of the tuned amplifier 1s 
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identical in form with that of the amplifier of Fig. 16-1. When the 
poles are complex, the pole-zero pattern for Avo has the form shown in 
Fig. 16-7a, and the step response can be determined from 

E - gm 1 E 2 - - C (m - m1)(m - m2) 8 (16-51) 

In this expression Es is the amplitude of the step, and the zero of Avo 
is canceled by the pole associated with the signal. Accordingly, the 

Im 

Txm1 

fh 

f31 
Lxm2 

~al 

(a) 

Im 

Re 

(bl 

Re 

/ 
/ 

{c) 

Frn. 16-7. The step response of a single-tuned amplifier. (a) Poles and zeros of A,,0 ; 

(b) poles and zeros for the step response; (c) the step response. 

(16-52) 

(16-53) 

Thus the step response is an exponentially decaying sinusoid such as the 
one shown in Fig. 16-7c. 

The frequency of the decaying sinusoid in Fig. 16-7c depends on the 
distance of the poles of Avo from the real axis, and the rate at which the 
envelope decays depends on the distance of the poles from the imaginary 
axis. The time required for the envelope to decay to 1/ e times its 
initial value is 

1 2C 2Qo 2 T--------
a1 G Wo B 

where wo2 = 1/LC = resonant frequency of the tuned circuit 
Qo = woC/G = resonant Q 

B = bandwidth between the half-power points 

(16-54) 
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Since Wo = 21rfo, it follows that 

foT = Qo = N 
7r 

(16-55) 

is the number of cycles required for the envelope to decay to 1/ e times its 
initial value. Thus the higher the Q and the smaller the bandwidth of 
the tuned circuit, the more slowly the transient response decays. If 
the conductance G is made zero, the poles lie on the imaginary axis, and 
the transient continues oscillating indefinitely with undiminished 
amplitude. 

If the pair of complex poles lies in the right half of the complex plane, 
then m1 = a1 + j/31, the exponent in (16-53) is positive, and the oscil
latory transient has a growing envelope. It is this phenomenon that 
gives rise to the self-sustaining oscillations that are discussed in Sec. 14-3. 
Since a growing transient implies a continuously increasing energy stored 
in the circuit, it also implies that the circuit contains a source of energy 
when no signal is applied. Since the tuned amplifier of Fig. 15-16 con
tains no such source, it cannot have growing transients, and it cannot 
have poles in the right half of the complex plane. In other circuit con
figurations, however, controlled sources can supply the required energy 
and can be responsible for growing transients. 

If the parameters of the tuned circuit are adjusted so that the poles 
of Avo move together and coincide on the negative real axis, as illustrated 
in Fig. 15-18, then a double pole results, and the exponential form of the 
transient terms in the output voltage is modified. Under these condi
tions /31 = 0, and Eq. (16-53) for the step response takes the indetermi
nate form 0/0. The step response for this case can be determined by 
letting the two poles of Avo approach coincidence as a limit and evaluating 
the indeterminate form by a suitable method. Thus, differentiating the 
numerator and the denominator of (16-53) with respect to {3 1 and then 
letting /31 tend to zero yields 

gmEs _ t [ l' (t COS /31t)] e2 = - -- € at un 
C ffr--->O 1 

t > 0 (16-56) 

when the poles of Av0 coincide. 
In general, when the pole-zero pattern associated with the response 

E2 contains multiple-order poles, the terms in the response associated 
with the multiple-order poles cannot be determined by the method 
presented in the preceding paragraphs, for indeterminate forms always 
result. The solution can be obtained, however, by a limiting process 
such as the one described above. 
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Example 16-4. The incremental model for the shunt-peaked amplifier discussed 
in Sec. 15-10 is shown in Fig. 16-8a. The circuit parameters are adjusted so that 
WH = 1/RC = 107, Qo2 = WHL/R = H, and gm/C = 108• A unit step of voltage is 
applied to the input at t = 0 with no energy initially stored in the circuit. Determine 
the complete response e2(t). 

/ 
I 

I 
I 

.,,--x- ...... , 
/ 

(bl 

(a) 

Im Im 

' \ 
\ 

Re 

(cl 

Fm. 16-8. Diagrams used in determining the step response of a shunt-peaked amplifier. 
(a) Shunt-peaked amplifier; (b) pole-zero diagram for E2 with Qo2 = H; (c) graphical 
construction related to the amplitude of the steady-state term. 

Solution. The forward voltage transmittance of the circuit is given by (15-111); 
thus, substituting numerical values in this expression and using (16-48), the unit-step 
response can be determined from 

E2 = -108 m - ma (1) 
(m - m1) (m - m2) (m - 0) 

where m1, m2, and ma are given by (15-112) and (15-113). The corresponding pole
zero pattern, adapted from Fig. 15-32b, is shown in Fig. 16-8b; m1, m 2, ma, and m. are 
located at the corners of a square inscribed in the circle of radius wH centered at -wp. 

It follows from these diagrams that 

ma = -2wH = -2(107) 

m1 = -wH + jwH = -107 + j107 

m2 = -wH - jwH = -107 - j107 

The response of the circuit contains an exponential term for each pole in the diagram 
of Fig. 16-8b; hence, if time is expressed in microseconds and frequency is expressed in 
megaradians per second, the response has the form 

t>O 

The amplitude of the first term is obtained from the expression for E 2 by removing the 
factor associated with the signal (m - 0) and setting m = m, = 0; the corresponding 
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graphical construction on the pole-zero pattern is shown in Fig. 16-8c. The length of 
the vector from m 3 is 2,,m = 2(107), the lengths of the vectors from m1 and m2 are 
each y2 (107), and the angles of the vectors from m1 and m2 are 01 = -02 = -45°. 

Hence 

E = -108 2(107) - = -10 
23 

(10 7 y2) (107 y2) 

The amplitude of the second term in the equation for e2 is determined in a similar 
manner, and a diagram similar to the one in Fig. 16-8c facilitates the process. Thus 

lQ7 y2 Ef45 
E21 = -108 --------

(101 -y2 Ei135) (2) (107 Ef90) 

=5 
Similarly, 

107 -y2 E-f46 
E22 = -108 ---------

(107 -y2 E-fl36) (2) (lQ7 E-f9O) 

=5 

Thus, with time in microseconds, 

e2 = -10 + 5E(-lO+flO)t + 5E(-1O-f10)t 

= -10 + 5E-10t(EilOt + E-ilOt) 

= -10 + lOE-lOt cos lOt t > 0 

e2 
volts 

0-+----+--+----+---+---+----

-5 

-10 

0.1 0.2 0.3 0.4 0.5 

' \ \ 
\ 
\ 
\ 
\ 

µsec 

\,<Q0 = 0 (no compensation) 
,...._ ........ ___ _ 

This response is shown as a solid line in Frn. 16-9. Step response of the shunt
Fig. 16-9. The step response of the am- peaked RC-coupled amplifier of Exam-

ple 16-4. 
plifier with no compensation, Qo = 0 and 
L = 0, is shown as a dotted line in Fig. 16-9 for comparison and to show the effect 
of the peaking inductor on the step response. The time required for the response to 
reach 90 per cent of its final value is substantially reduced by the peaking inductor. 

In the analysis of the single-tuned amplifier above and the shunt-peaked 
amplifier of Example 16-4, the terms in the response associated with pairs 
of complex conjugate poles can in each case be combined to form an 

exponentially decaying sinusoidal 
term. This fact is no coincidence; 
it results from the fact that the 
amplitudes of the terms associated 
with a pair of conjugate poles are 
themselves complex conjugates, and 
this result arises from the fact that 

m2 m2 the poles and zeros of the function 
E 2(m) are either real or complex 

(a) (bl conjugates. These relations are 
Frn. 16-10. Transient terms associated illustrated in Fig. 16-10. The am
with complex conjugate poles. plitude of the response term asso-

ciated with the pole at m1 is given, apart from a constant multiplier, by 
the construction of Fig. 16-lOa. This amplitude is a complex number 
that can be expressed in the form E1ei61, and the response term associated 
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with the pole at m1 is 
(16-57) 

Similarly, the amplitude of the response term associated with the pole 
at m2 is given by the construction of Fig. 16-lOb. It follows directly 
from the two diagrams that the complex number obtained from Fig. 
16-lOb is the conjugate of the number obtained from Fig. 16-lOa. Hence 
the response associated with the pole at m2 is 

(16-58) 

Designating the conjugate poles by 

and 
m1 = -a1 + j/31 
m2 = -a1 - j/31 

the sum of these two responses becomes 

e1 + e2 = E 1[ Ei01E(-a1+i.81)t + E-ilhE(-a1-i.B1lt] 

= E 1E-a1t[Ei(.B1t+81) + E-i(.B1t+81)] 

= 2E1ca1t cos (/31t + 01) (16-59) 

The response terms associated with complex conjugate poles can always 
be combined in this way to form an oscillatory response. 

If a pair of conjugate poles is given, then a1 and /31 in (16-59) are known, 
and the response associated with these poles can be written if E1 and 01 
are known. Thus it is not necessary to carry out all the algebraic steps 
leading to (16-59) in order to obtain the response; it is sufficient to deter

)( 

mine E1 and 01 by a single operation cor
responding to the diagram in Fig. 16-lOa. 
The desired result, Eq. (16-59), can then 
be written at once. 

It follows from the preceding paragraphs 
that the transient response of networks can 
always be expressed as a sum of exponen

Fw. 16-11. Poles representing tial terms and oscillatory terms. The vari
transients of various forms. 

ous possibilities that exist, apart from the 

-x. 

X 

special case of multiple-order poles, are illustrated in Fig. 16-11. Real 
poles in the left half of the complex plane give rise to exponentially 
decaying transients, and complex poles in the left half plane give rise 
to exponentially decaying oscillatory transients. Their counterparts in 
the right half plane are associated with growing exponentials and growing 
oscillations. Complex poles on the imaginary axis contribute a sinusoid 
of constant amplitude to the response, while a pole at the origin con
tributes a constant, or d-c, component. 

16-4. The Effect of Feedback on Pole-zero Patterns. Detailed infor
mation about the frequency dependence and the transient response of 
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electric networks can be obtained rather easily from the pole-zero pattern 
of the signal transmittance. Therefore it is often convenient to study 
the effect of changes in circuit parameters by studying the way in which 
such changes affect the pole-zero pattern. The pole-zero pattern also 
provides a useful way of studying the effects of feedback on the dynamic 
response of electronic circuits. The way in which feedback affects the 
pole-zero pattern of the signal transmittance is often of vital importance, 
for it may lead to poles in the right half of the complex plane. In such 
cases the circuit will have growing transients. 

Figure 16-12 shows a circuit that, because it contains feedback, can 
be used either as a frequency-selective amplifier having characteristics 
similar to those of a single-tuned amplifier or as an oscillator generating 
a sinusoidal signal. The circuit finds its widest application as an oscil
lator, and it serves as the prototype 
for commercially built oscillators that 
are widely used in laboratory experi
mentation and testing. The ideal 
amplifier included in the circuit is 
required to produce no sign rever
sal and to provide an amplification 
somewhat greater than 3; in practice 
it is usually approximated by a two

C 
r------7 E2 

~__;;_+-0 

L _______ J 

Fm. 16-12. A feedback circuit. 

stage RC-coupled amplifier. The transmission from the output of the con
trolled source AE~ through the RC network back to the input of the 
amplifier constitutes the feedback in the circuit. 

The output voltage of the circuit is 

(16-60) 

and the node equation at E~ is 

(
l mC ) , mC I 
R + mC + l + mCR Ei - l + mCR E 2 = R Ei (16-61) 

Eliminating E~ between these two equations and solving for the forward 
voltage transmittance yields 

E2 = A = ~ m + l/CR 
E1 VO CR 3 - A l 

m2 + cf:l m + c2R2 

and defining wo = l/CR gives 

A A m+wo 
VO= Wo m 2 + (3 - A)wom + Wo 2 

A m - mo 
= Wo (m - m1)(m - m2) 

(16-62) 

(16-63) 
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ELECTRONIC CIRCUITS 

1 
mo= -wo = -CR 

3 - A . / (3 - A)2 

- --
2
- Wo ± JWo '\J 1 - --2- = 

These results show that as a consequence of feedback the poles of Avo 
depend on the amplification A. When A = 1, the poles coincide on the 
negative real axis of the complex plane, and if A is increased above this 

Im 
value, the poles become complex. 
The distance of the poles from the 

/A= 3 origin is w0 ; hence if A is increased 

I • mi ,,-- -...._ , while C and Rare held constant, the 
ncreasmg //-. "-,'\ 

A (/ w0 \ poles move along the paths shown in 
A=l~/ _1 ___ Fig. 16-13. Thus the effect of vary-

/~ Re ing the amplification in this circuit is 
// A= 5 identical with the effect of varying 

.,,,.,,,, the conductanceGin the single-tuned 
amplifier. When A = 3, a1 = 0, 
and the poles lie on the imaginary 

FIG. 16-13. The effect of feedback on 
h 1 f A axis; when A is made greater than t e po es o vo• 

3, the poles move into the right half 
of the complex plane. The poles coincide on the positive real axis when 
A = 5, and with further increases in A they separate and move along 
the real axis toward zero and infinity. 

When A is made slightly less than 3, the poles lie in the left half plane, 
and they are very close to the imaginary axis. Under these conditions 
the shape of the amplitude characteristic in the frequency band between 
the half-power frequencies depends only on the pole m1, and in this band 
it is identical with that of a high-Q single-tuned amplifier. The resonant 
Q of the tuned amplifier is given by Qo = wo/2a1. Using this definition 
for the Q of the feedback amplifier in Fig. 16-12 yields 

Q Wo 1 
0 = 2a1 = 3 - A (16-64) 

When Qo is large, it is also given by 

(16-65) 

where B is the bandwidth between the half-power frequencies. It is 
clear that the Q of the resonance can be made as large as desired by 
making A approach the value 3 from below. A practical difficulty 
prevents the realization of very high Q's, however, for if the poles are 
very close to the imaginary axis, any slight increase in A, such as might 
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result from a change in line voltage or a change in a circuit parameter, 
causes the poles to move into the right half of the complex plane. Under 
these conditions the circuit has a growing oscillatory transient (if A < 5) 
that interferes with the operation of the circuit as an amplifier. 

