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"Then said a Teacher, Speak to us of Teaching. 
And he said: 
No man can reveal to you aught but that which already lies 

half asleep in the dawning of your knowledge. 
The teacher who walks in the shadow of the temple, among 

his followers, gives not of his wisdom but rather of his faith 
and his lovingness. 

If he is indeed wise he does not bid you enter the house of 
his wisdom, but rather leads you to the threshold of your own 
mind. 

The astronomer may speak to you of his understanding of 
space, but he cannot give you his understanding. 

The musician may sing to you of the rhythm which is in all 
space, but he cannot give you the ear which arrests the rhythm 
nor the voice that echoes it. · 

And he who is versed in the science of numbers can tell of 
the regions of weight and measure, but he cannot conduct you 
thither. 

For the vision of one man lends not its wings to another 
man. 

And even as each of you stands alone in God's knowledge, 
so must each one of you be alone in his knowledge of God and 
in his understanding of the earth.'' 

Reprinted from The Prophet, by Kahlil Gibran, by permission of 
Alfred A. Knopf, Inc. Copyright 1951 by Administrators C.T.A. of 
Kahlil Gibran estate and Mary G. Gibran. 





PREFACE 

"Electronics is the science and technology which deals primarily with 
the supplementing of man's senses and his brain power by devices 
which collect and process information, transmit it to the point needed, 
and there either control machines or present the processed information 
to human beings for their direct use. " 1 

This is an extremely broad definition and encompasses an enormous 
body of knowledge, so enormous that it is frequently subdivided into 
three superficially distinct areas of inquiry, as follows: 

1 electronic components 
2 electronic circuits 
3 electronic systems 

It is unrealistic and probably naive to assume that electronics can be 
separated into three minor areas that can be examined independently 
of one another. Systems, circuits, and components are very closely 
tied together. System requirements often lead to the development of 
new components and circuits. A new component may finally result in 
the practical realization of a new system, and this could stimulate the 
development of new circuits. So you can see that the separation of 
electronics into three minor areas of interest is an academic fiction. In 
spite of the artificiality of the division, it seems to be the only orderly 
approach to arranging the huge amounts of data facing us. 

Electronic components as used here will signify devices such as 
vacuum and gas tubes, thermistors, varistors, transistors, and magnetic 
and dielectric amplifiers and storage elements. The term electronic 
circuit will refer to the connection of electronic components together 
with the ordinary elements of resistance, capacitance, inductance, and 
power sources into complete circuits. 

This book presents the fundamental principles and techniques 
associated with electronic circuits without emphasizing particular 
components or system applications. If vacuum tube circuits seem to 
receive the greatest attention, it is only because the analysis of such 
circuits is more highly developed at the time of writing. 

1 Reprinted with permission from "Let Us Re-Define Electronics," by W. L. 
Everitt, Proc. IRE, vol. 40, no. 8, August, 1952, p. 899. 
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viii Preface 
If I were asked to summarize this book as briefly as possible, the 

result would read as fo1lows: 

Electronic components can be represented by simple equi
valent circuits. Electronic circuit design is thereby reduced to 
ordinary circuit design and is no longer a problem in electronics. 

When the idea is flatly stated like this, I am appa1led at the size of 
the book. However, simple ideas are usually the most difficult to 
execute and explain. Many illustrations under varying conditions are 
required before the generality and simplicity are understood. 

The book is subdivided into three parts, as follows: 

Part I: Introduction 

Part II: Class A Circuits 

Part III: Operation in the Switching Mode 

Part I is a brief introduction to the principles of equivalent circuits and 
the elements of electric circuit theory based on the complex frequency 
and Laplace transform approach. 

Parts II and III are the main sections of the book. Most of the usual 
and some unusual circuits using nearly all the various components are 
presented. All circuits covered in Part II require continuous operation 
of the electronic component. This is ca1led Class A operation in this 
book. Nearly all the circuits in Part III require discontinuous operation 
of the electronic component. This is defined in this book as operation 
in the switching mode. 

The approach is almost entirely analytical. Although many useful 
methods from advanced mathematics are avoided, the book is still 
unashamedly mathematical in nature. I feel no compulsion to apologize 
for this. In the light of modern developments it would be surprising to 
handle the subject otherwise. 

Many useful and informative results, formulas, and design charts are 
obtained, but the emphasis is on the techniques used rather than the 
results themselves. No attempt has been made to write a handbook of 
formulas or to compile an encyclopedia of illustrative numerical 
problems. The book presents the methods of formulating circuits to 
obtain useful design formulas and performance criteria. 

The book should appeal to a diversified group of readers. Practicing 
engineers and physicists will find it to be a usable reference in their 
everyday work with circuit design and development. It can also be 
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used as a textbook at the graduate or undergraduate level covering a 
two- or three-semester sequence of courses. 

The reader should have a background that includes elementary 
calculus, an introductory course in electronics, and a previous or 
concurrent course in a-c circuit theory will prove immensely helpful. 

Thomas L. Martin, Jr. 
Tucson, Arizona 
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Chapter I 

PRINCIPLES OF EQUIVALENT CIRCUITS 

The ordinary electric circuit elements of resistance, inductance, and 
capacitance are generally assumed to be linear and bilateral. Over 
some specified range of operation, the current through such com
ponents is a linear function of the applied voltage, and current flows 
with equal ease in either direction. As a result, it is possible to charac
terize such devices by single constants. Hence, it is said that a given 
component is a resistor of so many ohms, a capacitor of a certain 
number of farads, or an inductor of a specified number of henries. 
Actually, such a description is true only over a specified range of 
operation, and is therefore simply an equivalent representation of the 
device within certain operating limits. 

In some cases, thermistors for example, the device might be very 
nonlinear over its customary operating range. It is not possible then 
to represent the component by a single equivalent. Instead, the 
characteristics are usually described graphically by showing a plot of 
the current through the device as a function of the applied voltage. 
This is called a current-voltage characteristic. For ferromagnetic or 
ferroelectric components, a plot of flux density as a function of field 
intensity is usually used. 

Electronic devices are usually nonlinear and unilateral. In other words, 
elements such as vacuum and gas tubes, thermistors, transistors, and 
varistors have nonlinear current-voltage characteristics, and current 
flows through them more readily in one direction than in the other. 
The only really convenient method of representing the properties of 
such devices is graphically in the form of current-voltage characteristics. 

The usefulness of these characteristics can hardly be overstated for 
they are widely used in the solution of practical problems. However, 
the fact remains that a purely graphical analysis of many electronic 
circuits is extremely difficult, and solutions obtained in this way lack 
generality. Analytical methods are required in some instances and 
preferred in others. 

Practical necessity requires that the characteristics of electronic 
3 



4 Principles of Equivalent Circuits [Sec. 1.1 

devices be presented in some equivalent, nongraphical form that lends 
itself to analytical treatment. The purpose of this chapter is to develop 
the concepts and techniques associated with the equivalent representa
tion of nonlinear devices.1 Although the discussion is based upon an 
analysis of current-voltage characteristics, the technique is perfectly 
general and can be used to derive equivalent representations of any 
nonlinear element. 

The really startling development that has occurred in electronic 
circuitry resulted from the comparative ease with which electronic de
vices can be represented in simple and approximately equivalent terms. 

1.1. Characteristics of Simple Circuits 
In this chapter, circuits composed of conventional linear circuit 

elements will be developed that will have very nearly the same graphical 
characteristics as the electronic devices they are supposed to represent. 
Thus, it is understood at the outset that effort is directed toward 
approximating the behavior of electronic devices. It is specified that 
the approximation should be as accurate as possible consistent with 
reasonable simplicity of the equivalent circuits. Exact equivalents 
might be devised, but they would probably be quite complex and 
would have little advantage over graphical analysis. 

The problem may be approached conveniently by a preliminary 
consideration of the graphical characteristics of a few simple circuits. 
Several examples are shown in figure (1.1). Consider figure (I.la). 
The circuit is simply an ordinary linear resistance R. As a result, the 
current-voltage characteristic is a straight line. Since such an element 
is linear and bilateral, the slope of the curve is the same in either the 
positive or negative current direction. When current is plotted on the 
ordinate, the slope of the characteristic is 1/R. Conversely, when 
voltage is the ordinate, the slope is R. 

An examination of figures ( 1.1 b) and ( 1.1 c) shows that the character
istic curve of the resistor can be translated parallel to itself, either 
horizontally or vertically, by simply placing the resistor in series with 
a voltage source or in parallel with a current source. By combining 
these characteristics with a switch, many types of characteristic curves 
can be produced. 

1 This chapter was conceived while I was taking a course from Professor J. M. 
Pettit of the Electrical Engineering Department of Stanford University. It reflects 
Professor Pettit's treatment in some respects and where this occurs it is with his 
consent. 
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Fig. 1.1. Graphical characteristics of simple circuits. 

5 

A word of explanation concerning the switch is in order. In any 
given circuit it is assumed that the switch operates automatically at 
some specified current or voltage. In the cases shown, the switch 
automatically moves to the open position whenever the current through 
it is zero or negative. In other cases, switch operation could occur 
under some other specified conditions. A knowledge of these 
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conditions is obviously an important factor in the application of 
these circuits to the equivalent representation of electronic devices. 

1.2. Principle of Linear Approximation 

It is proposed that the simple circuits shown in figure (1.1) can be 
used in various ways to approximate closely the characteristics of 
electronic devices. The method of doing this should be easily under
stood from the discussion that foJlows. 

L 
REGION REGION I REGION 

3 2 : 
I 
I 
I 
I 

I 

s\..o't'~ I ,,~ \ _....,.i::;;_ ______ SLOPE•O s /1 

e 
(a) ACTUAL 

CHARACTERISTIC 

E2 

(b) IDEALIZED 
CHARACTERISTIC 

~ 0 

·ll 
(c) EQUIVALENT 

CIRCUIT 

Fig. 1.2. The principle of linear approximation. 

To illustrate the principle and technique to be used in developing 
equivalent circuits, suppose that a given nonlinear circuit element has 
the current-voltage characteristic shown in figure (1.2a). The reader 
is undoubtedly familiar with the idea of representing such a con
tinuous curve by a discontinuous series of straight line segments, 
because such an approach is used at times in the introductory calculus 
courses. The actual curve and the segmented approximation become 
more nearly the same as the number of line segments used in the 
approximation is increased. In this text, this approximation process is 
called the principle of linear approximation. 

In the case under discussion, a fairly accurate approximation is 
obtained by representing the actual curve by three line segments as 
shown in figure (1.2b). The linear approximation of the actual charac
teristic will be called the idealized characteristic. 

Each line segment in this figure may be considered a part of a current
voltage characteristic of some simple circuit. In region 1 the character
istic would correspond to that produced by a resistance R1 in series 
with a battery E2• In region 2, the characteristic could result from a 
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simple resistor R2• The device is an open circuit in region 3. Therefore, 
three equivalent circuits are required to represent the device, one for 
each region. The complete equivalent circuit is the combination of 
these three circuits together with a selector switch to select auto
matically the proper circuit. The result is shown in figure (1.2c). 

I 

e 

+1....t 2: 3 4 
, I 

~ a:I .... , -, 

E3 E2 e + 
(o) ACTUAL 

CHARACTERISTIC 
( b) IDEALIZED le) EQUIVALENT 

CHARACTERISTIC CIRCUIT 

Fig. 1.3. Another example of linear approximation. 

This example illustrates the basic technique to be followed in this 
chapter in developing equivalent circuits of electronic devices. The 
procedure involves three steps, as follows: 

(1) Draw the actual current-voltage or volt-ampere characteristic. 
(2) Approximate the characteristic by a judicious choice of straight 

line segments, using as many segments as required to obtain the 
desired accuracy. 

(a) Identify the various regions of operation. 
(b) Label the slopes and intercepts of the line segments. 

(3) Construct an equivalent circuit for each line segment and use a 
switch to choose the proper one for a given operating condition. 

One final example of the technique is given in figure (1.3). Note that 
the slope of the idealized characteristic is negative in region 3 and this 
leads to the negative resistance in the equivalent circuit. This type of 
characteristic occurs in oscillators and trigger circuits covered in later 
chapters. 

1.3. Diode and Gas Triode Equivalent Circuits 

The current-voltage characteristics of diodes, varistors, and gas 
triodes are fairly simple. If you understand the relatively complex 
examples covered in the preceding section, you should be able to 
construct the equivalent circuits given here without difficulty. Thus 
figures (1.4) through (1.7) are assumed to be self-explanatory. 
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Fig. 1.4. Development of varistor equivalent circuit. 
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Fig. 1.5. Development of vacuum diode equivalent circuit. 
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Fig. 1.6. Development of the equivalent circuit for a glow discharge tube 
up through the region of normal glow. 
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However, you should examine them carefully to familiarize yourself 
with the procedure and terminology. 

The equivalent representation of gas triodes, such as thyratrons and 
ignitrons, is precisely the same as for the arc discharge diode except 
that the instant that the switches move from position 1 to position 2 
is controlled by the grid or igniter electrode. 

a. 
"-

' "j" 
II 

UJ 
Q. 

9 
(/) 

Eo 

(a) ACTUAL CHARACTERISTIC (b) IDEALIZED CHARACTERISTIC 

© l~I-· · . p 

:!: Eo 

f-----oOK 

( c) EQUIVALENT CIRCUIT 

Fig. 1. 7. Development of the equivalent circuit of arc discharge gas tubes. 

I .4. Vacuum Triode Equivalent 

The actual and idealized current-voltage characteristics of a vacuum 
triode are shown in figure (1.8). In contrast to the diode for which 
there was only a single curve, here there is a whole family of curves; 
the particular one generated is governed by the value of the grid 
voltage. A more elaborate equivalent circuit is required to approximate 
the characteristics of a triode vacuum tube. 

From the idealized plate characteristics given in figure (1.8b) it 
appears that making the grid voltage more negative has the effect of 
translating the ec = 0 curve to the right. The equivalent circuit of the 
ec = 0 characteristic alone is identically the same as that of a vacuum 
diode. This equivalent can be modified to account for grid voltage 
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Fig. 1.8. Static plate characteristics of a triode vacuum tube. 

[Sec. 1.4 
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variations by adding another voltage source Ee, in series with the 
intercept voltage E

0 
as shown in figure (1.9a). Actually, the action of 

the grid is rather more complex than this because the slope of the 
characteristic also changes as it is translated. Nevertheless, by a 
skillful selection of E0 and r 11 , the characteristics of the equivalent 
circuit will closely approximate those of the triode. It remains to 
determine the relationship between the added equivalent generator, Ee, 
and the grid voltage, ec, of the tube. 

Il@ ~iOP 
rp + 

eb 

:~:: L 
(a) FIRST EQUIVALENT 

CIRCUIT 
(b) SECOND EQUIVALENT 

Cl RCUIT 

Fig. 1.9. Equivalent circuit of a vacuum triode for the linear region of 
operation, switch position 2, and the cutoff region, switch position 1. 

Note that the polarity of the assumed generator, Ee, is positive in 
figure (1.9a). Therefore it carries its own polarity; If the actual polarity 
is negative, the equation for Ee will involve negative terms. 

The amplification factor, µ, of the tube is defined as 

oeb (deb) 
µ = - oec = - dee i,,= const (1.l) 

In its exact form this equation applies only to differential voltage 
changes. It remains approximately true for incremental changes. 
Because the idealized characteristics are parallel, equally spaced straight 
lines, incremental and differential quantities have the same meaning. 
Hence, for the idealized characteristics, 

µ = - D..eb I ( 1.2) 
D..e c i,, = const 

Or, in an alternative form, 

D..eb = -µ D..ec when ib = constant (1.3) 

The D..eb is the same thing as the Ee used in the equivalent circuit of 
figure (1.9a) because Ee is the D..eb evaluated along the line of constant 
plate current, ib = 0. Therefore 

(1.4) 
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Here Ee is the change in plate voltage measured from the intercept 
voltage E0 of the e0 = 0 characteristic to the intercept of any arbitrary 
characteristic. Hence, the reference grid voltage is zero and ile0 = e0 • 

Therefore 
Ee= -µe0 (1.5) 

Ordinarily, the total grid voltage, e0 , involves two terms, as follows: 

e0 = e0 - E00 (1.6) 

where -E00 = negative d-c grid voltage= grid bias; e0 = variational .,_ r: i----CD-.....----..+,.-r 
C r-

....... --------0 K 
r-__________ ....... __ ~ K 

(a) VOLTAGE SOUR.CE EQUIVALENT ( b) CURRENT SOURCE EQUIVALENT 

POSITION I - TUBE CUT- OFF 
POSITION 2- NORMAL LINEAR REGION 
POSITION 3- SATURATION 

Fig. 1.10. Complete equivalent circuits of a triode vacuum tube showing 
three regions of operation. 

or signal voltage. Therefore the equivalent voltage source simulating 
the action of the grid is 

Ee= -µe" + µE00 (1.7) 

This equation leads to the equivalent circuit shown in figure (1.9b), in 
which all d-c terms have been combined into a single direct voltage 
source. 

This equivalent circuit describes the operation of the tube in either 
of two regions: 

( 1) In the normal region of linear operation corresponding to switch 
position 2. 

(2) In the cutoff or nonconducting region corresponding to switch 
position 1. 

The equivalent circuit can be completed by including another switch 
contact and circuit to account for operation jn the saturation region. 
In this mode of operation the tube acts like a simple resistor of R8 

ohms, so that the complete equivalent circuit appears as shown in 
figure (1.10). The switch moves to position 3 and saturation results 
whenever the grid voltage is equal to or greater than the plate voltage. 
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The equivalent circuit of figure (1.10a) is called the voltage• source 
equivalent circuit and sometimes the Thevenin equivalent circuit. An 
alternative form, called the current source or Norton equivalent, is 
shown in figure ( 1.1 Ob). The method for converting one of these 
circuits into the other is covered in chapter 2. 

1.5. Pentode and Beam Power Tube Equivalent 
The actual and idealized static plate characteristics of a pentode are 

given in figure (1.1 I). Beam power tubes are suflicien~ly similar so that 

e =O e =O 
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CHARACTERISTICS 

( b} IDEALIZED STATIC PLATE 
CHARACTERISTICS 

p 
,-..----------10 

t 
rp r 

K 

( c} EQUIVALENT CIRCUIT 

Fig. 1.11. Characteristics and equivalent circuit of a pentode or beam 
power tube. 

they will not be treated separately. The eventual current source 
equivalent circuit of the pentode is given in figure (1.1 le). 

The region of normal linear operation corresponds to switch position 
2. When the switch is in position 3 the pentode is said to be operated 
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in the bottoming region. In this mode of operation the plate current is 
independent of the grid voltage just as in the case of a saturated triode. 
The switch moves to position 1 whenever the plate current through the 
tube is zero. This may be caused by lowered plate voltage or by the 
grid voltage exceeding the cutoff potential in the negative direction. 

The equivalent circuits for switch positions 1 and 3 are easily con
structed by the standard method previously outlined. The circuit in 
switch position 2 can be derived from the current source equivalent for 
the triode in figure (1.10b) simply by reversing the polarity of E0 or 
the direction of the current source I 0 = E 0 / r p• This change is obviously 
necessary when you examine the characteristic and see where the E0 

intercept must fall. 
It is also possible to derive the current source equivalent in region 2 

directly from plate characteristics, using the current intercept I0 and 
the definition of the mutual transconductance gm instead of µ. 

1 .. 6. The Question of Non Ii nearity 

The equivalent circuits derived in the preceding sections have always 
involved a linear resistor as an essential part of the circuit. In the 
chapter introduction it was noted that tube characteristics are always 
nonlinear to some extent, and this nonlinearity persists even when 
operation is confined to a restricted region corresponding to a single 
position of the switch in the equivalent circuit. The equivalent circuits 
that have been developed do not account for the presence of any 
nonlinearity for any given single switch position. 

A fairly thorough discussion of nonlinearity, its effects and appli
cations, is presented in chapter 11. At that time it will be shown that 
the linear equivalent circuit can be retained and the nonlinearity 
accommodated by inserting additional generators having the nature 
of small correction factors. These added generators may be important 
or unimportant, depending upon the circuit application and operating 
conditions. Thus, to avoid complicating the equivalent circuits, it 
seems advisable to retain the present simplified and linear form and to 
consider the nonlinearities only when they become significant. Fortu
nately. this will not be necessary in a large proportion of the circuits 
presented in this text. 

1.7. lnterelectrode Capacitances and Lead Inductances 

Because the electrodes of vacuum tubes and semiconductor devices 
are of finite size, are separated by finite distances, and are connected 
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to their external circuits by leads of finite length, it is inevitable that the 
electrode leads will possess inductance and that there will be capaci
tances between the electrodes. The relative importance of these 
constants generally increases with frequency; some become significant 

G 

IDEAL 
TRIODE 

Fig. 1.12. Effect of finite dimensions on a triode. 

at audio frequencies; others are not important except at ultrahigh 
frequencies. Any accurate representation of an electronic device must 
include these constants. 

Strictly speaking, the lead inductances and interelectrode capaci
tances are distributed elements. However, even at ultrahigh frequencies 

G ~f---o-0-l-rP ________ __,,n1Lpr--c P 

Cgk -=- Eo +JL Ecc Cpk 

Klr-----------------------nK 
Fig. 1.13. Equivalent plate circuit of a vacuum triode including inter-

electrode capacitances and lead inductances. 

the lead and electrode dimensions are small compared with the wave
lengths involved so that these constants can be considered to be lumped 
elements. With this in mind, the representation of a triode shown in 
figure (1.12) is readily understood. Similar figures can be drawn for 
diodes, pentodes, varistors, and transistors. 
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The ideal triode shown in figure (1.12) is simply a triode that <ioes not 
have interelectrode capacitance or lead inductance. This ideal triode 
has an equivalent plate circuit of the form shown in figure ( 1.10). 
Consolidating this equivalent circuit with figure (1.12) yields the 
rather awesome circuit of figure (1.13). The complication is 
obvious. 

The effects of interelectrode capacitance are treated in considerable 
detail in chapter 3. Lead inductance effects are generally neglected 
except at high frequencies. 

1.8. Modes of Operation 

The treatment of electronic circuits presented in this book has two 
major subdivisions: 

( 1) Class A operation, covered in part II. 
(2) Operation in the switching mode, covered in part III. 

This subdivision of material is based upon the behavior of the electronic 
device in the circuit as represented by its equivalent circuit. Every 
electronic component has a switch in its equivalent circuit. This 
switch may do either of two significantly different things, depending 
upon the nature of the signal voltages and currents. That is, the switch 
in the equivalent circuit: (1) may remain in one position at all times, 
or (2) may move back and forth between the various contacts. If the 
switch is always fixed in the position corresponding to normal linear 
operation, the device is said to operate in Class A. If the switch moves 
back and forth between contacts, operation in the switching mode is 
obtained. 

When a vacuum tube operates in the switching mode, the complete 
equivalent circuits previously derived must be used. However, a con
siderable simplification is possible when operation is Class A. In the 
case of vacuum tubes the switch is then always in position 2 in the 
circuits of figure ( 1.10). As a result, the equivalent circuit reduces to 
that shown in figure (1.14). Moreover, in class A operation it is often 
necessary to consider only the variational or signal components of 
current and voltage. The principle of superposition allows us to replace 
all d-c terms by their internal impedances. The equivalent circuits sim
plify to those shown in figure (1.14b). More complete equivalent 
circuits including the interelectrode capacitances are given in figure 
(1.14c). These equivalent circuits will be used to represent vacuum 
tubes throughout part II of the book. The complete equivalent circuits 
including the switches and d-c terms are used in part III. 
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Fig. 1.14. Equivalent circuits for Class A operation of vacuum tubes, 
except diodes. 

1.9. Transistor Equivalent Circuits 

17 

Sample static characteristics of a point contact transistor are given . 
in figure (1.15). Similar characteristics are obtained for junction tran
sistors; they differ mainly in the slope resistance values. 

The idealization of the transistor characteristics is not an immediately 
obvious procedure; careful thought is required. This is especially true 
because the characteristics given in figure (1.15) are more nonlinear 
than the usual case. The choice was deliberately made so that we 
could have the experience of working out a relatively difficult equivalent 
circuit. 

The essential key to the choice of regions required for the linear 
approximation is found in the forward characteristics. You can see 
that there are four fairly distinct regions of operation for any given 
value of collector current. These regions are defined as follows. 
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(1) Region 1. The emitter current 16 is negative and the collector 
voltage Ve is virtually independent of the emitter current. 

(2) Region 2. Transition between regions 1 and 3. 
(3) Region 3. The emitter is operating in the forward, positive 

current direction and the collector voltage is nearly a linear function of 
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Fig. 1.15. Sample static characteristics of a point contact transistor. 
(From R. M. Ryder and R. J. Kircher, "Some Circuit Aspects of the 
Transistor," Bell System Tech. J., vol. 28, pp. 367-401, July, 1949.) 

the emitter current. This is the usual linear region of operation of a 
transistor. 

(4) Region 4. The collector voltage is practically independent of the 
emitter current, but it does depend somewhat upon the collector 
current. 

The regions of operation have been defined, so the characteristics 
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can now be idealized. Draw the dividing lines between the four regions 
on the forward characteristics as shown in figure (1.16). Now take 
data from these lines so that similar lines can be plotted on each of the 
other three sets of characteristic curves. The final result will appear as 
shown in figure (1.16). 
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Fig. 1.16. One way of idealizing the static characteristics of transistors. 

In most cases region 2 is so small that it need not be considered. In 
other words, region 3 will usually be combined with region 2 because the 
transition region is usually smaller and more abrupt than it appears here. 

With the idealized characteristics completed, as shown in figure 
( 1.16), it is a simple matter to construct the equivalent circuit. To avoid 
confusion in symbolism, the following terminology is used for the 
slope resistances and intercept voltages in the various regions. 
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(1) Region 1, superscript 0 
(2) Region 2, superscript ' 
(3) Region 3, no superscript 
( 4) Region 4, superscript ". 

Subscripts are used with the intercept voltages as follows: 
(1) Input characteristics, subscript 1 
(2) Output characteristics, subscript 2. 

[Sec. 1.9 

Consider the idealized input characteristics. There are four regions 
of operation, so that a four-position selector switch is required. Each 
equivalent circuit corresponding to each switch position will consist of 
a series combination of slope resistance, intercept voltage, and a 
variable voltage source of a magnitude determined by the collector 
current. Designate this variable component of voltage in any switch 
position E(l) and make it positive in the conventional sense. Therefore, 
for any region of operation you can see that 

E = (~Ve) ~I 
aJ ~le Vcconst c 

(1.8) 

However, because the idealized characteristics are parallel straight 
lines in any one region, incremental and differential quantities have 
the same meaning, so that 

(oVe) 
E(l) = olc ~le= '12 ~IC (1.9) 

The slope resistance can be superscripted to specify the region of 
operation. 

Now ~le is measured from the le= 0 characteristic as the reference. 
Therefore 

(1.10) 

and E(l) = Icr12 (1.11) 
Appropriate superscripts are now used to make this specification apply 
to all regions of operation. 

The results of this derivation are shown by the equivalent circuit 
given in figure (1.17). This circuit is a simplification because common 
terms were combined wherever possible. You can work it out and see 
that it comes out this way. 

An exactly similar analysis can be made for the output character
istics and the result will appear as shown in figure (1.17). This is the 
complete equivalent circuit for the transistor. As noted previously, 
region 2 can frequently be omitted entirely. 
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Generally speaking, the emitter and collector currents will consist of 

two terms: 
(1) A d-c or bias term that is time invariant. 
(2) A signal or variational component. 

Therefore 
fe = ie + Jee 

Jc= ic - fee 

(1.12) 

(1.13) 

You can see that the generators in the equivalent circuit of figure 

8 

Fig. 1.17. Complete transistor equivalent circuit. E; and £,. are virtually 
zero in most cases; generally le= ie+Iee and lc=ic-lcc-

( 1.17) will consist of two components: 

lcr12 = icr12 - lccr12 (1.14) 

(1.15) 

Unless a very sophisticated analysis is desired, it is usually possible 
to neglect the intercept voltages, E1, E~, E2, and E;. 

When a transistor is operated in class A, both switches are normally 
in position 3. Operation in the switching mode may cause the switch 
to move over all switch positions or just from region I through 3 and 
back again. This depends upon the function being fulfilled by the 
transistor. 

I. 10. Transistor Equivalent for Class A Operation 

A transistor, like a vacuum tube, has two main modes of operation. 
The class A equivalent circuit is easily deduced from the general 
equivalent circuit of figure (1.17) by applying the same simplification 



22 Principles of Equivalent Circuits [Sec. 1.10 

process as that followed for vacuum tubes in section ( 1.8). The result 
is shown in figure (1.18a). This circuit is useful, but it has been found2 

more convenient to convert to the equivalent tee section shown in 
figure (1.18b). The resistances in this circuit are defined as follows: 

re = emitter resistance 

re = collector resistance 

r b = base resistance 

rm = mutual resistance 

Before the equivalent tee circuit can be used, equations expressing the 
tee resistances in terms of the slope resistances r 11, r 22 , r 12, and r 21 are 
required. 

E C r~ +-r t E C ,. 
r22 e r~ r. re +--rll ,. le v. Ve v, rb 

l + + 1 i ier12 - i.r21 
B 

(a) DIRECT EQUIVALENT CIRCUIT (b) TEE EQUIVALENT CIRCUIT 

Fig. 1.18. Transistor equivalent circuits for Class A operation. 

The required equivalence formulas for the two circuits of figure (1.18) 
are easily established by writing the network equations. Thus for 
figure (1.18a), 

Ve= fern+ lcr12 

Ve= lcr22 + /er21 

Similarly for figure (1.18b), 

Ve= le(re + rb) + lcrb 

Ve= lc(rc + rb) + le(rb + rm) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

From a term-by-term comparison of these two pairs of equations it 
is clear that 

ru =re+ rb 

r22 =re+ rb 

r12 = Tb 

r21 =Tb+ rm 

(1.20) 

(1.21) 

( 1.22) 

(1.23) 

2 R. M. Ryder and R. J. Kircher, "Some Circuit Aspects of the Transistor," 
Bell System Tech. J., vol. 28, pp. 367-401, July, 1949; and R. L. Wallace, Jr. 
and W. J. Pietenpol, "Some Circuit Applications of n-p-n Transistors," Bell System 
Tech. J., vol. 30, pp. 530-563, July, 1951. 
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These four equations can be rewritten in the reverse form as 

rb = r12 (1.24) 

re= rn - r12 (1.25) 

re= r22 - r12 (1.26) 

rm= r21 - r12 (1.27) 

Another useful relationship can be derived in terms of these resist
ances. The current amplification factor (X of a transistor is defined as 

olcl 
ex = 0 I e Ve = const 

(1.28) 

This can be rewritten as 

(1.29) 

(1.30) 

1.11. Summary 
By using the principle of linear approximation, electronic devices can 

be represented by approximately equivalent circuits composed of simple 
linear resistances, voltage and current sources, and switches. When the 
occasion demands, interelectrode capacitances and lead inductances 
can be added to the simple equivalent circuits. 

There are only two fundamentally different modes of operating 
electronic devices and these were defined as class A operation and the 
switching mode. 

As a result of the simple equivalent representation of electronic 
devices, the problem of electronic circuit theory is largely reduced to 
ordinary electric circuit theory. 

Although the principle of linear approximation has been applied 
only to current-voltage characteristics, it can be applied to any physi
cally realizable, nonlinear element such as ferromagnetic inductors and 
ferroelectric capacitors, d-c motors, photocells of all types, strain 
gages, and so on. 
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PROBLEMS 
1.1. Derive the equivalent circuit for the linear region of operation of a 

pentode using current intercepts and the definition of the mutual trans
conductance gm• 
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Fig. 1.19. 

1.2. The current-voltage characteristics of a vacuum tube photoemissive 
cell are given in figure (1.19a). Derive an equivalent circuit from these 
characteristics. Use the current source equivalent in the linear region and 
define a parameter as follows: 

where 
ib = plate current 
L = lumens 

1.3. Repeat problem (1.2) for the gas-filled photoemissive cell having the 
static characteristics shown in figure (1.19b). 
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1.4. Construct the equivalent circuit of the thermistor having the current
voltage characteristic shown in figure (1.19c). 

1.5. Derive equivalent circuits for the three transistor characteristics given 
in figure (17.31). 

1.6. The external characteristics of a particular separately excited d-c 
generator are shown in figure (1.19d). The current is shown as negative 
because it flows out of the generator rather than into it, which is the positive 
direction assumed in the examples in this chapter. The generated and field 
voltages are related by 

Derive an equivalent circuit for the generator. 



Chapter 2 

PRINCIPLES OF CIRCUIT THEORY 

The first chapter of this book had one main objective, the develop
ment of approximate equivalent circuits composed of linear circuit 
elements to represent the various electronic devices such as gas and 
vacuum tubes and transistors. Once this has been achieved, electronic 
circuits can be treated with the powerful tools of linear circuit analysis 
and some useful methods and results can be illustrated. 

This chapter presents a brief summary of some of the more general 
aspects of linear circuit analysis. Regardless of your background, you 
should be familiar with this material, for it is used repeatedly in the 
remainder of the book. 

2.1. Responses 
One of the basic techniques characteristic of the scientific method is 

the study .of the responses of physical systems to known applied stimuli. 
Whether the physical system is a human, a radio, white mice, or an 
electronic computer does not alter this basic approach. A known 
stimulus is applied and the system response is studied. The technique 
can be used experimentally or in theoretical analysis. Such studies are 
useful in many ways. For example: 

(1) If the physical system operates in an unknown manner or 
according to unknown principles, the ratio of the stimulus to the 
response may be used as an aid in deducing the nature of the system. 

(2) The relative merits of various systems designed to provide the 
same service can be compared by applying a standard stimulus and 
evaluating the responses relative to a proposed ideal. 

(3) By using standardized stimuli, past experience with various 
systems can be easily tabulated and filed away for future reference, 
study, and correlation. 

In circuit theory this basic problem is indicated symbolically as 
shown in figure (2.1 ). The stimulus is usually called the excitation 
function, and the response is appropriately called the response function. 
The ratio of the response function to the excitation function is called 

26 
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the system transfer function. That is 

(
transfer) ( response function) 
function - excitation function 

(2.1) 

This can be rewritten in an alternative form as 

(
respo~se) = (excit~tion) (trans:er ) 
funct10n function function <2·

2
) 

Finally, the reciprocal of the transfer function is called the character
istic function, so that 

(
response) ( excitation function ) 
function - characteristic function 

PUT IN 
0 

EXCIT 
R 
ATIO N 

OUTPUT 
NETWORK OR 

RESPONSE 

Fig. 2.1. General network terminology. 

(2.3) 

It will be shown later that the characteristic and transfer functions are 
determined solely by the properties of the system. 

The electrical engineering curriculum in circuit theory is based upon 
equation (2.3). The particular course presented depends upon the 
nature of the excitation function, as follows: 

(1) When the excitation function is time invariant, the course is 
called direct current (d-c) circuit theory. 

(2) When the excitation function is a single frequency, constant 
amplitude sinusoid, the course is called alternating current (a-c) 
circuit theory. 

(3) If the excitation function is neither of the preceding two types, 
the course is usually called transient analysis. 

All three of these subdivisions of circuit theory must be used in the 
analysis of electronic circuits and we are naturally prompted to ask if 
there is not some general method of formulating circuits, irrespective 
of the excitation, so that the excitation will be relegated to a secondary 
role. Fortunately, such a method does exist and it is no more difficult 
than the usual a-c and d-c methods. It makes use of the Laplace 
transformation and it is treated briefly in this chapter after a short 
review of some important aspects of circuit theory. 
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2.2. Elements of Electric Circuits 
Electric circuits and networks are connected systems of active 

elements, such as voltage and current sources, and the passive elements 
of resistance, inductance, and capacitance. The active elements supply 
energy to the circuit. The passive elements of capacitance and induc
tance act as reservoirs of electrostatic and magnetic energy, respectively, 
while resistance causes an irreversible transformation of electric energy 
into heat. 

~ ~ r-4--b 
l+-eL----.1 l._eR-.I l.--ec ~I 
el• L ~ 

dt 
i-.!..tedt 

L ~ L 

Fig. 2.2. Passive electric circuit elements. 

The circuit symbols of the three passive elements are given in figure 
(2.2) together with the fundamental equations that express their 
behavior characteristics. 

When a number of circuit elements are combined into a circuit or 
network, the behavior of the system can be evaluated by the basic laws 
of electric circuit theory. These are called Kirchhoff's laws and are 
as follows: 

(I) Kirchhoff loop law: 
Around any closed path, called a loop, in a network, the sum 
of the instantaneous voltage drops in a specified direction is zero. 
That is, around a closed path, 

_LeK(t) = 0 
(2) Kirchhoff node law: 

At a junction, called a node, of two or more circuit elements, the 
sum of the currents into ( or away from) the node is zero. That 
is, at a node, 

LiK(t) = 0 

The particular law used depends upon the nature of the problem at 
hand. The fallowing examples should make this clear. 

Consider the series RLC circuit shown in figure (2.3a). There are 
three pairs of independent nodes in this circuit, but only a single loop. 
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Thus three equations would be required to formulate the circuit on the 
node basis, while only one equation is needed on the loop basis. 
Clearly, loop formulation would be the best approach. The loop 
equation for this circuit is 

or 

NODE I 

l(t) 

di 1 
L dt + Ri + Cf i dt - V(t) = 0 

di 1 
L dt + Ri + C J i dt = V(t) 

N()DE2 NOOE 3 

REFERENCE NODE 

(a) SERIES RLC CIRCUIT 

NODE I 

A L CC?) 

REFER ENCE NODE 

(bl PARALLEL RLC CIRCUIT 

Fig. 2.3. Typical electric circuits. 

(2.4) 

The parallel RLC circuit of figure (2.3b) has only a single pair of 
independent nodes, but there are three geometric loops. Therefore the 
circuit is best adapted to node formulation and the circuit equation is 

de 1 
C dt + Ge + L f e dt - l(t) = 0 

or 
de 1 

C -d + Ge + - f e dt = l(t) 
t L 

(2.5) 

It should be noted that there is a one-to-one correspondence between 
the mathematical forms of equations (2.4) and (2.5). The circuits are 
said to be duals when their mathematical formulations are so related. 
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Most circuits cannot be formulated this easily and it is often necessary 
to use a combination ofloop and node analysis. In other cases, network 
theorems can be used to simplify the network into purely series or 
parallel forms. 

2.3. Some Useful Network Theorems 

Several network theorems are stated here without proof because it is 
assumed that the reader is familiar with their validation through other 
books. Proofs may be found elsewhere.1 

One of the great advantages resulting from the restriction of interest 
to linear circuits is that the principle of superposition can be used. As 
applied to electric circuits, this principle states that if a network con
tains several active elements, the complete network solution can be 
obtained with equal validity in either of two ways: 

(1) The complete solution can be obtained by writing the Kirchhoff 
equations with all active sources considered in the formulation. 

(2) A separate solution can be obtained for each active element con
sidered alone, with all other active elements replaced by their internal 
impedances. The sum of all such solutions is the same as the complete 
solution obtained in (1). 

This principle is immensely helpful for it is quite common to find a 
network with d-c sources and a-c sources of different frequency. By 
superposition, a separate solution independent of other solutions can 
be obtained for each generator. It was the use of this principle that 
permitted the development of the simplified class A equivalent circuits 
of vacuum tubes and transistors in which all active d-c elements were 
replaced by their internal impedances and only variational quantities 
are considered. 

Thevenin' s theorem is frequently used in this text. According to this 
theorem, any two-terminal network can be replaced by an ideal voltage 
source (where ideal means zero internal impedance) in series with an 
impedance. The magnitude of the voltage generated by this source is 
equal to the open-circuit voltage measured across the two terminals of 
the network, and the series impedance is the impedance looking into 
the network with all active elements replaced by their internal im
pedances. This theorem is illustrated in figure (2.4a). 

A corollary to this theorem is Norton's theorem, which is illustrated 
in figure (2.4b ). In this case the two-terminal network is replaced by an 

1 See for example, Charles R. Vail, Circuits in Electrical Engineering, 
Prentice-Hall, Inc., New York, 1950. 
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equivalent circuit composed of an ideal current source (where ideal 
means infinite internal impedance) of generated current equal to the 
short-circuit current through the terminals. It is placed in shunt with 
an impedance Zim equal to the impedance defined in the statement of 
Thevenin's theorem. 

The compensation theorem can be used to advantage in many cases. 
According to this theorem, any impedance in a network can be replaced 
by an ideal generator with a terminal voltage equal to the voltage drop 
across the impedance at every instant. 

ANY 
LI NEAR 

BILATERAL 
CIRCUIT 

t 
E oc 

• 

~ 
L_ 

(a) THEVENIN'S THEOREM 

ANY 
LINEAR - ~, 

BILATERAL Zin 

CIR CU IT 

(b) NORTON'S THEOREM 

Fig. 2.4. Theorems on two terminal networks. 

2.4. A Generalized Concept of Frequency 
The fundamental equations expressing the behavior of ordinary 

linear circuit elements were given in figure (2.2) and are reproduced in 
equations (2.6). 

eR=Ri (a) 

di 
eL=L-

dt 
(b) 

(2.6) 

1 
e0 = c;fi dt (c) 

If the current flowing through each of these circuit elements is sinu
soidally oscillating with constant amplitude at an angular velocity w, 
it is an easy matter to state this fact mathematically with the tools of 
a-c circuit theory. That is, 

i = Jeiwt (2.7) 
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where I= amplitude of the oscillating current; w = 21rf = angular 
velocity of the oscillation; f = frequency of the oscillation. Conse
quently, the voltage drops across each of the three types of circuit 
elements can be obtained by substituting this equation for the current 
into the voltage equations given in (2.6). 

jwt 
eR = Rle 

. Ll iwt eL =JW e 

1 jwt 
e0 =-le 

jwC 

(a) ! 
(b) (2.8) 

(c) 

Note that the exponential function eiwt, which symbolized that the 
current was a sinusoidal function of time, retains its form through 
differentiation and integration, and every voltage equation contains 
such a factor. Because this eiwt term is just an angle function of the 
form 

eiwt = cos wt + j sin wt = I /wt (2.9) 

then it can be considered as a unit vector or phasor rotating at an 
angular velocity w. The phasor diagrams of a-c theory were derived 
from this viewpoint because all three voltages and the current contain 
this factor. Thus a phasor diagram is a stroboscopic picture, so to 
speak, of the relative positions existing between the various phasors as 
they all rotate with constant speed w. In the case of d-c circuits, w is 
zero and there is no rotation. 

Now suppose that the current is not the simple sinusoid specified in 
equation (2. 7), but is multiplied by an additional factor as shown in 
equation (2.10). 

(2.10) 

In this case the original constant amplitude sinusoidal current Jei"'t 

has been multiplied by an exponential factor in which a is a real 
number. Because this additional factor affects only the magnitude of 
the current, the equation could be rewritten 

i = (/e<1t)eiwt 

If a is positive the exponential term eat continuously increases with 
time and the amplitude of the current also increases. On the other 
hand, if a is negative, the amplitude of the current continuously 
decreases with increasing time. Thus, depending upon the sign attached 
to a, for a given w, equation (2.10) can represent either a growing or a 
decaying sinusoidal oscillation. If w is zero~ we then have a rising or 
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decaying exponential current. If <1 is also zero, the current is time 
invariant or pure direct current. 

Equation (2.10) can be rearranged slightly as 
i = ff,(a+jw)t 

A new term can now be defined as follows: 

s = <1 + jw = complex frequency 

Hence, the equation for the current reduces to 

i = le8t 

and the corresponding voltage equations are 

eR = Rle8
t 

eL = sLle8
t 

1 st 
e0 =-le 

sC 

(2.11) 

(2.12) 

(2.13) 

(a) l 
(b) (2.14) 

(c) 

As before, it is observed that the exponential factors are common to all 
currents and voltages. 

This concept of a complex frequency, s = a+ jw, involving both 
real and imaginary parts is not necessarily a mathematical fiction. 
As has been shown, a term involving a complex frequency exponential 
term can signify direct current, growing or decaying direct current, 
steady state alternating current, or growing or decaying sinusoids. 

In the ordinary a-c case where s = 0 + jw, the impedance elements 
were found to be 

R = resistance 

jwL = inductive impedance 

I . . . d 
-:--C = capacitive 1mpe ance 
)W 

From equation (2.14) you can see that the impedance elements in the 
complex frequency case are 

R = resistance 

sL = inductive impedance 

1 . . . d - = capacitive 1mpe ance 
sC 

There is no difference in form in the two cases. The only difference 
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is that the jw has been replaced by the complex frequency s. Thus, 
to evaluate impedances in terms of this generalized frequency, proceed 
according to normal a-c theory methods, merely replacing jw by s. 

z_.. 

For example, the input impedance 
of the circuit of figure (2.5) as a 
function of complex frequency is 

Z(s) = (R + sL) (l/sC) 
R + sL + 1/sC 

(2.15) 

Fig. 2.5. Typical circuit. Alternatively,in terms of conventional 
a-c frequency, 

(
. ) (R + jwL) (IfjwC) 

ZJW =------
R + jwL + 1/jwC 

(2.16) 

It will be shown later that this concept of complex frequency is closely 
related to the variable in the Laplace transformation. 

2.5. Simple Transformations 
The Laplace transformation,2 which is introduced in the next section, 

is a mathematical technique that transforms certain kinds of functions 
of a real variable into other functions of a complex variable. As a 
result of this functional transformation, a number of useful mathe
maticaJ processes essential to circuit theory are simplified. 

The use of transformations is not an unusual experience for electrical 
engineers. Following an analogy by Gardner and Barnes, 2 the process 
of taking logarithms involves the transformation of a number into 
some other number. As a result of the transformation, certain mathe
matical operations are simplified. 

Another simple transformation is used in a-c circuit theory and was 
reviewed in the preceding section. In this case a sinusoidally oscillating 
current or voltage of fixed amplitude and frequency is represented by a 
rotating vector or phasor. This transformation permits an enormous 
simplification in the purely mechanical processes of computing circuit 
behavior. 

In all these cases an initial uneasiness is often felt by the user, and 
the feeling persists until familiarity with the process is gained. The 
Laplace transformation is not a difficult tool to use. On the contrary, 
it is simple, direct, and immensely more powerful than more elementary 
methods. 

2 Murray F. Gardner and John L. Barnes, Transients in Linear Systems, 
John Wiley & Sons, Inc., New York, vol. 1, 1942. 
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2.6. The Laplace Transformation 
It was previously stated that the Laplace transformation is a 

functional transformation, transforming certain classes of functions of a 
real variable into other functions of a complex variable. Specifically, in 
the case of many physical problems, 
a function of the real variable time t 
is transformed into a function of 
the complex frequency s = a+ jw. 
The transformation process is in
dicated symbolically: 

~ ---------1 ___ -------
t =O t--

£[/(t)] = F(s) Fig. 2.6. Unit step function. 

This states that the Laplace transformation of f(t) is equal to F(s), 
where £' = Laplace transformation of; f(t) = function of the real 
variable t; F(s) = function of the complex variable s. 

The Laplace transformation is defined by the following equation, 
which is given without proof: 

£[/(t)] = F(s) = f.00

e-8 'l"(t) dt (2.17) 

While the integral may appear a little frightening at first, it is not too 
difficult to evaluate in most cases. 

For example, suppose that the function of the real variable is given 
by the following expression: 

f (t) = 1 for t > o 
f(t) = 0 for t < 0 

The form of this function is shown in figure (2.6). It is called a unit 
step function. The Laplace transform of this particular function is 
obtained by substituting this expression for f(t) into equation (2.17) 
for the transform. In this case 

F(s) = roo e-st(l) dt = - e-st loo - 1 
Jo s o s 

Therefore, 

£'[1] = ! 
s 

As another example, assume that 

J(t) = sin wt for t > 0 

f (t) = 0 for t < 0 

(2.18) 



TABLE 1 

A TABLE OF FUNCTION-TRANSFORM PAIRS 

Pair F(s) f(t) 

1 1/s 1 

(l) 

2 -- sin wt 
s• + w2 

3 
s --

sa + w2 
cos wt 

4 
,, 

sinh yt s2 _ y2 

5 
s 

cosh yt --s2 _ yll 

6 1/s2 t 

7 1/sn 
tn-1 

---
(n - 1)! 

8 
1 -- e±Yt 

s =f,, 

9 
p 

e-a.t sin Pt 
(s + a;),2 + pa 

10 
s + (X 

e-a.t cos Pt 
(s + a;)a + P2 

11 
1 --- te-a.t 

(s + a;)2 

12 
1 tn-l 

--- ---e-a.t 
(s + a;)n (n - 1)! 

13 
1 1 __ (e-a.t _ e-Yt) 

(s - a;) (s - y) a;-y 

14 
1 l 

2 (1 - cos a;t) 
s(s2 + a;2) (X 

36 
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Then the Laplace transform of this function is 

F(s) = J. 00 

e -st sin wt dt 

= -e-st (s sin wt+ w cos wt) 
00 

s2 + w2 o 

Substitute limits and the result is 

£[sin wt]= 
2 

w 
2 s +w 

37 

(2.19) 

The original function f(t), together with its transform F(s), form a 
function-transform pair. It is clear that after a few transformations 
have been worked out, using the procedure illustrated, a table of 
function-transform pairs can be constructed. Table 1 is representative 
of this type of data summation. Extensive tables of function-transform 
pairs can be found elsewhere.3 Once such tables are available, only 
unusual functions need to be transformed; most conventional types 
will appear in the table. 

2.7. Operation-Transform Pairs 
The great advantage of the Laplace transformation is not just the 

ability to transform functions, but to simplify mathematical operations. 
It converts problems in linear integral, differential, and difference 
equations into ordinary algebraic problems. The principle involved 
should be clear from the following derivations. 

Assume an arbitrary function of a real variable, call it f (t). It is 
assumed that it can be transformed so that 

F(s) = £[/(t)] 

or F(s) = J.00 

e-8iJ(t) dt (2.20) 

This integral is the product of two functions of time, and the evaluation 
must be performed by integrating by parts, using the general form 

f u dv = uv - f v du (2.21) 

So from equation (2.20), let 
u = e-st so that du= -se-st dt 

dv = f(t) dt so that v = ff(t) dt 

3 See for example, ibid., pp. 338-356; also Transformation Calculus and 
Electrical Transients, S. L. Goldman, Prentice-Hall, Inc., New York, 1946, 
pp. 416-423. 
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Substitution of these factors into equation (2.21) yields 

F(s) = [ c-sJ f(t) dt]: + s I. 00 

c-st [f f(t) dt] dt (2.22) 

Examination of the last term in this equation shows that it can be 
written 

s I. 00 

s-st [ff(t) dt] dt = s£[ff(t) dt] 

Moreover, substitution of limits into the first term in equation (2.22) 
reduces it to the following form: 

[,-••ff ( t) dt]: = (0) f °rc1) dt - f "rc1) dt 
where r=f(t) dt = value of the integral at t = 0. This is called an 

initial condition. The first term in the foregoing equation must vanish, 
otherwise f(t) is nontransformable. In other words, s-st must converge 
to zero more rapidly than ff(t) dt diverges as t approaches infinity. 
As a result of this restriction, the product term is zero. 

or 

The complete form of equation (2.22) therefore reduces to 

F(s) = - r=f(t) dt + s£[f J(t) dt] 

ft=f(t) dt 

£[f J(t) dt] = F(s) + ---
s s 

(2.23) 

This equation states that the Laplace transformation of the integral of 
the function/(t) is equal to the Laplace transform F(s) of the function 
f(t), divided by s, plus a term accounting for the initial condition. 
Thus the process of integrating with respect to t has been simplified to 
dividing bys, plus inserting an appropriate initial condition factor. 

A simplified method of differentiating can be derived in a similar 
manner. As before, 

F(s) = f. 00 

c-8 t_{(t) dt 

This can be integrated by parts, using the following identification of 
terms: 

u = f(t) so that du = df(t) dt 
dt 

dv = c -S
t dt so that 

c-st 
V=-

S 
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Proceeding as in the previous derivation yields 

£ [df(t)] 

F(s) =f(O) + dt 
s s 

or [
df(t)] £ dt = sF(s) - f (0) (2.24) 

In other words, the Laplace transformation of the derivative of f(t) is 
equal to s times the transform off (t) minus the initial value off (t). 
Thus differentiation with respect to t has been replaced by multi
plication by s, with the inclusion of an appropriate initial condition 
term. 

TABLE 2 

OPERATION-TRANSFORM PAIRS 

Function of real variable Laplace transform 

f(t) F(s) 

f f(t) dt 
r=Of(t) dt 

F(s) . 
---+------

s s 

~f(t) 
sF(s) - f(0) 

dt 

~2.[(t) df(0) 
s2F(s) - sf (0) - ~-

dt 2 dt 

Where the initial condition terms are specified as 
follows: 

r-o I f(t) dt = value of f(t) dt at t = 0 

f (0) = value off (t) at t = 0 

df(0) df(t) 
-- --- = value of - at t = 0 

dt dt 

The transform of the second derivative can be evaluated in the same 
way and the results, together with those just derived are summarized in 
table 2, which is called a table of operation-transform pairs. 
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2.8. The Inverse Laplace Transformation 
The process of taking the inverse Laplace transformation is simply 

the reversal of the process just described for finding the transform. 
That is, the operation involves changing the transform F(s) back into 
the original function f (t). This process is indicated symbolically: 

.E-1 [F(s)] = f(t) 

where the .E-1 denotes the inverse Laplace transformation. 
Direct analytical methods exist for evaluating the inverse transform, 4 

but the operation depends upon a more complete knowledge of complex 
variable theory than can be conveniently assumed here. Actually, a 
method has already been established for finding the inverse transform 
of a function F(s). Reference to the table of function-transform pairs 
shows that if a given transform F(s) appears in the table, then the 
corresponding inverse transform/(!) is also in the table. For example, 
according to pair number 6 in this table, 

According to pair number 5, 

.,e-1[ s ] _ h 
2 2 

- cos wt 
s -w 

Many other examples can be worked out in the same way. 
It is clear that it would be impractical to attempt to construct a table 

of function-transform pairs that would include all possible transforms 
and their corresponding inverse transforms. However, if the more 
complicated forms of F(s) can be factored or otherwise separated into 
simpler functions that are in the table, the inverse transformation can 
be accomplished. In the succeeding chapters of this book, great 
interest centers about the determination of inverse transforms. Thus, 
methods of simplifying complicated functions are of importance. The 
next article outlines one useful method for making the necessary 
simplification. 

4 See for example, Goldman, op. cit., pp. 214-218; also Valley and Wallman, 
Vacuum Tube Amplifiers, McGraw-Hill Book Co., Inc., New York, vol. 18, Radiation 
Laboratory Series, 1948, pp. 31-39. 



Sec. 2.9] Principles of Circuit Theory 41 
2.9. Partial Fraction Expansion 

The transform response functions usually met in practice are of the 
general form of a rational fraction of two polynomials. A typical case 
with the polynomials factored can be written 

F,(s) = (s + a1) (s + o2) 

(s + bi) (s + b2) (s + b3) <2·
25

) 
Note that the roots of both polynomials are all different, or distinct. 
It has been shown in a number of algebra books5 that a fraction of 
this type can be expanded into a series of partial fractions. Equation 
(2.25) can be written in partial fraction form as 

A1 A2 Aa 
F(s) = --+ --+ -- (2.26) 

s + bi s + b2 s + b3 

The values of the coefficients, A1, A2, and A3, are unknown. All we 
have to do now is solve for the coefficients of the partial fractions. 

The solutions for Ai, A2, and A3 are easily obtained. For example, 
to find A1, multiply equations (2.25) and (2.26) by (s + bi) to obtain 

(s + ai) (s + a2) 

(s + bi)F(s) = (s + bi) (s + b1) (s + b2) (s + ba) 

A 
s + bi s + bi s + bi 

= i--+A2--+Aa--
s + bi s + b2 s + b3 

Cancel the common (s + bi) factor where it occurs in both of these 
equations, so that 

(s + bi)F(s) = (s + ai) (s + a2) 
(s + b2) (s + b3) 

_ A A (s + b1) A (s + bi) 
- i + 2 (s + b2) + 3 (s + b

3
) 

Now lets= -bi. This makes all but two of the terms zero, so that 

Ai= (-bi+ aiH-bi + 02) 
(-bi+ b2) (-bi+ b3) 

Hence, Ai has been determined in terms of the roots of the two 
polynomials. 

Then A2 and A3 are calculated in the same way. To find A2, multiply 
equations (2.25) and (2.26) through by (s + b2) and then lets= -b2. 
Do the same thing for A3 withs= -b3 • 

5 See for example, R. S. Burington and C. C. Torrance, Higher Mathematics, 
McGraw-Hill Book Co., Inc., New York, 1939, p. 184. 
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The process can be simply stated in mathematical terms. Assume 
the factors of the function in the denominator are all distinct. If this 
is so, then 

(2.27) 

where An = coefficient of the partial fraction involving the (s + s11) 

factor of the denominator of F(s). 
A simple example should illustrate the use of equation (2.27). 

Assume that 

(s + 1) 
F(s) = (s + 2) (s + 3) 

Expand this into the partial fraction form as 

A1 A2 
F(s) = s + 2 + s + 3 

Now use equation (2.27) to find A 1• 

A1 = (s + 2)F(s) I = (s + 2) (s + 1) I 
8=-2 (s + 2) (s + 3) s=-2 

So (s + 1) I ( -2 + 1) 
Ai= (s + 3) 8=-2 = (-2 + 3) = -l 

Then, in the same way, 

A2 = (s + 3)F(s) I = (s + 3) (s + 1) I 
8=-3 (s+2)(s+3) 8=-3 

_ (s + 1) I _ (-3 + 1) _ 
2 

-(s+2) 8=-3 -(-3+2)-

Both coefficients are now known. 
The procedure just outlined works as well for complex factors as it 

does for real ones. For example, let 
l 

s s 
F(s) = 2 2 

s + w (s + jw) (s - jw) 

Expand the function into its partial fraction form. 

F(s) = A1 + A2 
(s + jw) (s - jw) 

Now use equation (2.27) to find A 1. 

A1 = (s + jw)F(s) I = _s ___ , = j°! = ~ 
8= -jw S - JW 8= -jw -2JW 2 

In the same way you can show that A2 = 1/2. 
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Although we have not proved it, it is always true that if there are 

complex conjugates in the factors of the polynomial in the denominator 
of F(s), the coefficients of the partial fractions containing these factors 
will also be complex conjugates. 

A second case exists when a repeated factor is present in the denomi
nator of F(s). That is, if the function has a factor of order 2 or more, 
a different method must be used to find the coefficients in the partial 
fraction expansion. For example, assume that 

s + 1 
F(s) = s(s + 2)2 

The (s + 2) factor is repeated twice. This is expanded into partial 
fractions as 

A1 A 2 B 
F(s) = (s + 2) + (s + 2)2 + -; 

Then B, the coefficient of the nonrepeated factor, is evaluated by using 
equation (2.27) as in the preceding examples. However, if this technique 
is applied to the repeated factor, indeterminate forms such as 0/0 will 
result. 

To evaluate the coefficients of the terms involving the repeated 
factor, first multiply the function F(s) through by the repeated factor. 
In the example, this would require that F(s) be multiplied by (s + 2)2• 

This results in a new function that we shall call P(s). That is, 
P(s) = (s + 2)2F(s) 

in this example. The coefficients of terms involving the repeated factor 
are then computed from the following formula, 6 which is stated without 
proof: 

1 dr I 
An-r = -, . d TP(s) 

r. s s=-a 
(2.28) 

where -a= value of the repeated root (-2 in example); r = 0, 1, 2, 
3, ... (n - 1). 

The application of this formula to the assumed problem will illustrate 
the technique of use. A second-order factor is present, so that n = 2 
and r = 0, r = I. Hence, to compute A2, let r = 0, n = 2, and a= 2 
in formula (2.28). Thus, 

A2 o = A2 = _!_ . ~ (s + 1) = (s + 1) = ! 
- O! ds0 s 8=-2 s 8=-2 2 

6 Ruel V. Churchill, Modern Operational Calculus in Engineering, McGraw-Hill 
Book Co., Inc., New York, 1944, pp. 48-49. 
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In the same way for A1, let n = 2, r = I, and a = 2, so that 

It is clear that the procedures outlined in this article permit relatively 
complex transform functions to be expanded into a series of simpler 
functions that should appear in the table of function-transform pairs. 

2.10. Use of Partial Fractions in Inverse Transformation 
The partial fraction expansion is a method of easily determining 

inverse Laplace transforms. An example will serve to clear up most of 
the loose ends remaining. For example, assume that we want to find 
the inverse transform f (t) of 

2 
F(s) = s4 + 10s3 + 26s2 + 48s + 45 <2•29) 

Fortunately, this function can be factored as follows: 

2 
F(s) = [s + 3]2[(s + 1)2 + 4] (2.30) 

This transform does not appear in the table of function-transform pairs; 
it will have to be simplified before taking the inverse transformation. 

The quadratic factor can be divided into two subfactors, so that we 
can write the transform 

2 
Fv)=-v-+_3_)2_v_+_1_+_q_")_v_+_1 __ -q-.) 

We can now expand this into a series of partial fractions as 

A1 A2 B B' 
F(s) = (s + 3) + (s + 3)2 + (s + 1 + 2j) + (s + 1 

where B' = complex conjugate of B. 
Equation (2.28) is used to find A2 and A1• After making the appro

priate substitutions this gives 

2 I 2 I A2 = (s + 3) F(s) = 2 8=-3 (s+I) +48=-3 

so that d [ 2 ] 1 
Ai= ds (s + 1)2 + 4 8=-3= 8 
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Because B and B' are complex conjugates, only one of them need 
be computed. Thus, using formula (2.27) for distinct factors, 

B = (s + 1 + 2j)F(s) ls=-I-2j 

2 I 1 
= (s + 3)2(s + 1 - 2j) s=-I-2i = -16 

Therefore B' = - 1/16. 
The complete expression for the expanded transform can now be 

written 

F(s) = ~ C: / +{ C ! 3)-/6 C+ 11 + 2)-1! C+ 11-2j) 
Now the inverse transforms are taken term-by-term using pairs 8 and 
11 from the table of function-transform pairs. Therefore, the complete 
inverse transform is 

-3t -3t 1 
f(t) = ~ + _s - - - (s-t-21t + e-t+2it) (2.31) 

4 8 16 

-3t -3t 1 
f(t) = ~ + ~ - - e-t(e-2;t + e+21t) (2.32) 

4 8 16 

The last term in parentheses is the exponential form of the cos 2t. 
Therefore 

t e-at e -at 1 t 
/(t)= 4 + 8 - 8s- cos2t (2.33) 

This is the complete inverse transform of F(s). 

2.11. A Sample Problem on Electric Circuits 
All the material presented so far can be conveniently summarized 

by a typical example taken from electric circuit theory. Such a move 
also points the way to some additional useful ideas. 

Consider the simple RLC circuit of figure (2.7). It is assumed that 
both e and i are unspecified functions of time, so that they should be 
written as e(t) and i(t). The switch is assumed to open at t = 0. The 
circuit loop equation is 

di(t) 1 
e(t) = L dt + Ri(t) + CJ i(t) dt (2.34) 

Now define the following terms: E(s) = Laplace transform of e(t); 
I(s) = Laplace transform of i(t); c,. = i(O) = initial current through L; 
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q = f i(t = 0) dt = initial charge on the capacitor; y = q/C = initial 
voltage on the capacitor. 

The transforms of the individual terms in equation (2.34) can be 
written from the table of operation-transform pairs. The result is 

I y 
E(s) = L(sl - (X) + RI+ - + -

sC s 
(2.35) 

[r-ctJ 
where the argument s has been 
omitted from I(s) for simplicity. 
With terms rearranged, this 
becomes 

Fig. 2.7. Series RLC circuit. 

Now solve for the transform current/. 

y 
- L(X +

s 

I(s) = I= E(s) + (L(X - y/s) 
sL + R + 1/sC 

(2.36) 

(2.37) 

The form of equation (2.37) is general and should strike a responsive 
chord. It has the form 

(
response) excitation function 
function = characteristic function 

(2.38) 

It is clear from equation (2.37) that the characteristic function is 
dependent only upon the characteristics and constants of the circuit 
and is not affected by the nature of the excitation. Moreover, the 
characteristic function is simply the total impedance of the circuit 
evaluated in terms of the complex frequency s. 

The excitation function involves two terms that are defined as: 
E(s) = driving function; (L(X - y/s) = initial excitation function. The 
driving function is that excitation supplied by active circuit elements, 
while the initial excitation is that caused by energy storage in the 
passive circuit elements. A great many problems can be solved by 
neglecting the initial excitation function. All the circuits in Part II 
of this book are treated in this way. This is a permissible procedure 
because the superposition principle applies to the linear circuits 
covered. 
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The omission of the initial excitation terms simplifies the treatment 

of many problems. In particular, the use of the Laplace transformation 
becomes no more involved than ordinary a-c circuit theory. That is, 

1: [Ri] = (R)l; 

where sL and 1/sC are the impedances associated with complex fre
quency. Thus, as long as initial conditions can be neglected, circuit 
equations are written as in a-c circuit theory and as shown in section 
(2.4), simply replacing jw by s. These equations will always end up 
in the form of 

driving transform 
response transform = . . 

characteristic transform 

The response as a function of time, called the transient response, is 
computed by taking the inverse transform of the response transform 
by the methods that have been outlined~ 

It should be understood that the characteristic transform function 
may be any one of several types, such as impedance, admittance, or a 
dimensionless ratio. 

2.12. Complex S Plane; Poles and Zeros 

Complex numbers, their use, and their representation in a complex 
plane are all familiar ideas to electrical engineers. For example, the 
impedances and admittances of a-c circuit theory are complex quantities 
of the general form 

Z = R + jX or Y = G + jB 

These quantities have real parts R and G, and imaginary parts X and 
B. By constructing a complex Z or Y plane, such numbers can be 
represented as shown in ,figure (2.8). Resistance or conductance is 
plotted along the real axis, while reactance or susceptance is plotted 
along the imaginary axis. 

It was shown in section (2.4) that the generalized frequency s is a 
complex number of the form s = a + jw. By analogy to the technique 
used for a-c impedances and admittances, it follows that s can be 
represented graphically in a complex s plane with a along the axis of 
reals and w on the imaginary axis. This is illustrated in figure (2.9). 
Any combination of values for a and w uniquely determine a specific 
point on the complex s plane. 
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It has been shown that the response transforms of physical systems 
always have the general form 

excitation transform 
response transform= .. 

charactensttc transform 
Regardless of the nature of the problem, the transforms of the excitation 
and characteristic functions are always polynomials in s. In practical 
cases the degree of the polynomial in the numerator of the response 
transform is always Jess than that in the denominator. Thus a general 
response transform has the form 

· n-1 + n-2 + n-3 + 
r a1S a2S a3S ... an 

response transform = K b 1 b 2 b 3 b 
Sn + 1Sn- + ~n- + 3Sn- • • . n 

where K = scale factor= constant, independent of s. 
en 
ILi 
~ X ct 
~ 
(!) 
ct 
:! 
~ 

0 
en x 
ct 
N 

X -rr 

R•AXIS OF REALS R rr=AXIS OF REALS 

Fig. 2. 8. Complex Z plane for 
representing a-c impedances. 

Fig. 2.9. Complex s plane for 
representing complex frequency. 

Now consider the case of a response transform of a given system in 
which the polynomials in the numerator and denominator can be 
factored as shown in equation (2.39). 

F(s) = K (s + Y1) (s + Y2) (2.39) 
(s + oc1) (s + oc2) (s + OCa) 

The five values of s, denoted oc1, oc2, oc3, y1, and y2 are unique. For 
example, if s is equal to either -y1 or -y2, the numerator becomes 
zero and the whole response transform is zero. Hence, -y1 and -y2 

are called the zeros of the response transform F(s). Because they are 
unique values of s with specific values of a and w, they can be located 
in the complex s plane. Zeros are usually denoted by small circles as 
shown in figure (2.10). 

When sis equal to -oc1, -oc2, or -oc3, the denominator of the response 
transform is zero, so that the over-all function is infinite. Values of s 
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that make the characteristic transform zero, or the response transform 
infinite, are called the poles of F(s). 7 They are indicated on the complex 
s plane by small crosses as shown in figure (2.10). 

In some cases the poles and zeros are of higher order than the first
order types illustrated in the foregoing example. The response transform 
might be 

F(s) = K(s + yr 
(s + ocr 

This function has an mth order zero at -y and an nth order pole at -oc . 

*-a3 

X = POLE 

., 

O=ZERO 

Fig. 2.10. Poles and zeros in the complex s plane. 

The poles and zeros are unique values of s, and as such, uniquely 
determine the response characteristics of the physical system. Some 
aspects of this idea are covered in later sections. 

2.13. Transient Response Deduced from Pole Locations 

It has been shown that the response transform of a given physical 
system always has the form of a rational ratio of polynomials in s, 
where the polynomials can be factored. Such a transform might appear 
as 

F(s) = K (s + y) 
(s + cx1) (s + (¼) (s + exa) 

This function has a zero at -y and three poles at -cx1, -cx2, and -cx3• 

7 These are only the simplest kind of poles, and the definition given is not precise 
in all cases. While this definition is sufficient for the purposes of this book, more 
advanced readers desiring more information should refer to R. V. Churchill, 
Modern Operational Mathematics in Engineering, 1st ed., McGraw-Hill Book Co., 
Inc., New York, 1944, pp. 139-144. 
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The function can be expanded into its partial fractions as 

A1 A2 Aa 
F(s)=--+--+--

s+a1 s+a2 s+a3 
where the A1 , A2, and A 3 are constants that can be evaluated by standard 
methods. It is important to note that the poles retain their identity 
through this expansion, whereas the zeros are absorbed in the coeffi
cients. The values of the three coefficients depend upon both the zeros 
and the poles. 

The transient response, which is the inverse transform of F(s), is 
easily written from the table of function-transform pairs as 

f(t) = A1c(X1t + A2c(X2t + A3c(Xat 

It is important to note that the nature of the transient response depends 
only upon the nature of the poles because only the poles affect the 
form of the time dependent factors in the transient response. Of 
course, here there are three distinct poles and each contributes a 
simple exponential factor to the transient response. The constants 
multiplying the exponentials have not been specified, so it is not 
possible to say which exponential is the largest or smallest. Neverthe
less, there are many cases in which it is necessary only to know the 
nature of the response without regard to the relative magnitudes 
of the component response functions. In such cases it is necessary only 
to examine the poles of the response transform and their location in the 
complex s plane, and the nature of the transient response can be quickly 
deduced from the table of function-transform pairs. 

This idea is illustrated in figure (2.11 ). This figure and the table of 
function-transform pairs should be studied at the same time. The 
point being made reduces to the following: 

(1) Any response transform can be expanded into a sum of trans
forms of types found in the table of function-transform pairs. This is 
accomplished by a partial fraction expansion. 

(2) Each such partial transform in one expansion involves one or 
moie poles of the original response transform. 

(3) Thus each such pole combination contributes a single term to 
the inverse transform, or time response. 

( 4) There are many possibilities for the individual partial transforms; 
those shown in figure (2.1 I) are typical. A little experience with pole 
diagrams and some familiarity with the table of function-transform 
pairs will enable you to estimate quickly the character of the transient 
response. 
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Fig. 2.12. Method of evaluating the partial fraction coefficient associated 
with pole 1, which is at the origin in this example. 
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An important observation that has considerable use later is the fact 
that the response is non-oscillatory as long as all poles are real. Oscilla
tion results whenever complex conjugate poles appear. 

The partial fraction coefficients are easily computed from the pole
zero diagram for any function of s. Thus the entire character of the 
transient response can be determined. For example, consider the 
following function: 

F(s) = s + 'Y 
s(s + ex + j/3) (s + ex - j{J) 
A B B' 

=-+ + +·p+ + '/3 S S ex ] S ex-J 
The corresponding pole-zero diagram is given in figure (2.12). 

The partial fraction coefficients are easily evaluated by the method 
previously given and expressed as follows: 

A= 'Y 
(ex + J{J) (ex - J{J) 

/00 
'Y-

v ex2 + p2 v ex2 + p2 /02 + 0a 

B = (y - ex) - J{J 
( -ex - J{J) ( -2}/J) 

B' = (y - ex) + J{J 
(-ex+ J{J) ( +2}/3) 

To evaluate A, draw lines from the pole at s = 0 to all other poles 
and zeros as shown in figure (2.12). The coefficient A is associated 
with the pole at s = 0 in the partial fraction expansion. You will 
observe from figure (2.12) that: 

(1) The line drawn to the zero at -y has a length y and this is 
equal to the numerator in the equation for A. 

(2) The lines drawn to the conjugate poles have lengths V ex2 + {32 

and angles 02 and 03• These are the components in the denominator of 
the equation for A expressed in polar form. Hence the magnitude and 
angle of the partial fraction coefficient A associated with the pole at 
s = 0 is 

product of line lengths from this pole to all zeros 
A = product of line lengths from this pole to all other poles 

0 A= L (angles of lines to zeros) - L (angles of lines to poles) 
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The same technique is used to compute B and B' except that the 

lines are drawn from the pole associated with the coefficient being 
evaluated. Thus, to evaluate B, lines are drawn from the pole at 
( -oc - jf3) to the zero at -y and the two poles at ( -oc + jf3) and 0. 
Then B is computed in polar form from the formula previously given. 

2.14. Determination of the Steady State Response 

Steady state response as used here refers to the network response to 
constant amplitude, constant frequency sinusoidal excitation functions, 
the signals of a-c circuit theory. It is customary to represent the steady 

(Al -+ 
(a) AMPLITUDE RESPONSE 

w 
(I) 

<t 
::c 
Cl. 

fAI-+ 
(b) PHASE RESPONSE 

Fig. 2.13. Representative frequency response characteristics. 

state response to such excitation by means of two graphs: (1) amplitude 
characteristics, a plot of the absolute value of the transfer function 
vs. w or frequency; (2) phase characteristic, phase shift of the transfer 
function vs, w or frequency. These two graphs are called the frequency 
response characteristics of the transfer function. Typical examples of 
such response characteristics are shown in figure (2.13). 

In some special cases the amplitude and phase characteristics are 
straight lines as shown in figure (2.14). When these conditions exist, 
the signal is transmitted through the network in such a way that it is an 
undistorted replica of the input, but delayed in time. Consequently, 
these frequency response characteristics are the conditions for dis
tortionless transmission. 

If the amplitude response deviates from a horizontal straight line, the 
conditions for distortionless transmission are violated and the output 
will not have exactly the same shape as the input. Hence the network 
introduces amplitude distortion. If the phase characteristic is nonlinear, 
phase distortion results. Thus the frequency response characteristics 
of a transfer function can be useful in judging the extent to which 
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distortionless transmission is violated. They provide convenient criteria 
for comparing the relative suitability of various networks for use in a 
given application. Because of this usefulness and corresponding 

~ 
0 
::, 
1-

...J 
a. 
~ 
c:( 

w--+ 

(a) AMPLITUDE RESPONSE 

~ 
Cl) 
c:( 
::c 
a. 

(b) PHASE RESPONSE 

Fig. 2.14. Frequency response for distortionless transmission. 

importance, the balance of this chapter· is devoted to a summary of a 
simple method of computing the frequency response characteristics 
from the pole-zero diagrams of transfer functions. 

It will be recalled that the transfer function of any physical system 
could be expressed as 

fi f
. . response function 

trans er unction = . . . 
exc1tat10n function 

-~~------+--V-
-a 

-a 

Fig. 2.15. Single pole in the s plane. Fig. 2.16. Determination of ampli
tude and phase angle of F(jw). 

When expressed in terms of complex frequency this was shown to have 
the form of a ratio of polynomials multiplied by a scale factor. A 
typical example would be 

1 
F(s)=K-

s + (X 

(2.40) 
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This is a simple case in which the transform of the transfer function has 
a single, first-order pole and no zero. The pole is a real number, which 
is a necessary condition for a one-pole system. Hence, the pole is 
located in the complex s plane as shown in figure (2.15). 

Suppose that the steady state amplitude and phase response 
characteristics are to be determined. In this case w is the independent 
variable. In practical problems w can never be negative. As a result, 
w can vary along the imaginary axis of the s plane from zero to positive 
infinity. Therefore the s in equation (2.40) should be replaced by jw, 
and the transform of the transfer function becomes 

K 
F(jw) = ( . ) 

IX+ ]W 

a, I 

--~F--..u..,.....;_ __ ~~--u-
-a _a2 

(2.41) 

w 

w1 

Fig. 2.17. Determination of steady state Fig. 2.18. Two pole, one zero case; 
response. evaluation of frequency response. 

The function can be written in polar form as 

F(jw) =KI«~ jwlA (2.42) 

The magnitude factor I IX+ jw I is simply the length of the line drawn 
from the pole at -IX to the assumed value for w located on the positive 
imaginary axis. The angle 0 is the angle that this line makes with a line 
drawn parallel to the real axis. These statements are illustrated in 
figure (2.16). 

It is evident that the data needed to plot the magnitude and phase of 
F(jw) as a function of the frequency w can be obtained directly by 
following the procedure shown in figure (2.16) for a series of different 
frequencies. This process is illustrated in figure (2.17). 
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In the one-pole case just outlined the method has little advantage to 
offer over direct numerical calculation. However, consider a more 
complicated case in which. the transform of the transfer function has 
two poles and one zero. That is, let 

F(s) = K (s + y) 
(s + cx1) (s + cx2) 

In the steady state case this becomes 

I Y + jwl /Oo 
FCw)=K -

J I ex + jw I I ex + jw I /01 + 02 
(2.43) 

Polar form has been used for the complex numbers. The frequency 
characteristics of a function of this type are relatively difficult to evaluate 
by direct numerical substitution. However, it is a relatively easy process 
using the graphical method in the complex s plane. The procedure 
involves only evaluating the magnitude and angle factor separately for 
each assumed frequency and then substituting these into equation 
(2.43). A typical case is shown in figure (2.18). A protractor and a pair 
of dividers, plus a little elementary slide rule work are all that is required 
to compute the desired characteristics. 

A general formula can be written to describe this method of deter
mining the steady state characteristics. The form is clearly 

. ) _ product of line lengths from zeros to w 
I F(Jw I - K product of line lengths from poles to w 

= K product of the zero distances 
product of the pole distances 

and the angle function is 

0(.jw) = (sum of the zero angles) - (sum of pole angles) 

2. rs. Physically Realizable and Minimum Phase Shift Circuits 
It was shown in section (2.4) that voltages and currents involving a 

positive real part of the complex frequency s exhibit the properties of a 
continuously increasing sinusoid. It is clear that such a response would 
be impossible in practice because practical circuit elements are not 
linear for all currents and voltages. Eventually, if the current is con
tinuously increasing, the circuit elements will exhibit a nonlinearity that 
will prevent further increases in the current. This nonlinearity might be 
caused by a burnout, vacuum tube overload, or resistance change from 
overheating. In any case, a stable network can never permit the 
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continued existence of an ever increasing current. Thus the transfer 
function of a physically realizable circuit cannot have a pole in the right 
half of the complex s plane. 

Networks used in electronic circuits are often of the minimum phase 
shift type. A minimum phase shift circuit is defined as the circuit which 
has the least phase shift of all circuits which have its particular amplitude 
characteristic. 8 The transfer functions of minimum phase shift circuits 
cannot have zeros in the right half of the complex s plane. You can 
prove this to yourself pretty easily by working out some sample cases. 

PROBLEMS 
2.1. Derive the equations for the mutual impedances, as functions of the 

complex frequency s, for each of the networks shown in figure (2.19). In each 
case the mutual impedance is considered to be the ratio of the output voltage 
to the input current. It will be shown in a later chapter that these are the 
equivalent plate circits of a number of important vacuum tube amplifiers. 

R R L 

(al (bl (cl 

{d) 
Fig. 2.19. 

(e) 

2.2. For each of the mutual impedance functions derived in problem (2.1), 
make sketches showing the relative locations of the poles and zeros in the 
complex s plane. If more than one possibility exists, indicate each possibility 
by a separate pole-zero diagram. 

2.3. From the impedance functions of problem (2.1) and the pole-zero 
diagrams of problem (2.2), discuss the transient response characteristics of 
the various networks. 

8 See H. W. Bode, Network Analysis and Feedback Amplifier Design, D. Van 
Nostrand Company, Inc., New York, 1945, Art. 11.5. 
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2.4. For circuit b of figure (2.19), assume that 

RL = 7000 ohms; Lb= 500 µh; CT = 30 µµf 

Using the method outlined in section (2.14), determine the steady state 
response characteristics of the circuit over a frequency range from w = 0 to 
w = 14 x 106 rps. Plot your results on semilog paper with w on the 
logarithmic scale. 

2.5. Derive the Laplace transform of the function f(t) = t. See pair 
number 6 in the table. 

2.6. Derive the Laplace transform of f(t) = e-rx.t. See pair number 9 in 
the table. 

2.7. Using partial fractions, obtain the inverse transforms of 

1 (s2 - cx2) 

(a) F(s) = (s2 + cx2)s3 (b) F(s) = (s2 + cx2)2 

Evaluate all the partial fraction coefficients. 

2.8. Using partial fractions, calculate the inverse transform of 

(s + 1) (s + 4) 
F(s) = s(s + 2)2 (s + 3)2 

Calculate all the partial fraction coefficients. 



Part II 

CLASS A CIRCUITS 





Chapter 3 

PRINCIPLES OF VACUUM TUBE AMPLIFIERS 

An amplifier is a circuit whose output is an enlarged reproduction of 
the input, but the power developed in the output is drawn from a source 
other than the signal input. 

Vacuum tubes are frequently operated as voltage amplifiers so that 
the output voltage is an enlarged reproduction of the signal input 
voltage. The tube is generally operated in class A when serving as a 
voltage amplifier, and only this type of operation is covered in this 
sequence of chapters. 

The chapter commences with a discussion of the method of deter
mining the proper operating potentials on the tube required for class A 
operation. Then the class A equivalent circuit developed in chapter 1 
is used to derive the general theory of vacuum tube voltage amplifiers. 

It will be shown that there are three basically different vacuum tube 
amplifier circuits: (1) grounded cathode; (2) grounded plate; (3) 
grounded grid. In all three cases the factors of primary interest are 
(1) voltage amplification; (2) output impedance; (3) input impedance 
or admittance. 

It will be shown that the voltage amplification equation for any 
vacuum tube amplifier can be written 

A = ± , z' _ output voltage gm m--.----
mput voltage 

where g:n = effective transconductance of the circuit and tube; Zm 
= mutual impedance of the passive circuit. 

Expressions will also be derived for the input and output impedances 
of the three basic amplifier circuits. 

3.1. Direct Current Circuit Connections 

A vacuum tube will not function properly unless there is a complete 
circuit for direct current running from the plate circuit power supply, 
through any impedance connected in series with the plate, through the 
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tube to the cathode, and through any cathode impedance to ground. 
The negative terminal of the plate power supply, which is designated 
Ebb' provides the d-c ground. This requirement is indicated schemati
cally in figure (3.1). 

It is necessary to have also a d-c path between the grid of the tube 
and the source of constant grid voltage. This is also shown in figure 
(3.1). 

GRID SUPPLY 
VOLTAGE 

DC 

+ = PLATE 
:::: SUPPLY 
-=- VOLTAGE 

Fig. 3.1. Essential connections for a vacuum tube amplifier. 

Other requirements also exist, though their importance will not be 
established until later. It will be shown in section (3.3) that the 
impedance in the plate circuit, whether in series with the plate or cathode 
lead of the tube, cannot be zero at the frequency of the input signal. 
If it is zero, the circuit will not amplify. 

Finally, in most cases only the signal frequency component of the 
output from an amplifier is of interest and some method must usually be 
provided for removing any d-c component that may exist. This is 
mainly important if the amplifier output is fed to the input of another 
amplifier. If the d-c component is not removed from the output, the 
grid voltage on the succeeding amplifier stage will be altered and 
improper operation could result. 

Four general requirements that must be met by nearly all amplifier 
circuits have been listed. The necessity of removing the d-c component 
from the output is the only one of the four that can ever be violated. 
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3.2. Load Lines and Operating Points 

The circuit connections for one type of elementary amplifier are 
shown in figure (3.2). The nomenclature used is standard, with terms 
specified as follows: 

Ecc = d-c grid voltage = grid bias 
Ebb = plate supply voltage 
R L = plate load resistor 
ib = plate current 
e0 = grid signal voltage 
ec = e0 - Ecc = grid-to-cathode voltage = grid voltage 
eb = plate-to-cathode voltage = plate voltage 

-------,--
1 
I 
I 

eb 
I 
I 

- • --- ---------- • -

This circuit meets all the require
ments specified in the preceding 
section except that no provision is 
made for removing the d-c com
ponent from the output. 

The Kirchhoff loop equation 
for the plate circuit can be written 
directly from figure (3.2) as 

or, in an alternative form, 
lillt--'"------tl I I I I I 
E E eb = Ebb - ibRL (3.1) 

cc bb 

F . 3 2 El b By assuming values for eb and cal-1g. . . ementary vacuum tu e 
amplifier. culating ib from equation (3.1 ), a 

graph of ib vs. eb for given values 
of Ebb and R L is easily constructed. The resulting graphical form of 
equation (3.1) is called the load line and is shown in figure (3.3). The 
terminology is appropriate because the slope is determined by the load 
resistance R L-

This graphical construction would be sufficient to determine the plate 
current ib corresponding to any given plate voltage eb if the equation 
were complete as it stood. However, the circuit contains a vacuum 
triode, and the plate current is a complex function of the plate and grid 
voltages. Thus, to obtain a solution for the plate current through the 
tube corresponding to particular values of plate voltage eb, power supply 
voltage Ebb• load resistance RD and grid voltage ec, it is necessary to 
obtain a simultaneous solution of: (1) the load line equation; (2) the 
equation for the plate current through the tube as a function of the grid 
and plate voltages. This would be a difficult thing to do analytically 
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because of the complex form of the equation relating ib, eb, and e0 • 

However, it is relatively easy to compute the solution by graphical 
methods. 

Typical static plate characteristics for a triode are shown in figure (3.4). 
Superimpose the load line graph of figure (3.3) on this plot of the tube 
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Fig. 3.3. The load line. RL = 40K, Ebb= 400v in this example. 

characteristics, using the same current and voltage scales. A simul
taneous solution of the two functions can be obtained from this 
construction. 
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Fig. 3.4. Triode characteristics. 

The actual solution, which is the one point at which the two equations 
are simultaneously satisfied, is called the operating point. It is deter
mined by finding the point of intersection of the load line with the 
particular ib - eb curve corresponding to a specified grid voltage. 
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The operating point determined in the quiescent state, which means 

that there is no grid signal voltage, is called the Q point. The location 
of the Q point is shown in figure (3.5), where it appears as the point of 
intersection of the load line with the tube characteristic curve for the 
value of grid voltage equal to the grid bias. Then the effect of a signal 
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Fig. 3.5. Determination of the operating point of a triode. 

applied to the grid is to cause the actual operating point to swing about 
the Q point and along the load line from one point of intersection to 
another. 

3.3. Operation of an Elementary Amplifier 
Vacuum tube amplification is easily understood from this graphical 

presentation. In figure (3.5) for example, with the value of load resist
ance used, a 2 volt swing in grid voltage above and below the bias Ecc 
will cause the plate voltage to swing over a range of 238 to 302 volts. 
If voltage amplification is defined as the ratio of the swing in output 
voltage to the swing in input voltage, then 

A = voltage amplification 

= 302 - 238 = 64 = 16 
4 4 

Amplification is possible only because the load line has a finite slope. 
If R L is zero the load line is vertical and no amount of grid voltage 
variation produces any change in plate voltage. The amplification is 
obviously zero. As the load resistance is gradually increased, the slope 
of the load line decreases. As the load line becomes more nearly hori
zontal, a given grid voltage swing will cause progressively larger swings 
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in plate voltage, indicating an increase in the circuit voltage amplifi
cation. In the limit, when the load line is horizontal, the voltage 
amplification is equal to the amplification factor µ of the tube. This 
condition can be brought about by making the load resistance infinite. 
Of course, this is impractical, because you can see that Ebb would have 
to be infinite. Thus, this is a purely theoretical limiting case. The general 
nature of the variation in voltage amplification as a function of the 
load resistance is shown in figure (3.6). 
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Fig. 3.6. Effect of load resistance on voltage amplification. 

Amplification is accomplished through the action of the grid in 
controlling the flow of current through the load resistance. Variations 
in grid voltage change the. voltage drop across the tube, causing the 
constant voltage source Ebb to supply a varying component of plate 
current. This in turn produces a varying component of plate voltage. 
The vacuum tube acts simply as a converter of energy, changing the d-c 
energy available from the plate supply into variational or signal energy. 

From figure (3.5) it is apparent that making the grid more negative 
than the bias voltage causes: (I) plate current to decrease; (2) plate 
voltage to increase. Thus the application of a triangular grid signal will 
cause the plate current and voltage to vary as shown in figure (3.7). 
Note that the plate voltage is inverted, like a mirror image, with respect 
to the grid voltage. This is a fundamental property of this type of 
amplifier. For this reason it is often called a phase inverter. 

The voltage amplification of the simple amplifier of figure (3.2) can be 
determined from a graphical analysis of the type shown in figure (3.5). 
However, when the plate load is anything other than a simple resistance, 
the graphical determination becomes inconveniently complicated. 
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Because nearly all practical plate load circuits are more complex than a 
single resistor, other methods are generally used to find the circuit 
amplification. 

0 ~----+--....__---+-__ ,.___ __ _ 

- Ecc----, --,-----
1 
I 
I I 

I I I : 
-Eco ------,----+---.J----r------

GRID VOLTAGE 

PLATE CURRENT 

o-------...._ _ _..... _ ___. ___ t -
PLATE VOLTAGE 

Fig. 3.7. Waveforms in an amplifier with resistance load. 

3.4. Polarizing Potentials 
The procedure followed in determining the Q point was shown in 

figure (3.5). The plate voltage at the Q point is Eb and the corresponding 
plate current is lb. The two electrode voltages at the Q point, Eb and 
Ecc, are called the polarizing potentials of the tube. If the tube is a 
tetrode or pentode, the screen voltage required is also a polarizing 
potential. 
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The polarizing potentials are selected to fix the Q point to a particular 
place on the tube characteristics, thereby achieving certain operating 
characteristics from the tube. A graphical construction of the type 
previously shown in figure (3.5) can be used to determine the polarizing 
potentials required to establish operation at a specified Q point. This is 
necessary in some cases. However, for many cases the tube manu
facturer has determined the proper polarizing potentials required for 
certain applications of the tube and this information is published in 
convenient handbook form. Ordinarily, the published values can be 
used without recourse to a determination of the type shown in figure 
(3.5), but care should be exercised to make sure that the proper 
polarizing potentials are used for the specific application planned for 
the tube. 

In figure (3.2) for one type of basic triode amplifier circuit, all 
electrode voltages were supplied by batteries. This is not uncommon. 
However, the availability of a-c power and the inconvenience caused by 
the size, weight, and necessity of recharging and replacing batteries has 
led to the use of a-c power in a large proportion of electronic equipment. 

For a-c operated units the plate supply voltage Ebb is usually supplied 
by a rect[fier and jilter circuit. These circuits are discussed in detail in 
chapter 14. For present purposes, the effect of the rectifier type of 
power supply is the same as that of a battery, so a d-c power supply for 
the plate circuit will be indicated without specifying how that voltage 
is developed. 

The calculation of the value for Ebb is usually one of the last steps in 
the design of an amplifier. When this computation is made, Eb and lb, 
which are the Q point plate voltage and current, are usually known, 
because the Q point is usually specified for the tube in use. The load 
resistance is determined by other amplifier design requirements and can 
be presumed known when Ebb is being calculated. Hence, the value of 
Ebb required to establish the proper Q point can be computed from the 
Kirchhoff loop equation in the quiescent state. That is, 

(3.2) 

There are many cases where an amplifier has a different load resistance 
for direct current than for signal frequency currents. This results in 
different load lines in the direct current and signal frequency cases. 
This problem is treated in section (11.9). 

Few amplifiers have pure resistance loads; some reactive component 
is invariably present. This causes the plate-to-cathode voltage and plate 
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current to be out of phase by an angle cf>, so that 

e'P = E'P sin wt and i'P = IP sin (wt + </>) 
These are the parametric equations for an ellipse, which shows that the 
operating point traverses an elliptical path instead of the straight line 
followed for a resistance load. The major axis of the ellipse will fall on 
the load line drawn for a resistance equal to the magnitude of the load 
impedance. 

3.5. Cathode and Screen Biasing Circuits 
Instead of using a battery to provide the grid bias voltage Ecc, a 

parallel RC circuit is often placed in series with the cathode of the tube 
as shown in figure (3.8). This is called a cathode bias circuit. The 

Ebb 

Rg Rg -------
89 

Fig. 3.8. Triode amplifier using cathode Fig. 3.9. Pentode amplifier showing 
bias. screen circuit connections. 

quiescent plate current lb flows through the cathode resistance Rk, so 
that the cathode is positive with respect to ground by a voltage equal to 
IbRk. The grid is at ground potential because no current flows through 
the grid leak resistor Rg; hence the grid is negative with respect to the 
cathode and the purpose of grid bias has been accomplished by the cathode 
bias circuit. In the ideal case there is no current flow through the grid leak 
resistor because the grid is negative and does not attract electrons. 

The grid bias can be adjusted to the proper point by setting the value 
of Rk such that 

Ecc = fbRk (3.3) 

So the proper value for the cathode bias resistor is 

(3.4) 
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If the cathode capacitor Ck is omitted, a signal voltage applied to the 
grid of the tube will cause the plate current to vary so that the cathode 
bias voltage developed across Rk will vary in a similar manner. This is 
not usually desirable, although it has applications to be discussed later. 
The bias variation can be prevented if desired by placing the capacitor 
Ck in parallel with the resistor Rk as shown in figure (3.8). The capaci
tance of this capacitor should be rather high so that it will have a 
negligibly small reactance, compared with Rk, for all signal frequencies. 
Because of its low reactance, this cathode by-pass capacitor shunts 
nearly all the alternating component of plate current around Rk and 
directly to ground. Therefore, only direct current flows through Rk, 
and the cathode voltage is constant as desired. 

A similar technique is used to obtain the correct screen voltage for 
tetrodes and pentodes. The screen operates at a positive voltage that 
should be kept as nearly constant as possible. The screen voltage Eu

2 

can be set to the proper value by connecting the screen to the plate 
supply through a suitable voltage dropping resistor Rd. A high capaci
tance capacitor Cd is then added to shunt the variable component of 
screen current to cathode or ground and keep the screen voltage 
constant. A typical circuit connection is shown in figure (3.9). 

The value of Rd, the screen dropping resistor, is computed from the 
Kirchhoff loop equation around the screen circuit. That is, 

EY2 = Ebb - JY2Rd - Ecc 

or, solving for Rd, 

(3.5) 

In calculating the value for the cathode resistor for pentodes it is well to 
remember that both the plate and screen currents flow through Rk. 

3.6. Types of Vacuum Tube Amplifiers 
If it is assumed that the polarizing potentials of the amplifier tube 

and the magnitude of the applied signal voltage are adjusted for class 
A operation, the equivalent circuit of the amplifier tube appears as shown 
in figure (3.10). As far as variational or signal voltages are concerned, 
the amplifier tube is a three-terminal circuit element; the three terminals 
are the grid, cathode, and plate. 

Any one of the three electrodes can be used as the reference, or 
grounded electrode, where grounded means that it is the reference point 
for variational or signal voltages. This has led to the designation of three 
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amplifier circuit configurations as: (1) grounded cathode amplifier; 
(2) grounded plate amplifier (cathode follower); (3) grounded grid 
amplifier. For a general three-terminal network the point selected as 
the reference does not affect the operation of the circuit, yet the three 

I c,•P----~--~---P 

Cgk -. lo. -. . 
K 

Fig. 3.10. Class A equivalent circuit of a vacuum tube. 

amplifier types exhibit dissimilar operating characteristics. Clearly, 
there is more to the difference in these three circuits than a mere 
selection of reference point. The true origin of the differences should be 
clear from the circuit diagrams given in figure (3.11). 

In figure (3.11) you will observe that an arbitrary three-terminal 
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(c) GROUNDED GRID 

Fig. 3.11. Class A equivalent circuits of vacuum tube amplifiers. 



72 Principles of Vacuum Tube Amplifiers [Sec. 3.6 

load circuit is shown connected to each amplifier. This is the general case. 
All practical amplifiers have load circuits with two or three terminals. 
The two-terminal circuit is a special case of the three-terminal circuit, 
so we will assume the general case for all discussions in this chapter. 

(a) GROUNDED CATHODE 

INPUT 

(c) GROUNDED GRID 

(b) GROUNDED PLATE 

I 
I 
I 

OUTPUT 
I 
I 
I 
I 
I 
I 

+ 

Fig. 3.12. Basic amplifier types showing d-c connections and signal input 
and output terminals. 

When an electrode is said to be grounded, the term means grounded 
for signal voltages only; the grounded electrode may actually be at a 
high direct potential with respect to the circuit ground. This should be 
clear from figure (3.12) which shows actual circuit connections for the 
three basic amplifier types. The class A equivalent circuits were given 
in figure (3.11); they were derived from the circuits of figure (3.12) by 
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assuming (1) the internal impedance of the plate power supply Ebb is 
zero, and (2) the reactance of Ck is zero at all frequencies of interest. 
Although triodes are shown in figure (3.12), pentodes also may be used. 

3.7. General Equation for Voltage Amplification 
The equivalent circuit of a general class A grounded cathode ampli

fier is shown in figure (3. lla). For the time being, assume that the 
grid-to-plate interelectrode capacitance Cuv is so small that its reactance 
at all signal frequencies of interest approaches that of an open circuit. 
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I 

I 

I 

I 

L __________ J k 

z P = r P { ~) w P = _,_ 
s + w P rpc Pk 

Fig. 3.13. Equivalent plate circuit of a grounded cathode amplifier. 

Because of this approximation, the plate circuit is isolated from the grid 
circuit and can be considered by itself. Thus, the equivalent plate 
circuit of the amplifier appears as shown in figure (3.13). 

The amplifier excitation, or signal input, is Eu, while the output is £ 0 • 

From chapter 2 it will be recalled that the ratio of the response function 
to the excitation function is the transfer function of the system. In this 
case, both the response and excitation are voltages, so that the amplifier 
has a voltage transfer function called the voltage amplification, which is 
denoted by A. Thus 

Eo 1 l'fi . A = - = vo tage amp 1 cat10n 
Eu 

This can be computed from the equivalent circuit. 
The passive circuit elements in the equivalent plate circuit of figure 

(3.13) arise from two sources: (1) the contributions of the tube, rv and 
Cvk (or C

0 
for a pentode); (2) the connected load circuit and its 

associated wiring capacitance to ground. Designate the parallel 
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combination of r 'P and C'Pk as z'P to indicate that it is an impedance 
associated with the plate of the tube. Hence 

where 

r'P w'P 
z =---=r ---

'P 1 + s/w'P 'P s + w'P 

1 
w =--

'P r'PC'Pk 

I~ 
I p 

Zp Z~ 

(3.6) 

(3.7) 

Fig. 3.14. Terminology associated with the 
equivalent plate circuit. 

Fig. 3.15. Final form of the 
equivalent circuit of a grounded 

cathode amplifier. 

Therefore the equivalent plate circuit reduces to the form shown in 
figure (3.14). The quantity ZL is defined as the input impedance of the 
connected load circuit together with its associated distributed wiring 
capacitance to ground. Two other important terms can be defined 
from figure (3.14), as follows: Zm = mutual impedance of the entire 
passive network in the equivalent plate circuit= E0 / I; Zin= input 
impedance of the entire passive network in the equivalent plate circuit, 
or Zin= z'PZLf(z'P + ZL)· 

If the passive network between the marked terminals is replaced by 
its mutual impedance, the equivalent circuit assumes the simple form 
shown in figure (3.15). Because the mutual impedance was defined as 
Zm = E0 / I, then E0 = /Zm. However, / = -gmEu, so that the output 
voltage is 

Eo= -gmEuZm 

Divide this equation through by Eu to obtain the voltage amplification 
as 

Eo 
A = E = -gmZm (3.8) 

g 

This is an extremely important equation, for it shows that the voltage 
amplification of any class A grounded cathode amplifier is given by the 
product of the tube transconductance and the mutual impedance of the 
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passive network in the equivalent plate circuit. The minus sign signifies 
the phase inversion of the signal, a point explained in section (3.3). It 
will be shown later that all three of the basic amplifier types have voltage 
amplification equations of this same general form. 

It has become common practice in the field of electronics to refer to 
the voltage amplification of a circuit as the voltage gain, or even just as 
the gain when it is understood that voltage is of primary importance. 
There is some objection to this terminology and with some justification. 
However, the usage appears well established, and the words amplification 
and gain will be used interchangeably here. 

The general gain equation for a class A grounded cathode amplifier is 

A= -gmZm 

where gm = mutual transconductance of the tube; Zm = mutual 
impedance of the passive network in the equivalent plate circuit. 

The study of voltage amplifiers is largely concerned with an exami
nation of the factors affecting this general amplification equation. Thus 
there are two natural sub-divisions of material: (I) study of the factors 
affecting gm, and (2) a determination of the mutual impedance of various 
networks and the establishment of criteria for comparing them. 

This chapter is primarily concerned with an evaluation of the factors 
affecting the transconductance of the tube. Chapter 4 is a detailed 
study of the effects of various circuit configurations upon the mutual 
impedance term in the general gain equation. 

A component of the amplifier that should be considered at the very 
first is the tube itself. What are the effects on gm and Zm if a pentode is 
used instead of a triode? Generally, the transconductances of triodes 
and pentodes are of the same general order of magnitude, so there is little 
effect there. However, the plate resistance r v of a pentode is from IO to 
1000 times larger than the r P of a triode. The effect of a low value for 
r P is a reduction in the size of Zm, and this causes a corresponding 
reduction in the voltage gain. Hence, the voltage gain of a triode 
amplifier is usually less than that of a pentode amplifier even if both 
tubes have the same mutual transconductance. 

It is obvious that the mutual impedance will vary with different 
network configurations, and we might conclude that any kind of 
amplifier response could be obtained simply be selecting the particular 
circuit having the desired response characteristics. However, other 
factors govern the form of the connected load circuit, and these were 
discussed in section (3.1 ). 
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3.8. Practical Amplifier Circuits 
The discussion in the preceding sections was based upon the equiva

lent plate circuit of a grounded cathode amplifier in which only 

(a) RESISTANCE COUPLED 

Rg 

(c) SERIES PEAKED 

Ebb 

(b) SHUNT PEAKED 

e-; 

(d) LOW FREQUENCY 
COMPENSATED 

Fig. 3.16. Representative grounded cathode amplifiers. 

variational components of plate current were of interest. The d-c 
aspect of the problem did not enter into this analysis. However, proper 
operation of the tube requires proper adjustment of the electrode 
potentials; this means that the tube must be connected as specified 
in section (3.1). 

A number of examples of practical amplifier circuits are shown in 
figures (3.16) and (3.17) and identified by their most commonly accepted 
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names. You should examine each circuit carefully to see that the four 
requirements specified in section (3.1) are actually met. Only those 
circuit elements actually connected in the circuit are shown. Unseen 

( o) TRANSFORMER COUPLED (b) SINGLE TUNED 

(c) SINGLE TUNED (d) DOUBLE TU NED 

Fig. 3.17. Representative grounded cathode amplifiers. 

elements are present as well, principally the input and output capaci
tances of the tubes and the wiring capacitances to ground caused by 
the presence of the various network elements. 

All the amplifiers in these two figures are of the grounded cathode 
type. 

Most of the amplifiers in these two figures are discussed separately 
and in detail in the next chapter. 
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3.9. Input Admittance of Grounded Cathode Amplifiers 
In the derivation of the general equation for the voltage amplification 

of a grounded cathode amplifier, it was assumed that the grid-to-plate 
interelectrode capacitance Cup was so small that it provided very little 
coupling between the grid and plate circuits. This is not always a valid 
approximation, and the effect of Cup should be evaluated. 

G Cgp -----.P .. .. 
Ig I3 

+ 
I2i Eg Cgk + AgpEg 

K 

Fig. 3.18. Simplified equivalent circuit of a grounded cathode amplifier. 

Reference should be made to figure (3.1 la), which showed the general 
equivalent circuit for a grounded cathode amplifier. Define a new 
parameter as follows: 

A = _ E11 _ plate-to-cathode voltage 
up Eu grid-to-cathode voltage 

(3.9) 

This is not necessarily the voltage gain of the amplifier because the 
output from the amplifier might not be taken from the plate terminal of 
the tube. Rearrange terms slightly and write 

Ep = -AupEu (3.10) 

The plate circuit of the amplifier can be considered to be equivalent to a 
generator of voltage EP = -AuPEu and the amplifier equivalent circuit 
can be redrawn as shown in figure (3.18). This is an application of the 
compensation theorem. 

In the a-c steady state case, the voltage loop equations can be written 
directly from figure (3.18) as 

12 /3 
--=---A E =E 
jwCuk jwCuP gp u u 

Consequently, the individual branch currents are 

/ 2 = jwCukEu 

/ 3 = jwCuiI + Aup)Eu 
At the current node 

lu = 12 + /3 = jw[Cuk + Cup(I + Aup)]Eu 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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The input admittance of the amplifier is obtained by dividing this 
equation through by Eg. Therefore 

lg . 
Yin= - = jW[Cgk + Cgil + Agp)] (3.15) 

Eg 
No restriction is placed upon the nature of Agp• It is a ratio of two 

voltages, so it is a dimensionless number, but it could be either real or 
complex. If Agp is a real number, the input admittance is wholly 
imaginary, or capacitive, and the input capacitance is 

cin = cgk + cgp(l + Agp) (3.16) 

Unfortunately, in some cases the function Agp is a complex number. 
It can then be expressed in rectangular form as 

Agp = I Agp I (cos 0 + j sin 0) = I Agp I /0 (3.17) 

Then the input admittance becomes 

Yin= jw{Cgk + Cgp[I + IAYP ~(cos0 + jsin0)]} 

Collect real and imaginary terms and write 

Yin = Gin + jwCin 
where Gin= -wCgp I Agp I sin 0 

cin = Cgk + Cgp(l + I Agp I cos 0) 

This change in the input admittance is called the Miller effect.1 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

The equivalent input conductance Gin is negative if sin 0 is positive, 
and this is an important effect. It indicates that energy is being fed back 
into the grid circuit from the plate circuit through Cgp• Under certain 
conditions this will cause the amplifier to oscillate; this results from the 
production of right half plane poles (see chapter 2). The phenomenon 
is common in triodes having resonant plate circuits. The effect can be 
overcome by means of neutralizing circuits, which are discussed in a 
later chapter. 

The value of Gin can be made smaller by reducing Cw The pentode 
was the ultimate result of this effort to reduce Cgp, and pentodes, which 
have small Cgp, generally do not need neutralizing circuits to prevent 
oscillation. 

It has been shown in this section that the effect of Cgp can be repre
sented by re'placing -the equivalent circuit of figure (3.1 la) with a new 

1 After J. M. Miller, "Dependence of Input Impedance of a Three-Electrode 
Vacuum Tube Upon the Load in the Plate Circuit," Bull. 351, National Bureau of 
Standards, Washington, 1919. 
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equivalent circuit of the form shown in figure (3.19). In other words, 
the coupling between the grid and plate circuits is replaced by an 
admittance in shunt with the amplifier input terminals and loading the 
signal source driving the amplifier. Thus, through this method, the 
form of the equivalent plate circuit used in deriving the general voltage 
gain equation is preserved even when the effect of Cu1J is not negligible. 

G p 

t I 
I I L 
I 7P 0 
~o rp A 

Gin I D I I 

• I 

K 

Fig. 3.19. Equivalent circuit of a grounded cathode amplifier in which 
coupling through Cgv is replaced by a shunt input admittance dependent 
upon cg'/)• 

3.10. Cathode Degeneration 
In the derivation of the general voltage gain equation for the grounded 

cathode amplifier it was assumed that the cathode capacitor provided 
perfect bypassing so that the cathode voltage was always constant. The 
cathode circuit thereby appeared as a signal frequency short circuit, 
effectively grounding the cathode for all signal currents. This ideal 
condition does not exist at low frequencies. Also, it is not uncommon 
to leave a part or all of the cathode resistance unbypassed to achieve 
certain operating characteristics. Hence, the effects produced are quite 
important when the cathode impedance is not negligible. 

The equivalent plate circuit of an amplifier having an appreciable 
cathode impedance is shown in figure (3.20a), where, as before, Z L is 
the input impedance of the connected load circuit. Here r 1J and C1Jk 

are combined into the single impedance zp, so that the equivalent 
circuit of figure (3.20b) results. These are actual, or direct, equivalent 
circuits. 

The circuit of figure (3.20c) shows the form desired for the equivalent 
circuit. It is desired because it has precisely the same form as that of the 
amplifier with perfect bypassing, and the voltage gain equation is clearly 

A = -g:nzm (3.22) 

where Zm has exactly the same meaning as before and g:n = effective 
transconductance of the tube and amplifier circuit. The derivation of 
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CURRENT SOURCE EQUIVALENT VOLTAGE SOURCE EQUIVALENT 

(b) SIMPLIFIED EQUIVALENT PLATE CIRCUIT 

(c) PROPOSED EQUIVALENT CIRCUIT 

Fig. 3.20. Equivalent plate circuits of an amplifier having appreciable 
cathode impedance Zk. 

this voltage gain equation requires the evaluation of g:n. This is 
easily computed by determining the currents IP flowing in circuits 
(3.20b) and (3.20c). If these circuits are to be equivalent, these currents 
must be equal. 

The Kirchhoff voltage loop equation for the actual voltage source 
equivalent circuit of figure (3.20b) is 

gmzpEu = lp(zp + ZL + Zx) 

However, from figure (3.20a) it is clear that 

Eg = Ei - Ek= Ei - lpZk 

(3.23) 

(3.24) 
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Therefore the voltage loop equation can be written 

gmzpEi = Ip[zp + ZL + Zigmzp + l)] 

and the loop current is 

zP 
Ip= gm ) Ei 

Zp + ZL + Zigmzp + 1 

[Sec. 3.10 

(3.25) 

(3.26) 

The current IP in the proposed equivalent circuit is easily computed 
to be 

(3.27) 

Now equate these two expressions for IP and solve for g:n. The result is 

I gm 
g -

m - 1 + Zigmzp + 1)/(zP + Z L) 
(3.28) 

Therefore the voltage gain of the amplifier is 

A = -g' Z = - gmZm 
m m 1 + Zlgmzp + 1)/(zP + ZL) 

(3.29) 

Because the denominator of the equation for the voltage gain is 
always larger than unity, the gain is always less than that obtained when 
the cathode resistance is perfectly bypassed. In other words, the 
effective transconductance g:n is always less than the actual trans
conductance gm of the tube. This results in a reduction in the gain of 
the amplifier. It is called cathode degeneration because it is produced by 
the cathode impedance. 

There are a number of special cases of equation (3.28) for g:n. If the 
cathode impedance is the rather common parallel RC circuit, the 
impedance Zk is negligible at all frequencies except those in the low 
frequency range. At the low frequencies, 

I 
z = r --- _:_ r (3.30) 
P P 1 + s/wP P 

because s/wp == 0. Therefore, the effective transconductance is 

I gm 
gm= 1 + Ziµ + 1)/(rp + ZL) 

(3.31) 

whereµ= gmr p• This is a very useful form. 
The general equation for g:n given in (3.28) must be used when an 

imbypassed cathode resistor is used, because the low frequency 
approximation just used is invalidated. 
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When pentodes are used for the amplifier tube, another approximate 
form for g:n can be used. In such cases it is generally true that 

z2' > IOZL and z2' > IOZk 

As a result, the effective transconductance is approximately 

g'...:... gm 
m 1 +gmZk 

(3.32) 

As long as the stated approximations hold, this expression is valid for 
any cathode impedance Zk in any frequency range. 

The locations of the pole and zero of the effective transconductance 
function are of interest because they affect the over-all response of the 
amplifier. For simplicity, and because of its use in many practical cases, 
equation (3.32) for g:n will be used in analyzing the pole and zero 
locations. 

If the common case of a parallel RC cathode circuit is assumed, the 
impedance of the cathode circuit is 

Z (s) - Rk (3 33) 
k - s(RkCk) + 1 · 

Hence the approximate form for the effective transconductance 
becomes 

' gm gm 
gm= 1 + gmZk = I+ gmRk/[s(RkCk) + I] 

Define a new term as follows: 

I 
Wk=-

RkCk 

(3.34) 

(3.35) 

Substitute this into equation (3.34) and rearrange terms until the 
effective transconductance is found to be 

, (s + wk) 
gm = gm S + (I + gmRk)wk 

Hence the function has a pole at 

S = -(I + g mRk)wk 
and a zero at 

(3.36) 

(3.37) 

(3.38) 

The relative locations of the pole and zero are shown in the complex' 
s plane given in figure (3.21). 



84 Principles of Vacuum Tube Amplifiers [Sec. 3.11 

From the nature of the terms it is clear that the pole is always further 
out along the real axis than is the zero. Therefore the effective trans
conductance introduces additional phase shift and amplitude reduction 
in the voltage amplification of the amplifier. It will have a unity amplitude 
factor and zero phase shift in the effective transconductance only when 
the pole and zero coincide. 

Coincidence of the pole and zero is possible only if the capacitance 
of Ck approaches infinity or if Rk becomes zero. This indicates that the 

Fig. 3.21. Pole and zero of the effective transconductance function. 

degenerative effect of the cathode impedance can be reduced by making 
Ck as large as possible and Rk as small as possible. Coincidence would 
also be produced if gm were zero. This makes the gain zero and is a 
trivial case, but it does show that high gm tubes are more susceptible to 
cathode degeneration. 

Cathode degeneration may be desirable in some cases. For example, 
it is often necessary to have amplifiers with gain characteristics that are 
not noticeably changed when tubes are replaced. Because a 2-to-l range 
in gm may occur among tubes of the same type, cathode degeneration 
can be used to make the effective transconductance largely independent 
of tube variations. 

3.11. Screen Degeneration 

A degenerative effect, similar to that produced by the cathode bias 
circuit, results from imperfect screen bypassing. When the screen 
circuit impedance Zs is appreciable, the signal component of screen 
current 18 produces a voltage drop Es= lsZs in this impedance, and this 
causes the plate current to decrease. The effect is best analyzed from 



Sec. 3.11] Principles of Vacuum Tube Amplifiers 85 
an equivalent circuit representation of the phenomenon. For this 
purpose, define the following terms: 

l1 Oe d • • 1 . (3 39) rs = ~ = vanationa screen resistance . 
uld 

_:_ plate resistance when the tube is triode connected 

l1 Oib , 
g, = ~ = screen grid-to-plate transconductance (3.40) 

ued 

._ 
I 

g" E m g j L 
z O 

A 
D 

lo) EFFECT OF SCREEN 
CIRCUIT DEGENERATION 

lb) PROPOSED EQUIVALENT 
CIRCUIT 

ZL • INPUT IMPEDANCE Of' LOAD CIRCUIT 
~p I 

Zp• rp{--) Wp= --
S+wp rpCpk 

Eo 

Fig. 3.22. Equivalent plate circuit relationships for screen circuit 
degeneration. 

The terminology and symbolism used for the currents and voltages are 
specified as follows: 

ed = Ed + Es sin (wt + 01); Ed = Q point screen voltage 

id= Id+ ls sin (wt+ 02); 

ib = lb+ IP sin (wt+ 03); 

Id= Q point screen current 

lb = Q point plate current 

The effect of screen circuit degeneration can be described in terms of 
these definitions as shown by the equivalent circuit given in figure 
(3.22a). To preserve the same form for the equivalent circuit as used in 
all previous cases, a proposed equivalent circuit is shown in figure 
(3.22b), where a new effective transconductance g; has been specified 
to include the effect of screen degeneration. The following derivation 
simply establishes an equivalence between the plate currents in the 
actual and proposed equivalent circuits, and this defines the effective 
transconductance in terms of the circuit constants. 

From figure (3.22a) it is clear that 

(3.41) 
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In the absence of cathode degeneration, you can see that 

Es= /sZs 
Consequently, equation (3.41) becomes 

I= gmEg - lsgaZs 

[Sec. 3.11 

(3.42) 

(3.43) 

In pentodes, the screen and plate currents bear an almost constant 
relationship to one another. Thus. 

k ~ oid = Is 
Oib /1J 

(3.44) 

In most pentodes the value of k will be about 0.3. From equation (3.44), 

(3.45) 

Therefore, equation (3.43) can be written 

I= g mEg - kl 1)g7s (3.46) 

According to the proposed equivalent circuit of figure (3.22b ), the 
plate current 11) is 

(3.47) 

where 
(3.48) 

Thus, equation (3.46) becomes 

" z1) I= gmEg - gmEg ---kgsZs (3.49) 
z1J+zL 

Divide this equation through by Eu, replace If Eu with g;, and solve 
the result for g;. This procedure gives 

(3.50) 

(3.51) 

Thus the effective transconductance of a grounded cathode amplifier 
with only screen circuit degeneration is 

g; = gm (3.52) 
1 + Zs. z1J 

rs z1J+zL 
There are several important approximate forms of this equation. 
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Because pentodes are involved, in most cases the plate impedance 

zP is much larger than the connected load impedance Z L so that 

zP • ZL (3.53) 
Therefore 

(3.54) 

This approximation is valid for nearly all practical cases. 
An alternative form of equation (3.52) can be used because the de

generative effect of the screen circuit is usually most pronounced at 
the low frequencies. In the low frequency range it was shown in section 
(3.10) that zP _.:_ r p• Hence 

g~ (low frequency)= gm (3.55) 
1+zs_ rp 

r8 rP+zL 

3.12. Simultaneous Cathode and Screen Degeneration 
When pentodes are used in amplifiers it is possible to connect the 

screen bypass capacitor either to the cathode of the tube or to the 
circuit ground. When both the screen and cathode circuits have 
appreciable impedance because of imperfect bypassing, it is evident 
that the operating characteristics of these two circuit connections will 
be different. Only the low frequency case will be considered here, so 
that zp = rP. 

Consider the case where the screen bypass capacitor is grounded. 
The various equivalent circuits that apply to this case are shown in 
figure (3.23). As a result of this connection, both the plate and screen 
currents flow through the cathode impedance. Thus 

and 
or 

where 

Ek= (/p + f 8)Zk 
Eg = Ei - Ek= Ei - (/p + f 8)Zk 
Eg = Ei - Jp(l + k)Zk 

k= ls 
Ip 

(3.56) 
(3.57) 
(3.58) 

(3.59) 

The equivalent voltage source in figure (3.23b) arising from screen 
circuit degeneration is 

or 

because 

gsrpEs = gsrp(IsZs + Ek) 

g,r ,E, = I,r • e: + (I + k)g,z.] 

1 
kgs= -

rs 

(3.60) 

(3.61) 

(3.62) 
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Consequently, the voltage loop equation for the circuit of figure 
(3.23b) is 

µ[E, - 1,(1 + k)ZJ - I,,r, [~:+(I + k)g.z,] 

' I Ek 
I 
I 

' 

p 

(al COMPLETE EQUIVALENT CIRCUIT. NOTE THAT BOTH Ip AND 18 
PASS THROUGH Zk 

rp P 

I 
I 
Eo 
I 
I 

' 

ZL • INPUT IMPEDENCE 
OF LOAD 

(3.63) 

(b) VOLTAGE SOURCE EQUIVALENT 
PLATE CIRCUIT 

(cl PROPOSED CURRENT 
SOURCE EQUIVALENT 
CIRCUIT 

Fig. 3.23. Equivalent circuits for the case of simultaneous cathode 
and screen degeneration; cathode and screen bypass capacitors both 
grounded. Low frequency case assumed so z'J)= r'J). 

Collect all terms involving / 11 and solve for µEi. 

µE, = I, {c,. + ZL) + '•~:+(I + k) [(µ + 1) + g,,.Jz.} (3.64) 

Now, for the proposed equivalent circuit, 

(3.65) 
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Substitute this relationship into equation (3.64), cancel the common Ei 
term, and solve for g~. The result is 

" gm 
gm = 1 + [r 

11
Z8 / T8 + (µ + 1 + g8r 11) (1 + k)Zk]/(r 11 + Z L) (

3
·
66

) 

Because a pentode is involved, it is generally true that 

(3.67) 

and so the equation for the effective transconductance reduces to the 
approximate form: 

(3.68) 

A similar derivation can be carried through for the case when the screen 
bypass capacitor is connected to the cathode instead of to ground. 

You will find it very informative to compare this result with those 
obtained for the individual cases of cathode and screen degeneration. 

3.13. Grounded Plate Amplifier-Cathode Follower 
The circuit diagram, voltage source equivalent plate circuit, and the 

proposed equivalent circuit of a grounded plate amplifier, or cathode 
follower, are shown in figure (3.24). In drawing the equivalent circuits, 
it is assumed that the impedances of the cathode and screen biasing 
circuits are negligibly small at all frequencies of interest. If these 
assumptions are not valid, it is relatively easy to compute an appropriate 
value for the effective transconductance, following the method outlined 
in the preceding section. 

From the voltage source equivalent circuit of figure (3.24b), the 
circuit loop equation is 

(3.69) 

However, from the actual circuit diagram in figure (3.24a) you can see 
that 

(3.70) 

so that the voltage loop equation becomes 

(3.71) 
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Solve this equation for I 'P. 

• • I 
I 
I 
I 
I 
I 
I 
I 

~i 
I 
I 
I 
I 

+ 

I = gmz1) E. 
1) z1)+zL+gmz1>ZL i 

(a) CIRCUIT DIAGRAM 

t 
Eo 

+ 
Z L • INPUT IMPEDANCE OF LOAD 

"'p I 
Zp=rp(;--:;-i) C&lp•--

p r pCpk 

(3.72) 

(bl ACTUAL VOLTAGE SOURCE (c) PROPOSED CURRENT 
EQUIVALENT CIRCUIT SOURCE EQUIVALENT 

CIRCUIT 

Fig. 3.24. Circuit relationships for the cathode follower. 

According to the proposed equivalent circuit this same plate current 
can be written in terms of the unknown effective transconductance as 

(3.73) 

Therefore, if the two circuits are to be equivalent to each other, the 
two values of plate current just computed must be equal. Set equation 
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(3. 72) equal to (3. 73), cancel the common Ei term, and then solve for 
the effective transconductance g;n-

gm -----
1 + gmZin 

(3.74) 

because Zin= zPZL/(zP + ZL). Equation (3.74) is the effective trans
conductance of a grounded plate amplifier. 

If the entire passive impedance network connected between the 
cathode and ground terminals of the proposed equivalent circuit has a 
mutual impedance Zm, the amplifier output voltage is clearly 

EQ = /Zm = g:nEiZm 

and the voltage amplification is 

(3.75) 

Eo , gmZm 
A = - = gmZm --- (3.76) 

Ei 1 + gmZin 
Therefore the equation for the voltage amplification of a cathode 
follower is exactly the same as that for the grounded cathode amplifier 
with two exceptions: 

(1) There is no minus sign on the gain equation so that there is no 
phase inversion of the signal. 

(2) The transconductance of the amplifier is given by equation (3.74) 
and the value obtained is considerably less than the transconductance 
of the tube. 

In many cases the plate impedance zp of the tube is much larger than 
the magnitude of the connected load impedance Z L· If this is true, then 
equation (3.74) has the approximate form: 

g~ _:_ 1 +g ;mz i, (3. ?7) 

Under these conditions, which are common for pentodes, the voltage 
amplification is approximately 

A . gmZm (3.78) 
1 + gmZL 

The mutual impedance Zm will always be less than the input impedance 
of the load circuit Z v so that the voltage gain of a cathode follower 
can never exceed unity. 

Because the grounded cathode amplifier discussed in the previous 
sections can provide relatively large voltage gains while the cathode 
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follower never has a gain exceeding unity, you might wonder if the 
cathode follower is merely an academic curiosity. It does have a wide 
field of use, but the applications depend upon other characteristics of 
the circuit. It turns out that the cathode follower has a low output 
impedance and a high input impedance, both relative to the grounded 
cathode amplifier. These characteristics are discussed in the next two 
sections. 

G K 

~3 Zp Ip! Io 
zk 
~ Eo 

p 2 

Fig. 3.25. Measuring the output impedance of a cathode follower. 

3.14. Output Impedance of the Cathode Follower 
The equivalent circuit of a cathode follower, neglecting the grid-to

cathode capacitance, is shown in figure (3.25). The current source 
equivalent of the tube is used. The load circuit is assumed to be a 
two-terminal network with an input impedance of Zk. This symbol is 
used rather than Z L mainly to indicate that this is not the general 
three-terminal load circuit case. 

The output impedance of the cathode follower is to be computed. 
By output impedance we shall mean the impedance presented to a 
physical generator connected across the output terminals 1-2, with all 
generators to the left of these terminals replaced by their internal 
impedances. This is a general definition of the output impedance of any 
network containing both active and passive circuit elements. 

The procedure for measuring the output impedance experimentally 
or analytically is clear from the definition. The signal source at the 
input Ei is replaced by its internal impedance, a short circuit in this case. 
Then a generator of E0 volts is applied across the output terminals 1-2 of 
the amplifier. The ratio of this voltage to the resulting input current I0 

is the output impedance of the cathode follower. That is, 

Z . d Eo 
0 = output 1mpe ance = -

Io 
The circuit connections just discussed are shown in figure (3.25). 
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The applied voltage E0 is equal to the cathode voltage Ek because it is 

connected directly from cathode to ground. In a cathode follower, the 
grid-to-cathode voltage is 

(3.79) 

But in this case, the input voltage is zero because the input terminals are 
short circuited and the cathode voltage is equal to £ 0 • Therefore 

Eg = -E0 

As a result, the three branch currents shown in figure (3.25) are 

Eo 
11=-

zk 
Eo 

12=-
zf) 

/3 = -gmEg = +gmEo 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

The total current supplied by the connected generator is the sum of 
these three branch currents, or 

/ 0 = /1 + /2 + / 3 

I, = (1. + :, + gm) E, 

Solve this equation for the output impedance. 

z = Eo = 1 _ 1 
0 

/ 0 1/Zk + 1/zp + gm I/Zin+ gm 

(3.84) 

(3.85) 

(3.86) 

With a little algebraic manipulation, this equation is readily-expressed 
in any of the following forms: 

z = Zin zk 
0 1 + gmZin 1 + (gmzp + 1) (Zk/zp) 

Zk --------
1 + gmZk + Zk/zp 

(3.87) 

(3.88) 

These are the general equations for the output impedance of a cathode 
follower. You can see that Z 0 is always less than the actual cathode load 
impedance Zk. To see this more clearly, some approximate relationships 
will be of help. For example, for many of the tubes used in cathode 
followers, Zk ~ zp, so that the output impedance is approximately 

(3.89) 
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Regardless of the values of gm and Z k, you can see now that the output 
impedance will always be less than Z k· 

Because of the low value for the output impedance of a cathode 
follower, the circuit finds a wide field of application as a matching 
device between electronic systems of high impedance and load elements 
of low impedance such as transmission lines. 

G K 

p 

(o) COMPLETE EQUIVALENT CIRCUIT 

(b) SIMPLIFIED EQUIVALENT CIRCUIT 

Fig. 3.26. Circuits for computing the input admittance of a cathode 
follower. 

3.15. Input Admittance of the Cathode Follower 
The purpose of this section is to show that the input admittance of a 

cathode follower is much lower than the input admittance of a grounded 
cathode amplifier using the same tube. If the admittance is lower, the 
input impedance will be higher. 

The equivalent plate circuit of a cathode follower showing all tube 
interelectrode capacitances is given in figure (3.26). Follow the same 
procedure as that used in section (3.9). Define a new parameter Agk to 
be the ratio of the cathode voltage to the grid signal voltage; both 
voltages are measured with respect to ground. Therefore 

(3.90) 

and the cathode voltage is 
Ek= AgkEi (3.91) 

The cathode circuit can be replaced with an equivalent generator, 
AgkEi, as shown in figure (3.26b). Because the grid-to-ground voltage 
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Ei and cathode-to-ground voltage AukEi are in phase, the relative 
polarity markings on the generator must be as shown in the figure. 

