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FOREWORD

This book has developed from the lecture notes of a special
wartime training course given in the Graduate School of Engineer-
ing, Harvard University.

The need for highly trained officers in the new uses of electronics
was definitely appreciated even in 1941. In July of that year a
course for officers of the Signal Corps who were graduate electrical
engineers was established at Harvard University in the Graduate
School of Engineering to give intensive training in the fundamentals
of electronies and high-frequency circuits. Immediately after the
United States declared war, the Navy also sent officers to the pre-
radar course.

The rapid expansion of the course necessitated a greatly increased
instructional staff. Professors and instructors from many educa-
tional institutions were invited to Cambridge to aid the regular
staff at Harvard in the field of communication engineering.

Although the war training course was distinet from the regular
graduate courses in communication engineering that have been given
for more than two decades in the Cruft Laboratory, it was planned
originally and patterned to a considerable degree on the lines of some
of the Cruft Laboratory courses. Since the scope and the method
of presentation of the material in this volume are not on a graduate
level, they differ somewhat from corresponding course work in the
Cruft Laboratory.

The members of the wartime staff have brought to the work
many excellent ideas from their teaching experience. More than
thirty repetitions of the course gave opportunity to improve its
character both as to lecture presentations and laboratory experi-
ments. Considerable new material was injected into the course
content. In short, this war training program presented a rare
opportunity to develop and improve teaching methods in electronies.

During the progress of the course, lecture notes were prepared
mainly by twelve members of the lecturing staff. It was the original
intention to publish the entire leeture material in a single volume.
Because the single volume would be inconveniently large and also
since a portion of the manuseript was completed early, that portion
has been published in a separate volume ‘“Transmission Lines,
Antennas, and Wave Guides” by Associate Profs. R. W. P. King and
H. R. Mimno and Dr. A. H. Wing. The remaining and larger por-
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viil FOREWORD

tion of the lecture material comprises the subject matter of the pres-
ent book. Logically the material of this book precedes that of the
book already published; thus, the present book is Volume I of a
two-volume text, FEleven of the original twelve members of the
wartime lecturing staff are authors of the present book,

The text presented in this book has developed out of the intensive
devotion, during a war emergency, of a group of men to a single
purpose, that of imparting to the student officers in the most effi-
cient manner a comprehensive and practical knowledge of eleetronics.
The material of the course was, however, fundamental in nature and
not exclusively applicable to wartime training. For this reason, it is
hoped that the text will be as valuable for peacetime courses as it
was successful in its intended purpose.

The treatment of the subject matter of this book is suitable for
juniors or seniors of colleges and engineering schools, who are spe-
cializing in the study of communication engineering or in electronics.
A knowledge of mathematics through caleulus, and of electricity and
magnetism is assumed. The book may also be found to be of value
as a reference for others.

E. L. CuAFreE



PREFACE

This book presents the basic theory of electronic tubes and elec-
tric circuits employed in conjunction with these tubes. The empha-
sisis on the applications in the fields of communication and electronic
control, Supplementary material on mathematics and electricity
and magnetism is given in the appendixes, making the book useful
to those needing preparation in these subjects.

As stated in the foreword, the bock has developed from the lec-
ture notes of a special wartime training course. Many chapters of
the book contain more material than was given in the course. In
the preparation of the notes and the book, there was much collabora-~
tion among the authors, In this work, each chapter has been the
responsibility of one or two of the authors. Chapters I, IT, III, TV,
XXII and Appendix C were written by L. W. Morris; Chaps. V and
VI by 8. P. Cooke; Chaps. VII, X1V, and part of Chap. XIX by
E. L. Chaffee; Chaps. VIII, IX, XVIII and Appendix A by P. E.
LeCorbeiller; Chaps. X and X1 by R. O. Cornett; Chaps. XII, XV,
and XXIV by H. R. Mimno; Chap. XIII mostly by G. R. Tatum,
in part by H. Stockman; Chaps. XVI and XVII by J. D. Cobine;
Chaps. XIX and XX by 8. Githens, Jr. and A. H. Wing; Chap.
XXIII by H. Stockman with the assistance of 8. Githens, Jr.;
Appendix B by P. E. LeCorbeiller and 8. Githens, Jr.; Chap. XXI
and Appendix D by A. H. Wing. This is not to be construed as
a list of exclusive authorship in all cases, as there were many
interchanges of ideas. There were also some modifications made
in original versions in order to fit them into the general plan
of the book.

The book teaches fundamental principles clearly and rigorously
and contains much new material and new methods of presentation.
In the treatment of a-¢ circuits the behavior of circuit elements with
respect to nonsinusoidal waveforms is deseribed in such a way as to
develop correct coneepts of resistance, inductance, and capacitance.
For sinusoidal waveforms the emphasis is more on the magnitude
and angle of the impedance rather than on resistance and reactance.
Curves or loci are used extensively to describe circuit behavior.
The treatment of resonance is rigorous and more complete than
usual. There is a new presentation of the bridged-T and parallel-T
networks.

In the chapter on networks and impedance matching, the subject
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X PREFACE

of equivalent four-terminal networks is discussed quite fully. Net-
work theorems are presented, with more emphasis on Thévenin’s
theorem than on any of the others. The action of the tank circuit
as an impedance transformer is clearly explained. The chapter on
transients is fully illustrated with diagrams. The effect of the time
constant in LR and CR circuits is stressed. The analysis of initial
and final eonditions is explained effectively.

Much hitherto unpublished material is given in Chap. VIIL.
The method of correlating response curves of coupled circuits by
means of space models and contour diagrams is unique and results
in an understanding of these circuits surpassing that conveyed by
the ordinary response-curve type of presentation. There is new
material on the band widths of magnetically coupled circuits.

A new approach to filters is given in Chap. VIII, with added
material on delay networks. A rigorous yet simplified presentation
of Fourier analysis is given in Chap. IX; the effect of waveform
digcontinuities on the magnitude of the harmonic components is
explained. The analysis of periodic phenomenais extended in Chap.
XVIII to nonperiodic pulses, again by a simplified method. In
view of the increased use of pulses, this material should be of con-
siderable value to the undergraduate student.

In Chaps. X and XTI the action of the vacuum tube as a device
is emphasized, rather than the quantitative theory of electron emis-
sion. The explanations are given both graphically and analytically.
Chapter XI1 contains a very complete but qualitative description
of the cathode-ray tube. The effects of various combinations of
magnetic and electrostatic focusing and deflection are discussed.
There iz an unusually clear and complete deseription of the modern
cathode-ray oscillograph.

Chapter XTIT is the longest in the book and includes a complete
discussion of wide-band amplifiers. The effect of feedback on the
response characteristics and the output impedance is derived. The
cathode follower is treated very fully.

Extensive new material on power tubes is to be found in Chap.
X1V. Contour disgrams are used to deseribe the behavior of the
Clags C stage. Many forms of coupling the load to the tube are
analyzed. There is new material on methods of tuning and meth-
ods of neutralization.

Oscillators are given comprehensive but qualitative treatment in
Chap. XV. The drag loop, a phenomenon commonly neglected but
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of considerable importance where tuned systems are connected to
oscillator tubes, is adequately explained here and in Chap. XIV.
The newer types of oscillator circuits are also deseribed.

The chapter on gas-filled tubes covers the use of these tubes as
rectifiers and control elements. A complete example of a rectifier
design is worked out in Chap. XVII. Voltage-regulated power
supplies are covered more fully than usual.

The treatment of modulation is divided into two parts, one on
principles and the other on methods. The principles are thor-
oughly discussed to facilitate the understanding of methods or
devices, which in practice are being continually improved. The
treatment of angle modulation will, it is hoped, save the student
from pitfalls which have caught many in the discussion of this
subject.

Linear and square-law detection are treated qualitatively and
quantitatively in Chap. XXI. Oscillograms are used to show elip-
ping in the diode detector. Rectification diagrams are given for
all the important large-signal detectors. The more common dis-
criminator eireuits are qualitatively treated. This material ties
in with Chap. XXIII in which radio receivers are classified by
type and their operation described. The operation of mixer and
converter tubes is explained with a new terminology. Receivers
are not presented in this organized fashion in most text books, and
this chapter fills a need for showing how eircuits previously dis-
cussed separately are joined together to make a complete piece of
equipment.

Chapter XXIT on test instruments supplies needed and prac-
tical information. Too often the user does not appreciate just what
an indicating instrument measures. New material on the behavior
of vacuum-tube voltmeters is included.

A complete description of control and timing circuits is given
in the last chapter. Synchronization of relaxation oscillators is
discussed more clearly than usual. A new and accurate description
of the blocking oscillator is given. The assembly of complete
waveforming circuits from their simple elements is featured, and
several circuits are worked out as examples or exercises.

Great credit is due to the members of the armed forces who
were students and instructors in the Cruft courses. Their con-
structive criticism and hard work has been of immeasurable aid
to the authors in making their work more effective. Many of the
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Cruft electronics stafl contributed time and effort toward the prep-
aration of the eourse notes and the present book. In the prepara-
tion of the book manuseript the authors are deeply indebted to
Prof. Harry E. Clifford for his valuable assistance and his helpful
editing,

Avexanper H. Wixe
September, 1947,
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ELECTRONIC CIRCUITS AND
TUBES

CHAPTER I
ALTERNATING CURRENT THEORY

The prineciples of direct-current circuit theory correctly describe
the relationships between the instantancous values of varying cur-
rents and voltages in eleetrical circuits. The extension of these
direct-current concepts to alternating-current theory is summarized
in this chapter,

I. VARYING VOLTAGES AND CURRENTS

Periodie variations are variations that repeat themselves
indefinitely in time. Of these, sinusoidal variations are of par-
ticular importance because other types of periodic variation can
be represented as a sum of sinusoids of different frequencies. The
application of a periodic voltage in a circuit containing constant
resistance, inductance, and capacitance produces, in general, cur-
rents and voltages of different waveforms. A sinusoidal or simple
harmonie voltage, however, applied to a circuit of linear elements,
produces currents and voltages of the same waveform and period.
The purpose of a-¢ analysis is to relate these sinusoidal currents
and voltages in terms of the cireuit constants.

1. Description of a Sinusoid.—The instantaneous values of the
sinusoidal voltage e and current 7 in Fig. 1.1a are related to time by

e = || sin w(t + ) and i = |T| sin wt (1.1

where |E| and |T] are the amplitude magnitudes of voltage and
current and o is the angular velocity or angular frequency in radians
per second, related to the frequency f in cycles per second and
to the period T'by @ = 2xf = 2r/T. The expression for ¢ includes

to, which describes the shift of the sine wave of voltage toward
1
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earlier time. The current sinusoid has no initial phase angle in
(1.1) owing to the choice of zero time. The current in thisexample
is convenient for phase reference, and ¢ is the time interval by which
the voltage variations lead the corresponding current variations.
These sinusoidal variations can be described as the vertical
projections of vectors rotating counterclockwige with a constant
angular velocity w, with lengths equal to the amplitude magnitudes
|E] and |7], and with positions at zero time as shown in Fig. 1.1b.
The angle 6, measures the fractional part of a period by which
the voltage sinusoid leads the current sinusoid; 8, is equal to &/ T
times 2r radians. The two vectors rotate with the same angular
velocity, their magnitude and phase relations remaining fixed.

r—fo-’i fe———-Tﬂ'HE PERIOD IN SECONDS ’*--—1

r-'—ﬁ— '—-‘r"“"f-'—r-  alhndh

2l b T B (O
o ; ! ; ;. i E 90
/'IL/"O : BN i M n;s Qo'bs\ +
b b NS T A e secohos
| R T B i R R N (b)
| SRS SRR O N B b off TPV TN W SO O

EARLIER =— |~ LATER

Fra. 1.1.—S8inusoidsal voltage and eurrent variations of different amplitudes and
phases. For the curve marked ¢, E = 4, T' = 0.008 sec, {5 = 0.001 sec, f = 125
cyeles/see, w = 78.5 radians/sec.

Tt is possible to describe the representative vectors at any time
by the use of complex numbers in polar form,

= |£|/8;  and f=1f1/‘0, (1.2)

The quantity £ is complex, having a magnitude [£] and an angle
85 with respect to some reference vector; £ may be considered to
give the magnitude and phase of the smusmdal voltage or of the
veetor that describes it. The ratio of complex current and complex
voltage defines two important complex constants Z and Y, either
of which completely describes the magnitude and phase relations
of the sinusoids. In polar form,
Impedance

Z = |Z|/6; = g Iﬁll /8 — 6 ohms

Admittance

YV = {Y|/by = ‘ﬁ/&; — 8z mhos (1.3)
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The magnitude of the impedance Z in ohms is the ratio of the
magnitude of the voltage amplitude in volts to the magnitude of
the current amplitude in amperes; 6, is the phase angle of the
voltage with respect to the current, which for these vectors is the
angle 6, of Fig. 1.15. The magnitude of the ratio of the current
to the voltage is given by the magnitude of Y, and 6y is the phase
angle of the current with respect to the voltage.

Y=r and 0= —6 (1.4)

The voltage across an element and the current through it estab-
lish its impedance and admittance without reference to its physical
construction. A voltage sinusoid may be compared with another
voltage sinusoid of the same frequency, or a eurrent compared with
a current, by taking the ratio of the complex numbers used to
deseribe them; the resulting ratio is a complex numeric. Z and Y
have the dimensions of ohms and mhos.

2, Addition of Sinusoids.—The sum of two sinusoids may be
obtained by adding algebraically the instantaneous values of the
sinusoids for all values of time. If the frequencies are the same,
the resultant is a sinusold of the same frequency, of an amplitude
different in general from that of either component sinusoid, and of
intermediate phase.

If the representative vectors of the two sinusoids are added, the
projection of their veetor sum describes the instantaneous value
of the resultant sinusoid. If only the magnitude and phase rela-
tions are desired, the vectors may be added graphically, or their
complex expressions may be added to obtain the amplitude and
phase of their sum. It follows that the sum of any number of
sinusoids of the same frequency is a sinusoid of that frequency.
Conversely, any sinusoid of a given frequency may be represented
as the sum of component sinusoids of that frequency. ‘

3. Peak, Average, and RMS Values.—Various characteristics of
periodic currents or voltages are used for their measurement. In
some cages it is the peak value of a voltage, or its maximum excur-
sion in potential, that is of interest. This is indicated by the
symbol E. For a sinusoid E has a magnitude equal to that of the
amplitude.

In some cases it is the average value of a current that is desired.
This is determined by its average rate of flow of charge and is equal
to the direct, or steady, current that transports the same amount
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of charge during the same interval of time as the varying current.
The average, or steady, current is designated by (i), or simply 7.
For any waveform, I is equal to the average value of the instan-
taneous current evaluated over one period. The steady current
of Fig. 3.1a transports a charge ¢ = ()., ¢ in the time ¢, ¢ being
proportional to the area of the rectangle. For the repeated rec-
tangular pulse of Fig. 3.1b, the average current (7)., is equal to the
area under the pulse divided by the period. In the triangular
waveform of Fig. 3.1¢, the current reverses and the net area is divided
by the period to obtain the average current. The area beneath
each parabola, Fig. 3.1d, equals one-third the base times the
height. The sinusoid, Fig. 3.1¢, has an average value zero since

i i

j=(i )av.;f . i

_;:},_{—r L(l)_g\!_ﬂ / m_g\%_\»
i

0 t— (iow.2T V

(o) (b) () (d)

T Aav .
‘ S W AR v.OLT R WO P
(i)gy=0 \/ (i) 106361 T=03181

(@ ) (q) (h)

Fig. 3.1.—Average value of various currents.

its positive and negative areas are equal. In Fig. 3.1f the full-
wave rectified current has an average value I = (2/x)|I] = 0.637|1]
since the area beneath a half sinusoid equals 2/r times the base
times the height. The average value of the half-wave rectified
current, Fig. 3.1g, is (1/x)|I| = 0.318|]]. Where the spacing
between identical positive current pulses is inecreased, Fig. 3.1h,
the average value decreases but still remains equal to the area
under each loop divided by the period. If the pulses are the upper
parts (near the peaks) of a sinusoid, they closely resemble parabolas,
and the area under each pulse is approximately two-thirds the
base times the height.

The cffective, or rms (root-mean-square), value of a varying
current is equal to the direct current that, fiowing in the same
resistance, produces the same average power dissipation. The
instantaneous power dissipation p and the average power dissi-
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pation P in a resistor are
= Ri* and P = R(iY. 3.1

where (). is the average value of 7% If (/%) is known, the
magnitude of the rms current, |Im|, can be evaluated. The
average power dissipated is

P = RlL? (3.2)
and therefore
= V(P 33)
Hence the root-mean-square current is the square root of the
average value of the squared current.
For a sinusoidal current, i = {I| sin wf, the value of ¢* can be
written

= |Tj2 sin? ot = |T]? (L:%?-?f—"f) (3.4)

As the average value of the cosine term ig zero, the average value

of 72 reduces to

20 )

e .= oo @
2

In Fig. 3.2a the instantaneous values of i* from (3.4) are shown
with the corresponding values of i. The curve for 7% has sinusoidal

' S -
fl\'z [ l\\
r s { i\ 0 £
PR AR T A A
e B i S P - i u
! —T WA ‘\ ! Tﬁ\ Vi, i ;}’ /
- 3 : £, av. (Y m 7
TV T 20 v {Bay. s
Irms‘/ \{’ \f R Irms\ __L%_}_%___r
/ H l-i\/ 7 e ?a& 3
i l. o= 27§ D
t—

(o) (b)
F1a, 3.2.—Root-mean-square (rms) values of sinusoidal and nonsinusoidal waves.
variations of double the frequency of the current 7 displaced ver-
tically and has an average value |I|?/2. The rms value of the
current is indicated.

The rms value of a nonsinusoidal waveform can be obtained
from a similar construction. In Fig. 3.2b the triangular waveform
of 7 yields a series of parabolic segments for 72 whose average value
is one-third their height. The root-mean-square current is the
square root of the average %, as indicated in the figure.
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A periodic nonsinusoidal current can be described as the sum
of a direet current plus a pumber of sinusoidal currents whose
frequencies are integral multiples of a fundamental frequency,
Chap. IX. The power dissipation caused by such a current in a
constant resistance R is equal to the sum of the dissipations of the
separate current components calculated independently. If the
d-¢c component is denoted by |I], and the rms values (magnitudes)
of the fundamental, second harmonie, third harmonic, . .
sinusoidal a-c components are denoted by |I.], I, |Isf, . . .,
the rms value {I] of the periodic nonsinusoidal current is given by

.

I = VP4 L+ L2+ T2+ - - (3.6)

The average and rms values of a periodic voltage are equal to
the direct voltages that, applied across a constant resistance, pro-
duce the same average current and the same heating effect. These
values may be obtained in the same manner as for a periodic cur-
rent. It follows from these definitions that in a purely resistive
cireuit Ohm’s law holds for currents and voltages of any waveform
when expressed in either average or rms values.

4. Instantaneous and Average Power.—The instantaneous
power delivered to a device is the produect of the instantaneous
voltage across it and the instantaneous current through it, for
currents and voltages of any waveform. If this product varies
with time, its average value gives the average power.

Let the voltage and current variations be sinusoidal according
to

e=|B|sinwt and 7= || sin (0t — @) (4.1)

The current lags the voltage by an angle «; the instantaneous
power p is

p = et = |E||T| sin wt sin (0t — a) 4.2)
Using the identity sin @ sin b = [cos (¢ — b) — cos (a + b)}/2 with

¢ = wtand b = ot — q,

p = l%ﬂ cos a — ‘—%f-l- cos (2wt — @) 4.3)

Since « is a constant, the power developed consists of a constant
term (JBT|/2) cos @ and a sinusoidally varying term of double
frequency whose average value is zero. The average power P is
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_ & 18 11
P-—~—2—-008a \/Q\f

where |E| and |I] are the magnitudes of the effective, or rms, values.
The term cos « is defined as the power factor, whose value ranges
between zero and unity.

The variation of the instantaneous power p with time is illus-
trated in Fig. 4.1 as related to the corresponding instantaneous
values of current and voltage. In Fig. 4.1a the value of « is 90°
(corresponding to the product of a sine and a cosine term), the
instantaneous power is a sinusoid, of frequency double that of the
current and voltage and of zero average value. In Fig. 4.1b where

cos @ = |E||I| cos a 4.4)

Fia. 4.1.—Instantaneous current, voltage, and power for a phase difference of
(a)y 90° and (b) less than 90°.

a = 60° the sinusoidal curve for p is lifted upward by an amount

P and displaced in time as compared with Fig. 4.1a. For zero

phase difference between voltage and current {(a = 0°), the vari-

ation of p is similar in form to that of 4% in Fig. 3.2a.

II. IDEAL CIRCUIT ELEMENTS

The current-voltage relations for capacitors, resistors, and
inductors are summarized here, it being assumed that the circuit
elements are ideal or that it is possible to describe them in terms
of capacitance alone, resistance alone, or inductance alone.

6. Capacitor.—A simple form of capacitor consists of conducting
films or plates separated by an insulating medium whose thickness
is small compared with the surface dimensions of the films or plates.
As employed in ordinary circuits, a capacitor has equal and opposite
charges on the plates when there is a potential difference between
them. If the instantaneous charge ¢ is changing with time, equal
charging currents flow to one plate and away from the other. The
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varying charge ¢, the resulting instantaneous potential difference
¢¢ (in the direction opposite to the positive flow of current), and
the current 7 are related to each other and to the capacitance by
the following expressions, which hold for any type of variation:
- -9 ;= dg _ o dec

g = Cec e =5 and =g =04 (5.1)
The current depends upon the time rate of change or the slope of
the voltage-time curve, Fig. 5.1b. In general, the current wave-
form differs from that of the voltage, but a voltage sinusoid vields
a current sinusoid advaneced in phase by one-quarter period.

30f e INVOLTS \/i IN MILLAMPERES ~
+e, (I EX /
0+ Uy 7
| /
+ 1 -
. U o /
L > i+ 4] 0 i 4 t ir L.
o 0 1 _2 [ o4 5 B\ 1 \E | )
HH . TIME INMILLISECONDS Y /
+q |+ d-q foF l..,._....i \
i
-20} G=15puf N/
to) (b) S

Fia. 6.1,—1deal capacitor and its instantaneous eurrent-voltage relations.

From (5.1) the values of e¢ and 7 for a sinusoidal variation

q = |Q||sin ot are

ec = i—g—’ sinwt ¢ = |Qo cos wi (5.2)
or

ec = |E|sinwt ¢ =|I]sin (wt + 1—2;) 56.3)

where |E] = |Ql/C, IT| = |@|w, and cos wt is replaced by

sin (wt -+ g)

The relations between the sinusoidal variations in ec and ¢ are
described completely by the ratio of their amplitude values,
!E 1 = WC (5.4)

~

"I—'—"—wa or

i
£
and the fact that the voltage sinusocid is one-quarter period (/2 in
phase angle) behind the current or the current is one-quarter period
ahead of the voltage.
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The ratios are unchanged if the current and voltage are measured
m rms units. Both magnitude and phase relations are specified
in the complex ratios (5.5), which give the impedance and admit-
tance of the capacitor,
E 1 A U | o s .
7 T T e — o = - — e — 5.
7 wC/ 90 I 0 } 7 wC /+90° = joC (8.5)
where E and I denote the complex rms values of voltage and current
and Z and Y the complex impedance and admittance.
6. Resistor.—Ohm’s law applied to instantaneous values for
an ideal resistor R gives

ex=Ri or é:% (6.1)

where ¢ is the instantaneous voltage opposing the current. The
shape of the current wave is the same as that of the voltage wave,

A

i 5
-0 TIME IN MILLISECONDS ~ \™>~~
~20 R=2000 ohms

Fra. 6.1 —Ideal resistor and its instantaneous current-voltage relations.

Fig. 6.1b. The amplitudes of sinusoidal variations have the ratios

E I 1
3 or TR (6.2)

and the current and voltage are in phase. The impedance and
admittance of a resistor are

Z:?=R}’_O°=R and Y =

7. Inductor.—A simple inductor consists of several turns of
wire in the form of a coil. A changing current through such a
coil, of self-inductance L, causes a potential difference in opposition
to current change, Fig. 7.1, given by

di
di

the resistance of the coil being neglected. This relation is similar

er =L 7.1
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to (5.1) for a capacitor, except that ¢ and 7 are interchanged. This
is seen also by comparison of Fig. 7.1b with Fig. 5.15.
If the current variation is sinusoidal,

i=|I]sinwt and e, = wLll]sin (wt + g) (7.2)

Comparison of the sinusoids of (7.2) shows that
Iy 1
o} = e (7.3)

El = wl or —
Ti B ol

and the voltage is one-quarter period (x/2 in phase angle) shead
of the current or the current is one-quarter period behind the

30k iin
milliamperes e, in volts
20 ; =<
o ok |/ G, N
\
! 4 W'— 0 : 3 l ‘ /ro
'JNDS

2 4 Y
(@) <ok TIME IN MILLISEC

T

-
K30 |

N,
N\

/

-0k L= 15 HENRIES

(b}
F1a. 7.1.~Ideal induetor and its instantaneous current-voltage relations.

voltage. The impedance and admittance for the inductor are

o s 1l e s

III. SERIES CIRCUITS

8. Voltage and Current in a Series Combination.—In a series
ecombination of ideal elements, Fig. 8.1, the instantaneous current
through each element is the same. If the current is sinusoidal (has
simple harmonic variation) the voltage across each element is
sinusoidal.

The vector diagram above each element in Fig. 8.1 describes
the magnitude and the phase of the sinusoidal voltage of that
element with respect to the current. The complex descriptions of
these voltage vectors in terms of the rms value I of the current are

Eo = —jw—lcl Ex=RI  E,=jull 8.1)

The current-voltage ratios are the same whether they are meas-
ared in amplitude or in rms values. Unless instantanecus values
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are needed, it is more convenient to use rms values, which will be
used from now on unless otherwise stated.

The sinusoidal voltage across the series combination is repre-
gented by the vector sum of the voltages across the separate ele-

jwll
' 1 Rl
“3531 l I 1
I .
. :} i AAAAAA- rEETIT
L C R ] b
Ec +ER T EL
+ EZ

Fra. 8.1,—Voltages and their representative vectors in a series cireuit.

ments; These voltages may be added graphically, Fig. 8.2¢, or in
terms of their complex representations,

1
wC
As the voltages across the capacitor and inductor are oppositely

YA 3
S
I RI R

(o} (b} () (d}

Fic. 8.2.~Current-voltage relations in a series circuit and their desecription in
complex form.

directed (differ in phase by = radians, or 180°), they may be com-
bined and the simplified Fig. 8.2b obtained, or

. 1
E = RI +j (wL - w—@)z (8.3)

From (8.3) the impedance of the combination ean be expressed in
terms of the circuit parameters as

E " 1 Xy ’
7=F - rai(er- ) = m+ix (8.4)

E = —j— 1+ RI + juLI (8.2)

The impedance of the series combination is the complex sum of the
impedances of the separate elements.

By definition the reactance X of the circuit is the coefficient
of 47 in the complex expression for Z, or

E=(R+iX)I =171 (8.5)
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The significance of Z is clarified if the expression ig written in polar
form

E = ZI = |2|/8, |I|/0° = |Z] |I|/82

The magnitude |E| of the voltage is |Z} times the magnitude [}
of the current through the circuit, and its phase with respect to
the current is 85, Fig. 8.2d.

2
17l = VEF X = \/Rz + (wL -~ EIC’) and

1
tan ¢ —-—)g—wL_«-;—?
"EER T TR

(8.6)

The voltage across the impedance caused by the current through
it is analogous to the BI drop in d-¢ circuits and may be referred
to as the impedance drop. Extending this to (8.2) the voltage drop
across the group is the complex sum of the impedance drops across
its separate elements.

In (8.5) the product RI gives the voltage component in phase
with I, while the product XI gives the voltage component whose
phase differs from I by 90°. These components are referred to as
the inphase and quadrature components of voltage. The power
dissipated in the circuit is equal to the inphase component of voltage
times the current, or [RI?]. The complete circuit must contain an
active element or source of electrical power to supply the energy
dissipated. The elements C,

1 E.-: R, L, which are not sources of
E Eq sustained power, are referred to
- .  as passive elements.
£ 9. Kirchhoff’s Voltage Law
e=e,+6; E=E +EqtEL in an A-c Circuit.—XKirchhoff’s
(o b voltage law holds for instanta-

Fra. 9.1~Kirchhoff's law applied to neous values in an a-¢ eircuit.
instantaneous and to complex voltages. If ¢ is the instantaneous ter-
minal voltage of an electrical source, Fig. 9.1a, and ¢; and e, are the
instantaneous voltages across passive elements, all measured by
instruments whose polarities are as indicated, ¢ is given by the
dlgebrmc sum of the meter readings,

e = ¢+ ¢ 9.1)

If the three voltages are shown simultaneously on a cathode-ray
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oscilloscope, the sum of e; and e, is equal to ¢ at every instant of
time, for any waveform of applied voltage and for any load.

If the applied voltage is sinusoidal and linear elements C, R, L
constitute the load, (8.2) may be considered as describing the
equality of the applied, or generator, terminal voltage and the
sum of the sinusoidal voltages across the elements of the load.
If these voltages be deseribed as the complex products of the imped-
ance of the element and the current,

E=Zd+ Zgl + 7,1 (9.2)
where the subscripts denote the elements whose impedance is indi-
cated. A cireuit corresponding to (9.2) is shown in Fig. 9.1b.
The generator voltage is assumed positive in the direction of the
current, and the polarity of the voltages across the passive elements
is in the direetion opposite to the direction of the current. With
these sign conventions,

E —~ 2 —Zgl —Z:I =0 (9.3)

which extends Kirchhoff’s voltage law to the analysis of a-c cireuits.
10. Series Circuits with Dissipative Reactors.—In actual
capacitors and inductors dissipation of energy always accompanies

MMW—H—W—-{' VMW
l Ry L R, L, l‘ Ry Cs } Ry Ciill Rs
+E'!-— '+E2- " +Es- ! §E4- ' +ES—
LI S
Y

+E~
Fra. 10.1.—8eries circuit with dissipative elements,

the passage of current. 'This loss of energy may be accounted for
by associating a series resistance with each element. If several such
elements constitute the load of a generator, Fig. 10.1, Kirchhoff’s
law gives

E = (Ry + joL)I + (Rs + joLo)I + (Rﬁ —J &1’3‘3) g

+ (m - 3@—13—4) T4+ Rd (10.1)

Collecting similar terms,

E

it

(R1+ Ry + B3 + Ry + Rs)

. ’ 1 1
(R +iX) = 21
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The impedance of the series combination is the complex sum of the
impedances of the separate elements.

11. Mutual Inductance in a Series Circuit.—When two coils
are close together, the varying magnetic field of one coil may
induce a voltage in the other eoil. If the twe coils of Fig. 11.1a
are wound so that direet currents in the direetion indicated in each
produce magnetic flux in the same or aiding direction along their
axes, the mutual inductance M is positive aceording to the con-
vention of Sec. 13, Appendix B. If the coils are connected in series
aiding, Fig. 11.15, and an alternating current is sent through the
combination, the induced voltage opposing the changing current in
each coil is inereased owing to the action of the other coil.

LML L M L . M@Lz
(3] th) (c} |

Fie. 11.1.—8chematic indication of the effects of mutual inductance,

If the connections of one coil are reversed, Fig. 1l.1¢, the
magnetic fields along the axes are reduced. The value of M is
negative. The equivalent self-inductance L of the combination is

L =1L+ I+ 2M (11.1)
The symbol M denotes a positive quantity for the aiding eombina-
tion and a negative quantity for the opposing combination. The

self-inductanee of the reversed combination is less by [4M] than
that for the aiding combination.

IV. PARALLEL CIRCUITS

12. Voltage and Current in a Parallel Combination.—In a
parallel circuit several paths, or branches, are provided for the
current. The applied voltage across the group is identical in
magnitude and phase with that across each branch. The current
through each branch, Fig. 12.1, is determined wholly by the voltage
across the branch and the impedance of the branch. If the gener-
ator voltage is constant, the current in each branch is constant.
By an extension of Kirchhoff’s current law fo a-c circuits, the total
current is the sum of the separate sinusoidal currents, or

. 1 .1
= joCE + 5B —j—- B (12.2)
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1 {1
= |z il = - 2.
(=i - <0)| (123
= (@ — jBE = YE
The complex number multiplying E is the admittance Y. TIts real
part is designated as @, the conductance of the combination, and
the coefficient of —j is defined as the susceptance B of the circuit.!

The admittance of the combination is the sum of the admittances
of the separate branches.

IGL I
3 ""f‘E I r E

o +1 c-ﬁc:jch :EIR:E/ R I"zd'j-gwt

_E REE L
|

Fia. 12.1.—Parallel circuit with ideal elements.

Above each element, Fig. 12.1, is indicated the phase relation
between the current through it and the common voltage vector.
The vector sum of the branch currents is shown in Fig. 12.2. Each
diagram of Fig. 12.2 represents the addition of the same currents;
in Fig. 12.2¢c they are described in terms of the admittance, con-
ductance, susceptance, and the applied voltage.