The growing oscillation that results when A is greater than 3 can be 
profitably employed by using the circuit as an oscillator to generate a 
sinusoidal signal having a frequency determined by w0 = 1/CR. In this 
application the signal source E1 in Fig. 16-12 is not needed, and it can 
be replaced by a short circuit. Once started, the oscillatory transient 
continues to grow until the circuit saturates and becomes nonlinear. The 
saturation limits further growth of the oscillation, and it may also intro
duce considerable waveform distortion. In order to avoid this waveform 
distortion it is usually desirable to incorporate in the circuit some means 
for limiting the growth of the oscillation that does not depend on non
linear operation of the circuit. The desired result can be accomplished 
by including in the amplifier circuit a temperature-sensitive resistance 
arranged so that it controls the value of the amplification A. As the 
oscillation grows, the voltage across the temperature-sensitive element 
increases, the temperature of the element rises, and the resistance of the 
element changes in such a way as to reduce the amplification to the 
critical value of 3. Thus the poles move along the circle in Fig. 16-13 
toward the imaginary axis as the oscillation grows. If the amplification 
drops below 3, the poles move into the left half plane, and the oscillation 
begins to die out. But as the amplitude of the oscillation decreases, 
the temperature-sensitive element cools off, and the amplification 
increases toward the critical value again. In this way the amplitude 
of the oscillation is held at the value that, through the action of the 
temperature-sensitive element, gives an amplification of 3. Since the 
control element is sensitive only to therms value of the oscillation, changes 
in its resistance do not distort the waveform of the signal; such elements 
are sometimes described as quasi-linear. Since the radius of the circle 
on which the poles move is wo, it follows that the frequency of the oscil
lation can be adjusted by varying either C or R or both. 

The circuit of Fig. 16-12 is one of many that can be used as an oscillator; 
it is particularly useful at frequencies below a few hundred kilocycles per 
second. At higher frequencies the parasitic capacitances become impor
tant, and, like amplifiers, oscillators must use tuned circuits. It is also 
true that circuits intended as amplifiers occasionally turn out to be 
oscillators. This situation is usually the result of poles accidentally 
moving into the right half plane as a result of accidental feedback 
associated parasitic capacitances. Careful layout of wiring and parts is 
essential in avoiding oscillations in high-gain amplifiers. 

An important part of the analysis and design of feedback amplifiers 
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is concerned with determining whether or not the signal transmittance 
has poles in the right half of the complex plane, for such poles are associ
ated with growing transients. A simple rule that is often helpful in this 
respect is the following: If the coefficients in any polynomial f(m) having 
real coefficients are not all of the same sign, or if the coefficient on any 
power of m less than the greatest is zero, then that polynomial has at 
least one zero in the right half of the complex plane or on the imaginary 
axis. The denominator polynomial in Eq. (16-62) is, of course, in 
agreement with this rule. The proof of this rule follows directly from the 
relations between the zeros of polynomials and their coefficients. It is 
important to note in this respect that the fact that all the coefficients 
of a polynomial have the same sign is not sufficient to ensure that the 
polynomial has no zeros in the right half plane. 

16-5. Summary. The poles and zeros of the signal transmittance of 
an electric circuit not only provide information about the frequency 
characteristics of the circuit, but they also provide detailed information 
about the transient response. Moreover, the complete response of the 
circuit to a signal consisting of a single exponential term, including a step 
signal, can be determined from the poles and zeros of the signal trans
mittance in a simple manner if there is no energy stored in the circuit 
when the signal is applied. It follows that the pole-zero pattern reveals 
a fundamental connection between the steady-state sinusoidal response 
and the transient response, and it also follows that information about the 
transient response of a network can be obtained from steady-state 
sinusoidal studies and vice versa. 

Circuits containing controlled sources with feedback may have growing 
transients, for the controlled sources can supply the required energy. 
These growing transients are always associated with poles of the signal 
transmittance in the right half of the complex plane. An important 
part of the analysis of feedback amplifiers is therefore concerned with 
the detection of right-half-plane poles, for growing transients may render 
a circuit unfit for amplifier service. 

Determining the location of the poles of a network function usually 
involves factoring a polynomial. The zeros of a quadratic polynomial 
are easily found with the aid of the quadratic formula; however, it is 
more difficult to find the zeros of higher-order polynomials. A method 
of successive approximations based on synthetic division is often employed 
for this purpose. On the other hand, however, much useful information 
about the location of the zeros can be obtained without actually factoring 
the polynomial. The properties of polynomials are treated in detail in 
the branch of algebra known as the theory of equations; a review of this 
branch of algebra can be of great value in the study of pole-zero patterns 
of network functions. 
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PROBLEMS 

16-1. A certain transistor amplifier having the form shown in Fig. 14-19a can be 
represented at low frequencies by the incremental model shown in Fig. 14-21. The 
circuit parameters are such that the forward current transmittance, given by Eq. 
(14-89), is 

Ac = [.':_ = g 1 + jw /200 
I 1 1 + jw/1000 

for steady-state sinusoidal operation. 
a. If the applied signal is i1 = 101:-2000 t µa, the particular integral in the solution for 

the response i2 has the form i2 = I 21:-2000 t. Find the amplitude of this response, I 2• 

b. Repeat part a for a constant applied signal, i1 = 10 µa [Eq. (16-20)]. 
16-2. The response of the circuit of Prob. 16-1 to various forms of input signal is to 

be determined. 
a. If the applied signal is i1 = 101:-1200 t cosh 800t, the particular integral in the 

solution for the response i2 has the form i2 = I2a1:mat + l 2bEmbt. Determine the values 
of ma and mb from the specified signal. Find the amplitudes of the terms in the 
response, I2a and I2b [Eq. (16-22)]. 

b. For the conditions of part a, what is the value of the particular integral for i 2 

at the instant when t = ¼oo sec? 
c. The signal is changed to i1 = 10 cos 500t µa. What is the value of the particular 

integral for i2 at the instant when t = Hoo sec? (Note that the quantity 500t is an 
angle in radians.) 

16-3. The behavior of a series RLC circuit having the form shown in Fig. 15-19b is 
to be studied. The parameters of the circuit are such that the forward voltage 
transmittance, given by Eq. (15-51), is 

E2 1 Avo = - = -50 --:----,--,----,-
Es (m - m1)(m - m2) 

where Es is the amplitude of the applied signal, m1 = -1 + j2, and m2 = -1 - j2. 
a. The applied signal is a step of unit amplitude. Find the amplitude of the 

particular integral (steady-state term) in the response e2(t). 
b. The applied signal is es = 1:-2t. Find the particular integral in the response 

e2(t). 
c. The applied signal is e8 = E-at. What value of a yields the largest amplitude of 

response? Consider only real values of a. 

16-4. The response of the circuit of Prob. 16-3 to various forms of input signal is to 
be determined. 

a. The signal applied to the circuit is es = E-t cosh t. Find the particular integral 
in the response e2(t). 

b. If the applied signal is es = cos t, the particular integral in the response e2(t) has 
the form e2 = E2 cos (t + 82). Find the amplitude E2 and the phase angle 02, 

16-5. The forward voltage transmittance of a certain triode amplifier with a 
bypassed cathode resistor is 

E2 1 + jw/200 
Es = Avo = -20 1 + jw/500 

for steady-state sinusoidal operation. With no initial energy stored in the circuit, 
a unit step of voltage is applied to the input at t = 0. Determine the complete 
response e2 (t) for t > 0. Identify the particular integral and the complementary 
function. Sketch and dimension e2(t). 

16-6. With no initial energy stored in the circuit of Prob. 16-5, a signal e. = 1:-2oot is 
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applied to the input at t = 0. Determine the complete response e2(t) for t > 0. 
What is the amplitude of the particular integral in this response? 

16-7. The circuit described in Prob. 16-3 is adjusted so that the poles of Avo are 
at -1 ± j. With no initial energy stored in the circuit, a unit step of voltage is 
applied to the input at t = 0. Determine the complete response e2(t) for t > 0. 
Identify the particular integral and the complementary function. Compute e2(t) for 
several values of t between t = 0 and t = 5, and sketch a reasonably accurate curve 
of e2 versus t. 

16-8. The step response of the circuit described in Prob. 15-12 and shown in Fig. 
15-36 is to be determined. 

a. Sketch and dimension the pole-zero pattern for the forward voltage transmittance 
EdE1. 

b. The circuit is initially in the steady state with e1 = 0 (no initial energy stored). 
A unit step of voltage is applied at e1 when t = 0. Determine the complete solution 
for the response e2(t) for t > 0. Sketch and dimension e2 versus t. 

16-9. The forward voltage transmittance of a certain amplifier is 

3(m + 4) 
Avo(m) = (m + l)(m2 + 2m + 2) 

a. Sketch and dimension the pole-zero pattern of Avo, 
b. With no initial energy stored in the circuit a signal e. = c 4t volts is applied to 

the input at t = 0. Determine the complete response e2(t) for t > 0. What is the 
amplitude of the particular integral in this response? 

16-10. The transistor circuit shown in Fig. 16-14a is in the steady state with no 
voltage applied; at t = 0, the d-c supply voltage, E = 25 volts, is applied. The 
problem is to determine how the base current varies with time while the new steady 

E 

!al 
FIG. 16-14. Transistor amplifier for Prob. 16-10. 
and acb = 60. 

(bl 
(a) Circuit; (b) model, k = 1 + acb 

state at the quiescent operating point is being approached. For this purpose the 
circuit can be represented approximately by the model shown in Fig. 16-14b. The 
source E' and the resistance R1 constitute the Thevenin equivalent for E, Ra, and Rb, 

a. Sketch and dimension the pole-zero pattern for the ratio h(m)/E'. 
b. Determine the complete solution for ib(t), t > 0. Sketch and dimension a 

curve of ib versus t. 
c. The collector current cannot exceed the value 21/i 6 ma because of collector 

saturation. Is this saturation current reached in the collector circuit? 
16-11. The forward voltage transmittance of a certain amplifier is 

. E2 (jw)(jw + 1) 
Avo(jw) = E1 = (jw + 3)(2jw + 4) 

If a step of voltage is applied at the input of this amplifier, the response is of the form 
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e2(t) = A + BE-t + CE-2t + DE-3t + EE-4t + FE-2t cos (4t + 0) 

Some of these terms do not belong here. Which of the coefficients A, B, C, ... are 
zero? 

16-12. A certain amplifier has the forward voltage transmittance 

m +2 
Avo = (m + 3) (m - 1) 

a. Sketch the pole-zero pattern for this transmittance. 
b. With no initial energy stored in the circuit, a unit-step input is applied at t = 0. 

Determine the complete solution for the output as a function of time after the step is 
applied. Sketch the output as a function Adb 

of time. db 6 db/oct 
16-13. The asymptotes for the logarith- \ ,_ ___ _ 

mic amplitude characteristic of a certain 20 1-----r' 

amplifier are shown in Fig. 16-15. With 
no initial energy stored in the circuit, a 
unit-step signal is applied at the input. 

100 200 1000 w 
rps a. If the signal transmittance has all its 

poles and zeros in the left half of the com-
plex plane, what is the complete response FIG. 16-15. Amplitude characteristic 

for Prob. 16-13. 
e2(t) for t > O? 

b. If the zero of the signal transmittance is in the right half plane and the poles of the 
transmittance are in the left half plane, what is the complete response e2(t) fort > O? 

c. Make reasonably accurate sketches of the responses in parts a and b for com
parison of the behavior of the circuit in those two cases. 

16-14. The circuit shown in Fig. 16-12 is to be used as a frequency-selective ampli
fier. With R = 50 kilohms, the circuit is to be adjusted to make Jo = wo/21r = 
1 kcps and Qo = 10. 

a. Determine the values of A and C required. 
b. The tuned amplifier described in Prob. 15-18 is to be adjusted to have the same 

poles as the RC amplifier of part a. If C = 1 µf and if the plate resistance acts as an 
open circuit, what values of R and L are required? 

c. Are the frequency characteristics of the amplifiers of parts a and b nearly identi
cal? Are their step responses nearly the same? 

16-16. The mutually coupled coils in Fig. 16-16 provide feedback around the con-

+ 
E 

L1 \ 

M ....-------~---o 
I E2 

• 

FIG. 16-16. Feedback circuit for Prob. 
16-15. 

trolled source gmE0 • Since there is no cur
rent in L1, L2 behaves as if L1 did not exist, 
and under sinusoidal operating conditions 
the voltage Eis given by E = jwMI. 

a Show that for sinusoidal operation 

A gm jw 
vo = - C2 (jw) 2 + A(jw) + B 

where 

and B = _l_ 
L2C2 

b. Sketch the loci of the poles of Auo as 
M is varied from - oo to + oo • Show 
the direction of motion as M increases 
positively. 

c. If the circuit is to be used as an oscillator to generate a sinusoidal voltage, what 
condition among the parameters must be satisfied? What is the frequency of the 
oscillation in terms of the circuit parameters? 



CHAPTER 17 

FEEDBACK AMPLIFIERS 

Feedback occurs in electronic circuits in a variety of ways and for a 
variety of reasons. Sometimes it is unavoidable, as in the case of feed
back resulting from parasitic capacitances, and at other times it is a 
secondary result of circuit design, as in the case of feedback associated 
with cathode bias resistors. In addition, feedback is deliberately included 
in many circuits because certain advantages can be gained by its use. 
For example, feedback is often used to stabilize the quiescent operating 
point of transistor amplifiers. 