In terms of a-c steady state currents, the two Kirchhoff voltage loop 
equations for the circuit of figure (3.26b) are 

12 I'P 
E-=--=A kE-+--

i jwCuP u i jwCuk 

Solve this for the two branch currents. 

/ 2 = jwCupEi 

l'P = JwCuil - Auk)Ei 

The total input grid current is then 

lu = 12 + l'P = jw[Cu'P + Cuil - Auk)]Ei 

and the input admittance of the tube is 

lu . 
Yin= E- = ]W[Cu'P + Cuk(I - Auk)] 

i 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

In the most common case generally discussed, Auk is a real number, 
so that the input admittance is purely capacitive. The parameter Auk is 
closely related to the voltage amplification of the cathode follower, and 
it is generally quite close to unity. Hence the inside bracketed term 
in equation (3.96) is virtually zero, and the input capacitance is virtually 
equal to Cup• If a pentode is used, this is a very small capacitance and 
leads to a much smaller value for the input admittance than could be 
obtained from a grounded cathode amplifier. 

If Auk is a complex number, the input admittance has both con
ductance and susceptance components, so that 

where 

Yin = Gin + }wCin 

Gin= wCgk I Auk I sin 0 

cin = CU'P + Cuil - I Auk I cos 0) 

(3.97) 

(3.98) 

(3.99) 

The input conductance can be positive or negative depending upon 
the sign associated with sin 0. Usually Ayk is much less than Au'P of the 
grounded cathode circuit, so that the input conductance is usually less 
for the cathode follower. The input capacitance is also less than that 
for the grounded cathode amplifier. 

3.16. Grounded Grid Amplifier 
The circuit diagram of a typical grounded grid amplifier is shown in 

figure (3.27). The voltage source equivalent circuits are given in figure 
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(3.28). As in all previous cases the load circuit is shown as a general 
three-terminal network of input impedance Z L· 

The Kirchhoff voltage loop equation around the grid-to-cathode loop 
of the equivalent circuit is 

Eu= Ei-/PZk 

The equation for the plate circuit loop is 

(3.100) 

Ei + gmzpEg = Ip(z'P + zk + ZL) 

Substitute equation (3.100) for Eu in equation (3.101). 

(3.101) 

Solve for l P. 

(gmzp + I)Ei - gmzpZklp = lv(zp + zk + ZL) (3.102) 

(3.103) 

To maintain the same general form for 
the gain function A= g::izm as used in all 

+ previous cases, we must define a new effec-
1 tive transconductance to account for the 
l effects produced by the circuit configuration. 
~o This should not alter the mutual impedance 
1 Zm. To maintain this equality of form, the 
I I proposed equivalent circuit of figure (3.29) 
l must exist. If it does exist, the plate current 

---------•' I 'P must be equal to the plate current com-
puted in equation (3.103) from the actual 

Fig. 3.27. Circuit diagram 
of a grounded grid amplifier. amplifier equivalent circuit. 

From figure (3.29) the plate current can 
be expressed in terms of the effective transconductance as 

" Zp l 11 =gm---Ei (3.104) 
zP+zL 

Set this equation equal to equation (3.103), cancel the common Ei term, 
and solve for g::i. The result is 

(3.105) 

(3.106) 
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Because of the presence of the 1/zP term in the numerator, the 

effective transconductance of a grounded grid amplifier is greater than 
the transconductance of a grounded cathode amplifier subject to a 
corresponding amount of cathode degeneration. The comparison is 

p p 

+ Zp 
Cpk + 

G 

L 
9mZp Eg 

0 
ZL ~ A ,+ L 

D I zL- 0 
I 

J 
A • I D 

I 
I 

Eo 
Ei 

I 
I 
t 

Fig. 3.28. Voltage source equivalent plate circuits of a grounded grid 
amplifier. 

slightly more obvious if the cathode impedance Zk is made equal to 
zero. Then for the grounded grid amplifier, 

" 1 g =g +-m m z'J) 

while in the grounded cathode case, 

g:n= gm 

(3.107) 

(3.108) 

You can immediately see the increase in transconductance and the 
corresponding increase in voltage amplification. It must be equally 
clear that the increase will be small when the plate impedance of the 
tu be is large. 

The input impedance of the grounded grid amplifier, neglecting the 
effects of interelectrode capacitance, is of interest. From figure (3.28) 
you can see that this is 

Ei zp+zL z. =-=Zk+---
in I'J) gmzp + 1 

(3.109) 

= Zk + (input impedance of tube alone) 

In some cases, particularly for pentodes, the second term in equation 
(3.109) is approximately 1/gm. Under such conditions, the input 
impedance of the grounded grid amplifier is quite small. This is an 
advantage in some cases because the signal frequency must become very 
high before the shunting effects of the input capacitance of the amplifier 
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become objectionable. Because of its low input impedance, the circuit 
is often used as an impedance transforming device connecting a low 
impedance generator, such as a transmission line, to a high impedance 
circuit, such as a grounded cathode amplifier. 

Tubes designed for use in grounded grid amplifiers are constructed so 
that the grid provides excellent electrostatic shielding of the cathode 
from the plate. This reduces the Miller effect by reducing the coupling 
between input and output circuits. This makes the grounded grid 

" QmEj 

Ipl 
Zp 

Fig. 3.29. Proposed equivalent circuits for a grounded grid amplifier. 

amplifier more stable than the grounded cathode connection. As a 
result, triodes can be used as grounded grid amplifiers at much higher 
frequencies than when connected as grounded cathode circuits. This is 
particularly important in the design of low noise circuits where triodes 
are preferred because they have smaller noise parameters (see chapter 9). 

3.17. Decibels and the Use of Relative Magnitudes 
There are many cases in electrical engineering in which it is desirable 

to express the performance characteristics of a device or circuit in terms 
of relative magnitude rather than absolute magnitude. In the study of 
amplifiers, the amplification is generally more important, from the 
theoretical viewpoint, than the actual voltage output. The amplification 
is dimensionless because it is a ratio of the output voltage to the input 
voltage. The same considerations apply in any energy or signal 
transmission system in which transmission losses or gains are best 
expressed in terms of ratios. 

Aside from the generality obtained by using relative rather than 
absolute magnitudes to express performance characteristics, it is also 
generally desirable to use logarithmic units rather than numerical ratios; 
this is so because log units reduce multiplication and division of 
numerical ratios to simple addition and subtraction oflogarithmic units. 

The computational advantages associated with the use of relative 
magnitudes expressed in terms of logarithmic units was recognized a 
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long time ago. A special unit called the decibel (abbreviated db) was 
defined in terms of a power ratio as 

number of db= 10 log10 (~:) (3.110) 

where 1 decibel corresponds to a power ratio that can be computed 
from equation (3.110) to be 

I db = 10 log10 (~:) or I = log10 (~:)'" 

so that (3.111) 

Thus a power ratio of 1.25893 corresponds to 1 db in logarithmic units. 
When the powers used in the evaluation of the decibel power loss 

or gain are dissipated in resistances, equation (3.110) can be rewritten as 

E;/R 0 E; Ri 
db = 10 1og10 E?/R- = 10 log10 E? · R 

t i i 0 

Ea Ri = 20 log10 - + 10 log10 -
Ei Ra 

(3.112) 

If the input and output resistances are equal, the last term in equation 
(3.112) is zero and the power gain in decibels can be computed directly 
from the voltage ratio as 

Eo 
db = 20 log10 -

Ei 
(3.113) 

In many respects this is an unfortunate result because it has led to 
widespread incorrect use of decibels. Equation (3.113) is often and 
incorrectly used to compute voltage amplification even when the input 
and output resistances are unequal. This is a violation of the definition 
of the decibel that specifically required a power ratio. The error has 
perpetuated itself and expanded into other areas of incorrect usage 
until the significance of the decibel as a power ratio has been all but lost. 
This alarming development was noted by Horton 1, and recommen
dations were made for correction. As nearly as possible I will follow 
these recommendations with occasional reference to usual, if incorrect, 
practice. 

The incorrect usage of the decibel arose from the great desire to 
express relative magnitudes in terms of equivalent logarithmic units. 

1 J. W. Horton, "Fundamental Considerations Regarding the Use of Relative 
Magnitudes," Proc. l.R.E., vol. 40, April, 1952, pp. 440--444. 
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Essentially, the problem reduces to specifying a general formula for the 
use of relative magnitudes that uses a decimal system; such a general 
expression will include the decibel as a specific case of a power ratio. 

Horton proposes that a new and general unit, called the logit, be 
defined as follows: 

l logit = 10 log10 (1.25893) 

and number of logits = 10 log10 (relative magnitude) 

In other words, a I logit change in relative magnitude corresponds to a 
change of 1.25893 in numerical ratio. Clearly then, a decibel is simply 
a power logit. Voltage amplification can be expressed in terms of 
mlt logits as 

gain in volt logits = 10 log10 Eo 
Ei 

Similarly, a change in relative length can be expressed in length logits 
and so on for any type of units. 

It is proposed by Horton that the symbol l be used to designate a 
logit and the type of logit designated by a prefix. Thus: 

pl = power logit = decibel 
vl = volt logit 
il = current logit 
d{ = length logit 
ml'= mass logit 
The use of a new and as yet nonstandard unit is a little dangerous 

because it could lead to confusion in evaluating current, though 
incorrect, terminology. However, the main difficulty will arise in this 
book in specifying the voltage gain of vacuum tube amplifiers because it 
is generally given in decibels in present practice and computed from the 
formula 

voltage gain in db = 20 log10 E
0 
~-- INCORRECT 

Ei 

Because the voltage gain in volt logits is properly expressed as 

voltage gain in vl = IO log10 E
0 
~-- CORRECT 

Ei 

it is clear that the improper designations in decibels are easily converted 
to volt logits by simply dividing the number of decibels by 2. 
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TABLE 3 

PROPERTIES OF CLASS A VOLTAGE AMPLIFIERS 

Grounded cathode Grounded plate Grounded grid 

A = -g mZm with perfect 
bypassing 

A = -g:uzm with imper-
A= +g~Zm A= +g:zm 

feet bypassing 

gm= handbook value 

gm , gm gm+ 1/z11 

101 

gm= gm= 
gmz11 + 1 

gm= 
} + ZkgmZp + 1 1 + gmZin 

1 + Zk 
Zp + ZL Z11 +zL 

C;n = Cok + Cu/1 + Ao11) C;n=Cu11+Cuil-Aok) C;n= C11k+ C11il -A11k) 

Zo= 
ZL 

Zo =Zm l + Z/gmzv + 1) Zo =Zm 

Zp 

PROBLEMS 

3.1. Derive the equation given in Table 3 for the input capacitance of a 
grounded grid amplifier. 

3.2. Using the class A equivalent plate 
circuit of the circuit shown in figure (3.30), 
derive an equation for the transconduct
ance of the tube in terms of R v Rg, and Rx. 
Assume that proper positioning of the con-
trols is obtained when the headphone cur- HEAD 

PHONES 
rent is zero. Assume the headphone im-
pedance is zero and that Cc and Ck are 
perfect short circuits at the signal fre-
quency. You may also assume that r'P is 
much larger than R L" 

3.3. A typical triode, for which gm = 
1250 pmhos, r'P = 10,000 ohms, Rk = 600 Fig. 3.30. Circuit for measuring 
ohms, RL = 10,000 ohms, operates as a the gm of a vacuum tube. 
grounded cathode amplifier .with Rk un-
bypassed. Calculate the effective transconductance and amplification factor 
in this mode of operation. 
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3.4. Design a pentode cathode follower circuit to have an output impedance 

of 72 ohms. The data for the tube to be used are as follows: r 'P = 100,000 
ohms; Ecc = -2 v; Ed= 140 v; Id= 7 ma; Eb= 200 v; gm= 7700 
µmhos; lb= 21 ma. 

(a) Draw the circuit diagram of the amplifier. 
(b) Calculate the cathode bias resistor and screen dropping resistor. 
(c) Determine the values of the cathode and screen bypass capacitors 

if their reactance is not to exceed 1/10 of Rk and Rd at 20 c. 
(d) Calculate the amount of unbypassed cathode resistance required. 
( e) Calculate the voltage gain of the circuit and express it in volt logits. 

3.5. Calculate the input capacitance of the preceding circuit if C uk = 5.0 pµf, 

cup= 0.02 µµf, c'l)k = 8.o µµf. 

3.6. The circuit diagram in figure (3.31) shows a single tube phase splitting 
circuit that is frequently used with the push-pull amplifiers discussed in 

Cc i 
Rg I 

Fig. 3.31. Single tube phase splitting 
circuit. 

Fig. 3.32. Circuit for 
measuring the µ of a 
vacuum tube. 

chapter 11. It provides two outputs from a single input that are 180° out of 
phase with each other. Draw the class A equivalent circuit, neglecting all 
interelectrode capacitances and assuming that Cc is a signal frequency short 
circuit, and assuming r 'P to be much larger than RL and Rk. Derive the two 
voltage gain equations. State the condition necessary to make the voltage 
gains equal. 

3.7. The circuit diagram in figure (3.32) shows a method of measuring the 
voltage amplification factorµ of a vacuum tube. Proper operation is obtained 
when the signal current through the plate ammeter is zero. From the class A 
equivalent circuit derive an equation forµ in terms of RL and Ru. Neglect 
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interelectrode capacitances and assume that Ck and Cc appear as signal 
frequency short circuits. 

3.8. Construct the class A equivalent circuits of all the amplifiers given in 
figures (3.16) and (3.17). Indicate all interelectrode and distributed wiring 
capacitances. 

3.9. For a given pentode connected as a grounded cathode amplifier, the 
following data apply: Eb= 285 v; Ed = 220 v; Ecc = -5 v; lb= 2 ma; 
Id= 0.5 ma; RL = 5000ohms; k = 0.31; gm= 4000µmhos; rP = 
700,000 ohms; µs = 10; r8 = 8000 ohms. 

(a) Calculate the values required for the screen dropping resistor and 
cathode bias resistor. 

(b) Calculate the value required for Ew 
(c) Calculate the values for the bypass capacitors if they are to have a 

reactance of 1/10 the resistance they are bypassing at 40 c. 
(d) Calculate the effective transconductance at 20 c. 
(e) Assume the screen resistor is perfectly bypassed at 20 c and 

calculate the effective transconductance in the presence of cathode degenera
tion only. 

( f) Calculate the effective transconductance as in (e) if the amplifier 
is connected in the grounded grid configuration. 

3.10. The diagram of a reactance tube is shown in figure (13.22a). This 
circuit is frequently used in frequency modulated transmitters. The input 
capacitance of the circuit is strongly capacitive by an amount approximately 
given by Cin = g mRgCg. This is valid if the reactance of Cg is many times 
larger than Rg at the operating frequency. Assume that the radio frequency 
choke (RFC) is an open circuit and that Cc, Ck, and Cd are signal frequency 
short circuits. Derive the equation for Cin• How could Cin be made almost 
linearly dependent upon grid voltage? 



Chapter 4 

SINGLE STAGE VACUUM TUBE AMPLIFIERS 

Most of the amplifiers in this chapter are of the nondegenerative, 
grounded cathode type. Although these circuits are common in practice, 
it might appear to be an unwarranted restriction of coverage in a general 
study of amplifiers. However, it was shown in chapter 3 that the gain 
functions of cathode followers, grounded grid, and degenerative 
amplifiers could all be expressed in terms of the gain function of the 
corresponding nondegenerative grounded cathode amplifier. Therefore 
the results of chapter 3 can be used to extend the results of this chapter 
to cover nearly any vacuum tube circuit that might come up for 
discussion. 

The general gain function for any single vacuum tube amplifier was 
shown to be of the form 

A= ±g~Zm 
In essence, chapter 3 was a detailed study of the factors affecting g:n. 
Chapter 4 is concerned exclusively with various circuit configurations 
that govern the characteristics of Zm. 

4.1. Criteria for Comparing Amplifiers, Steady State 

From the material presented in chapter 3, and particularly from an 
examination of figures (3.16) and (3.17), it is clear that you have a wide 
variety of vacuum tube amplifier circuits at your disposal when 
designing an electronic system. At some point in your work you must 
make a choice between these circuits. For the selection to be made on 
a basis other than that of a purely random guess, criteria must exist for 
comparing the suitability of one circuit with that of another when a 
particular application is under consideration. 

Generally speaking, class A voltage amplifiers are used in appli
cations that permit the specification of various figures of merit for the 
circuits. These figures of merit provide the main criteria for comparing 
different amplifiers. However, the nature of the criteria so specified 
will obviously depend upon the performance characteristics of interest. 

For example, in a great many cases, amplifiers are required to have 
104 
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a certain voltage gain vs. frequency characteristic over a specified 
frequency range. The nature of the phase response as a function of 
frequency is also of interest. In these cases involving the steady state 
frequency response characteristics, the relative merits of different 
amplifiers could be judged from the shapes of the gain and phase shift 
characteristic curves. 

Fortunately, most amplifier circuits are of the minimum phase shift 

------~-----------
1 
I 

0.707 Ar '------------

QL---------'--------
0 (II H 111--+ 

(a) LOW PASS CHARACTERISTIC 

0.707Ar 

0 .__ ___ ...__ __ ....__ _______ _ 
111 L 1110 wH 

(b) BAND PASS CHARACTERISTIC 
Fig. 4.1. Steady state amplitude response characteristics. 

type. As a consequence, the phase response can be determined 
directly from the amplitude response, and it is not necessary to deter
mine a separate phase characteristic.1 Therefore in nearly all practical 
cases it is sufficient to know the amplitude response alone, and criteria 
for steady state amplifier performance can be established in terms of 
this curve. 

Two typical amplifier amplitude response characteristics are shown 
in figure (4.1), where B = bandwidth in radians/sec= wII - wL; 
w H = upper cutoff frequency in radians/sec; w L = lower cutoff 

1 D. E. Thomas, "Tables of Phase Associated With a Semi-Infinite Unit Slope 
of Attenuation," Bell System Tech. J., vol. 26, October, 1947, pp. 870-899. 
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frequency in radians/sec; Ar = reference gain or amplification. The 
two cutoff frequencies are nearly always defined as the frequencies at 

which the voltage gain is reduced to 1/V 2, or 0. 707, of the reference 
gain Ar- Alternatively, this corresponds to the frequencies at which the 
voltage gain is down 1.5 vl (or 3 db in incorrect notation) from the 
reference value. Frequencies wI-I and w L are frequently called the half 
power frequencies, but these are nearly always incorrect designations 
despite their widespread use. 

The bandwidth Bis defined as the frequency difference, expressed in 
radians, between the upper and lower cutoff frequencies. This is a 
general definition, but if the amplitude response exhibits peaks and dips 
it is necessary to stipulate that no dip shall be more than 1.5 vl below 
any peak between the two cutoff frequencies. 

Most amplifiers have a lower cutoff frequency. However, it is often 
so small compared with wI-I that the amplifier is essentially a low pass 
circuit. In such a case, 

B = WI-I - WL _.:_ WJI 

Therefore the bandwidth of a low pass amplifier is practically equal to 
the upper cutoff frequency. Thus the terms bandwidth and upper 
cutoff frequency are frequently used interchangeably when discussing 
low pass amplifiers. 

The other factor of interest noted on figure ( 4.1) and mentioned in 
the bandwidth definition, is the reference gain Ar of the amplifier. This 
is not always the maximum gain of the amplifier. In nearly every 
practical case the plate circuit contains reactive circuit elements. As a 
result, the voltage amplification function is nearly always frequency 
dependent and is a complex number. At some particular frequency the 
amplification function becomes a purely real or purely imaginary 
number. The particular value of the voltage gain at this frequency is 
designated in this text by the term reference gain. 

Amplifier performance is often described by the factors just defined. 
In other words, the over-all quality of a bandpass amplifier can be 
represented in a general way by an amplifier figure of merit defined as 
Fa = bandpass amplifier figure of merit = (reference gain) X (band
width), or 

(4.1) 

This is generally called the gain-bandwidth product. A similar figu're of 
merit is used for the low pass amplifier. That is, Fa= low pass 
amplifier figure of merit = (reference gain) X (upper cutoff frequency), 
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or Fa = Alo II ( 4.2) 

A high pass amplifier characteristic is shown in figure ( 4.2). In this 
case there is no commonly accepted figure of merit though one could be 
defined as F~ = high pass amplifier figure of merit = (reference gain)/ 
(lower cutoff frequency), or 

F'= Ar 
a OJL 

(4.3) 

This is the gain-cutoff frequency ratio. 

Ar --------------------

0.707Ar 

o~-------__. _____ _ 
wL w---... 

Fig. 4.2. High pass amplifier characteristic. 

4.2. Transient Response Criteria 

The figures of merit discussed in the preceding section are not 
suitable when the performance of pulse amplifiers is evaluated. Ampli
fiers of this type are found in radar and television receivers, facsimile, 
pulse-time modulation equipment, and many other devices used in 

LEADING 
EDGE 

FLAT TOP 

0 TIME---... T 

TRAILING 
EDGE 

Fig. 4.3. Standard rectangular pulse. 

communication and control services. In these cases the time response of 
the amplifier is of interest, and emphasis falls primarily upon the shape 
of the output signal relative to the input. 

It is convenient to establish one particular type of pulse as a standard, 
and it is customary to use a rectangular pulse of the form shown in 
figure (4.3). Actually it does not make any difference what pulse shapP 
is adopted as the standard, because the time response of a linear circuit 
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to any excitation is determined by the poles of the transfer function and 
not by the excitation. 

A comparison of the performance of one amplifier with that of 
another is generally based upon the nature of the response to the edges 
of the pulse and the response during the flat top of the pulse. The output 
of an amplifier resulting from the efforts of the circuit to reproduce an 
edge of a negative input pulse might appear as shown in figure (4.4). 
In addition to the final value of the output voltage from the amplifier, 

Emax 
en E0 
!::; 0.9E 0 0 
> 
t-
::, 
0.. 
t-
::, 
0 

___ f ~~~~OOT 

TIME--+ 

Fig. 4.4. Possible edge response. 

other important factors shown on the figure are the overshoot y, the 
rise time TR• and the delay time TD· 

The overshoot is simply a measure of the extent to which the output 
exceeds its limiting final value. It is usually expressed as the fractional 
or percentage overshoot as 

% Y = (emax _ t)lOO% 
ennal 

The rise time can be defined in a great many ways. One common 
specification is the 10-90% rise time.2 This is simply a measure of the 
time required for the response to rise from 10 % to 90 % of its final 
value. This appears to be the most generally used definition. There is 
nothing particularly significant about these percentages; 5-95 % could 
be used just as well, or any other combination of percentages adapted to 
the problem at hand. However, once a definition is specified, it should 
be used in all cases, otherwise comparative figures on the rise time will 
mean little. In any definition of this type, the actual transient response 
must be computed before the rise time can be determined. 

There is another definition of rise time that has some use at times. 

11 See Valley and Wallman, Vacuum Tube Amplifiers, vol. 18, Rad. Lab. Series, 
McGraw-Hill Book Co., Inc., New York, 1948, pp. 71-84. 
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It was developed by Elmore3 and applies only to amplifiers that do not 
overshoot. In these cases, Elmore's rise time can be calculated directly 
from the gain function of the amplifier without actually plotting the 
time response. Also, the resulting values for the rise time are 
fairly close to the values computed from the I 0-90 % definition. 

According to Elmore, the general gain function for any linear 
amplifier can be written in the general form 

( ) 
1 + ll1S + a~

2 + ... 
As=--------

1 + b1s + b~2 + ... (4.4) 

The rise time given by Elmore is 

TR= V21r[bi - ai + 2(a2 - b2)] (4.5) 

Because the leading edge of the amplifier output pulse is not vertical, 
but has some finite slope, it is difficult to establish any method of indi
cating the time delay of the pulse. Several schemes could be and have 
been used, but none have achieved widespread adoption so far as I 
know. Fortunately, there are many cases in which this delay time is not 
important, and the topic will not be treated here. In cases where it is 
significant, it will be largely up to the designer to define delay time in a 
way that will permit an evaluation of the comparative merits of various 
amplifiers for use in a projected application. 

It is clear that four factors are required to completely evaluate the 
edge response of one amplifier relative to another. These factors are: 
(1) reference gain Ar; (2) rise time TR; (3) delay time TD; (4) overshoot 
y. It is convenient to lump the first two factors together into a figure of 
merit la, called the gain/rise time ratio. That is 

gain Ar 
la= rise time= TR 

(4.6) 

In this book the rise time used in this figure of merit will be the 10-90% 
rise time. 

After the gain/rise time ratio has been given, the overshoot and time 
delay are specified separately. In some cases, figures of merit have been 
defined to include the gain, rise time, and overshoot. 4 

3 W. C. EJmore, "Transient Response of Damped Linear Networks With Par
ticu]ar Regard to Wideband Amplifiers," J. Appl. Phys., voJ. 19, January, 1948, 
pp. 55-62. 

4 R. C. Pa]mer and L. Mautner, "A New Figure of Merit For the Transient 
Response of Video Amplifiers," Proc. IRE, voJ. 37, September, 1949, pp. 
1073-1077. 
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High fidelity transmission of the flat top of the pulse is opposed by 
three main circuits: (1) cathode bias circuit; (2) screen bias circuit; 
(3) gridleak-coupling capacitor circuit. The effects produced by these 
three circuits cause the output from the amplifier to sag away from its 

Eo ______________ f ____ _ 
SAG 

0----------------
TIME--+ 

Fig. 4.5. Possible flat top response. 

initial value. The performance of the amplifier is then described in 
terms of the sag and this is used in evaluating performance. A typical 
flat top response is shown in figure (4.5). 

K 

,,;;: 

' ' ' ' ' INITIAL ', 
SLOPE•Ka~ 

' ' ' ' ' 
0 .__ _________ ........_ ____ _ 

0 TIME--+ I/a 

Fig. 4.6. Time response resulting in sag. 

All the factors contributing toward the total sag have the form of 
simple exponential decay transients. For example, assume that a certain 
circuit has a voltage transfer function of the form 

s 
A(s)=K--

s+a 

Now assume that the input, or driving function, is a unit step voltage, 
so that 

eit) = 1 for all t > 0 
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The Laplace transform of 1, according to pair number 1 in table 1, is 
1/s. Therefore the response function is 

Eo(s) = Eb)A(s) 
K s 1 

=-,--=K--
s s+a s+a 

The time response function eo(t) is the inverse transform of Eo(s). It is 
given by pair number 8 in table 1. Hence 

eo(t) = Ke-at 

This is plotted in figure ( 4.6). 

K _______________ l ___ _ 
SLOPE•-Ka SAG•KoT 

T « .!. a 

--- T •PULSE DURATION 

K(l-oT) 

0--------------
0 TIME---+ 

Fig. 4.7. Computation of sag; time scale from figure (4.6) greatly expanded. 

The initial slope of this function, which is the slope of the curve at 
t = 0, is the derivatiYe of eo(t) evaluated at t = 0. Therefore 

initial slope = -aK (4.7) 

If the time interval of interest T is much less than the time constant 
1/a the decay is nearly linear, with a slope equal to -aK over the interval 
T. This is illustrated in figure (4.7), which is the same as figure (4.6) 
except that the time scale has been expanded to show the interval of 
interest. Under this assumption you can see that the sag is given 
approximately by sag= KaT. 

. actual sag 
fractional sag = K = aT (4.8) 

4.3. Mutual Impedance 

The labor required to determine the mutual impedances of networks 
used in the plate circuits of grounded cathode amplifiers can be 
simplified considerably by deriving the equation for the mutual 
impedance of a general, unloaded, pi section. Nearly all plate circuit 
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impedance networks can be put into this form, or into the form of a 
single shunt impedance, or L section. The last two circuits are special 
cases of the general pi network. The equation to be derived merely 
provides a convenient method for systematizing the work following this 
section. 

Fig. 4.8. General unloaded pi 
network. 

Consider the general pi network 
shown in figure (4.8). The Kirchhoff 
voltage loop and current node equa
tions are 

E = /1Z 1 = /2(Z2 + Z3) (4.9) 

I= 11 + /2 (4.10) 
Solve for the two branch currents 
from equation ( 4.9). 

E 
l2=--

Z2+Za 
According to equation (4.10) the total current is 

I= E (_!__ +-1-) 
Z1 Z2 + Z3 

(4.11) 

and the output voltage E0 is 

(4.12) 

Therefore, the mutual impedance is the ratio of this output voltage to 
the input current or 

E0 Z2/(Z2 + Z3) z = - = -------
m I 1/Z1 + 1/(Z2 + Za) 

Obtain the common denominator of this expression and then simplify. 
The result is 

(4.13) 

This is the general equation for the mutual impedance of an unloaded 
pi section, and will be used as the starting point in all the succeeding 
work connected with mutual impedance calculations. 

The use of the preceding equation is conveniently illustrated by an 
example. Consider the high pass circuit shown in figure ( 4.9). By 
analogy to figure ( 4.8) you can see that 
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Therefore the mutual impedance in terms of complex frequency is 

) 
R1Rg R1Rgs/(R1 + Rg) 

Z (s =------
m (R1 + Rg) + (1/sCc) s + l/[(R1 + Rg)Cc 

Now define some auxiliary terms as follows: 

R - R1Rg . w - 1 (4.14) 
- R1 + Rg' 1 

- (R1 + Rg)Cc 

Consequently, the mutual impedance of the high pass network can 
be written 

(4.15) 

Fig. 4.9. High pass circuit. Fig. 4.10. Shunt peaking circuit. 

One more example should be sufficient to illustrate the procedure. 
Consider a two-terminal network composed of shunt and series elements. 
In such a case the driving point impedance and mutual impedance are 
identically the same. The shunt peaking circuit shown in figure ( 4.10) 
is a typical case. 

For the circuit diagram of figure (4.10), 

Z 1(s) = RL + sLb; Z 2(s) = I/sCT; Z3(s) = 0 

Therefore the mutual impedance is 

Z (s) = (RL + sLb) (1/sC1,) 

m RL + sLb + (1/sCT) 
(4.16) 

Rearrange terms slightly so that the mutual impedance is 

Z (s) = _1 . s + R LI Lb 
m Cp s2 + RLs/Lb + 1/LbCT 

Define two parameters as follows: 

1 
~=--

RLCT 
(4.17) 

Lb W2Lb . . 
m = -2 - = -- = c1rcmt Q at W2 

RLCT RL 
(4.18) 
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Therefore the mutual impedance can be expressed as 

1 S + W2/m 
Z (s) - · -----

m - Cp s2 + w2s/m + w:/m 
(4.19) 

or 
1 + ms/ro2 

Zm(s) = R L I + s/ro2 + ms2/w~ (4.20) 

4.4. Resistance Coupled Amplifier, Equivalent Circuits 
The circuit diagram of a grounded cathode resistance coupled 

amplifier is shown in figure (4.11). In the most general case the output 

l t ..,..c; E 
I o 

I ! 
Fig. 4.11. Resistance coupled amplifier. 

of the amplifier is connected to the input of some other circuit, another 
amplifier for example. The input impedance of the loading circuit is 
usually predominantly capacitive; therefore a capacitance Ci is shown 
across the output terminals of the amplifier in figure (4.11) to account 
for this effect. 

The equivalent plate circuit of the amplifier is constructed by the 
methods given in chapter 3. Replace the tube by its current source 
equivalent, assume perfect bypassing, and that the internal impedance 
of the power supply is either negligible or is included with R v the load 
resistance. As a result, the equivalent plate circuit of the amplifier 
appears in the form shown in figure (4.12). The dotted capacitances 
account for the distributed wiring capacitance Cw, the output capaci
tance C0 of the tube, and the input capacitance Ci of the succeeding 
circuit. 

Figure (4.12) is too complicated to be analyzed conveniently by a 
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direct evaluation of the mutual impedance. Instead, it is usually 
simplified into three different forms. 

For example, assume that the frequency of the input signal is so 
high that the reactance of the coupling condenser Cc is very small 
compared with the resistance of the grid leak R(I. Hence Cc can be 

I I Cc 
1 I t I .L .L I 

TCw T I .J. RL Rg ..L c, Eo ,co I I 
I L-l-.J -r 

' 
I 

I I I I 

Fig. 4.12. Equivalent plate circuit of a resistance coupled amplifier. 

replaced by a short circuit and the equivalent plate circuit simplified as 
shown in figure (4.13). This is a simple circuit, and you can easily 
calculate the mutual impedance for this high frequency case. 

The circuit in figure ( 4.13) is also useful in determining the transient 
edge response of the amplifier when the input signal is a standard 

Co c, t 
Eo 

+ 
REDUCES TO 

t 
Eo 

• Fig. 4.13. High frequency and edge response equivalent circuit for a 
resistance coupled amplifier. 

rectangular pulse. As the output voltage attempts to rise in response to 
the sudden change in grid voltage e0 , the shunt capacitances oppose the 
increase in output voltage, delaying its rise towards its final value. 
Therefore the high frequency equivalent circuit is also used to determine 
the transient edge response of the amplifier. 

Another special form of the general equivalent circuit can be derived 
by assuming that the signal frequency is so low that the shunting effects 
of the three shunt capacitances are negligible compared with the effects 
produced by the three shunt resistances; thus the shunt capacitances 
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can be treated as open circuits and omitted from the equivalent circuit. 
The coupling capacitor Cc now has a reactance of the same order of 
magnitude as the grid leak Ru. Hence the low frequency equivalent 
circuit has the form shown in figure (4.14). The mutual impedance of 
this circuit was computed as an example in section (4.3) and the result 
is given in equation ( 4.15). 

Cc 

t REDUCES cc 

RL Ro 
TO 

~ Ro rp Eo R1" p+ L 

~ gmEo 

Fig. 4.14. Resistance coupled amplifier equivalent circuit for low frequency 
and flat top response. 

Eo 

t 

This equivalent circuit is also useful in evaluating the transient 
response characteristics. After the shunt capacitance is fully charged 
during the initial edge response transient, the coupling capacitor 
commences charging. The extent to which the flat top of the pulse is 
faithfully delivered to the output terminals depends upon the rate of 

REDUCES 
TO 

Fig. 4.15. Mid-frequency equivalent circuit of a resistance coupled 
amplifier. 

charge of the coupling capacitor. If the rate is high (rapid charging), 
the pulse top sags away from its initial value. Therefore this low 
frequency equivalent circuit is useful in investigating the flat top response 
of the amplifier when the signal input is a standard rectangular pulse. 

The third and final equivalent circuit can be derived by assuming 
that the frequency of the input signal is so high that the reactance of 
the coupling capacitor is virtually zero. At the same time, the frequency 
is assumed to be so low that the reactance of the shunt capacitance 
approaches that of an open circuit. The resulting equivalent circuit 
for this mid-frequency condition is also used to calculate the reference 
gain for the transient response. The circuit is shown in figure (4.15). 

The mid-frequency equivalent circuit does not contain any reactive 
elements, and the gain calculated from this circuit is called the reference 
gain Ar. 
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4.5. Resistance Coupled Amplifier, Performance 
Characteristics 

The three equivalent circuits of a resistance coupled amplifier were 
derived in section (4.4). The mutual impedances for each of these three 
circuits are computed with the aid of equation (4.13), the general 
equation for the mutual impedance of an unloaded pi section. Simply 
multiply the mutual impedances by -gm and the gain equation is 
obtained. The results of this process are summarized in table 4. You 
should be able to fill in the algebraic details without any difficulty. 

TABLE 4 
RESPONSE OF RESISTANCE COUPLED AMPLIFIERS 

Edge response Final value Flat top response 

High frequency response Mid-frequency response Low frequency response 

gm 1 s 
A(s)= -- · -- A(s) = -gmR --

C,l' S + W2 s+w1 

1 
A(s) = -gmR 

1 
A(s) = -gmR -- A(s) = -gmR ---

1 + s/w2 1 + W1/S 

where where where 
1 1 1 

CO2=-
RC1' 

R= 
1/r"' + 1/RL + l/R 11 

W1= 
(R1 + R 11)Cc 

c,1' = Co + Cw + Ci 1 
R1= 

1/r"' + 1/RL 

The poJe:.-zero diagrams corresponding to these gain functions are 
shown in figure ( 4.16). Both the high and low frequency gain functions 
have single poles so the transient responses of the two circuits are 
simple exponential functions. 

Many of the factors used to specify the various performance criteria 
can now be determined. For example, from table 4 it is known that the 
reference gain of the amplifier in all cases is the mid-frequency value 

(4.21) 

The edge response function has only a single pole, so the overshoot 
y must be zero. 

Because the amplifier does not overshoot, the rise time for the edge 
response can be calculated from the general gain function, using 
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Elmore's definition. The gain function coefficients are a1 = 0; a2 = 0; 
b1 = 1/ro2 ; b2 = 0. Therefore Elmore's rise time can be calculated from 

or 

TR= V27T[bi - ar + 2(a2 - h2)l 

2.51 
TR= 2.5lRCp = -

W2 
(4.22) 

If you actually plot the transient response as shown in figure ( 4.17), 
you will find that the 10-90 % rise time is 

TR = 2.2RC T ( 4.23) 

-C112 

I POLE 
NO ZERO 

' (II 

HIGH FREQUENCY ANO 
EDGE RESPONSE 

NO POLE 
NO ZERO 
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CASE 

' (II 

tr 
-----o-

1 
-C111 

I POLE 
I ZERO 
LOW FREQUENCY 
AND FLAT TOP 
RESPONSE 

Fig. 4.16. Pole-zero diagrams for the gain function of a 
resistance coupled amplifier. 

The cutoff frequencies are calculated directly from the steady state 
gain functions. Substitute jw for s in the gain equations of table 4 
and write 

A ('w) _ -gmR _ gmR () 
HJ - I + jro/ro2 - VI + (ro/ro2)2L..!.!_ 

(4.24) 

for the high frequency case and 

AL( 'ro) = -gmR = gmR () (4 25) 
J I+ ro1/jro VI+ (ro1/ro)2~ · 

for the low frequency case. At the cutoff frequencies, wH and ro L, the 
gain will be down to 

(4.26) 
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Thus at these frequencies the radicals in equations (4.24) and (4.25) 
must be equal to V2, so that 

I + e:r = 2 and I + (:J = 2 

Solve these two equations for w H and w L; the results are 

1- I .0 
::, 
a. 
I
::, 
0 

~ 0.5 
l
e( 
..J 
l&J 
a: 

o.o 
'J 

I 
0 

0 

1 
wH = W2 = RCT = upper cutoff frequency 

1 
w L = w1 = (R R )C = lower cutoff frequency 

1 + g C 

---~.,.. , 
r 

,. Ar ( 1_,-tlRCT) , 
I/ 

I 

RCT 2RCr 

---

---

1- 1.0 
::, 
a. 
I
::, 
0 
l&J 
~ 0.5 
l
e( 
..J 
l&J 
a: 

0.0 
3RCr 0 

--.... -... 

Art-wit 

I 
I 
I 

T 2T 

(4.27) 

(4.28) 
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Fig. 4.17. Response characteristics of a resistance coupled amplifier. 

According to the equation for the sag, as developed in section ( 4.2), 
sag = aT, where a = time constant and T = pulse duration. In the 
resistance coupled amplifier the sag produced by the gridleak-coupling 
capacitor circuit is 

T 
sag= w1T = ---- (4.29) 

(R1 + Rg)Cc 
The factors computed in this section, along with the corresponding 

figures of merit, are tabulated in table 5. The actual response charac
teristics are given in figure ( 4.17). 
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TABLE 5 

RESISTANCE COUPLED AMPLIFIER PERFORMANCE DATA 

Factor Symbol Value 

Reference gain Ar gmR 

1 
Upper cutoff frequency W2 -

RCT 

1 
Lower cutoff frequency W1 

(R1 + Rr,)Cc 

Overshoot y 0 

Elmore's rise time TR 2.51RCT 

10-90% rise time TR 2.2RCT 

Gain-bandwidth product Fa 
gm 

CT 

Gain/rise time ratio [a 
gm 

2.2CT 

Sag sag 
T 

(R1 + Rr,)Cc 

4.6. Figure of Merit for Tubes 

[Sec. 4.6 

Equation 

4.21 

4.27 

4.28 

4.22 

4.23 

4.29 

If you are to design an amplifier you must take two preliminary 
steps before any actual computations are made. First, you must 
determine the kind of amplifier circuit to be used. The problem is more 
acute and your selection has the greater effect when the high frequency 
and edge response characteristics of the amplifier are of interest. In 
this case you should select a tube and circuit to provide a large enough 
figure of merit to meet the design requirements. The selection of the 
tube to be used is the second preliminary step. 

From table 5, which listed the performance data for resistance 
coupled amplifiers, you can see that both the gain-bandwidth product 
and gain/rise time ratio depend upon the transconductance gm of the 
tube and the total shunt capacitance CT of the amplifier plate circuit. 
Except for the distributed wiring capacitances, the ratio of gm to CT 
is largely governed by the tube. It is true that the wiring capacitance 
may account for a large percentage of the total shunt capacitance, but 
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the variation in wiring capacitance for the various interstage networks 
that might be used is not large compared with the total capacitance 
present. 

Consequently, the high frequency and edge response figures of merit 
for the amplifier might be expressed as 

F =kgm 
a ct 

The first factor, k, is a constant, and is determined mainly by the 
amplifier circuit. The second factor is governed primarily by the tube, 
where Ct refers to the tube interelectrode capacitances. Such a break
down of the figure of merit is based upon the assumption just discussed, 
that the variation in shunt capacitance from circuit to circuit is 
relatively small even though the total wiring capacitance may be 
quite large. 

To aid you in selecting the proper tube for a given application, the 
second factor, gm/Ct, is defined as the tube figure of merit Ft. Values 
of this figure for a number of different tubes selected at random from 
the tube manual are given in table 6. The Miller effect was approxi-

TABLE 6 

FIGURES OF MERIT FOR REPRESENTATIVE TUBES 

Tube cgk or Ci cgp c'Pk or Co gm gm/Ct 
type Kind (µµf) (µµf) (µµf) (µmhos) (106rad/sec) 

6AB7 pentode 8.0 0.015 5.0 5000 385 
6AC7 pentode 11.0 0.015 5.0 9000 562 
6AG7 pentode 12.5 0.06 7.5 7700 385 
6AK5 pentode 4.0 0.02 2.8 4300 630 
6C6 pentode 5.0 0.007 6.5 1225 107 
6J7 pentode 7.0 0.005 12.0 1225 61 
6SJ7 pentode 6.0 0.005 7.0 1650 127 
6SK7 pentode 6.0 0.003 7.0 2000 154 
6U7 pentode 5.0 0.007 9.0 1600 114 
6C5G triode 4.4 2.2 12.0 2000 52 
6J5 triode 3.4 3.4 3.6 2600 63 
6K5 triode 2.4 2.0 3.6 1400 54 

mated in these calculations by assuming that the gain of the stage 
following the one for which the calculation was made was 10. This 
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has little effect when pentodes are involved, but the effect is quite 
pronounced for triodes. Thus the triode figures of merit can be con
sidered to be only representative of what might actually be obtained. 

4.7. Design of Resistance Coupled Amplifiers 
Generally, you should make the shunt capacitance CT of the amplifier 

as small as possible, because this increases the upper cutoff frequency 
w2, decreases the rise time TR, and thereby increases the amplifier 
figure of merit. All these effects are usually desirable although there 
are cases where they are minor considerations. 

The shunt capacitance can be minimized in several ways. The tube 
capacitances can be reduced by proper tube selection, and where 
possible, by using pentodes in preference to triodes. The wiring 
capacitance can be reduced by making all signal leads as short as 
possible, locating the plate load resistor, coupling capacitor, and 
gridleak away from the chassis, and by locating the bypass capacitors 
as close to the tube socket as possible. 

Little advantage is gained from the high frequency and edge response 
viewpoints by reducing R. Although such a reduction increases the 
upper cutoff frequency and reduces the rise time, these advantages are 
exactly offset by a decrease in the reference gain. In other words, the 
amplifier figure of merit is not dependent upon R. In some cases it 
might be desirable to reduce the value of w2 by increasing R to get more 
gain. This is typical in audio amplifiers. 

It is generally desirable, though not always, to use high trans
conductance tubes, because this results in larger figures of merit. 
However, high gm tubes are more susceptible to cathode degeneration, 
and you must be careful that this does not overcome the anticipated 
gain improvement. 

It is fairly customary to use the largest possible values for the gridleak 
resistor and coupling capacitor to reduce the sag and the lower cutoff 
frequency. A steady component of grid current flows at all times for 
three main reasons: ( 1) primary and secondary grid emission; 
(2) ionization of residual gases; (3) leakage resistance. Therefore the 
manufacturer of the tube generally specifies a maximum value for the 
grid leak resistor. Values of Ru in excess of this recommended value 
may cause a change in the operating point of the tube because of the 
change in grid bias brought about by the increased voltage drop across 
the grid leak. This might affect operation adversely. 

The coupling capacitor is usually selected to give a certain sag or 
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lower cutoff frequency w v However, it cannot be made indefinitely 
larger for two reasons: 

(1) The leakage resistance of the coupling capacitor increases as the 
capacitance is increased; therefore large values for the coupling capaci
tance can cause a change in grid bias as a result of d-c coupling through 
the leakage resistance. 

(2) An increase in capacitance of the coupling capacitor is usually 
accompanied by an increase in its physical size if the same voltage 
rating is maintained. This, in turn, increases the wiring capacitance to 
ground and reduces the amplifier figure of merit. 

The procedure for designing a resistance coupled amplifier can be 
summarized in a very general way as follows: 

(1) Select a tube. The choice will depend upon a great many factors 
such as ruggedness, cost, uniformity of characteristics, as well as its 
electrical characteristics. If the high frequency and edge response 
characteristics are of interest, the tube figure of merit can be used as 
one basis for selection. 

(2) Use the recommended value for Rg given by the tube 
manufacturer. 

(3) The plate load resistor can be calculated from the rise time or 
upper cutoff frequency requirements. 

( 4) The coupling capacitor is determined from the specifications 
concerning the allowable sag or lower cutoff frequency. 

(5) The cathode and screen resistors are determined from the bias 
requirements after the plate supply voltage has been found. 

(6) The bypass capacitors are determined from the allowable sag 
and lower cutoff frequency requirements. 

(7) The plate power supply voltage required is found by writing the 
Kirchhoff voltage loop equation around the plate circuit. 

4.8. Shunt Peaked Video Amplifier 
The resistance coupled amplifier discussed in the preceding sections 

is extensively used in voltage amplifiers. However, there are areas of 
use in which it will not provide a sufficiently wide bandwidth for a given 
value of reference gain, regardless of the tube used. The gain-bandwidth 
product and gain/rise time ratio of a resistance coupled amplifier are 
comparatively small, and this sets an upper limit on the high frequency 
and edge response characteristics obtainable. When this situation 
exists, the only thing left is to try other circuits that might have better 
performance characteristics. 
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Low pass amplifiers having upper cutoff frequencies in the megacycle 
range are called video amplifiers. The term developed because the early 
work on this type of amplifier was directed toward the amplification of 
the video, or picture, signal in television systems. The term persists 
even though the amplifier may be used in a system having little 
resemblance to television. 

Fig. 4.18. Shunt peaked video amplifier. 

Resistance coupled amplifiers can be, and are, used as video amplifiers. 
However, the relatively small values for the figure of merit restricts their 
use considerably and other kinds of amplifiers are often used. 

There are many circuits with figures of merit exceeding those of 
resistance coupled amplifiers. The simplest such circuit is the shunt 
peaked, or shunt compensated, amplifier. The circuit diagram of such 
an amplifier is shown in figure (4.18). This is a conventional resistance 
coupled amplifier with the addition of a coil Lb in series with the plate 
load resistor R L· This coil is called the peaking inductor. 

Pentodes are nearly always used in shunt peaked amplifiers because 
they have much larger figures of merit than triodes. Because this new 
amplifier is to provide a larger figure of merit, you can see that tubes 
with high figures of merit should be used. 

The equivalent plate circuit of the amplifier is constructed by the 
method outlined in the discussion of resistance coupled amplifiers. 
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The result, including the effects of interelectrode and shunt capacitances, 
appears as shown in figure (4.19). 

For low and medium frequencies, the reactance of the peaking 
inductance Lb is negligible in comparison with the resistance of R L· 

Cc 

RL 
Cw 

rP Rg 
Co Ci 

Lb 

Fig. 4.19. Equivalent plate circuit of a shunt peaked video amplifier. 

Therefore the coil can be replaced by a short circuit at these frequencies, 
and the circuit reduces to the same equivalent circuit as that for the 
resistance coupled amplifier in the low and mid-frequency ranges. 

rpRg 
R2--

rp+Rg 

(a) FIRST EQUIVALENT CIRCUIT 

( b) SECOND EQUIVALENT CIRCUIT 

Fig. 4.20. High frequency and edge response equivalent circuits of a shunt 
peaked amplifier. 

Thus the low frequency, mid-frequency, and flat top response charac
teristics of this amplifier are precisely the same as those of the resistance 
coupled amplifier and need not be discussed further. The only change of 
any interest lies in the nearly exclusive use of pentodes for shunt peaked 
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amplifiers, and this does not change the form of the equations previously 
derived for the resistance coupled amplifier. 

The main factors of interest are the high frequency and edge response 
characteristics of the circuit. If the operating frequency is high enough 
so that the reactance of the coupling capacitor is practically zero, the 
equivalent plate circuit of figure (4.20a) is obtained from figure (4.19). 
The circuit can be further simplified as shown in figure (4.20b) by 
combining r 1> and Ru into an equivalent resistance R2• 

The mutual impedance of this network is easily written as the parallel 
combination of R2, 1/sCT, and (RL + sLb). After a little manipulation 
you should have no trouble in writing 

Z (s) = _I . s + RLLb (4.30) 
m CT s2 + (RL/Lb + I/R2CT)s +(I+ RLfR2)/LbCT 

Z ( ) _ R I + sLb/ R L 
or ms - I + s[RCT + Lb/(R2 + RL)] + s2LbRCT/ RL 

(4.31) 

R2RL J 
where R = --- - -------

R2 + RL 1/rP + If RL + If Ru 
(4.32) 

(4.33) 

where w2 = upper cutoff frequency of the amplifier without Lb. Now 
define a new term, to be called the peaking parameter m, as 

m __ w2Lb __ Q 
RL 

(4.34) 

of R L and Lb at the frequency w2• Therefore the preceding equations can 
be written in terms of this peaking parameter as 

Zm(s) =_I_. s + w2/m 
CT s2 + (w2/m + Rw2/R2)s + w:/m 

(4.35) 

Zm(s) = R I + ms/w2 
1 + (l/w2 + mR/w2R2)s + ms2/w2 

(4.36) 

In a great many cases the following inequality exists: 

R2 R2 
m~-=I+-

R RL 
(4.37) 

When this inequality is valid, the preceding equations for the mutual 
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impedance reduce to 

Z ( ) _:___ _1 . S + W2/m 
m S 2 2 

Cp s + w2s/m + w2/m 
(4.38) 

Z (s) _:___ R 1 + ms/w2 
m 1 + s/w2 + ms2/w: 

(4.39) 

The approximation is valid in a large number of cases and the simplified 
forms for the impedance function will be used in all the subsequent 
work in this text. However, cases may arise where the assumption is 
invalid, so you should be careful in using formulas and graphs developed 
for the approximate case. 

The gain function of the amplifier is quickly obtained by the simple 
process of multiplying the impedance functions by -gm• The basic 
information necessary to evaluate the various performance charac
teristics of the amplifier is now on hand. 

4.9. Shunt Peaked Amplifier, Performance Characteristics 
The transient response characteristics of the shunt peaked amplifier 

are governed by the locations of the poles of the amplifier transfer 
function. The poles are equal to the roots of the denominator of 
equation (4.38), or the roots of 

W2 (JJ~ 

s2 +-s +-= 0 
m m 

By the quadratic formula, the roots of this equation are 

-(JJ2 J ( W2 ) 
2 

W~ 
s1•2 = 2m ± 2m - m 

Factor out the common w2/2m factor and write 

W2 ~ I 
s1,2 = -

2
m (1 ± v 1 - 4m) (4.41) 

If you examine equation (4.41) you will see that the poles will be real 
and different as long as the peaking parameter m is less than 0.25. In 
this case the transient response is overdamped and does not exhibit 
overshoot. 

When the peaking parameter is exactly equal to 0.25, a second-order 
pole exists at s = -w2/2m. Therefore the time response is critically 
damped and still does not overshoot. 
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However, if m is greater than 0.25, the two poles are complex 
conjugates; the response is then oscillatory and exhibits overshoot. 

In every case there is a zero at s = -w2/m. 
The pole-zero diagrams and corresponding transient response 

characteristics for three different values of the peaking parameter are 
shown in figure ( 4.21 ). 

-~ 
m 
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t 
~ ~ I 

tT 
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ORDER 

-~ 
2m 

m =0.25 

tT 

--------=-----

I ~ _* ____ _ 

-~2 
2m 

~------
' 
m >0.25 

tT 

-------- t - -------- t - ------- t -
Fig. 4.21. Edge response characteristics of a shunt peaked amplifier when 

driven by a negative going stop function. 

There is no overshoot as long as the peaking parameter is equal to 
or less than 0.25. Therefore Elmore's rise time formula can be applied 
in these few special cases. The most effective method of determining 
the rise time is actually to calculate the transient response of the circuit 
for a number of different values of the peaking parameter and then 
compute the I 0-90 % rise time from plots of the time response. The 
overshoot can be determined at the same time. This can hardly be 
called convenient, but it is about the only procedure that can 
be followed. 

A number of responses for various values of the peaking parameter 
are shown in figure ( 4.22). From this, the data are taken to plot the 
curves in figure (4.23). This figure shows the rise time and overshoot 
as a function of the peaking parameter. 

Because the overshoot becomes excessive for most of the usual 
applications when the peaking parameter exceeds 0.6, values of the 
overshoot and rise time are not plotted beyond this point. 

From figure ( 4.23) you can see that the rise time of a shunt peaked 
amplifier can be made much less than that of a resistance coupled 
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amplifier. A value of m of about 0.55 will cut the rise time to half of 
that of a resistance coupled amplifier. Of course, this is accompanied 
by an overshoot of about 9 %, and this may be excessive. However, as 
long as the peaking parameter has a value of 0.3 to 0.4, the rise time 
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Fig. 4.22. Transient response of a shunt peaked video amplifier. (Courtesy 
R. C. Palmer, Allen B. DuMont Labs.) 

is considerably less than for a resistance coupled amplifier, and the 
overshoot is only about 2 % or less. Hence a shunt peaked amplifier can 
be designed to have a superior high frequency and edge response charac
teristic. The edge response superiority over the resistance coupled 
amplifier is clear from figure (4.23), but the steady state high frequency 
response improvement remains to be demonstrated. 

The upper cutoff frequency of the shunt peaked amplifier, corre
sponding to any given value for the peaking parameter, can be obtained 
fairly easily. The general form of the mutual impedance was given in 
equation (4.39) as a ratio of two polynomials in s. Multiply this 
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function by -gm so that the amplifier gain function is 

I+ ms/w2 
A(s) = -gmRL I + / + 2/ 2 (4.42) s w2 ms w

2 

This can be rewritten in terms of general coefficients as 

J + a1s 
A(s) = -gmRL I + b1s + b~2 (4.43) 
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In terms of the steady state frequency jw, this reduces to 

. 1 + jwa1 
A(Jw) = -gmRL l b 2 + . b (4.44) 

- 2W ]W 1 

The magnitude of the amplifier gain function can then be written 

I ( 'w) I - R J 1 + (wa2)2 
A J - gm L (1 - b~2)2 + (b1w)2 (4.45) 

At zero frequency, the gain of the amplifier is Ar= gmRL- At the 
cutoff frequency w H, the gain must become 0. 707 Ar. Because 0. 707 is 
equal to 1/V 2, then when the operating frequency is equal to the cutoff 
frequency, the equation for the gain reduces to 

1 1 + (a1wH)2 
-

2 (1 - b2w~)2 + (b1wH)2 
(4.46) 

Carry out all multiplications and collect like powers of wH. A quadratic 
equation of the following form should result: 

wt _ 2b2 + 2a~ - b~ w~ _ _!_ = 0 b: b; 
4 2 1 

or wH - XwII - - = 0 b: 
You can solve this for the upper cutoff frequency, so that 

Ix Jx2 
1 

WH = I\ 2 + 4 + ij (4.47) 

This is the general equation for the upper cutoff frequency where 

X = 2b2 + 2a~ - b~ 

b: 
and a1 = m/w2 ; b1 = l/w2 ; b2 = m/w! 

When the values for all these coefficients are substituted into equation 
(4.47), the result is 

wH = 0.707:
2 
J2m + 2m

2 
- 1 + j(2m + 2m2 

- 1)2 + 4m2 

A plot of this equation in terms of m and the parameter w2 appears in 
figure (4.24). It should be noted that w2 is the upper cutoff frequency 
of the amplifier before the peaking coil is added to the circuit. Hence 
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it is the same as the wll of a resistance coupled amplifier having the 
same tube, R v and CT• Figure ( 4.24) makes it clear that extensive 
improvements in the upper cutoff frequency can be made through the 
use of a peaking inductance. However, it appears that there is little 
advantage, as far as bandwidth is concerned, in making the peaking 
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Fig. 4.24. Upper cutoff frequency of a shunt peaked amplifier as a function 
of the peaking parameter. 

parameter much larger than about 0.5, because there is little increase 
in the upper cutoff frequency beyond this point. 

This improvement in the upper cutoff frequency was accomplished 
without any reduction in the reference gain. Hence, the gain-bandwidth 
product is increased in the same degree as the upper cutoff frequency. 
From figure ( 4.24) it is clear that the figure of merit of a shunt peaked 
amplifier can be very nearly twice that of a corresponding resistance 
coupled amplifier. 

The procedure for designing a shunt peaked amplifier can be 
summarized in a general way as follows: 

(I) Select a tube with a high enough figure of merit to satisfy the 
design requirements. 

(2) Evaluate CT· 
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(3) Calculate the load resistance required to give the necessary 

reference gain. 
(4) Determine the proper value for the peaking parameter by com

paring the design requirements against figures ( 4.23) and ( 4.24). 
(5) Calculate the peaking inductance Lb= mR1,CT. 
(6) The remainder of the circuit is designed as a resistance coupled 

amplifier. 

4.10. Series Peaked Amplifier, Gain Equation 
As long as two-terminal networks are used in the plate circuits of 

video amplifiers, the shunt peaked amplifier provides about the best 
high frequency and edge response characteristics available. However, 

Ebb 

L 

Fig. 4.25. Series peaked video amplifier. 

if the simplicity of the shunt peaked circuit is without particular 
advantage and if more complex three- or four-terminal networks are 
permissible, it is possible to develop· amplifiers with higher figures of 
merit than were obtained from the shunt peaked amplifier. 

One of the simplest three-terminal low pass networks used in amplifier 
plate circuits is obtained by inserting an inductance in series with the 
coupling capacitor of an otherwise conventional resistance coupled 
amplifier. The resulting circuit, shown in figure ( 4.25), is called a series 
peaked video amplifier. 

The reactance of the peaking inductance is negligible, compared to 
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the resistance of R L, in the middle and low frequency ranges. Therefore 
the equivalent circuits in these frequency ranges are exactly the same 
as those for the resistance coupled amplifier and no further discussion 
is required. 

The reference gain is given, as in all previous cases, by the general 
equation 

where 
1 

R=--------
1/rp + If RL + If Ru 

(4.48) 

(4.49) 

Because a pentode is nearly always used in series peaked video amplifiers, 

r1>• RL and Ru• RL (4.50) 

Consequently, the reference gain is approximately 

Ar..:_ gmRL (4.51) 

The high frequency and edge response characteristics are calculated 
from the high frequency equivalent circuit shown in figure ( 4.26). 

r-------1 

R • -1-1 
I-+rp RL 

L ______ .J 

Fig. 4.26. High frequency and edge response equivalent circuit of a series 
peaked amplifier. 

This circuit was constructed by replacing the coupling capacitor with 
a short circuit, combining r 1> and R L to form an equivalent resistor R1, 

and showing the output and distributed capacitances together with 
whatever input capacitance may be associated with the following 
amplifier stage. The capacitance C0 includes the output capacitance of 
the tube plus the distributed wiring capacitance on the plate side of 
the peaking coil. Capacitance Ci includes the input capacitance of the 
circuit connected across the output terminals of the amplifier plus 
the distributed wiring capacitance on the output side of the peaking 
inductance L. 

The voltage amplification can now be evaluated in terms of the mutual 
impedance of this passive network. According to the general equation 



Sec. 4.10] Single Stage Vacuum Tube Amplifiers 135 
for the mutual impedance of an unloaded pi section, 

z = Z1Z2 
m Z1 +z2 +Zs 

(4.52) 

For the equivalent plate circuit in figure (4.26), these impedances have 
the following values: 

Z1(s) = R1(1/sCo) = R1 
R1 + l/sC0 s(R1C0 ) + 1 

(4.53) 

Zls) = Ru(l/sCi) = Ru 
Ru + 1/sCi s(RuCi) + 1 

(4.54) 

Zs(s) = sL (4.55) 

In nearly all practical cases of interest, the magnitude of the gridleak 
resistance Ru is very large compared with the reactance of the shunt 
capacitance Ci. Therefore 

(4.56) 

Substitute equations (4.53), (4.55), and (4.56) into the general 
equation for the mutual impedance; multiply the result by -gm, and 
the gain function is 

A(.s)....:... _ m [R1/(sR1C0 + 1)] (1/sCi) 
g R1/(sR1C

0 
+ I)+ 1/sCi + sL (4,S?) 

This equation can be put into a more convenient form; obtain the 
common denominator and collect like powers of s. The result is then 

l/LC0 Ci 
A(s) = -gm s3 + (l/R1C

0
)s2 + (l/LC

0 
+ 1/LCi)s + (1/LCt) (l/R1Co) 

(4.58) 

In some cases the input capacitance Ci is approximately twice as 
large as the output capacitance C0 • In other cases they are approxi
mately equal, and sometimes the relationship is just the reverse. 
However, the initial statement is possibly the most common. The 
capacitance ratio is affected somewhat by the position of the coupling 
capacitor relative to the peaking coil. 

Assume that 
Ci = 2C0 ( 4.59) 

so that the preceding gain equation reduces to 

1/2LC! 
A(s)....:... -gm s3 + (l/R1Co}s2 + (3/2LC

0
)s + (l/LC

0
) (l/2R1C

0
) (

4.60) 
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A familiar parameter can now be defined: ru2 = upper cutoff frequency 
of the resistance coupled amplifier before the peaking inductance is 
added to the circuit. 

1 1 1 
OJ2=--= =--

R1CT R1(Co + Ci) 3R1Co 
(4.61) 

Now define a peaking parameter K, similar to the m used for the shunt 
peaked amplifier. 

(4.62) 

If these two factors are substituted into equation ( 4.60) for the voltage 
gain of the circuit, the result is 

27w:/4K 
A(s) · g R ---------- (4 63) 

= - m 
1 s3 + 3ru~2 + 27w";.s/4K + 27w:/4K · 

This is the general equation for the voltage amplification of a series 
peaked amplifier for which the assumed 2 : I capacitance ratio exists. 
If the ratio is reversed, a similar equation results. 

The high frequency and edge response characteristics of the amplifier 
are discussed in the next section. 

4.11. Series Peaked Amplifier, Response Characteristics 

The main reason for developing the series peaked amplifier is to 
increase the figure of merit above that obtainable from a shunt peaked 
or resistance coupled amplifier. To accomplish this increase, the peak
ing parameter K must be selected so that the circuit is slightly oscillatory 
and overshoots somewhat. Therefore Elmore's rise time cannot be 
calculated from the general gain function derived in the preceding 
section. 

The foregoing statement may be verified by arbitrarily assuming a 
representative value for the peaking parameter and then determining 
the pole locations. The amplifier has three poles and one of them must 
be real. The real pole can be found by trial and error synthetic division. 
The two remaining poles, whether real or complex, are found by using 
the quadratic formula on the quotient remaining after the real root 
has been divided out. 
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For example, when K = 2, this process indicates that the gain 
function has the following poles: 

s1 = -2.16lw2 ; s2 = -w2(0.419 - jl.18); 

s3 = -wl0.419 + jl.18) 

A plot of these poles in the complex s plane is shown in figure (4.27a). 
Because two of the poles are complex conjugates, the transient response 
of the amplifier will be oscillatory and some overshoot will result. 

As another example, assume that K = 1.4. In this case the poles 
turn out to be 

s1 = -l.808w2 ; s2 = -wi0.596 - jl.52); 

s3 = -w2(0.596 + jl.52) 

They are plotted in the complex plane of figure ( 4.27b ). The response 
will again be oscillatory. 
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Fig. 4.27. Examples of pole locations of the series peaked amplifier. 

Because of the presence of overshoot in the amplifier response, the 
1~90% rise time must be determined from an actual plot of the 
amplifier response to a standard rectangular pulse input. The three 
poles are of the general form 

S1 = -y; S2 = -oc + j{J; S3 = -oc - j{J 

so that the general form of the response transform, when the excitation 
is a unit step function, can be written 

27w:/4K 
E (s) - -g R ---------- (4 64) 

0 
- m 

1 s(s + y)(s + oc + j{J)(s + oc - j{J) • 
or, alternatively, 

27w:/4K 
Eo(s) = -gmR1 s(s + y) [(s + oc)2 + {J2] (4.65) 
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The inverse transform of this function can be obtained from a partial 
fraction expansion or directly from a table of function-transform pairs. 5 

The general form of the result is given in the following equation: 

eo(t) = -A 0[A1 - A2e-rt + A3e_(Xt sin (/Jt - </>)] (4.66) 

The scale factor is 
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Fig. 4.28. Transient response of a series peaked amplifier with a 2 : 1 
capacity ratio. (Computed by 1953 Electrical Engineering class, University 
of New Mexico.) 

If the time response is actually plotted for various values of the peaking 
parameter K, as shown in figure ( 4.28), the corresponding rise times 
and overshoots can be evaluated. Typical results are given in figure 
(4,29). If you compare this figure with the corresponding one for the 
shunt peaked amplifier you will see that the series peaked amplifier 
will have a shorter rise time for the same reference gain. 

The upper cutoff frequency w II of the series peaked amplifier is 
calculated by the same process as that followed for the shunt peaked 

6 See Gardner and Barnes, Transients in Linear Systems, John Wiley & Sons, Inc., 
New York, 1942, pair no. 1.319, p. 343. 
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amplifier. This makes it possible to compute and plot the upper cutoff 
frequency as a function of the peaking parameter K. The resulting 
curve is shown in figure (4.30). It is interesting to note that the upper 
cutoff frequency is three times the cutoff frequency of a resistance 
coupled amplifier if the peaking parameter is equal to 0.5. Any inter
mediate cutoff frequency can be obtained by selection of the value for 
K. However, the value of0.5, or possibly a slightly larger value, appears 
to be the optimum choice. 
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Fig. 4.30. Effect of the peaking parameter Kon the upper cutoff frequency 
of a series peaked amplifier with a 2 : 1 capacity ratio. (Computed by 
L. C. Menasco.) 

4.12. Low Frequency Compensation, No Degeneration 

4.5 

The discussion in the preceding articles was concerned with the 
high frequency and edge response characteristics of three different types 
of amplifiers. While these three circuits had different high frequency 
characteristics, their mid-frequency and low frequency characteristics 
were all exactly the same. Consequently, because the following dis
cussion is concerned with the low frequency response, the remarks to 
be made will apply to all three circuits with equal validity. 

For the resistance coupled amplifier it was shown that the sag and the 
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lower cutoff frequency were controlled by the time constant in the low 
frequency equivalent plate circuit, neglecting degenerative effects. The 
time constant was found to be 

rPRL 
(R1 + Rg)Cc where R1 = --- ( 4.68) 

rP+RL 

In general, the tube chosen and the value of RL are governed by the 
high frequency and gain requirements. Hence the value of R1 is 
generally fixed in so far as the low frequency and sag response are 
concerned. Therefore the time constant is governed mainly by the values 
chosen for the gridleak resistance Rg and the coupling capacitance Cc. 
This is particularly true for a video amplifier because Rg is much larger 
than R1 in such circuits. 

If you want to reduce the sag and the lower cutoff frequency, you 
should make Ru and Cc as large as possible. However, as noted in 
section ( 4. 7), there are definite maximum values that Cc and Rg can 
assume. If the largest possible values are used for these two circuit 
elements, and if the sag and lower cutoff frequency are still too large, 
a reduction in these two factors can be brought about only through 
some change in the circuitry. 

An amplifier using one kind of low frequency compensating circuit is 
shown in figure ( 4.31 ), together with its class A equivalent plate circuit. 
Although a resistance coupled amplifier is shown in the figure, it could 
also be a shunt or series peaked amplifier. A pentode tube is shown, 
but it will frequently be a triode. It is assumed that no degeneration 
effects are involved and that the low frequency cutoff is caused solely 
by the effects of the coupling capacitor. The degenerative case will be 
treated later. 

The general equation for the voltage amplification of the circuit is 

Z1Z2 
A = -gmZm = -gm Z1 + Z2 + Za 

From the equivalent plate circuit in figure (4.31b) it is clear that 

r 1) ( R L + sR ;, + I) 
Z1 = 1 1 (4.69) 

R, 
r 1) + R L + sR

1
C

1 
+ I 

(4.70) 

(4.71) 
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Fig. 4.31. Low frequency compensation of an amplifier. 
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These expressions for the three impedances should be substituted into 
the general voltage amplification equation. Although a considerable 
amount of tedious algebraic manipulation is involved, the end result 
for the voltage amplification can be written: 

A = -A s(s + w L + w1) 

r s2 + s [w1 + w1 ( 1 + R, )] + ( 1 + R, ) W1W1 
RL + R2 r11 + RL 

where 
1 

W1=-----
(R1 + Ru)Cc 

1 
w,=-

R1C1 

(4.72) 

(4.73) 

(4.74) 
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1 
w --- (4.75) L- R C L f 

Ar= gmR (4.76) 

rvRL 
(4.77) R1= 

r'P+RL 

r'PRu 
(4.78) R2= 

rp + Ru 

R= 
R1Ru 

(4.79) 
R1 +Ru 

This function is usually too complex for general use: it can be 
simplified somewhat through the use of appropriate approximations. 
For example, if the amplifier tube is a triode, it is approximately true 
that 

r'P ~ Ru and R2 = r'P (4.80) 

Consequently, the term involving R2 in equation (4.72) can be simplified 
as follows: 

(4.81) 

This makes it possible to factor the amplifier gain function as given 
in ( 4. 72) into the following form: 

A (triode)_.:_ -Ar s(s + w L + w,) (4.82) 

(s+w1)[s+w1 (1 + R, )] 
r'P+ RL 

If the amplifier tube had been a pentode, a different result would 
be obtained. In this case it is genera11y true that 

R L ~ r 'P; R L ~ Ru so that R L ~ R2 
(4.83) 

Consequently, the two terms involving these various resistances in the 
general gain equation given in (4.72) can be simplified into the following 
forms: 

and 
l (4.84) 
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As a result, the amplifier gain function for a pentode can be factored 
and written 

. s(s + w L + w1) 
A (pentode) = -Ar ( ) ( ) 

S + W1 S + w1 

(4.85) 

The equation for the voltage gain of the triode amplifier can be put 
into a form exactly like that for the pentode if a new parameter is 
defined as follows: 

Wt = w, ( 1 + R, ) 
r'P+RL 

Hence the gain equation for the triode amplifier is 

A (t . d ) . A s(s + w L + w1) no e = - r------
(s + w1) (s + wt) 

(4.86) 

(4.87) 

Note that this is exactly the same function as that obtained for the 
pentode amplifier except that wt in the triode case is w1 for the pentode. 
Therefore, although the discussion that follows is based upon an analysis 
of the pentode function, an exactly parallel development can be easily 
worked out for the triode. 

The purpose of the compensating circuit is to reduce the sag and 
lower cutoff frequency of the amplifier. Because both factors are 
affected by the same circuit constants, discussion of either applies to the 
other as well. The analysis of the sag response is somewhat easier 
than steady state analysis and that will be the viewpoint adopted here. 

The output voltage from the amplifier is given by 

E/s) = Eh)A(s) 

If the input voltage as a function of time is a negative going unit step 
function, the transform of the input voltage is Eh)= -l/s. Therefore 
the transform of the output voltage from a pentode, low frequency 
compensated amplifier is approximately 

( d ) 
. Ar s(s + w L + w1) 

E pento e = - · ------
0 s (s + w1) (s + w1) 

(4.88) 

Cancel the common s in the numerator and denominator and expand 
the result into its partial fractions as 

A B 
E0 (pentode) _:._ --+ -- (4.89) 

S + W1 S + w1 
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The coefficients A and B are readily computed by the method given 
in chapter 2. They are 

wL+w1-w1 A=Ar-----
w1-w1 

B = A, (- w, ".'._L w.) 
Therefore the inverse transform of Eo(s) is 

eo(t)...:.... Ar (WL + w, - W1 e-wit - WL e-w,t) 
w1 -w1 w1-w1 

_______ L ________________ _ 

(I) 
1-
...J 
0 
> 
I-

I 
I 

=> I 

~ PER 10D OF .J 
o INTEREST 1 

0 

I 
I 
I 

T TIME+ 

(4.90) 

(4.91) 

(4.92) 

Fig. 4.32. Two possible flat top responses of a low frequency compensated 
amplifier. 

This is the transient response of the pentode, low frequency compensated 
amplifier. 

If the circuit constants in this amplifier can be adjusted so that the 
initial slope of the output voltage is zero, this will represent the optimum 
operating condition. In other words, this combination of circuit 
constants will cause the least sag and the lowest lower cutoff frequency 
possible. The reason for this should be apparent from figure (4.32). 

To determine the condition for optimum compensation it is necessary 
to determine the requirements for zero initial slope. Therefore, 
differentiate equation (4.92) with respect to t, set the result equal to 
zero. This procedure yields the following expression: 

(w, - W1) (w1 - w L) = 0 (4.93) 
(w1 - W1) 

After cancellation of the common factor in the numerator and 
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denominator, the condition for optimum compensation is given by 
(w1 - w L) = 0, or 

W1 = W L (4.94) 
Superficially, from equation (4.93) it might appear that the initial 

slope could also be made zero if w1 = wr However, when this equality 
exists, the amplifier has a second-order pole at -w1, and the partial 
fraction expansion used in the preceding development does not apply. 
If this case is actually worked out it will be found that optimum 
compensation (zero initial slope) is obtained if w1 = w1 = w L· This 
requires that R1 = Rv 

Another relationship is often used in the design of the compensating 
network. The following equality is established: 

(wL + w1) = w1 

As a result, the amplifier gain function becomes 

s 
A(s)= -Ar-

s +w1 

For the uncompensated amplifier the gain function is 

(4.95) 

(4.96) 

s 
A(s) = -Ar-- (4.97) 

s+w1 

Therefore w1 = lower cutoff frequency, no compensation; w1 = lower 
cutoff frequency with compensation. Clearly, if the constants of the 
compensating network are adjusted so that w1 < w1, the low frequency 
and sag response characteristics of the compensated amplifier will be 
better than those of the uncompensated amplifier. In this book, 
compensation according to equation ( 4.95) is called conventional 
compensation. The amplifier characteristics with conventional com
pensation are inferior to those resulting from optimum compensation. 

The procedure for designing a low frequency compensated amplifier 
can now be briefly summarized for the case of a pentode. A similar 
procedure can be developed for the triode case. 

The suggested design procedure is outlined as follows: 
(I) Values of R 0 and Cc should be made as large as possible con

sistent with other requirements. 
(2) Value of RL is usually determined from the high frequency and 

edge response characteristics and may be assumed to be known at this 
point. Value of r P is also known, because the tube should have been 
selected prior to this design. 

(3) Calculate R1 and w1 from equations (4.73) and (4.77). 
(4) Specify the kind of compensation to be used. 
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(a) For optimum compensation: 
(i) Set w1 = wL. 

LIJ 
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..J 

1.0 

~ 0.8 
..J 
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.= 
z 
~ 0.6 
LIJ 
> 
Ei 
..J 
LIJ 
a:: 0.4 
I-
=> a.. 
I-
=> 
0 

0.2 

0 

(ii) Thus C1 can be calculated from 

C = C R1 + Ru 
f C RL 
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RL 
Rf=0.I 

RL 
Rf 

=0.5 

RL 
Rt 

=2.0 

~=10 
Rt 

0 0.2 0.4 0.6 0.8 1.0 1,2 

t ---+ 
RgCc 

Fig. 4.33. Sag in a non-degenerative amplifier with circuit constants 
adjusted for optimum compensation showing the effect of variations in 
the value of the compensating resistor R1• (Computed by J.C. Connell.) 

(iii) The value of R1 is adjusted to give the degree of com
pensation desired. Its maximum value is set by the available power 
supply voltage because Ebb = 1/R L + R1) + Eb + Ek. 

(b) For conventional compensation: 
(i) Set (w1 + w L) = w1. 

(ii) In this case w1 = lower cutoff frequency of the com
pensated amplifier and its value is presumably specified in the design 
requirements. 

(iii) Hence both w1 and w1 are known, and w L = w 1 - Wr 
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(iv) Therefore 

1 1 
C1 = -----; R1 = --

(w1 - w,)RL R,c, 

[Sec. 4.13 

From step (iii) of the design for optimum compensation it is clear 
that there is an arbitrariness in the value of the compensating resistor 
R,. The effect of variations in the size of R1 relative to R L on the 
response under optimum conditions is shown by the curves of figure 
(4.33). Thus while zero initial slope is obtained in all cases shown in 
this figure, the least sag results when R1 is large compared with R L· 

If long pulses are involved, R1 will have to be large to avoid excessive 
sag, and the power supply voltage will necessarily have to be fairly high. 

4.13. Compensation for Degenerative Effects 
The gain equation for the low frequency compensated amplifier was 

derived in the preceding section, and the result was found to have the 
following approximate form when a pentode tube is used: 

A(s)-=-- -A s(s + wL + w1) 

r (s + w1) (s + w1) 

If the cathode resistor of the pentode is imperfectly bypassed, the gain 
is altered because of the change in the effective transconductance. For a 
pentode, it was shown in equation (3.26) that this transconductance was 

, . s+wk 
gm= gm S + (1 + gmRk)wk 

where wk= 1/RkCk. Define another term: 

w3 =roil+ gmRk) (4.98) 

Consequently, the gain equation for a pentode amplifier with low 
frequency compensation and imperfect cathode bypassing can be written 

A(s) ...:._ -A s(s + wL + w1) (s + wk) 
r (s + w1) (s + w3) (s + w1) (

4
-
99

) 

If the circuit is designed so that 

wk= w1 and w3 = wL + w1 (4.100) 

then the resulting gain function for the ampifier is 

1 
A(s) ...:._ -Ar -- (4.101) 

s+w1 

The lower cutoff frequency of the amplifier is now w1• This is precisely 
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the same result as that obtained in the preceding section for the case of 
conventional compensation. 

The relationships specified by equations (4.100) are not necessarily 
the conditions for optimum compensation, but represent simply a 
convenient set of relationships between the circuit constants that will 
provide some measure of compensation for the effects of the coupling 
and cathode bias circuits. 

The conditions in the circuit for zero initial slope and optimum 
compensation can be derived by the method outlined in the preceding 
section. Because of the increased number of variables, there is a 
greater degree of arbitrariness in the design procedure. 

The design procedure for a pentode amplifier with conventional 
compensation might proceed as follows: 

(1) Values of Ru, Cc, Rk, and RL are determined by other design 
considerations or are known. 

(2) According to equation (4.100), wk= w1, so that 

(4.102) 

(3) Sufficient information is now available to compute wk and w3• 

Consequently, according to equation (4.100), wL = w3 - w 1, where w 1 
will normally be specified as the desired lower cutoff frequency, so that 
it is assumed known. Thus 

(4) As a result, 

R1 = RL (:; - 1) 
1 

C,=-
w1R1 

(4.103) 

(5) The final value of w1, and therefore R1 and C1, may be determined 
by the available power supply voltage Ew 

If the amplifier is also subject to screen circuit degeneration, the 
effective transconductance of the tube is further altered and a new set 
of relationships must be derived. This is left as an exercise for the reader; 
it is not especially difficult. 

4.14. Single Tuned Amplifier 
All the preceding material is concerned with high pass and low pass 

amplifiers; these are encountered in the amplification of audio and 
video signals. Band pass amplifiers, the subject to be discussed in the 
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remainder of the chapter, are equally common, and find a wide range of 
use in the amplification of bands of frequencies occurring almost 
anywhere in the frequency spectrum up to a maximum of about 
3000 mcps. 

The simplest band pass amplifier in general use is the single tuned 
circuit shown in figure (4.34); the equivalent plate circuit is shown in the 

Ebb 

L 

(a) SINGLE TUNED AMPLIFIER CIRCUIT 

(b) EQUIVALENT CIRCUIT 

Fig. 4.34. Single tuned amplifier. 

same figure. In the equivalent plate circuit the coupling capacitor has 
been replaced by a short circuit because the operating frequency is so 
high that the reactance of Cc is negligible compared with the resistance 
of Ru. The total shunt capacitance CT is the sum of the output capaci
tance of the tube, the distributed wiring capacitance, and the input 
capacitance of the circuit connected to the output terminals of the 
amplifier. 

The coil resistance is shown as r. A parallel tuned circuit consisting of 
a resistance and inductance in series, both in parallel with a capacitance., 
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has an input impedance at resonance equal to Rar = L/rC T· If 
the coil Q is reasonably high, say 6 or 7, the original parallel tuned 
circuit can be closely approximated by a parallel circuit consisting of 
Rar, L, and CT all in parallel with one another. The equivalent plate 
circuit resulting from this approximation is shown in figure ( 4.35). Then, 
combining all shunt resistances into a single resistor R, the final 
equivalent circuit of figure ( 4.35b) results. 

L 

(al ALTERNATIVE FORM 

f 
Eo 

! 
(bl FINAL FORM 

Fig. 4.35. Equivalent circuits for a single tuned amplifier. 

The foregoing approximation is not a serious limitation in practical 
circuits because the coil Q will usually be greater than 6 or 7. 

Note that the inductance has been shown as the variable element 
in the parallel resonant circuit. The circuit could be tuned with equal 
ease by varying the capacitance. However, if CT is adjt:Gtable, an extra 
physical capacitance must be added to the circuit. This would increase 
the total shunt capacitance and reduce the apparent resistance, 
Rar = L/rCT, of the circuit; this will lower the circuit Q. In some cases 
this might be unimportant, and the desirability of using a capacitor for 
tuning purposes might override other considerations. At high frequen
cies, the loss in Q cannot be tolerated, and it is more convenient to vary 
the inductance. This is usually done by varying the degree of insertion 
of a powdered iron or other special types of cores in the mutual flux 
path of the coil. 

The amplification equation for the single tuned amplifier is deter
mined by multiplying the mutual impedance of the circuit of figure 
(4.35b) by -gm. The mutual impedance is equal to the input impedance 
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of the circuit in this case and this is 

or 

1 
Zm(s) = 1/R + 1/sL + sCp 

1 s 

= Cp . s2 + s/RCT + 1/LCp 

R 
Zm(s) = 1 + RCps + R/sL 

[Sec. 4.14 

(4.104) 

(4.105) 

Consequently, using equation (4.105) and converting to the steady state 
case, the voltage amplification can be written 

1 
A(jw) = -gmZm = -gmR 1 + j(wRCp - R/wL) (4.106) 

At resonance, the Q of the parallel tuned circuit is 

R 
Q = - = w0RCp (4.107) 

w0L 

where w0 = parallel resonant frequency. Hence 

R Q 
- = w0Q and RCp = -
L w0 

Substitute these relationships into the gain equation and the gain 
becomes 

1 
A(jw) = -gmR -1 -+-J-.Q-(w_/_w_o -_-W_o_f w-) (4.108) 

This is the general equation for the voltage amplification of a single 
tuned amplifier as a function of the frequency w. 

It is clear from equation ( 4.108) that the reference gain of the amplifier 
is Ar = g mR because the gain function is a real number equal to Ar 
whenw = w0 • 

The cutoff frequencies can be evaluated from equation ( 4.108) 
because the imaginary term in the denominator will be equal to ± 1 
at the two cutoff frequencies. Hence, if w L = lower cutoff frequency 
and wn = upper cutoff frequency, then from equation (4.108), 

Q (w L _ w0 ) = _ 1 
Wo WL 

and 

Rearrange terms as follows: 

Q (wi - w~) = -1 and Q (w~ - w~) = +1 
WoWL WoWH 
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Subtract the first equation from the second, so that 

2 2 2 2 
Q (Wn-Wo_ WL-Wo) =2 

Wo WH WL 

or, in an alternative form, 
2 2 

Wo Wo 2wo 
wn---wL+-=-

wn wL Q 

The impedance characteristics of a parallel resonant circuit exhibit 
geometric symmetry about the resonant frequency, so that w~ = w Lw H· 
Consequently, the preceding equation reduces to 

2wo 
(wn -wL)- (wL -wn) = Q 

Combine terms and cancel the common factor of 2. Thus 

wn - wL =~=amplifier bandwidth 

The difference between the two cutoff frequencies was defined at the 
beginning of the chapter as the amplifier bandwidth B. Hence 

B = wn - WL = amplifier bandwidth = Wo (4.109) 
Q 

Substitute equation (4.107) for Q into equation (4.109) to obtain 

I 
B = - = W2 (4.110) 

RCT 

Note that the bandwidth of the single tuned amplifier is numerically 
equal to the upper cutoff frequency w2 of a resistance coupled amplifier. 
Therefore both amplifiers have the same figure of merit, namely, 

F=AB=AW2=gm (4.111) 
a r r Cp 

Hence the factors that make a good resistance coupled video amplifier 
will also make a good single tuned amplifier. 

The equations derived in the preceding paragraphs for the reference 
gain, bandwidth, and figure of merit are general for all single tuned 
amplifiers using high Q coils. The equations are valid for all values of 
the circuit Q. 

The case of the high Q circuit is of interest. Because of the assumed 
high Q, the bandwidth of the amplifier is narrow, and interest centers 
upon the frequencies that are very close to the resonant frequency. 
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This allows the gain function to be expressed in an alternative form 
useful in chapter 5. 

Ref er to equation ( 4.108); this equation for the voltage amplification 
may be rewritten if an w0 is factored out of the imaginary term as 
follows: 

( ) 
-Ar 

A jw = 1 + jQ(ro2 - ro~)/rooro 

However, it has been shown that 

(J) 
B=_!!.. 

Q' 

Hence the preceding equation for the amplification can be written 

. gm 1 
A(jw) = - CT. B + j(w2 - wg)/w 

Rearrange the imaginary term into the more convenient form shown in 
the next equation. 

gm 1 
A(jw) = - - · -------

CT B + (j/w) (ro - roo) (ro + Wo) 

If the high Q case is assumed, only those frequencies very close to 
resonance are of interest. Consequently, ro _:_ ro0 and 

ro + Wo _:_ 2ro (4.112) 

ro - ro0 = ± ~ro = frequency deviation off resonance ( 4.113) 

Therefore the approximate gain function for the case of the high Q 
circuit is 

A( 'w) __,__ - gm . 1 
J - CT B ±j2~w 

(4.114) 

This may be expressed in an alternative form as 

A( 'ro) __,__ -A l 
J - r 1 ±j2~w/B 

(4.115) 

and in an even more compact form 

1 2~ro 
A(jw) _:_ -A -- where X = -

r 1 ±jX B 
(4.116) 

The last two equations are particularly useful in the discussion of 
stagger tuned amplifiers in the next chapter. 
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4.15. Double Tuned Amplifiers 

In discussing the series peaked amplifier we observed that as long as 
consideration was restricted to two-terminal networks, the performance 
of a shunt peaked amplifier was the best that could be expected. We 
then found that improved operating characteristics resulted from the 
use of three-terminal networks. The same argument holds true for 
bandpass amplifiers. As long as two-terminal networks are used, the 

L1 L2-M2 L ,, ___ _ 

a L2-M 

L1 L2-M2 
Lb. ___ _ 

M 2 
LI L2-M 

Lc=----
L1 -M 

c, 
LA Le 

Le C2 c, 

LA =L,-M 

Le •L2- M 

Lc•M 

M•k~ 

Fig. 4.36. Equivalent double tuned circuits. 

Lb 

La Le c2 

single tuned amplifier provides reasonable operating characteristics. 
However, if we can forsake the simplicity of the circuit, improved 
amplifier performance can be obtained through the use of three- or 
four-terminal double tuned plate circuits. 

There are several different types of double tuned circuits, and the form 
used depends upon many factors such as ease of adjustment of the 
coupling coefficient, economy, operating frequency, and so on. Three 
possible forms of double tuned circuits are shown in figure (4.36). All 
three circuits are equivalent to one another according to the formulas 
given in the figure. 

In the broadcast and short wave parts of the frequency spectrum, 
the double tuned transformer can be used effectively, and the coefficient 
of coupling can be adjusted to the desired value by varying the degree 
of insertion of a slug or core in the mutual flux path of the two coils. 
This adjustment is exceedingly difficult at higher frequencies and it may 
be more practical to use the tee or pi section. 

Because all three of the circuits are equivalent, discussion of any one 
applies equally well to the other two. 

The circuit diagram of a double tuned amplifier is shown in figure 
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(4.37a); the current source equivalent plate circuit is given in figure 
(4.37b), and the pi equivalent of the transformer is used in figure (4.37c). 
In these circuits the following terminology applies: C1 = total shunt 

(o) CIRCUIT OIAGR AM 

M 

Rz i 
'-L_2 _ ___.._C_2 _ __. __ 1• 

R • I 
I I I I -+-+--

rp RL Rar 
I 

R2•--
...!.... +-1-
Rg Rar2 

(b) EQUIVALENT CIRCUIT 

9mEg 

(c) Pl EQUIVALENT CIRCUIT 

c1•c 0 +cp+Cwp 

C2 •Cj + Cg+Cwg 

Fig. 4.37. Double tuned amplifier circuits. 

capacitance on the primary side of the transformer; C2 = total shunt 
capacitance on the secondary side of the transformer; R1 = total 
effective shunt resistance on the primary side = parallel combination of 
r 2>' Rar, and any connected load resistance R L; R2 = total secondary 
shunt resistance; L1 = total primary inductance; L2 = total secondary 
inductance; M = mutual inductance = kV L1L2 ; k = coefficient of 
coupling. 
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You can see from figure (4.37c) that the amplifier equivalent plate 

circuit has the form of the general unloaded pi section discussed in 
section (4.3). Thus 

1 1 s 
Z1(s) = ------= - · -------

sC1 + l/R1 + 1/sLa C1 s2 + s/R1C1 + 1/LaC1 
1 s 

= cl . s2 + Bis + w; (4.117) 

Similarly, 
1 s 

(4.118) Z (s) - - · 2 - C2 s2 + B~ + w; 

where 
1 

Bi=--
R1C1 

and 
1 

B2=--
R2C2 

(4.119) 

2 1 
and 2 1 

(4.120) w =-- w =--
a Lael C L,,C2 

Also Z3(s) = sLb (4.121) 

Therefore the voltage amplification of the double tuned pi section 
amplifier is 

Z1Z2 
A = -gmZm = -gm Z1 + Z2 + Z3 

Substitution of the equations for Z1, Z2, and Z3 into this will produce 
a rather complicated equation. However, if the common denominator 
is obtained and the ultimate denominator is written as a polynomial, 
after a great deal of algebraic manipulation the following result is 
obtained: 

where (4.123) 

(4.124) 

(4.125) 

(4.126) 
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wr = resonant frequency of the amplifier (4.127) 

<ni = J L1~1 
(4.128) 

<n2= J L.~. (4.129) 

Q1 = (primary Q at wr) = wrC1R1 (4.130) 

Q2 = (secondary Q at wr) = wrC2R2 (4.131) 

In nearly every practical case the primary and secondary are tuned to 
the same resonant frequency w0, so that 

W1 = W2 = Wo (4.132) 

and ll1 = W, (~l + ~.) (4.133) 

2 ( w: 2 ) 
a2 = Wo w~Q1Q2 + 1- k2 (4.134) 

wj,,, (1 I ) 
ll3 = 1 - k2 Q1 + Q2 (4.135) 

4 
Wo 

(4.136) ll4=--
l -k2 

Equation ( 4.122) is the general equation for the voltage amplification 
of a double tuned amplifier and it will provide the starting point for all 
further derivations. 

For example, to determine the voltage amplification at the resonant 
frequency wr, let s = jwr- This leads to: 

1 
A(

. ) jwrgmk 
]W = - -------

r C1C2(1 - k2
)~ wt- a2w: + a4 - j(w;a1 - Wrlla) 

(4.137) 
Assume that both the primary and secondary are tuned to the same 
frequency w 0 • At resonance the imaginary term in the denominator of 
the bracketed factor must be zero, or 

2 

or 2 ll3 Wo 
(JJ =-=--

r a1 1 - k2 

(4.138) 

(4.139) 
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Consequently, the resonant frequency of the amplifier is 

Wo 
w=---

r VI - k2 

159 

(4.140) 

Substitute this equation into equation (4.137) and the amplification of 
the amplifier at resonance becomes 

A( . ) = +. kgmV¼ 
)Wr } ~ ;-- 2 

V Q1Q2(k + l/Q1Q2) 
(4.141) 

Considerable algebraic manipulation is required to get the result into 
this form. 

The value of k that will make the reference gain a maximum is easily 
computed by maximizing A(jwr) by the usual method. This yields 

k - J l (4.142) 
C - Q1Q2 

This is called the coefficient of critical coupling. 
In practice it is frequently desirable to determine the coupling 

coefficient that produces the flattest response characteristic for the 
amplifier. This value of k is called the coupling coefficient for transi
tional coupling, and it is denoted by kt. If k is increased beyond kt, the 
response changes from a single peak to a double peaked form. The 
value for kt was shown by Aiken6 to be 

,-----

k, = JH~I + ~~) (4.143) 

This is equal to kc when the circuit Q's are equal. 
For a transitionally coupled amplifier, the following formulas 7 can be 

used to compute the gain and bandwidth. 
~ r;;-;:;- V-2p-(l_+_p_2) 

Ar= gmv 1{11(2 (l + p)2 (4.144) 

(4.145) 

8 C. B. Aiken, "Two Mesh Tuned Coupled Circuit Filters," Proc. IRE., vol. 25, 
February, 1937. 

7 Formulas reprinted with permission from Valley and Wallman, Vacuum Tube 
Amplifiers, vol. 18, Rad. Lab. Series, McGraw-Hill Book Co., Inc., New York, 
1948, p. 218. 
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The gain-bandwidth product of a transitionally coupled double tuned 
amplifier is considerably larger than that of a single tuned amplifier. 

The response characteristics of the amplifier are determined, as in any 
other circuit, by the poles of the gain function. Although this is a single 
stage amplifier, its response characteristics are most conveniently 
treated with the responses of multistage amplifiers. Further discussion 
of this circuit will be found in the next chapter. 

PROBLEMS 
4.1. A single stage resistance coupled amplifier is to be designed, using a 

type 6AC7 tube. The upper and lower cutoff frequencies are to be 5 me and 
20 c. The following data apply: C0 = 5.0 µµf; gm= 9000 µmhos; 
r 'P = 1 megohm; Cw = 8.0 µµf; Ru = 500,000 ohms. Assume that the 
amplifier is unloaded and nondegenerative. Find the values of RL' Cc, Ar, 

Fa, and/a• 
4.2. If a 6AK5 tube had been used in the preceding amplifier, would the 

reference gain be greater or less than that obtained with the 6AC7 if the upper 
cutoff frequency remains unchanged? Which tube has the larger figure of 
merit? For the 6AK5, C0 = 2.8 µµf and gm = 4300 µmhos. 

4.3. A single stage shunt peaked amplifier is connected between the second 
detector and the intensity grid of a cathode ray tube in the receiver of a radar 
set. The input capacitance of the intensity grid circuit is 10 µµf. A 6AG7 
amplifier tube is used, for which Cu'P = 0.06 µµf; Ed= 300 v; Ru= 
200,000 ohms; C0 = 1.5 µµf; Ec = -2.0 v; lb= 28 ma; Ci= 12.5 µµf; 
r'P = 100,000 ohms; Id= 1 ma; Eb= 300 v; gm= 7700 µmhos. As a 
preliminary step in the design it is necessary to determine the distributed 
wiring capacitance. Thus the amplifier is constructed as a resistance coupled 
ampJifier with an arbitrarily chosen plate load of 6800 ohms. The upper cut
off frequency / 2, with this load resistance is measured experimentally and 
found to be 1 megacycle. Calculate the wiring capacitance of the amplifier. 

4.4. After the wiring capacitance has been determined for the preceding 
amplifier, the test value of the load resistance is removed. The design 
requirements of the amplifier are then specified as follows : 

(a) Reference gain, not less than 10. 
(b) 10-90% rise time, not more than 0.04 µsec. 
(c) Overshoot not to exceed 8 %. 

Calculate the necessary values for R L' m, Lb; also TR> y, and Ar. If the design 
requirements cannot be satisfied, discuss the problem and offer several 
alternative designs or possibilities. 

4.5. For the same amplifier, calculate the values of Rk, Rd, and Ew 

4.6. Assume that the coupling capacitor has a value of 0.1 µf and the 
cathode bypass capacitor is 25 µf. Calculate the total sag caused by these 
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two circuits if the duration of the received radar pulse is 1 µsec. If the sag is 
not to exceed 0.1 % over the 1 µsec interval, will these circuit elements yield 
satisfactory operation? 

4.7. If the screen bypass capacitor is 8 µf, will the sag in the amplifier 
exceed 0.1 %? (Use r8 = 1800 ohms.) 

4.8. An amplifier to be used in a specified industrial application is to have 
a lower cutoff frequency of 8. 7 c. A tube is to be used for which it has already 
been determined that RL = 2000 ohms; Ru= 500,000 ohms; lb= 10 ma; 
Cc= 0.ot5 µf; gm= 7700 µmhos; r'P = 10,000 ohms; Ee= -2.0 v; 
Eb = 250 v. Here Cc and Ru are in the plate circuit of the tube. Design a low 
frequency compensating circuit, assuming the tube to be a triode, to meet the 
stipulated design requirements. Check to make sure that the power supply 
voltage is within reason. 

4.9. A single tuned amplifier is needed for the intermediate frequency 
amplifier in a radio receiver. The amplifier is to have a gain of 100 and a 
bandwidth of 10 kc. The total interstage shunt capacitance, including the 
tuning capacitance is 318 µµf. What must be the transconductance of the tube 
to meet these requirements? Is this within practical limits? Compute the 
value of R required. If r 'P = 1 megohm and Ru = 500,000 ohms, calculate 
the Q of the coil at reasonance assuming that there is no RL in the circuit. 
Assume that the frequency is 455 kc. What is the permissible resistance of 
the coil? 

4.10. A high Q single tuned amplifier using a 6SK7 tube is the last stage in 
an amplifier chain, and it feeds a load having an input impedance of 250,000 
ohms, pure resistance. The interstage wiring capacitance is 10 11,µf. The 
circuit is to be reasonant at 600 kc and it must have a bandwidth of 10 kc. 
The desired reference gain is 65. Here gm= 2000 µmhos; C0 = 7 µµf; 

r 'P = 1 megohm; Ru= 100,000 ohms (in the plate circuit). Find the required 
coil Q, value for R, the coil resistance and inductance, and the total shunt 
capacitance required to resonate the circuit. 

4.11. Redesign the amplifier of problem ( 4.10) with a double tuned 
interstage network with transitional coupling. Assume that the wiring 
capacitance is equally split between the primary and secondary, and that both 
primary and secondary are tuned to the same frequency. Calculate the values 
for the various inductances and the coefficient of coupling. How does the 
performance of this amplifier compare with that of the single tuned amplifier? 

4.12. Work out a design procedure for a triode, low frequency compensated 
amplifier, having cathode degeneration. Work out both the conventional 
and optimum cases. 

4.13. For the low frequency pentode amplifier with optimum compen
sation, no degeneration, derive an equation for the lower cutoff frequency. 

4.14. Repeat (4.13) for a triode amplifier and compare the results. 



Chapter 5 

MULTISTAGE AMPLIFIERS IN THE 
STEADY STATE 

In most practical electronic systems, more than one stage of amplifi
cation is required to obtain the necessary over-an gain. For example, 
in the field of long distance telephony, the signal attenuation introduced 
by the transmission lines is such that large numbers of amplifiers are 

STAGE I 1----91 STAGE 2 
VOLTAGE VOLTAGE 

GAIN GAIN 
A1 A2 

Fig. 5.1. Amplifiers in cascade. 

STAGE 3 
VOLTAGE 

GAIN 
A3 

required to maintain adequate signal strength. Radar receivers may use 
6 or more stages of bandpass amplifiers to amplify the intermediate 
frequency signal. Twenty or more stages of video amplification may be 
required in television studio installations. Even the ordinary broadcast 
frequency superheterodyne receiver uses several stages of amplification. 
Consequently, it should be clear that the use of multiple amplifier 
stages is common. 

If the output of one amplifier is connected to the input of another, 
the two amplifiers are said to be connected in cascade. A representation 
of the cascade connection is shown in figure (5.1). This is the most 
common method of using multiple stages of voltage amplification, so 
that most multistage amplifiers are of this type. A significant exception 
is the distributed amplifier, which is discussed toward the end of the 
chapter. 

This chapter is concerned with the steady state response of multistage 
162 
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amplifiers.1 The response to pulse inputs is discussed in the next 
chapter. 

5.1. The Cascade Connection 
One reason for using the cascade connection is to increase the over

all voltage gain. That this does result is clear from figure (5.1) because 
if A1 = amplification of stage I = e2/e1 ; A2 = amplification of stage 
2 = ea/ e2 ; Aa = amplification of stage 3 = e4/ea; then the over-all 
amplification of the cascade is AT= e4/e1• It is apparent that AT is 
the product of the individual stage gains; that is, 

AT= A1A2Aa = (e2/e1) (ea/ e2) (e4/ea) = e4/e1 

The form of this equation is unchanged regardless of the number of 
stages in the cascade. Hence for a cascade of n stages, 

AT= A1A2Aa ... An (5.1) 

You can see from equation (5.1) that the over-all gain is increased 
over that of any one stage as long as the individual stage gains exceed 
unity. Hence the suggested primary purpose of cascading has been 
successfully accomplished. 

There is another possible application of the cascade connection 
implicit in the form of equation ( 5.1 ). Several different kinds of 
amplifiers were analyzed in the preceding chapter and it was shown that 
their gain functions could be written in the form of a rational fraction of 
polynomials, with both the polynomials in the numerator and denomi
nator being factorable. Therefore if a given function of the variables or 
jw can be factored into a series of functions containing terms of the 
forms obtained for the gain functions of these amplifiers, equation (5.1) 
states that the given function can be synthesized by a cascade connection 
of amplifiers. This is a statement of tremendous practical importance 
and the design process resulting from this use of equation (5.1) is called 
synthesis by factoring. 

The general idea involved can be illustrated by a simple example. 
Suppose that a given electronic system requires the use of an amplifier 
having an amplitude response of the form 

K 
IA(X)I =VI+ xrvl + x~ 

1 A large fraction of this chapter is based, with permission, upon a course given 
by Professor J. M. Pettit of the Electrical Engineering Department of Stanford 
University. 
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where X1 and X2 are governed by a frequency deviation from some ref
erence frequency. According to equation ( 4.116) in the preceding chap
ter, the gain function of a high Q, single tuned amplifier was shown to be 

1 Ar/0 
A(jro) =-Ari+ jX = yl; x2 

where the X represents the frequency deviation off resonance. It is clear 
that the desired gain function can be constructed by connecting two 
single tuned amplifiers in cascade with the bandwidths, Q's, and 
resonant frequencies adjusted to give the desired values for X1 and X2• 

This example is indicative in a rather oversimplified way of one of the 
most practical applications of the cascade connection. 

There are limitations on the extent to which the cascading process 
can be usefully employed. It turns out that a simple cascade of identical 
amplifiers has an over-all bandwidth that is less than the bandwidth of 
any one stage in the cascade. Hence, even though the increase in over
all gain is accomplished, the reduction in bandwidth also reduces some 
of the advantage derived. As a matter of fact, this bandwidth reduction 
eventually imposes an upper limit on the number of stages that can be 
cascaded. This problem is discussed at some length in subsequent 
sections. 

5.2. Identical Resistance Coupled Amplifiers in Cascade 
Suppose that a given application requires the use of resistance 

coupled amplifiers and that the gain and upper cutoff frequency 
requirements are such that one stage is insufficient. It is decided to try 
a cascade connection of identical resistance coupled amplifiers. The 
immediate point of interest is the determination of the effects of this 
multistaging on the over-all reference gain and upper cutoff frequency. 

For the purposes of the following derivation, define terms as follows: 
ro2 = upper cutoff frequency of each individual stage. 
ro1 = lower cutoff frequency of each individual stage. 

roH = upper cutoff frequency of the cascade. 
roL = lower cutoff frequency of the cascade. 

A(jro) = gain function of a single amplifier stage. 
Ap(jro) = gain function for the cascade. 

It was shown in section (4.5) that the high frequency gain function for 
a resistance coupled amplifier was 

. 1 
A(jro) = -Ar I . / (5.2) + JOJ 0J2 
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Hence the magnitude of this complex number is 

. 1 I A(Jw)I = A 
r yl + (w/wJ2 

(5.3) 

If n identical stages are connected in cascade, the over-all gain of the 
system is given by equation (5.1). Because all amplifier stages are 
assumed identical in this case, the over-all gain of the cascade is equal 
to the gain of a single stage raised to the nth power. That is 

I AT(jw) I= I A(jw) In= A; ( l )n (5.4) 
yl + (w/wJ2 

or I AT(jw) I= A; [I + (~/ro,)2]"" (5.5) 

It is clear from equation (5.5) that the reference gain of the amplifier 
cascade is A:. Therefore, when the signal frequency w is equal to the 
upper cutoff frequency wH of the cascade, the radical in the denominator 
of equation (5.5) must be equal to V2. Therefore 

[1 + (wH/wJ2r 12 = V2 (5.6) 

Square both sides of this equation and then take the nth root so that 

1 + (wH/w2)2 = 211n (5.7) 
Then solve for the upper cutoff frequency of the cascade. 

(5.8) 

If this same procedure is followed for the low frequency response it 
will be found that the over-all lower cutoff frequency of the cascade is 

W - Wt (5.9) 
L- y21/n - 1 

By evaluating the radical in each of the foregoing equations for the 
over-all cutoff frequencies of the cascade, the curves of figure (5.2) are 
obtained. It should be clear from this figure that the over-all cutoff 
frequencies of the cascade are much closer together than are the cutoff 
frequencies of the individual stages. Cascading causes a reduction in 
the upper cutoff frequency and an increase in the lower cutoff frequency. 

The effects of cascading may be illustrated in another way as shown 
for the high frequency case in figure (5.3). This curve shows how the 
upper cutoff frequency of the individual stages must be increased to 
keep the over-all cutoff frequency constant as more stages are added to 
the cascade. The gain-bandwidth product of the amplifier stages is a 
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constant. Therefore as the stage bandwidth is increased to keep the 
over-all bandwidth constant, this causes a corresponding reduction in 
the stage gain. From this it is reasonable to conclude that a point is 
eventually reached where the decrease in stage gain required to keep the 
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Fig. 5.2. Effect of cascading on the over-all cutoff frequencies. 

over-all upper cutoff frequency constant causes the over-all gain to 
decrease. At this point, further cascading is useless. 

The effect just described can be verified mathematically by deriving 
an equation for the reference gain of the cascade as a function of the 
over-all upper cutoff frequency wH and the number of stages n. The 
reference gain for a single stage of the cascade is 

Ar= gmR = gm • __!__ = Fa (5.10) 
CT W2 W2 

Hence the reference gain of the n stage cascade will be 

A;= F: C,)" (5.11) 
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However, from equation (5.8), the upper cutoff frequency of each stage 
can be expressed as 

C\I 
3 

1/ 
V 

/ 
V 

WH 
w - ~===== 

2 - \/21/n - 1 

J,-' V 

V 
/ 

(5.12) 
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~ 
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Fig. 5.3. Effect of cascading on the upper cutoff frequency required 
for each stage to keep the over-all upper cutoff frequency, w H, constant. 

Therefore the reference gain of the n stage cascade becomes 

Rewrite this as 

A;= (::) •(211
" - 1)"12 = Ap 

In terms of volt logits, the over-all gain is 

AT(volt logits) = 10n log10 F~ + 5n log10 (2
11

n - 1) 
WH 

(5.13) 

(5.14) 

(5.15) 

If a given amplifier is considered, the amplifier figure of merit Fa 
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may be presumed known. Therefore, by treating the over-all cutoff 
frequency wH of the cascade as a parameter, the gain of the cascade in 
volt logits can be computed and plotted as a function of the number of 
stages n, in the cascade. The results of such a computation are shown 
in figure (5.4). 

Figure (5.4) illustrates two points of considerable practical import
ance, as follows: 

(1) For a given over-all upper cutoff frequency wH, the process of 
continuously adding stages to the cascade causes the over-all gain to 
increase at a continually diminishing rate up to a certain point. 
Thereafter, further increases in the number of stages cause a reduction 
in the over-all reference gain. 

(2) For a given over-all upper cutoff frequency, there is a particular 
value of n that will produce the maximum gain. 

It should be clear that it may or may not be possible to obtain 
specified over-all gain and upper cutoff frequency requirements by the 
simple process of cascading. 

5.3. Cascading Compensated Amplifiers 
The gain function of a single stage shunt peaked amplifier was derived 

in chapter 4 and shown to be 

A(s) = -Ar I+ ms/w2 2 2 

I + s/w2 + ms /w2 

If n identical stages are cascaded, the over-all gain of the cascade is 

A(s) = (-Arf ( I + msfw2 2 2)n 
I + s/w2 +'ms /w2 

From this equation you can compute the over-all upper cutoff frequency 
of the cascade, using the usual method, to obtain 

w H=O. 707 :: J (m2211
n + 2m-1 )+ V (m2211

n + 2m- I )2 +4m2(211
n -1) 

(5.16) 

This looks pretty terrifying, but it is fairly easy to compute wH as a 
function of the number of stages in the cascade for various values of the 
peaking parameter. Results are shown in figure (5.5). These curves 
show that cascading reduces the over-all upper cutoff frequency 
regardless of the value of the peaking parameter m. However, the rate 



170 Multistage Amplifiers-Steady State [Sec. 5.3 

of decrease is less for the larger values of m. This is more apparent 
from figure (5.6). Here the same data has been replotted to show the 
decrease from the single stage cutoff frequency, which is assumed to be 
the same in all cases. 

X 

= 
~ 
Cl) 
> 

1.8 -----r---.......----.,.....-----,----r---

m =peaking parameter 
n= number of stages 

2zo.a ----~--_._. ___ "--______ ...i.... __ ___, 

a 

0.2 --------'----"'-----L.;._ __ ....._ __ __, 
I 2 3 4 

n--+ 
5 6 7 

Fig. 5.5. Identical shunt peaked amplifiers in cascade. Effect on upper cutoff 
frequency. 

Corresponding results should be expected for other compensated 
amplifiers of any type. The elementary low frequency compensated 
amplifier is an interesting exercise. 
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5.4. Synchronous Single Tuning 

171 

Bandpass amplifiers are cascaded in the same way as low pass resis
tance coupled amplifiers. There is one important change. For the 
tuned bandpass amplifier, both the gain and bandwidth can be adjusted 
over a wide range just as the gain and upper cutoff frequency of the 
resistance coupled amplifier were under control. However, in the 
bandpass case, the center frequency can also be varied. Because of this 
possibility of center frequency adjustment, there are two ways of cas
cading bandpass amplifiers: (1) all center frequencies can be the same, 
or (2) the center frequencies can be different. 

The first kind of cascading is called the synchronous connection 
because all stages of the cascade are synchronously tuned to the same 
band center. The second possibility is called stagger tuning when the 
center frequencies of the successive stages in the cascade bear particular 
relationships with respect to one another. The synchronous connection 
is discussed in this section. 
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It was shown in the preceding chapter that the reference gain and the 
bandwidth of a single tuned amplifier are 

1 Wo 
Ar=gmR; B=--=-

RCp Q 

so that the gain-bandwidth product is 
F =A»= gm 

a ~ CT 

The equation for the voltage amplification in the steady state is 

A( · ) A l (5.17) 
JW =- rl+jQ(ro/roo-roo/w) 

or, alternatively, 

1 
A(jw) = -Ar 2 2 1 + jQ(w - roo)/rooro 

(5.18) 

Now suppose that we let B = w0/ Q and then evaluate the magnitude of 
the gain function. This gives us 

[ (
(,02 _ a,

2)2]-1/2 
jA(jw)I = Ar 1 + Bro 

0 (5.19) 

If n identical stages are synchronously cascaded, the amplitude of the 
over-all gain function is 

I A.,(jw} I = I A(jw} 1· = A; [ I + (;,:, w!rr· (5.20) 

Solve this equation for (ro2 - w5). 

J( A )21n 
(w

2 
- w~) = ±wB A: - l (5.21) 

At the upper and lower cutoff frequencies of the cascade, we know that 

A;= V2 = 2112 (5.22) 
AT 

Hence at the cutoff frequencies, equation (5.21) reduces to 

wi - w5 = wHBv'21tn - I 

w~ -w5 = -wLBv21tn - 1 

Subtract equation (5.24) from equation (5.23), so that 

w~ -wi = (wH + wL) (wH - wL) 

= (wH + w L)BV211n - l 

(5.23) 

(5.24) 

(5.25) 
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Cancel the common terms on each side of this equation and define the 
over-all bandwidth of the n stage cascade as 

Bn = wH - wL = over-all bandwidth 

This reduces equation (5.25) to 

B = BV211n-1 n 

The over-all reference gain of the cascade is clearly 

AT= A;= (gmRt 

0.707 Ar 

2 3 4 5 8 

"'c 
FREQUENCY+ 

8 5 4 3 2 

(5.26) 

(5.27) 

Fig. S.7. Effect of cascading on the rate at which the voltage gain drops 
off near the cutoff frequencies. 

We have shown that the equations for the over-all reference gain and 
bandwidth of the synchronously cascaded single tuned amplifier are 
precisely the same as those obtained for the over-all gain and upper 
cutoff frequency of the cascaded RC coupled amplifier. Consequently, 
all the derivations carried through in section (5.2) for the low pass 
characteristics of the cascaded resistance coupled amplifier apply 
directly to the synchronous single tuned amplifier. It is necessary only to 
change all upper cutoff frequency terms, ro2 and wn, to the corresponding 
bandwidth terms, B and Bn. Therefore in figure (5.2), the over-all 
bandwidth is shown as a function of the number of stages n when the 
bandwidth of the individual stages is held constant. Similarly, figure 
(5.3) shows how the stage bandwidth must be increased, as n is increased, 
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to keep the over-all bandwidth Bn constant. Figure (5.4) also shows 
how the over-all gain varies as the over-all bandwidth is held constant 
and the cascading process is continued. 

Finally, figure (5.7), which applies to cascaded resistance coupled or 
single tuned amplifiers, shows that a sharper cutoff characteristic 
results from multistaging identical stages. 

Although the double tuned amplifier has not been discussed at length 
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Fig. 5.8. Comparison of synchronously connected single and double tuned 
amplifiers; double tuned stages are assumed to be transitionally coupled. 

yet, the methods just outlined for the single tuned synchronous cascade 
can be used to show that the over-all bandwidth of synchronous 
connected, double tuned, transitionally coupled amplifiers is 

Bn = B(21fn - 1)114 (5.28) 

This equation is derived in section (5.16). 
If you compare equations (5.26) and (5.28) you can see that the 

reduction in over-all bandwidth caused by cascading proceeds at a 
much slower rate for the double tuned amplifier. In other words, for 
any given number of stages, the over-all gain, bandwidth, and figure of 
merit of the double tuned cascade will be larger than that of the single 
tuned cascade. This is illustrated in figure (5.8). 
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5.5. Number of Stages Required for Maximum Gain 
You can see from figure (5.4) that there is a maximum value of gain 

that cannot be exceeded for a given over-all bandwidth of a cascade 
of resistance coupled or single tuned amplifiers. '.ifhat is, if the 
over-all bandwidth is specified, a particular number of stages are 
required to produce the maximum possible gain. 

The derivation of the value for n that will make the gain a maximum 
for a specified over-all bandwidth is simplified through the use of an 
approximation. You will recall that the equations for the over-all 
bandwidth and upper cutoff frequency of the amplifier cascades 
contained terms of the form (211n - 1)112• The form of this factor can 
be altered by expanding the 21/n term in a power series as follows: 

1 1 ( l ) 2 1 ( 1 )3 21
1n = 1 + ; In 2 + 

2 
! ;; In 2 + 

3 
! ;; In 2 + . . . (5.29) 

Although there is no basis for the action at this time, it is assumed that 
all but the first two terms in the series can be neglected as long as n is 
greater than 1. The accuracy of this assumption will be checked later. 
T~refore 1 

i11
n __:_ 1 + - In 2 (5.30) 

n 
Therefore the original factor can be approximated by 

(211n - 1)112 __:_ ( 1 +~In 2 - 1 r2 

(
1 )1/2 

__:_ ;; In 2 

1 
(5.31) 

The validity of the approximation previously made is clear from 
table 7; this shows the exact and approximate values of the factor for 
various values of n. As long as n exceeds 3, the error in the approxi
mation will be of the order of 5 % or less. 

As a result of the preceding approximation, the over-all bandwidth 
or upper cutoff frequency, as the case may be, can be expressed as 

(5.32) 

(5.33) 
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TABLE 7 

EXACT AND APPROXIMATE VALUES OF THE 

BANDWIDTH REDUCTION FACTOR, SINGLE TUNED AMPLIFIER 

V21/n - 1 
1 

n 
1.2vn 

% error 

1 1.000 0.833 16.7 
2 0.643 0.589 8.4 
3 0.510 0.481 5.1 
4 0.435 0.416 4.4 
5 0.387 0.372 3.9 
6 0.350 0.340 2.9 
1 0.323 0.315 2.5 
8 0.301 0.294 2.3 
9 0.283 0.278 1.8 

10 0.268 0.264 1.5 

The over-all reference gain of the amplifier cascade is 

Ap = A:= (gmRt 

However, it has been shown that 

B = stage bandwidth = - 1
-

RCp 

Consequently, the over-all gain can be written 

(
gm l)n )n 

Ap = Cp. B = (Fa/ B 

Solve equation (5.33) for the stage bandwidth. 

B= Bn(l.2)V;; 

[Sec. 5.5 

(5.34) 

(5.35) 

Substitute this result into equation (5.34), so that the over-all gain of 
the cascade is expressed by 

( 
F I )n 

Ap = I.; . B v';i 
n 

(5.36) 

Equation (5.36) for the over-all gain of the cascade can be used to 
determine the value of n that will make A p a maximum when the over
all bandwidth Bn and stage figure of merit are constant. All the terms 
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in equation (5.36), except for the radical, are independent of n. There
fore it is convenient to rewrite the equation as 

AT= Kn(n)-nl2 (5.37) 

where K = _.!::_ (5.38) 
1.2Bn 

The existence of a maximum value for the over-all gain was shown in 
figure (5.4). The gain was expressed in volt logits in that case, so the 
same evaluation should be used in the present calculation. The same 
kind of curve is obtained if natural logarithms are used instead of 
logarithms to the base 10, and this simplifies the calculus involved in the 
derivation. The natural logarithm of equation (5.37) is 

n 
In AT = n In K - 2 ln n 

Maximize this equation; differentiate with respect to n and set the 
result equal to zero. 

Therefore 

and so 

1 1 
O=lnK----lnn 

2 2 

K2 
In-= 1 

n 

K2 
n=

e 
(5.39) 

The equation for the value of n required to make the over-all gain a 
maximum is obtained by inserting the value for Kin equation (5.38) 
into the foregoing equation for n. The result is 

1 ( F )2 1 ( g )2 
n =; 1.2~n =; 1.2B:CT 

(5.40) 

The maximum possible gain corresponding to a specified over-all 
bandwidth is evaluated by substituting the value for n computed from 
equation (5.40) into equation (5.36) for the over-all gain. 

5.6. Stage Gain for Maximum Bandwidth, Synchronous 
Connection 

It is often important to know the number of stages and the gain per 
stage necessary to produce the maximum over-all bandwidth for a 
specified over-all gain. As before, the discussion here applies only to 
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the cascading of identical resistance coupled or single tuned amplifiers. 
However, the general technique is applicable to any cascade. 

The derivation of the necessary equations is similar to that followed 
in the preceding article. The first step is to define the figure of merit of 
one stage of the amplifier as 

Fa= ArB 

The over-all gain and bandwidth (or upper cutoff frequency) for a 
cascade of identical stages were shown to be 

B 
AT=A;; B =--

n 1.2-V~ 

Therefore the stage gain and bandwidth can be expressed in terms of the 
over-all gain and bandwidth as 

Ar= A¥n; B = 1.2-v;:; Bn 

and the amplifier figure of merit is 

Fa = A¥n( l .2Bn)V~ (5.41) 

Solve this equation for the over-all bandwidth to obtain 

B = Fa = Fa (A-1/nn -1/2) 

n A~n(l .2)-V~ 1.2 T 
(5.42) 

To determine the number of stages n that will make the over-all 
bandwidth Bn a maximum when the over-all gain AT is constant, 
differentiate Bn with respect to n and set the result equal to zero. After 
a slight rearrangement of terms, 

A lln O ( -1/2) _ -1/2 0 (Al/n) 
T - n - -n - T on on (5.43) 

Carry out the mathematical operations that are indicated and write 

I 1 - = - In AT (5.44) 
2 n 

so that n = 2 In AT = number of stages that will make the over-all 
bandwidth a maximum when the over-all gain is specified. (5.45) 

Take the antilogarithm of both sides of equation ( 5 .45). 

AT= sn12 (5.46) 

which is the over-all gain when the circuit is designed for maximum 
over-all bandwidth. In terms of the stage gain, this is 

A:= sn/2 

or Ar= V~ = 1.65 = 2.17 volt logits 

(5.47) 

(5.48) 
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Equation (5.48) is the stage gain required to make the over-all bandwidth 
a maximum. From this result you can see that the maximum over-all 
bandwidth always results if the gain of each stage in the cascade is set 
to 1.65. This is true regardless of the tube used or the number of tu bes 
in the cascade. 
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Fig. 5.9. Maximum theoretical bandwidth as a function of the number of 
stages. Data computed assuming synchronous connected single tuned 
amplifiers using 6AK5 tubes for which Fa= 409 x 106 rps. 
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The actual maximum value of the over-all bandwidth obtainable 
under this condition is determined by substituting the value of n given 
by equation (5.45) into equation (5.42) for the over-all bandwidth. The 
problem is more apparent when these two equations are plotted 
together on the same graph. The results are shown in figure (5.9). The 
straight line represents the over-all gain Ap as a function of n when the 
stage gain is adjusted to 1.65, thereby producing the maximum over-all 
bandwidth. 

5.7. Symmetry in the Response of Tuned Amplifiers 
The equivalent plate circuit of a single tuned amplifier is given in 

figure (5.10). The voltage amplification of the circuit is 

A(s) = -gmZm(s) 

or 
1 

A(s) = -gmR _I _+_w_
0
_R_C_T_(s-/w_

0
_+_· -w-

0
/-s) 

R L 

Fig. 5.10. Equivalent plate circuit of a single tuned amplifier. 

where 

(5.49) 

"'• = J L~ T = bandcenter of the frequency response of the •7;:0) 
B = - 1

- = bandwidth (5.51) 
RCT 

A,. = g mR = reference gain 

Therefore the voltage amplification function can be written 

1 
A(s) =-A,.-----

I + Wo(!_+ Wo) 
B w0 s 

The quantity in front of the term in parentheses is Q. That is, 

Q=Wo 
B 

(5.52) 

(5.53) 

(5.54) 
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so that the preceding gain equation becomes 

1 
A(s) =-A,.------

1 + Q(s/w0 + roofs) 

181 

(5.55) 

Now write the steady state response of the amplifier by replacing 
s with jw in the preceding equation. Thus 

0 

8 0 

z 
<( 
CIO 

uJ 
> 

~o .4 
.J 
uJ 
a: 

~ 

I.I 

A( 'w) = -A l 
J " 1 + JQ(w/w0 - w0/ w) 

A,./O(w) 
---::==================-Vl + Q2(w/roo - Wo/w)2 

(5.56) 

v- ~~,.._ 
/ "'r,. 

V ~ 

I'\. 
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' "-Q 
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2/ '" .. 
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107 

Fig. 5.11. Geometric symmetry in the amplitude response of a single tuned 
amplifier. 

If the magnitude of this function is plotted against w or w/w0, the results 
will appear as shown in figure (5.11). 

The curve of figure ( 5 .11) is valid for any parallel tuned circuit of 
any Q. Note that the curve is symmetrical about the center frequency 
w0 when frequency is plotted on a logarithmic scale. This is geometric 
symmetry, and for such a function, bandcenter is related to the two 
cutoff frequencies by w~ = w Hw L· 

This appearance of symmetry disappears when the response is 
plotted on a linear frequency scale as shown in figure (5.12). However, 
as the Q of the circuit is made progressively larger, the curve becomes 
more nearly symmetrical about the center frequency. Finally, when 
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Q is 20 or more, the response is virtually arithmetically symmetrical 
about the center frequency. In this case, the center frequency and 
cutoff frequencies are related to one another as follows: 

wH+wL 
Wo= 2 

We can now make the following statements: 
(1) For any Q the frequency response of a single tuned amplifier is 

geometrically symmetrical about the center frequency w0. 
(2) When the circuit Q is 20 or more, the response is arithmetically 

symmetrical about the center frequency. 
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Fig. 5.12. Steady state frequency response characteristics of a single tuned 
amplifier plotted on a linear frequency scale. 

Functions exhibiting arithmetic symmetry are easier to use than 
those having geometric symmetry. Thus the work that follows will be 
divided into two categories: 

(1) High Q cases where the response is arithmetically symmetrical 
in its own right. 

(2) Low Q cases where the response exhibits geometric symmetry. 
Here it is desirable to make a transformation of variables in the response 
function so that the transformed response will exhibit arithmetic 
symmetry as a function of the new variable. 

The change of variables required to transform geometrically 
symmetrical functions of one variable into arithmetically symmetrical 
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functions of a new variable is not hard to figure out. First, in equation 
(5.55) define the following term: 

S = normalized s = !_ 
Wo 

complex frequency s 
-

bandcenter frequency w0 

Thus the new gain function for the single tuned amplifier is 

1 
A(s) = -A, 1 + Q(S + 1/S) 

-y O +y 

Fig. 5.13. Arithmetic symmetry as a function of y. 

Now transform the variable. Let 

p = S + 1/S 

(5.57) 

(5.58) 

(5.59) 

Because Sis a complex number, p will also be complex and of the form 
p = x + jy. Substitute the transformation equation (5.59) into the· 
gain function so that 

1 
A(p) = -A, l + Qp (5.60) 

The steady state response of the amplifier as a function of the new 
variable is obtained if we replace p with jy. Then, because y can be 
positive or negative, the steady state gain function is 

1 
A(jy) = -A, l ± 

This response, as a function of y, is arithmetically symmetrical about 
y = 0, regardless of the value of Q. This is shown in figure (5.13). 
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To generalize from this specific case, the following statement is 
made: 

A function that exhibits geometric symmetry as a function of ro or 
ro/ro0 can be transformed into a function that is arithmetically sym
metrical about y = 0 if 

p= x+ jy= s+ 1/S 
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I 
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I 

( b) INCORRECT ADJUSTMENT OF STAGES 

Fig. 5.14. Some responses when wc/B11 exceeds 20. 

5.8. Flat Functions 

The discussion in the preceding section showed that the responses of 
individual single tuned amplifier stages could exhibit either of two 
general forms: (1) arithmetic symmetry when ro0/ Bis greater than 20; 
(2) geometric symmetry when ro0/ B is less than 20. The same general 
remarks apply when n such stages are cascaded though no proof is 
given for this statement. In the cascaded case, we let roe designate the 
bandcenter frequency and Bn represent the bandwidth of the cascade. 
Then, in this case when roe/ Bn is 20 or more, we will find that there is 
one unique system of tuning and adjusting the individual stages so that 
the response of the cascade appears as shown in figure (5.14a). Note 
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that it is arithmetically symmetrical about the center frequency we. 
Any alteration in the adjustments of the individual stages will cause the 
response to become lumpy as shown in figure (5.14b). Therefore the 

I 
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I I 
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(b) BECOMES MAXIMALLY FLAT AS A 
FUNCTION OF y IF 

p=x+jy, 
I 

p= s+ s 
Fig. 5.15. Response functions when wc/Bn is less than 20. 

original correctly adjusted response is said to be maximally flat. This 
terminology will be used to mean the following: 

(1) The value of we/ Bn is 20 or more and the response is arithmetically 
symmetrical about we. 