Y
i h 1 YE .
; e Jiele e )
E E I E GE
(a) b ©
Fia, 12.2.—Vector sum of the branch currents,

13. Impedance of a Parallel Circuit.—If a circuit combination
consists of several branches in parallel, the admittance of the group
may be written as the sum of the admittances of the separate
branches,

Y=YV, 4+ ¥:+Ys+ - (13.1)
As admittance is the reciprocal of impedance, (13.1) may be written

1 1 1 1

Z—z’?‘—g"i‘z'a*’r'“ (13.2)

' Ameriean Standard Definitions of Electrical Terms, ASA (42-1941,
American Institute of Electrical Engineers.
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Tf the circuit has only two branches,

_ Z122 _ product
Z = Z+Zy, ( sum ) (13.3)

The circuit of Fig. 13.1a consists of a parallel combination of
an inductor, with an associated series resistance, and a capacitor

Q Zp
7,57
(@) P )

Fic. 13.1,—Two-branch parallel cireuit and equivalent series circuit, whose elements
are denoted by the subscript s.

Jf negligible dissipation. From (13.2),

1 1

Reducing these to a common denominator,

1 (1 = ?LC) 4 joCR

z= R + jol. (13.5)
Inverting this expression and rationalizing,
_ R cwl{(1 — L0 — R:C/L)
Z = (1 — ()2 4 R*C%? + (1 — @?LC)? 4+ R*%? (13.6)
= R, + jX. (18.7)

The real and imaginary parts of the expression for Z represent
the resistance and reactance of a simple series circuit, Fig. 13.15,
equivalent to the parallel combination. The equivalent series
resistance K, and equivalent series reactance X, are functions of
the circuit constants and in general vary with the frequency.

14. Equivalent Representations of Dissipative Reactors.—A
dissipative reactor can be represented as either a parallel or a series
combination of reactance and resistance, Fig. 14.1.  As the imped-
ance Z; of the equivalent series combination must be the same as
the impedance Z, of the equivalent parallel combination, the rela-
tions between R,, X, and R, X, may be calculated from

IR X

By 4+ X, = m (14.1)
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Cross multiplying and equating reals and imaginaries,

R.R, = X.X, (14.2)
X.Ry + RX, = R,X, (14.3)

From these two independent conditions may be obtained g relation
convenient for slide-rule computation,

X2 4 R = |2 = R.Rp = X.X, (14.4)

The ratio of the series reactance to the series resistance of a
reactor is defined as @, its quality factor. The reciprocal of @ is

Rs

Zs Zp
Fre. 14.1.—Alternative series and parallel representations of a practical circuit
element,
its dissipation factor D. From (14.2),
X, R,, 1
= = = 14.5
=% "X, D (14.5)
For specific elements, @ and D are
for an induetor for a capacitor

whlis R, 1

1
B TULTD CTagm meORe=g (16)

Note that both @ and D are explicit functions of frequency. If
(14.3) be divided by X,R, and R, X, it follows from (14.5) that

1 X
1+@§=-X~i’ and 1+Q2=% (14.7)

If @ is larger than 10, the following approximations are accurate
to within 1 per cent at least:

X, =X, R, = @R, (14.8)

Under these circumstances the relation between the equivalent
series and parallel elements is very simple. The reactor has the
same inductance or capacitance in either representation; a small

series resistance is equivalent to a parallel resistance Q? times as
large.
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15. Current and Voltage Relations in a Parallel Circuit.—The
currents through the two branches of the circuit, Fig. 15.1a, may
be calculated separately. For the first branch,

. E — E - R]_ - ijl
o Z1 - R]_ +ij1 - Rg + w2L§
This may be written as

I

E (15.1)

v (B ol p
I = Y:E = (\—Z—l—lg J Tz E = (G, — jBy)E  (15.2)
where
_ R = ol
Gl - I"Z’J’Q and Bl - 221%2 (15.3)
A similar analysis gives I,, the current in the second branch,
_ _‘E_ _ E . Rz ‘1/&302)
L= 41 B R, — j//wC2 B (]Z2}2 + IZ2l2 o
= (({; — jB)E {15.4)
where
_ Ry _ —=1/wC
G, = “I—Z-;i‘z and B, = m!Zﬂz (15.5)

Each of the currents I, and I, consists of a sum of two com-
ponents. The product GE gives the magnitude of the component

I

(a} b) (c)

Fia. 15.1.—Two-branch parallel sircuit and its eurrent-voltage relations.

of current in phase with the voltage, and the product BE gives
the component of current lagging the voltage by 90°. The power
dissipated in either branch equals GE2.

The total current 7 is the sum of the complex currents,

I=1I+41,=[(G:+ G — j(B:1 + BylE (15.6)
The current relations are shown in Fig. 15.1b. The branch cur-

rents are added to give the total current. From the phase relations
between currents and applied voltage, it is possible to construct
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Fig. 15.1¢, which describes the relations among the voltages aeross
the elements in each branch., The voltages across the elements of
each branch must have E as their vector sum. The voltage Ep,
aeross the resistor R, is in phase with I, the current in K,. Thig
allows Eg, to be drawn parallel to I;. As the voltage Ez, across
Ly leads Eg, by 90°, they form a right triangle, with E as the hypote-
nuse. Therefore, their junction must lie on a cirele with K as its
diameter. A similar construction is shown for the voltages in
branch 2, so that Fig. 15.1¢c is a complete vector diagram of the
voltage-current relations in the circuit of Fig. 15.1a.

16. Electrical Representation of an A-c¢ Generator.—An a-c
generator acts as a linear element when its action upon a load can

CONSTANT-VOLTAGE FORM CONSTANT-CURRENT FORM

Fi16. 16.1.—Alternative deseriptions of a linear a-c generator.

be deseribed in terms of a constant a-¢ voltage or current and a
fixed internal impedance. These values may be dependent upon
the frequency generated but are assumed to be independent of the
load current.

If every value of load impedance Z; applied to such a generator
is very large in comparison with the internal impedance Z, of the
generator, the terminal voltage does not differ appreciably from its
open-cireuit voltage. Then the internal impedance Z, may be
neglected, and the generator may be approximately deseribed by
the single constant E,,, its open-circuit voltage or emf. If the load
impedance is very small in comparison with Z,, the load current
does not differ appreciably from the short-circuit current of the
generator. Under such conditions the generator may be approxi-
mately described by the single constant I, its short-circuit current,
where I, = E../Z, TFor all values of load impedance a linear
generator may be described as a zero-impedance constant-voltage
generator in series with an impedanee Z,, ¥ig. 16.1a, or as the com-
bination of an infinite-impedance constant-current generator with
the internal impedance Z, in parallel, Fig. 16.1b. Z, has the same
value in these alternative representations of the same generator.
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Caleulations based on both circuits of Fig. 16.1 give the same
values of current and voltage in the load.

E,.
L=737 1oy
' Z, for the
== Z - Euc v%ns“ag —orm .
B, 2 Z,+ Zs Viangs forms (16.2)
e L (16.3)
B %, Somstint.
IL = ZL = Zg + ZL Isc i};.;gei)é;'{grm, (164)

The expression for Ey in the constant-voltage form shows that
the generator voltage E,, divides between Z, and Z, in proportion
to their complex impedances. In the constant-current form the
expression for I, shows that the generator current I, divides
between Z, and Z, inversely proportional to their complex imped-
ances. As B, = Z,1,., the two expressions given for each of E;
and I are equivalent. The two representations of the generator
differ in their predietions of power dissipated within the generator.

The description to be used is a matter of convenience and may
be determined by the load characteristics. If the load consists
only of series elements, the constant-voltage, or series, form of the
generator simplifies the solution as Z, represents merely another
series element. If the load consists of parallel branches, the
constant-current, or parallel, form makes Z, merely an additional
branch.

Similar representations for a d-¢ generator are explained in
Appendix C.



CHAPTER 11
CIRCUIT RESPONSE

The source of signal voltage in communication networks usually
is greatly different, both physically and electrically, from the gener-
ator in power circuits. Its internal impedance may be so large
in comparison with that of the load that it approximates a constant-
current source. Its output in general is a combination of sinusoids
whose frequencies, amplitudes, and phases vary with time. The
communication circuit to which the signal is applied consists in
part of simple units whose purpose is to act upon the input currents
and voltages and deliver an altered output. The response charac-
teristic of such a system deseribes the relationship between the
amplitude and phase of the output and input for various frequencies
or for different values of a variable circuit element.

L RESPONSE OF SIMPLE LR AND CR UNITS

1, Variations of Z and Y for Circuits of Constant B.—When
the generator approximates constant-current or constant-voltage
operation over the useful range of the variable, the response of
a unit is often simply related to its impedance or admittance.
When L and R or C and R are in series and the only variable is
the reactance, the impedance is

Z=R+jX=R(1+j~}]%)==R(1 +jtan6;)  (L1)

The variations of Z are due only to changes in tan 8;. Also,
$
Y]

The varying magnitudes of both Z and ¥ are determined by R and
the value of tan 8;;

|Z] = and 6, = —0y (1.2)

1 1
IR e e 1.3
R\/1+tan20z (13)
The variations in magnitude and angle of Z and Y are indicated

in Fig. 1.1, where for simplicity only positive values of X are shown.
21

|Z] = R+/1+tan®6, and (Y]
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As X increases from zero to infinity, Z always terminates upon a
vertical line located at a distance B to the right of the origin,
Fig. 1.1a. This line is a locus describing all possible values of Z.
The corresponding values of Y terminate upon a semicircular
locus? of diameter 1/R as shown in Fig. 1.1c.

X

<
-

R=CONST—+ *X
{a) (b} (c)

Fic. 1.1.—Impedance and admittance relations in a series cirenit with constant
R: (a) values of £ as X is varied; (b) relation between Z and its corresponding ¥;
{c) values of Y corresponding to indicated values of Z.

2. Variations of Z and Y for Simple LR and CR Units.—The
impedance and admittance of a series or parallel LR or CR com-
bination may be varied by changing the frequency. The expres-
sions for Z and Y are simplified if the impressed angular frequency
w = 2xf is compared with the angular frequeney o’ that makes the
reactance equal in magnitude to the resistance. This frequency o
is related under some ecircumstances to the power dissipation
and is referred to as the half-power frequeney of the LR or CR
combination.

For an LR combination For a CR combination
. ro L :
w = I/k « =p (2.1)

In Chap. VI on Transients, the quantities L/R and CR are shown
to be the time constants of LR and CR circuits. The impedance
of the series combination and the admittance of the parallel com-
bination for the four possible arrangements of E in series or parallel
with L or C are as follows:

1 The triangle associated with Y in Fig. 1,15 is similar to the triangle in the
diagram for Z, since the sides of the triangle for ¥ are proportional to the
hypotenuse and the base of the triangle for Z, and the included angles are equal.
1t is a right triangle, and for all values of ¥ corresponding to positive values of X
it is insecribed in the semieircle in Fig. 1.1e. For negative values of X, the
triangle of which Y is the hypotenuse is inseribed in a semicircle of the same
diameter but above the OQ axis of Fig. 1.1c.
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The frequency ratio w/w’ determines tan 8, or tan 8y and there-
fore 8; and 6y. The corresponding values of |Z| and |¥} are given
by (1.3) in terms of the constant R and either /1 4 tan® 8, or its
equal v/1 + tan® 6y.

The expressions (2.3) are not affected by interchanging « with
L or C. Then w/w’ can be replaced in (2.4), (2.5), and (2.6) by
L/L’ it L is varied or by C/C’ if ( is varied. Here L’ or ¢’ may
be defined as the value of L or ¢ at which the reactance equals the
resistance in magnitude, or as the half-power value of L or €, equal
to R/w or 1/wk, respectively.

The expressions in (2.4a) and (2.4b) for the geries LR and the
parallel CE circuits show that their variations are identical provided
that Y be exchanged for Z and 1/R for B. The variations of
|Zas| and Y] for the series LR and the parallel CR circuits above
are both represented by a single curve, shown at the upper left
of Fig. 2.1; the numerical scale represents the ratio of the variable
to its half-power value. The corresponding variations of |Y.| and
|Zs| are shown in the lower left of the figure. The polar descrip-
tions are completed by giving the corresponding values of 6 and 8y.
The rectangular components of Z and Y are shown in addition.
At the right of Fig. 2.1, curves are given for the series CR and
parallel LR circuits (¢) and (d).

When these LR and CR combinations serve as loads for constant-
current or constant-voltage generators, these curves may also be
employed to show the current and voltage response and the vari-
ations in power. The vertical scales are changed in accordance
with the following equations to yield the quantities named, the
horizontal ratio scale remaining unchanged:

Constant-voltage generator Constant-current generator
Load current = KEY Load voltage =17
Power dissipated = E*@ Power dissipated = IR
Reactive power = E*B Reactive power = J2X
Phase of I with respect Phase of E with respect

to B = fy tol = {4,

The variations in the quantities represented by the curves of
Fig. 2.1 are summarized by the linear or circular locus at the left
of each gset of curves. Values of Z and Y are shown identified with
the corresponding numerical values of w/w’, or L/L, or C/C",
depending upon the variable. The seale of each locus is deter-
mined by the value of R, and the angle for any impedance Z is
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given by the corresponding value of tan 6, from (2.6). The
impedance of a series combination or the admittance of a parallel
combination has a linear locus. Its reciprocal has a semicircular
locus, on the opposite side of the axis of reals. For increasing
values of any one of w, L, or €, the numerical values of the corre-
sponding ratios o/o’, L/L/ or C/C’ increase upward along the
linear loci and clockwise around the semicircular loci.

L,7RatjXa Y5=647§Bp LR+ X Ya=6a-jBq

(a) a
§ R
Z; 130 3
or = %
% [ 20 ot
' i
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Fie. 2.1.—Impedance and admittance variations of LR and (R combinations as
@, L, or C is varied. Numerical ratio seale represents w/w', L/L', or ¢/C".

3. Variation of Load Voltage with Constant-current Generator.
The voltage output of a device is of primary importance when
applied to a vacuum tube. Under many conditions of operation
the tube has a high input impedance, and its behavior is determined
by the applied voltage.

When the LR and CR combinations of Fig. 3.1 serve as loads
for a constant-current generator, the voltage E developed across
them is equal to ZI. The changes in magnitude and phase of E
are due only to changes in Z. The ordinates of the curves for
1| in Fig. 2.1 multiplied by |I| yield the corresponding variations
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of |E| shown in Fig. 3.1. The value of 6, describes the phase of
the load voltage with respect to the current. In the series LR
circuit, |E| rises continuously as the values of the variable become
large, and in the series CE circuit |E| rises as the values of the vari-
able become small owing to the corresponding increase in |Z|.

It should be remembered that for any actual generator there
is a limit to the value of |Z] above which constant-current operation
cannot be approximated.

If the complex values of Z shown in the loci of Fig. 2.1 be
multiplied by the constant current I, the resulting vector voltages
are identified by the same numerical values of the ratios. All

RE 1
s 10
0 ?" : 80 % 2
5 1.0° 2
ol I

RI

02030 0 10 20 30
9 RATIQ—

9 .
(o b (c) td)
Fra, 3.1.—Voltage variation across LR and CR loads driven by a constant-
current generator. R ig constant. Numerical scale is ratio w/w', L/L’, or C/C’,
aecording to which is the variable.

possible values of load voltage therefore have loci of the same shape
and ratio scale as those of Z.

4. Voltage-divider Response.—If a generator maintains a con-
stant input voltage E; across a series LR or CR combination, the
voltage across each series element varies with w, L, or C, and these
circuits may be used as ““voltage dividers” to yield an output
voltage adjustable in magnitude and phase. The four types of
such simple voltage dividers are illustrated in Fig. 4.1.

The output voltage E, across K in the CR series circuit is
— R B - vRE = ! S B (4.1)
R~ Iy

E, =

where the admittance Y of the series CR circuit is the only vari-
able, and from (4.1) and (2.5¢) the output voltage response across
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R has the form of Y, in Fig. 2.1. This curve is reproduced with
suitable change in legend in Fig. 4.1a.

The voltage across R in the LR series circuit is equal to a constant
times the admittance of the series LE combination. This admit-
tance is Y, in Fig. 2.1, and the output voltage E, across R has
the same variation as in Fig. 4.1b. The curves are identical
except for a change of the vertical scale.

\M)
-
&0 0
+ +
Ei _zi i:—o
Eo 3
+1 2
E
0 10 20 39
RATIO—»

(a)
I'1G. 4.1—OQutput voltage variation of voltage dividers. R isconstant. Numerical
scale is ratio w/w’, L/L!, or '/, according to which is the variable.

The output voltage across L in the LE series circuit is

_ JeL L 1 o 1 )
E, = R+ ol E; = " E;, = " E; (4.2)

l—igg  1-ig

and has the same variations (4.1) as the voltage across the resistor
in a CR voltage-divider circuit. Similarly, the voltage variation
across C in the RC voltage divider is the same as that across R in
the LR voltage-divider circuit. Two curves therefore suffice to
describe the response of the four voltage-divider circuits.

The two loci in Fig. 4.1 describe the vector relations between
the input and output voltage for different numerical values of the
ratios w/w’, L/L/, or C/C’, whichever is the variable.

b. Generator of Intermediate Resistance.—In many cases of
importance the impedance of the generator is a pure resistance R, of
the same order of magnitude as the load impedance. Because
of its magnitude, K, then must be taken into acecount in either the
constant-current or the constant-voltage representation of the
generator. If the load consists of elements in parallel, as in Fig.
5.1b, the constant-current representation of the generator simplifies
the problem, as the internal resistance R, is then represented in
parullel with the load resistance R and the two may be combined
to form a single parallel resistance B,. The voltage across the load
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due to the generator current I = E,./R, is equal to

—iR 1
s g,
EL—R - '_l.I = 1+ijR-pI 6.1
' ch
Since
__RR, .1 1
By =5 TR and o = R, (;( 7T (5.2)
R+ R,
then
E RE, 1 E,. R 1 E. (53)

P B R “N\ER, "R+ ER
"(1+3§}) ’ "(wj%)

The frequency response is similar to that of Fig. 3.1¢, where congtant
current wag assumed through the load. The only difference is the
reduction of the output voltage in the ratio B/(R -+ R,) and the
altered value of o' as given by (5.2).

e

4 R

E
2 R+Rg o
0

k3

1 1 H
0 10 20 30 40 0

-—u? ———
(@ ®)
F1a. 5.1.—A generator represented in series form with a series load, and in
parallel form with a parallel load. Voltage curves assume the same generator for
each case, with B, = 4R.

If the load is a series combination, Fig. 5.1a, the constant-voltage
representation of the generator allows E, to be added to the series
resistance R, giving an equivalent series resistance R,. The
voltage response across R is similar to that obtained with no
generator registance. Only part of the voltage across R, appears
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across R, however, and o' equals 1/CR.. The curve E; of Fig.
5.1a and the curve E,, of Fig. 5.1b have the same shape as the low-
frequency and high-frequency response of a resistance-capacitance
coupled amplifier, Chap. XIIL

The frequency-response curve for the load voltage |E.| across
R and C, Fig. 5.1a, differs from the corresponding curve |E|, Fig.
3.1b. At zero frequency it approaches not an infinite but a finite
value, equal to E,., and its slope can be adjusted by choice of R,/R
to yield a more slowly changing response characteristic.

6. Compensated Voltage Divider.—For many purposes it ig
necessary to decrease an applied voltage in a ratio that is inde-
pendent of frequency, preferably without change in phase angle.

- Rz 1+E° - +E - R < +E
g :1:_ Cz - 14 Z:E Cz- [
% Ul 1 b, [ ] .

L G e R _eirpce
Eo*R+R, b B T3c, b Eo g R, Ei if RO ReCa
AT LOW FREQUENCIES AT HIGH FREQUENCIES AT ANY FREQUENCY
(a) (b) (c)

Fia. 6.1.—Voltage-divider circuits.

This can be done at low frequencies by the resistance voltage
divider of Fig. 6.1a. As the frequency is increased, however, the
impedance of the stray capacitance across each series element
decreases, causing the attenuation to vary with frequency. This
can be avoided at high frequencies by the capacitive voltage divider
of Fig. 6.1b. Stray capacitance across each series eapacitor simply
increases its capacitance, and the capacitive admittance at high
frequencies is chosen large enough to make any shunting conduc-
tance negligible.

If parallel capacitors are added to the resistive voltage divider,
the circuit of Fig. 6.l¢ is obtained, where C: and C: include
the stray capacitances across K and R, If the capaeitors are
adjusted so that the half-power frequencies of the two resistor-
capacitor combinations are the same,

£, - Zy . R
B, Z +7Z: Ri+ R,

O1R1 = Csz and (6 1)

and the voltage division is constant at all frequencies. Here
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Zy and Z, are the impedances of the parallel RC units. By making
R, and Re large and keeping C; and €5 as small as possible, high
input impedance as well as constant voltage division may be
maintained over a wide range of frequencies.

7. Phase-shifting Networks.—In the previous LR and CR cir-
cuits, changes in the phase angle of I or E were accompanied by a
change in magnitude. By the use of special circuits it is possible to
change the phase of a sinusoid without appreciable change in
magnitude, although in many cases the voltage is reduced by a
constant factor.

A center-tapped resistor connected in parallel with a series CR
combination forms the phase-shifting circuit of Fig. 7.1. The
voltages Er across B and E¢ across C when added form a right

F 8 X
L 1. P e S
€2 3R, O== Ec ; % 2

+ 3 e [ F Ate*B3p
i T L S E A E 10
T o
Ey 2R 3R Ep o 10 * RATIO el 1
l D 51 o \‘?/ F_O:Egi@ 0
0.2 5 o i L 1 1 1
0 "N w O 16 26730 4556
b ——l

w ¢ R
RATIO 5 or GOR~
F1a. 7.1.—~Phase-shifting network and its voltage relationships.

triangle with E; as the hypotenuse. This triangle is inscribed
within a semicircle with F; as its diameter. The voltages across
the equal resistances R, and R, are in phase with E;, and their sum
is equal to E;. If the center tap of the pure resistance branch is 4
and the junction of R and C is B, a vector drawn from A to B
represents the output voltage E, of the phase shifter. When the
impedance of R or C is varied, the relative magnitudes of E and
FH are altered, but their vector diagram is still a triangle inseribed
in the same semicircle. The tip of E, moves 2round the circum-
ference of the semicirele when R, w, or C is varied. The numbers on
the lower semicircle of Fig. 7.1 are the numerical ratios of any one of
R, w, or C (whichever is the variable) to its half-power value. The
constant magnitude of the output voltage is F;/2. The phase
angle of the output voltage with respect to the input voltage can be
varied by this cireuit from an angle near 0° for large values of the
variable to an angle of 180° for zero value of the variable,

The combination of the source E; and the center-tapped resistive
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branch can be replaced by the center-tapped secondary of a trans-
former, resulting in the circuit at the right of Fig. 7.1, If the
center tap is grounded, E.; and E, share a common ground and
are equal in magnitude. The phase of B s may be altered in the
same manner as in the cireuit with the center-tapped resistor.

II. SERIES RESONANCE

It is generally possible to adjust the circuit constants or the
impressed frequency in series cireuits eontaining L, C, and R so
that the phase angle between current and voltage

is zero and the impedance of the combination is a i
pure resistance. This condition is defined as reso- R
nance. At resonance the voltage across the eireuit E +
is in phase with the current through it, and the G) - L
power factor of the cireuit is unity.

8. Circuit Relations at Series Resonance.—In TC
the series circuit of Fig. 8.1 the internal impedance Fie. 8.1.—Series

of the generator is assumed negligible in compari- cireuit.
son with R, so that R accounts for all the circuit dissipation. The
current is

I=YE=

E _ E
z ) 1 (8.1)
At resonance the current and voltage are in phase, and the coeffi-

cient of j in (8.1) therefore must be zero. The condition for reso-
nance is

(wL—$)=O wL=£ or  WIC=1 (82

This condition may be satisfied by variation of any one of the
parameters involved in (8.2). If these are altered separately,
there are certain eritical values of w, L, or C that produce resonance.
These values, denoted by the subscript r, are related to the fixed
constants of the ecircuit by

1 1 1
w=v@e =@ ™ G- 63

The series-resonant frequency f. of the circuit, in cycles/second, is
related to w, by w, = 2xf..
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At resonance, the impedance Z and current I reduce to

Z=R and I= (8.4)

ol by

The voltages across R, L, and C are

Er=RI =E E;,=j9R£E and Ee = —j;}-—g—g {8.5)

From (8.2) the voltages H; and E. at resonance are equal in magni-
tude and opposite in phase.

The equal voltage ratios |H./E| and |E¢/E| at resonance,
obtained from (8.5), are given by the ratio of the magnitude of the
reactance of either the inductor or the capacitor to the series
resistance of the circuit. The definition of @ for a dissipative
reactor (the ratio of its series reactance to series resistance) can be
extended to a series circuit containing L, R, and C. The quality
factor @, of a series branch or loop is defined as the ratio of the
series reactance of either reactor af resonance to the series resistance
of the branch or loop. If the frequency is variable,

wl 1 _1 L
Q’z_li’“_w,CR_R\/é (8.6)

where w, is the angular frequency at resonance.

Tor a cireuit of constant L, B, and C, the quality factor Q, is also
a constant, independent of frequency. If the resistance R is
primarily that of the induetor, @, for the circuit is equal to the
guality factor @ of the coil at the resonant frequency of the cireuit.
At resonance, from (8.5),

|Eo| = |Eo] = Q/|E]|

When @, is large, E, and E, are many times greater than the
applied voltage.

9. Energy and Power Relations at Series Resonance.—An
inductor carrying current and a charged capacitor possess stored
energy. The instantaneous value of the stored energy in each
reactor is

in the inductor in the capacitor
3147 5Ce} 9.1)

As the sinusoidal eurrent through each reactor in a series circuit is
the same and since the voltage across the capacitor lags the current
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by one-quarter period, the stored energy in the capacitor is a
maximum one-quarter cycle later than that in the inductor. From
(8.2) and (8.5) the maximum energy stored by the inductor and
capacitor is the same at resonance, as indicated in Fig. 9.1a. The
sum of the stored energy is a constant, equal to the maximum energy
stored in either L or C; its value is L|I]?/2 in amplitude units or
L|I|? in rms units. The ratio of the stored energy at resonance to
the energy dissipated per cycle is @,/2r.

The transfer of energy from inductor to capacitor and back
occurs twice per period of the current. The rate of transfer, or the
instantaneous power absorbed from and returned to the circuit by

DISSIPATED WATTLESS
INDUCTOR _POWER
CAPACITOR — —— e o POWER
>- 7 7 ER
AVAVAVAVA 2e
% \ I \ L e st
w sUIF 8 of
o Z o
A AWAN £y
AV, W/ é %
(o) {b}

Fia. 9.1.-—Stored energy and power variations at resonance.

each reactor, is sketched in Fig. 9.1b, together with curves describ-
ing the instantaneous and average power dissipation in the resistor.
At resonance, the instantaneous rate of energy storage by one
reactor is equal at all times to the rate of energy return by the other
reactor. The maximum rate of energy storage in both reactors
may be calculated from (4.3), Chap. I, as |Ecl|/2 = |E.I|/2, or in
rms values [EcI| and |E. I, As the currents and voltages are in
quadrature, these expressions give the reactive volt-amperes, or
so-called ‘“‘wattless power,” for the capacitor and inductor.

The ratio of the reactive volt-amperes for either reactor to the
power dissipated at resonance is equal to @.. This fact may also be
used to define the quality factor @,.

10. The Frequency Response of a Series LCE Circuit.—As
Z is equal to the voltage across a circuit per unit current through
it, the voltage variation with constant current is determined by the
variation of Z. The impedance Z of a series LCR circuit is given by

. ) 1 .
Z=R+3X=R+J(mL—E) (10.1)
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and

wl — —;

2= VEF T 0 =t —2C (102

The magnitudes of the components of Z are plotted in Fig. 10.1 as a
function of frequency. At low frequencies the capacitive reactance
is predominant, and at high frequencies the induective reactance is
predominant. At some intermediate frequency these reactances
cancel; the capacitive and inductive reactances are equal and
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Fra. 10.1—Variations in Z, Y, and @y for a series LOR civenit as the frequency is
changed,

opposite in sign. The frequency at which this cccurs is the reso-
nant frequency fr; the reactance X is zero, and the impedance Z is
a minimum and is equal to B. The rapidity with which |Z| changes
in the neighborhood of resonance depends upon ., which iz the
ratio at resonance of either the capacitive or the inductive reactance
to the resistance. The rapidity of this change is measured by the
separation of the lower and upper half-power angular frequencies
' and o’ marked on the curves. At these frequencies X equals
—R and R, respectively, and the magnitude of the impedance is
/2 times its resonant value R.

As the admittance of a circuit is equal to the current per unit
voltage applied, the curves for |Y| and 6y in Fig. 10.15 deseribe the
variations in magnitude and phase of the current in a series LCE
circuit when a constant-voltage generator of variable frequenecy is
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applied to it. The values of ¥ may be obtained from those for Z
by the relations |¥| = 1/]Z| and 8y = —6;. The admittance is a
maximum at the resonant frequency and drops to 1/4/2 of this
value at the half-power frequencies, at which the power delivered
to the circuit is one-half that at resonance. The phase angle 8¢
at o and o'/ is +45° and —45°, respectively.

The effect of changing the @, of the circuit is illustrated by
plotting several response curves for different values of the circuit

L/ constart| | R varied oL Rconstant _ L/C varied
0707
Il ,
or By Or /Y,
i or
¥ C /1r
—p—
w=0 (57 wr w- w=0
H0°, o
Q 90
8 +45° g~ .‘-r——'-"——- +45°.
Y 0‘ : - ]
“8) 0 S - 8 0
o R g PR h
_90n () . _900. . . | —
w30 Wy w- 097 098 099 100 101 102 103
w
W
(c) {d)

Fie. 10.2—Response curves of a serles LCR circuit as a function of frequency for
various values of @, (encircled).

constants. In Fig. 10.2a the L/C ratio is fixed, and R is changed
from curve to curve. At frequencies removed from resonance, the
reactance i8 predominant, and therefore the reactance controls the
shape of the curve; the dependence on R is slight. Near resonance,
the resistance controls the shape of the curve in a region that is
smaller the lower the value of R or the higher the value of ¢,. In
Fig. 10.2b the resistance is held constant and the L/ ratio changed.
The larger the value of L/C and therefore the larger the value of
@, the more restricted the range of large response. The sharpness
of tuning, which varies inversely with the separation of the half-
power frequencies, is correspondingly inereased.
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Most. of the values of @, shown in Fig. 10.2 are small. It would
be difficult to illustrate in Fig. 10.2a the response for a circuit with
a Q. as large as the readily obtained value of 100, as the response
would not differ appreciably from that of ¢, = 8 for the lower
values of | ¥} or {7, which are the only values shown on the diagram.
In Figs. 10.2b,c the response for @, == 100 is indicated, but the
changes in |Y] and 8y occur in such a narrow range of frequencies
that the shape is obscured. In Fig. 10.2d a portion of the response
curve with @, = 100 is drawn to an expanded frequency secale,
which covers a frequency variation of a few per cent in the neigh-
borhood of resonance. The curves for both |¥| and 8y are nearly
symmetrical about w, in this range.

11. Calculation of Z and Y for a Range of Frequencies.—The
impedance of a series LCE circuit may he written

Z=R+j(wL—;%)=R[1 +j(9R-L~-;-é,-R)] (1L.1)

From this expression the angle and magnitude of Z are
wl 1
p =t = an? .
tan 6, 7~ olh and |Z] = R+/1 + tan® 8, (11.2)
The eorresponding admittance Y is

i1
R /T + tan? 4,
If B is constant and w is varied, the changing magnitudes of Z and
Y are determined by the value of tan 8;. In terms of w, and

Q., the resonant frequency and quality factor of the circuit, the
expression for tan 0, is

_wTL_a_)-_ 1wy w__;;;
tan ez = (TRT @ ww,»CR m) = Qr (a; "5) (114)

wl 1 1 [[
&= % =08 = ENC (11.5)

Y] = and Oy = —0, (11.3)

where

From (11.4) it follows that the variations of tan 6, and therefore
those of Z and Y, are determined by the cireuit constant Q, and
by the ratio of the impressed angular frequency  to the series-
resonant angular frequency «,. If the frequency response of a series
cireuit is plotted in terms of this frequeney ratio, all circuits with
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the same @Q, yield curves of the same shape. As the frequency o
occurs only as compared with w,, it is convenient to refer to this
ratio as w and call it the fractional frequency. Then

tan §; = QT( - %}) where w = wﬁ =w+VLC (11.6)

b

The relation (11.6) is useful if it is desired to compare the
response at some frequency removed from resonance with that
obtained at resonance. For example, if a circuit is tuned to a
signal delivered by a constant-voltage generator, the current
response at a frequency twice as great (the second harmonic of the
signal, Chap, IX) is readily calculated from

w=2 tanf; =Q(2—% =15Q, |Z] =R~/1+ (1.5Q,)?
(11.7)

The value of |Y], and therefore the current, is reduced to

1
V1 + 2.25Q2

of its value at resonance, and it lags the voltage by tan—! 1.5Q,
If 1.5Q, is large, |V is reduced by the approximate factor 1/(1.5Q,),
or 1/tan 8,. If a circuit having the same Q. were tuned to the
second harmonic of & signal, its response at the fundamental fre-
quency {w = %) would be reduced by the same factor, since for a
given value of w and its reciprocal the magnitude of tan 6, in (11.6)
is the same.