The presence of feedback does not necessarily affect the methods used 
in circuit analysis. For example, the loop and node methods of analysis 
discussed in Chap. 12 are in no way altered by the presence of feedback, 
and they can be employed without regard to whether feedback exists or 
not. However, when feedback is deliberately used to accomplish some 
specific result, it is desirable to use a method of analysis that places the 
feedback in evidence and that permits attention to be focused on the 
feedback. It is also desirable that the analysis provide a quantitative 
measure of the effect of feedback on the circuit performance. 

It is shown in Sec. 16-4 that feedback can lead to growing transients 
that interfere with the normal operation of the circuit unless the circuit 
is intended to be an oscillator. Circuits with growing transients are 
said to be unstable. It follows that incorporating feedback in a circuit 
to improve its performance also creates the possibility that the circuit 
may be unstable. In general, feedback circuits must be designed to give 
a suitable compromise between the degree of improvement realized and 
the danger of instability; arriving at a suitable compromise of ten consti
tutes a difficult problem. For this reason it is desirable at the outset 
to examine carefully the reasons for using feedback and to formulate a 
quantitative measure of the feedback and its consequences. This is the 
first objective of this chapter. The second objective is to present the 
Nyquist test for stability and to show how it can be used in designing 
feedback amplifiers. 

17-1. The Effect of Feedback on Circuit Behavior. If ideal elements 
R, L, C and controlled sources were available without any limitations, 

412 
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then in so far as the signal transmission through stable, linear amplifiers 
is concerned, nothing could be accomplished with feedback that could 
not be accomplished without it. It follows, therefore, that any advan
tages to be gained by the use of feedback are associated with the nonideal 
properties of physical components or with the unavailability of suitable 
elements. A few of the troublesome nonideal properties of physical 
components are (1) parameter values that change with age, line voltage, 
or temperature, (2) nonlinear characteristics, (3) parasitic elements, such 
as the resistance of physical inductors, and ( 4) size, weight, and cost. 
Feedback can be used in many circumstances to reduce the undesirable 
consequences of the defects in physical components. 

The reasons for using feedback in stable amplifiers can for the most 
part be identified as one of the following: (1) self-calibration, (2) reduction 
of nonlinear distortion, (3) change in amplification or impedance levels, 
and (4) change in dynamic characteristics (transient response and ampli
tude and phase characteristics). Feedback ordinarily has effects in all 

(1-/3)R 
11 /3R .----------, 

-~--.,, v---+-1 --o I 

I+ 
I Ei 
1-
1 

L _________ __J 

Frn. 17-1. A feedback amplifier. 

four of these categories simultaneously; hence if feedback is added to a 
circuit to reduce distortion, it will in general change the amplification 
and the dynamic characteristics as well. 

In this preliminary study of the effects of feedback on circuit behavior, 
attention is to be centered on the feedback without the distractions 
associated with the details of the circuitry. Therefore the circuit shown 
in Fig. 17-1 is used as the basis for the study. The portion of the circuit 
inside the box is an idealized representation of a vacuum-tube amplifier; 
feedback around the controlled source A:0 E~ is provided by the resistors 
{3R and (1 - fJ)R. A similar representation leading to similar results 
can be employed in the study of feedback in transistor amplifiers. 

The output voltage from the circuit in Fig. 17-1 is 

(17-1) 

and the voltage E~, obtained by applying superposition to the sources 
E 1 and A:0E~, is 

(17-2) 
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Letting a = 1 - {3 and eliminating E~ between these two equations gives 

E2 A aA~o 
E 1 = vo = 1 - {3A:

0 

(17-3) 

for the over-all forward voltage transmittance of the circuit. 
It is clear from Eq. (17-2) that {3 is the voltage transmittance from the 

output of the controlled source A;0 E~ back to its input E~ with E1 = 0. 
Therefore it is a measure of the amount of feedback in the circuit, and it 
is called the feedback ratio. The quantity A;0 is the forward transmit
tance through the controlled source. Thus {3A;0 is the transmittance 
around the complete feedback loop, and it is called the loop transmittance. 
The significance of the loop transmittance can be clarified by imagining 
the feedback loop to be broken at a point where no current flows as 
shown in Fig. 17-2. The loop transmittance is the transmittance from 
E~ to E~ in Fig. 17-2 with E1 = O; hence it also serves as a measure of 
the amount of feedback in the circuit. 

(1-{3)R 

(3R r-------.----7 

I+ 7 
I E" E' I 1 1 
1-
L ______________ _J 

Frn. 17-2. A feedback amplifier with the feedback loop temporarily broken. 

It is important to note that the loop transmittance is evaluated by 
determining the transmittance from E~ to E~' with the input terminals short
circuited. An entirely different value is obtained if the transmittance 
is evaluated with the input terminals open-circuited; this transmittance 
would be appropriate if the source of signals were a current source. If 
there is a source impedance connected in series with E1, its effect on the 
loop transmittance must be taken into account. 

The denominator in Eq. (17-3), F = 1 - {3A:0 , is the return difference 
of the feedback loop; it is the difference between E~ and the voltage that 
returns to E~' in Fig. 17-2 when 1 volt is applied at E~ with E1 = 0. The 
return difference is a useful measure of the feedback; in particular, it is 
convenient to express the feedback in decibels as 

Fdb = -20 log JFI (17-4) 

When IFI > 1, the feedback is negative, or degenerative, and when 
IF! < 1, the feedback is positive, or regenerative. It follows from these 
definitions and from Eq, (17-3) that negative feedback reduces the 
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amplification of the circuit in Fig. 17-1 and that positive feedback 
increases the amplification. 

The action of the feedback in the circuit of Fig. 17-1 has a simple 
qualitative explanation. Suppose that A:0 = -K, where K is a positive 
real number. Then the voltage fed back to the input of the amplifier 
is proportional to E~, but it has the opposite polarity; hence the feed
back reduces the effective input voltage to the amplifier and thereby 
reduces the over-all amplification. These relations are expressed quanti
tatively by Eq. (17-2), in which the feedback voltage is ,aA:0 E~ = -,BKE~. 

If the amplification K decreases for some reason, such as aging of the 
tubes, the feedback likewise decreases; this action compensates in part 
for the effect of decreasing K on the over-all amplification. Thus a 
degree of self-calibration is provided by the feedback. If the loop 
amplification ,BK is much larger than unity, then Eq. (17-3) reduces to 

A = - ~ 
1)0 ,6 (17-5) 

and the over-all voltage transmittance is independent of the amplification 
of the internal amplifier. In this way the amplifier can be made to give 
a precise response to the input signal even if the amplification of the 
internal amplifier is not precisely known. This is the reason for using 
feedback in many important applications. 

If the internal amplifier in the circuit of Fig. 17-1 is nonlinear, it 
distorts the waveform of the signal. The distortion components of 
voltage are transmitted around the feedback loop, and if there is a sign 
reversal in the loop transmittance, the distortion components return to 
their point of origin with a reversed polarity. The return signal there
fore subtracts from the original distortion components and tends to 
reduce the net distortion to zero. 

If A:0 is the voltage transmittance of an RC-coupled amplifier, IA:0 1 

decreases at very low and very high frequencies. However, the self
calibration provided by the feedback tends to maintain the over-all 
amplification constant. In fact, it is quite possible for the circuit to 
overcompensate as a result of phase shifts in the amplifier; in this case 
the amplitude characteristic has peaks at the low- and high-frequency 
ends of the passband. 

The qualitative explanations of the effects of feedback given above are 
helpful in establishing the general ideas involved in the use of feedback; 
however, they do not form a suitable basis for the analysis and design 
of feedback amplifiers. In order that feedback be used effectively, it 
is necessary to have a quantitative formulation of the improvement in 
circuit performance that can be obtained by the use of feedback. A 
useful set of relations is developed in the following sections, and the 
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improvement realized through the use of feedback is related to the 
problem of designing the circuit to be stable and to have suitable dynamic 
characteristics. 

17-2. Self-calibration. Self-calibration is concerned with the depend
ence of the over-all transmittance of the amplifier in Fig. 17-1 on the 
transmittance of the internal amplifier. A measure of this dependence 
is provided by the derivative of Avo with respect to A:0 ; this derivative, 
obtained from Eq. (17-3), is 

dAvo a(l - ,BA~0 ) - aA~0 ( -,B) 
dA~o - (1 - ,BA:o) 2 (17-6) 

a 
(17-7) 

Multiplying and dividing the right-hand side by A:0 and substituting 
Eq. (17-3) yields 

dAvo 1 Avo 
dA: - 1 - ,BA~o A~o 

(17-8) 

The sensitivity of Avo to changes in A:0 is defined as 

S = dAvo/ Avo = 1 1 
dA.~ol A~o 1 - ,BA~o - F (17-9) 

Thus the sensitivity of Avo to changes in A:0 is inversely proportional 
to the return difference. Negative feedback (IFI > 1) reduces the 
sensitivity, whereas positive feedback increases it. It is seen by com
paring (17-9) with (17-3) that feedback changes the voltage amplification 
by exactly the same amount that it changes the sensitivity to variations 
in A.:0 • Negative feedback is often used to provide self-calibration for 
the reason that in many applications it is easier to provide additional 
amplification than to obtain circuit components that do not change with 
age, line voltage, and similar factors. In a sense, amplification is 
diverted to the task of rendering the circuit less dependent on its com
ponent parts. 

In general both ,B and A:0 , and hence the sensitivity, are functions of 
frequency. Thus it is quite possible for an amplifier to have a small 
sensitivity for signals in the middle band of frequencies and yet to have 
a sensitivity greater than unity at both high and low frequencies. The 
way in which the sensitivity of any particular circuit varies with the 
frequency of sinusoidal signals can be displayed conveniently by means 
of a diagram like the one shown in Fig. 17-3. For each different value 
of frequency the loop transmittance AL = ,BA:0 has a different complex 
value. A plot in the complex plane of the values of AL for all frequencies 
between zero and infinity may take the form of the solid-line contour 
shown in Fig. 17-3. Each point on this plot corresponds to a particular 
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frequency; the length of the vector from the origin to the contour is 
proportional to the magnitude of AL, and the angle that the vector makes 
with the real axis is the phase shift of AL. The loop amplification for 
bandpass amplifiers must tend to zero at both high and low frequencies 
as shown in Fig. 17-3. The plot of AL as a function of frequency for 
sinusoidal signals is called a Nyquist diagram. 

The vector drawn from the Nyquist diagram to the point on the posi
tive real axis corresponding to unity gives the value of the return differ

Im 

Re 

ence, F = 1 - AL. It follows from 
this fact that IFI > 1 and the feed
back is negative for all frequencies 
corresponding to portions of the 
Nyquist plot that lie outside the cir
cle of unit radius centered at the 
point 1 + jO. Similarly, the feed
back is positive for all frequencies 
corresponding to points on the Ny
quist plot lying inside this unit circle. 
It is usually desirable to design feed- Fm. 17-3. Variation of loop transmit-

tance and sensitivity with frequency. 
back amplifiers so that the Nyquist 
plot is remote from the point 1 + jO, giving small sensitivity, in the 
band of frequencies occupied by the signal. The sensitivity is large at 
frequencies for which the Nyquist plot passes close by the critical point. 

The expression for sensitivity given by Eq. (17-9) is valid only for 
small changes in A~0 • The sensitivity of Avo to large changes in A:0 has 
a similar form, and it can be evaluated in a straightforward manner. 
When A:0 has a certain initial value A;, the over-all transmittance has 
the initial value 

aA~ 
Ai= 1 - ~A~ (17-10) 

If A:0 then takes on an increment LiA:0 , 

(17-11) 

Subtracting (17-10) from (17-11) gives the resulting increment in Avo; 
collecting terms in this difference and rearranging them yields the sensi
tivity of Avo to large changes in A:0 • 

1 
(17-12) 

where Fi is the initial value of the return difference. Thus the sensitivity 
to large changes depends only on the final value of the return difference. 
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If /3 and A~ are known, then the fractional change in Avo resulting from 
a stated change in A:0 can be calculated from (17-12). 

17-3. The Reduction of Distortion and the Rejection of Corrupting 
Signals. When transistors and vacuum tubes are operated at large 
signal levels the nonlinear nature of their characteristics may cause 
appreciable distortion of the signal waveform. If the amount of dis
tortion is small, the amplifier can be represented by a distortionless 
amplifier plus a distortion generator as illustrated in Fig.17-4. In 
general the voltage Ed, which accounts for the distortion introduced by 
the amplifier, depends on the path of operation on the output character
istic of the last tube or transistor in the amplifier. However, if the 
distortion is small, Ed remains essentially constant when feedback is 
added to the circuit provided that the path of operation does not change 
and that the input signal is adjusted to keep the output-signal level 
constant. The voltage Ed can also represent any other disturbance or 

(1-B)R 

,---------7 
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I 
I 
I 
I L _________ _J 

Frn. 17-4. A feedback amplifier with a corrupting signal. 

corrupting signal, such as hum arising in vacuum tubes from the a-c 
heater supply and drift arising in transistors from changes in temperature. 

The output voltage in the circuit of Fig. 17-4 is 

E2 = A:OE~ + Ed (17-13) 

and the voltage E~, which can be evaluated by applying superposition 
to the sources in the circuit, is given by 

E~ = aE1 + /3A; 0 E~ + /3Ed (17-14) 

where a = I - (3. Eliminating E~ between (17-13) and (17-14) yields 

E aA~o E + 1 E 2 = 1 - {3A' 1 1 - {3A' d 
VO VO 

(17-15) 

Thus both the signal component and the distortion component of the 
output voltages are reduced by the return difference, F = 1 - {3A:

0
• 

If the signal component of the output voltage is designated by Ee, 
then Eq. (17-15) for the output voltage can be written as 

1 
E2 = Ea + l _ {3A~<I Ed (17-16) 
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Now if the input signal is adjusted so as to keep Es constant as feedback 
is added to the circuit, then the ratio of signal voltage to corrupting 
voltage at the output of the amplifier is increased by the amount of the 
return difference F = 1 - ,BA:0 • 

It is important to note that adding feedback alone does not improve 
the ratio of signal to disturbance if Ed remains constant; however, it does 
permit the signal level to be increased relative to the disturbance without 
overdriving the amplifier. When the signal level is small, the signal-to
disturbance ratio can be improved without the use of feedback; it is 
merely necessary to increase the input signal in some way that does not 
increase the disturbance. Feedback is useful when the signal level can
not be increased without increasing the distortion introduced by the 
amplifier. When the signal and the disturbance can be treated separ
ately, as, for example, when they lie in different frequency bands, it is 
often easier to remove the disturbance by means not involving feedback. 
High-frequency distortion components and low-frequency disturbances 
such as 60-cycle hum are often removed from the output of audio ampli
fiers by restricting the high- and low-frequency gains. However, when 
the signal and disturbance cannot be separated by other means, feed
back provides a way of discriminating against the disturbance. 