(2) The response is the flattest obtainable by adjustment of the 
individual stages. 

When we/ Bn is less than 20, another situation prevails. For any 
value of n, we, and Bn we will find that there is one way of adjusting the 
individual stages so that the response is geometrically symmetrical 
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about we and flat as shown in figure (5.15a). Any change in the adjust
ment of the individual stages will cause the response to become lumpy 
or to tilt. This is also a flat function, but since the high Q approxima
tion was not involved, it is called the exact flat function. You will 
observe from figure (5.15b) that the function can be made maximally 
flat as a function of y by using the transformation of variables discussed 
in the preceding section. This is an imp~,rtant aspect of a design 
procedure developed in a later section. 

5.9. The Maximally Flat Function 

It was shown in section (5.4) that the simple process of cascading 
identical single tuned amplifiers will not necessarily produce the desired 
combination of gain and bandwidth. In many cases the over-all 
bandwidth and gain requirements are so extreme that the synchronous 
connection will not yield the specified gain-bandwidth product, even if 
double tuned stages are used. When this occurs, resort is made to 
stagger tuning. 

In this section we will specify the character of an over-all gain 
function that will have a better gain-bandwidth product than syn
chronous tuning can produce. It will be shown that this function can 
be synthesized by a cascade of stagger tuned stages. 

It turns out that one of the best gain-bandwidth products is obtained 
by using the equation for maximal flatness. The maximally flat function 
is defined in terms of the complex frequency p, where p = x + jy. 
Therefore, in the steady state, the maximally flat function is 

. I 
jg(Jy) I= VI+ y2n (5.61) 

where n = any integer= 1, 2, 3, and so on. 
There is nothing particularly advantageous about the form of this 

function except that it has a good gain-bandwidth product. Maximal 
flatness is not necessarily an ideal response characteristic, because it 
invariably leads to overshoot in the transient response (see chapter 6). 
Maximal flatness is considered to be the penalty paid for achieving a 
good gain-bandwidth product. 

The characteristics of the maximally flat function are shown in 
figure (5.16) in terms of the transformed frequency y. Note that the 
bandwidth is always 2, in terms of the frequency y, regardless of the 
value of n. Although the bandwidth is constant, the sharpness of the 
cutoff characteristic increases with larger values of n. 
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We want to synthesize the maximally flat function, using ordinary 
amplifiers. To do this, we must factor the maximally flat function by 
computing the poles; each pole represents the contribution of a single 
amplifier stage. Then the design of the individual amplifier stages is 

I~ Bn ... , 
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Fig. 5.16. Characteristics of the maximally flat function. 

performed by establishing an equivalence between the poles of the 
maximally flat function and the poles of the amplifier cascade. So you 
can see that we must do two things: 

( 1) Factor the maximally flat function and determine the poles in 
the complex p plane. 

(2) Compute the poles of a single tuned amplifier and express them 
so they can be located in the complex p plane. 

These two problems are treated separately in the next two sections. 

5.10. Poles of the Maximally Flat Function2 

The maximally flat function was defined in the preceding section as 

I c )I- i 
g JY - Vl + y2n 

where y is the imaginary part of the complex frequency p. That is, 
p = x + jy. We want to determine the p plane poles of the maximally 
function that fall in the left half plane, thereby insuring that the poles 
are physically realizable. 

You can see from the form of the function that there must be n poles 
and these poles may be either real or complex. So let p0 = real poles; 
Pm= complex poles. Of course, complex poles always occur in 
conjugate pairs. 

2 The method of factoring used here follows that given by Valley and Wallman, 
Vacuum Tube Amplifiers, vol. 18, Rad. Lab. Series, McGraw-Hill Book Co., Inc., 
New York, 1948, pp. 176-180. Also see V. D. Landon, "Cascade Amplifiers With 
Maximal Flatness," RCA Rev., 1941, pp. 347-362. 
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It is not easily and directly provable, but you can show by trial and 
error that all the poles are complex when n is even. Therefore, when n 
is even, the poles of the maximally flat function will have the form 

' ' ' ' Pi, P1, P2, P2, · · · , Pm, Pm, • · · , Pn12, Pn/2 

where the primes indicate conjugates. 
In a similar way you can also show that there is only one real pole 

when n is odd. So, for odd values of n, the poles are 

' ' ' ' Po, P1, P1, P2, P2, • • • , Pm, Pm, • • • 'Pcn-1)/2, An-1)/2 

We will discuss only the even case here, but the same general procedure 
is followed for odd values of n. 

We have specified that the maximally flat function is to have complex 
conjugate poles located in the left half plane when n is even. Therefore 
the function can be factored in terms of these poles as 

I (" )(- 1 
g JY - , (jy-Pi)(jy- p~) I••• I (jy- Pnf2)(jy - p~/2) I 

or, in a more symbolic form as 
m=n/2 1 

lgUy) I= TT , 
m=l I (jy - Pm) (jy - Pm) I 

(5.62) 

The large 1r symbol signifies the product of the series of factors 
obtained by successively inserting values of m from 1 to n/2. 

It really does not look as though we have done much except confuse 
things because we still do not know the values for the poles Pm· 
Unfortunately, there is no simple method of finding the poles directly. 
However, there is a fairly simple mathematical trick that helps a 
great deal. 

First square the maximally flat function so that we get 

I 
. 12 1 

g(Jy) = 1 + y2n 

The roots of the denominator of this function are easily computed by 
setting the denominator equal to zero. This gives 

y2n + 1 = 0 or y2 = (-1)1/n 

Therefore there are n roots of (-1) and we shall designate them 
r1, r~, r2, r;, ... , rm• r:n, ... , r nf2, r~12 . Because n is even in this case, 
the n roots of ( -1) are all complex and occur in conjugate pairs. So 

rm= (-1)1/n 
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Therefore the square of the maximally flat function can be expressed 
in factored form in terms of these roots of ( -1) as 

I . 12 . 1 
g(Jy) = 2 2 ' 2 2 ' 

(y - r1) (y - r1) . .. (y - Tn/2) (y - Tn/2) 

or, in an alternative form as 

n/2 l 

I C)l2
- -II---g JY - = 1 (y2 ) ( 2 , ) 

m - Tm y - rm 

Now return to the original factored form of the maximally flat 
function given in product notation in equation (5.62). Square it and 
write 

n/2 l 
I C )12

- 11 g JY - m = 1 I ( . ) ( . ' ) 12 JY-Pm JY-Pm 
If the maximally flat function can actually be factored as we have 

proposed, the two equations for lg(jy) 12 must be-equal. They can be 
equal only if 

I (jy - Pm} (jy - p~) 12 = (/ - Tm)(/ - r:n) 
or, expanding these terms, if 

y4 + (p~ + p:;)y2 + p~p:; = y4 _ (rm + ,:n)y2 + r mr:n 

This equation will be true only if rm= -p!i. But 

rm= (-1)1/n 

so that 
p~ = -(-1)1/n = (-1)(-1)1/n 

or 
Pm= [(-l)n+l]l/2n 

Exactly the same result is obtained when n is odd. 

(5.63) 

Therefore equation (5.63) gives the poles Pm of the maximally flat 
function as the 2n roots of ( -1 r+i that fall in the left of the complex 
p plane. From this you can see that when n is even, the poles are the 
2n roots of ( -1) in the left half of the p plane. When n is odd, the 
poles are the 2n roots of ( + 1) in the left of the p plane. 

The roots of + 1 and -1 all have a magnitude of 1 and can be 
expressed in rectangular form as 

Pm= -cos Om ±j sin Om {5.64) 

where Om= pole angle measured from the negative real axis in the 
p plane. 
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The proper values for 0 m are easily computed by the well-known 
methods of complex algebra. The results are: 

(1) when n is even 

(2m - 1) 
0m = ± 2n 1r; 

,,,,~ ... -
,, \ 

I \ 
I \ 

I ' 
I 

m = 1, 2, 3, ... , (n - 2) (5.65) 

(2) when n is odd 

m = 0, 1, 2, 3, ... , (n - 2) (5.66) 

---)K~----.......... -x- For example, when n is 3, equation 
_, \ (5.66) tells us that the three poles in 

\ / the left half plane have angles of 0° 
',>/ and ±60°, all measured from the 

-- negative real axis, and a unit distance 
out from the origin. This is illustrated 

Fig. 5.17. Poles of the maximally in figure (5.17). You can easily work 
flat function when n=3. out pole plots for any value of n simply 

by using equations (5.65) and (5.66). 
We can summarize our accomplishments by observing that we have 

successfully factored the maximally flat function into the form 

1 n/2 1 
I g(jy) I = ,. 11 + 2n = -1 I I c . .) c . , ) I 

V Y m=l JY - Pm JY - Pm 
(5.67) 

or, because p = jy in the steady state, in the general case 

1 n/2 1 
lg(p) I=-,_---_-= rr , 

V 1 + y 2n m = 1 j (p - Pm) (p - Pm) I 
The values of the poles are computed from equations (5.63) through 
(5.66). 

It was shown in chapter 4 that every amplifier gain function is 
characterized by a particular configuration of poles in the complex 
plane. Then, it was shown at the beginning of this chapter that an array 
of poles could be synthesized by cascading amplifier stages so that each 
amplifier stage contributes one or more poles to the over-all array of 
poles of the system gain function. This was called the technique of 
synthesis by factoring. 

Evidently then, if a maximally flat function is to be synthesized by 
an amplifier cascade, it is necessary to establish a method of specifying 
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the locations of the poles of the individual amplifier stages so that they 
combine to produce an over-all pole configuration identical to that of 
the maximally flat function. Once the amplifier poles are specifically 
located, the individual stages are easily designed, because the pole 
location is governed by the constants of the amplifier circuit. 

The necessary equivalence between amplifier poles and the poles of 
the maximally flat function is established in the next section. 

5.11. Maximally Flat Staggered n-uples 
It was shown in the preceding section that the equation for maximal 

flatness 

(5.68) 

could be synthesized by using a cascade connection of n amplifier 
stages if an equivalence could be established between the poles of this 
function and the poles of the amplifier cascade. 

The poles of the maximally flat function were shown to be of the 
form 

Pm= -cos Om ±j sin Om (5.69) 

The factor of the function from which this pole originated is easily 
written as 

(p) = K (-
1
-) where p = x + jy 

p-pm 

Thus, in the steady state case when p = jy, the factor becomes 

f (jy) = K ( 1 ) = K 1 
jy - Pm COS ()m + j(y ± sin Om) 

(5.70) 

(5.71) 

It was shown in chapter 4 that the gain function of a high Q single 
tuned amplifier stage could be expressed as 

A(J"w) - - gm ( l ) (5.72) 
- CT B ± j2/j.w 

where B = 1/RCT = stage bandwidth; /j.w = w - w 0 _:_ frequency 
deviation from w 0 ; w = signal frequency; w 0 = 1 /V LC T = bandcenter 
of the stage. 

It is evident that the form of this factor is similar to that of the factor 
of the maximally flat function. However, the factor of the flat function 
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is dimensionless, while the factor in the amplifier gain function has the 
dimensions of frequency. However, it can be made dimensionless 
through the use of a normalizing procedure. This is explained in the 
next two paragraphs. 

It is assumed that n amplifier stages are cascaded and adjusted so 
that the over-all gain function is maximally flat as shown in figure 
(5.18). The over-all bandwidth of the cascade is Bn and the center 
frequency is we- Now suppose that this function is to be constructed 
using high Q, single tuned amplifier stages. 

I I 
AT --------1-- --- ----\------------

' I 

0. 707 AT ------
I I I 

_____ J ______ ---------

' I 
---B,..-, ----

1 
I 
I 
I 
I 
I 

QIL (II C (IIH 

LI NEAR FREQUENCY-+ 

Fig. 5.18. Terminology for the maximally flat amplifier cascade. 

In the single stage gain function given in equation (5.72), divide 
numerator and denominator through by the over-all bandwidth Bn of 
the cascade. This gives 

gm 1 
A(jw) = - -Bn_C_T . -B/_B_n_±_J __ 2-~-w-/ B-n (5.73) 

Now assume that the signal frequency is set equal to the bandcenter 
frequency we of the cascade. Thus the gain of each amplifier stage 
becomes 

A(jw)= -~- l 
c BnCT B/Bn ±j2~wcfBn 

(5.74) 

where ~we = we - w0 = frequency difference between the bandcenter 
of the cascade and bandcenter of the amplifier stage. 

At the bandcenter for the maxima11y flat function, y = 0, and each 
factor of the function becomes 

/(0) = K l . 
cos Om ±jsm0m 

(5.75) 
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From a term-by-term comparison of equations (5.74) and (5.75) it is 
evident that there is one-to-one correspondence. That is 

B 
B = cos em (5.76) 

n 

which is the real part of the pole of the maximally flat function. 

2~we . 0 
--=Stn B m 

n 
(5.77) 

which is the imaginary part of the pole of the maximally flat function. 

K = ~ = scale factor 
BnCT 

Therefore, by proper adjustment of Band ~we, it is possible to make 
the amplifier poles exactly equal to the poles of the maximally flat 
function. For any value of n, Bn, and we it would be possible to 
synthesize n single tuned amplifier stages to produce the same pole 
configuration as that of the maximally flat function. The relationships 
required to compute the angles 0 m were given previously in equations 
(5.66) and (5.67). 

Generally speaking, the center frequencies of the individual stages 
are not equal to the bandcenter frequency of the cascade. Hence, the 
stages are said to be staggered. Because the staggering produces a 
maxima11y flat function, the cascade is called a maximally flat n-uple. 
The use of the term n-uple should be clear from table 8. 

TABLE 8 

MAXIMALLY FLAT STAGGERED n-UPLES 

n = Number of stages Name of circuit Gain function 

2 staggered pair K2/0 + y 4
)

112 

3 staggered triple Ka/(1 + J6
)

112 

4 staggered quadruple K4/(l + yB)l/2 

5 staggered quintuple K;,/(1 + ylO)l/2 

n staggered n-uple Kn/(1 + y2n)l/2 

It is a relatively simple matter now to evaluate and tabulate the data 
necessary to design any maximally flat staggered n-uple by locating the 
poles as specified by equations (5.64) through (5.66). Then by evaluat
ing the real and imaginary parts of the poles, the stage bandwidths 
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Fig. 5.19. Pole locations for maximally flat staggered n-uples. 

and resonant frequencies can be found; this procedure is illustrated for 
several different values of n in figure (5.19) and the resulting data are 
summarized in table 9. 

It is particularly interesting to note that the over-all bandwidth of 
the cascade is always equal to -or greater than the bandwidth of any 
given single stage of the cascade. This is in sharp contrast with the 
synchronous connection. 

The material presented in this article is valid as long as the Q's of 
the amplifier tuned circuits are about 20 or larger. 
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TABLE 9 

195 

n 

2 

3 

4 

5 

6 

7 

DESIGN DATA FOR MAXIMALLY FLAT STAGGERED n-UPLES 

[Computed from figure (5.19)] 

Number of Center frequency Stage 
Name of circuit 

stages of the stage bandwidth 

Staggered pair 2 We± 0.35B,a 0.71Bn 

2 We± 0.43Bn 0.50Bn 
Staggered triple 

1 We 1.00Bn 

2 We± 0.46Bn 0.38Bn 
Staggered quadruple 

2 We± 0.19Bn 0.92Bn 

2 We± 0.29Bn 0.81Bn 
Staggered quintuple 

2 We± 0.48Bn 0.26Bn 

1 We 1.00B" 

2 We± 0.48Bn 0.26Bn 
Staggered sextuple 

2 We± 0.35Bn 0.71Bn 

2 We± 0.13Bn 0.97Bn 

2 We± 0.49Bn 0.22Bn 

Staggered septuple 2 We± 0.39Bn 0.62Bn 

2 We± 0.22Bn 0.90Bn 

1 We 1.00B" 

The one remammg factor of interest is the over-all gain of the 
staggered cascade. According to equation (5.74), the function for 
maximal flatness can be synthesized by using a staggered cascade of 
amplifier stages having gain functions of the form 

gm I 
A(jw) = - -- · ----- (5.78) 

BnCT B/Bn ±j28wcfBn 
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or, in an alternative form, 

F4 1 
A(jw) = - - · ----

Bn Bf Bn ±j2fl.wc/Bn 
Moreover, it was shown that 

B 2tl.wc . O 
-±j--=cos0m±jsm m 
Bn Bn 

[Sec. 5.12 

(5.79) 

(5.80) 

so that the gain function for the amplifier stage can be written 

F4 1 
A(jw) = - - . ----

Bn cos Om ±jsin0m 
(5.81) 

Consequently, if n stages are cascaded, the magnitude of the over-all 
gain equation is 

(
F )n I 

A(jw) = B: Vl + y2n 
(5.82) 

Therefore the over-all reference gain at the bandcenter frequency, 
y = 0, is obviously 

(5.83) 

Because the bandwidth of the maximally flat function is independent 
of the value of n, the over-all bandwidth remains constant as additional 
stages are added to the cascade. However, the over-all gain increases 
with the addition of more stages, so that the over-all gain-bandwidth 
product of the amplifier increases continuously as n is increased. 

5.12. Exact Flat Staggering, Discussion 
Section (5.10) dealt with the synthesis of the maximally flat function 

from a cascade of staggered, high Q, single tuned amplifiers. The 
design method developed is generally valid only for circuit Q's of 20 
or more. It may not be possible in every case to achieve the specifica
tions of the design by using such high Q circuits, so that we should 
investigate the exact case in which the high Q approximations are not 
involved. 

At the outset it is helpful to consider the gain function of a single 
tuned amplifier as a function of complex frequency. This equation was 
derived in chapter 4 and can be written 

A(s) = - _gm ____ s __ _ 
Cp s2 + s/RCp + 1/LCp 

(5.84) 
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It was also shown that 

B = - 1
- = stage bandwidth 

RCp 

w0 = J 1 = resonant frequency of stage 
LCp 

Hence the general gain equation can be expressed as 

A(s) = - gm ( s ) 
Cp i+Bs+w: 

197 

(5.85) 

(5.86) 

(5.87) 

It is clear that this function has a zero at the origin and two conjugate 
poles given by 

B J B2 
S1,2 = - 2 ±j W~ - 4 (5.88) 

or s,,2 = - ~ ±j<,,0J I - (::,,.)' (5.89) 

And finally 

B . 
S1,2 = - 2 ± ]Wn (5.90) 

where wn is the imaginary component of equation (5.89). 
The magnitude of the pole is equal to the radial distance from the 

origin of coordinates in the s plane to the pole. It is easily shown that 
this is 

(5.91) 

Consequently, the poles are located in the complex s plane as shown in 
figure (5.20). Clearly, if the pole locations are known, w0 and B can 
be quickly computed. Then, because 

1 1 
B=- or R=- (5.92) 

RCp BCp 

2 1 1 
w0 = -; L = -- (5.93) 

LCp w~CT 

a knowledge of the pole location permits the stage to be designed. 
Hence the design of a single tuned stage merely involves the specifica
tion of particular pole locations. Once the poles are known, the design 
of the amplifier is clear cut. 

For the high Q circuit, the half bandwidth B/2 is so small compared 
with wn that wn _.:_ w0• Because of this approximation it was possible 
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to specify the pole locations in such a way that each single tuned stage 
provided one factor in the synthesis of the maximally flat function. 

It would be extremely desirable to establish some similar method of 
specifying the pole locations in the exact case in which the individual 
amplifier stages exhibit geometric symmetry. Because of the simplicity 
and directness of the procedure developed for the case of arithmetic 
symmetry, it would be helpful if the results of that process could be 
applied to the solution of the exact case. 

B/2 w 

Fig. 5.20. Poles of a single tuned amplifier in the s plane. 

It was shown in section (5.7) that a geometrically symmetrical 
function of the variable S = sf we can be transformed into a function 
that exhibits maximal flatness with arithmetic symmetry if the variable 
is changed top, where 

p=S+IJS=x+Jy (5.94) 

Thus s = .:_ =e ± J(e)2 

_ 1 
We 2 2 

(5.95) 

Hence if an exact flat staggered n-uple is to be designed, the first step 
is to design it as a maximally flat amplifier as a function of the variable 
p. Then the variable is transformed into the s plane, using equation 
(5.95). Once the pole locations in the s plane are known, the amplifier 
is readily designed from a knowledge of figure (5.20). 

The formal design procedure for the exact flat case is outlined in the 
next section. 
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5.13. Exact Flat Staggering, Design Procedure 
Three factors must be specified before an exact flat staggered amplifier 

can be designed. They are: 

(I) Bn = over-all bandwidth. 

(2) wc = bandcenter frequency. 
(3) n = number of stages. 

The design procedure then follows the outline given below. 

p 
y (I) Construct the complex P plane. 

--------------x-B n 
Ille 

Fig. 5.21. Poles of the maximally 
flat function in the p plane. 

(a) Using the origin of co
ordinates of the plane as the 
center, draw a half circle of 
radius Bn/ WC. 

(b) For the value of n specified, 
locate the poles in the P plane 
as shown in figure (5.19). 
( c) Record the value of each 
pole as Pm =(-xm ±jym)Bnfwc. 

(2) Construct the complex s plane. 
(a) Compute the poles of the ex
act flat stagger from the P plane 
poles by using the transformation 
given in equation (5.95). 

(b) Each P plane pole will produce two s plane poles. 
(c) Locate these poles in the s plane. 

(i) Pole magnitude= w0 = -Vl/LCT. 
(ii) Real component= B/2 = 1/2RCT. 

All data necessary to design the amplifier are now available. 
In the complex P plane, the poles lie on the periphery of a half 

circle in the left half plane as shown in figure (5.21). When the poles 
are transformed to the s plane they fall on warped circles as shown in 
figure (5.22), where these circles are located in the second and third 
quadrants. Conjugate poles in the P plane produces plane poles that 
fall on the same radial lines as shown in figure (5.22). 

A special case develops whenever the stagger contains an odd number 
of stages. In these cases, one pole in the p plane falls on the negative 
real axis, at -1, and this often leads to two real poles in the s plane as 
shown in figure (5.23). The immediate question is the determination of 
the center frequency and bandwidth for this stage. 
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In such cases, the pole in the P plane is Pm= -Bn/wc. Consequently, 
the corresponding s plane poles are 

B"' J (B"' )2 Sm= - 2 ±jwc 1- 2wc 

The general expression for the poles of a single tuned amplifier was 
derived in equation (5.89) as 

s, .• = - ~ -±;i<n0J1 -(i! )' 
+ 0 

UI 

t 
Bn 

l 

Fig. 5.22. Poles in the s plane for exact 
flat staggering. 

Fig. 5.23. Effect of a real pole in the 
P plane on poles in the s plane. 

From a term-by-term comparison of these two equations it is clear 
that whenever n is odd there is one stage for which 

natural frequency= w0 =we= bandcenter (5.96) 
stage bandwidth= B = Bn = bandwidth of stagger (5.97) 

5.14. Overstaggering 
The use of flat staggering as discussed in the preceding sections pro

duces a considerable increase in the gain-bandwidth product over that 
possible with synchronous tuning. Now suppose that a maximally 
flat-staggered n-uple is designed, using high Q single tuned amplifiers. 
Further suppose that the· resulting over-all gain is insufficient. In an 
effort to increase the gain, the circuit Q's of the individual stages are 
increased beyond the values required for maximal flatness. The 
reference gain of the cascade will be increased, but it will be found that 
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the frequency response characteristic has developed a "lumpy" 
appearance. Instead of being flat, it now exhibits peaks and dips. The 
circuit is then said to be overstaggered. 

There is nothing especially undesirable about this lumpiness as long 
as it is under control. It was stated earlier that there was nothing 
especially advantageous about the maximally flat function except 
that it had a good gain-bandwidth product. This product can be 
increased by introducing small peaks and dips into the response 

n 

1 

2 

3 

4 

5 

TABLE 10 

TCHEBICHEF POLYNOMIALS 

Cn(y) 

y 

2y2 - 1 

4y3 - 3y 

8y4 
- 8y2 + 1 

16y5 
- 20y3 + Sy 

characteristic. However, the amplifier phase response is worse and there 
is considerable overshoot in the transient response (see chapter 6). 

The most common form of controlled lumpiness is called the equal 
ripple function. Here n stages of narrow band, single tuned amplifiers 
are cascaded and overstaggered so that the resulting over-all gain 
function has an amplitude of the form 

1 
I g(jy) I = KV 1 + EC!(y) (5.98) 

This is the equal ripple function. 
The function CnCy) appearing in equation (5.98) is a Tchebichef 

polynomial, and it has the forms given in table 10. The gain functions 
corresponding to the various values of n are sketched in figure (5.24). 

If the equal ripple function is factored, it can be shown that it will 
have poles of the following form: 

( 1) When n is even, 

pm = sinh [ -oc + j: (1 + 2k)] 

where k = 0, -1 for n = 2; k = 0, ±I, -2 for n = 4. 

(5.99) 
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Fig. 5.24. Equal ripple gain functions. 

(2) When n is odd, 

pm = sinh [-oc + j ~:] 

where k = 0, ± 1 for n = 3; k = 0, ± 1, ±2 for n = 5. 
It is clear that the poles have the general form 

[Sec. 5.14 

I 
I -'41+ t 

I 

(5.100) 

Pm= sinh (-~ + j{J) = -sinh ~ cos {J + j cosh ~ sin {J (5.101) 

Divide through by cosh ~: 

Pmh = -tanh ~ cos {J + j sin {J 
cos ~ 

(5.102) 

If this last equation is compared with the general equation for the 
poles of the maximally flat function, it is apparent that they have exactly 
the same form except that the real part is multiplied by tanh ~ in the 
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equal ripple case. Hence the equal ripple function can be synthesized 
by systematically overstaggering the stages designed to produce maximal 
flatness. 

In passing it is also important to observe that overstaggering increases 
the slope of the skirts of the selectivity curve, making it steeper than 
the skirt of the maximally flat response. This increase in the sharpness 
of the cutoff characteristic improves the selectivity characteristic so 
that delineation of adjacent channels is more readily secured. 

The design procedure may be outlined briefly as follows: 
(1) The design requirements will specify the desired bandcenter 

we, over-all bandwidth Bm amount of ripple, and the number of 
stages n. • 

(2) Calculate € from the relationship for the ripple 

volt logits = 10 log10 V 1 + € 

(3) Calculate IX from 

IX=! sinh-1 JI 
n € 

(4) Compute tanh IX. 

(5.103) 

(5.104) 

(5) Construct the complex p-plane and locate the poles of the 
maximally flat function as outlined in section (5.10). For each pole, 
multiply the real part by tanh IX. The resulting pole is a pole of the 
equal ripple function. 

real part= normalized stage bandwidth= B/Bn 

. . 2 (deviation of stage resonant) 
1magmary part = -

Bn frequency from bandcenter 

It is apparent that the center frequencies of the stages used to 
synthesize the equal ripple function are exactly the same as those used 
to synthesize the maximally flat function. However, the stage band
widths are reduced by the tanh IX factor. Although the over-all band
width remains the same as in the maximally flat case, the reduction in 
stage bandwidth increases the stage gain and the over-all figure of 
merit of the cascade. 

It can be shown that the reference gain of the cascade is 

(
F )n n I 

AT = ~ TT ----;::=====================-
Bn m=l V (tanh IX cos /3m)2 + (sin /3m)2 

(5.105) 
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5.15. Cascading of Flat-Staggered n-uples 

It has been shown that n high Q, single tuned amplifier stages can 
be cascaded and staggered to produce a maximally flat frequency 
response. For a maximally flat n-uple, 

(
F )n I 

I Ap(jy) I= B: Vl + y2n (5.106) 

Now consider the staggered n-uple as a single unit in a cascade of m 
such staggers. In other words, a total of mn tubes are arranged in a 
cascade of m stagger tuned amplifiers, each stagger containing n tubes. 
The over-all system gain is • 

I A,:{jy) Im = (;:) mn (! + ~•)m/2 

At the over-all cutoff frequencies 

I 
{l + y2n)m/2 - 21/2 

(5.107) 

(5.108) 

or o + lnr = 2 (5.109) 
Take the mth root of both sides of this equation and subtract I. This 
yields 

y2n = 21/m _ 1 

Solve for the cutoff frequencies y. 

y = ±(21/m _ J)l/2n 

Therefore the upper and lower cutoff frequencies are 

YH = (21/m _ J)l/2n 
= over-all upper cutoff frequency 

y L = _ (21/m _ 1)1/2n 
= over-all lower cutoff frequency 

(5.110) 

(5.111) 

(5.112) 

(5.113) 

The over-all bandwidth Jjn is the difference between these cutoff 
frequencies, or 

Bm = 2(21/m - l)l/2n (5.114) 

But Bn = bandwidth of each n-uple = 2 in terms of the normalized 
frequency y. Hence the over-all bandwidth of the cascade of staggered 
n-uples is 

Bm = Bn(211m - 1)112n (5.115) 

This is a convenient equation to use for the over-all bandwidth of 
any cascade connection of high Q, single tuned amplifiers regardless of 
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whether they are synchronous or stagger tuned. For example, in the 
case of the synchronous connection, the number of tubes in each 
staggered n-uple is 1. Hence the over-all bandwidth is 

Bm = B(2l!m - 1)112 (5.116) 

which was obtained earlier for the same case by direct evaluation. For 
a staggered pair, n = 2, so that 

Bm = Bn(211m - 1)114 

For a staggered triple, n = 3 and 

Bm = Bn(21fm - 1)116 

(5.117) 

(5.118) 

and so on. It should be clear that the shrinking of the over-all band
width proceeds at a slower rate as the number of stages in the staggered 
n-uple is increased. 

5.16. Double Tuned Amplifier: Equal Q, High Q Case 
While the double tuned amplifier is only a single stage, it exhibits 

many of the characteristics of cascaded single tuned amplifiers. There
fore the design of the circuit is included here rather than in chapter 4. 

The general equation for the gain function of a double tuned ampli
fier was derived in chapter 4 and the result is reproduced in equation 
(5.119). This equation is valid only when the primary and secondary 
are tuned to the same frequency. 

where the coefficients of the characteristic function are 

01 = wr(J_ + ~) 
Q1 Q2 

(5.120) 

a.,= w:(Q:Q, + 2) (5.121) 

3( 1 1 ) 
03 = wr Ql + Q2 

(5.122) 

o4 = wt(l - k2
) (5.123) 
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The terms in these coefficients were previously shown to be 

Q1 = rooR1C1 (5.124) 

(5.125) Q2 = rooR2C2 

Wo 
w = --- (5.126) 

r Vl - k2 

1 1 
Wo = -==== = -==== (5.127) 

VL1C1 VL2C2 
M 

k = ---=== (5.128) 
VL1L2 

The coefficients of the characteristic function can be simplified 
somewhat when the primary and secondary Q's are equal to one 
another. Thus if Q = Q1 = Q2, the coefficients are 

(5.129) 

(5.130) 

2w~ 
ll3 = Q (5.131) 

ll4 = w:o - k2
) (5.132) 

The approximate value for a2 given in equation (5.130) is applicable 
when the circuit Q is so high that 1/ Q2 is much less than 2. This con
dition is assumed to exist in the work that follows. 

Using the coefficients obtained for the high Q, equal Q case, the 
characteristic equation for the amplifier can be written directly as 

4 2wr 3 2 2 2w~ 4 2 
s + Qs + 2wrs + Qs + wr(l - k) = 0 (5.133) 

The four roots of this equation are the four poles of the gain function. 
The natures of the roots are easily deduced because in the high Q case 
they must be complex conjugates. That is, the four roots are 

where 

S1 = -0'1 + jw1 = Y1/81 (5.134) 

s~ = -0'1 - jw1 = Y1/-81 

S2 = -0'2 + jw2 = Y2/82 

s~ = -0'2 -jw2 = Y2/-82 
2 2 2 

Y1 = 0'1 + W1 
2 2 2 

Y2 = 0'2 + W2 

(5.135) 

(5.136) 

(5.137) 

(5.138) 

(5.139) 
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If these are the roots of the characteristic equation, it is a relatively 
simple matter to express the coefficients of this equation in terms of 
the roots by using the standard relationships between roots and 
coefficients of polynomials. Therefore, 

a1 = -(sum of the roots)= 2(0'1 + 0'2) (5.140) 

a2 = +(sum of the products of roots 2 at a time) 

= 4(0'10'2 + r: + r:) (5.141) 
a3 = -(sum of the products of roots 3 at a time) 

= 2( 0'1Y: + 0'2Y:) (5.142) 

a4 = +(product of the roots)= r:r: (5.143) 
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Fig. 5.25. Pole diagram for an equal Q 
double tuned amplifier. 

Fig. 5.26. Pole diagram for the high 
Q, equal Q, double tuned amplifier. 

There are now two sets of equations for the coefficients, one in
volving the components of the poles and one set given in terms of the 
circuit constants of the amplifier. The poles can then be computed 

" 
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by equating the two sets of relationships and solving the results 
simultaneously. 

In the equal Q case assumed, the real parts of the poles must be 
equal so that a = a1 = a2• Thus the results of the computation 

outlined in the preceding paragraph 

I 
I 
I 

s, 
I 

I 

IIH --,, .... 
,,, !a 
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w0 k 

------
' •o ' -'.Ji 

Fig. 5.27. Enlargement of the 
top part of figure (5.26). 

are 

ror roo 1 . roo 
a=-=-·---=-

2Q 2Q y 1 _ k2 2Q 

(5.144) 

fllo ro0 • ( k) r1 = v1 - k = roo I + 2 
(5.145) 

ro0 • ( k) 
Y2 = V 1 + k = roo 1 - 2 

(5.146) 

(5.147) 

The approximate relationships given in these equations are valid as 
long as the circuit Q is high, because this makes k2 much less than 1. 

Equations (5.144) through (5.147) give the information necessary to 
locate the poles in the complex s plane. Figure (5.25) shows a typical 
pole diagram. Thus the amplifier can be easily designed as soon as 
the design requirements definitely fix the poles to specific points in the 
s plane. The high Q case has been assumed so that the real part of the 
poles, ro0/2Q, is small compared with the imaginary component; for 
all practical purposes the imaginary component is equal to the ampli
tude y. Under the same conditions, ror _:.._ ro0, so that the poles can be 
located approximately, but with considerable accuracy as shown in 
figure (5.26). 

Suppose, for example, that a high Q, equal Q, double tuned amplifier 
is to be designed to give a maximally flat response. Two pairs of 
conjugate poles in the s plane will be required to produce a flat function 
corresponding to the case of n = 2. For n = 2, it was shown in 
section (5.10) that the poles should be located at 45° angles as shown 
in figure (5.27), which t's simply an enlargement of the region about ro0• 
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The radial distance from w 0 to either pole is clearly 

wok - rook 
2 sin 45° - V2 (5.148) 

This is the radius of the half circle in figure (5.27), and the bandwidth B 
is twice the radius. Thus 

B = V2w0k (5.149) 
For the pole angles to be 45°, the real and imaginary parts, measured 
from w0, must be equal. That is, 

w0 = w0k 
2Q 2 

Consequently, for 45° angles, or a maximally flat response, 

1 
kt=-

Q 
which corresponds to the condition for transitional coupling. 

(5.150) 

(5.151) 

The design procedure to obtain a maximally flat response is now 
easily summarized as follows: 

(1) The design requirements will specify the values required for wr 
and B. Because the high Q case is assumed, wr _.:._ w0• Moreover, the 
values of the primary and secondary capacitances C1 and C2 will also 
be known once the tube is selected. 

(2) From equation (5.149), compute the coefficient of coupling. 
(3) For maximal flatness, 

1 
Q = k; = WoR1 C1 = rooR2C2 

Hence R1 and R2 can be computed. 

Q l 
R1=--=--

w0C1 kw0C1 

Q l 
R2=--=--

w0C2 kw0C2 
(4) Finally, because 

so 

(5.152) 

(5.153) 

(5.154) 

(5.155) 

(5.156) 

(5.157) 

(5.158) 



210 Multistage Amplifiers-Steady State [Sec. 5.17 

(5) The amplifier can now be designed with a tuned transformer or 
tee or pi section, whichever is deemed most appropriate. 

If it is desirable to overcouple the circuit so that the response dips 
in the center, the amplifier should be designed as an equal ripple pair. 
The design procedure is essentially the same as that for transitional 
coupling, just given, except that the real parts of the poles are modified 
by the tanh ex factor as outlined in section (5.13). 

Still other possibilities exist. High Q, equal Q, double tuned ampli
fier stages can be cascaded and designed to give the same response as 
staggered quadruples, sextuples, or octuples. In such cases it turns out 
that all stages are tuned to the same frequency and the staggering is 
produced by variations in the loading, or circuit Q. This kind of 
amplifier is said to be stagger-damped. 

When the high Q case does not apply, procedures have been developed 
for designing the amplifier to have the same response as an exact flat 
staggered pair. The conformal transformation between s and p planes 
is different from that used for the single tuned case. 

5.17. Distributed Amplifiers,3 General 

The steady state figure of merit for a single stage video amplifier was 
given in chapter 4 as the gain-bandwidth product. That is, Fa= Arwn, 
where Ar= reference gain; wn = upper cutoff frequency. It was 
shown that the value of this figure of merit for a resistance coupled 
amplifier was Fa= gm/CT, because 

I 
A = g R and wn = w2 = --

r m RCT 

In the analytical work on various amplifier types that followed the 
resistance coupled amplifier, it was shown that the same reference 
gain g mR could be achieved, but with higher cutoff frequencies through 
the use of improved circuitry. In all cases, the upper cutoff frequency 
was expressed in terms of a multiple of w2, the cutoff frequency for a 
resistance coupled amplifier. That is, for any video amplifier, it was 
shown that 

3 This discussion is adapted from E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, 
J. D. Noe, "Distributed Amplifiers," Proc. IRE, vol. 36, no. 8, August, 1948, 
pp. 956-969, with the permission of the authors and the publisher. 
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where K = constant greater than 1. Hence the figure of merit of any 
video amplifier can be expressed as 

F =Kgm 
a CT 

Through the use of improved circuitry, shunt or series peaking for 
example, it was found that K could be made as high as 3. Actually, 
somewhat larger values can be obtained by using more complex circuits, 
but it is generally impractical to make it greater than about 4 because 

I 
lcp I 

4 

3 
Zop 

4 

Fig. 5.28. One distributed amplifier stage of n sections. 

the circuit complexity increases the wiring capacitance and CT and 
tends to offset the improvement. It has been shown4 that the maximum 
possible value for K is about 5.1. 

From the discussion of cascading presented in the preceding sections 
it is clear that multistaging can be used to achieve greater gain-band
width products, but even here there is an eventual upper limit beyond 
which further improvement is not produced by cascading. The situation 
is not encouraging, for the design requirements may occasionally 
demand gains and bandwidths in excess of anything possible by the 
methods outlined so far. Clearly some other method of multistaging 
should be used. 

In a sense, cascading is analogous to a series connection. Thus the 
thought occurs that paralleling tubes might result in an increase in the 
amplifier figure of merit. Unfortunately, this does not prove to be 
helpful directly, because paralleling tubes increases both the total gm 

4 W. W. Hansen, "On the Maximum Gain-Bandwidth Product in Amplifiers," 
J. Appl. Phys., vol. 16, September, 1945. 
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and CT to the same extent, so that no net improvement in Fa is noted. 
However, this does suggest that a possibility might exist whereby the 
tube transconductances can be effectively paralleled and added while 
the capacitances are not. This very effect is successfully accomplished 
in the distributed ampl[fier. 

A representative single stage distributed amplifier is shown in 
figure (5.28). A stage is composed of n sections, each section consisting 
of a tube and associated circuits. In the distributed amplifier the tube 
capacitances are made to serve as the shunt elements of two trans
mission lines, a grid line and a plate line. The tube capacitances involved 
are then specified as follows: C'P = plate-to-cathode capacitance of 
the tube; Cg= grid-to-cathode capacitance of the tube. 

The characteristic impedances of the two transmission lines are 

J- ✓-Lg L'P 
Zo = - and Zo = -

11 cg p c'P 
(5.159) 

if the lines are composed of dissipationless elements. These character
istic impedances are independent of the number of sections in the line, 
and are therefore independent of the number of tubes. Hence the 
effect of connecting tubes this way is such that the tube capacitances 
do not add. We still have to prove that the tube transconductances 
add as if the tubes were connected in parallel. 

The two transmission lines are designed to have equal velocities of 
propagation. Before describing the operation of the circuit, the follow
ing definitions are necessary: 

Grid termination = impedance connected across 2-2. 
Reverse termination= impedance connected across 3-3. 
Plate termination = impedance connected across 4-4. 

The input signal supplied to terminals 1-1 causes a wave to travel down 
the grid line. When it reaches the grid of the first tube the grid voltage 
causes a plate current to flow, in phase with the grid signal and in both 
directions along the plate line. The plate current component traveling 
to the right travels at the same speed as the grid signal voltage, so that 
both arrive at the second tube at the same time. Hence the plate 
current of the second tube will be in phase with that arriving from 
tube 1 and the component of plate current from tube 2, traveling to 
the right, will add to that from tube 1. This process is repeated at each 
tube, so that the output taken from terminals 4-4 is directly propor
tional to the number of tubes in the stage. Thus the effective trans
conductance of the distributed stage is proportional to the number of 
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tubes in the stage and can be raised to any desired value without 
increasing the total effective shunt capacitance. As a result, the 
maximum obtainable bandwidth and amplifier figure of merit can be 
raised to almost any desired value. 

The plate current components traveling to the left on the plate line 
are absorbed in the reverse termination without reflection. Therefore 
they do not affect the operation of the stage. 

5.18. Cascading Distributed Amplifier Stages 
After the necessary amplifier figure of merit has been achieved by 

adding sections to a distributed stage, the separate stages can be 
cascaded. The derivation of the resulting over-all gain is simplified if 
the following terms are defined: 

Section = each tube with its sections of transmission line. 
Stage = n sections. 
Gain of a section = A0• 

Gain of a stage = A. 
Gain of m cascaded stages = AT· 
Let Ea designate the grid voltage applied to the input of the grid line. 

The resulting plate currents in each tube will be 

(5.160) 

if the grid line is lossless and if the r P of the tube is very much larger 
than the characteristic impedance of the plate line. This current 
divides in the plate line; part travels toward the output and the 
remainder toward the reverse termination. Because the plate line is 
terminated in its characteristic impedance, 

(1) Input impedance of the left part of plate line= Z 0fl. 

(2) Input impedance of the right part of plate line= Z 0fl. 

Consequently the plate current from each tube divides evenly, half 
traveling to the left and half to the right. The gain of the section is 

Z0 Z0 1 
Ao= gmZm = gm Z -+ Z = 2gmZo1' (5.161) 

01' Op 

If there are n sections in the stage, the current components and section 
gains add directly, making the stage gain measured from grid to plate, 

(5.162) 

In general, the characteristic impedances Z0,, and Z 0,, of the plate 
and grid lines are not the same. Moreover, when stages are cascaded, 
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it is necessary to connect the output from the plate line of one stage to 
the input of the grid line of the succeeding stage. Because the character
istic impedances of the two lines are unequal, it is necessary to insert an 
impedance transformer between stages. This device changes the im-
pedance level from Z0 in the plate line to Z0 in the succeeding grid 

p (I 

line; all lines are then properly terminated. However, this change in 
impedance level corresponds to a voltage change of V Z0 /Z0 . Hence 

(I p 

the amplification of the stage measured from grid to grid is 

A=A JZo" gp z 
Op 

(5.163) 

n JZo n A 1--=-g 2 0 -"--g vZ0 Z 0 2 m P Z -2 m P" 
Op 

(5.164) 

The equation for the stage gain given in equation (5.164) can be put 
into a more convenient form, because the velocities of propagation on 
the two lines are the same. This means that the cutoff frequencies of the 
lines must also be the same and given by 

1 1 
J; - -- - -- (5.165) 

C - 7T,VL'PC'P - 7T'VLgCg 

where Jc is the cutoff frequency for a low pass, constant-k filter. Solve 
each equation for the section inductance. 

1 1 
L =--; L =-- (5.166) 'P 2r2c g 2r2c 7TJc 'P 7TJc g 

The characteristic impedances of the lossless lines are 

Z0p = J~P; Z0" = J~ (5.167) 
p g 

Hence the product of the characteristic impedances is 

z z = JLP JLg = JLpLg 
Op 0" C C CC 

'P g 'P g 

Substitute for LP and Lg from equation (5.166). 

so that 

1 1 z z --·-
Op Ou - 2r2 CC 

7TJc pg 

(5.168) 

(5.169) 

(5.170) 
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Substitute this expression into the equation for the stage gain in 
(5.164). 

or 

ngm J 1 
A= 271'/c cpcg 

n gm 
A=-·------

wc v cpcg 

(5.171) 

(5.172) 

Now, if m such stages are cascaded, the over-all gain of the system is 

A -Am- !!:_ gm ( )m ( )m 
T- - Wc VCpCg (5.173) 

Take the mth root of both sides of this equation. 

Alim_!!_ . gm 
T - Wc VCpCg 

(5.174) 

and the equation can be solved for n to obtain 

n = A~mwc V~ (5.175) 
gm 

The total number of tubes in the cascade is denoted by N. Because 
there are m stages of n sections each, it is clear that N = mn. Hence, 
equation (5.175) can be written as 

N = mA~mwc V~ (5.176) 
gm 

The least number of tubes N required to produce a specified over-all 
gain AT can now be computed. Differentiate equation (5.176) with 
respect tom and equate the result to zero. 

oN wcV cpcg o 1/m -=---- mAT 
om gm om 

O 1/m 
or om mAT = 0 (5.177) 

Carry out the indicated differentiation. 

Consequently, 

or 

1/m A~m ln AT 
AT -----=0 

m 

mA~m = A¥m (ln AT) 

m = In AT 

(5.178) 

(5.179) 
(5.180) 

which is the number of stages that will make the number of tubes a 
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m1mmum. Solve equation (5.180) for the over-all gain by taking the 
antilogarithm of both sides. 

However, it will be recalled that the stage gain is 

A=A¥m 

so that the stage gain required to make Na minimum is 

A= (em)l!m = e = 2.718 

(5.181) 

(5.182) 

(5.183) 

Hence, if enough sections are added to the stage so that the stage gain 
is equal to e, this will automatically result in a cascade that has the 
fewest tubes for a specified over-all gain. 

The number of tubes actually required is easily computed, because 

(5.184) 

Therefore 

- VC'J)Cg - 1711" vc:c: n-ewc---- •Jc __ _ 

Km Km 
(5.185) 

the number of tubes in each stage required to make the stage gain 
equal to e. Now, because, m = In AT = number of stages required, 
the total number of tubes required for a certain over-all gain AT is 

vcI,. 
N = mn = 17.lfc (In Ap) 1) g 

Km 
(5.186) 

5.19. Frequency Response of a Distributed Amplifier 

It was shown in equation (5.164) of the preceding section that the 
stage gain of a distributed amplifier is 

nKm~i-
A =-·vZ0Z0 2 7) fl 

(5.187) 

where the Z 0 and Z 0 are the characteristic impedances of the plate 
7) fl 

and grid transmission lines. It is interesting to observe that the form 
of this equation is essentially the same as that used for all amplifier 
types. That is, 

A= K:nzm 

where K:n = effective transconductance= nKml2; Zm = mutual im
pedance= VZ0 Z0 • 

7) fl 
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Each transmission line is actually made up of a cascade of low pass, 
constant-k, pi type filters as shown in figure (5.29). The characteristic 
impedance of a symmetrical pi section is given by the general equation 

VZ1Z2 
Zo = --:::========== 

VI+ Z1/4Z2 

where, for the distributed amplifier, 

Z1 = jwL and L = Lv or Lg 

I 
Z 2 = - and C = CP or Cg 

jwC 

Fig. 5.29. Frequency response of a distributed amplifier. 

Hence the characteristic impedance of the section is 

VL/C 
z - -:::======== 0 

- VI - w2LC/4 

or 
R 

z - -:-========== 0 
- v' I - 7T3/ 2LC 

where R=Jf and ro=2,r/ 

The cutoff frequency of the filter was previously defined as 

I 
1c = 7TVLC 

(5.188) 

(5.189) 

(5.190) 

(5.191) 

(5.192) 

(5.193) 

(5.194) 
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Hence, the equation for the characteristic impedance can be written 

R z - -~---_-_ -_ -_:-_ -_ 
0 - VI - (/!.fc)2 

(5.195) 

For the particular cases of the plate and grid lines of the distributed 
amplifier, this equation for the characteristic impedance becomes 

Z0 = RP where RP= VLP/CP 
p v 1 - (f/.fc)2 

(5.196) 

Zo = R(/ where R(/ = V Loi c(/ 
II V 1 - (//.f~)2 

(5.197) 

Substitute these last two expressions into the gain equation given in 
(5.187). 

A= ngmVR R I 
2 p (I VI - (/!.fc)2 

(5.198) 

It is apparent that the reference gain of a distributed amplifier stage 
is 

so that the general gain equation becomes 

1 
A=A 

r v 1 - (J/fc)2 

(5.199) 

(5.200) 

If you examine this last equation you can see that the stage gain 
increases rapidly as the operating frequency of the amplifier approaches 
the cutoff frequency fc. Theoretically, the amplification will be infinite 
at the cutoff point. This large increase in gain for frequencies near 
cutoff is generally undesirable. Methods of eliminating the peak are 
discussed at length in the basic reference cited. 

Because the gain increases near cutoff instead of decreasing as all 
the cascaded amplifiers did, the usual definition of the upper cutoff 
frequency is not valid in this case. In other words, wH -=I= we. However, 
the cutoff characteristic is relatively sharp, and the bandwidth of the 
amplifier can be closely approximated by we. 



Multistage Amplif,ers-Steady State 

PROBLEMS 

219 

5.1. A low pass amplifier is to be designed to have an over-all upper cutoff 
frequency of 10 mcps and a reference gain of 20 volt logits. A cascade of 
identical resistance coupled amplifier stages is to be used with 6AK5 tubes, 
for which gm = 4500 µmhos and CT = 11.0 µµf. Is this amplifier feasible? 
What is the maximum obtainable upper cutoff frequency if the gain is 20 
volt logits? For an over-all upper cutoff frequency of 12 mcps, what is the 
maximum possible gain? 

5.2. An amplifier is to be designed to have a bandwidth of 3 mcps with a 
60 mcps center frequency. Assume that gm = 5000 µmhos and CT = 11.0 µµf 
per stage. Design a maximally flat-staggered triple, computing the L and R 
required for each stage. Compute the over-all gain at 60 mcps. 

5.3. Redesign the amplifier of problem (5.2) using the same tubes, but a 
synchronous connection of three stages. Compute the L and R for each stage 
and the over-all gain at 60 mcps. Compare the gain with that of the staggered 
triple. 

5.4. Design an exact flat-staggered triple to have cutoff frequencies of 
5 mcps and 20 mcps. Find the resonant frequency and Q of each stage. 

S.S. Design an equal ripple, staggered triple to have a bandwidth of 1.5 
with a center frequency of 30 mcps; the amount of ripple is to be 0.25 volt 
logit. Here 6SJ7 tubes are to be used, so that Fa = 110 x 106• Compute the 
reasonant frequency and Q of each stage. Compute the over-all gain at 
band center and the gain that would be obtained at 30 mcps from a maximally 
flat-staggered triple. 

5.6. An audio preamplifier is to be designed for use between a microphone 
and a class A power amplifier. The over-all response of the amplifier from 
microphone to the grid of the power amplifier is to be flat, ± 1.5 volt logits, 
from 20 c to 20 kc. The open circuit output voltage from the microphone is 
2-mv, rms, and it has an internal impedance of 100,000 ohms. A 25-v peak
to-peak grid signal is required to drive the power amplifier. Assume standard 
resistance coupling throughout and interstage wiring capacitances of 15 µµf. 
Best results are achieved if the cutoff frequencies of all coupling circuits are 
the same. Assume Cin of the power amplifier to be 50 µµf. 

An infinite number of designs could be obtained. To restrict the problem, 
assume that the first tube after the microphone is a 6SJ7 and all other tubes 
are 6J5's. Design the amplifier. 

5.7. A radar beacon receiver is to be designed to have an over-all band
width of 3.5 mcps measured from the mixer output to the video output. The 
over-all system gain is to be 55 volt logits. For particular economic reasons, 
6AC7 tubes are to be used throughout, so that gm = 9000 µmhos, CT = 23 
µµf. The voltage transfer function of the video detector may be taken to be 
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0.8 and it is decided that two video stages will be used. The detector may be 
treated as a third video stage. Best operation results if the bandwidths of all 
stages are the same, so that the upper cutoff frequency of the video stages 
should be equal to the half bandwidth of the tuned stages. Determine the 
total number of stages required if synchronous intermediate frequency stages 
and resistance coupled video stages are used. What are the design require
ments for the tuned (IF) section, the detector-video cascade? What would be 
the effect of using only one video stage and increasing the tuned cascade by 
one tube? 

5.8. Design a maximally flat double tuned amplifier to have a bandwidth 
of 3 mcps centered about 60 mcps. Compute the mid-band gain. Determine 
L1,L2, k, R1, and R2, assuming that gm = 4500 µmhos, C1 = 5 µµf, C2 = 6 µµf. 
If a double tuned pi section is desired, are the coil inductances reasonable? 
Why might a pi section be preferred to a transformer? 

5.9. Redesign the amplifier of problem (5.8), but overcouple it so that an 
equal ripple response is obtained with 0.2 volt logits of ripple. 

I 



Chapter 6 

TRANSIENT RESPONSE OF MULTISTAGE 
AMPLIFIERS 

When the specifications for the design of a new amplifier are drawn 
up, the details of the amplifier as a separate unit are not considered. 
That is, the amplifier, regardless of type, or number of stages involved, 
is treated as a single unit in the over-all block diagram of the system of 
which the amplifier is a component part. The performance character
istics of the amplifier are then formulated so that it fulfills its mission 
in the system. The over-an performance properties of the amplifier are 
then specified and the circuit designer must answer questions of the 
following types: 

(1) How many stages should be used? 
(2) What kind of stages should be used? 
(3) What tube is best suited to the amplifier? 
( 4) What are the gain, rise time, overshoot, and sag requirements of 

each individual stage in the amplifier? 
It seems clear that these questions cannot be answered satisfactorily 

until the over-all performance of the multistage amplifier can be 
specified in terms of the behavior of the individual stages; or conversely, 
when the characteristics of the individual stages can be expressed in 
terms of the over-all performance properties desired, the individual 
stages can be designed. 

The purpose of this chapter is to determine the effects of multistaging 
upon the over-all transient response of amplifiers. Certain rules of 
behavior will be established to express the characteristics of multistage 
amplifiers in terms of the corresponding characteristics of the individual 
stages. 

The chapter has three main subdivisions, as follows: 
(1) Transient response of cascaded video amplifiers. 
(2) Envelope response of band pass amplifiers. 
(3) Transient response of distributed amplifiers. 
Rules of behavior are quickly formulated for the characteristics of 

cascaded low pass amplifiers. The band pass, low pass analogy is then 
used to describe the behavior of band pass amplifiers in terms of these 
same rules. The distributed amplifier is treated as a special case. 

221 
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6.1. Composition of Rise Times, No Overshoot 

The transient response characteristics of various single stage, low 
pass amplifiers were evaluated and discussed in chapter 4. It was found 
that resistance coupled and shunt peaked amplifiers, with m less than 
0.25, did not overshoot. These are the most common amplifiers with 
monotonic (nonovershooting) transient edge response characteristics. 
Further study of the subject eventually proved that amplifiers do not 
overshoot unless their functions have conjugate poles in the s plane. 
While this rule was formulated for single stages, it can be generalized 
to include any amplifier regardless of the number of stages involved. 

Attention was directed to a paper by Elmore at the beginning of 
chapter 4. According to Elmore, any amplifier, regardless of its type 
or the number of stages, has a gain function that can be expressed in 
general terms as 

(6.1) 

If the amplifier does not overshoot, the rise time TR can be computed 
from Elmore's formula 

(6.2) 

This last expression will be used to determine how the rise time of a 
cascade depends upon the rise times of the individual stages, assuming 
that none of the stages overshoots. 

In chapter 4 it was shown that the transient edge response charac
teristics of a single stage resistance coupled amplifier were 

1 
Ai(s) = -Ar I + (l/w

2
)s (6.3) 

or, in an alternative form, this could be written 

(6.4) 

where c1 = l/w2• 

By analogy to equation (6.1), the terms in the rise time formula for 
this gain function are 

b1 = c1 ; b2 = 0 
} (6.5) 

Consequently, Elmore's rise time for a single stage is 

TR= V21rCI = V21rc1 (6.6) 
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Suppose that two other resistance coupled amplifiers are available 
with gain functions 

The rise times of these two stages are 

TR
2 
= V2rrc2 

TR = V21rc3 3 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

Now suppose that all three of these separate stages are connected in 
cascade. As a result, the over-all gain function is 

A(s) = A1(s)A2(s)A3(s) (6.11) 

3 1 
= -Ar (1 + C1S) (1 + c

2
s) (l + c

3
s) (

6.l2) 

Multiply the factors in the denominator and collect coefficients of like 
powers of s. The resulting equation is 

a l 
A(s) = -Ar ) 2 3 l + (c1 + C2 + C3)S + (c1C2 + C1C3 + C2C3 S + C1C2C3S 

(6.13) 
By analogy to equation (6.1), 

ll2 = O; h2 = C1C2 + C1C3 + C2C3 

Therefore the over-all rise time of the cascade is 

TR= V21r[(c1 + c2 + c3)
2 

- 2(c1c2 + c1c3 + c2c3)] 

Carry out all the indicated algebraic steps. 

But 

TR= V21r(ci + c~ + G) 
T]! = 21rCI 

T] = 21rc~ 
2 

T]
3 
= 21rc: 

so that the over-all rise time of the cascade is 

TR= VTl + T'ft2 + T}3 + • • • 

} (6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 
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Thus the rise time of a cascade of nonovershooting amplifiers is equal 
to the square root of the sum of the squares of the rise times of the 
individual stages. 

An examination of the coefficients involved in the rise time formula 
will show that the same results would be obtained for any number of 
stages. That is, 

(6.21) 

Equation (6.21) is true for any amplifier having a monotonic transient 
response as long as Elmore's definition of rise time is used. It is also 
approximately true for the 10-90% rise time. The approximation is a 
good one because the error seldom exceeds about IO% even when only 
two stages are involved. 1 

If n identical stages are connected in cascade, the individual stage rise 
times are all equal and specified by T Rs. The over-all rise time is then 

TR= TR Vn (6.22) 
8 

6.2. Composition of Rise Times, Overshoot Present 

In the analysis of single stage video amplifiers it was found that the 
rise time could be reduced by allowing the amplifier to overshoot 
slightly. For example, some curves were given in figure (4.23) for the 
shunt peaked amplifier, showing that the rise time could be reduced 
from 2.2RC T to about 1.3RC T, by changing m from O to 0.38, if the 
amplifier is allowed to overshoot by about 2 %- The increase in amplifier 
speed is appreciable. Of course, further reductions in rise time could be 
achieved by permitting larger overshoots. 

There are many applications in which overshoots in excess of 2 % 
would be excessive. Because the technique of introducing overshoot to 
decrease the rise time is useful, it is important to determine what 
happens to the over-all rise time and overshoot when n stages of small 
overshoot are connected in cascade. 

Unfortunately, Elmore's rise time formula does not apply to ampli
fiers that overshoot. The only way to determine the effects of cascading 
is to compute the transient response characteristics of a number of 
cascaded amplifiers, with the overshoot as a parameter. When the 
results are plotted as a function of time, it will be possible to determine 
the over-all rise time and overshoot for these cases. Fortunately, this 

1 See Valley and WalJman, Vacuum Tube Amplifiers, vol. 18, Rad. Lab. Series, 
McGraw-Hill Book Co., Inc., New York, 1948, p. 78. 



Sec. 6.3] Transient Response-Multistage Amplifiers 225 

computation has been done by Bedford and Fredendall. 2 According to 
their results, as long as the overshoot of the individual stages in the cas
cade is equal to or less than 2 %, the following statements are true: 

(1) The over-all rise time is given approximately by equation (6.21). 
(2) The over-all overshoot remains nearly constant, increasing 

slightly if at all. 
It is found that the overshoot increases rapidly if the overshoot per 

stage exceeds approximately 2 %- Computed results lead to the 
following rules3 for amplifiers in this category: 

(1) The over-all overshoot of a cascade of identical amplifiers having 

overshoots in excess of 2 % increases approximately as v';;, where 
n = number of stages. 

(2) The over-all rise time increases much less rapidly than v;;. 
6.3. Condition for Minimum Over-all Rise Time 

It was shown in section (5.6) of the preceding chapter that a cascade 
of identical amplifiers, either resistance coupled or single tuned, had the 
maximum over-all bandwidth obtainable with a specified gain when the 
stage gain was equal to e112• Because the bandwidth and rise time are 
governed by the same physical factors, it is reasonable to infer that 
minimum rise time will be produced by the same conditions that yield 
maximum bandwidth. The validity of this inference will be proven in 
the following derivation. 

The amplifier figure of merit used in comparing the transient edge 
response characteristics of video amplifiers was defined in chapter 4 as 
the gain/rise time ratio. That is, 

, __ reference gain __ _ Ar 
Ji (6.23) 

a rise time TR, 

If n identical stages are connected in cascade, the over-all reference gain 
is 

AT= A: (6.24) 

Or, conversely, the stage gain can be expressed in terms of the over-all 
gain as 

(6.25) 

1 A. V. Bedford and G. L. Fredendall, "Transient Response of Multi-Stage Video 
Amplifiers," Proc. IRE, vol. 27, April, 1939, pp. 277-284. 

3 Valley and Wallman, op. cit., p. 78. Of further interest is an outstanding paper 
by H. E. Kollman, R. E. Spencer, and C. P. Singer, "Transient Response," Proc. 
IRE, vol. 33, March, 1945, pp. 169-195. 
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If it is assumed that the amplifier stages are free from overshoot, or do 
not overshoot by more than 2 %, the over-all rise time is 

TR= TR n112 (6.26) 
8 

Consequently, the figure of merit for one stage in the cascade becomes 

A Avn v2 
h = _r = T n (6.27) 

a TRs TR 
The over-all rise time can now be expressed in terms of the over-all gain 
AT• number of stages n, and amplifier figure of merit la, as 

Avn 112 
T - Tn 
R- la (6.28) 

Equation ( 6.28) shows how the over-all rise time depends upon the 
over-all gain, number of stages, and figure of merit. Both the gain and 
figure of merit are independent of n. Hence the rise time can be mini
mized with respect to the number of stages by standard calculus 
methods; differentiate TR with respect to n, set the result equal to zero 
and solve for n. Therefore 

oT R - AI!n O ( 1/2) + 1/2 ° (AI/n) - 0 --- T - n n - T -on on on (6.29) 

As a result, 
n = 2 In AT (6.30) 

This is the number of stages that will make TR a minimum for a 
specified over-all gain. 

Consequently, the over-all gain of the cascade is 

(6.31) 
and the over-all rise time is 

(6.32) 

which is the minimum rise time for a specified AT· The over-all gain 
can be expressed in terms of the stage gain as 

A,l'= A~ 

Set this equal to equation (6.31). 

Ar= c:Ii 2 = 1.65 

(6.33) 

(6.34) 

This is the same result as that predicted at the beginning of this section. 
The use of equations (6.30) and (6.32) can be illustrated by a simple 

example. Suppose that a cascade of resistance coupled amplifiers, using 
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6AK5's, is to be built to have an over-all gain of 40 volt logits. The 
minimum possible rise time is desired. 

The gain/rise time ratio for a resistance coupled amplifier is 

1 gm 
la= 2.2. CT (6.35) 

It is assumed that (gm/CT) for the 6AK5 stages is 400 X 106• 

Hence r = 400 X 106 = 182 106 
Ja 2.2 X 

The over-all gain is specified as 40 volt logits. This corresponds to a 
voltage ratio of 104• According to equation (6.30), the number of 
stages required for minimum over-all rise time is 

n = 2 In A T = 2 In 104 = 8 In 10 · 18 

Then, substituting into equation (6.32) for the rise time, 

TR (min) _:_ 0.0384 µsec 

(6.36) 

While the rise time is desirably small, the necessity of using 18 stages 
may prove impractical. Assuming this to be the case, consider the 
possibility of using 9 stages. By using the formulas given in section ( 6.1 ), 
the resulting rise time is found to be 0.0459 µsec. The rise time is 
increased by about 20 % while the number of tubes is cut in half and the 
over-all gain remains the same. This might be a better solution. 

6.4. Flat Top Response of Cascaded Video Amplifiers 
When all degenerative effects are neglected and the amplifier is 

assumed to be uncompensated for sag, it was shown in chapter 4 that 
all the video amplifiers discussed had the same flat top response. The 
flat top response functions were all of the form 

s 
A(s)= -Ar-

s + «>1 
(6.37) 

It was shown that the w1 factor was determined primarily by the coupling 
circuit between stages, mainly by Ru and Cc, and to a lesser extent by 
rP and Rv 

If n identical amplifiers are connected in cascade, the overall gain 
equation is 

(6.38) 
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Because the over-all gain is the ratio of the output voltage to the input 
voltage, 

A ()=Eh) 
Ts Els) 

and the output voltage from the cascade is 

Eh) = Els)AT(s) 

(6.39) 

(6.40) 

If the input voltage as a function of time is assumed to be a unit step 
function, 

Consequently, 
elt) = 1 for all t > 0 

1 
Els)=-

s 
Therefore the output voltage is 

or 

1 
Eo(s) = - AT(s) 

s 
n-1 

n S 
Eo(s) = ±Ar ( ) s+w1 n 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

The output voltage as a function of time is the inverse Laplace 
transform of Eo(s). This can be computed from a partial fraction 
expansion of equation (6.44) or by reference to published tables4 of 
function-transform pairs. Regardless of the method, the result may be 
expressed as 

()
_±An -w1t n~l (n - 1) ! (-roil k 

e0 t - re L., ------- t 
k=o(n- 1-k) !(k!)2 

(6.45) 

This general equation is easily worked out for a few special cases by 
assuming various values for n. For example: 

when n = I, 
(6.46) 

when n = 2, 
(6.47) 

when n = 3, 

(6.48) 

4 See Gardner and Barnes, Transients in Linear Systems, John Wiley & Sons, Inc. 
New York, 1942, p. 346, pair no. 2.1362. 
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when n = 4, 

( 
3 2 2 "'1,.,3 3 

( ) _ A4 -w/ l 3 + Wit aJ.J1t ) et - e - wit -----
o r 2 6 (6.49) 

and so on for any value of n selected. The initial slopes of the curves 
are needed to evaluate the sag. So differentiate eo(t) with respect to t 
and let t = 0. As a result, 

when n = l, 
slope= -w1Ar (6.50) 

whenn= 2, 
slope = -2w1 A; (6.51) 

when n = 3, 
slope = -3w1 A: (6.52) 

whenn= 4, 
slope = -4wiA: (6.53) 

and so on. By induction it is clear that if there are n stages, the initial 
slope will be -nw1A:. Consequently, as long as the reciprocal of the 
total initial slope is small compared with the duration of the pulse, the 
over-all fractional sag is given by the following equations: 

(1) Identical stages in cascade 

total fractional sag = nwi T 

where T = pulse duration. 
(2) Nonidentical stages in cascade 

total fractional sag = arithmetic sum of stage sags 

(6.54) 

Although the proof of these two rules has been carried through for 
the comparatively simple case of sag caused by the coupling circuit 
only, the rule applies equally well to all amplifiers with small sags, 
regardless of the cause of the sag. 

6.5. Summary, Rules of Video Amplifier Behavior 
The transient response characteristics of multistage video amplifiers 

have been discussed in the preceding sections, and the behavior of the 
cascade has been formulated in terms of the characteristics of the 
individual stages. For the sake of convenience and as a formal summary 
of the results obtained up to this point, the following rules of behavior 
are stated: 

Rule I. For video amplifiers that do not overshoot, the over-all rise 
time of an n stage cascade is closely approximated by 

TR= VTiz + Ti + Tiz + ... + T~ (6.55) 
1 z 3 n 
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Rule 2. The over-all rise time of a cascade of video amplifiers that 
have individual stage overshoots of 2 % or less is given by equation 
(6.55). 

Rule 3. If n video stages with overshoots in excess of 2 % are cascaded, 
then (a) the overshoot increases approximately as n112 ; (b) the rise time 
increases less rapidly than n1l 2• 

Rule 4. If the cascade does not overshoot, the minimum over-all rise 
time is obtained when the gain of each stage is 1.65. 

Rule 5. The total sag in the output of a video cascade is approxi
mately equal to the arithmetic sum of the sags of each stage when these 
sags are small. 

A similar set of rules will be found elsewhere5• 

6.6. The Band Pass, Low Pass Analogy 
In many electronic systems used for pulse transmission, both low pass 

and band pass amplification are required. That is, it may be necessary 
to amplify high frequency signals that have a pulse envelope such as that 
shown in figure (6.1). Therefore, pulse transmission systems often 

Fig. 6.1. Rectangular high frequency voltage pulse. 

involve cascades of both low pass and band pass amplifiers. A typical 
system might appear as shown in figure (6.2). In such cases the transient 
response characteristics of band pass amplifiers are of interest. 

RF IN CASCADE OF 
BAND PASS 
AMPLIFIERS 

LINEAR 

DETECTOR 

CASCADE OF 
LOW PASS 

AMPLIFIERS 

Fig. 6.2. Some components in a pulse transmission system. 

Although there are notable exceptions, the response of the band pass 
amplifier to the envelope of the high frequency pulse is the matter of 

5 Valley and Wallman, op. cit., pp. 77-78, 86. 
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most concern. This will be called the envelope response of the amplifier. 
In other words, the performance of a band pass amplifier used for pulse 
transmission is most frequently evaluated by determining the faith
fulness with which the envelope of the input pulse is reproduced in the 
output. A possible response to the high frequency pulse of figure ( 6.1) 
is shown in figure (6.3). Note that a finite rise time and overshoot are 

Fig. 6.3. Possible transient response of a band pass amplifier driven by a 
rectangular high frequency pulse. 

indicated, both at the beginning and the end of the pulse. This figure 
also shows that the effects produced by overshoot on the leading and 
trailing edges of the pulse are different. 

Assume that the envelope response characteristics of band pass 
amplifiers are to be determined. Because the envelope of a high 
frequency pulse is a video signal when considered separately, it should 
be possible to study the envelope response of a band pass amplifier in 
terms of the transient response of some video amplifier. In other words, 
it is suggested that a video amplifier could be specified to have the same 
transient response characteristics as the envelope response charac
teristics of the band pass amplifier. If such an equivalence can be 
established, the determination of the envelope response will be greatly 
simplified, because the transient response of the equivalent video 
amplifier can be evaluated fairly easily with the aid of the rules given 
in the preceding section. 

A useful concept can be informally deduced by comparing the 
characteristics and gain functions of representative low pass and band 
pass amplifiers. For example, consider the simplest circuits in each 
category, a resistance coupled and a single tuned amplifier. The 
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essential features of interest in these two amplifiers are shown in figure 
(6.4). If you examine the curves in this figure you can see that they are 
related. That is, the complete frequency response characteristic of a 
resistance coupled amplifier would be nearly identical to that of a 
single tuned amplifier if the negative frequency range could be obtained 
in a practical case. One important difference exists because the total 

--.,,.-
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----- ..>.- ----------,., I 
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I 
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(a) RESPONSE OF A RESISTANCE COUPLED AMPLIFIER 

I --------------A, 
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I I 

I l 
----:- 8 ~ 

I I 
I I 
I I 
I I 

+At1>---. 

(b) RESPONSE OF A SINGLE TUNED AMPLIFIER 

Fig. 6.4. Comparison of amplifier characteristics. 

bandwidth B of this theoretical response curve for the resistance 
coupled amplifier will be equal to 2w2, and this is twice the bandwidth 
of the band pass amplifier. This correspondence might be specified the 
other way around. That is, the response characteristic of the single 
tuned amplifier would be the same as that of the resistance coupled 
amplifier if the center frequency is translated down the frequency scale 
from w0 to 0. The difference between the two amplifier response curves 
is simply that the resistance coupled amplifier will have twice as high 
an upper cutoff frequency. 

Therefore a low pass or video analogue of the band pass amplifier can 
be constructed by making a video amplifier to have the same response 
as that of the band pass amplifier when the band pass characteristic is 



Sec. 6.6] Transient Response-Multistage Amplif,ers 233 
translated down the frequency scale from we to zero. The transient 
response of this synthetic, proposed video analogue, which has an 
upper cutoff frequency of B/2, will be identically the same as the 
envelope response of the actual band pass amplifier. This is one special 
example of a relatively general principle called the band pass, low pass 
analogy6• 

p PLANE 

B 
-X=--

Bn 

2AQI 
y•--

Bn 

Fig. 6.5. Complex p plane; low pass analogue of the s plane. 

This process of using a low pass analogue for a band pass circuit was 
used extensively in chapter 5 in developing the design procedure for 
stagger-tuned amplifiers. It was shown in section (5.7) that a new 
complex plane could be constructed, called the p plane, in which a high 
Q single tuned amplifier was characterized by a single pole. This pole 
was made to fall in this plane by translating the center frequency of the 
stage down the frequency scale from we to zero by the use of a conformal 
transformation. Because a single pole is characteristic of a low pass 
amplifier, the p plane represents a convenient device whereby the 
properties of the low pass analogues of single tuned band pass amplifiers 
can be specified. The coordinates of the p plane are shown in figure 
(6.5) where ~w = frequency difference between bandcenter and the 
resonant frequency of the stage; B = stage bandwidth; Bn = over-all 
bandwidth. 

Because the pole location in the p plane defines the low pass analogue 
of a particular band pass amplifier, the transient response of this video 
analogue will be exactly the same as the envelope response of the band 
pass amplifier. If it is a high Q, single tuned amplifier stage, there will 
be one pole on the negative real axis of the p plane. Hence the transient 

8 V. D. Landon, "The Band-Pass Low-Pass Analogy," Proc. IRE, vol. 24, 
December, 1936, pp. 1582-1584; also P. R. Aigrain, B. R. Teare Jr., and E. M. 
Williams, "Generalized Theory of the Band-Pass Low-Pass Analogy," Proc. IRE, 
vol. 37, October, 1949, pp. 1152-1155. 
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response of the video analogue will have the form of a single exponen
tial. The envelope response is the same. The rise time computed from 
the response of the video analogue will be the rise time of the envelope 
of the high frequency pulse. 

6.7. Synchronous Single Tuning 

In chapter 4, the poles of the gain functions of various amplifier 
types were computed and located in the complex s plane. The co
ordinates a and w of this plane have the dimensions of frequency or 
reciprocal time. 

s PLANE 
t 
Id 

t1' 

-a 

B +-Bn 

-b 

p PLANE t 
2.t.o, 

Bn 

Fig. 6.6. s plane coordinates scaled off 
in units of 1/(time). 

Fig. 6. 7. p plane coordinates marked off 
in dimensionless numbers. 

Consider a pole located in the s plane at some point such as -a as 
shown in figure (6.6). This pole would come from a function of the 
general form 

I 
F(s)=K-

s+a 
The inverse transform of this function is 

f(t) = Ke-at 

(6.56) 

(6.57) 

Now, because a has the units of reciprocal time, the product at is a 
dimensionless number. This is a necessary condition because the expon
ent of e must be dimensionless. 

Now consider the p plane and while doing so, keep the properties of 
the s plane in mind for comparative purposes. In the p plane, the 
coordinates of the plane have been normalized by dividing through by 
(Bn/2). Consequently, the coordinates are dimensionless numbers. As 
a result, the inverse Laplace transform of a function of p will involve 
normalized time of the form Bnt/2. 
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For example, assume that a pole is located at a point -b in the 

p plane as shown in figure (6.7). Such a pole must have come from a 
function of the form 

1 
F(p) = K p + b 

The inverse transform of this function is 

/ ( B;t) = Ke -bBnt/2 

(6.58) 

(6.59) 

Because bis dimensionless, as is the product Bnt/2, the entire exponent 
is dimensionless as required. Everything is mathematically correct and 
analogous to the results obtained from the s plane . 
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Fig. 6.8. Poles of a maximally flat amplifier, n = 1, in the p plane. 

This information can now be applied to the determination of the 
envelope response of band pass amplifiers. It was shown in section 
(5.10) that the poles of the maximally flat-staggered amplifier all fall 
upon the periphery of a unit circle in the left half of the complex p plane. 
The angles of the poles, relative to the negative real axis, were specified. 
If a single stage single tuned amplifier is to be studied, it can be assumed 
that the stagger has a single stage with the pole located in the p plane as 
shown in figure (6.8). Hence p = -1. This pole arises from a function 

1 
A(p) = -Arp+ l (6.60) 

and this is the gain function of the low pass video analogue of the band 
pass amplifier. Thus the transient response computed from this function 
is the same as the envelope response of the single tuned amplifier. 
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The transient response of the video analogue is easily computed 
because 

A(p) = Eo(p) (6.61) 
Ei(p) 

or E0(p) = Ei(p)A(p) (6.62) 
If the envelope of the voltage input to the tuned amplifier is a unit, 
high frequency, step function, such as that shown in figure (6.1), the 
envelope input can be expressed as 

ei ( B;t) = 1 for all B;t > 0 (6.63) 

Therefore the Laplace transform of the envelope input is 

j; [ e, ( B;t)] =; 
and the output voltage is then 

1 1 
Eo(p) = p A(p) = -Ar p(p (6.64) 

Then the inverse transform of the envelope output, or the transient 
response of the video analogue, is 

eo ( B;t) = -Ar(l - e -Bnt/2) (6.65) 

where Bn = overall bandwidth = stage bandwidth = B. Hence 

el) ( ~) = -Ar(l - e-Bt/
2

) (6.66) 

A graph of this equation is given in figure (6.9). If the 10-90 % rise 
time is computed from this curve, the result is 

4.4 
TR= B = 4.4RCT (6.67) 

The rise time of an actual resistance coupled video amplifier was 
previously shown to be 

TR= 2.2RCT (6.68) 

It is clear that the rise time of the envelope of a band pass amplifier is 
exactlytwicetherisetime in a video amplifier having the same Rand CT. 

Figure (6.9) shows that the envelope response of a single tuned 
amplifier does not overshoot. Consequently, when identical stages are 
cascaded to form a synchronous single tuned amplifier, the over-all 
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rise time can be computed from Rule I. That is, if TR = over-all 
envelope rise time, TR.= envelope rise time of one stage = 4.4RC T, 

n = number of stages, then 

I-
::::, 
0. 
I-
::::, 
0 

IJJ 

~ 
I-
ct 
...I 
IJJ 
0:: 

1.0 
0.9 

0.1 ---------------,----------
0.0 1 

I 

14 
Fig. 6.9. Envelope response of a single tuned amplifier. 

6.8. Staggered Pai rs 

(6.69) 

The poles of a maximally flat-staggered pair are located in the 
complex p plane as shown in figure ( 6.10); this was proven in section 

' Aw 
Bn/2 

4- - .!. 
Bn 

Fig. 6.10. Poles in the p plane for a maximally flat-staggered pair. 

(5.10). The two poles are 
Pt= -0.71 + j0.71 

p2 = -0.71 - j0.71 

or, in generalized notation 
Pm= -Xm ±jJm (6.70) 
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These two poles define the gain function of the low pass video 
analogue of the maximally flat-staggered pair. The transient response 
of this analogue is the same as the envelope response of the pair. 
Because the video analogue has conjugate poles in the p plane, its 
response will be oscillatory and will overshoot. Combining the factors 
involving the poles yields the gain function of the video analogue as 
follows: 

1 1 
A(p) = -A -----= -A ---------

r (p + Pi) (p + P2) r (p + Xm - }y m) (p + Xm + JY m) 
(6.71) 

or 
1 

A(p) = -Ar 2 2 

(p + Xm) + Ym 
(6.72) 

The method outlined in the preceding section can be used to deter
mine the transient response of this video analogue. That is, if the 
envelope of the signal input to the stagger tuned amplifier is a unit step 
function, then 

e. (Bnt) = 1 for all Bnt > 0 
' 2 2 -

The Laplace transform of the input voltage is then 

E;(p) = J: [e, (B;t)] = ~ 
Consequently, the output from the video analogue is 

1 
E0(p) = Ei(p)A(p) = - A(p) 

p 

or 
1 

Eo(p) = -Ar 2 2 
[(p + Xm) + YmJP 

(6.73) 

(6.74) 

(6.75) 

(6.76) 

The envelope response is the inverse transform of equation (6. 76); 
this may be found by expanding the equation by the partial fraction 
expansion into a series of recognizable factors. The eventual result is 

e, (B;t) = -A, [IP~ 1• + I Pm \Ym e -•mB,1/2 sin (Ym:nl - </>)] 

where </> = tan-1 Ym 
-Xm 

I 1

2 2 2 
Pm =xm+ Ym 

(6.77) 

(6.78) 

(6.79) 
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Although it will be desirable to compute the rise time eventually, for 

the present the amount of overshoot in the envelope response is of the 
greatest interest, because this will determine the manner in which the 
over-all rise time of a cascade of staggered pairs can be computed. 
Fortunately, for the case of the staggered pair, this is a relatively simple 
calculation. The overshoot is defined as the difference between the 
maximum value of the output voltage and its final value. Hence the 
first step is to determine this maximum value, and this is easily accomp
lished by standard methods from calculus. Simply differentiate 
eoCBnt/2) with respect to (Bnt/2), set the result equal to zero, and solve 
for Bnt/2. The numerical work can be simplified a little by defining a 
term t' to represent the Bnt/2 factor. 

The output voltage from the video analogue is 

, [ 1 1 -xmt' . ( , ,1,_)] 
eo(t )= -Ar IPm 12 + IPm IYm 8 sm Ymt - 'f' 

Therefore 

(6.80) 

deo(t') 

dt' 

{ 
1 -xmt' , ,I.) . ( , ,I,_) ) 

=-Ar IPmlYm 8 [ymcos(ymt -'f' -xmsm Yml -'f'] 

(6.81) 

The derivative will be equal to zero and the function will have its 
maximum or minimum value when 

or, rearranging terms, when 

tan (ymt' - <p) = Ym 
Xm 

Expressed in an alternative form, this is 

Ymt' = tan-1 Ym + <p 
Xm 

However, it was previously shown that 

Hence 

<p = tan-1 Ym 
-Xm 

, -1 Ym + -1 Ym y mt = tan - tan -- = 7T 
Xm -Xm 

(6.82) 

(6.83) 

(6.84) 

(6.85) 

(6.86) 
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Therefore the time at which the response of the video analogue reaches 
its maximum value is 

t'=!!._ 
Ym 

(6.87) 

It is a relatively easy matter now to evaluate the overshoot, because 
the final value of eo(t') is Ar/I Pm 1

2
• So, substituting equation (6.87) 

fort', the overshoot is easily computed from 

Hence 

y = overshoot 

second term in equation (6.80) I 
first term in equation (6.80) t'=1rlvm 

% y = Pm 8 -xmfYm sin (TT - cf,) X 100% 
Ym 

(6.88) 

(6.89) 

= Pm 8 -Xm1rlYm sin cf, X 100% (6.90) 
Ym 

The poles of the maximally flat-staggered pair were given at the 
beginning of this section as Pm= -0.71 ± j0.71, so that 

Xm = 0.71; Ym = 0.71; Pm= 1.0. 

Therefore the overshoot evaluated from equation (6.90) is 

% y = (s-'")100% = 4.3 % (6.91) 

Because the overshoot exceeds 2 %, the rise times of a cascade of stages 
do not compose according to the simple relationship given in rules 1 
and 2. Instead, rule 3 must be used. According to this rule, the over
shoot of a cascade of maximally flat-staggered pairs will increase 
approximately as m112, where m is the number of staggered pairs. 
That is, 

total overshoot = 4.3m1' 2 % (6.92) 

For example, if 4 staggered pairs are cascaded, the total overshoot is 
approximately 8.6 % according to this formula. This agrees quite 
closely with the 8.4 % evaluated from the actual response. 

If equation (6.80) for the envelope response is actua11y plotted, the 
10-90% rise time figures out to be 

4.34 
TR=- (6.93) 

Bn 
Following rule 3 again, the overall rise time of a cascade of maximally 
flat-staggered pairs will increase considerably less rapidly than the 



Sec. 6.9] Transient Response-Multistage Amplifiers 241 
overshoot. According to data computed by others7, the over-all rise 
time increases by less than 15 % when the number of staggered pairs in 
cascade is increased from 1 to 6. 

The effects of over-staggering a staggered pair may be evaluated in a 
general way from the overshoot formula given in equation (6.90). An 
overstaggered pair adjusted to give an equal ripple gain function has 
p plane poles of 

Pm= -0.71 tanh rJ. ± J0.71 

where rJ. is governed by the amount of ripple. Hence 

Xm = 0.71 tanh rJ. 

Ym = 0.71 

Pm= 0.71 (1 + tanh2 r:J.)1' 2 

cf,= tan-1 (_2_h ) 
tan r:J., 

Consequently, substitution into the overshoot formula yields 

% (l + t h2 )1/2 -1rtanhix . (t -1 1 ) lOO% 
0 y = an rJ. s sm an tanh rJ. o 

where 
1 . h-1 ( -112) 

rJ. = - sin € 
2 

(6.94) 

(6.95) 

and the € in this last expression is governed by the ripple as given in 
chapter 5. 

If (X = 0.589, the overshoot works out to be 18.9 %- Thus, in general, 
the overshoot of an overstaggered amplifier will exceed that of a 
maximally flat-staggered amplifier. 

6.9. Envelope Response, Concluding Remarks 

While the discussion of the envelope response of band pass amplifiers 
has been confined to three relatively simple cases: ( 1) synchronous 
single tuning, (2) maximally flat-staggered pairs, (3) overstaggered, 
equal ripple pairs, most of the points of importance have been raised. 
For example, it was shown that a single tuned amplifier had a rise time 
of 4.4/ B with zero overshoot, while a staggered pair had 4.3 % overshoot 
with a rise time of 4.34/ Bn. 

To compare the two cases, consider a staggered pair relative to two 
synchronous stages. For the two synchronous stages the overshoot 

7 Valley and Wallman, op. cit., p. 281, table 7.1. 
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remains zero, but the rise time is increased to 6.2/ B, where B is the 
stage bandwidth. Because 

Bn = B(2Il2 - 1)112 __:_ 0.64B (6.96) 

the rise time of the cascade of two stages is approximately 3.96/Bn. 
This figure compares with 4.34/ Bn for the staggered pair. 

Now consider the over-all gain of the two amplifier cascades. 
2 

AT (staggered pair) = (::) . 

. (0.64Fa)
2 

AT (synchronous pa1r) = ~ 

Therefore the gain/rise time ratios are 

. F; la (staggered pa1r) = 0.231 -
Bn 

2 
r · Fa 

Ja (synchronous pa1r) = 0.104 -
Bn 

(6.97) 

(6.98) 

(6.99) 

(6.100) 

The gain/rise time ratio of the maximally flat-staggered pair is more 
than twice that of a synchronously connected pair of the same figure of 
merit Fa and over-all bandwidth. Thus it would be possible to achieve 
a shorter rise time for a given gain by using a staggered pair if 4.3 % 
overshoot can be tolerated. 

The large overshoot computed for the overstaggered pair looks bad. 
However, by proper choice of the ripple it is possible to achieve a 
better gain with an overstaggered pair than with a staggered triple, 
assuming each amplifier to have the same rise time and overshoot. 

It should be clear now that the selection of the best possible amplifier 
required to meet certain gain, rise time, and overshoot specifications 
can be an extremely difficult job. An extraordinarily high degree of 
technical ability is required to engineer the design properly. Certainly, 
the so-called "practical" man would be hopelessly lost and completely 
impractical. 

The envelope response characteristics of staggered n-uples of any 
kind, of complexity greater than the staggered pair, are relatively 
difficult to evaluate. The difficulty is not one of theory, but simply the 
mechanical problem of computing the envelope response. 

The flat top response has not been explored at all because the effects 
of the coupling capacitor are usually unimportant in band pass 
amplifiers. This is also generally true of degenerative effects, though 
there are some special problems in this connection. 
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6.10. Transient Response of a Distributed Amplifier 
The general theory of the distributed amplifier and its steady state 

frequency response were covered in chapter 5. The equation for the 
voltage gain of a single distributed amplifier stage was derived and 
shown to be 

A = ngm (Z Z )1/2 
2 Op Ou (6.101) 

This equation is perfectly general because the kind of frequency 
involved is left unspecified. The characteristic impedances are given by 

z J Z1Z2 (6.102) 
0 = 1 + Z1/4Z2 

The values for these impedances in the distributed amplifier are easily 
determined by looking back at figures (5.28) and (5.29) in the preceding 
chapter. After substitution of the appropriate values you can easily 
show that 

We 
Zo:I> = RP A 1 

V 2 2 
S + We 

Z =R We 
Ou g V 2 2 

S +we 

where we, Rp, and Rg were all defined in chapter 5. 

(6.103) 

(6.104) 

Substitute these equations into (6. 101). The resulting expression for 
the voltage gain is 

(6.105) 

or (6.106) 

The output voltage as a function of time must be computed before 
the rise time and overshoot of the amplifier can be determined. Because 
Eo(s) = Eh)A(s), the response transform to a unit step input function 
will be 

1 We 
Eo(s) = - A(s) = Ar 

2 2 112 
s s(s + we) 

(6.107) 

It is impossible to expand this by partial fractions because there are an 
infinite number of poles arising from the irrational fraction. It is 
simpler to use a theorem from the basic theory of the Laplace transform. 
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This theorem states that ft 
.e-i G F(s)) = /Ct) dt (6.108) 

where f (t) = £-1[F(s)] (6.109) 

Therefore, in equation (6.107), let 
1 

F(s) = 2 2 112 
(s + we) 

(6.110) 

The inverse transform of this function may be found in several tables 
of function-transform pairs.8 The form is 

f (t) = £-1[F(s)] = Jo(wet) (6.111) 

where Jo(wcf) = Bessel function of the first kind and order zero. 
Therefore the output voltage is 

eo(t) = weAr f J0(wcf) dt (6.112) 

The Bessel function can be expressed in terms of an infinite series as 

follows :9 (wet)2 (wcf}4 (wcf)6 
lo(wet) = 1 - 22 + 22 42 - 22 42 62 +... (6.113) 

To evaluate the output voltage, integrate this equation term by term, 
multiply through by weAr. The transient response is then 

[ 
(wcf)3 (wcf)5 (wcf)7 ] 

eo(t) = Ar wet - I2 + 
320 

-
16

,
128 

+ . . . (6.114) 

To determine the overshoot, several things must be done. It is 
necessary to find the time at which the first maximum voltage is attained. 
This is not difficult, because we only need to differentiate the output 
voltage, set the result equal to zero, and solve for t. Because the 
derivative of the output voltage is 

deo(t) 
~ = weArJ0(wet) (6.115) 

it is fairly simple to find the value of wet that will make the derivative 
zero. The zeros of Jo(wcf) have been tabulated in several places.10 

From these we find that the first zero occurs when wcf = 2.405. Substi
tute this into equation (6.114) for e0(t) and the result is 

eo(t)max = (l.47)Ar (6.116) 
8 See for example, Gardner and Barnes, op. cit., pp. 317-320, and also p. 352, 

pair no. 5.01. 
9 Ruel V. Churchill, Fourier Series and Boundary Value Problems, 1st ed., McGraw

Hill Book Co., Inc., New York, 1941, p. 145. 
10 See, for example, ibid., p. 157. 



Sec. 6.10] Transient Response-Multistage Amplif,ers 245 

The evaluation of the overshoot requires that the final value of eo(t) 
be known. This can be evaluated as follows: 

eo(t) = weAr f. 00

J0(wcf) dt = final value at t = oo 

= Ar f. 00

Jo(wcl) d(wet) (6.117) 

This is a definite integral having a value of 1.11 Therefore the overshoot 
is 

% 
_max.value - final value lOO% _ 

4 
% or-----------x o- 7 0 

final value 
This tremendous overshoot is exceedingly undesirable, and is 

reduced to practical limits in actual circuits by several different methods. 
The problem is closely tied into the rapid increase in gain near the cutoff 
frequency we. Measures taken to remove this unfortunate steady state 
characteristic will also improve the overshoot, and readers interested 
in the practical circuitry are referred to footnote reference (3) of 
chapter 5. 

It is interesting that this 47 % overshoot is independent of the value 
Of We. 

PROBLEMS 

6.1. A synchronous single tuned amplifier operating at 30 me is to be 
designed to provide an over-all mid-band gain of 35 volt logits. Type 6AK5 
tubes are to be used withg m= 4500 µmhos, and the individual total interstage 
capacitances may be taken to be 12 µµf. Compute the minimum possible 
envelope rise time. Compute the number of stages required for minimum 
envelope rise time. 

6.2. The number of stages required for minimum rise time in problem (6.1) 
is excessive. On the basis of weight, size, heat dissipation problems, and so 
on, it is decided that no more than seven tubes can be used and that the gain 
must be 35 volt logits. Compute the possible envelope rise time. 

6.3. The rise time of the amplifier in problem (6.2) proves to be too large. 
It is then decided that the envelope rise time cannot exceed 0.08 µsec. 
Calculate the resulting over-all mid-band gain and compare it with the 
specified value. 

6.4. From the foregoing calculations it is clear that the required gain and 
rise time cannot be achieved through the use of only seven 6AK5 tubes, 
synchronously connected. You talk your supervisor into letting you use one 

11 See S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Company, 
Inc., New York, 1943, p. 56, formula 7-27. 
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more stage even though this requires a redesign of the equipment container. 
Can the 35 volt logits and 0.08 µsec requirements be met now? 

6.5. In the event that only seven tubes w,ere rpermissible under any circum
stances, how much of an increase in the tllbe gm would be required to meet 
specifications? Assume that the interstage shunt capacitance is at an irre
ducible minimum of 12 µµf. How could you increase the gm of the 6AK5 
tubes? What dangers are involved in this and what precautions should be 
taken? 

6.6. A high gain, fast video amplifier is required for use in a laboratory 
oscilloscope deflection system. Assume 6AK5 tubes are used withg m = 4500 
µmhos and CT = 11 µµf. An over-all gain of 25 volt logits is required. 
Calculate the over-all rise time available, using a two-stage cascade of 
identical 

(a) Resistance coupled amplifiers. 
(b) Shunt peaked amplifiers with m = 0.25. 
(c) Shunt peaked amplifiers with m = 0.30. 
(d) Shunt peaked amplifiers with m = 0.50. 
(e) Series peaked amplifiers with K = 0.50. 

Compute or estimate the overshoot in these cases and make a critical 
evaluation of the five possibilities. 

6.7. A radar receiver is to be designed to operate with an intermediate 
frequency of 60 me. The following receiver requirements must be met: signal 
input to the receiver = 10 µv; signal output to CRT (max) = 10 v; range 
measurement to be accurate to ± 50 feet; 1 radar mile = 10. 73 µsec. The 
voltage transfer function of the detector, E(video)/E(IF) is 0.8 and its rise 
time characteristics are the same as for a resistance coupled amplifier. 
Assume that 6AK5 tubes are used in the IF amplifier and a 6AC7 and 6AG7 
in the video section. Synchronous single tuning is used it) the IF and identical 
resistance coupled stages in the detector-video section. All stages are to have 
the same rise time. The following data apply: 

Tube 

6AK5 

6AC7 

6AG7 

gm (µmhos) 

4500 

8000 

7700 

CT (µµf) 

12 

25 

25 

(a) Determine the number of stages required following the mixer. 
(b) Break the over-all requirements into stage requirements. 
(c) Comment upon the feasibility of the system. 
( d) Is the design conservative or will the system be subject to tube 

variability effects? 
(e) Indicate the direction of the changes required if the receiver sensitivity 

is to be increased or if greater range accuracy is desired. 



Chapter 7 

FEEDBACK CIRCUITS 

In chapter 3 it was shown that the general equation for the voltage 
amplification of any class A vacuum tube amplifier was of the form 

A= ±g~Zm 

where g~ = effective transconductance of the tube; Zm = mutual 
impedance of the network in the equivalent plate circuit. 

Both g;i and Zm depend upon the properties of the tube. This is 
unfortunate, because the tube constants such as r 11 , gm, and the inter
electrode capacitances, vary from tube to tube, time to time, and are 
generally affected by changes in environment and polarizing potentials. 
As a result, the response characteristics of the amplifier change because 
of the influence of a large number of factors over which little control 
is exercised by the circuit designer. This obviously complicates circuit 
design. However, it has been found that some of these effects can be 
minimized by taking a small fraction of the amplifier output and feeding 
it hack to the input. This is called feedback, and the general problem is 
briefly treated here. More extensive discussions may be found in any 
book on servomechanisms. 

Stabilization of gain is not the only effect achieved through feedback. 
For example, in chapter 11 it is shown that nonlinear, or harmonic, 
distortion is produced in large signal circuits such as class A power 
amplifiers. The distortion results from the motion of the operating 
point of the tube over a nonlinear part of its characteristics. It will be 
shown that feedback can be used to reduce the amount of harmonic 
distortion. 

It will also be shown that feedback can be used to reduce circuit noise, 
improve the frequency response characteristics, and fulfill other useful 
functions. 

The foregoing are cases of deliberate feedback used to achieve some 
particular operational advantage. However, inadvertent feedback 
nearly always occurs in electronic circuits. It may occur through tube 
interelectrode capacitances, a common impedance in the power supply, 

247 
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or stray electric and magnetic fields. Therefore it is essential that the 
general characteristics and effects of feedback be understood, and that 
tools be provided for attacking specific problems analytically and 
experimentally. 

7.1. General Gain Equation, Single Closed Loop 
For any ordinary voltage amplifier, the over-all voltage gain of a 

cascade of stages is defined simply as 

amplifier output voltage E0 

Ao= amplifier input voltage = Ei 
(7.1) 

This ratio, or voltage transfer function, is usually frequency dependent 
and can be written in terms of frequency as 

Eo(s) 
Ao(s) = Eh) 

The terminology is illustrated in figure (7.la). 

AMPLIFIER E0 
CASCADE 
GAIN= A0 

(a) BASIC AMPLIFIER 

AMPLIFIER 
CASCADE 
GAIN=A0 

FEEDBACK 
CIRCUIT 
GAIN=P 

(b) FEEDBACK AMPLIFIER 

Fig. 7 .1. Definitions of terms. 

(7.2) 

Now consider figure (7.lb). The same basic amplifier cascade is used, 
but the output voltage is connected back into the input circuit through 
the feedback network; this circuit has a voltage transfer function 
denoted by {J. Therefore the voltage fed back into the input is fJEc. 

The symbol used in figure (7 .1 b ), consisting of a circle with an X 
through it, indicates an adding device. That is, the output from the 
adder is the sum of the arrow marked inputs. Hence the input to the 
amplifier of figure (7.lb) is Ei + fJEc. 

The over-all amplification equation for the feedback amplifier of 
figure (7.lb) is 

system output voltage Ec 
Ac = system input voltage Ei 

(7.3) 
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The new output voltage Ee is easily computed because A0 = gain of 
the basic amplifier. 

or (7.4) 

Solve this equation for Ee. 

E = Ao E. 
c 1 - /JAo • 

(7.5) 

As a result, the over-all amplification of the system with feedback is 

A= Ao 
c 1 - /JAo (7.6) 

where A 0 = voltage transfer function of the basic amplifier; f3 = 
voltage transfer function of the feedback circuit; fJA 0 = feedback 
factor. The equation can be expressed in terms of the complex 
frequency as 

A s)- Ao(s) 
c( - 1 - {J(s) (7.7) 

This is a basic and fundamental relationship in the field of electronic 
circuit theory. 

A feedback system such as that shown in figure (7 .1 b) is called a 
closed loop system because there is a closed signal transmission path. 
Because there is only one feedback path, it is called a single closed loop 
system. Multiple loop systems are common. 

A system that does not employ feedback is called an open loop system 
because there is no closed signal transmission path. For convenience 
in notation, all quantities characteristic of the open loop system will 
carry a subscript o; a subscript c will be used for all closed loop 
quantities. 

From equation (7.7) it is clear that the over-all voltage transfer 
function Ac(s) of a closed loop system is governed by the character of 
the open loop transfer function and the transfer function of the feedback 
circuit. Both f3 and A0 are usually dependent upon frequency, as indi
cated in equation (7.7) so that the over-all gain function is also frequency 
dependent. 

As a result of the feedback, the mathematical form for the gain 
function of the feedback amplifier is different from that of the open loop 
amplifier. This means that the two amplifiers will have different poles 
and zeros in the s plane, but it is difficult to generalize about their new 
locations. Moreover, the scale factor, or gain, is usually altered. If the 
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scale factor is reduced, negative feedback is in use. Conversely, an 
increase in scale factor usually results from positive feedback. 

7.2. Effects of Feedback on Gain, Distortion, and Noise 

In the preceding section we described some effects of positive and 
negative feedback without defining what we mean. These terms are 
defined as follows: positive feedback makes the feedback factor 
(3(s)Ao(s) positive while the factor is negative when the feedback is 
negative. From this you can see that the gain of a negative feedback 

AMPLIFIER 
WITH Eo+Do 

DISTORTION 
GAIN= Ao 

(a) BASIC TERMINOLOGY 
WHEN THE AMPLIFIER 
IS NONLINEAR 

AMPLIFIER W 1TH DISTORTION ~-----------------7 
I -------. I 
: LI N EAR Do I E + D 

AMPL I Fl ER I o o 

GAIN •Ao I I .._______ I 
L _______________ J 

( b) ALTERNATIVE REPRESENTATION 
OF A NONLINEAR AMPLIFIER 

Fig. 7.2. Nonlinear distortion in amplifiers. 

amplifier is less than the gain of the open loop amplifier regardless of 
the value of s. This is evident from the following equation: 

. Ao(s) 
Ac (negative FB) = /3 ) ) 

1 + (s Ah 

Conversely, positive feedback increases the gain of the amplifier as long 
as (3(s)Ao(s) is less than 1. When (3(s)Ah) is exactly + 1 the gain is 
infinite and the amplifier becomes an oscillator. This circuit is covered 
in some detail later. 

The effect of feedback on the frequency response of an amplifier can 
be assessed from the new pole and zero locations. Negative feedback 
generally increases the amplifier bandwidth, but this does not necessarily 
mean improvement at both ends of the response. 
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Suppose that an open loop amplifier introduces nonlinear distortion 
as shown schematically in figure (7.2a). The nonlinearity is indicated 
by showing the total amplifier output voltage as the sum of two com
ponents, the signal output voltage, E0 , and the distortion voltage D 0 • 

An alternative representation of the circuit is shown in figure (7.2b), 
and this is more useful for present purposes. 

Now consider the case when a single feedback loop is added to supply 
negative feedback. This condition is indicated schematically in figure 
(7.3). In this case the total distortion output De is the sum of two input 

/3Ee+/3De 

DISTORTION
LESS 
AMPLIFIER 

GAIN•Ao 

FEEDBACK 
CIRCUIT 
GAIN= /3 

Ee+ De 

Fig. 7.3. Nonlinear distortion in a closed loop system. 

terms: DO = distortion introduced by the amplifier; {3A 0 D c = distor
tion fed back. Hence, 

Or, rearranging terms, 
D =--D_o_ 

c I - f3Ao 
(7.8) 

Thus the nonlinear distortion is altered in exactly the same way as the 
over-all gain. As a result, negative feedback will reduce the nonlinear 
distortion, while positive feedback will cause it to increase. 

Because the use of negative feedback reduces the gain by the same 
amount as it reduces the distortion, it would seem that no particular 
advantage is obtained. However, nonlinear distortion is usually 
important only in the latter stages of an amplifier cascade where the 
signal amplitudes are large and where the power output is mainly 
important. Negative feedback can be used in such stages to reduce 
nonlinear distortion, and the decreased gain can be made up in preceding 
stages. This permits the power output to be held constant while the 
nonlinear distortion is reduced. 

Noise, like nonlinear distortion, is changed by the 1/(1 - fJA 0 ) factor 
when feedback is applied. This is true regardless of the character of 
the noise. A typical case might be indicated schematically as shown in 
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figure (7.4) where only noise voltage components are shown. Signa] 

voltages have been omitted because the Principle of Superposition 
applies. The various terms appearing in figure (7.4) are defined as 
follows: N = noise voltage input; N 0 = NA 0 = noise voltage output, 
open loop case; Ne = noise voltage output, closed loop case. 

From figure (7.4) it is clear that 

Ne= (N + f3Nc) = NA 0 + /3A 0 Nc 
or 

Therefore the closed loop noise voltage output is 

No 
Ne= I -f3Ao 

N• NOISE 
INPUT 

PNc 

NOISELESS 
AMPLIFIER 

GAi N •Ao 

F EEO BACK 
CIRCUIT 

GAIN• p 
Ne 

Fig. 7 .4. Noise in a feedback amplifier. 

7.3. Feedback Circuit Connections 

(7.9) 

The feedback voltage for the type of amplifiers being discussed here 
is always inserted in series with the input voltage. This feedback voltage 
E1b can be introduced in series with the original signal input in the grid 
circuit or in the cathode circuit. Typical feedback circuit connections 
are shown in figure (7 .5). 

The feedback voltage E1b shown in figure (7.5) may be developed at 
any point in an amplifier chain and fed back through some circuit so 
that the over-all voltage transfer function of the feedback loop is {3. 
Nearly any kind of circuit can be used for this purpose. Various types 
of frequency selective circuits such as filters and bridges are commonly 
used. 

If the voltage fed back is proportional to a current flowing through 
an impedance other than the load, the system is said to use current 
controlled feedback. If the feedback voltage is proportional to some 
signal voltage, the system uses voltage controlled feedback. Represen
tative circuits are shown in figure (7.6). 
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(a) GRID FEEDBACK 

Feedback Circuits 

(bl CATHODE FEEDBACK 

Fig. 7.5. Feedback connections. 
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(o) NEGATIVE CURRENT 
FEEDBACK IN THE CATHODE 
CIRCUIT; CATHODE DEGEN
ERATION 

(b) VOLTAGE FEEDBACK IN THE CATHODE 
CIRCUIT 

Fig. 7 .6. Representative feedback circuits. 
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There is another type of feedback, previously encountered in the 

Fig. 7.7. Grid-to-plate feedback. 

discussion of the Miller effect, that 
has considerable practical impor
tance. In this case, the plate and 
grid of the tube are connected 
together through some arbitrary ad
mittance as shown in figure (7. 7). It 
will be shown that this causes the 
input admittance of the tube to vary 
with frequency, thereby changing the 
loading of the driving stage and 
causing a corresponding change in 
the response of the system. This type 
of circuit is discussed in some detail 

in later sections of the chapter. 

7.4. Cathode Degeneration Treated by Feedback Analysis 

The most common type of current-controlled feedback is cathode 
degeneration. A typical circuit was given in figure (7.6a). The voltage 
gain equation of the amplifier with cathode degeneration was derived 

Zp 

(a) NO DEGENERATION (bl CATHODE DEGENERATION 

Fig. 7.8. Equivalent plate circuits. 

by standard methods in chapter 3. The same equation will be developed 
in this section as an illustration of the use of the general feedback 
equation. 

The class A equivalent circuits of a grounded cathode amplifier with 
and without cathode degeneration are shown in figure (7.8). The voltage 
source equivalent circuit is the more convenient for this derivation, and 
the signal input voltages in the two circuits are adjusted to give the 
same plate current IP. This also produces the same output voltage E 0 • 

For the open loop circuit, the voltage loop equation is 

gmzpEu = lp(ZL + zp) (7.10) 
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while the loop equation in the degenerative case is 

gmzpE; = liZ L + ZP + Zk) 

255 

(7.11) 

The grid voltage in the degenerative circuit is the difference between the 
signal input voltage Ei and the cathode voltage Ek. That is, 

E; = Ei - Ek = Ei - lpZk 

Consequently, the loop equation for the feedback amplifier is 

gmzPEi = lp(ZL + zP) + IPZigmzP + 1) 

However, according to equation (7.10), 

lp(ZL + zP) = gmzPEu 

so that equation (7.13) can be written 

gmzpEi = gmzpEg + IPZigmzp + 1) 

or, in an alternative form, 

(7 .12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

Consider the terms in this equation: Ei = signal input voltage with 
feedback; Eu = signal input without feedback. Both of these voltages 
produce the same output voltage. Clearly then, the difference between 
Eu and Ei is the feedback voltage, Ew That is, 

gmzp + 1 
E1b=E -Ei=-Izk___ (7.17) 

g p gmzp 

It is especially interesting to note that the feedback voltage is not equal 
to the cathode voltage lpZk. 

If Zm designates the mutual impedance of the amplifier plate circuit, 
the current flowing through this impedance is related to the plate 
current I 'P as follows: 

I= I _z'P_+_z_L 
P Zp 

Therefore the output voltage is 

zP+zL 
Ea= -/Zm = -Ip ---Zm 

Zp 

The voltage transfer function of the feedback circuit is 

fJ = Efb = + _z_k. _gm_z_P_+_I. __ z_P_ 
Ea Zm gmzp Zp + ZL 

(7.18) 

(7.\ 9) 

(7.20) 
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This can be written in various forms as follows: 

fJ = Zlgmzr, + 1) 
(ZL + Zr,)gmZm 

fJ = Zlgmzr, + l)Zin; z. = z1>ZL 
ZLgmz1>Zm in z1> + ZL 

Because the gain of the open loop amplifier is 

Ao= -gmZm 

the feedback factor of the degenerative amplifier is 

{JA = _ Zlgmz1> + 1) 
o z1> + ZL 

[Sec. 7.5 

(7.21) 

(7.22) 

(7.23) 

The general equation for the voltage amplification of a feedback 
amplifier is 

Ao 
Ac= 1 - fJAo (7.24) 

Hence the gain of the degenerative amplifier is 

A - - gmZm 
c - 1 + Zlgmz1> + l)/(z1> + Z L) 

(7.25) 

= -g~Zm (7 .26) 

This is precisely the same result as that derived in chapter 3. 
The grounded cathode amplifier with cathode degeneration is a 

general amplifier type of considerable practical importance. The effects 
of this kind of feedback are assessed for a particular case in the next 
section as an illustration of the general procedure that should be 
followed in other cases. 

7.5. Effect of Cathode Degeneration on Response and Gain 

It has been shown that the general voltage amplification equation for 
a grounded cathode amplifier with cathode degeneration is 

A = - gmZm 
c 1 + Zlgmz1> + 1)/(zj) + ZL) 

The various terms in this equation are defined as: Zm = mutual 
impedance of the passive network in the equivalent plate circuit; 
z1> = plate impedance of the amplifier tube= r1>w1>/(s + w1>); ZL = 
input impedance of the connected load circuit. 
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The feedback occurs in the cathode impedance Zk. This impedance 

can have nearly any circuit configuration. For the purpose of this 
analysis, it is assumed to be a pure resistance so that Zk = Rk. 

The nature of the connected load circuit must be specified before we 
can proceed any further with the problem. We will assume a resistance 
coupled amplifier. Therefore, for the resistance coupled amplifier in the 
mid-frequency region, it was shown in chapter 4 that 

Ao= -Ar= -gmR 

where 
1 

R=--------
1/r'P + 1/RL + If Ru 

At the low frequency end of the band, the gain equation for the 
nondegenerative amplifier was derived in chapter 4 and shown to be 

s 
A0 (low frequency) = -Ar -

s + w1 
(7.27) 

In the low frequency region the plate impedance is virtually equal to 
the plate resistance because the effect of the tube interelectrode 
capacitance is negligible. That is, 

zP (low frequency)= r P (7.28) 

Other terms required in the calculation are easily defined from the 
equivalent circuit of the amplifier as follows: 

s 
Z =R--· 

m S + w1' 

s+wu 
ZL=Rx---; 

s+wv 

R = RLRg . 
X RL + Rg, 

rPRL 
R1=---

r'P + RL 

1 
W1= 

(R1 + Ru)Cc 

1 
w =--

g RuCc 

1 
w =-----

11 (RL + Rg)Cc 

Substitute these expressions into the general gain equation for the 
degenerative amplifier and the result is 

(7.29) 
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After some rearrangement of terms, this can be written 

(7.30) 

Or, in an alternative form, 

(7.31) 

where (7.32) 

(7.33) 

From equation (7.31) you can easily see that the reference gain A; is 
always less than that of the nondegenerative amplifier. Also, because 

Rg 

'-------' 
Fig. 7.9. High frequency equivalent plate circuit. 

R1 is always less than R L, the lower cutoff frequency is always less than 
that in the nondegenerative case, though the difference is very small. 

In the high frequency region the situation is more complex and more 
obscure. The general gain equation for voltage amplification of an 
amplifier with cathode degeneration was given earlier. From the high 
frequency equivalent circuit given in figure (7.9), the various terms in 
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this equation can be shown to have the following values:· 

where 
1 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

These expressions should be substituted into the voltage amplification 
equation. After a considerable amount of algebraic manipulation, the 
final result can be expressed as 

A(s)= 

1 
wx(Rx/Rk+l)+wiµ+I+rv/Rk) 2 1 +s------------+r=--------

( rv+Rx) ( rv+Rx) 
WPWX µ+I+-R- WPWX µ+I+-R-

k k 

The A; factor shown is given by equation (7.32), the reference gain of 
the amplifier. 

The high frequency gain function just given above has the general 
form A; 

A(s) = - _I _+_a_s_+_bs-2 (7.38) 

where a and b are the coefficients of s and s 2 in the gain equation. In the 
steady state this becomes 

A;/0H 
A(jw) = ---~----~======-= (7.39) 

v' ( 1 - bw2)2 + a2w2 

At the upper cutoff frequency w H the radical must equal v'2. 
Hence ( 1 - bw'JJJ2 + a2w11 = 2 (7.40) 

Eventually this can be written 

4 2b - a 2 
2 1 

WH - 2b2 WH - b2 = 0 (7.41) 

Solve for wH and rearrange terms somewhat to obtain 

Jl ( a
2
) j( a2)2 

w H = b l - 2b + 1 - 2b + 1 (7.42) 
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It is easily proved that + signs are required for each radical if w H is to 
be a real and realizable number. 

In amplifiers of this type it is nearly always true that 

a2 2b 

2
b• 1 or 

02 
<{ 1 (7.43) 

so that the upper cutoff frequency is approximately 

(7.44) 

The factor inside the radical has the general form of 

(I + x2)112 

where x is much less than I. This can be closely approximated by 
I + x 2/2. Then, using this approximation, the expression for the upper 
cutoff frequency becomes 

WH ....:_ J.!!__ [-1 + 1 + !(2b)2

] ....:_ ! (7.45) 
2b2 2 a2 a 

Therefore the upper cutoff frequency is approximately 

. wpwx [µ + 1 + (rP + Rx)/Rk] 
WH = --------------

w:z:CRx/ Rk + I)+ wiµ + 1 + rP/Rk) 
(7.46) 

The amplifier figure of merit, which is A;wII = F;, works out to be 

' 1 
Fa= Fa ( l) (7.47) 

1 + (Cpk/CT)(Rk/Rx) + (Cx/CT) µ; gmRk 

where Fa= gm/CT= figure of merit of the nondegenerative amplifier. 
From this last equation it is clear that the amplifier figure of merit is 

degraded through the use of cathode degeneration. In most cases the 
amplifier cutoff frequency will be only slightly affected compared 
with the reduction in reference gain. 

The main advantage of cathode degeneration is obviously unrelated 
to the figure of merit, because the reference gain without degeneration 
is Ar= gmR, while with degeneration it is approximately 

A'--'- gmR (7.48) 
r - 1 + gmRk 

Thus, it is clear that the reference gain is less dependent upon variations 
in transconductance when cathode degeneration is used. This is more 
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apparent when the rate of change of gain as a function of transconduct
ance is evaluated. That is, 

oAr ( d . ) ~ no egeneratlon = R 
ugm 

oA; ( . h d . ) R 
~ wit egenerat10n = ( )2 ugm 1 + gmRk 

It is clear that the degenerative amplifier will have a reference gain less 
dependent upon transconductance changes than the nondegenerative 
amplifier. 

The expression for the voltage gain of a grounded grid amplifier is 

where g~ = effective transconductance of the grounded grid amplifier 
circuit; g~ = (µ + 1 )g~/ µ, where g:n = effective transconductance of 
the degenerative grounded cathode amplifier. Consequently, the 
response characteristics of a grounded grid amplifier are identical to 
those of a degenerative grounded cathode amplifier with the gain and 
figure of merit modified by the (µ + 1 )/ µ factor. 

7.6. Internal Impedance with Cathode Degeneration 

The two preceding sections dealt with cathode degeneration as an 
example of negative, current-controlled feedback. The effect of this 
feedback on the output impedance of the amplifier is of some interest. 
The standard method for computing this impedance is: 

(1) Short circuit the input terminals of the amplifier. 
(2) Place a generator across the output terminals. 
(3) Measure the voltage and current at the output terminals. 
( 4) The ratio of the output circuit voltage and current is the output 

impedance of the amplifier. 
The circuit connections required to determine the amplifier output 

impedance are shown in figure (7.10) for the amplifier with and without 
cathode degeneration. 

The output impedance of the amplifier in the absence of cathode 
degeneration and with a two-terminal load circuit is easily computed 
from figure (7.10a) to be 

(7.49) 
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When cathode degeneration is used, the situation is a little more 
complex. The application of the generator voltage Ec across the ampli
fier output causes a voltage Ek to be generated across Zk, as shown in 
figure (7.10b). The total grid voltage Eg is Eg = Ei - Ek, where Ei is 
the input signal voltage. However, in this case, Ei is zero because the 
input terminals are short circuited. Hence Eg = -Ek and the equivalent 
generator in the plate circuit is 

-gmzpEg = +gmzpEk 

(a) NO DEGENERATION (bl CATHODE DEGENERATION 

Fig. 7.10. Connections for measuring output impedance. 

As a result, the voltage loop equation around the plate circuit of figure 
(7.10b) is 

Therefore 

ZL 
Ip= Ic---------

zp + ZL + Zlgmzp + 1) 
The generator voltage is 

or 

EC= (IC - Ip)ZL 

Ec = IC [1 - ____ z_L ____ ]zL 
Zp + ZL + Zlgmzp + 1) 

(7.50) 

(7.51) 

(7.52) 

After a little standard algebraic manipulation it is possible to write 

Z 
Ec z1>ZL/(z1> + ZL) + Zlgmzp + l)ZL/(zP + ZL) 

C = - = ------------(7.53) 
Ic 1 + Zlgmzp + 1)/(zP + ZL) 

However, a more general terminology can be used because it was 
previously shown that Z 0 = zPZ Lf(zP + Z L) = output impedance of 
the open loop amplifier, and -/3A 0 = Zlgmzp + 1)/(zP + ZL) 
= feedback factor. Consequently, equation (7.53) reduces to 

Za f3Aa 
Zc = l _ f3Aa l _ /3A

0
ZL (7.54) 
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Of course, this is a negative feedback circuit, so that 

Z - Zo + f3Ao Z 
c - 1 + (3A

0 
1 + /3A

0 
L 

This can be put into an alternative form as 

z = z 1 + {JAo(l + ZL/z'P) 
c o 1 + /3Ao 

263 

(7.55) 

(7.56) 

It is obvious that the numerator will always be larger than the denomi
nator, so that the internal impedance of the amplifier with current
controlled feedback is always larger than that obtained from the same 
amplifier without feedback. 

The result should be expected, because the feedback acts to stabilize 
the plate current, thereby making the tube operate more like a constant 
current device. Constant current sources have high internal impedances. 
Essentially the same result is achieved with the grounded grid amplifier. 

7.7. A Simple Case of Voltage Feedback, Cathode Follower 
The simplest and commonest type of negative voltage-controlled 

feedback is the cathode follower shown in figure (7.11). Actually, as 
long as Z L is a three-terminal network, this is not a true case of voltage
controlled feedback. However, it is true voltage controlled feedback 
when Z L has only two terminals. 

The equation for the voltage gain of a cathode follower was derived 
in chapter 3 and expressed as: 

A = + g~Z = ___ g_m_z_m __ _ 
m 1 + µZL/(zP + ZL) 

(7.57) 

where Zm = mutual impedance of the passive network in the equivalent 
plate circuit; Zin = input impedance of the passive network in the 
equivalent plate circuit; Z L = input impedance of the connected load; 
g mzm = gain of the circuit if the amplifier had been connected as a 
grounded cathode circuit. 

The general equation for the voltage amplification of a feedback 
amplifier has been proven to be 

A= Ao 
c 1 - fJAo 

or, for the negative feedback case, 

Ao 
Ac= 1 + fJAo 

(7.58) 
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Comparison of this relationship with that for the cathode follower 
shows that 

A0 = gmZm (7.59) 

µZL 
/3Ao = + Z = gmZin (7.60) 

Zp L 

The feedback factor can also be expressed as 

/3A 0 = /JgmZm (7.61) 

so that the voltage transfer function of the feedback circuit is 

/3 = Zin (7.62) 
zm 

Now consider a resistance coupled cathode follower as shown in 
figure (7.12). This amplifier will have the same equivalent plate circuits 

Cc 

Fig. 7.11. Cathode follower. Fig. 7 .12. Resistance coupled 
cathode follower. 

as the resistance coupled grounded cathode amplifier except for the 
change in amplifier transconductance. In chapter 4 for the grounded 
cathode amplifier, it was shown that 

I 
A,= gmR where R = --------

1/rP + lf RL + If Ru 
I 

w1 = lower cutoff frequency = ) 
(R1 + Ru Cc 

rPRL 
R1=---

rp + RL 1 
w2 = upper cutoff frequency = -

RC p 
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Consider the mid-frequency, or reference, case for the cathode 
follower. Here A 0 =Ar= gmR and Zin= Zm = R, so that /3 = I. 
Therefore the reference gain of a cathode follower is 

A' - Ao Ar 
r - I + f3Ao I + Ar 

(7.63) 

In the low frequency case for the grounded cathode, resistance 
coupled amplifier, it was shown in chapter 4 that 

s 
Ao=Ar---; 

s +w1 

s 
Z =R--

m s +w1 
It is easily shown that 

where 

and 

Thus 

z'P....:.... r'P 

_r_'Pz_L_ = R _s_+_w_g 
r'P + ZL s + w1 

I 
w ---

u - RuCc 

/3 - Zin - S + Wg ------
zm s 

(7.64) 

(7.65) 

(7.66) 

Therefore the low frequency gain function of a resistance coupled 
cathode follower is 

A (low) = ArS/(s + w1) 
c I + (s + wu)Arf(s + w1) 

or 
Ar s 

A (low)= -- · --------
c I + Ar S + (w1 + wuAr)/(1 + Ar) 

s 
and finally Ac (low) = Ar --

s + w L 

Therefore the lower cutoff frequency of the cathode follower is 

WL =~(I+ Wu Ar) I+ Ar W1 

(7.67) 

(7.68) 

(7.69) 

(7.70) 

This frequency is always larger than w1 because wu is always larger than 
w1. However, the change will usually be rather small because w1 and 
w(I are nearly equal in most cases. 

For the high frequency equivalent circuit, it was shown in chapter 
4 that 
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for the grounded cathode, resistance coupled amplifier. Also, because 
the high frequency equivalent plate circuit is a two-terminal network, 
Zin= Zm. Therefore /3 = I and the gain equation for the corresponding 
cathode follower is 

A (high)= Arw2/(s + w2) Arw2 (7.71) 
c 1 + Arw2/(s + W2) S + W2(1 + Ar) 

. Ar I , 1 
Ac (high)= -------=Ar --- (7.72) 

1 + Ar I + s/[wll + Ar)] I + s/wH 
or 

Thus the upper cutoff frequency is 

WH = wlI + Ar) 

and the gain-bandwidth product is 

(7.73) 

, gm 
Fa= ArwH = Arw2 =- Cp (7.74) 

As you can easily see, the upper cutoff frequency of a cathode follower 
is many times larger than the cutoff frequency of a grounded cathode 
amplifier using the same tube and circuit parameters. 

7.8. Internal Impedance with Voltage Feedback 

The output, or internal, impedance of an amplifier using voltage 
feedback can be computed by the same method as that used for the 
case of current controlled feedback. Thus in the open loop case, the 
amplifier and its equivalent representation would appear as shown in 
figure (7.13). 

When the input terminals of the amplifier are short circuited this 
makes Ei = EiAo = E 0 = 0. Therefore, from the circuit in figure 
(7.13) you can easily see that the output impedance of the open loop 
amplifier is Z 0 • 

The corresponding circuits and representations for the voltage
controlled feedback amplifier are shown in figure (7.14). Here the 
equation around the output circuit is 

Ec = /cZo + /3AoEc 

or Z = Ec Zo 
c Jc I - /3Ao 

(7.75) 

When negative feedback is used, this becomes 

z = Zo 
c 1 + /3A 0 

(7.76) 
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This shows that the output impedance of the feedback amplifier will 
always be less than that of the open loop amplifier. This should be 
anticipated because voltage-controlled feedback acts to stabilize the 
output voltage and make the circuit act more nearly like a constant 
voltage source. Constant voltage sources have zero internal impedance. 

Ej GAIN= A0 

r- --- --------7 
---.1----e 

I 

E1 I 
I 
I 
I _____________ I 

(a) OPEN LOOP AMPLIFIER (bl EQUIVALENT REPRESENTATION 

Fig. 7.13. Open loop amplifier. 

This formula is easily applied to the cathode follower because 
Z 0 = R in the mid-frequency region and /3A 0 = Ar, so that 

Zc (mid-frequency)= _R_ (7.77) 
1 +Ar 

I -------------- I 
I I -----------------

(a) OPEN LOOP AMPLIFIER (b) VOLTAGE CONTROLLED 

FEEDBACK AMPLIFIER 

Fig. 7.14. Impedance measurements. 

7.9. Grid-to-Plate Feedback 

All the feedback systems discussed so far have used a feedback 
voltage inserted in series with the input signal voltage. An entirely 
different situation obtains when a current is fed back into the input 
circuit. 

One of the simplest circuit arrangements designed to feed current 
back is the grid-to-plate feedback circuit shown in figure (7 .15). In 
this case, conductive coupling between the grid and plate circuits is used 
and R12 is the feedback resistor. The equivalent plate circuit, neglecting 
the tube interelectrode capacitances and assuming an ideal input 
coupling circuit is shown in figure (7.16). 
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This is a grounded cathode amplifier. The general equation for the 
voltage gain of a grounded cathode amplifier was shown to be 

A= -g:nz:n 
In the absence of feedback, z:n is readily computed because it is exactly 

equal to the Zm shown in the 
circuit of figure (7.16). However, 
when the feedback resistor R12 is 
inserted, the grid circuit is coupled 

1 
directly into the plate circuit. In 
the assumed case shown in figure 
(7 .16), this simply adds R12 in 
parallel with Zm, assuming that 

Eo f I the internal impedance of the grid 
I signal generator is zero. There-

E g fore a new and lower value for 

! z:n is obtained. As a result, the 
gain of the amplifier is reduced 

________ _...____ from the value without feedback. 
Fig. 7.15. Basic grid-to-plate feedback 

circuit. We can easily determine the in-
put impedance of the amplifier; it 

is necessary only to apply the compensation theorem to the plate circuit. 
That is, the complex network between the plate and cathode terminals 
of the circuit of figure (7 .16) can be replaced by a generator of terminal 

G R12 

---Ig t t 
Ep 

i 
Eo 

! 
Fig. 7.16. Equivalent plate circuit of the amplifier in figure (7.15). 

voltage E'P = -E9 Au'P where Aup = -E'P/Eu. The voltage loop 
equation around the resulting circuit, which is shown in figure (7 .17), is 

Eu= luR12 + EuAup (7.78) 
Therefore the input impedance of the amplifier is 

z =Eu= R12 

u lu 1 -Au'P 
(7.79) 

or, the input admittance is 
(7.80) 
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Thus, in the case of the Miller effect discussed in chapter 3, the input 
impedance of the amplifier is altered because of the grid-to-plate feed
back. 