The half-power frequencies of the circuit may be determined
in terms of ¢, by solving (11.6) for w, yielding the following quad-
ratic expression and its solution:

wh— B0, 1y w=t”'noz+\/1+(mn0”> (11.8)

Q- 2Q. 2Q,

Since at resonance w = I and tan 8, = 0, only the positive sign

of the radical has meaning. At the half-power frequencies the
following relations hold:

Upper half-power frequency Lower half-power frequency
7" 7
w = "’ =:)—O— tan 6, =1 w=o w=2 tanf, = —1

¥

”
w ’

_ 1 1 W _ =1 1
R AT cea Ty g 0o
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Upon subtracting these expressions, the radical vanishes and
w' — o 1 wr wr

@, = @ or Qr == 5,—;,*—:**—; = EW (11.10)

where BW is the difference between the half-power frequencies
and is called the band width. 1t may be measured in radians/
second, equal to w” — &/, or eycles/second, equal to f7 — f/. The
ratio of the band width to the resonant frequency is called the
fractional band width and is BW/w, = 1/Q,. The band width
in per cent of the resonant frequency is 100/@Q,. The expressions
(11.10) are exact and hold for any value of Q..

In some circuits the applied signal voltage contains many
frequencies closely grouped around the resonant frequency of the
circuit. When the per cent deviation from the resonant frequency
is small, an approximate relation between the frequency and
tan 6, simplifies the calculation of the circuit response.

If (tan 6;)/2Q, is small in comparison with unity, its square in
the radical of (11.8) mayv be neglected and

w—1=2% o B0z (11.11)

It follows that (tan 8,)/2Q, approximates the ratio of the frequency
deviation from resonance to the resonant frequency when this ratio
is small. Under these conditions the frequency deviation from
resonance is

l(xér

. BwW
- W == QQ—rtan 93 = —— tan 62 (11.12)

2

w

At the half-power frequencies tan 8; = +1, and the approximate
values of ' and o are

o’ =, + %H—f and o = @, — BTW (11.13)
They oceur at approximately s half band width above and below
the resonant frequency. At intervals of 2, 3, 4 half band widths
above and below the resonant frequency, tan 8, has the value
+2, +3, +4; from (11.3) the corresponding values of admittance
are 1/4/5, 1/4/10, 1/4/17 of its value at resonance. Where this
approximation is applicable, tan 6; is readily obtained as the ratio
of the frequency deviation from resonance to the half band width.
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tan 6, = %%,—/-‘% (11.14)

This approximation predicts a symmetrical variation of |Y|
around the resonant frequency, as illustrated in Fig. 1l.le for
a circuit of @, = 50. In the small frequeney range of 4 per cent
below and above resonance shown, the true curve has a negligible
difference from the symmetrical one. Expansion of the radical
in (11.8) shows that at a frequency near resonance the error involved
in the use of the approximation of (11.12) is about one-half the
per cent deviation from resonance.

For larger per cent deviation from resonance an aeccurate repre-
sentation of |¥]| requires that points on the symmetrical curve be

. o 5 T T U W
2 3fanB,  -48%-30%-20% -10% O 0% 20% 30% 40%dev.
096 097 038 09 100 101 102 {BBw- 06 07 08 09 10 L1 12 13 l4w=—
(a) (b)
Fig. 11.1,~Variation of the admittance of a series LOE eircuit near resonance,

showing the departure from symmetry as the per cent deviation from resonance
inereases.

shifted toward higher frequency by an amount which depends
only upon the per cent deviation from resonance and is independent
of Q. In Fig. 11.b the symmetrical and true curves are shown
for circuits of Q. equal to 5 and 10. At equal per cent deviations
either above or below resonance the frequency difference between
the two curves is the same and inereases linearly with the deviation
from resonance.

The simultaneous variations of magnitude and phase of Z and
Y are illustrated by the loci of Fig. 11.2. Figure 11.24 shows the
values of Z and tan 8, for a fixed R, at various frequencies eorre-
sponding to integral values of tan §,. Near resonance these
frequencies have approximately equal differences of one-half band
width when @, is large, 1.e., when the band width is a few per cent
of the resonant frequency. In Fig. 11.2b, values of Z are related
to w for a circuit of @, = 5 (20 per cent band width). For the
large percentage frequency deviations indicated, the corresponding
variations in Z are unsymmetrical. In Fig. 11.2¢ are shown the
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values of Y corresponding to Figs. 11.2a, b. The symmetrical
variation of ¥ near resonance in the upper cireular locus is charac-
teristic of high-@. circuits, while the unsymmetrical behavior for
€. = b is characteristic of low-Q, circuits.

If the LCR circuit is excited by a constant-current generator,
the various values of Z in Fig. 11.2 multiplied by the current mag-
nitude describe the variation of the vector voltage across the cireuit
both in magnitude and in phase with respect to the current.

When the circuit is excited by a constant-voltage device, the
values of ¥ describe the eurrent variations. Although the eurrent

H!ghar ﬂr?S w
X fng, w Weor
14
: w
RE 3 ,w=wr+3%- . 13
Y-
2R-2/ 4 2 W= W2 19
RE/ A1 w8 L
0% 0 o w 10
-R_ b -] w‘=wr—B—2"y Oq
R \Y 2 wswp-2BY 08
-} wewe-aBY
0.7
LR R
(o) (b) )

Fia. 11.2—Variation of Z and ¥ as related to tan 6z and w for a high-Q; series LCR
circuit and to w for a low-@Q, series circuit.

in a serles LCR circuit is a maximum at resonance, the voltages
across € and L are, respectively, a maximum at a frequency slightly
below and slightly above resonance owing to the fact that their
impedance varies with the frequency. For large values of Q, the
frequency deviation from resonance for these maxima is one part
in 402 and the maxima are larger than Q.5 (the voltage at reso-
nance) by only one part in 8Q2

12. Variation of Capacitance in a Series LCR Circuit.—If R, L,
and w are fixed in a series LOR circuit and C is varied, the corre-
sponding changes in Z and ¥ are similar to those caused by varying
w. The chief difference is in the variation of tan ;. As the fre-
guency is constant and C is varied, the quality factor @,, defined
at resonance, must be given in terms of C,. The expression for
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tan 67 from (11.2) becomes

C, _LJL_ 1 el
m“%‘Q{l C) where Q= pAlG. =GR ™ R
(12.1)

For large values of C, tan 6, approximates @, and the corresponding

(12.1) the ratio C,/C 18

C, tan 0z c_ U
T g and o =, (122
==

At the upper and lower half-power values of eapacitance, tan 6,
equals +1 and —1, respectively,

()'/Z_Clﬁic,_%«g_’ and (' = ¢, = (, —
1 Q- 1
-5 14 4

¥

C,
Qr
(12.3)

The approximation shows that the half-power values are approxi-
mately equally spaced on either side of C, if @, is large. The
approximate per cent deviation of the half-power values of C from
C. is 100/0,, or twice the percentage deviation of the half-power
values of @ from w,, Sec. 11.

It is possible to determine @, exactly in terms of €' and C”
for any value of @, At the half-power values of capacitance,
(12.2) becomes

g§= 1+}; and g}}=l—er (12.4)
%ﬂ%zé . %+%=2 (12.5)
Cle — 0 QE, GO D —2 (26

Dividing the second equation by the first in (12.6),
e -a 12.7)

Now @, = wL/R, (12.1), and C, = 1/w?L. If these values are
substituted in (12.6)

_C//_Ct _C”‘{"C’
L 2—(9676’77 a.nd L = mé,—) (]28)
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Knowledge of the half-power capacitances permits the caleulation
by means of (12.8} of B and L at the frequency of operation.

III. PARALLEL RESONANCE

Parallel resonance is said to exist when the impedance of a
parallel combination of reactive elements is a pure resistance, with
zero phase angle. When driven by a generator, the reactive com-
ponents of the branch currents add to zero, as contrasted to series
resonance where the reactive components of vollage cancel.

Despite this and other differences there exist marked similarities
in the behavior of the same elements excited in series and parallel
resonance. Many of the series relationships are useful in describing
conditions in the neighborhood of parallel resonance, particularly
if the losses of the circuit are low.

13. Conditions at Parallel Regonance.—In the parallel com-
bination of Fig. 13.1a, driven by a constant-voltage generator, it is

(a) (b}

¥ic. 13.1=Parallel LCR circuit and its current-voltage relations at resonarnce.

assumed that the losses in the capacitor are negligible in comparison
with those in the induetor. For suitable values of L, C, R, some
value of w produces parallel resonance. If R is small, the parallel-
resonant frequency is practically the same as the series-resonant
frequency of the loop; at the parallel-resonant frequency, the
reactances of the two branches are nearly equal, and the branch
currents, which differ in phase by almost 180° tend to cancel at
the generator terminals. If R were reduced to zero, the generator
current would reduce to zero, the combination would have infinite
resistance, and there would be a circulating current in the series
loop equal to that through either of its branches. With finite
though small values of R, the conditions at resonance differ some-
what from this ideal case, but the magnitudes of the branch and
loop currents are not greatly affected.

The impedance of the parallel combination may be expressed
as the produet of the branch impedances divided by their sum,
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(—jﬁ9(3+ﬁi3

7 = ; (13.1)
L( .R)
= 1....:’,_
= ¢ "’Ll (13.2)
. R
1 —g—
IJ wL
= 13.3
CE. |, @_,_1_) (13:3)
INE ~ oCR

At resonance the impedance is a pure resistance, and the angle of
the complex ratio multiplying L/CR in (13.3) i¢ zero. This requires
that the angles of the complex numerator and denominator be
equal, then the tangents of these angles are equal, and

_E oL 1 (13.4)

Multiplying through by /L and solving for « yields w,,, the
parallel-resonant angular frequency,

1 R .

The ratio of the parallel-resonant frequency to the series-resonant
frequency of the loop (w., = 1/A/LC) is

Wpr __Rng_ __]__._ _,..1_
E“Jlfu"$ gl g™t (13.6)

where @, is the quality factor of the series loop. The approximation
given holds only for high-@, circuits where the resonant frequencies
are almost the same. For @, = 10, the approximation indicates
the parallel-resonant frequency is only 4 per cent lower than the
series-resonant frequency.

The parallel-resonant frequency is a function of R. In fact,
if R is so large that @, = 1, the parallel-resonant frequency is
zero, from (13.6). For larger values of K no parallel-resonant
frequeney exists for this cireuit, and the ratio of driving frequency

! There is no frequency at which the total alternating current 7, Fig. 13.1q,
is in phase with the applied voltage E.
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to parallel-resonant frequency has no meaning. The behavior of
this parallel LCR circuit is described, therefore, in terms of the
previously defined @, and the frequency ratio w = w/w., of the
series loop. Although at parallel resonance the ratio of reactive
volt-amperes to power dissipated is not equal to Q,, it does not
differ sensibly from it for a high-Q, circuit.

The parallel-resonant impedance Z,, is obtained by substituting
(13.4) in (13.3). The impedance of the parallel combination at
the series-resonant frequency of the loop, (Z).,, is obtained from
(13.1) by setting w = 1/4/LC. The impedances presented to the
generator at these two important frequencies are

. L . L . [L
d;;;- = é’R— 35‘,,“. s *C;E — 7 \/6 (137)

Multiplication by R/R yields from (8.6) the same relations
expressed in terms of @,

Zw = Q?‘R
Zve = QIR — jQ.R

- an(1-ig)

‘Where parallel resonance exists, the parallel-resonant impedance
and the real part of the parallel impedance at w., are equal. The
phase angle 8, for the eombination at w,. is always negative since
tan 8, = —1/Q, at this frequency.

From (13.7) the smaller the value of R, the larger the parallel-
resonant impedance L/CR at the parallel-resonant frequency.
This is because the eurrents in the two branches at w,,. become more
nearly equal in magnitude and opposite in phase as 2 is decreased.
The relation at parallel resonance between the generator and
branch currents and the generator voltage is shown in Fig. 13.1b.
At parallel resonance the magnitude of the current through the
induetor must be larger than that through the capacitor because
its out-of-phase component is equal to that through the eapacitor
and, in addition, it possesses a component in phase with the gener-
ator voltage. As Q. increases, the currents I, and I, approach
equality of magnitude and opposition of phase. The generator
current at resonance is thus progressively decreased, and the
impedance of the combination becomes larger and larger. The
sine of the angle ¢ of Fig. 13.1 is equal to 1/Q,, and at parallel
resonance the current through the inductor is equal to @, times

(13.8)
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the generator current for any value of @,. For large values of Q.
the magnitude of the current through the capacitor approaches
the magnitude of the current through the inductor, and the follow-
ing relations obtain:

QI = |} = |Ie| (13.9)

Thus at parallel resonance there is a “resonant rise” of current,
comparable with the “resonant rise’’ of voltage at series resonance.
For a parallel-resonant cireuit whose @, is high the circulating cur-
rent in the LCR loop approximates ¢, times the generator current.

@, is as defined in (8.6). It is the @ of the “loop” at the series-
resonant frequency of the loop.

14. Response of a High-Q Parallel Circuit near Resonance.—
If the parallel circuit of Fig. 13.1 is excited by a constant-current
variable-frequency generator, the variation in voltage across the
LCR combination is due to its changing impedance. The expres-
sion (13.2) for the impedance of the parallel circuit may be rear-
ranged to give

e (R I

The quantity in the brackets on the right is the admittance Y,
of the series loop formed by the branches, so that

7= (5) 0o (13 o )= 1210 (142)

where w = w/w, = w VLC and @, is the quality factor of the
series loop at series resonance. If w@, >> 1, @, large and fre-
quency deviation from resonance small, the last term in (14.1)
is practically equal to unity and can be neglected.

Therefore, except for a constant multiplier L/C, the variation of
|Z] for the parallel circuit is practically the same as that of |V, for
the series circuit. The symmetrical curves of |Z| and 8, Fig.
14.1b, for a parallel circuit of @, = 100, do not differ appreciably
in shape, for small deviations from resonance, from the curves for
|Y| and 8y for a series circuit of the same @, TFig. 10.2d. The
band width and half-power frequencies of the series loop calculated
from (11.10) and (11.13) also describe the variations of Z for the
parallel combination.

From the values of |Z] and 8, for the parallel combination the
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equivalent series resistance B, and the equivalent series reactance X,
are obtained as the real and imaginary parts of Z. The complex
rectangular expressons for R, and X, are given by (13.6), Chap. I,
and R, and X, are shown as dashed lines in Fig. 14.1b. The equiv-
alent series resistance R,, which accounts for the power delivered
to the load in terms of the total cwrrent I, Fig. 13.1a, varies more
rapidly than |Z] and falls to one-half its maximum value at the half-
power frequencies. At frequencies below resonance the eircuit is
inductive, while at frequencies above resonance the circuit is eapae-
itive, as shown by the negative value of X,. The maximum values
of X, oceur at the half-power frequencies,

Xs  Up=100
P PR
| CR “r !
O’SC—R
R0 T
509 098
| |
i !
L !
~O5¢R-0°

{a) (b)
Fi1e. 14.1.-—Impedance variations for a parallel circuit of high Q. described in - polar
and rectangular form as a funetion of the frequency ratio w = w/ws = @ x/ LC.

The variations illustrated in the four curves of Fig. 14.16 are
described by the single circular locus of Z in Fig. 14.1a. Here a
numerical scale relates the terminal positions of Z on its circular
locus to w, the ratio of the exciting frequency to the series-resonant
frequency of the loop.

When the circuit is conneeted to a constant-current generator,
the voltage is given by the product of Z, Fig. 14.1, and the constant
current, so that both the diagrams and the locus deseribe the vari-
ation in voltage across a high-@, LCR combination as the frequency
isaltered. Nearresonance theimpedances of the LR and C branches
change by only a few per cent, and the magnitudes of the current
through both branches, or the loop current, follow the voltage varia-
tion closely so that the loop current near resonance is approximately
proportional to 1Z}, Fig. 14.1.

15. Response of Intermediate and Low-@Q Parallel Circuits.—
With low-Q, circuits and wide frequency deviations from resonance
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the complex numeric factor of (14.2) cannot be neglected. If it
is expressed in polar form,

o1 1 - 1
V=i = /o (Cag) 0o

its action is seen to increase |Z| by a factor dependent upon (w@;)?
and to decrease 8; by an angle determined by w@,. For small
values of 1/(w@Q,) the change in angle is more important than the
change in magnitude. This is illustrated in Fig. 15.1b, where the
variationof |Z] and 8; is given for a circuit of @, = 8. The shape
of the curve for Z differs only slightly from the curve for ¥,, while

(o) b

Fia. 15.1,—Impedance variations for a parallel circuit of intermediate Q.
described in polar and rectangular form as a funetion of the frequency ratio

W= Wy = w\/LC.

the curve for 6, is markedly affected. Therefore |Z| falls to 0.707
of its maximum value at frequencies only slightly different from
the half-power frequencies of the series loop; the ratio of the
resonant frequency to the band width is equal to @, to a good
approximation. The phase angle, however, no longer has equal
magnitudes at the upper and lower half-power frequencies of the
loop. Nor has X,. These changes appear in the locus of Z, Fig.
15.1a, which, remaining almost circular, is slightly enlarged and
rotated clockwise through an angle whose tangent approximates
1/Q.. At w, the tangent of the phase angle is exactly 1/Q,, and
the locus shows that w, and w,, differ slightly in frequency in
accordance with (13.68). The effect of the complex numeric factor
is a maximum at zero frequency (w = 0) where |Z| equals E and 6,
equals zero, Fig. 15.1b.

For still smaller values of Q, the curve for |Z| deviates sharply
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from that of |Y,). In Fig. 15.2b are shown the variations for a
circuit of @ = 2. The general behavior of |Z| is the same as in
Fig. 15.1b except near zero frequency, but 8; is zero at a frequency
well below o, and the broadened peaks of B, and |Z} have separate
maxima at frequencies different from wp.. The maximum value
of R;, which corresponds to maximum delivery of power by a
constant-current generator, occurs about halfway between w, and
ws. The frequency giving a maximum value of |Z! is only slightly
below the series-resonant frequency and differs from it by approxi-
mately one part in 4Q%.

XS Qr’Q.O

1gg “w=0
130
2.0
1.5
(a) {b)

F16. 15.2.—Impedance variations of a parallel eircuit of low Q.

The behavior of the low-Q, circuit shown in Fig. 15.2 exhibits
many of the characteristics of the parallel combination that are
not. observable for larger values of Q..

16. Fractional Values of @Q,.—With decreasing values of Q.
the parallel-resonant frequency approaches zero, and the cireuit
is inductive over a decreasing range of frequencies near zero. Af
a @, of unity, Fig. 16.1a, both 6; and X, have negative values only
and remain near zero over a considerable range of frequency.
Both R, and |Z| still exhibit a resonant rise at a frequency somewhat
below series resonance for the loop.

With further reduction of @, to 0.707, Fig. 16.1b the maximum
of R, vanishes, and R, decreases slowly from its zero-frequency
value of B. The curve for |Z] rises slightly in a broad flat maximum
and returns to the value R at 0.707 of the series-resonant frequency
of the loop.! The phase angle 8, decreases steadily and varies

1 This corresponds to N = 0.5 in Chap. XIII, Sec. 18.
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almost linearly with frequency although a trace remains of the
inflection shown in the @, = 1 eurve. For a @, of 0.5, Fig. 16.1¢,
the deerease of 8; is more rapid and almost linear. The curvature
at the origin has reversed, indicating that some intermediate value

(o) b (c)
Fi16. 16,1.—Impedance variations for a parallel eircuit of fractional &,
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Fic. 16.2,—Impedance variations for parallel circuits having very low values of Q,,
of Q. (approx. 0.57) would ensure linear variation of the phase
angle over a wide range of frequencies beginning at zero.l

The progressive changes in the variations of Z are also illus-
trated by the loci of Fig. 16.2 drawn for values of Q. slightly above
unity, unity, and ranging down to zero. The semicircular locus

1 This eorresponds to N = 0.32 in Chap. XI1II, Sec. 18.
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for @, = 0 is that of a capacitor and resistor in parallel, as L is
reduced to zero. The loci also show that @, = 1 ensures that the
circuit simulates a pure resistance with nearly zero phase angle
over a range of frequencies near zero; the magnitude of its imped-
ance is changing, however. The 0.707 locus gives an almost con-
stant value of |Z| although 8, changes rapidly near zero frequency.

17. Division of Resistance between Branches in a Parallel Cir-
cuit.—If the resistance R is transferred from the inductive to the
capacitive branch, the curves previously drawn serve to deseribe
the behavior of the new cireuit for all values of §,, with the following
modifications: The numbers on the frequency-ratio scale in terms

W m=0
Xs =02 m=08
] Wer Q=2
W=I|—f
wz0 W=-—-’—E QrR *RL A
Viegay/ | =0 . wpr
wW=00 2’ Rs
Q'?;R pr RC" A
k— [m(-m)+Q2JR
(a1) {b) (c)

Fig. 17.1.—Impedance variations for a parallel circuit (a) with all the resistance
in the capacitive branch, m = 0; (b) with unequal division of resistance, m = 0.6;
(¢} with equal division of resistance, m = 0.5.

of w = w/we. are replaced by their reciprocals w../w, that is,
becomes 1/« = 0, 5 becomes %, ete. The impedance at the
parallel- and series-resonant frequencies is unchanged in magnitude;
but the ratio of wyr to w,r (13.6) is inverted, and w,, i8 now larger
than w,,, which is unchanged. The signs of 8, and X, are reversed.
In terms of the loci this is equivalent to inverting them about the
axis of reals and replacing w by its reciprocal. Compare Fig.
17.1a with Fig. 15.2a.

If resistance exists in both branches, the locus becomes a com-
promise between the two loci of Figs. 17.1¢ and 15.2a, as shown in
Fig. 17.1b. The shape depends upon the division of resistance
between the two branches. If B = R, -+ R¢ is the total loop
resistance and m is the fraction of the total resistance in the indue-
tive branch, the characteristics of the circuit at parallel resonance
may be described in terms of m and @,, the quality factor of the
series loop. The ratio of parallel- to series-resonant frequenecy is



Sec. 17] DIVISION OF RESISTANCE 51

“”’" \/ @-—m L.q,_2m—1 (17.1)

@- -y 2
The impedance at the parallel-resonant frequency is
_RRe | L qR = £ -

The approximations indicated hold for large values of @..

If the resistance is equally divided between the branches
{(m = 0.5), the parallel- and series-resonant frequencies are the
same and the locus reduces to a circle, Fig. 17.1c. At this resonant
frequeney both |{Z] and R, have equal maximum values. If the
resistance remains equally divided and the @, of the series loop is
reduced by varying the L/C ratio, the diameter of the circularlocus
is reduced. At @, = 0.5, corresponding to R; = Rq = ~/L/C,
the locus reduces to a point and the circuit behaves as a pure
resistance K/2 at all frequencies, -



CHAPTER III
CIRCUIT ELEMENTS

1. The Use of Equivalent Circuits to Describe the Electrical
Properties of Circuit Elements.—The physical elements that com-
prise the electric circuit possess a mixture of capacitive, inductive,
and resistive characteristics. Although the coil of wire that con-
stitutes an inductor has a geometry and construction designed to
make inductance its primary attribute, there are always resistance
and capacitance associated with it. Similarly a stack of plates
forming a capacitor has inductance and resistance present as
residual quantities.

The influence of the element upon the electric circuit depends
upon the current-voltage relations it maintains at its terminals.
Over a range of frequencies these relations change in a complicated
fashion depending upon the geometry of the element and the dis-
tribution in space of its electric and magnetic fields. At any one
frequency the ratio of the voltage at the terminals to the current
at the terminals may be described by stating the impedance or
admittance of the element, or by attributing to the element the
properties of an equivalent series or parallel cireuit (of L and R or C
and R) having the same value of Z or Y as has the element at the
frequency in question.

If the frequency is varied, it is necessary in general to vary the
magnitudes of L, B, or C, in this simple equivalent circuit if the
calculated Z is to agree with the actual Z of the circuit element.
By resorting to a more complicated arrangement of ideal elements
of constant L, R, C, it is possible to devise an equivalent eirenit
whose impedance variation over a frequency interval is similar to
that of the actual element. This agreement can never be perfect
over the entire range of frequencies; and, the wider the range and
the greater the accuracy required, the more complex the equivalent
circuit must be.

In general, the simplest possible cireuit is used that yields
sufficient agreement with the behavior of the cireuit element over
the range of frequencies of interest. For an air-core inductor near
zero frequency the equivalent circuit may be reduced to a simple

52
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series combination of resistance and inductance of constant magni-
tudes. As the frequency is increased, the effect of the distributed
capacitance causes the equivalent series resistance and inductance
to change in a manner that can be accounted for by ineluding a
capacitor in the equivalent circuit. At still higher frequencies,
however, the current distribution in the circuit element changes
greatly from its low-frequency pattern, and the “constants” of the
equivalent circuit again must be altered.

To be able to predict the behavior of a circuit element by the
use of alternating-current circuit theory, the establishment of an
equivalent circuit is necessary. As the nature of the equivalent
circuit is related to the geometry and construction of the cireuit
element, the equivalent circuit may serve as a guide in designing
the element for special purposes.

2. Electrical Representation of an Isolated Inductor or Resistor.
An inductor or a resistor consists of a conduetor of such material

%J@x

(a)

Gl 51[””““’"”“1

(c) (e)

Fire. 2.1,—Distributed magnetic and electrlc characteristics of a c¢oil and their
representation ag lumped elements.

and of such geometrical form as to cause inductance or resistance
to be its predominant electrical characteristic.  One simple arrange-
ment used for both elements is that of a single-layer solenoid,
Fig. 2.1a. In addition to the magnetic field that accompanies an
alternating current in the element, there will exist also an electrie
field due to the voltage across the element. An axial section of the
coil is indicated in Fig. 2.15. Owing to the momentary excess of
positive charge at the + end of the coil over that at the — end,
lines of force are established in the manner indicated in the figure.
One half period later the polarity of the charge and the direction
of the lines of force are reversed. The instantaneous surface-
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charge density varies along the coil from a maximum positive at
one end through zero at the center to a maximum negative at the
other end; and as this distribution changes periodically, a charging
current similar to the charging current of a capacitor is supplied at
the terminals of the coll. The presence of this current is accounted
for in ¥ig. 2.1¢ by a lumped capacitance C; between the terminals,
shunting the lumped resistance and inductance of the coil. The
magnitude of C; depends upon the diameter of the coil and other
factors, including the distance between turns and the length of
the coil. When the ratio of the diameter of the solenocid to its
length doeg not differ greatly from unity, €y in micromicrofarads
is of the order of magnitude of one-gquarter of the diameter of the
coil in centimeters (the effects of any dielectric other than air being
neglected).

The impedance variation of the coil, with its mixed inductive,
capacitive, and resistive characteristics, can be closely matched
over a range of frequencies by the circuit of Fig. 2.1¢ made up of
pure lumped constants L, R, C. The expression for the impedance
of this parallel combination is calculated in Chap. 1, Sec. 13. The
variation of its impedance with frequency predicted there by (13.6)
is more readily followed if Z is expressed in terms of the quality

factor of the series loop of Fig. 2.1¢ (Q, = IE\/Z)Z—) and the ratio
4,

of the exciting frequency to the series-resonant frequency of the
loop (w = w/we = @ \V/LCy).

1

Z=l s ol ————— 2.1)
N (-

= R, + jX, = R + jol 2.2)

These equations justify the alternative equivalent series circuits
of Fig. 2.1d and Fig. 2.1e¢, where R,, X,, L, are functions of fre-
quency. The predicted variations of Z are quite different in
character depending upon whether the values of L, €, R are chosen
of proper relative magnitudes to deseribe an inductor or a resistor.

3. Frequency Dependence of Inductor Characteristics.—It is
important to distinguish between the variations of Z predicted by
the circuit of Fig. 2.1¢ and the impedance variations of an actual
inductance coil. For such a coil R and C; are small residual
quantities in the equivalent circuit so that @, in (2.1) is always
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large. The terms involving 1/Q% in (2.1) may then be neglected
for values of w ranging from zero up to nearly unity.

o . E . 1
Z=Rs+]Xx=Rm+ijm (31)

The equivalent series resistance and reactance of the circuit are
given by
R R

Be = =05 = 0 = oICa)?

(3.2

and

X, = ol, = wl wl:

i el w o (3.3)

If the frequency is reduced toward zero, it is apparent from (3.2)
and (3.3) that R, and L, approach the values R and L. If the
equivalent circuit is to mateh the characteristics of the actual coil
in this range of frequencies, R and L must be taken as equal to the
measured d-c or low-frequency value of the coil resistance and
self-inductance, designated as R4 and Lg.. The calculated equiva-
lent series resistance and inductance may be compared with these
constant values. Similarly, the quality factor @, of the equivalent
series circuit may be expressed in terms of Q,, the quality factor
of the series loop.

R, . 1 L. 1

. _X“.‘_ — and
B ST =R Ie 1w QS—E—Qf(w wt) (3.4

These relations for a low-loss coil are independent of @,. They are
valid provided that the frequency does not rise 0o near to w,,, the
resonant frequency of the series loop. In the neighborhood of w,.
the ratio w approaches unity, R, approaches a maximum value
QR, and L, drops abruptly to zero. The ratios of (3.4) are illus-
trated in Fig. 3.1a. It is seen that B, increases more rapidly than
L.. The quality factor Q. of the coil predicted by this cireuit with
constant elements La, Ra., Cg has a variation as shown in Fig. 3.1b.
Inereasing at first linearly with frequency, it approaches a broad
maximum of 0.385Q, at a frequency of 0.578/+/3 times the
resonant loop frequency. Above this frequency @, drops rapidly
toward zero.

The actual (measured) values of the series resistance R,, induct-
ance L,, and quality factor @, = wl,./R, for an inductor may depart
markedly from these ideal values, which assume the L, R, C; of the
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coil to be constant. The dashed eurves of Fig. 3.1 indicate the
actual variations for a single-layer air-core coil having its maximum
Q. in the broadeast range. The most striking deviation from the
ideal curves is the rapid increase of R,, due mainly to an increase
in resistance associated with the skin effect. The value of L, is
reduced as compared with the ideal case, and these two changes
combine to give a greatly reduced value of @, with a broadened
maximum.

The representative circuit of Fig. 2.1¢ has a maximum imped-
ance almost exactly at its resonant frequency, and at this frequency
the reactance X, changes from inductive to capacitive, as shown in
Chap. II, Fig. 14.1. In the frequency range near resonance the

-

Fra. 3 1.—Computed variations of the series I, R, and @ for the equivalent cireuit
compared with the measured values for an actual eoil.

current becomes so nonuniform along the coil, owing to the dis-
tributed capacitance, that the equivalent circuit is useful only as a
general guide to the electrical charaeteristics of the element. The
resonant angular frequency of the loop (1/+/LaCy) still allows an
estimate to be made of the frequency at which the series inductance
of the coil becomes zero. This calculated value is generally too
low. It ranges between 60 to 8 per cent of the actual self-resonant
frequency of the isolated coil.

The ealculated behavior of the equivalent circuit indicates the
importance of controlling Cy in an actual coil. The self-resonant
frequency of the coil sets an upper limit to the frequency at which
it is useful in providing an Inductive reactance. In the design of
coils to be used at high radio frequencies it is important to reduce
Cs. Such coils commonly consist of a comparatively small number
of turns of bare wire in the form of a single-layer helix. The wires
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may be large enough to be self-supporting and are generally spaced
from one to two or more wire diameters apart. The absence of a
coil form with a large dielectric constant and the spacing of the
wires both reduce Cj.