The effect of feedback on corrupting signals varies with frequency 
in a manner implied by the typical Nyquist diagram shown in Fig. 17-3. 
The feedback is likely to become positive at very low and very high 
frequencies, and any corrupting signals at these frequencies will be exag
gerated by the feedback. Thus high-frequency distortion components 
and low-frequency noise such as turntable rumble may be emphasized 
by feedback in a poorly designed amplifier. For this and other reasons 
it is usually necessary to control the frequency characteristics of a feed
back amplifier over a much wider band of frequencies than that occupied 
by the signal. 

17-4. The Effect of Feedback on Amplification and Impedance Levels. 
If the signal transmittance of the internal amplifier in Fig. 17-1 is 
A:0 = -K, where K is a positive real number, then the over-all voltage 
transmittance given by Eq. (17-3) becomes 

-aK 
Avo = l + ,BK (17-17) 

Since a, .B, and K are positive real numbers, it follows that the feedback is 
negative and that the voltage amplification is reduced by the feedback. 
If the feedback is adjusted so that the sensitivity of Ava to changes in 
K is 0.1, so that a 1 per cent change in K causes only a 0.1 per cent change 
in A 110, then it follows from Eq. (17-9) that the return difference must be 
10. With this adjustment the over-all voltage amplification is also 
divided by 10. 
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On the other hand, if Ava = K, where K is real and positive, and if (3 
is adjusted so that {3K is less than 2, the feedback is positive and it 
increases the over-all voltage amplification. Equation (17-9) shows, how
ever, that in this case the sensitivity of Ava to changes in K is increased 
by the same amount as the amplification. This is one of the reasons why 
positive feedback is seldom used to obtain large amplification. 

The input admittance of the circuit in Fig. 17-1 is a function of the 
feedback. Since this admittance constitutes the load imposed on the 
source of signals, its dependence on the feedback must be taken into 
account. The input current is 

E1 - E2 
J 1 = {3R + (1 - {3)R (17-18) 

when the output current I 2 is zero. The open-circuit input admittance 
is thus 

y = !_J = 1 - Avo 
no E1 R (17-19) 

Substituting (17-3) for Ava and using the fact that a+ (3 = 1 yields 

y 1 1 - A~0 

no = R 1 - {3A' 
VO 

(17-20) 

This result shows that negative feedback in the amplifier of Fig. 17-1 
reduces the input admittance if the feedback resistance R is held constant 
while the feedback is changed by adjusting /3. It is important to note, 
however, that this result applies to the circuit of Fig. 17-1; a different 
circuit configuration may yields different results. 

(1-~)R 

,--------7 
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Fm. 17-5. The effect of feedback on Zos and Be•• 

The output impedance and the reverse current transmittance are zero 
for the amplifier in Fig. 17-1 as a result of the fact that they are zero for 
the internal amplifier. In general these parameters are not zero and are 
functions of the feedback. For example, if the internal amplifier has an 
output impedance R;s, the circuit takes the form shown in Fig. 17-5. 
The output impedance is evaluated by making E1 = 0 and finding the 
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voltage E 2 that results from a test current applied at J 2- Under these 
conditions the node equation at the output is 

(~ + ;, ) E 2 - j,- A :,0 E~ = I 2 
os o.~ 

But E~ = (3E2 

whence 12 = _!_ = .!__ + 1 - (3A:, 0 

E2 Ros R R;s 

(17-21) 

(17-22) 

(17-23) 

Thus negative feedback reduces the output impedance of the amplifier 
in Fig. 17-5. It should be noted that in this case the quantity (3A:0 is 
not the loop transmittance and 1 - (3A:0 is not the return difference. 
The loop transmittance in Fig. 17-5, evaluated by setting E1 = 0 and 
breaking the loop as shown in Fig. 17-2, is 

(17-24) 

If R is much larger than R;s, as often is the case, the loop transmittance 
is approximately (3A; 0 • 

With E1 = 0 and a test current applied at J 2, 

J l = _ E2 = _ Ros J 
2 R R 

Hence the reverse current transmittance is 

B = _ Ros 
CB R (17-25) 

where Ros is given by (17-23). Thus negative feedback in the amplifier 
of Fig. 17-5 reduces the reverse current transmittance. 

17-5. The Effect of Feedback on the Dynamic Response. The 
dynamic response of an amplifier may be greatly altered by the addition 
of feedback. Occasionally feedback is used to modify the dynamic 
characteristics of a circuit in some desired way; more frequently, however, 
feedback used for some other purpose, such as self-calibration, coinci
dentally changes the dynamic characteristics. These changes, which 
may be of great importance, can be displayed in a useful way by dia
grams showing how feedback affects the pole-zero pattern of the signal 
transmittance. 

If the internal amplifier in the circuit of Fig. 17-1 consists of one RC 
stage with its upper and lower half-power frequencies well separated, 
then the voltage transmittance at high frequencies, given by Eq. (14-4), 
can be put in the form 

A l A' I 1 A' I 1 
vo = - mWH + I = - mWH I m wn m - mn 

(17-26) 
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where A~ is the voltage amplification in the mid-band, and w~ is the 
upper half-power frequency. Substituting (17-26) into (17-3) to obtain 
the over-all transmittance yields 

A A l 
I l = -AmWH l (17 27) vo = -a mwH m + wk(l + {JA:n) m - mn -

where Am = aA:n/(1 + .BA:n), and wn = -mn = w~(l + .BA:n). Thus as 
the feedback is increased, the pole of Avo moves to the left on the negative 

Im 

Increasing F --x-----
mH Re 't-lncre~:F. 

mi, mL Re 

(al (b} 

Frn. 17-6. The effect of feedback on the 
pole-zero pattern for the voltage trans
mittance of a single-stage RC amplifier. 
(a) High-frequency case; (b) low-fre-
quency case. 

real axis as illustrated in Fig. 17-6a. 
It follows that in this case the feed
back increases the upper half-power 
frequency and decreases the mid
band amplification by the same 
factor, F = 1 + {JA~. The gain
bandwidth product remains con
stant in this case. 

The low-frequency behavior of 
the amplifier is governed by a zero 
at the origin and a pole nearby; 
the effects of the pole and zero can

cel each other for signals in the mid-band and at high frequencies. The 
voltage transmittance of the internal amplifier in the low-frequency 
range is given by 

A i A1 m 
'VO= - m + I m WL 

-A1 m 
mm - m~ 

(17-28) 

under the assumption that the bypass capacitors are very large. Sub
stituting this expression into (17-3) yields 

aA 1 m m 
Avo = - 1 + ;A~ m + wU(l + {JA~) = -Am m - fflL (17-29) 

Thus the low-frequency pole of Avo moves with increasing feedback 
as shown in Fig. 17-6b. (This diagram is not drawn to the same scale 
as that in Fig. 17-6a.) Thus the feedback reduces both the mid-band 
amplification and the lower half-power frequency by the amount of the 
return difference F = 1 + {JA~. 

The pole-zero patterns of Fig. 17-6 show the effect of feedback on the 
transient response of the amplifier. Changing the amount of feedback 
changes the time constants of the exponential terms in the transient 
response. 

If the internal amplifier in the circuit of Fig. 17-1 consists of two RC 
stages with the upper and lower half-power frequencies in each stage 
widely separated, and if the circuit is arranged so that there is a sign 
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reversal in the voltage transmittance, then at high frequencies 

, -A~w~w~ 
Ava= (m + wD(m + w~) (m - m~)(m - m~) 

(17-30) 

where w; = -m; and w~ = -m~ are the half-power frequencies of the 
two stages. Substituting this expression into (17-3) yields the over-all 
voltage transmittance: 

Ava = -aA:nwiw~ m2 + (w{ + w~)ml + w~w~(l + /3A~) (17-31) 

-aA:nwa2 1 
(17-32) 

1 + /3A~ m 2 + (w~ + w~)m + wa2 

1 
-Amwa

2 
(m _ mi) (m _ m

2
) (17-33) 

where Am = aA:/(1 + t,A:) is the over-all mid-band amplification, and 
wa2 = m1m2 = w;w~(l + /3A~) is the product of the poles of the over-all 
transmittance. 

It follows from (17-31) that with no feedback (/3 = 0) the poles of Ava 
are the same as the poles of A;a. As /3 is increased from zero, the constant 
term in the quadratic denominator of (17-31) increases while the coef
ficients on m2 and m remain constant; thus increasing /3 is equivalent to 
increasing the coefficient c in Eq. (15-44), and in accordance with the 
discussion of (15-44), the poles of Ava move along the paths shown in 
Fig. 17-7a as /3 is increased. Equation (17-33) has the same form as 
Eq. (15-51); hence the amplitude characteristic of the two-stage feed
back amplifier at high frequencies has the form shown in Fig. 15-19c. 
Important details about the amplitude characteristic and its dependence 
on the amount of feedback can be obtained from the resonant-peaking 
circle developed in Sec. 15-7; the peaking circle is shown in Fig. 17-7 a. 
If the peaking circle intersects the imaginary axis, the amplitude char
acteristic has a maximum at the frequency corresponding to the point 
of intersection. The frequency and the height of the peak can be deter
mined easily from the relations developed in Sec. 15-7. The amount of 
feedback that makes the circle tangent to the imaginary axis is the 
greatest amount of feedback that can be used without a peak appearing 
in the amplitude characteristic; with this amount of feedback the 
amplifier is maximally flat. 

The diagram of Fig. 17-7a also shows the effect of feedback on the 
transient response. When wa is greater than (w~ + w~)/2, the poles are 
complex and the transient response is oscillatory. The frequency of the 
oscillation depends on the amount of feedback, but the rate at which the 
transient decays is fixed by w; and w;, the half-power frequencies of the 
internal amplifier. 
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If the internal amplifier is arranged so that there is no sign reversal 
~n A:0 , the minus sign disappears from the numerator of (17-30), and 
w0

2 becomes w~w~(l - (3K~). In this case wo2, which is also the product 
of the poles m1m2, decreases with increasing feedback, and the poles of 
Ava must move apart on the real axis. When (3K~ = 1, wo = 0, and one 
of the poles must lie at the origin; if the feedback is increased further, 
w 0

2 becomes negative, the pole at the origin moves out on the positive 
real axis, and the circuit has a growing transient; that is, with this con
nection the circuit becomes unstable when the loop transmittance is 
greater than unity. When there is a sign reversal in the amplifier, how
ever, the circuit can never become unstable. 

Im 

m3 \m4 I '~--~: 
Re 

{al (bl 
Frn. 17-7. Feedback: in a two-stage RC amplifier. (a) High-frequency case, increasing 
F; (b) low-frequency case, increasing F. 

If the bypass capacitors are very large, and if there is a sign reversal 
in the internal amplifier, the voltage transmittance of the internal 
amplifier at low and medium frequencies has the form 

A' A' m2 = -A' m2 ( 
vo = - m (m + w~)(m + w~) m (m - m~)(m - mD 17-34) 

Substituting this expression into (17-3) yields for the over-all voltage 
transmittance. 

Avo = aA:n m 2 

1 + (3A:n 2 + w~ + w~ + w~w~ 
m 1 + (3A:n m 1 + (3A:n 

(17-35) 

= -A m2 
m (m - ma)(m - m4) 

(17-36) 

Varying the amount of feedback in the circuit affects the coefficients in 
the quadratic denominator in the same way that varying a affects the 
coefficients in Eq. (15-44); thus, in accordance with the discussion related 
to (15-44), the poles of Avo move along the paths shown in Fig. 17-7b as 
(3Am varies from zero to infinity. 
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The effects of feedback on the low-frequency amplitude characteristic 
and on the transient response of the amplifier can be perceived from the 
diagram of Fig. 17-7b. The amplitude characteristic has the form shown 
in Fig. 15-19c except that the frequency scale is reversed. The peaking 
circle associated with the two poles has a significance similar to that which 
it has in the high-frequency case, even though there are two zeros at the 
origin of the complex plane in this case. If the circle intersects the 
imaginary axis, the gain characteristic has a peak. In this case, however, 
if the circle intersects the axis at wi, the peak in the amplitude character
istic occurs at wp = wo2/wi, where wo 2 = m3m4 = w~w~/(1 + ,BA~). These 
facts follow directly from the properties of the function Av0 (u) formed 
from (17-35) by replacing m with w0

2/u. 
If the internal amplifier in the circuit of Fig. 17-1 is a cascade of three 

identical RC stages, then in the middle- and high-frequency ranges 

A , - A' ,a 1 - A' ,a 1 
VO - - mwl (m + wD 3 - - mwl (m - mD 3 

Substituting this expression into (17-3) yields 

Avo = A' ,a 1 
-a mW1 (m - mDa + /3A:nw? 

-A w a -c-------,------,--1---c----,----------,-
m 

O (m - m1)(m - m2)(m - ma) 

where Am = aA~/(1 + /3A~) = mid-band amplification 
wo 3 = -m1m2ma = w?(l + ,BA:) 

(17-37) 

(17-38) 

(17-39) 

The paths along which the poles move as the amount of feedback is 
increased can be found with the aid of the diagram shown in Fig. 17-8a. 
The poles are the values of m that make the denominator in (17-38) 
zero; hence if m = m1 is substituted in (17-38), the denominator must 
satisfy the condition 

(17-40) 

The vector m - m~, which has the length p and makes an angle (} with 
the real axis, is shown in Fig. 17-8a. Since the cube of this vector must 
be a negative real number, it follows that 30 must be an odd multiple 
of 180°; the values of (} satisfying this requirement are 60, 180, and - 60°. 
Thus, as the feedback is increased, the poles move along the paths shown 
in Fig. 17-8b. 