Fig. 7.17. Application of the compensation theorem to the circuit of 
figure (7.16). 

No particular problem exists so far because the meanings of A u'P and 
the stage gain A are perfectly clear and can be calculated without too 
much difficulty. However, when such an amplifier is driven by another 

Ebb Ebb 

I f Eo 
E, 

l l 
(a) CIRCUIT DIAGRAM 

r R12 t 
E2 Eo 

i i 
(b) EQUIVALENT CIRCUIT 

Fig. 7.18. Feedback pair. 

amplifier stage, as in the circuit of figure (7.18), the problem is greatly 
complicated by the removal of the isolation between stages. Because 
of the conductive coupling between the input and output circuits of the 
second stage, both tubes have common plate circuits and involve two 
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generators. As a result, the meaning of the gain. of each stage is obscure, 
so that it is virtually impossible to calculate the individual stage

1 
gains 

for the following reasons: 
(1) To calculate the gain of stage I, the input impedance of stage 2 

must be known. 
(2) The input impedance of stage 2 depends upon the gain of stage 2 

and this depends upon the total impedance in the plate circuits of both 
stages. 

It should be clear that the loss of isolation between stages makes gain 
evaluations by standard techniques a difficult proposition. As a result, 
it is more convenient to treat the two amplifiers as a single amplifier 
stage and to compute the over-all system gain by direct analysis of the 
circuit. 

7.10. The Feedback Pair 
The discussion in this section is confined to an examination of the 

properties of a two-tube amplifier in which there is conductive coupling 
between the input and output of the second tube. Such an amplifier 
is called a feedback pair. If three tubes are used in a similar arrangement, 
the amplifier is called a feedback triple. Any feedback n-uple is possible, 
but the feedback pair is possibly the most common and certainly the 
easiest to analyze. 

To simplify the discussion and mathematics in the exploratory steps, 
the interstage networks used in the feedback pair will be restricted to 
two-terminal types. Consequently, a typical feedback pair will appear 
as shown in figure (7.18a). The corresponding equivalent circuit is 
shown in figure (7.18b). 

The circuit has two current nodes and the nodal equations are clearly 

(7.81) 

(7.82) 

In nodal analysis, it is more convenient to use admittances so that the 
node equations can be written 

gm1E1 + Ym
1
E2 + G1lE2 - Eo) = 0 

gm
2
E2 + Ym

2
Eo + G12(Eo - E2) = 0 

(7.83) 

(7.84) 
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Solve these two equations simultaneously for the voltage gain of the 
pair. The result is 

A= Eo = gm1 (gm1 - G12) 
Ei G1lgm2 - G12) + (Ym1 + G12)(Ym2 + G12) 

(7.85) 

This formula is general as long as two.terminal load circuits are used, 
and this generality makes it difficult to interpret the effects of feedback. 
Therefore we must discuss specific cases from this point on. 

Assume a feedback pair of resistance coupled amplifiers in which the 
high frequency response characteristics are of interest. Assume that the 
two stages are identical. Hence the interstage mutual admittances are 

(7.86) 

Therefore the equation for the voltage amplification of the feedback pair 
is 

A = gml (gm2 - G12) 
G1lgm2 - G12) + (G + G12 + sCp)(G + G12 + sCp) (7.87) 

A little standard algebraic manipulation will reduce equation (7 .87) 
to the following form: 

Note that the scale factor of the gain function, 

~m1 _ gm2 - G12 

is less than the scale factor 

CT Cp 

~m1. ~m2 
CT CT 

obtained when two resistance coupled stages are connected in cascade, 
without feedback. 

The equation for the reference gain of the amplifier is easily derived 
and expressed .is 

(7.89) 
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The poles of the gain function are readily evaluated from equation 
(7 .88) and expressed as 

G + G12 1 v' 
S1,2 = - CT ± CT G12(G12 - gm2) (7.90) 

The poles will both be real and the response will be nonoscillatory as 
long as G12 > gm

2
• If this condition prevails, the scale factor will acquire 

a minus sign and there will be phase inversion through the amplifier. 
The response will be oscillatory and will exhibit overshoot when the 

poles are complex conjugates. This situation occurs when gm
2 
> G12• 

The scale factor then acquires a positive sign. The poles are 

G + G12 j V 
S1,2 = - CT ± CT G12(gm2 - G12) (7.91) 

It is apparent that the poles of the feedback pair can be located at 
almost any physically realizable pair of points in the complex s plane 
by suitable adjustment of the three independent circuit parameters, G, 
G12, and gm

2
• This is important because the response characteristics of 

any amplifier are governed by the locations of the poles of the gain 
function. Thus an indefinite number of responses can be obtained from 
a resistance coupled feedback pair. 

It should be noted that specification of the pole location requires a 
knowledge of two factors: 

(1) rx = real part of the pole= (G + G12)/CT. 
(2) The radical term, which can be either real or imaginary. How

ever, there are three independent variables, G, G12, and gm
2

• As a result, 
there are an infinite number of solutions for any given problem unless 
one of the three variables is specified. Ordinarily, gm

2 
will be specified 

because the amplifier tubes will be selected with a view toward a high 
figure of merit. It is fairly common to make both tubes in the pair 
identical so that gml = gm2· 

7.11. Bandpass Feedback Pair 
The general expression for the over-all gain of a feedback pair was 

derived in the preceding section for the case of two-terminal load 
circuits and expressed as 

A = gm1(gm2 - G12) (7.92) 
G12Cgm2 - G12) + ( y m1 + G12)( y m2 + G1J 

Now consider the case where both stages of the feedback pair have 
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identical single tuned interstage networks of the form shown in figure 
(7.19). In this case 

Then let Y= ymi + G12 = ym2 + G12 

= (G + G12) + sCT (1 + -2 -
1 
-) 

sLCp 

(7.93) 

(7.94) 

(7.95) 

The 1/LCT factor is the square of the undamped natural frequency 
of the resonant circuit. This is identified as w~. Then, in the steady state, 
the admittance Y becomes 

Y(jw) = (G + G
12

) + jCp (w + Wo)(w - Wo) 
w 

(7.96) 

If the circuit is a narrow band or high Q circuit, all frequencies of interest 
will fall near w0• Therefore 

w +w0 _:.._ 2w 

and W-Wo=±/;l.W 

The admittance function can now be 
written approximately as 

Fig. 7.19. Single tuned circuit. 

Y(jw) _:.._ (G + G12) ±j2 /;l.W CT (7.97) 

This approximate equation for the admittance should be substituted 
into the amplifier gain function. The result is 

A( ·w) = gm1(gm2 - G12) 
J G1lgm2 - G12) + (G + G12 ± }2/;l.W Cp)2 (7.98) 

Multiply terms in the denominator; collect real and imaginary parts. 
The resulting gain function is 

A(jw) gm/g~2-G12)/C~ (7.99) 
G12(gm2-G12)+(G+G12) _4(G+G12) /;l.w . 
--------±1----+ (2] /;l.W)2 

C~ CT 
The denominator is a quadratic function in /;l.W, so the gain function 

has two poles in terms of /;l.W as a variable. These poles can be either 
real or complex, depending upon the relative magnitudes of the vari
ables. To obtain general results, it is best to assume that the poles will 
be complex, and if they are complex, they must be complex conjugates. 
Hence the poles are specified as 

-P1 = oc + JfJ and -P2 = oc - jfJ (7.100) 
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Then the gain function can be written 

A( 'w) = gm1 _ gm2 - G12. 1 (7 101) 
J CT CT (P1 ±}211w)(P2 ±}2 11w) · 

For practical reasons it is necessary to establish an equivalence 
between these poles and the circuit constants. This is easily done by 
multiplying terms out in equation (7.101) so that the gain function is 

A( . ) gm1Cgm2 - G12)/C~ (7 102) 
JW = P1P2 ± 2j(P1 + P2) 11w + (2} !1w)2 • 

If the component forms of P1 and P2 are used, the denominator of 
equation (7.102) reduces to 

(rf-2 + j32) ±J(2rf-)2 11w + (2j !1w)2 (7.103) 

Equate coefficients of like powers of 11w in this equation to those in 
equation (1.99). This process yields two equations: 

rf.2 + j32 = G1lgm2 - G12) + (G + G12)2 

c~ 
G+G12 

rf.=----

The imaginary part of the pole is now easily calculated to be 

j3 = V G12(gm2 - G12) 
CT 

Hence the poles in the complex P plane are 

-P __ G + G12 ± . V G12(g m 2 - G12) 
1,2 - CT J CT 

(7.104) 

(7.105) 

(7.106) 

(7.107) 

These poles are of exactly the same form as those calculated for the low 
pass feedback pair in the s plane. The result might have been anticipated 
from a consideration of the bandpass, low pass transformation 
discussed in chapter 6. 

The poles can be positioned to nearly any desired point in the complex 
P plane. Nearly any response characteristic can be obtained from a 
feedback pair. 

For example, suppose that a feedback pair is to be used to provide 
the same response as a maximally flat staggered pair. According to 
chapter 5, the P plane poles of a flat staggered pair are 

P1,2 = (-0.707 ±/0.707)Bn (7.108) 
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where Bn = over-all bandwidth of the pair. To make the response of the 
feedback pair identical to that of the staggered pair, it is necessary only 
to equate pole components. As a result, 

G + G12 = 0.707Bn 
CT 

1 -v G12Cgm2 - G12) = 0.707Bn 
CT 

(7.109) 

(7.110) 

Any attempt to develop useful design equations directly from these 
two expressions is fruitless because there are three independent variables 
and only two equations. However, in many cases it can be assumed 
that gm

2 
is much larger than G12. As a result, equation (7.110) becomes 

1 ~/-
-v G12gm2 _:_ 0.707Bn 
CT 

Solve equations (7.109) and (7.111) to obtain 

G 
_ (BnCT)2 

12 -
2gm2 

G = 0.707BnCT - G12 

These equations can be expressed more conveniently as 

R12 = ~ (Fa)2 
gm Bn 

R = V2Faf gmBn 
1 - 0. 707 Bn/Fa 

where gm= tube transconductances; Fa= gm/CT. 

(7.111) 

(7.112) 

(7.113) 

(7.114) 

(7.115) 

From this example you can see that the response of any maximally 
flat staggered n-uple can be duplicated by a cascade of feedback pairs 
and single tuned stages. The method of duplicating the response of 
over staggered amplifiers should also be apparent now. 

7.12. Stability in Feedback Amplifiers 
The preceding sections discussed the effects of feedback on the 

operating characteristics of amplifiers. A number of desirable effects 
were noted. 

In practical cases the problem is always complicated by the variation 
in phase shift with frequency in the feedback circuit. This can often 
result in positive feedback at certain frequencies, even though negative 
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feedback is desired. This positive feedback may become so large that 
it will regenerate any disturbance in the amplifier and cause the circuit 
to burst into sustained oscillation. Thus the payment for the advantages 
of negative feedback is generally made in the increased effort necessary 
to make sure that the amplifier is reliably stable at all frequencies. 

On the other hand, it may be that an oscillator is desired rather than 
an amplifier; in this case it is important to know the conditions 
necessary to guarantee circuit oscillation. 

If the term stability is taken to mean that the output from a circuit 
will eventually die out when the input is removed, interest centers upon 
the conditions that make an amplifier stable and an oscillator unstable. 

A method for determining the relative stability of a circuit was given 
in chapter 2. It was shown there that if the system transfer function 
does not have right half plane poles, the system is stable. Right half 
plane poles give rise to instability of the form of continuously increasing 
currents and voltages. Hence, once the poles of the transfer function 
are known, it is an easy matter to evaluate the stability of the system. 
The test is simple and direct. 

The transfer function of a feedback amplifier is 

Ao(s) 
Ac(s) = I - {J(s)Ao(s) 

The circuit will be stable if this function does not involve right half plane 
poles. It is generally valid to assume that the open loop amplifier is 
stable, so that A 0 does not involve right half plane poles. The same 
assumption is generally true for the feedback circuit. Consequently, 
if instability is to be produced, it must arise from the right half plane 
zeros of the denominator of the foregoing gain equation. Thus the 
problem of studying the stability of a feedback circuit is reduced to a 
consideration of the zeros of I - {JA 0 • 

Superficially it would appear that it is a relatively easy matter to 
determine the stability of a feedback amplifier by the foregoing 
technique. However, the simplicity is more apparent than real, 
because the zeros, or roots, of I - {JA 0 must be known. This can be a 
difficult and tedious evaluation. In most practical cases it would require 
that specific values be assigned to the various elements of the networks. 
Then,. when the zeros have been determined and the system is found to 
be unstable, the locations of the zeros do not provide any clues as to 
how the instability can be removed by adjustment of the circuit 
parameters. 
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An ideal technique for analyzing feedback systems would: (1) 
indicate the relative stability; (2) indicate stability boundaries and show 
how operation should be changed to insure stability; (3) not be entirely 
dependent upon numerical methods. 

There are two methods that partially meet these requirements: 
(I) the Nyquist criterion; (2) the Routh-Hurwitz criterion. These two 
methods are treated briefly in the next two sections. 

7.13. The Nyquist Stability Criterion 
Proof of the Nyquist criterion is omitted because it can be found 

elsewhere ;1 it involves mathematical methods that cannot be intro
duced easily. However, the basic mechanical details involved in its use 
will be explained. 

"1= + 00 

POLE Ill= -oo 

Fig. 7.20. Right half plane 
zero. 

Fig. 7.21. Polar plot of F(jw) as a 
function of frequency. 

As a simple illustrative example, assume a specific function of the form 

s-a 
F(s) = 1 - {J(s)Ao(s) = --

0 

s + ao 
(7.116) 

This function has a pole at -a0 and a zero at +a0 as shown in figure 
(7 .20). It is known that the system will be unstable because of the 
existence of the right half plane zero. 

Now rewrite equation (7.116) in terms of the steady state frequency as 

F(jw) =. = 1 tan - - tan -jw - ao L -1 w -1 w 
JW + Q 0 -Q0 Q 0 

(7.117) 

1 H. Nyquist, "Regeneration Theory," Bell System Tech. J., vol. 11, pp. 126-147, 
January, 1932; also E. Peterson, J. G. Kreer, and L. A. Ware, "Regeneration 
Theory and Experiment," Bell System Tech. J., vol. 13, pp. 680-700, October, 1934. 
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When this function is plotted in polar coordinates as a function of 
frequency, it will appear as shown in figure (7.21). The plot is made by 
locating the magnitude of the function at the proper angle. It is clear 
from figure (7 .21) that the resulting contour encircles the origin once in 
a clockwise direction as the frequency is varied from - oo to + oo. 

This encirclement is caused by the right half plane zero. It is a 
general rule and it can be proven, that the polar plot of F(jw) will encircle 
the origin once in a clockwise direction for each right half plane zero. 

t 
(II 

s PLANE 

ZERO (T POLE 
-0 
-ao +ao 

111=-oo ---------111= +oo 

F(jw) PLANE 

111= ao 

(a) POLE-ZERO DIAGRAM (b) POLAR PLOT 

Fig. 7.22. Effect of a right half plane pole. 

Now consider the reverse case where a function is defined so that it 
has a right half plane pole. Thus, assume 

and therefore 

s + ao 
F(s) = 1 - (J(s)Ao(s) = --

s - ao 

F(1w) = ltan - - tan -. I -1 w -1 w 
ao -ao 

(7.118) 

(7.119) 

The pole-zero diagram and corresponding polar plot are shown in 
figure (7 .22). In this case it is found that the origin is encircled once 
in the counterclockwise direction for each right half plane pole. 

Therefore the number of right half plane poles and zeros can be 
determined by counting the number and direction of the encirclements 
of the origin by the polar plot of 1 - (JA 0 • Of course, for the deter
mination of stability, only the right half plane zeros of this function are 
of interest, and the Nyquist stability criterion deals with them. 

The polar plot of [1 - /3(jw)A/jw)] is called a Nyquist diagram, and 
the Nyquist criterion is stated as follows: 
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If the polar plot of [1 - /3(jw)A/jw)] encircles the origin in a clock
wise traverse from w = -oo to +oo, the system is unstable. 

In practice, the determination of the Nyquist diagram can be 
simplified by the transformation shown in figure (7.23). First, the polar 
plot of [1 - /3(jw)Ao(jw)] is changed to a plot of -/3(jw)Aljw) by 
translating the origin of coordinates a unit distance to the right. Then 
encirclements about the point ( -1 + jO) are counted. If the entire 
plane is rotated through 180°, as shown in figure (7.23b), the result is a 

.. , ~/ 
, ..... ___ ."' 

(a) POLAR PLOT OF 
- /J ( j111) A0 ( j &1) 

I 
I 

111=-00 

I 
I 

/ 
I 

-------, .,, ... 

' \ \ 

(b) POLAR PLOT OF 
+p(j111) A0 (jw) 

Fig. 7.23. Transformations of the Nyquist diagram. 

plot of +/3(jw )Ao(Jw) and stability is determined by counting encircle
ments of the point (1 + jO). 

The particularly unique advantage of the Nyquist criterion is clear 
from figure (7.23b). Here it is necessary only to determine the open 
loop transfer function of Aljw) and /3(jw) connected in cascade. This 
may be done analytically or experimentally. Then a polar plot is made 
and the stability question is answered by counting encirclements of the 
point + 1. Thus a relatively simple set of computations or measure
ments are required on an op~n loop system and the stability of the closed 
loop system can be predicted with certainty. A more detailed treatment 
will be found elsewhere. 2 

One practical matter remains to be discussed. It was stated in chapter 
2 that nearly all common amplifiers are of the minimum phase shift 

2 Gordon S. Brown and Donald P. Campbell, Principles of Servomechanisms, 
John Wiley & Sons, Inc., New York, 1948, chaps. 6-8. 
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type. Methods of computing the phase response from the amplitude 
response have been worked out.3 Hence it is necessary only to compute 
or measure the amplitude reponse, because the phase response can be 
computed from that and the Nyquist diagram plotted. 

7.14. Routh-Hurwitz Criterion4 

Two major disadvantages are involved in the use of the Nyquist 
criterion.4 The most important is that it is primarily a numerical 
process. Specific values for circuit constants must be known before the 
Nyquist diagram can be computed or experimentally determined. 
Second, the problem of stabilizing an unstable circuit is essentially a 
cut-and-try determination of foe stability boundaries. The great 
advantage of the method is that it permits computations and analyses 
to be made from experimentally determined data, and this often 
overrides all other considerations. 

The method developed by Routh and Hurwitz working indepen
dently is essentially analytical, and cannot usually be used with 
experimentally determined data. Instead, it depends upon the relation
ships between the coefficients in the denominator of the system transfer 
function. 

It was shown earlier that the transfer functions of all circuits have the 
general form of the ratio of two polynomials, such as 

F(s) = Kbnsn + bn-1Sn-1 + ... + b1S + bo (7.120) 
ansn + an-lsn-l + . ' • + a1S + a 0 

The characteristic equation is obtained when the polynomial in the 
denominator is equated to zero. Clearly, the roots of the characteristic 
equation are the poles of the system transfer function and thereby 
determine the nature of the response. 

To use the Routh-Hurwitz method, the coefficients of the character
istic equation should be arranged in two rows as follows: 

I st row sn I an I an_2 I an-4 1 . . · 1 etc. 

2nd row sn-1 an-i an-a an-s . . . etc. 

3 See reference (1) of chapter 4. 
4 Frank E. Bothwell, "Nyquist Diagrams and the Routh-Hurwitz Stability 

Criterion," Proc. IRE, vol. 38, November, 1950, pp. 1345-1348; also M. F. 
Gardner and J. L. Barnes, Transients in Linear Systems, John Wiley & Sons, Inc., 
New York, 1942, pp. 197-201. 
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A third row is formed by cross multiplication of the terms in the first 
two rows, as follows: 

2nd row sn-i an-i an-a an-s 

3rd row sn-
2 

an-lan-2 - anan-3 an-lan-4 - anan-5 etc. 

This same process is followed, using rows 2 and 3 to form row 4. Then, 
rows 3 and 4 are used to form row 5, and so on. The last row should 
correspond to s0 so that there are (n + 1) rows. Under normal 
conditions, the procedure is straightforward. 

There are two special cases that might arise in the formation of the 
rows following the first two. For example, the characteristic equation 
might be missing a power of s. If this is so, a zero is placed in the table 
to account for the missing term. If this zero is the first term in any row, 
but the other terms are not zero, then the next row cannot be formed 
because all the terms will be infinite. This difficulty can be circumvented 
by a slight artifice. Replace the zero by a differentially small quantity 
designated €. Then coefficients are formed in the usual manner. 
Ordinarily terms involving £

2 need not be retained. 
Another special case arises when all the terms in a given row are zero. 

Any attempt to form the following row then fails. The procedure is 
then: 

(I) Form an auxiliary equation with the coefficients of the last non
vanishing row and commencing with the power of s specified by that 
row. The roots of this equation are also roots of the characteristic 
equation. 

(2) Differentiate the auxiliary equation with respect to s and enter 
the coefficients of the resulting equation into the table in place of the 
zeros. 

After the complete Routh-Hurwitz determinant is formed by the 
methods just outlined, the coefficients in the first column are inspected. 
The number of times that the signs of these coefficients change is 
numerically equal to the number of roots of the characteristic equation 
in the right half plane. Hence a stable system will not exhibit any sign 
changes in the first column coefficients, nor should any roots fall on the 
vertical axis. The constants of the physical system should be adjusted 
to assure this condition. 
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For example, consider a physical system having a cubic charac
teristic equation as follows: 

a3s3 + a2s2 + a1s + a0 = 0 

The Routh-Hurwitz determinant is easily constructed as follows: 

1st row s3 aa al 
2nd rows 2 

a2 ao 

3rd row 1 a1 a2 - aaao 
0 s 

a2 

4th row 0 s ao 0 

If this is a physical system, the coefficients themselves are all positive. 
If the system is to be stable, there cannot be any sign changes in the first 
column, so that a 1a 2 > a3a0 • This is the condition for stability and also 
defines the stability boundaries. 

PROBLEMS 

7.1. An amplifier has a voltage gain of 46.2 volt-logits at the mid-frequency 
without feedback. If negative feedback is added in an amount such that 
f3 = 0.01, compute the closed loop gain of the amplifier. 

7.2. An amplifier has a voltage gain of 35 volt-logits in the reference case 
without feedback. When feedback is applied, the gain is reduced to 25 volt
logits. Compute /3. 

7.3. An amplifier without feedback produces an output voltage of 125 v 
with 15 % harmonic distortion. The input signal voltage is 65 mv. The 
amplifier frequency response is flat over the range of interest. If 1 % of the 
output is fed back to produce negative feedback, compute the resulting 
harmonic distortion in the output and the new value for the input voltage 
required to keep the output at 125 v. 

7.4. Without feedback and at rated power supply voltage, a given amplifier 
with a flat frequency response characteristic is found to have a voltage gain 
of 25 volt-logits. When the plate supply voltage drops by 25 % the gain 
of the amplifier drops to 24 volt-logits. Negative feedback is used to stabilize 
the amplifier. Compute the closed loop gain, if f3 = 0.Dl, at rated power 
supply voltage and when the supply voltage drops by 25 %, 

7.5. In a single stage resistance coupled amplifier of the grounded type, the 
following data apply: gm= 4000 µmhos; rP = 10,000 ohms; RL = 6000 
ohms; Cc= 0.001 pJ; CT= 30 µµf; Ra= 500,000 ohms; Cvk = 4 ftµf. 

Compute the reference gain and the upper and lower cutoff frequencies. 
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7.6. An unbypassed cathode resistor of 600 ohms is added to the amplifier 

of problem (7.5). Compute the new values for the reference gain and cutoff 
frequencies. 

7.7. The data given in problem (7.5) apply here to a resistance coupled 
cathode follower. Compute the reference gain and cutoff frequencies of this 
circuit. 

7.8. Suppose the tubes in the amplifiers of problems (7 .5) through (7. 7) are 
replaced by tubes having transconductances of 3500 µmhos. Compute the 
changes in the reference gains assuming all other parameters remain fixed. 

7.9. Calculate the output impedances of the three amplifiers of problems 
(7.5) through (7.7). Assume mid-frequency operation. 

7.10. Design a feedback pair to have the same poles as a shunt peaked 
amplifier with m = 0.5. Assume the same tube throughout and total shunt 
capacities for all stages of 15 pµf. Let gm = 4000 µmhos; R L( shunt peaked) 
= 2000 ohms; r P = 700,000 ohms; Ru = 1 megohm. Calculate G12 and Ar-

7.11. Compute the rise time and overshoot of the amplifier of problem 
(7.10). How do these figures compare with those for the shunt peaked amplifier 
with m = 0.5? What is the reason for the difference? 

7.12. Design a maximally flat feedback pair to have an over-all bandwidth 
of 2 mcps centered about 30 mcps. It may be assumed that grn

1 
= g rn

2 
= 4500 µmhos; CT = 15 µµf. It is also assumed that g rn

2 
is much larger 

than G12. Compute the values required for G12, R, and L. Find Ar. 
What possible practical problems might be encountered in building this 
amplifier? 

7.13. Repeat problem (7.12), designing a cascade of a feedback pair and 
one single tuned stage to have the same response as that of a maximally flat
staggered triple. 

7.14. The following characteristic equations are given. Using the Routh
Hurwitz criterion, determine whether these equations represent stable systems. 
Specify the number of right half plane roots. 

(a) s4 + 5s3 + 13s2 + l 9s + 10 = 0. 
(b) s3 + s2 + s + I = 0. 
( c) s4 + 2s3 + 4s2 - 2s - 5 = 0. 
(d) s5 + 4s4 + 7s3 + 8s2 + 6s + 4 = 0. 
(e) s4 + 2s3 + s + 2 = 0. 
(f) s5 - 9s3 - 22s2 - 22s - 8 = 0. 



Chapter 8 

TRANSISTOR AMPLIFIERS 

Although the transistor is a recent invention, the circuit applications 
of these little devices have developed with remarkable speed. Several 
different techniques have been used by various people to analyze the 
circuits and to derive design formulas. Each method1 has its advantages 
and drawbacks. Still another method is presented here. It has particu
lar advantages to be noted later in the analysis and design of transistor 
amplifiers and feedback oscillators. 

It will be shown in this chapter that the voltage gain of a transistor 
amplifier can be expressed 

A= ±g;zm 
where g/ = effective transconductance of the transistor amplifier circuit; 
Zm = mutual impedance of the passive network in the equivalent plate 
circuit. Therefore, as in the study of vacuum tube amplifiers, there are 
two natural subdivisions of inquiry: (1) factors affecting g;; (2) factors 
affecting Zm- This chapter is subdivided pretty much along these lines, 
and closes with some comments regarding cascade connections. 

8.1. Establishing the Q Point 
A transistor will operate satisfactorily only if there is a complete d-c 

path around both the emitter and collector circuits. This is shown for 
one simple type of transistor amplifier in figure (8.1). As you can see, 
the base is grounded, so this is called a grounded base amplifier. 

The symbolism in figure (8.1) is standard, with terms defined as 
follows: 

Vu: = emitter bias supply voltage. 
Vee = collector bias supply voltage. 
16 = total emitter current = i6 + Jee. 
Jc = total collector current = ie - Ice· 

1 R. L. Wallace Jr., "Duality as a Guide in Transistor Circuit Design," Bell 
System Tech. J., vol. 30, April, 1951, pp. 381-418; also R. L. Wallace Jr. and 
W. J. Pietenpol, "Some Circuit Properties and Applications of n-p-n Transistors," 
Bell System Tech. J., vol. 30, July, 1951, pp. 530-563. 

284 
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Both the emitter and collector currents consist of two terms: bias or 
d-c components lee and Ice• and variational or signal components 
ie and ie. 

The voltage loop equations around the emitter and collector circuits 
in the quiescent, or no signal, state are 

Vee = [eeRe + Ve 

Vee = lccRc + Ve 

or, with the terms rearranged somewhat, 

Ve = Vee - [eeRe (8.1) 

(8.2) 

These are the load line equations for the emitter and collector circuits; 

i7f t ~ 
V, Ve 

I i Vee -----'----,,,,,,--
Re 

Fig. 8.1. Elementary transistor amplifier; grounded base connection. 

they are used to construct the load lines on the transistor input and 
output characteristics in exactly the same way as the load line is drawn 
on the static plate characteristics of vacuum tubes. 

The transistor manufacturer will usually recommend values for Ve 
and lee• These are the polarizing potentials and currents and will fix the 
the quiescent point of the transistor to the recommended position. 
Actually, two Q points are obtained, one on the output characteristics 
and one on the input characteristics. However, the specification of Ve 
and lee automatically fixes Ve and Ice-

Other circuit connections used to obtain the necessary polarizing 
potentials and currents will be discussed later. 

Transistor amplifier operation can be analyzed directly from the load 
line plots on the static characteristics when all circuit elements are 
purely resistive. However, the transistor circuit, and especially the load 
circuit, are rarely simple resistances; analytical treatment is then 
preferred. 

The transistor can be made to operate either in class A or in the 
switching mode by suitable adjustment of the Q points and signal 
amplitude. Only class A operation will be covered in this chapter, so 
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that the class A equivalent circuit derived in chapter 1 and shown in 
figure (1.16b) can be used. 

8.2. Types of Transistor Amplifiers 
Suppose that the Q point and signal amplitude are adjusted so that 

a given transistor operates in class A. The equivalent circuit of the 

-------0----------
e 

i+ 

r-
Fig. 8.2. Class A equivalent circuit of a transistor showing assumed 

voltage polarities and current directions. 

transistor then has the form shown in figure (8.2). Some representative 
values of the four transistor resistances are tabulated below. 

Resistance Point contact Junction type 

re 250 ohms 25 ohms 
rb 300 ohms 250 ohms 
r c 20 kilo-ohms 10 megohms 
rm 35 kilo-ohms 9.75 meghoms 

The equivalent circuit given in figure (8.2) can be used for either 
n-type or p-type transistors with the currents and voltages specified on 
the drawing. Of course, in an actual transistor one of the currents is 
always in the wrong direction, so that it is negative on the characteristic 
curves. The true directions of current flow associated with the equiva
lent circuits are shown in figure (8.3) for both the n-type and p-type 
transistor. 

When single amplifier stages are involved, the direction of current 
flow actually used in the analysis will not affect the results. However, 
when more than one stage is involved, it is generally desirable to show 
the true direction of current flow. A good illustration of this appears 
in the discussion of a push-pull amplifier in chapter 11. 

As far as variational or signal frequency terms are concerned, you can 
see from these equivalent circuits that the transistor is a three-terminal 
circuit element. The three terminals are the emitter, base, and collector. 
Any one of three signal electrodes can be used as the reference or 

\ 
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grounded terminal for signal currents. Therefore, there are three basic 
amplifier circuit configurations: (1) grounded base amplifier; (2) 
grounded emitter amplifier; (3) grounded collector amplifier. 

When an electrode is said to be grounded, the term means grounded 
for signal frequency components only. The grounded electrode may be 

E r. r if rm 
E r. r ,.rm c 

0--J\N\ F~ C>---W\, 

!'• 
~ _.,.. --- ,..__ 

it i. le 

B B 
n-TYPE OR p-n-p p-TYPE OR n-p-n 

Fig. 8.3. True directions of current flow in the two types of transistors. 

at a high d-c potential above the d-c ground. 
Each of the three basic amplifier circuits will be discussed in this 

chapter. 

8.3. lnterelectrode Capacitances 
The class A equivalent circuit of a transistor, showing the emitter and 

collector capacitances, is given in figure (8.4). Although we will treat 

B 

Fig. 8.4. Transistor interelectrode capacitances. 

these capacitances as constants, they actually are not; each depends 
upon the electrode voltage, generally decreasing as the voltage is 
increased. 

The circuit can be simplified. Designate the parallel combination of 
re and Ce as Ze, so that 

where 
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Now construct the voltage source equivalent circuit of the collector 
circuit at the terminals marked 2-2. You can easily show that this 
circuit consists of a generator and a series impedance as follows: 

(8.3) 

(8.4) 

where (8.5) 

Therefore the modified equivalent circuit of the transistor, including 

B 
Z1 =r, <~l s+w, 

Zc"rc(~) 
s+wc 

Zm • rml~l 
s+wc 

(a) EFFECT OF EMITTER AND 
COLLECTOR CAPACITANCE 

B 
I 

611 = r.c. 
I 

6.lc •-
r cCc 

( bl EMITTER CAPACITANCE 
NEGLECTED 

Fig. 8.5. Equivalent circuits including the effect of interelectrode 
capacitance. 

the effects of interelectrode capacitances, has the form shown in figure 
(8.5a). 

Even if CE and Cc are nearly equal, we is always much larger than we 
because rE is always much less than re. Hence the collector capacitance 
becomes important at much lower frequencies than the emitter 
capacitance, and CE is usually neglected. The resulting equivalent 
circuit is shown in figure (8.5b), and this is used in all subsequent work. 

8.4. The Method of Attack 

The three basic types of vacuum tube amplifiers and several variations 
were analyzed in chapter 3. In this analysis it was found convenient to 
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postulate an equivalent circuit of the form shown in figure (8.6). As 
you can see, the amplifier is represented by isolated input and output 
circuits. The input circuit consists of the signal generator, its internal 
impedance Rs, and the input impedance Zi of the amplifier. The output 
circuit consists of a current source ±g:nEi, shunted by an impedance 
zp, and this is connected to an arbitrary three-terminal load circuit of 
input impedance Z L· Terms are defined as follows: 

±g:n = effective transconductance of the amplifier. 
zp = parallel combination of r P and Cpk(or C0 for a pentode). 
ZL = input impedance of the load circuit. 
The total passive network in the ouput circuit, consisting of zP and 

the associated load, was always kept the same regardless of the type of 

Rs 

Zp 

Fig. 8.6. General equivalent circuit of a vacuum tube voltage amplifier as 
derived in chapter 3. 

amplifier under study. In other words, this passive network remained 
the same irrespective of whether the amplifier was of the grounded 
cathode, grounded grid, or grounded plate type. Variations in the 
characteristics of these amplifiers were accommodated by using different 
values for g:n and Zi. 

The particular advantage of this technique is that all vacuum tube 
voltage amplifiers then have stage gain functions of the form 

, Eo 
A= ±g Z =-

m m Ei 

where Zm = mutual impedance of the passive network composed of 
zP and the connected load. This reduces the study of vacuum tube 
voltage amplifiers to an examination of the ( 1) factors affecting g:n; 
(2) factors affecting Zm. 

It should be understood that the preceding equation is the gain 
function for the output circuit only. There is a voltage dividing network 
in the input circuit, so that 

£. z. 
A (input)=_.;.= ' 

Es Rs+ zi . 
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Therefore the over-all gain function of the stage would be 

A ( over-all) = A (input) x A ( output) = Eo 
Es 

- i z ( z. ) ' 
- Rs+zi gm m 

It may be necessary on occasion to use this relationship. 

[Sec. 8.4 

There is a serious problem involved here. The use of the over-all gain 
function makes the amplifier characteristics dependent upon the signal 
source impedance. This makes the comparison of various amplifier 
types difficult unless a particular signal source impedance is specified. 

Zf 

ZL= INPUT IMPEDANCE OF LOAD CIRCUIT 

Fig. 8.7. Proposed transistor equivalent circuit. 

The problem is overcome in vacuum tube circuits by either of two 
methods: 

(I) The signal source is assumed to have zero internal impedance. 
(2) The input circuit is made a part of the output circuit of the driving 

system and treated as a separate amplifier stage. 
The second method is the best and is most generally used. It is more 

adaptable to the study of transistor amplifiers. Thus it is pretty much 
general practice to use the gain function of the output circuit only when 
discussing the response characteristics of amplifiers. The effect of the 
input circuit is then accommodated by treating it as another stage in 
cascade with the output circuit. 

Exactly the same method of analysis can be applied to transistor 
voltage amplifiers. An equivalent circuit of the form shown in figure 
(8.7) can be proposed so that it has exactly the same form as the vacuum 
tube equivalent circuit. Then it is necessary only to compute the 
values for the constants of this circuit for the various transistor amplifier 
configurations. The voltage gain of the output circuit for any transistor 
amplifier is then 

A= ±g;zm 
where g; is the effective mutual transconductance of the transistor 
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amplifier; Zm is the mutual impedance of the network composed of 
zt and the connected load. 

You can see that g/ for a transistor corresponds to gm for a vacuum 
tube. Similarly, gt (without the prime) should correspond to the gm 
(without the prime). Here gm is the mutual transconductance of the 
vacuum tube; this is exactly equal to the effective transconductance of 
a nondegenerative, grounded cathode amplifier. This is the reference 
case for vacuum amplifiers. 

A corresponding reference case exists for transistor amplifiers. The 
cathode is the emitter for vacuum tubes. Thus the transistor analogue 
of a grounded cathode vacuum tube amplifier would be a grounded 

B 

E 

Fig. 8.8. Grounded emitter amplifier (conventional representation). 

emitter transistor amplifier. Therefore gt will signify the actual mutual 
transconductance of the transistor itself, and this must be numerically 
equal to the effective transconductance of a nondegenerative grounded 
emitter amplifier. 

In the vacuum tube equivalent circuit, zP is the output impedance of 
a nondegenerative grounded cathode amplifier. Thus, by analogy, zt 
must be the output impedance of a nondegenerative grounded emitter 
amplifier. 

Here Zi will always signify the actual input impedance of the amplifier 
circuit. 

On the strength of this discussion you can see that the nondegenera
tive grounded emitter amplifier is the reference case in the study of 
transistor amplifiers. This circuit is covered in the next section. 

8.5. Grounded Emitter Amplifier, No Feedback 
The conventional equivalent circuit of a grounded emitter amplifier 

is shown in figure (8.8). The voltage loop equation around the input 
circuit is 



292 Transistor Amplifiers [Sec. 8.5 

The presence of the Icre term in this equation clearly indicates the 
existence of feedback. In the absence of feedback there is no coupling 
from the output circuit into the input circuit. Therefore feedback can be 
prevented in this case if the emitter resistance re is reduced to zero. 

The zero feedback condition obtained when re is zero is never reached 
in practical cases; there are some cases in which it will be approached 
rather closely. In any case, it will be our reference circuit just as the 
nondegenerative (Zk = 0) grounded cathode amplifier was the reference 
case for vacuum tube amplifiers. 

In the hypothetical zero feedback case, the conventional equivalent 
circuit of the amplifier has the form shown in figure (8.9a). This is 

E 
(a) CONVENTIONAL RE PRE SEN TAT ION 

Z1 

Ei•Vb ZL:INPUT IMPEOANCEOFLOAO 

(b) PROPOSED CIRCUIT 

Fig. 8.9. Equivalent circuits for a grounded emitter amplifier without 
feedback: re= 0. 

obtained from figure (8.8) by replacing re with a short circuit. The 
proposed equivalent circuit is given in figure (8.9b). We must now 
derive formulas for the constants gt, zt, and Zi of the proposed circuit in 
terms of the constants of the conventional circuit. 

The voltage loop equation around the input circuit of the conventional 
equivalent circuit in figure (8.9a) is 

vb= Ibrb 
so that the input impedance is 

(8.6) 
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Now compute the output impedance z. To do this, disconnect the 
load circuit from terminals C-E of the conventional equivalent circuit; 
now connect a generator of voltage Ex and zero internal impedance 
across the same terminals. Then replace the input signal source E8 by 
a short circuit. With the circuit connected this way the loop equation 
around the input circuit is O = 1; (R8 + rb), so that 1; = 0. The loop 
equation around the output circuit is now 

Ex= 1;ze + 1:zm 

However, it is clear from figure (8.9a) that 

1: = -u; + 1:) 

But, because 1; is zero, then 1; = -1; and the first loop equation is 

Ex= 1:(ze - zm) 

Therefore the output impedance is 

Ex 
Zt = l' = Ze - Zm 

e 

It was previously shown that 

We We 
Ze = re--- and Zm = rm---

s + We S + We 

so that the output impedance is 

Zt = (re - rm)(~)= re (1 - rm) (~) 
S + We re S + We 

The current amplification factor of a transistor is 

rm+ rb 
(I._---

- re+ rb 

(8.7) 

In nearly all transistors both rm and re are much larger than rb, so that 
oc ...:._ r mire. Therefore the output impedance can be written 

. We 
Zt = rc(l - oc) -- (8.8) 

s+we 
This impedance is the parallel combination of the following circuit 
elements: 

(8.9) 

(8.10) 

All that remains now is to evaluate the mutual transconductance of 
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the transistor. From figure (8.9b) you can see that a current gt Vb will 
flow if the terminals C-E are short circuited. That is 

or (8.11) 

Therefore to evaluate g it is necessary only to compute the ratio of 
lsc to Vb in the conventional equivalent circuit of figure (8.9a) when 
terminals C-E are short circuited. When the terminals are short circuited, 
the two loop equations are 

vb= Ibrb (8.12) 

0 = lscZb + lezm 

However, 

so that the second loop equation is 

0 = l 8c(Zc - Zm) - lbzm = 18cZt - lbzm 

Therefore 

Substitute this into equation (8.12). 

Ztrb 
vb= lsc-

Zm 

Therefore the transconductance of the transistor is 

_Isc_ Zm - rm gt _____ _ 
Vb ztrb rtrb 

(8.13) 

or, in alternative and useful forms, 

I oc rm 
gt=-.--= 

r b I - oc r ir c - rm) 
(8.14) 

Representative values for gt are easily calculated. For example, a 
typical junction transistor might have rm= 9.75 megohms, re= IO 
megohms, rb = 250 ohms. Hence 

9.75 
gt= (250) (0.25) = 156,000 µmhos 

This is an extremely large figure when compared with values of gm in 
ordinary vacuum tubes. However, we will see later that transistors are 
very sensitive to degenerative effects, so that actual values of transcon
ductance will not be quite so large. 
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A point contact transistor might have the following constants: 

rm= 35,000, re= 20,000 ohms, rb = 300 ohms, so that 

-35 
gt= (300) (1 5) = -7777 µmhos 

This is of the same order of magnitude as the gm of vacuum tubes. 
Any sizable reduction in the base resistance rb will produce a corre

sponding increase in transconductance. Low values for rb are character
istic of new transistor designs. Superficially, it might appear desirable 
to make oc nearly unity because this would make gt infinite. However, 
this advantage is offset because the shunting resistance rt= rc(l - oc) 
would become zero. 

If Zm designates the mutual impedance between the gt Vb generator 
and the output terminals of the amplifier, the output voltage is £ 0 = 
-gtvbzm and the voltage gain is A= Eof vb= -gtZm- The presence 
of the minus sign signifies phase inversion through the amplifier. In 
some cases gt may itself be negative so that the gain function is positive. 
When this is true, there is no phase inversion. 

8.6. Grounded Emitter Amplifier 
The circuit discussed in the preceding section is a purely hypothetical 

case in which the emitter resistance re is assumed to be zero. The 
practical case where re is not zero will be covered here. 

t 
r 

Z L = INPUT IM PEOAN CE OF LOAD CIRCUIT 

Eo ... 

Fig. 8.10. Proposed equivalent circuit for a practical grounded emitter 
amplifier. 

The proposed equivalent circuit of a practical grounded emitter 
amplifier is shown in figure (8.10). Note that the passive impedance 
network in the output circuit, which is composed of zt and the connected 
load, is exactly the same as that used in the preceding case so that Zm 
remains unchanged. The circuit differs from the previous case because 
a new, or effective, transconductance g; is specified together with a new 
value for the input impedance z;. 

The voltage gain of the amplifier is clearly A= -g;zm- We need to 
evaluate only g; and z;. Both of these factors can be derived from the 
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voltage loop equations of the conventional tee equivalent circuit 
previously shown in figure (8.8). We will evaluate g; first and then z;. 

The voltage loop equation around the second loop of the conventional 
the equivalent circuit of figure (8.8) is 

0 =lire+ Zc + ZL) + lezm + lbre 

However, it is clear from the circuit diagram that le = -(lb + le), so 
that the preceding loop equation becomes 

0 =lire+ Zc - Zm + ZL) + lire - Zm) (8.15) 

Thus the loop current lb is 

re + Zc - Zm + Z L 
Jb =Jc------

Zm - re 
(8.16) 

The voltage loop equation around the input circuit of figure (8.8) is 

Ei = lirb +re)+ Jere 

Substitute equation (8.16) into (8.17). 

_ [ (re + Zc - Zm + Z L) (rb + re)] Ei - le re+-----------
Zm - re 

(8.17) 

Obtain the common denominator, expand the numerator, and cancel 
the zmre and r! terms. Then solve for Jc, and the result should be 

Zm-re 
I=£.-----------
c 'riz, + ZL) + r,;{rb + Zc + ZL) 

It is usually possible to assume that Zm and zc are much larger than 
re and rb. Hence the preceding equation can be closely approximated by 

(8.18) 

If the proposed equivalent circuit shown in figure (8.10) is actually 
equivalent to the conventional tee equivalent, the current le must be 
equal to that given in equation (8.18). In the proposed circuit 

z, 
lc=g;Ei---

z,+ZL 

Set this equal to equation (8.18) and solve for g;. 
zm/z, 

g' = ----------
t Tt, + re (zc + ZL)f(z, + ZL) 
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Divide numerator and denominator through by rb and then let 

Zm 
gt=

rbzt 

297 

Hence the effective transconductance of a practical grounded emitter 
amplifier is 

(8.19) 

This is the desired result. 
The effect of the emitter resistance on the amplifier transconductance 

can now be illustrated in a general way. Assume that Z L is a pure 
resistance of 20,000 ohms. The transistor is a junction type having 
rs= 25 ohms; rm= 9.75 megohms; rb = 250 ohms; re= IO megohms. 
Therefore, at low frequencies where the collector capacitances can be 
neglected, gt= 156,000 µmhos and g; = gt/(1 + 3.7) = 33,190 µmhos. 
This illustrates the important degenerative effect present in junction 
transistors even when the emitter resistance is quite small. This value 
of transconductance is larger than that obtained with vacuum tubes. 
The reduction could be minimized by making Z L of the same order 
of magnitude as zc. However, this would require such large collector 
supply voltages that it is not a practical suggestion. 

A slightly different situation prevails with point contact transistors. 
In these devices rm is larger than re, so that zt is negative. As a result, 
the emitter circuit feedback can be either degenerative or regenerative 
depending upon the relationship between zt and Z L· For example, if w is 
much less than we and if RL = 20,000 ohms, rm= 35,000 ohms, re= 
20,000 ohms, rs = 250 ohms, rb = 300 ohms, then gt = - 7777 µmhos, 
and g; = gtf(l + 6.67) = -1014 µmhos. If RL had been 30,000 
ohms, the effective transconductance would be-2047 µmhos. Or if RL 
were 10,000 ohms the effective transconductance would become+ 1944 
µmhos. The first two cases are degenerative, while the last one is 
regenerative. 

The input impedance is easily calculated. From equation (8.16) we 
can write 

(8.20) 
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where Zt = zc - zm. Thus after some manipulation, this equation can 
be used to solve for the input impedance as 

•1-1 --11•1•1•-------
vcc 

-
(a) ONE METHOD OF APPLYING POLARIZING 

POTENTIALS 

111----iltl1l1 
"cc 

RL + Ill 

( b) ALTERNATIVE BIASING ARRANGEMENT; 
Re AND Rb-Cb ACT TO REDUCE Ice 

R2 

Fig. 8.1 l. Circuit connections for a grounded emitter amplifier. 

Of course, Zi = rb, so that 

(8.21) 

(8.22) 

This change in the input impedance of the amplifier can be expressed 
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more simply because the bracketed term is exactly eqU;al to the 
denominator of the effective transconductance. Therefore 

and as a result, (8.23) 

It was shown previously that g; can be negative at times when point 
contact or hook collector junction transistors are involved. This would 
make z; negative, as you can see from equation (8.23), and the resulting 
circuit is an unstable positive feedback amplifier. Thus, to make sure 
that z; is positive, g; must have the same sign as gt, or 

1 + r eCzc + z L) > 0 
rb(re + Zt + ZL) 

Rearrange terms and we find that z; will be positive if 

Therefore as long as the current amplification factor of the transistor 
is unity or less, the input impedance of a grounded emitter amplifier 
will always be positive. 

Two circuit diagrams of grounded emitter amplifiers are shown in 
figure (8.11) to illustrate some of the biasing arrangements in use. 
The collector current may be excessive in the circuit of figure (8. lla). 
Two methods of reducing this current are shown in figure (8.11 b ). One 
method requires increased degeneration by increasing the total emitter 
resistance with an external resistance Re. This may be all right with 
junction transistors, but trouble with regeneration might result in 
point contact types. 

8.7. Grounded Base Amplifier 
The conventional and proposed equivalent circuits of a grounded 

base amplifier with an arbitrary three-terminal load impedance are 
shown in figure (8.12). If the two circuits are actually equivalent, the 
same emitter and collector currents will flow in both circuits. As before, 
this provides the basis for the derivation of the equations for g; and z;. 
You will observe that the passive network in the output circuit remains 
unchanged, so that the voltage amplification is still A = -g;zm. 
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The two loop equations for the conventional equivalent circuit in 
figure (8.12a) are 

Ei = le(re + r1,) + lc'i, 

0 = lc(rb + Zc + Z L) + le(rb + Zm) 

It is nearly always valid to assume that 

zm• rb and 

( al CONVENTIONAL 

________ c 

( bl PROPOSED 

Eo 

Fig. 8.12. Equivalent circuits for a grounded base amplifier. 

so that the second loop equation is approximately 

0 __:_ lc(zc + ZL) + leZm 

Therefore the emitter current is 

I--=-- -I Zc +zL 
e c Zm 

(8.24) 

(8.25) 

Substitute this into the equation for the first loop of the conventional 
tee equivalent circuit. 

E,-'- I,[,, - (r, + r,)z~' + ZL)] 
Obtain the common denominator, expand the numerator, and collect 
terms as follows: 
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where (zc - zm) has been replaced by Zt. Hence the collector current is 

z 
I · -E. m 

c i rizt + ZL) + r,;(zc + ZL) 

The collector current in the proposed equivalent circuit is 

. ' Zt I =gtE----
c t Zt + ZL 

Set this expression equal to the previous equation for le and solve for 
g;. Divide through by rizt + Z L). Then because 

Zm 
gt=

rbzt 
the equation for the effective transconductance of the grounded base 
amplifier becomes 

g'-=- gt t--

I + ~ (zc + ZL) 
rb Zt + ZL 

(8.26) 

Except for the minus sign, the effective transconductance of a grounded 
base amplifier is exactly equal to the effective transconductance of a 
grounded emitter amplifier. 

The voltage gain of the amplifier remains 

or (8.27) 

Contrary to the operation of a grounded emitter amplifier, there is no 
phase inversion through a grounded base amplifier except in special 
cases where the current amplification is greater than 1, and the relative 
values of other parameters are such that the effective transconductance 
becomes negative. 

The input impedance is calculated from the two loop equations. 
Solve equation (8.25) for le and substitute the result into the equation for 
the first loop around the conventional tee equivalent circuit. Then 
compute the input impedance to be 

Z ~ _ Ei _,_ ( l ~ Zt + Z L) 
i - -re + .---

IB r6 Zc + ZL 
(8.28) 

The second term inside the main bracket is the reciprocal of the second 
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term in the denominator of the equation for the effective transcon
ductance given in (8.27). Hence the input can also be expressed as 

z; =re~ 
g, -g, 

(8.29) 

]111 
•1 +--

1110 R • Ie 
• ,._ 

Rp zL-. 
Rs ~v.., Vee 

•HI 
Fig. 8.13. Transformer coupled, grounded base transistor amplifier. " 

(a) Emitter circuit is resistance shunt fed. (b) Collector circuit is transformer { 
fed; could use resistance or choke shunt feed if desired. (c) C1 is a d-c 
blocking capacitor. (d) Re is the emitter dropping resistor. (e) Rv is a 1 

protective resistor for C1 ; keeps the voltage across C1 to safe values 
if the transistor is removed. 

Ra 

C3 

(al SI NG LE TUNED 

c, 

Cs 

(bl DOUBLE TUNED 

Fig. 8.14. Tuned, bandpass, grounded base amplifiers. In part (a), 
C1 and C2 are blocking capacitors, C3, C4, and C5 are by-pass capacitors, 
Re and Re are dropping resistors, and Li, L~, and L3 are tuning inductors. 

The input impedance will be positive as long as 

gt - g; > 0 

From this you can readily prove that 

( 1 + ~) ( 1 + ~~) > oc (8.30) 



Sec. 8.8] Transistor Amplifiers 303 

for the input impedance to be positive. This is exactly the same 
inequality as that derived for the grounded emitter amplifier. 

Some representative grounded base amplifiers are shown in figures 
(8.13) and (8.14), together with operating notes of practical interest. 

8.8. Grounded Collector Amplifier 
The procedures for deriving the equations for g; and z; of the 

grounded collector amplifier are exactly the same as those used for the 
grounded base connection. The necessary equivalent circuits are given 

B 

Rs 

z I 

C 
(a) PROPOSED CIRCUIT 

8 

C 
(b) CONVENTIONAL CIRCUIT 

E 

Eo 

E 

Eo 

Fig. 8.15. Equivalent circuits for a grounded collector amplifier. 

in figure (8.15). It is left as an exercise for the reader to prove that the 
following equations are correct if the usual approximations are used; 

or 

g; _:_ - ____ g_t ___ _ 

ex+ gt (-'e_+_z_L) Zt 
zt+zL 

(8.31) 

(8.32) 

(8.33) 
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For z; to be positive, 

[ I + r, ~• z L ( I + ~)] > oc 

The voltage gain of a grounded collector amplifier is always less than 
1. This is not immediately obvious from the amplifier gain function, 
which is 

-----------M, 
(a) LARGER COLLECTOR CURRENT 

(b)SMALLER COLLECTOR CURRENT 

Fig. 8.16. Grounded collector amplifiers showing biasing arrangements. 

However, if we expand the numerator and let Zin = ztZ L /(zt + Z L) 

= input impedance of the passive network, then the equation for the 
voltage gain can be written 

A= gtZm 
(X + gtZin + gtreztf(zt + Z L) 

or A= gtZm 
(X + gtZin(l + ref Z L) 

(8.34) 

If the load circuit is a two-terminal network, then Zm = Zin 

and A= gtZin 
(X + gtZin(l + refZ L) 
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From this you can easily see that the voltage amplification will always 
be less than unity if gt is positive. 

Some representative grounded collector amplifier circuits are given 
in figure (8.16) to illustrate biasing arrangements. 

8.9. Comparison of Amplifier Types 
The results of all the preceding derivational work are summarized in 

table 11; the closest vacuum tube amplifier analogue of each type of 
transistor amplifier is also given. 

TABLE 11 

TRANSISTOR AMPLIFIER CHARACTERISTICS 

Transistor Effective Input Analogous 
amplifier transconductance impedance vacuum tube 

Grounded 
ot 

Grounded 
emitter gt= rb(l - ot) 

rb cathode 
re= 0 Zk = 0 

Grounded gt 
gt 

Grounded 
emitter re(zc+ZL) rb-; cathode 
re =I=- 0 1+- -- g, Zk =/=-0 rb Zt + ZL 

Grounded -gt 
gt 

Grounded 
base re (zc+ZL) re--, grid 1+- -- g,-gt 

rb Zt + ZL 

Grounded -gt Grounded 
collector 

('e + ZL) 
1 plate, or 

ot +gt --- Zt (1 - cx)g; cathode 
Zt + ZL follower 

8.10. Resistance Coupled Amplifier, Reference Case 
Single stage transistor amplifiers may be operated with pure resistance 

loads or with a conventional RC coupling network. We will discuss the 
RC coupled case here because the pure resistance load is just a 
special case of RC coupling. 

The equivalent circuit of a resistance coupled transistor amplifier of 
any type is shown in figure (8.17). The output capacitance of the 
transistor is Cc/(1 - (X.); this was proved in equation (8.10). The 
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distributed wmng capacitance is designated as Cw, and the input 
capacitance of the loading circuit as Ci. Then Cb is the usual d-c 
blocking capacitor. The type of amplifier used is left unspecified simply 
by using the general symbol g; for the effective transconductance. 

z t Cb 

Cc 
Ci ,:-; Cw 

r ell-al ZL+ RL 
Rg 

Fig. 8.17. Equivalent circuit of a resistance coupled transistor amplifier. 

This circuit is too complex for convenient analysis. So, as in the cor
responding vacuum tube amplifier, three separate and special cases are 
defined as follows : 

(1) Low frequency case. The frequency is so low that the reactances 
of the shunt capacitances are extremely large in comparison with the 
shunt resistances. 

RI = r C ( I -a) R L 

re ( 1-a) + RL 

(al LOW FREQUENCY 

R1Rg 
R=--

R 1+ Rg 

( bl MIDFREQUENCY 

Cc 
er= -+cw+ci 

I-a 

(c) HIGH FREQUENCY 

Fig. 8.18. Equivalent circuits for resistance coupled transistor amplifiers. 

(2) High frequency case. The frequency is so high that the reactance 
of the coupling capacitor Cb is virtually zero compared with the resis
tance of Ru. 

(3) Mid-frequency case. The frequency falls midway between the 
previous extremes, so that all shunt capacitors are virtual open circuits 
and the coupling capacitor is a virtual short circuit. 

The three equivalent circuits corresponding to these three frequency 
ranges are shown in figure (8.18). As you can see, they have precisely 
the same forms as the corresponding circuits for vacuum tube amplifiers. 

To press the analogy to vacuum tubes a little further, consider the 
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grounded emitter transistor amplifier without feedback, so that 
g; = gt· Therefore the gain functions for the three circuits of figure 
(8.18) are exactly the same as those obtained for the resistance coupled 
vacuum tube amplifier in chapter 4, with gm replaced by gt. That is, 

where 

A (mid) = -gtR = -Ar (8.35) 
s 

A (low) = -Ar-
s + w1 

A (high)= -Ar~ 
s +w2 

w1 = lower cutoff frequency 

I 

1 
w2 = upper cutoff frequency = -

RCT 

(8.36) 

(8.37) 

(8.38) 

(8.39) 

Therefore the response characteristics of a resistance coupled 
grounded emitter amplifier without feedback are exactly the same as 
those of a nondegenerative grounded cathode vacuum tube amplifier. 
All data on rise time, sag, and figure of merit are computed from the 
formulas given in chapter 4. 

The high frequency figure of merit of this amplifier is 

F = A W2 = 1.:... (8.40) 
a r CT 

This has exactly the same form as the figure of merit of vacuum tube 
amplifiers. 

As in the case of vacuum tubes, we can define a figure of merit for 
transistors as follows: 

Ft= gt 
ct 

where Ct= transistor capacitance= Cc/(I - (X). Hence the figure of 
merit of a transistor is 

Ft= gll - (X) = ~ (8.41) 
Cc rbCc 

This is a useful criterion for comparing transistors. Representative 
values for Ft will fall in the region around 500 X I 06 radians/sec or 
more, making them the same order of magnitude as vacuum tuhe 
figures of merit. 
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8.11. Practical Resistance Coupled Amplifiers 
The response characteristics just derived are hypothetical because it 

was assumed that the emitter resistance re was zero. When the emitter 
resistance is considered, a new set of response characteristics are 
obtained, just as cathode degeneration alters the response of a grounded 
cathode vacuum tube amplifier. 

For a practical grounded emitter amplifier, the general voltage 
amplification is 

In the mid-frequency case, you can see from figure (8.17b) that 

Zm=R; 

ZL = R2 = RLRuf(RL + Ru); 

Thus the mid-frequency voltage gain is 

where Ar= gtR. 

, Ar 
Ar=-------

re ('e + R2) I+-
rb rt+ R2 

(8.42) 

(8.43) 

In the high frequency case, you can show from figure (8.18c) that 

WL 1 
ZL=R2 --- where W[ =-----

s + WL R2(Cw + Ci) 

Z = ZLzt . w = _I_ 
m ZL + Zt' e reCe 

We 
Zt = zc(l - (X); Ze = re--

s + we 
Substitute these relationships into the general gain equation given in 
(8.42). Multiply numerator and denominator through by rizt + Z L). 
Then let 

gt= rbrc(I - °') 

Finally, multiply numerator and denominator through by (s + we) X 
(s + w / Eventually the final result can be expressed as follows: 

A'= 
rmR~[We 
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Divide the numerator and denominator through by the first term in the 
denominator. The result has the form 

where 

A' (hi h) = -A; l = -A; wn 
g 1 + s/wn s + wn 

A' - rmR2 
r - (re+ rb) (re+ R2) - (l.rerb 

WeWf [(re+ rb) (re+ R2) - (l.rcrb] 
Wn= 

(re+ rb) (rewe + R~[) - (l.rcrbwc 

= upper cutoff frequency 

(8.44) 

(8.45) 

(8.46) 

It is fairly easily proven that the reference gain given in equation 
(8.45) is exactly equal to that computed for the mid-frequency case. 

The simplification of the equation for the upper cutoff frequency is a 
rather involved algebraic manipulation. First, the numerator of the 
equation for wn contains a term of exactly the same form as the 
denominator of the mid-frequency gain given in (8.45). Therefore w H 

can be expressed 

rmR2 WeW[ 

Wn = A; ·(re+ rb) (rewc + R~[) - (l.rerbwc 

Divide numerator and denominator through by wcw{. 

rmR2 1 
Wn=-,-· 

A, (re+ rb) (re/wt+ R2/we) - (l.rcrbfwt 
(8.47) 

where 
1 

The upper cutoff frequency in the absence of feedback is 

1 R2 + rt 
W2=--= 

RCT R2rt[Cef(l - (I.) + Cw + Ci] 

R2 + rt ------
R2fwc + rtfw{ 

So 

Substitute this into the second bracket of equation (8.47). Multiply 
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numerator and denominator through by w2 ; then divide through by 
riR2 + rt). The result can then be expressed as 

WH = W2 AA; [1 + ~ (1 + ex _r_c - . W2 )]-1 
r rb rt+ R2 Wf 

Simplify the last term and write 

Ar I 

W H = W2 A; 1 + ~ ( 1 + _ex_ . Cw + Ci) 
rb I - ex CT 

(8.48) 

This will usually be less than w2• 

The amplifier figure of merit is 

, A' Fa Fa= rWH = -----------
I + ~ ( l +_ex_. Cw+ Ci) 

rb I - ex CT 

(8.49) 

which shows that emitter feedback usually degrades the figure of merit 
of the amplifier. 

A similar analysis of the low frequency case can be made. In this 
instance, from figure (8.18a) we can show that 

ZL = R2 (s + Wg) and zm = R (-s-) 
S + Wx S + W1 

1 1 1 
Wu=--; wx=-----; w1 =----

RgCb (RL + Rg)Cb (R1 + Rg)Cb 
where 

RLRu rtRL R1Ru 
R2 =---; R1 =---; R=---

RL + Ru rt+ RL R1 + Ru 
Therefore the low frequency gain function is 

A' (low) = -A s/(s + w1) 
r r6 re + R 2(s + wu)f(s + wx) 

1 + - . -------
rb rt+ Rls + wu)f(s + wx) 

(8.50) 

After a great deal of algebraic manipulation, this can be written 

A' (low)= -A; l = -A; s (8.51) 
1 + wL/s s + WL 

where A; = reference gain given by equation (8.43); w L = lower 
cutoff frequency. 

wx(rbrt + r6rc) + wu(r6 + rb)R2 WL = --------- (8.52) 
(rbrt + rsrc) + (r6 + rb)R2 
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This can be simplified through the use of equation (8.43) for the 
reference gain and the equation for the lower cutoff frequency without 
emitter feedback; that is: 

w°'r t + w gR2 
W1=-----

, rt+ R2 
(8.53) 

After simplification, the equation for the lower cutoff frequency beco·mes 

(8.54) 

Substitute for wv R, w1, and R2 in the last bracketed term and you get 

A; [ re ( rx )] WL=Wi-- 1+- I-----
Ar rb I + RLfrt 

(8.55) 

Sample calculations indicate that w L will always be less than w1. Thus 
the result is analogous to the grounded cathode vacuum tube amplifier 
with cathode degeneration. 

Exactly the same results will be obtained for the grounded base 
amplifier because it has exactly the same equation for the effective 
transconductance. 

The grounded collector amplifier is quite different. However, the 
method of analysis is the same; to avoid undue repetition it will not be 
carried through here. However, the results of the analysis should lead 
to the following: 

(8.56) 

(8.57) 

(8.58) 

(8.59) 
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8.12. Shunt Peaked Amplifier 
The high frequency equivalent circuit of a shunt peaked transistor 

amplifier is shown in figure (8.19). The reactance of the peaking 
inductance Lb is negligible compared with R L in the low and mid
frequency regions. Thus the equivalent circuits of the amplifier in these 
frequency ranges are the same as those of the resistance coupled 
amplifier. 

The type of amplifier, whether grounded emitter, base, or collector 
is left unspecified in figure (8.19) simply by using the general symbol for 

RL t 
I r, Ct Cw Rg 

c, r zi gt El Lb 

rt.re ( 1-a) Cp~ 
I-a 

(o) COMPLETE CIRCUIT 

Rs 

f RL f 
I z, CT Rg Eo Ei 91 E 1 

• 
z. Lb 

I 

(b) ALTERNATE FORM 

Fig. 8.19. Equivalent circuits of a shunt peaked transistor amplifier of 
arbitrary type. 

the effective transconductance. In any case, because the load is a 
two-terminal network, 

1 
w =-----· 

u R/Cw + Ci)' 
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The voltage gain for a grounded emitter amplifier is 

A'= - gtZm 

l + ~ (Zc + ZL) 
rb Zt + ZL 

zmZL 
(8.60) 

Substitute for ZL, zt, zm, and zc; multiply numerator and denominator 
through by (s + we); obtain the common denominator of the gain 
function. 

A'=_ Wcrm(S + <.v0) 

(s+wo)(s +wc)(rb+ re) +wcrcCulrb(l -cx) + rel[s3 +(w0 +wu)s+w0wuR11 /R3] 

Multiply all the terms out and then collect coefficients of like powers 
of s in the denominator. Divide through by the coefficient of s2• 

The result is 

A (hi h) = -K s + Wo 
g s2 + b1s + b0 

where 

bo = WoWc(rb +re)+ WowoCRuf R2) (rb + re - cub)Cuf Cc 
(rb + re) + (rb + re - arb)Cgf Cc 

(8.61) 

(8.62) 

(8.64) 

Factor w 0 from equation (8.64). Then, by a rather elaborate algebraic 
maneuver, rearrange terms and use equation (8.46) to prove that 

b0 = WoWII (8.65) 

where wH = upper cutoff frequency of the amplifier when the induc
tance of the peaking coil is zero. 

By a similar and even more involved process, it is possible to prove 
that 

(8.66) 

This is valid as long as Ru is much greater than R L· The equation is so 
complicated that it is desirable to simplify it if possible. 



314 Transistor Amplifiers [Sec. 8.13 

For junction transistors rt is of the order of a fraction of a megohm; 
R2 is nearly equal to R v which will usually be only few thousand ohms. 
Thus rt will be assumed to be much larger than R2• Also, for a junction 
transistor, gt will ordinarily be many times larger than g;. This was 
proved in a previous section. Thus the second term in equation (8.66) 
is small. The first term is also small and it will usually be possible to 
neglect this entire factor, so that 

b1 __:__ w 0 (8.67) 

A similar analysis leads to the same result for point contact transis
tors, though the approximation is not quite so good as it is for a junction 
transistor. 

Now define a peaking parameter mas follows: 

so that 

wHLb wH 
m=--=-

RL Wo 

WH 
Wo=-

m 

(8.68) 

(8.69) 

As a result, the gain function of the shunt peaked transistor amplifier is 

A= -K s +wH/m 
s2 + wHs/m + w2n_/m (8.?0) 

If you refer back to chapter 4 to the discussion of the shunt peaked 
vacuum tube amplifier, you will see from equation ( 4.38) that the gain 
function of that amplifier and the corresponding transistor amplifier 
have exactly the same form, within the limitations of the approximations 
used in both cases. We simply have w H for the transistor case where we 
had w2 for the nondegenerative vacuum tube case. Therefore-and this 
is important-all the design charts for rise time, overshoot, and upper 
cutoff frequency developed for the shunt peaked amplifier can be used 
for the shunt peaked transistor amplifier; just replace w2 on these 
charts by Wu, where wH is given by equation (8.46). 

Hence the design procedure given in section (4.9) can also be applied 
here. 

The characteristics of the shunt peaked grounded base amplifier are 
exactly the same as those of the grounded emitter amplifier except for 
the + sign on the gain function. 

8.13. Single Tuned Amplifier 
The circuit diagram of one type of single tuned amplifier is shown in 

figure (8.20), together with its signal frequency equivalent circuit. 
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Another, more practical, type of single tuned amplifier was shown in 
figure (8.14a). Although a grounded base amplifier is shown, the equi
valent circuit also applies to the grounded emitter connection. 

This circuit is like the shunt peaked amplifier in the sense that the 
mutual impedance of the passive network is equal to the input impedance. 
Therefore the amplifier gain function is given in equation (8.60) as 

A'=± zmZL 
ZL(rb +re)+ rbzt + rezc 

L 

C1 AND C2 ARE DC BLOCKING CONDENSERS 
C3AND C4 ARE RF BY-PASS CONDENSERS 

(8.71) 

1 
Eo 

! 

L IS IDEALLY LOSSLESS, OR LOSSES ARE INCLUDED WITH Rg 

(a) CIRCUIT DIAGRAM, GROUNDED BASE AMPLIFIER 

L 

(b) EQUIVALENT CIRCUIT FOR EITHER THE GROUNDED BASE OR 
GROUNDED EMITTER AMPLIFIER 

Fig. 8.20. Single tuned transistor amplifier. 

From the equivalent circuit of figure (8.20b) it is easily shown that 

where 

Z __ 1 [ s ] 
L - CL s2 + w [S + w; 

RLRg 
R2=---

RL+R(J 

2 1 
w =--

r LCL 

(8.72) 

The transistor parameters zc, Zm, and Zt are defined in the usual way for 
the high frequency case. 

Substitute all of these expressions into equation (8. 71) for the voltage 
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gain. Clear the numerator and denominator of fractions so that the 
gain equation finally becomes 

A'= ±K s (8.73) 
s2 + a1s + a0 

where 
WcW(' mR2 

K=-----------
R2we(re + rb) + wcCrcre + rtrb) 

(8.74) 

Rlre + rb) + (rcre + rtrb) 
al = WcW f ( ) ( ) R2W( re + rb + We rcre + rtrb 

(8.75) 

2 rcre --f- rtrb 
a0 = wrwc ----------- (8.76) 

R 2wf(r e+ rb) + wc(rcre + rtrb) 

It is helpful at this point to stop and consider the gain function of a 
single tuned vacuum tube amplifier. From equation (5.87) we have 

( 
single tuned ) s 

A vacuum tube = -Fa 2 + B + 2 
S S WO 

where Fa = gain-bandwidth product; B = bandwidth of the single 
tuned amplifier= upper cutoff frequency of the amplifier when untuned; 
w5 = square of the resonant frequency. Comparison of this gain 
function with equation (8. 73) for the single tuned transistor amplifier 
shows that Fa= K = transistor amplifier figure of merit; B = wH = 
a1 = bandwidth of transistor amplifier; w~ = a0 = resonant frequency 
squared. By using equations (8.45) and (8.46) for the gain and upper 
cutoff frequency of a transistor resistance coupled amplifier, you can 
easily show that this correspondence of terms is valid. 

Equation (8.76) for the band center frequency of the tuned transistor 
amplifier can be simplified somewhat and expressed as follows: 

2 2 CL(r" + rb - cxrb) 
w0 = a0 = wr ------------ (8.77) 

C L(r13 + rb - cxrb) + (r13 + rb)Cc 

As a result, the voltage gain function of a grounded base or grounded 
emitter transistor amplifier can be written 

' F' s A (s) = ± a 
2 s2 +Bs+roa 

(8.78) 

where F~ = value given by equation (8.49) or (8.74); B = value given 
by equation (8.46) or (8.75); w5 = value given by equation (8.77). 
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Because the gain function of this amplifier has the same form as 
that of a corresponding vacuum tube amplifier, the design procedures 
for both amplifiers are the same. This particular transistor amplifier is 
not especially practical, particularly in cascaded systems, because the 
low input impedance of the succeeding stage may well overload the 
resonant circuit. 

8.14. Alpha Cutoff2 

In all the derivations presented so far it was assumed that the current 
amplification factor oc of the transistor was independent of frequency. 
This is far from true in practical cases, and the variation in oc must be 

1.4 
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Fig. 8.21. Theoretical variation in magnitude and phase of rx as a function 
of frequency as predicted by equation (8. 79). 

considered in any wide band amplifier design. Hence the equations 
derived so far will apply only at those frequencies where oc is virtually 
independent of frequency. 

If the nature of the variation of oc with frequency can be expressed 
analytically, our problem in deriving design formulas is made more 
difficult, but not impossible. The same techniques and principles are 
used; we just have another frequency dependent term in the original 
gain function. 

The current amplification factor varies both in magnitude and phase 
as a function of the steady state frequency w. Typical curves showing 
these variations are given in figure (8.21) where oc0 designates the low 
frequency value of the current amplification factor. 

2 R. L. Pritchard, "Frequency Variations of Current-Amplification Factor for 
Junction Transistors," Proc. IRE, vol. 40, November, 1952, pp. 1476-1481; 
also B. N. Slade, "The Control of Frequency Response and Stability of Point 
Contact Transistors," Proc. IRE, vol. 40, November, 1952, pp. 1382-1384. 
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The decrease in oc as a function of frequency is apparently caused by 
a number of factors all generally related to the transit time of the 
minority carrier. Some of these factors may be described as follows: 

(1) The flow lines of the minority carriers from emitter to collector 
are not usually straight lines; this causes different charges to travel 
different distances so that they arrive at the collector slightly out of 
time phase. This results in a partial neutralization of their effects at the 
collector. 

(2) For other reasons there is a certain amount of dispersion in the 
travel time of the minority carriers so that some carriers tend to cancel 
the effects of others. 

(3) Both the foregoing factors are influenced to some extent by the 
base thickness, or spacing between contacts, and the resistivity of the 
semiconductor. 

The variation of oc with frequency is usually a complicated function. 
However, in some cases it can be expressed approximately as 

Wrx. 
oc = oeo---

s + wrx. 
(8.79) 

where oc0 = low frequency value of oc; rorx. = oc cutoff frequency 
= frequency at which the magnitude of oc is equal to 0. 707oc0• Thus the 
effect of the frequency variation of oc can be approximated by substi
tuting equation (8. 79) for oc into all the high frequency design equations 
previously derived. The work is routine, though involved, and will not 
be carried through here. 

The effect of oc cutoff on the current gain of transistor amplifiers is 
covered in an article by Thomas. 3 · 

8.15. Current and Power Gain 

The current gain of an amplifier is easily defined as follows 

K 
. I (output circuit) 

= current gam = . . 
I (mput circmt) 

The current gain is mainly important when the amplifier has a pure 
resistance load, so that we shall let Z L = R L· The current gain is 
easily evaluated for any amplifier directly from the loop equations 
written for the tee equivalent circuit. The derivations are purely 

3 D. E. Thomas, "Transistor Amplifier-Cutoff Frequency," Proc. IRE, vol. 
40, November, 1952, pp. 1481-1483. 
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routine so only the results are given here for the three basic amplifier 
configurations. 

oc 
K(grounded emitter) _:_ +-----

1 - oc + RL/rc 

K (grounded base) 
oc 

1 + RL/rc 

1 
K (grounded collector)_:_ - / 

1 - oc + RL re 

(8.80) 

(8.81) 

(8.82) 

Transistors are used as voltage amplifiers in cases where they must 
drive voltage actuated devices such as vacuum tubes, the intensity grid 
of a cathode ray tube, or the deflection plates of an electrostatically 
deflected cathode ray tube. In many other cases the transistor should 
be used as a straight power amplifier, operating under matched load 
conditions with maximum available power gain. A transistor radio 
receiver or audio amplifier typify this type of application. 

The power gain of an amplifier is defined as follows: 

. power input to the load PL 
W = power gam = . . -

power mput to the amplifier Pi 

The power developed in the load resistance is 

PL= E;RL 

where E
0 

= output voltage developed across RL; RL = load resistance. 
The power input to the amplifier is 

where Ei = input voltage to the amplifier; Es = open circuit voltage 
of the signal source; Ri = input resistance of the amplifier; Rs = 
internal resistance of the signal source. Therefore, the power gain of 
any amplifier is 

However, E0 = E0 Ei = A (o.utp~t) A (i~pu~ ) 
Es Ei Es ClfCUlt ClfCUlt 

I 
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For a transistor amplifier, 

A (output circuit)= ±g; R 

= voltage gain of the output circuit 

A (input circuit) = Ri(Ri + Rs) 

= gain of the input circuit 

R = rtRL/(rt + RL) 

Therefore, the power gain of any transistor amplifier is 

W = (g;R)2 Ri/RL (8.83) 

Equation (8.83) can be used to calculate the power gain of any transistor 
amplifier by substituting the correct values for the effective trans
conductance, g;, and input impedance, Ri. This information may be 
obtained from table 10. 

The available power gain is obtained when the signal source is matched 
to the amplifier. This requires that Ri = Rs so that the available power 
gain is 

(8.84) 

The condition for maximum available power gain (MAG) can be 
computed by maximizing Wa with respect to R L by the standard method 
familiar from calculus. However, you must substitute the appropriate 
values for g; and R 8 = Ri from table 10 for the particular amplifier 
under study. The process is very tedious and considerable algebraic 
maneuvering is required. You can eventually show by this method that 
the maximum available power gain is obtained under the following 
conditions: 

(8.85) 

R L (grounded base) (8.86) 

Jrb(I - rx) + r 
RL (grounded collector)....:.. rt e 

rt 
(8.87) 

These resistances are ordinarily quite large, especially for the 
grounded emitter and grounded base circuits. The same circuits usually 
have very low input resistances. Therefore, interstage impedance trans
formers are required when stages are cascaded. Practical transistor 
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power amplifiers should be designed to approximate this condition of 
matched impedances so that the maximum available power gain is 
obtained. 

8.16. General Aspects of Cascading 
Theoretically, any combination of the various types of transistor 

amplifiers could be cascaded. This is indicated symbolically in figure 
(8.22). However, there are a number of practical difficulties that must 
be understood. In the two-stage cascade shown in the figure, it is clear 
that the input impedance of stage 2 is a part of the load circuit of stage 1. 
This makes the evaluation of Z L and Zm for stage 1 a fairly complex 
problem. Also, except for the grounded collector amplifier, the input 
impedance of transistor amplifiers is quite low, being of the order of 
only a few hundred ohms in most cases. This would make it difficult to 
cascade shunt peaked amplifiers or parallel tuned amplifiers. These are 

Fig. 8.22. Equivalent circuit of a three stage_ amplifier. 

essentially practical matters and should not deter serious and careful 
workers. Moreover, if you consider the problem carefully, you will see 
that the magnitude of the input impedance can be increased, though 
this results in other penalties on performance. 

Except for the factors just noted, the principles of cascading tran
sistor amplifiers are essentially the same as those for vacuum tube ampli
fiers. Synthesis by factoring can be used to design amplifiers to specific 
gain functions. Space limitations make it impossible to pursue the 
subject further here. 

PROBLEMS 

The following data which are required for the problems, are given for two 
different transistors. 

Parameter Point contact Junction type 
re 250 ohms 25 ohms 
rb 300ohms 250 ohms 
re 20,000ohms lOmegohms 
rm 15,000 ohms 9.75 megohms 
cc 1 µµf 8µµf 
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8.1. Compute the reference voltage, current, and power gain as well as the 

input impedance of a grounded emitter point contact transistor amplifier if 
Rs= 500 ohms and RL = 20,000 ohms. 

8.2. Repeat problem (8.1) for a grounded base amplifier. 

8.3. Repeat problem (8.1) for a grounded collector amplifier, but use 
Rs = 20,000 ohms and R L = 10,000 ohms. 

8.4. Tabulate the results of problems (8.1) through (8.3) and comment on 
the comparative values. 

8.5. Repeat problem (8.1) for a junction transistor having Rs= 25 ohms 
and R L = 200,000 ohms. 

8.6. Compute the cutoff frequencies of the junction transistor connected as 
a resistance coupled, grounded base amplifier. Compute the reference gain 
and figure of merit. Assume that RL = 10,000 ohms, Cb = 0.01 µf, 

Ra= 50 K, Ci= 0, and Cw= 2 µµf. 

8.7. Derive equation (8.61) for the single tuned amplifier. 

8.8. Work out a design procedure for designing resistance coupled transistor 
amplifiers to have a specific set of cutoff frequencies and reference gain. 
Work out design formulas for all the parameters of interest. 

8.9. Extend the design procedure developed in (8.8) to the case of a shunt 
peaked transistor amplifier. 

8.10. Design a shunt peaked transistor amplifier to have a rise time of 
0.2 µsec with not more than 2 % overshoot and a gain of not less than 10. 
The amplifier drives the intensity grid of a cathode ray tube, which has an 
input capacitance of 10 µµf. The wiring capacitance is estimated to be 2 µµf. 
This is more of an exploration of design possibilities, rather than a straight
forward design of a specific circuit. Discuss some of the problems involved in 
selecting a transistor for use in this amplifier. 

8.11. What problems would you encounter if the design requirements of 
problem (8.10) had stipulated a rise time of 0.05 µsec? 



Chapter 9 

NOISE 

Communication in the presence of noise is an everyday occurrence 
for every living person. Nearly all exchanges of information, such as 
a normal conversation, are carried on in the presence of interference 
from other conversations, the clanking of machinery, the roar of wind, 
or any other one or combination of many sources of noise. It is 
common experience that successful communication can be established 
only if the strength of the conversation, or signal, is sufficiently large 
to overcome the masking effects -of the background noise. Thus the 
ratio of the signal to the noise will govern the amount of information 
exchanged. 

It is fairly obvious that the problem of information transmission is 
generally complicated by the presence of noise. In some cases the noise 
is pure noise in the sense that it is purely random and disordered and 
therefore conveys no intelligence. A classical example of this kind of 
noise may be found at any cocktail party. There is a continual drone 
of voices that establishes a mean sound level that must be overcome if 
information is to be exchanged between two particular people. If the 
conversation is conducted at a power level equal or less than the general 
noise power level, the information exchanged will be slight. If suitable 
vocal power is used, information can be transmitted, because the spoken 
words constitute a pattern in time that can be interpreted by the listener 
even though it may be partially obliterated by the purely random 
background noise of the room. Thus information transmission requires 
establishment of a pattern of sufficient strength to overcome the masking 
effects of the purely random noise. 

Now consider a slightly different situation. Suppose that one person 
is located in a sound-deadened room, ,empty except for a microphone. 
The microphone is connected through an amplifier to a loudspeaker. 
Regardless of how softly the person might speak, it would be theoreti
cally possible to increase the gain of the amplifier and thereby detect 
what was said. However, eventually a point is reached where the air 
pressure variations on the microphone caused by the whispers of the 

323 
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person will be of the same order of magnitude as the impacts of the 
thermally agitated gas molecules in the air. The pressure variations on 
the microphone caused by the signal would then be obliterated by the 
random effects of the air molecules. It is clear that there is an ultimate 
limit to the useful sensitivity of the amplifier. 

The noise in an amplifier might be introduced along with the signal, 
as in the preceding example, or it might be introduced by the amplifier 
itself. Ideally, the signal will enter the amplifier alone, without noise. 
Thus the final limit upon the sensitivity of the amplifier will be set by 
the noise it introduces by itself. This kind of noise is the primary 
concern of this chapter. 

9.1. Thermal Noise 
Nearly all the basic physical laws in the repertory of the engineer 

describe the large-scale effects or over-all behavior of an aggregation of 
microscopic particles. These laws apply only to those cases in which the 
number of discrete particles in the aggregation is so large that statistical 
averages can be used. They can seldom be used to describe the behavior 
of a single member of the aggregation. 

This kind of situation is analogous to the actuarial tables of the 
insurance companies. Such tables will predict with considerable 
accuracy the percentage of deaths in a single year of persons in a certain 
age group. However, it is impossible to determine when particular 
individuals in the statistical group will die. 

Electrical engineering is based upon laws of this type. It has been 
established that electric charge is not infinitely divisible. There is a 
smallest unit of electric charge, the charge on an electron. The basic 
laws of electrical engineering describe the behavior and effects of an 
aggregation of electronic charges without attempting to specify the 
actions of a single member of the aggregation. Thus, _contrary to Ohm's 
law, if an attempt is made to apply it to microscopic cases, the free 
electrons in a conductor in the absence of an applied electric field are 
not at rest, but are undergoing extremely vigorous gymnastics in a 
purely random manner. The effect is much the same as the Brownian 
motion of particles and the thermal motion of gas molecules. The 
relative activity of the electrons is dependent upon the temperature of 
the conductor. 

Electric current is defined as 
i = dq/dt 

Thus the random motion of the electrons in a co!1ductor sets up a 
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time-varying charge distribution that causes a purely random current 
to flow in the conductor. Because it is purely random and is caused 
by thermal effects, this component of current is called thermal noise. 

It has been found1 that the rms noise voltage and current in a 
conductor can be evaluated by the following formulas: 

- J2 In = ; kT{JG rms amp (9.1) 

En = J ~ kT{JR rms volts (9.2) 

where R = 1/G = resistance of the conductor; k = Boltzmann's 
constant= 1.38 X 10-23 joule/° K; T = absolute temperature of the 
conductor; fJ = noise bandwidth, in radians/sec, of the circuit in which 
the conductor is located. The noise bandwidth fJ is not exactly the same 
thing as the 0.707 bandwidth. This will be explained later. 

The thermal noise in the input circuit of an amplifier is amplified 
along with the signal. Thus the ultimate sensitivity of the amplifier will 
be governed by the amount of noise introduced at this point. In 
addition to the input circuit noise, noise is also introduced by the 
amplifier tube. This is discussed in the next two sections. 

9.2. Shot Noise 
Thermal noise was shown to arise from a purely random and 

disordered motion of electrons in a conductor. The noise generated in 
a vacuum tube is developed in an inherently different manner because 
the motion of the electrons is unilateral, always from cathode to plate 
Random motion, in the sense used to describe behavior in a conductor, 
simply does not occur. However, because the arrival of electrons at the 
plate of the tube is not thoroughly uniform with respect to time, but 
occurs in multiples of the electronic charge, a noise component of current 
appears at the plate. This is called shot noise. Like thermal noise, it is 
caused by the granular character of electric charge. 

Shot noise would be produced even if electrons were emitted from 
the cathode at equally spaced intervals of time. This does not occur, 
however, because there is a probability distribution of emission times 
that acts to increase the shot noisf" over the theoretical minimum. The 
presence of space charge tends to suppress this effect to some extent. 

1 H. Nyquist, "Thermal Agitation of Electric Charge in Conductors," Phys. Rev., 
vol. 32, pp. 110, 1928. 
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It is convenient to account for the presence of the shot noise in the 
plate circuit by assuming that it is produced by an ideal voltage 
generator in series with the grid of the tube. This fictitious generator 
has an open circuit voltage 

- J2 Esn = ;;. kT/JRsn (9.3) 

where Rsn = shot noise parameter= 2.5/gm (9.4) 
T = ambient temperature °K. The approximation for the shot noise 
parameter is valid for tubes with oxide coated cathodes. 

9.3. Pa.rtition Noise and Induced Grid Noise 
Ordinary shot noise appears in all vacuum tubes, diodes, triodes, 

tetrodes, and pentodes alike. However, in the case of pentodes and 
tetrodes, there are two electrodes that draw current from the electron 
stream, the plate and the screen. Because the current division between 
these two electrodes will vary in a purely random fashion, the apparent 
shot noise in a pentode will be larger than in a triode. This increase in 
shot noise is identified as partition noise; like shot noise it is assumed 
to be produced by a fictitious voltage generator in series with the grid 
of the tube. The open circuit voltage of this generator is2 

- j2 E1m = ;;. kT{JRpn rms volts 

where Rpn = partition noise parameter-=- 20/df[gm(lb +Id)]; gm= 
tube transconductance; lb = plate current through the tube; Id = 
screen current of the tube. Thus it is possible to specify an equivalent 
noise resistance Req, which is merely a fictitious parameter, to be the 
sum of the shot noise and partition noise parameters. That is, 

Req (triodes) = R _:_ 2.5 
sn 

gm 
(9.4) 

Req (pentodes) = Rsn + Rpn 

. 2.5 20/d = - + --- (9.5) 
gm gm(/b + Id) 

The combined effects of shot and partition noise are represented by a 

2 W. A. Harris, "Some Notes on Noise Theory and Its Application to Input 
Circuit Design," Electron Tubes, vol. 2, RCA Rev., Princeton, N. J., p. 286. 
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generator in series with the grid of the tube and having an open circuit 
voltage 

(9.6) 

Representative values of the equivalent noise resistance of various 
vacuum tubes are given in table 12. It is important that the noise 
resistance of a pentode is considerably larger than that of a triode. 
The values in this table should not be taken too literally because they 
will vary considerably from tube to tube; this results from differences 
in gm• lb, and Id permissible under existing manufacturing specifications. 

Another type of shot noise that appears in triodes and pentodes is 
called induced grid noise. It is caused by shot noise fluctuations induced 
in the grid of the tube as a result of unequal charge distributions on 
either side of the grid. The induced grid noise is related to the electronic 
input conductance of the tube. This conductance GT is given approxi
mately by the following equation3 ; 

G - gm(wt}2 - 1 92 f2t2 T-20- · gm (9.7) 

where f = frequency; t = transit time. Typical approximate values 
for this transit time conductance are given in table 13 for a frequency of 
30 me. Because the value of GT depends upon the square of frequency, 
GT can be approximated at other frequencies by simple proportions 
using the values tabulated at 30 me. 

3 Ibid. 

TABLE 12 

EQUIVALENT NOISE RESISTANCE OF VACUUM TUBES 

Tube Connection Req in ohms 

6AC7 
6AC7 
6AG5 
6AG5 
6AK5 
6AK5 
6BA6 
6BA6 
6BJ6 
6BJ6 
6J4 
6SK7 
6SK7 

pentode 
triode 
pentode 
triode 
pentode 
triode 
pentode 
triode 
pentode 
triode 
triode 
pentode 
triode 

650 
214 

1900 
380 

1900 
380 

3800 
410 

3800 
485 
210 

11,600 
970 
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TABLE 13 

TRANSIT TIME CoNDUCTANCE OF VACUUM TUBES 

Tube GT µmhos at 30 mcps 

6AC7 156 
6AG5 27 
6AK5 12 
6BA6 52 
6BJ6 26 
616 18 
6SK7 40 

The induced grid noise is assumed to be produced by thermal noise 
in the transit time conductance at a temperature y times larger than the 
ambient temperature. Hence the induced grid noise is represented by 
a generator of short-circuit current 

Ing= J~ kyT/3Gp rms amp (9.8) 

and internal impedance GT. For tubes with oxide coated cathodes, y 
is usually taken to be approximately 5. 

9.4. Noise Bandwidth 
The noise bandwidth /3 appears in all the expressions that have been 

given for calculating therms noise voltages and currents, and is defined 
properly as the width of an idealized, rectangular bandpass 
characteristic having the same area and peak value as the power gain 
vs. frequency characteristic of the amplifier. The general nature of the 
noise bandwidth is apparent from figure (9.1). 

The necessity for defining the noise bandwidth is understood from 
the fact that the noise spectrum is uniform from zero to infinite fre
quency. Because the noise voltage and current developed are propor
tional to the total noise power, this noise power can be computed from 
the area under the power gain characteristic of the amplifier. Clearly, 
the same noise power is developed if the amplifier has the idealized 
frequency characteristic shown in figure (9.lb). 

The preceding definition of noise bandwidth can be expressed 
mathematically as 

(9.9) 

where W(w) = power gain as a function of frequency; Wr = reference 
value of power gain. 
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If the input and output resistances of an amplifier are independent of 
frequency, the power gain can be written in terms of voltages as follows: 

W(w) = Po(w) = I ~o(w) 12 Ri = I A(w) 12 Ri 
Plw) Elw) R0 R0 

wr = I Eo(wr) 1

2 

Ri = A; Ri 
Elwr) Ro Ro 

Consequently, the noise bandwidth can be expressed as 

P= s.tzl1w (9.10) 

Wr Wr -------- ---

(al POWER GAIN VS. 
FREQUENCY 

AREA EQUAL 
TO THAT 
UNDER 
THE CURVE 
IN (a) 

"'_. B 

( bl IDEALIZED CURVE 
SHOWING NOISE 
BANDWIDTH B 

Fig. 9.1. Illustration of the meaning of noise bandwidth. 

The integral in equation (9.10) is fairly easy to evaluate for video 
amplifiers, but bandpass amplifiers are rather difficult to handle. The 
problem can be simplified somewhat by transforming to the normalized 
frequency gain function. That is, in the bandpass case, the following 
gain function will apply to all cascades of synchronous and maximally 
flat-staggered amplifiers: 

I
A(y) I ( 1 )m 
A, = 'Vl + y2n 

where n = n-uple and one n-uple = 1 stage; m = number of stages. 
Because the frequency y in this equation is normalized, the noise 

bandwidth is similarly normalized, so that 

{J ico( 1 )m 
Bn = 0 l + y2n dy (9.11) 

for any synchronous or flat-staggered amplifier, where Bn = band
width of the n-uple. A few examples will clarify the use of this equation. 
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To compute the noise bandwidth of a single high Q amplifier stage, 
in equation (9.11) let n = 1, m = 1, and Bn = 0.707 bandwidth of the 
stage. 

/3 i 00 

1 ( -1 ) oo -= --
2
dy= tan y 

Bn o 1 + y o 

7T 
= - = 1.571 

2 
Now consider a two-stage synchronous cascade. In this case n = 1, 

m = 2, and 

Bm Bm . 
Bn = V = 

0 643 = 0. 707 stage bandwidth 
211n - 1 . 

Bm = 0.643Bn = 0. 707 bandwidth of the cascade 

Therefore for two synchronous stages 

so that 

f3 _ 0.643{3 _ J: 00 

1 d _ 7T 

Bn - ~- o (1 + y2)2 y - 4 

f3 7T 

Bm 4(0.643) = 1 
"
222 

If the same procedure is followed for a three-stage synchronous cascade, 
the result is {3/Bm = 1.155. Similar cases are easily worked out. Note 
that in all cases the result is expressed as a ratio of the noise bandwidth 
to the over-all 0. 707 bandwidth of the amplifier cascade. 

Now consider the case of a single staggered pair. In this case, 
n = 2, m = 1, and Bm = Bn. 

fJ ioo 1 
Bm = o 1 + y4 dy 

The integral can be evaluated by expanding the function into partial 
fractions and then evaluating the integral term by term. This process 
yields {3/Bm = 1.11. 

9.5. Other Sources of Noise 
It has been shown that noise is produced in vacuum tubes by the shot 

effect, partition effect, and induced grid noise. There are other, sub
sidiary sources of noise also present. They are cathode flicker effect, 
positive ion noise, secondary emission noise, and microphonics. 
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At audio frequencies it is observed that the actual noise produced by 
tubes having oxide coated cathodes is considerably greater than that 
computed from the theoretical formula for shot effect and induced grid 
noise. It occurs if the tube is space charge limited or if it is temperature 
saturated. It is also observed at much lower frequencies for tubes with 
tungsten filaments. This phenomenon is called cathode flicker and it is 
believed4 to be caused by the variation in cathode emissivity caused by 
the arrival or departure of foreign atoms or molecules at the cathode 
surface. The increased tube noise that results apparently varies with the 
inverse square of the frequency and with the square of the emission 
current. 

Positive ion noise is produced by the positive ion current in the tube. 
These ions may be emitted by the cathode or produced by ionization of 
the residual gases in the tube. The noise produced is small because the 
positive ion current is small compared with the electronic current. 

Secondary emission causes the actual noise of the tube to deviate 
from the value computed on the basis of the shot effect. However, the 
contribution is generally small and is often neglected. 

Microphonics are noises caused by mechanical vibrations of the tube 
structure. They usually occur at low frequency and do not exhibit the 
random character of the other noises mentioned thus far. With recent 
developments in ruggedized construction, this effect has been largely 
overcome. However, care should be exercised to avoid undue vibration 
of the tube because the effects of microphonics can be serious. 

In addition to the tube noise and the thermal noise in the input 
circuit, there is also the possibility that noise will be introduced by the 
signal source driving the amplifier. This noise might be thermal noise 
in the source conductance plus other noises such as atmospherics 
(static), diathermy machines, intentional interference (jamming), 
ignition systems, and so on. 

9.6. Representation of Noise 
The preceding sections have listed and described the various sources 

of noise in electronic circuits. This is interesting, but it is of little 
practical use to the circuit designer until the effects of these noises can 
be expressed in terms of circuit elements that can be combined mathe
matically and manipulated to yield answers to pressing practical 
problems. 

4 Valley and Wallman, Vacuum Tube Amplifiers, vol. 18, Rad. Lab. Series, 
McGraw-Hill Book Co., Inc., New York, 1948, p. 588 
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Noise sources, like any other energy source in an electric circuit, can 
be treated in many ways, but all methods usually involve a generator of 
some type and some kind of internal impedance or admittance. Conse
quently, it is convenient to represent a noise source by an equivalent 
Thevenin or Norton generator as shown in figure (9.2). This kind of 
representation is valid for any kind of noise source if particular care is 
used in the specification of the terms in the equivalent circuit. That is, 

R 

G 

THEVENIN NORTON 

Fig. 9.2. Equivalent circuits of noise sources. 

either of these two circuits is an excellent equivalent circuit of a thermal 
noise source where 

En = open circuit voltage 

= J ~ kT{JR rms volts 

In = short circuit current 

= J~kT{JG rms amp 

R = 1/G = noise-producing resistance 

Thus the equivalent circuit of a thermal noise source is direct. 
For shot noise sources the equivalent representation is a little less 

direct. Actually, a two-step transformation is involved: 
(1) The shot noise source is replaced by a hypothetical thermal noise 

source that generates the same amount of noise as the original shot 
noise source. 

(2) The fictitious thermal noise source is then described in terms of 
the equivalent circuits of figure (9 .2). 

Thus the same equivalent circuit is used to describe any noise source. 
The difference between thermal and shot noise representations is 

simply that the R or G in the equivalent circuit and equations is the 
actual ohmic resistance of the element in the case of thermal noise, but 
a fictitious resistance, or parameter, in the case of shot noise. 
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9.7. Equivalent Noise Representation of an Amplifier 
It was shown in the preceding section that any noise source can be 

represented by an equivalent Norton or Thevenin generator. This 
technique will now be used in the analysis of an isolated amplifier stage. 

Noise is introduced into the amplifier input from the following 
sources: 

(1) The signal generator supplying the desired signal input intro
duces noise caused by thermal agitation in its internal resistance. 

(2) Thermal noise is generated in the ohmic component of the input 
circuit. 

(3) The tube introduces noise from two sources, the equivalent noise 
resistance in series with the grid and the induced grid noise. 

NOISELESS 
TUBE 

Fig. 9.3. Equivalent circuit of an amplifier with all noise sources referred 
to the grid circuit. 

Thus the equivalent circuit of the amplifier will contain the following 
noise sources: 

Noise source Current or voltage Internal G 

Signal source Ins = J~kTfJGs GB 

Input circuit Jnl = J~kT{JG1 G1 

Induced grid noise Inu = J~kTy{JGp Gp 

Shot and partition - J2 Enp = :;; kTfJReq 0 

If the signal source is included, the complete equivalent circuit of the 
amplifier appears as shown in figure (9.3). Because all noise sources 
have been removed from the tube and circuit elements, all the passive 
components in figure (9.3) are noiseless. 
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This equivalent circuit can be simplified somewhat and put into a 
more convenient form by determining the Norton equivalent of the 
entire circuit to the left of the marked terminals in figure (9.3). This is 
pretty easy because the equivalent Norton generator supplies a current 
equal to the short-circuit current that flows when terminals 1-1 are 
short-circuited. Hence 

,..2 -2 -2 -2 12 -.;2 (G + G + G )2 
]sc = Is + Ins + ]nl + nu + En1J s 1 T (9.12) 

It is convenient to define the last term in this equation as 

i!f) = E!v(Gs + G1 + Gp)2 (9.13) 

2 

2 

Fig. 9.4. Final equivalent circuit with all noise sources referred to the 
grid circuit. 

Thus the equivalent Norton generator is actually the parallel combi
nation of five separate current generators as follows: 

-2 -2 -2 -2 -2 -2 (9 14) 
lsc = ls + Jnl + Ins+ Ing + Inf) · 

The internal admittance remains the sum of the existing conductances. 
Thus the final equivalent circuit appears as shown in figure (9.4), where 
the magnitudes of the current generators are 

ls = rms signal current (9.15) 

(9.16) 

(9.17) 

(9.18) 

(9.19) 



Sec. 9.8] Noise 335 

9.8. Noise Figure of an Amplifier Stage 
The ultimate purpose behind the preceding formulation of an equiva

lent circuit is the development of a method of specifying the noise 
characteristics of a given amplifier. Before proceeding, certain 
definitions are required. 

A very important term is the available 
power. The available power is simply the 
power that a matched generator can supply. 
For example consider the case of a generator 
of voltage E and internal resistance R con

R 

R 

nected to a matched load R. The power Fig. 9.5. Evaluation of 
delivered to this load, as shown in figure (9.5), available power. 
is the available power, and it has a value 

E2 j2 
W=-=-

4R 4G 
(9.20) 

where E and i are rms values. This equation can be used to compute 
the available power from some noise source, such as the input circuit. 
In this case, 

. . . j!1 2kTf3G1/TT 
W = available noise power = - = ----

4G1 4G1 
The definition of available noise power now permits another very 

important factor, the signal-to-noise ratio, to be defined. That is 

. . available signal power 
S/N = signal-to-noise ratio= . 

1 
. (9.21) 

availab e nmse power 

For example, the signal-to-noise ratio measured at the terminals 
marked 2-2 in figure (9.4), would be computed as follows: 

S2 = available signal power at 2-2 
-2 = ]8/4G8 

N 2 = available noise power at 2-2 

= J!s/4Gs 
Hence the signal-to-noise ratio is 

(9.22) 
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The specification of the signal-to-noise ratio now permits the 
definition of a useful factor called the noise figure. It is defined in the 
following way: 

. fl (S/ N) in ideal case 
F = n01se gure = . (9.23) 

( S / N) m actual case 

In applying this definition to the amplifier circuit of figure (9.4), it is 
clear that the noise figure of the stage can be expressed as 

(S/N) evaluated at terminals 2-2 
F=----------

(S/N) evaluated at terminals 1-1 

(S/N)2 

(S/N)1 

(9.24) 

The noise figure of the amplifier of figure (9.4) can now be evaluated 
Since (S/N)2 was computed in equation (9.22), it is necessary only to 
find (S/N)1. 

S1 = available signal power at 1-1 

/2 
s 

4(Gs + G1 + GT) 

N1 = available noise power at 1-1 
-2 -2 -2 -2 

Jns + fnl + Jng + Jnp 

4(Gs + G1 + GT) 

Hence the signal-to-noise ratio at terminals 1-1 is 

( S) S1 I; 
N 1 N1 J!s + l!1 + l;g + l!v 

Consequently, the noise figure of the amplifier stage is 

(S/N) -2 -2 12 -2 
F = __ 2 =Ins+- Jnl + ng + fn'P 

(S/N)1 J!s 

(9.25) 

(9.26) 

The equations for the four noise currents appearing in equation (9.26) 
for the noise figure were given earlier. If these relationships are 
substituted into the noise figure equation, the common 2kT/3/1r term 
cancels, leaving 

Gs+ G1 + yGT + ReiGs + G1 + GT}2 
F-- ----,---------- (9.27) - . Gs 
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Rearrange terms slightly and write the noise figure as 

F = 1 + Gi: yGT + ~q (G1 + Gs + Gp)2 (9.28) 
s s 

Although given as a ratio here, the noise figure is customarily expressed 
in power logits or decibels. 

This is an important and useful result for a number of reasons. For 
one thing, the noise figure of an amplifier stage can be computed from 
this formula if the various conductances are known. Alternatively, if 
all but one of the quantities appearing in the formula are known, the 
remaining unknown can be found. 

From the theoretical standpoint, the noise figure equation indicates 
the manner in which the various terms affect the noise figure, and thereby 
permits certain recommendations to be made to reduce the noise figure. 
For example, the formula shows that the noise figure is linearly depen
dent upon the equivalent noise resistance Req of the tube. Therefore, to 
obtain a small noise figure, a tube with a small Req should be selected. 
Evidently then, triode amplifiers will have lower noise figures than 
pentode amplifiers. 

9.9. Over-all Noise Figure of Cascaded Stages 
It was shown in the preceding section that the noise figure of an 

isolated amplifier stage could be written 
r2 -2 -2 -2 

F = Ins + Jnl + Ing + lnp 

i!s 
Divide both the numerator and denominator through by 4(G8 + G1 
+ Gp), Thus the noise figure becomes 

fns + Inl + Jng + Inp Jns 
[

r2 -2 -2 -2 ]/[ -2 ] 

F= 4(Gs + G1 + Gp) 4(Gs + G1 + GT) 

The numerator and denominator of this expression now have special 
meanings, as follows: N1_ 1(act) = numerator= actual available noise 
power at terminals 1-1; and N1_i(min) =denominator= minimum 
available noise power at terminals 1-1. Therefore the noise figure of 
the amplifier stage can be written in terms of these factors as 

N1_ 1 (act) 
F = --- (9.29) 

N1_ 1 (min) 

The minimum available power is interpreted simply as the noise 
power when the amplifier is noiseless and has a noise figure of unity. 
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Thus it is relatively easy to compute the noise caused by the amplifier 
itself. That is, in the grid circuit of the amplifier, 

(
noise caused by) (actual noise ) (minimum noise) 
the amplifier = at terminals 1-1 - terminals 1-1 

N1-1 (min) N1-1 (amp) NOISELESS 
AMPLIFIER 

POWER GAIN W 

N1-1(min) (F-1) _____ _ 

ALL NOISE 
SOURCES 

OF AMPLIFIER 

N•WN1-1 (amp) 

Fig. 9.6. Noise equivalent circuit of an isolated amplifier stage. 

Or, in symbolic notation, 

N1_i(amp) = N1_ 1(act) - N1_i(min) 

or N1_i(amp) = N1_i(min)(F - 1) (9.30) 

This is the equation for the available noise power produced by the 

STAGE a STAGE b STAGE e 
.-----------: 1-----------7 

NOISELESS NOISELESS :Nab I NAOMISPELLI FEISESR I Nobe 
-------..,. ,..,,,-----,-, AMPLI Fl ER r,------., ... "'"~-, AMPLIFIER r-T"'--,.._.,.~-.-, t-+-1 ................. ~ 

POWER GAIN POWER GAIN : POWER GAIN 1 

Wa Wb I We : 

NOISE CAUSED : NOISE CAUSE ! 
BY STAGE b : BY STAGE e : 
Nb(min)(Fb·I) : 

1 
Ne(min)( Fe-I) ! 

__________ J L __________ J 

NOISE FIGURE Fa NOISE FIGURE Fb NOISE FIGURE Fe 

Fig. 9.7. Noise equivalent circuit of three amplifier stages in cascade. 

entire amplifier circuit and referred to the input circuit. The results of 
this brief analysis are best understood from the noise equivalent circuit 
of the amplifier stage shown in figure (9.6). 

This type of equivalent circuit is immensely helpful in computing the 
over-all noise figure of several amplifier stages connected in cascade. 
Such a case is illustrated in figure (9.7). 

The noise figures of stage a, of stages a and b in cascade, or of the 
three-stage cascade are easily computed from this equivalent circuit 
using the noise figure definition given in equation (9.29). It is necessary 
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only to remember that the noise figure is unity in the ideal, or minimum, 
case. Therefore the noise figure of stage a is 

N: (act) [Nu(min) + Nu(min) (Fa - I)] Wa 
F -----------------

a - N; (min) - Nu(min) Wa 

In the same way, the over-all noise figure of stages a and bin cascade is 

Nalact) 
Fab = ( • ) Nab mm 

where Nalact) = [Na + Nlmin)(Fb - I)] wb 

= Nu(min)Fa Wa wb + Nlmin)(Fb - I) wb 

Nalmin) = Nu(min) Wa wb 

Therefore the over-all noise figure of the two stage cascade is 

F F + Nlmin) (Fb - I) (9.3l) 
ab= a N ( • ) • W 

a min a 

If the amplifier stages are identical so that Nu(min) = Nlmin), then 
the over-all noise figure simplifies to the following form: 

Fb- I 
Fab =Fa+ J¥: (9.32) 

a 

This is the equation that is usually given, though the stipulation of 
identical stages is seldom noted. 

A similar method can be applied to the three-stage cascade and the 
result is 

F.-I F-I 
Fabe= Fa + _!!__w + ~ w, (9.33) 

a a b 

The over-all noise figure of an n-stage cascade is easily computed in this 
same way. 

The equations for the over-all noise figures of cascaded amplifiers are 
important; they show that the over-all noise figure can never be less 
than the noise figure of the first stage. Moreover, if the power gains of 
the stages are comparatively large, or if the noise figures of the separate 
stages are close to unity, the over-all noise figure of the cascade is 
determined primarily by the first stage of the amplifier. This is a design 
factor of paramount importance; it shows that the input stage of a 
high gain amplifier should usually be designed for minimum noise 
figure rather than maximum gain. A method of reducing the noise 
figure of the first amplifier stage will be discussed in section (9. IO). 
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Some difficulty is occasionally met in the evaluation of the noise 
figure of the second stage of the amplifier cascade because there may be 
some doubt regarding the way in which the plate load conductance of 
the first stage should be treated. That is, should the plate load conduc
tance GL = 1/RL be considered a part of the source conductance Gs, 
or should it be included with the input circuit loss G1 ? It is obvious 
that the physical situation is unaffected by the method of treatment. 
The noise figure is governed by physical factors, and the same result 
should be obtained regardless of the method of treatment. However, 
the two methods of treating G L will lead to different values for Fb, but 
this will be exactly counterbalanced by a change in Wa, so that Fab is 
unchanged. 

9.10. Available Mid-Band Power Gain 
When computing the over-all noise figure of an amplifier cascade, 

it was shown in the preceding section that the result is partially governed 
by the power gains of the amplifiers. A method of computing this 
power gain is developed here. 

The available power gain of an amplifier is defined as 

W = maximum power delivered to the load resistance 
available power from the signal source 

PL (max) 
-

Ps (max) 

If the signal source supplies a signal current ls to a conductance G8 , the 
available signal power at the amplifier input is 

12 
Ps (max) = -

4 
s 

Gs 

This current flows through the input impedance Zi of the amplifier and 
produces a grid voltage Eu. Because 

1 
Z-=------

, Gs+ G1 + Gp 

1 
E = Jz. = 1 ----- rms volts 

u s ' s Gs+ G1 + Gp 
then 

The output voltage across the amplifier load is then 

£0 = A.Eu 
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where A = voltage amplification. Therefore, substituting for the grid 
voltage, 

The power output is then 

-2(G G) A2/2 GL + Gu 
PL= Eo L + u = s (Gs+ G1 + Gp)2 

It was shown in chapter 4 that the voltage amplification of a grounded 
cathode amplifier in the reference case was 

A - R- gm 
r-gm -G +G +G 

11 L g 

1 1 
where G11 =~; GL= RL; 

Thus the power gain of the stage is 

1 
G=

u Ru 

2 4(GL + Gg)Gs 
W = gm (G1' + GL + Gg)2(Gs + G1 + Gp)2 

The power output and the power gain will be a maximum when 
G11 = GL + Gu. Hence 

PL (max) 2 G8r 11 W=---=g 
P 8 (max) m (Gs+ G1 + Gp)2 

or 
Gs 

W= µgm(Gs + G1 + Gp)2 (9.34) 

9.11. Optimum Source Conductance 

It has been shown that the noise figure for an isolated amplifier stage 
has the form: 

F= 1 + Gi :yGp + -:t (G1 +Gs+ Gp)2 
s s 

This equation clearly indicates that the noise figure is a relatively 
complex function of the signal source conductance Gs. This fact 
suggests that there might be some optimum value of Gs that would make 
the noise figure a minimum. This proposition can be investigated by 
differentiating F with respect to G8 , setting the result equal to zero, and 
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solving for Gs. This is the standard minimizing procedure, and yields 

OF = 0 = - G1 + yGT 
oGS Gs (opt)2 

R 2 
+ eq )

2 
{2Gs(opt)[G1 + Gs(opt) + GT]-[G1 + Gs(opt) +GT]} 

Gs (opt 

Solve this equation for Gs ( opt) and the result is 

Gs (opt)= JG1 ~ yGT + (G1 + GT)2 
eq 

(9.35) 

This value of source conductance will produce a minimum noise figure 
for a grounded cathode amplifier stage. 

In most cases the source is connected to the amplifier input through 
some sort of impedance transforming device. As a result, it is possible 
to use the impedance transforming properties of this circuit to adjust 
the source conductance to the optimum value. 

9.12. Transistor Noise5 

Noise in bulk semiconductors is larger than that predicted by the 
thermal noise formula given earlier. Moreover, unlike thermal noise 
the spectrum is not constant but varies inversely with frequency 
according to a relationship that can be approximated by Klfn, where 
f = frequency; and n = constant having a value of about 1. 1 or 1.2. 
This 1/f law apparently holds rather exactly up to frequencies of the 
order of about 50 kc, but at higher frequencies, departures from this 
variation are common. 

The excess noise in semiconductors, which is the noise power above 
that predicted by the thermal noise formula, has certain special 
characteristics :5 

(1) The excess noise is not especially dependent upon temperature. 
(2) The excess noise increases approximately as the square of the 

average current. 

5 R. L. Petritz, "On the Theory of Noise in P-N Junctions and Related Devices," 
Proc. IRE, vol. 40, November, 1952, pp. 1440-1456 (contains an extensive biblio
graphy); E. Keonjian, J. S. Schaffner, "An Experimental Investigation of Transistor 
Noise," Proc. IRE, vol. 40, November, 1952, pp. 1456-1460; H. C. Montgomery, 
"Transistor Noise in Circuit Applications," Proc. IRE, vol. 40, November, 1952, 
pp. 1461-1471; also H. C. Montgomery, "Electrical Noise in Semiconductors," 
Bell System Tech. J., vol. 31, September, 1952, pp. 950-975. 
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It has been observed that point contact transistors are noisier than 

junction transistors by a considerable margin. 
The noise of a transistor is presently represented by adding two noise 

voltage sources to the transistor equivalent circuit as shown in figure 
(9.8). The two generators have rms voltages of Ene and Enc; one is 
located in series with the emitter, while the other is in series with the 
collector. The remaining elements of the transistor equivalent circuit 
are assumed to be noiseless. 

If the two equivalent noise generators were truly independent sources, 
their outputs would be uncorrelated and could be added directly by mean 
square addition. However, they do appear to be correlated, and the 
addition of their contributions to the total noise must be made with due 
attention to this correlation. Addition with attention to correlation is 
designated by a circled plus sign, Et). 

r-------------- ------, 
I 
I 

B 

j NOISELESS TRANSISTOR 1 ... _____ - ----- _________ .J 

Fig. 9.8. Transistor equivalent circuit showing fictitious equivalent noise 
sources Ene and Enc• 

The mechanism of noise production in transistors will not be discussed 
here. It appears that this subject is not throughly understood at the 
present time. However, it has been theorized (see Montgomery articles) 
that variations in the concentration of the minority carrier (electrons in 
p-material, holes inn-material) are distributed throughout the material, 
causing fluctuations in the conductivity of the material that modulate the 
average or bias current and produce a noise voltage. The activity of 
the minority carrier concentrations is believed to be modified by some 
unknown local influence. Noise correlation measurements support 
this viewpoint as well as the fact that the noise is dependent upon the 
average current. 

A discussion of this subject is beyond the scope of this text and 
interested readers should consult the footnote references for more 
details. 
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9.13. Noise Figures of Transistor Amplifiers 

The noise figure of a circuit was defined previously as F = noise 
figure, or 

where 

F = (S/N) in the ideal noiseless case 
(S/N) in the actual case 

Sf N = signal-to-noise ratio 
available signal power 

-
available noise power 

In some special cases, such as the one to be discussed in this section, 
the available signal power is the same in both the noiseless and actual 
cases. Thus the noise figure can be expressed as 

N (act) actual available noise power 
F = N (min) = available noise power in the ideal case 

GENERAL 
TRANSISTOR 
AMPLIFIER 

Fig. 9.9. General transistor amplifier. 

For example, consider the case of a general transistor amplifier 
supplied by a signal source Eu of internal impedance Ru and having a 
connected load R L· The general circuit connections are shown in 
figure (9.9). The total noise measured across the load will be contri
buted by two sources: (1) thermal noise in Ru; (2) noise from the 
transistor amplifier. Clearly then, if the transistor is noiseless, the 
available noise power at the output will be the thermal noise in Ru 
multiplied by square of the voltage amplification of the amplifier.That is, 

N (min) = 2kTfJRufTT A2 (9.36) 
4RL 

Under the same circumstances, the available signal power is 

Hence 

E2 
S (min) = _u A2 

4RL 
(9.37) 

(9.38) 

Under actual conditions the noise power measured across R L will be 
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greater than the minimum value because of the noise introduced by 
the transistor amplifier. Thus if a new parameter is defined as 

E;,c = mean square noise voltage across R L 

then the actual available noise power is 

E2 
N(act) =~ 

4RL 
(9.39) 

and the corresponding available signal power is the same as before as 

9 
(al DIRECT EQUIVALENT WITH TRANSISTOR NOISE 

SOURCES SHOWN 

X 

(bl EQUIVALENT CIRCUIT WITH ALL NOISE SOURCES 
REFERRED TO THE INPUT 

Fig. 9.10. Grounded base transistor amplifier; noise equivalent circuits. 

given in equation (9.37). Hence 

(~) = E! A2 
N act E!c 

(9.40) 

Consequently, the noise figure of the transistor amplifier is 

F = (S/N)min = E!c 
(S/N)act 2kT{JRgA2/1r 

(9.41) 

This equation is perfectly general and can be used to compute the 
noise figure of any transistor amplifier. It is necessary only to evaluate 
Enc and A for each amplifier configuration. For example, consider the 
case of a grounded base amplifier. The circuit diagram with equivalent 
noise source is shown in figure (9.10a). As in the case of vacuum tube 
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amplifiers it is convenient to refer all noise sources to the input circuit. 
There Ene is already in the input circuit, and the noisy resistor Rg has 
been replaced by a noiseless resistor Rg in series with a noise voltage 

source Eng= v'2kT{JRg/7T. This is shown in figure (9.10b). 
The noise generator Enc in the collector circuit has been replaced by 

another noise source Enx in the emitter circuit of figure (9.10b). If the 
two generators Enc and Enx are to be actually equivalent, they must 
produce the same open circuit voltage at terminals X-X. The open 
circuit voltage produced by Enc is easily computed from figure (9.10a) 
to be 

The open circuit voltage produced by Enx is computed from figure 
(9.10b) by replacing Eng and Ene by their internal impedances, short 
circuits in this case. Then open the collector circuit and write the 
circuit equations. Under these conditions 

Eoc = Jn,Jrb +rm) (9.42) 

and J = Enx 
ne Rg + rb + rs (9.43) 

Therefore - - rb +rm 
Eoc = Enx -----

Rg + rb + rs (9.44) 

Equate the two expressions for Eoc• Solve for Enx· 

(9.45) 

Thus the total noise voltage in the output will be 

Enc= V E;g + (E;e EB E;x) A (9.46) 

where A= voltage amplification of the amplifier. If this value for Enc 
and the corresponding expressions for Eng, Ene, and Enx are substituted 
into the general noise figure formula, the result for the grounded base 
connection is 

(9.47) 

A similar analysis applied to the other two types of transistor 
amplifiers yields 
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F., =I+ 2k;R, [£!. (R, + :,•+'•)'EB£!, ( R,: '•) 2] (9.49) 

where EB indicates that addition is made with attention to any correlation 
that might exist between Ene and Enc· 

The fact that the noise figure is independent of R L is important. 
Since F does depend upon Ru, a minimum noise figure can be obtained 
by using a specific value for Ru. The proper value for Ru can be found 
by the usual minimizing procedure. After using the usual transistor 
approximations, the results of this calculation are: 

(1) for the grounded base and grounded emitter amplifiers 

Ru (opt)__:_ 
-2 

(re+ rb)2 EB ~;s (rm+ rb)2'· 
Enc 

(2) for the grounded collector amplifier 

R (opt) __:_ / 2 ffi E! 2 
g ✓ rb Q7 -2 re 

Enc 

(9.50) 

(9.51) 

The minimum in the noise figure caused by variations in Ru is very 
broad, so that the dependence of the noise figure on Ru is not critical. 

PROBLEMS 

9.1. Compute the rms noise voltage and current in a 10,000 ohm resistor 
at a temperature of 20°C. The noise voltage is measured with an instrument 
having a noise bandwidth of 5 mcps. 

9.2. Compute Req for a pentode connected 6SJ7. 

9.3. Compute Req for a 6J5. 

9.4. Compute the rms induced grid noise current in a 6AC7 and 6AK5 at 
60 mcps, at room temperature, and a noise bandwidth of 5 mcps. 

9.5. Evaluate the noise bandwidth of 
(a) A two-stage connection of synchronous single tuned amplifiers 

having an over-all bandwidth of 3 mcps. 
(b) A staggered pair adjusted to give maximal flatness and a band

width of 3 mcps. 
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9.6. Determine the noise figure of a pentode connected 6AK5 amplifier 
tube with a single tuned input circuit. The following data apply: Cin = 4.0 
pp[; gm= 4500 pmhos; RL = 2000 ohms; Cw= 2.0 µµf; r,,, = 400,000 
ohms; .fo = 30 kc; C0 = 3.0 µµf; R 8 = 450 ohms. The bandwidth of the 
input circuit must be at least 6 mcps. 

9. 7. Compute the optimum source conductance for the amplifier of problem 
(9.6) and then determine the new noise figure. Comment upon the improve
ment. 

9.8. Calculate the available mid-band power gain of the amplifier of 
problem (9.6). 

9.9. Compute the over-all noise figure of a two-stage 30 mcps amplifier 
using 6AK5 tubes for which the values given in problem (9.6) apply. The 
bandwidths of the two single tuned coupling circuits are not less than 6 mcps. 

9.10. Repeat problem (9.9), using the optimum source conductance for the 
input circuit. 

9.11. Repeat problem (9.6) for a triode connected 6AK5. 

9.12. Repeat problem (9.7) for a triode connected 6AK5. 

9.13. Repeat problem (9.9) for a triode connected 6AK5. 

9.14. Summarize in words your conclusions as a result of the computations 
made in problems (9.6), (9.7), (9.9), (9.11), (9.12), and (9.13). 



Chapter 10 

NEGATIVE RESISTANCES AND CLASS A 
OSCILLATORS 

An oscillator is a circuit that converts d-c power into a-c or signal 
power. Amplifiers accomplish the same effect, but the energy con
version process is under the control of some input or excitation signal. 
Ordinarily, no excitation or input is required in the operation of an 
oscillator. 

Oscillator circuits are found in all radio, radar, and television trans
mitters and receivers as well as in carrier telephony systems. Indeed, 
there are only a few systems that do not require the use of oscillators. 

Whenever an analysis is made of an electronic circuit capable of 
producing a sustained oscillation, it is found that the circuit exhibits a 
negative resistance as a part of its static or dynamic characteristics. It 
may not be possible to prove that this is exclusively true in every 
instance. However, whenever a sustained oscillation occurs, a negative 
resistance invariably appears. Thus basic oscillator theory can be 
presented from this standpoint in a way that will apply to all electronic 
devices, regardless of whether they are gas or vacuum tubes, transistors, 
or feedback circuits. 

Oscillators are classified in many different ways and each system has 
its own merits. In this book the oscillator is assumed to operate either 
in class A or in the switching mode. Only class A oscillators are 
covered in this chapter. 

I 0.1. Theory of Negative Resistance Oscillators 
The essential components of a negative resistance oscillator are shown 

in figure (10.1). The principal parts are (1) a negative resistance circuit 
or device, and (2) some sort of connected load circuit. The negative 
resistance component is represented by an equivalent circuit consisting 
of a variable resistor R, which can vary both in magnitude and sign, in 
parallel with a current source i(t). This current source supplies the 
initial excitation necessary to produce the oscillation and can be 
disconnected when oscillation commences. Although it is assumed to 

349 
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be constant in this discussion, it is an easy matter to prove that it can 
have any time dependence, just so long as it actually exists momentarily. 
In an actual circuit this current source might represent a current 
impulse caused by thermal agitation or some other circuit unbalance of 
transient character. 

The integrodifferential equation for the circuit of figure (10.1) is 

de ( 1 1) I C- + - + - e + - Je dt = i(t) 
dt RL R L 

(IO.I) 

Assume that the capacitor is initially uncharged and that there is no 
initial current through the coil. Using the methods given in chapter 2, 
it is a simple matter to write the Laplace transform of equation (IO.I) 

---- --- --- ---, 

NEGATIVE RESISTANCE 
CIRCUIT OR DEVICE 

i 
e 

i 

r----------- ---- -- ---, 

C 
L 

L-- - - ---- - - '- --- - - - - - _J 

CONNECTED LOAD 

Fig. 10.1. Essential components of a negative resistance oscillator. 

and solve the result for the transform response voltage E(s). Thus 

I(s) 1 
E(s) = C · s2 + (RL + R)sf RLRC + 1/LC (I0.2) 

so that the characteristic equation is 

s2 RL + R. s 1 _ O 
+ RLR C+ LC- (10.3) 

The roots of this equation are the poles of the response transform, and 
these roots are computed from the quadratic formula to be 

1 RL + R ·J 1 ( 1 )
2(RL + R)2 

Si= - 2C. RLR + J LC- 2C RLR (I0.4) 

(10.5) 

The poles of the response transforms will be complex conjugates and 
the time response will be oscillatory only if the quantity under the 
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radical is positive. This is a necessary condition that must be fulfilled if 
oscillations of any type are to be produced. 

There is another important condition. If the real part of the pole 
is positive, the amplitude of the oscillation will increase as a function 
of time. If the real part is negative, the amplitude of the oscillation will 
decay with time. A constant amplitude results when the real part of the 
pole is zero. The explanation of this was given in chapter 2. 

With the foregoing in mind you can see that an oscillation is produced 
only if 

(2~W~:j/f < L
1
c 

This inequality must be true at all times. However, when the oscillation 
first starts out, it is small and must build up in amplitude. So the real 
part of the poles must be positive, so that 

RL+R 0 
- RLR > 

This condition can be achieved only if R is negative. That is, if 
R = -I R I , the inequality can be maintained if R L > I R I . During 
this buildup period the oscillator frequency 

(10.6) 

will vary because IR I will change as a result of nonlinearity in the 
negative resistance circuit. 

Eventually, to obtain an oscillation of constant amplitude, the real 
part of the pole must vanish. This will occur only if 

(10.7) 

When this transpires, the oscillator frequency becomes constant at 

Wo = J LIC (10.8) 

This value is governed by the constants of the load circuit if the negative 
resistance device or circuit is free from inductive and capacitive 
components. 

The discussion can now be summarized by listing the essential 
components of oscillators together with their functions: 

(1) Negative resistance. This reduces the real part of the poles of the 
response transform to zero for steady state operation. 
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(2) A nonlinear circuit element. Either R L or I R I must be variable 
so that the oscillation can build up to some specified value and then 
level off. 

(3) Frequency controller. This function is usually supplied by the 
load circuit and acts to keep the oscillator frequency constant under 
normal conditions. 

(4) Initiation of oscillation. Usually thermal agitation or a circuit 
unbalance will provide the transient fluctuation in current necessary to 
institute the oscillation. 

It seems clear that much of the discussion of oscillators will revolve 
about methods of producing negative resistance. The nature of the 
negative resistance characteristic so produced is also of considerable 
interest, and is treated in the next two sections. 