In coils of larger inductance it is necessary to use several layers
of insulated wire. The distributed capacitance is minimized by the
choice of an insulation between wires that has a low relative dielec-
trie constant, by spacing the wires where possible, and by keeping
the potential difference between adjacent wires low. If the second
layer of wire is wound back over the first, the average potential
difference between wires in the two layers is equal to the drop across
one layer. At the expense of greater accuracy in winding, the
wires can be made self-supporting and a minimum potential differ-
ence obtained between adjacent wires by the use of bank winding
as in Fig. 3.2¢. The winding is completed in one motion along the

000
000 BBl
00 g ——

(a) {b) (c) (d)

Fia. 3.2-—Types of winding used to reduce distributed capacitance of inductors.

length of the coil with successive turns laid on in the order indi-
cated. Other self-supporting windings are made by feeding the
wire back and forth along the tube at a large piteh angle. The
resulting eoil is porous and the average separation between wires
inereased. The potential between adjacent wires ean be reduced
by keeping the coil short in comparison with the thickness of wind-
ing, Fig. 3.2b. By spacing the windings as in Fig. 3.2¢ the capaci-
tance is further reduced. Radio-frequency choke coils are often
made of several short coils similar to those shown in Fig. 3.2b
arranged in series and spaced along an insulating tube. If they are
operated at a fixed frequency, the inecrease in L, somewhat below
their self-resonant frequency may be utilized to make them more
effective. If the frequencies applied cover the range of self-
resonance and if the coils do not have the same self-resonant
frequency, not only is it possible to have the unit appear capacitive,
but owing to series resonance between the equivalent cireuits of the
separate coils the impedance of the eombination may drop to a low
value at some frequencies. At very high frequencies, a long eoil of
small diameter with widely spaced turns is sometimes used as a
radio-frequency choke, Fig. 3.2d.
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By the use of magnetic core materials, coils of large inductance
can be made with a greatly reduced number of turns and a corre-
sponding decrease in d-¢ resistance and physical size. The eddy
currents induced in a solid core reduce the self-inductance and
increase the energy loss of the coil. At low {requencies this is
avoided by making the core of thin laminations insulated from one
another. As the frequency is increased, the core material must be
still more finely divided. By using powdered magnetic particles
immersed in an ingulating medium it is possible to extend the use of
magnetic cores into the intermediate- and radio-frequency range.
The losses of such a coil, which increase its equivalent series resist-
ance, depend upon the size, resistivity, and hysteresis of the mag-
netic dust particles as well as the dielectric characteristics of the
insulating medium. The losses and the value of the self-inductance
are also dependent upon the frequency and magnitude of the current
in the coil.

4. Frequency Dependence of Resistor Characteristics.—In a
resistor the inductance and capacitance are residual quantities, and
L and C; in the equivalent circuit of Fig. 2.1¢ are small enough to
cause a low quality factor for the circuit. The value of §. may be
either larger or smaller than unity, depending upon the magnitude
of the resistance and the method of winding. Resistors of low
value (say up to 100 ohms) generally have L/C ratios vielding
values of Q. greater than 1. Reference to Fig. 15.2 of Chap. 11
shows that for this case both B, and X increase with frequency in
the low-frequency range. For larger values of resistance, @,
decreases and may become less than unity, in which case X, is
always capacitive and R, may increase or decrease with frequency.

The two essential characteristics of a pure resistance are its zero
phase angle and the constant magnitude of its impedance with
varying frequency. With a ecircuit similar to Fig. 2.1d these
characteristics can be maintained over a range of frequencies by
reducing L and C; to very low values. If, in addition, the ratio
L/C,is adjusted properly, it is possible to obtain a close approxima-
tion to one or the other of these characteristics of a pure resistance
over a greatly increased range of frequencies. If the ratio L/C; is
adjusted to make Q. = 1, the variation in phase angle has its
minimum value, Fig. 16.1a of Chap. II. For a @, of 0.707, R, is
nearly eonstant, Fig. 16.1b of Chap. II, as shown by the following
approximation from (2.1}, where w* is neglected.
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R R

R, = N~ T o0, — By
1 — w?

(4.1)

-

With L/C; such that @, = 0.707, |Z| increases only a few per cent
above its zero-frequency value as the frequency is increased and
again returns to its zero-frequency value at a frequency that is 70.7
per cent of the resonant frequency of the loop.

Again the equivalent circuit serves as a guide in the construetion
of a resistor of desired characteristics. It is important not only to
reduce L and €, for high-frequency operation but also to control
their ratio. This is accomplished by the use of the proper form of
winding. If a straight section of wire is bent back upon itself in the
form of a hairpin, the magnetic effects of the opposing eurrents tend
to cancel each other and the self-inductance is reduced. Such a
winding is described as bifilar and is one of the simplest nonindue-
tive windings. It is generally used for low-resistance units, where
the L/C; ratio resulting from this winding yields a value of @, near
unity. The more closely the wires approach each other, the smaller
the area of the hairpin loop and the smaller the self-inductance.
However, the distributed capacitance between the wires is corre-
spondingly increased, and by choosing a suitable separation the
L/Cq ratio can be controlled.

The wires can be placed close together and the value of €y
prevented from becoming large by sepa ating the winding into
sections. Consider the same length of resistance wire arranged as
shown in the three sketches of Fig. 4.1. The separation of the wires
is assumed small in comparison with their length. The electric
lines of force shown indicate the relative nature of the charge
distribution when equal potential differences are maintained across
the terminals of all three circuits. In Fig. 4.1a the wire is cut at the
center, and the potential difference is constant along the wire, as is
also the charge distribution. The lumped capacitance representing
that of the wire is the ratio of the charge to the applied terminal
potential. If the far end of the wire is shorted as in Fig. 4.15, the
potential difference decreases along the wire, approaching zero
at the far end, and the average potential difference between the
wires is % its previous value. The charge stored and the effective
value of C, for the first case is therefore twice that for the second
case, which represents a single-section bifilar resistor. If the same
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wire is divided as in Fig. 4.1¢ into two bifilar sections, the average
potential difference between adjacent wires and the length of each

section is ¥ that of Fig. 4.1b. If

the wires are separated enough so

that practically no field exists between sections, the charge supplied

per section, which is the charge
of the original bifilar winding.

pplied at the terminals, is + that
erefore the value of C;is reduced

to approximately 1 of the single-section value by dividing the

bifilar element into two sections;
reduction occurs at the expense

to § for three sections; ete. The
of increasing the self-inductance

slightly because the short lengthlof conductor joining two sections
is uncompensated.

The sectionalized bifilar winding illustrates the prineiples
employed in general to reduce the effect of distributed inductance
and capacitance and to control their relative magnitudes. The
methods used have as their purpose to cancel the magnetic effect

L.
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Fia. 4.1.—~Reduction of (¢ by arranging a bifilar winding in sections.

of any current by an equal, oppositely directed current near it and
to reduce the value of Cy; by keeping the potential difference between
adjacent. conductors as small as possible. These precautions
reduce the magnetic a. 4 electric fields and the stored energy
associated with them.

Many types of winding are used for the control of residual
inductance and capacitance. Their nature depends upon the
magnitude of the resistance and the frequency range for which they
are designed. A simple type of winding consists of a series of
adjacent turns wound like a flattened coil around a thin sheet or
card of insulating material. Tts inductance is small due to cancella~
tion of the magnetic effects of the currents on one side of the sheet
by the oppositely directed currents on the other side. Owing to
the large number of turns the potential difference between adjacent
turns is small, and therefore C, is not large. The residual induct-
ance can be reduced further by using two windings in parallel,
wound in opposite directions around the card. This type of wind-
ing is called the Ayrton-Perry winding. Resistance wire and
insulating fibers may be woven into a tape in several patterns
designed to reduce inductance and distributed capacitance. In
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wire-wound resistors the wire may be wound on a ceramic spool
with adjacent grooves connected by a longitudinal slot. 'The
separate coils in the spaced grooves provide a sectionalization that
reduces (4 and the winding is reversed in adjacent grooves to
decrease the inductance. In the “fishline” winding, used for high
resistances, fine resistance wire is wound in a spiral of very small
diameter around an insulating cord. This cord may then be wound
on a coil form or in any of the patterns described.

An alternative to the use of long lengths of metal wires is the use
of much shorter lengths of materials of higher resistivity. These
materials may consist of a finely divided conductor, such as colloidal
graphite, dispersed in some inert insulating medium. As compared
with pure metal resistors, the resistance of these elements is more
dependent upon time, temperature, and the magnitude of the
applied voltage. The variation of resistance with fime may be of
short period and assoeiated with random changes in the internal
“contacts” of the finely divided conductor. If the resistor is used
in the first stage of a high-gain amplifier, this erratic change in
resistance produces “noise.” The noise introduced varies from
resistor to resistor even of the same kind and may be reduced by
careful selection. Long-period changes are due to aging of the
registor or to temperature changes. The resistance in general
decreases with increased temperature and applied voltage. These
disadvantages of composition resistors are outweighed for many
purposes by the low values of L and C; associated with them, which
make them approximate a pure resistance over a wider range of
frequencies. Their reduced size also results in a smaller capacitance
to ground. Owing to their high resistivity and simple form the skin
effect (sce See. 5) is small as compared with wire-wound resistors.

Such composition resistors may be produced in several forms.
In some cases the resistor consists of a short length of the semicon-
ducting composition with leads attached. In others the conducting
composition forms a small core embedded in a thick protective
insulating layer, which also serves to immobilize the lead wires and
their connection to the core. In some units the current is carried
by a thin coating of semiconductor on an insulating cylinderof
small diameter, which is also protected by an outer layer of insulation.

The wattage rating of a resistor is a measure of its ability to
dissipate heat under specified conditions without a resulting tem-
perature increase sufficient to damage it or affect ifs resistance
characteristics. The rating depends upon the dissipating surface
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and its radiating properties as well as the thermal properties of the
materials used and their ability to withstand high temperatures.
It follows that the physical dimensions of a resistor of given con-
struction are determined by its wattage rating and do not depend
upon its resistance. The watfage rating selected for a resistor
mounted in a confined space where free motion of air is impossible
or near other heat-producing elements should be two or three times
the normal value. In general, an underloaded element provides
more stable operation and longer life.

b. Skin Effect.—As the frequency is inereased, the current flow
across g section of a eonductor changes from the uniform distribution
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of direet current to one in which an increasing portion of the current
flows near the surface of the conductor. At sufficiently high
frequencies the current may be confined to a thin layer at the sur-
face. This is known as the skin effect and causes the high-frequency
resistance of the conductor to be larger than its d-¢ resistance, by a
factor that is larger the greater the current concentration,

The reason for the concentration and the factors controlling it
are illustrated by consideration of an isolated straight conductor of
circular section carrving a direct current. The magnetic field of
the conductor is shown qualitatively in Fig. 5.1a¢. 1If the current is
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decreased to zero, the magnetic field collapses and induces a voltage
in the conductor that tends to oppose the changing current. The
voltage induced is not uniform over the eonductor section; for while
most of the lines of force cut the point A near the center, those
inside of the point B near the circumference do not eut it upon
collapse. Therefore a sinusoidally varying current, uniform over
the cross section, would cause a larger self-induced voltage near the
center than near the periphery of the conductor. The higher the
frequency and the greater the diameter and permeability of the con-
ductor, the larger the difference in voltage. The greater the
conductivity of the conduetor, the larger the redistribution of cur-
rent due to this induced voltage differential. The corresponding
redistribution of current and change in resistanee for such a con-
ductor are determined by the factor d \/ uof, where d, p, and o are the
diameter, permeability, and conductivity of the conductor and f is
the frequency of the current.

At low frequencies where the change in resistance is small, the
redistribution of the current is slight, and the per cent change in
resistance is proportional to the fourth power of the above factor,
or the change is directly proportional to the square of the area,
permeability, and conductivity of the conductor and to the square
of the frequency. At higher frequencies the current is concentrated
near the surface with a negligible value near the center. As the
central part of the conduetor is not used, the resistance of the con-
ductor is increased. This is indicated in Fig. 5.la, where the
uniform current density over a conductor section that exists for
sufficiently low frequencies is compared qualitatively with the
distribution at a higher frequency producing an approximate
threefold increase in resistance. When the current is concentrated
in a layer whose thickness is small in comparison with the diameter,
it is possible to establish a “skin depth.” This is equal to the
thickness of g hollow cylinder, of the same material and having
the same outside diameter as the wire, whose d-¢ resistance is equal
to the high-frequency resistance of the solid conductor. For
values of skin depth such that the ratio of a-c resistance to d-¢
resistance increases to 3 or more, the ratio R,./Ra becomes propor-
tional to d v/ uaf, or varies as the square root of the frequency. As
the d-c¢ resistance of the wire is inversely proportional to d* and
Ru/Ra is proportional to d, the high-frequency resistance is
inversely proportional to d (or the perimeter of the wire under these
circurnstances). This may be extended to conductors of any shape
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provided that the skin depth is quite small in comparison with the
dimensions of the cross section and the maximum radius of curva-
ture of its surface. Under these conditions the resistance of the
conductor is inversely proportional to its perimeter, and its high-
frequency resistance may be calculated in terms of the skin depth,
perimeter, resistivity, and length. Values of skin depth for copper
under these conditions are shown as a funection of frequency in
Fig. 5.1b. They may be extended to other metals by noting that
the skin depth is proportional to the square root of the conductivity.
The variation of R,./Rg is also shown for straight, isolated, round
copper wires of American wire gauge Nos. 0 to 40.

If the section of the conductor is other than cireular, the current
flows in such a mannper as to link a minimum number of lines
of force. In a rectangular bar or strip this involves a current
concentration at the corners or edges. The per cent change in
resistance from the d-¢ value is decreased for a circular conductor
by removing the central portion, vielding a tubular conductor with
a minimum current redistribution with frequency. By reducing
the diameter of the wire the per cent change in resistance also is
decreased. If a conductor is made up of fine insulated wires, so
transposed along its length that each wire appears at the surface to
the same extent as any other, equal currents will flow through the
wires and the change in resistance is minimized. Such a conductor
is called Litzendraht or lifz wire. There always exists an upper
frequeney limit at which its advantages are lost owing to the current
flowing by capacitive action between the wires at the surface.
Depending upon its design it is ugeful up to intermediate or lower
radio frequencies.

When two conduetors carrying alternating currents are parallel,
there will be a still further redistribution of current owing to their
interaction. In general, this results in a further increase in the
resistance. This is known as the proximity effect, and the nature
of the new current distribution depends upon the relative direction
of the currents. If the currents are in the same direction, the cur-
rent shifts so as to increase the distance between the major portions
of the current. For two circular conductors this further increases
the R../Ra ratio, but by a moderate amount. If the currents are in
opposite directions, the shift is toward the adjacent portions of the
conductors; and if the separation is of the order of a fraction of a
wire diameter, the increase in resistance may be manyfold. These
effects are minimized in r-f coils by spacing adjacent wires and
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using single-layer solenocids where possible.  For multiple-layer coilg
the proximity effect is an important factor affecting their h-f
resistance.

The redistribution of current due to the skin and proximity
effects reduces the self-inductance of a wire or coil slightly and causes
a still smaller change in €4 In many eases these changes can be
ignored in comparison with the major change in resistance.

6. Electrical Representation of a Capacitor.—Inductance and
resistance appear as residual characteristics in a capacitor. The
inductance, which is a series element, depends upon the arrange-
ment of the leads and the connections to the capacitor plates.
There likewise is a series resistance due to the leads and also due to
ohmic losses in the capacitor plates as the charging current flows
through them. The resistance in the leads and in the capacitor
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F1a. 6.1.—Representative cireuits for a capacitor.

plates may be increased by the skin effect at high frequencies.
There also may be a leakage current through the capacitor, properly
represented by a resistor in parallel with C. A possible representa-
tive cireuit for the capacitor is that of Fig. 6.1a. The series
inductance and resistance are of increasing importance at very
high frequencies, where the capacitive reactance becomes small, and
every precaution must be taken to reduce them in a capacitor
designed for high-frequency use.

At low frequencies the self-induetance is commonly neglected
and the dissipation of the capacitor is represented by a single
resistance either in series or in parallel, Fig. 6.1b or¢. The relations
between the constants in such alternative series or parallel repre-
sentations of a dissipative reactor have been established in (14.7},
Chap. I. The losses in a well-made capacitor are so small that the
approximations of (14.8), Chap. I, apply. The relations between
Rs, C; and R, C, become

C, =C, and R, = QR, where (6.1)
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@ is the quality factor of the capacitor and its reciprocal D
serves as a measure of its losses. If Z, Fig. 6.1d, represents the
impedance of the capacitor at some frequency, the loss angle §
is also a measure of the losses of the capacitor. As the losses
decrease, & becomes small and |Z| approximates 1/wC,. This
allows the following relations to be established among the dissi-
pation factor, the loss angle, and the power factor of the capacitor:

D= = tan § = e = cos 0; = the power factor (6.2)

RG
1/C,

7. Capacitor Characteristice.—The important characteristics
of a capacitor are its capacitance, maximum voltage rating, and
losses. All these characteristies depend upon the geometry of the
capaeitor and the nature of the dielectric. All may vary somewhat
because of changes in temperature or frequency.

The capacitance is proportional to the area and inversely pro-
portional to the separation of the plates. It also varies directly
with the relative dielectric constant e. of the dielectric. This
constant is determined experimentally as the ratio of the capacitance
of a eapacitor when the electrie field is established in the dielectric
as compared with its capacitance with air or vacuum surrounding
the plates.

The maximum voltage that may be applied safely to a capacitor
depends upon the dielectric, the separation of the plates, and their
shape. Irregularities in their surface or sharp corners tend to
produce concentration of the lines of force and increased potential
gradients tending to break down the dielectric. The dieleetric
affects the breakdown voltage of a capacitor both because of the
limited constant potential gradient it can withstand and because
of its loss characteristics.

For most well-designed capacitors the losses due to conduector
resistance are negligible in comparison with those within the
dielectric. If an alternating voltage were applied to an ideal
capacitor, the energy supplied as the eapacitor is charged would
be completely returned to the ecircuit upon discharge one-half cycle
later. Practically, there is a difference between the two energies
representing a loss or dissipation that must be explained in terms
of resistance.

It is mainly losses of this sort that are deseribed by the resist-
ances in the representative cireuits of Fig. 6.1b or ¢. The parallel
combination of a constant C, and R, simulates the actual variations
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of Z for most capacitors over a wider range of frequencies than the
equivalent series civrcuit. However, the series representation is com-
monly used, in which case R, decreases with increasing frequency.

The loss characteristics of a dielectric material may be described
in terms of the loss angle & of a capacitor whose plates are immersed
in the material, it being assumed that the dielectric is responsible
for all the losses. The angle § may be expressed in degrees or
radians or in terms of its tangent.

8. Types of Capacitors.—As the characteristics of capacitors
are so dependent upon the dielectrie used, it is convenient to
discuss gaseous, liquid, and solid capacitors separately.

Air, or Gaseous Capacitors—Capacitors with air as a dielectric
are characterized by low losses and small values of capacitance
seldom over a few hundred micromicrofarads. Although compara-
tively bulky, they can easily be made variable, and with proper
design their capacitance at any setting is accurately reproducible
and nearly independent of frequency.

The voltage breakdown is generally due to the establishment
of a corona discharge. This occurs when the voltage gradient
near some sharply curved surface becomes sufficient to produce
ionization of the gas and a glow discharge. This frequently occurs
at the edges of the plates, and capacitors designed for high-voltage
applications generally have thick, widely separated plates with
rounded edges to reduce the voltage gradient.

The breakdown voltage is markedly dependent upon the pres-
sure of the gas surrounding the plates. At the very low pressures
obtainable with modern vacuum technique (say 10—° atmosphere)
the corona effect is eliminated, and the breakdown voltage is
greatly increased. Such vacuum-type glass-enclosed capacitors
give a compact unit of high voltage rating. With a poorer vacuum
(higher pressure) the breakdown voltage decreases and reaches a
minimum at pressures of the order of magnitude of Ti5 atm.
With further increase in pressure the breakdown voltage rises,
and at pressures of several atmospheres it is increased several fold
as compared with its value at atmospheric pressure. Such high
pressures are frequently employed to increase the voltage rating
of equipment. A corresponding reduction of voltage rating occurs
when electrical equipment is flown to high altitudes. At the
lower barometric pressure corresponding to an altitude of 5 miles
the breakdown voltage of an air capacitor is reduced to approxi-
mately one-half its value at the earth’s surface,
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At moderate frequencies most of the logs associated with air
capacitors occurs in the insulation used to maintain the separation
of their plates. This loss is minimized by placing the insulation
where the electric field is weak and choosing its shape so that it is
long and narrow in the direction of the electric field. As contrasted
to materials used for dielectrics between the plates of liquid- or
solid-filled capacitors this insulating material should have a small
value of e to minimize its effeet of increasing the capacitance and
of course should have a small value of tan 8. The product of ¢
and § is used commonly as a figure of merit for such materials.
The insulation is generally placed where the strength of the field
and therefore the losses are independent of the position of the
movable plates which determine the capacitance.

Liguid-filled Capacitors—The introduction of a liquid dielectric
between the plates of an air capacitor may increase its capacitance
several fold and also may increase its breakdown voltage. The
Josses are also increased, and in general both the loss angle and the
dielectric eonstant depend upon frequency.

In a liquid dielectric the alternating electric field causes motions
of charged ions, rotations of polar molecules, and molecular dis-
tortions calling for a supply of energy during one part of the cycle
that is not completely returned to the circuit during the remainder
of the cyele. Tiquids with unusually large dielectric constants
have in general large values of 3.

Solid-dielectric Capacitors—Solid dieleetries frequently used
in capacitors are mica and wax- or oil-impregnated paper. Mica
capacitors have comparatively large voltage ratings but are gen-
erally of low capacitance, up to about 0.02 uf, as compared with
values of 6 or 8 uf available in paper units. They also have much
lower losses than paper eapacitors, particularly at radio frequencies.
Mica capacitors consist generally of a pile of alternate sheets of
metal foil and mica held together by some pressure device. Paper
capacitors consist of long strips of foil and specially treated paper
rolled together in a compaet unit. Both types are enclosed in a
protective cover, which should be airtight.

The capacitance of such units may vary slowly as the pressure
maintaining the foil separation changes with time. Temperature
changes also change the value of the capacitance by changing the
capacitor dimensions and the dielectric characteristics. Capacitors
of quite stable value can be made by depositing a metal film
directly on the surface of the mica sheets. By using certain ceramic
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materials whose dielectric constant increases or decreases with tem-
perature it is possible to obtain a2 capacitor whose temperature
coeflicient cancels the effect of temperature variation in other parts
of an oscillatory cireuit. By the use of such capacitors, oscillators
may be constructed whose frequency is almost independent of
temperature.

The voltage rating of a solid-dielectric capacitor deereases with
frequency. At low frequencies it is determined by the maximum
potential gradient the dielectric will withstand without rupture.
As the frequency is incressed, the increased dielectric losses and
the resulting temperature rise become the Hmiting factors, and the
voltage rating may be reduced by a factor of 100 or more. The
corresponding rated current increases from low values at low fre-
quencies to an upper limit at high frequencies.

9. Electrolytic Capacitors.—The breakdown voltage of a
capacitor is determined by the weakest point in its dielectric. The
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Fia. 9.1.—8implified pictures of electrolytic capacitors.

dielectrics mentioned thus far cannot be made too thin without
increasing the possibility of holes or large percentage variations in
thickness. By chemical means it is possible to establish uniform
insulating layers whose thickness may be a very small fraction of a
thousandth of an inch.

If a tantalum sheet, immersed in sulphuric acid of about the
concentration used in storage cells, is made the positive plate in
an electrolytic cell, Fig. 9.1q, the large initial current decreases
with time to a small final value I, Fig. 9.1b. This is due to the
formation of an insulating layer over the surface of the tantalum.
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Any break or thin spot in this layer causes a current concentration,
which builds up the insulation to a value uniform over the surface.
The insulation is therefore self-healing and self-adjusting in thick-
ness. Thus there is formed a capacitor having the tantalum as
one plate, the insulating layer as a dielectric, and the electrolyte
as the other plate. The thickness of the layer increases with the
voltage applied, as does the final leakage current. This is illus-
frated in Fig. 9.le, which shows that there is an upper limit of
voltage above which the leakage current rises rapidly. If the
voltage is removed, the layer gradually dissolves and in this type
of cell would have to be re-formed upon the next application of
voltage. Other metals and electrolytes can be used; this so-called
“wet’’ type of electrolytic capacitor with several modifications is
mainly used in permanent installations. -

The most commonly used electrolytic capacitors are of the semi-
dry or dry type, which may consist of two sheets of aluminum foil
between which is held an electrolyte that has been thickened to
a paste or even a solid at ordinary temperatures. The strips of
foil are separated by a porous cloth impregnated with the electro-
Iyte. If a battery is connected as shown in Fig. 9.1d, the positive
aluminum sheet develops an insulating layer as before, and a
capacitor is formed with the electrolyte serving as the other plate.
The seeond aluminum foil serves only to give electrical contact
with the electrolyte. In practice, the positive foil has a coating,
or film, formed on it in a previous operation by a voltage which
determines the voltage rating. This film may be made quite
permanent, and the action of the electrolyte in the finished capacitor
is mainly to repair and maintain the originally formed film. The
two foils and the separator are rolled together and sealed ina
container.

The capacitance of the unit depends upon the surface area of
the positive foil (which may be increased by embossing or etching
it} and the forming voltage, which determines its voltage rating.
The larger the forming voltage, the thieker the insulating film and
therefore the smaller the capacitance. For a given area of foil the
product of voltage rating and capacitance is approximately a
constant above a forming voltage of about 100 volts. The capaci-
tance is increased slightly and the leakage current strongly by an
increase in temperature. The capacitance decreases with fre-
quency and may fall off markedly in the upper audio range.

The losses in an electrolytic capacitor are large in comparison
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with those of the other types studied, corresponding to values of
D (= tan 8) of the order of 0.1. They are due to dielectric losses
and leakage, similar to those of other capacitors but larger; in
addition, there are losses due to the resistance of the electrolyte.
Though it is difficult to separate their effects this last is probably the
prineipal loss.

The polarity of electrolytic capacitors should be carefully
observed when they are installed, as the film has rectifierlike char-
acteristics and therefore a lower resistance in the reverse direction.
With time the film is partly dissolved by a reversed voltage, and the
corresponding film formed on the other aluminum foil does not
have the desirable characteristics of the original one. The ripple
component should not be too large because of the possibility of
reversing the polarity momentarily and also because its heating
effect may cause a rapid deterioration.

Several capacitor units may be assembled in the same container,
frequently sharing a common negative aluminum strip. The units
are seldom made with voltage ratings much above 550, but occa-~
sionally capacitors of larger voltage ratings are made with two such
units in series. If two such formed units were connected in series
with the polarities opposing, they would serve as a capacitor for use
in a-c cireuits, with the separate capacitors serving to block the
eurrent every other half eyele. The same action can be obtained
by preforming a hard insulating layer on each aluminum foil in a
single unit. SBuch eapacitors are used in motor-starting systems or
other applications where an a-¢ capacitor of comparatively large
losses can be used.

10. Effects of Moisture.—The presence of moisture has an
important effect upon the characteristics of most electrical elements.
Even under conditions of moderate humidity an invisible thin film
of water forms on the surface of most substances and is absorbed
into their interior if they are at all porous. Although pure water
has a high volume resistance, the small amount of dissolved impuri-
ties present makes it possible to ecause changes of a millionfold in
the surface and volume leakage of insulators. Owing to its large
dielectric constant and large value of tan 8, it also introduces
important dielectric losses if it is exposed to an alternating electric
field.

In the manufacture of capacitors, this is recognized by the
efforts made to drive out water vapor and to impregnate and sur-
round the capacitor by an insulating compound generally applied
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at an elevated temperature. Impregnation under partial vacuum
reduces or eliminates entrapped air bubbles together with their
water-vapor content and does away with their action in producing
high local electric stresses. As a further precaution the unit may
be enclosed in a sealed container to prevent slow penetration of
water vapor.

Similar precautions should be taken in the construetion of
inductors, particularly if they are to be exposed to high-humidity
conditions. Under conditions of low humidity the dielectric losses
due to the insulation between turns and in the supporting form may
be made negligible up to very high frequencies by suitable choice of
materials. With the presence of water vapor on the surface or
porous interior of the insulation there is an inerease in €y due to the
large dielectric constant of water and also a marked increase
in the losses in the coil. This possibility can be reduced by impreg-
nating the coil with a thick layer of water-repellent wax.

Erratic behavior of equipment may sometimes be traced to the
failure of insulators due to decrease of surface or volume resistivity
caused by water. Thiz may come slowly after a few days of high
humidity or abruptly because of a change in temperature that
causes condensation of water droplets, which unite to form a con-
ducting path over the surface. The droplets can be driven off or
prevented by maintaining an elevated temperature in the equip-
ment or may be controlled by covering the insulation with a surface
that is not wetted by water so that the droplets remain separate.
Prevention of the slow penetration of water into fine-grained porous
insulators such as mica and some ceramic materials requires thick
and unbroken coatings. Once water is absorbed, it is driven from
the interior only with the greatest difficulty.

11. Shielding.—For simplicity it has been assumed in earlier
sections that the circuit element studied was isolated. The action
of such an element in an eleetric circuit, however, depends upon the
nature of the surroundings to the extent that its electric and mag-
netic fields affect them. This interaction can be reduced by
shielding, which at the same time decreases undesired induced
voltages and renders the impedance of the shielded element more
definite.

The effect of adjacent objects upon the electrical characteristics
of an element is of increasing importance at high frequencies and
depends in a complicated manner upon the geometry and the
potentials involved. In many cases, however, the effect of the
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surroundings can be described electrically by altering slightly
the representative electric eircuit of the isolated element.

Tet a uniform circuit element, which may be a resistor or
inductor, lie along a line between the terminals AB, Fig. 111,
parallel to a grounded conductor. If equal alternating voltages of
opposite phase are applied to the terminals, the momentary excess
positive and negative charges along the econductor are shown in
Fig. 11.1a at an instant when A is positive. Charges of opposite
sign are induced along the parallel conductor, as in a capacitor,
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Fra. 11.1.—Representation of the electrical effects of an adjacent grounded
conductor upon a resistor or coil: (@) when electrical balance exists; (b) when one
end of the resistor or coil is grounded; {¢) when the resistor or coil is unbalanced to
ground,
but owing to the limited areas and large separation they are much
smaller than the indueing charges. One-half period later the signs
of the charges are reversed, but their magnitude and distribution
are the same. There is thus produced an alternating current along
the grounded conductor, but as the induced positive and negative
charges are equal in magnitude no net current flows to ground.
If the impedance of the grounded eonductor is negligible, so far as
measurements made at the terminals AB would determine, the
effect of the adjacent conduetor could be explained by connecting
equal capacitances from A to ground and from B to ground. Asno
net current flows to ground, this is equivalent to adding to the
representative cireuit of the isolated element an additional parallel
capacitor C4/, the modified cireuit of Fig. 11.1a being thus obtained.
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Such a system is said to be balanced electrically with respect to
ground, and the effect of the adjacent grounded conductor is to
increase the shunting capacitance across the coil.

If the terminal A of the circuit element is grounded, Fig. 11.15,
the induced charge is of one sign, and the capacitive current is zero
at 4 and a maximum at B. The current through B is the vector
sum of that through A plus the unbalanced capacitive current to
ground. The effect of the neighboring grounded conductor is to
add to the representative eircuit for the isolated element a capaci-
tance to ground at the ungrounded end as shown below in Fig.
11.15. If the geometry and resistance of the cireuit element are not
symmetrical about its geometrieal center or if unequal alternating
voltages are applied to 4 and B, Fig. 11.1¢, unequal capacitive
currents to ground flow through the terminals. In general, this is
represented by placing unequal capacitances to ground at both
terminals, In the special case of Fig. 11.1¢, where a portion of the
element remains at ground potential, the capacitive currents to
ground partly cancel in the grounded conductor and the effect is to
add a shunt capacitance to the representative circuit of the isolated
element and a capacitance to ground at the terminal carrying the
larger capacitive current.

The capacitive coupling between the surroundings and the
unshielded inductance or resistance coil of Fig. 11.2a makes its
impedance depend upon the geometry of neighboring objects and
the nature of its potential variations relative to them. The
coupling also permits undesired voltages and currents to be induced
either in adjacent conductors owing to the action of the coil or in
the coil owing to external potential variations. If a conducting
shield encloses the element, Fig. 11.2¢, and is connected to one
terminal, the distributed capacitance of the coil is inereased by an
amount €4 but the impedance between the terminals is made
definite. The shield also prevents any interaction between the
potential gradient along the coil and external conductors. Any
capacitive current to the surroundings is confined to the terminal
to which the shield is attached. The capacitive coupling between
this terminal and the surroundings is still dependent upon their
relative positions and potentials, but it can be rendered definite and
undesired capacitive currents to other elements prevented by placing
a grounded shield around it, Fig. 11.2¢. Both the impedance of the
element and its capacitance to ground now are made definite.
Multiple shields of this sort are frequently employed in bridge
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circuits. For many purposes the grounded shield of Fig. 11.2c may
be used with the inner shield removed. This single shield prevents
capacitive coupling between the coil and neighboring eircuits and
makes its impedance independent of changes in the geometry of the
surroundings. Its capacitance to ground, however, depends upon
the potential variations of its terminals with respect to ground.
Coupling due to mutual inductance is most important for two
inductors but may occur between any two elements. It can be
minimized by separating the elements or orientating them so as to
produce minimum flux linkage. Induced voltages in a pair of leads

::C'S ‘é:l; ;'[":CS “C‘d =:CS “dd
i ¥
LR LR T LR
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Fia. 11.2.—The effect of a shield in controlling the capacitance to adjacent objects
and in fixing the impedance of an element,

may be minimized by keeping the two wires close together in the

form of a twisted pair.