It follows from the diagram in Fig. 17-8b that the three-stage feedback 
amplifier is certain to have a growing oscillatory transient if the amount 
of feedback is made greater than a certain value. When the feedback 
is adjusted so that the poles lie on the imaginary axis, the circuit is said 
to be on the threshold of instability. The amount of feedback giving 
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the threshold condition can be determined from Fig. 17-8b. Since the 
paths along which m1 and m2 move make angles of 60° with the real axis, 
the length of the vector m1 - m~ is p = 2w~ when the poles are on the 
imaginary axis. Then it follows from (17-40) that 

r,A~ = 8 (17-41) 

yields the threshold condition. 
If the three stages in the amplifier have different half-power frequencies, 

the paths followed by the poles are somewhat more difficult to construct, 
for they are not straight lines. However, as the feedback is increased 
without limit, the paths approach those shown in Fig. 17-8b as asymptotes. 
The paths of the poles for any number of identical stages can be con
structed by a simple extension of the method employed above. In 
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Frn. 17-8. Feedback in a three-stage RC amplifier. (a) Motion of m1 with increasing 
F; (b) motion of the high-frequency poles with increasing F; (c) motion of the low
frequency poles with increasing F. 

particular, if the circuit is always arranged so that there is a sign reversal 
in the loop transmittance, and if the number of identical stages is N, the 
paths make angles of n180/N degrees with the real axis, where n is an 
odd integer. The one- and two-stage amplifiers treated earlier in this 
section are particular examples that follow this rule. 

When the internal amplifier consists of three identical RC stages with 
large bypass capacitors, the low-frequency poles move with increasing 
feedback along the paths shown in Fig. 17-8c. It can be shown by a 
simple argument similar to the one used above that the complex poles 
must move in such a manner that the angle 'Y shown in Fig. 17-8c remains 
constant at 60°; thus the loci for the complex poles are segments of 
circles. It can be shown that in this case also a mid-band loop amplifi
cation of eight places the circuit on the threshold of instability. 

The results of the preceding paragraphs place in evidence the principal 
problem confronting the designer of feedback systems. The decision 
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to use feedback is the result of a desire to improve the system performance 
in some respect, as, for example, by providing a degree of self-calibration. 
In order to achieve a significant improvement a large loop amplifica
tion is necessary; however, a large loop amplification is almost certain 
to affect adversely the dynamic characteristics of the system, and it is 
quite likely to make the system unstable. Thus the design problem is 
largely concerned with choosing the system parameters so as to permit 
a large loop amplification while at the same time maintaining suitable 
dynamic characteristics. This problem and some elementary techniques 
for dealing with it are discussed in the sections that follow. 

17-6. The Nyquist Test for Stability. Circuits composed of controlled 
sources and positive R's, L's, and C's cannot be unstable if they have no 
feedback, for such circuits have no sources capable of supplying the 
energy associated with growing transients. The results of Sec. 17-5 show, 
however, that when feedback is added to such circuits, instability may 
develop. In this case the controlled sources enclosed in the feedback 
loop are capable of supplying the required energy. It can be shown that 
if the number of poles of the loop transmittance exceeds the number of 
zeros by three or more, the circuit is certain to be unstable if the loop 
amplification is made great enough. When the loop transmittance has 
only two or three poles, the paths along which the poles move as the 
amount of feedback is varied can be determined, and questions related 
to stability can be answered from the results obtained. The way in 
which the poles move in more complicated circumstances is more difficult 
to determine, although techniques for constructing the approximate 
paths of their motion have been developed in considerable detail. There 
are, however, other approaches to the problem that prove to be useful 
in the analysis and design of more complicated feedback circuits. 

Determining whether or not a given circuit is stable involves deter
mining in some manner whether or not the signal transmittance has 
poles in the right half of the complex plane. The signal transmittance 
can be expressed as the ratio of two polynomials in m, and the zeros of 
the denominator polynomial are the poles of the signal transmittance. 
Factoring this polynomial becomes laborious when its degree is greater 
than 3. However, the existence of zeros of the polynomial in the right 
half of the complex plane can be detected by an examination of its coef
ficients without actually determining the zeros. For example, it follows 
directly from the relations between the zeros and the coefficients that if 
there is any variation in sign among the coefficients, then there must be at 
least one zero of the polynomial in the right half of the complex plane. 
In addition, if the coefficient on any power of m less than the greatest 
in the polynomial is zero, then there must be at least one zero of the 
polynomial in the right half plane or on the imaginary axis. However, 
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the fact that all the coefficients are nonzero and of the same sign does 
not ensure that there are no zeros in the right half plane. The Routh
Hurwitz test is a more detailed examination of the coefficients that dis
closes the number of right-half-plane zeros of any polynomial. These 
tests, which are simple to apply, determine whether or not a proposed 
circuit will be stable. Unfortunately, however, they provide little guid
ance in the design of feedback circuits for stable operation. The Nyquist 
test for stability, which is developed in the following paragraphs, has a 
number of features that result in its being especially valuable in the 
design of feedback systems. This test not only shows whether or not 
the system will be stable, but it also presents the information in such 
a way as to aid the designer in arriving at a suitable design. In addition, 
it permits experimental data to be used in the design of systems that 
are too complicated for complete analysis. 

The forward voltage transmittance of the feedback amplifier in Fig. 
17-1 is given by Eq. (17-3) as 

A aA~0 

VO= 1 - QA' 
/J VO 

(17-42) 

The quantities a, A:0 , and AL are unaltered if the feedback loop is 
broken as shown in Fig. 17-2. Since there is no feedback in the circuit 
when the loop is broken, these quantities are stable transmittances and 
have no poles in the right half plane. Since the return difference 
F = 1 - AL has the same poles as AL, it follows that F has no poles in 
the right half plane. Therefore, if Ava has any poles in the right half 
plane, they must be right-half-plane zeros of the return difference F, 
and the stability of the amplifier can be examined by studying the return 
difference. The Nyquist test for stability is a test for right-half-plane 
zeros of F . 

. For concreteness, consider the return difference 

F = m - m1 = P1 EiUJi-02) 

m - m2 P2 
(17-43) 

where p1 and p2 are the magnitudes and 01 and 02 are the angles of the 
numerator and denominator. The pole-zero pattern for F is shown in 
Fig. 17-9a. For any given value of the variable m, a corresponding value 
of the return difference F can be calculated from Eq. (17-43). If mis 
given a succession of values corresponding to movement of the point m 
around the contour C1 in Fig. 17-9a, F takes on a succession of values 
given by (17-43). A plot of these values of Fin the complex plane forms 
a contour such as C 2 shown in Fig. 17-9b; this contour provides the desired 
information about the location of the zeros of F. As the variable m 
makes one complete circuit of the contour C1, the angles 01, 02, and 
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01-82 go through some variations but finally return to their initial values; 
there is no net change in these angles. It follows that the angle 01-0 2 

in Fig. 17-9b experiences no net change as F traces out the contour C2 

and that therefore C2 does not encircle the origin. This result stems 
directly from the fact that m1 and m2 lie outside the contour C 1. If m 1 
lies inside the contour, as shown in Fig. 17-9c, 01 changes by 360° in 
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Fm. 17-9. Nyquist's test for stability. 
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the clockwise direction and 02 experiences no net change as the variable 
m makes one complete clockwise circuit of C1. Hence the angle 01-82 
changes by 360° and the contour C2 encircles the origin one time in the 
clockwise direction as shown in Fig. 17-9d. If m2 is inside the contour 
C1, as illustrated in Fig. 17-9e, 01 experiences no net change and 02 
changes by 360° in the clockwise direction as m makes one complete 
clockwise circuit of C 1. Therefore in this case the angle 01-02 changes 
by 360° and C 2 encircles the origin one time in the counterclockwise 
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direction as shown in Fig. 17-9f. It also follows from this same reasoning 
that if both m1 and m2 are inside C 1, C 2 does not encircle the origin. 

The discussion of the preceding paragraph shows that the number of 
times that the contour G2 encircles the origin of the complex plane in the 
clockwise direction is equal to the excess of zeros of the return difference 
over poles inside the contour C 1, Thus if Z is the number of zeros of F 
inside G1 and if Pis the number of poles inside G1, then the number of 
times that C 2 encircles the origin in the clockwise direction is 

New= Z - P (17-44) 

Now if the radius of the circular portion of G1 is increased without limit 
so that G1 encloses the entire right half of the complex plane, then (17-44) 
gives the excess of zeros over poles in the entire right half plane. But if 
the amplifier is stable with the feedback loop broken, the return differ
ence has no poles in the right half plane, P = 0, and the number of clock
wise encirclements of the origin by C 2 is equal to the number of zeros of F 
in the right half plane. Since the zeros of F are also poles of the forward 
voltage transmittance given by Eq. (17-42), the contour C2, which is the 
Nyquist diagram of the return difference, gives the number of poles 
of Avo in the right half plane. If the amplifier is to be stable, the Nyquist 
plot of its return difference must not encircle the origin of the complex 
plane. 

The Nyquist diagram for the loop transmittance of a typical amplifier 
is shown in Fig. 17-3. Since F = 1 - AL, the Nyquist plot for the 
return difference can be constructed from the plot in Fig. 17-3 by rotating 
the diagram through 180° and shifting it to the right by one unit. This 
construction is unnecessary, however, for the desired information regard
ing stability can be obtained directly from Fig. 17-3. Since AL = 1 
when F = 0, an encirclement of the origin by the Nyquist plot of F 
corresponds to an encirclement of the point 1 + jO by the Nyquist plot 
of AL, Hence the amplifier is stable if, and only if, the Nyquist plot of 
AL does not encircle the critical point 1 + jO. 

The construction of the Nyquist diagram can be simplified by taking 
advantage of certain properties of AL, Since the poles and zeros of AL 
are either real or occur in conjugate pairs, it follows directly from the 
pole-zero pattern that AL(- jw) is the conjugate of AL(jw). Hence 
that portion of the Nyquist plot corresponding to values of m on the 
negative imaginary axis need not be calculated; it is the mirror image 
about the real axis of the portion corresponding to values of m on the 
positive imaginary axis. In addition, because of parasitic elements such 
as stray capacitance, the loop transmittance of any physical system 
must tend to zero as m tends to infinity. Thus in constructing the 
Nyquist plot for AL it is sufficient to consider only values of m on the 
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positive imaginary axis up to a point beyond which !ALI remains less 
than unity; since the remainder of the plot cannot encircle the critical 
point, it can be ignored. 

Equation (17-3) for the forward voltage transmittance of the amplifiei 
can be cleared of fractions and expressed as the ratio of two polynomials. 
The stability of the amplifier can then be determined from the Nyquist 
plot of the denominator polynomial. However, the Nyquist plot of 
the loop transmittance serves as more than just a test of stability; it 
provides a basis for the design of feedback systems to have certain 
desired properties and to be stable. In terms of the Nyquist plot of AL, 
the design of a feedback amplifier is usually concerned with making 
!ALI sufficiently large in the band of frequencies occupied by the signal 
and with controlling the frequency characteristics of AL outside the 
signal band so that the plot does not encircle the critical point. The 
frequency characteristics of AL are controlled by the design of the inter
stage coupling networks with the aid of the techniques presented in 
Chaps. 14 and 15. 

Another important aspect of the Nyquist plot of the loop transmittance 
is the fact that it can be measured experimentally. Thus if the system 
is so complicated that a sufficiently accurate analysis is not feasible, 
experimental measurements of AL can be used to guide the design of the 
networks used to shape its frequency characteristics. 

The Nyquist plot for the loop transmittance in the circuit of Fig. 17-1 
when the internal amplifier consists of three identical stages is shown in 
Fig. 17-lOa. The amplifier is stable under the conditions pictured, and 
the portion of the curve lying in the vicinity of the negative real axis 
corresponds to frequencies in the mid-band of the amplifier. If the 
amount of feedback is increased uniformly at all frequencies by increasing 
(3, then the Nyquist plot expands without changing its shape. It is 
clear that if (3 is increased sufficiently, the critical point is encircled and 
the amplifier becomes unstable. 

If the algebraic sign of AL is reversed by some change in the circuit, 
then the diagram is rotated through 180°, and if !ALI is greater than 
unity in the mid-band, the critical point is encircled and the circuit is 
unstable. It follows that the simple circuit configuration of Fig. 17-1 
can be used only with an odd number of stages, for with an even number 
of stages the Nyquist plot lies primarily in the right half of the complex 
plane, and the circuit is unstable if IALI is greater than unity in the mid
band. 

If the value of (3 is adjusted so that the Nyquist plot passes through 
the critical point, the circuit is at the threshold of stability. This is also 
the adjustment that places the complex poles in Fig. 17-8 on the imaginary 
axis. 
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A special case of interest and importance is illustrated by the Nyquist 
diagram of Fig. 17-lOb. Only that portion of the diagram corresponding 
to positive w is shown; the discussion is not altered in any way by the 
remainder of the plot, which is the mirror image around the real axis 
of the plot shown. The critical point is not encircled by the diagram; 
hence the circuit is stable. However, if the plot is caused to shrink 
uniformly at all frequencies, a point is reached at which the circuit 
becomes unstable. If the plot is shrunk still further, another point is 
reached at which the circuit becomes stable again. Circuits exhibiting 
such a phenomenon are termed conditionally stable. 