I 0.2. Types of Negative Resistance Characteristics 
It is found that negative resistance circuits and devices generally 

exhibit negative resistance characteristics only over a confined range of 

t 
i 

e--+ 

t 
+R 

0 

-R 

+ 

!l 
I 
I 
I 
I 
I 
I 
I 
I 
I 

e ---+ 

n 
(a) CURRENT-VOLTAGE CHARACTERISTIC (b) RESISTANCE VS. VOLTAGE 

Fig. 10.2. Characteristics of a short-circuit stable negative resistance 
device or circuit. 

the complete characteristic. The resistance measured at a pair of 
terminals will generally be positive over a part of the characteristic, then 
negative, and then positive again. There seems to be two different types 
of such characteristics as shown in figures ( 10.2) and ( 10.3); they are 
identified as follows: ( 1) short-circuit stable; (2) open-circuit stable. 
The origin of this terminology will be apparent later. 
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At first glance it might appear that there is little difference between 
the two types of characteristics. However, from figure (c) of both 
illustrations, in making the transition from + R to - R, 

(1) R goes through infinity in the short-circuit stable case. 

+ 
e 

i+ 
(a) VOLT-AMPERE CHARACTERISTIC 

(b) RESISTANCE VS. CURRENT 

Fig. 10.3. Characteristics of an open-circuit stable negative resistance 
device or circuit. 

(2) R goes through zero in the open-circuit stable case. 
The quiescent operating point of a circuit composed of a series 

combination of negative resistance, load resistance, and power supply 
is easily deduced. For example, consider the case of a load resist
ance R L, connected in series with a voltage source Ebb and a short 
circuit stable negative resistance device. The operating point of this 
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combination is obtained by drawing the load line for Ebb and R L on 
the current-voltage characteristic of the negative resistance device and 
determining the point or points of intersection of the two characteristics. 
This is illustrated in figure (10.4a) for the case when RL is less than the 

t 

Ebb e-. 
( a) LOAD RESISTANCE LESS THAN THE 

MAGNITUDE OF THE NEGATIVE RESISTANCE 

t 

e-+ Ebb 
( b) LOAD RESISTANCE GREATER THAN THE 

MAGNITUDE OF THE NEGATIVE RESISTANCE 

±R 

+:
I 

(c) CIRCUIT DIAGRAM 

Fig. 10.4. Different operating conditions shown by load line construction 
on a short-circuit stable characteristic. 

magnitude of the negative resistance. One possible operating point 
results. 

When the load resistance is larger than the magnitude of the negative 
resistance, there are three possible operating points as shown in figure 
(10.4b). The question of the relative stability or instability of these 
operating points is discussed in the next section. 
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I 0.3. Stable and Unstable Operating Points 
The circuit diagram of a negative resistance oscillator showing d-c 

connections is given in figure (10.5a). The negative resistance charac
teristic of the device is assumed to be of the short-circuit stable type as 
shown in figure (10.5b). Two different load lines are shown corre
sponding to the two possible relationships between the load resistance 
and the magnitude of the negative resistance. The variational equivalent 
circuit is given in figure (10.5c), in which i(t) is an assumed current 

SHORT CIRCUIT 
STABLE 

NEGATIVE 
RESISTANCE 

Cb 

L C 

Cb= DC BLOCKING CONDENER 
(a) Cl RCUIT DIAGRAM OF A NEGATIVE 

RESISTANCE OSCILLATOR 

• 

Ebb e Ebb 
(b) NEGATIVE RESISTANCE CHARACTERISTIC 

AND POSSIBLE QUIESCENT OPERATING POINTS 

( c) VARIATIONAL EQUIVALENT CIRCUIT OF 
CIRCUIT IN (a) 

Fig. 10.5. Circuits and quiescent operating points in a short-circuit stable 
negative resistance circuit. 

generator caused by thermal agitation in the circuit. The circuit is of 
the same form as that in figure ( 10.1 ), so that the poles of the response 

transform are 1 RL + R ·J 1 ( 1 ) 2(RL + R)2 
s1•2 = - 2c· RLR ±; LC- 2c RLR 
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Now suppose that the load resistance RL is less than the magnitude 
of the negative resistance, so that the quiescent operating point is at ( 4) 
in figure (10.5b). Under the assumed conditions, the poles of the 
response transform will fall in the left half of the complex s plane, so 
that any transient disturbance of any character will eventually die out. 
Clearly, this is a stable operating point. 

Now suppose that the circuit is adjusted so that RL is greater than 
the magnitude of the negative resistance and that the Q point is at ( 1) 
or (3) in figure (10.5b). In this case the resistance of the device is 
positive and the poles of the response transform fall in the left half of 
the s plane. The system is again stable. 

Under the same operating conditions, assume that the quiescent 
operation is at point (2) in figure (10.5b). In this case the magnitude of 
the load resistance is larger than that of the negative resistance, and the 
poles of the transform response fall in the right half plane. Hence any 
slight and momentary disturbance in the system will institute a transient 
that will build up exponentially indefinitely until limited by the system. 
Thus point (2) is an unstable operating point. 

If operation at point (2) is initially assumed, any momentary current 
increase or decrease will cause the circuit to become unstable and 
switch over to operation at one of the two stable points. A positive 
current impulse will cause the circuit to switch over to operation at 
point (1); a negative current impulse will cause operation to switch 
over to point (3). 

Evidently, a circuit of this type will be stable when the load resistance 
is zero, so that it is short circuited. Thus it is called a short-circuit stable 
negative resistance characteristic. Instability can be produced in a 
short-circuit stable negative resistance circuit when the load resistance 
is greater than the magnitude of the negative resistance. 

Exactly converse conclusions regarding the relative sizes of R L and 
the negative resistance are obtained by the same analysis if applied to 
the open-circuit stable case. 

I 0.4. Methods of Triggering 
The case of a series connection of load resistance RL, power supply, 

and short-circuit stable negative resistance device was treated in the 
preceding section. It was shown that there are three possible operating 
points when R Lis greater than the magnitude of the negative resistance. 
The operating points in the positive resistance region proved to be 
stable, while the one in the negative resistance region was unstable. In 
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the latter case, any small change in circuit current or voltage causes 
operation to switch from the unstable point to one of the stable points. 
This sudden change in operating point is called triggering, or the circuit 
is said to have been triggered. 

In any practical case, under quiescent conditions such a circuit will 

t 

e _. Ebb
3 

Ebb I Ebb2 
( a) TRIGGERING BY VARIATIONS IN SUPPLY VOLTAGE 

t 

( b) TRIGGERING BY VARIATIONS IN LOAD RESISTANCE 

Fig. 10.6. Methods of triggering a short-circuit stable negative resistance 
circuit. 

always be in one of its stable states. This is an obvious conclusion 
because the fluctuation in e or i necessary to trigger the circuit from the 
unstable point will always be produced by some random phenomenon 
such as thermal agitation. 

Assume such a circuit operating at point A under quiescent conditions 
as shown in figure (10.6a). Now suppose that the load line is translated 
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parallel to itself by changing the power supply voltage from Ebbi to Ebb
2

• 

This causes the operating point to move from A to B. Point B falls in 
the negative resistance region and is an unstable operating point. Hence 
the circuit triggers over to operation at point C. If the power supply 
voltage is now decreased to Ebba' the operating point moves to point D. 
This is also an unstable point and triggering to point E occurs. 

Figure (10.6b) shows how triggering can be accomplished by varying 
the slope of the load line by changing the value of the load resistance R L· 

It is also possible to produce triggering by varying the size and shape 
of the current-voltage characteristic. 

Similar results can be deduced in the same way for the open-circuit 
stable characteristic. 

I 0.5. Oscillator Classification 

When a negative resistance circuit has the inherent capability of 
self-triggering, it is an oscillator in the strictest sense of the word. Under 

t 
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Fig. 10.7. Operating conditions in a linear class A oscillator. 

these conditions it is capable of converting the d-c power from the 
power supply into some repeating waveform or variational signal 
without the assistance of any externally applied signal. In such cases, 
the operating point falls into three distinct regions, and a switch type of 
equivalent circuit is required to describe circuit behavior. Such circuits 
are covered in Part III, which is devoted to operation in the switching 
mode. 

The discussion in this chapter will be confined to those circuits 
operating in a nonswitching or class A manner. Operation is at all 
times in the negative resistance region, so that the device can be 
represented by a simple equivalent circuit composed of a negative 
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resistance and an equivalent intercept voltage source. Under steady 
state conditions operation will occur as shown in figure ( 10. 7) so that 
the intercept voltage is approximately equal to Ebb, the power supply 
voltage. This simplifies oscillator analysis somewhat, because the 
corresponding equivalent circuit is fundamentally the same circuit as 
that used in the elementary discussion given in section (I 0.1 ). 

As long as operation is restricted to the specified region the circuit 
will be linear. Considerable nonlinear distortion results when operation 
shifts to the switching mode. 

The linear oscillators treated in this chapter can be classified in many 
ways, as follows: 

( 1) According to the electronic device used 
(a) Vacuum tube oscillators 
(b) Transistor oscillators 
(c) Gas tube oscillators 
(d) Thermistor oscillators 

(2) According to function 
(a) Power oscillators (covered in chapter 12) 
(b) Frequency controlling oscillators 

(3) According to waveform generated 
(a) Sinusodial 
(b) Square wave 
(c) Sawtooth 
( d) Trapezoidal, and so on 

(4) According to the nature of the frequency determining element 
(a) RLC resonant circuit 
(b) RC circuit 
( c) Piezoelectric 
(d) Magnetostriction 

(5) According to the location of the negative resistance 
(a) In the d-c or static characteristic 
(b) In the dynamic characteristic 

The last method of classification is pref erred here and is explored in 
some detail in later sections. 

I 0.6. Classification of Negative Resistance Devices 

It was stated in the preceding section that oscillators can be classified 
according to the location of the negative resistance. Thus two main 
oscillator types can be defined as follows: 

(1) Negative resistance oscillators. The negative resistance is a part 
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of the static characteristics of the device or circuit. Such a characteristic 
arises in two ways: 

(a) As an intrinsic property of the electronic device (dynatron 
type). 

(b) As a result of particular external circuit connections (transitron 
type). 1 

(2) Feedback oscillators. Specific external circuit connections are 
required to produce a negative resistance in the dynamic characteristics 
of the complete circuit. 

Another group of circuits are called transit time oscillators, but these 
are more appropriately treated in ultrahigh frequency books. Their 
operation is governed by factors entirely unrelated to the discussion 
presented here. 

The actual devices and circuits that fit into this classification are 
given in the next two sections. 

10.7. Negative Resistance in the d-c Characteristic 

Thermistors, arc discharge tubes, and certain magnetrons have a 
negative resistance as an important part of their static characteristics. 
Similarly, over a confined range of operating potentials, vacuum tube 
tetrodes exhibit a negative resistance region caused by secondary 
emission effects. Therefore all these characteristics can be used with an 
appropriate tuned circuit to produce dynatron oscillations. The 
necessary design relationships can be derived directly from the results 
given in section (10.1). 

The tetrode characteristic has little practical use. The magnitude of 
the negative resistance characteristic is so large and so variable that 
unreasonably large values of R L and Ebb are required. Also, the region 
of operation is small and quite nonlinear, so that considerable nonlinear 
distortion results, and the amplitude of the output is small. 

Dynatron oscillations in magnetrons are mainly of academic interest 
because such operation does not utilize the particular attributes of the 
magnetron to advantage. 

The arc type of oscillator is not of general importance today as a 
signal source. However, inadvertent oscillation in gas discharges is 
often a serious practical problem. 

1 The term transitron oscillator currently refers to a specific circuit. However, the 
technique of using external circuit connections to produce a d-c negative resistance 
is representative of a group of circuits. Thus the term is used in a general sense 
here, though such terminology is not standard. 
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Thermistor oscillators have a wide area of potential use. This is 
especially true in the production of low frequency oscillations. In this 
type of circuit the thermal inertia of the thermistor replaces the electrical 
inductance of the tuned circuit. Because this inertia is ordinarily quite 
large, the effective inductance of the thermistor can be extremely large, 
and low frequency oscillations result. 

When special external connections are made about some devices they 
exhibit a negative resistance in their d-c characteristics. For example, 
transistors can exhibit a negative resistance at a pair of terminals under 
certain conditions if the current amplification factor oc is greater than I. 
In most cases it is necessary to add some resistance to the base; if the 

---M•t----JVV\---

Fig. 10.8. Negative transconductance circuit. 

output terminals are short circuited the input resistance will be negative 
over a part of the characteristic. Similarly, a negative resistance region 
will appear in the output characteristic if the input terminals are short 
circuited. Oscillation in the transitron sense is then possible if a !U_ned 
circuit of the proper characteristics is connected across the pair of 
terminals exhibiting the negative resistance. 

A successful vacuum tube circuit is the original transitron oscillator 
shown schematically in figure (I 0.8). This is also called a negative 
transconductance oscillator. It consists of a pentode with the screen 
and suppressor coupled together and the screen more positive than the 
plate. The combination of electrode potentials is such that a virtual 
cathode is formed about the suppressor, and this supplies electrons to 
both the screen and the plate. If the screen voltage should rise, this 
increase is coupled over to the suppressor. The suppressor is then 
more positive than before and it allows more electrons to go to the plate 
and fewer to the screen. Thus the screen current is reduced; this is 
evidence of a negative resistance characteristic appearing in the screen 
circuit at the terminals marked in figure (10.8). Connection of an 
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appropriate tuned circuit at these terminals will result in sustained 
oscillations. 

Another vacuum tube circuit that exhibits a negative resistance as a 
part of its static characteristics in the transitron sense is shown in 
figure (10.9). This is the well-known Eccles-Jordan circuit, and the 
negative resistance appears at the marked terminals. This circuit has 
not been widely used for linear oscillators, but it is extensively used for 
oscillators operating in the switching mode. 

.__NEGATIVE_. 
R REGION 

2 

(a) ECCLES-JORDAN CIRCUIT (b) CURRENT-VOLTAGE CHARACTERISTIC 

Fig. 10.9. Eccles-Jordan negative resistance circuit. 

10.8. The Method of lsoclines 

In section (10.1) it was shown that a negative resistance oscillator 
necessarily requires a nonlinear circuit element, otherwise an oscillation 
could not build up in amplitude and then level off at a fixed value. 
It was shown that this required complex conjugate poles in the right 
half of the s plane during the build up period. As the oscillation builds 
up, these poles must move to the left until they are located on the 
imaginary axis when steady state operation is achieved. The system is 
clearly nonlinear during the period in which the poles must move. The 
linear circuit analysis presented in section (IO.I) is useful only during 
the steady state period when the pole locations are fixed. When more 
information is required about the buildup period, nonlinear differential 
equations must be solved. One practical method, called the method of 
isoclines, 2 is outlined here. 

2 Ph. leCorbeiller, "The Nonlinear Theory of the Maintenance of Oscillations," 
Proc. IRE, vol. 23, 1935, pp. 361-378; Wm. A. Edson, Vacuum Tube Oscillators, 
John Wiley & Sons, Inc., New York, 1953, pp. 43-51; Wm. B. Wrigley, "A Note 
on Moving Poles in Nonlinear Oscillating System," Proc. IRE, vol. 41, 1953, 
pp. 774-777. 
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The method of isoclines is basically graphical in nature and suffers 
from the disadvantages characteristic of such methods. However, it 
will work in practical cases, and this is a strong recommendation. It 
holds a great deal of promise in the analysis of negative resistance 
transistor oscillators. 

The essential circuit configuration of a negative resistance oscillator 
is shown in figure (10.10). The node equation for the circuit is 

de 
in+ Ge+ i + C dt = 0 (10.9) 

The current through the negative resistance device is some complicated 

I ...__ t 
•1 

In 
NEGATIVE 

•: R RESISTANCE e •~ or L :: 
DEVICE 

+ 
• G 

I I 
C 

Fig. 10.10. Negative resistance oscillator circuit. 

function of the voltage e. That is, 

in= f(e) (10.10) 

Typical graphical representations off (e) were shown earlier in figures 
(10.2a) and (10.3a). The network differential equation now becomes 

de 
f(e) + Ge+ i + C dt = 0 (10.11) 

It is desirable to eliminate the time variable. This can be done with 
the aid of the following derivative identity: 

de de di 
dt = di . dt (lO. ll) 

This can be simplified somewhat because 

and the current derivative is 

di 
e=L

dt 

di e de e de 
dt = L so that dt = L · di 

and the circuit differential equation in (10.11) reduces to 

C de 
J(e) + Ge+ i +- L e di = 0 

(10.13) 

(10.14) 

(10.15) 
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The time variable has been eliminated from the equation. 
Define the following parameter: 

Z,=J~ (10.16) 

so that the differential equation in (10.15) is 

1 de 
f(e) +Ge+ i+ 2 e- = 0 (10.17) 

Zc dt 

Now transform the variable in this equation by defining a new variable 
such that 

e = Zcu (10.18) 

Because Zc is a constant of the circuit having the dimensions of resis
tance, u has the dimensions of current. Substitute equation (10.18) 
into (10.17) to obtain 

du 
[f(Zcu) + GZcu] + i + u di = 0 (10.19) 

Because both G and Zc are constants of the tuned circuit, the bracketed 
term in this equation is a function of the variable u. That is, 

or 

F(u) = f (Zcu) + GZcu 

F(u) = f (e) + Ge 

Hence equation (10.19) becomes 

du 
F(u) + i + u di = 0 

or finally, 
di u 
du= - i + F(u) 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

Although the reason for this manipulation is probably not clear now, 
it should be shortly. For the moment it is sufficient to say that equation 
(10.23) has great importance in the graphical construction described in 
the next paragraph. 

The function -F(u) is to be plotted on a system of coordinates 
having i as the ordinate and u as the abscissa. This is accomplished 
as follows: 

(1) Carefully plot the current-voltage characteristic of the negative 
resistance device. A representative case is shown in figure (10.lla). 
This curve is/(e). 

(2) Locate the approximate center of the negative resistance region. 
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This locates the Q point. Measure all voltage increments from this 
point. 

(3) Assume a series of values for D.e. For each such value assumed, 
(a) Compute D.u = D.e/Zc. 
(b) Determine D.f (e) = D.in from the curve drawn in (1). 
( c) Calculate G D.e. 
(d) Compute D.F(u) = D.f (e) + GD.e 
(e) Plot -F(u) against u as shown in figure (10.llb). 

Use the same scale calibration for both the ordinate and the abscissa. 
Some additional graphical construction is now required, as follows: 
(1) Draw a vertical line, as at c in figure (10.llb). This intersects 

the -F(u) characteristic at a point marked as b. 
(2) From b project horizontally to the vertical axis and locate the 

point a. 
(3) Take any point x on the original vertical line and draw in the 

line a-x. 
(4) Construct the perpendicular to a-x at point x as shown by the line 

d-x. Thus d-x is tangent to an arc drawn from a as center and through 
x. Then d-x is an isocline. 

From the preceding construction, which is shown in figure (10.llb), 
it is clear that 

a-b = u; 

c-x = i; 

c-b= -F(u) 

b-x = c-x - c-b = i + F(u) 

The slope of the isocline d-x is 

but 

so 

(slope of isocline) = - __!__(} 
tan 

b-x 
tan0 = -b 

a-

(slope of isocline)= - ba-b = - u 
-x i+ F(u) 

(10.24) 

Clearly, the slope of the isocline is equal to di/du as given by equation 
(10.23) and (10.24). In other words, the isocline is the slope of the 
i vs. u characteristic at any point x. 

An isocline diagram is constructed by simply drawing a number of 
vertical lines for arbitrary values of u. Then locate points b and a for 
each such line. From each point a use a compass to draw a series of 
short arcs intersecting the corresponding vertical line. These arcs are 
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all isoclines, and the over-all result is an isocline diagram as shown in 
figure (10.12). 

The isocline diagram is used to construct a cyclogram, as described 
in the next section, and the cyclogram is useful in analyzing and under
standing the behavior and characteristics of the oscillator during both 
the buildup and steady state periods. 
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Fig. 10.12. Isocline diagram drawn from the plot of - F(µ) in figure (10.11 ). 

I 0.9. Cyclograms 
The entire performance of an oscillator starting from any assumed 

initial conditions, through buildup and into the steady state can be 
shown by curves called cyclograms. Cyclograms are plots of the 
oscillator current and voltage as a function of time. They are plotted on 
isocline diagrams and appear as shown by a typical example in figure 
(10.13). 

The direction of rotation on this curve as time increases can be deter
mined from the expression 

di 
L-=e=Zu 

dt C 
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In terms of increments this is 

L /j.i 
/j_( = - . -

Zc u 

Thus a positive increment of time requires either a positive value for 
u and a positive increment in i, or a negative value for u and a decre
ment in i. Therefore increasing time corresponds to counterclockwise 
rotation on the cyclogram. 
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Fig. 10.13. Cyclogram drawn for zero initial conditions from the isocline 

diagram of figure (10.12). 

The cyclogram is constructed rather simply by the following method: 
(1) Take any assumed or specified starting point on the isocline 

diagram. 
(2) From this point, which represents the initial conditions, draw a 

continuous curve in the counterclockwise sense, always staying parallel 
to the isoclines. 

(3) Eventually the curve closes upon itself and the steady state is 
thereby attained. 
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A different path of buildup will result from different assumed starting 
points, but steady state operation will always follow the same curve. 

The use of the cyclogram in understanding circuit operation is 
apparent. The number of cycles required for buildup from any set of 
initial conditions is readily determined. The waveforms of current and 
voltage can be determined by calculating the time rate of traverse of the 
cyclogram. This is worked out in the next paragraph. 

The cyclogram is a curve of i against u, where u = e/Zc as a function 
of time. An angle cp can be defined as 

-1 i <p = tan -
u 

and the rate of rotation around the cyclogram is the time rate of change 
of this angle. That is 

dcp u(di/dt) - i(du/dt) 
w=-=------

dt u2 + i2 

However, from equation (10.14), 

di e uZc u 
-=-=--=--
dt L L VLC 

Also, the original differential equation (10.11) was of the form 

de 
[f (e) + Ge] + i + C dt = 0 

or 

Therefore 

du 
F(u) + i + ZcC dt = 0 

du i + F(u) 
dt = - CZc 

i + F(u) 

VLC 

(10.25) 

(10.26) 

(10.27) 

Now define the parameterro0 = undamped natural frequency= 1/V LC, 
so that equations ( 10.26) and (10.27) become 

di du 
dt = mou; dt = -w0[i + F(u)] 

Substitution of these relationships into equation (10.25) eventually 
gives 

[ 
iF(u) ] 

w = Wo I + u2 + ;2. (10.28) 
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In high Q cases the second term in equation (10.28) is negligible and 
w = w 0 • The cyclogram becomes nearly circular and the rate of traverse 
becomes constant at a frequency equal to the undamped natural 
frequency of the resonant circuit. The oscillator then generates a 
sinusoidal waveform. 

When the second term in equation (10.28) is not negligible, the rate of 
traverse around the cyclogram is not constant. Moreover, the cyclo
gram itself is distorted from a circular shape. As a result a very 
nonsinusoidal waveform is generated. In any case, equation (10.28) can 
be used to calibrate the rate of rotation around the cyclogram. 

10.10. Negative Resistance Produced by Feedback 
Feedback oscillators are probably the most common of all class A 

oscillator types. The basic physical arrangement is shown in figure 

AMPLIFIER +-Zc --- ~ 

GAIN=Ao 

FEEDBACK -
CIRCUIT p ~ 

Fig. 10.14. Feedback circuit. 

(10.14) where it is understood that the amplifier can use either vacuum 
tubes or transistors. It was shown in chapter 7 that the output 
impedance of such a circuit is 

Z0 R0 ±jX0 

Zout = Zc = 1 - /JAo I - /JAo 

where A 0 = open loop voltage gain of the amplifier; fJ = voltage 
transfer function of the feedback circuit; Z 0 = output impedance of 
the open loop amplifier. It is clear from this equation, which was 
derived by using variational currents and voltages, that the output 
impedance of the feedback amplifier can be made to have a negative 
resistance component by using positive feedback in an amount suffi
cient to make {JA 0 larger than I. It is also clear that the output imped
ance will contain reactive terms if the output impedance of the open 
loop amplifier is reactive or if {JA 0 is a complex number. Should this 
occur, the frequency of the oscillations will be determined in part by 
the reactance component of the output impedance. 
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10.11. Representative Feedback Oscillator Circuits 
Every feedback oscillator, regardless of type, involves the essential 

components: (1) amplifier; (2) amplitude limiter or controller; 
(3) feedback circuit; (4) frequency controller. 

Either vacuum tube or transistor amplifiers can be used and because 
of the nonlinearities inherent in such components, they frequently 
provide amplitude limiting service as well, In other cases some other 
nonlinear circuit element may be used for limiter service. 

The functions of frequency control and feedback are often provided 
by the same circuit. This is especially true in most vacuum tube 
oscillators. 

In this book feedback oscillators are first classified according to 
whether the amplifier uses a vacuum tube or transistor. Then, within 
each of these two groups, the circuits are further subdivided according 
to the nature of the frequency controlling network. Representative 
circuits of various types are shown in figures (10.15), (10.16), and (10.17). 
In the interests of simplicity, all d-c connections have been omitted 
and only essential a-c components are shown. The proper d-c 
connections are easily deduced because the same general considerations 
apply here and for amplifiers of the same type. 

In a grounded cathode vacuum tube amplifier with resistance load, 
there is an inherent 180° phase shift of a sinusoidal signal in its trans
mission through the amplifier. To make a single tube amplifier of this 
type operate as an oscillator, it is necessary to produce another 180° of 
phase shift in the feedback circuit, bringing the total up to 360°. 
Actually, the phase shift in the amplifier is seldom exactly 180° and the 
feedback circuit must make up the deficit between whatever it is and the 
required 360°. 

The phase shift problem may be somewhat less involved when certain 
types of grounded base transistor amplifiers are used, because there is 
no phase inversion through such circuits. Thus no severe phase shifting 
requirements are imposed upon the feedback circuit, because no phase 
shift is required. 

It would appear from figure (10.15) that there is a multiplicity of 
types of vacuum tube oscillators with resonant circuit frequency 
controllers. However, it is a relatively simple matter to show that all 
such circuits are basically either Hartley or Colpitts oscillators. For 
example, consider the tuned plate, tuned grid (TPTG) oscillator of 
figure (10.15c). For the feedback circuit to produce the required phase 
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Fig. 10.15. Vacuum tube oscillations with resonant circuit frequency 
control. A-c paths only; all d-c connections omitted. 
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Fig. 10.16. RC tuned and bridge type vacuum tube oscillators. 
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shift, the reactances on both sides of the tap must be of the same type, 
but opposite to the reactance in parallel with the tapped element. 
Thus the parallel tuned circuits must appear as effective inductances, 
thereby requiring the resonant frequencies of these circuits to be higher 
than the oscillator frequency. Clearly, when these circuits are replaced 
by inductances the circuit diagram reduces to that of a Hartley oscillator. 

The same simplification can be applied to the crystal oscillator of 
figure (10.15d). By replacing the crystal with a parallel tuned circuit, 
the equivalent circuit of a crystal in this case, the circuit is obviously 

(a) TUNED BASE OSCILLATOR 

Rb 

..,_ ______ , _x_TA_L ___ _ 

(b) CRYSTAL OSCILLATOR (c) TUNED COLLECTOR OSCILLATOR 

Fig. 10.17. Representative transistor oscillators; all d-c paths omitted. 

the same as that of a TPTG oscillator, and is therefore inherently a 
Hartley oscillator. A similar analysis will show that the Pierce oscillator 
is fundamentally a Colpitts circuit. 

There·are many ways of obtaining the necessary phase shift required 
for positive feedback without using resonant circuits. Four represen
tative vacuum tube circuits using RC circuits for frequency control, 
were shown in figure (10.16). 
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10.12. Analysis of Feedback Oscillators 
The analysis of feedback oscillators and the derivation of suitable 

design formulas is a straightforward application of standard techniques 
and ideas covered in previous chapters. Two of these points are 
important, as follows: 

(1) From chapter 2. The response of a circuit will be oscillatory if 
the poles of the transfer function are complex conjugates. The 
oscillation will be sustained with constant amplitude if the real parts of 
these poles are zero. 

(2) From chapter 7. The voltage amplification, or transfer function, 
of a feedback amplifier with voltage feedback is 

A= Ao 
c 1 - /JAo 

The poles of this function are clearly the roots of the equation {JA 0 - I 
=0. 

With these facts in mind the proper procedure for analyzing feedback 
oscillators can be summarized as follows: 

(1) Draw the complete class A equivalent circuit: 
(a) Replace bypass capacitors by short circuits. 
(b) Replace radio frequency chokes with open circuits. 
(c) Show tube or transistor capacitances. 
(d) Draw the circuit as an open loop amplifier. That is, if the 

amplifier uses vacuum tubes, the equivalent plate generator is gmEu 
and the output is Eu. 

(2) Compute the over-all amplification of the open loop circuit as 
a function of the frequency s. This will equal the feedback factor /JA 0 • 

(3) Write the equation /3A 0 - I = 0. Make any valid approxi
mations. 

(4) The final form of this equation should appear as a polynomial in 
s with unity as the coefficient of the highest power of s. 

(5) Compute the roots of this equation. 
(a) For oscillations to occur there must be a pair of complex 

conjugate roots with zero real parts. These two conditions will yield 
two design equations. 

(b) If factoring is difficult, the Routh-Hurwitz or Nyquist 
criterion will prove helpful. 

This procedure is best illustrated by examples. Some relatively 
simple cases are treated in the next few sections. 
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I 0.13. Analysis of a Colpitts Oscillator 
Consider the vacuum tube Colpitts oscillator shown in figure ( 10.18a ). 

The circuit has been redrawn in figure ( 10.18b) with only the significant 

RFC 

F ___ ~c-1 --- ~Ecjcb 
l'"I Cb"' BLOCKING CONDENSERS 

~ RFC•RF CHOKES 

(a) CIRCUIT DIAGRAM SHOWING ALL CONNECTIONS 

p 

L R L 
K 

G 

(b) CIRCUIT WITH DC PATHS 
OMITTED 

(c) OPEN LOOP CLASS A EQUIVALENT 

CIRCUIT 

(d) SIMPLIFIED EQUIVALENT 
Cl RCUIT CORRESPOND ING 
TO THE GENERAL VACUUM 
TUBE AMPLIFIER 

Fig. 10.18. Analysis of a Colpitts oscillator circuit. 

signal frequency elements shown. This circuit results from part (1) of 
the procedure given in the preceding section. Here R L is used to repre
sent the losses in the oscillator resonant circuit and the power delivered 
to the load. The class A equivalent circuit is drawn as directed in 
figure (10.18c) and the external capacitances C1 and C2 have been 
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combined with the tube interelectrode capacitances so that Cu= C1 

+ Cuk, and CP = C2 + Cpk• It is assumed that the effect of Cup is 
negligible at the operating frequency w0 of the oscillator. This is not a 
necessary assumption because the effect of C uP is easily determined. 
However, it does simplify the problem, and the assumption is usually 
valid at low frequencies when pentodes are used. 

The final open loop equivalent of the amplifier is shown in figure 
(10.18d) where it has been arranged in the form of the general amplifier 
treated in chapter 4. In this case, the components of the unloaded 
pi section are 

rp 
Z1=----; 

s(rPCP) + 1 

The system amplification is 

f3 
E0 Eu 

Ao=£.= E = 1 = -gmZm 
i g 

However, it was shown in chapter 4 that 

Z1Z2 z =-----
m Z1 + Z2 + Za 

so that the system amplification of the equivalent circuit is 

{JA - I - - Z1Z2 
o - - gm Z1 + Z2 + Za 

(10.29) 

(10.30) 

If the expressions for the three impedances are substituted into this 

relationship, the result can be expressed in the following form after 
some standard algebraic manipulation: 

µ 

(
Rm 1 ) 2 ( 1 1 RL ) 1 

s3 + -+- s + -+-+-.,- s+--
L ,pep LCP LCg LCprp rPCPLCg 

(10.31) 

Subtract I from both sides of the equation to obtain the characteristic 
equation f3A

0 
- 1 = O; cross-multiply, collect terms, and express the 

result as: 

s
3 + (RL/L + I/rPCP)s2 + (I/LCP + I/LCu + RLfrPCPL)s 

+ (µ + 1)/r 11CPLCu = 0 (10.32) 
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This equation has the general cubic form 

s3 + a2s2 + a1s + a0 = 0 

Because a cubic equation is involved, the roots can be computed only 
with some difficulty. Fortunately, the Routh-Hurwitz criterion (see 
chapter 7) resolves this problem. 

Form the Routh-Hurwitz determinant as follows: 

sa 01 
s2 02 Oo 
sl (a2a1 - ao)/02 0 
SO Oo 0 

During the buildup there must be a pair of right half plane poles, so 
there must be two sign changes in the first column of the determinant. 
This requires that 

(10.33) 
during buildup. 

In the steady state the third row of the determinant must vanish, 
so that 

(10.34) 

This is the condition for oscillation expressed in terms of the coefficients 
of the cubic characteristic equation. The frequency of oscillation is 
readily found from the coefficients of the last nonvanishing row of the 
determinant. That is, the roots of a2s

2 + a0 = 0 or s2 + a0/ a2 = 0 
give the oscillator frequency in the steady state. These roots are 

s1,2 = ±jJao = ±jWo 
ll2 

and the oscillator frequency is 

Wo = Jao 
02 

(10.35) 

Substitute the values for the coefficients into equations (10.34) and 
(10.35) so that the oscillator frequency in the steady state is 

J µ+I 
Wo = LCu + RLCurPCP 

(10.36) 

and the condition for oscillation is 

(10.37) 
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In certain special cases it is valid to assume that 

RLr1,C'P --" 1 
L ~ 

When these conditions exist, the preceding equations assume the 
following approximate forms: 

. Jµ ✓-1 
Wo= LCu = LC'P 

Condition for oscillation is 

Cu _...:_µ 
c'P 

(10.38) 

(10.39) 

The analytical process only yields two equations. Hence all the 
oscillator variables except two must be known before this analysis is 
especially useful. 

The technique and procedure just illustrated are perfectly general and 
can be followed for any given circuit. The required degree of familiarity 
can be achieved only by experience. 

I 0.14. Wien Bridge Oscillator 

One of the most popular circuits using RC circuits for frequency 
control is the Wien bridge oscillator shown in figure (10.19a). The 
method of analyzing this circuit and deriving the equations for the 
frequency and conditions for oscillation is exactly the same as that 
followed in the preceding section. The analysis given here is a further 
illustration of the technique. 

The open loop class A equivalent circuit of the oscillator is shown in 
figure (10.19b). All coupling capacitors Cc were assumed virtual short 
circuits at the signal frequencies of interest. The first amplifier stage is 
assumed to have an amplitude response that is flat over the entire 
frequency range of the oscillator so that 

(10.40) 

where 
1 

R=--------
1/r'P1 + 1/RL1 + 1/Rg 

(10.41) 

The calculation of the voltage gain of the second stage is somewhat 
involved because the connected load circuit is quite complicated. 
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Because cathode degeneration is involved, the gain of the amplifier in 
general terms is 

A2 = -g~2Zm 

where ' 1 
gm2 = gm2 l + Riµ + 1)/(r1' + ZL) 

The tube is a pentode, so it is nearly always valid to assume that r 1) is 

Ebbo--r------------r---, 

(Q) CIRCUIT DIAGRAM SHOWING ALL CONNECTIONS 

K2.._ __ ....1..--~1-------

r P2 R L 2 
R1=---

rp2+RL2 

A1s GAIN OF THE 
FIRST STAGE 

(b) CLASS A, OPEN LOOP, EQUIVALENT CIRCUIT 

Fig. 10.19. Circuit diagrams for the Wien bridge oscillator. 

much larger than Z L· Thus the effective transconductance is approxi
mately 

I , gm2 
gm2 = 1 + Riµ + 1)/r1' 

(10.42) 

The values of Zm and the over-all gain are evaluated only with 
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considerable labor. However, the complete result can eventually be 
written 

2 
A - - R' s + a1s + ao (10.43) 

2 - g m2 s2 + h1s + ho 

where 
, RbRx R3 

R = . 
Rb+ Rx R2 + Rx 

(10.44) 

RL (R2 + R3) 
(10.45) R = 2 

X RL2 + R2 + R3 

1 
Wb=-- (10.46) 

RbCb 

a1 = wi2 - R2/ R3) (10.47) 
2 (10.48) ao = wb 

h -w 3Rb + Rx (10.49) 
1 - b R + R b x 

2 Rb 
h0 = wb --- (10.50) 

Rb+Rx 
The product of the two stage gains is equal to the feedback factor. That 
is, f3A 0 = A1A2• Then, for oscillations to occur, f3A 0 - 1 = 0. The 
values for A1 and A2 have been computed and can be substituted into 
this relationship. Once the common denominator is obtained and then 
cancelled into the zero, the result can finally be written 

s2 + C1S + Co= 0 (10.51) 
where 

Ci = Wb [ Ar1Ar2 ( 2 _ R2) _ 1 . 3Rb + Rx] 
Ar1Ar2 - 1 R3 Ar1Ar2 - 1 Rb + Rx 

2 ( Ar2Ar1 1 1 ) Co= wb - . 
Ar1Ar2 - 1 Ar1Ar2 - 1 Rb + Rx 

Ar1 = Km1R; Ar2 = Km2R' 
It is generally true that the product of Ar

1 
and Ar

2 
is much larger than 1. 

Therefore the preceding coefficients simplify to 

C1 = wb (2 - R2 - _I - . 3Rb + Rx) (10.52) 
R3 Ar1Ar2 Rb + Rx 

2 
c0 = wb (10.53) 
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The roots of equation (10.51), which are the poles of the closed loop 

transfer function, are s1,2 = -c1/2 ±jY c0 - (c1/2)2• Evidently a 
sustained oscillation will be produced only if c1 is zero. If it is zero, 
the frequency of oscillation is 

(10.54) 

For c1 to be zero, 

R2 + __ 1 - . 3Rb + R/IJ -- 2 
Ra Ar1Ar2 Rb + Rx 

(10.55) 

This is the condition for sustained oscillation. If the circuit is designed 
so that 

_1 _ _ 3Rb+ Rx~ l 
Ar1Ar2 Rb + R;e 

and this will generally be the case, the condition for oscillation becomes 

R2 = 2 (10.56) 
Ra 

From this last relationship it is evident that either R2 or R3 must be 
variable. This is necessary so that the ratio can exceed 2 during buildup, 
but will maintain the equality under all conditions thereafter. Clearly, 
should the amplitude of the oscillation momentarily increase because of a 
change somewhere in the circuit, the amplitude will be stabilized if the 
equality in (10.56) is violated and R2/R3 becomes less than 2. This would 
require either that (1) R2 decrease, or (2) R3 increase by the right 
amount to make the amplitude constant. Thus either R2 or R3 could be 
variable, but their temperature coefficients of resistance would 
necessarily be opposite. 

The Wien bridge oscillator is popular with designers for wide range 
tunable oscillators. One of the most important reasons for this is 
because the oscillator frequency depends upon the reciprocal of the 
tuning capacitance, rather than upon the square root of the reciprocal. 
Thus a given change in capacitance will produce a wider range of 
oscillator frequencies. Also, changes in frequency band are easily 
made by changing the tuning resistance, and the tuning capacitance 
is used for continuous frequency variation within one band. This 
makes a 10 to 1 change in frequency readily available within one band. 
The oscillator output is quite free from harmonic distortion because of 
the selective characteristic of the Wien bridge. This is another impor
tant practical advantage of the circuit. 
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I 0.15. Transistor Crystal Oscillator 
The technique used in analyzing vacuum tube feedback oscillators 

also applies to transistor feedback oscillators without modification in 
principle. A simple example should serve to illustrate the point. 

Consider the transistor crystal oscillator shown in figure (10.17b ). 
From this diagram construct the class A open loop equivalent circuit. 
This is shown in figure (10.20). The crystal has been replaced by a 
series resonant circuit. You can see from the equivalent circuit that the 
crystal must operate in the series mode; in the parallel mode there 
would be practically no output voltage and the feedback would be 
insufficient to sustain oscillation. 

The voltage gain of this amplifier is the {JA 0 of the oscillator, just as 

Fig. 10.20. Open loop equivalent circuit of the transistor crystal oscillator 
of figure (10.17b). 

it was for vacuum tube oscillators. For a constant amplitude oscillation 
to be produced, fJA 0 must be equal to 1. 

The voltage gain of the amplifier is given by the general gain equation 

, , z1z; 
/JAo = -gtZm = -gt Z1 + Z2 + Za (10.57) 

Terms Z 1, Z 2, and Z3 are the usual three impedances of the general 
unloaded pi network associated with amplifiers. For a grounded base 
amplifier it was shown in chapter 8 that 

' gt gt = - ------ (10.58) 
re (Zc + ZL) 1 +-
rb Zt + ZL 

z. = r I+ - · ---( 
rb Zt + ZL) 

z e re Zc + ZL 
(10.59) 

where zc and Zt have the usual meaning associated with them as derived 
in chapter 8. For the purpose of this discussion we shall also assume 



384 Negative Resistances-Class A Osei 1/ators [Sec. 10.15 

that the oscillator frequency is below alpha cutoff by a sufficient margin 
to assume that ex is a constant. Here Z L is the input impedance of the 
passive load circuit. 

The voltage gain of the open loop circuit can now be written 

{JA = + gtZm (10.60) 
0 

l + ~ (Zc + ZL) 
rb Zt + ZL 

We immediately run into trouble at this point because Z L is partially 
governed by Zi, and Zi is partially governed by Z L- As long as this 
situation prevails, the circuit is virtually insoluble. Fortunately, there is 
a way out of this dilemma. Because the over-all gain of the amplifier is 
only unity, the input impedance Z L of the load circuit is nearly always 
much less than either zc or Zt· As a result, the equations for the gain and 
input impedance of the amplifier are closely approximated by 

(10.61) 

Zi = re ( 1 + ~:::) = re+ riI - ex) = Ri (10.62) 

The transistor transconductance is 

Zm ex 
gt = -rb-z t = -r b-( 1---ex-) (10.63) 

so that the voltage gain is 

/JA = cxZm 
0 re+ riI - ex) 

(10.64) 

The three impedances of the unloaded pi section are computed from 
the equivalent circuit given in figure (10.20). The results may be 
expressed in the following form: 

(10.65) 

(10.66) 

L 2 2 
Z3 = s (s + Bs + wx) (10.67) 
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where rt= rc(l - <X) 

rob= roc(l + rt/Rb) 

2 2 1 
wx = (crystal resonant frequency) = LC 

R 
B=-

L 

(10.68) 

(10.69) 

(10.70) 

(10. 71) 

The Q of crystals is so high that the losses can be virtually ignored, so 
that 

L 
Z3 = ; (s2 + w;) (10.72) 

Substitute the three equations for the impedances into the gain equation. 
Set {JA 0 equal to 1; multiply numerator and denominator through by 
s(s + wb)/L. The result is 

{JA = I = <XR2wcrtsf RiL 
0 

2 2 
(s + wb)(s + wx) + s(s + wb)R2/L + swcrt/L 

(10.73) 

Expand the denominator and then collect coefficients of like powers 
of s. Cross multiply and set up the equation {JA 0 - 1 = 0. This 
leads to 

where 

(10.74) 

(10.75) 

(10.76) 

(10.77) 

Because a cubic equation is involved, you can show from the Routh
Hurwitz determinant that the oscillator frequency in the steady state 
will be 

2 ao 
Wosc =

a2 

and the condition for sustained oscillation will he 

(10.78) 

(10.79) 
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Substitute the equations for the coefficients into these two expressions. 
After some algebraic manipulation we can show that 

2 2 wbL 
Wose = Wx R

2 
+ wbL (10.80) 

where L = effective inductance of the crystal; wx = series resonant 
frequency of the crystal; wb is given by equation (10.69); R2 is given by 
equation (10.66). The condition for oscillation is 

~+~+rm= _1 _(1 + Wose } (10.81) 
Rb R2 Ri oc - 1 we[I - rc(oc - 1)/Rb] 

The condition for oscillation just given sheds some light on the 
circuit. Thus, if oc is about 2 and re is much larger than Rb, the condition 
for oscillation can be met only if 

"'"" < co, [ I - ;;.c,x - I)] (10.82) 

If oc is less than 1 and re is much larger than Rb, oscillations will not 
result under any circumstances. Therefore the circuit can be used 
only with transistors having a current amplification factor greater than 1. 

10.16. Negative Grid UHF Oscillators 
Oscillators designed for use as ultrahigh frequencies (UHF) are of 

two distinctly different types: (1) transit time oscillators and (2) 
negative grid oscillators. Both of these circuit types are covered in 
detail in other books treating just the subject of UHF techniques. 
However, despite the fact that UHF negative grid oscillators differ 
remarkably in appearance from lower frequency oscillators, it is 
relatively simple to show that the same physical processes are involved 
in both cases. 

For an oscillator to operate in conventional manner at ultrahigh 
frequencies, two main precautions must be observed: 

(1) The transit time of the electrons through the interelectrode 
space must be small compared to the period of the oscillation. 

(2) Because the oscillator frequency will be given approximately by 
Vl/LC, where the Land Care the constants in the resonant tank circuit, 
it is clear that very small values of L and C are required for UHF 
operation. To avoid tube selectivity effects, the total Land C should be 
affected only slightly by the lead inductances and interelectrode 
capacitances of the tube. 

The physical appearance of the UHF negative grid oscillator tube is 
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largely governed by the necessity of reducing transit time, lead induc
tance, and interelectrode capacitance without reducing the power 
handling capacity of the tube and load circuit to the vanishing point. 

Because the values required for L and C are small, ordinary coils and 
capacitors would be so small that their power handling capacity would 
be negligible. Hence resonant transmission lines are used in place of 
conventional tuned circuits. The variation of input impedance of a 
lossless line as a function of the electrical length is shown in figure 
(10.21), where it is assumed that the line is short circuited. Evidently 

Fig. 10.21. Reactance characteristics of a short-circuited lossless trans-
mission line. 

Zin can assume the nature of an inductance, a capacitance, or a series 
or parallel resonant circuit, depending upon the length {3d of the line. 
Thus short-circuited transmission lines can be used in place of ordinary 
tuned circuits at ultrahigh frequencies. The greater physical size of the 
line permits a greater power handling capacity. 

A typical UHF negative grid oscillator is shown in figure (10.22a). 
Because resonant transmission lines are used in both the plate and grid 
circuits, this is clearly a tuned plate, tuned grid (TPTG) oscillator. Thus 
the equivalent circuit can be drawn as shown in figure (10.22b) with the 
lines replaced by parallel tuned circuits. The interelectrode capacitances 
Cgk and Cpk have been combined with the capacitances of the equivalent 
tuned circuit, while the grid-to-plate capacitance is shown. For a 
resonant circuit to be formed, the parallel tuned circuits must appear as 
effective inductances, which means that the transmission lines must be 
somewhat less than a quarter wavelength (f3d = 90°) long. The circuit 
is clearly that of a Hartley oscillator as shown in figure (10.22c). 

The same procedure can be followed for any of the UHF negative 
grid oscillators. 
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(a) CIRCUIT DIAGRAM 

Lg k Lpk 

Cgp 

Cg INCLUDES Cgk 
Cp INCLUDES Cpk 
(b) RF EQUIVALENT CIRCUIT 

Rg-Cg•GRID LEAK BIAS 

Cb• RF BYPASS 

Lp 
Cgp 

RFC 

(C) FINAL EQUIVALENT CIRCUIT 

Fig. 10.22. Tuned plate, tuned grid UHF oscillator. 

I 0.17. Parasitic Oscillations 
A parasitic oscillation is an undesired or spurious oscillation in an 

electronic circuit. They often occur in amplifiers and oscillators as a 
result of a wide variety of causes. Parasitics are undesirable and should 
be eliminated because they can lead to reduced component life arising 
from overloading, loss in efficiency, reduced stability, and so on. Also, 
under some conditions the parasitic may radiate and thereby become 
objectionable as well as illegal. Fortunately, through the use of good 
design judgment, with emphasis on careful physical layout, the 
possibility of parasitic oscillation can be reduced; the possibility cannot 
be entirely removed, and when parasitics exist after the equipment has 
been constructed, their elimination can be one of the most trying 
experiences the circuit designer can undergo. 

The most common kind of parasitic oscillation is of the tuned plate, 
tuned grid variety. For example, consider the case of a tuned vacuum 
tube voltage amplifier such as that shown in figure (10.23a). Only 
essential a-c components are shown. A simple rearrangement of the 
circuit makes it appear as shown in figure (10.23b) and this is the same 
as the circuit diagram of a tuned plate, tuned grid oscillator. Under 
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certain circuit conditions, oscillations result. This can be a serious 
problem in intermediate frequency and radio frequency amplifiers. 

Essentially the same problem occurs in transformer coupled push
pull amplifiers, a common circuit when tubes are operated in class AB2 

or B2 (see chapter 12). A typical circuit diagram with d-c connections 
omitted is given in figure (10.23c). In this case the transformer induc-

(o) AC EQUIVALENT CIRCUIT OF 
A BANDPASS VACUUM TUBE 
AMPLIFIER 

,-- - - -- -
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I I 
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(c) TRANSFORMER COUPLED PUSH-PULL AMPLIFIER 
WITH DISTRIBUTED AND INTERELECTRODE 
CAPACITANCES SHOWN 

Fig. 10.23. Conditions leading to tuned plate, tuned grid oscillation in 
amplifiers. 

tances form parallel resonant circuits with wiring and tube capacitances. 
Each of the transformer center taps is grounded for alternating current, 
so that the class A equivalent circuit for either tube is the same as that 
of a tuned grid, tuned plate oscillator. 

This type of parasitic can usually be eliminated by damping one of 
the tuned circuits. The damping is preferably applied in the grid 
circuit and usually takes the form of small resistances in series with the 
grid leads. 

From the preceding discussion you can see that it is generally 
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undesirable to use choke shunt feed in both the input and output 
circuits of amplifiers and oscillators. The chokes can form resonant 
circuits with various capacitances, and the conditions necessary for 
TPTG oscillation at some haphazard frequency could easily result. 
If choke shunt feed must be used in both circuits, the possibility of 
parasitic oscillation can be reduced by using chokes with values of 
inductance different by a factor of about 100. 

Resonant circuits can appear in other, possibly unexpected, ways. 
Neutralizing and bypass capacitors can become series resonant at some 
frequency. Above this frequency they are inductive and may form 
parallel resonant circuits with various stray capacitors. Also, if the 
leads between tubes are too long, they may form resonant transmission 
lines, which will result in UHF oscillations of the TPTG variety. 

The conditions necessary for oscillation may be produced by positive 
feedback in many ways-. The waveguide effect in high gain, bandpass 
amplifiers is one such possibility. The amplifier chassis operates as a 
waveguide cutoff attenuator, and the attenuation may not be greater 
than the amplifier gain. Feedback through the power supply impedance 
is a common cause of oscillation in high gain multistage amplifiers. 

Feedback can also be introduced in high frequency circuits if multiple 
signal frequency ground connections are used. Asing/esignal frequency 
ground should be used if possible. 

Electromagnetic coupling and feedback can result if components are 
poorly positioned with respect to one another or are crowded together. 
Tuning capacitors should generally be mounted with the rotors 
grounded. Contacts in nonsoldered joints, switch contacts, and coil taps 
should be clean. These are only some of the many causes of parasitics. 

PROBLEMS 

10.1. The losses in the tank circuit and the power delivered to the load by a 
Colpitts osciJlator can be represented by a 6000 ohm resistor in parallel 
with the tank coil. It is known that L = 20 µh, Cu= C11 = 500 µµf, and 
r 11 = 30,000 ohms. Compute the frequency of operation of the oscillator and 
the value of tube transconductance required to sustain oscillations. Note that 
this is not the same as the circuit covered in the text. Use any justifiable 
approximations. 

10.2. A Colpitts oscillator is to be designed using a 6C5 triode vacuum 
tube for which cgk = 3.0 µµf; r 11 = 10,000 ohms; cpk = 11.0 µµf; 
gm= 2000 µmhos; Cu11 = 2.0 µµf; µ = 20. The oscillator is to operate at 
10 mcps when fully loaded. The most convenient available tank coil has an 
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inductance of 10 µh and a Q of 100 at 10 mcps. From stability considera
tions, the loaded Q of the tank circuit is limited to a minimum value of 20; 
that is, when the circuit Q is 20, the oscillation should be barely self-sustaining. 
Assume that all energy losses can be represented by a resistor in series with 
the coil. Use any justifiable approximations. 

(a) Compute the necessary values of grid and plate capacitance that 
must be added. 

(b) What is the maximum value of resistance that can be coupled 
into the tank circuit? 

10.3. A three-stage resistance coupled amplifier with all stages identical 
receives power from a common power supply of R0 ohms internal impedance. 
Assume operation in the mid-frequency range of all three amplifiers. If 
RL = 25,000 ohms, rP = 500,000 ohms, Ru= 500,000 ohms, gm= 1800 
µmhos, compute the largest possible value for R0 that will not cause the 
amplifier to oscillate. 

10.4. In the RC oscillator of figure (10.16c) assume that R1 = R2 = 
10,000 ohms; C1 = C2• In the first amplifier stage, RL = 30,000 ohms and 
gm= 1000 µmhos. In the second stage amplifier, RL is unknown but 
gm = 1000 µmhos. Neglect the effects of r P and Ru. Assuming mid-band 
operation of the amplifier stages, 

(a) Determine the oscillator frequency as a function of C1. 

(b) Compute the smallest possible value for R L of the second stage 
for which oscillation is possible. 

10.5. Three identical resistance coupled amplifiers, using pentodes, are 
connected in cascade and supplied from a power supply of zero internal 
impedance. The output from the last stage is connected directly into the 
input of the first stage. Compute the oscillator frequency and the value of 
tube gm required to sustain the oscillation. Neglect the effects of inter
electrode capacitance. 

10.6. A crystal controlled transistor oscillator is shown in figure (10.17b). 
Does the crystal operate in the parallel or series resonant mode? Explain 
your answer. 

10.7. Derive equations for the condition for oscillation and the frequency 
of oscillation of the transistor amplifier of figure (10.17b ). 



Chapter 11 

NONLINEAR CLASS A CIRCUITS 

It is an extremely fortunate fact that many electronic circuits are 
linear. Because of this, the equivalent circuits developed in chapter 1 
become powerful tools in the design and analysis of electronic circuits. 

All the circuits used in electronics are not linear. A large number of 
circuits are fundamentally dependent upon the nonlinear characteristics 
of electronic devices for their operation. 

Despite the fact that nonlinearity in the characteristics of electronic 
devices may have important applications, it also causes considerable 
difficulty. It makes the analytical treatment developed in the preceding 
chapters inapplicable directly. Also, many class A circuits are desirably 
linear, but because of other requirements are forced to operate over a 
nonlinear part of the characteristics. In such cases the electronic device 
causes nonlinear distortion; this is a decided disadvantage. 

In summary, the nonlinear properties of electronic devices may be of 
practical use or the source of great difficulty. In any case, the direct 
analytical treatment of the preceding chapters must be somewhat 
revised. This is the primary purpose of this chapter. A secondary 
purpose is to illustrate the application of the ideas to practical problems 
of interest. Although the discussion is primarily concerned with 
vacuum tubes, the techniques are general and can be applied to any 
nonlinear device. 

11.1. Dynamic Transfer Characteristics, Triodes and 
Pentodes 

The behavior of vacuum tubes is generally represented by the static 
plate characteristic curves; they are useful in making numerical 
calculations, but are not especially adapted to the analysis and descrip
tion of circuit behavior. Instead, it is found that the dynamic transfer 
characteristic is more easily used. The construction of this curve was 
discussed in section (3.3) of chapter 3. 

The circuit diagram of a class A vacuum triode circuit is shown in 
figure (11.1). Following the method outlined in chapter 3, the load line 

392 
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is plotted on the static characteristics of the tube as shown in figure 
(11.2). 

The dynamic transfer characteristic is the graph of plate current ib as 
a function of the grid voltage ec for specified Ebb 

values of load resistance R L and plate power 
supply voltage Ew It is computed from figure 
(11.2) by arbitrarily assuming a series of operat
ing points, a, b, c, d, e, Q, f, g, and so on, along 
the load line. Each such point corresponds to a ---f ___ ..,. 
particular value of plate current and grid volt
age, and these data are plotted to obtain figure 
(11.3). This is the dynamic transfer characteris
tic of the circuit. 

Figure (11.3) illustrates an important point: 
the transfer characteristic of a triode with resis- Fig. 11.1. Class A triode 
tance load is nonlinear. A definite curvature amplifier. 

can be seen in the figure. This means that if a given grid signal is 
impressed on the tube, the resulting plate current will not be an exact 
replica of the input. This effect is shown in figure ( 11.4) for the case of a 

PLATE VOL TS 

Fig. 11.2. Load line on triode characteristics. 

sinusoidal grid signal. The resulting plate current is definitely not 
sinusoidal because of the obvious flattening of the bottom of the 
waveform. The output is different from the input so the output is 
distorted. The distortion is caused by the nonlinearity of the tube, so 
it is called nonlinear distortion. 

Consideration of figures (11.3) and (11.4) shows that the effects of 
nonlinearity in the tube characteristics will be important in two cases: 



394 Nonlinear Class A Circuits [Sec. 11.1 

(1) When the signal amplitude is so large that it causes the operating 
point to swing over a large part of the complete transfer characteristic. 

(2) When the transfer characteristic is extremely nonlinear so that 
even small signal excursions about the Q point cause the operating 
point to traverse a nonlinear part of the curve. ib

15 
I 
I 
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<( 
~---

IC I- - --
Z---a~ LLI 

c)l- a:---
a: ---::> 

e,;, u---- --G..., ... LLI -
I-v c:i:- --

g _J ,__ 
. hi 0.. 

i.A I 
__,,..-f" 

0 I 

-30 -20 -10 0 +10 

GRID VOLT 8c 
Fig. 11.3. Dynamic transfer characteristic constructed from figure (11.2). 

In the linear class A circuits discussed in previous chapters it was 
assumed that neither of these two conditions existed. The devices used 

Fig. 11.4. Effect of nonlinearity on the signal transmission through a triode. 

were selected from those exhibiting only a small over-all curvature, and 
the signal amplitudes were kept small. As a result, the part of the trans
fer characteristic traversed by the operating point could be closely 
approximated by a straight line segment and constant values of gm and 
r 21 could be assumed. 
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It is found that the dynamic transfer characteristic of a triode can 
be closely approximated by a parabolic curve. The mathematical 
expression for a parabolic function contains second degree, but no 
higher degree, terms. It will be shown later that this type of non
linearity causes a purely sinusoidal grid voltage to produce a plate 
current signal having two components, one at the original signal 
frequency and called the fundamental, and one at twice the signal 
frequency, called the second harmonic. The distortion caused by a 
parabolic characteristic is called second harmonic distortfon. 

-ec o +ec 

Fig. 11. 5. Effect of variations in load resistance on the transfer characteristic 
of a triode. 

The effect of variations in load resistance on the second harmonic 
distortion is important. The dynamic transfer characteristics for a 
triode with three different values of load resistance and the same Q 
point are shown in figure (11.5). You can see that increasing the load 
resistance has the effect of reducing the curvature in the transfer 
characteristic. It is reasonable to conclude that this will also reduce the 
second harmonic distortion. This proves to be true. 

The dynamic transfer characteristic of a pentode is obtained by the 
same method as that outlined for triodes. The resulting curve, which is 
shown in figure (11.6), differs from the triode characteristic. In this case 
it is necessary to use at least a cubic function to describe analytically the 
transfer function. The application of a pure, single frequency, sinusoid 
to the input causes the plate current to have at least three components: 
( 1) fundamental = original frequency term; (2) second harmonic = 
twice the original frequency; (3) third harmonic = three times the 
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fundamental frequency. Hence, in a pentode, both second and third 
harmonic terms must be considered. 

You can see from figure (11.6) that increasing the load resistance 
causes a general increase in the curvature of the characteristic at the 

-ec o + ec 
Fig. 11.6. Effect of variations in load resistance on the dynamic transfer 

characteristic of a pentode. 

high current end. This results in increased third harmonic distortion. 
It is difficult to anticipate the variation in second harmonic distortion 
caused by load resistance variations, but it will be investigated in detail 
later. 

Fig. 11. 7. Class A diode 
circuit. 

APPROXIMATELY! 
PARABOLIC ,OR I + SQUARE LAW 1 

1 

IN TH IS REGION: 
j b I 

SMALL SIGNAL I 
REGION 

Fig. 11.8. Diode characteristic showing the 
usual region for class A operation. 

11.2. Nonlinearity in Diodes 

Diodes, either vacuum or semiconductor, exhibit nonlinearities, but 
the dynamic transfer characteristics must be evaluated by a slightly 
different method than that followed in section (11.1). 

A class A diode circuit with resistive load appears in figure (11.7). 
The order of connection of generators, diode, and load is irrelevant to 
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the discussion. The signal voltage ebb is a variation in the supply voltage. 
When it is desirable for the diode to be nonlinear, both components of 
the plate supply voltage are adjusted to restrict tube operation to the 

+ 

...-o::a. _ ___;:..__~ __ ....:=,, __ ~-eb-+ 

Ebbl Ebb2 Ebb3 Ebb4 Ebb5 

Fig. 11.9. Effect of signal voltage variations on the load line and operating 
point of a diode. 

low current region where the nonlinearity is most pronounced. Figure 
(11.8) illustrates a small signal operating condition. 

Because the diode has only a single characteristic curve and the load 

LOW RL 

eb-+ 

Fig. 11.10. Dynamic transfer characteristics of a diode with resistance 
load. 

resistance is fixed, variations in the signal voltage cause the load line to 
be translated parallel to itself and laterally as shown in figure (11.9). 
In this figure the parabolic, or square law, part of the curve has been 
expanded so that only the region of interest in small signal operation 
is shown. The operating point moves along the tube characteristic as 
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the signal voltage causes the effective power supply voltage to vary about 
the quiescent value of Ebb· Thus the dynamic transfer characteristic is 
simply obtained by plotting the total plate supply voltage and the 
corresponding plate current as shown in figure (I 1.10) for three values 
of load resistance. 

The results obtained for the diode are similar to those found for the 
triode because (I) the curve is essentially parabolic, following an 
approximate square law, and (2) the amount of curvature is decreased 
by increasing the load resistance. Hence increasing the load resistance 
will decrease the amount of second harmonic distortion generated by 
the diode. 

REVERSE 
DIRECTION 

t 

FORWARD 
DIRECTION 

=========-~::;;__-----8 -+ 

Fig. 11.11. Varistor characteristic. 

A semiconductor diode, or varistor, presents fundamentally the same 
problem and results, though the static characteristic differs in some 
respects from that of a diode. A varistor characteristic is shown in 
figure (11.l 1 ). 

11.3. Power Series Treatment of Nonlinearity 

We have seen that the transfer characteristics of electronic com
ponents are always nonlinear. It is important to compute the effects 
produced by this nonlinearity. 

Graphical methods can be used to solve any problem, either linear or 
nonlinear; unfortunately, such solutions do not lead to the formulation 
of specific laws or rules of behavior. Instead, each graphical solution is 
simply a single solution for the particular problem at hand. This is not 
desirable because it does not permit proper correlation of the behavior 
of various nonlinear circuits. Hence, while analytical methods cannot 
be used exclusively in nonlinear circuit solutions, and because graphical 



Sec. 11.3] Nonlinear Class A Circuits 399 

methods do not possess the desired degree of generality, a combination 
of the two methods will be used. 

It can be shown that nearly any smooth, physically determined curve, 
can be represented by a power series. 1 For example,f(x), a function of 
x, can be expanded into a power series about some point b as follows: 

f(x) = a0 + ai(x - b) + az(x - b) 2 + aa(x - b3 + ... (11.1) 
where 

ao = f(b) 

= value of the function when x = b 

df(b) 
01=~ 

= value of first derivative when x = b 

d2/(b) 1 
a2 = dx2 2 

= value of second derivative when x =b 
and so on. 

For the transfer characteristic of a vacuum tube, the signal component 
of the plate current should be expressed in terms of a power series 
involving the input signal voltage. Thus, by analogy to equation (11.1), 

iP = a0 + a1es + a2e; + a3e: + . . . (11.2) 

From the definition of the terms iP and es as signal components you can 
see that when the input signal is zero, the resulting output signal 
component must also be zero. Hence a0 = 0 and the power series for 
iP becomes 

iP = a1es + a2e; + a3e: + . . . (11.3) 

Now specialize the problem to the case in which the signal input is 
a pure, single frequency sinusoid. Let es= Es cos wt. The signal 
component of plate current is then 

iP = a1Es cos wt+ azCEs cos wt)2 + aa(E8 cos wt)3 + ... 
The equation can be put into a more convenient form by using the 
following trigonometric identities: 

cos2 wt= ½(1 + cos 2wt) 

cos3 wt= ¼(3 cos wt+ cos 3wt) 

cos4 wt = ¼(2 cos 2wt + ½ cos 4wt + ! ) 
1 See for example, Phillip Franklin, Methods of Advanced Calculus, 1st ed., 

McGraw-Hill Book Co., Inc., New York, 1944, pp. 18-21. 
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and so on. Substituting into the equation for ip and collecting like 
terms yields a series for the plate current of the following form: 

iP = A 0 + A1 cos wt+ A2 cos 2wt + A3 cos 3wt + ... (11.4) 

This is the equation for the output current flowing in response to a 
sinusoidal input. Three things are clearly evident: 

(1) A d-c term A 0 is produced. 
(2) The original frequency term cos wt appears in the output. This is 

the fundamental. 
(3) An indefinite number of higher frequency terms, each integrally 

related to the fundamental, are produced. These terms are the 
harmonics. 

Only a comparatively minor alteration is required to adapt the 
linear equivalent circuit for use in the nonlinear case. The required 
change is apparent from equation ( 11.4). In place of the single fund a-

(a) EQUIVALENT PLATE 
CIRCUIT OF A LINEAR 
TRIODE OR PENTODE 

(b) EQUIVALENT PLATE CIRCUIT OF A NON
LINEAR TRIODE OR PENTODE 

Fig. 11.12. Class A equivalent circuits of triodes and pentodes. 

mental frequency current source in the linear equivalent circuit, it is 
necessary to add an infinite array of generators to include the d-c 
component, fundamental, and harmonics that are generated in the 
nonlinear case. This is illustrated in figure (11.12). According to the 
superposition theorem, the behavior of the circuit to each individual 
current source can be computed separately and the complete circuit 
solution obtained by summing individual solutions. 

Equation (11.4) is useful in specifying the effects produced by 
nonlinearity. Unfortunately, in the form in which it is presented, the 
equation is impractical because the coefficients, A 0, A1, A 2, and so on, 
are all unknown. It is true that they could be expressed in terms of the 
coefficients, a1, a2, a3, and so on, of the original power series. This is not 
helpful, however, because it is extremely difficult to measure derivatives 
of orders higher than the first. A more practical and highly useful 
method is given in the next section. 
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11.4. Evaluation of the Coefficients in the Harmonic Series 
If the signal voltage applied to a nonlinear circuit element is sinu

soidal, the resulting current in the element will consist of a d-c term, a 
fundamental, and an infinite series of harmonics. This was proved in 
the preceding section. Thus, if es= Es cos wt, the corresponding 
current flow is 

iP = A 0 + A1 cos wt+ A2 cos 2wt + A3 cos 3wt + ... 
where the coefficients are as yet undeterminec!. 

The practical numerical evaluation of the coefficients in the preceding 
series requires a little technical insight and some prior knowledge of the 
properties of the nonlinear circuit element involved. That is, to solve 
for the coefficients in any practical case, the series must be made finite, 
rather than infinite, so that the number of unknown constants is finite. 

In most cases involving vacuum and semiconductor diodes and 
vacuum triodes, reasonable accuracy results if only the first three terms 
in the series are retained. For tetrodes and pentodes it is usually 
necessary to retain at least the first four terms. Hence a fairly general 
evaluation of the constants can be made if the first five terms in the series 
are retained. Thus it is assumed that the signal component of current 
can be closely approximated by the following finite series: 

ip ~ A 0 + A1 cos wt + A2 cos 2wt + A3 cos 3wt + A4 cos 4wt (11.5) 

The equation for the signal current now contains five unknowns; it 
is necessary to write five independent equations for iP to solve for the 
constants. In effect, five different points must be selected on the curve 
of ip vs. wt and then the values of the five constants are adjusted to 
make the computed curve pass through these five points on the actual 
curve. It is assumed that the deviation of the computed curve from the 
actual curve between these points will be negligibly small. If it is not, 
more points must be selected and an additional term included in the 
series for each added point. Thus the procedure used to evaluate the 
coefficients in the series involves merely the rather arbitrary selection of 
five values of wt. For each wt the actual value of iP is determined. This 
data is substituted into equation (11.5). The five equations thereby 
produced are solved simultaneously for the five unknown coefficients. 

Figure ( 11.13) shows that the signal component of current is symmet
rical about a line as shown. Because of this symmetrical characteristic, 
all five of the points should be chosen in one of the two half cycles, 
otherwise the points will not be different. It is suggested that iP be 
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evaluated at angles of 0, 60, 90, 120, and 180 degrees. There is nothing 
significant about this choice of points. Other convenient values might 
be used with equal success, depending upon the regions of interest. 

From this point on it is difficult to discuss the procedure in general 
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Fig. 11.13. Symmetry in the signal component of plate current. 

0 ,, 

Fig. 11.14. Graphical constructions and terminology used in the evaluation 
of the harmonics; 5v grid swing assumed. 

terms. Therefore the evaluation of the coefficients will be performed 
for the special case of a triode, but it must be understood that the 
procedure itself is perfectly general and can be applied to any non
linear circuit element. The method can be briefly summarized as 
follows: 
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(1) Draw the load line on the static plate characteristics of the tube 
and locate the Q point. 

(2) Specify the amplitude of the grid signal. 
(3) For this value of Eu, evaluate eu = Eu cos wt and the corre

sponding value of iP for each of the five values of wt assumed. 
(4) Substitute these values for iP and wt into equation (11.5). 
The graphical constructions and operations are shown in figure 

(11.14). The resulting five equations are 

when wt= 0°; 

when wt = 60°; 

D..l+ = A0 + ½{A1 - A2) - A3 - ½A 4 

when wt = 90°; 

when wt = 120°; 
-D..J- = A0 - ½(A1 + A2) + A3 - ½A 4 

when wt= 180°; 
-D..I;;;, = A 0 -A1 + A2 - A3 + A 4 

Solve these five equations simultaneously for the five unknown 
coefficients to obtain the following results: 

A0 = ~(M! - D..I-::i) + ~(D..I' - D..r) 

A1 = ~{D../! + D..I-::i) + ~(D..l+ + D..r) 

1 + -
A2 = 7/D..lm - D..[m) 

A 3 = ~( D..I! + D..l~) - ~( D..l+ + D..r) 

A = _!_(D..Ii:. - D..J:) - ~(D../+ - D..r) 
4 12 m m 3 

(11.6) 

(11.7) 

(11.8) 

(11.9) 

(11.10) 

Thus, by using these equations and a graphical evaluation of the type 
shown in figure (11.14), it is a relatively simple problem to compute the 
amplitudes of the various harmonic components of the plate current. 
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It is common practice to express the harmonic content of a wave in 
terms of the amplitude of the harmonic relative to the amplitude of the 
fundamental. Hence, in terms of per cent, 

% 2nd harmonic = A2 X 100 % = D2 
A1 

% 3rd harmonic = Aa X 100 % = D3 
A1 

% 4th harmonic=~ X 100% = D4 
A1 

and so on. The formulas for the harmonics, expressed in percent, can 
then be written directly from equations (11.6) through (11.10) as 

D
2 

= ~ (l1I!- /1/~) X 100% 
4 ( ill! + /1/~) + ( /1/+ + /1/ -) 

(11.11) 

_ 1 (/1f! + /1/~) - 2(/1I' + 111-) 100% Da - - ------------ X o 
2 (111-:i + 111~) + (111+ + 11r) 

(11.12) 

1 (11/! - /1/~) - 4(/1I' - 11,) 00% 
D4 = - ----------- X 1 0 

4 ( M! + /1/~) + ( 111+ + 11r) 
(11.13) 

Occasionally the total harmonic content of a waveform is specified in 
terms of a single factor as follows: 

D=VD~+D~+D~+ ... 
However, the relative undesirability of odd and even harmonics can 
often be a major factor. The expression for the total harmonic content 
does not reveal the relative magnitudes of the harmonics involved, and 
its use then acts to confuse the problem. It is generally best to specify 
the individual harmonic terms separately. 

The formulas developed in this section included only the first five 
terms in the original series. If this analysis does not provide enough 
accuracy, the same method can be followed for a larger number of 
points to obtain any specified precision. However, it must be remem
bered that when high precision is required, the published characteristics 
of vacuum tubes are not suitable for computational work because of 
the permissible latitude in manufacturing tolerances. When a higher 
degree of accuracy is required and more points are used in the analysis, 
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the characteristics of the tubes actually being used should be evaluated 
experimentally. Of course, if a harmonic wave analyzer of the right 
characteristics is available, the entire computation may be obtained 
experimentally. 

11.5. Some Practical Considerations of Nonlinearity 

The effects and results of nonlinearity in the transfer characteristics 
of many electronic circuit elements are of great interest. The effect is 
responsible for many major problems, and in other cases it provides the 
essential operating principle. 

An obvious application of the effects of nonlinearity is implied by the 
nature of the result. The fact that a single frequency sinusoidal input 
generates a multiple frequency output suggests the use of nonlinear 
circuit elements as frequency multipliers. In other words, an input signal 
of 1000 c will generate an output having components at 1000 c, 2000 c, 
3000 c, and so on. If the output circuit is designed to pass only one 
of the harmonic terms it is clear that frequency multiplication is 
produced. 

Of course, the existence of harmonics in the output indicates the 
presence of nonlinear distortion. If fidelity of transmission of the input 
signal is important, the accuracy with which the input is reproduced in 
the output can be specified in terms of the amount of distortion present. 
It will be shown later that harmonic distortion is a primary determinant 
in the selection of the operating point and load resistance of power 
amplifiers. 

The input signal is sinusoidal and does not have a d-c component. 
It was shown that the output current did have a constant component 
A 0 • This constant term is important for two reasons: 

(1) It shows that the application of a sinusoidal signal input to 
nonlinear circuit elements causes the Q point to shift from the quiescent 
value lb to a higher current, lb+ A 0 • This is called the dynamic shift 
of the Q point. 

(2) Because a direct current is generated as a result of a sinusoidal 
signal input, the nonlinear element might be used to convert a high 
frequency signal into a direct current. If the magnitude of the input 
voltage varies at a slow rate compared with the frequency of the signal, 
the d-c component fluctuates about a mean value in approximately the 
same manner as the input signal varies in magnitude about a mean 
value. Devices operating in this manner are used as detectors to convert 
amplitude modulated waves into an audio frequency signal. It is often 
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called a square law detector because the d-c output is mainly developed 
by the square term in the original power series. 

Thus far it has been assumed that the signal input to the nonlinear 
element consisted of a single frequency sine wave. Suppose the input 
contains two terms of different frequency, such as es= E1 cos w1t +E2 

cos w2t. Now substitute this function into the general power series 
previously given for the plate current. Multiply terms out and simplify. 
The trigonometric identities given in section (11.3) will be helpful, 
together with 

cos w1t cos w 2t = ½ cos (w1 - w 2)t +½(cos (w1 + w 2)t 

After simplification, and if only the first two terms in the power series 
are considered, the results will have the following form: 

iP = B0 + B1 cos w 1t + B2 cos w 2t + B3 cos 2w1t + B 4 cos 2w2t 

+ Bd cos (w1 - w2)t + Bs cos (w1 + w2)t 

In addition to the expected d-c term, fundamentals, and second har
monics, there are also two new frequencies equal to the sum and 
difference of the input signal frequencies. If more terms had been 
considered in the power series, more complicated terms would appear in 
the output. The sum and difference frequency components are ca1led 
the cross-modulation products. This name is partially governed by the 
fact that the terms arise from the cross products of the two frequencies 
in the square factor in the power series. 

The cross-modulation products do not bear any particular harmonic 
relationship to either signal frequency, so that they are generally 
inharmonious. 

Cross modulation has a potential application. Because the sum and 
difference frequencies represent a frequency displacement of one signal 
up or down the frequency scale by an amount equal to the other 
frequency,frequency translation is effected. This effect is required in all 
superheterodyne radio receivers. 

The technique of frequency translation is widely used in practical 
systems to produce square law modulation, mixers, and beat frequency 
oscillators. In point of fact, however, most frequency translation 
systems in practical use employ the switching characteristics of 
electronic devices and not the square law characteristics. 

The discussion has been restricted to those circuits in which the ampli
tude of the input signal is large and nonlinear distortion results. There 
are other circuits in which the signal amplitudes are small and the 
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harmonic distortion is negligible; operation is essentially linear. Still, 
a practical application is made of the nonlinear transfer characteristic. 
By using a special type of construction, it is possible to make a tube 
have a very curved static transfer characteristic. The slope of this curve 
at any point is the mutual transconductance gm of the tube. Thus, 
because of the curvature in the transfer characteristic, gm varies over a 
wide range of values. Tubes of this type are called variable mu or 
remote cutoff tubes. 

The variation in gm possible with remote cutoff tubes finds extensive 
application in gain control of linear amplifiers, particularly in auto
matic control systems. It was shown in chapter 3 that the gain of any 
voltage amplifier can be expressed by A= -g:nzm. Variations in gm, 
and hence in g:n, cause corresponding changes in the voltage gain. 
Thus, by using variable mu tubes, a convenient method of gain control 
is available simply by adjusting the Q point of the tube. This technique 
is widely used in automatic volume control (A VC) systems in commercial 
radio receivers. 

11.6. An Idealized Class A Vacuum Tube Power Amplifier 
Nonlinear distortion is a major factor in the design of class A power 

amplifiers; the distortion is caused by the large signal amplitudes 
required in power amplifiers. It will be proved here that large signals 
are required. 

The class A triode circuit in figure ( 11.1) is the basic circuit diagram 
of a class A vacuum tube power amplifier. The corresponding class A 
equivalent plate circuit is shown in figure (11.12). The principle of 
superposition can be applied, so that the fundamental component of 
load current can be computed independently of the distortion com
ponents. That is, the fundamental plate current component is 

I,= gmE•C, ~ RJ = gmE,(i + ~Lf,.) (11.14) 

The power dissipated in the load resistance is 

1 2 2 2( 1 )
2 

RL 
PL= -;/vRL = gmEg 1 + RLfrv 2 (11.15) 

Replace one of the gm terms by µfr v and the equation for the load 
power becomes 

(11.16) 
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This is an important equation even though its practical use is 
somewhat limited. It shows that the power output can be increased by 
increasing µ and gm. The µgm term can be used as one convenient 
criterion or figure of merit by which 
different power amplifier tubes can be 
compared. ~ 

Equation (11.16) also shows that the WATTS 

power output is proportional to the 
square of the grid signal voltage E 0 • 

This dependence is illustrated graph-
ically in figure (11.15). It is immediately 
clear that it is generally desirable to use 
large grid signal voltages. Thus power 
amplifiers are often called large signal 
amplifiers. The method of computing 
the distortion that results was outlined 
in the preceding section. 

Eg VOLTS • 

Fig. 11.15. Effect of variations 
in the amplitude of the grid 
signal voltage on the power 
output. 

You can see from equation (11.16) that the power output is governed 
by the size of the plate load resistance R L relative to the plate resistance 

PL (max) 

+ V' --- r---
/ 

r--r--. r---V --
I 
I 

0 
I 
0 2 3 

RL/rp 
Fig. 11.16. Effect of variations in load resistance on power output. 

of the tube. If this dependence is computed and plotted, the result 
appears as shown in figure (11.16). The maximum power output is 
obtained when RL = r p• However, the establishment of this operating 
condition might result in an undue amount of distortion, so that this 
does not necessarily represent the optimum condition. Actually, it is 
common practice to use values of R L two or three times larger than r p, 
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though this should not be taken as a specific rule of thumb. The reason 
for this will be apparent later. 

Although the preceding analysis assumed a triode, exactly the same 
results are obtained for a pentode. However, for a pentode, r 11 is much 
larger than R L, and 

2 
. RL Ea 

PL= µgm-· -
r 11 2 

(I 1.17) 

Hence the power output increases almost linearly with increasing load 
resistance. 

11.7. Harmonic Distortion in Triodes and Pentodes 

The preceding section proved that class A power amplifiers are 
customarily operated with large signal inputs that move the operating 
point over a nonlinear range of the transfer characteristics. Because 
the power output is governed by the size of the load resistance, it is 
important to determine the effect of load resistance variations on the 
harmonic distortion. 

A method of computing the harmonics caused by nonlinear distor
tion was given in section (11.4) and some useful formulae were derived. 
This same technique is followed to compute the harmonics generated 
for various values of load resistances, so that the graphical steps 
required appear as shown on figure (11.17). These figures show three 
possible load lines all going through the same Q point and intercepting 
the same limiting characteristic curves. In other words, the Q point and 
grid signal voltage are the same for all values of load resistance. By 
following the method given in section (11.4), the harmonics generated 
in the plate current can be computed and the results plotted as shown 
in figure ( 11.18). The same general kind of results will be obtained for 
any power triode, beam tetrode, or pentode. 

These curves show that the harmonic distortion is determined to a 
large extent by the value of the load resistance. Therefore the final 
choice of the value for RL may be made on the basis of the allowable 
distortion rather than upon the condition for maximum power output. 
As a result, it is rare to find the load resistance set equal to the plate 
resistance of the tube in practical cases. For triodes it is often two or 
three times the size of r P' because this reduces the harmonic distortion 
by a large factor without causing too great a reduction in the power 
output. Pentodes are often operated with the value of R L required for 
minimum distortion and this is much less than the r 11 of the tube. 
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Superficially it would appear desirable to operate a pentode with the 
load resistance set to produce minimum over-all distortion. This may 
or may not be true, depending upon the application. For audio work, 

eb-+ 

(a) VARIOUS LOAD LINES ON THE STATIC 
PLATE CHARACTERISTICS OF A TRIODE 

------- -0.5 

------- -1.0 

----_;:~r------ -1.5 
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-5.0 "===============-=~s.o 
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(b) VARIOUS LOAD LINES ON THE STATIC 
PLATE CHARACTERISTICS OF A PENTODE 

Fig. 11.17. Preliminary graphical steps required in the computation of the 
harmonic distortion as a function of load resistance. 

the third harmonic is generally more objectionable than the second 
harmonic; higher percentages of second harmonic distortion can be 
tolerated. 

The correct choice of the load resistance is obviously a difficult task. 
Because the distortion will also be affected by the location of the Q 
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point, common sense suggests that the preceding procedure and results 
would have to be developed for a series of operating points. Finally, a 
selection of R L and the Q point could be made. 
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(b) POWER OUTPUT AND HARMONIC DISTORTION 
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RESISTANCE 

Fig. 11.18. Principal harmonics generated in triodes and pentodes as a 
function of load resistance. 

The results of all this graphical construction and evaluation can be 
represented by a series of curves such as those shown in figure (11.19). 
This illustrates the dependence of the distortion terms and signal input 
on the power output. 

Fortunately, in most cases this evaluation has been performed by the 
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tube manufacturer and published in tube manuals. It is generally 
advisable to follow his recommendations unless some special require
ments dictate otherwise. 
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Fig. 11.19. Distortion and grid signal voltage vs. power output. 

11.8. Plate Circuit Efficiency 

In the consideration of a power amplifier circuit it is inevitable that 
the efficiency of power conversion from direct to alternating current 
will be important. This quantity is defined as follows: 

1 . . ffi . Pac 
'Y/p =pate circmt e c1ency = -

Pac 
(11.18) 

where Pac= signal power output; Pac= d-c power input from the 
plate power supply. This factor is not important in the design of voltage 
amplifiers because the power levels are quite low. However, in power 
amplifiers, the conversion efficiency is important because both the 
signal power output and d-c power input are appreciable. 

It will be shown later that the efficiency of power conversion can be 
materially increased by operating the power tube in the switching mode. 
This is one of the most important advantages of operation in the 
switching mode. 
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Consider the elementary class A power amplifier shown in figure 
(11.1 ). Define terms as follows: 

ib = instantaneous plate current = lb + l'P sin wt 

lb = quiescent plate current 
l 'P = amplitude of signal current component 

eb = instantaneous plate voltage= Eb+ E'P sin wt 

Eb = quiescent plate voltage 
E'P = amplitude of signal component of plate voltage 

Ebb = plate supply voltage 
R L = load resistance 
The signal power output is the signal power dissipated in the load 

resistance R L· Hence 

1 2 1 E; 1 
Pac= i'PRL = 2RL = 2.E'Pf'P (11.19) 

The d-c power input from the plate power supply is 

Pde= Ebblb- (11.20) 

The d-c power input must supply all the power in the circuit. The 
various components of the total power supplied from this one source 
are: Pac = signal power dissipated in R L; PL = d-c power loss in R L; 
PP= power lost in the tube= plate dissipation. Hence Pde= Pac + 
PL + PP' and the plate circuit efficiency can be written 

(11.21) 
'Y}p = Pac + p L + p 11 

It is immediately clear that the efficiency of power conversion is pre
vented from attaining 100 % by two terms: P v the power lost through 
d-c heating of R v and PP' the power dissipated on the plate of the tube. 
A reduction in either of these two losses would increase the plate 
circuit efficiency. 

The plate circuit efficiency is easily computed by substituting 
equations (11.19) and (11.20) into (11.18). The result is 

(11.22) 

The transfer characteristic of a triode is shown in figure (11.20). 
Operation in class A over the maximum possible range results if the 
plate current swings over a range of values from O to 2/ as shown in 
figure (11.20). The same operation is shown on the idealized static plate 
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characteristics of figure (11.21). If the Q point is located midway 
between O and 2/, the amplitude of the signal component of plate 
current must be exactly equal to lb. Therefore I 11 = lb and the plate 
circuit efficiency becomes 

'YJ = 50 IbRL per cent (11.23) 
p Ebb 

In the absence of any signal input voltage, 

Ebb= Eb+ IbRL 

or (11.24) 

-----r--21-
SWI NG 
IN jb 

0 

Fig. 11.20. Transfer characteristic showing range of operation. 

Substitute this equation into (11.23) for the plate circuit efficiency to 
obtain 

'Y/v = 50(1 - Eb) per cent 
Ebb 

(11.25) 

To obtain the maximum possible theoretical efficiency it is necessary 
to determine the condition that will make the signal power a maximum. 
The signal power is Pac= ½I;RL. Maximize this with respect to RL. 
This requires that I; = 0. Thus the power output will be a maximum 
when the signal component of the plate current is zero. This can occur 
only by making the load resistance infinite so that the load line becomes 
horizontal. This makes the load line correspond with the horizontal axis 
of figure (11.21) and makes E 11 = Eb= ½Ew This makes the plate 
circuit efficiency given in equation (11.25) have a maximum theoretical 
value of 25 %-
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Twenty-five per cent is a rather low figure. Moreover, it results only 
under the highly theoretical condition of an infinite load resistance. 
Actual values of efficiency are about 10 % to 12 %. 

The two factors that hold the maximum theoretical efficiency down 
to 25 % are the d-c power loss in the load resistance and the plate 
dissipation in the tube. It will be shown in the next section that the 
theoretical efficiency can be increased to 50 % if the d-c loss in the 
load can be avoided. 

Fig. 11.21. Relations in a power amplifier with an idealized triode. 

11.9. Methods of Feed, a-c and d-c Load Lines 
The d-c power loss in the load resistor acts to limit the maximum 

theoretical efficiency of a class A vacuum tube power amplifier to only 
25 %- If this loss can be avoided, an increase in efficiency will be 
observed. 

Two methods that virtually eliminate the d-c loss in R L are shown in 
figure (11.22). The first scheme is called shunt feed because the d-c 
power input to the circuit is supplied in parallel with the load. Thus the 
d-c current flows through the low resistance choke coil L to the tube, 
but is prevented from flowing through the load resistance by the blocking 
capacitor Cb. The only power loss in the circuit is the d-c loss in the 
choke coil, and this is small. The choke coil prevents the signal power 
from being partially dissipated in the internal impedance of the power 
supply or being short circuited to ground. The impedance of the choke 
must be high at all frequencies of interest so that no appreciable 
amounts of signal current flow through it. Thus, for all practical 
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purposes, all the signal current passes through R L- The term shunt feed 
is used to distinguish the circuit from the series feed connection 
shown in the rudimentary power amplifier of figure (11.1). 

Transformer coupling, shown in figure (11.22), accomplishes the 
same effect as shunt feed. In the circuit, in the absence of any grid 
signal, the impedance between the tube and the power supply is the 
d-c resistance of the transformer primary. This will be quite small in 

Cb 

-; 1-----r---+ Ill 
RL 

+Ebb 

(a) SHUNT FEED 

NP Ns 

RL-+ Ill Rs 

+Ebb 

(b) TRANSFORMER COUPLING 

Fig. 11.22. Circuit connections that will reduce the d-c power loss in the 
load circuit. 

a well-designed transformer; the d-c power loss will be correspondingly 
small. When a signal input is provided, the load is coupled to the tube 
through the mutual inductance of the transformer. 

The distinction between shunt feed and transformer coupling is 
essentially a practical matter. The shunt fed amplifier is used when the 
load resistance is comparatively large; the transformer coupled 
amplifier is used when the load resistance is small compared with the 
plate resistance of the tube. 
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The plate circuit efficiency, when there is no d-c power loss in the load 

resistance, is 

Pac Pac 
17 =-=-- (11.26) 

:P Pde Pac+ p:P 
In the absence of any grid signal voltage the plate circuit impedance is 
zero. Hence the d-c or zero-signal load line is nearly vertical as shown 
in figure (11.23). The Q point is located using this load line. When a 
grid signal voltage is supplied, the impedance of the choke at the signal 
frequency is so high that it is effectively an open circuit, while the 
blocking capacitor is virtually a short circuit. Thus the total plate 
circuit impedance is equal to the load resistance R L· Therefore a new 

Ebb 

Fig. 11.23. A-c and d-c load lines for the shunt fed or transformer coupled 
amplifier. 

load line, called the a-c load line, must be drawn through the Q point 
with a slope equal to 1 / R L· This is shown in figure (11.23). 

The plate circuit efficiency is defined in equation (11.26). If the 
cathode bias voltage of either of the amplifiers of figure (11.22) is 
neglected, the plate voltage is equal to the power supply voltage. Thus 
Eb= Ebb· Hence, the d-c power input from the power supply is 

p de = Ebb[b = Eb[b 

The signal power in the load resistance is 

Pac= ½E:PI:P 

The plate circuit efficiency is therefore 

El 
17:P = 50 : :P per cent 

Eblb 

(11.27) 

(11.28) 

(11.29) 
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If the tube characteristics are assumed to be straight, parallel, and 
equally spaced, the plate current can be driven from zero to a maximum 
value of 2/. With the Q point located midway between these two 
extremes, lb = IP = I. The plate circuit efficiency is then 

E 
'Y}p = 50 ~ per cent (11.30) 

Eb 
Now suppose that the load resistance is infinite. In this purely 

theoretical case the a-c load line is horizontal and passes through the 
Q point. The maximum value of the signal component of plate voltage 
is equal to Ebb, because any larger value would drive the plate negative. 
Hence, if E P = Eb = Ebb, the theoretical maximum efficiency of the 
shunt feed or transformer coupled amplifier is 50 %. This is a sub
stantial improvement over the 25 % computed for the series fed amplifier. 

Although the theoretical maximum efficiency is 50 %, practical 
values will range in the neighborhood of 25 %. 

11.10. Plate Dissipation 

The equation for the plate circuit efficiency of a shunt fed or trans
former coupled amplifier can be written 

Pac 
'YJ = -- (11.31) 

P Pac+ PP 

Solve equation (11.31) for the signal power output; the result is 

(11.32) 

This shows that the signal power output is linearly dependent upon the 
power dissipated on the plate of the tube. For a fixed plate circuit 
efficiency rJ p, the largest possible plate dissipation is used to achieve the 
maximum possible power output. In fact, the maximum possible power 
output from the tube is controlled by the amount of power that can be 
dissipated on the plate. 

The plate dissipation is the power consumed by the tube. It is an 
unavoidable loss caused by the release of the kinetic energy of the 
electrons when they strike the plate. Proper operation of the tube 
requires that the power supply energize the electrons and cause them 
to traverse the interelectrode space. It then becomes the duty of the 
plate to absorb this kinetic energy from the electrons. The release of 
electronic kinetic energy causes the plate temperature to rise to some 
particular value governed by the rate that energy is supplied by the 
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electrons and removed by various agencies from the plate. In small 
tubes radiation may be the only heat removing agency. In larger tubes, 
the plate may be cooled by radiation and circulating water or air. 

As the power input to the plate is increased the plate temperature 
rises. Eventually the temperature is so high that the occluded gases, 
mainly hydrogen, carbon monoxide, nitrogen, and carbon dioxide, are 
driven out of the plate and into the interelectrode space. These released 
gas atoms are ionized by the high energy electrons, and the tube arcs 
over into heavy conduction through the formation of a sustained gas 
discharge. As a result, it is customary to rate a tube in terms of an 
allowable plate dissipation that will not permit the plate temperature to 
exceed the critical point. According to equation (11.32), this auto
matically imposes an upper limit on the maximum signal power 
output. 

Solve equation (11.31) for the plate dissipation. This yields 

(11.33) 

A given design problem will generally specify the required signal output 
Pac- The plate circuit efficiency 1]p may be specified by other con
siderations. Then equation (11.33) can be used to compute the required 
amount of plate dissipation. This value is then used to select an appro
priate tube for use in the projected amplifier. 

11.11. The Parallel Connection of Power Amplifiers 
The preceding sections concentrated upon the characteristics of 

single tube power amplifiers. It is useful now to inquire into the possible 
effects produced by various connections of multi tube power amplifiers. 
The simplest such combination of tubes is the parallel connection. 

A typical parallel connection is shown in figure (11.24). In terms of 
the series expansion of the plate current, the current through either tube 
can be written 

i1; = A 0 + A1 cos wt + A2 cos 2wt + A3 cos 3wt + ... (11.34) 

If the tubes are assumed to be identical, the two plate currents are equal 
and the total current is 

i T = 2(A 0 + A1 cos wt+ A2 cos 2wt + A3 cos 3wt + ... ) (11.35) 

Hence the total current is simply twice the current through a single tube. 
Consequently, the fundamental, harmo'nics, and d-c term are doubled. 
Of course, when two tubes are operated in parallel, the total load will be 
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half the load resistance of a single tube. Therefore the load power will 
be doubled when two identical amplifier stages are paralleled. The 
percentages of harmonic distortion remain unchanged. Thus the main 
advantage of the parallel connection is the increased signal power 
output. 

It might appear that the increase in power output is not advantageous 
because the same effect can be achieved by using a single tube with a 
larger rated plate dissipation. This is quite true, but it might be more 
economical to buy two small tubes than one large one. Moreover, the 
parallel connected amplifier is generally more reliable because it would 
continue to operate even if one tube fails. The decision as to the 

L 

Fig. 11.24. Parallel connection of shunt fed amplifiers. 

advisability of paralleling two tubes, or more, or using a single tube 
with a large rated plate dissipation can be made only in the light of a 
specific application. 

11.12. Push-Pull Amplifiers 
In parallel connected vacuum tube power amplifiers, the grid voltages 

of the two tubes are identically the same. This in-phase relationship 
between grid voltages produces plate currents that are also in phase. 
When the grids are driven by voltages that are mirror images of one 
another, 180 degrees out of phase in the case ofsine waves, the amplifier 
is said to be connected in push-pull. A typical transformer coupled 
push-pull amplifier is shown in figure (11.25). The only difference 
between this circuit and a parallel connected transformer coupled 
amplifier is the relative phase between the grid voltages and the center 
tap connection of the transformer. 

In the general case the plate current of tube 1 can be expressed as a 
series of the form 

ib
1 
= A 0 + A1 cos wt + A2 cos 2wt + A3 cos 3wt + . . . (11.36) 
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If the tubes are identical and if the grid voltages are 180° out of phase, 
the plate current in tube 2 is the same as that in tube 1 except that wt 
is replaced (wt+ 7T). Hence 

ib
2 
= A0 + A1 cos (wt+ 7T) + A2 cos 2(wt + 7T) + A3 cos 3(wt + 7T) 

+ ... 
This expression reduces to 

ib,. = A0 - A1 cos wt + A2 cos 2wt - A3 cos 3wt + . . . (11.37) 
A term-by-term comparison of the equations for the two plate 

currents reveals an interesting fact: the fundamental and odd harmonics 

: Rs . 

Fig. 11.25. Push-pull connection of transformer coupled amplifiers. 

of tube 2 are 180 degrees out of phase with corresponding terms in tube 
1, while the even harmonics in the two plate currents are in phase. 

Consider the magnetic circuit of the transformer. If leakage fluxes 
are neglected the primary ampere-turns will equal the secondary ampere
turns. The primary magnetizing force is made up of the two compo
nents caused by the currents ib

1 
and ib

2
• These currents flow in opposite 

directions through the transformer primary so they produce mmf's in 
opposite directions. Hence 

Nis = Nibt - Nib2 (11.38) 
N 

or is = _21(ib1 - ib2) = secondary current (11.39) 
NS 

Therefore the load current depends upon the transformer turns ratio 
and the difference between the two plate currents of the tubes. 
Substitute for ib

1 
and ib

2 
in equation (11.39) to obtain 

is= N'P(A 1 cos wt + A3 cos 3wt + ... ) (11.40) 
NS 



422 Nonlinear Class A Circuits [Sec. 11.12 

Note that only the fundamental and the odd harmonics appear in the 
output; the even harmonics are cancelled by the push-pull connection. 
This is the main advantage of the push-pull connection, because it occurs 
with an increase in fundamental power output exactly as if the tubes 
were in parallel. 

The harmonic distortion in triodes, operated Class A, is predomi
nantly second harmonic in nature; thus the push-pull connection will 
yield an output that is remarkably free from distortion. The distortion 
in class A tetrodes and pentodes was shown to contain a strong third 
harmonic so that it appears that the push-pull connection has little to 
offer when used with such tubes. However, by using a smaller load 
resistance, the magnitude of the third harmonic can be reduced con
siderably, while the second harmonic is increased. The increase in D2 is 
not too serious because the second harmonic is cancelled from the 
output in the push-pull connected amplifier. Thus the amplifier is made 
to have a smaller third harmonic by this method, but the reduction is 
not an inherent property of the push-pull connection. 

The complete cancellation of even harmonics should not be interpreted 
too literally for it seldom occurs in practice. The effect depends upon 
identical tubes, and this is an academic fiction. Tube characteristics 
vary over a wide range, and it would be pure coincidence to locate two 
that were identical. Thus, while the push-pull connection will reduce 
even harmonic distortion, in practical cases it will not cancel it to 
zero. 

The total current flowing through the cathode resistor is the sum of 
the two plate currents, or ik = ib1 + ib2. Therefore the cathode voltage 
is 

ek = ikRk = (ib1 + ib2)Rk 

= 2(A0 + A2 cos 2wt + A 4 cos 4wt + ... )Rk (11.41) 

Thus the odd harmonics and fundamental cancel in the cathode 
resistor, leaving only the d-c term and even harmonics. The phase of 
the even harmonic cathode voltage components is such as to introduce 
negative feedback, thereby reducing the harmonic distortion in the 
event of an unbalance between tubes. This appears to be desirable and 
that it would be advantageous to leave the cathode resistor unbypassed. 
However, if the tubes are not identical, the odd harmonics will not cancel 
completely in Rk. Unfortunately, the phase of the odd harmonic 
components is such as to produce positive feedback, thereby accen
tuating the unbalance and increasing the odd harmonic distortion. 
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Hence it is almost always desirable to bypass the cathode resistor 
adequately. If this is done, the cathode voltage is ek = 2A 0Rk. 

The principal advantage of the push-pull connection is the reduction 
of even harmonic distortion. Another real advantage is obtained 
because the mmf's caused by the d.c components of the plate currents 
cancel in the transformer primary. This reduces the constant core 
magnetization virtually to zero and allows the use of smaller trans
formers than those permissible with single tube amplifiers. 

11.13. Vacuum Tube Power Amplifiers, Concluding Remarks 
Once it has been determined that a class A vacuum tube power 

amplifier is to be designed, and once the specifications of power output 
and allowable harmonic distortion have been set, the most immediate 
problem is the choice of the power amplifier tube. The list of available 
tubes is a bit bewildering at first because of the many possibilities. The 
field of choice is narrowed considerably by the specified requirements 
of power and allowable distortion. The selection is also partly controlled 
by the power supply requirements. For example, types 25L6 and 50L6 
are designed for use in small a-c/d-c equipment. The 3S4 and 3V 4 are 
intended to be used with battery-operated portable equipment where 
90 and 67.5 volts are available. The filament voltage required also helps 
limit the selection. For example, if batteries are used for filament power, 
low drain 3 volt filaments could be used. On the other hand, it might 
be desirable to use a series connection of filaments of a number of tubes 
directly across the 110v a-c line; this makes a filament transformer 
unnecessary. Hence a 35L6 or 50L6 might be selected. Finally, the 
amount of grid driving voltage might be a determinant as well as the 
cost of the tube. Thus, even though a large choice exists, the selection 
rapidly narrows down to a few tubes. 

As a final consideration, it is generally advisable to use the tubes 
/ specified by the manufacturer on his preferred list. This usually insures 

better quality, lower initial cost, and ready availability. 
For most practical cases the equivalent plate circuit of class A vacuum 

tube power amplifiers can be drawn as shown in figure (11.12) earlier. 
The magnitudes of the various current generators are specified as 
follows: 

A0 = d-c term accounting for the dynamic shift of the Q point. 
A1 = amplitude of the desired fundamental. 
A2 = amplitude of the second harmonic. 
A3 = amplitude of the third harmonic. 
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These amplitudes are computed from the formulas given in section 
(11.4). 

The power output at the fundamental frequency is 

2( r'P )
2 

RL p -A 
L1 - i r'P + RL 2 (11.42) 

Similarly, the power developed in the load at the second harmonic 
frequency is 

(11.43) 

and so on for each generator in the equivalent circuit. Now substitute 
the formulas for the harmonic amplitudes derived previously in section 
(11.4) so that 

p L, = ~: [ (M! + 6.r;;,) + (M+ + 6.r>]' (,. _; RJ 

p = RL(M+ - ~J:)2( r'P )2 
L2 32 m m r 'P + RL 

and so on for each term. 

11.14. Power Gain of Transistor Amplifiers 
The equivalent circuit of any type of transistor amplifier with resist

ance load was derived in chapter 8 and is reproduced in figure (11.26). 
Rs 

R· I 

Fig. 11.26. Class A linear equivalent circuit of a simple transistor power 
amplifier. 

Only the mid-frequency case is considered here, so that no capacitive 
elements are shown. The circuit can be used for any of the three basic 
amplifier configurations by using the appropriate value for Ri and g; 
derived in chapter 8. 

Although the problem of nonlinearity in transistors is more complex 
than in vacuum tubes, in general the same methods and considerations 
apply. The actual performance of transistors as power amplifiers and 



Sec. 11.15] Nonlinear Class A Circuits 425 

their resulting properties of harmonic distortion were not thoroughly 
reported at the time this book was prepared. Indeed, the whole problem 
is somewhat obscured by the lack of a generally acceptable and suitable 
equivalent circuit. Once this has been established, the methods outlined 
in this chapter can be used to evaluate the harmonic distortion generated 
in large signal transistor amplifiers. 

Calculations of power gain for various transistor amplifiers can be 
made with the aid of the formulas derived in chapter 8. 

11.15. Push-Pull Transistor Power Amplifiers 
Some aspects of push-pull amplification with transistors are interest

ing and will be discussed briefly. 
Two identical transistor amplifiers can be operated in push-pull in 

essentially the same manner as vacuum tubes. A phase inverting circuit 

P-TYPE 
OR n-p-n 

(a) ACTUAL CIRCUIT DIAGRAM 

~ p-n-p 

+-- n-p-n 

(b) CLASS A EQUIVALENT CIRCUIT SHOWING TRUE 
DIRECTIONS OF CURRENT FLOW. i• = ic-ib 

Fig. 11.27. Grounded emitter push-pull transistor amplifier. 
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on the input is required, together with transformer coupling to the load. 
Circuit operation then closely follows that of vacuum tube amplifiers. 

A much simpler and more ingenious arrangement uses a combination 
of n-p-n and p-n-p types. This removes the necessity of a special phase 
inverting circuit, and the load can be connected directly to the transis
tors without using an output transformer. A representative circuit is 
shown in figure (11.27) together with the class A equivalent circuit. The 
true directions of current flow in the transistors are shown (see chapter 

vb:I Cl-u
-vbb:1 CL-u------

Fig. 11.28. Waveforms in the push-pull transistor amplifier. 

8). Note that the currents flow in opposite directions through the load 
resistance. 

Although the same signal voltage is applied to both amplifier 
inputs, the collector currents so produced are necessarily inverted with 
respect to one another because one transistor is p-type while the other 
is n-type. Thus the two collector currents are 

ic
1 
= A 0 + A 1 cos wt + A 2 cos 2wt + A 3 cos 3wt + .. . 

ic
2 
= A 0 - A1 cos wt + A 2 cos 2wt - A3 cos 3wt + .. . 

Therefore the load current is 

iL = ic
1 

- ic
2 
= 2(A1 COS wt+ A3 COS 3wt + ... ) 

and push-pull operation clearly results. 
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The key factor in the operation of this circuit is the inherent phase 
inverting characteristics of a p-type transistor relative to an n-type. 
This is illustrated by the waveforms of figure (11.28). 

11.16. Square Law Amplitude Modulation 

The general problem of modulation is discussed at considerable 
length in chapter 13. However, it is a process that may be accomplished 
as a result of tube nonlinearities; thus it seems appropriate to mention 
the subject at this point. 

It is shown in chapter 13 that an amplitude modulated carrier wave 
has a mathematical form 

male 
i = / 0 cos Wei+ -2 [cos (w0 + wm)t + cos (w0 - wm)t] 

where ma= modulation index= Im//0 • 

Now the question is, can a current of this type be obtained as a 
result of the nonlinearities in vacuum tube characteristics? When two 
different frequencies are impressed upon a nonlinear impedance 
having an approximately square law characteristic, it was shown in 
section (11.5) that the resulting current has the form 

i = B0 + B1 cos w1t + B2 cos w2t + B3 cos 2w1t 

+ B4 cos 2w2t + Bd cos (w1 - w2)t 

+ B8 cos (w1 + w2)t 

Now, by defining terms as follows: 

W2 = wm; B2 = Im 
the preceding equation assumes the form 

ma~ ) i = le cos wcf + -2 [cos (we - wm)t + cos (we+ Wm t] 

+ B0 + Im COS wmt + B3 COS 2wcf + B4 COS 2wmt 

It is clear that the bracketed quantity has precisely the same form as 
that of the amplitude modulated wave. Hence nonlinear impedance 
elements such as diodes, triodes, or pentodes, which have approximately 
square law characteristics, can be used to produce amplitude modu
lation. Of course, some additional terms are also produced, but it is 
assumed that it is possible to remove them or to nullify their effects. 
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Vacuum tube square law modulators are often called Van der Bijl 
modulators. A typical circuit is shown in figure (11.29). The load 
circuit is usually adjusted so that an appreciable output is obtained 
only for the three terms required for the modulated wave; these are the 
carrier and the sum and difference frequency components. 

Except in special cases, modulation processes based upon the curva
ture in the transfer characteristics of vacuum tubes are not too successful 
in practice. This is so mainly because the amount of nonlinearity is 
inclined to change with tube age, replacement, and environment. This 
directly affects the operation of the modulator, tending to make it 

Fig. 11.29. Van der Bijl modulator. 

~M LUT 

unreliable and unpredictable. More practical methods use tubes 
operating in the switching mode. 

11.17. Square Law Detectors 
Detection or demodulation is the reverse of the modulation process; 

the original intelligence signal is recovered from the modulated carrier 
in a detector. 

It was shown in section (11.4) that the load current resulting from the 
application of a sinusoidal signal input to a nonlinear circuit element 
is of the form 

i = A 0 + A 1 cos wcf + A2 cos 2wct + A 3 cos 3wcf + ... 
The d-c component A 0 is approximately linearly proportional to the 
amplitude of the signal input. Hence if the signal amplitude varies at a 
rate that is slow compared with we, then A 0 will vary in a similar 
manner. In the case of an amplitude modulated wave, the amplitude 
of the signal input to the nonlinear circuit element varies as Ic(I + ma 
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cos wmt); the d-c component of the resulting current undergoes 
similar variations as a function of time. Hence, a nonlinear impedance 
can be used to demodulate an amplitude modulated wave because A 0 

varies at the modulation frequency wm. 
An amplitude modulated wave contains three components: the 

carrier frequency we, and the sum and difference frequencies (we+ wm) 
and (we - wm). This is the input to the detector; the current through 
the detector will then contain the following components: 

( 1) The original frequencies 

we; (we+ wm); (we - wm) 

(2) The second harmonics 

2wc; 2(wc + wm); 

(3) The sum and difference frequencies 

2wc; 2wm; wm; (2wc + Wm); 

Of course, out of this whole array only the wm term is desired, 
because it is the original frequency component representing the 
intelligence signal. Presumably the other terms can be filtered out, and 
this is generally possible with all terms except the second harmonic 
2wm of the desired signal. This results in second harmonic distortion, 
and it can be shown2 that the second harmonic has a relative amplitude 
of ma/ 4 when the detector has a resistance load. If ma = 1, then 25 % 
second harmonic distortion results. This is excessive for most appli
cations and is one reason for the fact that square law detection of the 
type described here is not widely used in practical systems. 

11.18. Applications in Gain Control 
Tubes that are designed to exhibit a wide range of variability in 

transconductance gm are called variable mu, remote cutoff, or super 
control tubes. The essential characteristics of such tubes are illustrated 
in figure ( 11.30). 

Super control pentodes are extensively used in superheterodyne radio 
receivers as bandpass amplifier tubes. In such service they are either 
single or double tuned voltage amplifiers, usually of the grounded 
cathode type. The super control feature is useful because it permits the 
stage gain, A= -gmZm, to be varied by the simple process of varying 
the bias on the tube. This is clear from the relationships in figure (11.30). 

2 Cruft Lab Staff, Electronic Circuits and Tubes, McGraw-Hill Book Co., Inc., 
New York, 1947, pp. 699-702. 
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This would have little advantage if the adjustment were made manually; 
the great advantage derives from the possibility of automatic control. 

Automatic volume control (A VC) is obtained by using a detector to 
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Fig. 11.30. Characteristics of a super control tube. 

develop a voltage proportional to the amplitude of the signal amplified 
by the super control tube. The detector voltage is then used to bias the 
super control tube so that the gain of the stage varies inversely with the 
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strength of the signal. This acts to keep the amplifier output fairly 
constant and independent of variations in signal input or tube 
deterioration with time. 

The same technique is used in audio recording systems. In this 
application it is called automatic volume expansion and compression and 
is used to alter and restore the true dynamic range of the recorded 
sound. 

Another application for super control tubes occurs in the design of 
reactance tube modulators, which are used at times in frequency 
modulated transmitters (see chapters 13 and 15). This particular type 
of circuit has an input reactance proportional to the gm of the tube. By 
varying the gm, the effective reactance varies, and this is a part of an 
oscillator tank circuit. As a result, the oscillator frequency can be made 
to vary in proportion to the gm of the tube. If the intelligence signal is 
used to vary the grid bias of the tube, the gm varies, and the oscillator 
is frequency modulated. 

PROBLEMS 

11.1. Using the published plate characteristics for a triode connected 6F6 
tube, compute the fundamental power output and per cent second and third 
harmonic distortion with the following load resistances: 2000, 3000, 4000, 
5000, 6000, 7000, 8000, and 9000 ohms. Locate the Q point, using Eb = 275 v 
and Ecc = -20 v. The grid signal amplitude is 20 v. Neglect the dynamic 
shift of the Q point. 

11.2. The power amplifier stage for a small a-c/d-c radio receiver is to be 
designed. The power output must not be less than 1.2 w with not more than 
10% harmonic distortion. All filaments of the tubes in the receiver are 
connected in series across the 115-v line. The other tubes in the receiver are 
12SA7 = mixer and local oscillator; 12SK7 = intermediate frequency 
amplifier (1 stage); 12SQ7 = detector and audio voltage amplifier; 
3524-GT = rectifier. Select a suitable power amplifier tube and explain 
your selection in detail. 

11.3. In problem (11.2) it is obvious that the current requirements for all 
the tube filaments must be the same. Bearing in mind that the series 12 tubes 
require 12.6 v for the filament supply, compute the resistance and wattage 
rating of any series dropping resistor required in the filament circuit. 

11.4. If the output voltage from the 12SQ7 detector unit is 0.25 v, compute 
the voltage gain required in the audio voltage amplifier to drive the power 
amplifier at its rated power output. Compute the correct load resistance for 
the 12SQ7 voltage amplifier section if gm = 1100 µmhos, r P = 91,000 ohms, 
and if the gridleak resistor of the power amplifier is 500,000 ohms. 
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11.S. Draw the circuit diagram of the power amplifier stage showing 

transformer coupling between the tube and loudspeaker. The impedance of 
the loudspeaker voice coil is 3.2 ohms. Compute the proper turns ratio for 
the transformer. Compute the minimum possible efficiency of power transfer 
for the transformer, assuming that 1.0 w of audio power must be available at 
the speaker input terminals. 

11.6. From the data computed in problem (ll.l), plot the second and 
third harmonics and power output vs. the load resistance. Select the value of 
load resistance that will keep the total harmonic distortion to 5 % or less. 
What power output is obtained? 

11.7. Construct the dynamic transfer characteristic of the 6F6, using the 
load resistance computed in (11.6). 

11.8. Discuss the problem of push-pull amplification with shunt feed, 
rather than transformer coupling. In what particular ways does the end 
result differ from transformer coupling? 

11.9. Draw the circuit diagram and explain the operation of a push-pull 
transistor amplifier, using grounded base,. and grounded emitter stages 
together in the same circuit. What are some precautions that must be observed 
here? 
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Chapter 12 

VACUUM TUBE POWER AMPLIFIERS IN THE 
SWITCHING MODE 

This is the first of a sequence of chapters devoted to the operation of 
electronic devices in the switching mode. This chapter is a general 
exploration of the factors involved in the operation of vacuum tubes in 
the switching mode as power amplifiers. The discussion is purely 
hypothetical at the outset, but concludes with a practical design 
procedure for power amplifiers. 

The approach is analytical, rather than graphical, for consistency 
with the rest of the text. The actual technique depends upon a Fourier 
analysis of the plate current waveform produced by a sinusoidal grid 
signal of sufficient amplitude to cause the switch in the equivalent 
circuit to operate. 

This chapter is important in the design of audio power amplifiers and 
high-efficiency tuned amplifiers for unmodulated signals. It is also a 
prerequisite for chapter 13, which covers the design of similar amplifiers 
used to amplify modulated signals. 

The theory of transistor amplifiers operating in the switching mode 
was not fully developed at the time of manuscript preparation and it is 
not included for that reason. 

1.21. Factors of Interest 

The first step in the design of an amplifier for use in a given appli
cation is the selection of the tube. This is a complicated matter because 
it depends upon a multitude of factors too numerous to mention. A 
wide latitude of designer's choice is nearly always present and the 
application of sound engineering judgment tempered by experience is 
required. 

Once the tube is selected, the design of the circuit can be approached. 
In the derivation of design equations you should always keep the 
obviously important factors in mind. For example, it is reasonably 
clear that the actual signal power output will be of considerable interest. 
Also, as in any power application, the amount of wasted power is 

435 
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important. Hence the efficiency of conversion of d-c power input to 
signal power output is a significant factor. This is the plate circuit 
efficiency of the amplifier and is defined as 

signal power output = Pac 
'Y/1> = d-c power input Pde 

The power amplifiers covered in this chapter operate in the switching 
mode. Consequently, the conduction time, or conduction angle when 
sinusoidal signals are involved, is a major factor of interest. This 
requires an exact knowledge of the grid bias and grid signal voltage 
necessary to produce this conduction angle. It may also develop that 
grid current flows and that grid driving power is required. 

Because the tube operates in the switching mode, a sinusoidal grid 
signal will produce a highly distorted plate current signal. Thus a large 
number of harmonics of varying amplitudes will appear in the output. 
Clearly, the relative magnitudes and frequencies of these terms will be 
important. 

The frequency of the grid signal may vary over some specified range. 
Thus the frequency response of the amplifier must be considered. This 
is an important factor in any case because of the presence of harmonics. 

The foregoing represent only a few of the factors that must be 
considered in designing an amplifier. By way of summary, these factors 
can be listed as follows: 

(I) Signal power output. 
(2) Harmonics in the output. 
(3) Conduction angle of the tube. 
(4) Plate circuit efficiency. 
(5) Grid bias. 
(6) Grid signal voltage and driving power. 
(7) Frequency response. 

12.2. Operation in the Switching Mode 
If the static plate characteristics of vacuum tubes are equally 

spaced, parallel, straight lines as shown in figure (12.la), the behavior 
of the tube can be accurately represented over this region by the 
equivalent circuit of figure (12.1 b ). In most cases this equivalent 
circuit provides a close approximation to the actual behavior of the 
tube. Moreover, tubes that are designed for use as power amplifiers are 
made to approach this hypothetical linear status as nearly as is consis
tent with other requirements. Nevertheless, some nonlinearity, lack of 
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parallelism, and nonuniformity in spacing will always exist. Theoretical 
calculations based upon the linear idealization will be somewhat at 
variance with experiment. The most noticeable deviation occurs in the 
positive grid region as shown in figure (12.la). For very positive values 
of grid voltage approaching the plate voltage, the plate current 

+6 

Eo eb ,. 

(a) IDEALIZED TRIODE STATIC PLATE 
CHARACTERISTICS 

o------~-,-ib-r 

r .__ __ __,_ ___ .._ __ ..-, ___ -o K 

{b) LINEAR EQUIVALENT CIRCUIT 

Fig. 12.1. Representation of an idealized triode. 

becomes virtually independent of the grid voltage. This is the satu
ration region of the tube characteristics, and establishes the upper 
limit on the grid voltage for which the linear equivalent circuit is valid. 

The static transfer characteristics of the idealized triode are shown in 
figure (12.2a). Suppose that the plate voltage and the Q point are 
determined so that operation is confined to one of the transfer charac
teristics as shown in figure (12.2b). By proper adjustment of the grid 
bias voltage Ecc and the grid signal eg, the plate current will have a 
signal component that is an undistorted replica of the grid signal 



438 Power Amplifiers-Switching Mode [Sec. 12.2 

voltage. The tube operates as shown in figure (12.2b). This is clearly 
class A operation and this mode was treated in detail in part II. 

Now consider figure (12.2c). Here the grid bias and grid signal 
voltage are both increased over the values they had in class A operation. 

LINEAR 
REGION 

: SATURATION 
I 
I 
I 
I 
I 
I 

-ec o +e0 

(o) STATIC TRANSFER CHARACTERISTICS 

I 
I 

1,-0& 
I 

-Eco I I 

(b) CLASS A OPERATION 

w•, 0 

(c) OPERATION IN THE SWITCHING 
MODE 

Fig. 12.2. Vacuum tube operation expressed in terms of the transfer 
characteristics. 

It is apparent that the signal component of plate current has been 
distorted to a remarkable degree because of nonconduction of the tube 
over some fraction of the period of the grid signal voltage. During this 
nonconducting interval the plate current is zero, and this situation 
prevails as long as the total grid voltage is more negative than the cutoff 
voltage Eco· Hence the tube is being operated in the switching mode. 

It has become common practice to associate certain names with 



Sec. 12.3] Power Amplifters-Switching Mode 439 

various conduction intervals of the tube. These are summarized as 
follows: 

If the tube conduction angle is 

360° 
between 180° and 360° 
180° 
less than 180° 

Operation is said to be 

class A 
class AB 
class B 
class C 

In addition, subscripts are used to indicate the presence or absence of 
grid current. That is, subscript 1 = no grid current, subscript 2 = grid 
current flows. 

Thus a typical amplifier designation might be given as B2• This 
signifies that the tube conducts plate current over a 180° interval and 
that grid current flows at some time during the conducting period. 
Subscripts are often omitted on the designations of class A and class C 
amplifiers. Usage has established that this means class A1 and class C2• 

The operation of the switch in the equivalent circuit makes it clear 
that the circuits in Part III must be analyzed somewhat differently than 
class A circuits. However, it will be apparent later that the difference 
is mainly one of viewpoint and emphasis and that a great deal of the 
theoretical technique developed for class A circuits will be applicable 
here. 

12.3. Preliminary Steps in the Analysis 
It was shown in the preceding section that operation of a vacuum 

tube in the switching mode causes a considerable distortion in the signal 
component of plate current. The sharp discontinuity in the transfer 
characteristic of the tube is clearly a form of nonlinearity, so it. should be 
anticipated that the effects caused by this discontinuity will be similar to 
those computed for the nonlinear class A circuits of chapter 11. Thus 
operation of a vacuum tube in the switching mode is expected to 
produce a d-c term, a fundamental, and an infinite series of harmonics 
in the output. Also, because the degree of distortion of the waveform 
depends upon the interval of nonconduction of the tube, it is reasonable 
to conclude that the amplitudes of these various components in the 
output will have some functional relationship to the nonconducting 
interval of time. The purpose of this section is to determine this 
relationship. 

A representative case involving operation in the switching mode was 
shown in figure (12.2c). Assuming a sinusoidal grid signal, the plate 
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current waveform appears as shown in figure (12.3a). The complete 
equivalent circuit of the tube during the conducting interval is shown in 
figure (12.3b), where the current source equivalent for the tube is used. 

COS wt 

0 .....__ _____________ ......._ _____ _._ 
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+wt _. 

(a) PLATE CURRENT WAVEFORM 
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m e0 r P 

-
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( b) COMPLETE EQUIVALENT CIRCUIT 
DURING TUBE CONDUCTION. IF 
TUBE IS A PENTODE ,REVERSE 
DIRECTION OF E O 1r p 

jb=Ib+ip 

ec= 8g-Ecc 

eb=Eb+ep 

K 

(c) DC EQUIVALENT CIRCUIT 

p 

K 
(d) VARIATIONAL EQUIVALENT 

CIRCUIT 

Fig. 12.3. Waveform and equivalent circuits during tube conduction. 

The Principle of Superposition permits simplification of this general 
circuit into two specialized cases as follows: 

(1) Figure (12.3c) shows only the d-c components in the circuit. 
(2) Figure (12.3d) shows only the variational components, 
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Reference to the d-c, or static, equivalent circuit shows that the 
direct plate current in the circuit is 

Eb Eo 
lb= -gmEcc + - - -

r11 r11 

or 
(12.1) 

where Ecc = grid bias voltage; Eb= plate-to-cathode voltage; 
E0 = intercept voltage. Let 

E; = Eb -E0 (12.2) 

so that the equation for the plate current is 

( E~) lb= -gm Ecc - µ (12.3) 

In a similar manner, from the variational equivalent circuit, 

or (12.4) 

From the relationships given in (12.3) and (12.4) it is clear that each 
plate current component is produced by a composite voltage. Thus the 
signal component of plate current ip is produced by the composite 
voltage (eu + e11/ µ). Now, because the signal current is 

(12.5) 

i11 = 0; ± 1T < ± (} < ± (} C 

the angular variation of the composite voltage must be of the same 
form. That is, 

i11 = Ip cos 0 = gm (Eu+ : 11
) cos() 

during the conducting period. If the magnitude of the composite 
voltage is defined as 

(12.6) 

the signal component of plate current is 

ip = gmEl COS() (12.7) 

where grnE1 = IP during the conducting interval We. 
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The d-c component can be expressed in terms of a composite voltage 
as well as in terms of IP and 0c- That is, 

where 
h 

Ecc--=Ez 
µ 

Also, from figure (12.3a) it is clear that 

Therefore 
lb= -gm £ 1 COS 0c 

and so 

(12.8) 

(12.9) 

(12.10) 

(12.11) 

(12.12) 

Combining the preceding results, the total plate current can be 
expressed as : 

ii0) = I/cos 0 - cos 0c} 

(12.13) 

ii0) = O; ±1r < ±0 < ±0c (12.14) 

The results of operating a vacuum tube in the switching mode are 
computed in the next section using equations (12.13) and (12.14). 

12.4. Harmonic Generation vs. Conduction Angle 

In the waveform of figure (12.3a) the tube conducts over a total 
angle of Wc. Hence Wc is called the total conduction angle of the tube. 
Also, by choosing 0 = 0 as shown in the figure, the waveform becomes 
symmetrical about the axis. That is, ii0) = ii-0). This is the 
definition of an even function. 

An even function can be expanded into an infinite series of cosine 
terms through application of Fourier Analysis. That is, the plate 
current waveform ii0) can be written 

ii0) = 1; + Ip cos 0 + Ip cos 20 + JP cos 30 + ... 
1 2 3 

00 

or ii0) = 1; + I I'Pncos n0 
n=l 
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where the coefficients in the series are given by the following formulas: 1 

1; = d-c component =i. ! ['IT ii0) d0 
?T Jo (12.15) 

11)
1 
= fundamental 211T = - ii0) cos 0 d0 

?T 0 
(12.16) 

[Pn = harmonics 211T = - ii0) cos n0 d0 
?T 0 

(12.17) 

The amplitudes of these various components are easily computed from 
these formulas as soon as ii0) is specified. This was calculated in the 
preceding section and the results given in equations (12.13) and (12.14). 
Substitution of these relationships into the preceding formulas leads to 
the following relationships: 

2gmE1 l()c 
lPn = -- (cos 0 - cos 0c) cos n0 d0 

?T 0 

(12.18) 

(12.19) 

(12.20) 

These integrals are easily evaluated from integral tables. 2 The results 
are 

(12.21) 

2gmE1 ( 0c sin Wc £J • £J ) I =-- -+---cosv smv 
P1 '1T 2 4 C C 

(12.22) 

2gmE1 [sin (n - 1)0c sin (n + 1)0c cos (Jc sin n0c] 
~n=-?T- --2-(n---1-)-+-2-(n_+_l_) ____ n __ (12.23) 

1 See for example, Philip Franklin, Methods of Advanced Calculus, McGraw-Hill 
Book Co., Inc., New York, 1944, pp. 405-406. 

2 See for example, Burington, Handbook of Mathematical Tables and Formulas, 
Handbook'Publishers Inc., Sandusky, Ohio, 1940, pp. 73-74, integrals 200-202, 204. 
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Through the use of standard trigonometric identities, a few of these 
coefficients can be simplified and written 

and so on. 

, gmE1 . . () () ()) 
lb = -- (sm c - c cos c 

1T 

I = gmE1 ~ sin3 () 
P2 1T 3 C 

gmEl 2 • 3 () Ip = ---
3 

sm 0 cos 00 
3 7T 

(12.24) 

(12.25) 

(12.26) 

(12.27) 

It is also desirable to express these coefficients in terms of the maxi
mum plate current. Because 

and 

then 

lmax = /p(l - COS 00 ) 

JP= gmEl 

E = /max 
gm 1 1 - COS() 

C 

(12.28) 

(12.29) 

Thus if the g mE1 in the preceding equations is replaced by the value 
given in equation (12.29), another useful set of formulas results. 

Now suppose that the maximum plate current is held constant while 
the conduction angle of the tube is made variable. Under these 
conditions it is a simple matter to compute the various Fourier com
ponents, using formulas (12.24) through (12.27) and with gmE1 replaced 
by equation (12.29). The results of this calculation are shown in 
figure (12.4), which shows the relative magnitudes of the d-c term, 
fundamental, and second and third harmonics as functions of the total 
conduction angle. All magnitudes are ref erred to the magnitude of the 
fundamental in class A operation. Bear in mind that harmonic 
distortion caused by curvature in the characteristics has been neglected. 

Figure (12.4) shows that for a fixed plate current swing, the funda
mental amplitude reaches a maximum value that is about 8 % larger 
than that obtained in class A. This value results in class AB operation. 
For class B operation the fundamental is again equal to the value 
obtained in class A. Thereafter, as operation moves into the class C 
region, the fundamental amplitude decreases continuously as the angle 
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of tube conduction decreases. It is significant that the third harmonic 
is zero for class B operation. 

The same data can be plotted in a slightly different manner by 
computing the harmonic percentages. That is, 
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Fig. 12.4. Effect of conduction angle on the relative magnitudes of the 
Fourier coefficients. 