Magnetic shielding may be accomplished by enclosing the coil
in a thick container of large permeability or small resistivity. The
former is more effective at low frequencies where the shield provides
a closed magnetic circuit for the flux, thus reducing the external
magnetic field to a minimum. The high-permeability shield also
causes an increase in the self-inductance of the eoil, an inerease in
its resistance due to eddy-current and hysteresis losses, and an
increase In its capacitance Cy. The usefulness of such a shield is
reduced at high frequencies owing to a decrease in the effective
permeability and to inereased losses. Under these circumstances
the shield should be made of a metal of high conductivity such as
aluminum or copper. The shielding is due in this case to the
induced currents in the surrounding metal whose magnetic field, by
Lenz’s law, opposes the magnetic field of the coil and thus tends to
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eancel it at external points. The effectiveness of such a shield
varies directly as the square root of the conduectivity and of the
frequency.

The thicker the shield, the better its shielding; for the strength
of the magnetic field deereases exponentially with the thickness of
metal penetrated. The shielding action will be lessened by any
joint that introduces resistance in the path of the eddy currents.
The magnetic field due to the currents in the shield likewise reduces
the field of the coil and therefore slightly lowers its self-induct-
ance. The energy loss due to the shield currents inereases the
series resistance of the coil, and the presence of the shield around
the coil increases the value of Cy.

It is possible to construct a shield that will decrease the capaci-
tive coupling without appreciably affecting the coupling due to
mutual inductance. By slotting the conducting shield the eddy
currents that produce the magnetic shielding may be greatly
reduced without much change in the electric shielding. BSuch
shields are sometimes employed between the windings of a trans-
former to prevent electric coupling between the input and output
circuits.

12. Relation of Electrical Measurements to the Circuit Repre-
sentation of an Element.—It has been shown possible to predict
the electrical behavior of an actual inductance coil over a range of
frequency extending upward from zero on the basis of an equivalent
parallel combination of g fixed L, B, and C;.  As the frequency is
increased, the skin effect and proximity effect require the value
of R in this circuit to be progressively increased. Other losses due
to imperfect dielectries and eddy currents in adjacent conductors
also affect B. Accompanying the change in R are smaller changes
in L and still smaller changes in Cy.

The complexity of the behavior of such a coil in a practiecal
ecircuit emphasizes the difficulty of predieting its performance at
high frequencies on the basis of its low-frequency characteristics.
For high frequencies the representative circuit is useful mainly
as guide to the general behavior of the element. Numerieal ealeu-
lations based on it have validity only over a limited range of fre-
quencies, and the values of L, R, C; used must be those determined
for that range.

These values are determined in general, not by extrapolation
from the low-frequency case, but by measurements on the element
made in the frequency range of interest. These measurements
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involve the determination of the relation between the current
through the element and the voltage across it and yield actual
values of Z, or Y, that are definite at any given frequency. They
may be described in either the polar or the rectangular form. Inthe
latter form, Z, leads directly to a description of the equivalent
series circuit in terms of R, and X,: or of R, and L,, where L, ig
the value of the actual series, lumped inductance which would
account for the reactive effects. In general, it is these equivalent
series characteristics which are meant when the resistance K and
the inductance L of an r-f coil are specified. The series resistance
R. accounts for all the energy lost, and |I|2R, gives the total power
dissipation. For this reason it is sometimes referred to as the
effective resistance of the element.

L,RCq C R C Rq Lo C
S
(b)

(o) (¢c)

F16. 12.1.—8eries circuit of an actual inductor and capacitor, and its representative
circuit.

For many purposes these values of R, and L, suffice to deseribe
the behavior of the coil over a moderate range of frequencies where
their changes in value are negligible. In particular, the series
eircuit containing an actual coil and capacitor, Fig. 12.1a, with
the representative circuit in (b), may be deseribed adequately by
the series circuit of (¢), in which R, and L, are assumed constant
over & moderate range of frequencies. Fortunately, the capacitance
of a good capacitor is constant over a wide band of frequencies
and although its losses vary they may be neglected in comparison
with the losses due to R,.

It was shown in Fig. 3.1 that for any coil there is a range of
frequencies where Q, = (wl,/R,) 1s almost constant despite vari-
ations in L, and R,. The variation of impedance of the coil and
capacitor combination, Fig. 12.1¢, can be described more accurately
in this frequeney range in terms of the constant @, of the coil and
the resonant frequency of the combination as determined by direct
measurement. The expression for Z may be written

. 1
Z=R,+j (wLa, - 5@) (12.1)



78 CIRCUIT ELEMENTS [Crar. 111

Z fwl, 1y . w? L,
’I‘f; =1 +3 (‘E‘ - w“’““'CRB) = ] +an (1 — ;5“:) (122)

where w, is the series-resonant frequency of the coil and capacitor
combination, L, is the value of L, at the resonant frequency, and
use has been made of the relations

R ij‘;

Y Qe
In (12.2) R, and L, are functions of frequency that can be evaluated
by measurement. However, if C > > (4, as is usually the case in
practice, and the frequency deviation from resonance is small, the
value of L, will not change greatly for a reasonable range of fre-
quencies and L,/L; may be taken as unity. Although the vari-
ations of R, and L, differ greatly from coil to coil, the rate of increase
of R, is always greater than that of L,. In some cases the eon-
stancy of Q, (=wl,/R,) is due mainly to a linear increase of R,
with frequency, while L, is almost constant. Under these circum-
stances (12.2) may be written

and wll,C =1 (12.3)

Z = wR, [1 + 7Q. (1 - %—15)] (12.4)
and

121 = 37 = vk VT F a0
where

tan 0; = Qa (1 - @1'.5‘) (12.5)

Here w = w/w,, and R, is the measured valuc of the equivalent
series resistance at the resonant frequency.

The behavior of an actual coil and capacitor thus is predicted
under these conditions in terms of constants determined in the
frequency range of interest. The shape of the resonance curve is
only slightly different from that obtained for an ideal series circuit
with fixed lumped eonstants, but the phase-angle variation is not
quite so symmetrical. For circuits of moderate @, the differences
are minor, and the same relations exist between @, and the half-
power frequencies measured in terms of circuit response. Then
Q. may be taken as the @ determined by laboratory measurements
hased on band-width determinations.



CHAPTER 1V
MEASUREMENT OF CIRCUIT ELEMENTS

The impedance of a circuit element can be measured by direct
determination of the current and voltage relation at its terminals.
The accuraey of such measurements is limited by the characteristics
of the instruments used. In general, an instrument can compare
two voltages or currents more accurately than it can indicate their
actual values. Therefore methods of measurement frequently are
employed that involve comparison of voltages or currents. A
further increase in accuracy is obtained by so-called “null” methods
of measurement, in which a device serves only to indicate that a
current or voltage has been reduced to zero. Some such ecircuits
establish a relationship among the magnitudes of L, C, R, and w.
Bridge measurements are special cases of such null methods.

1. Theory of A-¢c Bridge.—The Wheatstone bridge, which was
developed for the comparison of d-¢ resistances, may be extended

i

X | &
O
Z|Z4= 2223

(o) (b) (c)

Fi6. 1.1—(a) Basic Wheatstone bridge circuit; (b) circuit for comparison of indue-
tors; (¢) cireuit for comparison of capacitors.

to compare impedances. The impedances are connected as shown

in Fig. 1.1, 5 source of alternating voltage is bridged across two

of the opposite corners, and an a-c detector is bridged across the

other two corners. If the impedances are adjusted so that noc

voltage exists across the detector, then no current flows through it,

and the current through Z; equals that through Z,, Similarly, the
79



80 MEASUREMENT OF CIRCUIT ELEMENTS  [Cuar, 1V

current through Z; is the same as that through Z,. The voltage
drops across Z; and Zy are equal, as are those across Z; and Z..
Therefore,

Z1f12 = Z3I34 and Zz]lz = 24134 (1.1)
where I12 and I3 are the currents through the upper and lower
branches. Dividing one equality by the other,

Zi _ Zy 120/0: _ 1Z4l/6s

2 A A1 AT (2
For balance, the following relations exist between the magnitudes
and angles of the impedances:

lé—z—{i - ‘l% and 0y — 0= 0; — 0, (1.3)

Cross multiplying the ratios of (1.2},
YAVAR YA or YiVi=Y,Y, (1.4)

The produets of the impedances or admittances of the opposite
arms are equal. The two conditions of (1.3) arise from the fact
that at balance both the magnitude and the phase of the sinusoidal
voltage at the two detector terminals must be the same. In
general, the balance requires the successive adjustment.of at least
two elements in the bridge, and it allows two unknown parameters
to be evaluated in terms of other known standards. The imped-
ances to be compared may be elements with distributed character-
istics, but in general the bridge calculations are based on lumped
values of I, L, and C.

In the following descriptions of several bridges, the source and
detector are omitted, as their positions ean be interchanged without
effect upon the equations of balance.

2. Simple Types of Bridges.—A bridge circuit for the com-
parison of one inductor with another is shown in Fig. 1.1h. Apply-
ing (1.4), the general equation of balance,

Rl(R4 + ij4) = Rz(Rs + ijs) (21)
R1R4 + ij;L;; = Rst + ijng (2.2)

Upon equating reals and imaginaries,

RiRy = R,R; and Rl = Ryl (2.3)
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which are the conditions at balance; or

R}_ Rg R1 LS
——— T — — T r— 2'4:
R ™ RTL 24)
Sinee w cancels, the balance is independent of the applied frequency.
The same type of circuit may be used for the comparison of
capacitors, Fig. 1.1¢. By similar ealculation,
Rl Rs Rl — 04

ST R e and E—-a—g

7. = T, (2.5)

If Ry and L, are unknown in Fig. 1.1b, a balance is obtained
readily by varying the standard elements B3 and L;.  The accuracy

Fie. 2.1.—Resonance bridges.

is improved by making the ratio arms Ry, By equal.  If the standard
of induetance available is a fixed inductor, the balance can be
made by varyving the ratio By/Rs and R3; but the equations (2.4)
show that, as the ratio R,/R; is adjusted, the balance conditions
for both resistance and inductance are affected. Each successive
change in one variable disturbs the balance condition for the other,
causing the balance point to “erawl,” resulting in a slow approach
to a final balance. The values of L, and R, obtained are the actual
series equivalent resistance and inductance of the coil at the applied
frequency. The values of B; and Lz of the standard must also be
those at the applied frequency.

In the two bridges of Fig. 2.1 the phase-angle condition of (1.3)
requires that resonance exist in the fourth arm in order that it be a
pure resistance at balance. The balance conditions ean be calcu-
lated as before or can be based on the values of R and » at series
and parallel resonance.
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. .. By R
Series-resonance bridge = = -R—3 and w

R,
Ry

L Ry 1 R?
Parallel-resonance bridge R = T/CR and «?= ¢ T T
The frequency appears explicitly in the balanee eondition, and
bridges of this sort may be used to measure frequency in terms of
L, R, and C. If a resonance bridge is used to measure L and R,
the frequency of the generator must be known. If the waveform
of the generator is not sinusoidal, the harmonic frequencies will

(2.6)

C R
=R,—=ly 2wl
ReRegls CyeplCy
D4= wC4R4 = (A)C;R;

Da=ton 8= (p.f)y

(a)

Fra. 2.2.—(a) Schering, (3) Hay, and {(¢) Wein bridge circuits and their conditions
of balance.

still be heard in the detector when the bridge is balanced at the
fundamental frequency. To obtain a balance under these con-
ditions it is necessary to use a detector tuned to the fundamental
or to make use of the frequency discrimination of the ear and reduce
the fundamental note to zero against the harmonie background.

Resonance-bridge networks sometimes are used to suppress the
fundamental so as to allow the residual harmonic content of a dis-
torted wave to be measured.

Other simple bridges are shown in Fig. 2.2, together with their
balance conditions. The Schering bridge is convenient for measur-
ing the capacitance and dissipation factor of a capacitor. Its
balance is independent of frequency, and successive adjustments
are independent if R; and C are varied. However, a fixed resistor
can be made with smaller residuals than a variable one; and if R,
is fixed, balance still can be obtained by varying the two air capaci-
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tors €y and €3 This gives a smooth variation for balance; but
the two adjustments are interdependent, and the balance crawls.
The bridge is adaptable to measure a wide range of capacitances
down to very low values. It may be used also to measure the
high-voltage characteristics of the capacitor C, in arm 4. The
high-voltage generator is connected between the top and bottom
corners of Fig. 2.2a with the top terminal grounded. The variable
elements are Ry, R, C1; together with the detector, they remain at
relatively low potentials if the impedance of the grounded half of
the bridge is kept small in comparison with the half containing the
unknown and the standard fixed low-loss capacitor Cs.

The Hay bridge, Fig. 2.2b, may be conveniently used to measure
the inductance and resistance of an iron-core choke since the con-
nections of supply voltage and detector shown in the diagram allow
a direct current to be maintained through the choke while its a-c
characteristics are determined. For measurements on an air-core
inductor the usual supply and detector ecireuits are sufficient.
Under these conditions there is only one inductor in the bridge
cireuit, and magnetic coupling with other elements is reduced. The
Hay bridge also allows an inductor to be measured in terms of a
capacitor, which is in general a much more satisfactory standard
at radio frequencies than an inductor. The r-f inductor is con-
nected in place of the iron-core inductor indicated by R.L, Fig.
2.2b, and the quality factor of the coil is determined readily at the
frequency of measurement from C; and R; at balance. (If the
quality factor is low, more satisfactory results are obtained by
placing R; in parallel with C,, forming a Maxwell bridge.) The
balance point of the Hay bridge depends upon the frequency.
In fact, the bridge may be used as an audio-frequency measuring
device with a linear scale, since the equations of balance give

W o= 2'7i'f == (RzR3L4C1 had LE)—§R4

By suitable choice of circuit constants the factor multiplying R,
can be made equal to 2r and then the frequency in cycles/second
equals B4 in ohms. The bridge is balanced by varying B, and R,.

The Wein bridge of Fig. 2.2¢ is similar to the bridge of Fig.
Lle. 1f C.R, represent the unknown capacitor, these two bridges
measure it alternatively in terms of either a parallel or a series
combination of € and K. The Wein bridge balance does not
crawl if R; and Cy are varied. Its balance depends upon the fre-
quency, and this property is employed in several applications. If
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R, is known, it is possible to evaluate (4 in terms of frequency and
resistance without reference to (.

3. Application of Bridge Methods.—Certain eonsiderations are
applicable, not only to the bridges described, but to bridge circuits
in general. 'The method of obtaining the balance, the arrangement
of the circuit elements, the nature of the standards used, all have
their effect upon the speed and accuracy of the determination.

Balance is obtained in a bridge by adjusting one bridge param-
eter until & minimum response is produced in the detector and then
changing a second parameter to reduce the response to a still lower
value. These adjustments are made alternately until no further
reduction in the output of the detector is observable. From the
values of the known ecircuit parameters the impedance at the
terminals of the unknown is calculable. The unknown impedance
generally is represented in the bridge circuit and appears in the
equations for balance as a series or parallel combination of resistive
and reactive components. The corresponding values of L, C, and
R calculated from the balance equations have an accuracy that
depends upon many factors. In general, the accuracy of the
bridge is improved if the magnitude of the impedance in each of the
four arms is approximately the same. Although the equations of
balance are not affected if the generator and detector are inter-
changed, the current in the deteetor for a given unbalance of the
bridge will be greater the more nearly the internal impedance of
the generator is matched to the input impedance of the bridge
considered as a load on the generator. The detector also should
be matched to the internal impedance of the equivalent generator
at the detector terminals of the bridge. If the detector and gen-
erator impedances are not equal, the sensitivity of the bridge
sometimes may be improved by reversing their positions. The
sensitivity also may be improved by the use of proper matching
transformers.

Tf an amplifier is used in connection with the detector, matching
congiderations are of limited importance in determining the range
of the variable over which no perceptible change occurs in the
detector indicator. The accuracy depends upon the sharpness
of this null, which with an amplifier is apt to be limited by the
presence of extraneous voltages due to undesired couplings with
the surroundings or between the elements of the bridge. Also, when
harmonics are present in the source they are not balanced out at the
same setting as the fundamental if the bridge balance depends upon
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the frequency or if the parameters of the bridge arms are functions
of frequency. Undesired couplings are reduced by proper shieid-
ing, and troubles due to harmonies may be minimized by the choice
of a suitable generator and detector.

The accuracy of any bridge measurement of course is limited
by that of the standard used. It should be remembered that every
standard has residual characteristics whose effects must be con-
sidered, particularly at high frequencies. It is possible to reduce
these residuals more effectively in fixed standards than in variable
ones. For accurate work at high frequencies a standard should
have at least one shield in order to make its distributed capacitance
definite. This shield frequently is permanently attached to one
terminal of the element. A second shield surrounding the first,
and insulated from it, is convenient as it allows the capacitance to
ground of the element to be fixed.

Standards of inductance are useful mainly for low-frequency
measurements beeause of their comparatively large residual param-
eters, which vary with frequency. In the audio-frequency range
a, variable mutual inductor, which may also serve as a variable self-
inductor, i1s a convenient standard. Fixed resistors may be used
over much wider ranges of frequency if precautions are taken to
reduce the skin effect. In variable resistors, generally available
as decade boxes, the varying capacitance and inductance of the
switching mechanism are possible sources of error. By proper
design their effect may be reduced, and certain ‘“‘compensated”
boxes arrange the switching so as to make the residual self<induc-
tance independent of the positions of the switches. For certain
types of measurement this reactance component can be canceled
by proper adjustment, in which case it causes no error in the
determination.

The variable air capacitor is the most usable standard at radio
frequencies. The variation of capacitance is smooth and can be
made linear over most of the scale. Although the resistance asso-
ciated with an air capacitor varies in a complicated manner with
frequency, its effects generally are negligible in comparison with
other losses in the circuit. The capacitance is nearly independent
of frequency up to radio frequencies, where the effect of the residual
series inductance causes the capacitance to increase with frequency,
at first slowly and then more rapidly.

Over a greatly reduced range of frequencies, fixed mica capaci-
tors may be used. Paper capacitors have a still more limited use
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as standards. The losses of such solid-dielectric capacitors arc
much larger than those of air capacitors, and as the applied fre-
quency approaches zero the capacitance may increase slightly
owing to dielectric absorption. In the radio-frequeney range,
specially designed transmission lines also may be used as standards.

The nature of the generator depends upon the frequency at
which the measurements are made. Power-line voltage at 60 eps
may be used, but special generators delivering higher frequency
signals are generally employed. The microphone hummer, which
congists of a tuning fork maintained in oscillation by an electro-
mechanical system, can be made to give a reasonably pure signal
of fixed frequency. Audio oscillators of either the beat-frequency
or the resistance-capacitance type give a close approximation fo a
sinusoidal voltage, and their frequency is conveniently variable.
In general, the purity of waveform is improved by restricting their
operation to low output levels. At radio frequencies a modulated-
signal generator is a convenient source.

The most commonly used detector at low frequencies is a pair
of headphones, used with or without an amplifier. At 60 cps the
ear is not as sensitive as at higher frequencies, and an a-¢ vibration
galvanometer may be used. If this is tuned to 60 cps, it becomes a
sensitive device and one that tends to ignore stray voltages and
harmonics. The headphones also may be tuned to the bridge
frequency, or tuned cireuits may be inserted in the amplifier in
order to achieve a sharper null due to the reduction of background
noise. At radio frequencies a well-shielded all-wave radio receiver
is a convenient detector.

In practice, the simple conditions of the ideal bridge network
are seldom achieved, particularly at high frequencies. The inaccu-
racies caused thereby may be partly avoided by using the bridge
to compare directly the unknown and a variable standard. The
bridge is balanced with the unknown connected in one arm. The
unknown is then replaced by the standard and the balance restored
by varying the standard. This is known as the ‘“substitution”
method. This simple method is useful only if the residuals of the
unknown and the standard are negligible. It is employved mainly
for the comparison of capacitors, particularly small air capacitors.
If residuals exist, the balance frequently may be restored by minor
adjustments in the bridge itself and much of the advantage of the
method retained.

Another method that reduces the errors due to the bridge is to
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make a preliminary balance on a four-arm bridge and then to
connect the unknown to one arm of the bridge. The unknown is
connected in series if it has a low impedance, in parallel if it has
a high impedance, and the bridge is then rebalanced. The imped-
ance of the unknown element is calculated from the difference of
the two bridge settings. This may be deseribed as the “difference”
method. Although it is not as independent of possible bridge errors
as the substitution method, it may reduce their effect appreciably.

4. Precautions at High Frequencies.—When the generator,
standards, unknown impedance, and detector are connected together
according to the wiring diagram of one of the bridge circuits, there
are at the same time other inductive and capacitive couplings (not
indicated on the diagram) between each of the elements and their
surroundings. A current in one branch may induce a voltage
in another branch, or a charging current may flow in a branch
because of its capacitance with respect to another branch or to
ground. These undesired voltages and currents inerease with the
frequency, and the result is that at sufficiently high frequencies
the actual bridge circuit is far from the ideal one of the diagram. The
effect of these couplings is to make the impedance of the bridge
arms depend upon the surroundings, to decrease the sharpness of
the null at balance, and to give an incorreet value for the impedance
of the unknown.

The inductive coupling is greatest between coils. It can be
reduced by using coils having small external fields such as toroids
or other coils with closed magnetic circuits or by separating and
orienting coils approximately at right angles so that their magnetic
fields produce a minimum of interaction. Matehing transformers,
when used for the source and detector, should be well separated.
If the number of coils can be reduced to one by proper choice of a
bridge circuit, the magnetic linkage is mainly with the loops formed
by the wires themselves. This can be reduced by keeping the
loops small or by running the connecting wires close together in
twisted pair or coaxial line. However, these precautions will
increase the stray capacitance.

The capacitive coupling befween elements can be reduced by
surrounding each element and its leads by a grounded shield as
shown in Fig. 4.1a. The generator G and the detector D are each
represented by one of the windings of the matching transformers.
The impedances Z1, Z», Z3, Z4, as well as the generator and detector,
are shown surrounded by shields, insulated from them and in
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practice extending from terminal to terminal of the bridge. If the
corresponding shields Sy, 8, S, 84, Se, Sp are connected to ground,
but no part of the bridge is grounded, the equivalent circuit is that
of Fig. 4.1b, where the four capacitances from the bridge terminals
a, b, ¢, d to ground are due to the stray capacitance of the shields
on the bridge arms and also the generator and detector shields.
Although the shields increase the capacitance of the elements to
ground, they make that capacitance definite, and no extraneous
voltages are produced in the bridge arms by capacitive coupling
between arms. The four capacitances provide paths between

d i E hsﬂ gg,g:;
{d) (e)

FiG. 4.1.~(a) Bridge with shielded impedances and a Wagner ground; () Wag-
ner ground disconnected and all shields grounded; (¢) terminal a grounded also;
(d) Wagner ground connected and adjusted; (¢) Wagner ground removed, Siz
added and connected to terminal d, and other shields connected as shown.

opposite corners that shunt the generator and detector. These
shunt paths alone may reduce the sensitivity slightly but cannot
affect the balance. In addition, owing to the eommon ground,
they shunt the arms of the bridge and may cause an error in its
indication if the impedances in the arms are sufficiently high. If
with the shields all grounded the terminal a is grounded as well,
there will be no potential difference between g and ¢, therefore no
current, and the capacitor C,, may be omitted as in Fig. 4.1¢. The
arms be and cd are still shunted by stray eapacitances to ground.
The “Wagner ground” may be used to reduce still further the
effect of stray capacitances to ground. It is shown in Fig. 4.1e
as an added two-element potential divider, Zs, Zg. The impedance
of this branch must be small in comparison with that of the stray
capacitances. At low frequencies it may be a wire-wound poten-



Skc. 4] PRECAUTIONS AT HIGH FREQUENCIES 89

tiometer, and for high frequencies it often consists of a pair of
variable air capacitors. In using the Wagner ground the first step
is to obtain a rough balance on the bridge. Tf the effect of stray
capacitances is serious, this null is apt to be poorly defined. The
detector connection at ¢ is broken, the detector is connected between
o and ¢, and a balance is obtained by varying Z5 and Z;. Upon
returning the detector to its original position between o and ¢ and
rebalanecing, a much sharper null is obtained. This process is
repeated until no further improvement results in the balance.
Generally only one or two switching operations are necessary. The
Wagner ground balance adjusts the potential of terminal e to
ground. The bridge balance ensures that the potential of terminal
¢ is the same as that of a, and therefore both a and ¢ remain at
ground potential even though not directly connected to ground.
The equivalent ecircuit reduces to that of Fig. 4.1d, where the
capacitances C,, and C. are neglected. The only remaining
capacitances simply shunt the generator and have no effect on the
bridge balance. The Wagner ground therefore not only ensures
sharper nulls but eliminates the error due to the ground capaci-
tances. It may be employed with profit in many bridge cireuits,
even though the elements are not separately shielded, by connecting
it to a shielded container surrounding the entire bridge. Some
advantage is gained by its use even if no shield at all is used and the
Wagner ground is connected to any good ground in the neighbor-
hood. If the ab and ad arms of the bridge are the fixed-ratio arms,
very few adjustments of the Wagner ground are necessary.
Control of the capacitance to ground can be obtained also by
connecting the shields to various terminals of the bridge. If the
shields 8,, 8, are connected to terminal b; 8s, S4, S¢ to terminal d;
and 8, to terminal ¢, the equivalent circuit is again that of Fig.
4.1¢, although no parts of the bridge and none of the shields are
grounded. The capacitance Cy, is now the capacitance of S; and
S to ground, that of C,, is the capacitance of the detector shield to
ground, and Cy, is the sum of the capacitances to ground of shields
S5, 84, S¢. If a second shield S, is added surrounding shields S,
and S; (as indicated in Fig. 4.1a¢ by a dotted line) and connected to
terminal d, the effect is to change the equivalent circuit to that of
Fig. 4.1e. The capacitance to ground of terminal b is reduced to
zero, and there is added instead a shunt eapacitance from b to d that
cannot affect the bridge balance. The arm ¢d is still shunted by the
series combination of Cp and Cyp.  If now the terminal d is grounded,
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only the capacitance C., due to the detector screen shunts the cd
arm. The capacitance across the ¢d arm can be balanced by the
small variable air capacitor C,4, Tig. 4.1e. After this preliminary
balance an unknown can be placed in parallel with the ¢d arm, the
balance restored by varying the ad arm, and the method of differ-
ences used. Alternatively, both the arms ed and ad can be replaced
by other elements having their shields connected to d and the effects
of stray capacitances to ground remain eliminated provided that the
ratio arms ab and be are not altered.

A further advantage is obtained if equal-ratio arms ab and be
are used. If the shield on the detector coil is disconnected from ¢
and is grounded at the center, it adds equal capacitances from a to
g and from ¢ to ¢ if precautions are taken to make it symmetrical.
When the bridge is balanced, the circuit is symmetrical about the
vertical line bd and the capacitive currents through C,, and C,, can-
not affect the balance. This assumes that the shields 8; and S,
likewise have equal capacitances to ground.

Thus it is possible by the use of shields to decrease the ca-
pacitances between the arms of the bridge and to render their
impedances definite. By suitable connection of the shields the
capacitances to ground may be thrown across the source or the
detector or across a low-impedance arm. They may likewise be
balanced out by a preliminary adjustment or by resorting to
symmetrical construction. It is only by the use of such carefully
designed shields that bridge methods have been extended success-
fully to radio-frequency measurements.

5. Bridged T and Parallel-T Measurements.—Another null
method of measurement employs a three-terminal network, as
opposed to the four terminals of a bridge circuit. The bridged T,
Fig. 5.1a, consists of a T-shaped arrangement of impedances
Zy, 7, Z,, connected between the terminals d, g, and the common
terminal e, o.  Across the top of the T, from terminal d to terminal
g, is bridged an impedance Z,. If a generator is connected across
the terminals d, e, it is possible, by suitable adjustments, to make the
output voltage at g, h approach zero.

The conditions necessary for this null in output voltage may be
determined by making use of the T to II transformation of Chap. V,
Sec. 4. It is shown there that the T connections between the three
terminals enclogsed in the dashed rectangle of Fig. 5.la may be
replaced by an equivalent circuit eonsisting of Z4, Zs, Z¢, arranged
in a 1T connection between the same terminals, Fig. 5.1b. The
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resultant impedances Z4, Zp, Z¢ may not be physically realizable,
but any caleulations based upon the equivalent cireuit lead to
exactly the same currents and voltages at the three terminals as
for the original circuit. If the impedance of the parallel combina-
tion Z., Z is infinite, it is apparent from Fig. 5.1b that there can be
no current through the detector.

Fia. 5.1.—(a) Bridged T'; (b) equivalent circuit.

As an example, consider the inductance coil, represented in
Fig. 5.2a by the series combination of L, and R,, bridged across the
capacitive arms of a T. If the T is transformed to a II by use of
(4.10) to (4.12), Chap. V, the equivalent circuit of Fig. 5.2b is
obtained. The horizontal section of the I between terminals d and
g is equivalent to a capacitance of magnitude /2 and a negative
resistance of magnitude 1/0*C*R. If the parallel combination

(a) RELATIONS AT CURRENT NULL ~ (b)
.2 |
Ls-ms RS:QW’ Q=wCR
Fic. 5.2.—(a) Bridged T; (b) equivalent circuit.

between terminals 4 and ¢ is adjusted so that both reactance and
resistance of one branch are equal and opposite in sign to those
in the other branch, there results a parallel-resonant circuit with
zero losses whose impedance is infinite. The conditions for a
voltage null at g, k are therefore

1

wly = = J0R

and R,

&



92 MEASUREMENT OF CIRCUIT ELEMENTS  |Cuar. IV

and the quality factor of the coil is equal to «wCR. Balance is
obtained by varying R and each C, Fig. 5.2a. As C enters both
balance conditions, the balance crawls.

This method has the advantage that the generator and detector
have one side in common, which may be grounded. Care must be
taken, however, to reduce the stray capacitance shunting R and to
avoid stray coupling between terminals d and g.

Another form of the bridged T allows one side of the unknown
coil to be grounded as well. In Fig. 53¢ the unknown coil is
represented by the parallel combination of L, and R,. If the T
in this circuit is transformed to a II, the circuit of Fig. 5.3b is
obtained, where B is bridged across the equivalent series LCOR
combination, which forms the horizontal part of the II.  The values

R R

[ 1t | d ! |
ST

Gt T

g tRe L, Ry

e h e h
(a)  RELATIONS AT CURRENT NULL  (p)

1 1 2
Lrgtw’ ReepicR' QGCR
Fic. 5.8 —(a) Bridged T; (b) equivalent circutt.

of the series components are shown on the diagram. If the series
inductance and capacitance have equal and opposite reactances the
d, ¢ connection reduces 1o a parallel combination of a positive and
negative resistance. If these are equal in magnitude, the impedance
of the combination is infinite. To satisfy these conditions the null
equations shown in Fig. 5.3 suffice.

The parallel, or twin-T, network consists of two T sections con-
nected in parallel between the same three terminals. The circuit
of Fig. 5.4 illustrates one possible combination, where the unknown
eoil is represented by the equivalent parallel combination of L, and
Ry Upon transformation of the two T sections to equivalent 11
sections, two parallel branches between d and g are obtained,
Fig. 5.4b.

The equations of zero voltage transfer (¢.¢,, infinite impedance
between d and ¢) given in Fig. 5.4 are satisfied by variation of
Coand €.  Two important advantages follow from this, the balance
conditions for L, and R, are now independent, and the resistor K is
fixed and therefore can be made with smaller residual inductance
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and capacitance. In addition, one side of both the standard
capacitors Cg and C; may be grounded as well as the generator and
detector. This simplifies the shielding problem and allows the
network to be used at relatively high radio frequencies.

The effects of stray couplings may be further reduced by apply-
ing the method of differences. The bridge is first adjusted to a null
condition with a coil in place. Then the coil to be measured is
connected in parallel with the first coil. The inductance L, and the

(d) o
d 1] 9
T
O wwww ] 9
FTTLp
€ ) h

EQUATIONS AT CURRENT NULL
!

Lp= !
Prufeace (Lade L) * e R e 2)

1. 5.4.—{a) Parallel, or twin-T; (b) equivalent circuit.

parallel resistance R, of the second coil is easily expressed in terms
of the difference in Cy and C, for the two balances. If AC, and
AC, represent the increases in Cy and s, then, for the second coil,

w%-c,— and R, = G
0

L, =
Either inductive or capacitive impedances may be measured in this
way. For an unknown with a capacitive reactance, the value for
AC, would be negative.

6. Single-circuit Resonance Methods.—Measurements hbased
on the relations in a series loop at or near resonance do not have the
inherent aceuracy of null methods. However, the simplicity of the
circuit makes it possible to obtain moderate aceuraey at radio
frequencies without the elaborate precautions against coupling
required in more complicated networks.