Conditional stability, which is likely to occur in amplifiers using large 
amounts of feedback, is important for several reasons. If an excessive 
signal is applied momentarily to the amplifier, the amplifier saturates, 
and its effective amplification is reduced. If the amplifier is conditionally 

Im Im 

Re Re 

(a) (bl 
Frn. 17-10. Nyquist diagrams. (a) A stable circuit; (b) a conditionally stable circuit. 

stable, the momentary reduction in amplification may make the circuit 
unstable. In this case growing oscillations appear, and the amplifier 
may remain saturated (and therefore unstable) as a result of its own 
oscillations, even after the excessive input signal is removed. 

When an amplifier is first turned on, its amplification is zero. As the 
cathodes come up to temperature, the loop transmittance must grow from 
zero to its normal operating value. If the Nyquist plot of the loop trans
mittance has the form shown in Fig. 17-lOb, the amplifier may have to 
pass through the unstable condition as it warms up. In such a case 
oscillations will start, and they may grow to such a magnitude that they 
saturate the amplifier and prevent the final stable state from being 
reached. For these reasons conditional stability is usually to be avoided 
in vacuum-tube circuits. 

17-7. The Design of Feedback Amplifiers. The construction of the 
Nyquist diagram by computing the magnitude and phase of the loop 
transmittance for a number of different frequencies is likely to be a tedious 
procedure. The amount of time and effort required can be reduced, 
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however, by first constructing the logarithmic amplitude and phase 
characteristics of the loop transmittance by the rapid techniques pre
sented in Chaps. 14 and 15; the amplitude and phase of the loop trans
mittance can then be read from these curves. But since the amplitude 
and phase characteristics contain all the information that the Nyquist 
plot contains, there is no need to construct the latter; it is merely neces
sary to interpret the stability criterion and the feedback relations in terms 
of the amplitude and phase characteristics. 

The amplitude and phase characteristics for the loop transmittance 
of a typical feedback amplifier are shown in Fig. 17-11; it is understood 
that there is a sign reversal in the loop transmittance in addition to the 
phase shift shown by the phase characteristics. It follows directly 
from the relationship between the characteristics of Fig. 17-11 and the 
Nyquist plot of AL that the Nyquist plot does not encircle the critical 
point if IALI drops to zero db before the phase shift reaches 180°, for 

AL 
db 

20 

10 

0 
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-90° kcps 

-180° 

8 

FIG. 17-11. Loop amplitude and phase characteristics for a three-stage amplifier. 

zero db corresponds to a numerical ratio of unity. Therefore, except 
for the case of conditional stability, this becomes the stability criterion 
in terms of the amplitude and phase characteristics. This criterion is, of 
course, subject to the condition stated in connection with Eq. (17-44) that 
the amplifier is stable with the feedback loop broken. In the event that 
the amplifier is not stable with the feedback loop broken, the statement 
of the stability criterion in terms of the amplitude and phase character
istics must be modified. It follows from this discussion that if the ampli
fier having the characteristics shown in Fig. 17-11 is stable with the 
feedback loop broken, it is on the threshold of instability when the loop 
is closed. 

In terms of the amplitude and phase characteristics of the loop trans
mittance, the design of feedback amplifiers is concerned with providing 
sufficient loop amplification in the band of frequencies occupied by the 
signal and with controlling the cutoff characteristic of the loop outside 
the signal band so that the amplitude is reduced to zero db before the 



434 ELECTRONIC CIRCUITS 

phase shift becomes 180°. If the shapes of the amplitude and phase 
characteristics are fixed, the design problem involves only the choice of 
amplification level that permits the stability requirement to be satisfied 
with a suitable margin of safety. In order to realize high performance in 
a feedback amplifier, however, it is usually necessary to control the shapes 
of the amplitude and phase characteristics by the use of frequency
dependent interstage coupling networks. The shaping of the frequency 
characteristics of the loop transmittance to obtain improved performance 
requires considerable skill, however, for the amplitude and phase char
acteristics are interrelated. Any change in the shape of the amplitude 
characteristic is in general accompanied by a change in the shape of the 
phase characteristic, and this latter change may make matters worse 

6 AL 
db 

270° 15 

180° 

90° 5 

-18 db/oct 

0+----H-+--__;:s::=--=----+--H----• 

-90° 

-1so· 
-270° 

FIG. 17-12. Loop amplitude and phase characteristics for three identical RC stages in 
cascade. 

rather than better. Certain simple rules of thumb for the guidance of 
the designer are developed in the following paragraphs. 

If the internal amplifier in the circuit of Fig. 17-1 consists of a single 
RC stage, and if the bypass capacitors can be considered short circuits 
at all frequencies where the loop amplification is greater than zero db, 
then in the frequency range of interest the loop characteristics have the 
form shown in Fig. 15-3. Since the phase shift never exceeds 90°, the 
amplifier cannot be unstable. This conclusion is in agreement with the 
relations illustrated in Fig. 17-(k-

If the internal amplifier consists of two RC stages in cascade, then the 
loop amplitude characteristic has the form shown in Fig. 15-12, and the 
phase shift approaches 180° as a limit at very low and very high frequen
cies. However, the loop amplification is less than zero db at the extremes 
of the frequency spectrum, and this circuit cannot be unstable if a sign 
reversal is provided in the loop transmittance. This conclusion is in 
agreement with the relations pictured in Fig. 17-7. It should be noted. 
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in this connection, however, that any practical amplifier is certain to 
contain some parasitic effects that are not included in this analysis; hence 
if the mid-band loop gain is made very great, the circuit is likely to become 
unstable as a result of additional phase shifts introduced by the parasitic 
effects. 

If the internal amplifier consists of three identical RC stages in cascade, 
the loop characteristics have the form shown in Fig. 17-12. The phase 
shift approaches 270° at very low and very high frequencies, and it 
crosses 180° at two frequencies. This amplifier is certain to be unstable 
if the mid-band loop amplification is made great enough; the character
istics in Fig. 17-12 represent conditions close to the threshold of stability. 

The value of mid-band amplification that places the cascade of three 
identical stages on the threshold of stability can be determined from the 
frequency characteristics by a simple calculation. If the upper and 
lower break frequencies are well separated, the loop transmittance at 
high frequencies is given by 

(17-45) 

where w~ is the high-frequency break point. The phase shift at high 
frequencies is therefore 

w 
0 = -3 tan-1 ,- (17-46) 

WH 

If the frequency at which the phase characteristic crosses -180° is 
designated wp, then 

180° = 3 tan- 1 wp 
I 

WH 

and 

(17-47) 

(17-48) 

It follows that at the phase crossover, where w = wp, the magnitude of the 
denominator in (17-45) has the value 8, and the loop amplification is 

(17-49) 

But if )ALI is unity at the phase crossover, the circuit is on the threshold 
of stability; hence the threshold condition is produced by 

(17-50) 

The corresponding mid-band loop amplification is ALM = 18 db; this 
value should be compared with the relations shown in Fig. 17-12. The 
result given in Eq. (17-50) is identical with that given by Eq. (17-41), 
which applies to the same circuit and was obtained from the pole-zero 
pattern shown in Fig. 17-8b. 
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When the amplifier is examined in the low-frequency range in the 
manner employed above, it is found that the same value of loop ampli
fication produces the threshold condition at the low-frequency phase 
crossover. 

The phase characteristic of Fig. 17-12 is used in the analysis only to 
determine the location of the phase crossover. Therefore in such analyses 
it is unnecessary to construct the entire phase characteristics. After 
the straight-line approximation to the characteristic has indicated the 
approximate location of the phase crossover, it is sufficient to construct 
a segment of the characteristic that will locate the crossover accurately. 
Similarly, in so far as stability is concerned the amplitude characteristic 
is needed only in the vicinity of the amplitude crossover, the point at 
which the amplitude characteristic crosses the zero-db axis. However, 
if it is necessary to examine the variation of the feedback with frequency, 
then the complete characteristics must be constructed. 

In practice an amplifier cannot be operated near the threshold of 
stability, for the slightest increase in IALI will then make the circuit 
unstable. Therefore, in order to provide a suitable margin of safety, 
the mid-band amplification of the three-stage amplifier cannot be made 
greater than 4 or 5. This is not much feedback, and, accordingly, the 
performance of the amplifier is not much improved. In order to increase 
the amount of feedback it is necessary to reshape the amplitude and phase 
characteristics by modifying the interstage networks so that the stability 
requirement can be satisfied with a larger mid-band loop amplification. 
Some improvement can be obtained easily, for it turns out that making 
the three stages identical is the worst possible design. 

It has been shown that if the feedback loop contains only one RC 
stage, the phase shift does not exceed 90°, and the circuit is stable for 
all values of loop amplification. It follows from this fact that more feed
back is permissible in the three-stage amplifier if the bandwidth of two 
of the stages is made much greater than that of the third stage. Under 
these conditions the cutoff characteristic is governed primarily by the 
narrow-band stage, for which the phase shift is always less than 90°. 
The high-frequency loop characteristics for a three-stage amplifier with 
its break frequencies staggered in this manner is shown in Fig. 17-11. 
Since an RC amplifier introduces appreciable phase shift at frequencies 
as much as a decade below the break frequency, only a small improve
ment can be realized in this way unless the break frequencies can be 
separated by a decade or more. 

In designing an amplifier on this basis, the mid-band for the narrow
band stage ordinarily should correspond to the band of frequencies 
occupied by the signal so that the feedback will be uniform at all signal 
frequencies. The mid-band range for the remaining two stages must 
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then be extended at both high and low frequencies by an amount suf
ficient to permit the desired loop amplification with ample margins of 
safety. If a great amount of feedback over a wide band of frequencies 
is desired, it may not be possible to make the wide-band stages wide 
enough. 

The amplitude characteristic for a single RC stage has a high-fre
quency asymptote with a slope of 6 db/ octave and a phase shift at high 
frequencies that approaches 90° as a limit. The amplitude character
istic for two RC stages has an asymptotic slope of 12 db/octave and a 
limiting phase shift of 180° at high frequencies. In general, the loop 
transmittance can be expressed as the ratio of two polynomials: 

A
1 

= K ao + a1m + a2m2 + · · · + mr 
., bo + b1m + b2p2 + · · • + Jn8 

(17-51) 

For very large m, all terms but the highest powers of m can be neglected, 
and ( 17-51) becomes 

and when m is replaced by jw, ( 17-52) becomes 

AL ~ K(jw)(r-s) 

(17-52) 

(17-53) 

This relation corresponds to a final high-frequency asymptote having a 
slope of 6(r - s) = 6N db/octave; the associated limiting phase shift 
is 90N degrees. Thus, generally speaking, if a feedback circuit is to 
be stable, the loop transmittance must cut off at a rate less than 12 
db/octave, at least up to a frequency somewhat above the point at which 
the loop amplification becomes zero db. Herein lies the difficulty in 
feedback amplifier design. Suppose that an amplifier is to have 40 db 
of feedback (F = 100) in the band of frequencies between 20 cps and 
20 kcps. Since the cutoff rate must not exceed 12 db/ octave, which is 
40 db/decade, it follows that a decade of frequency is required to bring 
the loop amplification down to zero db; thus the cutoff rate must be 
controlled and kept less than 40 db/decade in the frequency interval 
between 20 and 200 kcps. If the amplifier has more than two stages, 
or if an output transformer is included in the feedback loop, parasitic 
elements may make it very difficult to exert this degree of control over 
such a wide band of frequencies. 

17-8. Summary. Under some circumstances feedback arises as an 
unavoidable consequence of parasitic circuit elements; under other cir
cumstances feedback is deliberately introduced in order to improve the 
performance of the circuit in some respect. In either event, the feed
back may alter the performance of the system to a marked degree, and 
the alterations may not be beneficial in every respect. The problem in 



438 ELECTRONIC CIRCUITS 

designing a feedback system is primarily that of ensuring that the effects 
of feedback are beneficial. Among the benefits to be obtained from the 
use of feedback are self-calibration, rejection of corrupting signals, mod
ification of gain and impedance levels, and modification of dynamic 
characteristics. 

When controlled sources are used in circuits having no feedback, they 
affect only the constant multiplier of the signal transmittance; the poles 
and zeros of the transmittance are those associated with the passive 
elements, R, L, and C. When feedback is present, however, the con
trolled sources affect the poles and zeros of the signal transmittance as 
well as the constant multiplier. The effect on the pole-zero pattern of 
introducing feedback may or may not be beneficial. In particular, feed
back may cause some of the poles of the signal transmittance to move 
into the right half of the complex plane. Such circuits exhibit growing 
transients, a consequence that usually cannot be tolerated. All except 
the simplest systems are certain to develop growing transients if the 
transmittance around the feedback loop is made sufficiently great. 

The design of a feedback circuit usually consists of two phases: first, 
the determination of the amount of feedback and the frequency band 
over which it must exist in order to realize a desired result such as self
calibration, and second, the choice of circuit parameters to meet the 
above requirement while at the same time ensuring a suitable pole-zero 
pattern for the over-all signal transmittance. The more stringent the 
requirement imposed by the first phase, the more difficult is the solution 
of the second phase. In the second, and usually more difficult, phase of 
the problem, two sets of techniques are particularly valuable. These 
are the root-locus techniques and the techniques for shaping the loga
rithmic amplitude and phase characteristics of the loop amplification. 
These alternative techniques give different kinds of insight into the 
problem, and each complements the other. These techniques have been 
developed and exploited to a high degree; it is possible to give only a 
brief introduction to them in the space available for this chapter. Thus 
the study of electronic circuits and feedback systems does not terminate 
with the end of this book; quite to the contrary, this final chapter has 
opened the door to a vast new area for the application of electronic 
circuits and the concepts associated with them. 

PROBLEMS 

17-1. The voltage transmittance of the internal amplifier in the feedback circuit of 
Fig. 17-1 is A:0 = - 1000. Feedback is used to reduce the sensitivity of the over-all 
transmittance Avo to changes in A:0 • If the sensitivity Sis to be 0.1 for small changes 
in A:0 , what value of /3 is required? With this adjustment, what is the over-all voltage 
transmittance Avo? 
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· 17-2. The internal amplifier in the feedback circuit of Fig. 17-1 has an initial voltage 
transmittance A; = -1000. It is expected that when a tube replacement is required, 
A;

0 
may decrease by as much as 20 per cent because of differences in tube parameters. 