These two factors are plotted against the tube conduction angle in 
figure (12.5). The curves show that as long as the tube conducts for an 
angle exceeding about 290°, the harmonic distortion introduced by plate 
current cutoff is not excessively large. For shorter conduction angles, 
the 2nd harmonic increases rapidly and continuously. The 3rd harmonic 
increases, reaches a maximum of about 9 %, and then decreases to zero 
in class B operation. In class C operation, the 3rd harmonic increases 
very rapidly as the tube conducts for shorter periods. 

The high harmonic content obtained in class C operation suggests 
the possibility of using such circuits for frequency multiplication. 
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Fig. 12.5. Per cent harmonic vs. conduction angle. Data plotted in per 
cent of the fundamental. 

12.5. Plate Circuit Efficiency 

360° 

In nearly all cases in which vacuum tubes are used as amplifiers, the 
tube serves mainly as a power converter, changing the d-c power 
available from the plate power supply into signal power that conveys 
intelligence in one form or another. In the final analysis, every amplifier 
is a power amplifier because the signal power in the output is always 
considerably larger than that in the input. 

The plate circuit efficiency measures the effectiveness of the tube in 
converting DC power into signal power. That is, 

1 . . ffi . Pac 
'f}p = p ate ctrcmt e c1ency = -

Pde 

where Pac= signal power output; Pde= d-c power input from the 
plate supply. 

The problems relating to the plate circuit efficiency are relatively 
complex. Some of the factors involved were discussed in connection 
with class A power amplifiers in chapter I 1. It was shown there that 

Pde= Pac+ p L + p 1J 
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where PL = d-c power loss in the load resistance; P v = plate 
dissipation. Hence the plate circuit efficiency can be written 

Pac 
1J = 

P Pac +PL +Pv 
It was then shown that the maximum theoretical efficiency of the class 

A series fed amplifier was 25 %- By using shunt feed or transformer 
coupling, the d-c power loss in the load resistance could be reduced 
practically to zero and the plate circuit efficiency written 

Pac 
17=---

p Pac+ PP 
In this case the theoretical maximum efficiency was shown to be 50 %
Further increases in efficiency are possible only by reducing the plate 
dissipation P v· 

It will be shown in the next section that the plate dissipation can be 
reduced by operating vacuum tubes in the switching mode. Thus such 
operation leads to higher plate circuit efficiencies than those obtainable 
in class A. Indeed, this is the main reason for amplifier operation in 
class AB, B, and C, because the large amount of harmonic distortion 
produced is generally a severe disadvantage. 

12.6. Effect of Conduction Angle on Efficiency 
In the fairly general case of a shunt fed or transformer coupled 

amplifier of arbitrary conduction angle 20c the plate circuit efficiency is 

Pac 
1Jv=p 

de 
The term signalpower will generally refer to the power developed by the 
fundamental component of plate current. Hence 

Pac= ½J;
1 
RL and Pde= Ebi; 

Therefore the plate circuit efficiency is 

1 /1>1 Iv RL 
'Y) - --·. - 1 

- (12.30) 
v - 2 1: Ebb 

It was previously shown in section (12.4) that the d-c component and 
fundamental could be expressed in terms of the total plate current 
swing and conduction angle as follows: 

I = I max . 0 c - sin 0 c cos 0 c 
Pi 7T 1 - COS 0 C 

1; = /max. sin (Jc - 0c COS 0c 
7T 1 - COS 0c 
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Substitute these two expressions into the equation for the plate circuit 
efficiency. The result, expressed in terms of per cent, is 

%rJ = 50 /max. RL . (()c - sin ()c COS 0c)2 (l 2_3l) 
0 

1J 'TT' Ebb (1 - cos ()c) (sin ()c - ()c cos ()c) 

= 
15 9 

lmaxRL. (0c - sin 0c COS 0c}2 (l2_32) 
. Ebb (I - cos ()c) (sin ()c - ()c cos 0c) 

This is the plate circuit efficiency for any conduction angle, load resist
ance, plate supply voltage, and maximum plate current swing. 
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Fig. 12.6. Plate circuit efficiency vs. conduction angle, resistance load. 

360° 

Now suppose that the plate current swing is adjusted to the maximum 
possible theoretical value. In this case the plate voltage swings from 0 
to 2Ebb, centered about Ebb• Hence 

lmaxRL = 2Ebb 
and the maximum possible theoretical efficiency is 

0 (0c - sin ()c cos ()c)2 
%rJ1) = 31.8 ( ()) ( . () () ()) per cent (12.33) I - cos c sm c - c cos c 

This is often called the asymptotic efficiency of a power amplifier with a 
pure resistance load circuit where the load resistance is independent of 
frequency. 

Equation (12.33) has been computed and plotted and the results are 
shown in figure (12.6) as a function of the tube conduction angle. The 
results are striking. The graph indicates that the plate circuit efficiency 
can be increased from 50 % up to a theoretical maximum value of 78.5 % 
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by operating the tube in class B. From the standpoint of efficiency, no 
advantage results from class C operation. Moreover, the harmonics 
generated in class Care more pronounced than in class B so that class 
C operation of amplifiers with resistance loads, which are independent of 
frequency, should usually be avoided. 

Consideration of figure (12.6) indicates that power amplifiers having 
load impedances that are constant over the pass band that includes all 
the significant harmonics attain their maximum efficiency in class B. 
Audio power amplifiers fit this category, and for this reason, are never 
operated in class C except in trick circuit arrangements. 

12.7. Low Pass Power Amplifiers 
Class A power amplifiers were discussed in some detail in chapter 11. 

It was shown there that the push-pull connection can be used to advan
tage to reduce the evert harmonic distortion to small values. The odd 
harmonics were not appreciably affected by the connection. 

Low pass amplifiers have load impedances that are essentially 
constant resistances over a specified range of frequencies up to some 
given high frequency limit. Audio amplifiers typify such circuits. Thus 
such amplifiers have the operating characteristics shown in figures 
(12.4) and (12.6). These figures show that these amplifiers can be used 
at higher efficiencies than class A circuits, but that the harmonic 
distortion generally increases. Consequently, class AB and B operation 
of a single tube audio power amplifier is seldom used, because the 
harmonic distortion introduced is excessive. Of course, some tube 
nonconduction over short angles might be tolerated because the 
distortion is not high in such cases. Neither is the efficiency much 
improved over class A operation. Thus, as a general rule, low pass, 
single stage power amplifiers are most advantageously operated in 
class A. 

Push-pull amplifiers can be used to considerable advantage when the 
tubes operate in the switching mode, because the circuit connection can 
be used to reduce the even harmonic distortion, and the switching mode 
can be used to increase the efficiency. Thus two tubes operated in push
pull class AB or B will provide a greater power output than the same 
tubes operated in class A push-pull or parallel. The advantage of the 
push-pull connection for class B operation is clear from figure (12.4) 
or (12.5). Figure (12.5) shows that the third harmonic is zero in class B. 
The second harmonic has a value of about 42.5 %, but this can be 
reduced to a small figure by the push-pull connection. Moreover, the 



450 Power Amplifiers-Switching Mode [Sec. 12.8 

circuit now has a maximum theoretical efficiency of 78.5 %, a consider
able improvement over the 50 % possible in class A operation. Further
more, practical push-pull class B amplifiers come closer to 78.5 % than 
class A amplifiers come to 50 % for the same amount of harmonic 
distortion. 

The importance of this efficiency improvement will be apparent from 
the following comparison of hypothetical cases. It was previously shown 
that 

Pac 
17 ---

p - Pac +P'P 

Solve this equation for Pac· The result is 

Pac= -1 1]p p'P 
-17'P 

For a class A amplifier operating at a hypothetical maximum efficiency 
of 50 %, Pac = P 'P' Thus the maximum theoretical power output is 
equal to the plate dissipation of the tube. If the same tube is operated 
in class B with a theoretical maximum efficiency of 78.5 %, the signal 
power output is Pac= 3.65P 'P' The signal power output in this case is 
3.65 times as large as that obtainable in class A operation. 

These figures also make it clear that class C operation is inadvisable 
even with the push-pull connection. The second harmonic could be 
largely eliminated, of course, but the third harmonic is large and is not 
removed by the push-pull circuit. Also, the increase in distortion is 
accompanied by a decrease in efficiency. 

12.8. Efficiency with a Tuned Load Circuit3 

For the case of a pure resistance load circuit, section (12.6) indicated 
that no advantage resulted from class C operation. However, the situ
ation is radically altered when the load on the tube is changed to an 
impedance having a band pass characteristic. The simple high Q tuned 
circuit is the most common example of such a circuit. 

Assume the amplifier to be shunt fed and to have a load circuit tuned 
to the fundamental frequency. Further assume that the Q of the circuit 
is so high that its impedance is zero at zero frequency and at all the 

3 This discussion of tuned amplifiers follows that given by W. L. Everitt in: 
Communication Engineering, 2d ed., McGraw-Hill Book Co., Inc., New York, 
1937, chap. 17; "Optimum Operating Conditions for Class C Amplifiers," Proc. 
IRE, vol. 22, p. 152, February, 1934; and "Optimum Operating Conditions for 
Class B Amplifiers," Proc. IRE, vol. 24, p. 305, February, 1936. 
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harmonic frequencies. Thus the load short circuits all plate current 
components to ground with the exception of the fundamental. The 
impedance presented to the fundamental is 

RL = input impedance at antiresonance 

Thus only the fundamental appears in the output and only the funda
mental component of current / 'P

1 
causes any voltage drop in the load 

circuit. This contrasts sharply with the case of a resistance load in which 
all current components contributed voltage drops in the load circuit 
and variations in the plate voltage. 

Under these assumed conditions, the plate voltage is 

E'P = E'P1 = -I'P1RL (12.34) 

E IR 
and so E1 = Eu + ~ = E - ~ µ g µ (12.35) 

It was previously shown that 

JP = gmEl (0c - sin 0c COS 0c) (12.36) 
1 7T 

If the expression given for £ 1 in equation (12.35) is substituted into 
equation (12.36), the result is 

(12.37) 

where /3 = . 1T 

0 c - sm 0 c cos 0 c 
(12.38) 

The plate circuit efficiency was given in equation (12.30) and the 
values of 1; and / 'Pi in the same place. Thus 

Thus 

, gmEl . 0 
lb = -- (sm 0 c - 0 c cos c) 

1T 

/'Pl _ 0C - Sin (JC COS 0C 

1; - sin 0c - 0c cos 0c 

(12.39) 

(12.40) 

Now substitute this ratio and the value of /'P
1 

given in equation (12.37) 
into the efficiency equation of (12.30). The result is 

% 
p,Eg RL 0c - sin 0c cos 0c 

5 0 'Y} = -- ----. ------ 0 0 'P Ebb RL + f3r'P sin 0c - 0c cos 0c 
(12.41) 

It will be noted that this equation is quite different from (12.31), which 
was obtained for the case of a resistance load. 

That part of equation (12.41) that depends upon 0c has been computed 
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and plotted in figure (12.7). This quantity is called the asymptotic 
efficiency 'YJA of a tuned amplifier operating in the switching mode. 
That is, 

% 
0 c - sin 0 c cos 0 c O 

o'YJA = . 5 (12.42) 
sm 0 c - 0 c cos 0 c 

This factor approaches 100 % for class C operation as shown by figure 
(12.7). It is evident that an actual amplifier is prevented from attaining 
100 % efficiency by the factor 

µEg RL 

Ebb RL + {Jr11 

It is also clear from equation (12.41) that the efficiency is a linear 
function of the grid voltage Eu as long as the tube conduction angle is 

>
u 
z 
LIJ 

u 
ii: 
IL 
LIJ 

100% --- ~ ....... 
~ .... 

~ .... 
CLASS C 

I 
CD 
en 
en 
ct 
...J 
u 
......... CLASS AB ......... 

.... 
r:-... I"'""-- - .... _ 

r--~ 
50%00 90° 180° 270° 

CONDUCTION ANGLE OF TUBE 28c 

Fig. 12.7. Plate circuit efficiency vs. conduction angle, tuned load. 

constant. This is an important factor in the design of a modulated 
class B amplifier and will be treated later. Of course, this linearity only 
holds up to the saturation region of the tube characteristics. This is not 
a serious limitation upon the use of the equation, however, because 
operation into the saturation region is usually avoided; it causes a 
flattening in the top of the plate current waveform. 

It seems reasonably clear that optimum operation will be obtained 
when Eu has its maximum value and that this maximum value will drive 
the tube current just up to the saturation point. This analysis is 
undertaken in the next two sections. 

12.9. Tuned Amplifiers at the Saturation Point 

Just before operation at the saturation point occurs, the following 
terminology applies: 

Ecm = maximum total grid voltage 
Eum = maximum grid signal amplitude 
Ebm = minimum total plate voltage 
lvm

1 
= maximum fundamental component of plate current 
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If the load circuit is antiresonant at the fundamental frequency, the 
minimum plate voltage Ebm and maximum grid voltage Ecm occur at the 
same instant of time. Thus it is possible to write 

Ebm = Ebb- /pm
1
RL; Ecm = Egm - Ecc 

Saturation occurs when the total grid voltage is just equal to the total 
plate voltage, or Ecm = Ebm, or when 

Egm + /pm
1
RL =Ebb+ Ecc (12.43) 

The d-c and variational terms have been separated and combined in 
this equation. However, it was shown in equation (12.37) that 

I = µEg 
Pi RL + f3r1' 

Hence it is also true that 

I = µEgm (12 44) 
Pm1 RL + /Jrp . 

Thus equation (12.43) can be written 

E (µ + I)RL + f3rp = E + E (12.45) 
gm RL + /JrP bb cc 

It was shown earlier in the chapter in equations (12.6), (12.9), and 
(12.12) that 

E; 
Ex = Ecc - - = E1 COS () c 

µ 

E IR 
E1 = E + 2 = Eg - ~ 

g µ µ 

In the present case shunt feed is assumed, so that E; = E;b, where 
E;b =Ebb+ E0 (reverse sign on E0 for a pentode). Moreover, because 
only the fundamental produces a voltage drop in R L, it is possible to 
write, for the saturation condition, 

E;b 
Ex = Ecc - - = E1 COS () c 

µ 

E = E _ /Pm1RL 
1 gm 

µ 
Combine these two equations and write 

( 
[pm 1RL ') Eb; 

Egm - --µ- COS ()c = Ecc - µ (12.46) 
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Substitute equation (12.44) for Ipm and solve for Ecc· The result is 
1 

{Jr11 Eb; 
Ecc = Egm R /3 COS 0c + - (12.47) 

L + r1' µ 
Now insert this value for Ecc into equation (12.45). Solve the result for 
Egm• This yields 

E = µ + 1 . RL + {Jr11 Ebb' (12 48) 
gm µ (µ + l)RL + {J(l - cos 0c)r

11 
• 

Substitute this into equation (12.44) for the fundamental component of 
plate current; the eventual result is 

E' 
J - ( + 1) bb (12 49) 

Pmi - µ (µ + l)RL + /3(1 - COS 0c)r
11 

• 

In both of these last two equations, divide numerator and denominator 
through by r 11 and then define the following factors: 

(X = (µ + 1) RL = (µ + 1) gmRL 
'11 µ 

(12.50) 

77(1 - COS 0c) 
B = {J(l - cos 0c) = O . 

0 0 
(12.51) 

C - Sill C cos C 

Hence the maximum values of grid excitation and fundamental plate 
current can be written in terms of these parameters as follows 

E - (X + (µ + l){J E' (12.52) 
gm - µ(oc + B) bb 

(X Eb~ 
I =--·-

11m1 (X + B RL 
(12.53) 

It is now possible to compute the power output and efficiency at 
saturation. That is, , 2 2 

p - ~ 12 R - Ebb (-oc-) (12.54) 
ac - 2 1Jm1 L - 2R L OC + B 

'2 
µ + 1 gmEbb (X 

=--·--·---
µ 2 (oc + B)2 

(12.55) 

The plate circuit efficiency at the saturation point is 

Pac 1 I;m RL 
'YJ =-=-__ 1_ 

1Jm Pde 2 Ebi; 

% = 50 [1Jm1RL • [1Jm1 
o'Y/pm E I' per cent 

bb b 
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Substitution of the appropriate relationships reduces this to 

ix [()c - sin ()c cos ()c] 1 
17 - -- ----- - (12.56) 

pm - oc + B sin ()c - ()c cos ()c 2 

where the bracketed quantity is the asymptotic efficiency plotted in 
figure (12.7). Hence 

(12.57) 

The plate circuit efficiency of a shunt fed amplifier can be written 

Pac 
'Y}p=p . p 

ac + p 

Solve this equation for the plate dissipation. 

Thus at saturation, 

Ppm= Pac(-
1 

- 1) 
'Y/pm 

Substitute for Pac and 'Y/pm and rearrange terms. This leads to 

Ppm= maximum allowable plate dissipation 
'2 

µ + 1 gmEbb oc(l - 'YJA) + B 
= -µ-. -2-. 'YJA(cx; + B)2 

Now define ancther parameter, 

oc(l - 'YJA) + B 
y= 

'YJA(cx; + B)2 

so that the plate dissipation can also be written 
'2 

p = µ + 1 _ gmEbb Y 

or 

pm µ 2 

2µ pp 
y = -- . ~ 

µ + 1 gmEbb 

(12.58) 

(12.59) 

(12.60) 

(12.61) 

From this last equation it is apparent that the constant y can be 
computed in terms of the constants of the power amplifier tube. 

It is possible at this point that you feel a little bewildered by the maze 
of mathematical detail and you may have lost sight of the objectives of 
the analysis. The discussion in the next section should straighten 
things out. 
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12.10. Optimum Design of a Tuned Class C Amplifier 
Optimum operation of a tuned class C amplifier is secured when 

operation is just at the saturation point and when the plate circuit 
efficiency has its maximum value; optimum operation includes the 
allowable loss condition. Although there are a number of related 
aspects to the problem, the main factor of interest is the tube conduction 
angle required for optimum operation. Once this angle is determined, 
equations have been derived that allow the computation of other 
factors of interest. 

Suppose that an amplifier is to be designed and that a given tube has 
been selected. The tube manufacturer will specify the maximum 
allowable plate dissipation Ppm and the µ and gm of the tube. The 
intercept voltage £ 0 can be determined from the static plate charac
teristics. A power supply voltage can be selected or the recommen
dations of the tube manufacturer can be followed. Thus all the neces
sary factors are now known, and the constant y can be computed from 
equation (12.61) or (12.59). 

Equation (12.59) for y is 

<X(l - 'YJA) + B 
y=------

'YJA((X + B)2 

Now y is a constant in this equation, while 'YJA and Bare functions of 
the tube conduction angle ()c· Hence, if this equation is solved for <X, 

the result will be a function of (Jc only. Following this procedure 
produces a quadratic equation for oc having a solution of the following 
form: 

1 [I - 'YJA J(I - 'YJA)
2 

B'YJ~] 
(X=- ----B'YJA+ --- +-

'YJA 2y 2y y 
(12.62) 

The plus sign is required in front of the radical to make <X a positive 
number. 

If this expression for <X, which is a function of ()c only, is substituted 
into the equation for the plate circuit efficiency, 

(X 

'Y/pm = (X + B 'YJA 

the result will also be a function of ()c only. The conduction angle 
required for maximum efficiency can now be obtained by differen
tiating 'Y/pm with respect to ()c and following the usual maximizing 
procedure. The resulting value for ()c can be substituted into the 
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appropriate factors in the equation for y, so that under these optimum 
conditions 

where 

B + (I - 'YJA)K 
y = 'YJ A(B + K)2 I 

B = _7T_(l_-_c_o_s _0c_) _ 
0c - sin 0c cos 0c 

1 0c - sin 0c- cos 0c 
'YJA. = - -------

2 sin (Jc - ()c cos ()c 

1T(sin 0c - 0c) 
K=-----------

2 sin2 (Jc - 0! - ()c sin ()c cos ()c 

(12.63) 

(12.64) 

(12.65) 

(12.66) 

For each value of 0c, equation (12.63) will yield one value for y. 
Thus a graph of ()c vs. y can be computed and plotted as shown in 
figure (12.8). Also, the values of (Jc determine Band 'YJA, and therefore 
fix (1. and 'YJpm• Thus these quantities can also be plotted against y as shown 
in figure (12.8). 

Before concluding the discussion with an outline of the design 
procedure for optimum operation, two additional equations must be 
derived. The power output is 

12 
R p = pm1 L 

ac 2 

or l 11m
1
RL = V2RLPac (12.67) 

However, for optimum operation at the saturation point, equation 
(12.46) showed that 

Egrn - Ecc = Ebb - Jpm
1
RL 

Solve this for l 11m RD substitute the result back into equation (12.67), 
l 

and compute Ecc to be 

Ecc = Egm + -V2RLPac - Ebb 

It was previously shown in equation (12.29) that 

]max= gmEi(l - COS (Jc) 

and from equation (12.21), 

, g mEl ( . (} () (} ) h = -- sm c - c cos " 
TT 

(12.68) 
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Thus the ratio of the maximum plate current to the average plate 
current is 

/max 77{1 - COS 0c) 

T = sin ()c - ()c cos ()c (12.69) 
This ratio, together with 'Y/pm, is plotted as a function of yin figure (12.9). 
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Fig. 12.8. Tuned class C amplifier optimum design curves. (From 
W. L. Everitt, Communication Engineering, 2d ed., McGraw-Hill Book 
Co., Inc., 1937, p. 581.) 

Basic Design Procedure Outline 
(1) Select the tube and Ew 
(2) Compute y and E;b. 
(3) For this value of y, read off the corresponding values for ex, {3, 

and B from figure (12.8). 
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(4) Compute RL from equation (12.50), Egm from equation (12.52), 

and Pac from equation (12.55). 
(5) Compute Ecc from equation (12.67). 
(6) For the value of y calculated, look up 'YJ 11m and /maxi 1; on figure 

(12.9). 

(8) Compute /max· 

(9) Check to be sure that this Imax is within the capabilities of the 
tube selected. If not, repeat the design procedure for another tube or 
another value of Ew 
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W. L. Everitt, Communication Engineering, 2d ed., McGraw-Hill Book 
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12.11. Neutralization 

I 0 

~ 

It was shown in chapter 3 that the input admittance of a vacuum 
tube amplifier involved both a conductance and a susceptance. The 
magnitude and sign of the conductance was shown to depend upon the 
impedance in the plate circuit. In the case of a grounded cathode 
amplifier this conductance becomes negative when the impedance in the 
plate circuit is inductive. When this happens the amplifier may burst 
into sustained oscillation because the feedback through Cg

11 
is positive 

and of sufficient amplitude to create instability. 
This is an acute problem in amplifiers having tuned load circuits. The 
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effect is most frequently met with in triodes, because ea,, is compara
tively large. It occurs occasionally with pentodes and beam power 
tubes where ea,, is much smaller. Regardless of the tube type used, 
whenever feedback is sufficient to cause oscillation, special circuits are 
added to neutralize the feedback caused by the interelectrode capaci
tance. Thus they are called neutralizing circuits. 

The Rice and Hazeltine circuits are the most common methods of 
neutralizing amplifiers. The circuit connections are shown in figures 
(12.lOa) and (12.lOc). The diagrams have been redrawn in figures 
(12.lOb) and (12.lOd) in forms more suitable for discussion. 

Cqp p 
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I 
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L2 -µ.eg 
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p 
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L2 
.___.....__--4 

C 

K 

(c)CIRCUIT DIAGRAM-RICE SYSTEM (d) EQUIVALENT CIRCUIT-RICE SYSTEM 

Fig. 12.10. Neutralization of single tube power amplifiers. 

Consider the Hazeltine circuit. The plate power supply is connected 
to a tap, usually at the center, of the tank coil. The bottom end of the 
plate tank circuit is connected through a neutralizing capacitor en to 
the grid. The equivalent circuit given in figure (12.lOb) shows that by 
proper adjustment of en, the applied voltage from the plate P to the 
cathode K will not produce any voltage from the grid G to the cathode. 
The condition for balance is easily written from this circuit as Eak = 0 
or because 

Egk= Eon+ EL2= Eoll'D + EL1 = 0 

Then, for proper neutralization, 

Eon= -ELs and Eoll'D = - EL1 
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If the plate tank circuit circulating current / 2 is much larger than the 

current / 3 the currents through L1 and L2 are virtually the same. This 
condition is generally true in high Q circuits. Therefore, in the steady 
state, 

Solve these two equations simultaneously and eliminate jw and /1/ / 2• 

The resulting condition required for neutralization is 

L1 
Cn=LCn, 

2 

Of course, if the high Q assumption is violated so that the coil 

J -Ecc ~I• 

______, 

Fig. 12.11. Neutralization of a push-pull tuned power amplifier. 

currents are not virtually equal, it may be impossible to neutralize the 
circuit by adjusting the neutralizing capacitor. 

A similar analysis can be applied to the Rice circuit and it will be 
found that neutralization is secured when 

L1 = L2 and en= CU'P 
Push-pull circuits are widely used in power amplifiers because of the 

inherent characteristic of even harmonic suppression. Because the 
circuit is balanced to ground, the circuit is easily neutralized as shown 
in figure (12.11). 

The conditions required for neutralization that were just derived 
make it possible to select the approximate value for the neutralizing 
capacitor in a given circuit. These capacitors are usually adjustable, 
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because tube-to-tube variations in interelectrode capacitance always 
occur. Thus the circuit must be accurately neutralized after the amplifier 
has been constructed. This is most conveniently and safely done by 
turning the plate power supply off, but leaving the filaments heated. 
Grid excitation is supplied, and then the neutralizing capacitor is 
adjusted for minimum energy transfer to the plate circuit. If energy is 
transferred, it may be detected by a radio receiver connected to a loop 
of wire coupled to the plate coil. Any other sensitive type of detector 
can be used. 

12.12. Power Supply Connections for Tuned Amplifiers 
The plate power supply for power amplifiers is usually supplied from 

rectifier and filter circuits of the type covered in chapter 14. Similar 
circuits may also be used to provide the grid bias, but grid leak bias 

Fig. 12.12. Grid leak bias circuits. 

circuits are more common. Cathode bias may be used as long as the 
switching operation of the tube does not exceed periods of 180°. Class 
C operation requires bias voltages greater than cutoff, and this cannot 
be obtained with conventional cathode bias circuits. 

Grid leak bias circuits may assume either of two superficially different 
forms as shown in figure (12.12). Both circuits operate in essentially the 
same manner. When excitation is first supplied to the grid there is no 
bias, so that grid current flows on the positive swing of the grid signal. 
The grid-cathode part of the tube acts as a low resistance diode, so that 
Cg rapidly charges through the diode resistance r g• The charging time 
constant is 

, rgRg . 
1ch= +R Cg=rgCg 

rg g 

because r g is nearly always very much less than Rg. 
As the signal voltage swings negative, grid current ceases, and the 
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accumulated charge on Cg leaks off through Rg with a discharging time 
constant of 

Tdch = RgCg 
Because of the large difference in size between r g and Ru, the discharge 
time constant is much larger than the charging time constant and only 
a fraction of the accumulated charge leaks off. Clearly, after a few 
cycles of signal voltage, an equilibrium condition will be attained in 
which grid current flows for only the short period necessary to replenish 

Cn 

FILAMENT 
SUPPLY 

BLOCKING 

Fig. 12.13. High power, class C tuned amplifier, showing shunt feed, 
power supply connections, and a Rice system of neutralization. Although 
many ground connections are shown, they should be tied to a common 
point on th~ chassis; see section (10.17). 

the charge that leaks off during discharge. As a result, a large negative 
voltage is developed and this constitutes the gridleak bias voltage. To 
a close approximation, Ecc = lgRg, where lg= average or grid direct 
current. Therefore Rg = Eccl lg. 

Tuned amplifiers are operated in the switching mode primarily for 
the purpose of obtaining a high efficiency of conversion of d-c power to 
signal power. Therefore steps should be taken to minimize losses 
throughout the circuit. In particular, it is desirable to avoid signal 
losses in the various power supplies connected to the amplifier. Thus 
steps are taken to jsolate the plate, grid, and filament power supplies 
from the signal frequency currents and voltages. This requires the use 
of radio frequency (RF) chokes and bypass capacitors. 

For example, RF chokes are nearly always placed in series with the 
plate power supply as shown in figure (12.13). An RF choke has 
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negligible resistance to direct current but a high impedance at the signal 
frequency. Thus only a small signal current flows through the choke 
and internal impedance of the power supply. What little current does 
pass through the choke can be bypassed to ground by the capacitor Cb, 
so that the signal current through the power supply is virtually zero. A 
similar technique can be applied to the grid circuit where necessary. 

Because high power tubes usually use directly heated cathodes, steps 
should be taken to prevent RF voltages from being impressed across 
the filament transformers. This is achieved by using all or part of the 
methods shown in figure (12.13). Radio frequency chokes are placed in 
series with the filament leads, and bypass capacitors to ground are 
placed at the transformer connections. To prevent RF voltages between 
filament leads, another bypass capacitor Cx is connected directly across 
the filament terminals. 

12.13. Parasitics 
A parasitic is an unwanted or spurious oscillation in an electronic 

circuit. They occur frequently in tuned power amplifiers. As noted in 
chapter 10, the most common cause of parasitics is inadvertent for
mation of a tuned grid, tuned plate oscillator operating at some fre
quency other than that for which the circuit was designed. A common 
cause of this circuit condition is the use of shunt feed in both the plate 
and grid circuits. This should be avoided if possible, but if it must be 
done, the chokes should be as dissimilar as possible. The ratio of choke 
inductances should be about 100. 

Intertube parasitics often result when tubes are operated in parallel. 
The use of parasitic suppressing resistors of 10 to 50 ohms in series with 
the grid of each tube, or the use of chokes in the plate leads, will often 
remove this difficulty. 

Parasitics often result through the use of ungrounded radio frequency 
tuning capacitors, excessively long leads to the neutralizing condenser, 
or through the use of multiple radio frequency grounds. Spurious 
oscillations also result from complex circuits formed when taps are 
placed on the tank coil for the purposes of loading or tuning. Long 
leads from tube connections to tank circuits will occasionally cause 
UHF parasitics. 

12.14. Power Oscillators 
It was noted in section (12.11) that tuned amplifiers will often 

oscillate because of feedback produced through Cuf)· If this feedback is 
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deliberately encouraged, the power amplifier is converted into a power 
oscillator. Thus power oscillators are designed as high efficiency tuned 
amplifiers operating in the switching mode, using the design procedure 
given in section (12.10). When the design is complete, steps are taken 
to determine the amount of feedback required to produce the necessary 
grid excitation, driving power, and so on. 

Nearly all the considerations affecting power amplifiers also apply to 
power oscillators. The one notable exception is that fixed bias cannot 
be used with class C oscillators because the tube would always be cut 
off, plate current would never flow, and the oscillation would never 
start. Hence grid leak bias is nearly always used in power oscillators. 

Another superficial difference between power amplifiers and 
oscillators is that crystals are often used in place of the grid tuned 
circuit to provide frequency stabilization. 

12.15. Concluding Remarks 

A few miscellaneous topics should be mentioned before closing the 
discussion. Because of the high harmonic content in the output of 
class C amplifiers, these circuits are frequently used as doublers and 
triplers. In these cases the plate tank circuit is tuned to the desired 
harmonic frequency. Because of the short conduction angles required 
for efficient operation as frequency multipliers, tubes operated in this 
manner require large grid bias voltages and large signal voltages. This 
difficulty can be partially overcome by using high µ triodes and beam 
power tubes and pentodes. 

In connection with neutralizing problems, it should be remembered 
from chapter 3 that the grounded grid amplifier is less susceptible to 
oscillation than the grounded cathode circuit. Thus grounded grid 
amplifiers are widely used in class C power amplifiers to minimize 
neutralization problems. The general operation and analysis of such 
circuits proceeds along the same lines as those illustrated for the 
grounded cathode circuit. There are some differences in the compu
tation of the power output. 

The design of the output coupling circuits is not covered here because 
such matters are generally covered in detail in standard books of 
circuit theory. 
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PROBLEMS 

12.1. Design a class C tuned amplifier for optimum operation at 20 
megacycles using an RCA 833 tube for which µ = 35; Eb (max) = 3000 v; 
r'P = 2400 ohms; P'P(max) = 300 w; Cu'P = 6.3 µµf; lu (max)= 75 ma; 
Cuk = 12.3 µµf; lb (max)= 500 ma. The Q at the operating frequency 
should be 12. Determine all necessary factors in the design as well as the 
values of Land C in the tank circuit. Assume E0 = 750 v. 

12.2. Design a Hazeltine neutralizing circuit for the amplifier of problem 
(12.1). 

12.3. Redesign the amplifier of problem (12.1) for optimum operation in 
class B. 

12.4. Design an audio power amplifier to provide a minimum of 45 w of 
power at not more than 3 % total harmonic distortion. There are many 
possible solutions to this problem. Work several such out and compare them 
on the basis of first cost, maintenance, reliability, and other factors. 



Chapter 13 

MODULATION AND MODULATORS 

A continuous wave of constant amplitude, phase and frequency 
conveys no information whatever other than the fact of its existence. 
The quantity of information thereby transmitted is just one step above 
zero. Of course, such a signal occupies only a single frequency in the 
electromagnetic spectrum. There is a correlation between the band
width required for transmission and the maximum amount of infor
mation that can be transmitted. The treatment of this problem of 
information theory is beyond the scope of this book. 

Nevertheless it should be clear that the requirements of information 
transmission necessitate an alteration of some type in the carrier wave. 
This alteration invariably increases the bandwidth required for 
transmission. The alteration is called modulation when some charac
teristic of the carrier wave is made to vary in accordance with the 
intelligence signal. 

Although there are only two fundamentally different ways of 
modulating a wave, amplitude modulation and angle modulation, there 
are a number of important subdivisions of each that are virtually 
different methods of modulation. Both the principles and methods of 
modulating systems are briefly discussed in this chapter. 

13.1. Principles of Amplitude Modulation 
The principle involved in amplitude modulation (AM) is easily shown 

mathematically. If the carrier current is 

(13.1) 

where ic = instantaneous carrier current; le = carrier amplitude; 
we= carrier frequency in radians/sec and if the intelligence or modu
lating signal is given by 

(13.2) 

where im = instantaneous intelligence current; Im= amplitude of the 
modulating signal; wm = modulating frequency in radians/sec; then 
amplitude modulation is produced by causing the carrier amplitude to 

467 
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vary about its own unmodulated value le by an amount proportional to 
the modulating signal amplitude and at the modulating frequency. In 
other words, the amplitude modulated carrier wave is 

where 

0 

(a) UNMODULATED CARRIER 

(b) MODULATING SIGNAL 

IH+~ff·~~•+M~~+++----------

(c) MODULATED WAVE 

Fig. 13.1. Amplitude modulation. 

ma= Im/le= modulation index 

(13.3) 

(13.4). 

The resulting effect and the meaning of the modulation index are 
illustrated in figure (13.1). 
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In equation (13.3), multiply through and separate terms; write the 
result as 

ie = le COS wet + male COS wet COS Wmt (13.5) 

The standard trigonometric identity for the product of two cosine 
functions of different frequency is 

MODULATING 
SIGNAL 

LOWER SIDE 
FREQUENCY 

le CARRIER 

UPPER SIDE 
FREQUENCY 

(13.6) 

Fig. 13.2. Components produced when a carrier is amplitude modulated 
by a simple single frequency signal. 

Thus the amplitude modulated wave can be expressed as 

. ma ma 
le= le COS Wei+ le 2 COS (we+ wm)t + le 2 COS (we - Wm)t (13.7) 

MODULATING 
SIGN AL LOWER SIDE 

BAND 

CARRIER 

UPPER SIDE 
BAND 

Fig. 13.3. Production of side bands by a complicated modulating signal. 

Three terms are produced by the modulation process: 
(1) cos wet = original unmodulated carrier 
(2) cos (we + wm)t = upper side frequency 
(3) cos (we - wm)t = lower side frequency 
The relationships between these three components are shown in 

figure (13.2). 
Ordinarily, the modulating signal will contain many terms of different 

frequency. Each such term will produce its own upper and lower side 
frequencies. Thus, when many modulating frequencies are involved, 
upper and lower side bands are created as shown in figure (13.3). 



470 Modulation and Modulators [Sec. 13.2 

Suppose that the modulated current wave flows through a pure 
resistance circuit of RL ohms. The total carrier power developed is 

Pc= ½J!RL 
The total power developed by the side frequencies is 

1 (ma ) 2 

1 (ma ) 2 

pm= 2 2/c RL + 2 2/c RL 

= m!l2R 
4 c L 

or 
2 ma 

Pm= 2 Pc (13.8) 

Thus the sideband power is always m!/2 of that in the carrier. Because 
the modulation index never exceeds unity, the sideband power never 
exceeds 50 % of the carrier power. The sideband power depends upon 
the square of the modulation index, so it will decrease rapidly as the 
modulation index drops below unity. Therefore, from the standpoint 
of energy conversion, best operation occurs when ma is 1, or when 
100 % modulation is used. 

If 100 % modulation is employed so that ma = 1, it is clear from 
figure (13.1) that the modulated wave will reach a peak value of 2/c. 
Hence the peak power output is 

1 2 2 
Pc (peak)= i2/c) 1?.L = 2Ic1?.L (13.9) 

The average carrier power was shown to be 

1 2 
Pc= icRL 

Therefore 

Pc (peak) = 4Pc (13.10) 

Hence, if the modulated signal is to be amplified, the amplifier must be 
capable of supplying four times the carrier power and withstanding 
twice the peak carrier current and voltage. This is important in the 
design of high power amplifiers for the transmission of amplitude 
modulated waves. 

13.2. Principles of Angle Modulation 
Angle modulation is produced by varying the angle of the carrier wave 

with respect to time and with respect to the angle of the unmodulated 
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carrier wave. The angle and frequency of a wave are related to one 
another as follows: we= carrier frequency in radians/sec; 1'e = 
relative phase angle of the carrier wave. 

dg,e 
w = - (13.11) 

C dt 

and g>c = f We dt (13.12) 

The relative phase angle of the carrier wave can be varied either by 
changing 1'e directly or by changing we. 

If the angle is varied directly with time in proportion to some 
intelligence signal, the carrier is said to be phase modulated (PM). If the 

I 
(o) MODULATING SIGNAL SHOWING HOW (bl CORRESPONDING VARIATION IN CARRIER 

THE PHASE ANGLE CHANGES FREQUENCY 

(cl UNMODULATED CARRIER (d) PHASE MODULATED CARRIER 

Fig. 13.4. Phase modulation with a square wave. 

angle is varied by changing the frequency in proportion to an intelligence 
signal, the wave is said to be frequency modulated (FM). Because of the 
interrelationships between we and 1'e, phase modulation also causes the 
frequency of the carrier to change during the time the phase is changing. 
Similarly, if the wave is frequency modulated, the relative phase angle 
of the wave also varies. This is best understood from figures (13.4) and 
(13.5), which show phase and frequency modulation of a carrier by a 
square wave. 

When the phase of the wave changes abruptly in accordance with the 
square modulating signal in figure (13.4), there is an instantaneous 
change in frequency. However, if the frequency changes abruptly, as in 
figure (13.5), the phase angle of the wave continuously increases. Thus, 
while the two systems of modulation are different and have different 
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characteristics, variation in frequency accompanies phase modulation 
and vice versa. This provides the basis for the Armstrong system of 
frequency modulation to be explained later. 

'C 

"'c 

+c-1::.+c 

(o l VARIATION IN CARRIER FREQUENCY (b) CORRESPONDING RELATIVE PHASE 

(c) FREQUENCY MODULATED CARRIER ( d) UNMODULATED CARRIER 

Fig. 13.5. Frequency modulation with a square wave. 

13.3. Frequency Modulation (FM) 
When frequency modulation is used, the actual carrier frequency 

deviates from the unmodulated carrier frequency we in direct proportion 
to the amplitude of the modulating signal. Hence the carrier frequency 
can be written 

wc(t) =We+ ~We COS wmt (13.13) 

where wc(t) = frequency of the carrier as a function of time when 
modulated; we = frequency of the unmodulated carrier; ~we = 
maximum frequency deviation of the carrier frequency on either side 
of we; wm = frequency of the modulating signal. Define a new 
parameter k1 as follows: 

k - ~We ,--
We 

so that the modulated carrier wave frequency is 

wc(t) = wc(l + k1 cos wmt) 

(13.14) 

(13.15) 

The instantaneous value of the carrier phase angle can be computed 
now from equations (13.12) and (13.15). That is, 

cf,c(t) = f wc(t) dt 

or 
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Evaluation of the integral yields 

<f>c(t) = wet + wckf sin wmt 
Wm 

(13.16) 

if the initial value of the relative phase angle is taken to be zero. The 
factor multiplying the sin wmt term is 

wckf ~w 
m,=-=-

wm Wm 
(13.17) 

where m1 = modulation index or deviation ratio for the frequency 
modulated wave. Therefore the relative phase angle of the frequency 
modulated carrier current is 

cpc(t) = wcf + m1 sin wmt (13.18) 

and the carrier current is 

ic(t) = IC cos cpc(t) 

= le cos (wcf + m1 sin wmt) (13.19) 

This last equation can be expanded 'by a standard trigonometric 
identity: 

ic(t) = Ic[cos (wet) cos (m1 sin wmt) 

- sin (wet) sin (m1 sin wmt)] (13.20) 

These complicated terms can be expanded in an infinite series of Bessel 
functions, 1 as follows: 

cos (wcf) cos (m1 sin wmt) = cos wet [ J0(m1) + 2n~/2nCm1) cos (2nwmt)] 

00 

= Jo(m1) cos wcf + 2 L J2n(m1) cos (wcf) cos (2nwmt) 
n=l 

00 

sin (wet) sin (m1 sin wmt) = sin (wct) 2 IJ2n_i(m1) sin (2n - 1) wmt 
n=l 

00 

= 2 L J2n_i(m1) sin (wet) sin (2n - 1) wmt 
n=l 

The symbols Ja(m1) stand for Bessel functions of the first kind, of order 
a, with argument m1• Values of these functions for various values of the 
argument may be found elsewhere. 2 

1 See, for example, Ruel V. Churchill, Fourier Series and Boundary Value Problems, 
1st ed., McGraw-Hill Book Co., Inc., New York, 1941, p. 151. 

2 See, for example, E. Jahnke and F. Emde, Tables of Functions, Dover Publications 
Inc., New. York, 1945. 



474 Modulation and Modulators [Sec. 13.3 

A simplification can be effected by the standard trigonometric 
identities shown below: 

cos oc cos /J = ½ cos (oc - /J) + cos (oc + /J) 
sin oc sin fJ = ½ cos (oc - fJ) - cos (oc + /J) 

Therefore the preceding infinite series can be written as follows: 

(I) First series 
00 

Jo(m1) cos wcf + 2 J2nCm1) cos (we - 2nwm)t 
n=l 

00 

+ 2 J2nCm1) cos (we+ 2nwm)t 
n=l 

(2) Second series 
00 

2 J2n_i(m1) COS [we - (2n - l)wm]t 
n=l 

00 

+ 2 J2n_i(m1) cos [we+ (2n - l)wm]t 
n=l 

Substitute these series back into equation (13.20) for the carrier current. 
Substitute values for n for a few terms and write 

ic(t) = le {Jo(m1) cos wcf 

- J1(m1) [cos (we - wm)t - cos (we+ wm)t] 

+ J2(m1) [cos (we - 2wm)t + cos (we+ 2wm)t] 

- J3(m1) [cos (we - 3wm)t - cos (we + 3wm)t] 

+ Jlm1) [cos (we - 4wm)t + cos (we+ 4wm)t] 

- Js(m1) [cos (we - 5wm)t - cos (we+ 5wm)t] 

+ ... } 
The nature of the frequency modulated wave is easily deduced now 

from the preceding equation. Note that there is always an infinite 
number of frequency components equally distributed on either side of 
the center frequency we. The spacing between successive components is 
always equal to the modulating frequency wm. The amplitude of each 
term is governed by the modulation index m1• 

It is a relatively simple matter to make plots of the spectra for fre
quency modulated waves. Assume values for m1, we, and wm and then 
look up the corresponding values for the Bessel functions in footnote 
reference (2). Several sample spectra have been computed and plotted in 
figure (13.6). 
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Figure (13.6) shows that the properties of the Bessel functions cause 

the side frequency components to converge to zero rather rapidly. Thus 
for all practical purposes there is a definite bandwidth required for 
transmission even though it is theoretically infinite. It is also clear from 
figure (13.6) that the bandwidth required for transmission is not twice 
the frequency deviation. It is always greater. 

SPACING BETWEEN 
SUCCESSIVE 

COMPONENTS IS fm 
IN ALL CASES 

fc 

fm•5KCPS 
.Af=5KCPS 
m,=1.0 

fm•5KCPS 
li.f•25KCPS 
m,•5.0 

fc 

fm=5KCPS 
M=IOKCPS 
m,•2.0 

• I I I I I I 1.111 I , I , I I I I . 1 I I 1 ~::~~~=. 
Fig. 13.6. Effect of variation in frequency deviation on the spectrum of an 

FM signal. 

The center frequency term, corresponding to the frequency of the 
unmodulated carrier, will disappear completely when J0(m1) is zero. 
This function is zero whenever3 

m1 = 2.405, 5.520, 8.654, 11.79, 14.93, ... 

Under such conditions, all the power appears in the sidebands and is 
useful in signal transmission. 

Another important characteristic of the spectrum of a frequency 
modulated wave is shown in figure (13.7). This shows the effect on the 
spectrum when the modulating frequency is varied and the frequency 
deviation is fixed; this is the usual case in frequency modulated trans
mission. Note that there are more side frequencies produced for a low 

3 Ruel V. Churchill, Fourier Series and Boundary Value Problems, 1st ed., 
McGraw-Hill Book Co., Inc., New York, 1941, p. 157. 
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modulating frequency than are produced by a higher modulating 
frequency. However, the total bandwidth required for transmission is 
practically the same in both cases. 

fm =7.5 KCPS 
fif =75 KCPS 
mt=IO 

fc 
SPACING BETWEEN SUCCESSIVE COMPONENTS IS 7.5 KCPS 

fm = 15 KCPS 
af = 75 KC PS 
m1 = 5 

fc 
SPACING BETWEEN SUCCESSIVE COMPONENTS IS 15 KCPS 

Fig. 13.7. Effect of variations in modulating frequency on the spectrum. 

13.4. Phase Modulation 
In the absence of modulation the carrier current 

ic(t) = le cos wcf (13.21) 

has an angle wcf that constantly increases with increasing time. If the 
carrier is phase modulated, this phase angle is advanced and retarded 
with respect to its unmodulated value in proportion to the modulating 
signal. Thus if mp is used to denote the phase modulation index, or 
maximum phase deviation, the carrier angle is 

cf,c(t) = wet + mp cos wmt (13.22) 

Consequently, the phase modulated carrier current is 

(13.23) 
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From a comparison of the phase modulated carrier current given in 

equation (13.23) and the frequency modulated carrier current given in 
equation (13.19), it is clear that both have essentially the same form, 
differing only in the time variation of the phase angle. This variation is 
cosinusoidal for the phase modulated wave and sinusoidal for the fre
quency modulated wave. Hence it would be a simple matter to expand 
equation (13.23) for the phase modulated wave into an infinite series of 
Bessel functions just as we did for the frequency modulated wave. 
Because of the similarity of form, phase modulated waves have the same 
spectra as frequency modulated waves if (1) the modulating signal is 
sinusoidal; (2) m'P = m1• Thus the spectra plotted previously in figure 
(13.6) for various values of m1 can also apply to phase modulated waves 
under the two conditions stipulated above. 

As in the case of frequency modulation, the total average power of 
the modulated wave is equal to that of the unmodulated carrier. 
Energy is simply diverted by the modulation process from the center 
frequency into the side bands. 

Although the similarities between phase and frequency modulation 
are quite pronounced, there are important differences. The most 
important difference arises from the effect of modulating signals of 
different frequency on the bandwidth required for transmission. In 
FM transmission the frequency deviation tJ.f is held constant as the 
modulating frequency varies. This causes the modulation index, 
m1 = tJ..f !fm, to decrease as fm increases. In phase modulated trans
mission, the phase deviation m'P is held constant as the frequency of 
the modulating signal varies. 

For a given value of m'P or m1, the number and amplitude of the 
significant frequency components is fixed. However, these components 
are spaced wm radians apart. Hence the bandwidth required for 
transmitting a phase modulated signal is linearly related to the fre
quency of the modulating signal. If sufficient bandwidth is allowed for 
transmission of a high frequency modulation component, only a small 
fraction of this bandwidth is utilized when the modulating frequency 
is low. Thus a phase modulated wave does not make effective use of its 
allotted part of the frequency band. 

For a frequency modulated wave, as the modulating frequency fm is 
increased and the deviation is held constant, m1 decreases. Thus two 
partially counterbalancing effects occur simultaneously: 

(1) The increase in the modulating frequency increases the separation 
between the frequencies. 
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(2) The decrease in m1 reduces the number of significant frequency 
components. 

As a result, the bandwidth required for transmission is more nearly 
constant than that required for transmission of a phase modulated 
wave. In other words, FM signals make more efficient use of their 
allotted bandwidths than do phase modulated signals and are preferred 
for transmission for this reason. 

Despite the preference for FM for transmission, it is generally easier 
to phase modulate an oscillator than to frequency modulate it. Thus 
phase modulation is often preferred in the transmitter. 

13.5. Comparison of AM and FM; Interference and Noise 
Most noises, such as static, ignition systems, and so on, are basically 

amplitude modulated signals and are received and amplified by an AM 

Fig. 13.8. Interference between two waves. 

receiver just as though the noise was a part of the signal. Usually FM 
receivers are designed with clippers or limiters (see chapter 15) so that 
they do not respond to amplitude variations. Thus such noise is largely 
eliminated from the output of FM receivers. 

Frequency modulation largely overcomes the effects of signal 
interference produced when an interfering signal of about the same 
frequency as the desired signal appears in the receiver input. Call the 
desired signal D and the interfering signal I. They add as phasors in the 
receiver input to produce a resultant R as shown in figure (13.8). 
Because of the slight frequency difference between the two signals, / 
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rotates about D. Clearly, the amplitude of the resultant will vary over 
a wide range of 2/j.R and cause the amplitude of the received signal to 
vary. The interference is severe in this case. 

Now suppose that D and / represent frequency modulated waves of 
slightly different center frequency. The rotation of I about D causes 
the phase of the resultant to swing over the range marked in figure 
(13.8). It is about ±0.5 radian in this case. In a typical FM signal, the 
actual phase deviation may run anywhere from about ±35 to ±15,000 
or more radians. Thus the interference of about 0.5 radians is small. 

In most audio signals the greater part of the signal power is contained 
in the low frequency components. The treble notes are not strong and 
may not greatly exceed noise components. Thus pre-emphasis is 
generally used in FM transmitters to accentuate the treble components. 
A reciprocal process of de-emphasis is used in the receiver to restore 
the true tonal balance. However, the noise level is greatly reduced by 
the de-emphasis circuit and adds another degree of superiority for the 
FM system over the AM. 

13.6. Pulse-Time Multiplexing 

The tremendous and ever increasing demand for more communication 
has led to the development of various multiplexing systems. Multi
plexing refers to the simultaneous transmission of more than one 
signal on a common carrier wave. Two methods are in common use, 
as follows: 

(1) Frequency division. Each signal is associated with a separate 
subcarrier frequency. 

(2) Pulse-time division. Samples of each signal are transmitted in 
time sequence at a high sampling frequency on the same carrier 
frequency. 

The time-division multiplexing systems ordinarily use pulses. In the 
sampling interval only one characteristic of the pulse can be made to 
vary in accordance with the signal being sampled. This has led to the 
development of a number of systems such as pulse amplitude modulation 
(PAM), pulse width modulation (PWM), pulse position modulation 
(PPM), pulse frequency modulation (PFM), and so on. The scope of 
this subject is entirely too broad to be covered in any detail here. Only 
the general features of PAM will be presented. 

In these systems a series of equally spaced identical pulses is obtained 
from some sort of commutating device. This may be a mechanical or 
an electric contrivance, depending upon the pulse frequency required. 
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In any case, each such pulse obtained is varied in amplitude, width, 
position, or frequency in accordance with the signal being sampled. 

For example, two types of pulse amplitude modulation are illustrated 
in figure (13.9) to show how the pulse amplitude is made variable in 
accordance with the amplitude of the signal being sampled. Similar 
sketches may be made for the other pulse systems. 

Figure (13.9) illustrates the sampling of only one channel. Actually, 
many channels may be sampled by the pulse train. In an 8 channel 

H+-++-~l-lrit-llHl--1r-11-1t":-------------, 

Ca) UNIDIRECTIONAL 

(b) BIDIRECTIONAL 

Fig. 13.9. Pulse amplitude modulation (PAM). 

system each channel is sampled by successive pulses. A synchronizing 
pulse is also required. Thus one complete cycle of an 8 channel PAM 
system would show 8 amplitude modulated pulses, one for each channel, 
and one synchronizing pulse. The sampling pulses shown in figure 
(13.9) correspond to every 9th pulse from the original pulse train. This 
is illustrated in figure ( 13.10). 

The instantaneous amplitude of the signal in channel 1 is sampled, 
then channel 2, and so on through channel 8. Then the entire sampling 
process repeats after the transmission of the synchronizing pulse. The 
rate at which one channel is sampled is governed by the nature of the 
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signal transmitted. 8000 pulses per second is the usual sampling rate 
for voice communication channels. This rate is so fast that the average 
listener cannot detect the difference between true and sampled signals. 
The detector or demodulating circuits are designed to help restore the 
sampled signal to its original continuous form. 

Once the pulse time muJtiplexing has been achieved, the signal may 
be transmitted through space on a carrier. The carrier may be amplitude 
or frequency modulated by the pulse-time multiplexed signal. 

SYNC CHANNEL SYNC CHANNEL SYNC CHANNEL SYNC 
NUMBERS NUMBERS NUMBERS 

12345678 12345678 12345678 

USED TO SAMPLE USED TO SAMPLE USED TO SAMPLE 
CHANNELS AS CHANNELS AS CHANNELS AS 
MARKED MARKED MARKED 

Fig. 13.10. Pulse train in an eight channel PAM system before modulation. 

13.7. Methods of Amplitude Modulation 
The discussion up to this point in this chapter was solely concerned 

with the principles of modulation, without regard to the methods of 
achieving it in practice. The remainder of this chapter presents practical 
modulation methods. 

In chapter 11 it was shown that the square law characteristics of 
some electronic devices can be used to produce amplitude modulation. 
It was also shown that such systems are generally inefficient and 
unreliable. Most practical amplitude modulation systems require the 
electronic component to operate in the switching mode at high 
efficiency. 

When large amounts of power are involved, high efficiency class C 
amplifiers are usually modulated. Any one of three methods may be 
used: ( 1) plate modulation; (2) cathode modulation; (3) grid modu
lation. The general operating principle involved is the same in all three 
cases, but the operating characteristics are quite different; each has 
particular attributes and disadvantages that render it suitable or 
impractical in various applications. This will be discussed later. 

The general principle involved in all three methods is easily under
stood from the transfer characteristics of the amplifier. These are 
shown in figures (13.11) and (13.12) for class C operation. 
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PLATE CURRENT IN A 
PURE RESISTANCE LOAD 

TANK CIRCUIT 
VOLTAGE 

Fig. 13.11. Plate modulation of a class C amplifier. Ecc = constant, 
Eco = variable. 

t+ 

t+ 

PLATE CURRENT IN A TANK CIRCUIT VOLTAGE 
PURE RESISTANCE LOAD 

Fig. 13.12. Grid modulation of a class C amplifier. Ecc = variable, 
Eco= fixed. 
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When the amplifier is plate modulated the modulating signal is 
inserted in series with the plate power supply. Hence the total power 
supply voltage varies as a function of time in accordance with the 
modulating signal. This causes the transfer characteristic of the tube to 
slide parallel to itself, in the ideal case, as shown in figure (13.1 la). 
This alters the cutoff voltage in accordance with the modulating signal 
because there is an almost linear relationship between cutoff voltage and 
plate supply voltage. With the bias held constant and the cutoff voltage 
varying in accordance with the modulating signal, the constant 
amplitude grid signal produces an amplitude modulated signal in the 
plate circuit. The effect is clear from figure (13.1 la). 

In th
1

e case of plate modulation, the required effect is produced by 
varying the relative spacing between the cutoff voltage and the bias 
voltage as a function of time. In grid modulation the same principle is 
used except that the grid bias is varied while the cutoff voltage is held 
constant. This is illustrated in figure (13.llb). The effect is accomp
lished by inserting the modulating signal in series with the grid carrier 
signal voltage. 

It seems fairly obvious that cathode modulation is a combination of 
both plate and grid modulation. The modulating signal is inserted in 
series with the cathode of the tube. Therefore it causes both the grid 
bias and cutoff voltage to vary, but in opposite directions. 

13.8. Plate Modulated Class C Amplifier Design4 

This section is a mathematical analysis of a plate modulated class C 
amplifier, concluding with a practical design procedure. The design of 
high efficiency unmodulated class C amplifiers was covered in chapter 
12. The material presented there will now be adapted to the case of the 
modulated amplifier. 

The circuit diagram of a plate modulated class C amplifier is shown in 
figure (13.13). In this circuit the total effective plate power supply 
voltage is 

e;b = Ebb + Eo + Em COS wrnt (13.24) 

or e;b = E;bo + ma cos wmt) 

where ma = Em/ E;b. 

E~b =Ebb+ E0 (13.25) 

and E0 = equivalent intercept voltage from the equivalent circuit. 

4 W. L. Everitt, Communication Engineering, 2d ed., McGraw-Hill Book Co., 
Inc., New York, 1937, chap. 17. 
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Evidently the plate supply voltage varies with time in accordance with 
the modulating signal em= Em cos wmt. 

For optimum operation of a class C amplifier it was shown in chapter 
12 that the tube should be driven just up to the point of saturation. 
When this condition exists, the maximum amplitude /Pmi of the 

IN CARRIER r 

Fig. 13.13. Plate 

Iii• 
Ecc 

~ l•l•I 
~ Ebb 

I s:i~L I 
modulated class C amplifier; 

omitted. 
neutralizing circuit 

fundamental component of plate current was derived and given in 
equation (12.53) as 

( " t;. 
/1'm1 = ot + B RL (13.26) 

where 
RL (13.27) 

ot = (µ + 1)-
r1) 

B = fJ(l - cos 0c) (13.28) 

{J = . 7T 

0 c - sm 0 c cos 0 c 
(13.29) 

where 20c = tube conduction angle; RL = input impedance of the 
tuned load circuit at resonance. According to equation (13.26), the 
amplitude of the fundamental component of plate current will be a 
linear function of the equivalent power supply voltage if oc and B are 
constants. If this condition can be produced so that /pm

1 
is a linear 

function of the e;b in equation (13.26), the circuit is called a linear 
modulator. 

Unfortunately, as e;b varies with time in accordance with the modu
lating signal, the cutoff voltage Eco of the tube changes, and this causes 
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the tube conduction angle to vary. Because B depends upon 0c, it also 
changes, and linear modulation is apparently not achieved. Of course, 
the effect of variations in B could be minimized by making (X much 
larger than B. This is helpful and can be accomplished through the use 
of large values for R L- A more exact a pp roach is developed in the 
following paragraphs. 

From equation (12.34) of chapter 12, 

E - E _ IP1RL 
1- --

g µ 

and according to equation (12.37), 

Hence (13.30) 

or, for operation at the saturation point, 

{Jr 'P 

E1 = fl Eum 
RL+ rP 

(13.31) 

The maximum amplitude of the grid excitation Eum is related to the 
effective power supply voltage e;b by equation (12.52): 

(X + (µ + 1 )fl I 

Eum = µ(oc + B) ebb (13.32) 

Therefore equation (13.31) can be written 

fJrP (X + (µ + 1)/J , 
E1 = --- ·-----ebb 

RL + fJrP µ((X + B) 
(13.33) 

Now substitute the value for (X given in equation (13.27) and the 
equation for E1 simplifies to 

~ µ+I /3 I 
E1 = -- · -- ebb (13.34) 

µ (X + B 

According to equation (12.27), Ex= E1 cos 0c, or 

µ + 1 fJ COS 0 C I 
E =--·---ebb 

X µ (X+B 
(13.35) 

Rearrange terms somewhat as follows: 

µ Ex /3 COS 0c 
--·---;= 
µ + 1 ebb (X + B 
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and define the quantity on the left as 'Y/· That is, 

µ Ex 
'Yj=--. ·-;

µ + 1 ebb 

fJ COS 0c 
rJ= oc+B 

According to equation (12.9), 
I 

ebb 
E =E --x cc µ 

so that the equation for 'YJ in (13.36) becomes 

µ (Ecc 1) 
'YJ = µ + 1 e;b - ~ 
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(13.36) 

(13.37) 

(13.38) 

Fig. 13.14. (Tank voltage)/(supply voltage) as a function of 17 and oc. 
(From W. L. Everitt, Communication Engineering, 2d ed., McGraw-Hill 
Book Co., Inc., 1937, p. 592.) 

For a given tube and bias voltage the parameter 'YJ can be computed 
from this formula as a function of the plate supply voltage e;b. 

Substitute the expressions for fJ and Bas functions of 0c into equation 
(13.37). The result can eventually be written 

~. 'YJ + 1 
- ~ - sin 0 (13.39) 

0C 'YJ - COS 0C C 

It is now a comparatively simple matter to make a plot of ()c as a function 
of 'YJ with oc as a family parameter. Simply assume values for ()c and oc 
and plot the resulting value for 'Y/· The curves so obtained can then be 
used to determine ()c for any combination of values for oc and 'Y/· These 
values for ()c can then be used to compute B. The factor oc/(oc + B) is 
then easily determined and plotted as a function of 'YJ with oc as the 
parameter. The results of this determination are given in figure (13.14). 
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Figure (13.14) also gives the relationship between the amplitude of 

the tank circuit voltage ET and the power supply voltage e;b. This is 
easily proved. The tank circuit voltage is 

(13.40) 

µRL µ+I fJ I 

ET=----· -- · -- ebb 
RL + {Jr'J) µ ex+ B 

(X ' =--ebb 
ex+ B 

ET (X 

or -, = -- (13.41) 
ebb ex+ B 

Thus figure (13.14) is a plot of the amplitude of the output voltage as a 
function of the plate supply voltage. It seems clear that linear modu
lation is not exactly achieved, but can be rather closely approximated. 
If linear modulation were produced, the curves in figure (13.14) would 
be linear. 

Figure (13.14) is useful in computing the modulated output voltage 
from the amplifier for any tube and power supply combination. 

The plate circuit efficiency can be determined as a function of the 
modulation. According to equation (12.57), the efficiency at the 
saturation point is 

(13.42) 

where rJA = asymptotic efficiency= function of (}c· The factor in 
parentheses in equation (13.42) is plotted in figure (13.14) as a function 
of ex and rJ, where rJA is a function of (}c and (}c is given by equation 
(13.39) in terms of rJ and ex. Thus rJA can also be computed and a plot 
made of the plate circuit efficiency as a function of the parameters rJ 
and ex. Such a graph is given in figure (13.15). 

This figure shows that the efficiency is approximately constant as rJ 
varies because of modulation. It was shown in chapter 12 that 

P P I -171) 1 d' . . 
'P = ac --- = p ate 1ss1pation 

171) 

Pac = total signal power 

However, for an amplitude modulated amplifier it was shown at the 
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beginning of this chapter that Pac= Pc(l + m;/2), where Pc= power 
in the unmodulated carrier, so 

P, = P, ( I + ~!)(1 '1, 
11
•) 

Clearly, the plate dissipation increases as the modulation index is 
increased if the efficiency is constant. For 100 % modulation the plate 
dissipation is 50% greater than that for the unmodulated amplifier. In 
other words, the plate dissipation in the absence of modulation is only · 
67 % of the value with 100 % modulation. This should be remembered 
when designing the amplifier. However, 100 % modulation is produced 
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Fig. 13.15. Efficiency as a function of rx and rJ. (From W. L. Everitt, 
Communication Engineering, 2d ed., McGraw-Hill Book Co., Inc., 1937, 
p. 592.) 

only momentarily in most cases, and temporary overloads can often be 
tolerated. Thus, in the design of the amplifier, the value of the para
meter y should be computed for the 67-100 % value of the allowable 
plate dissipation. 

13.9. Some Other Amplitude Modulation Circuits 
As noted earlier, amplitude modulation of a class C amplifier can 

also be secured by inserting the modulating voltage in series with either 
the grid or cathode leads of the tube. Typical circuit diagrams are 
shown in figure (13.16). 

In the ideal case the amplitude of the plate current in a class C 
amplifier can be made a linear function of the grid bias. Thus, in 
principle, linear grid modulation is possible. Assuming linear modu
lation, both the supply direct current and RF tank current are linear 
functions of the grid voltage. This being true, then because the average 
grid voltage is the same before and after the insertion of the sinusoidal 
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grid modulating signal, the average plate current is unchanged by the 
modulation process. The d-c power input is also unchanged. However, 
the RF tank current and signal power output increase when modulation 
is applied. Therefore the plate circuit efficiency must increase. This 
reduces the plate dissipation, an effect that is almost the exact reverse of 
the situation with plate modulation. 

GRID BIAS MODULATION 

CATHODE MODULATION 

Fig. 13.16. Grid and cathode modulation of a class C amplifier. 

The main advantage of grid modulation is the low modulating power 
required. This allows the use of small, lightweight, inexpensive modu
lation transformers and low power modulating amplifiers. However, it 
is difficult to achieve linear modulation and the highest obtainable 
efficiencies are quite low in comparison to the plate modulated case. 

The characteristics of cathode modulated amplifiers fall about midway 
between grid and plate modulated circuits. 

When the amplifier tube is a pentode, suppressor or screen modu
lation can be used. Suppressor modulation and the power relations 
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Fig. 13.17. Balanced modulator. 

TUBE I 

0 -----------------

TUBE 2 

-Ecc=-Eco 

Fig. 13.18. Class B operation of a balanced modulator ( 100 % modulation). 
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involved are similar to grid modulation. Screen grid modulation is 
only occasionally used in low power transmitters. 

13.10. Balanced Modulator 
The circuit diagram of a balanced modulator is shown in figure (13.17). 

This is essentially a push-pull carrier frequency input amplifier with 

0 1------~---------

-Eco 

-Ecc 

TUBE I 

GRID RELATIONSHIPS 

TUBE I 

PLATE CURRENT 

Fig. 13 .19. Class C operation of a balanced modulator ( 100 % modulation). 

grid modulation. However, the modulating signal is so applied that the 
effect produced in the circuit of tube 1 is 180° out of phase with that 
produced in tube 2. The general operating conditions in the circuit are 
shown in figures (13.18) and (13.19). 

If the load circuit has a high Q at the carrier frequency and the input 
impedance is essentially constant over the pass band of interest, it is 
clear that the currents in the tank coil are 

i L = h(I + ma COS wmt) COS wet 
1 

iL
2 
= TL(I - ma cos wmt) cos wcf 

(13.43) 

(13.44) 
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As in the push-pull amplifier, the output voltage or current is propor
tional to the difference in primary currents because they set up 
opposing mmf's. Hence 

e0(t) = k(iL
1 

- iL
2

) = 2k/Lma cos wmt COS wet (13.45) 

or, using the standard trigonometric identity for the product of two 
cosines, 

e0(t) = k/Lma [cos (we - wm)t + cos (we+ wm)t] (13.46) 

Thus the output has only the sideband terms. The carrier has been 
suppressed. This is often used in carrier suppressed transmission. 

13.11. High Level and Low Level Modulation 

Amplitude modulated transmitters may be modulated at a high 
power level or a low power level as shown by the system block diagrams 

MODULATING MODULATING 
SIGNAL AMPLIFIER 

CRYSTAL 
OSCILLATOR 

MODULATOR 

BUFFER 
AMPLIFIER 

la) LOW LEVEL MODULATION 

MODULATING MODULATING 

AM FINAL RF 
AMPLIFIER 

MODULATED AM 

ANT. 

AMPLIFIER CLASS C ---ANT. 

CRYSTAL 
OSCILLATOR 

AMPLIFIER 

ec 

BUFFER 
AMPLIFIER 

lb) HIGH LEVEL MODULATION 

Fig. 13.20. Two types of AM transmitters. 

of figure (13.20). This has resulted in the designation of two types of 
modulation as high level and low level. 

When low level modulation is used, the amplifier stages following the 
modulator must necessarily operate in class B if linear amplification at 
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high efficiency is to be achieved. Class C amplifiers cannot be used to 
amplify amplitude modulated signals without introducing serious 
distortion or using trick circuitry. Thus the over-all efficiency of low 
level modulated transmitters is usually less than that of transmitters 
using high level modulation. 

Plate modulation is nearly always used for high level modulation. 
This allows the final stage of the transmitter to operateatnearlyconstant 
efficiency, whereas the efficiency of a class B amplifier varies with the 
grid excitation. Although the initial cost of components for high level 
modulation is somewhat higher than for low level modulators, the 
operating cost is so much lower that high level modulation is most 
economical in fixed, high power, long term investment transmitters. 

13.12. Design of Class B Amplifiers5 

When low level modulation is used, class B linear amplifiers are 
nearly always required for high efficiency amplification of the amplitude 
modulated signal. The design procedure for such circuits can be 
developed rather quickly from the general material given in chaptei:- 12. 

The signal power developed in the load is 

(13.47) 

and the d-c power input to the amplifier is 

(13.48) 

The plate circuit efficiency is 

(13.49) 

while the plate dissipation is 

(13.50) 

The distinguishing characteristic of a class B amplifier is the linear 
relationship between the amplitude of the plate current I,,

1 
and the 

amplitude of the grid excitation voltage. The linear region extends from 
zero to the saturation point. If we let I ,,

1 
denote the fundamental 

component of plate current for any value of grid excitation in the 

5 This is the method used by W. L. Everitt, Communication Engineering, 2d ed., 
McGraw-Hill Book Co., Inc., New York, 1937, pp. 582-590. 
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absence of modulation, then I Pmi will signify the fundamental com
ponent of plate current at the saturation point. 

or 

Now define a parameter K such that 

K= ]Pl 

]Pm1 

As a result, equation (13.47) for the signal power output is 

Pac= K 2Pac (at saturation) 

(13.51) 

(13.52) 

(13.53) 

From equations (12.40) and (12.42) of the preceding chapter, 11)1/1; 
= 2rJA. Hence the d-c power input becomes 

Pac= KPdc (at saturation) 

The plate circuit efficiency is thereby of the form 

and the plate dissipation is 

(13.54) 

(13.55) 

P 11 = KPac (at saturation) - K 2Pac (at saturation) (13.56) 

The values of Pac (at saturation) and 'Y/pm were given in equations 
(12.57) and (12.55) of the preceding chapter. The value of Pac (at 
saturation) is easily computed from these two relationships. As a 
result, the following four expressions are obtained: 

(13.57) 

'2 
p = K2 µ + 1 . g mEbb. OC 

ac µ 2 (oc + B)2 
(13.58) 

'2 

P 
K µ + I g mEbb 1 

d =---•--•--
c 'YJA µ 2 oc + B 

(13.59) 

'2 
p =Kµ+ 1 _gmEbh __ I_ (_l __ K_oc_.) 

p µ 2 oc + B 'YJA oc + B 
(13.60) 

A class B amplifier operates with a fixed conduction angle of 
20c = 180°. As a result, all the factors dependent only upon 0c become 
constant. Thus B = fJ = 2; 'YJA = 0.785, or 78.5%; 'YJA = TT/4. 



Sec. 13.12] Modulation and Modulators 495 

Thus equations (13.57) through (13.60) reduce to 

ix 1rK 
'Yjp= (X + 2. 4 (13.61) 

'2 
p = K2 µ + l . gmEbb. IX 

ac µ 2 (ix + 2)2 
(13.62) 

'2 4K µ + l gmEbb l 
p --·--·--·--

de - 1T µ 2 (X + 2 (13.63) 

'2 
p =Kµ+l_gmEbb __ l_(~- Kix) 

P µ 2 ix+2 1T IX+2 
(13.64) 

The last equation for the plate dissipation is the key factor in the 
derivation of the design procedure. Assuming sinusoidal modulation, 
the average plate current 1; is not affected by the modulation in a linear 
amplifier. Hence the power input Pde is not affected by the presence or 
absence of a modulating signal. However, the signal power output is 
increased by the amount of power in the sidebands. Hence the plate 
dissipation must decrease when the signal is modulated. The circuit 
should be designed so that the plate dissipation is equal to the allowable 
value in the absence of modulation. Hence equation (13.64) for PP can 
be used to compute the plate dissipation. 

The parameter y was defined in equation (12.60) of chapter 12, as 
follows: 

2µ pp 
y=--·~ 

µ + l gmEbb 
(13.65) 

Substitute equation (13.64) for PP in this equation, simplify, and express 
the result in the following form: 

K (4 Kix ) 
y=IX+2 ;-ix+2 

This equation is readily solved for IX and the result written 

4K - 1rK + V1r2K4 + 16K2 - 81rK3 + 81r2K2y 
IX=------------------2 

21ry 

(13.66) 

(13.67) 

For each value of y and K there will correspond one value for ix. This, 
in turn, determines RL from ix= (µ + l)RL/r p• Ordinarily K is about 
0.45 or 0.50, because the unmodulated carrier is adjusted to encompass 
about half of the linear region. Everitt (ReferenceJ) has computed ix 
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as a function of y for these two cases and the results are reproduced 
in figure (13.21). 

The value of P 1> is assumed known, because any given tube will have 
a specified maximum allowable plate dissipation. Then y is calculated 
from equation (13.65) after a power supply voltage is assumed. Figure 
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Fig. 13.21. Class B amplifier design chart. (From W. L. Everitt, 

Communication Engineering, 2d ed., McGraw-Hill Book Co., Inc., 1937, 
p. 585.) 

(13.21) then determines ix and the correct value for RL for optimum 
operation. Because y and ix are now fixed, and because B = f:J = 2 and 
'YJ A = 7T/4, all the other factors of interest can be computed from the 
general equations and curves of chapter 12. The results are briefly 
summarized below. 

(1) Eu= grid excitation without modulation 

= K ( 1 + ix t 2) Ecc (13.68) 
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(2) 1; = d-c component of plate current 

E;b 2<X 
=K-·-

RL IX+ 2 

(3) /'P
1 
= fundamental component of plate current 

1T ' =2lb 

(4) /emission = 21r/; 
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(13.69) 

(13.70) 

(13.71) 

For further discussion of the necessity of using the optimum operating 
conditions, refer to the original discussion by Everitt (Reference 5). 

13.13. Reactance Tube Frequency Modulation 
In a frequency modulated transmitter it is necessary to make the 

frequency deviation proportional to the amplitude of the modulating 
signal. The reactance tube is one of the simpler methods of 
accomplishing this result. 

Reactance tube circuits are really nothing more than simple class A 
single stage amplifiers. Feedback through phase shifting circuits is 
used, together with remote cutoff tubes. Problems on such circuits 
will be found at the end of chapter 3. Some typical circuit configurations 
are given in figure (13.22).6 The approximate values for the input 
capacitances and inductances are given on the circuits. The compu
tation of these expressions is a straightforward application of the 
principles outlined in chapter 3. 

The significant point to note is that the input capacitances or induc
tances are either directly or inversely proportional to the mutual 
transconductance of the tube. 

In a remote cutoff tube this transconductance is a function of the 
grid bias voltage. Hence if the modulating signal is applied to the 
remote cutoff grid, the effective input inductance or capacitance will 
vary at the signal frequency. 

Now suppose that this circuit is connected directly across the tank 
circuit of an oscillator as shown in figure (13.23). The oscillator 

frequency is approximately w0 = VI/LTCT, where LT= total plate 
circuit inductance; CT = total plate circuit capacitance. Thus if one 

6 See August Hund, Frequency Modulation, McGraw-Hill Book Co., Inc., New 
York, 1942, pp. 155-174. 
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Fig. 13.22. Some reactance tube circuits; can be analyzed from their class 
A equivalent circuits. See chapter 3. 
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Fig. 13.23. Reactance tube modulation of a Hartley oscillator. 
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of these two factors is varied at the modulating frequency by the 
reactance tube, the oscillator frequency will also vary. Ordinarily, 
small frequency deviations of about 0.2 % of the center frequency are 
used, because the oscillator frequency is linearly dependent upon LT 
and CT only over a confined range near the center frequency. Feedback 
is generally used to improve the linearity of the frequency-voltage 
characteristic. 

The block diagram of the essential elements of a reactance tube 
modulated FM transmitter is given in figure (13.24). Such a system is 
inherently impractical because the center frequency is unstable. This is 

MODULATING REACTANCE OSCILLATOR 

SIGNAL 
AMPLIFIER TUBE fc• 4.7mcps 

4:7mcps 1:.8.33 kcps 

TRIPLER TRIPLE R BUFFER 

42.3 1:75 
mcps kcps 

INTERMEDIATE 42.3mc FIN AL 42.3m 
POWER POWER 

1: 75kcps AMPLIFIER AMPLIFIER 

Fig. 13.24. Block diagram of a reactance tube FM transmitter; impractical 
because of center frequency instability. 

directly counter to Federal Communications Commission requirements, 
which stipulate that the center frequency stability shall be as follows: 
(1) ±2 kcps of the assigned center frequency for broadcast trans
mitters; (2) ±0.02 % of the assigned center frequency for mobile 
communications; (3) ±0.01 % of the assigned center frequency for 
fixed communication stations. 

It is impossible to achieve this degree of frequency stability with the 
system shown in figure (13.24). However, two solutions to this problem 
are covered in the next section. 

13.14. Center Frequency Stabilization7 

The stabilization of the center frequency of a reactance tube modu
lated FM transmitter is an important problem, and many solutions 

7 Discussion based upon Milton B. Sleeper, Standard FM Handbook, 1st ed., 
1946, FM Co., Great Barrington, Mass. 
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have been developed. Only two representative cases, the Crosby and 
the Western Electric (or Morrison) systems, are covered here. Both of 
these systems use circuits such as converters, discriminators, and 
frequency dividers; these circuits are treated in later chapters. At this 
point it is necessary only to know that such circuits exist and that they 
perform the following services: 

(I) A converter or mixer translates frequency. 
(2) A frequency divider divides frequency by some integral factor. 
(3) A discriminator converts frequency variations into variations in 

direct voltage. 
In the Crosby system shown in figure (13.25) a crystal oscillator 

4.7 .---..... 4.7 .---..... 14.1 ,------, 

OSCILLATOR mcps BUFFER mcps TRIPLER mcps TRIPLER 

,-----, 13.5 ,---...., 
CRYSTAL mcps 

OSCILLATOR 

Fig. 13.25. Crosby system of center frequency stabilization in a reactance 
tube FM transmitter. 

operates at a frequency that differs from the correct center frequency of 
the reactance tube modulated oscillator and by a known amount. This 
reference frequency is tripled and applied to a frequency converter. 
The output from the main oscillator is tripled twice and also applied to 
the converter. The difference frequency is extracted from the converter 
and connected to the discriminator. The d-c output from the dis
criminator, which is proportional to the frequency difference, is used to 
change the bias on the reactance tube and thereby change the oscillator 
frequency until the difference frequency from the converter and the 
discriminator output are zero. Thus the center frequency of the 
modulated oscillator is held constant by the feedback loop. 

The discriminator is made unresponsive to fast changes in oscillator 
frequency caused by modulation. It responds only to fairly slow 
changes. 

In the Western Electric system shown in figure (I 3.26), the drift of 
the center frequency is automatically corrected by a small reversible 
motor that readjusts the settings of variable capacitors in the oscillator 
tank circuit. 
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The motor is stationary when the two inputs to the motor control 
circuit have the same frequency. Under any condition of inequality an 
output develops, the motor rotates and adjusts the oscillator trimming 
capacitors to provide the correct center frequency. Large variations in 
the amplitude of the center frequency component caused by changes in 
the modulation index are removed by the frequency-dividing network 
and do not affect the operation of the motor control circuits. The 
inertia and friction of the motor are sufficient to damp any response to 

AUDIO 
SYSTEM 

...-------, 5.2875 ,------, 10. 575 
REACTANCE 

TUBE OSCILLATOR 

MECHANICAL l 
LINK I 

SYNCHRONOUS 
MOTOR 

REFERENCE 5163·5..---MO__,T_O_R-. 
CRYSTAL cps CONTROL 

OSCILLATOR CIRCUITS 

mcps DOUBLER mcps 

TEN 
SCALE-OF
TWO CKTS. 

DIVIDES BY 
1024 

5163.5 .__.....,....___. 
cps 

DOUBLER 

ANT. 

Fig. 13.26. Western Electric system for stabilizing the center frequency in 
a reactance tube FM transmitter. 

control signals arising from frequency variations caused by modulation. 
The motor responds only to slow variations in frequency. 

13.15. The Armstrong System 
When a carrier is amplitude modulated by a single frequency it was 

shown in section (13.1) that the modulated wave has three components: 
(1) a carrier or center frequency term; (2) two side frequencies. The 
amplitude of the side frequencies depends upon the modulation index. 
The sum of the two side frequencies is called the double sideband and it 
is always at 0° time displacement with respect to the carrier. 

In the discussion of phase modulation in section (13.4), the following 
points were noted : 

( 1) A center frequency term is produced though its amplitude may be 
zero for certain values of the modulation index. 
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(2) A number of side frequencies are produced, the number depending 
upon the modulation index if a single sinusoidal modulating frequency 
is assumed. 

It can be shown that when mp = 0.2 radian, only one pair of side 
frequencies is large enough to be important. Under this condition, the 
frequencies of all three terms in the phase modulated output are the 

0.2 
mcps 

CRYSTAL 
OSCILLATOR 

200 kcps 

CARRIER 0.2mcps FM 
FREQUENCY ---------91 ,,__ ___ VOLTAGE 

AMPLIFIER 

AUDIO 
SYSTEM 

go• 
PHASE 
SHIFTER 

CRYSTAL 
OSCILLATOR 

AMPLIFIER 

fc-= 12.Smcps 
llf = .t. l.56kcps 

fc = 0.9mcps 
fl f s .t. 1.56 kcps 

ANTENNA 

Fig. 13.27. Original Armstrong phase shift modulator and FM trans
mitter. 

same as the three terms produced by amplitude modulation. However, 
the vector sum of the side frequency components yields a double sideband 
that is 90° ahead of the center frequency. 

Now suppose that we amplitude modulate a carrier with ma= 0.201 
and phase modulate a carrier of the same frequency with mp = 0.2. 
If the modulating frequencies are the same, the outputs from both 
modulators will have the following terms: (1) a center frequency term 
at we of relative magnitude 0.99. (2) two side frequencies at (we± wm) 



Sec. 13.16] Modulation and Modulators 503 
of relative magnitude 0.0995. In other words, the two waves are identi
cal except that the double sideband is in phase with the carrier for AM 
and 90° out of phase for the PM case. This indicates that a wave could 
be amplitude modulated, the double sideband shifted by 90° and 
recombined with the carrier to produce a phase modulated carrier. This 
is the essential principle of the Armstrong modulator. 

The output from an Armstrong modulator is phase modulated, but 
frequency modulation is desired for transmission. This is achieved by 
integrating the modulating signal before modulation. Thus phase 
modulation proportional to the integrated modulated signal is produced, 
and this corresponds exactly to frequency modulation by the original 
signal. 

With the foregoing points in mind, the block diagram of the original 
Armstrong phase shift modulator in figure (13.27) is readily under
stood. A balanced modulator is used to provide a carrier suppressed 
amplitude modulated output, amplitude modulated by the integral of 
the original modulating signal. The output from the balanced modu
lator, which is the double sideband, has its phase shifted by 90° and is 
then recombined with the original carrier. The resulting wave is phase 
modulated by the integral of the modulating signal, or frequency 
modulated by the signal itself. 

The modulated signal is passed through a number of frequency 
multipliers, then through a converter, and finally through more 
multipliers. This tactic is necessary to achieve the required frequency 
deviation about the correct center frequency. 

13.16. The Phasitron 

The phasitron8 is a special phase modulator tube for use in 
FM transmitters. The construction of the tube is not covered here 
because the unit is more of a device or component than a circuit. 

However, the tube will deliver a phase modulated signal at low 
distortiat.. with a frequency deviation of 175 c from a 220 kc input. 
Only 50 mw of audio power are required for modulation and the tube 
will operate at frequencies up to 500 kc. 

The particularly advantageous characteristic of the phasitron is that 
it permits direct crystal control over the center frequency with com
paratively large phase deviations. This reduces the number of frequency 
multiplications required and further simplifies the transmitter. 

8 General Electric Co., Application Data, ETX-109, pp. 1-4, 5-46. 
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PROBLEMS 

13.1. A current i = 10(1 + 0.8 cos wmt) cos wet amp flows through a 
72 ohm resistor. Compute the total power dissipated in the resistance. If the 
coefficient of cos wmt is zero, what power will be dissipated? 

13.2. A modulated carrier current is given by 

i = 10(1 + 0.8 COS wmt) COS wcf 

where f m = 50 c and fe = 1000 c. Compute and plot the current i as a 
function of time. Show one complete cycle of the modulating frequency. 

13.3. An amplitude modulated wave has the following form: 

i = 10(1 + 0.4 cos 628t + 0.6 cos 1256t + 0.5 cos 2512t 

+ 0.2 cos 3140t) cos (6.28) (I06)t 

Make a spectrum plot of the components of the wave, showing the frequency 
and amplitude of each component, 

13.4. In a typical frequency modulation system, the frequency deviation is 
± 75 kcps and the modulating frequency ranges from 30 cps to as high as 
15 kcps. Make spectrum plots of the transmitter output in these two extreme 
cases. See footnote reference 2 for values of Bessel functions. Include all 
terms having values of 0.01 or more. 

13.S. From problem (13.4), what do you conclude about (a) the utilization 
of the allotted bandwidth as a function of the modulating frequency? (b) the 
bandwidth relative to the frequency deviation? 

13.6. A plate modulated amplifier is to be designed using a tube for which 
the data in problem (12.1) apply. One hundred per cent modulation is 
desired. Compute all necessary information. 

13.7. For the amplifier designed in problem (13.6), compute the carrier 
power and the sideband power. Where does the sideband power come from? 
How much voltage is required to produce 100 % modulation? 

13.8. If the amplifier of problem (13.6) is modulated by a class A power 
amplifier capable of supplying the necessary power, compute the tu.rns _ratio 
on the modulating transformer if the class A amplifier load is to be 1800 ohms. 

13.9. Design a class B power amplifier for optimum operation in a low 
level modulated transmitter. The data given for the tube in problem (12.1) 
may be used. Assume the signal input is 100% modulated. Compute all 
factors of interest. 

13.10. Derive the equation for the input inductance of the reactance tube 
in figure (13.22b). Be sure to state clearly and justify all approximations 
you use. 
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13.11. Suppose the reactance tube of problem (13.10) is connected to a 

Hartley oscillator having a center frequency of 10 mcps when disconnected 
from the reactance tube. The gm of the reactance tube can be varied from 
250 to 1250 µmhos. A 20 kcps deviation is desired. Determine the values of 
R1, R2, and C1 required in the reactance tube curcuit. 



Chapter 14 

RECTIFIERS AND POWER FILTERS 

Chapters 12 and 13 treat various functions that can be fulfilled by 
electronic components operating in the switching mode. The purpose 
of this chapter is to present an operation most effectively provided by 
diodes operating as switches. 

A diode operating in the switching mode is called a diode switch and 
it might be a vacuum or gas tube or varistor. Diode switches are used 
to provide two important services, as follows: 

( 1) Conversion of a-c power to d-c power; in this application the 
diodes are usually called rectifiers. 

(2) Conversion of amplitude modulated radio frequency signals to 
audio or video frequency voltages; these circuits are called detectors. 
Although the theory of operation and method of analysis are the same 
for both cases, they are covered separately in two chapters. 
Fundamental principles are largely covered in this chapter, so it is a 
prerequisite for chapter 15. 

Diodes, as well as some multigrid vacuum tubes, can also be used as 
mixers or frequency converters. Because such circuits are essentially 
diode detectors operating under special conditions, they are included 
in chapter 15 as a logical extension of the discussion of detectors. 

The method of analysis follows the same path as that used in other 
chapters. The equivalent circuits are constructed and the analysis is 
made by the principles of linear circuit theory. 

14.1. The Diode Switch and Equivalent Circuits 

In section (1.3) of chapter 1 it was shown that any diode could be 
represented by the idealized current-voltage characteristic and equiva
lent circuit shown in figure (14.1). Of course, the values for £ 0 = 
intercept voltage, r 1> = forward slope resistance, Rb = reverse slope 
resistance will be different for different electronic components. In 
nearly all cases Rb may be assumed infinite (notable exceptions occur 
when varistors are used in magnetic amplifier circuits). Also, in gas 
tubes, r 1> is virtually zero. 

506 
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It is clear from figure (14.1) that any diode has the properties of a 

switch when the voltage applied across it alternates as a function of 
time. The switch will be in position 1 as long as the voltage across the 
diode is positive, while it moves to position 2 when this voltage falls 
below E0 or becomes negative. 

REVERSE 
REGION 

(a) IDEALIZED CHARACTERISTIC 

(b) EQUIVALENT CIRCUIT 

FORWARD 
REGION 

Fig. 14.1. Idealized and equivalent representation of diode characteristics. 

The presence of the E0 term together with r P in the equivalent circuit 
r.ampers the analysis. Indeed, the calculations are inherently so tedious 
in some cases that it is desirable to simplify the equivalent circuit to the 
point where it involves just a single resistance. The applied signal in 
cases of this type is usually sinusoidal, so that the operation of the 
diode can be shown schematically as in figure (14.2a). This circuit is to 
be replaced by that shown in figure (14.2b), which also shows the 
assumed characteristic. Thus a single resistor ,; is used to replace the 
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series combination of E0 and r 2). If the peak value of the applied signal 
voltage is Es, the two circuits will have essentially the same terminal 
characteristics if lb= Es/r 2) in figure (14.2b); lb= (Es - E0)/r 2) in 
figure (14.2a). Hence, for equivalence at lb, 

, Es 
Tp = Tp Es-Eo 

20 

(a) ORIGINAL CHARACTERISTIC 
AND EQUIVALENT CIRCUIT 

20 

(b) PROPOSED ALTERNATE 
CHARACTERISTIC AND 
EQUIVALENT CIRCUIT 

(14.1) 

Fig. 14.2. Relationship between original and alternate equivalent circuit 
of a diode. 

This single resistor equivalent circuit is most advantageously used for 
vacuum diodes and varistors when the load is a parallel RC circuit. 

14.2. Rectifier and Filter Circuits, Single Phase Supply 
1n all circuits in this chapter the diode switch operates with some sort 

of load circuit connected in series with the cathode or base lead of the 
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electronic device. The simplest such circuit, composed of a resistor in 
series with a diode, is shown in figure (14.3a). With an alternating 
voltage applied across the combination, the diode conducts whenever 
the voltage across it is positive with respect to ground. Conversely, it is 
an open circuit when this voltage is negative. Thus current flows through 
the load resistance R L only during the positive half cycles of the applied 

(a) HALF WAVE RECTIFIER 

l 
(cl BRIDGE RECTIFIER 

lb) FULL WAVE RECTIFIER 

(d) VOLTAGE DOUBLER 

Fig. 14.3. Rectifier circuits. 

voltage, and the voltage developed across R L will consist of a series of 
half cycles of a sine wave. Such a circuit is called a half wave rectifier 
with resistance load. 

If two half wave rectifiers are combined with a common load resis
tance and the input voltage is split into two voltages 180 degrees out of 
phase with each other, the output waveform and circuit appear as shown 
in figure (14.3b). This is called a full wave rectifier. 

Full wave rectification can be obtained from a single phase supply by 
using the bridge rectifier circuit of figure (14.3c). When terminal A is 
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positive with respect to B, diodes 1 and 4 conduct, thereby providing a 
closed conducting path through R L and the supply voltage source. 
Current flows from left to right through RL. When terminal A is 
negative with respect to B, diodes 2 and 3 conduct, providing a closed 
path with current again flowing from left to right through RL. Thus 
a full wave rectified output appears across RL as shown in figure (14.3c). 

Voltage doublers, triplers, and quadruplers are other rectifier circuits 
that find frequent application. A typical doubler circuit is shown in 

C 

(a} R-C FILTER 

(c) TWO L-SECTIONS IN 
CASCADE 

+ 

(b) CHOKE INPUT OR 
L- SECTION FILTER 

(d) Pi SECTION OR CONDENSER 
INPUT FILTER 

Fig. 14.4. Power fiJters for use with the rectifiers of figure (14.3). 

figure (14.3d). Suppose that terminal A is negative with respect to 
ground. This causes diode 1 to conduct, and C1 charges rapidly to 
nearly the peak value of the input signal voltage, and with the polarity 
shown. When terminal A is positive with respect to ground, diode 2 
conducts. However, the voltage across the diode is now the sum of the 
voltage across C1 and the applied voltage. Thus the peak value of the 
output will be nearly twice the peak value of the input. 

Only rarely are any of the foregoing circuits operated with pure 
resistance loads. The variations in output voltage with respect to time 
are too large to be tolerated in most applications. Thus filter circuits 
are generally used to smooth the time variations and make the output 
voltage more nearly time invariant. Typical filter circuits are shown in 
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figure (14.4). They can be used with any of the rectifier circuits 
previously given, though a half wave rectifier is shown in figure (14.4) 
for simplicity. 

14.3. Rectifier Performance Criteria 
The main purpose of a rectifier circuit is to convert a-c power input to 

d-c power output, as shown diagrammatically in figure ( 14.5). In such 
cases, one of the most important factors will be the power transfer 
function of the rectifier circuit. This is usually called the rectification 
efficiency 'YJ R and is expressed in per cent as 

Pac 
'YJR = - X 100 per cent (14.2) 

Pac 
The signal input to a rectifier is usually sinusoidal, while the output 

ANY ARBITRARY 

RECTIFIER AND 

FILTER CIRCUIT 

..... 
Irms 

RL -,-
de 

de.,__ __ _l_ 
+- 1de 

Fig. 14.5. The rectifier as a four terminal network. 

is definitely nonsinusoidal. If a Fourier analysis is made of the load 
current iv the result will show the presence of a d-c component, a 
fundamental, a11d an infinite series of harmonics. It is desirable to have 
the d-c term predominate, but some of the a-c components will always 
be present and will produce fluctuations in the output voltage measured 
across the load resistance. This fluctuation is called the ripple. The 
amount of ripple is generally expressed by means of a ripple factor as 
follows: 

. 1 C' lac npp e 1actor = y = -
lac 

(14.3) 

where lac = direct current in the load; lac = effective value of all 
alternating components of load current. 

If a d-c ammeter is connected in series with the load, it will read the 
constant term in the Fourier series of the load current. In other words, 
it will read the average value of the load current. This can be expressed 
mathematically as 

(14.4) 



512 Rectifiers and Power Filters [Sec. 14.3 

where i L = load current expressed as a function of wt over an interval 
of 21r radians. This is the defining equation for the constant or d-c term 
in the Fourier series for a nonsinusoidal waveform. 

If an a-c ammeter is connected in series with the load resistance it 
will read the effective, or root mean square, value of the total load 
current. The rms value of a current i L is defined as 

J 1 r2
" 

lrms = 217 Jo ii dwt (14.5) 

Because the load current involves a d-c term as well as a series of 
alternating terms, the rms current can also be expressed as 

/rms =VJ!+ J:fc (14.6) 

Hence the effective value of the a-c components alone is 

lac = V fr~s - !Jc 
The previous general equation for the ripple factor can now be expressed 
in the following form: J 

, l .r: (/rms) 2 
( ) y = npp e 1actor = - - 1 14.7 

.;-- ~c 
y=vF2 - 1 

where F = Irmsl Ide = form factor of the load current. The form factor 
is simply a useful parameter in the discussion of nonsinusoidal wave
forms because it is fairly easily determined experimentally from 
ammeter readings or theoretically from equations (14.4) and (14.5). 

The terminal characteristics of a rectifier circuit are also important. 
That is, the graph showing the load voltage Ede as a function of the 
direct load current Ide is of considerable importance, because loads on 
rectifiers are seldom constant. A typical plot, which is called the 
regulation characteristic, is shown in figure (14.6). In most cases, 
rectifier circuits contain some internal resistance, and this causes the 
output voltage to decrease as the load current increases. In many cases 
the output voltage should be independent of load current changes. The 
departure of the circuit behavior from this proposed ideal is expressed 
in terms of a percentage factor called the voltage regulation. The term 
is defined as 

% 1 I 
. E (no load) - E (rated load) 

0 vo tage regu at10n = ( 
1 

) X 100 
E rated oad 

= --1 XIOO (
ENL ) 

ERL 
(14.8) 

Current regulation may be defined in a similar manner. 
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When the diode switch in the rectifier circuit is conducting, there is 
little voltage across the diode. However, when the diode is not con
ducting, it is possible that the peak value of the applied alternating 
voltage plus the load voltage may appear across the diode. Clearly, the 
diode must be capable of withstanding a large inverse voltage. Thus any 
given circuit and rectifier combination is characterized by some peak 
inverse voltage (PIV) that the diode must be capable of withstanding. 
Hence this figure is an aid in selecting the proper diode for use in a given 
application. 

The discussion can be summarized by listing the four performance 
criteria of particular interest in rectifier design; that is, ( 1) rectification 

__.1dc 

Rlnt. f 
Ede RL 

~ 

ERL 

t 
Ede 

o .__. ________ __.__ 
0 Ide-+ RA ED 

LOAD 
Fig. 14.6. Output or regulation characteristic of a rectifier circuit. 

efficiency, (2) voltage regulation, (3) ripple factor, (4) peak inverse 
voltage. 

It seems clear at this poin·t that the discussion of rectifier and filter 
circuits reduces to the determination of these factors so that all the 
various circuit combinations can be compared with one another 

14.4. Gas Triode Rectifiers 

Two types of triode gas tubes, the thyratron and ignitron, are widely 
used as rectifiers because the direct voltage developed can be controlled 
with comparative ease by variations in the control electrode potential or 
current. Only representative circuits are treated here. 

For thyratrons it will be recalled that the operation of each tube type 
is controlled by its firing characteristic. This curve, shown in figure 
(14.7), gives the value of plate voltage that will make the tube fire for 
any given value of grid voltage. 

Now suppose that a thyratron is connected in series with a load 
resistance and an alternating voltage source as shown in figure (14.8). 
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The bias voltage is adjustable as shown. When the plate voltage is 
negative the tube does not conduct. As the plate voltage swings 
positive, the tube will not conduct until the plate voltage exceeds the 
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Fig. 14.7. Typical thyratron firing characteristic. 

Fig. 14.8. Simple thyratron circuit showing bias control. 

critical value corresponding to a particular value of grid bias. As soon 
as the tube conducts, a heavy current flows and the tube voltage drops 
to E0 • The grid loses control, and this control is not regained until the 
plate voltage goes negative long enough for the gas in the tube to deionize. 
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Clearly, variations in bias will produce variations in the tube conduction 
angle by changing the firing point 01• 

During the conduction period the instantaneous plate current is 

. Em sin wt - E0 
lb=------

RL 
The plate voltage before firing is 

eb = Em sin wt 

(14.9) 

(14.10) 

The point at which firing occurs is found from the firing characteristic of 
the tube. If this is designated as Eb1, then 

Ebf = Em sin e, 
Therefore the firing angle of the tube is 

() . -l(Ebf) 
t = sm Em 

The tube is extinguished when the Em - - - -,~~ e 
alternating voltage falls below the Ebt - - - - '~ 

tube drop £ 0• Hence the extinction E 
O 

' 

angle () e is such that 

E0 = Em sin (180° - 06 ) (14.13) 

(14.11) 

(14.12) 

or 06 = 180° - sin-1(!:) (14.14) 

Thus the total angle of tube con-
duction is 

Fig. 14.9. Voltage relationships in 
the thyratron circuit of figure (14.8). 

(Jc= conduction angle= (Je - 01 (14.15) 

The average load current through the resistance R L is now easily 
computed from 

1 J27T 
lac = - ib d(wt) 

21r 0 

= _!_ ioe Em sin wt - Eo d(wt) 

21r o, RL 

If this integral is evaluated the result can be expressed as 

(14.16) 

(14.17) 

1,, = 
2
:;Jos 01 +JI - (::. r- :~ (0, - 0,)] (14.18) 
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When E 0 is much less than Em, and this is often the case, the direct load 
current is approximately 

. Em 0 Ide= 
2
-.-(1 + COS 1) 

TTRL 
(14.19) 

This last equation shows that the direct component of the load current 
can be smoothly and continuously varied by changing the firing angle 
01 of the tube. This is easily accomplished by grid bias variations as 
shown in figure (14.9). 

One difficulty with simple bias control is that the firing angle can be 
varied only over the limited range from O to 90 degrees. By using a 
different method, called phase control, the firing angle can be made to 
have any value from 0° to 180°. To obtain phase control, an alternating 

Fig. 14.10. Phase control of a thyratron rectifier. 

voltage of the same frequency as the plate supply voltage is applied to 
the grid of the thyratron. The phase of this grid voltage is adjustable 
and lagging the plate voltage. The sinusoidal variation in grid voltage 
causes the critical plate voltage to also vary with time. This is shown by 
the firing voltage curve of figure (14. IO). The data required to plot this 
curve were obtained from the firing characteristic of the tube. 

The thyratron will conduct only when the plate voltage is equal to the 
firing voltage. From the sketch in figure (14.10) it is clear that the firing 
point can be varied over a range of 180 degrees by changing the relative 
phase of the grid voltage with respect to the plate voltage, because this 
changes the relative phase of the firing voltage curve. 

One of the simplest phase controlled circuits is shown in figure ( 14.11 ). 
The phase angle is variable over a 180° range by changing R and C. 
In any case, the phase angle is 

0 = 2 tan-1 wRC (14.20) 

There are many practical variations of this basic circuit. 
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Thyratrons are generally used to control the firing time of ignitron 

rectifiers. It will be recalled that the main arc will not start in an 
ignitron until a cathode spot is 
formed by the igniter electrode. 
Thus control of the firing angle 
of an ignitron is accomplished by 
firing the igniter circuit at the 
desired instant. This action is 
usually accomplished by discharg
ing a fully charged capacitor 
through the igniter circuit. A 
thyratron is used as a synchronous 
switch to control the time of dis-

1 
AC 
IN 

Ill I• 

1-----.1~1 
Fig. 14.11. Circuit diagram showing 

charge. A representative circuit is phase control of a thyratron. 
shown in figure (14.12). 

In the circuit of figure (14.12), the inductance L is used to limit the 
thyratron current to a safe value during the capacitor discharge. The 
phanotron is operated as a half wave rectifier and is used to charge the 

C 

THYRATRON 

V2 

CONTROL 
VOLTAGE---

Fig. 14.12. Ignitron rectifier controlled by a thyratron. 

capacitor C. The capacitor discharge occurs when the thyratron 
conducts and this is determined by the control voltage on the thyratron 
grid. When the thyratron fires, C discharges quickly through V2 and L, 
causing a large current to flow in the igniter circuit, thereby producing 
the required cathode spot. The thyratron rapidly extinguishes because 
its plate voltage drops rapidly and the grid regains control. 
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14.5. Rectifier with RC Filter, Introduction 
The half wave diode rectifier with RC filter is a common electronic 

circuit and one of the simplest in appearance. The appearance is 
misleading because it has proved to be an exceptionally difficult circuit 
to treat analytically. Indeed, as far as I know, there never has been a 
successful analysis of a practical circuit. Of course, certain hypothetical 
cases have been treated in nearly every text book, but the results 

t 

C 

(a) HALF WAVE RECTIFIER WITH RC 

FILTER CIRCUIT 

wt 2 

(b) WAVE FORM OF THE OUTPUT VOLTAGE 

Fig. 14.13. Rectifier with RC filter when source and diode resistance are 
zero. 

obtained are of little practical use because the simplifying assumptions 
are not valid in practical circuits. The difficulty in treating the circuit is 
not one of technique, because it will be apparent later that the operation 
of the circuit can be outlined rather accurately. Instead, the problem is 
primarily one of tedium in making graphical solutions of transcendental 
equations, performing numerous integrations, and so on. 

A simplified circuit diagram of a half wave rectifier with RC filter is 
shown in figure (14.13a). If the diode and source resistances are zero, 
the waveform of the voltage across the load resistance appears as shown 
in figure (14.13b). This waveform may be explained rather simply. 
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Assume that the applied voltage is sinusoidal and of constant amplitude. 
Whenever the voltage eb across the diode is positive in the sense indi
cated, the diode conducts, and the capacitor charges through the diode 
from the applied voltage source. No transients are involved because 
the circuit has zero resistance during the charging interval. Therefore 
the output voltage is exactly equal to the applied voltage during this 
period. 

When the applied voltage begins decreasing, the capacitor voltage 
can decrease only by releasing some of its charge through the resistor RL. 
Eventua1ly a point is reached at wt2 where the diode voltage is falling 
more rapidly than C can discharge through RD and the voltage across 
the diode becomes negative. The diode ceases conduction and the 
capacitor discharges exponentially through R L· Later, at 27T + wt1, 

the voltage across the diode is zero and increasing in the positive 
direction. The diode again conducts and the entire cycle repeats. 

When the assumed conditions of zero diode and source resistance 
are justified, and this is rare in practice, the circuit can be formulated 
rather easily from the preceding discussion. Although a transcendental 
equation results, the circuit design equations can be formulated without 
too much difficulty. 

The problem is greatly complicated in practical cases because the 
simplifying assumptions are invalid. Suppose that a practical circuit, 
such as that shown in figure (14.14a) is to be analyzed. The equivalent 
circuit shown i!l figure (14.14b) and the corresponding Thevenin 
equivalent in (14.14c) provide the basis for the analysis. Here Rs is 
assumed to include the source resistance Rg and the diode resistance r ;. 
If the applied voltage is 

es= Es sin wt (14.21) 

then the Thevenin generator during the conducting period is 

ee = Es RL sin wt= E ~ sin wt (14.22) 
RL + Rs s RL 

= Ee sin wt (14.23) 
Thus, during tube conduction when all transients are virtually complete, 
the magnitude of the capacitor voltage is 

-jXc 
Ee= Ee R _ -X (14.24) 

e ] C 

Hence the instantaneous capacitor voltage is 
(14.25) 
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The current through the load resistance R L is 

. ee Ee . 
zR =-=-smwt 

L RL RL 

, 

C 

. + 
'c 

[Sec. 14.5 

(14.26) 

(a) CIRCUIT DIAGRAM (b) EQUIVALENT CIRCUIT 

8s•Ea sin wt 

J 
(b) THEVENIN EQUIVALENT CIRCUIT 

e 

(d) WAVEFORM OF OUTPUT VOLTAGE 

Fig. 14.14. Relationships in a half wave rectifier with RC filter when both 
the source and diode resistance are considered. 

The current through the filter capacitor C is 

. dee 
z = C - = wCE cos wt 
e dt e 

(14.27) 

At the instant that the tube becomes nonconducting, as at wt2 in 
figure (14.19d), the tube current 

ib = ic + iRL (14.28) 
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must become zero, or -iRL = ic. Hence 

1 . 
R L sm Wt2 = -we cos wt2 

or 

521 

(14.29) 

Thus the cutout angle wt2 is easily computed for any value of the 
dimensionless constant wR LC. 

The voltage across the capacitor at the cutout instant is ec(wt2) 

= Ee sin wt2, or 

Re -jXc . 
ec(wt2) = Es - · . sm wt2 

Rs Re - ]Xe 

During the nonconducting period the capacitor voltage decays exponen
tially from this value, approaching zero in the limit. Thus, during this 
period, the capacitor voltage is 

ec = ec(wt
2
)e-<t-t2)!RLC for t > t

2 

e = E Re. -jXC (sin wt )e-<wt-wt2)/wRLC 
C SR R-'X 2 

8 e } C 

or (14.30) 

Tube conduction commences again when the voltage ec given by 
equation (14.30) decays to a point where it is equal to the applied 
voltage E8 sin wt. This occurs at a point designated as (wt1 + 21r). At 
this instant. 

E sin (wt + 21r) = E Re . jXc (sin wt )e-<wtl -wt2+21r)/wRLC 
s 1 sR R _ ·x 2 

8 e } C 

After some algebraic manipulation and rearrangement of terms, this 
can also be written 

I sin wt2 -1 sin Wtl = __ . --=-~----- e-[wt1 -wt2+(3rr/2)+tan {J]/wRLC 

wR8C VI+ fJ2 
(14.31) 

where fJ = 1 + RL/ Rs and wt
2 
= tan-1 (wRLC) 

wRLC 

Equation (14.31) is transcendental, and it cannot be solved explicitly for 
the cut-in angle wt 1. It can be solved graphically, and if this procedure is 
followed a value will be obtained for each value of the dimensionless 
parameters wRLC and RL/R8 • As you might imagine, the procedure is 
tedious and time consuming, but it can be done. Once the cut-in and 
cutout angles are known, all factors of interest can be computed in a 
straightforward manner. 
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The only assumption made in this development was that all transients 
were virtually complete after switching in before the switching out time 
wt2 is reached. This approximation is valid except where Rs is large 
compared with R L· In these cases the transient current resulting from 
diode switching in must be evaluated, and the analysis is further 
complicated. 

Once the cut-in and cutout angles are determined, the direct output 
voltage can be computed from 

1 Jwt2 1 I 2n+wt1 
Eac = 

2
- ec d(wt) + -

2 
e: d(wt) 

7T wt1 7T wt2 

where ec is given by equation (14.25); e; is given by equation ( 14.30). 
The rms voltage can be computed in a similar manner and the ripple 
factor evaluated. 

A similar analysis can be made for the full wave circuit and for the 
voltage doubler with RC filter. 

14.6. Characteristics of Rectifiers with RC Filters 
It is quite clear from the preceding analysis that it is possible to 

compute the various factors of interest in rectifiers with RC filters, but 
it would be an extremely time consuming proposition. Fortunately, a 
careful set of experimental determinations has been made by Schade1 

and the results tabulated in a universal system of dimensionless para
meters. These charts are reproduced in figures (14.15) through 
(14.19). Although the curves were obtained experimentally, theoretical 
calculations following the method given in the preceding section should 
check these curves within a few per cent, certainly within the tolerance 
variations allowed the circuit components. 

In all the design charts the value of Rs is assumed to include the 
equivalent diode resistance ,; and the internal resistance Ru of the 
generator. Schade used a different scheme for evaluating the diode 
resistance, but the end result is closely approximated by the value used 
here. 

Aside from the utility of these figures for design purposes, which is 
treated in the next section, they are informative about certain operating 
characteristics of the circuit. For example, figure (14.18) shows a plot 
of the ratio of the peak diode current to the diode direct current as a 
function of the wRLC and Rs/RL parameters. For any given value of 

1 0. H. Schade, "Analysis of Rectifier Operation," Proc. IRE, vol. 31, July, 
1943, pp. 341-361. 
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Rs/ Rv the peak current increases as wRLC increases. Also, as Rs/ RL 
decreases, the peak current increases. Clearly, the peak current has a 
maximum value for any given tube that cannot be safely exceeded. As a 
result, for any given tube there are two possibilities: 

/ LJ.+44-H+--Hf-+ttttt10.06 
i~ -----0·7 ,1ti-rrtttt-t-H-tw~tti-".,,1-::t:Um~=+=+~~o.oa 
I ./- 0.1 

~ I /,--- 0.125 
o.s l---l-..W...W..W-U--~~W14+--=--'~~ffl~=t:=t=~+t+t 

~( I -=-- 0.15 

0~ 1---+-~-++H++

Edc/Es 

OR 0.4 f---+--+-+-++-++++-

'1d 

0.1 f---+---+-i-+++++t--+-+-+-+-Hr+t+-+-+-t-++t-H+--+--lr-+-H-t-H-t 

o .. ,.,VL-___.__.__..LJ.. .......... ......___.___.._......._ ......... ~_..__.__~~...___.__~~~ 

0.1 1.0 10 100 1000 
wC RL 

Fig. 14.15. Characteristic of half wave rectifier with RC filter. (From 
0. H. Schade, "Analysis of Rectifier Operation," Proc. IRE, vol. 31, no. 7, 
July, 1943, pp. 341-361.) 

(1) For a fixed Rs/ RL there will be a maximum value for wRLC that 
cannot be exceeded without damaging the tube. 

(2) For a fixed value of wR LC there will be a minimum Rs/ R L below 
which tube damage will result. 

Thus in many cases in which the value of wR LC will be fixed by other 
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design considerations, it may be necessary actually to add some 
resistance to Ru to hold the peak current through the tube within safe 
limits. 

Figure (14.19) shows the ripple voltage as a function of the factor 
wRLC for various values of the parameter R8/RL- Apparently the 
ripple is not affected much by relatively large changes in R

8
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Fig. 14.16. Characteristics of full wave rectifier with RC filter. (From 
0. H. Schade, "Analysis of Rectifier Operation," Proc. IRE, vol. 31, no. 7, 
July, 1943, pp. 341-361.) 

On all these graphs the dimensionless parameter wRLC is used as the 
independent variable. It can be made to change through variations in 
w, C, or R L- However, w is generally fixed for a given design. Also, 
certain limiting values of R L are specified by the design requirements. 

Actually, R L may not appear physically in the circuit, but may simply 
represent the loading of the circuit. That is, if Ede = direct output 
voltage, IL = specified direct load current, then R L = Edel IL- Clearly, 
as the load current changes, R L will vary and cause wR LC to change. 



Sec. 14.6] Rectifiers and Power Filters 

2.0 

1.9 
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Fig. 14.17. Characteristics of voltage doubler with RC filter. (From 
0. H. Schade, "Analysis of Rectifier Operation," Proc. IRE, vol. 31, no. 7, 
July, 1943, pp. 341-361.) 
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tL.J 11111111r 111r 1111111111111r =: 
80 a n= 1/2 for voltage doubler 
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Fig. 14.18. Current relationships for a single plate of a rectifier with RC 
filter. (From 0. H. Schade, "Analysis of Rectifier Operation," Proc. IRE, 
vol. 31, no. 7, July, 1943, pp. 341-361.) 
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Fig. 14.19. Ripple voltage characteristic of rectifiers with RC filters. 
(From 0. H. Schade, "Analysis of Rectifier Operation," Proc. IRE, vol. 31, 
no. 7, July, 1943, pp. 341-361.) 
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14.7. RC Filter Design, Sample Problem 
Rectifier and filter design are not clear-cut, straightforward processes 

yielding a single answer to a single problem. As in any design, there are 
multitudes of solutions. There may be several that are equally suitable 
from certain standpoints, but from cost, life, or component avail
ability considerations are not suitable at all. Thus a design is really 
just an exploration of the various possibilities, and then an evaluation 
of important parameters is made to restrict the choice of available 
circuits. Such a process cannot be illustrated well. It is possible only to 
demonstrate the general methods of using the preceding five sets of 
graphs. 

Suppose that a full wave rectifier with RC filter is to be designed to 
the following requirements: 

f = 60 cps; 

w = 377 rps; 

Edc(full load) = 300 v; ripple = 1 % 
/dc(full load) =--= 50 ma; volt. reg. = 20 % 

The design is essentially a cut-and-try process. First, assume a value 
for Rs. The value chosen is based upon previous experience with the 
characteristics of transformers and rectifier diodes. For the purposes 
of this problem, let Rs = 500 ohms. 

Because the operating characteristics of the circuit are governed 
by the ratio of Rs to R v assume a value for this ratio under no load 
conditions. As a first try let R 8/RL = 0.01 at no load. Thus. under no 
load conditions, the load resistance has its maximum value of 

Rs 500 
RL (max)= - = - = 50,000 ohms 

0.oI 0.01 

From figure (14.19), it can be seen that ripple requirements will be met 
under this condition if wRLC = 70. 

At full load the current demand is represented by a resistance 
R (load) where 

Ede (full load) 
R (load) = Ide (full load) 

300 
= 50 (10,000) = 6000 ohms 

Therefore under full load conditions, the total load on the rectifier circuit 
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is the parallel combination of R (load) and RL (max). Hence 

( 
. ) R (load) RL (max) 

RL mm = -------
R (load)+ RL (max) 

300 
= 56 (10,000) = 5350 ohms 

Therefore, at full load the Rs/ R L parameter has a value 

Rs 500 

( . ) = -3 0 = 0.0933 
RL mm 5 5 

[Sec. 14.7 

From this and the 1 % ripple requirement, the required value for wR LC 
can be found from figure (14.19) to be about 60. 

The necessary capacitances can now be computed for both the no 
load and full load cases because the corresponding values of wRLC, w, 
and R L are known. Thus: 

(1) at no load, wRLC = 70, so C (min) = 3.72 µf 

(2) at full load, wRLC = 60, so C (max)= 29.7 µf 

To make sure that the ripple does not exceed 1 % under all conditions 
of load, the filter capacitor should have a value not less than 29.7 µf. 
For practical convenience, use two parallel 16 µf sections for a total 
capacitance of 32 µf. Using this value of C, the value of wRLC can be 
computed for each of the two cases and the direct load voltage and peak 
plate current can then be obtained from figures (14.16) and (14.18). The 
following results are obtained: 

(1) at no load 

wRLC = 603; Rs = 0,01; EEdc = 0.945; 
RL s 

/peak = lO 
lac 

(2) at full load 

wRLC = 64.5; Rs = 0.093; Ede= 0.770; /peak = 5.2 
RL Es lac 

Now see if this design satisfies the voltage regulation requirements 

% volt. reg. = (ENL - 1) X 100 
EFL 

= (0.945 _ 1) 100% 
0.770 ° 

= (1.23 - 1) 100/~ = 23 % 
The 20 % regulation requirement is not met, so a redesign is required. 
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For the second design assume that Rs= 500 ohms as before, but that 
R8/ R L = 0.05 at no load. Therefore 

500 
R L (max) = -

0 
= 10,000 ohms 

0. 5 

. (10)(6) 60 
RL (mm) = IO+ 

6 
(1000) = 

16 
(1000) 

= 3750 ohms 

Thus to satisfy the 1 % ripple requirements under all load conditions, 
from figure (14.19), 

(1) at no load, wRLC = 65, so C (min) = 17.3 µf 

(2) at full load, wRLC = 55, so C (max)= 38.9 µf 

For practical convenience, let C = 40 µf. Therefore 
(1) at no load 

wRLC = 150; 

(2) at full load 

Ede= 0.94; 
Es 

wRLC = 56.5; :: = 0.133; ;,e = 0.725; 

Therefore 

/peak = 5_0 
Ide 

% volt. reg.= (
0

·
8

2

40 
- 1) 100% = 15.6% 

0.7 5 

Evidently this design will satisfy all requirements, though we have no 
assurance that it is the optimum design for this problem. 

The peak plate currents can be computed from the ratios given in 
the two cases. That is, 

(1) at no load 

1 
= Ede (full load)(l +volt.reg.)= 

34
_
7 

ma 
de RL (max) 

(300)(1.156) 

10,000 

!peak = 6.5 Ide = 226 ma 
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(2) at full load 

Id = Ede (full load) = 300 = 80 
e RL (min) 3750 

ma 

/peak = 5.0 Ide = 400 ma 

Hence the rectifier element must be capable of supplying a peak plate 
current of 400 ma and a direct plate current of 80 ma. This will assist 
in selecting the rectifier. 

The maximum inverse voltage on the rectifier is 

P.I.V. = Ede (max)+ Es= Ede (full load)(l +reg)+ Es 
1 

= Ede (full load)(l +reg)+ Ede (full load)-
2
-

0.7 5 
= 761 volts 

The required secondary voltage on the transformer is 

Ede 300 
E =--=--=441 volts 

s 0.725 0.725 

Furthermore Rs was assumed to be 500 ohms, so that 

' Es Rs= Ru+ rp =Ru+ r'.P---
Es-Eo 

The tube must be selected so that the values of r '.P and E0 together with 
the transformer constants Ru and Es give the required value for Rs. 
Otherwise, series resistance must be added or different tubes or 
transformers must be selected. 

14.8. Rectifier with L-Section Filter 
The rectifier with RC filter suffers from two notable disadvantages: 
(1) Excessive peak current demand if the ripple is low. 
(2) Poor regulation characteristics. 
There are a number of possible filter circuits using inductances that 

might be considered in an effort to achieve improved operation. Several 
of these possibilities are shown in figure (14.20). The circuit using a 
series inductor is easily analyzed and is not treated here. The half wave 
rectifier with L-section filter is mainly of academic interest. Thus, 
interest here centers upon the full wave rectifier with L-section filter 
because it has a wide area of practical application. 

For the unloaded condition of operation of the full wave rectifier 
with L-section filter, R L is infinite. Thus the filter capacitor will charge 
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up to the peak value of the input voltage. Because the applied voltage is 
Em sin wt, the no load output voltage will be Em. 

As the load resistance decreases so that load current flows, each 
diode is alternately connected to the applied voltage for a few moments, 
and the capacitor charges to Em. Between these short conduction 
periods, the capacitor discharges somewhat through R L· Thus the 

Jmf ([[) 
(a) HALF WAVE RECTIFIER WITH SERIES 

INDUCTOR FILTER 

606 
L 

(bl HALF WAVE RECTIFIER WITH L:-SECTION FILTER 

C 

(C) FULL WAV 1E RECTIFIER WITH L- SECTION FILTER 

Fig. 14.20. Some rectifier and filter circuits using inductances. 

average value of the output voltage will be somewhat less than Em. 
Because the current is quite small, the energy stored in the filter 
inductance is small and the inductor has little effect upon the operation 
of the circuit. Hence, for small load currents, the circuit behaves 
essentially like a full wave rectifier with RC filter; this accounts for the 
appearance of the output characteristic in the low current region as 
shown in figure (14.21 ). 

As the load current is gradually increased by decreasing R L, the 
conduction angles of the diodes lengthen. Eventually each tube conducts 
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for exactly 180°. This situation exists at the point Ik on figure (14.21). 
At this point the voltage applied to the filter section consists of positive 
half cycles of the applied sine wave as shown in figure (14.22) and the 
current through the inductor becomes continuous for the first time. If 

t DISCONTI N
UOUS 

Ede CURRENT 

DROP DUE TO RESISTANCE OF 
SOURCE, DIODE,AND CHOKE 

______ _t ________ _ 

CURRENT THROUGH 
L IS CONTINUOUS 

LOAD CURRENT-+ 

Fig. 14.21. Terminal characteristic for a full wave rectifier with £-section 
filter. 

the load current is increased beyond lk, the current is large enough so 
that the magnetic energy storage in the inductor has an appreciable 
effect upon the operation of the circuit. Thus, as the load current 

Fig. 14.22. Voltage supplied to the filter by a full wave rectifier when each 
tube conducts for 180°. 

increases, each tube conducts for one half cycle, and the current 
through the inductor is never zero. Under such conditions the diodes 
operate as synchronous switches and the· load current commutates 
smoothly between the two tubes. For load currents in excess of Ik, the 
drop in load voltage is largely determined by the source resistance, 
diode resistance, and resistance of the filter inductor. 

The voltage applied to the circuit for load currents equal to or greater 
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than Ik has the form shown in figure (14.22). The Fourier series of this 
waveform was given previously as 

e = - 2 - - cos 2wt - - cos 4wt -Em ( 4 4 ) 
7T 3 15 ... (14.32) 

The ripple components in the output are clearly the even harmonics. 
The constants of the filter are selected to make these terms small. 
Therefore L should have a high reactance at the second harmonic 
frequency, while the reactance of C should be small. If these conditions 
prevail at the second harmonic, they will be even more extreme at the 
fourth harmonic. Thus all ripple components except the second 
harmonic will be neglected. 

Because C is to have negligible reactance at the second harmonic, 
then 

1 
RL• 2wC 

The input impedance of the filter at the second harmonic frequency is 

. jRL/2wC 
Zin= 2JwL - RL _ j/2wC (14.33) 

When the preceding inequality is used, the input impedance is 
approximately 

z. -=- 2jwL _ _j_ = j(2wL - -
1
-) 

in 2wC 2wC 

_:_ _j_ (4w2LC - 1) (14.34) 
2wC 

Because the magnitude of the second harmonic voltage is 

4~ ( ) E2 = 
3

7T 14.35 

the magnitude of the coil current is 

E2 4Em 2wC 
h2 = Z. = 37T . 4w2Lc- 1 (14.36) 

in 

This current divides through R L and C and the load current is 

- 1/2 jwC ...!- I I (14 37) 1
RL2 - h 2 RL + I/2jwC- L2 2jwRLC · 

. 4Em 1 (14.38) 
= 3TTRL. 4w2LC- 1 
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Thus the rms ripple current is 

4Em 1 
IR ( rms) = A r · 

L2 -v 2 3TTRL 4w2LC- 1 

The direct component of current is 

2Em 
Id=--

c TTRL 

Hence the ripple factor is easily computed from 

or 

lac JR 
L2 

y=-=-
Idc Ide 

2 1 0.471 

Y = 3V2 · 4w2LC - 1 = 4«>2Lc - 1 

[Sec. 14.9 

(14.39) 

(14.40) 

(14.41) 

This simple relationship for the ripple factor was obtained on the 
---., 

L1 

Fig. 14.23. Cascade of L-section filters. 

strength of two assumptions: (I) continuous current flow through L, or 
a load current greater than Ik; (2) R Lis much larger than the reactance 
of Cat the second harmonic frequency. As long as these conditions are 
valid the ripple factor is independent of the load because RL does not 
enter into equation (14.41). 

If several L-sections are connected in tandem as shown in figure 
(14.23), and if the reactance of each filter capacitor is much less than the 
resistance of R L at the second harmonic frequency, it is fairly easy to 
show that the ripple factor has the general form 

0.471 
y-------------- (14.42) 

- (4w2L1C1 - 1)(4w2L2C2 - 1) ... (4w2LnCn - 1) 

14.9. Critical Values for L-Section Filter Components 
The current-voltage characteristic for a full wave rectifier with 

L-section filter was shown in figure (14.21). Because of the rapidly 
changing voltage at low load currents, in the interests of good regu
lation it is desirable to maintain current through the choke coil at a level 
equal to or greater than Ik. 
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In the analysis of the filter circuit it was assumed that the circuit 
constants were adjusted so that only the d-c component and second 
harmonic need be considered. Thus the total current through the 
inductance L will be the sum of these two terms or i L =Ide+ 12 cos 2wt. 
This current will become continuous when the peak value of the second 
harmonic component is just equal to Ide as shown in figure (14.24). 
Thus, at the critical value of current, Ide = 12• 

wt-. 

Fig. 14.24. Current through the choke at the point where the current flow 
becomes continuous. 

The direct and second harmonic voltages were previously given as 

2Em 4Em 
Eac=--; E2=--

'TT 37T 
The input impeclance of the filter to direct current is R L, while its value 
at the second harmonic is approximately 

ZinC2w)-=-
2
~C (4w2LC - 1) 

Thus the magnitudes of the two currents in the inductor are 

2Em 
Id=--

c TTRL 

I._!._ 8wCEm 
2 

- 3TT(4w2LC - 1) 

(14.43) 

(14.44) 

(14.45) 

When the direct load current is Ik, so that Ide= Ik, this load current 
corresponds to a particular value of load resistance. Solve the equality 
for R L and designate it Rk. That is, 

R 3(4w2LC - 1) (14.46) 
k _.:_ 4wC 
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Solve for C and write 

3(4w2LC - 1) 
c...:_ 4wR 

k 

However, the ripple factor was shown to be 

or 

0.471 
y ...:_ 4w2LC- 1 

(4w2LC - 1) = 0.471 
y 

The equation for the filter capacitance is therefore 

[Sec. 14.9 

(14.47) 

(14.48) 

C ...:_ 3(0.471) = 0.0562 (l4.49) 
4wyRk fyRk 

where f = frequency in cycles per second. Now solve equation (14.48) 
for the filter inductance L. The result is 

...:_ 0.471 + y = Rk (1 + ~) 
L 4w2Cy 3w 0.471 

(14.50) 

Finally, 

(14.51) 

7T 
and Em= 2 Ede (14.52) 

These last four equations are the desired design relationships. 
It seems clear that there will be an arbitrariness in the design unless 

some design factor other than the supply frequency, ripple factor, and 
direct load voltage is specified. As long as this arbitrariness exists, the 
designer is free to make an initial selection of either Rk, C or L. Once 
the selection is made the design formulas lead to specific values for the 
other elements. 