Q Meter—The Q meter uses the resonant rise of voltage in a
series loop to determine the @ of the circuit and therefore the Q
of the coil at the resonant frequency, if it can be assumed that the
coil is responsible for the losses. In the basic circuit of Fig. 6.1a
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an oscillator maintaing a constant driving current I, through the
resistance KB whose magnitude is small in comparison with R,.
This current is adjusted to produce a standard voltage across R,
which then acts as low-resistance generator for the circuit. The
low-loss air capacitor C is varied until E¢, as measured by a vacuum-
tube voltmeter, is a maximum. For a low-loss circuit this corre-
sponds to resonance, and I, can be evaluated in terms of the
frequency o and the capacitance C. At the same time the volt-
meter reading . as compared with the known applied voltage
is a measure of . The scale of the voltmeter may be calibrated to
read @ directly. Knowledge of @, w, and L, enables E, to be
calculated. Such a meter allows g rapid comparison of the @ of
various coils with an aceuracy that is satisfactory for all but very
low-loss or very high-loss inductors.

LS;RS 1
—F 1
. Iy 1oL, T
Id C;— Ec 31 C== EC
—P—-:;R l w ! RS l
y AL
w = = b =

Fia. 6.1.—Resonant measurement circuits,

Resistance-variation Method.—The resistance-variation method
makes use of the simple current-voltage relations in a series loop
at resonance to determine the cireuit resistance, which can often be
assumed to be that of the coil. The series loop of Fig. 6.15 is
excited by the voltage induced in the inductor due to the driving
current I in an adjacent coil. A grounded shield is placed between
the eoil and the induetor to eliminate capacitive coupling between
them, and the inductive coupling is made small enough to ensure
that changing currents in the resonant circuit have no effect upon
1,; therefore the induced voltage is constant. An r-f milllammeter,
generally of the thermocouple type, indicates the current I.

The cireuit is tuned to resonance and the magnitude of current
I is measured. An additional resistor R.ua is inserted in series
with the loop and the circuit again tuned to resonance if necessary
because of the residuals of the resistor. If the magnitude of I were
reduced to half its original value, the original circuit resistance
clearly would be equal to the added resistance Rua. Generally,
however, several values of Ruua.a are inserted, and the reciprocals
of the corresponding currents are plotted against the values of R,
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Fig. 6.2a. If the line obtained is extended to zero on the vertical
scale (corresponding to infinite current), the intercept to the left of
the axis gives the resistance that should be subtracted to make the
total circuit resistance zero. This is of course equal to R, if other
losses can be neglected.

Reactance-variation Method.—If C is the only variable in Fig.
6.1, a knowledge of the corresponding variation of the current is
sufficient to evaluate the @ of the cireuit. The quality factor
and the value of L, and R, for such a cireuit with variable capaci-
tance were shown in Chap. II, Sec. 12, to be determined by the

{ + O ——— T ] SR
i /+/ i 00T —— —f+
A 05h -~ [Ec] :
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=0 0t —re 0 i
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RESISTA?‘{CE) VARIATION RE&CTAN((IE;/ARIATION FREQUENCY VARIATION
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Fig. 6.2,—Evaluation of circuit parameters.

half-power value of C and the frequency. From (12.7) and (12.8),
Chap. II, the equivalent series inductance L,, series resistance R,,
and @, are given by
i3 ? 1 i3
The half-power values of C may be determined from a curve
similar to Fig. 6.2b. Here the square of the eurrent is plotted,
since the response of a thermocouple meter commonly is propor-
tional to |I]2. In this case the half-power values of €' are those
which reduce |I|2 to one-half its value at resonance,
Frequency-variation Method.—If the frequency of the constant-
magnitude driving current ; is altered and the variation of E¢ is
determined, it is possible to evaluate the cirenit parameters in
Fig. 6.1b. The voltage across C is given by the product of the
current and the capacitor impedance; in magnitude values,

lwM 1 _1_] _ M1
| Z WwCl T C

Therefore the variation of |E¢|, except for a constant factor, is of
the same form for this circuit as the variation with frequency of the

(6.1)

|Ec| =

Y

i
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admittance |Y} of the series loop. It is possible to determine the
half-power and resonant frequencies of the ecircuit from a curve
similar to that of Fig. 6.2c. The half-power frequencies are those
at which E¢ drops to 0.707 of its value at the resonant frequency w,.
From (11.10) and (11.5), Chap. II,

r 1 1
Q o w,,_Tw__._ Ls = ;:,-2—6 &nd Rs == m {6'2)

J— w,

Although these methods have been applied to the measurement
of coils, it is possible to extend them all to the measurement of
resistor characteristics. After a preliminary measurement of a
coil by one of the described methods, an unknown resistor may be
placed in series or in parallel with the coil (depending upon whether
its resistance is small or large) and a new balance obtained. From
the difference in the two measurements it is possible to calculate the
characteristics of the added resistor.

7. Evaluation of Equivalent Circuit Constants from Measure-
ments.—In the methods of measurement deseribed, the constants
determined for a coil were its equivalent series inductance I, and
geries resistance R, at one frequency. By determining the con-
stants of the coil at several frequencies it is possible to determine
the L, R, and C4 of the equivalent circuit, Chap. III, Fig. 2.1¢,
which was earlier shown to deseribe it.

Under the assumption that L, R, C; are constant and of magni-
tudes suitable to describe a well-made coil, it is shown in Chap. 111
that, for all frequencies up to those near the self-resonant frequency
of the coil, the equivalent series inductance L, is related to L as
follows,

% =1 _1 v where w = f— =w vLC’d 7.0

from (3.4), Chap. III. Here, w,, is the series-resonant frequency
of the loop formed by L and Cy.  Although in practice the resistance
of the coil increases greatly with frequency owing to skin effect, the
inductance L is more nearly constant, decreasing slightly. It is
possible to identify L in the equivalent circuit with the low-fre-
quency self-inductanee of the coil La. and from (7.1} to obtain

L, i

T~ 1 = o'LaCy

(7.2)
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Inverting, and dividing by La.,

1 1
7 w¥Cy (7.3)
L, is the measured equivalent series inductance of the coil at the
frequency w. If 1/L, is plotted against «?, the linear variation of
Fig. 7.1a is obtained if the inductance of the coil is constant. The
value of Ly, is obtained from the intercept on the vertical axis, and
(4 can be determined from the slope of the line.
For some coils the variation of the inductance L due to skin
effect is sufficient to cause appreciable deviation from the straight

> ! /“/
Ls —
2
w »/
A \\\ P
de /,/
0 Wl ““‘5;"0 Cr
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Fia. 7.1.—Evaluation of equivalent cireuit constants.

line, corresponding to departure of L from its low-frequency
value Lg,.

If the values of L, and I, are obtained by resonant-circuit
methods, it is possible to evaluate C; from the relation between the
capacitance € and the frequency « at which resonance exists. At
resonance, wl, is equal to 1/wC, and (7.3) may be transformed to

1

C+Ca=p glé (7.4)
In Fig. 7.1b, 1/0? is plotted against (', the resonant value of the
tuning capacitor, at various applied frequencies. The intercept
on the horizontal axis gives the value of Cy. The slope of the line
depends on the value of the self-inductance. If it varies from its
low-frequency value over the range of frequencies applied, the line
becomes curved and the value of the C; determined becomes =z
funetion of the frequency range.



CHAPTER V
NETWORKS AND IMPEDANCE MATCHING

1. Introduction.—A network may be defined as any eombination
of generators and impedance elements. A network composed of
impedance elements but with no sources of electromotive force is a
passive network, while one containing generators is an active net-
work. There are two general objectives in the study of networks,
first to express the impedance presented by the network between
any two points, and second to express the current in or the voltage
across any element of the network when a voltage is applied in any
arbitrary manner. For the purposes at hand the study of networks
will be confined to the relatively simple cases of two-, three-, and
four-terminal networks.

Certain limitations on the scope of the network equations and
theorems are imposed by the need for simplicity. First, all eireuit
elements of which the network and its external cireuits are com-
posed are assumed to be linear elements. Thus the values of the
resistance, inductance, and capacitance of the various elements are
assumed to be independent of the current or voltage; they may be
and in general are funetions of applied frequency. Mathematically
speaking, the term linear means that the differential equations
of the circuits are linear differential equations with constant
coefficients. The general form of Ohm’s law is the mathematical
expression of the steady-state voltage-current ratio in linear circuits.
If the applied voltage is doubled, the corresponding current is
doubled, ete. In general, the linearity of all circuit elements is
restricted by certain current and voltage limitations. Extreme
currents cause heating and changes in dimension; high voltages
may ecause corona or a breakdown of insulation. However, by
limiting the maximum voltages and currents it is possible to con-
sider most ordinary resistances, inductances, and capacitances as
linear elements. Many devices such as vacuum tubes, electrolytic
capacitors, and iron-core inductances exhibit linear properties over
limited ranges of their current-voltage characteristics. In these
ranges they may be regarded as linear elements in the ealeulation

of variational components of current.
98
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If an alternating voltage of sinusoidal waveform at any given
frequency is applied to a linear circuit element, the resulting current
is of the same frequency and waveform and contains no harmonics
(Chap. IX). On the other hand, the current flowing through a
nonlinear circuit element for a sinusoidal applied voltage does
contain harmonics. Which harmonies appear and whether or not
the fundamental appears depend on the circuit and the nature of
the nonlinearity.

2. Network Notation and Equations.—Since a network may
consist of a large number of circuit elements in any arbitrary
arrangement, it is desirable to have a system of notation by which
the various quantities to be used in the network equations may be

Fia. 2.1.—Example of a four-mesh network, branch currents indicated.

designated. Figure 2.1 shows a “four-mesh” network having a
generator and impedances in each loop, or “mesh,” of the network.
Tn Fig. 2.1 and in succeeding diagrams the symbol for current
through each branch or around each loop is accompanied by an
arrow, which indicates the assumed positive direction. This arrow
does not indicate the actual direction of eurrent flow since the cur-
rent under consideration is the root-mean-square value I of the
instantaneous current 7 = [ sin (wf 4 6) that flows for an equal
time in each direction. Another caution about current directions:
The arrows do not indicate that the currents in the several branches
flow simultaneously in the indicated directions. They may have
any phase relationship whatsoever, depending on the assumed
positive directions and on the nature of the cireuits. The assumed
positive directions of externally applied voltages are indicated by
plus and minus signs on the symbol for the voltage.

A branch is a path from one junction to another. In the net-
work of Fig. 2.1, the branch current I, flows through the impedance
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Zg, Iy through Z,, ete. The Kirchhoff voltage equations for each
closed loop of the circuit are

E,—-17Z,—1Z + I,Z; =0 (2.1)
Ey+ 172, 4172, —~ Li/Zy =0 (2.2)
E3—IdZd—Ifo—Ing = 0 (23)
Ei—9LZy+1Z; — 1,7, =0 (2.9

Equating junction currents to zero,
I.=1,—-1, (2.5) Ip=—I,+ 1, 2.7
Ij=—-I,+1, (2.6) I.= -+ 1 (2.8)

Substituting these values in the voltage equations and regrouping
terms,

Ey—IZo+ 2.+ Zog) + 2. + 1,Z4 = 0 (2.9)
Ez i Ib(Zb + Ze + Zc) —Jr‘ I&Za "‘}* IaZc - 0 (210)
Ey—I1,(Z:+Z;+2Z,)) + 1.Z:+ 1Z; =0 (2.11)
Ee—LZy+ Z; + 2) + LZ; + LZ, = 0 (2.12)

Thus (2.9) represents the sum of voltages around the first loop, or
mesh, of the network. The current I, may be thought of as flow-
ing around the first mesh of the circuit through the impedance
(Zo + Z, + Z3), and if the second and third meshes were open the
voltage equation for the first mesh would be given by the first two
terms of (2.9), viz.,

El e Iu<Za+Zc+Zd) = 0

Similarly, I, may be considered to flow around the second mesh, ete.
Thus when all these “mesh” currents are flowing, (2.9) states that
the applied voltage of mesh 1 is equal to the drop around mesh
1 due to its mesh current I,, plus the drop in Z, (the common
element between mesh 1 and mesh 2) due to the mesh current I, of
mesh 2, plus the drop in Z; (which is common to mesh 1 and mesh 3)
due to the mesh current I, of mesh 3.

Thus, when a current is considered to flow around a mesh rather
than only through one branch, the current is called a “mesh
current”” and is usually designated by a numerical subseript corre-
sponding to a particular mesh. If the upper left-hand mesh in
Fig. 2.1 is denoted by the number 1, the mesh current for this mesh
is [.. For cireuit of Fig. 2.1,

I,=1, (2.13) Iy =1, (2.15)
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It is possible therefore to write the network voltage equations using
either the branch currents or the mesh currents. Since there are
four meshes in the network of Fig. 2.1, four mesh currents com-
pletely determine the currents through all elements of the network.

Referring to (2.13) and (2.9), and to Fig. 2.1, the total imped-
ance in mesh 1 through which current I flows is designated as Z1;.
Thus, for Fig. 2.1,

le = Za + Zc + Zd (2417)
Similarly,

Zon = Zo + Zo + Z, (2.18)

Doy = Zy+ Z; + Z, (2.19)

Zuw=Zy+ Z;+ Z, (2.20)

Common elements between two meshes of the network are desig-
nated by a similar double-subscript notation. Thus Z, is common
to meshes 1 and 2, is the impedance in mesh 1 through which I,
flows, and is designated as Z;,. Since the impedance in mesh 2
through which current I; flows is the same as Zy, Z2 = Z1. If
the positive directions of the mesh currents I, and f» are in the same
direction through Z,, Zy; = Z.. If the positive directions of mesh
currents are in opposite directions through Z,, the voltages across

Z, due to these currents are opposite in sign, and Zy = —Z..

Thus, for mesh currents all assumed clockwise as in Fig. 2.1,
Zyy = — 4, (2.21) Zay = —Z; (2.23)
Zz4 = —Ze (222) Zal = —Zd (224)

Consider the circuit of Fig. 2.2,

Zy=2Zy+ 7+ Z, (2.25)
Zipy = Ly + Z1 + Zy (2.26)
Zyg = Lgy = —Zs (2.27)

for the mesh current directions indicated in the figure.

The impedance presented to the generator at the terminals C
and D is
Zy(Zs + Zz)

Lo =t g X T+ 2,

Figure 2.2 is a special case of the more general two-mesh network of
Fig. 2.3. Here the dotted rectangle represents a generalized four-
terminal network conneeted between the generator and load
impedance Z.. In practice, the connecting system might be a
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circuit of the form shown in Fig. 2.2, or it might be a transformer, a
filter, a transmission line, or a system of antennas. The network
equations are applicable to a wide variety of problems.

For the system shown in Fig. 2.3 some of the elements of the
network may be unknown so that it is necessary to define the mesh
impedances in terms of an operational procedure. In Fig. 2.2 the
impedance (Zcp)sroen = Z1 -+ Z3 can be measured by discon-

y ¢ b L E
DYy I |
+ 3 + 2
5?_@ Mt;:sa Zeo §§23 512_ M%SH £

D F
¥ra. 2.2.—Example of a two-mesh network, mesh currents indicated.
2g r ‘‘‘‘‘‘‘‘ !
A i G E ot
TNV ! G
E ! 37,
- g } : b3
B LoD Fo—-l!—-—-———
| FP Ry ——

¥ig. 2.3.—Generalized two-mesh network.

necting the load Z, and measuring the impedance Zcp with the
terminals E and F open. By using this procedure, it is possible to
define Z, for Fig. 2.3 as

Z11 = Zg + (ZCI))EFomn

The symbol (Zcp)er e means the impedance measured at the
terminals € and D with £ and F open, or with Z;, = . Similarly,

Zoy = Z1 + (Zer)cp oven

In the circuit of Fig. 2.2 it is evident that when a current flows
around the first mesh a voltage will appear across the impedance
Zs and hence in the second mesh. This voltage might be measured
as the open-circuit terminal voltage across E and F.  Let (Es)er open
be this open-circuit voltage (i.e., the value of E; in Fig. 2.2 with
Z., = ), for a current I, in the first mesh. Then

(E2)5r open = 11723 (2.28)
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With the assumed positive directions in Fig. 2.2, Zy; = —Z3, and
Z1s = —(B2)pr open/ 1 from (2.28). Since the currents and voltages
have the same designations in Figs. 2.3 and 2.2, Zy, for the network
of Fig. 2.3 can be defined as Zi2 = — (E2) 5w open/I 1.

It is customary to write the voltage equation (2.9) in the
“mesh” form

Ea - Ilzll - I2Zm et - Ian e =90 (2-29)

a5 the externally applied voltage E, is assumed positive when acting
in the direction of I; and all the other terms in the equation are
given negative signs. Equation (2.29) is a general equation that
can be used for any complicated system of meshes in which each
term represents the voltage produced in the first mesh by current
flow in each of the other meshes. TFor the circuit of Fig. 2.2, the
voltage equations become

Eg — 11211 - Ingg = 0 (2.30)
0 — I1Z12 - I2222 =0 (231)

where the impedances are given by (2.25), (2.26), and (2.27).
These equations may be written in the alternate forms

E, =17y + 1.7 (2.32)
0 = 11212 + .{2222 (3,33)
From (2.31),
- Zis
I = —J, T (2.34)
Substituting this value for I; in (2.30),
Eg — 11211 + Ilézé?} = 0 (235)
22
and since Zys = Zgy, {2.35) becomes
Z?
E, —11(211—21—2 = {2.36)
22
_E_, _ 7%
Zp = I, = Zy Tos (2.37)

Equation (2.37) is very useful since it expresses the input impedance
of the two-mesh network when there are no sources of emf in the
second mesh. From (2.36),

I} i — (238)
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whereas, from (2.34),
_ Eme
Zndiay — 23,

3. Inductive Coupling.—As an example of the application of
the network equations, consider the transformer shown in Fig, 3.1.
Suppose that two coils of wire are arranged as shown with the turns
of each in the same direction relative to the common axis, so that
a part of the magnetic field of one coil threads through the other.
The current I; produces a voltage of self-induetion —jwl,I, in the
upper coil, opposing the current and hence given the minus sign.
Simultaneously there is a voltage —jwM I, induced in L.. The
algebraic sign attached to the magnitude of the mutual inductance
depends on the geometrical arrangement of the coils in space and

I; = (2.39)

A_ 9. C B %:
E® W 'H |6 5 &
- R, ¢ 1’
B b A F
3Rz

Fra. 3.1.~Two-mesh transformer eircuit.

on the assumed posilive current directions in the ecircuits. If the
voltage induced in a “first” circuit by the current in a “second”’
cireuit is in the same direction as the voltage of self-induection
in the first circuit (the instantaneous currents in both ecircuits
increasing in the positive direction), M is a positive number, just
as L is. This means that, if the magnetic fields are additive when
instantaneous currents are in the assumed positive direction in each
eoll, M is a positive number of henrys. When the magnetic fields
are opposed when currents are in the assumed positive direction in
each coil, M is a negative number of henrys.

For the coil geometry of Fig. 3.1 and the assumed positive
directions of current the magnetic fields subtract and M is a nega-
tive number of henrys. The symbol is always M, although M may
be algebraically positive or negative. The equation for the primary
circuit is

Ea =I;ZQ+E1R1+II"}O)L1+123‘@M (31)
or
E, =17y, + 1,2,y 3.2)
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so that
Zia = juM (3.3)
For the secondary circuit the equation is
0 = I.Zy + 1Ry + InjuwLle + Ijulf (3.4)
or
11221 + 12222 = 0 (35)
and
Zgl == jcoM = 212 (36)

If the assumed positive direction of I, were opposite to that in
Fig. 3.1, the magnetic fields would add, Z» = joM as before, but

Ce £ ¢ E
puEtE D %:M &
D F D off

(a} (b}

Fig. 3.2—Tapped-coil or autotransformer connection. A is a negative number of
henrys for the assumed positive directions of 71 and [2

M would be a positive number of henrys. The symbol M “carries
its own sign.”
The coupling may be provided by a tapped coil or autotrans-

former as in Fig. 3.2. The coil M

might be used as the mutual element /‘\

between two circuits in such a way C E
as to make M a positive number ag

in Fig. 3.3, where the magnetic fields D @

due to assumed positive currents

are additive. In all these ecases, ]

Zuo = Zay = b, where M is posic sy i Mmool amange
tive for additive magnetic fields and  ber of henrys for the assumed posi-
negative for opposed magnetic fields "7e directions of Iy and I,
corresponding to the assumed current directions. For the circuit of
Fig. 3.1, (2.37) becomes

[~}
§

D

_ _ Z% . w22
Zss = Zn Z;g =Z, + R, + jwl, + ﬁm 3.7
Similarly,
Zoo = Ry + joLy + M (3.8)

Z. 4 Ry 4 juls
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The input impedance to a transformer is given by (3.8). If the
secondary cireuit is open, Z; = «, and

(Zc,p)m* open = Rl + ij1 (39)
If the terminals E and F are short-cireuited, Z; = 0, and
, wiM?
{Zcp)er shorea = 1 + Jwly + mz 3.10)

These relations will be used in See. 4.

4. Equivalent Networks.—It is often desirable to transform a
four-terminal network from a T configuration, Fig. 4.1a, to an
equivalent network having a II configuration, Fig. 4.1b, and vice
versa.! Two such networks are equivalent when they have iden-
tical terminal currents and voltages between terminals under

oas Bt o
s < <
2 2.3 £
D F D F
(o) (b)
Fra, 4.1.—7T and Il networks equivalenthf;)(i ;ach other when equations (4.6) to (4,12)

identical conditions external to the terminals. The corresponding
input impedances must be equal. With E and F left open, the
impedance at the terminals CD of the IT network of Fig. 4.10 is

_ ZulZs+ Zo)
Zep = Tk 7o ¥ Ze X7, ¥ Zo 4.1
and for the T network of Fig. 4.1a is
Zep=Zy+ Zs (4.2)
Equating (4.1) and (4.2),
_ ZuZs+ Zo)
Similarly,
_ Zc(Za+ Zs)
ZZ + Z3 = ZA + ZB + Zc (4'4:)
Equating the impedaneces Z¢p with E and F short-circuited,
ZyZy  ZaZsg
Zit ZotvZy Zi+Z» (4.5)

t The T network is also known as the Y, or star, connection; the Il network is
also known as the A (delta) connection.
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Eliminating Z, between (4.3) and (4.5) and substituting the valuc
of Zy 4 Z3in (4.4),

g - Zale
Zs = Zi+Zp+ Ze (4.6)
whenee, from {4.3),
LiZy
o S 4.7
B = 7Y T+ 20 +7)
and from (4.4),
_ AV A
= 7 F T ¥ s “8)
Multiplying (4.4) and (4.5),
YAVAYA
Z\Zy + ZioZs + Z3Z, = m (4.9)

Dividing (4.9) by (4.8), (4.6), (4.7) gives (4.10), (4.11), (4.12), for
the values of the impedances of a II network equivalent to a given T.

Z}Zg + ZeZ:i + Z3ZI

Zy= 7 (4.10)
2

Ty = ZZy + Z;;Zs A Z2Zy (4.11)
3

7o = ZiZs + Z;{ZS + ZsZ, (4.12)
1

Since impedances of circuit elements are functions of frequency,
two networks constructed to be equivalent at one frequency may

[ —— R Z, Zy
L oG, ot Co——wmm—-J-qu-on

[l &>
2 G DI NG
]
e ’ b ]

F1a. 4.2—(a) General four-terminal network; (b) its equivalent T when {4.22) to
(4.24) hold, as deseribed in the text.

not be equivalent at any other frequency. 1t is not always possible
to construct physically an equivalent network using ordinary cir-
cuit elements since some resistance values may come out negative.
It is useful to develop the expressions for the T or 11 network
equivalent to a general four-terminal network in terms of the input
impedances of the general network under open- and short-circuit
conditions. Figure 4.2a shows a four-terminal network. Let

(Zop)er o = Zor (4.13) (Zer)epopen = Loz (4.14)
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and

(ch)gr shorted = Zsl (4«15) (ZEF)CD shorted = Zs2 (4~16)
Then for the T of Fig. 4.2b to be equivalent it is necessary that

Zl + Za == Zol (417)
and
Zo+ Zy = Zps (4.18)

The short-circuited impedances must also be equal,

Zolis  Inds+ ZsZs 4 ZisZa

Zs1 = Zy + Z: + Z3 = Zs + Z; (419)
and
_ ZiZs _ ZaZa + ZuGs + T
Zge = Zy + Iz 7+ 7, (4.20)
Substituting (4.18) in (4.19) and (4.17) in (4.20),
leg + 2'22‘3 + Zszx = Zozzsl == Zolzsz (4-21)

Substituting Z, = Zsy — Z; from (4.17) and Z, = Zo: — Z; from
(4.18) in (4.21),

Zs = + NVZox(Zor — Zs1) = + N Zor(Zoz — Zs2) (4.22)

whence

Zl = Zol IRV Zoe(zm - Z,sl) (4»23)
and

Zo=LZos F V' 2o2(Zor — Zsy) (4.24)

The choice of the -+ or — sign in (4.22) to (4.24) is determined by
the phase of the voltage at the terminals EF with respect to the
current at the terminal € and must be chosen to satisfy (2.28).
Thus the determination of Z; requires the measurement or calcula-
tion of the phase relationship between (E3)zr open and J;. Where
phase relationships may be ignored and only the input and output
impedances must be equivalent, either choice of sign suffices. Of
course, if the + sign is used in (4.22), the minus sign must be used
in (4.23) and (4.24), and vice versa,

As an example of the application of these equations, let it be
required to find the T network equivalent to the transformer of
Fig. 3.1. From (3.9) and (3.10),

Zoy = Ry + jwly
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R wM?
Zsl = Iy +JwL1 + m
Similarly,
Zog = Ro 4 juwl,

Substituting these values in (4.22), (4.23), (4.24), the minus sign

being chosen in accordance with the required phase relationship of
(2.28),

Zy = —jeM = jelM)| (4.25)

Zy = Ry + jolln + M) = By + jo(L — §MD (4.26)

Zy = Ry 4 jo(la + M) = Ry + jw(Ls — |M]) (4.27)

It should be recalled at this point that M is a negative number of
henrys for the circuit of Fig. 3.1 owing to the directions of the
windings and the assumed positive directions of current. The
equivalent T has the form shown in Fig. 4.3. The network of
Fig. 4.3 is physically realizable with coils so long as L; and L, are
each larger than [M|. This will
always be true for a one-to-one
transformer. If the transformer

R, WMD) (LyiMh R,

is step-up or step-down, one of the M}

series reactances in the equivalent p F
T may be negative. Ineconstruct- Fie. 4.8 ~Equivalent T for the trans-
ing the equivalent circuit, the neg- former of Fig. 3.1.

ative reactance may be furnished by a series capacitor in the
required branch and by making —1/wC' = o(L — |M|) when |M|is
greater than L. After C is thus chosen, the circuit is equivalent to
the actual transformer at only one frequency. If the transformer
is a one-to-one transformer, Ly = L, = L. Introducing the coeffi-
cient of coupling k where

M
b= 4.28
l\/Le:LJ *.2)
then
Zi = Ry + joL(1 — k) (4.29)
Zy = Ry + joL(1 — k) (4.30)
Zs = juLk (4.31)

Further development of the equivalent circuits for a transformer
is given in Chap. XTIT,

5. Network Theorems.—There are a number of general prin-
ciples or theorems that may be employed to determine the currents
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and voltages in a network. Some of these prineiples are presented
here without proof, which may be found in the literature.

Superposition Theorem.—Suppose that an active network has
several generators introducing voltages at various points in the
network and that it is required to find the current through a
particular element when all these generators are operating. The
superposition theorem states that the instantaneous current
through any circuit element is the sum of the instantaneous currents
caused by each generator acting separately. It is necessary that
all the circuits be unchanged when the current due to a given
generator is being calculated; therefore other generators must be
considered to be ““shut down” but not removed from the cireunit, so,
that the internal impedances of all generators remain in the circuit
at all times. This last condition means that each generator
except the one for which the current is being calculated is replaced
by its internal impedance.

The superposition theorem holds because of the linearity of the
network elements, since in a linear system of differential equations
the sum of any number of solutions is also a solution.

Reciprocity Theorem.—Suppose that a voltage is applied in
series with a certain branch of a network and the resulting current
in any branch is measured. The ratioc of voltage introduced to
current flowing will have a certain value. The reciprocity theorem
states that, if the positions of generator and ammeter are inter-
changed, the ratio of voltage to current is the same. Again, for this
theorem to apply, the impedances of the several branches must not
be altered when the generating and measuring devices are inter-
changed. The reciprocal properties of a network are an indication
of the bilateral nature of linear networks.

Thévenin’s Theorem.—Consider an active network of generators
and impedances in any configuration whatever, having two termi-
nals. Thévenin’s theorem states that in the steady state the
system may be replaced by a simple cireuit containing a source of
voltage in series with an impedance. The voltage of the source
is the open-circuit voltage across the two terminals of the original
network, and the series impedance is the impedance “looking in”
at the terminals with all the generators of the original system
replaced by their internal impedances. As an example, consider
the circuit of Fig. 5.1a, which is a radio-frequency amplifier with a
tuned plate load. The problem is to reduce the whole system toa
simple series circuit so far as small variational, or alternating,
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eurrents are concerned, so that its frequency-response character-
istics may be studied more easily. By the use of the equivalent
plate-circuit theorem, developed in Chap. XI, the circuit may be
redueed to the form of Fig. 5.1b. By applying Thévenin’s theorem
to that part of the circuit to the left of terminals AB, the whole
circuit can be reduced to Fig. 5.1c, where E’ is the open-circuit

A R Ca

- 7‘5%

B
(o) (b) (c)

Fi1c. 5.1.—Reduction of a vacuum-tube amplifier cireuit to a simple equivalent geries

circuit by means of Thévenin’s theorem. :
voltage across AB and (R’ — j1/w(C”) is the impedance looking
to the left at AB. With E, and L, disconnected in Fig. 5.15, the
open-cireuit voltage at AB is

.1
— o
C
(EAB)open = “#E@ 0{ bl = - 1 +ijTng§ (5.1)
T» —J wCs ?

The impedanee looking to the left at AB is the impedance of C; and
rp In parallel. Therefore,

.1
Zan = rp (_ ! ;C—'b) = s
48 .1 1 4 jrpwCy
s — ] ‘;‘Cf;
Rationalizing Z 44,
_ e el _ ]
o= ey ~ B~ oo (52
where
;o Tp
B = s (5:3)
and

1 4 12202
2,,2(72
pr Cf,

' =C (5.4)

In many applications,
Pt > > 1
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so that
1
7 I i
R = —ETg (5.5)
and
O =0 (5.6)

The effect of the tube on the tuned eircuit is easily caleulated from
{5.8) and (5.4). The presence of the tube increases the effective
series resistance of the tuned cireuit, lowering the @ and broadening
the responsge curve.

When the impedances of part of a network are independent of
frequency, the caleulation of transients sometimes may be simplified
by applying Thévenin’s theorem to that part.

Conditions for the Transfer of Maximum Power—At any fre-
quency, a network containing Al ¢
generators and impedances can  { NETWORK |, o~
be replaced (by Thévenin’s GENERATORS AN

. . . IMPEDANCES o
theorem) by a simple series cir- B D
cuit containing a generator and (a)
a series impedance. Likewise,
a network not containing gen-
erators may be replaced by its
input impedance. If a genera-
tor and a load impedance are
connected together and the gen-

NETWORK 2,
IMPEDANCES

A

- 1 G
RitiX, A
+ +! -
E, ﬁ,ca
X
D

B

)

erator impedance is fixed, the
condition for maximum power
transfer is that the load imped-

F1¢. 5.2.—(a) General form of two
coupled networks; (b) its equivalent form
for the caleulation of power transfer,

ance be the conjugate of the internal impedance of the generator.
Figure 5.2¢ shows the generalized circuit and its equivalent,
Fig. 5.2b, where Eyis equal to (£ 18)epem, Z1 1s the internal impedance
of network 1, and Z,is the input impedance of network 2. Referring
to Fig. 5.2b, the power transferred across terminals CD into R, is

Pep = fEch {I! cos 0 (57)
where
|Eco| = |I| VE} + X3 (5.8)
and
R,
580 = S 5.9
cos R (5.9
so that
Pop = |I2R, {5.10)
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But the current |1} is

| B |E4|

Il = = 5.11)
7Yz~ VaE Tt Gr e
and the power transferred is
P By 'Ry (5.12)

e = B+ Ra)* + (X; + X392

Suppose now that the generating-system impedance is fixed and the
problem is to find the load impedance which will absorb the maxi-
mum power from the generator. So far as the reactance X, is
concerned the largest value of current in (5.11) is secured by making
the term (X, -+ X2) equal to zero. Therefore,

Xe=—-X3 (5.13)

is the reactance condition for maximum power transfer. If this
condition is met, {5.12) reduces to
E 1‘|2R2
Pop = B2 5.14
= @, + B? (6.14)
Differentiating (5.11) with respect to R; and setting the result equal
to zero,

Ry = Ry (5.15)

This is the resistance condition for maximum power transfer.