However, it is desired that the over-all transmittance not change by more than 2 per 
cent of its initial value Ai. What initial value of return difference Fi is required? 
With this adjustment, what is the initial value of the over-all voltage transmittance 
A,? 

17-3. An operational amplifier used in an analog computer has the form shown in 
Fig. 17-1. A voltage transmittance Ava = -10 is required, and in order that the 
accuracy of the computer not be destroyed by changes in tube parameters, the sensi
tivity of Ava to small changes in A:0 must be 0.001. 

a. What values of A:0 and /3 are required? 
b. How many stages are needed to meet the specifications if an amplification of 70 is 

obtained from each stage? 
17-4. The audio amplifier shown in Fig. 17-13 receives a sinusoidal signal of 10 mv, 

rms value, from a phonograph pickup, and it delivers 10 watts to a 10-ohm resistance 
representing a loudspeaker. The last stage, which operates at a large signal level, 

(1-~)R=aR 

Fw. 17-13. Feedback amplifier for Prob. 17-4. 

introduces a signal distortion that is represented by the distortion voltage Ed in Fig. 
17-13. Feedback is used to reduce the distortion appearing at the load by a factor 
of 10. 

a. Determine therms value of the load voltage E3. 
b. What is the over-all voltage transmittance Ava? Note that there must be a net 

sign reversal in the internal amplifier. 
c. Determine the values of A:

0 
and {3. (The value of a can be taken as unity.) 

d. The last stage of the amplifier, which is designed for maximum power output, 
has a voltage amplification A2 = l. The source A1E1 represents one or more cascaded 
voltage-amplifier stages with an amplification of 100 per stage. How many voltage
amplifier stages are required? 

17-6. An alternative arrangement for the amplifier of Prob. 17-4 is shown in Fig. 
17-14; A 2E 2 represents one voltage-amplifier stage with an amplification of 100, A3E3 

(1-PJR=aR 

FIG. 17-14. Feedback amplifier for Prob. 17-5. 
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represent,,;; a power amplifier with a voltage amplification of 1.0, and A1E1 represents a 
preamplifier consisting of one or more voltage-amplifier stages with a voltage amplifica
tion of 100 each. Since the feedback encloses only two stages in this circuit, the 
dynamic characteristics of the amplifier can be controlled more easily than with the 
arrangement of Fig. 17-13, and the design problem is thereby simplified. The pre
amplifier is needed to provide the required amplification. 

a. Compute the quantities specified in parts a and b of Prob. 17-4. Note that 
there must be a net sign reversal in the part of the amplifier enclosed by the feedback 
loop. 

b. What value of (3 is required to reduce the distortion by the amount specified in 
Prob. 17-4? 

c. What value of A1 is required to give the needed value of Avo? (The value of a 

can be taken as unity.) 
d. How many stages with voltage amplifications of 100 are needed? This design 

should be compared with that of Prob. 17-4. 
17-6. An operational amplifier used in an analog computer has the form shown in 

Fig. 17-5. The circuit constants are A:0 = -50,000, R;8 = 30 kilohms, {3R = 100 
kilohms, and (1 - {j)R = 1 megohm. 

a. Determine the values of (3 and R. 
b. Determine the over-all voltage transmittance Avo, 
c. What is the output resistance Roa of the amplifier with feedback? 
17-7. The internal amplifier in the circuit of Fig. 17-1 consists of a cascade of two 

RC stages. At medium and high frequencies the voltage transmittance of the internal 
amplifier is given by (17-30) withf~ = w~/21r = 10 kcps,f~ = 30 kcps, and A:, = 2500. 
(The circuit is arranged so that there is a net sign reversal.) 

a. Sketch and dimension the loci of the poles of the over-all transmittance A vo as (3 is 
increased from zero to infinity. 

b. What value of (3 makes the amplifier maximally flat? 
c. With the adjustment of part b, what is the sensitivity of Avo to small changes in 

A: in the middle band of frequencies where A:0 = -A: = -2500? 
17-8. The internal amplifier in the circuit of Fig. 17-1 consists of three identical llC 

stages. At medium and high frequencies the voltage transmittance of the internal 
amplifier is given by Eq. (17-37) with f~ = w:/21r = 30 kcps and A:, = 10,000. 

a. Sketch and dimension the loci of the poles of Avo as /3 is increased from zero to 
infinity. 

b. What value of (3 places the circuit on the threshold of stability? 
c. With the adjustment of part b, the circuit can act as an oscillator generating a 

sinusoidal voltage of constant amplitude. What is the frequency of this oscillation? 
17-9. The effect of feedback on the dynamic characteristics of the alternative 

amplifier designs of Probs. 17-4 and 17-5 is to be examined. In each of these designs 
a total of three stages is required, and it is assumed that the half-power frequencies 
of all stages are the same, 20 kcps. The voltage transmittance of each stage at 
medium and high frequencies has the form ±Amwn/(m + wn); the sign is chosen in 
each case to give the required sign reversal in the feedback loop. 

a. For each design sketch and dimension the loci of the poles of Avo as (3 is increased 
from zero to infinity. Note that some of the poles do not move in the design of 
Prob. 17-5. 

b. Discuss briefly the relative merits of the two designs. 
17-10. The properties of the function 
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are to be studied for various locations of the pole and the zero. As the variable m 
takes on values corresponding to a point moving around the triangular contour C 1 in 
Fig. 17-15a, the function takes on successive values (complex numbers) corresponding 
to points on the contour C2 in Fig. 17-15b. The problem is to construct the contour 
C2 for various locations of the pole and the zero of A (m). 

a. Sketch the pole-zero pattern of A(m) for m1 = 1, m2 = -3. Show the contour· 
C1 on this sketch. 

b. Repeat part a for the following cases: m1 = 3, m2 = -3; m1 = -3, m2 = 1;: 
and m1 = -1, m2 = 1. 

Im Im 
2+j2 

Re Re 

2-j2 

la) (bl 

FIG. 17-15. Diagrams for Prob. 17-10. 

c. Plot the locus of each of the four functions (the contour C2) specified in parts 
a and b. Indicate the direction in which C2 is traversed in each case. Suggestion: 
Use one-quarter of a sheet of graph paper for each plot. Each straight-line segment of 
C1 gives a circular segment of C2; hence C2 consists of three circular segments. These 
segments can be constructed by locating the points [values of A(m)] corresponding to 
the corners of Ci and by locating one additional point for each side of C1• (The fact 
that straight lines in C1 produce circles in C2 is a special property of the simple function 
being studied; it is not a property of other types of functions.) 

d. Discuss briefly the significant relations between the C2 contours and the locations 
of the pole and zero of A(m). 

Im 

0 

XX 

Re 

FIG. 17-16. Diagram for Prob. 17-11. 

17-11. A certain voltage transmittance, A(m), has the poles and zeros shown in 
Fig. 17-16. As the variable m takes on successive values going once completely 
around the contour C1 in the indicated direction, what is the net change in the phase 
angle of A(m)? 

17-12. The measured amplitude and phase characteristics for a certain amplifier 
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are shown in Fig. 17-17. The amplitude is expressed as a voltage ratio, not as decibels, 
and the 180° phase shift at low frequencies accounts for a sign reversal in the voltage 
transmittance. Feedback is to be added to this amplifier in the manner illustrated in 
Fig. 17-1. The problem is to determine whether the amplifier is stable when the 
feedback is added. 

IA~ol 
500 
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40 ----------
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-270° 
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-450° --------------------------

FIG. 17-17. Frequency characteristics for Prob. 17-12. 

a. With {J = 0.078, make a reasonably accurate sketch of the Nyquist plot for the 
loop transmittance. This sketch must be a closed contour. Is the amplifier stable 
with this amount of feedback? 

b. What is the largest value of fJ for which the amplifier is stable? 

(l-/3JR 

Frn. 17-18. Feedback amplifier for Prob. 17-13. 

17-13. The block diagram of Fig. 17-18 represents a three-stage operational 
amplifier for use in an analog computer. The half-power frequencies are "'• = 
(2-n-)(2000) rps and "'2 == c.,3 = (21r)(50,000) rps. 

a. Let fJ be adjusted so that the loop amplification is zero db at low frequencies. 
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Make an accurate plot of the asymptotes for the logarithmic amplitude and phase 
characteristics of the loop transmittance. Use semilog graph paper, and cover the 
range of frequencies between 1 kcps and 1 mcps. 

b. Add to the plot of part a accurate plots of the true amplification and phase shift 
in the vicinity of the frequency at which the phase shift is 180°. At what frequency is 
the true phase shift 180°? 

c. If (3 is increased from the value used in part a, at what value of (3 is the circuit 
on the threshold of instability? 

d. With fJ adjusted to make the low-frequency loop amplification 3 db less than the 
threshold value, what is the over-all amplification !Aval at low frequencies? What is 
the sensitivity of Ava to small changes in A:

0 
at low frequencies? 

17-14. In the usual case the loop transmittanc·e for feedback amplifiers has the 
form of a rational function of frequency: 

Prove that the return difference has the same poles as the loop transmittance. 

Im 

(a) 

Im 

(cl 

Re 

Re 

Im 

(bl 

Im 

{d) 

Fm. 17-19. Nyquist diagrams for Prob. 17-15. 

Re 

Re 

17-16. The Nyquist diagrams for four different loop transmittances are shown in 
Fig. 17-19. These diagrams correspond to the frequency range O < w < 00. In each 
case the loop transmittance is known to be stable with no poles in the right half plane. 
In each case state whether or not the over-all feedback amplifier is stable. Give the 
reason for your answer in each case. 
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Im Im 

Re Re 

(a) (b) 

Re Re 

{c) (d) 

FIG. 17-20. Nyquist diagrams for Prob. 17-16. 

17-16. The Nyquist diagrams for four different loop transmittances are shown in 
Fig. 17-20. These diagrams correspond to the frequency range - oo < "' < oo . In 
each case the loop transmittance is known to have one pole in the right half plane. 
For each case give the number of right-half-plane zeros of the return difference. 
[See Eq. (17-44).] In each case state whether or not the over-all feedback amplifier 
is stable. Give the reason for your answer in each case. 



INDEX 

Acceptor, 51 
Admittance, driving-point and transfer, 

259 
All-pass networks, 349 
Alloy-junction diode, 52 

(See also Models) 
Alloy-junction transistor, 168 

(See also Frequency characteristics; 
Models) 

Amplification, 90-92 
(See also Frequency characteristics) 

Amplification factor (see Incremental 
parameters) 

Amplifiers, gain of (see Frequency 
characteristics) 

ideal, 87-90 
transistor, basic, 165-168 

grounded-base, 192 
grounded-collector, 281-282 

tube, basic, 97-99 
broadband (see shunt-peaked, 

below) 
cascode, 130, 280-281 
cathode--coupled, 227-228, 252-

254 
cathode-driven (see grounded-grid, 

below) 
cathode follower, 273-276, 291 
difference, 287, 292 
double-tuned, 366-37 4 

critical coupling, 371 
grounded-grid, 261-262, 264, 283 
intermediate-frequency, 373 
phase inverter, 288, 291 
series-balanced, 268 
shunt-peaked, 374-377, 402-~03 
single-tuned, 350-354, 356, 383, 

399-401 
bandwidth, 353-354 

stagger-tuned, 362-366 
(See also specific amplifiers) 

:\mplitude characteristic, 295-297, 360-
361 

break frequency of, 296 
Amplitude modulation, 243-246 
Amplitude modulator, 242-243 
Asymptotes for frequency characteristics, 

296-298, 360-361 
Auxiliary equations, in loop analysis, 

259 
in node analysis, 255 

Avalanche breakdown, 57-58 
Avalanche diode, 124 

Bandwidth, of single-tuned amplifiers, 
353-354 

of untuned amplifiers, 323 
Base resistance (see Incremental param-

eters, transistor) 
Beam power tube, 213 
Beat frequency, 245 
Bias, cathode-resistor, 132-133, 214 

grid-leak, 230-231 
screen-grid, 214 
for transistors, 196 

Bisection theorem, 28:3-287 
Bleeder resistance, 29 
Blocking, grid, 231 
Break frequency of amplitude char

acteristics, 296 
Breakdown, avalanche, 57-58 

Zener, 37, 57-58 
Bridge rectifier, 21 
Butterworth pole configuration, 366, 

372-373 
Bypass capacitors, choice of, in pentode 

amplifiers, 316-317 
in transistor amplifiers, 322 
in triode amplifiers, 301-302 

445 
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Capacitance, interelectrode, in pentodes, 
213, 221, 294, 308 

in triodes, 103, 157, 209-210, 303, 
342 

in vacuum diodes, 67 
parasitic, in junction diodes, 59 

in transistors, 170-172, 186-187, 
317-318 

Carrier voltage, 245 
Carriers, majority, 52 

minority, 52 
Cascode amplifier, 130, 280-281 
Cathode, 36, 61-62 

virtual, 101, 212 
Cathode-coupled amplifier, 227-228, 

252-254 
Cathode-coupled limiter, 231-236 
Cathode-driven amplifier (see Grounded

grid amplifier) 
Cathode follower, basic circuits, 273-

276, 291 
(See also Frequency characteristics) 

Cathode-resistor bias, 132-133, 214 
Characteristics, frequency (see Fre

quency characteristics) 
pentode, conversion to different 

screen-grid voltage, 215-216 
volt-ampere, beam power tube, 213 

junction diode, 57 
pentode, 212 
tetrode, 210 
transistor, 167 
triode, 99, 102-103 
vacuum diode, 63, 78 

Circle, resonant peak~ng, 358-359 
Clamper, 15-17 

in a-c vacuum-tube voltmeters, 17-18 
Clamping by triode grids, 230-231, 236 
Class of operation, for transistors, 17 4 

for tubes, 111 
Cleanup in thyratrons, 7 4 
Clipper (see Limiter) 
Clipping, diagonal, in peak detectors, 