The resistor Rk is called the bleeder resistance. The power loss in the 
bleeder should be kept as small as possible. Thus Rk should be large. 
However, from equation (14.50) it is clear that the filter inductance 
must be increased in direct proportion to the bleeder resistance. This 
raises the cost considerably. One way of solving the problem is to use a 
swinging choke. This type of inductance is designed to have a variable 
inductance depending upon the current flowing through the coil. The 
effect is produced by operating the choke core near saturation at full 
load so that the coil is not saturated at light loads and the inductance is 
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much larger. Thus the inductance of the choke swings with the load 
current and can, by proper design, be adjusted to assure a continuous 
current flow through L even at very low current levels. 

Although the derivations in this section neglected the diode resistance, 
Schade's work (Reference 1) indicates that this does not materially 
affect the results. 

14.10. Pi-Section Filter 
In many cases a capacitor is added to the £-section filter as shown in 

figure (14.25). The resulting circuit is called a pi-section filter and finds 
frequent application with full wave rectifier circuits. 

The mathematical formulation of the circuit is exceedingly difficult 
and will not be attempted here. The circuit operation may be under
stood in a qualitative way. When one of the diodes in figure (14.25) 

+ 

Fig. 14.25. Full wave rectifier with pi-section filter. 

conducts, capacitor C1 rapidly charges to a voltage Em before being 
disconnected by the diode. Then C1 discharges through L and the 
parallel combination of R L and C2 until the other diode conducts. 

Relative to the £-section filter, this circuit has a lower ripple factor, 
higher output voltage, and a poorer voltage regulation characteristic. 
High peak currents flow through the diodes when the circuit is first 
turned on, because C1 is a virtual short circuit. This can cause serious 
tube damage in some cases, especially when gas tubes are used. 

The circuit is generally designed by treating it as a two-section filter. 
The first section is taken to be RLC1 and is designed as a standard RC 
filter. The second section is taken to be LC2 and is designed as an 
£-section filter. In other words, figure (14.19) is used to determine the 
ripple from the first section and equation (14.41) is used to find the 
ripple from the second section. The procedure is fairly accurate as long 
as the ripple from the first section does not exceed 10 %. 
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14.11. Voltage Regulated Power Supplies 
It frequently develops that the rectifier and filter circuits discussed in 

the preceding sections cannot provide the required degree of voltage 
regulation and ripple without exceeding cost or size limitations. Other 
devices and circuits are then combined with rectifier and filter circuits 
to improve the over-all characteristics of the system. The system is then 
called a voltage regulated power supply. Similar techniques can be used 
to produce current regulated power supplies. 

The simplest type of voltage regulation of a power supply is achieved 
through the use of glow discharge tubes. A typical circuit is shown in 
figure (14.26). The voltage regulator tube is selected so that the voltage 
drop across it is equal to the desired direct output voltage. By com
bining several such tubes of various ratings in series, many direct 
voltages are available. 

RECTIFIER 
POWER 

FILTER 

Fig. 14.26. Use of a glow discharge tube in a voltage regulated power 
supply. 

The current limiting resistor R shown in figure (14.26) must be 
selected so that the current through the glow tube never exceeds the value 
specified by the manufacturer. Clearly, maximum current will flow 
through this tube when the load current is zero. Then if / p(max) = 
max. rated tube current, the value of R must be such that E0 = I p(max) 
R + Eb, where Eb = rated voltage drop across the glow tube. Hence 
R = (E0 - Eb)// p(max). If the value of E0 is subject to variation 
because of line voltage changes or any other foreseeable factor, the fact 
should be recognized and the value of R adjusted accordingly. 

Vacuum tubes are widely used in regulating circuits. When so 
employed they generally provide two functions: (I) class A amplifi
cation; (2) act as a variable resistance to direct current. One tube is 
usually inserted in series with the d-c lead from the power supply, and 
this tube is used as a variable resistance. For example, in a typical 
circuit such as that shown in figure (14.27), V1 is used as the variable 
resistance. The value of the tube resistance changes with the negative 
grid voltage, increasing as the grid voltage is made more negative. 
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A class A amplifier V2 is connected into the circuit so that the signal 

input to the amplifier is a fraction of the variation in direct output 
voltage. The output from the amplifier tube changes the bias and 
resistance of the regulator tube V1. The glow tube Va and its associated 
circuit are used to provide the proper bias for the amplifier tube. 

From the circuit diagram it is clear that Ri, R2, R4, and R5 are 
adjusted to provide the proper bias and signal input to V2 and Ra is the 
current limiting resistor for the glow tube. 

The operation of the circuit is readily understood. Suppose that Ede 

momentarily increases because of an increase in rectifier output or 
because of the ripple component. A fraction of this change is coupled 

+ 

FILTER 
OUTPUT 

Fig. 14.27. Voltage regulator using vacuum tubes. 

into the amplifier, and if it is an increase in voltage, causes the plate 
voltage of the amplifier tube to drop. This drop reduces the grid voltage 
on the regulator tube V1, increasing its resistance, increasing the drop 
across the tube, and thereby holding the output voltage nearly constant. 
The plate load resistance R L of the amplifier tube is determined partly 
by the gain requirements for the amplifier and partly from bias 
considerations of the regulating tube. 

The necessary design formulas can be derived using the methods 
outlined for class A circuits in Part II. 

14.12. Radio Frequency Power Supplies 
There are many applications in which high voltage, low current 

power supplies are required. A typical case is the power supply for the 
second anode of a cathode ray tube. The transformers required to step 
up a 60 cps 115 v line to the requisite levels are expensive. Also, the 
cost of iron core inductors is higher at low frequencies than at high 
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frequencies. Thus in some cases it may be more economical to develop 
an RF voltage to supply a rectifier and filter circuit, because inexpensive 
air core transformers can be used at a saving in cost that offsets the cost 
of the RF oscillator circuit. 

A typical RF power supply can deliver from 5000 to 30,000 volts 

CLASS C RF 

OSCILLATOR 

f O ~ 200 kcps 

(al BLOCK DIAGRAM 

OVERCOUPLED 
DOUBLE 
TUNED 

AMPLIFIER 

de 
OUT 

CLASS C RF 
OSCILLATOR 

(bl CIRCUIT DIAGRAM 

VOLTAGE 

DOUBLER 

RC 
FILTER 

C 

RC 
FILTER 

GRID LEAK 
BIAS CIRCUIT 

Fig. 14.28. Typical radio frequency power supply. 

with a power rating of 2 to 20 watts. 2 Most of this power is dissipated 
in a bleeder resistance. 

The block diagram and circuit diagram of a typical radio frequency 
power supply are given in figure (14.28). The general nature of the circuit 

2 0. H. Schade, "Radio-Frequency Operated High Voltage Supplies for Cathode 
Ray Tubes," Proc. IRE, vol. 31, April, 1943, pp. 158-163; R. S. Mautner and 
0. H. Schade, "Television High Voltage RF Supplies," RCA Rev., vol. 8, March, 
1947, pp. 43-81; H. C. Bauman, "Television Receiver R.F. Power Supply 
Design," Comm., vol. 26, March, 1946, pp. 26-27; George W. C. Mathers, "Some 
Additions to the Theory of Radio Frequency High Voltage Supplies," Proc. IRE, 
vol. 37, February, 1949, pp. 199-206. 
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operation is self-evident and does not require further explanation. The 
design of the voltage doubler RC filter combination is standard and the 
material previously presented can be used. The main factor is then the 
design of the class C oscillator. This is performed by the methods given 
in chapter 12. It is usually assumed, and the accuracy is quite good, 
that the coefficient of coupling is so small that load variations in the 
rectifier circuit are not reflected into the plate circuit of the oscillator. 

An analysis based upon equivalent circuits has been made and 
interested readers should consult Mathers, Reference 2. 

Another slightly related circuit is the jlyback type of high voltage 
power supply in general use in television receivers having magnetically 
deflected cathode ray tubes. In this circuit another winding is placed on 
the horizontal deflecting coil. The current through the deflecting coil is 
a 15,750 cps sawtooth. The rapid change in current during the flyback 
period (see chap. 17) causes the added winding to oscillate at its own 
natural frequency of about 100 kcps. The oscillation is damped out at 
the end of the first half cycle by a damper tube. The 100 kcps pulses 
are applied to a diode rectifier with RC filter, and a high voltage is 
thereby secured. 

PROBLEMS 

14.1. A half wave rectifier with resistance load uses a diode for which 
r~ = 100 ohms. The input voltage is 250 sin 377t and RL = 2000 ohms. 
Compute Ide' Ede' rectification efficiency, ripple factor, and the power lost 
in the tube. 

14.2. Repeat problem (14.1) for a full wave rectifier. 

14.3. A full wave rectifier with RC filter is to be designed to have the 
following characteristics: Ede (full load) = 250 v; Ide (full load) = 50 ma; 
ripple = 2 % ; volt. reg. = 15 %, The supply frequency is 60 c. Design the 
circuit and discuss the possible choices of rectifier elements and the properties 
required of the transformer assuming a 110 v supply. 

14.4. Design a voltage doubler to the same requirements as those given in 
problem (14.3). Discuss this circuit, relative to the full wave design, from the 
standpoint of commercial practicality and feasibility. 

14.5. Design a full wave rectifier with L-section filter for use with a 60 cps 
supply to provide Ede (full load) = 300 v; Ide (full load) = 100 ma; ripple 
= 1 % ; volt. reg. = 5 %. Discuss some of the various design alternatives 
and comment upon relative feasibility and cost of some of the alternatives. 

14.6. Redesign the rectifier of problem (14.5), using a two-section filter 
with only 0.1 % ripple factor allowed. 
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14.7. Analyze the performance of a full wave rectifier with series inductor 

filter. Derive equations for Ede and the cutout angle. 

14.8. Outline a design procedure for the approximate design of a radio 
frequency power supply. 

14.9. Design a voltage regulated power supply using glow discharge tubes 
to provide a regulated output of 210 v. Over what range of input voltages 
and load currents will regulation be obtained? What is the maximum 
allowable load current? How can it be increased? 

14.10. Design a voltage regulated power supply using vacuum tubes con
nected as shown in the text to provide 250 v at 100 ma regulated from a 
500 v unregulated supply. The output is to be held constant to ±0.1 % for a 
±20 % variation of unregulated input and over the full range of load current 
from O to 100 ma. 

This is an extensive design problem in which the first step is the derivation 
of appropriate design formulas. Then the problem of tube selection arises 
and should be discussed at some length. Thereafter the problem becomes 
routine. 



Chapter 15 

DETECTORS AND MIXERS 

A detector or demodulator is used to separate the original intelligence 
being transmitted by a modulated wave. Linear diode detectors are 
generally used to demodulate amplitude modulated waves. Square law 
detectors can be used for the same purpose, but they operate in class A 
and are treated in chapter 11. 

Mixers, or frequency converters, are circuits capable of performing 
frequency translation. Such circuits are found, along with linear diode 
detectors, in all superheterodyne radio receivers. The same effect can 
be achieved by square law action, but it is not as efficient nor as distor
tionless as operation in the switching mode. Thus most practical 
mixers operate according to the principle outlined in this chapter. 

It will be shown here that linear detectors are simply rectifiers 
operating under certain special conditions, so that some of the design 
procedures and charts developed in the preceding chapter can be used 
here. 

An equivalent circuit will be developed for mixers that will make it 
directly comparable to amplifiers, so that nearly all the amplifier theory 
developed in earlier chapters can be applied to mixers. 

15.1. Linear Diode Detector 
Two circuit diagrams of linear detectors are shown in figure (15.1). 

Although a half wave rectifier is shown, full wave or bridge rectifier 
circuits can also be used. It should be clear from this figure that a linear 
diode detector is really nothing more than a rectifier with RC filter. 
Thus the generalized design curves for this rectifier-filter circuit given 
in figures ( 14. I 5) through ( I 4.19) can be used to design diode detectors 
with certain additional considerations to be covered later. 

The generalized curves of the rectifier with RC filter given in chapter 
14 show the operation of the circuit when the input is a constant 
amplitude sinusoid of fixed frequency. The resulting output voltage is 
constant with a superimposed ripple component. The ratio of the 
direct output voltage to the peak value of the signal input is called the 

543 
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detection efficiency and denoted by 'YJd· That is, 'YJd = Edel Es. Thus 
figures (14.15) through (14.17) can be used to determine the detection 
efficiency for any circuit and combination of w, R v Rs, and C. 

When these circuits are used as detectors, the input signal is amplitude 
modulated rather than being a continuous wave. Therefore es= Es(t) 
cos wet, where we= carrier frequency. Because amplitude modulation 

LOAD 
CIRCUIT 

(a) ESSENTIAL ELEMENTS 

$-(D 
(b) ELEMENTAL FORM 

Xcc ~ 0 AT CARRIER FREQUENCY 

R1R2 
RL-~~--

R1+R2 

(c) PRACTICAL FORM 

Fig. 15.1. Linear diode detector. 

' 80 

i 

l 

is assumed, Es(t) varies with time in accordance with the modulating 
signal of frequency wm. As long as this variation is slow compared with 
the carrier frequency, the output from the RC filter will vary along 
with Es(t), and the results obtained for the rectifier with RC filter are not 
altered. Thus the w appearing in the dimensionless parameter wRLC 
and appearing in figures (14.15) through (14.19), should be replaced by 
we, the carrier frequency. 

For an amplitude modulated carrier, 

Es(t) = Es(I + ma COS wmt) 



Sec. 15.2] Detectors and Mixers 545 

where Es = unmodulated carrier amplitude 
Em amplitude of modulating wave 

m =-=-------------
a Es amplitude of unmodulated carrier 

= modulation index 

Therefore the detector output will be 

Eo(t) = Es'rJil + ma COS wmt) 

The detector output contains two terms: (1) a constant voltage= rJdEs; 
(2) the original modulating signal = rJdE~a cos wmt. Because the 
original modulating signal has been recovered from the modulated 
carrier, detection or demodulation has been achieved. 

In general the constant term is undesired and a blocking capacitor 
Cc is ordinarily used as shown in figure (15.lc). The reactance of this 
capacitor is negligible at the carrier frequency, so that the effective load 
resistance on the diode is the parallel combination of R1 and R2 as 
shown. 

15.2. Maximum Permissible Capacitance 

The detector output voltage will follow the modulating signal 
exactly as long as the filter capacitor is permitted to discharge as rapidly 
as the amplitude of the carrier wave decreases. If the modulated 
carrier input drops too rapidly, the plate voltage of the diode decreases 
more rapidly than the cathode potential, so that the plate-to-cathode 
voltage becomes negative; diode conduction then ceases. If this occurs, 
the output voltage is governed by the rate at which C discharges 
through R L- The output voltage during such an interval is 

eo(t) = Es-tfRLC 

where E = value of the output voltage when the rate of discharge of 
C was too slow to follow the modulation envelope. Hence, if the output 
voltage is to follow the modulation envelope, it is necessary that the 
rate of change of capacitor voltage be equal to or greater than the rate 
of change of the modulation envelope at the highest modulating 
frequency. That is, 

However, 

dE0(t) dEs(t) 
-->-

dt - dt 

Eo(t) = Es-tf RLC 

Es(t) = E8 (1 + ma COS Wmt) 

(15.1) 

(15.2) 
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Differentiating each expression and setting up the specified inequality 
yields 

E e-t'/RLO 
(JJ RLC<-·----

m - E
8 

ma sin (JJmt' 

where t' = time when the diode stops conducting; Ee-t'/RLo = capaci
tor voltage at the instant the diode stops conducting. Hence 

Ee-t'/RLC = Es(l + ma COS (JJmt') 

Consequently, the preceding inequality can be written 

C 
1 + ma cos (JJmt' 

(JJmRL < • , 
ma sm (JJmt 

(15.3) 

The maximum value of the factor (JJmRLC can be found by differen
tiating the preceding expression with respect to t', setting the result 
equal to zero, and solving for t'. This value oft' is then substituted back 
into equation (15.3) to obtain the maximum value of (JJmRLC. Proceed-

ing in this manner yields ma = -cos (JJ,,f, so that V 1 - 2m~ = sin (JJmt. 
Therefore 

Vl-m~ JI 
((JJmRLC)max = ---- = 2 - 1 

ma ma 

Terms can be rearranged and the equation expressed as 

1 ✓-1 -
Cmax = ----- 2 - 1 

(JJm (max) RL ma 
(15.4) 

The maximum value of capacitance that can be used successfully in 
the detector load circuit can be determined as soon as the modulation 
index, highest modulating frequency, and detector load resistance are 
known. Of these three factors, the first two, (JJm (max) and ma, will be 
determined by other considerations; circuits are usually designed for 
ma = 1. Only the detector load resistance is unspecified. It is usually 
governed by input impedance considerations, a problem explored in 
some detail in the next section. 

Equation (15.3) is plotted in a convenient form for design purposes 
in figure (15.2). The proper value for Cmax is easily determined from 
this figure by the following method: 

(I) Assume that Rv (JJm(max), and ma are known. 
(2) Locate the specified value of R L on the chart. Find where the 

vertical line of constant R L intersects the proper line of constant ma. 
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(3) From this intersection, project horizontally to the specified line 
of constant wm(max). 

( 4) From this intersection project vertically down and read the value 

of Cmax· 

lk 

lµ.µ.f 10µ.µ.f 

IOOk 

100µ.µ.f 

Fig. 15.2. Linear diode detector: determination of Cmax• 

1000k 

1000µ.µ.f 

(5) For example, if fm = 5000 c, ma= 0.5, RL = 100,000 ohms, 
cmax = 730 µµf. 

15.3. Equivalent Representation of a Linear Detector 

The operation and some of the performance characteristics of a linear 
detector can be conveniently represented through the use of a block 
diagram and its associated transfer function. 
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The detector has three separate and distinct components in the output: 

(I) a constant term 
Ede= 'YJdEs 

(2) a signal component 
e = 'YJdmaEs cos wmt 

(3) a ripple component 
er= 'YJdYEs cos nwct 

TRANSFER 
FUNCTION 1-----
,,cos n111ct RIPPLE 

Fig. 15.3. Block diagram representation of a linear diode detector, 

where y = ripple factor; n = I for a single diode, or 2 in other rectifier 
circuits. Thus the detector can be thought of as a single input 
system with three outputs as shown in figure (15.3). Also, most circuits 
are designed to block the d-c component and trap the ripple so that the 
over-all system has the appearance of figure (15.3). 

r--- - - - -- - - ---- - - - --1 

I ----~ ------. I 
Es : I H m COSw t I ls1GNAL -------;.j ~91 '1 d a m I OUT It 

I "-----~ ____ _. I 
I I 
L- - - - ------ ----- - ___ J 

Fig. 15.4. Simplified block diagram of a linear diode detector. 

If the circuit is actually designed to block the direct current and trap 
or otherwise remove the ripple component, the over-all operation of the 
detector is conveniently represented by the block diagram of figure 
(15.4). Transfer functions are shown inside the blocks. 

The response characteristics of the detector can be computed from 
the proposed equivalent circuit shown in figure (15.5). Here rd is a 
hypothetical resistance whose value must be computed to validate the 
equivalent circuit. If the circuit is to represent truly the actual circuit 
behavior, the output voltage must be 

'YJdEm = 'YJdmaEs 
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Assume the reactance of the capacitor C to be high at the frequency of 
the modulating signal. Hence 

Em= Jmrd + /mRL = fmrd + 'fJdEm 

so Em(l - 'fJd) = lmrd 

But, from the equivalent circuit in figure (15.5), 

I - Em 
m - rd+ RL 

It is then easily shown that 

(15.5) 

Hence the equivalent detector resistance is easily computed when the 
rectification efficiency is known. 

Fig. 15.5. Proposed equivalent circuit Fig. 15.6. Current source equivalent 
for a linear diode detector. circuit for a linear diode detector. 

The constant current form of the equivalent circuit is given in figure 
(15.6). Because this has precisely the same form as the equivalent plate 
circuits of class A vacuum tube amplifiers, all data on rise times, over
shoots, and cutoff frequencies derived there can be applied to detectors. 
The mid-band, or reference, gain of the detector is clearly 

(15.6) 

15.4. Input Impedance of a Diode Detector 
The diode detector in a receiving system is usually driven by an 

amplifier stage. The detector loads the amplifier and thereby affects its 
amplification characteristics. Thus it is necessary to have a method of 
determining the amount of loading introduced by the detector. 

Designate the effective input resistance of the detector circuit by Re. 
Then the average power input to the circuit will be 

£2 
Pin= 

2
; 

e 
(15.7) 
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or the equivalent input resistance is 

E2 
R =-s 

e pin 

[Sec. 15.4 

(15.8) 

where Pin is the sum of the power lost in the equivalent detector 
resistance rd, plus that delivered to the load resistor RL- Hence 

Pin = lJeR L + lJer d 

However, Ede= ldeRL, so that 

2 2 
Ede Ede ( rd) 

pin= m (rd+ RL) = RL I+ RL 

Therefore the equivalent input resistance becomes 

R = RL (Es)2 
e 2 Ede 

1 

However, because 

Ede 
and 

1- 'YJd 
'YJd=- rd=RL---

Es 'Y/d 

then 
RL 1 RL 

R--· 
e - 2'Yj~ I + rd/ R L 2'Yjd 

(15.9) 

(15.10) 

(15.11) 

(15.12) 

The equivalent input resistance of the detector can be determined 
from equation (15.12) after weRLC and Rs/ RL are known, because they 
determine the rectification efficiency. Then the value of 'YJd can be 
determined from figures (14.15) through (14.17). Resistor R Lis selected 
to provide the desired value for Re based upon consideration of the 
driving amplifier. 

In brief, the design of a lmear diode detector may proceed accord
ing to the following outline: 

(1) The value of Re will be specified by the requirements of the 
driving amplifier stage. 

(2) The value of Rs will be set by the circuit elements and the diode 
characteristics. 

(3) By trial and error, the values of R L and C will be determined 
from figures(14.15) through (14.17) and (15.2). 

The characteristic curves of a diode rectifier are shown in figure 
(15.7). These curves show the relationship between the output current 
and voltage with the carrier amplitude as the parameter. They are 
directly analogous to the plate characteristics of a triode. 



Sec. 15.4] Detectors and Mixers 551 
Once the load resistance for the detector has been determined, tpe 

quiescent or d-c load line can be drawn on these characteristics as 
shown in figure ( 15. 7). The quiescent condition corresponds to operation 
with an unmodulated carrier input. The operating point Q is located 
under this quiescent condition; it can be determined only if the 
amplitude of the unmodulated carrier input is known. 

It was shown in chapter 11 that amplifier tubes have different load 
resistances for quiescent operation than for dynamic or a-c operation. 
This was the origin of the a-c and d-c load line terminology. Exactly 
the same situation exists with detectors except that the signal frequency ,~ '/ w 
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Fig. 15. 7. Detection characteristics of a receiving type of diode. 

LL.I 
a: 

is the frequency of the modulating signal, not the carrier. Thus an a-c 
load line must be drawn through the Q point as shown in figure (15.7). 
This line defines the path of operation of the circuit on the detector 
characteristics. This path becomes elliptical if the load contains 
reactive components. 

It is clear from figure (15. 7) that serious distortion will be produced 
when the carrier is modulated near the 100 % point. This is so because 
the diode will be made nonconducting on the negative swing of the 
modulating signal for a period exceeding one cycle of the carrier. This 
acts to flatten the bottom of the detector output signal. It is called 
clipping. Negative peak clipping can be prevented by reducing the 
modulation index of the incoming wave or by making the a-c and d-c 
load lines as nearly coincident as possible. This requires that the a-c 
and d-c load resistances be as nearly equal as possible. 
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15.5. Some Other Detector Circuits 
In addition to diodes, triodes and pentodes are occasionally used as 

detectors, usually operating in one of the following two modes: ( 1) grid 
leak detection; (2) plate detection. 

(a) GRID LEAK BIAS CIRCUIT lb) EQUIVALENT REPRESENTATION 

Fig. 15.8. Grid leak detector. 

The circuit diagram of a grid leak detector is shown in figure (15.8). 
In principle, the grid-cathode circuit simply operates as the rectifier 
element, replacing the diode in the conventional detector; the grid leak 
bias circuit corresponds to the de-
tector load. Thus the circuit can be 
designed in exactly the same manner 
as the conventional diode detector. 
The main claimed advantage for the 
circuit is that the detected signal is 
amplified in the tube and the func-
tions of detection and amplification ___ 't _________ e_c __ 
are thereby combined. However, 
when semiconductor diodes are used 
in conventional detectors and fol-
lowed by an amplifier stage, the same 
effect is achieved. However, detec-
tion with diodes is more linear than Fig. 15.9. Plate detector operation. 
with triodes and pentodes and is 
usually preferred. 

Plate detection is accomplished by operating the tube in class B so 
that the tube is biased to cutoff. Rectification is then produced by 
nonconduction in the plate circuit. This is illustrated in figure (15.9). 
This form of detection is more nonlinear than that obtainable with the 
conventional diode because of curvature in transfer characteristic near 
cutoff. However, this type of detector does not appreciably load the 
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amplifier driving stage, because grid current generally does not flow. 
It is often called an infinite impedance detector for this reason. 

Pentodes can also be used to provide rectification by bottoming (see 
section 1.5). This is not usually desirable because the grid voltage 
required is quite positive and the input impedance of the circuit is 
fairly low. 

15.6. Automatic Gain Control 
The signal appearing at the antenna of a receiver often varies in 

strength from time-to-time and from station-to-station. Despite this 
variation it is desirable to keep the receiver output constant. This 
output can be held fixed if the detector output does not vary. Circuits 

J C 
C 

SIGNAL 
Rz OUTPUT 

AVC 

Fig. 15.10. Detector circuit with simple AVC; AVC voltage is negative 
with respect to ground and is used to bias the super control IF amplifier 
tubes. 

accomplishing this are called automatic volume control (A VC) or 
automatic gain control (AGC) circuits. They are used in virtually all 
radio receivers. 

The principle involved is rather simple. It will be recalled from 
section (15.1) that the linear diode detector develops a component of 
direct voltage 'YJdEs in the output that is proportional to the strength of 
the carrier E8 • If the detector circuit is grounded so that this constant 
voltage is negative, it can be used to control the bias, and hence the 
gain, of the remote cutoff tubes used in the IF amplifier stages. This is 
called simple A VC, and a typical circuit is shown in figure (15.10). 

In practice it is necessary to separate the d-c component from the 
signal component. This action is provided by the R3-C3 circuit in 
figure (15.10). The time constant of this circuit is made long compared 
with the period of the lowest modulating frequency. 

The primary disadvantage of simple AGC is that it is always 
operative and always reduces the receiver gain to some extent even 
when the signal input is weak. This is i1lustrated in figure (15.11). An 
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ideal AGC system would allow the receiver to operate at maximum 
gain for weak signals and then hold the output constant when the input 
reaches and exceeds a certain value. The ideal AGC system would have 
the characteristic shown in figure (15.11). 

I
::, 
Q. 
I
::, 
0 

IO 100 1000 10,000 100,000 

INPUT- LOG SCALE 

Fig. 15.11. Input-output characteristics of receivers with various types 
of AGC. 

In effect it is desirable to delay the development of AVC voltage 
until the input signals exceed a certain specified value. Circuits 
providing this service are called delayed AGC circuits, and a typical 
arrangement is shown in figure (15.12). 

J 

Fig. 15.12. Delayed AGC circuit. 

SIGNAL 
OUTPUT 

DELAYED AVC 

This circuit requires a second diode that is biased so that it does not 
rectify and develop AGC voltage until the input signal reaches a certain 
level. The resulting circuit characteristic closely approximates the ideal 
form as shown in figure (15.11). 



Sec. 15.8] Detectors and Mixers 555 

15.7. Problems in FM Detection 

At the point of reception, a frequency modulated signal varies in both 
frequency and amplitude. However, the intelligence being transmitted 
depends upon the frequency variations of this signal, while the noise 
and interference mainly appear in the amplitude variations. Thus the 
ideal FM detector should have the following characteristics: 

(1) It should develop an output proportional to the variations in the 
frequency of the received signal. 

(2) It should be insensitive to amplitude variations. 
This action is achieved in several ways, but there is considerable 

room for further development work. 
One type of FM detector is shown in figure (15.13) in block diagram 

form. The incoming IF signal is passed through an amplitude limiter, 

FM AND AM AMPLITUDE FM FREQUENCY AM 
INPUT LIMITE'R DISCRIMINATOR 

LINEAR SIGNAL 
DIODE 

DETECTOR 

Fig. 15.13. One type of FM detector. 

or clipper (see chap. 17), so that the output has a constant amplitude, 
but varies in frequency. This is then applied to a frequency discrimi
nating circuit that develops an output that is proportional to the signal 
frequency. This is then detected by a conventional linear diode 
detector. The components of this detector system are discussed in 
later sections. 

15.8. Amplitude Limiters1 

The simplest type of amplitude limiting is obtained by ordinary 
gridleak bias action. A sharp cutoff tube, preferably a pentode, is 
connected with zero cathode bias and a grid leak bias circuit. The tube 
is operated at low plate and screen potentials so that the linear operating 
region between cutoff and bottoming is only 3 or 4 volts in extent, as 
shown in figure (15.14). With a good bottoming characteristic, the grid
leak biasing is scarcely required. As long as the grid signal has suffi
cient amplitude to cause the operating point to traverse the entire 
linear region, a constant output will be obtained. 

1 For a more complete discussion of the application of limiters in FM receivers, 
see Milton B. Sleeper, Standard FM Handbook, 1st ed., FM Co., Great Barrington, 
Mass., 1946. 
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A more complete discussion of clipping circuits is presented in 
chapter 17 and many more circuits are discussed. 

The input-output characteristic of a single limiter stage appears 
approximately as shown in figure (15.15). Improved operation results 
if two stages are cascaded; the effect is shown in figure (15.15). 

I 
I 
I 

CUT-OFF I 
I 
I 
I 
I 
I 

!.-3-4_.J ec 
VOLTS-I 

Fig. 15.14. Operation of a simple limiter. 
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Fig. 15.15. Input-output characteristics of amplitude limiters. 

15.9. Discriminators 
The purpose of the discriminator in the detector of an FM receiver 

is to convert constant amplitude, variable frequency signals into an 
output whose amplitude is proportional to the frequency deviation. A 
tuned circuit is the simplest way of doing this, as shown for the case of 
a simple resonant circuit in figure (15.16). By setting the center fre
quency of the input signal off resonance, as shown, the output voltage 
will vary with the frequency of the applied signal. The circuit is of little 
practical importance because of the obvious nonlinear characteristic. 

A very linear characteristic can be obtained with the Foster-Seeley 
discriminator shown in figure ( 15.17). The circuit is essentially a double 
tuned amplifier with both the primary and secondary tuned to the same 
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CENTER FREQ. f--+ 

Fig. 15.16. Simple resonant circuit as a discriminator. 

(a) CIRCUIT DIAGRAM +-Eb-+ 

+ 
+-Eb-+ 

(b) EQUIVALENT CIRCUIT AT THE 
SIGNAL FREQUENCY 

Fig. 15.17. Foster-Seeley discriminator. 

557 

I• 

frequency and having the same Q. It is assumed that the deviation in 
frequency off resonance is small so that 

OJ 
d=--1 

is much less than unity. If the coefficient of coupling k and Q are 
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adjusted so that k 2Q is negligibly small, it is a relatively straightforward 
process to prove2 the following: 

(1) At resonance, E2 leads E1 by 90 degrees. 
(2) At frequencies below resonance, E2 leads E1 by less than 90 

degrees. 
(3) At frequencies above resonance, E2 leads E1 by more than 90 

degrees. 
This will be important in a moment in explaining the operation of the 
circuit. 

(a) AT RESONANCE (b) BELOW RESONANCE 

(c) ABOVE RESONANCE 

Fig. 15.18. Determination of diode voltages at various frequencies for the 
Foster-Seeley circuit. 

The RF choke in the circuit of figure (15.17a) is a virtual open circuit 
at the signal frequency, while Ca, Cb, and Cc are virtual short circuits. 
Therefore the signal frequency equivalent circuit of figure (15.17b) is 
obtained. From this diagram it is obvious that the voltage drops across 
the two diodes are 

2 See, for example, J. D. Ryder, Electronic Fundamentals and Applications, 
Prentice-Hall, Inc., New York, 1950, pp. 538-546. 
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Thus it is an easy matter to make the vector diagrams to show the 

way the voltages E1 and E2 combine to provide the diode voltage at 
resonance and above and below resonance. This is shown in figure 
(15. 18). The diode voltages are equal at resonance, but they are different 
at all other times. 

Fig. 15.19. Characteristic of a Foster-Seeley discriminator. 

From the circuit diagram in figure (15.17a) it is clear that the total 
output voltage is the difference between the detector outputs. That is 

Eo = naCEa - Eb) 

VA 

Ve 

Ex•EA+Ee 

Fig. 15.20. Elementary ratio detector. 
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Hence at resonance the output is zero. At frequencies above resonance 
Ea is greater than Eb and the output is positive. At frequencies below 
resonance Ea is less than Eb and the output is negative. Over a confined 
frequency range an exactly linear characteristic is obtained as shown 
in figure (15.19). 

Another circuit that closely resembles the one just discussed is the 
ratio detector shown in figure (15.20). The main advantage of this 
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circuit is that limiters-are not required. The same general type of center
tuned discriminator is used. The secondary is center tapped to provide 
equal voltages of opposite polarity to the diodes; the primary voltage 
is applied to the diodes in parallel. As a result, as the frequency of the 
incoming signal varies, the phase angles of the primary and secondary 
voltages vary as before. This circuit is different mainly in the location 
of the signal output and the presence of the stabilizing voltage. 

Because the stabilizing voltage is connected across the two capacitors, 
the rectified output voltages across these capacitors must be equal to 
the stabilizing voltage at all times. Hence, the potential at the signal 
take-off point can vary only when the ratio of the rectified output 
voltages changes. There is a change in this ratio only when the frequency 
of the incoming signal changes. Hence the signal output will vary only 
with changes in the frequency of the incoming signal. Amplitude 
variations of the FM signal have no effect because this does not change 
of the ratio of the rectified voltages and no signal output is developed 
at the take-off point. 

15.10. Principles of Mixers 
One common application of the principle of rectification is found in 

the mixer or converter stage of every superheterodyne receiver. The 

MIXER 

LOCAL 

OSCILLATOR 

"'R-"'L INTERMEDIATE 
OR FREQUENCY, wrF 

wL-wR IFAMPLIFIER 

LINEAR 

DIODE 

DETECTOR 

AUDIO OR 

VIDEO 
AMPLIFIER 

Fig. 15.21. Block diagram of a superheterodyne radio receiver. 

block diagram of such a receiver is shown in figure (15.21). The in
coming radio frequency signal from the antenna is combined with 
a locally supplied signal from the local oscillator. The total signal is 
then applied to a rectifier element called the mixer. The mixer output 
contains many frequency terms including the difference frequency as 
shown in figure (15.21). Depending upon the relative frequencies 
involved, 
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In effect, the original incoming signal is translated down the frequency 
scale so that such circuits perform frequency translation, or conversion. 

Suppose that the incoming radio frequency signal is designated as 
er,= ER sin wRt, and the local oscillator signal is eio = EL sin w Lt. 
If both signals are impressed in series with a linear circuit element, the 
total applied voltage is 

According to the principles of linear circuit theory, these two voltages 
can be represented as rotating vectors or phasors. Also, if the EL 
phasor is taken as the reference so that it appears stationary on the 
diagram, then ER is connected to the tip of EL and rotates with an 
angular velocity (wR - w L) either clockwise or counterclockwise 
depending upon the relationship between w R and w L· 

EL 

Fig. 15.22. Addition of two sinusoidal voltages of different frequency. 

The total applied voltage is the sum of the two phasors ER and EL, 
and it oscillates in time with a frequency w L- The magnitude of the 
total voltage ET can be computed from figure (15.22) by the law of 
cosines. That is, 

In nearly all practical cases the local oscillator voltage is many times 
larger than the received radio signal, so that ER is much less than EL· 
Therefore Et is negligible compared with Ef. Thus 
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Because the second term under the radical is always much less than 
unity, the approximate form can be written 

-- X 
ET...:_ VI+ X ...:_ 1 + 2 

Hence ET-'- EL [I+!: cos (wR - wz)t] 

As long as ER is much less than Ev and this is generally true, the 
envelope of the new carrier at the difference frequency is a reproduction 
of the envelope of the carrier of the incoming RF signal. 

It should also be clear from figure (15.22) that the phase angle <pT of 

ENVELOPE _FREQ.= (<At- wR)OR(wR -wL) 

~-~~::-.-:·+ ... -~·tr-__ :t~~i--_"'1-__ -..:::._~,;::;:::;;:::;~?.r,-~ .. f.j~I-~·-_J_-:t:+~~;: 
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Fig. 15.23. Sum of two sinusoidal voltages of different frequency when the 
magnitude of one is small compared to the other. 

the resultant also varies with time, and this would have the effect of 
making the frequency of the resultant vary somewhat. The effect is 
negligible under the assumed inequality. 

Clearly then, the sum of the applied voltages appears as shown in 
figure (15.23) for the case assumed. It is evident that the envelope of the 
total voltage is a replica of the input and has a frequency equal to the 
difference frequency of the two signals. 

Now suppose that this total voltage is applied to any rectifier. It 
could be a vacuum tube or varistor or a multielectrode tube biased to 
cutoff. All that is required is a sharp break between a virtually linear 
region of conduction and a nonconducting region. Thus, assuming· a 
diode, operation can be indicated graphically as shown in figure (15.24). 
Clearly, the circuit functions as a half wave rectifier when the amplitude 
of the voltage of the rectified voltage varies sinusoidally at the difference 
frequency. 
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The Fourier series of the output from a half wave rectifier was given 

in section (14.4) as 

However, in this case, Im, which is the amplitude of the wave, varies 
with time as follows: 

lb 
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Fig. 15.24. Use of half wave rectification in mixer operation. 

Substitute for Im in the equation for i, evaluate a few terms, and the 
result is 

i= ~ [1 +!:cos (wR ~ wL)t + 1sinw£f + .. -] 

There are an infinite number of terms in all possible combinations, but 
interest centers upon the second term because it is the difference 
frequency component desired. If the load circuit on the diode is tuned 
to this frequency and the bandwidth is adjusted to exclude other terms, 
frequency translation is accomplished and the primary function of the 
mixer is fulfilled. 
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15.11. Some Actual Mixer Circuits 
All mixer circuits involve three essential components as follows: 
(I) A method of combining the two input signals. 
(2) A circuit element with a sharp break in its current-voltage 

characteristic for rectification. 
(3) A tuned circuit to select the difference frequency output. 
Mixer circuits are often classified according to the number of inputs. 

That is, a diode has only a single input. Hence the two input signals are 

RECTIFIER 
ELEMENT 

LOAD 
CIRCUIT 

(a) BLOCK DIAGRAM SHOWING GENERAL COMPONENTS. 

LOAD CIRCUIT 

IF 

:TI 
~ 
I~ 

TUNED TO IF ----1 
IF 

(bl USE OF A DIODE AS A RECTIFIER ELEMENT. IT COULD BE 

REPLACED BY A TRIODE OR A PENTODE BIASED TO CUT-OFF. 
CAN ALSO USE CAPACITIVE INPUT COUPLING RATHER THAN 
INDUCTIVE. 

Fig. 15.25. Single input mixers. 

applied in series with one lead as shown in figure (15.25). This is 
typical at ultrahigh frequencies. 

General practice below the ultrahigh frequency region involves the 
use of special tubes developed especially for mixer service. They are 
called mixers and converters and identified by the names and symbols 
shown in figure (15.26). As indicated in the figure, the tubes are of two 
general types: 

(I) Mixers-local oscillator requires a separate tube. 
(2) Converters-local oscillator tube is enclosed in the same envelope 

with the mixer tube. There are three subtypes in use: pentagrid 
converter, triode-hexode converter, and the octode converter. 
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In all cases it is evident that the addition of the signal frequency and 
local oscillator voltages is accomplished inside the tube because each 
voltage acts to control the mixer plate current. In all tubes a double 
screen grid is used for two reasons: 
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Fig. 15.26. Mixers and converters. 

(1) It provides the electronic acceleration in the mixer section ofthe 
tube. 

(2) It provides electrostatic shielding between the signal grid and the 
local oscillator input or section. 
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In general, the signal grid of a mixer or converter tube is made to have 
a remote cutoff characteristic so that the amplification of the stage can 
be controlled through AGC bias voltage variations. The oscillator grid 
normally has a sharp cutoff characteristic. 

AU these tubes operate on the same general principle. However, their 
variations make them particularly suited for use in specific applications. 

RF 
INPUT 

Ebb 

IF 
OUTPUT 

OSC. INPUT 

Ebb 

. 
LOCAL OSCILLATOR 

SECTION 

Fig. 15.27. Typical mixer circuit. 

Thus pentagrid mixers are usually used for short-wave receivers; the 
triode-hexode converter is used in all-wave receivers because it is 
designed to be noncritical with respect to changes in signal bias or 
oscillator plate voltage. The pentagrid converter operates best at low 
frequencies because interactions between signal and oscillator grids 
increases with frequency. However, they are particularly suited for use 
with AGC because they are designed to minimize oscillator detuning 
resulting from AGC bias voltage variations on the signal grid. 

A typical circuit diagram is given in figure (15.27). Although this 
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illustrates the use of a pentagrid mixer with a separate local oscillator, 
essentially the same circuit applies to triode-hexode and pentagrid 
converter circuits. 

15.12. Equivalent Circuits of Mixer Stages 
The effectiveness of a mixer or converter tube in performing its 

function is characterized by a constant called the conversion trans
conductance gc where 

It is analogous to the mutual transconductance of the tube except that it 
relates the output current of the tube at the difference frequency to the 

Fig. 15.28. Equivalent circuit of a mixer or converter stage under rated 
operating conditions. 

input voltage at the radio frequency. The conversion transconductance 
will always be less than the mutual transconductance because the tube 
operates as a rectifier and conducts only for short periods. The ratio of 
gc to gm is equal to or less than 1/TT. Conversely, the effective plate 
resistance will always be larger for the same reason. 

Because of the definition of the conversion transconductance, it is 
clear that a mixer stage can be represented by the equivalent circuit 
shown in figure (15.28). Because the form of this circuit is precisely the 
same as the form of the equivalent circuit of voltage amplifiers developed 
in Part II, the equation for the conversion gain can be written directly as 

where Zm = mutual impedance of the passive network in the equivalent 
plate circuit evaluated at the difference frequency. Hence, all the 
material developed in chapters 3 through 6 is directly applicable here 
and further discussion is not needed. 
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Fortunately, values of conversion transconductance can be obtained 
from the tube manuals. Representative values range from 250 µmhos 
to 950 µmhos with plate resistances of the order of 350,000 to 1,000,000 
ohms. 

PROBLEMS 

15.1. An unmodulated 455 kcps carrier of 10 v amplitude is applied to a 
simple linear diode detector. The effective diode resistance is 1000 ohms and 
the load circuit has RL = 50,000 ohms and C = O.ot µf. Compute the 
rectification efficiency, direct output voltage, and input impedance. 

15.2. A 30 mcps, 10 v carrier is 50% modulated by the highest modulating 
frequency of 1 mcps. The diode resistance is 200 ohms; R L = 10,000 ohms. 
Compute Cmax, the direct output voltage, and the input resistance. 

15.3. Compute the ripple voltage in the output of the detector of problem 
(15.2). -

15.4. A linear diode detector is to be designed to operate with a 30 mcps 
carrier, ma= 0.45,/m(max) = 1 mcps and an input resistance of not less than 
4000 ohms. A germanium diode is used for which r~ = 100 ohms. The d-c 
component is to be blocked. Design the detector. 

15.5. Design a suitable trap for the ripple component in the detector of 
problem (15.4). Refer to any circuit theory text book for further guidance. 

15.6. A mixer stage is to be designed using a 6SA 7 tube. The necessary 
data for the tube are given in the tube manual. The incoming RF signal is 
10 µv at 1 mcps and a 455 kc IF is desired. The bandwidth of the stage is to 
be 10 kcps. Design the stage assuming a total interstage capacitance of 25 µµf. 
What is the conversion gain? 

15.7. A full wave detector is to be designed for use in an a-c vacuum tube 
voltmeter. The detector converts the alternating current to direct current, 
which is then indicated on a meter. The detector is to operate over a frequency 
range of 20 c to 20 kc and the scale calibration should be accurate to ± 5 % 
over this range. The diodes used have ,; = 200 ohms. It is desirable to have 
the fastest possible meter recovery time following a measurement. Explore 
some of the various design possibilities in detail. 

15.8. A parallel resonant circuit of Q = 40 and band center at 10 mcps is 
used as a discriminator in an FM detector. The incoming signal is centered on 
the lower 50 % frequency of the characteristic of the tuned circuit. Find the 
change in output voltage if the input signal has a constant amplitude of 
70 µamp with a frequency deviation of ± 75 kcps. 



Chapter 16 

MAGNETIC AMPLIFIERS 

Magnetic amplifiers are rapidly becoming full-fledged working 
partners of vacuum tube and transistor amplifiers. Their extreme 
ruggedness, reliability, and nearly indefinite life make them attractive 
to equipment manufacturers. 

The presentation here is far from complete because the subject is 
complicated and extensive, with abundant coverage in the periodical 
literature. For example, one source1 lists nearly one thousand papers 
and patents. Complete coverage of the subject in the limited space 
available here is impossible. Only the essential fundamental charac
teristics of the circuits are treated here in the hope that the discussion 
will provide adequate preparation for further exploratory reading in the 
periodical literature. 

Only magnetic amplifiers operating as amplifiers are presented in this 
chapter. Coincidence circuits, computers, and trigger circuits are 
incorporated in chapters 17 and 18, along with similar vacuum tube and 
transistor circuits. 

A different and informative approach is followed in a paper by 
Manley. 2 The analysis presented here is standard. 

16.1. Operating Principles, Zero Control Voltage 

The circuit diagram of an elementary series connected magnetic 
amplifier is shown in figure (16. la). The circuit consists of two identical 
gate windings, with ferromagnetic cores, connected in series with an 
alternating voltage source eac and a load resistance R L· The hysteresis 
loss in the gate winding cores is assumed to be zero, so that the idealized 
form of the hysteresis loop appears as shown in figure (16.lb). A third 
coil, called the control winding, is wound about the two cores so that the 

1 T. G. Miles, "Bibliography of Magnetic Amplifier Devices and Saturable 
Reactor Art," Trans. AIEE, vol. 70, 1951, pp. 104-123. 

2 J.M. Manley, "Some General Properties of Magnetic Amplifiers," Proc. IRE, 
vol. 39, March, 1951, pp. 242-251. 
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flux linking the control coil is the difference between the fluxes produced 
by the two gate windings. That is c/>c = cf,B - cf, A· 

The inductance of a coil is defined as the flux linkages per ampere. 
That is, for the two gate windings, 

d),.A 
LA= di) 

GATE 
WINDING 

B 

-----------4eac ..-----------

(a) CIRCUIT DIAGRAM OF AN ELEMENTARY MAGNETIC AMPLIFIER 

+ 

SATURATION 

SLOPE =O 

COIL FLUX 
fA OR f B SATURATION 

SLOPE=O 

(b) IDEALIZED HYSTERESIS LOOP OF THE CORE MATERIAL 

Fig. 16.1. Elementary magnetic amplifier. 

where ;,. A= N 0 cf, A= flux linkages of coil A; AB= Nuc/>B = flux 
linkages of coil B; I A = current through coil A; I B = current through 
coil B. Therefore it is possible to write 

dcf,A dcf,B 
LA=Ng-d ; LB=Ng-d 

1A 1B 
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The hysteresis loop given in figure (16.1 b) shows the relationship 

between the flux in either gate winding core to the applied magneto
motive force (mmf). The slope of the hysteresis loop at any point is 

I def, A 1 d<f,B 
slope=-·-=-·-

Ng dIA Ng d/B 

d<f,A d<f,B 
Therefore - = - = N (slope) 

d/A d/B g 

Hence the coil inductances are LA = LB= N; (slope of hysteresis 
loop). 

An examination of the hysteresis loop of the two cores given in figure 
(16.1 b) shows that there are two distinctly different values of slope: 

(1) In the saturation region, the slope · 0. 
(2) In the unsaturated region, the slope · infinity. 
Hence the coil inductances are either zero when saturated or extremely 

large when unsaturated. Also, when unsaturated, the gate windings are 
inductively coupled through the core flux to the control winding. Hence 
for each core we can construct an equivalent circuit of the form shown 
in figure (16.2a). The complete equivalent circuit of the magnetic 
amplifier then appears in figure (16.2b). 

The voltage induced in any coil is e = Nd<f,/dt volts, where cf,= flux 
in webers; N = number of turns. Alternatively, the flux produced in 
any core is related to the applied coil voltage by the relationship: 

I 
<p = Nfedt 

I 
= N (area under curve of e vs. t) 

Thus, for the two gate windings, 

1 
<p A = N (area under the curve of e A vs. t) 

g 

I 
<f,B = - (area under the curve of eB vs. t) 

Ng 

With zero control voltage and current, the magnitude of the alternating 
supply voltage is adjusted so that the flux produced in the cores almost, 
but not quite, reaches the saturation value <p8 • Because neither core is 
saturated, both coils appear as large (nearly infinite) inductances. These 
inductances have extremely high reactances at the supply frequency so 
that little current flows through the gate windings and load resistance 
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R L· As a result, the supply voltage divides equally between the two 
coils, so that e A = e B = ½eac and 

1 
cf, A = - (area under the e A vs. t curve) 

2Ng 

1 
cf, B = -

2 
(area under the eB vs. t curve) 

Ng 
0 

l 2-----0 

POSITION I- CORE SATURATED 
POSITION 2- CORE UNSATURATED 

(a) SINGLE COi L 

2 
- a 
-. -

ol --
ea 

I 
Ee: 

+- Ng ee 

Ne 

eA Ng • • 

o I 
Re: • 
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- , 
2 

(b) COMPLETE AMPLIFIER 

Fig. 16.2. Equivalent circuits for the elementary magnetic amplifier useful 
in explaining circuit operation. 

Both cores are unsaturated, so the switches in the equivalent circuit 
of figure (16.2b) are in position 2. If the supply voltage is sinusoidal, 
the fluxes will be cosinusoidal. Both the load current and control 
current will be zero. 

The effect of control voltage will be explained in the next section. 
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16.2. Operation with Control Voltage Applied 

When voltage is applied to the control winding a small magne
tizing current flows. This current produces an mmf Nclc that opposes 
the mmf of coil A, and aids the mmf of coil B. Thus the total mmf's 
acting on the cores are 

(Nl)A = total mmf on core A= NgIL - Nclc 

(Nl)n = total mmf on core B = NglL + Nclc 
The hysteresis loops of the two cores should now be drawn as shown 
in figure (16.3). 

Because of the effect of the control current, the core fluxes are biased 
away from zero. The flux in core A is displaced down, while that in B 

fA fe 

l/ls I OPERATION IN 

: THIS REGION 

: NgIL+ Nclc 

: (NI}A 

OPERATION IN: 
THIS REGION 1 

I 

( N l )9 

,s 
Fig. 16.3. Hysteresis loops of the two cores in the magnetic amplifier of 

figure (16.la). Effect of control current appears in the abscissa. 

goes up. This is illustrated in figure (16.4). As a result of this displace
ment of the core flux curves, core A now saturates on the negative swing 
of the supply voltage and core B saturates on the positive swing. This 
operating regime would be reversed simply by reversing the direction of 
the control current. 

The various waveforms characteristic of series connected magnetic 
amplifiers can now be deduced from the equivalent circuit of figure 
(I 6.2b ). Assume that core A is just coming out of saturation at t = 0 as 
shown in figure (16.4). Thus, as long as both cores are unsaturated, 
both switches in the equivalent circuit are in position 2. The coil 
inductances are large and little current flows in either the gate or control 
windings. This is clear from the hysteresis loops of figure (16.3) because 

Ng/L - NJc = 0 for core A 

NiL + Nclc = 0 for core B 

in the unsaturated region. This is possible only if le= h = 0. Therefore 
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the supply voltage divides evenly between the two coils, so that 
eA = eB = eac/2. 

Under these operating conditions the load circuit is a pure inductance 
and the flux is a negative cosine function if the supply voltage is 
sinusoidal. 

As eac increases, the core flux increases with the area under the 
voltage curve. Eventually, at wt1, this increase is sufficient to produce 
saturation in core B. When this occurs, the switch on coil B in the 

+, 
s 

0 

Fig. 16.4. Approximate waveforms of core flux. 

equivalent circuit moves to position I and e B drops to zero. Coil A 
remains transformer coupled to the control winding, so that e A = Nuecf 
Ne. However, the voltage ec is virtually zero, so that e A drops almost to 
zero. This condition remains as long as core B is saturated. Because 
both coil voltages are practically zero, nearly the entire supply voltage 
appears across R L and a large load current i L suddenly flows. Core A 
is unsaturated, so that Nyi L - Nie = 0, or ic = Nyi LI Ne = control 
current. Therefore a current is induced in the control winding that has 
exactly the same form as the load current. The load current is in phase 
with the supply voltage during this period because the load circuit is 
purely resistive. 

All these statements are illustrated by the waveforms shown in figures 
(16.4) and (16.5). 
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Because the load and control currents are in phase with the supply 
voltage when eac drops to zero, both i L and ic become zero. This 
operating characteristic prevails in the mode when neither core is 
saturated, because the only time both currents can be zero is when the 
cores are unsaturated. Hence core B comes out of saturation, and the 
switch in the equivalent circuit reverts to position 2 . 

... - ''' eA AN D e B 

' ' \ \ 
--------'--(ll~t,.;;;;;2 ____ (11, .. 

I 
I "'I , , , , ...... __ ,,, 

Bt il =LOAD CURRENT 

i----------------,.-------,,. "'t .. 

Fig. 16.5. Additional waveforms in the series connected magnetic 
amplifier. 

The coil voltages immediately become equal to each other and to 
half the supply voltage. The core fluxes commence a cosinusoidal 
decrease because the volt-second areas of the coil voltages are now 
negative. Eventually, at rot2, core A saturates, and the entire process 
repeats as before. However, because core B is now unsaturated, 
N gi L + Ncic = 0, or ic = - Ngi LI Ne. The load current is reversed from 
its previous direction, but because of the minus sign in the preceding 
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equation, the control current has the same direction as before. This is 
shown in figure (16.5). 

The instant at which conduction starts in the load circuit is called the 
firing angle 01, as shown in figure (16.5). 

16.3. Some Amplifier Characteristics 
It was shown in the preceding section that the control current is related 

-----• I -----1-----1 
I I 

I I 
I I 

I I 
0 t----~--...... ...---+---• (llt--. 

(a) LOAD CURRENT WAVEFORM 

(b) WAVEFORM OF RECTIFIED LOAD CURRENT 

(c) TRANSFER 

Fig. 16.6. Relationships in the elementary magnetic amplifier. 

to the load current by the equation 
Nu 

ic = ±- iL 
NC 

when the cores have the idealized hysteresis loops assumed. 
Under normal conditions the load current alternates as shown in 

figure (16.6a), while the control current does not. This accounts for the 
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± sign on the preceding equation. However, if i Lis rectified as shown 
in figure (16.6b), the relationship between control current and rectified 
load current is ic = Ni LI Ne. Although this equation was derived for 
instantaneous values of ic and i L, it is also true for average values 
because both currents now have the same waveshape. Thus, letting le 
and / L denote the average, or d-c values of ic and iv 

Nu 
le= - IL or Nclc = Ng/L 

NC 
Obviously this relationship is true only as long as the cores do not 
saturate at the same time. This means that it is valid for firing angles 
from I 80 to O degrees. 

When the firing angle is reduced to zero, both cores are saturated. 
The supply voltage is always applied across the load resistance, so the 
load current has its maximum value. Further increases in control 
current will have no effect upon the load current. 

With these facts in mind, the transfer 'characteristic of the amplifier 
shown in figure (16.6c) is easily drawn. The h(max) term designates 
the average value of the load current when the firing angle is O degrees. 

16.4. The Transfer Function 
The transfer characteristic of the series connected magnetic amplifier 

is given in figure (16.6c). The slope of the characteristic in the linear 

MAGNETIC AMPLIFIER 

TRANSFER FUNCTION 

m~ 
Ng 

Fig. 16.7. Block diagram equivalent representation. 

region is identified by the symbol m. However, in this particular 
amplifier m = I. In other cases to be discussed later it greatly exceeds I. 
So, to accommodate either possibility, let m = slope of the transfer 
characteristic in the linear region = N gl LI NJc-

The amplifier input is the average value of the control current le, and 
the output is the average value of the rectified load current / L· Hence 
the current transfer function of the amplifier is IL/Jc= mNc/ Ng, and 
the block diagram equivalent representation appears as shown in figure 
(16.7). This is a useful representation when the magnetic amplifier is a 
part of some larger system. 
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16.5. Bias and Signal Windings 
The elementary series connected magnetic amplifier discussed so far 

is essentially a d-c amplifier with a d-c input and output. It is immensely 

(a) AC OPERATION OF A MAGNETIC AMPLIFIER 

I 
I 

:,DC OUTPUT 

-----i- Ng IL 

I 

I 
I 
I 

(b) DC OPERATION OF A MAGNETIC AMPLIFIER 

Fig. 16.8. Magnetic amplifier operation. 

useful in performing this service, but it also finds extensive use in the 
amplification of variational signals. In such cases the signal input to 
the amplifier may not have a d-c component, or the d-c component 
may not be the value required for operation over the linear region of 
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the transfer characteristic. Therefore it often becomes necessary to bias 
the magnetic amplifier to the desired point under no-signal conditions 
and apply the signal through a separate input. As a result, the control 
winding is generally divided into two separate windings, a signal winding 
and a bias winding. A subscripts will designate factors relating to the 
signal winding, and a subscript b will signify quantities associated with 
the bias winding. 

Of particular interest is the fact that the amplifier will have a d-c 
output in the absence of a signal input because of the action of the bias 
winding. This is illustrated in figure (16.8). This disadvantage is not 
present in some advanced types of magnetic amplifier circuits. 

16.6. The Use of Rectifiers 

Nearly all magnetic amplifiers use one or more rectifiers for various 
purposes. Even the elementary series connected magnetic amplifier 

Re 
M•~-

s1GNAL AND 
BIAS WINDING 

,..._------18ac1-------------" 

Fig. 16.9. Use of a bridge rectifier to rectify the load current. 

discussed earlier required rectifiers to convert the load current into a 
unidirectional current. 

Semiconductor diodes are nearly always used for rectifiers in pre
ference to vacuum and gas diodes. They have low forward resistance, 
low voltage drop, long life, do not require filament heating power, and 
are relatively insensitive to shock and vibration. Thus, where rectifiers 
are shown on the circuit diagrams, it is understood that semiconductor 
diodes are involved. 

The use of these diodes to rectify the load current is shown by the 
circuit diagram in figure (16.9). The load resistance can usually be 
placed on either the a-c or d-c side of the rectifier circuit. Figure (16.9) 
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is a complete circuit diagram of a practical series connected magnetic 
amplifier having the transfer characteristic shown in figure (16.6c). 

16.7. Gain and Time Constant, Elementary Magnetic 
Amplifier 

Assume a magnetic amplifier of the type shown in figure ( 16.9), but 
having separate bias and signal windings. If a-c amplification is desired, 
separate inputs are required for both the signal and bias windings. If 
d-c amplification is desired, the bias winding is open circuited and the 
signal winding provides the necessary control magnetomotive force. 
Regardless of the type of amplification required, operation is restricted 
to the linear part of the transfer characteristic. 

Operating conditions in the amplifier for both a-c and d-c conditions 
were illustrated in figure (16.8). In both cases you will observe that the 
amplitude of the signal component of load current is designated /Land 
the amplitude of the signal input is shown as Is. 

The power gain of the amplifier is defined as follows: 

W = power gain 
useful load power 

------------power input to signal winding 

PL 

PS 
Hence, in the a-c case, 

PL= ½J]RL; Ps = ½Is2Rs 
so that the power gain can be expressed as 

w = (IL)2 RL 
ls Rs 

(16.1) 

It is a simple matter to show that exactly the same result is obtained in 
the d-c case, 

However, it was previously shown that the transfer function is 

h NS 
-=m-
is Ng 

so that the power gain can be written 

W = m2 (Ns)2 RL (16.2) 
Ng R 8 

However, in the elementary series connected magnetic amplifier, m, 
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which is the slope of the linear region of the transfer characteristic, is 
unity, so that the power gain is 

W = (Ns) 2 

RL (16.3) 
Ng R8 

To calculate the time constant of the signal winding, the coil induc
tance must be known. Because this depends upon the flux linking the 
coil, it is desirable to make a plot of the flux linking the signal winding 
as a function of the magnetomotive force of the signal winding. The 

24' 

I 
4'c 

Fig. 16.10. Total average flux linking the signal, or control, winding of a 
d-c magnetic amplifier. 

result is shown in figure (16.10). The Ide appearing on this figure is 
numerically equal to the I L(max) defined earlier. 

The slope of the curve in figure ( 16.10) is easily evaluated because both 
cores are saturated when Nls = Ng/de and the total flux linking the 
signal winding is 2cp8 where cf>s designates the saturation value of the 
core flux. 

The slope of the characteristic is clearly 

2<p8 

slope= N 
1 g de 

The flux linking the signal winding for any given value of signal winding 
mmf is therefore 
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Then the coil inductance is the flux linkages per ampere, or 

Lo = Ns<Pe = 2N;</>s (1 6.4) 
ls Ng/de 

where Ide is the maximum average value of rectified load current. The 
corresponding load voltage is Ede = IdeR L, so that the coil inductance 
can be expressed as 

(16.5) 

In normal operation the supply voltage is adjusted so that the flux varies 
from +</>s to -</>sin one half cycle in the absence of any control current. 
Also, the signal voltage divides equally between the two gate coils. For 
any gate coil voltage, the change in flux through the coil is 

A</>n = .!_Jen dt = .!_ (area under en vs. t) 
Ng Ng 

1 
= - (area under eae vs. t) 

2Nu 

Over one half cycle, 'PB varies from +</>s to -<p8 , so that A</>n = 2<p8 • 

The area under the eae vs. t curve over the same interval is obviously 
EdeT/2, where Ede = average value of eae rectified; T = 1/f = period 
eae· Therefore 

2,f,, = 4~,. ~' 

Hence the maximum value of Ede is 

Ede= 8Nuf'c/>s 
Substitute this into equation (16.5) and the value for the signal winding 
inductance becomes 

(16.6) 

where f = supply frequency in cycles per second. 
This inductance is in series with the coil resistance, so that the circuit 

time constant is 

(16.7) 

This is the time constant expressed in seconds. In magnetic amplifier 
practice it is more common to express this factor in terms of the number 
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of cycles of the supply voltage that elapse during one time constant. 
That is, 

Ts= number of supply voltage cycles in one time constant= fts 

(N)2 
R Ts = _!. _.!:._ cycles 

Ng 4Rs 
(16.8) 

The performance of magnetic amplifiers is characterized by a figure 
of merit that is the ratio of the power gain of the amplifier to the time 
constant expressed in cycles. That is, denoting the figure of merit by 
Fm, then Fm= W/Ts. For the elementary series connected magnetic 
amplifier under discussion, the figure of merit is equal to 4. 

This demonstrates a fact of basic importance. Because of its low 
figure of merit, a high gain amplifier will have a slow response, and a 
fast response can be achieved only at the expense of the gain. This is 
also true in vacuum tube amplifiers, but the figures of merit, though 
defined differently, are much larger. 

16.8. Response Time 

The presence of inductance in the control or signal winding of the 
magnetic amplifier requires a slight revision in the equivalent represen
tation previously given in figure ( 16. 7). The arrangement shown in 
figure (16.11) is more exact. 

Rs Ls 
MAGNETIC AMPLIFIER----. 

TRANSFER FUNCTION 
m .&.. 

Ng 

Fig. 16.11. Modified equivalent representation of the elementary magnetic 
amplifier. 

Because of the presence of the inductance and resistance in the signal 
winding, a finite time must elapse for a change in magnitude of ls to 
occur. Because the time constant of the series connected magnetic 
amplifier, expressed in cycles of the supply frequency, is 

(Ns) 2 
RL 

Ts= Ng 4Rs 

then if Es changes suddenly from one value to another, ls will change 
exponentially. At the end of one time constant it will undergo 63 % of 
the total change. Two or three time constants must elapse before the 
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final value is attained for all practical cases. This, if T8 is of the order of 
2 or 3 cycles, then 4 or 6 or more cycles must pass before a change in the 
signal winding exerts its full effect upon the load current. This is a basic 
limitation on the performance of the elementary series connected 
magnetic amplifier and was the primary determinant in the development 
of the special magnetic amplifier types to be discussed later. 

16.9. Series Connected Magnetic Amplifier, Inductive Load 

Although the effect of control circuit inductance has been considered 
in time constant and figure of merit calculations, this inductance and 
that in the load circuit were completely neglected in the determination of 

------1~c..,._. ________ _ 

Fig. 16.12. Elementary series connected magnetic amplifier with 
inductances in the control and load circuits. 

circuit waveforms. A detailed solution has been obtained by Wilson. 3 

Because the derivations are rather lengthy, only the method of analysis 
and approach are illustrated here. 

The circuit to be analyzed is shown in figure (16.12). To draw the 
circuit in this form it was necessary to make the following assumptions 
in line with Wilson's procedure: 

(1) The series resistances represent the total circuit resistance 
including contributions from the coil windings, internal resistances of 
the generators, and the external or connected resistance. 

(2) Leakage between the load and control circuits is negligible. 
(3) Interwinding and distributed capacitances can be omitted. 
The analysis is greatly simplified if it is assumed that the gate winding 

3 Thomas G. Wilson, "Series Connected Magnetic Amplifier With Inductive 
Loading," Communications and Electronics, vol. 71, January, 1952, pp. 101-110. 
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cores and coils are identical and have the idealized hysteresis loops 
shown in figure (16.13). This last assumption is a critical one. However, 
Wilson shows that actual cores of some types closely approximate this 
ideal, and where this condition exists, the analysis yields results that 
compare favorably with experimental determinations. 

The equations for the various segments of the idealized hysteresis 
loops given in figure (16. 13) are easily written as follows: 

(1) In the unsaturated region 

(a) for core A; NyiL - Nie= 0 

(b) for core B; NiL +Nie= 0 

CORE 
A 

CORE 
B 

(16.9) 

(16.10) 

Fig. 16.13. Assumed form of the hysteresis loops of the two cores in the 
circuit of figure (16.12). 

(2) In the saturated region 

(a) Core A saturates in the negative flux region, so 

(16.11) 

(b) Core B saturates in the positive flux region, so 

(16.12) 

These equations are used later in the derivation. 
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Fig. 16.14. Modes of operation. Solid line indicates the actual region 
of operation on the hysteresis loop in the various modes. 

With the hysteresis loops assumed it is obvious that there are four 
possible operating possibilities as shown in figure (16.14) and tabulated: 

Mode Core A Core B 
1 unsaturated unsaturated 
2 unsaturated saturated 
3 saturated unsaturated 
4 saturated saturated 

In normal operation, mode 4 is not usually obtained and the system 
operates cyclically from mode-to-mode in a 2-1-3-1 sequence. 
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Regardless of the mode of operation, the Kirchhoff loop equations 

for the load and control circuits are 

def, .A dcf,B diL . . 
Ng dt + Ng dt + L dt + RL1L = Eac sm wt (16.13) 

dcpB def, .A die . 
Ne dt - Ne dt + Le dt + Rclc = Ee (16.14) 

These two relationships must be satisfied at all times. At different 
times operation will be in different modes. Thus a solution of these 
equations must be obtained for each mode, and the initial conditions 
must be matched so that transition from one mode to the next is con
tinuous. Actually, the process is rather simple in principle although the 
actual evaluation is quite complicated. 

To illustrate the technique, assume that cf, .A, cf, B, i L, and ic are to be 
computed during mode 2. In this mode core B is saturated, so that 
from equation (16.9) for the unsaturated core A, NyiL - Nie= 0, or, 
in an alternate form 

. Ng. 
(16.15) le= N lL 

C 

or N N die= N2 diL 
g C dt g dt (16.16) 

or N N di L = N2 die 
g C dt C dt (16.17) 

Core Bis saturated in this mode so substitute equation (16.12) for cf,B 
into the two voltage loop equations (16.13) and (16.14). After some 
simplification and the use of the three preceding relationships, the 
following results are obtained: 

(1) For the load circuit 

(16.18) 

(2) For the control circuit 

dcf,.A 2 Ng diL Ng. 
-N -+(2aN +L)-·-+R -zL=E (16.19) 

C dt C C NC dt C NC C 

We now have two equations and two unknowns. By using the Laplace 
transform method and substituting appropriate initial conditions, the 
necessary solutions can be found. 
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The same process can be followed for any of the four modes. 
Space limitations preclude the inclusion of the complete derivation 
here, but this can be found in the reference to Wilson's work. His 
experimental results closely approximate his theoretical calculations as 
long as the core material hysteresis loop approaches the assumed form. 

The net effect of these circuit inductances is to remove the abrupt 
discontinuities in the waveforms of current and flux. The resulting 
rounding often gives them an appearance that is considerably different 
from the form predicted by an elementary analysis that does not include 
the effects of inductance. 

16.10. The Use of Feed back 
For the general feedback amplifier discussed in chapter 7 it was shown 

that current-controlled negative feedback could be used to stabilize 
the output current from an amplifier. That is, the load current is made 
nearly constant and independent of variations in load resistance. 
Reduced amplification is the ultimate penalty paid for the increased 
gain stability. Also, in some special cases, such as vacuum tube ampli
fiers with cathode degeneration, the current feedback also degrades the 
high frequency figure of merit. 

In some respects the elementary series connected magnetic amplifier 
has the characteristics of a system involving a large amount of negative 
feedback. The load current is IL= IcNcf Nu, and is clearly independent 
of the load resistance over the linear part of the transfer characteristic. 
This suggests the presence of current-controlled negative feedback. 
Hopefully, if the constant current characteristic of the amplifier can be 
neutralized, the amplifier figure of merit might be increased. It will be 
shown that precisely this occurs. 

One method of achieving the desired neutralization involves the use 
of current-controlled positive feedback. A magnetomotive force pro
portional to the load current is added to the magnetomotive forces of 
the control windings. Thus, considering the control winding to include 
the signal and bias windings, one more coil, called the feedback winding, 
must be added to the system. The circuit connections are shown in 
figure (16.15). 

In this case the total control magnetomotive force is the sum of the 
mmf's produced by the signal, bias, and feedback windings. That is, 

or 

(N[)c = (N818 + Nblb) + (N,I L) 

(NI)c = Nclc + N,I L 

(16.20) 

(16.21) 
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The transfer characteristic of the elementary series connected 
magnetic amplifier without feedback is shown in figure (16.16a). In 
terms of the quantities just defined, this is a plot of the gate winding 
mmf Nyf L against the total control mmf (NI)c. 

The characteristic of the feedback coil is shown in figure ( 16.16b) as a 
plot of the gate winding mmf N 0 / L as a function of the feedback 
winding mmf Nl L· The slope of the characteristic is N 0 / N1• 

The transfer characteristic of the feedback magnetic amplifier is a 
plot of gate winding mmf N 0 / L against the signal and bias winding 

Ng 

Fig. 16.15. Magnetic amplifier with positive current controlled feedback. 

mmf's, Nis + Nblb = Nclc. The result, which is shown in figure 
(16.16c), can be obtained by combining figures (16.16a) and (16.16b) 
as follows: 

(1) Assume a series of values for N 0 / L-

(2) For each such value assumed, read off the corresponding values 
of (NI)c and N1h from figures (16.16a) and (16.16b). 

(3) Compute Nclc = (NI)c - N1lv 
(4) Plot the values of NJc so obtained against the values of N 0 /L 

assumed. The result is figure (16.16c ). 
The transfer function of the feedback loop is 

/3= N1h = N1 

NglL Ng 

If 100 % feedback is used, N1 = N 0 and N 0Ic = (NJ)c - N1/ L = 0. 
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(NI)c 

(a) TRANSFER CHARACTERISTIC OF THE 
ELEMENTARY MAGNETIC AMPLIFIER 

NfIL 
(b) CHARACTERISTIC OF THE FEEDBACK 

WINDING 

Nclc 

(c) CHARACTERISTIC OF THE AMPLIFIER 
WITH FEEDBACK 

[Sec. 16.10 

Fig. 16.16. Construction of the transfer characteristic of a magnetic 
amplifier with positive feedback. 
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Thus the transfer characteristic of the amplifier with feedback would 
rise sharply on the right side of the axis, and the slope m would be a 
large number. In such a case, the value of m is primarily determined by 
the deviations in the system from the ideal conditions assumed. In the 
absence of any such limiting factors, m is infinite. However, under 
actual conditions the operation of the amplifier is governed by the 
imperfections in the system and an exact analysis is extremely difficult. 
Even an approximate analysis is lengthy and complicated. 

If the feedback exceeds 100 %, the transfer characteristic may bend 
back over itself and the circuit may trigger. 

Note in figure (16.16c) that reversing the control current gives a 
degenerative effect and degrades the performance of the amplifier. 

16.11. Figure of Merit with Feedback4 

The increase in the slope of the transfer characteristic produced by 
current-controlled positive feedback improves the figure of merit of the 

I 
I 

----------------
---------------- Ng IL 

I 
1 Nclc=NgIL 
I 
I 
I 
I 

Nsls Nsis 

(a) NO FEEDBACK (b) WITH FEEDBACK 

Fig. 16.17. Effect of positive feedback on the transfer characteristic. 

amplifier. However, this improvement is not obtained without penalty. 
As in any positive feedback system the nonlinearities are accentuated 
and harmonic distortion of relatively high order results. 

In section(16.7)it was shown that the power gain of a series connected 
magnetic amplifier without feedback is 

W = m2 (Ns)2 RL 
Nu Rs 

4 A. 0. Black, "Effect of Core Material on Magnetic Amplifier Design," Proc. 
Natl. Electronics Conf, vol. 4, November, 1948, pp. 427-435. 
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Because m = I in an elementary amplifier and is always greater than 1 
in feedback circuits, the power gain is increased by the square of the 
slope of the transfer function characteristic. 

In the absence of feedback, the inductances of the signal winding was 
shown to be 

L - 2N:cf,8 = 2Ns'Ps . Nls (16.22) 
8 - Ng/L /8 N,,IL 

This is the general relationship independent of the presence or absence 
of feedback. However, in the absence of feedback, N818 = Ng/ L and 
the signal winding inductance is 

L = L0 = 2Ns'Ps (16.23) 
s ls 

When feedback is applied, the same gate winding mmf Ng/ L is 
obtained as in the no-feedback case if the N/s used in the no-feedback 
case is replaced by mN/8 • This is illustrated in figure (16.17). If this 
substitution is made in equation (16.22) for the signal winding 
inductance, the result is 

2N8<p8 mN8f8 2N8<p8 N8f8 L =--·--=m--·--
s [8 Ng[ L 18 Ng[L 

or L 8 = mL0 (16.24) 

Thus the use of feedback increases the signal winding inductance in 
direct proportion to the increase in the slope of the transfer 
characteristic. 

It was shown in equation (16.6) that the signal winding inductance in 
the absence of feedback was 

(
N8)

2 
RL 

Lo= Ng 4f 
so that the inductance in the presence of feedback is 

L = m (Ns)2 RL 
s Ng 4f 

Therefore the signal winding time constant becomes 
2 

t = Ls = m ( NS) R L sec 
s Rs Ng 4/Rs 

(N)2 
R Ts = ft 8 = m ~ _.!:_ cycles 

Ng 4R8 

(16.25) 

(16.26) 
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Thus the amplifier figure of merit becomes 

w 
F = - = 4m (16.27) 

m Ts 

The figure of merit is linearly dependent upon the slope of the transfer 
characteristic. With good core materials and without excessive non
linear distortion, values of m in excess of 100 are possible. The 
operational advantage of positive feedback is obvious. 

16.12. Self-Balancing Magnetic Amplifiers5 

Ordinarily, at least in the amplifiers discussed here, when feedback is 
used it is provided through extra windings on the core and does not 
connect directly back into the control winding. As a result, the effective 
impedance of the control circuit is affected only by the increase in 
inductance. Geyger5 has developed a whole series of amplifiers in which 
true feedback directly into the control winding is used. The resulting 
cfrcuits have unique characteristics and will be briefly discussed here. 

An elementary form of Geyger's magnetic amplifier is the self
balancing potentiometer type shown in figure (16.18). In essence it 
consists of a series connected magnetic amplifier with separate signal, 
bias, and feedback windings. However, there are some unique features: 

(1) Each load winding has its own rectifier circuit. 
(2) The load resistance circuit is conductively coupled directly into 

the signal winding. This is the main distinguishing feature of the circuit. 
It is assumed that the resistor Rs includes the internal resistance of 

the signal source es. If the signal current Is is much less than the load 
current IL the following equation can be written for the signal circuit: 

Es - Ek= Js(R8 + Rk) (16.28) 

Consequently the signal winding current is 

Es- Ek 
ls=--

Rs+Rk 
and the mmf of the signal winding is 

Es-Ek 
(N/)8 = N/8 = Ns --

Rs+ Rk 

(16.29) 

(16.30) 

Because the feedback voltage Ek subtracts from the signal voltage Es, 
negative feedback or degeneration is introduced. 

6 W. A. Geyger, "Magnetic Amplifiers of the Self-Balancing Potentiometer 
Type," Communications and Electronics, January, 1953, pp. 383-394. 
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The current flowing in the feedback winding is that fraction of the 
load current controlled by the current divider consisting of Rv and R

1 
in figure (16.18). That is, 

Rv 
1, = IL R + R 

'1' f 

so that the mmf produced by the feedback winding is 

R11 
(N/)1 = N111 = N1IL R R 

'1' + I 
(16.31) 

----------,ea,,...,__ _____ __, 

Fig. 16.18. Self-balancing magnetic amplifier of the potentiometer type. 

For the case of an ideal rectangular hysteresis loop, the total mmf of 
the load winding is equal to the total applied mmf of all other windings. 
Neglecting the d-c components introduced by the bias winding, 

(NI)u = (N/)1 + (NI)s 
and therefore 

R E -E NI =NI 'P +N s k 
uL !LR +R sR +R 

'1' I s k 
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However, from figure (16.18), under the assumed relationship between 
the currents, it is clear that Ek = I LRk. Hence the preceding equation 
for the mmf's becomes 

Solve this equation for the ratio Es/ IL- The result is 

Es Rs + Rk ( R'P ) -=Rk+--- N -N---
1 N g 

1 R+R L C 'P I 

If 100 % feedback is assumed in the feedback winding, 

Rv 
NyfL = N,I, = N,IL---

Rv + R1 

so that N -N ( Rv ) 
g - I R'P + R, 

As a result, the ratio given in equation (16.32) reduces to 

Es ( 1 ) 
IL = Rk = transconductance of circuit 

(16.32) 

(16.33) 

When this condition exists, Es = hRk = Ek, and the signal current is 
ls = (Es - I LRk)/(Rs + Rk) = 0. 

In actual practice the signal current will not be exactly zero mainly 
because the assumption of 100 % positive feedback is not quite met. 
However, this problem, which is primarily caused by rectifier imper
fections, can be largely eliminated by adjustment of Rv. 

The unique feature of the circuit is the fact that the signal current 
required is theoretically zero so that the input impedance is theoretically 
infinite. In practice, Rin = Es/ Is is usually 100 to 1000 times larger 
than (Rs + Rk). 

Equation (16.33) for the transconductance of the circuit shows that 
operation is independent of Rv Eac• and the supply frequency. This is 
generally true over a particular range of values. 

The small signal winding current required produces a nearly linear 
input-output characteristic. 

The circuit has many modifications, variations, and applications that 
are discussed in Geyger's article. 
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16.13. Self-Saturating Amplifier Circuits6 

From the preceding discussion you can see that real operational 
advantages can be achieved by using large amounts of positive, current
controlled feedback. It is possible to achieve the effect of 100 % 

•Iii-.,..,.., .... 

(a) FULL WAVE CONNECTION 

(b) DOUBLER CONNECTION 

Fig. 16.19. Some self-saturating magnetic amplifier circuits. 

feedback by using self-saturating amplifiers, and the circuit is somewhat 
simpler in operation. Several schemes are possible, but all involve 

6 Sidney B. Cohen, "Analysis and Design of Self-Saturable Magnetic Amplifiers,•• 
Proc. IRE, vol. 39, September, 1951, pp. 1009-1020. 
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removing the transformer coupling between the gate winding and control 
winding when the cores are not saturated. This reduces the control 
current required to a small figure that is zero in the ideal case. The 
effect is accomplished through the use of semiconductor diodes 
operating as synchronous switches. 

For example, consider the full wave self-saturated amplifier shown 
in figure (16.19a). Note the pfa.cement and polarity sense of the diode 
switches. When core A saturates, diode A conducts, while diode B does 
not. This is apparent from a consideration of the voltage relationships 
involved. Because diode Bis an open circuit, no current flows through 
coil B and there is no transformer coupling to the control winding. 
Thus the control current is essentially zero. The converse situation 
occurs when B saturates. Thus the only control current required is the 
magnetizing current, and this is zero in the ideal case. This is directly 
analogous to the feedback amplifier with 100 % feedback. Of course, 
the control current is never zero, but it is small enough so that the slope 
of the transfer characteristic is large. 

Another self-saturating magnetic amplifier is the doubler circuit shown 
in figure (16.19b ). Its operation and characteristics can be explained in 
the same general way as the full-wave circuit because the same general 
principle is involved. 

A detailed discussion and analysis of these circuits has been made 
elsewhere by Finzi, Pittman, and Durand 7 to show the separate influences 
of design parameters that affect the self-saturating magnetic amplifier. 

16.14. Single Core Magnetic Amplifiers8 

All the magnetic amplifiers discussed so far used two ferromagnetic 
cores. It has been found that single core circuits can be used and faster 
response times result. A typical circuit is shown in figure (16.20). 

The operation of this circuit can be explained if both the signal and 
supply voltages are assumed to be sinusoidal and of the same frequency 
and phase. It is also assumed that the signal is rectified so that it appears 
as shown in figure (16.2 I). 

When eac is positive with respect to ground, diode 2 conducts. The 

7 L. A. Finzi, G. F. Pittman Jr., H. L. Durand, "The Effective Feedback Ratio 
of Magnetic Amplifiers," Communications and Electronics, April, 1952, pp. 157-164. 

8 R. A. Ramey, "On the Mechanics of Magnetic Amplifier Operation," Trans. 
AJEE, vol. 70, Part II, pp. 1214--1223; also "The Single Core Magnetic Amplifier 
as a Computer Element," Communications and Electronics, January, 1953, pp. 
442-446. 
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core magnetization is assumed to be at some point cf,0 as shown in 
figure (16.22). Thus only a negligibly small magnetizing current flows 
until saturation occurs. When this happens, the full supply voltage is 
applied across R L and a large current flows. The core is saturated to 

1 
ey 

t 
es 

1 
X 

l 
Ng 

Fig. 16.20. A single core magnetic amplifier. 

point c as shown in figure (16.22). As the supply voltage drops to zero, 
the coil current and mmf also drop to zero, so that at time t1, the core 
flux has a value as at point din figure (I 6.22). During this entire period 

----+-----+- ----L 
I I I 
I I I 

SUP PLY I 
VOLTA GE I 

I 

-Eac 

t, t2 t3 t4 

Fig. 16.21. Waveforms of supply and signal voltages. 

the voltage across diode 1 has a polarity such that diode conduction is 
impossible. 

On the negative swing of eac, diode 2 does not conduct and point x in 
the circuit diagram is at ground potential. The potential at point y, 
with respect to ground, is 

ev = es + eac = drop across diode 1 
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However, during this half cycle, 

e'Y = Es sin wt - Eac sin wt 

= (Es - Eac) sin wt 

599 

(16.34) 

Because Es is less than Eac, the voltage e'Y is negative with respect to 
ground, and diode I conducts. The resulting current through the coil 
is in the reverse direction from the previous case. Thus the core flux is 
reduced from the saturation point to the value cf,0 at time t2• This is 
called the reset process because the core flux is reset to its original value. 
The system is then ready to repeat the process. 

'1> 

d 

Fig. 16.22. Hysteresis loop of the core in the circuit of figure (16.20). 

The essential point is that the core flux is brought down from 
saturation by an amount 

1 
b..cp = - (area under the e'Y vs. t curve) 

Ng 

Therefore it is clear that the more nearly Es approaches the size of Eac, 
the smaller the value of b..cp and the smaller the subsequent flux 
change before saturation and firing on the next half cycle. Hence 
decreasing the signal voltage increases the firing angle as in other 
magnetic amplifiers. However, if the change is made prior to time t1, 

when diode 1 is nonconducting, the change is effective in controlling 
the firing angle immediately after t2• There is no exponential rise in 
output because the control circuit is noninductive when the change is 
made in the control voltage. The output reaches its full value a discrete 
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instant of time after a change in signal voltage. This time is evidently 
equal to about one half period of the supply frequency. 

This response is considerably faster than that obtainable from two
core magnetic amplifiers. The relative speed of the single core circuit 
may be 6 or more times higher than that of a two core amplifier. 

Another type of single core amplifier is shown in figure (16.23). 

LOAD 

Fig. 16.23. Single core magnetic amplifier double winding type. 

16.15. Cascading 
It has been shown (see Reference 6) that important improvements in 

amplifier figure of merit can be achieved by cascading stages. This 
improvement results because, when three or more stages are involved, 
the total input time constant is practically equal to the sum of the input 
time constants of the individual stages. Thus T n = nT8 if all stages are 
the same. 

The power gains multiply, so that the over-all power gain of an n 
stage cascade is Wn = w:. Therefore, the over-all figure of merit of 
the cascade is 

wn w: 
F ( over-all) = - = -

m Tn nTs 
The over-all gain increases more rapidly than the over-all time constant, 
so that the figure of merit is increased. The cascading cannot be 
continued indefinitely, however, because a point of diminishing returns 
eventually sets in just as in vacuum tube amplifier cascades. 



Chapter 17 

WAVE SHAPING AND COMPUTING CIRCUITS 

Wave shaping circuits are extensively used throughout the electronics 
industry, in electronic computers, radar systems, television, nuclear 
instrumentation, pulse communication, measuring instruments, and so 
on indefinitely. 

These circuits shape waves in various ways to achieve special wave
forms from relatively standard input signals. Typical outputs might 
assume the form of sawtooths, pulses, exponential spikes, trapezoids, 
parabolas, pulsed oscillations, square W'lves, and so on. However, 
similar circuits are also used in other ways to perform mathematical 
operations, time selection, counting, and to indicate the coincidence of 
two or more events. 

The subject is difficult to present because it is nearly impossible to 
classify the circuits in a consistent system. Classification is often made 
according to the use of the circuit. This leads to undue repetition 
because the same circuit often fulfills a number of different functions. 

The emphasis in this book is upon the method of formulating circuits. 
Thus, as in all preceding chapters, we will construct the equivalent 
circuit of each of the various circuits and then derive suitable formulas 
from this equivalent. A number of circuits are worked out in detail to 
illustrate the method to be followed in attacking circuits that are 
not covered here or elsewhere. 

17.1. Diode Clippers 
It is often desirable or necessary to remove or clip off a part of some 

specified waveform. Circuits providing this function are called clippers 
or amplitude limiters. 

In any clipping circuit the operating point of the electronic com
ponent is forced to traverse such a wide range that the device is 
alternately conducting and nonconducting. Thus, operation in the 
switching mode is obtained and diodes, triodes, pentodes, varistors, and 
transistors can all be made to operate as clippers by suitable adjustment 
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of their operating conditions. The simple diode clipper provides a 
convenient illustration of the method of clipping. 

Two representative diode clippers are shown in figure (17.1). The 

CIRCUIT 
DIAGRAM 

VOLTAGE 
SOURCE 
EQUIVALENT 
CIRCUITS 

OUTPUT VOLTAGE, 
SWITCH OPEN 
TUBE NON
CONDUCTING 

POSITIVE CLIPPING 

0 UTPUT VOLTAGE eo =Re (bb + :2...) 
SWITCH CLOSED, where r RRL rp r 
TUBE P L P 
CONDUCTING Re= rp+RL = I +rp/RL 

ASSUMED SIGNAL 

INPUT VOLTAGE 

ebb 

OUTPUT VOLTAGE 
WAVEFORM 

eo 

0 -+----',--- t-+ 
I 
I 

I I 
'CLOSED OPEN 

:cLOSE~ OPEN: 

I I I 
I I I 

0 ~ t+ 
I i\ Ii 
I ~Vi 
I I I 
1 I I 

NEGATIVE CLIPPING 

ONI • OFF 
rp 

-=- E o 

eo=O 

: I 
I I I 

•CLOSED OPEN I 

lul I I 
I I 

0 I 
I I 
I I I 
ICLOSEd OPEN I 
I I I 

Fig. 17.1. Diode clipper computations. 

diode may be a vacuum tube or varistor. The load resistance can be 
connected in series with either lead of the diode. Also, the polarity 
sense of the diode may be reversed from that shown. Thus a number of 
different combinations and possibilities are possible. It should also be 
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noted that the signal source impedance is seldom zero in practical cases 
and this may provide all or part of the required diode load resistance. 

Regardless of the circuit connection, the diode is nonconducting and 
the switch in the equivalent circuit is in the open position as long as the 
cathode is more positive than the plate. The diode conducts and the 
switch closes when the plate-to-cathode voltage is positive and larger 
than E0 , the intercept voltage. 

If the diode is replaced by its equivalent circuit as shown in figure 
(17.1), it is a simple matter to compute the output voltage waveforms 
for any assumed input. The entire solution is carried through in figure 
(17.1) for a given signal input. 

For the cases shown in the figure, clipping commences at practically 
zero volts. This clipping level can be adjusted to nearly any desired 
point by biasing the diode. 

The equations for the output voltage given in figure (17.1) show that 
the clipping action will be most effective when the ratio r 11 / RL is much 
less than 1. Thus large values of R L should be used, or low r 11 diodes, 
or both. Germanium diodes make excellent clippers because they have 
plate resistances from only a few ohms to a few hundred ohms, values 
that are much less than those in vacuum diodes. It is also desirable 
to use diodes with intercept voltages E0 that are small in comparison 
with the peak value of ebb· 

The clipping action is generally more effective when the output 
voltage is taken across the load resistance as shown in figure (17 .1 ). 
Some signal leakage into the output always occurs when the output is 
taken across the diode, because r 11 is not zero. 

17.2. Triode and Pentode Clippers 
The plate current in a triode or pentode can be cutoff by the grid 

voltage so that these tubes can operate as clipping circuits. This type of 
clipping is called plate current cutoff clipping. Such circuits may be 
preferred to diodes because amplification of the clipped signal is 
obtained without the addition of another tube. 

The basic mechanism involved in cutoff clipping is shown in figure 
(17 .2), which indicates the necessary relationships between signal 
voltage, bias, and cutoff. As long as the total grid voltage ec = eu - Ecc 
is more negative than cutoff Ec0 , the plate current is zero and the output 
voltage is equal to Ew When the grid voltage is less negative than the 
cutoff voltage the tube conducts and the output voltage drops. Actual 
computations are easily made from the equivalent circuit. A typical 
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solution is carried through in the left half of figure (17.5). The clipping 
point is changed by variations in grid bias or cutoff voltage. 

The equations developed for the cutoff clipper of figure (17.5) show 
that the output voltage involves a d-c component and a variational 
component. In some cases it is convenient to use Eco as a reference 
point and measure the positive going signal excursions from this point. 

Fig. 17 .2. Mechanism of plate current cutoff clipping. 

Specifying this voltage as es, the equation for e0 in figure (17.5) for the 
cutoff clipper is 

eo = -esgmR + Ebb 

However, for the circuit shown, 

R = Zm = mutual impedance of the plate circuit 

Hence 

(17.1) 

where 
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(a) GRID CLIPPING CIRCUIT 

i 

(b) EQUIVALENT REPRESENTATION OF PART (a) 
17-3 

(c) REPRESENTATION IN TERMS OF 
THE TRANSFER CHARACTERISTIC 

Fig. 17.3. Grid circuit clipping. 
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The grid-to-cathode part of a multielectrode tube behaves in much 
the same manner as a diode. Thus diode type clipping is easily obtained 
by inserting a high resistance in series with the grid lead of the tube as 
shown in figure (17.3a). It is clear that the grid-to-cathode circuit is 
exactly the same as the diode clipper of figure (17.la); the same 
considerations apply. This equivalence is illustrated by the circuit of 
figure (17.3b) where the effect of the grid is indicated by an equivalent 
diode. An alternative representation is shown in figure (17.3c ). For 

BOTTOMING REGION 

.. -----f\-7 
'•V 

Fig. 17.4. Bottoming in a pentode. 

proper operation, Re should be much larger than the grid-to-cathode 
resistance r u· The operation is called grid circuit clipping. 

A similar type of clipping is possible with pentodes, but the grid 
clipping resistor is not required. The tube is operated so that it bottoms 
on the positive grid swing; this achieves the same effect as grid circuit 
clipping. The dynamic transfer characteristic of a pentode with a large 
load resistance shows the bottoming region clearly. The mechanism 
involved in pentode bottoming is shown in figure (17.4). 

Suppressor grid clipping is also possible in pentodes. Special tubes, 
such as the 6AS6, are designed with sharp cutoff characteristics for the 
suppressor grid and can be successfully operated as suppressor cutoff 
clippers. 
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Fig. 17 .5. Clipping in triodes and pentodes. 

17.3. Some Applications of Clipping Circuits 
The various clipping circuits find an enormous field of application in 

electronic systems. They are often used in simple wave shaping appli
cations where, for example, a sine wave is to be converted to a square 
wave. This is done by cascading triode or pentode clippers. The output 
from such a system will not be a perfect square wave; there will always 
be some finite slope to the edges because of its sinusoidal origin. The 
ultimate limit to the steepness of the edges will be controlled by the 
same factors as those affecting rise time in pulse amplifiers. Other 
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signal waveforms can be shaped in a similar manner. Exponentials 
can be clipped and converted into nearly triangular pulses. The 
possibilities are almost limitless. 

Clippers are often used for amplitude selection purposes. For example, 
it might be desirable to transmit only those signals rising above a certain 
specified level as shown in figure (17.6). By simply biasing any cutoff 
clipper so that the critical level coincides with the point of non
conduction, the desired amplitude selection is achieved. The principle 
involved should be clear from figure ( 17 .6). 

( bl OPERATING CONDITIONS 
REQUIRED 

I b 

(al ASSUMED SIGNAL PATTERN; ONLY 
THOSE PULSES RISING ABOVE A 
ARE TO BE TRANSMITTED 

Fig. 17.6. Amplitude selection by clipping. 

If a sawtooth voltage is applied to the clipper input, the time of 
initiation of current in the tube can be made to vary as a function of 
time. The principle is illustrated in figure (17. 7). Changes in the base
line of the sawtooth brought about by grid bias variations, cause the 
output to appear at a time controlled by the grid bias. Time modulation 
can be produced this way. 

The cutoff characteristics of electronic devices are widely used for 
time selection purposes. For example, only those signals occurring over 
a particular time interval may be of interest. By turning the tube or 
diode off at all times except for the particular period of interest, time 
selection is accomplished. 
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TIME OF 
INTERCEPTION 

ec-+ 
INTERCEPT DEPENDS UPON 
BASELINE LOCATION 
RELATIVE TO Eco 

Fig. 17.7. Time modulation mechanism. 

17.4. Direct Current Removal and Restoration 

609 

The signals appearing at the output electrode of a vacuum tube or 
transistor ordinarily contain d-c components. This is caused by the 
polarizing potentials that are applied. fo nearly all cases it is desirable 
to remove the d-c component before the signal is passed on to the next 

(a) RC COUPLING CIRCUIT 

+bQfJd} 2E 
~ 

I I 

0~ 
0 ~T-----i t-

(b) ASSUMED SQUARE WAVE INPUT 81 

+~~ n--R,-
-E L_j u 

(c) OUTPUT VOLTAGE eo 

Fig. 17.8. D-c removal in an RC coupling circuit. 

electronic circuit, because the bias relationships of the following stage 
might be upset if the d-c component is allowed to remain. Often RC 
circuits of the form shown in figure (17.8a) are used for this purpose, 
though bifilar wound coils are used in certain special cases. Because 
the d-c component of the input signal is blocked by the coupling 
capacitor in the circuit of figure (17.8a), the average voltage appearing 
across Ru is zero. If the time constant of the coupling circuit is large 
compared with the half period of the input, the output appears as shown 
in figure (17.8b). The d-c component of the output voltage waveform 
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is zero because the volt-second areas above and below the reference 
axis are equal. 

The removal of the d-c component from the signal by the coupling 
circuit is an important effect, particularly in the operation of clipper 
circuits where relative voltage levels are extremely important. An 
illustration of how this effect can disrupt normal circuit operation is 
shown in figure (17.9). The small signal pulse, superimposed on a 
pedestal, is to be picked off by clipper action. If the pedestal width 
changes, as shown in figure (17.9), the baseline of the waveform drops 
and the desired pulse is lost. 

1 I 
PEDESTAL I 

I I 
I I 

I (al DESIRED OPERATION 
I 
I (bl FFECT OF A LARGE 

'-----', CHANGE IN PEDESTAL 
WIDTH 

Fig. 17 .9. Possible undesirable effect resulting from the removal of the 
d-c component of a wave by the coupling circuit. 

This baseline shift caused by the removal of the d-c component is 
usually undesirable. Clipper stages operate best when the input signal 
baseline is independent of any changes in the size or shape of the 
waveform. Circuits that stabilize the baselines of waveforms are called 
d-c restorers or dampers. Simple diode clamping circuits are shown in 
figure (17.10). 

A clamper consists of a conventional RC coupling circuit with the 
gridleak paralleled by a diode. The two parallel elements are connected 
to a bias voltage Ecc equal to the desired baseline voltage. In the absence 
of any signal input to the circuit of figure (17. IOa), the output voltage 
is equal to Ecc- If a positive going signal is applied to the input, the 
circuit behaves in the normal manner because the diode does not 
conduct. However, a negative going signal causes the diode to conduct, 
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and Cc rapidly charges to Ecc through the low diode resistance r p• Thus 
the baseline is clamped at Ecc and only positive excursions of signal 
voltage are permitted. The circuit of figure (17.IOb) can be analyzed 
in a similar manner. 

It should be clear that proper clamping is possible only as long as the 
charging time constant r pCc is much less than the time constant RCc 
of the coupling circuit. Hence it is necessary that R be much larger than 
r 'P' and low r 'P diodes should be used. 

There are two instances in which dampers can be detrimental to 
circuit operation. The most obvious problem occurs in the low fre
quency response of amplifiers which will be affected by the nonlinear 

R 

Ecc 

(al CLAMPS POSITIVE GOING 
SIGNALS TO Ecc 

(cl TYPICAL OUTPUT FROM 
THE CIRCUIT IN (al 

R 

(bl CLAMPS NEGATIVE GOING 
SIGNALS TO Ecc !Ecc1JU1f 

(dl TYPICAL OUTPUT FROM 
THE CIRCUIT IN (bl 

Fig. 17.10. Diode clamping circuits. 

grid leak composed of Rg and the parallel diode. The other difficulty is 
discussed elsewhere.1 

17.5. The Switch Tube 
The simple clipping and clamping circuits discussed so far are not 

always sufficient to meet the varied demands for the generation of 
unusual waveforms or for the performance of specialized functions. 
Hence the switching properties of electronic components are combined 
with the transient response characteristics of simple RC, RL, and RLC 
circuits. The cascading of these circuits with clippers makes an endless 
array of waveshapes and functions available. 

It is characteristic of these circuits that the electronic components 

1 S. N. Van Voorhis, Microwave Receivers, vol. 23, Rad. Lab. Series, McGraw
Hill Book Co., Inc., New York, 1948, p. 232. 
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nearly always operate as simple switches. Class A operation may be 
used, but only occasionally. 

For this application of vacuum tube circuits the grid-to-cathode signal 
usually approximates a square wave oflarge amplitude, and the tube is 
either cut off or highly conducting; this is shown in figure ( 17 .11 ). 
This operating regime is usually obtained by driving the grid with an 

? ec-+ 
I 

Fig. 17. 1. Switch tube operation. 

approximately square signal of large 
amplitude and then, by using grid 
circuit clipping, the grid-to-cathode 
voltage is effectively clamped at 0 
volts. When the tube is conducting, 
the grid voltage ec is virtually zero. 
As a result, the generator µec = 
µ(eu - Ecc) in the equivalent plate 
circuit is also zero, and a simplified 
equivalent circuit can be drawn as 
shown in figure (17.12). The function 
of the tube is reduced to that of a 
simple switch, alternately connecting 
the external circuit between two dif
f erent voltage sources. 

This is called switch tube operation in this book. The particular 
advantage of switch tube operation over class A operation is that the 
response characteristics become more nearly independent of variations 
in tube parameters. 

t-::.-• ,.___+ 1-~, -P 

r..._ ____ r....._ ___ K 

(a) DIRECT EQUIVALENT 
CIRCUIT 

rp RL 
Re=-

rp+R L 

Ee fEbb+ Eo] 
LRL rp 

K 
(b) SIMPLIFIED EQUIVALENT 

CIRCUIT 

Fig. 17.12. Switch tube equivalent circuits. 

17.6. Transient Response of RC Circuits 
It was shown in the preceding section that vacuum tubes can be made 

to operate as switches, alternately connecting an external circuit to two 
different direct voltage supplies with different internal impedances. The 
external circuit will usually assume one of three forms: a series RC 
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Fig. 17.13. Characteristics of RC circuits. 
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circuit, series RL circuit, or a parallel RLC circuit. The switching 
transients in these circuits caused by the operation of the switch tube 
are the response characteristics of interest. 

The determination of the transient responses of these circuits is 
straightforward. For example, consider the series RC circuit shown in 
figure ( 17.13). The circuit equation is 

1 
EA = i(R1 + R2) + C f i dt 

The Laplace transform of this equation is written by the method given 
in chapter 2 as 

EA ( 1) y ---;- = I(s) R1 + R 2 + sC + --_; 

Solve this equation for the transform current. 

J(s) = EA - y . 1 
RT s + 1/RTC 

where RT= R1 + R2 ; y = initial capacitor voltage (note polarity 
sense); EA= applied voltage. The inverse transform is given by pair 
no. 8 in the table of function-transform pairs. Hence 

'() EA -y -t/RTC 
lt =---8 

RT 
(17.2) 

The voltage across any one of the circuit elements can now be computed 
because the current is known. The results are tabulated in convenient 
form in figure (17 .13). A similar evaluation can be made for the series 
RL circuit. 

When simple series RC circuits are connected to switch tubes, the 
transients are made to repeat at intervals governed by the timing of the 
grid signal. Typical results for an RC circuit are shown in figure (17 .14). 
It is apparent that the responses of switch tube RC circuits offer a 
number of waveform possibilities. Thus the approximately square grid 
signal can be converted into three different outputs: 

(1) A peaked output: short time constant circuit with the output 
taken across R,r 

(2) Sawtooth output: long time constant circuit with the output 
taken across C. 

(3) Trapezoidal output: long time constant circuit with the output 
taken across R and C in series, the voltage eb in figure (17 .14 ). 
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CIRCUITS AND DEFINITIONS RESPONSE; LARGE RC 
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Fig. 17.14. Response of a series RC circuit when connected to a switch 
tube. 

17.7. Differentiators and Integrators 
From figure (17.14) which shows the response characteristics of a 

switch tube RC circuit, you can see that a square wave grid signal can 
be converted to a peaked output when the circuit time constant is small 
compared with the half period of the grid signal. Thus the circuit can 
be used as a peaker. 

The peaking action of a short time constant RC circuit is closely 
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related to mathematical differentiation, as shown in figure ( 17 .15). If the 
input signal is a square wave, the true mathematical derivative consists 
of positive and negative pulses of zero width and infinite amplitude. In 
general, the shorter the circuit time constant, the more nearly the output 
voltage from the RC peaker circuit approaches the form of the true 
derivative. 

The mathematical similarity between differentiation and the operation 
of a short time constant RC circuit can be shown very quickly in trans-

t+ 
(a) SQUARE WAVE INPUT 

r 
L 
r 

L 
r 

L 
(b) TRUE DERIVATIVE OF THE INPUT 

L r L r l r 
(c) PEAKER OUTPUT 

Fig. 17.15. Peaker waveform relationships. 

form notation. Assume that some arbitrary signal elt) is applied to the 
RC circuit shown in figure (17.16). In terms of complex frequency, the 
circuit transfer function is 

EoCs) .E[eo<t)] 1 
--=--=RCs---
Els) .E[elt)] RCs + 1 

(17.3) 

Now, if eo(t) is actually the derivative of the input signal, eo(t) = 
Kdelt)/dt or, in terms of complex frequency, Eo(s) = KsEls). Thus, 
in the ideal differentiator, the circuit transfer function is 

Eo(s) = Ks 
Els) 

(17.4) 
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Equations (17 .3) and (17.4) show that the difference between true 
differentiation and the properties of an RC peaker is given by the factor 
1/(RCs + 1). Thus the RC circuit can approach the function of a true 

r4(c w.. 

R' !· 

t R I t 
8j ei cl eo 

i l + 
Fig. 17.16. RC circuit. Fig. 17 .17. RC circuit. 

differentiator if the time constant RC is made so small that the product 
RCs is much less than 1 for all significant values of s. If this condition 
is assumed, the transform output voltage, obtained from equation 

0 - --- --- --- --- ---

(a) SQUARE WAVE INPUT 

( b) TRUE INTEGRAL OF THE INPUT 

Fig. 17.18. Waveform relationships in an integrator. 

(17.3), is approximately Eo(s) _:_ RCsEls). Thus, as a function of time, 

de. 
e (t) _:_ RC-' (17 .5) 

0 dt 

For short time constant peaker circuits, equation (17.5) is extremely 
useful in estimating the output for a given input signal. The amplitude 
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DIFFERENTIATOR INPUT --+ DIFFERENTIATOR OUTPUT 

INTEGRATOR OUTPUT +-- INTEGRATOR INPUT 

o a 
b d 

a b d 
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0 

b c d e f g 

SQUARE WAVE - FINITE SLOPES SQUARE PULSES 

/1\/t\ •-f-lfb 
o a b c d 

BACK-TO-BACK SAWTOOTH SQUARE WAVE 

0 d 
PARABOLAS SAWTOOTH 

o a C d e 

Fig. 17.19. Waveform relationships in integrators and differentiators. 

of the output signal is reduced as the time constant is shortened, and 
this is a major disadvantage. However, even with this drawback, the 
differentiating characteristics of short time constant RC circuits are 
useful in generating unusual waveforms. Some typical cases are shown 
in figure ( 17 .19). Of course, when input signals other than square waves 
are to be differentiated, class A amplifiers must be used in place of 
switch tubes. 
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When a square wave is applied to a long time constant RC circuit and 

the output is taken across the capacitor, the output voltage has the 
appearance of a sawtooth. The similarity between this action and 
mathematical integration is shown in figure (17.18). The circuit used is 
shown in figure (17 .17). 

The voltage transfer function of the RC circuit is 

Eh) 1 1 
Eh)= RC. s + I/RC 

(17.6) 

When the circuit time constant is large, so that 1/ RC is very much less 
than s for all significant values of s, the transfer function is approxi
mately 

In an ideal integrator, 

or 

Eis)-!... 1 1 
Eh)- RC -; 

eo(t) = K f elt) dt 

E(s) = KEh) 
0 s 

Thus the ideal transfer function is 

Eis) =K! 
Eh) s 

(17.7) 

(17.8) 

(17.9) 

(17.10) 

It is clear that an RC circuit can be used to approximate mathematical 
integration. A few possible waveform relationships are shown in figure 
(17.19). Integrating circuits using amplifiers require class A operation 
of the amplifier for all input waveforms other than square waves. 

17.8. Integration and Differentiation with Feedback 
Amplifiers 

In chapter 7, covering feedback circuits, as well as in the discussion 
of the Miller effect in chapter 3, it was shown that the introduction of a 
feedback impedance between the plate and grid of an amplifier tube 
caused marked changes in the input impedance of the stage. Thus if 
the feedback impedance Z 1b is connected as shown in figure (17.20a), 
the input impedance of the amplifier becomes Zin= Z 1b/(I - A), 
where A = voltage gain of the stage= -gmZm. If the feedback 
impedance is either resistive or capacitive, 

R,b 
R. = -- (17.11) 

in 1 -A 

(17.12) 



620 Wave Shaping and Computing Circuits [Sec. 17.8 

Normally, the amplifier is designed to have a bandwidth of sufficient 
width so that the reference gain can be used in place of the complex 
voltage gain. Hence 

(17.13) 

Cin = C,il + Ar) .... ,,. .. (17.14) 
The circuit connections and equivalent representations are ~ 
figure ( 17 .20). 

This effect can be used to improve the integrating and differentiating 
action of RC circuits. Consider the two circuits shown in figure ( 17 .21 ). 

Zfb 

l+Ar 

(a) ACTUAL CIRCUIT (b) EQUIVALENT REPRESENTATION 

Fig. 17.20. Effect of grid-to-plate feedback on the input impedance of 
class A amplifiers. 

With a feedback capacitor C1b as in figure (17.21a), the input capacitance 
is increased to C1il + Ar), causing a corresponding increase in the 
time constant to RC1il + Ar). Thus large time constants can be 
obtained using high gain amplifiers. Also, because the output voltage 
is e0 = -euAr and because 

the output voltage can be expressed as 

1 Ar J e _:_ -- · -- e.(t) dt 
o RCfb l + Ar i 

(17.15) 

It is clear that the integrated output from the amplifier will be relatively 
independent of increases in the time constant brought about by gain 
increases. 
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A similar analysis of the feedback differentiator of figure (17.21b) 
shows that the output voltage is approximately 

(17.16) 

Again short time constants and excellent differentiating can be obtained 
without loss of output voltage simply by changing the reference gain of 
the amplifier. 

Essentially the same effect can be achieved by simply applying the 
output from a conventional integrator or differentiator to an amplifier 

Rg >> R Rg»~ 

l+Ar 

1 
eo 

l 
(a) FEEDBACK INTEGRATOR (bl FEEDBACK DIFFERENTIATOR 

Fig. 17 .21. Feedback integrator and differentiator. 

of reference gain Ar- The amplitude of the output from the system will be 
the same as the output from the feedback circuits if (1) the differentiator 
time constant is decreased by Ar; (2) the integrator time constant is 
increased by Ar, and if Ar is much larger than I. Thus the end result is 
essentially the same as that for the feedback amplifier, and the purported 
advantage of feedback is open to question. 

The advantage of the feedback circuit lies in the fact that the time 
constant change brought about by feedback is effective only as long as 
the amplifier tube conducts. When nonconducting, the gain is zero and 
the time constant of the input circuit is the unmodified value. Thus, 
by gating the amplifier tube, the time constant can be made to vary 
with time and it is in this sense that feedback circuits have a clear-cut 
advantage. 
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17.9. Sawtooth Voltage Generators 
Voltage waveforms having sawtooth appearances, such as those shown 

in figure (17 .22), find extensive application in electronic systems. 
Waveform (a) is widely used in laboratory oscilloscopes to provide a 
horizontal deflection of the cathode ray tube beam that is a linear 
function of time. This simple sawtooth is also used in time modulation 
systems and in the generation of parabolic and trapezoidal voltages. 

The simplest sawtooth generator consists of a long time constant RC 
circuit connected to the output of a switch tube. The output voltage is 
taken across the capacitor. This possibility was noted in an earlier 
section and is clear from figure ( 17 .14); this figure also shows the circuit 
diagram. When the circuit is used for this purpose, Ru is usually 
replaced by a short circuit. 

(a) SIMPLE SAWTOOTH (b) BACK-TO-BACK SAWTOOTH 

Fig. 17.22. Sawtooth voltage waveforms. 

If a back-to-back sawtooth voltage output from the circuit is desired, 
the charging and discharging time constants of the capacitor should be 
equal. Also, the total voltage change (EA - y) should be the same in 
both cases. Because neither of these conditions can ever be met exactly 
with switch tubes, a true symmetrical back-to-back sawtooth is never 
developed by such a circuit. However, symmetry can be obtained by 
using a square wave input to a class A amplifier. 

To obtain a simple sawtooth, the charging time constant, Tch, must be 
much larger than the discharging time constant, Tach• With Ru short 
circuited as previously noted, Tch = RLC, Tdch = Rec, where 
Re= r PRL/(r P + RL). The specified inequa1ity of time constants 
results if RL • Re, which simply requires that RL be much greater than 
r p• This can be obtained by using low plate resistance triodes or triode 
gas tubes. 

A negative sawtooth output can also be obtained, but the reverse of 
the preceding inequality is required. 

It should be recognized that this simple circuit will never provide a 
true sawtooth waveform because some exponential curvature in the 
charging curve of the capacitor voltage always exists. The amount of 
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exponential curvature can be reduced by either of two simple methods: 
(I) The charging time constant can be increased, mainly by increasing 

Rv 
(2) The power supply voltage Ebb can be raised. 
The effects of these changes are shown in figure (17.23). For the 

same change in output voltage, the linearity improvement is apparent. 
In each of the two preceding cases there are practical maximum 

limits that cannot be exceeded conveniently. An excessively large value 
of RL reduces the output voltage magnitude to unreasonably small 
values, while the usual limitations exist with regard to the maximum 
practical power supply voltage. 

Ebb2 

Ebb I 

• 
fl E 

+ 
0 1- 0 t--

(a) EFFECT OF CHANGING RL (bl EFFECT OF CHANGING Ebb 

Fig. 17.23. Brute force attempts to linearize an exponential sawtooth. 

An alternative method of sawtooth linearization uses constant 
current charging of the capacitor. If a constant current I is supplied to 
a capacitor, the voltage across the capacitor is 

I It 
ec =CJ I dt = C 

and this is a linear function of time. 
Constant current charging is possible with various circuits. One 

method is shown in figure (17.24). Here the load resistor of the switch 
tube is replaced by a suitably biased pentode. In the normal region of 
operation the pentode is essentially a constant current device. The 
effect obtained is equivalent to that resulting from charging C through 
a load resistance r v· Thus some exponential curvature remains in the 
sawtooth. 

In some cases it might be desirable to interchange the positions of the 
switch tube and the pentode to simplify the establishment of the 
proper polarizing potentials on the pentode. If this is done, the pentode 
must be gated on and off in synchronism with the switch tube. 
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Constant current charging can also be achieved by using positive 
feedback in a way that will hold the voltage across the charging resistor 
constant. This is the essential principle used in the bootstrap cathode 
follower, which is shown in figure (17.25). The cathode follower is 
designed to have a gain approaching unity. As a result, the signal 

GATE 
IN 

Esc 

C 

Fig. 17.24. Constant current charging of C through a pentode. 

output from the cathode follower will nearly equal the voltage variation 
across the capacitor C. 

In the quiescent condition, the switch tube is highly conducting, and 
the voltage at point A is nearly equal to Ebb, differing only by the drop 

DISCONNECT 
DIODE 

SWITCH 
TUBE 

----ft-----.....---+ 

GATE 
INPUT 

CATHODE 
FOLLOWER 

OUTPUT 

Fig. 17.25. Bootstrap cathode follower. 

across the diode. The voltage at point B is equal to the drop across the 
tube and this is usually small. The feedback capacitor C1b is charged to 
a voltage approximately equal to (Ebb - Ekk), where Ekk is the quiescent 
cathode voltage. 

When the switch tube is cut off, the capacitor C commences charging 
through Rv and this causes the capacitor voltage ec to increase. The 
cathode follower output increases by an almost equal amount. If the 
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feedback capacitor is so large that the voltage across it does not change 
noticeably during the charging period of C, the increase in cathode 
follower output will cause both sides of the load resistor to increase 
in voltage by nearly the same amount. Thus the potential across the 
resistor remains constant, and a constant current flows to charge the 
capacitor C. The potential at A rises above Ebb, and the disconnect 
diode becomes nonconducting. This disconnects the power supply. If 
the diode were omitted, the potential at point A could not rise above 
Ebb, and the voltage across RL would not be constant. 

Because the gain of the cathode follower is never quite unity and 

Cc- Rg PROV ID E I D E A L COUP LI N G 

Fig. 17.26. Miller integrator for sawtooth linearization. 

because the voltage across C1b is not exactly constant, some curvature 
in the sawtooth results. 

Another feedback system for sawtooth linearization uses a con
ventional switch tube coupled to a feedback integrator of the type shown 
in figure (17 .20a). The feedback improves the integrating properties of 
the circuit. Practical circuits of this type are called Miller integrators 
and an example is shown in figure (17.26). 

The resistor Rx shown in the feedback path of figure (17.26) is a 
practical refinement required to avoid certain transient effects. Its 
magnitude is usually2 about 1/gm. 

It is advisable in practical cases to gate the amplifier tube V2 so that 
it conducts only during the charging of the capacitor. This prevents the 
capacitor discharge time constant from being multiplied by the amplifier 
gain. 

2 Chance, et al., Waveforms, vol. 19, Rad. Lab. Series, McGraw-Hill Book Co., 
Inc., New York, 1948, p. 280. 
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17.10. Flyback Time Reduction 

In electrostatically deflected cathode ray tubes the position of the 
light spot on the face of the screen is a linear function of the voltage 
between the deflecting plates. In many applications the spot should 
move across the screen with a uniform speed so that there is a linear 
relation between spot position and time. After moving a specified 
distance across the screen, the spot should return to its point of origin. 
The period of uniform spot velocity is called the sweep time. The period 
required for the spot to return to its point of origin from the end of the 
sweep is called the ftyback time. Ideally, the flyback time is negligible 
relative to the sweep time. If it is not, the effect shown in figure ( 17 .27) 

(a) WAVEFORM OBTAINED WI TH 
NEGLIGIBLE FLYBACK 

(bl SAME SIGNAL WHEN FLY
BACK TIME IS EXCESSIVE 

Fig. 17.27. Waveform distortion caused by too much flyback time. 
(a) Waveform obtained with negligible flyback. (b) Same signal when 
flyback time is excessive. 

occurs. Evidently a sawtooth voltage is required on the deflecting 
plates of cathode ray tubes when used as described. 

The simplest method of making modest reductions in flyback time 
was mentioned in section ( 17 .9). If additional circuit complexity can be 
tolerated, marked reductions in flyback time can be achieved through 
the use of a gated Miller integrator. 

A typical Miller integrator using a cathode follower and connected to 
an RC switch tube circuit is shown in figure (17 .28). In the usual Miller 
integrator, feedback is applied through a series RC circuit directly from 
the plate to the grid of the amplifier tube. In the circuit of figure (17 .28), 
the plate of the amplifier is connected to the cathode follower input and 
the output of the cathode follower is coupled back to the amplifier grid 
through the feedback capacitor Crb· Thus the cathode follower replaces 
the compensating resistor R.c shown in figure (17.26). 

The gain of the pentode used in the Miller integrator and the value 
of C1b are adjusted to give the required value for the sweep capacitance. 
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The pentode amplifier is turned off by a gating signal on the suppressor 
grid during the discharge period so that the time constant is enormously 
reduced. Flyback time reduction is thereby achieved. 

SWITCH 
TUBE 

-----11----+ 

Fig. 17.28. Use of a cathode follower to reduce flyback time in a Miller 
integrator sweep circuit. 

17.11. Trapezoidal Voltages (Sawtooth Currents) 
The response characteristics of a series RC circuit connected to a 

switch tube were shown in figure (17.14). It was shown that the voltage 
eb, indicated in figure (17.29) or (17.14), had a trapezoidal form. The 

IN 

Fig. 17.29. RC switch tube trapezoidal voltage generator. 

linearity of the increasing part of the trapezoid can be improved by the 
same general methods as those outlined for sawtooth improvement. 

The trapezoidal voltage waveform has two principal fields of 
application in sawtooth current generation and in self-gated sawtooth 
voltage sources. 

Magnetically deflected cathode ray tubes are widely used in radar 
and television systems. In such cases, position of the light spot on the 
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screen is nearly a linear function of the current through the deflecting 
coils. Hence if a linear sweep of the electron beam across the face of the 
screen is desired, the current through the deflecting, or sweep, coil 
should be a sawtooth function of time. This is shown in figure (17.30). 
If the slope of the sawtooth current is K, the equation for the current 

during the interval Tis 

f i = ±Kt; 0 < t < T 

L 

.,___T~ 

Fig. 17.30. Sawtooth current required 
for a linear sweep in a magnetically 
deflected cathode ray tube. 

The sweep coil is usually con
nected as the load element in a 
class A power amplifier as shown 
in figure (17.31a). The corre
sponding equivalent plate circuit, 
including the coil resistance Re is 
shown in figure (17.31b). It is 
necessary to determine the grid 
voltage eu required to make the 

sweep coil current i a linear function of time. 
From the equivalent plate circuit of the sweep amplifier shown in 

figure (17 .31 b ), the voltage loop equation is 

'--R --+ 
SWEEP r COIL 
¥ rP Re 

m 
L 

{i,p 
ec.i 

Re II L 

Ebb 

(a) CLASS A SWEEP CURRENT (b) EQUIVALENT PLATE 

AMPLIFIER CIRCUIT 

Fig. 17.31. Sweep amplifier. 

However, over the interval from t = 0 to t = T, the coil current is 
assumed to be 

ip= Kt 

Hence the voltage loop equation reduces to 

µeg = (RK)t + (LK) 
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and the voltage required on the grid of the sweep amplifier is 

LK RK 
e =-+-t 

g µ µ (17.17) 

where R, L, K, andµ are all constants. Thus the grid voltage has a d-c 
component LK/ µ, called the initial jump, and a linearly increasing term 
of slope= RK//l. Hence a trapezoidal grid voltage of the form shown 
in figure (17 .32) is required to produce a sawtooth current through the 
sweep coil. The ratio of the jump to the slope is L/ R, which is the time 
constant of the coil circuit. 

It was noted at the beginning of this section that the switch tube RC 
circuit generates a trapezoidal voltage waveform. Consequently, such 

Fig. 17.32. Grid voltage required to produce a sawtooth sweep current. 

a circuit can be used to supply the grid excitation for the sweep amplifier 
tube if the constants of the RC circuit are adjusted to provide the proper 
jump and slope. Reference should be made to the waveforms and 
formulas given in figure (17.13) and (17.14). Thus, from the waveform 
for eb in figure ( 17 .14), it is clear that the initial jump is D..E1. Hence, 
equating this jump to that determined in equation ( 17.17), we get 

. Ebb- Ee LK 
Jump = --- Rg 

Reh µ1 
(17.18) 

where 

and 

It is generally valid to assume that Ebb/RL is much larger than E 0/r P' 

so that 
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Hence 

. RL =Ebb __ _ 

rP+ RL 
(17.19) 

Therefore the jump voltage is 

. LK RL Ru 
Jump= - =Ebb ___ · ---

µ1 r P + RL RL + Ru 
(17.20) 

where µ 1 = µ of the sweep amplifier tube; r P = r v of the switch tube. 
This is a basic design equation. 

The equation for the slope can be obtained in a similar manner by 
consolidating the data in figures (17.13) and (17.14). Thus, the 
trapezoidal voltage is clearly eb, where 

eb = Ebb- iRL 

. Ebb - Ee -t/T h 
l=---8 c 

RL+Ru 

Thus, using the approximate formula given in (17.19) for Ebb - Ee, 

the trapezoidal voltage can be expressed as 

_ E [1 _ RL . RL -t/(RL+Rg)C] 
eb- bb --- ---8 

'v + RL RL + Ru 
(17.21) 

The initial slope is simply the derivative of eb evaluated at t = 0, or 

1 RK ( R L ) 2 Ebb 1 
s ope = ,;;_ = R L + Ru r v + RL C (17.22) 

This is a second useful equation. 
The jump-to-slope ratio has the form 

jump = ~ = R C ( 1 + Ru) 
slope R u RL 

(17.23) 

The three equations for the jump, slope, and jump-to-slope ratio 
provide the necessary design relationships. Only two of the equations 
are independent. The design is not necessarily straightforward, but 
permits a wide latitude of designer's choice, particularly with regard to 
the selection of the sweep amplifier and switch tubes. 
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17.12. RLC Circuit Response 
The transient response of a parallel RLC circuit, such as that shown 

in figure (17 .33), may exhibit any one of three characteristics, depending 
upon the value of the circuit Q. All three responses have applications 
in practical systems. The basic circuit equation governing response will 
be developed in this section. 

The terminology in figure ( 17 .33) is specified as follows: I A =applied 
current = constant; p = initial current through L at t = o- and o+; 
/)./ = I A - p = total possible change in current through the inductance. 
The initial voltage across the capacitor is assumed to be zero. 

Fig. 17.33. Parallel tuned circuit. 

The nodal equation for the network is 

. . . e0 de0 1 f 
IA= lR +le+ lL = - + CT -d + - e0 dt R t L 

The corresponding Laplace transform is 

IA= Eo(s)(~ + sCT + ~)+ f 
s R sL s 

where Eo(s) = ,E[eo(t)]. If this equation is solved for the transform 
output voltage the result is 

/),,/ 1 
Eo(s) =CT. s2 + (1/RCp)s + I/LCp 

In chapter 4 it was shown that B = I/ RC T = bandwidth in rps; 
w~ = 1/LCT = (resonant frequency) 2• Thus the transform output 
voltage can be written 

!).[ 1 
Eo(s) = - · 

2 2 
(17.24) 

CT s + Bs +ruo 
The transient response of the circuit is controlled by the poles of the 
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response transform, and these are the roots of the characteristic 
equation s2 + Bs + w5 = 0. Thus the poles are 

B )(B) 2 
2 

S1,2 = - 2 ± , 2 - % 

A more convenient form is obtained by factoring the B/2 factor as 
follows: 

where 

ITEM 

POLES 

POLE 
LOCATIONS 

EQUATION FOR THE 
OUTPUT VOLTAGE; 
UNIT STEP INPUT 

PLOT OF 
PRECEDING 
EQUATIONS 

00 •R-1¥ 

B • __L_ 
RCT 

S1,2 = ~ ( -1 ± V 1 - 4Q2
) 

Q=Wo/B. 

-BV2 
L-- at-at 

eo= R(IA-P) Bt.-Bt/2 eo• R(IA-p l ~ C• -• l 

a•f-.J1-40g· 

em 

ea 

0 

\,•tr tanh-1~1-40~
1 

tc = 2RCT 

em= R(IA-Pl,-B112 (•ota_._at°> 
1-40 

(17.25) 

(17.26) 

2,-B112 

eo=R(IA-p) -.J40g-1•:il0 °J 
aO=-i -.J40s - I 

t,. = if
O

taii1 -.J40g-r 

' TIME CONSTANT OF 
'
1 ✓DECAY= 2RC1 
I ' 
I ' 
I ', 
I 
I 
I 

t+ 

...J 2RUf-~l-e112 e,.. 
00 

• sin a0 t,. 

Fig. 17.34. Response characteristics of parallel tuned circuits. 

The nature of the transient response is controlled by the relationship 
between 1 and 4Q2• Thus the following three possibilities exist: 

(1) The value of 4Q2 may be less than 1. The poles are real and 
different and the response is overdamped. 

(2) The value of 4Q2 may be equal to I. The poles are real and equal 
and the response is critically damped. 

(3) The value of 4Q2 may be greater than 1. The poles are complex 
conjugates and the response is oscillatory. 
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These three operating regimes are summarized in figure (17 .34), 

together with the equations for the time responses. 
It is clear from this figure that a number of waveform possibilities 

are available through the use of a parallel tuned circuit in connection 
with a class A amplifier with a square wave input or with a switch tube. 
Both the critically damped and overdamped response characteristics are 
similar to the output from an RC peaker when the effects of inter
electrode and distributed capacitances are included. As a result, the 
RLC circuit is often used as a peaker, and the damping is usually 
adjusted to the critical point because this gives a sharper pulse. 

The oscillatory response of an RLC circuit is often used in ringing 
circuits. The circuit oscillation constitutes the ringing. 

17.13. RLC Peakers and Ringing Circuits 
A class A RLC peaker with a square wave input is worked out in 

figure (17.35). Critical damping is assumed and the total damping 
resistor R includes both R L and r 11 • in parallel. All the necessary 
information is given on this figure, and the required equations were 
developed in the preceding section. Note that the peaked output pulses 
have equal magnitudes in figure (17.35). 