6. Impedance Transformation.—In radio and communication
circuits the generators are vacuum tubes, microphones, photocells,
or other sources of voltage. The design of these generators is
controlled usually by considerations other than internal impedance.
A vacuum tube often has a high internal impedance. On the other
hand, the common loads to which power is to be transferred are
antennas, or lines, or loudspeakers, or other loads, many of which
are inherently of low input impedance. The problem arises of
transforming impedances by means of networks. Such impedance-
transforming networks often are called matching sections. The
general problem is to take a given load impedance and design a
network which transforms that load impedance to any desired
value at the input terminals of the matching device.

In many radiofrequency applications of matehing devices the
band width is relatively narrow and tuned circuits ordinarily are
used in the matching networks. On the other hand, in audio- or
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video-frequency circuits the relative frequency band width is very
large so that other methods must be employed. Matching may be
done to achieve maximum power transfer into the load or to provide
any desired load for a given device. In many cases the desired load
is not the load that would absorb the maximum power.

In general, it is desirable to keep the losses in the matching
gection to a minimum so that as much as possible of the power
transferred to the matehing section is handed on to the load.

7. Radio-frequency Transforming and Matching Networks.—
A very important example of an impedance-transforming network
is the parallel-resonant circuit known as a ‘“‘tank”’ cireuit. Figure
7.1 shows a typical tank circuit used as the plate load for a vacuum

A

RFC RFC

TG %

Fia. 7.1.—A power tube with a tuned load. The tank circuit acts like an impedance-
transforming circuit with terminals AB and CD.

tube designed to deliver considerable power. C, and L, are the
tuning capacitance and inductance and Ry is the load resistance in
which the radio-frequency power output of the tube will be dissi-
pated. The resistance of the load to which radio-frequency power
is to be supplied and the resistance of the coil Ly are included in
R, so that

By = Reoi + Rigaa (7.1)

The tank circuit achieves two important results, First, it serves as
a transforming network to transform a relatively low impedance
load such as a line or an antenna to a higher impedance that is
purely resistive and that is required for good performance of the
tube. Second, it acts as a filter circuit to prevent the higher
harmonic components of the plate current from developing appre-
ciable voltages in the load ecircuit. This latter function is par-
ticularly important where the vacuum tube is operating as a Class C
amplifier, whose plate current is rich in harmonie content.
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The admittance of the parallel L,C, circuit is
_ o Rb o wLb
Vao = Yo = joC & g G 7 By + ol
In order that the impedance presented to the tube by the tank

circuit shall be pure resistance at the fundamental frequency, the
j terms in (7.2) must vanish, or

(7.2)

. wla _
T
This condition leads to the following expressions for parallel
resonance:

JuCy — 0 (7.3)

R+ oli = (7.4)
b
1 R}
2 - ] 4
o= T I (7.5)
If (7.4) is satisfied, the admittance becomes
_ Rbe
Y. = L, (7.6)
and the impedance is given by the reciprocal of (7.6), or
—p = I
Zy, =Ry = OB, (1.0

It is possible, therefore, to design the tank circuit to have any
desired impedance R, within certain limits. Suppose that the
frequency w is given, that the load impedance Rj is fixed, and that
the desired plate-load resistance B has been chosen. The value of
L,/Cy thus is fixed by the given conditions, as is the frequency, so
that L, and C, are not independent and one of them may be elimi-
nated from the equations.
Substituting (7.4) in (7.7,

L, _ R} + oL}

Ry = CoRs = i (7.8)

Dividing out R from the numerator,

27 2
Re= (1 +48) = B+ @ @.9)

where @, is the quality factor of the inductive branch, including the
load resistance, at the parallel-resonance frequency, which is also
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the impressed frequency. The ratio of tank impedanee R, to load
impedance R, is therefore
iy (7.10)
By
If @ is large compared with unity, the ratio is approximately equal
to @ It is evident that the range of possible impedance ratios,
achievable with this circuit, is limited by the possible range of
values of @ Since R includes both load resistance and coll
resistance, the highest attainable value of @ is always less than the
€ of the eoil alone.

If the tank circuit is to be used for transfer of radio-frequency
power from the plate circuit to the load, it should have a high
efficiency. The efficiency of the tank circuit as a transducer
between plate eircuit and load is given by

output _ [P _ Riosa

Efficiency = input ~ [k, — By (7.11)
and, from (7.1),
Efficiency = ——————I—R——— (7.12)
1 et
Rious
Since
wl oL
@ = Ry Rt + Riom (7.13)
the efficiency expressed in terms of @ is
L1
T m_ @
Efficiency = 10 =~ 1 Qu (7.14)

For high efficiency the @ of the coil should be much greater than the
€ of the inductive branch including the load resistance. In order
to get a large ratio of impedance transformation, say 100 to 1, it
is necessary to have the value of @, = 10 from (7.10); and in order
to get high efficiency of power transfer, say 95 per cent, it is neces-
sary to have the @ of the coil equal to 200. Hence the upper limit
to the ratio of impedance transformation is set by the available Q
of the coll and the desired efficiency.

If the tank circuit is to funetion as a band-pass filter as well
as an impedance-transforming device, the value of @, must not be
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too low. For example, in the tank circuit of a Class ¢ amplifier it
is usually desirable to reduce the second harmonic voltage across the
output load to a small value in comparison with the fundamental
voltage. The admiftance of the tank circuit for the second har-
monic 2w is

Y iy wLb
(Vi) = 2juCs + R ¥ 2oL} RE ¥ 4L}
Upon neglecting the real term in comparison with the imaginary
terms and dropping R?, which is much less than 4w®L} if Q is of the
order of 10, (7.15) becomes

— 2 (7.15)

o 1 4w G, — 1
Ya)o = % (‘“Cb EL;) R Fa A
From (7.16) and (7.5),
. 2wl . 2wl
(ZL)?nd =17 1 — 4@2};5(15 =17 1 —4 + 4]%2}405
b
o g2l g
3 — 4 180
Iy
and since
RiCy | 1
I, ~ O (7.18)
. 2wl
(ZL)‘an = -3 %j’) (7.19)
whereas, at the fundamental frequency, (7.7) yields
_ Ly @i
ZL = m == b}?b == waLb (7.20)
Then
{(Z2)2aa| = 52@ 1Z.) (7.21)

In actual operation of the type of tube used in the cireuit of
Fig. 7.1, the second harmonic component of the plate current is less
than the fundamental component. Then from (7.21) the second
harmonic voltage across the load is less than 2/(3Q;) times the
fundamental voltage. Also, since the inductive reactance of the coil
is doubled at the second harmonic frequency, the second harmonic
current through the inductive branch is less than 1/(3Q;) times the
fundamental current. For example, if @ = 11, the second har-
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monie current in the load, or induetive, branch is less than 3 per cent
of the fundamental component.

To sum up the limitations for a simple tank cireuit, if harmonic
filtering is required, the tank circuit @, should be kept as high as 10.
Consequently, a high transformation ratio between the plate cireuit
and load requires that the @ of the coil alone be high for good
efficiency.

It may be desirable to provide a means for changing the imped-
ance presented to the tube. A form of tank circuit in which this is

A
Lyz L
Rpz2
Ri RueRetR,
Cp ¢
Rp
Bo- )

F16. 7.2.—Adjustable tank circuit.

possible is shown in Fig. 7.2. The admittanee of the plate load
is given by

R B .
b1 B4

Yo=mixmtmix

Xy X,
(¥ miw) o

where X1 = wl; and X = wle — 1/wCy.  The condition that the
plate load be pure resistance requires that the j terms in (7.22)
vanish, or that

X X
REAX1T B, + X (7.28)
whence
Xy By A XY 4
.- TRIxIT TP (-24)

If the values of Ly and L, are adjusted for parallel resonance of the
cireuit, which is the same condition as making the plate load a pure
resistance,

Ry + Rag
RYy 4+ X1 Ri + X3

Yip =Gy = (7.25)
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and since B}, + X3 = (— X/ X)(RE + X}) from (7.24),

Ry — X, Byo
GL = TR X (7.26)
and
R, = _Eil_*%(ﬁ_, (7.27)
By — -—: Ry

If the Q of each branch is high, R < < X%, —X/X. =1, (7.27)
becomes
el

Ll R

(7.28)

Thus by varying the taps on the two coils it is possible to adjust
wlip to vary B, over a range of

values and then tune the circuit c e X2 Ip—
by varying wlss. This system
of ““mateching,” or transforming, i
. : . Re—> I
a given load into an impedance
suitable for the tube is rather
poor for harmonic suppression 8
sinee there is no capacitance path Fre. 7.3—Matching section for

{o by-pass the higher harmonic  which the inpuf resistance Rc is greater
than the load resistance By when prop-

components of plate current to oy adjusted.

ground. More elaborate match-

ing devices between vacuum-tube generators and low impedance

loads are discussed in Chap. XIV.

From (7.10) it is evident that low ratios of transformation mean
low ratios of reactance to resistance. This in turn means that
special arrangements must be used for harmonic filtering. How-
ever, since ftransmission lines and half-wave antennas are low
impedance devices, there is need for matching sections whose ratio
of impedance transformation is low. Figure 7.3 shows a typiecal
matching section of pure reactance elements for transforming the
load resistance Ry to a larger value B,. Itisevident from the figure
that this is the same circuit as the tank eircuit already considered,
Fig. 71.  Applying (7.7) to the eircuit of Fig. 7.3,

Re = sfy =~ = — 20 (7.29)
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Suppose, however, that it is assumed that X, and Xj; of Fig. 7.3 are
reactances of unknown sign and that B, and R,, the desired imped-
ance at CD, are known. Then, setting R, equal to the input
impedance at CD,

JXs(Br + jX2)

R, = R+ 7% + 75X (7.30)
whence
R.Ry 4 jXaR. + jX 3R, = jX:Rp — X2X, (7.31)
Equating the real parts of (7.31),
Ry = — X2 X3 (7.32)

which is the same equation as (7.29). However, since R, and R,
are both positive, X, and X,
Ix3 must be of oppositesign. Equat-
ing the imaginary parts of (7.31),

Xa(R, — R1) = —X,R, (7.33)
Multiplying (7.33) by (7.32),
Xe = + VR(R. — R.) (7134
and by substitution in (7.32)

3 R.R,
_}{3 = ——4‘::::@;@:—:':_“““ (735}

e e e 5 4™ 7 ™ Thus the values of X and X are

expressed in terms of the desired
resistance terminations. Y¥urthermore, the + signs in (7.34) and
(7.35) indicate that X could be either inductive or capacitive.
Having chosen the sign of X, however, X3 must be of the opposite
sign. The particular arrangement of Fig. 7.3 always will make R,
larger than K. Both (7.34) and (7.35) become imaginary when
R. < R;. TFigure 7.4 shows the voltage and current phase-vector
diagram for Fig. 7.3. The voltage E¢p is always greater than
Egr, while the current I is always less than Is; the product I1Ecp
is equal to I:Ezr, as would be expected in an ideal transformer.
However, the input and output voltages differ in phase by an angle
that approaches 90° as the ratio of B, to R, is increased. For the
circuit of Fig. 7.3, where inductance is in series with R;, the output
voltage lags the input voltage by an angle given by
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R

cos f = }z

assuming no losses in L or C.

If the input resistance R, is to be less than Ry, the matching
network is turned end for end as in Fig. 7.5. Similar analysis leads
to the values of X; and X; given by

X, = + VR(R. — R.) (7.36)
R.E
T T VRJR. - R (731)
As before,
RCRL = —X1X3 == % (738)

Again the signs in (7.36) and (7.37) could be chosen to place the
inductance in either position as required by conditions. Figure 7.6

1, Eeo
8 i I,
Co £
s
Rg— T X3 Ru
D F
Fie. 7.5~—Matching section for which Fia. 7.6.—Phase vector diagram for
Rg < Rr. the cireuit of Fig, 7.5.

shows the phase vector diagram for the network of Fig. 7.5. For
this ease the phase lag of the output voltage with respect to the
input voltage is given by

_I_B; L
cos § = \/R—L (7.39)

If the load impedance is not a pure resistance but contains
some reactance, it is necessary merely to add a reactance in series
with the load equal to the negative of the load reactance. In the
cireuit of Fig. 7.3 this reactance may be combined with X, from
(7.34) and one coil or capacitor used to obtain the total required
reactance.

When the wavelengths are sufficiently short, matching sections
can be construeted, using sections of transmission line. These line
sections have low losses and may be adjusted easily and accurately.
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Their use and design are discussed in Chap. I of the reference given
below.!

If there is no dissipation in the matching section, all power
transferred across the terminals CD of Figs. 7.3 and 7.5 must also
be transferred to the load. It is then true that if K, is equal to the
internal impedance of a constant-voltage generator connected
to the terminals CD of Figs. 7.3 and 7.5, there is a maximum power
transfer acrogs CD and across EF, and the impedance looking back
into the matching section at EF (toward the generator) is equal to
Ry If, on the other hand, there is dissipation in the elements
of the matching section, it is necessary in general to arrange to

match at each end of the section.

h, ¢ M & All the matching networksthus
. RE [l 3R, far considered were designed for
P R, B single frequency or a relatively
é; L, Ly narrow band of frequencies. In
- public-address systems, where it. is

D F necessary to mateh from vacuum-

Frg. 7.7.—Schematic diagram of an  gyhe generators to lines or loud-
iron-core transformer, I

speakers, and in telephone systems,
where the match is from lines to amplifiers and back to lines, the
frequency bands may comprise several octaves. In a high-fidelity
public-address system the frequency range is from 30 to 10,000 ¢psor
more, perhaps nine octaves. The matching systems used are iron-
core transformers having very close coupling between primary and
secondary coils. Figure 7.7 shows a transformer used to transfer
audio-frequency power from a vacuum-tube generator to a low-
impedance load assumed to be a pure resistance R.. From (3.8),
the impedance presented to the vacuum tube by the loaded trans-
former when Z, = Ky is

w?M?
(Rg + Ri) + jwLs
Rationalizing the last term and combining real and j terms,
(Bo 4+ Bi)w?M?
(B2 + Bi)* + L3
Loyw*M?

+ jo (L1 ~ BT EF T QQL%) (7.41)

TKing, R. W. P, H. R. Mmmw~o, and A. H. Wing, “Transmission Lines.
Auntennas, and Wave Guides,” McGraw-Hill Book Company, Inc., 1945,

Zep = Rl "f—j&?Lx +

(7.40)

Zep = B1+
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If M is set equal to k v/I1ls, where k is the coefficient of coupling
between coils, and if (R, + R.) is called B/, (7.41) becomes

Ry w ki AL . kL3
Zop = Ry + Rﬁfﬁwﬂ%{g + Joly (1 - R?':’:—:TL%) (7.42)

The ideal matching section between tube and resistance load should
be independent of frequency and should present a pure resistance
to the generator. If wl; is much larger than R, this requirement
1s partly met. With

wle > > Ry (7.43)
(7.42) becomes
Zep = Ry + k2% Ry + jula(1 — k%) (7.44)
and if the eocefficient of coupling approaches the value 1,
1—kt<<1 (7.45)
and
Zeop = Rep = By + % Ry (7.46)

Under these conditions, (7.46) is independent of frequency.
Sinee the transformer is handling audio power, it is desirable to
make its losses as small as possible.  When

Ry < < % Ry (7.47)
and

R, << Rg (7.48)
R¢p becomes

Roo =R, = LR (7.49)
L2 az L .
where « is given by
Ly

Equation (7.49) defines a condition secured by an *“ideal” trans-
former. Since the inductance of a coil of very closely coupled
turns is proportional to the square of the number of turns, (7.49)
may be written

I Ni

Rep = '—ZRL = N R (7.51)



124 NETWORKS AND IMPEDANCE MATCHING [Craar. V

This is a very useful approximation. If the losses in the transformer
are negligible,

IiRep = IZR, (7.52)
and
Eip _ Bl
Reo ~ Ru (7.53)

whence, from (7.50) and (7.52),

Beo _ Ny _ I, _1
Fe=%=T-3 (7.54)

Equation (7.54) shows the relationship between primary and
seeondary voltages and currents for an ideal transformer.

The conditions which must be fulfilled to make an actual trans-
former approach the ideal are, first, that wl, be much larger than
R,, (7.43); second, that &k = 1, (7.45); third, that R, and R, be
negligible as stated in (7.47) and (7.48); fourth, that effects of
stray capacitance between turns and coils be negligible.

The first condition cannot be met at low frequencies since wlL,
is small. The second condition cannot be met at high frequencies
since the term jwl (1 — k?) becomes appreciable a8 w increases even
when 1 — k?issmall. The fourth condition cannot be met at very
high frequencies since the effects of stray capacitance increase with
frequency. As a result of these limitations an actual transformer
ean be considered as ideal only within a limited range of frequencies.
(The frequency response of transformers is deseribed in more detail
in Chap. XITI.) The third requirement is necessary for high
cfficiency of power transformation and is introduced into the
ideal-transformer definition beeause it simplifies the expressions for
impedance, voltage, and current ratios.

8. Mechanical Analogies in the Impedance-matching Problem.
The impedance of an electric circuit is the complex ratio of voltage
applied across two terminals of the cireuit to the current at the
terminals. In mechanical terms this is analogous to the ratio of
force applied to a mechanical system to the velocity of motion of the
part of the system where the force is applied, the veloeity being
assumed in the direction of the force. If the motion is rotary, the
mechanical impedance is the ratio of torque to angular veloeity.
Thus any mechanical device that changes the foree-velocity ratio
is an impedance-transforming device, or matching system.

A gystem of gears used to transform the torque-angular-velocity
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ratio is a matehing device. When an automobile is starting from
rest, the power input to the rear wheels must be at high torque and
low angular velocity. Later, when the automobile is moving, the
required torque is much smaller but the angular velocity is much
greater. At the start the impedance presented by the drive shaft
is high compared with the impedance when the automobile is mov-
ing at moderate speeds on level ground. The automobile engine
on the other hand develops a maximum torque at a particular
angular velocity and has a maximum power output at a somewhat
higher angular velocity. The familiar torque-speed and output-
horsepower-speed characteristic curves for an engine are graphieal
expressions of the optimum impedance conditions for the engine as
a generator of power. The transmission in the automobile is the
adjustable matching device between the engine and the wheels.
Shifting gears changes the impedance ratio.

Consider the pedaling of a bicycle and suppose the two sprockets
to be of the same size, this being unusual but possible in the design
of a bicyele. Under these conditions the force required to pedal the
bicycle will be quite small, for operation on level ground, but it
would require very rapid pedaling to get normal speed. The
impedance is too low for effective energy transfer to the bicyele.
However, this sprocket arrangement would be ideal for riding up
steep hills, where the ordinary sprocket ratic would present too high
an impedance to the rider so that he would be unable to deliver
energy to the pedals at anything like the usual rate.

The handle on an old-fashioned water pump is a matching
device to transform the impedance of the piston to a somewhat
lower value so that the power source, the arm and the hand of the
operator, can work at the ideal force-velocity ratio.

Thus the matching problem is by no means confined to electrical
engineering but is a familiar and important problem in many other
fields.



CHAPTER VI
TRANSIENTS

1. Introduction.—The study of transients in electrical or
mechanical systems involves an analysis of the sequence of events
immediately following a disturbance of the equilibrium of the
system. Thus the angular displacement of a pendulum from its
equilibrium position gives rise to a transient series of oscillations,
which eventually dies out, leaving the pendulum in its original
position. The same pendulum under water would make fewer

SV

Fia. 1.1.—Transient angular displacement @ of a pendulum plotted against time
for three assumed viscosities of the surrounding medium: (&) in air; (b) in water;
{c) in heavy oil.

ogcillations for the same initial conditions and if in a very viscous
oil might not oscillate at all but slowly move back to its position of
equilibrium. The three curves in Fig. 1.1 represent the angular
displacement of the pendulum for these three transients.

The general objective in the analysis of transients in electrieal
systems is to express in mathematical form the voltage-time,
current-time, and charge-time relationships at various points in the
system. Since the analysis of two-element series circuits is simpler
than that for the more general case, the transient equations for the
resistance-inductance and resistance-capacitance circuits will be
developed first.

2. Resistance-Inductance Circuit.—Consider the cireuit, Fig.
2.1, consisting of a resistance R and an inductance L in series with a

126
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switch and battery. Assume in this and in subsequent circuits that
the battery has zero internal impedance. If this is not so, it is
necessary merely to add the internal impedance of the battery or
generator to the impedance of the circuit and proceed with the
analysis. When the switch in Fig. 2.1 is closed, the battery
voltage K is applied to the circuit and current flows, giving rise to
voltage across the resistance and across the inductance. The
voltage er across the resistor R measured in the direction of the
current is
er = — I

where 7 is the instantaneous current. The voltage e, across the
inductance L is

. ". - » AW
== R L ’
€y, = ~L§:§ = 3 :
T_

where di/dt is the instantaneous Fie.2.1.—Resistance-inductance se-
time rate of change of the currents. ries circuit.

Note that di/di in an induetance must always be finite since the
voltage ¢ across the inductance must always be finite. This
means that the current through an inductance never can jump instan-
taneously from one value to another. The change must always take
a finite time. This is one of the fundamental facts in the analysis
of transients,

Conforming to the general convention as to current and voltage
signs, currents are positive when they flow clockwise in a given
mesh, and voltages also are taken as positive when they are
clockwise.

Applying Kirchhoff’s voltage law to the cireuit of Fig. 2.1,

di

E-Ri—L7=0 @.1)

Rearranging terms to separate the variables,

—Rdi

E - Ri

Since a general relationship between current and time is wanted,

this equation will be integrated between time limits zero and ¢,

where ¢ is measured from the instant of closure of the switch; since

in this case the current must be zero when the switch is open, the

current limits of integration are zero and 7 where 7 is the instan-
taneous current at time £

R
= -t
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Introducing these limits,

' Rdi R [
/;Em—m” ‘zfod‘

Integrating,
E—Ri R
].Ogt ‘“—5‘“—' = "E { (22)
or, in exponential form,
7= % {1 — ¢avL) (2.3)

The solid line of Fig. 2.2 is a graph of (2.3).
Certain features of this curve are important. The term
e#/L approaches zero as ¢ approaches infinity; hence the current

E|l o ____
R T T T T T T T T -
7
/!
s
7
t ) /!/ }
2, . =
& | ~0832E/R
&/ ’
/ l
&/ N i
/ I
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i
!
i
E
Nt=L/R -

Fia. 2.2.—Graph of current versus time for the series LR circuit of Fig. 2.1.

approaches E/R as a final steady value. This final current, is shown
in the graph as a horizontal dotted line. The voltage drop across
the resistance becomes equal to the applied voltage E, while the
voltage across the inductance becomes zero since the current is
constant. On the other hand, at the beginning of the transient
the current is zero; hence at the instant of closure of the switch the
battery voltage F appears as a voltage drop across the inductance.

The slope of the current-time curve is given by the time deriva-
tive of (2.3) and is

i _E

5 =g (2.4)
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At time ¢ = 0,

“ _E
dt limo L

This is the initial slope of the current-time curve.

Equation (2.3) indicates that the current never reaches the final
value ¢ = E/R. However, when the value of the exponent Rt/L is
numerically equal to 5, the term e~ #/% is equal to 0.00674, which sub-
tracted from 1 gives 0.993, so that, when t = 5L/R, i = 0.993E/R.
That is, the current has increased from zero to 99.3 per cent of its
final value in a time equal to 5L/R. Since the time for any degree
of completion always will be expressed in terms of some numerieal
constant multiplied by L/R, it is convenient to define the time con-
stant of a resistance-inductance circuit as ¢t = L/E. At this time,

fz]m - %(1 - = 0.632% (2.5)

In general, the time constant is the time when the change in
current or voltage from the initial state to the final state 7s 63.2
per cent complete. The time constant has another interpretation.
Suppose that the current kept inereasing from zero to its actual
final value 7 = E/R at the initial rate of increase di/dt = E/L.
The current would reach its actual final value E/R in time L/R,
since the tangent of the initial angle is £/L. TFigure 2.2 illustrates
these slopes, currents, and times.

To examine the effects of varying the parameters of the circuit,
first let L be increased, everything else remaining unchanged. The
effects are a smaller initial slope and a longer time to reach any
given percentage of the final value, 7.e.,, a longer time constant. A
decrease in L results in a steeper initial slope and a shorter time
constant, as indicated in Fig. 2.3. In each case the final value of
the current is E/R and is the same since R has not been changed.

Varying the magnitude of B does not affect the initial slope but
does affect the final current. Increasing K reduces the final cur-
rent and decreases the time constant. The effects of varying B
are shown in Fig. 2.4.

Increasing & increases both the initial slope and the final current
but does not affect the time constant.

Another type of transient occurs when a current in an inductance
dies out. Equation (2.2) is derived by integrating from zero initial
current to current ¢ at time £ Since many transients to be dealt
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with reeur af regular time intervals, it will be necessary usually to
integrate from some initial value of current 7;, where 7; is the current
at the instant the switehing or other initiating action oceurs.
Figure 2.5 shows a circuit in which the current 7 for the part
of the circuit indieated may flow after the switch is opened. When
the switch is closed for the first time, the current through R, jumps

E/r

i)
T

|
!
|
|
|
I
|
|
{

b o o — o

{
L:/R Lz/R L3/R t—

¥ia, 2.3.—Effect of varying the inductance L while the resistance R and the applied
voltage E are held constant.
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1 Q{U /
&, ! R<Ry<Ry
| ¥ !
El _# . 1
Rs i |
f F l
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Fig. 2.4.—Effect of varying the resistance R while the inductance L and the applied
voltage F are held constant,

instantly to the value E/R: and continues at this value as long as
the switeh remains closed. The current through R and L is, from
(2.3}, '

— E e g RIL

7= 7 (1 — e ) (2.6)
Let this current increase from an initial value 0 to a value 7n at t..
At time t, let the switch be opened. The voltage equation around
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FiG. 2.5~-{g) Circuit eontaining resistance and inductance; (b) graph of current
through R: and L when the switch is closed and opened again; (¢} graph of current

through R: and I, when switch is closed and opened repeatedly at the interval
indicated.
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the cireuit Ro, L, Ry i8 now

—i(Ry + Rs) — L% -0 2.7)
Since the current through the inductance cannot change instan-
taneously, the integration is from 7, and the expression for the

eurrent is
. ) __Iil-i*ch
1= 1Ine L (2.8)

Equation (2.8) describes the transient decrease of current in the
circuit. Note that now the time constant for the decrease in ¢
is L/(Ry + Rs), which is smaller than that for the increase. Figure
2.5b shows the transients for current through Ks and L after closing
and also after opening the switeh, it being assumed that a long time
elapses between the closing and the opening.

If the switch is reclosed, (2.1) applies. If the reclosure of the
switch occurs before the current dies out, (2.1) must be integrated
from the value of the current 7, at the instant of reclosure of the
switeh, and

i = Rﬁ (1 = emirn) | §emurt (2.9)
2
Figure 2.5¢ shows the current through L and R, resulting from
opening and closing the switch at regular intervals. As shown, the
interval between opening and closing is equal to L/R,, the process
being repeated indefinitely. It is assumed for Fig, 2.5 that
R], = 2R2

The voltage across Ry is E while the switch is closed. While the

switch is open, the voltage is

Bt R

ep, = —iR; = i, Re ¥ (2.10)

The maximum value that ¢, can have is E/R;. Then the maximum
value of |{R;| while the switch is open is
= R
ler,|mas = R'i (2.11)
If R, is larger than Rs, the voltage across R, at the time of opening
the switch is larger than the battery voltage, as shown in Fig. 2.5
for B1 = 2R,.
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Fi6. 2.6.—~(a) Circuit containing resistance and inductance; (b) graph of current
through Kz and L when the switch i3 closed and opened again; (¢} graph of current
through R: and Z when the switch is closed and opened repeatedly at the interval
indicated.

Figure 2.6a shows a circuit whose transients are similar to those
of the previous circuit. When the switch is closed, the current

through L is _
i= Tg".. (1 — e Bat/Ly 4 g e R/t (2.12)
2

where 4, is the current flowing through R; and L at ¢ = 0, the
instant of closure of the switch. When the switch is opened, the
current through L is

E‘s Ri+R: _RitR:

= m (1 - e_ L 2) + 1:,,.6 L ' (213)

1
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where 7, i8 the current through R; when the switeh is opened.
Figure 2.6b shows the current through R. as a function of time after
closing and also after opening the switch, a long time elapsing after
opening the switch so that the steady state exists. Figure 2.6¢
shows the recurring transients that occur when the switching is
repeated at regular intervals, the interval between operations being
L/Rs.  Again in this circuit there will be a voltage developed across
R, when the switch is opened. At the instant of opening the switch
the voltage across R, is greatest and is

€, = ile

which can have a maximum value

- Rl
!eﬁ1lmax - E R; (2.14:)

Here again the voltage across &, at the instant of opening the switeh
may be many times the battery voltage.

An extreme case of this type of transient arises when the switch
in a cireuit like that of Fig. 2.1is opened. In this case the resistance
in parallel with the switeh is infinite; and if there were no other
limiting factors, the voltage across the switch would be infinite
when the switch is opened, according to (2.14), where R, is infinite.
One of the limiting factors is the capacitance between the switch
contacts as they part. This effect will be discussed later. Alsoasa
result of the high voltage developed across the switch when opened,
an arc strikes across the contacts so that opening the switch inserts,
not an infinite resistance in series with the circuit, but the finite
resistance of the arc. Since the resistance of an arc is not fixed, it is
difficult to analyze the problem and calculate the exact voltage
developed across the opening contacts. There is, however, the
possibility of developing high voltages for brief periods of time by
opening inductive circuits. These voltages may be destructive
since they may cause insulation breakdown in the inductance or
elsewhere in the circuit. The arc at the switch causes pitting and
burning of the contact surfaces. A circuit for the suppression of
such arcs will be discussed later.

Equations involving two exponential terms, such as (2.9),
{2.12), (2.13), may be thought of as representing two simultaneous
transients in the cireuit: the building up of the current to the new
steady state as expressed by the first term, and the dying out of the
current from the initial value as expressed by the second term.
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Figure 2.7 shows the two terms of (2.12) plotted separately and in
sum in order to bring out the further significance of the time con-
stant and the initial slopes. Note that the change from the initial
value i, to the final value E/R, is 63.2 per cent complete at the
time f, = L/Rs. The curve for 1 is the same as would be obtained
if the curve (E/Rs)(1 — e ®%) were moved bodily to the left until
it intersected the vertical axis at ¢, and only the part to the right
of the vertical axis were retained.

E.
R

Fia. 2.7.—Craph of equation (2.12) si;a;vilng the terms plotted separately and in
otal.

Consider the energy input by the battery to the LR circuit of
Fig. 2.1. At any instant the voltage across the inductance is
L di/dt, and the current is 1. ‘Therefore the instantaneous power
input to the inductance is p = egi, = Li di/dt watts, and the total
energy input in watt-seconds is

or in terms of current
i
U, = f Iidi = 3142 (2.15)
0

This is the total energy input to the inductance when the current is
increased from zero to 7. The energy input to an inductance is
stored energy because it is releaged into the circuit when the current
is reduced to zero again. Part of this energy is dissipated in the are
across the switch contacts when an inductive circuit is opened. The
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energy stored in an inductance is in the form of a magnetic field
around the conductors that form the inductance. An increase in
the current through a given conductor causes the number of mag-
netic lines of force in the field to increase, and it is the cutting of
the conductor by these lines of force that sets up the voltage
L di/dt that opposes the increase of current. The emf applied to
the circuit does work in establishing the current against this
counter emf = L di/df. Any attempt to diminish the ecurrent
brings about the collapse of the magnetic field, which again cuts the
conductor; this time the magnetic field is changed in the opposite
direction and indueces a voltage that tends to maintain the current.

The action of the induectance is to oppose any change in eurrent.
In mechanics, the quantity mass is analogous to inductance.
Consider the forces acting on a mass

falling in a uniform gravitational

maI Tbv m=moss field. If all the forces that act on a
I'T} a=acceleration ot falling body are indicated as vectors,

i EZ f,’é’;gi}?;‘ ol consfa the result is the so-called *“‘free-

W= weight or force of body” diagram, Fig. 2.8. The draw-
gravity onthe mass m . . X

W ing of the free-body diagram of a
Fro. 2.8—Free-body diagram single particlg i-s t‘he mechanical
of a bedy falling in a restisting equivalent of indicating the various
medium under & eonstant down- voltages around a single closed elec-
tric circuit. FEquating to zero the

sum of all the forces on the falling body,

W—ma—bv=0

or
m(—é—l; +b =W {2.16)
Integrating and solving for v,
v=20 - evm) 2.17)

or if there Is an initial downward velocity vy,

= 1 — ewm) 4 ygmsom (2.18)

These equations for velocity have the same form as (2.3) and (2.9)
for current in resistance-inductance circuits. If mass is considered
as the mechanical analogue of induetance, velocity is analogous to
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current and foree to voltage. The quantity b in (2.16) is a sort
of mechanical resistance that depends on the vigcosity of the medium
in which the body falls and on the shape of the body. Thus a
man falling through the air with his parachute unopened would
have a relatively small value of b, his final velocity would be quite
large, and the time required to reach any proportion of this final
veloeity would be relatively long. The man falling with the para-
chute open would have a much smaller final velocity and would
reach that velocity in a relatively shorter time, this being an
example of a large value of b and consequently a small value of the
time eonstant m/b. If the man could alternately open and close
the parachute at regular intervals, the graph of his downward
velocity vs. time would have the same form as that of Fig. 2.6¢.