246 
by triode grids, 230 

Coefficients, matrix of, 253 
two-port, hybrid, 260-261, 265 
(See also Incremental parameters, 

transistor) 
Collector dissipation, 172, 195 

Collector resistance (see Incremental 
parameters, transistor) 

Common-mode excitation, 284-285 
Compensation theorem, 272 
Complementary function, 395 
Conditional stability in feedback ampli-

fiers, 432 
Constant-resistance networks, 341 
Contact potential difference, 62 
Controlled source, 88-89, 223, 249-250 
Converter, impedance, 282-283 
Corrections for frequency character-

istics, 296-298, 360-361 
Coupling, critical, in double-tuned 

amplifiers, 371 
Coupling coefficient, critical, 371 
Cramer's rule, 255 
Critical coupling coefficient, 371 
Critical damping, 354 
Cross modulation (intermodulation), 113 
Crystal, 47 
Current amplifier, ideal, 89-90 

two-port characterization, 265-266 
Current transmittance (see Coefficients) 

Damping, critical, 354 
Damping ratio for complex poles, 360 
Datum node, 253 
Decade of frequency, 296 
Decibel, 90-91 
Decilog, 91 
Decoupling network, 150, 329 
Degeneration, definition of, 414 
Deionization time for thyratrons, 73 
Demodulation (detection), 243, 246 
Depletion region, in junction diodes, 

54 
in transistors, 172 

Detection, 243, 246 
Detector, diode, 246-247 
Diagonal clipping in peak detectors, 246 
Difference amplifier, 287, 292 
Differential-mode excitation, 284-285 
Diffused-base transistor, 168, 171-172 

(See also Frequency characteristics; 
Models) 

Diode, avalanche, 124 
gas-filled, 67-69 
ideal, 7-8 
junction, 36-38, 52-54 



Diode, vacuum, 34-36 
Zener (see avalanche, above) 
(See also Models) 

Dissipation, collector, 172, 195 
plate, 66, 104 

Distortion, analysis of, 111-113 
in feedback amplifiers, 418-419 

Donor, 50 
Double-tuned amplifier, 366-374 
Doubler, voltage, 18-19 
Drift transistor, 1 71-172 

(See also Frequency characteristics; 
Models) 

Driving-point impedance, 255 

Electron, mass and charge of, 43 
Electron volt, 45-46 
Electronic multipliers, 84, 246 
Emission, electronic, 60-61 

secondary, 211 
Emitter resistance (see Incremental 

parameters, transistor) 
Envelope, modulation, 243 
Equivalent circuits (see Models) 

Feedback ratio, 414 
Figure of merit, pentode, 335 
Filters, rectifier, capacitor-input, 30-31 

choke-input, 26-30 
single-capacitor, 24-26 
single-inductor, 21-24 

Firing in thyratrons, 72 
Flat-staggered amplifiers, 365 
Frequency characteristics, asymptotes 

for, 296-298, 360-361 
of cathode followers, 308-310 
of double-tuned amplifiers, 366-37 4 
of multistage amplifiers, 344-345 
of pair of complex poles, 357-361 
of pentode amplifiers, at high fre-

quencies, 293-298 
at low frequencies, 310-315 
RC-coupled, 334-336 

of shunt-peaked amplifiers, 374-377 
of single-tuned amplifiers, 351-354 
of stagger-tuned amplifiers, 363-366 
of transistor amplifiers, at high fre-

quencies, 317-320 
at low frequencies, 321-322 
RC-coupled, 336-342 

INDEX 447 

Frequency characteristics, of triode 
amplifiers, at high frequencies, 
302-304 

at low frequencies, 298-302 
RC-coupled, 342-344 

Full-wave rectifier, 19-21 

Gain, definition of, 90-91 
Gain-bandwidth product, 323-325 
Gas-filled diode, 67-69 

(See also Models) 
Gas-filled triode, 71-73 
Germanium atom, 46 
Grid blocking, 231 
Grid clipping, 230 
Grid-leak bias, 230-231 
Grid return resistor, 133 
Grounded-base amplifiers, 192 
Grounded-collector amplifier, 281-282 
Grounded-grid amplifier, 261-262, 264, 

283 
Grown-junction diode, 52 
Grown-junction transistor, 168 

Half-power frequency, 295 
Half-wave rectifier, 8-13, 74-76 
Heterodyne, 245 
Hole in crystal lattice, 48 
Hybrid parameters, for transistors, 

179-180 
for two-port networks, 260-261, 265 

Ignition in thyratrons, 72 
Impedance, driving-point and transfer, 

255 
Impedance conyerter, 282-283 

negative, 93, 95 
Incremental parameters, pentode, 220-

221 
transistor, 179-181, 183-189 
triode, 155-157, 161 

Independent source, 249 
Index of modulation, 243 
Input admittance, cathode follower, 310 

current amplifier, 266-267 
transistor amplifier, 180, 319 
triode amplifier, 304-308 
voltage amplifier, 262-263 
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Instability, in feedback amplifiers, 412 
threshold of, 425, 435 

lnterelectrode capacitance (see Capaci-
tance) 

Intermediate frequency, 245 
Intermediate-frequency amplifier, 373 
Intermodulation, 113 
Ionization, in gas-filled tubes, 68 

in semiconductors, 58 
Ionization time for thyratrons, 72 
Ions in gaseous conduction, 68-69 

Junction diode, 36-38, 52-54 
(See also Models) 

Junction transistor, 165-168 
(See also Frequency characteristics; 

Incremental parameters; Models) 

Lattice, crystal, 47 
hole in, 48 

Limiter, cathode-coupled, 231-236 
diode, 13-14 
triode, 228-230 

Load line, for diodes, 75-76, 78-79 
for transistors, 173 
for triodes, 107-108 

Loci, of poles of feedback amplifiers, 
404-406, 421-426 

of quadratic roots, 354-356 
Loop analysis, 256-259 
Loop transmittance in feedback ampli

fiers, 414 

Majority carriers, 52 
Matrix of coefficients, 253 
Maximal flatness, 359 

in double-tuned amplifiers, 371 
in feedback amplifiers, 423 
in shunt-peaked amplifiers, 376-377 
in stagger-tuned amplifiers, 365-366 

Maximum power output, from beam 
power tubes, 217-218 

from transistors, 203-205 
from triodes, 138-139 

Merit, figure of, for pentodes, 335 
Micro ammeter, transistor, 289 
Midband of amplifiers, 323 

Miller effect, 306 
compensation of, 340-341, 343 
in transistors, 318-319, 337-338, 340-

341 
in triodes, 304-308, 342-344 

Minimum-phase-shift networks, 350 
Minority carriers, 52 
Mode of operation, for transistors, 17 4 

for tubes, 111 
Models, incremental, pentode, 220-223 

transistor, 178-179, 182-189 
triode, 154-156 

piecewise-linear, diode, 76-80 
pentode, 219 
transistor, 175-176 
triode, 117-119, 126 

Modulation, 243-246 
as frequency translation, 245 

Modulation envelope, 243 
Modulation index, 243 
Modulation sidebands, 245 
Modulation spectrum, 245 
Modulator, as multiplier, 246 

pulse-amplitude, transistor, 242-243 
Multiple-order poles, 401 
Multiplication of time functions, 246 
Multipliers, electronic, 84, 246 
Mutual conductance (see Incremental 

parameters) 

Negative feedback, definition of, 414 
Negative impedance converter, 93, 95 

(See also Impedance converter) 
Negative resistance, 93 

in transistor amplifiers, 308 
in triode amplifiers, 307-308 

Network models (see Models) 
Nodal analysis, 252-255 
Nonlinear distortion (see Distortion) 
Nonminimum-phase-shift networks, 350 
Nyquist diagram; 417, 430-432 
Nyquist test for stability, 427-432 

in terms of frequency characteristics, 
433 

Octave of frequency, 296 
Open-circuit impedance, 255 
Operating path, definition of, 107 
Operating point, definition of, 107 



INDEX 449 

Oscillation, in cathode followers, 310 
in pentode amplifiers, 308 
in transistor amplifiers, 308 
in triode amplifiers, 209, 308 

Oscillators, 405, 407, 411 
Output impedance (see Coefficients, two

port, hybrid) 
Overcoupled amplifier, 371-372 
Overstaggered amplifiers, 365 

Parameters (see Incremental param-
eters) 

Particular integral, 394 
Path of operation, definition of, 107 
Peak detector, 246-247 
Peak inverse voltage, 10 
Peak rectifier, 14-15 
Peak-to-valley ratio, 365, 372 
Peaking circle, 358-359 
Pentode, 211-213 

(See also Frequency characteristics; 
Incremental parameters; Models) 

Phase characteristic, 298, 361 
Phase crossover in feedback amplifiers, 

435 
Phase inverter, 288, 291 
Piecewise-linear characteristic, 8 
Piecewise-linear device, 8 
Piecewise-linear equivalent circuits (see 

Models) 
Piecewise-linear model (see Models) 
Plasma, 69 
Plate dissipation, 66, 104 
Plate resistance (see Incremental 

parameters) 
Pole configuration, Butterworth, 366, 

372-373 
Pole-zero patterns, related to frequency 

characteristics, 34 7-350' 
related to transient response, 396-

399, 403-404 
Poles, multiple-order, 401 

of rational functions, 346 
Positive feedback, definition o-£, 414 
Potential distribution, 43-44 

in junction diodes, 54-55 
in multigrid tubes, 210-212 
in transistors, 169-171 
in triodes, 99-101 
in vacuum diodes, 63 

Pulse-amplitude modulator, 242-243 

Q of resonant circuits, 354 
Quiescent operating point, 107 

choice of, in transistor amplifiers, 185-
186, 188 

in triode amplifiers, 161-162 
dependence on temperature in tran

sistor amplifiers, 194-195 
stabilization of, in transistor ampli

fiers, 196-197 

Rational functions, 346 
RC-coupled amplifiers, general con-

siderations, 332-333 
pentode, 333-336 
transistor, 336-342 
triode, 144, 342-344 

Reactive plate loads, 145-146 
Reciprocity in terms of hybrid two-port 

coefficients, 264-265 
Reciprocity theorem, 254, 260 
Rectifier, bridge, 21 

full-wave, 19-21 
half-wave, 8-13, 74-76 
peak, 14-15 
ripple in, 25-26, 29-30 
thyratron, 80-82 

Rectifier filters (see Filters) 
Reduction theorem, 278-283 
Regeneration, definition of, 414 
Regulator, speed, 82 

voltage, 95, 124-125, 130, 177 
Resonance, 353, 357-358 
Resonant-peaking circle, 358-359 
Resonant Q, 354 
Return difference, 414 
Ripple in rectifiers, 25-26, 29-30 
Root-locus techniques, 356, 370-371, 

406, 421-426 
Roots of quadratic factors, 354-356 

Saturation current in junction diodes, 55 
Saw-tooth generator, free-running, 241 

thyratron, 240-242 
transistor, 239-240 
triode, 236-239 

Self-calibration in feedback amplifiere, 
413, 415-417 
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Semiconductor, 48 
N-type, 50 
P-type, 50 

Semiconductor diode, 36-38 
(See also Models) 

Sensitivity of feedback amplifiers, 416-
417 

Separate parts of networks, 253 
Series-balanced amplifier, 268 
Short-circuit admittances, 259 
Shunt-peaked amplifier, 374-377, 402-

403 
Sideband, modulation, 245 
Single-tuned amplifier, 350-354, 356, 

383, 399-401 
Source, controlled, 88-89, 223, 249-250 

independent, 249 
Source transformations, 249-252 
Space charge, in beam power tubes, 21 :3 

in diodes, 64 
in triodes, 100-101 

Space-charge-limited current, 64, 100 
Space-charge region in transistors (see 

Depletion region) 
Spectrum of modulated signals, 245 
Speed regulator, 82 
Stability, of feedback amplifiers, 412, 

427 
Nyquist test for, 427-433 
threshold of, 425, 435 

Stagger-tuned amplifier, 362-366 
Steady-state response, 395 
Step signal, 392 
Substitution theorem, 272 
Superposition principle, 271 
Sweep generators (see Saw-tooth gen

erator) 
Symmetrical networks, 283-287 

Temperature effects, in thyratrons, 73 
in transistors, 194-195 

Temperature-limited current, 65 
Tetrode, 210-211 
Thermionic emission, 60-61 
Thevenin's theorem, 147, 276-278 
Threshold conditions in feedback ampli-

fiers, 425, 435 

Thyratron, 71-73 
Thyratron rectifier, 80~82 
Transconductance (see Incremental 

parameters) 
Transfer impedance, 255 
Transformation of sources, 249-252 
Transformer, ideal, 140 
Transformer-coupled amplifiers, beam 

power tube, 217-219 
transistor, 205-206, 381 
triode, 139-144, 357 

Transient response, 395 
Transistor, 165-168 

(See also Frequency characteristics; 
Incremental parameters; Models) 

Triode, 97-99 
(See also Frequency characteristics; 

Incremental parameters; Models) 
Tuned amplifiers, double-, 366-'-374 

single-, 350-354, 356, 383, 399-401 
stagger-, 362-366 

Two-port coefficients, 259-266 
Two-port networks, 259 
Two-terminal-pair networks, -259 

Vacuum diode, 34-36 
(See also Models) 

Voltage amplifier, ideal, 87-89· 
two-port characterization, 260-265 

Voltage doubler, 18-19 
Voltage regulator, 95, 124-125, 130, 

177 
Voltage transmittance (see Coefficients) 
Voltmeters, transistor, 289 

vacuum-tube, a-c, 17-18 
d-c, 151, 286-287, 289 

Warm-up time for gas-filJed tubes, 71 
Work function, 61 

Zener breakdown, 37, 57-58 
Zener diode, 124 
Zener voltage, 37, 57-58 
Zeros, of polynomials, 316 

of rational functions, 346 
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