It is not generally desirable to place the tuned circuit of an RLC 
peaker in series with the cathode lead of the tube, because the cathode 
follower action shunts the circuit with a low resistance. This may 
require the addition of shunt capacitance, and the peaked output is 
broadened. 

It is possible to use a switch tube in place of a class A amplifier and 
thereby obtain peaking of the input gating signal on the grid of the 
switch tube. This does not always provide satisfactory operation, 
because the degree of damping varies as the tube alternately conducts 
and cuts off. Thus, if operation is adjusted to provide critical damping 
when the tube is cut off, the response will obviously be overdamped when 
the tube conducts. Conversely, the establishment of critical damping 
when the tube is conducting will lead to an oscillatory response when 
the tube cuts off. 

A typical switch tube RLC peaker circuit is shown and analyzed in 
figure (17.36). This is not a general solution because it is assumed that 
the switch tube is normally off and is turned on only for short intervals 
by a positive gate. The reverse condition might also exist. Thus, in the 
assumed case, the coupling capacitor is charged to Ebb most of the time, 
because it is large enough to hold its charge during the period of tube 
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conduction. Somewhat different results are obtained if the tube is held 
normally conducting and is cut off for short periods by a negative gate. 

A ringing circuit, which consists of a switch tube and tuned circuit, 
is shown in figure (17.37). A ringing circuit is essentially a gated oscillator 

R L 

Cc IS MADE SO LARGE COMPARED 
TO CT THAT ITS EFFECT CAN BE 
NEGLECTE-0 

CIRCUIT CONSTANTS ARE ADJUSTED 
TO PROVIDE CRITICAL DAMPING 

(a) CIRCUIT DIAGRAM (b) CLASS A EQUIVALENT CIRCUIT 

8 = -'RCt 

0 0 • ~o •0.5 Ar= 9mR 

2 
At= 8 AE = 0.736 Ar 6Eg 

Fl ·~ GRID 

SIGNA_LE,c --- _ -f e·- -1- -----_ ------

AE 

OUTPUT 
VOLTAGE 

Ot--+-+-~~-+--=-------,~ 

(c) WAVEFORMS 

Fig. 17.35. Class A RLC peaker circuit. 

in the sense that an oscillatory output is desired only during specific 
time intervals. There are many such circuits, 3 of which the ringing 
circuit is the simplest. 

3 Chance, et al., Waveforms, vol. 19, Rad. Lab. Series, McGraw-Hill Book Co., 
Inc., New York, 1948, pp. 140-145. 
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Because an oscillating output is desired only during a particular time 
interval, it is not practical to connect the RLC circuit in series with the 
plate of the tube. This would lead to oscillations following both 
edges of the input gate, and this is not usually desirable. Class A ringing 
circuits are not common for the same reason. The cathode connection 

Ebb 

----i 

r---ftl •I 

ONI ~ r \ REPLACES 

Re RL Cc L 

POSITIVE 
GATE 

TUBE IS NORMALLY CUT-OFF. 
CONDUCTS FOR SHORT PERIODS 
DURING THE POSITIVE GATE. 

(a) Cl R CUIT DIAGRAM 

OFF 

RL 
L Cr 

Re 

E = R ( Ebb+ Eo) r p RL 

e e RL rp f\: r p RL 

I " E bb E • 
x Re 

eo 

.:. Ee -=- Ebb 

COUPLING CONDENSER Cc IS ASSUMED 
TO BE SO LARGE THAT THE CONDENSER 
VOLTAGE IS CONSTANT AT Ebb DURING 
THE GATE. 

(b) VOLTAGE SOURCE EQUIVALENT 

OFF ON 

OVER CRITICALLY 
DAMPED DAMPED 

p =O p =Ix 
IA=Ix IA= 0 

(c) ALTERNATE EQUIVALENT CIRCUIT (d) WAVEFORM OF OUTPUT 
DERIVED BY NORTON'S THEOREM VOLTAGE 
FROM X-X TERMINALS IN (b) 

Fig. 17.36. Switch tube RLC peaker. 

shown in figure (17.37) is desirable because a high Q circuit is obtained 
when the tube is cut off and the low output impedance developed by 
cathode follower action during tube conduction overdamps the circuit 
and prevents oscillations after the trailing edge of the gate signal. 

It is obvious that the magnitude of the gating signal on the grid of the 
switch tube must be large enough to keep the tube cut off during the 
large negative cathode voltage swings. 
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(a) CIRCUIT DIAGRAM 

Rk =-Lr cr 
(c) EQUIVALENT CIRCUIT WHEN 

TUBE IS CUT-OFF; AN ALTERNATE 
FORM DERIVED FROM (b) 

OFF---i.-oN-
1 
I 
I 

.a. 
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I 
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I 
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(e) OUTPUT VOLTAGE WAVEFORM 
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IA = Ib P = 0 TO I: b 
Rk 

Ro=-----
1+9 R P.+I m k µ. 

(d) EQUIVALENT CIRCUIT WHEN 
TUBE CONDUCTS; LOW Q 

' rb.,,,...,.. 

-•~~ 

(f) TRANSFER CHARACTERISTIC 

Fig. 17 .37. Ringing circuit. 

17.14. Non regenerative (Storage Type) Counters 

In nuclear instrumentation, in certain types of radar, as well as in 
special purpose measuring equipment, it is often desirable to count a 
succession of more or less uniform pulses up to some predetermined 
point. This process is related to frequency division, but in most 
counting circuits the spacing between successive pulses need not be 
uniform; however, there is usually a definite maximum allowable 
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spacing. Counting circuits are of two general types: (1) regenerative, 
discussed in chapter 18; (2) nonregenerative or storage, discussed here. 

The counting problem usually involves voltage pulses. Thus most 
storage type counters use a storage capacitor to accumulate charge 
during each pulse without losing it between pulses. This causes the 
voltage across the capacitor to build up in steps along an exponential 
curve. The capacitor voltage reaches some predetermined value at the 
end of n pulses, and this causes some other device to operate. This 
device discharges the capacitor and allows the counting process to 
repeat. Such a unit is called the recycling device. 

The basic principle of the storage type counter can be developed 
from the simple integrator shown in figure (17.38a). The input pulses 

iJlJlJl 

(c;c) E -------------- ----=-

t 
,,,,,,-

EA _____ ,,_: _____ ~_,,_.._ 

c eo / 
,I 

/ 
I 

/ 

(a) RC INTEGRATOR; INPUT CLAMPED TO O O----------t+ 
BY Ve (b) OUTPUT VOLTAGE WAVEFORM 

Fig. 17.38. Prototype of storage type counter. 

are applied through the coupling capacitor Cc and are clamped to a 
reference baseline by the diode Ve. The capacitance of the storage 
capacitor C is large compared with that of Cc, and R is a large resistance. 
Thus the output voltage appears as shown in figure (17.38b). 

When a pulse is applied to the counter the storage capacitor charges 
through Rand Cc- When the pulse is removed, C discharges through 
the same path. Fortunately, C does not lose charge so rapidly as it 
accumulated because of the difference between the applied and initial 
capacitor voltages during charge and discharge. Thus the capacitor 
voltage will reach some specified voltage, say EA, at the end of some 
specified number of pulses determined by the circuit time constant and 
pulse amplitude. The dotted curve in figure (17.38b) shows the normal 
charging curve that would result if a constant voltage E were applied 
to the circuit. 

The preceding circuit suffers from two obvious and serious 
disadvantages: 
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( 1) The storage element loses charge between pulses. This is disas
trous when the intervals between successive pulses are very long or 
irregular. 

(2) The buildup of voltage across C is slow because of the long time 
constant. 

Both of these disadvantages can be largely offset by replacing the 
resistor R with a diode, called the disconnect diode Va, This is shown in 
figure (17.39a). The diode provides a low resistance charging path, but 
prevents capacitor discharge between pulses because it is then 
nonconducting. 

Before any pulses are applied to the circuit, both capacitors are 
uncharged. The pulse amplitude is E. When the first positive pulse 

E -------------------

Ae;(4)--
/' Ae;<3l __ _ 

-------
/ A eo(2) 

/ 
(o) CIRCUIT DIAGRAM o-. ________ t _. 

(b) OUTPUT VOLTAGE WAVEFORM 

Fig. 17.39. A simple storage type counter. 

occurs, the disconnect diode Va conducts, and both capacitors rapidly 
charge through the diode resistance r 'P' The charging time constant is 

T = r CCc 
ch 'PC+ Cc 

where r 'P includes the signal source impedance, if any. This time 
constant should be small compared with the pulse duration. If this is 
true, the voltages across the two capacitors at the end of the pulse are4 

Cc C 
eo(l) = EC+ Cc; ecc (1) =EC+ Cc = aE 

When the first pulse ends, the signal input drops to zero. Hence the 
voltage at point A drops by E volts and diode Va ceases conduction. 
As a result, the storage capacitor has no discharging path, other than 
leakage, and its voltage remains practically constant. On the other 

' This development follows that by S. Moskowitz and J. Racker, Pulse Techniques, 
Prentice-Hall Inc., New York, 1951, pp. 213-216. 
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hand, because the cathode of the clamping diode drops by E volts, 
while Cc was charged to only (EC)/( C + Cc) volts, the clamping diode 
conducts and Cc discharges rapidly through the r P of this tube. The 
second pulse should not be applied until this discharging process is 
virtually complete. Thus this time constant sets a lower limit on the 
spacing between successive pulses. 

When the second pulse is applied, the disconnect diode cannot 
conduct until the pulse voltage exceeds the voltage aE across the storage 
capacitor. Hence the voltage change during the second pulse is 

EA(2) = E- aE= E(l - a) 

This voltage divides between the two capacitors as before, so that the 
final output voltage attheend of the second pulse increases byan amount 

~eo(2) = aE A(2) = aE(l - a) 

The actual total voltage across the storage capacitor at the end of the 
second pulse is 

eo(2) = eil) + ~eo(2) = aE + aE(I - a) = aE(2 - a) 

When the third pulse occurs, the disconnect diode conducts when the 
pulse voltage rises above the cathode voltage, which is e0(2). Hence the 
applied voltage change is then 

E A(3) = E - eo(2) = E - aE(2 - a) = E(l - a)2 

and this divides between the two capacitors as before. Thus the output 
voltage at the end of the third pulse increases by 

~ei3) = aE A(3) = aE(l - a) 2 (17.27) 

Hence, by mathematical induction, the increase in voltage at the end 
of the nth pulse is 

~eo(n) = aE(l - ar-1 (17.28) 

This is the magnitude of the step increase. 
The reliability of the counter is reduced when this step increase 

becomes so small that it is of the same order of magnitude as other 
voltage fluctuations in the circuit. Because it depends upon the 
capacitance ratio a = Cc/( C + Cc), it is reasonable to believe that there 
is some specific value for a that will make ~e0 a maximum for a specified 
number of pulses n. This is the optimum operating condition, and it is 
easily determined by differentiating ~e0(n) with respect to a, setting the 
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result equal to zero, and solving for a. This yields a= 1/n, or Cc/ 
( C + Cc) = 1/n, so that 

C= Cc(n- 1) (17.29) 

This is a useful design equation. 
From this analysis it is clear that the output voltage waveform is a 

stair-stepped exponential. Thus the voltage at the end of any n pulses 
might be written 

(17.30) 

where A, B, and k are undetermined constants. Three operating 
conditions are known: 

(1) when n = O; 

(2) when n = oo; 

(3) when n = 1; 

eo(O) = 0 

eo(oo) = E 

eo(l) = aE 

When these conditions are substituted in equation (17 .30), the result 
can be expressed as 

where 

eo(n) = E(I - e-kn) 

k =Inc+ Cc 
C 

(17.31) 

(17.32) 

Solve these last two equations for the capacitance ratio and the result is 

C [ E ]lln 
; = E- eo(n) - 1 (17.33) 

For the optimum capacitance ratio it was previously shown that 
Cc/C = 1/(n - 1). Consequently equation (17.31) can be expressed as 

e,t) = I - r n I)• (17.34) 

Under these optimized conditions, 

E ( 1)n-1 

t,.eo(n) = ;i n n (17.35) 

Hence, as soon as n and the pulse amplitude are fixed, equation (17.34) 
can be used to compute the actual output voltage available from the 
counter. Or, if n and eo(n) are specified, the required pulse amplitude 
can be computed. 

The preceding discussion was concerned with counting positive 
pulses. Negative pulse counting is accomplished in the same way 
simply by reversing a1l diodes. 
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17.15. Counter Refinements and Recycling 
The analysis of the counter circuit in the preceding section assumed 

the clamping voltage to be zero. However, by connecting the circuit as 
shown in figure (17.40a), the stair-stepped exponential can be clamped 

Cc 
Vd r Cc 

Vd r Re R C ! f ei ei eo 

l .::. !Ecc r l Tc I 1 
Fig. 17.40. Positive pulse counter circuit with output clamped to ±Ece• 

Reverse both diodes for negative pulse counting. 

to any desired baseline. The same effect' can be achieved with the circuit 
in (17.40b). In both circuits the resistor R should be large relative to 
the r 21 of the diodes. In some cases R might not appear physically in 
the circuit because it might be a leakage current path. 

(a) POSITIVE GR ID PULSES GIVE 
NEGATIVE GOING OUTPUT 

(b) EQUIVALENT CIRCUIT 

Fig. 17.41. Use of a pentode for constant current charging and linear 
stepping. 

The principal shortcoming of all the counter circuits discussed so far 
is the nonuniformity in the size of successive steps. The general 
techniques for equalizing the sizes of the steps are essentially the same 
as those employed to linearize the output from a sawtooth voltage 
generator. For example, c::instant-current charging can be obtained 
with a pentode as shown in figure ( 17.41 ). 
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Miller integration can be used to equalize the steps, and the circuit 
connections and basic principles are the same as those treated in sections 
(17.8) and (17.9). 

The output from a counter is generally connected to some switching 
circuit such as a multivibrator, blocking oscillator, phantastron, or a 
gas triode. These circuits, except the last one, are discussed in the next 
chapter. However, the use of a gas triode as an indicator of the count 
and as a mechanism for recycling the counter is easily explained from 
figure (17.42). 

mm 

Ebb 

R 
DEIONIZING 

d•RESISTOR 

R 
_PLATE CURRENT 

L - LIMITER 

R 
_ GRID CURRENT 

o- LIMITER 

Fig. 17.42. Recycling a negative pulse counter with a thyratron. 

The counter output is clamped to + ECC' This voltage is large enough 
to hold the gas tube nonconducting until the required number of counts 
has occurred. As the pulses are counted, the cathode voltage steps 
down. During this interval the capacitor Cd charges to Ebb volts. When 
the required number of pulses have been counted, the cathode voltage 
has dropped to a point that allows the tube to fire. When the tube fires 
the plate voltage drops to 10 or 12 volts and the total voltage around 
the Cd, R L, tube, C circuit is quickly redistributed. The size of Cd is 
selected so that the charge redistribution brings the voltage on the 
storage capacitor back to + ECC' When this transient is complete, the 
only current available to the tube to sustain the gas discharge is that 
from Ebb through Rd. The value of Ra is made so large that it will not 
sustain the discharge, and the tube deionizes. The counter is thereby 
recycled and commences counting again in the usual manner. 
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17.16. Coincidence and Time Selection Circuits 
It is frequently necessary and desirable to select some part of a 

waveform that occurs over a specified time interval and to reject all 
other parts of a waveform. It is also often necessary to indicate the 
coincidence or lack of coincidence of two or more electrical events. The 
circuits that perform these various services are identified as gating, 
strobe, and coin.cidence circuits. Because the process is essentially one 
of time selection, 5 this designation seems more appropriate. 

Time selection circuits depend upon the switching properties of 
electronic devices. Vacuum diodes, varistors, transistors, special 
vacuum pentodes, and magnetic amplifiers are often used. 

In general, the electronic component is held normally conducting or 
nonconducting. Some sort of selector pulse, or pulses, is used to reverse 
this operating condition when the desired part of the waveform is to be 
transmitted. From this general viewpoint it is clear that a simple time 
selection circuit can be formulated, using a diode clipper in which the 
selector pulse causes the clipping level to be a function of time. Thus, 
suppose that the signal and selector are added together and are then 
applied to a biased diode, as shown in figure (17.43). It is assumed that 
the diode is biased off in the absence of the selector pulse. The selector 
pulse causes the operating point of the diode to fall just short of the 
conducting point so that any superimposed positive signal will cause 
the diode to conduct and thereby develop a signal in Rk. 

There are many variations of this basic circuit. For example, if 
negative pulses are to be selected, it is necessary only to reverse the 
diode and the bias voltage Ekk· 

A triode or pentode clipper could be used in place of the diode in 
figure (17.43). However, the cutoff characteristics are not so sharp as 
those of semiconductor diodes, and the selector pulse tends to leak 
through. 

The main disadvantage of the circuit in figure (17.43) is that its 
operation is critically dependent upon the shape and amplitude of the 
selector pulse. This defect can be eliminated to a certain extent by 
adding a second diode as shown in figure (17.44). In the absence of any 
input, the gating diode is normally conducting, and the values of RL, 
R1, and Ekk are chosen so that the plate-to-ground voltage of the clipper 
diode is nearly zero. Hence there is no output voltage, regardless of 
whether a signal input is applied or not. When the positive selector 

5 See Chance, et al., op. cit. 
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pulse is applied, if its magnitude is large enough, the gating diode is cut 
off, and any coincident positive signal causes the clipper diode to 
conduct and develop an output. 

R1 

~c, 

~ 
R2 C2 

SIGNAL 
R3 

(a) CIRCUIT DIAGRAM 

DIODE 
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(b) BLOCK DIAGRAM 
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I 
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oOO •••• 
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I 
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o ___ n___.__.n ______ _ 
(c) WAVEFORMS 

Fig. 17.43. Simple diode time selection circuit. 

SIGNAL RL 

CLIPPER 
DIODE 

Fig. 17.44. Double diode time selector. 

As before, the relationship between the selector and signal pulse and 
bias voltage is critical. The selector must be large enough to keep the 
gating diode cut off in the presence of a signal. This is a definite 
drawback. 

The ideal time selector obviously has an output only during the 
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selected interval and its operation is insensitive to variations of pulse 
amplitude within certain limits. In such an ideal case, the operation of 
the circuit depends only upon the coincident presence of a selector pulse 
and a signal to develop an output. The absence of either will result in 
zero output. 

This idealized operation can be closely approximated within a 
predetermined range of amplitudes by the circuit6 shown in figure ( 17.45). 
This circuit has the added advantage of being adaptable to n input 
circuits, so that coincidence of any degree of multiplicity can be 
obtained. 

COUPLING DIODES 

t 

EI> Ecc > E2 

Fig. 17.45. A very good diode coincidence circuit. 

CLAMP 
DIODE 

The various voltages are related as follows: E1 > Ecc > E2• The 
values of R1 and R are adjusted so that / is less than /1• Hence nearly 
all the current through the coupling diodes must be supplied by Ecc 
through the clamper diode Ve. It is assumed that the r P of the diodes is 
small in comparison with the load resistances R1. 

In the absence of any signal inputs, the output voltage e0 is clamped 
to Ecc by the clamper diode. All diodes are conducting because of the 
relationships between the circuit voltages. The voltage drops across the 
diodes are negligible because r P is much less than R1 ; this makes the 
cathode-to-ground voltages practically equal to Ecc· As a result, any 
positive going pulse input will cause the corresponding coupling diode 
to cut off. However, the output remains clamped to Ecc because the 
clamper diode continues to conduct to supply current to the other 
coupling diodes. However, if all coupling diodes are simultaneously 

6 Taken with permission from Tung Chang Chen, "Diode Coincidence and Mixing 
Circuits in Digital Computers," Proc. IRE, vol. 38, May, 1950, pp. 511-514. 
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cut off by the coincident arrival of positive pulses at the inputs, the 
clamping diode also cuts off because the current requirement drops to 
zero. As a result, the output voltage increases toward E1. The increase 
will be exponential because / flows through R in charging the shunt 
capacitance. 

The actual final value of the output voltage will be determined by 
the amplitude of the smallest coincident input pulse. As soon as the 
output voltage increases by an amount equal to this pulse amplitude 
the voltage across that diode is zero. A further increase in output 
voltage causes the diode to conduct and thereby prevents the voltage 
from increasing beyond this point. This is not necessarily a serious 
limitation. 

With the foregoing points in 
mind, it is clear that the output 
waveform will appear as shown 
in figure (17.46). In this figure, 
E - Ecc = smallest input pulse 
amplitude; C = total shunt ca-

E ----------,,,----. 
I 
I 
I 
I 
I 
I 

I I 

l--TR-1 
I I 

pacitance; TR = rise time; Tch = Fig. 17.46. Output from circuit of 
charging time constant = RC. figure (17.45). 
The rise time is easily computed 
from the general charging equation for a capacitor, which is 

ec = EA - (EA - y)s-tfRC 

In this case we want to find t = TR• where 

Hence at the end of the rise time, 

E = E1 - (E1 - Ecc)B-TR/RC 

This equation is easily solved for TR• yielding 

TR= RC In E1 - Ecc 
E1 -E 

One other basic design criterion that must be remembered is that the 
clamping diode must carry a current equal to the total current through 
the cou piing diodes. 

One final circuit in common use is the pentode selector shown in 
figure (17.47). The tube, a 6AS6 for example, has a sharp cutoff charac
teristic for both the control and suppressor grids. The tube is biased for 
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class B operation on the control grid so that space current flows only 
when permitted to do so by a positive selector pulse on the normally 
off control grid. Current flows in the plate circuit only when the 
suppressor voltage is brought above cutoff by a positive pulse. This is 
an excellent circuit. 

OUTPUT 

-j 1---.---... 

SIGNAL SELECTOR 

Fig. 17.47. Pentode coincidence circuit. 

17.17. Effects of Shunt Capacitance 
All the material in this chapter ignored the inevitable existence of 

interelectrode and distributed wiring capacitances. Thus experimental 
results will differ somewhat from computed predictions. 

The problem becomes acute when the signals in the circuit have steep 
leading and trailing edges, have sharp discontinuities, and have short 
durations. When these conditions prevail, the shunt capacitance 
reduces the slopes of edges, smears out sharp discontinuities, and tends 
to broaden pulses. It is usually difficult to calculate these effects, 
because of the mathematical complexity of the circuit formufation. 

The problem of preserving the discontinuous character of the outputs 
from wave-shaping circuits is essentially the same as that involved in 
the faithful transmission of pulses through video amplifiers. The same 
considerations generally apply. Thus wave-shaping circuits are 
essentially video circuits operating in the switching mode and should be 
treated as such in design and construction. 

17.18. Magnetic Amplifier Coincidence Circuit7 

The operation of a single core magnetic amplifier was covered in 
chapter 16 and should be reviewed if you are unfamiliar with the circuit. 

7 R. A. Ramey, "The Single Core Magnetic Amplifier as a Computer Element," 
Communications and Electronics, January, 1953, pp. 442-446. 
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This magnetic amplifier is easily converted into a coincidence circuit 
with n inputs by the connections shown in figures (17.49) and (17.50). 

The hysteresis loop of the core is shown in a rather idealized form in 
figure (17.48). The core is saturated on the 
positive swing of eac· In the absence of 
any voltages from the signal input, the 
core remains saturated because diode A 
disconnects the supply when the supply 
voltage reverses. Nothing further can 

N 
1 

+ happen and no output will appear until 
the core flux is reset to its original value 
<Po by a reverse current through the coil. 
However, because of the multiplicity of 
low impedance paths through the signal 
sources, current does not flow through 
the coil on the negative swing of eac, but 

Fig. 17.48. Hysteresis loop of through the diodes and signal sources 
a magnetic amplifier core. 

instead. Thus the core is not reset. 
As long as any one signal source voltage is zero, the reverse current 

is bypassed around the coil. However, if signals appear at all inputs 

+ 8s 
- 3 

7 

Fig. 17.49. One type of single core magnetic amplifier coincidence circuit. 

Fig. 17.50. Another type of single core magnetic amplifier coincidence 
circuit. 

coincidentally, current will flow through the coil, and this will reset the 
core flux to cp0• On the next half cycle of the supply voltage the core 
will again saturate, and the whole process repeats. The existence of 
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coincidence is indicated by the appearance of an output e0 on the half 
cycle following coincidence. 

The signals must exist in the input circuits of the counter for an 
appreciable portion of the reset half cycle. The signal amplitudes must 
be large enough to prevent the current from being bypassed around the 
coil. 

PROBLEMS 

17.1. Using the published data for 6AL5, determine the equivalent circuit 
of the circuit shown in figure (17 .51) and compute the output voltage if the 
input has the form shown in the figure. 

1 
+25 

50k 

eo 
ei 

0 

i I.SK l 
-20V 

-25 

Fig. 17.51. 

17.2. A clamping circuit, together with the input signal waveform, are 
shown in figure (17.52). Compute the output voltage waveform, assuming 
the capacitor is initially uncharged. 

+ 20 

+ 10 

0 
0 

-10 

-20 ------

Fig. 17.52. 

100 200 300 400 500 
,.,.sec 

17.3. For the cathode follower and input signal shown in figure (17.53), 
compute and plot the output voltage waveform. 

17.4. The signal shown in figure (17.54) is applied through a conventional 
RC coupling circuit to the grid of a 6J5 clipper. The time constant of the 
coupling circuit is long compared with the time T. Assuming a 20,000 ohm 
load resistance and Ebb = 200 v, compute the grid bias required to make the 
tube clip off all the signal except a triangle 10 psec wide at the base. 
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17.5. A 1000 cps symmetrical square wave, 50 v peak to peak, is to be used 
to produce the waveform shown in figure (17.55). You are free to design any 

Fig. 17.53. 

circuit of your choice, but the design must be complete in every detail of bias, 
time constant, etc. 

CLIP 

ov.__..,__ _ ___.__........_ __ ..___....__ 
0 100 150 250 300 

Fig. 17.54. 

17.6. Design an RLC peaker using a 6AC7 tube (switching mode) for 
optimum performance. It is known that the power supply voltage is 300 v 
and the total interstage shunt capacitance is 20 µµf. The maximum pulse 

t=L~~~.o ~ 
Fig. 17.55. 

amplitude in the output is to be 5 v. Compute the necessary values for RL 
and L and the ratio of the output pulse amplitudes. 

17.7. Design an RLC ringing circuit using a 6AC7 switch tube with 
Ebb = 300 v and Cp = 20 µµf. The tube is gated by a negative pulse 100 µsec 
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in duration. The circuit is to ring at 100 kcps during this interval. Compute 
the necessary values for Rv L, and the peak value required for the negative 
gating signal to assure proper operation. 

17.8. Design a simple RC sawtooth voltage generator using a 6J5 switch 
tube and a 300 v plate supply. The switch tube is gated by a 500 cps 
symmetrical square wave. Determine the values of R and C required to locate 
the base of the wave at 15 v and to cause it to rise to 50 v. 

17.9. An RC trapezoidal voltage generator supplies grid excitation to a 
sweep amplifier tube. The switch tube conducts for 200 µsec and is non
conducting for 300 µsec. The current through the sweep coil is to change by 
100 ma during the sweep. The sweep amplifier tube has a µ of 10 and 
r P = 5000 ohms. For the switch tube, which is a 6J5, Ebb = 200 v, C = 0.001 
µf, R L = 500,000 ohms, R1 = 10,000 ohms. Determine the required 
dimensions of the trapezoid and the values of L and R for the sweep coil. 

17.10. A counting circuit is to reach a voltage output of 21.0 vat the end of 
the 6th count. Design an appropriate circuit and determine the required 
value for the input pulse amplitude. The pulses occur at a fixed frequency 
of 1000 pps and have a duration of 2 /lSec. The pulses are negative. 

17.11. Design a recycling circuit of the type shown in figure (17.42) for the 
counter of problem (17.10). Use an 884 gas triode. Compute the required 
values for all circuit elements and voltages. 

17.12. Design a pentode coincidence circuit using a 6AS6 tube with 
Ebb= 300 v. Both incoming pulses are 1 µsec in duration and 5 v high. 



Chapter 18 

TRIGGER CIRCUITS AND NON-SINUSOIDAL 
OSCILLATORS 

The preceding chapter dealt with a broad grouping of circuits that use 
electronic devices operating in the switching mode to accomplish things 
impossible with linear bilateral circuits. All these circuits were either 
open loop, without feedback, or negative feedback was used to improve 
certain operating characteristics. 

The circuits used in this chapter are closely related to those in chapter 
17 except that all the circuits involve amplifiers with large amounts of 
positive feedback. Thus they are regenerative wave shaping circuits as 
opposed to the nonregenerative circuits of the preceding chapter. In 
this text, circuits fitting this category are called trigger circuits. The 
relationship between the wave shaping circuits of chapter 17 and the 
trigger circuits of this chapter is essentially the same as that existing 
between class A amplifiers and oscillators. 

For the purposes of discussion and analysis, trigger circuits can be 
subdivided into four different classes as: (1) multi vibrator type circuits; 
(2) phantastron type circuits; (3) blocking oscillator circuits; ( 4) tran
sistor trigger circuits. In general, the chapter is subdivided along these 
same lines, though equal emphasis is not given. 

18.1. Classification of Trigger Circuits 

It was shown in chapter IO that certain circuits exhibit a negative 
resistance region as a part of their d-c characteristics. Such charac
teristics were found to be of two basically different types, short circuit 
stable and open circuit stable. The current-voltage characteristics 
corresponding to this terminology are given in figure (18.1). The 
discussion in chapter IO went on to show that operating points in 
regions 1 and 3 were always stable while an operating point in region 2 
could be unstable or stable. You should review chapter IO if you are 
unfamiliar with these ideas. 

Trigger circuits are designed so that they have a current-voltage 
characteristic like one of those in figure (18.1) and so that operation in 

652 
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region 2 is unstable. Thus all trigger circuits have three possible states 
of operation, two being stable and one being unstable. When operation 
changes from one stable state to the other, the circuit is said to have 
been triggered. Sometimes a circuit is capable of self-triggering, while 
an externally supplied trigger pulse may be required in other instances. 

With the foregoing points in mind, trigger circuits can be classified 
as follows :1 

(I) Bistable. This circuit is incapable of self-triggering. Hence two 
trigger pulses are required to complete one cycle of operation from 
stable state 1 to stable state 3, and then back to 1. 

' 
REGION l REGION REGION 

I 2 3 

E-
(o) SHORT CIRCUIT STABLE 

t 
REGION 

3 

E __. 

(b) OPEN CIRCUIT STABLE 

Fig. 18.1. Types of negative resistance characteristics. 

(2) Monostable. This kind of circuit is capable of self-triggering from 
one of its stable states. An externally supplied trigger pulse is required 
to change operation from the other stable state. Thus the circuit 
generates one complete cycle in response to a single external trigger 
pulse. 

(3) Astable. This type of circuit is capable of self-triggering from 
both stable states. Thus it generates a continuous train of nonsinusoidal 
waves without any externally supplied trigger pulses. 

18.2. Basic Multivibrator Type Circuit 

The multivibrator type of trigger circuit is essentially a two-stage 
resistance coupled amplifier with the output from the second stage 
connected back to the input of the first. Thus the block diagram and 
circuit diagram appear as shown in figure (18.2). The circuit is easily 

1 Based upon Chance, et al., Waveforms, vol. 19, Rad. Lab. Series, McGraw-Hill 
Book Co., Inc., New York, 1949, chap. 5. 
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identified as the Eccles-Jordan circuit noted in chapter 10. It is also 
known as a scale-of two circuit. 

It is clear from the block diagram of figure (18.2a) that the circuit 
uses 100 % positive feedback and that the feedback loop is closed only 
when both of the amplifier tubes are conducting. The condition of 100 % 
positive feedback is an unstable one and corresponds to region 2, the 
negative resistance region, of the d-c characteristics. 

The positive feedback loop is open and the circuit is stable whenever 
one tube is nonconducting. Thus there are two stable states, corre
sponding to regions 1 and 3 of the d-c characteristics, as follows: 
(1) V1 conducting and V2 cutoff; (2) V2 conducting and V1 cutoff. Thus, 

Ebb -AMPLIFIER - COUPLING 
TUBE CIRCUIT 
V1 --

~ I 0 

,, ,, 
- AMPLIFIER 

COUPLING ~ 
TUBE 

CIRCUIT 
~ V2 
~ 

(a) BLOCK DIAGRAM (b) CIRCUIT DIAGRAM 

Fig. 18.2. Essential features of the basic multivibrator type of circuit. 

under normal conditions, the circuit will operate quiescently in one of 
its two stable states. 

Now suppose that the circuit is in one of its two stable states. To 
make it switch over to the other stable state it is necessary to create an 
unstable condition by momentarily making both tubes conduct. This 
action closes the feedback loop so that regenerative switching takes 
place. The feedback loop is usually closed by inserting a small triggering 
impulse into the circuit in such a way that it appears positive on the grid 
of the off tube. If it has sufficient amplitude, the trigger will make the 
tube momentarily conduct, the feedback loop closes, and the resulting 
instability causes operation to switch over to the other stable state. 

All multivibrator type circuits operate according to this general 
outline. In bistable circuits, d-c coupling is used between the tubes. In 
the monostable multivibrators, one d-c coupling circuit is replaced by 
a-c coupling, and the action of this circuit produces self-triggering from 
one stable state. Astable circuits are created by using a-c coupling for 
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both coupling circuits, so that self-triggering from both stable states is 
possible. The block diagrams of figure (18.3) illustrate this idea. 

The mechanism involved in self-triggering is relatively easy to under
stand. For example, consider the monostable multivibrator block 
diagram. When the trigger is applied to the normally off tube, 
regenerative switching occurs, with the result that it is made con
ducting while the normally on tube is now cut off. The function of the 
a-c coupling is to provide a time varying grid voltage on the grid of the 

DC 
COUPLING 
CIRCUIT 

AMPLIFIER 
TUBE 

V1 

DC 
COUPLING 

CIRCUIT 

AC 
COUPLING 

CIRCUIT 

AMPLIFIER 
TUBE 

V2 

(a) BISTABLE MULTIVIBRATOR (bl MONOSTABLE MULTIVIBRATOR 

AMPLIFIER 
TUBE 

v, 

AC 
COUPLING 

CIRCUIT 

(cl ASTABLE MULTIVIBRATOR 

Fig. 18.3. Types of multivibrator (block diagrams). 

tube that is now off; at some specified instant this voltage has the 
proper value to make the tube conduct. This closes the feedback loop 
and the circuit is self-triggered back to the original stable state. The 
actual process involved here is explored in some detail in later sections. 

18.3. Bistable Multivibrator 
The complete circuit diagram of a bistable multivibrator is given in 

figure (18.4). This is essentially the same as the Eccles-Jordan circuit 
with a cathode bias circuit instead of a separate grid supply. Also, two 
capacitors, C1 and C2, have been added. This is a refinement that will 
be explained later. This is called a plate coupled multivibrator because 
both interstage coupling circuits are from plate to grid. Disregarding 
C1 and C2, the circuit operates as explained in the preceding section, 
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requiring the use of positive trigger pulses of sufficient amplitude to 
make the tube conduct and close the feedback loop momentarily. 

The inevitable presence of tube interelectrode capacitance, especially 
the input capacitance, is unfortunate because it is directly in shunt with 
the gridleak resistor which is a part of the d-c coupling circuit. Because 
of the steep edge and short duration of the usual triggering impulses, 
this capacitance provides a low impedance path to ground for the trigger. 
As a result, it appears in reduced amplitude on the grid of the tube and 
might not have sufficient amplitude to make the tube conduct. 

The speed up capacitors C1 and C2 are added to the circuit to com
pensate for the shunting effect of the tube input capacitances. The 

Ebb 

Fig. 18.4. Plate coupled bistable multivibrator. 

compensation is achieved by making the speedup capacitors large 
compared to the tube capacitances. The capacitive voltage divider so 
formed causes most of the trigger pulse to appear across the tube input 
capacitance, and hence on the grid of the tube. 

The cathode bias requirements for the circuit are not severe, because 
only one tube conducts at a time except during the switching interval. 
Thus the current through Rk is nearly constant when tubes of the same 
type are used. 

The equivalent plate circuit for either of the two amplifiers in the 
multivibrator is easily constructed, as shown in figure (18.5). The 
cathode bias circuit is replaced by an equivalent battery Ek1c• The other 
half of the multivibrator has exactly the same equivalent circuit, with 
different component identification. 

The speedup capacitors were omitted from the equivalent circuit 
along with the input capacitance of the tubes because they affect only 
the transition interval. This problem is treated briefly in a later section. 
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It should be borne in mind that the grid of either tube might be driven 
positive. If this occurs, the equivalent circuit should show Ru in parallel 
with a series combination of r u and Ekk, where r u is the equivalent 
grid-to-cathode resistance. 

OF1 f ON R Re 
L1 

,;_Ebb =.Ee 

(a) EQUIVALENT CIRCUIT (bl THEVENIN EQUIVALENT OF(a) 

Fig. 18.5. Equivalent plate circuits of one amplifier section of a bistable 
plate coupled multivibrator. 

The derivation of design equations and the computation of the 
various circuit voltages is a straightforward application of circuit theory 
to the equivalent circuit. This is left as an exercise for the reader. 

18.4. Bistable Multivibrator, Variations and Refinements 
The basic bistable multivibrator is widely used, but it suffers from a 

serious disadvantage inherent in plate coupling. The difficulty arises 

Fig. 18.6. Electron coupled, bistable, plate coupled multivibrator. 

because the waveforms generated by these circuits are usually picked off 
at some point in the circuit and coupled to some other circuit. Because 
of the coupling, the circuit receiving the multivibrator signal is 
unavoidably included in the multivibrator circuit and thereby alters 
its characteristics. 
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This disadvantage can be largely overcome by using electron coupling 
as shown in figure (18.6). Here pentodes are connected so that the 
screen serves as the plate of the multivibrator tube. The signal is then 
taken from the actual plate of the tube and this is isolated from the 
multi vibrator. 

vi 
NEGATIVE 
TRIGGER 

V2 

Re 

CcI 
NEGATIVE 
TRIGGER 

Fig. 18.7. Use of diodes for trigger insertion. 

The same sort of problem exists with regard to the insertion of the 
triggering impulses because the inserting device must not have an 
appreciable effect upon the action of the multivibrator circuit. The 

Ebb 

+ 

Fig. 18.8. Use of trigger triodes for trigger insertion. 

a:: 
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C) 
C) 

a:: ... 
+ 

simplest method of doing this is to use coupling diodes as shown in 
figure (18. 7). The diodes conduct only during the application of a 
short negative pulse. They are open circuits at all other times and 
effectively disconnect the triggering signal source from the multivibrator. 

An alternative method for trigger insertion requires the use of trigger 
triodes connected directly in parallel with the multivibrator tubes as 
shown in figure (18.8). The trigger tubes are biased off at all times 
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except when a positive trigger pulse appears at the grid. The tube then 
conducts momentarily and a negative pulse appears at the plate of the 
multivibrator tube. This pulse is cou pied over to the grid of the next 
tube, amplified, inverted, and applied to the grid of the original tube 
where it produces triggering by turning the tube on. 

OUTPUT 

V2 

Fig. 18.9. Bistable cathode coupled multivibrator. 

The whole problem of coupling in and out of multivibrator circuits 
can be approached from a different angle by a simple change in circuitry. 
By removing the bypass capacitor from the cathode circuit and by 

---- DEGENERATIVE 
TRIGGER GROUNDED 
IN ~ CATHODE 

AMPLIFIER V1 

DC 
COUPLING 

CIRCUIT 

k G 
.,_ _______ k--1 DEGENER('TIVE 

GROUNDED 
CATHODE 

AMPLIFIER V 

Fig. 18.10. Block diagram representation of a cathode coupled bistable 
multivibrator. 

removing one of the plate-to-grid coupling circuits, the bistable cathode 
coupled multivibrator of figure (18.9) is obtained. 

Assume that operation is in the stable state corresponding to V1 off 
and V2 on. The plate current in V2, flowing through Rk, develops 
enough bias on V1 to hold it cut off. In the reverse stable state, the 
constants of the d-c coupling circuit and the current through V1 are 
sufficient to hold V2 cut off. 

The advantages of this circuit are apparent from figure (18.9). 
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Coupling in and coupling out are accomplished in such a way that the 
coupling circuits are isolated from the elements comprising the 
multivibrator. 

The general nature of the circuit may be more obvious from the block 
diagram given in figure (18.10). 

18.5. Monostable Plate Coupled Multivibrator, Operation 
Monostable operation is obtained from the basic bistable circuit by 

replacing one of the d-c coupling circuits with a conventional RC 
interstage network as shown in figure (18.lla). Under normal con
ditions, V1 is held nonconducting by the bias voltage Ecc and the 

(a) CIRCUIT DIAGRAM 

V1 TUBE 

NORMALLY 
OFF 

DC 
COUPLING 

CIRCUIT 

Rg,- R1 - C1 

(bl BLOCK DIAGRAM 

AC 
COUPLING 

CIRCUIT 
Rg2 - C2 

V2 TUBE 

NORMALLY 
ON 

Fig. 18.11. Monostable plate coupled multivibrator. 

constants of the d-c coupling circuit; V2 is normally conducting. The 
circuit cannot trigger itself from this condition and this is called the 
normal state. When an externally supplied positive pulse of sufficient 
amplitude is applied to the grid of V1 , the feedb,ack loop closes and the 
circuit undergoes regenerative switching to the other stable state. The 
general problem may be more apparent from the block diagram in 
figure (18.llb). 

Following the insertion of the trigger, the circuit operation is in the 
other stable state corresponding to V1 conducting and V2 cut off. This 
is called the timing state. 

Operation in the timing state is easily understood. When the trigger 
is first applied to the grid of V1 in the normal state, it conducts, and its 
plate voltage drops precipitously. The voltage across the capacitor C2 

cannot change instantaneously, so that the grid of V2 drops by the same 
amount as the plate of V1• This drives the grid voltage on V2 below 
cutoff, and conduction in V2 ceases. The plate voltage of V2 rises to 
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Ebb and this increase is coupled over to the grid of V1 and renders V1 
highly conducting. 

Following this, C2 commences discharging through Ru
2

, Rv and V1 ; 

the resulting transient generates a voltage across Ru
2

, on the grid of V2, 

that rises exponentially from a low negative value toward zero. As 
soon as this voltage decays to the cutoff pokntial of V2, the tube 
conducts, closing the feedback loop, and causing regenerative switching 
that ends when the original normal state is re-establishtd. The circuit 
has clearly triggered itself. It then awaits another external trigger, 
having executed one complete operating cycle in response to the single 
trigger pulse. 

The self-triggering is accomplished through the transient discharge 
of C2• Thus C2 largely controls the duration of the generated pulse, and 
is therefore called the timing capacitor. The timing is also affected by 
V1, RL

1
, and Ru,: However, Ru

2 
is generally so large that the other 

factors are relatively unimportant. Hence it is called the timing 
resistance. A detailed analysis of the multivibrator is given in the next 
section; it is primarily concerned with the timing state. 

18.6. Monostable Plate Coupled Multivibrator, Analysis 

The duration of the generated pulse and the waveforms appearing at 
various points in the circuit of the monostable multivibrator of figure 
(18.11) can be evaluated rather simply from the equivalent plate circuits. 
The best way of going about this is to construct the equivalent plate 
circuits of the two amplifiers separately for each of the two stable states 
of operation. Thus, in figure (18.12a), the two equivalent plate circuits 
for the normal state (V1 off and V2 on) are shown. Figure (18.12c) 
shows the equivalent plate circuits in the timing state ( V1 on and V2 off). 
All these circuits are easily simplified to series RC circuits by using 
Thevenin's theorem at the indicated terminals. The results of this 
simplification may then be observed in figure (18.12b). These are the 
circuits that will be used in the mathematical formulation because they 
have precisely the same form as the general case worked out in figures 
(17.13) and (17.14). 

Assume that the multivibrator has been in its normal state for a 
relatively long time so that all transients may be assumed to be complete. 
The equivalent circuits of figure (18.12b) apply and the currents must be 
zero if transient effects are actually complete. Thus the voltage across 
C2 must be Ew This is the voltage across the capacitor at the instant 
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the trigger pulse is applied. Hence, the initial capacitor voltage for the 
timing state, which follows the trigger, is clearly y = Ew 

Now, if the trigger has been applied, then o+ seconds later, the circuit 
is in the timing state and the equivalent circuits of figure (18.12c) apply. 

EQUIVALENT CIRCUIT FOR v1 OTHER HALF OF MULTIVIBRATOR 
(a) STABLE STATE I; NORMAL STATE; V1 CUT-OFF, V2 ON 

(c) STABLE STATE 2, TIMING STATE; v1 ON, v2 CUT-OFF 

Fig. 18.12. Equivalent circuits of a monostable plate coupled 
multi vibrator. 

The voltage applied to the capacitor of this circuit is clearly 

EA= Eel - µle111 

Rei (E ) Re1 = EbbR- + o - µ1ee 1 -

L1 rP1 

The value of ee
1 

can be computed from the equivalent circuit of V
2 

during the timing period. A quick calculation shows that ee
1 

will be 
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slightly positive, possibly by a fraction of a volt. Hence µec
1 

and E0 are 
of about the same size. Thus, without much loss in accuracy, it is 
reasonable to assume that (E0 - µ 1ec

1
) _:.__ 0. Consequently the voltage 

applied to the RC circuit in the timing state is 

Re 
EA _:.__ Ebb _1 

RL1 

Using the formulas in figure (17.14), the transient current through 
the circuit is 

i = EA - Y E-tl<Re1+Rg2)C2 

Rel+ Rga 

Therefore the voltage appearing on the grid of V2 is 

e - iR - (E - y) Rga E-tl<Re1+RgzlC2 
ca - gz - A R + R 

el Y2 

(18.1) 

Substitute for EA and y, and the result can be expressed as 

Ebb Re1Rg2 -tl(Re1+Rg2 )C2 
e =--·---E (18.2) 

ca r1l1 Re1 + RY2 

At this point it is wise to stop and consider the terms in this equation 
rather carefully. Because Re

1 
was defined on figure (18.12c) as 

, RR 
R = e1 Y2 (18.3) 

Rel+ Rg2 

is the total parallel combination of all the resistances in the plate circuit 
of the V1 amplifier. That is, it is exactly equal to the equation for R 
defined for resistance coupled amplifiers in chapter 4. It is the mutual 
impedance of the plate circuit of the V1 amplifier under nonreactive 
conditions. Also, the quantity in the exponent is 

I 
w1 =-----rps (18.4) 

(Rel + Rg2)C2 

where w1 = lower cutoff frequency of the resistance coupled V1 

amplifier. Finally, if you recall that gm
1 

= µ 1/r j)1
, then when all these 

substitutions are made, the equation for the grid voltage in ( 18.2), 
reduces to 

(18.5) 
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Of course, you remember from chapter 4 that gm
1
R = Ar

1 
= reference 

gain of the V1 amplifier. Hence 

Ebb A -wit 
eC2 = - - r/ 

µ1 
(18.6) 

Thus, during the timing state, the grid voltage on V2 has the form shown 
in figure (18.13a). 

The duration of the timing state is equal to the time required for 

(a) CIRCUIT DIAGRAM ( b) TIM ING WAVEFORM SHOWING 
THE EFFECT OF VARYING Ekk 

Fig. 18.13. Monostable plate coupled multivibrator with positive grid 
return. 

ec
2 

to reach -Ec
02 

because self-triggering occurs at this instant. If this 
time is specified as T, then 

_ E _ EbbA -w1T 
eC2 - - CO2 - - - r/3 

µl 
Solve for T. 

T = In Ar1 + In (Ebb/ µ1Eco2) 
(18.7) 

W1 

This is an important and useful result. For example, it shows that 
multivibrators can be designed from the data generally available on 
resistance coupled amplifiers because Ar

1 
= reference gain of the V1 

amplifier; w1 = lower cutoff frequency of the V1 amplifier. It clearly 
shows that the low frequency characteristic of the amplifier largely 
controls the timing and that short pulse durations are achieved at the 
expense of gain. It also shows that short pulse durations require the 
second factor In (Ebb/ µ 1Ec

02
) to be as small as possible. This requires the 
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use of tubes having nearly straight, parallel, sharp cutoff plate charac
teristics, because under these conditions, µ 2 = Ebb/ Ec

02 
and 

Ebb . 
ln--=lnl=O 

µ1Eco2 

The amplitudes of the positive and negative pulses at the two plate 
terminals are easily computed from the waveforms given in figure 
(18.13), with terms defined in figure (18.12). 

TRIGGER 
IN 

SELF 
TRIGGERS 

0 ~---= ... =1.------.---

(a) TIMING VOLTAGE; 8c2 

(c) PLATE VOLTAGE ON vi; eb I 

TRIGGER 
rlN 

SELF 
'TRIGGERS 

0 1----t-""-----+---

(bl GRID VOLTAGE ON V1 i8c 1 

Ec2 

0----------

Fig. 18.14. Voltage waveforms in a monostable plate coupled 
multi vibrator. 

The operating characteristics of the circuit can be improved by 
returning the timing resistor Ru

2 
to some arbitrary voltage shown as 

Ekk in figure (18.14)8 The effect of this change on the timing waveform 
is shown in the same figure. 

The alteration of the grid return voltage causes two main effects: 
(1) The pulse duration is more accurately defined because the angle 

of interception of ec
1 

with - Eco is less oblique. 
(2) The pulse duration is shortened. 
Because of the greater stability of pulse duration, large values for Ekk 

are often used. It is common practice to connect Ru
2 

directly to Ew 
The circuit of figure (18.14) can be analyzed in exactly the same way 

as the circuit with grounded timing resistor. It is left as an exercise for 
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the reader to show that the resulting equation for the pulse duration is 
approximately 

1 1 + Ar Ebb/ µlEkk 
T--=-- - In----- (18.8) 

W1 1 + Eco/Ekk 
if it is assumed that (I) Rg

2 
is much larger than r 'Pt and R Li; (2) 

E
01

--=-- µ1ec
1

• If Ekk is zero, the equation reduces to equation (18.7). If 
Ekk = Ebb, 

T--=-- -In 1 I ( 1 + Ar I µ1) 
W1 1 + Eco/ Ebb 

(18.9) 

It is clear from equation (18.8) that variations in the grid return 
voltage will have little effect until Ekk approaches and exceeds the 
cutoff voltage of V2• 

18.7. Monostable Cathode Coupled Multivibrator, Normal 
State 

By removing the one d-c coupling circuit from the monostable plate 
coupled multivibrator and including a common unbypassed cathode 

--I,___,.._ 
TRIGGER 

IN 

Ebb 

Fig. 18.15. Monostable cathode coupled multivibrator. 

resistor, the monostable cathode coupled multivibrator of figure (I 8.15) 
is obtained. In the normal state, from which self-triggering is not 
possible, V1 is cut off and V2 is conducting. This condition is assured 
by returning the gridleak resistor of V2 to Ebb and by proper adjustment 
of the other circuit parameters. The exact relationship will be derived 
later. The timing state, from which self-triggering does occur, is obtained 
when V1 is conducting and V2 is cut off. 

The circuit diagram and symbols to be used are ·given in figure (18.15). 
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Note that all voltages measured with respect to ground carry an extra 
subscript n. Voltages measured with respect to the common cathode do 
not have this subscript. 

The equivalent circuit of the V1 amplifier in the normal state is shown 
in figure (18.16). If the circuit has been in this state for some time, 
transient effects can be neglected. It is then possible to compute the 
relationships between the circuit constants required to prevent self
triggering from this mode. 

If the transients are complete, no current flows through C2 or R Li in 
the equivalent circuit of figure (18.16). Thus the only voltage loop 

: Ebb 

Fig. 18.16. Monostable cathode coupled multivibrator: equivalent plate 
circuit of the V1 amplifier in the normal state ( V1 off and Vi on). 

equation required is Ebb = lg/Rg
2 
+ r Yz) + Ek. Thus the grid current 

of V2 is 

In all practical cases the gridleak resistor Rg
2 

is much larger than 
the equivalent grid resistance r g

2
• Hence the grid current is approxi

mately lg
2

-=- (Ebb - Ek)/Rg
2

• The grid current is now known, so that 
the grid voltage on V2 is 

Because Rg
2 

is much larger than r g
2

, the grid-to-cathode voltage ec
2 

is 
nearly zero, being positive by only a few tenths of a volt. For all 
practical purposes we can assume that ec

2 
is zero. 

The grid voltage of V2 is now known, so that we can easily find the 
operating point of the tube by drawing the load line for (R L + Rk) and 
Ebb on the static characteristics. The quiescent plate current /b

2 
is 

thereby determined. 
All the currents flowing in the equivalent circuit of figure (18.16) are 
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now known. Hence the various network voltages are easily computed 
to be 

ebn co-)= Ebb - lb RL 
2 2 2 

Ek = eiO-) = (/b
2 
+ I 02)Rk 

eb/O-) = Ebb - Ib/RL
2 
+ Rk) - I02Rk 

ec'co-) = Ecc - (lb + lg )Rk 
1 2 2 

ec11/0-) = ec/O-) + eiO-) __:_ Ib
2
Rk 

(18.10) 

(18.11) 

(18.12) 

(18.13) 

(18.14) 

The entire evaluation has been made assuming that V1 is cut off. 
If this condition is to actually exist, then from equation (18.13), 

[(/b
2 
+ lg

2
)Rk - Ecc] > Eco (18.15) 

The circuit must be designed to maintain this inequality, otherwise the 
circuit will become astable. 

Because V1 is cut off, we now know that 

ebnlco-) = Ebb 

The voltage across the timing capacitor C2 is 

if /
02 

is neglected in comparison to /b
2

• 

(18.16) 

(18.17) 

When the triggering impulse is applied at t = 0, because of regener
ative switching, V1 conducts and V2 cuts off. The circuit is then in the 
timing state, and the analysis of this interval is given in the next section. 

18.8. Monostable Cathode Coupled Multivibrator, Timing 
State 

The transition from the normal state to the timing state requires a 
very short interval of time. Thus the moment the transition is concluded 
is designated as t = o+. 

The first equivalent plate circuit for the V1 amplifier in the timing 
state is shown in figure (18.17a). It has been implicitly assumed that 
the grid of V1 is negative because experience indicates that this is a 
desirable situation and the circuit should be designed to achieve it. 

The equivalent circuit can be modified somewhat because 

eel = ecnl - ek = Ecc - ib1Rk 

Hence the µec1 generator becomes 

µec1 = µEcc - ib1µRk 

Therefore, using this relationship, the circuit of figure (18.17b) is 
obtained. Also, because ec

1 
is assumed to be negative, the foregoing 
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equation specifies the necessary condition. That is (Ecc - ib
1
Rk) < 0, or 

iblk > Ecc (18.18) 
This is not a useful relationship yet because ib

1 
is unknown. 

Finally, the circuit computations are simplified if the Thevenin 
equivalent of figure (18.17b) is evaluated at the marked terminals. The 

C2 
P1 + t"'---.---e---.iil/V\,----,, 

L ,:e., r, 1e•2 l 
1 :.r--r.------ -r 

(a) FIRST EQUIVALENT CIRCUIT 

(b) REVISED EQUIVALENT CIRCUIT 

(c) SI MPLI Fl CATION OF Cl RCUI T IN (b) BY 
USING THEVENIN'S THEOREM AT THE 
MARKED TERMINALS 

Fig. 18.17. Equivalent circuits of the V1 amplifier of the monostable 
cathode coupled multivibrator in the timing state. 

result appears in figure (18.17c) where the equivalent generator and 
internal impedance are given as 

E = Ebb - ( Ebb + µEcc - Eo ) RL (18.19) 
e r P + R Li + Riµ + 1) 

RL1[rp + Riµ + l)l 
R = ------- (18.20) 

e rp + RL
1 
+ Riµ + 1) 
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For triodes it is valid to assume that (Ebb+ µEcc) is much greater than 
the intercept voltage E0 • Hence E0 can be neglected in equation (18.19). 
A useful form of equation (18.19) results if the following algebraic 
manipulations are performed on the bracketed part of the equation: 

(I) Divide the numerator and denominator by (r P + R L/ 
(2) Multiply and divide by r p• 

(3) Replace r P with µ/ gm. 
Equation (18.19) then assumes the following form: 

E-E -[Ebb+E ] [ gm )r, R /(r +R )] (18 21) 
e- bb µ cc l+Riµ+l)/(RLi+rP) P L 1 P L1 • 

The second bracketed factor is easily identified as 

which is effective transconductance of a grounded cathode amplifier 
with cathode degeneration. Furthermore, if R

02 
is very much larger 

than r P or R v which is generally true when triodes are used, the last 
bracketed factor in equation (18.21) is R = r PRL/(r P + RL

1
), the 

mutual impedance of the amplifier circuit in the reference case. 
Consequently, the equivalent Thevenin generator can be expressed as 

(
Ebb ) , 

Ee = Ebb - µ + Ecc gmR (18.22) 

Of course, A; = g:nR = reference gain of the degenerative amplifier. 
Hence 

(18.23) 

The total voltage applied to the equivalent circuit for the timing 
capacitor is 

(18.24) 

The initial capacitor voltage is Ydch = Ebb - Ek. Therefore the transient 
discharge current is 

. EA + Y dch -tl<Re+Ru2 lC2 
l -----c: dch - R + R 

e U2 

However, w1 = 1/[(Re + R
02

)C2] = lower cutoff frequency of the 
nondegenerative amplifier. It is also generally true that R

02 
is much 
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larger than Re. Hence substituting these relationships and the equations 
for EA and Yach yields 

. (Ebb/µ + Ecc)A~ + Ebb - Ek -wit 
lach = ---------- e 

RY2 

The value of the current immediately after the trigger pulse is 

• (Q+) _ (Ebb/µ + Ecc)A; + Ebb - Ek 
1ach - ----------

RY2 

The plate-to-ground voltage of V1 at this same instant is 

ebn/o+) = Ee + iaciO+)Re 

= E (t + ~ _ Ek.~) _ (Ebb+ E ) (A' Re) bb R E R cc r - A 
Y2 bb Y2 µ Y2 

However, it is known that Ek is less than Ebb and that Re is much less 
than Rg

2
• Hence it is possible to show that 

+ ....!- (Ebb ) , ebni(O ) - Ebb - µ + Ecc Ar (18.25) 

The grid-to-cathode voltage on V2 can be computed in the same way. 
That is, 

or (18.26) 

Because V2 is cut off, the plate-to-ground voltage is 

ebr1
2
(0+) = Ebb (18.27) 

The plate-to-ground voltage of V1 can be computed from figure (18.17b) 
to be ebn/O+) = Ebb - ixR Li· Hence the current ix is ix = (Ebb - eb 111)/ 
RL

1
• Hence, immediately after the trigger, 

E - e (O+) 
ix(O+) = bb R bn1 

L1 
or, substituting equation (18.25) 

ix(O+) =(Ebb/µ + Ecc)A; (lS.2S) 
RL1 

The remaining circuit voltages are now easily found to be 

eiO+) = ix(O+)Rk because ix• idch (18.29) 

ec1(0+) = Ecc - eiO+) 

ec
2
(0+) = ec 11 /0+) - eiO+) 

(18.30) 

(18.3 I) 
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Thus all significant points on the waveforms of the various circuit 
voltages can be computed from equations (18.25) through (18.31). 

Following the trigger, the two voltages ek and ebn
2 

reach their final 
values at t = o+. This occurs because the current ix producing the 
voltages is unaffected by the timing capacitor and is nontransient. Thus 
the plate-to-cathode voltage of V2, the nonconducting tube, is constant 
through the timing state at a value 

eb
2 

= ebn/O+) - eiO+) 

Knowing this voltage, the corresponding grid cutoff voltage Ec
02 

is 
easily found from the plate characteristics of the tube. When this value 
is equalled by the grid voltage ec

2
, tube V2 conducts and the timing 

interval ends as a result of self-triggering. Thus the pulse duration is 
controlled by the time required for ec

2 
to change from the value at t = o+ 

to Ec
02

• Designating the pulse duration as T, and the moment just prior 
to self-triggering as t;-' then ec/tn = ECOz' Also, from the equivalent 
circuit, ec

2 
= ecn

2 
= ek. Hence substituting the equations for ecn

2 

and ek leads to 

ecz = Ebb - (Ebb+ Ecc) A; (:k + E -wit)- (Ebb - Ek) cwi 
µ Li 

When t = T, then ec = Eco . Hence this leads to 
2 2 

(Ebb - Eco
2

) - :k ( Ebb + Ecc) A; 
E-WiT = Li µ 

(
Ebb ) , µ + Ecc A,+ (Ebb-Ek) 

(18.32) 

and the pulse duration works out to be 

1 [ (Ebb/µ + Ecc)A; + (Ebb - Ek) ] 
T=-ln Rk , 

W1 (Ebb - Ec02) - R (Ebb/µ + Ecc)A, 
Li 

(18.33) 

This is a useful design equation because most of the factors involved 
are specified by other considerations. 

One important point remains to be cleared up. This analysis was 
based upon the assumption that the grid of V1 was slightly negative 
during the timing state. For this to be true it is necessary that 
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Substituting for eiO+) yields 

(
Ebb+ E ) A' RL1 > E 
µ cc r Rk - cc 

f=o 

TRIGGER 

I 
WAVEFORM r 
OF eb n I 

0 ,____..;::::::::=-------==-------
t=O t 1 

I WA~ 

O----+L:-OF,.__~_"2 ____ _ 

0 F eb n 2 
~---

I 
·: WAVEFORM 

o----o 

I 
WAVEFORM ~ 

--.____oF_ek---.11 __ _ 

o._ ___________________ _ 

(18.34) 

Fig. 18.18. Waveforms in a monostable cathode coupled multivibrator. 

After some manipulation this condition can be written 

RL1 > µ 
1 

Rk - (Ebbf Ecc + µ)Ar 
(18.35) 

This, together with the inequality specified in (18.15), are the key factors 
in assuring proper operation. 

The remaining points on the circuit waveforms, which are shown in 



674 Trigger Circuits-Non-Sinusoidal Oscillators [Sec. 18.9 

figure (I 8.18), can be computed by the same method as that followed 
here, simply using the proper equivalent circuits. 

One of the main advantages of the cathode coupled multivibrator is 
the fact that the pulse duration can be made to be almost linearly 
proportional to the grid bias. If this is true, the second derivative of T 
with respect to Ecc should be zero. If this is evaluated, the following 
inequality results: 

(18.36) 

This gives the design center value for Ecc· 
It should be clear from this analysis that the proper design of a 

cathode coupled multivibrator requires real technical skill. No amount 
of blind juggling will substitute for a careful preliminary analytical 
treatment. 

Fig. 18.19. Astable plate coupled 
multivibrator. 

18.9. Astable Multivibrators 

-Eco---

Fig. 18.20. Pulse synchronization of an 
astable multivibrator. 

The monostable plate coupled multivibrator shown in figure (18.11) 
can be made astable, or freely oscillating, by removing the one 
remaining d-c coupling and replacing it with a-c coupling. The resulti:qg 
astable plate coupled multivibrator is shown in figure (18.19) where 
both gridleak resistors are returned to a common arbitrary voltage Ekk• 

The analysis of this circuit proceeds in exactly the same manner as 
that outlined in section (18.6) for the monostable circuit except that 
this circuit has two timing states from which self-triggering is possible. 
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As a result, it should be obvious that the total period of the multi
vibrator can be expressed as 

T= T1 + T2 

1 ( 1 + Ar Ebb/ µIEkk) 1 ( 1 + Ar Ebb/ µ2Ekk) = -- In 1 + -- In ---2
----

(w1)1 1 + Eco/Ekk (w1)2 1 + EcoJEkk 

Typical waveforms in the circuit are computed by the same method 
as that followed for the monostable case. 

Astable multivibrators are often synchronized with some reference 
frequency signal because the frequency stability of multivibrators is 
rather poor. In all such cases, synchronization is accomplished by 
making the tubes conduct a little sooner than they would have in the 
absence of the synchronizing signal. The mechanism is clear in figure 
(18.20). 

18.10. Transition and Recovery Times 

The preceding rather detailed presentation of multivibrators was 
primarily concerned with the analysis of the normal and timing states. 
The transition time between states was assumed to be of infinitesimal 
duration. Actually, a finite time is required and the evaluation of the 
factors affecting it has been the subject of a number of searching 
studies. 2 The analysis, is a difficult undertaking and there is a little 
disagreement concerning the results. However, it is generally conceded 
that the figure of merit of RC amplifiers g ml C 1, is the parameter of the 
greatest importance in determining the transition time. Thus high 
figure of merit tubes and video amplifier practice, including shunt 
peaking and related ideas, should be used when short transition times 
are desired. The reader is referred to the basic papers2 for further 
details. 

It will be recalled from the analysis of the timing states in the various 
monostable multivibrators that the duration of the output pulses was 
governed by the transient discharging of the timing capacitor. When 
the timing state concluded, transition to the other state occurred, and 
the capacitor underwent transient recharging to its original value. 
This recharging time is called the recovery time. It sets a fundamental 

2 Chance, et al., Waveforms, vol. 19, Rad. Lab. Series, McGraw-Hill Book Co., 
Inc., New York, 1949, chap. 5 by D. Sayre, pp. 174-177; M. V. Kiebert and A. F. 
Inglis, "Multivibrator Circuits," Proc. IRE, vol. 33, August, 1945, pp. 534-539; 
E. M. Williams, D. F. Aldrich, J. B. Woodford Jr., "Speed of Electronic Switching 
Circuits," Proc. IRE, vol. 38, January, 1950, pp. 65-69. 
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limit upon the time between trigger pulses because the same kind of 
pulse will be generated after every trigger only if the circuit is given 
sufficient time to recover its initial conditions. High speed recovery is 
often an important design consideration. 

The recovery time is determined principally by (1) the clamping 
action introduced by the grid-cathode part of the tube; (2) the voltage 
to which the grid is returned; (3) the charging time constant = (r u

2 

+ R L
1
)C2• Thus the simplest ways to reduce the recovery time are to 

return the timing resistor to Ebb and to connect a low resistance diode 
directly across the grid-cathode terminals of the tube. 

Fig. 18.21. Use of a cathode follower to reduce recharging time of the 
timing capacitor C2• 

The charging time constant can be reduced, but variations in some of 
these circuit constants will also affect the duration of the output pulse. 

A final refinement can be made by inserting a cathode follower into 
the timing circuit as shown in figure (18.21). In this way the timing 
capacitor has nearly all the cathode follower current available for 
recharging. The recovery time is short. 

18.11. Principles of the Phantastron 

The phantastron, sanatron, and sanaphant are types of monostable 
trigger circuits. They differ from multivibrators mainly in the fact that 
a linear Miller integrated timing waveform is used rather than the 
exponential used in multivibrators. This is an important advantage 
because it increases the precision of the pulse duration. 

The general factors controlling the operation of a phantastron can be 
explained from the circuit shown in figure (18.22). The circuit is con
nected as a conventional Miller integrator with three exc~ptions: 
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(1) The control grid is returned to Ebb through the gridleak resistor, 

rather than to ground. 
(2) The suppressor is not grounded. Instead, it is biased negative by 

an amount sufficient to cut the plate current off. Plate current is allowed 
to flow for specified intervals by a positive gating pulse applied to the 
suppressor. 

(3) The screen is not bypassed to ground. 
The tube used in this type of circuit should have a sharp suppressor 

cutoff characteristic and a high suppressor-to-plate transconductance. 
Under normal conditions with the plate current cut off by the 

r-----.------....oEbb 

Fig. 18.22. Fore-runner of the phantastron. 

suppressor, the plate voltage is Ew Because the gridleak is returned to 
Ebb, the grid is positive by a voltage 

rg . rg 
ec =Ebb ___ = Ebb-

rg + R 9 Rg 

This voltage is practically zero because Rg is much larger than r g• The 
entire cathode current flows to the screen, so that the screen voltage is 
low. The voltage across C is almost equal to Ebb because it is the 
difference between the plate and grid voltages. These are the circuit 
conditions existing just prior to the incidence of a positive gate on the 
suppressor. 

With the arrival of the suppressor gate, current flows in the plate 
circuit, causing the plate voltage to drop. Because of the action of the 
feedback capacitor C, the grid drops by an equal amount and thereby 
becomes negative. The drop in plate voltage is halted by the action of 
the grid. Once this equilibrium is established, conventional Miller 
integration in a class A amplifier occurs. During this initial change in 
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operation the screen current is tremendously reduced because the tube 
is now operating as a conventional pentode. This causes a large positive 
pulse to appear at the screen. 

The action of the Miller integrator is such that the plate voltage falls 
linearly as a function of time until it bottoms. The grid voltage rises 
only slightly during this period. When the plate voltage bottoms, the 
potential to ground of the plate side of the feedback condenser becomes 
fixed. Thus the grid voltage rises rapidly toward Ebb as C charges. It 

SUPPRESSOR 
VOLTAGE 

SCREEN 
VOLTAGE 

I 
I 
I 
I 
I 
I 
I CAUSED BY 
f'1'GRID PIP 

1----- - - --1- --0 .__ ________________ _ 

I I I 

Ebb i---....;:- ~,I. ------t---t-T 
11~l'e,:e:~ BOTTOMING:+ C RECHARGES 

PLAT El ~4-,.1 I THROUGH R L 
VOLTAGE O~ I 0 L.:..::.:.:..:,.::. ____ ____:~=:::L--

0 ~ 
: CAUSED BY 

--- ---+----t- GRID CATHODE 
CONTROL GRID I f CLAMP 

VOLTAGE I I 

Fig. 18.23. Waveforms for the circuit of figure (18.22). 

reaches zero volts in a short time and is clamped there by the diode 
action of the grid-cathode circuit. This sudden jump in grid voltage 
from some negative value to a zero value causes the cathode current to 
increase markedly. The additional current has to be taken by the screen 
because the plate is bottomed. Hence the screen voltage drops suddenly 
because of the sudden increase in screen current. 

The circuit remains in this state until the end of the suppressor gate. 
When this occurs the plate current ceases and the plate voltage returns 
to Ebb as C recharges through R L· This increase is coupled over to the 
grid so that a positive grid pip is generated, the magnitude depending 
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upon the effectiveness of the grid-cathode clamp. The screen current is 
increased by the change in tube operation when plate current ceases. It 
will show a small negative pulse because of the positive grid pip. The 
various waveforms are shown in figure (18.23). 

18.12. Phantastron Analysis 
The equivalent circuit of the prototype phantastron, together with 

its Thevenin equivalent, are shown in figure (18.24) for the period when 

Y• Ebb 

l 
,Mt, \Iv\ 
RL Rg l I,: +'/-r 1 r-· eb 

9~:i• ei Ebb J ! 
(a) DIRECT EQUIVALENT PLATE CIRCUIT WHEN THE 

TUBE CONDUCTS; TIMING STATE 

w.,.,..--..... 

Rg 1 
Ebb : 

lb) THEVENIN EQUIVALENT OF (al TAKEN AT THE 
MARK ED TERMINALS WHERE 

E•Ebb- Ebb+Eo gmRe 
,,.. 

8c 
e=- -9m Re 

p. 

Fig. 18.24. Phantastron equivalent circuits. 

J 

the tube is conducting plate current. Note that the equivalent generator 
£ 0, which represents the intercept voltage, is reversed in polarity from 
the triode case. 

The complete network differential equation for the equivalent circuit 
in (18.24b) is 

1 
Ebb= i(Re + Ru) + C f i dt + E + µe 

However, it is shown in figure (18.24) that µe = -gmReec. Also, from 
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the equivalent circuit it is clear that ec = Ebb - iRy. Consequently, 

µe = -gmRe(Ebb - iRy) = gmReRyi - EbbgmRe 

Thus the system differential equation is 

1 
Ebb- E + Eb~mRe = i(Re +Ry)+ gmReRg +Cf i dt 

Now take the Laplace transform of the equation. Collect all d-c terms, 
including the initial capacitor voltage, together on the left side and then 
multiply through bys. Hence 

Ebb(l + gmRe) + (Ebb - E) [ ( ReRy ) I ] ----------=I s I+ gm --- + ----
Re + Ry Re + Ry (Rg + Re)C 

In the discussion of the resistance coupled amplifier in chapter 4 it 
was shown that 

Ar = reference gain = g mR 

ReRy 
=gm R + R 

e Y 

w1 = lower cutoff frequency 

1 

(Re+ Ry)C 

Hence, after evaluating (Ebb - E), the preceding equation is 

R, ~' R, + ~: ( E00 µ ; I + :•) = /[(! + A,)s + ro1] 

(18.37) 

This equation can be simplified by using a few approximations. In a 
pentode it is nearly always true that µ is much larger than 1. It is also 
generally true that E0 will be much less than µEbb' The use of these 
approximations reduces the preceding equation to 

!: A, ( I + g:RJ ~(I+ A,)I (s + I :\J (18.38) 

Hence the transform current is 

l(s) = I = Ebb . ~ . I + Ax . 1 
Ry 1 + Ar Ax S + W1/(l + Ar) 

where Ax = gmRe. Therefore the transient current, or inverse transform 
is 

(18.39) 
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The plate voltage during the conducting period is eb = E + iRe + µe 

or eb = E + iRe + gmReRyi- EbbgmRe 

In the preceding notation this becomes 

eb = E - EbbAx + i(Re + RyAx) 

Substitution for E and the use of the previous approximations reduces 
this equation to 

eb _:__ Ebil - Ax) + i(Re + RyAx) 

In nearly all cases, RyAx is much greater than Re. Now substitute 
equation (17.39) for i, and the approximate equation for eb is 

(18.40) 

As you can see, the plate voltage falls exponentially with a time 
constant (1 + Ar)f w1, toward a final value Ebb(I - Ax), which is extremely 
negative. Thus the fall occurs over a wide voltage range and with 
a long time constant. The actual fall that takes place will be only a 
small fraction of the total exponential and may be approximated by a 
straight line. The departure from linearity will seldom exceed 1 %. 

The initial slope of the plate voltage is 

deb I Ar 1 + Ax 
dt t =o - Ebbwl 1 + Ar . 1 + Ar 

The circuit is usually designed so that Ax and Ar are both much greater 
than I. Hence 

. Ax Re 
slope = -Ebbw1 -A = - Ebbw1 -

r R 
Now substitute for R, Re, and w1. After canceling common terms, 

. Ebb slope= - - (18.41) 
RyC 

The time required for the plate voltage to fall from nearly Ebb to the 
bottoming voltage Ebot is obviously 

T = Ebb - Ebot = R C (i _ Ebot) (18.42) 
slope g Ebb 

The bottoming voltage is only a few volts, while Ebb is usually several 
hundred volts. Hence if the fraction in equation (18.42) can be 
neglected in comparison with 1, then 

T = pulse duration · RyC (18.43) 
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18.13. Phantastron Circuits 
In the discussion of section ( 18.11) it was shown that a positive 

suppressor gate was required to actuate the tube and cause the linear 
rundown in plate voltage until the tube bottomed. It was also found 
that a large positive pulse was 
generated in the screen circuit as a 
result. The leading edge of the 
screen pulse coincides with the 
moment of plate current flow, 
while the trailing edge is coinci-
dent with bottoming. Hence the TR~GER 

circuit can be made monostable if IN 

this screen pulse is used to supply 
the suppressor gate. When this is 
done the circuit becomes the Fig. 18.25. Screen coupled phantastron 
screen-coupled phantastron shown 
in figure (18.25). 

Circuit operation is initiated by a positive trigger supplied to the 
suppressor through a coupling diode. The positive rectangular output 
pulse is taken from the screen and has a duration accurately defined by 

--i-----
TRIGGER 

IN 

Ebb 

Rg 

+ GATE 
,:_::,::,-:_-:_.'I'---___. __ OUT J"7.. 

Fig. 18.26. Cathode coupled phantastron. 

the time required for the plate voltage to fall to the bottoming voltage. 
The screen-coupled phantastron has two main disadvantages: A 

negative supply voltage is required for the suppressor bias and the 
positive output pulse from the screen is loaded by the suppressor circuit. 

Both of these shortcomings are corrected in the cathode-coupled 
phantastron shown in figure (18.26). Here the negative pulse generated 
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in an unbypassed cathode resistor is used. The suppressor is grounded 
so that the negative cathode-to-ground pulse appears as a positive pulse 
from suppressor-to-cathode. The necessary regenerative feedback is 
thereby obtained. The main disadvantage of this circuit is the gain loss 
caused by cathode degeneration. The pulse duration can be computed 
by the method outlined in section (18.12). 

18.14. Blocking Oscillator Principles 
It was shown in the preceding section that a multivibrator was 

essentially a two-stage resistance coupled amplifier with 100 % feed
back. If the second tube is replaced by a phase inverting transformer, 
the circuit becomes a blocking oscillator. A simplified circuit diagram 

AMPLIFIER TRANSFORMER 

+ FEEDBACK 

TRIGGER 

(a) CIRCUIT DIAGRAM ( b) BLOCK DIAGRAM 

Fig. 18.27. Simplified monostable blocking oscillator. 

and block diagram are shown in figure (18.27). A blocking oscillator 
can be astable or monostable, but never bistable. 

This circuit has not been accurately formulated. The difficulty arises 
mainly from the nonlinear characteristics of the pulse transformer and 
the lack of sufficient information regarding the positive grid charac
teristics of tubes. The problem is especially acute with receiving type 
tubes because they are not susceptible to simplifying approximations 
that are valid for high power tubes. 3 

The discussion of blocking oscillators is included here as an illustration 
of a case in which more refined methods of analysis are required. Only 
a brief qualitative explanation of the operation will be given. 

3 For a general discussion of the component characteristics required for a blocking 
oscillator, see Chance, et al., Waveforms, vol. 19, Rad. Lab. Series, McGraw-Hill 
Book Co., Inc., New York, 1949, chap. 6, pp. 205-253; For an approximate 
computation of the transient response of a pulse transformer, see C. K. Hadlock 
and D. Lebell, "Some Studies of Pulse Transformer Equivalent Circuits," Proc. 
IRE, vol. 39, January, 1951, pp. 81-83. 
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Under normal conditions the tube is biased off by the grid supply 
voltage. If a short positive trigger pulse is appHed to the grid to make 
the tube conduct, the feedback loop closes, the loop gain is greater than 
I, and the regenerative switching occurs. 

When the trigger causes the tube to conduct, the sudden change in 
plate current, though small in magnitude, is opposed by the transformer 
inductance. Thus nearly all the supply voltage Ebb is developed across 
the transformer, and the plate voltage drops sharply to a small value. 
This drop in plate voltage is coupled through the transformer and 
inverted so that it appears as a sudden increase in grid voltage. The 
increase is sufficient to drive the grid into the positive grid region. Thus 
the grid-cathode circuit is closed through a small resistance r u· 

Current flows in the grid circuit and this requires power that must be 
supplied by the plate circuit. Thus the plate load resistance is approxi
mately r g(N1/ Nu) 2 plus the transformer resistance. As a result, the a-c 
load on the tube changes from practically infinity to virtually zero in a 
brief instant. 

All these events occur so suddenly that the plate current ib changes 
only slightly from zero. However, after these initial changes, the plate 
current commences a relatively steady rise through the transformer 
mutual inductance and the tube. The tube r P and r u are both quite 
small, so that the circuit time constant and the current buildup are both 
long. This causes the current increase to be approximately linear so 
that eb, ec, and dib/ dt are practically constant. Actually, deviations from 
linearity always exist, and this causes eb to increase slightly, while ec 
decreases somewhat. This is shown in the waveforms of figure (18.28). 

The characteristics of the tube are nonlinear at high plate currents. 
Thus the rate of change of plate current decreases and eventually 
becomes zero. This effectively removes the positive grid signal and the 
grid voltage drops suddenly toward - Ecc· It attempts to decrease the 
plate current in the process, but it is opposed by the action of the trans
former, which now reverses its polarity and acts as a current source. 
The plate is thereby driven highly positive, well beyond Ebb, in an effort 
to sustain plate current flow by preventing the grid voltage from 
reaching the cutoff point. However, this very increase in plate voltage 
is coupled into the grid circuit, after being inverted, and further reduces 
the grid voltage. As a result, the circuit regeneratively switches the tube 
off. The circuit then awaits another trigger. The circuit waveforms are 
shown in figure (18.28). 

Designate the switching off value of plate current as / 8 • Assume that 
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the plate current increases linearly during the timing interval. Then the 
pulse duration is T · l 8dib/dt. The rate of change of current can be 
crudely approximated, because the transformer voltage drop is 
eT = Lmdib/dt, so that dib/dt = eTfLm. This drop is nearly constant 
during the timing state, so that the average value is approximately 
e T ....:_ Ebb - Ebot, where Ebot = eb (min) = bottoming voltage. Hence, 
the pulse duration is approximately 

(18.44) 

(al APPROXIMATE WAVEFORM OF e b 

0 1-----4-----+----

-E co - - - - - - - - - - - - - -

-Ecc 

(bl APPROXIMATE WAVEFORM OF ec 

Fig. 18.28. Approximate waveforms in a blocking oscillator. 

This equation should not be taken literally. It mainly serves to 
illustrate the dependence of the pulse duration upon the properties of 
the transformer and the bottoming or saturation characteristics of the 
vacuum tube. 

The oscillation shown in the waveforms of figure (18.28) is caused by 
ringing in the resonant circuit formed by the shunt capacitance and 
transformer inductance. 

Astable operation can be obtained by inserting a gridleak bias circuit 
of the desired time constant into the circuit in place of the bias supply. 

I 8. 15. Negative Resistance in Transistor Circuits 
Class A transistor amplifiers were analyzed in chapter 8, and it was 

shown that the input and output resistances could be negative under 
certain conditions for all thre~ of the basic amplifier configurations. 
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While this analysis is valid only for the variational characteristics, 
similar results are obtained for the d-c characteristics. This will be 
proved here. 

• TRANSIST'ORI----, 
I 
I 
I 

R17 
I 
I 
y 

E C 

(a) GENERAL CIRCUIT (b) EMITTER RESISTANCE CIRCUIT 

Fig. 18.29. Circuit diagrams for computing R1 • 

The input resistance of the general circuit shown in figure (18.29) is 

R12R21 
R-=R11 -----

i R22 + RL Ii 
(18.45) 

The specialized circuit when the transistor is connected and the equiva-

REGION 
I 

---------- I, --

SLOPE• R1 

Fig. 18.30. Negative resistance in the emitter circuit. 

lent circuit included is shown in figure (18.29b ). It is understood that 
the transistor slope resistances can have any one of three or four values, 
depending upon the region of operation. Reference should be made, 
in this connection, to the discussion of the transistor equivalent circuit 
in chapter I. 

For the circuit of figure (18.29b), R11 = r11 + Rb; R22 = r22 + Rb; 
R12 = '12 + Rb; R 21 = r21 + Rb. Hence the input resistance of the 
circuit at the emitter terminals is, after some rearrangement of terms, 
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CIRCUIT DIAGRAM 

--+-------- 1. -
REGION 

I 
REGION 

2 
REGION 

3 

DC CHARACTERISTICS 

(a) NEGATIVE RESISTANCE IN THE EMITTER CHARACTERISTIC 

---+------+--J_Ic 

I 
I 

I 
REGION I REGION 

3 : 2 
I 

I 
CIRCUIT DIAGRAM DC CHARACTERISTIC 

(b) NEGATIVE RESISTANCE IN THE COLLECTOR CIRCUIT 

REGION 
3 

CIRCUIT DIAGRAM DC CHARACTERISTIC 

(c) NEGATIVE RESISTANCE IN THE BASE CIRCUIT 

Fig. 18.31. Transistor negative resistance circuits. See A. W. Lo, 
"Transistor Trigger Circuits," pp. 1531-1541; A. E. Anderson, 
"Transistors in Switching Circuits," pp. 1541-1558, Proc. IRE, vol. 40, 
November, 1952. 

(18.46) 

Because there are at least three possible values for each of the transistor 
parameters, there are also three values for Ri. An estimate of the 
possible variation in Ri can be made by tabulating relative values for 



688 Trigger Circuits-Non-Sinusoidal Oscillators [Sec. 18.16 

the transistor slope resistances in the three main regions as follows: 

Region 
1 
2 
3 

rn 
high 
low 
lower 

r22 
high 
high 
very low 

ru 
low 
low 
low 

r21 
very low 
high 
zero 

Nature of Ri 
+ and large 
- and large 
+ and small 

The values of Ri computed from equation (18.46) are actually the 
slopes of the V6 vs. /6 characteristic in the three regions of operation. 
If such computations are made and if the characteristic is experimentally 
measured, the results appear approximately as shown in figure (18.30). 
This curve has the general form of an open circuit stable negative 
resistance. Such characteristics were discussed in a general way in 
chapter 10. The mechanism and methods of triggering can be figured 
by the same technique as that given in chapter 10. 

It is important to remember that the discussion here and in chapter 
10 neglected all reactive components that might appear in the equivalent 
circuit of the transistor. 

Similar negative resistance characteristics can be obtained from the 
collector and base circuits. These circuits, together with their computed 
characteristics, are shown in figure ( 18.31 ). 

18.16. Transistor Trigger Circuits4 

Transistor trigger circuits, like any other circuit involving open circuit 
stable negative resistance characteristics, can be monostable, bistable, 
or astable. 

For bistable operation it is necessary only to connect a power supply 
and series load resistance across the negative resistance terminals. This 
voltage and resistance are then adjusted so that the load line intersects 
the circuit characteristic at three points. The necessary conditions are 
summarized for the three basic transistor negative resistances in figure 
(18.32). Triggering from one stable state to another is accomplished by 
voltage trigger pulses of the amplitude indicated. The methods of 
trigger pulse insertion are the same as for vacuum tube trigger circuits. 

Monostable operation is achieved by making the circuit self-triggering 
from one of its stable states. For example, the insertion of a capacitor 
in parallel with either the emitter or collector power supply circuit will 

4 See the Proc. IRE, vol. 40, November, 1952, for the following articles: (a) G. E. 
McDuffie Jr., "Pulse Duration and Repetition Rate of a Transistor Multivibrator," 
pp. 1487-1489; (b) B. G. Farley, "Dynamics of Transistor Negative Resistance 
Circuits," pp. 1497-1508; (c) A. W. Lo, "Transistor Trigger Circuits," pp. 1531-
1541; (d) A. Eugene Anderson, "Transistors in Switching Circuits," pp. 1541-1558. 
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make the circuits monostable if the supply voltages and load resistances 
are adjusted to the proper values. A series inductance can provide the 
same function in the base negative resistance circuit. The circuit 

v, 
--+-------- I,- (I) Points I and 3 are stable 

(2) Point 2 is unstable 
(3)AV.

1 
• trigger amplitude 

required to change operation 
from I to 3 

required to change ope rat ion 
from 3 to I 

(a) OPE RAT ION WITH THE EMITTER CHARACTERISTIC 

I 
Ve 

___________ ,.._zc(I) Points I ond 3 are stable 

(2) Point 2 is unstable 
(3) ~Vc

1 
and A Vc

2 
are the 

trigger pulse amplitudes 
required 

(bl OPERATION WITH THE COLLECTOR CHARACTERISTIC 

_ _t_A_Y~~ 
--•----

ti) Points I and 3 are stable 
(2) Point 2 Is unstable 

(3) AVb 1 and Avb 2 are the 

1b trigger pu I se amplitudes 
required 

(c) OPERATION WITH THE BASE CHARACTERISTIC 

Fig. 18.32. Bistable transistor trigger circuits. See figure (18.31} for 
circuit diagrams. 

diagrams and operating conditions are summarized in figures (18.32) 
and (18.33). 

The mechanism of self-triggering is relatively easy to understand 
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from figure (18.33a). This shows the load line properly adjusted for 
monostable operation with the emitter negative resistance characteristic. 
Under normal conditions, the circuit is in its stable state, marked I on 

-----+--------------------r. ___ ...._ _______ .._ _____ _ 

(a) PATH OF OPERATION ANO OPERATING CONDITIONS FOR 
MONOSTABLE OPERATION 

time -----+ 

(b) WAVEFORMS IN MONOSTABLE 
OPERATION 

(c) CIRCUIT DIAGRAM 

v. 
---------- I,-

(d) CONDITION FOR ASTABLE 
OPERATION 

Fig. 18.33. Transistor trigger circuit using the emitter circuit negative 
resistance. 

the figure. If a trigger pulse of amplitude ~ Ve is supplied from a 
capacitive source (so that C will not bypass the trigger), operation will 
trigger over into another stable state. However, because the voltage 
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across C cannot change instantaneously, the emitter voltage is held 
constant, and operation changes to some point such as X; the tran
sition occurs along the dotted line as shown in figure (18.33a). At the 

CIRCUIT DIAGRAM 

CONDITION FOR MONOSTABLE 
OPERATION 

CONDITION FOR ASTABLE 
OPERATION 

(a) OPERATION WITH NEGATIVE 
RESISTANCE IN THE 
COLLECTOR CIRCUIT 

CIR CU IT DIAGRAM 

CONDITION FOR MONOSTABLE 
OPERATION 

CONDITION FOR ASTABLE 
OPERATION 

(b) OPERATION WITH NEGATIVE 
RESISTANCE IN THE BASE 
CIRCUIT 

Fig. 18.34. Astable and monostable transistor trigger circuits. 

same time, the emitter current increases from a small negative value to 
a large positive value. As the capacitor commences charging, the 
emitter voltage gradually increases and the operating point moves along 
the characteristic curve until point Y is attained. The circuit then 
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self-triggers with the emitter voltage momentarily held constant by the 
capacitor. Thus the operating point moves horizontally to the point Z. 
As the capacitor discharges, operation gradually approaches point 1 and 
the original stable state results. The circuit then awaits another trigger. 
The waveforms of figure (18.33b) are an obvious result of this discussion. 

The other two transistor negative resistance circuits can be explained 
in a similar way. In all three cases the computation of waveforms and 
pulse duration is a straightforward application of circuit analysis to the 
appropriate equivalent circuits. The general method of analysis has 
been illustrated several times for vacuum tube switching circuits, and 
the same techniques apply to transistor circuits. 

It seems clear that astable operation can be achieved with the same 
circuits as those used for monostable operation simply by changing the 
supply voltage and series resistance so that the operating point falls in 
the negative resistance region. This is shown in figures (18.33d) and 
(18.34). Self-triggering from each stable state now occurs and the 
circuits operate like stable multivibrators. 

18.17. Bistable Magnetic Amplifter5 

The circuit diagram of one type of bistable magnetic amplifier is 
shown in figure (18.35). The two stable states occur when (1) neither 
core is saturated and there is no output; (2) both cores are saturated 
and there is an output. As in nearly all magnetic amplifiers, in the 
absence of a signal input, the supply voltage e~c is adjusted so that the 
cores almost, but not quite, saturate. The core flux, in the absence of a 
signal input, alternates between two extreme values: 

(1) It is reset to cp0 by the magnetizing current in the control winding. 
(2) It is magnetized just barely short of saturation <Ps by the current 

in the load winding. Call this flux cf,;. 
Suppose that the instantaneous polarities of the various alternating 

voltages are as shown in figure (18.35). Assume that the flux in core 
no. 1 is cf,; and that in core no. 2 i!- cp0• During this half cycle the rectifiers 
act to prevent current flow in the control winding of core 2 and in the 
load winding of core no. 1. However, small magnetizing currents do 
flow in the other two windings, causing the flux in core 1 to be reset to 
cp0 by e~c while the flux in core 2 is gated from cp0 to cf,;. However, there 
is no output because neither core is saturated. 

5 R. A. Ramey, "The Single Core Magnetic Amplifier as a Computer Element," 
Communications and Electronics, January, 1953, pp. 442-446. 
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On the next half cycle the reverse condition prevails because all 
alternating voltages and the marked polarities shown on the figure 
reverse. Thus as long as there is no signal input so that both cores are 
reset by e~c• core saturation never occurs and there is no output across 
Z1. This is stable state 1. 

Now suppose that a signal pulse is applife to the a input during a 
half cycle such as that indicated by the dfarity markings on figure 
(18.35). If this pulse has sufficient amplitude it will prevent core no. I 
from being reset to </,0• Instead, it will be demagnetized only to some 
point <Px· Thus, on the next half cycle, core no. I will saturate at some 

R1 

Fig. 18.35. Parallel connected bistable magnetic amplifier circuit using 
single core elements. 

time in the cycle governed by the amplitude of the trigger pulse, and 
the load winding inductance will fall to zero. Thus eac is applied across 
Z1 and a large signal output is developed. This output is coupled 
through rectifier r1 and impedance Z2 back into the input circuit, where 
it will desirably have enough amplitude to prevent core 2 from being 
reset. If this occurs, core 2 saturates on the next half cycle, an output 
appears, and this prevents core I from being reset, and so on. Thus 
stable state 2 is attained because each core prevents resetting of the 
other core and each fires every other half cycle. 

It is evident that there is some restriction on the amplitude of the 
original trigger pulse. It must cause firing soon enough for the resulting 
output to prevent resetting the core flux in the other amplifier. 

Operation can be returned to the original state by allowing either one 
of the two cores to reset to the </,0 flux level. This will break up the 
chain of events sustaining stable state 2. It can be accomplished by 
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neutralizing the pulse appearing across Z2 by inserting a pulse of the 
opposite polarity from terminal b of sufficient amplitude to overcome 
the drop across Z2 and make rectifier r 4 conduct. This short circuits 
the feedback voltage and allows the nonfiring core to reset. Hence on 
the next half cycle the reset core does not fire, there is no output, and 

R 

z ... 

the other core is reset by e~c· The original 
stable state is obtained. 

The response time of the circuit, follow
-_ E ing a trigger to the time of the effect in the 

output, is one half cycle of the supply 
voltage. The maximum rate of operation 
is clearly one cycle of the supply frequency. 

Fig. 18.36. Load circuit cor- Presumably this type of circuit can be 
responding to Z1 and Z2 in operated at frequencies in the megacycle 

figure (ls.35). range, for certain core materials. 
The impedances Z1 and Z2 can be ordinary resistances. However, it 

has been found (Reference 5) that the circuit shown in figure (18.36) 
is more satisfactory. 

PROBLEMS 

18.1. For a cathode coupled multivibrator the following circuit consta1;1ts 
are used: V1, V2 = 6SN7; R Li = 10,000 ohms; Rk = 10,000 ohms; 
Ebb= 300 v; RL

2 
= 10,000 ohms; C2 = 200 µµf; Ecc = 45 v; Rg

2 
= 

1 megohm. Compute and draw the waveforms at all critical points of ek, 

ebn
2

, ebn
1

, ecn
2

• What is the duration of the pulse? 

18.2. The following circuit constants are used in a monostable plate 
coupled multivibrator: V1, V2 = 6SN7; R1 = 4 megohms; R Li = R L

2 

= 20,000 ohms; Ebb = 300 v; Ru
1 

= 4 megohms; C1 = 50 µµf; 
Ru

2 
= 1 megohm; C2 = 250 µµf. Compute the minimum value for Ecc that 

will guarantee monostable operation. Compute the duration of the output 
pulse. 

18.3. Calculate the frequency of oscillation of an astable plate coupled 
multivibrator with both gridleak resistors returned to ground if a 6SN7 tube 
is used with Ebb= 300 v; Ru

1 
= Ru

2 
= 1 megohm; C1 = C2 = 500 µµf; 

RL
1 
= RL

2 
= 20,000 ohms. 

18.4. Calculate and plot all significant and critical points of the plate and 
grid voltage waveforms of the circuit of problem (18.3). 

18.S. Compute the frequency of the multivibrator of problem (18.3) if the 
gridleak resistors are returned to Ew 
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18.6. Compute and plot the plate and grid voltage waveforms of the 
multivibrator of problem (18.5). 

18.7. The following data apply to an astable multivibrator: V1, V2 = 6SN7 
Rg

1 
= 500,000 ohms returned to Ebb; Ebb = 300 v; Rg

2 
= 500,000 ohms 

returned to ground; R Li = R L
2 

= 20,000 ohms. Positive synchronizing 
pulses at a frequency of 500 pps are applied to the grid of V2• The multi
vibrator is to generate a 100 µsec pulse in response to each such trigger. 
Compute the value of C1 required for a 100 µsec pulse. What is the minimum 
value for C2 to assure that the circuit operates properly with a 500 pps 
synchronizing signal? Compute the minimum trigger amplitude required to 
produce triggering if C2 = 1000 µµf. 

18.8. Derive equation (18.8) under the conditions specified in the text. 

18.9. The values for the slope resistances of a transistor in three regions of 
operation are given in Table 14. The transistor is connected into a circuit 
having Rb = 7000 ohms; RL = 2200 ohms; Vee= 45 v. Compute the 
emitter circuit input resistance for each of the three regions of operation. 
Draw a characteristic curve to represent this information by computing 
V6 vs. le in the three regions. 

18.10. From the characteristic computed and plotted in (18.9), determine 
suitable values for Rg and Vee for bistable, astable, and monostable operation. 

18.11. Derive an equation for the pulse duration of the output from the 
circuit of figure (18.33c). 

TABLE 14 

ru Yzz r12 r21 

Region 

Symbol 
Value 

Symbol 
Value 

Symbol 
Value 

Symbol 
Value 

(ohms) (ohms) (ohms) (ohms) 

1 ' 100,000 20,000 150 ' 150 rll Yzz r12 r21 

2 ru 250 Y22 20,000 r12 150 r21 50,000 

3 " 75 
I 

r" 120 " 120 " 80 rll 22 rl2 ru 
I 
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ACTIVE NETWORK ELEMENTS, 28 
Alpha cutoff, 317-318 
Amplification factor, 102 
Amplifier: 

bandpass, 230-243, 302, 314-317 
cascade, 162-246 
class A power, 407-428 
class AB, 439, 445-446 
class B, 439, 445-446 
class C, 439, 445-446 
distributed, 210-218, 243-245 
double tuned, 155-160, 205-210 
feedback, 247-283 
general definition, 61 
high pass, 107, 116-117, 140-149 
large signal, 408 
low pass, 105, 115, 117, 118-120, 

123-140 
magnetic (see Magnetic amplifiers) 
minimal noise, 341-342, 347 
modulated, class B, 493-497 
modulated, class C, 483-488 
multistage, 162-246 
optimum source conductance, 341-

342, 347 
noise equivalent circuit, 333-334, 343 
noise figure, 334-340, 344-348 
overstaggered, 200-203 
stagger tuned, 191-205 
transformer coupled, 302, 416-417, 

421 
transistor, 284-321, 342-348 
voltage (see Voltage amplifiers) 

Amplitude distortion, 53 
Amplitude limiters, 555-556, 601-609 

(see also Clippers) 
Amplitude modulation, 427-428, 467-

470 
Amplitude response: 

distortionless transmission, 54 
from pole-zero diagram, 53-56 

Amplitude selection, 608 
Angle modulation, 470-478 

697 

Arc discharge tube, 9 
Armstrong system, 501-503 
Astable circuit, 653, 674-675, 690-692 
Automatic gain control, 553-554 
Automatic volume control, 407, 429-

431, 553-554 
Available noise power, 335 
Available power gain, 320, 340-341 

BALANCED MODULATOR, 490-492 
Bandpass amplifier: 

double tuned, 155-160, 205-210 
envelope response, 230-243 
feedback pair, 272, 274-275 
narrow band, 272 
noise bandwidth, 329-330 
overstaggered, 200-203 
single tuned, 149-154, 272 
stagger tuned, 191-205 
transistor, 302, 314-317 

Band-pass, low-pass analogy, 230-236 
Bandwidth: 

noise, 328-330 
single tuned amplifier, 153 
staggered n-uples, 204-205 
synchronous double tuned, 174 
synchronous single tuned, 173 
voltage amplifiers, 106 

Bandwidth reduction factor, 165 
Beam power tube, 13 
Bessel functions, 473-475 
Bias: 

cathode, 69-70 
grid leak, 462-463 
magnetic amplifier, 578 
screen, 69 
transistors, 298, 304 

Bistable circuit, 653, 655-660, 688-690, 
692-694 

Bleeder resistance, 536 
Blocking oscillator, 683-685 
Bootstrap cathode follower, 624-625 
Bottoming, 606 
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CAPACITANCE, INTERELECTRODE, 14-16 
Cascaded amplifiers, 162-246, 321 
Cascade connection: 

general, 162-164 
resistance coupled amplifiers, 164-169 
staggered n-uples, 204-205 

Cathode bias, 69-70 
Cathode by-pass capacitor, 70 
Cathode degeneration, 80-84: 

amplifier gain, 82, 256-258 
effective transconductance, 82-84 
feedback analysis, 254-263 
frequency response, 256-263 
internal impedance, 261-263 
pole-zero diagram, 84 

Cathode flicker effect, 331 
Cathode follower, 89-95: 

boot strap, 624-625 
circuit, 90 
cutoff frequencies, 265-266 
effective transconductance, 91, 101 
equivalent circuit, 90 
feedback analysis, 263-267 
figure of merit, 266 
gain, 91, 265 
general connection, 71 
input admittance, 94-95 
input capacitance, 95, 101 
output impedance, 92-94, 101, 266-

267 
resistance coupled, 263-266 

Cathode modulation, 481 
Center frequency stabilization, 500-501 
Characteristic curves, 6-9 
Characteristic equation, 280 
Characteristic function, 27 
Choke, swinging, 536 
Clamping circuits, 609-611 
Class B amplifier, 493-497 
Class C amplifier, 540: 

grid modulation, 482, 489 
plate modulation, 481-488 

Clippers (see Clipping) 
Clipping, 601-609: 

cutoff, 604 
detectors, 551 
diodes, 601-603 
FM detectors, 555-556 
grid circuit, 605 
negative peak, 551 
pentodes, 603-606 
suppressor grid, 606 
triodes 603-605 

Coincidence circuits, 643-649 
Colpitts oscillator, 372, 376-379 
Compensation: 

high frequency, 123-140 
low frequency, 140-149 
shunt peaking, 123-133, 169-171 
series peaking, 133-140 

Compensation theorem, 31, 269 
Composite voltage, 441 
Conduction angle: 

effect on harmonics, 442-446 
power amplifiers, 436, 439 

Conformal transformation, 183, 184, 
198 

Control windings, 569-570 
Conversion gain, 567 
Conversion transconductance, 567-568 
Converters, 560-568 
Counting circuits: 

nonregenerative, 636-642 
recycling, 637, 641-642 
storage type, 636-642 

Coupling coefficient: 
critical, 159 
transitional, 159, 209 

Critical damping, 632 
Crosby system, 500 
Cross modulation, 406 
Crystal oscillator, 372, 374 
Current amplification factor, 317-318 
Current gain, 318-319 
Cut-in angle, 521 
Cutoff frequency: 

alpha, 317-318 
cascaded amplifiers, 165, 169-171 
cathode follower, 265-266 
definition, 106 
effect of cathode degeneration, 257-

263 
grounded base amplifier, 311 
grounded collector amplifier, 311 
grounded emitter amplifier, 309 

310 
low frequency compensation, 146 
resistance coupled amplifier, 120 
series peaked amplifier, 140 
shunt peaked amplifier, 131-132 

Cutout angle, 521 
Cyclograms, 367-370 

d-c RESTORER, 609-611 
Decibels, 98-100 
De-emphasis, 4 79 
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Degeneration: 

cathode, 80-84 
cathode and screen, 87-89 
grounded emitter amplifier, 296-297 
screen, 84-87 

Delay time, 108 
Demodulation (see Detector) 
Demodulator, square law, 428-429 
Design: 

class C amplifier, 458-459 
linear detector, 550 
low frequency compensation, 146-

148 
maximum bandwidth, 177-180 
maximum gain, 175-177 
minimum rise time, 225 
plate modulated amplifier, 483-488 
rectifier, RC filter, 527-529 
resistance coupled amplifier, 122-123 
shunt peaked amplifier, 132-133 
stagger tuned amplifier, 195, 199, 203 

Detector: 
FM, 555-560 
grid leak, 552 
linear, 543-553: 

design, 550 
input impedance, 549-550 
maximum capacitance, 545-547 

plate, 552-553 
ratio, 559-560 
square law, 405-406, 428-429 

Detection efficiency, 544 
Deviation ratio, 473 
Differentiators, 615-620 
Diode: 

coincidence circuits, 643-646 
transfer characteristic, 396-398 
vacuum, 8 

Discriminators, 556-559 
Distortion: 

amplitude, 53 
feedback amplifiers, 250-251 
harmonic, 395-396, 400-405, 409-412 
non-linear, 392-393 
phase, 53 

Distributed amplifier: 
cascade connection, 215 
effective transconductance, 216 
frequency response, 216-218 
general, 210-216 
minimum tubes, 215-216 
overshoot, 245 
reference gain, 218 

Distributed amplifier, Cont.: 
stage gain, 213-214 
transient response, 243-245 

Doublers, 465 
Double tuned amplifiers, 155-160, 205-

210: 
circuits, 155-156 
critical coupling, 159 
design, 209 
gain, 157, 158 
high Q case, 207 
poles, 207 
reference gain, 159 
resonant frequency, 159 
transitional coupling, 159 

Double tuned transformer, 156 
Driving function, 46 
Duals, 29 
Dynamic transfer characteristics, 392-398 
Dynatron oscillators, 360-362 

ECCLES-JORDAN CIRCUIT, 362 (see also 
Multivibrators) 

Edge response, 108 : . 
multistage amplifiers, 221-225 
resistance coupled amplifier, 120 
series peaked amplifier, 139 
shunt peaked amplifier, 128 

Effective transconductance: 
cathode degeneration, 82-84, 87-89, 

101 
cathode follower, 91, 101 
distributed amplifier, 216 
grounded base amplifier, 301, 305 
grounded collector amplifier, 303-305 
grounded emitter amplifier, 296-297, 

305 
grounded grid amplifier, 96, 101 
screen degeneration, 84-89 

Efficiency: 
asymptotic, 448, 452 
detection, 544 
low pass amplifier, 448 
plate circuit, 412-415 
rectification, 511 
tuned amplifier, 450-452 

Elmore's rise time, 222 
Envelope response, 230-243 
Equal ripple functions, 201-202 
Equivalent circuit: 

arc discharge tube, 9 
cathode degeneration, 81 
cathode follower, 90 
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Equivalent circuit, Cont.: 

cathode and screen degeneration, 88 
diode switch, 506 
glow discharge tube, 8 
grounded grid amplifier, 97 
magnetic amplifier, 572 
method of construction, 7 
mixers, 567 
noise, 331-332, 343 
nonlinearity in, 14 
power amplifiers, 440 
principles, 3-25 
screen degeneration, 85 
transistor, 17-23, 286-288 
vacuum diode, 8 
vacuum triode, 9-13 
varistor, 8 

Excitation function, 26, 46 

FEEDBACK: 

degenerative, 254--263 
grid-to-plate, 254, 619-621 
magnetic amplifiers, 588-595 
transistors, 291-305 

Feedback amplifiers: 
cathode degeneration, 254--263 
cathode follower, 263-267 
circuit connections, 252-254 
current-controlled, 252, 254--263 
differentiation in, 619-621 
distortion in, 250-251 
feedback pair, 267-270 
gain equation, 248-250 
general, 24 7 
grid-to-plate, 267-270 
integration in, 619-621 
noise in, 252 
stability, 275-282 
voltage controlled, 252, 263-267 

Feedback pair, 267-272: 
bandpass, 272 
gain, 271 
low pass, 271-272 
maximally flat, 274--275 

Feedback oscillators, 360, 370-390: 
analysis, 375-386 

Figure of merit: 
cascaded amplifiers, 166 
cathode follower, 266 
degenerative amplifier, 260 
grounded base amplifier, 311 
grounded collector amplifier, 311 
grounded emitter amplifier, 310 

Figure of merit, Cont.: 
magnetic amplifier, 583, 593, 600 
resistance coupled amplifier, 120 
single tuned amplifier, 153 
staggered pair, 242 
synchronous pair, 242 
transistor, 307 
vacuum tubes, 120-121 

Filters, 510, 518-537: 
L-section, 530-537 
pi section, 537 
RC, 518-530 

Firing angle, 576 
Firing characteristic, 514 
Flat functions, 184--191 (see also 

Stagger tuned amplifiers): 
exact flat staggering, 196-200 
maximally flat, 185-191 

Flat top response, 110: 
cascaded amplifiers, 227-230 
single stages, 120, 140-149 

Flyback time, 626-627 
Form factor, 512 
Fourier analysis, 442-443 
Foster-Seeley discriminator, 557-559 
Frequency: 

complex, 32-33 
generalized concept, 31-34 
steady state, 31-32 

Frequency modulation, 471-476: 
Armstrong system, 501-503 
index, 473 
spectra, 475-476 

Frequency multiplication, 465 
Frequency multipliers, 405 
Frequency translation, 406, 560-568 
Fundamental, 400 

GAIN, 75 
Gain-bandwidth product, 106 
Gain/rise time ratio, 109 
Gated oscillator, 634--636 
Gate winding, 569-570 
Gating circuits, 643-649 
Glow discharge tube, 8 
Grid leak bias, 462-463 
Grid modulation, 481-482, 489 
Grounded base amplifier, 299-303, 305 
Grounded cathode amplifier, 61-89, 

114--245 
Grounded collector amplifier, 303-305 
Grounded emitter amplifier, 295-299, 

305-317 
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Grounded grid amplifier, 95-98, 101 
Grounded plate amplifier, 89-95 

HARMONICS, 395-396, 400-405, 409-412: 
effect of conduction angle, 442-446 

Harmonic series, 401-405 
Hartley oscillator, 372 
Hazeltine system, 460 
High pass amplifier, 107, 116, 117, 140-

149: 
cascade, 164-165 : 

transient response, 227-229 
feedback, 257-258, 265 
grounded emitter, 310-311 
transistor, 310-311 

IGNITRON RECTIFIER, 517 
Impedance: 

complex frequency, 33 
mutual, 111-114 
steady state, 32-33 

Induced grid noise, 326-328 
Initial excitation function, 46 
Instability, 355-358 
Integrators, 615-620, 625 
lnterelectrode capacitance, 14-16, 287-

288 
Interference, 478-479 
Isocline: 

diagram, 367 
method of, 362-367 

KIRCHHOFF'S LAWS, 28 

LAG LINE OSCILLMOR, 373 
Laplace transformation, 35-40: 

initial conditions, 38-39 
inverse transformation, 40 
operation-transform pairs, 37-39 
table of transforms, 36 

Lead inductance, 15 
Linear approximation, 6-7 
Logits, 98-100 
Loop formulation, 29 
Low frequency compensation, 140-149: 

conventional, 146 
cutoff frequency, 146 
design procedure, 146-148 
degenerative effects, 148-149 
no degeneration, 140-148 
optimum, 145-147 

Low pass amplifier, 105, 115, 117, 118-
120, 123-140, 308-311: 

Low pass amplifier, Cont.: 
cascade, 164-171 : 

overshoot in, 225, 230 
rise time, 222-225, 229-230 

distributed, 210-218 
feedback, 258-260, 266,270-272 
transistor, 308-310, 312-317 

L-section power filter, 530-537 
Load line: 

a-c, 415-417 
negative resistance, 354 
reactive load, 68 
transistors, 285 
vacuum tubes, 63-64 

MAGNETIC AMPLIFIERS, 569-600: 
bias, 578 
bistable, 692-694 
cascaded, 600 
coincidence circuit, 647-649 
equivalent circuit, 572 
figure of merit, 583, 593, 600 
firing angle, 576 
gain, 580-581, 591, 600 
inductive load, 584-588 
operating principles, 569-576 
positive feedback, 588 
power gain, 580-581, 591 
response time, 583-584, 592 
self balancing, 593-595 
self saturating, 596-597 
series connected, 573-588 
single core, 597-600 
time constant, 581-583, 592, 600 
transfer characteristic, 576, 590-591 
transfer function, 577 
trigger circuit, 692-694 
waveforms, 574, 575 

Maximally flat: 
functions, 184-191 
staggered amplifiers, 191-196 

Maximum gain, 175-177 
Meacham bridge oscillator, 373 
Microphonics, 331 
Miller effect, 79 
Miller integrator, 625, 627, 676-678 
Minimum phase shift circuits, 56-57, 105 
Mixers, 560-568 
Modulation, 467-481: 

amplitude, 467-470 
angle, 470-478 
cathode, 481, 489 
frequency, 471-476 
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Modulation, Cont.: 

grid, 481-482, 489 
high level, 492 
index for AM, 468 
index for FM, 473 
index for PM, 476 
low level, 492, 493-497 
phase, 471, 476-478 
plate, 481-488 
pulse amplitude, 4 79-481 
pulse frequency, 479 
pulse position, 479 
pulse width, 479 
square law, 427-428 
time, 608-609 

Modulator: 
balanced, 490-492 
linear, 484 
phasitron, 503 
reactance tube, 431, 497-499 
Van der Bijl, 428 

Monostable circuit, 653, 660-674, 676-
685, 690-691 

Multiplexing, 479-481 
Multistage amplifiers, 162-246 
Multivibrators: 

astable, 674--675 
bistable, 655-660 
cathode coupled, 659, 666-674 
electron coupled, 657 
general, 653-655 
monostable, 660-674 
plate coupled, 655-658, 660-666, 

674--675 
positive grid return, 664 
pulse duration, 664-666, 672, 675 
recovery time, 675-676 
synchronizing, 674 
transition time, 675 
triggering, 658 

Mutual impedance, 74, 111-114 

NEGATIVE GRID OSCILLATORS, 386-388 
Negative resistance, 349-371 

graphical analysis, 362-370 
open circuit stable, 353 
short circuit stable, 352 
transistor circuits, 685-688 
triggering, 356-358 
types, 352-354 

Neutralization, 459-462 
Node formulation, 29 
Noise, 323-348: 

Noise, Cont.: 
available power, 335 
bandwidth, 328-330 
cathode flicker effect, 331 
equivalent circuit, 331-332, 343 
excess, 342-343 
feedback amplifiers, 252 
figure, 334--340, 344--348 
induced grid, 326-328 
microphonics, 331 
parameter: 

induced grid, 326-327 
partition noise, 326 
shot, 326 

partition, 326 
positive ion, 331 
shot, 325-326, 332 
thermal, 324-325, 332 
transistor, 342-343 

Nonlinearity: 
equivalent circuits, 14 
power series treatment, 398-405 

Nonlinear circuits: 
class A, 392-431 

Nonlinear distortion, 392-398 
Norton's theorem, 30-31 
n-uple: 

feedback, 270 
maximally flat, 191-196 

Nyquist criterion, 277-288 
Nyquist diagram, 278-279 

OCTODE CONVERTER, 565 
Operating point: 

stable, 355-358 
unstable, 355-358 
vacuum tube, 63-65 

Optimum source conductance: 
transistor, 34 7 
vacuum tube, 341-342 

Oscillations, parasitic, 388-390, 464 
Oscillator: 

beat frequency, 406 
blocking, 683-685 
class A, 349-390 
classification, 358-360 
Colpitts, 372, 376-379 
crystal, 372, 374 
cyclograms, 367-370 
dynatron, 360-362 
Eccles-Jordan, 362 
essential components, 351-352 
feedback, 360, 370-390 



Oscillator, Cont. : 
gated, 634-636 
Hartley, 372 
lag line, 373 
linear, 359-388 
Meacham bridge, 373 
negative grid, 386--388 
method of isoclines, 363-367 
negative resistance, 359-362 
negative transconductance, 361-362 
non-sinusoidal, 652-694 
phase shift, 373 
Pierce, 372 
power, 464-465 
TPTG, 372, 388-390 
transistor, 374, 383-386 
transitron, 360-362 
tuned base, 374 
tuned collector, 374 
UHF, 386--388 
Wien bridge, 373, 379-382 

Overdamped response, 632 
Overshoot, 108 : 

distributed amplifier, 245 
maximally flat pair, 240 
multistage amplifiers, 225, 230 
overstaggered pair, 241 
series peaked amplifier, 139 
shunt peaked amplifier, 130 

Overstaggered amplifier, 200-203: 
overshoot, 241 
rise time, 241 

PARALLEL AMPLIFIERS, 419-420 
Parasitics, 464, 388-390 
Partial fractions, 41-45: 

coefficients, 51-52 
complex roots, 42 
distinct roots, 41-42 
repeated roots, 43-44 
use in inverse transformation, 44-45 

Partition noise, 326 
Passive network elements, 28 
Peaker circuit: 

RC, 614-617 
RLC, 633-635 

Peaking parameter: 
series peaked amplifier, 136 
shunt peaked amplifier, 126 
transistor amplifier, 314 

Peak inverse voltage, 513 
Pentagrid converter, 565 
Pentagrid mixer, 565 

Index 703 
Pentode: 

coincidence circuit, 647 
distortion, 411 
equivalent circuit, 13-14 
screen bias, 69-70 
static characteristics, 13 
transfer characteristics, 395-396 

Phantastron: 
cathode coupled, 682-683 
principles, 676--681 
pulse duration, 681 
screen coupled, 682 

Phase distortion, 53 
Phase inversion, 66 
Phase modulation, 471, 476-478: 

index, 476 
Phase response, 53-56 
Phase shift oscillator, 373 
Phase splitting circuit, 102 
Phasitron, 503 
Photoemissive cell, 24 
Physically realizable circuits, 56-57 
Pierce oscillator, 372 
Pi section power filter, 537 
Plate circuit efficiency, 412-415, 436: 

effect of conduction angle, 446--449, 
450-452 

Plate dissipation, 413, 418-419 
Plate impedance, 74 
Plate modulation, 481-488 
Polarizing potentials: 

transistor, 285 
vacuum tubes, 67-69 

Poles: 
complex s plane, 48-49 
double tuned amplifier, 207 
effect on response, 50-51 
maximally flat function, 186--191 
oscillators, 350-351 
overstaggered amplifier, 201-202 
physically realizable, 57 
single tuned amplifier, 198 

Pole-zero diagrams: 
cathode degeneration, 84 
partial fraction coefficients, 51-52 
steady state response, 53-56 

Positive ion noise, 331 
Power amplifiers: 

class A, 407-424 
class C, design, 456-459 
distortion in, 411 
high efficiency, 435-459 
low pass, 449-450 
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Power amplifiers, Cont.: 

parallel connection, 419-420 
plate circuit efficiency, 412-415 
power supply, 462-464 
push-pull, 420-423 
series feed, 393 
shunt feed, 415-418 
transistor, 424-427 

Power filters, 510, 518-538 
Power gain: 

available, 340-341 
magnetic amplifier, 580-581, 591, 600 
transistors, 319-320, 424-425 

Power oscillators, 464-465 
Power series, 398-405 
Power supply: 

flyback type, 541 
radio frequency, 539-541 
voltage regulated, 538-539 

Pre-emphasis, 479 
Pulse time multiplexing, 479-481 
Push pull amplifiers, 420-423, 425-427: 

neutralization, 461 

Q POINT: 
dynamic shift, 405 
transistor, 284-286 
vacuum tube, 63-66 

RADIO FREQUENCY POWER SUPPLY, 539-
541 

Ratio detector, 559-560 
Reactance tube, 497-499 
Reactance tube modulator, 431 
Rectification efficiency, 511 
Rectifiers, 506-518 : 

bridge, 509, 579 
filters, 510 
full wave, 509, 524, 526, 531-532, 

537,596 
half wave, 509, 523, 526, 531, 563 
ignitron, 517 
in magnetic amplifiers, 579-580 
RC filter, 518-529 
thyratron, 513-517 

Recycling devices, 637, 641-642 
Reference gain, 106 
Regulation characteristic, 512 
Relative magnitudes, 98-100 
Remote cutoff tube, 407, 430 
Resistance coupled amplifier, 114-120, 

256-263: 
cascade connection, 164-169 

Resistance coupled amplifier, Cont.: 
bandwidth factor, 165 
cutoff frequencies, 165, 166 
effect of, 167-168 
figure of merit, 166 
rise time, 222-225, 229-230 

circuit, 114 
design, 122-123 
equivalent circuits, 115-116 
response, 117-120 
transistor, 305-311 

Response function, 26 
Rice system, 460, 463 
Ringing circuit, 634-636 
Ripple, 511 
Ripple factor, 511, 534 
Rise time, 108 : 

10-90%, 108 
Elmore's, 109, 222 
envelope, 236, 237, 240 
maximally flat pair, 240 
multistage amplifiers, 222-225, 230 
overstaggered pair, 241 
resistance coupled amplifier, 120 
series peaked amplifier, 139 
shunt peaked amplifier, 128-130 

RLC circuit, transient response, 631-'-
633 

RLC peaker, 633-635 
Routh-Hurwitz criterion, 280-282, 378 
Routh-Hurwitz determinant, 281 

SAG, 110-111: 
cascaded amplifiers, 227-230 
compensated amplifier, 144-148 
resistance coupled amplifier, 120 
zero initial slope, 145-147 

Sanaphant, 676-683 
Sanatron, 676-683 
Saturation, 43 7 
Sawtooth current, 628-630 
Sawtooth voltage generator, 614-615, 

622-627 
Scale of two circuit, 653-655 
Screen bias, 69-70 
Screen degeneration, 84-87: 

effective transconductance, 86-87 
equivalent circuit, 85 

Screen resistance, 85 
Screen-to-plate transconductance, 85 
Section, distributed amplifier; 212 
Self triggering, 358 
Semiconductor, excess noise, 342-343 
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Series feed, 393 
Series peaked amplifier, 133-140: 

cutoff frequency, 140 
gain, 135 
overshoot, 139 
peaking parameter, 136 
poles, 137 
rise time, 139 
transient response, 138-139 

Shot noise, 325-326, 332 
Shot noise parameter, 326 
Shunt feed, 415 
Shunt peaked amplifier: 

cascade connection, 169-171 : 
cutoff frequency, 169-170 

cutoff frequency, 131-132 
design, 132-133 
edge response, 128-129 
overshoot, 128-130 
peaking parameter, 126 
poles, 127 
rise time, 128-130 
transient response, 129 
transistor, 312-314 
vacuum tube, 123-133 

Side bands, 469 
Signal-to-noise ratio, 335 
Single tuned amplifiers, 149-154, 272: 

bandwidth, 153 
cascaded, 171-205 
equivalent circuit, 151 
figure of merit, 153 
gain, 152 
high Q, 154 
narrow band, 154, 191-196 
poles, 198 
symmetry in, 180-187 
synchronous, 171-180 

Spectra, FM, 475-476 
Splane, 47 
Square law: 

characteristics, 397-398 
demodulation, 428-429 
detector, 405-406, 428-429 
mixers, 406 
modulation, 427-428, 406 

Stability: 
definition, 276 
feedback amplifiers, 275-282 
grounded base amplifier, 302 
grounded collector amplifier, 304 
grounded emitter amplifier, 299 
negative resistance circuits, 354-358 

Stability, Cont.: 
Nyquist criterion, 277-280 
Routh-Hurwitz criterion, 280-282 

Stagger damping, 210 
Stagger tuned amplifiers: 

exact flat, 196-200 
feedback pair, 274-275 
maximally flat: 

cascade, 204-205 
design, 195 
double tuned, 208-209 
gain, 196 
poles, 194 
principles, 190-191 

maximally flat pair: 
overshoot, 240 
rise time, 237-241 

narrow band, 191-196 
noise bandwidth, 329-330 
overstaggered, 200-203, 241: 

design, 203 
gain, 201, 203 
poles, 201-202 

stagger damped, 210 
transformation, 198 

Static characteristics, 10 
Steady state response, 53-56 
Strobe circuits, 643-649 
Super control tubes, 430 
Superheterodyne, 560 
Superposition principle, 30 
Sweep amplifier, 628 
Sweet circuit: 

current, 627-630 
voltage, 615-620, 622-627 

Swinging choke, 536 
Switch tube, 611-612 
Synchronous tuned amplifiers, 171-180: 

bandwidth, 173, 177-180 
envelope response, 234-237 
gain, 172, 175-177 
rise time, 236 

Symmetry in amplifiers: 
arithmetic, 182-183 
geometric, 181-184 

Synthesis by factoring, 163-164 
maximal flatness, 184-191 

TCHEBICHEF POLYNOMIALS, 201 
Tee equivalent circuit, 286-288 
Thermal noise, 324 
Thermistor, 24 
Thevenin's theorem, 30-31 
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Thyratron rectifier, 513-517 
Time modulation, 608-609 
Time selection, 608 
Time selection circuits, 643-649 
TPTG oscillator, 372, 388-390 
Transconductance (see also Effective 

transconductance): 
conversion, 567 
mutual, 101 
transistor, 294-295 

Transfer characteristic, 438: 
diode, 396-398 
magnetic amplifier, 576, 590-591 
pentodes, 395-396 
triodes, 392-395 

Transfer function: 
general, 27 
linear detector, 548 
magnetic amplifier, 577 

Transformation: 
bandpass, low pass, 274 

Transformer coupled amplifier, 302, 
416-417, 421 

Transient response: 
criteria, 107-111 
RC circuits, 613 

Transistor: 
alpha cutoff, 317-318 
collector capacitance, 287-288 
collector cutoff, 288 
current amplification factor, 23 
emitter capacitance, 287-288 
equivalent circuit, 17-23, 286-288 
figure of merit, 307 
idealized characteristics, 19 
input impedance, 292 
interelectrode capacitance, 287-288 
noise, 342-343 
output capacitance, 293 
output impedance, 293 
polarizing potentials, 285 
regions of operation, 18 
slope resistances, 18 
static characteristics, 18 
tee equivalent circuit, 23, 286-288 
transconductance, 294-295 

Transistor amplifier: 
available power gain, 320 
bandpass, 302, 314-317 
biasing, 298, 304 
cascaded, 321 
current gain, 318-319 
equivalent circuit, 286-288, 290-291 

Transistor amplifier, Cont.; 
grounded base, 284-285, 299-303, 305, 

311, 315-317 
grounded collector, 303-305, 311 
grounded emitter, 291-297, 305, 308-

311, 313-317 
high pass, 310-311 
load line, 285 
low pass, 308-310, 312-314 
maximum power gain, 320 
noise figure, 344-348 
power gain, 319-320, 424-425 
push-pull, 425-427 
Q point, 284-286 
resistance coupled, 305-311 
shunt peaked, 312-314 
single tuned, 314-317 
stability, 299, 302, 304 
transformer coupled, 302 

Transistor oscillator: 
crystal, 374, 383-386 
tuned base, 374 
tuned collector, 374 

Transistor trigger circuits, 688-692 
Transit time conductance, 327-328 
Transitron oscillators, 360-362 
Trapezoidal voltage source, 614-615, 

627-630 
Trigger circuits, 652-694 
Triggering, 356-358 
Triodes: 

distortion, 411 
equivalent circuits, 9-13 
idealized characteristics, 10 
Norton equivalent, 12 
static characteristics, 10 
Thevenin equivalent, 12 
transfer characteristic, 393-395 
voltage amplification factor, 11 

Triplers, 465 
Tuned amplifiers (see Bandpass ampli-

fiers) 

UHF OSCILLATOR, 386-388 
Unit step function, 35 

VACUUM DIODE, 8 
Vacuum triode (see Triode) 
Vacuum tubes: 

cathode bias, 69-70 
circuit connections, 61-65 
class A operation, 16, 71 
figure of merit, 122 



Index 707 
Vacuum tubes, Cont.: 

interelectrode capacitance, 14-16 
lead inductance, 15 
modes of operation, 16-17 
noise, 323-348 
plate impedance, 74 
polarizing potentials, 67-69 
switching mode, 16 

Van der Bijl modulator, 428 
Variable mu tube, 407,430 
Varistor, 8 
Video amplifiers (see Low pass and 

Compensated amplifiers) 
Voltage amplification factor, 11 
Voltage amplifiers: 

amplification equation, 61 
bandpass, 302, 314-317 

cascade, 171-205 
double tuned, 205-210 

bandwidth, 106 
cutoff frequencies, 106 
degenerative (see Cathode and Screen 

degeneration) 
feedback, 247 
figure of merit, 106-107, 109 
grounded cathode, 71, 73-80, 101 

Voltage amplifiers, Cont.: 
grounded grid, 71, 95-98, 101 
grounded plate (see Cathode follower) 
low pass, distributed, 210-218 
operating point, 63-65 
overstaggered, 200-203 
Q point, 63-65 
resistance coupled 114-120, 256-263, 

305-311 
responses, 105 
series peaked, 133-140 
shunt peaked, 123-133 
single stage, 104-159 
single tuned, 149-154 
transistor, 284-318 

Voltage doubler, 509, 525-526, 540 
Voltage regulated supply, 538-539 
Volt logits, 100 

WAVEGUIDE EFFECT, 390 
Western Electric system, 501 
Wien bridge oscillator, 373, 379-382 

ZEROS,48-49: 
minimum phase shift circuits, 57 
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