In connection with Figs. 2.5, 2.6, attention was called to the
possibility of producing large voltages from relatively small ones
by means of the circuits shown. A mechanical analogue of this
condition is force developed by a hammer upon striking a nail.
It is impossible for a man to exert sufficient force with his hand to
push a spike into a piece of lumber. However, by exerting a
relatively small force over a period of time while swinging the
hammer, he can accelerate the mass of the hammer up to a certain
velocity. When this mass strikes the head of the spike, the stored
kinetic energy is given up to the spike, the forward velocity of the
hammer is abruptly reduced, and the resultant foree is sufficient
to push the nail into the wood. The operation of the hydraulic
ram is another good example of this sort of mechanieal transient.

The work done in accelerating a mass is given by the familiar
work integral

U= / foree - distance

=[Fcis=fmads
dv
—medS

_ds
T odt

U= ./0 me dy = mp? (2.19)

but since

v
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This is the expression for the kinetic energy of a mass in motion
and is analogous to the magnetic energy stored in an inductance
Uy = §Li?

3. Capacitance-Resistance Circuit.—The range of possible time
constants for an inductance-resistance combination is restricted
) q somewhat by the fact that a
_'i/ywwv\,s_:’.{ ot physieal inductor has an appreci-
[ + R ¢ able inherent resistance. Thus
=F the time constant for an induct-
T’ ance-resistance eirceuit ecannot be
Fra. 8.1.—Circuit of resistance greater t_Shan L/R; where L ?’nd E
and capacitance in series with a are the induectance and resistance
switch and battery. of the inductor. There is no such
limitation in capacitance-resistance eircuits sinee it is possible to
build capacitors in which the series resistance is negligibly small.
The capacitance-resistance eircuit has many and varied applications
in eleetronic equipment.
Figure 3.1 shows a circuit made up of resistance and capacitance
in series with a switeh and a battery. Kirchhoff’s voltage equation
for the circuit is

- . q _

E—Rz—g,—() 3.1
where E is the battery voltage, — Ri is the voltage across the resist-
ance, and —¢/C is the voltage across the capacitance. The
current ¢ is assumed positive when it flows clockwise in the eircuit,
and the charge ¢ on the capacitor is assumed positive when the
voltage across the capacitor is positive on the left as indicated.
The current into a capacitor equals the rate of inerease of charge,
7 = dq/df. Since the current cannot be infinite, the charge on the
capacitor cannot change at an infinite rate. Therefore, the voltage
across a capacttor cannot jump suddenly from one value to another.
This is another fundamental concept in the study of transients.

Equation (3.1) may be written in terms of ¢ as
7 dg _ ¢
E=ER prims 3.2)
This is of the same form as (2.1). Integration between the limits
of initial charge, g, at time ¢ = 0, to a general value of ¢ at any time

t results in
g = CE_'(l — ¢HCR) 4 qoet/CR (3‘3)
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The corresponding current is
Y
dt R

QlF

(3.4)

e——t/ CcR

Tigure 3.2 is a plot of (3.3) where the initial charge on the capacitor
is zero, that is, ¢s = 0. The graph shows the relationship between

CE e et
/
[
/1
/1
l —
al e, - 0s3cE
3/
&/
S/
v |
/ |
/ !
i
i
0 |
R 1

Fra. 3.2.—CGraph of charge vs. time for the circuit of Fig. 3.1. when the initial
charge on the capacitor is zero.

i |

>

¥16. 3.3.~Qraph of current vs, time for the same conditions as those of Fig. 3.2,

the time constant RC, the initial slope £/R, and the final value of
the charge CE. TFigure 3.3 is the graph of (3.4) showing the current
for the same transient.

Figures 3.4 and 3.5 show the effects of varying the series resist-
ance K. Since the final value of charge (after an infinite time) is
independent of the resistance, all the charge curves, Fig. 3.4,
approach the same final value at rates depending on the time con-
stant. The corresponding current curves, Fig. 3.5, all enclose the
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Fic. 3.4.—Craph of charge vs. time, showing the effect of varying the resistance R.
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Fic. 3.5.~—@raph of eurrent vs. time, showing the effect of varying the resistance
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T1¢. 3.6.—Graph of charge vs. time, showing the effect of varying the capacitance C.
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same area between zero and infinity since the area under the curve
is L " idt = CE, which is constant when € and % are constant.

Figures 3.6 and 3.7 show the results of varying the capacitance.
When an external voltage is suddenly applied, it must all appear
across the resistance, since the voltage across a capacitance cannot
change instantaneously. Thus the initial current is £/R and is the
same for all values of C.

ey

Ci<Cy<Cy
C,=3C, =8¢,

0368E |-\ ___

R )
|
i
i
i
; h

CR R CR t—
Fia. 3.7 ~—Graph of current vs. time, showing the effect of varying the capacitance
C.

If the charge on the capacitor is not zero when the transient
is initiated, the expression for the charge is

q = CE'(I — ¢ tCR) L goeHOR (3'5)

where ¢, is the initial charge on the capacitor, and the corresponding
current equation is

(2-%)

?: — %e—wc’}i‘ — % t/CR — __TC_ ¢t/CR (3 6)
Notice that the quantity (£ — g,/C) is the algebraic sum of the
battery voltage and the initial voltage across the capacitor. Equa-
tions (3.5), (3.6) are plotted in Figs. 3.8, 3.9.

With initial charge on the capacitor the time constant has the
same significance as formerly, being the time required for the charge
from the initial to the final value of charge or current to be 63.2
per cent complete.

The first term on the right of (3.5) represents a transient in which
the capacitor is charged from zero charge to final charge CE.
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This term is plotted as a dash line in Fig. 3.8. The second term
on the right of (3.5) represents the discharge through the circuit
of the initial charge g, This term is plotted as a dot-dash line in
Fig. 3.8. Thus the actual charge of the capacitor, shown as a solid
line in Fig. 3.8, may be regarded as the superposition of two transient

CE

——ar-

do

[}
i
]
!
]
i
i
!
o 8
\.
/ AN T
N
CR

Fis. 3.8.—Graph of equation (3.5) when the initial charge on the capacitor is
positive.

1t

ol

%
CR
Fic. 3.9.—Graph of equation (3.6) when the initial charge on the capacitor is
positive.

effects, one the building up of the new charge and the other the
decay of the old charge.

The solid line of Fig. 3.8 is a section of the dash curve; if the
dash curve is moved to the left until it intersects the vertical axis
at ¢o, the part to the right of the vertical axis coincides with the
solid-line curve. This is a particular example of a general principle
that the current-time and charge-time curves for any initial condi-
tion are sections of the curves obtained when the capacitor has no
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initial charge. Figure 3.9 shows the actual current (solid line)
as the sum of two transient currents.

As an illustration of this principle, suppose the switch of Fig.
3.1 is closed and then reopened before the charging operation has
been completed, then closed again and reopened, this process being
repeated several times. During each interval when the switeh is
closed, the capacitor accumulates charge. During each interval

[ 5} Dyem— e o o g o e s o
4 { R S i :
| e 1
i /’*’ ------- ://-
aq 1 - b
P : |
I i
(0 P f ,
CLOS| ISWITCH CLOSED

{
!
|
{SWITCH OPEN |SWITCH CLOSED'SITCH OPEN
|
1
1
H

bt o s o

]
5 !
{
t 13
H i

to»
¥1c. 3.10—Effect of closing and opening the switch of Fig. 3.1 several times; graph
of charge vs. time.

CE

Fia. 3.11.—Graph of equation (3.5) when the initial charge on the capacitor is
negative.

when the switch is open, the charge remains fixed. The resulting
charge vs. time curve is shown in Fig. 8.10. The rising portions
of this curve are portions of the curve that would be obtained if
the switeh had remained closed. That is, if the intervals when the
switch is opened were disregarded and the rising portions of the
curve shifted horizontally to the left to eliminate the horizontal
portions, the resultant eurve would be the same as though the switch
had never been opened.

The solid-line curves of Figs. 3.11 and 3.12 are graphs of (3.5)
and (3.6) when the initial charge of the capacitor is negative, the
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dash and dot-dash curves representing the first and second terms
on the right of (3.5) and (3.6) for this case. The dash curves would
obtain if the initial charge were zero, and the curves for the actual
charge and current are sections of the dash curves moved to the right.

t—

Fre. 3.12.—Graph of equation (3.6) when the initial charge on the capacitor is
negative.

The case of negative initial charge is of particular importance when
a square-wave voltage is applied to the ecapacitance-resistance
circuit.

In a series capacitance-resistance cireuit, the current approaches
zero after a long time, and the charge ¢ on the capacitor approaches
CE. Thus the voltage across the
L. R e capacitor becomes equal and opposite

T e to the battery voltage. If now the
switch is opened and the battery is
Fie. 3.13—Simple form of replaced by a wire, reclosing the switch

series CE circuit. will initiate another transient. The
circuit is shown in Fig. 3.13. The sum of the voltages around the
circuit is

iR+ 2= (3.7)
so that
dg _ _ g
Ba="0
and
dg _ _1_
L= " we

Integrating from ¢ = go (the initial charge at the time of closing
the switch),

g = qoe /CF 3.8)
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and
i= — g5 evon 3.9)

Graphs of the complete charge and discharge are shown in Fig. 3.14.
The current during discharge is opposite in direction to that during
charge and is plotted negatively. The same time constant {, = CR
holds for all the curves and is a funetion of € and B only and not
of initial or boundary conditions.

CEp——— — =
q B s q
q=CE(1-¢ R}
1 -
TR t CR t
- CHARGING DISCHARGING
E
R

Fia. 3.14.—Curves of charge and current f.o.r a charging operation and a discharging
operation,

The guantity mass in mechanics was shown to be analogous
to inductance in an electric circuit. Capacitance also has an
analogue in mechanies, expressible in terms of the elastic deforma-
tion of mechanical systems under mechanical forces. The com-
pressing of a spring or a volume of gas is analogous to the charging
of a capacitor. Hooke’s law relates the displacement to the force
producing the displacement and to the stiffness of the spring or
other elastic body.

4. Applications of CR Circuits.—CR circuits having different
time constants are extremely useful in electronic applications.
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The characteristics of these circuits are brought out by considering
their response to an applied voltage having square or rectangular
waveform. Such a voltage is usually generated by an electronie
device, but the result is equivalent to a battery applied to a circuit
through a quick-reversing commmutator in such a manner that there

Fic. 4,1.—Voltage waveforms resulting from the applieation of a square wave to a
CR circuit, for the time constants indicated.

is no interval when the cireuit is open and the applied voltage has

equal intervals of positive and negative polarity.

Figure 4.1 shows the voltage across the elements of a series
CR cireuit having various time constants, the applied voltage having
the square-wave form of Fig. 4.1b. The curves ¢ and 4 are the
voltage across the capacitor and the voltage across the resistor in 2
circuit whose time constant is very small compared with the period
T of the square wave. The curves ¢ and f are for a cireuit whose
time constant is equal to the half period T/2 of the square wave.
The curves g and h are for a time constant larger than 7.
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The circuit having a very small time constant is often called a
differentiator or peaker circuit. Curve d shows that the voltage
across the resistance is a series of sharp peaks, whence the name
peaker circuit. Since the voltage across the resistance is <R, the
voltage consists of a series of peaks each having the form of Fig. 3.3.
The small time constant leads to a rapid completion of the transient
so that the duration of the peaks, or pulses, is very short. As
shown in Fig. 4.1¢, the capacitor C is charged to +E practically
at the end of a positive half eycle and to — E at the end of a negative
half eycle. At the beginning of each half cycle of the square wave,
the applied voltage and the voltage previously built up across C
act in the same direction. Therefore the peaks of curve d have a
value approximately equal to 2E. This is an example of the
principle enunciated in Sec. 3, that a suddenly applied voltage
appears entirely across the resistance in a CR circuif, since the
voltage across a capacitance cannot change suddenly. The alterna-
tions of the square wave involve a sudden change of 2E volts
(from +F to TE). All this sudden change appears across R.

The name differentiator for this circuit arises from a considera-

tion of (3.1) when the applied voltage is a function of time e(f).
Then

o) = Ri + (4.1)

By making R and C small, the R7 term can be made small compared
with ¢/C, so that
q = Ce(t)
and therefore
= dg . de(®)

dt dt

The voltage across the resistance is then

¢ = Ri = RC d‘;(f) (4.2)

Thus ez is approximately proportional to the derivative of the
applied voltage.

Note that the approximation used requires that
dq

q ; e aq
C,>>Rz or CR>>dt
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When ¢ is zero, this condition is violated. Furthermore, if dg¢/dt
is large as it is when de/df is large, it is impossible to maintain the
condition. Whereas the value of de(f)/dt is infinite at the instances
of reversal of the square wave and zero at other times, the output
voltage of the differentiator circuit is not infinite but is equal to 2E
at the instants of reversal and is not gzero at other times.

However, by making CR very small compared with the duration
of the cycle it is possible to approach the eonditions of (4.2) when
the derivative is finite. Making CR small also makes the ocutput
voltage small.

The curves e and f for the cireuit having a time constant equal
to T'/2 show that the reversal in the voltage across C is considerably
delayed with respect to the instants at which the applied voltage
reverses. This circuit is used in certain applications where the
delay is the desired feature.

The circuit having a very large time constant is employed
commonly in the form of the coupling eapacitor and grid resistor
in a resistance-coupled amplifier. TIn this applieation the voltage
across the resistor should be the same as the voltage input. To
secure this resulf, the R{ term in (4.1) should be much greater
than the ¢/C term in order that

er = Ri = e(f) (4.3)

With this end in view it is necessary to make both C and R large
or the time constant CR large compared with the period of the
input voltage. Thus Fig. 4.1h is a close approximation to the
original square wave.

In some applications of the CR circuit having a large time con-
stant, the output voltage is taken from the capacitor and the circuit
is called an integrator circuit. Thus, the curve of Fig. 4.1g has
the same form as the integral of the function of Fig, 4.1b. This
integrator action results when CR is very large compared with the
period of the square wave, since under these conditions, the eapaci-
tor accumulates only a small charge; the ¢/C term in (3.1) is then
small compared with the B¢ term. Suppose any voltage waveform
e(l) is applied to a CR cireuit so that e(t) = ¢/C + Ri. If ¢ is
kept small and the produet CR is large, which is true when the
voltage across the capacitor is much less than that across the
resistor,

., oe(d)

e(t) = i or 1= ~§—.§—
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and since ¢ = [i di the voltage across the capacitor, except for a
constant of integration, will be given by

ec = % = UIE / e(t) dt {4.4)

When variational components are of interest, the constant term
may be neglected.

Thus the variational part of the output voltage is approximately
proportional to the time integral of the variational part of the
applied voltage. Figure 4.1b shows an applied voltage square
wave and Fig. 4.1g shows the output waveform of the integrator
circuit when the time constant of the integrator circuit is 1.67 times
the period T' of the square wave.

N

(a)- INPUT PULSES e

L

(b )-0UTPUT OF DIFFERENTIATOR OR "PEAKER"
F16. 4.2—Use of a (R peaker circuit for sharpening pulses.

Integrator and differentiator circuits are also possible with
resistances and inductances. The differentiator, or peaker, circuit
is commonly used as a pulse-sharpening circuit. For example,
the rather broad pulses of Fig. 4.2a when applied to a differentiator
cireuit whose time constant CR is small compared with the duration
of each pulse yield the extremely sharp pulses of Fig. 4.2b. The
negative portion of the voltage of Fig. 4.2b can be removed by
methods to be discussed in Chap. XXIV and the sharp positive
pulses retained.

As an example of the use of an integrator consider the simple
relaxation oscillator shown in Fig. 4.3. The thyratron (type 884
tube) in the circuit is biased to ignite at some voltage less than
the applied battery voltage . The resistance &, is much less than
Ri. When the switch is closed, a current through R, charges the
capacitor €. No current flows through R. since the thyratron
does not conduct until a certain ignition voltage is reached, deter-
mined by and approximately proportional to the grid-bias voltage.
Thus the capacitor charges until its voltage reaches the ‘“firing”
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value for the tube. It is the property of gas tubes such as this
one that, once conduction has started, the voltage drops to a low
value (about 15 volts) which is nearly independent of the current
through the tube. Since R, is small and the tube drop is small,
the time constant during the discharge of the capacitor through
R: and the tube is much less than that during the charging of the
capacitor through R;. When the current through the tube falls
to a very low value, the tube stops conducting and the capacitor
is recharged through R, as before. This process repeats itself in a

m

—i|ii

\ec-' '2 |
{ |
s |
Iy / . TUBEDROP
._,L_..__.::__Jg .—_—;—_—:.:..i-. * DURING COND.
AR AT =
1 2 t

Fig. 4.4 —For the circuit of Fig. 4.3, graphs versus time of voltage e¢ across the
capacitor (solid line), current 7z through R; (dash line), and current ¢1 through R:
(dot-dash line).
regular cyele. The whole combination of circuit and tube is known
as a relaxation oscillator. Figure 4.4 shows the voltage ¢ across
the capacitor as a function of time. The values of ignition voltage
and extinction voltage of the thyratron form the upper and lower
boundaries of the voltage variation. If the constants are chosen
so that (1) the charging curve of the capacitor is approximately
a straight line, (2) the discharge time is much shorter than the
charge time, the result is a saw-tooth wave that finds practical
application as the sweep voltage for a cathode-ray oscilloscope.
Condition (1) is necessary in order to make the horizontal traverse
of the spot on the screen linear with respect to time. This is
accomplished by having the applied d-c potential large compared
with the firing voltage of the tube, the operation being thus con-
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fined to a small portion of the total charging curve. Another more
elaborate means of achieving this result is discussed in Chap. XXIV.
Condition (2) is desirable in order to make the return trace on the
oscillograph screen occcupy as short a time as possible. This is
accomplished by making CR: as small as possible. It might be
supposed that R could be made zero, and this is actually done in
some cases. The real limitation in this direction is that of limiting
the peak current in the thyratron in order to avoid damage to the
emitter. If voltages are not too high and if C is small, it is quite
possible that wiring resistance and inductance plus tube drop will
hold the current to a safe value. The rate of repetition of the cycle,
1.¢., the sweep frequency, may be controlled by varying the time
constant CRy. - Sinee R; must be kept much larger than R,, the
range of variation is somewhat limited. Furthermore, E; must

L R
i ic Ri=R;
=E B
T R, C 'lri‘fGRz

Fis. 4.5.—8park-suppressor eircuit.

be so large that at the end of the discharge of the capacitor the
battery cannot maintain enough current in the tube to maintain
the arc. In the usual application the variation of a part of R,
is used as a vernier frequency control while the coarse control
of frequency is accomplished by changing the value of C in steps.

Figure 4.4 also shows the currents through R; and R, during the
cycle. The voltage across K, has the same waveform as the current
and is a series of pulses. The relaxation oscillator here described
is also used as a pulse generator.

Another application of CR circuits is that of suppression of the
transient in an LR circuit. It is pointed ocut in See. 2 that the
sudden opening of an LR circuit may result in dangerously high
voltages and burning of contact points. This effect may be
minimized by the use of the circuit shown in Fig. 4.5. With
R = Ry = R and with the time constants of the two branches
of the circult equal, that is, L/R; = CRs or L/C = R?, the two
currents after closing the switch are

i = g (1= emrn) (4.5)
ie = - /50 (4.6)
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and the total current through the switch is the sum of these,

z‘=z';+ig=-g .7

Thus current in the switch rises immediately to its final value and
remains there. The transient components cancel exactly. If now
the switeh is opened, the eurrent through the switch must be zero
go that

’i - 'i; + ?:c L 0
and under the conditions assumed,
Ty = E e—Rt/L
. —E
fe = o g t/RC
; -
i
N )
Y i
\\ . iL
“TIME OF t e t
CLOSURE TIME OF // c
OPENING |
/
/
/

Fia. 4.6—Graphs of current in the two branches of the cireuit of Fig. 4.5.

Then the voltage across the LR circuit is
Ri + Lg% = B/t — Bl = ()

Hence the voltage across the switch never exceeds the battery
voltage E. Figure 4.6 shows the currents in each branch after
closing and after opening the switch. This cireuit finds prac-
tical application in the suppression of arcing at key and relay con-
tact points. In an automobile ignition system the breaker points
are by-passed by a capacitor to achieve the same result. In this
application, R, of Fig. 4.5 is part of R, which is the resistance of
the primary of the ignition coil, and C is connected across the
contacts of the breaker. The transient analysis is similar. The
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voltage across C and hence across the contacts never exceeds

the battery voltage in a circuit adjusted to eritical damping, Sec. 5.
It is also a property of the circuit of Fig. 4.5 that its impedance

is a pure resistance equal to By or By = /L/C at all frequencies.
B. Series LCR Circuit—Consider the series circuit containing

inductance, capacitance, resist-

ance, connected to a battery

and switeh, Fig. 5.1. Kirch- “m ”
hoff’s voltage law applied to __—Ej/

this cireuit gives %E—

E — Ri — L%; - 6’ =0 (5.1) Fia. 5.1.—Series LOR eircuit.

This equation might be written either in terms of the charge ¢
on the capacitor or in terms of the current <. Since ¢ = dg/dL,
(5.1) becomes

dt2 74 R + C’ =E (5.2)
Differentiating (5.1),

d% di

dtg + R + C (5.3)

Equation (5.3) is homogeneous; hence its solution is somewhat
simpler than that of (5.2). As the solutions of the LR and CR
circuits were exponential functions of time, it is reasonable to
suppose that the solution of (5.3) is exponential. If the current
7 is assumed to have the form ¢ = A¢¥, the first and second deriva-
tives will be

di d%

“ - ke @t 2kt
T, Ake I = Ak%

Substituting these values in (5.3),

L+ Rk + 5 =0 (5.4)

C’
Solving for &,
R k2 1
LT AN T £ 7+ (5.5)
The constant k has two values corresponding to the plus and
minus sign in front of the radical. It is therefore necessary to
take account of both signs in the expression for the current. This
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can be doue best by writing the current in the somewhat more
general form

1 = At + 4.6t (5.6)
where
R R? 1
;{}1;" —ﬂ-{— Ez—“m (5.7)
and

R fRz 1

The constants ky and %k, are functions of the circuit elements
only, whereas the constants 4; and A; are functions of both circuit
elements and the way in which the transient is initiated, that is,
Aiand 4, are said to depend on the initial conditions of the problem.
For the general case it would be necessary to know what voltages
were applied and where, as well as the initial charges on all capaci-
tors in the circuit and the initial currents in all inductive elements.

In the circuit of Fig. 5.1 there can be no current when the switch
is open. Suppose that the initial charge on the capacitor is ¢, and
that the battery voltage F is applied by closing the switch. The
initial conditions then are

the initial current 7 being zero because the current cannot jump
in value after closing the switeh owing to the presence of L.
Substituting these values in (5.6),
0=4,4 4,
whence
Ay = — A,
Upon dropping the subscripts and writing 4 = 4; = — A4, the
current becomes
7 = A( — ) (5.9)
In order to evaluate A consider the voltage equation arcund
the circuit when £ = 0,
i di Go _
E-L dt]mo = 0
so that
F-
di C
Eﬁ]wo =—F (5.10)
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The initial slope of the current-time eurve is given by the derivative
of (5.9),

B = Ak — Abyehs
At time t = 0,
di
Substituting the values of k; and k,,
di BT 1
Ei],=0 = 24 i T I (5.11)
Equating (5.11) and (5.10),
- qo
F-2
C
42 LC
Thus the equation for the current is
i
i= C (e — o) (5.12)

R? 1
2L \/ i I
Equation (5.12) ean be written in several useful forms according
to the relative magnitudes of the quantities 1/LC and R2/4L*
appearing in the radieal.
Since the quantity +/1/LC — (R?*/4L%) has the dimensions of
frequency, let ‘

1 R? ‘
Multiplying both sides of (5.13) by j = v/ —1,
oo = B2 L
Joo = iz T IC
Substituting this in (5.12),
E-2

i = g € RUL (gudt — cmiut)

%iLwo
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By the use of Euler’s identity the exponential terms may be replaced
by their trigonometrie equivalent, so that

E-2
- C
S e . —RUIL o
1 Ton € 8in wel (5.14)
Equations (5.12) and (5.14) are different forms of the same equation.
If (1/LCY < (R*/4L%), o, is imaginary by (5.13), and (5.12) is
usually more convenient for caleulating the current. Equation
(5.12) may also be written in the hyperbolic form

- o

. V C'd RUAL o R 1
7= L~——-\[MTMIE t/20 ginh i~ Ie 3

i IC
If (1/LC) > (R*/4L?), we is real, and (5.14) is the more useful form.
A special case arises when 1/LC = R%*/4L% Then w, is zero,
and (5.14) seems to be indeterminate,

P-%

C g S0 ot

4 =
&y

However, by expanding (sin wg) /w, for small values of wef,

Wit | witd
. "QT + _OT ..
sin wot _ 3 5!
Wy . W

wot -

Thus the value of (sin wel)/wy approaches the value t as w,
approaches 0, and the current for the special case of 1/LC = R*/412
becomes

%
ﬁC

Rt/ 2L
¥ Jeritieat € t (5.15)
damping

The condition that (1/LC) = (R?/4L*) is known as critical damping.
Graphs of (5.12), (5.14), (5.15), are shown in Fig. 5.2 for constant
values of L and € and three values of K.

If R < 2+/L/C, the circuit is said to be underdamped; 7.e.,
the dissipation is small, and the current when the switch is closed
is oscillatory. If R > 2+/L/C, the cireuit is overdamped and no
oscillations occur. The condition B = 2 v/L/C is called eritical
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damping. There is no reversal of current when the circuit is over-
damped or critically damped.

Consider first the oscillatory transient represented by (5.14)
and plotted in Fig. 5.3. The coefficient of the sine term establishes
the envelope, or boundary, of the oscillations. The term ¢ *&

L E
12400075,

"
7,
[..

&=
S
Sl

RZ
ALC 8Lz

1

Fig. 5.2-—Graphs of equations (5.12), (5.14), (5.15) with go = 0 plotted for
three values of B; L and € are held constant. All curves have the same initial slope
E/L and enclose the same total area from zero to infinity of time. Areas sbove the
time axis are considered positive, and areas below, negative,

{b)

F1a. 5.3.—Graph of current versus time for an oscillatory transient showing
{a) two successive maxima of current; (b) detail of the first maximum showing the
difference between the positive peaks of the damped and undamped sinusoids.

is the damping term and accounts for the reduction in the amplitude
of current peaks. If 2L/R is small compared with the period of
oscillation, the oscillation boundaries come together rapidly and the
oscillation dies out after relatively few cyeles. If 2L/R is large
compared with the duration of a eycle, the oscillation persists for
many cycles. The ratio between the amplitudes of two successive
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positive peaks 71 and 7, of the current curve in Fig. 5.3a is

31 € RUWIL gin woly

’iz € Rt/2L gin wotz

where ¢, and #; are the times when the current has the maximum
values shown. These times differ by one period,! so that

to=1t + To
where
2r 1
T = — = —
0 wo f 0
Then
wotz = w0t1 + 27!'
and since
Sin wot; = sin (wof; + 27) = sin wels
i e—Et/2L
e — eRTo/ZL
i, _BGTTy
€ 3L
and
'L‘l _ RTO _

This value is the same for the ratio of any two successive positive
(or negative) maxima. The logarithmic decrement ¢ is the ratio
of the period of the oscillation to the time constant 2L/R of the
envelope, Fig. 5.3a. Its reciprocal 1/6 is approximately the
number of complete oscillations of the current from the beginning
of the transient to the time when the amplitude is reduced to 37
per cent of its initial amplitude (more correctly, to the time when
e ?/2L = (0.37). The logarithmic decrement § = 7R/Lw, = 7/Q,
where @ = Lwo/R is the quality factor of the circuit. Thus Q/x is
approximately the number of oscillations before the amplitude is
reduced to 37 per cent of the maximum value.

Another interpretation of the quantity 1/6 = @/ can be
expressed in terms of energy. Multiplying numerator and denomi-
nator of (5.16) by 32, and inverting,

1 .
rSad— (5.17)

Now 3L |7me|? is the maximum energy stored in the inductance during
a cycle, and if the current is assumed to be sinusoidal (approxi-
1 The instant of current maximum precedes the instant when sin wt = +1

by a small amount, Fig. 5.8b, which increases with the damping. This amount
is constant in each cycle and is equal to CR/2 when Q is large.
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mately true if @ is large) $|fme?R = IR, the average rate of
energy dissipation in the circuit. Then §22.R7T0/2 is the dissipation
per half eycle of the oscillation. The fraction 1/8 = 2L/R7, is
approximately the ratio of maximum stored energy in the inductance
to the energy dissipated per half cyele. Since in a high-@ circuit
practically all energy stored in the inductance at the instant of
maximum current is transferred to the eapacitance during a quarter
cycle and back again to the inductance in the next quarter eycle,
the maximum energy stored in the inductance is approximately
the total stored energy in the cireuit. Figure 5.6 shows the instan-
taneous plot of energies stored in the inductance and eapacitance
and their total as functions of time.

If the resistance of an LCR circuit is increased, the oscilla-
tion boundaries come closer together and at eritical damping,
R = 2+/L/C, the transient ceases to be oscillatory. The critical
value of K allows the most rapid charging of the eapacitor from
zero charge without “overshooting.” Further increase of R
results in the sort of current-time curve shown in Fig. 5.2. The
initial slopes of all the current curves are the same if only R is
varied, E, L, and C remaining fixed. Furthermore, the areas under
all the curves between zero and infinity are the same since the total
charge moved around the circuit during the entire transient is
independent of R.

Equation (5.12) can be reduced to a simpler form if

g AL
LC <<im o gm<<l1 (5.18)
From (5.7),
_ R?
by = L + \/41,2 LC’
B
2L +ar 2L ~ R0

Then, from (5.18),

R 2L . 1
21,(1_1"*‘}?6’{' ')="RTI
Similarly, from (5.8) and (5.18),

b= —

koo B[R T
2 2L 4 " IC
R 1

“LYeR
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Then (5.12) becomes

E- -1 i R, ¢t
i= _ﬁg—l (¢ OF — ¢ 1'*TR)
LNz " Ic
E-T o s
&~ (¢ CR - ¢ L'TTR) (5.19)

If L approaches zero, (5.19) reduces to

D
& C

i = eten

the equation for a CR circuit. Also, if ¢ approaches infinity (no
capacitor in the circuit), (5.19) becomes

i= g(l — L) .

the equation for an LR circuit.
The charge on the capacitor in the LCR circuit is given by the
solution of (5.2), viz.,

g = Biett 4 Byttt + CB (5.20)
where k. and ks have the same values as in (5.7) and (5.8),

R R? 1
= - taiz T Lo

and

The constants B, and B; are evaluated from the boundary condi-
tions. At t =0, ¢=y¢qo 2 =0, so that ¢y = By 4+ By + CE,
Differentiating (5.20) with respect to time,

'l: = Blklfht + szgékzt (521)
By comparison with (5.12) it is evident that

7 _ Qo
E-¢

R? 1

Bl=
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and

and since the product bk, 18

" T\ 1
ZL 4L L T 3L N4 Ic) T LC

- _ (R B
- @7 I (g0 — CE) (ﬁ— + A1 z‘j@)
By = — o= —
L5 LI P o H _ 1
2Ll ~ 1o ) e i T I0

which may be written

Bi=" H_\/l 4L>
R2C

and similarly

— CE 1
B == Qo 1 il
S ( Ji- i"i)
R2C
2
Writing By and B; in terms of w, = e %;

_QO—CE R
Bi= " (1 +2ng>

By =" (1 2ng>

Writing out the entire equation for charge on the capacitor
when the transient is oscillatory,

q = CE 4+ (qo — CE)e 2722 ¢os wit
+ (g0 — CE)

and

57— R/ sin ot (5.22)
dad!]

The graphs of charge vs. time for various values of R are shown
in Fig. 54, Note that if R/Lw, is small compared with unity
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the curve of charge is approximately a damped cosine curve and
thus lags the current curve, Fig. 5.3, by »/2 radians.

Since the expressions for current and charge have been devel-
oped in general form, the same equations hold for fransients
initiated by connecting a battery in the cireuit with or without

q /\ /
(a=CE AN e

[4

z
o} (=400 &5 or R=0.0I59R; or Q=%k-3141

<b’,ﬁc=4°£ or R=0I59R, or Q=341

1_R?
e iz or R=RC=2\/—%~
F16. 5.4—Graphs of equation (5.22) for various values of R.

40

(a), RS9I R
), R=R=2VE.

Fia, 6§.8.—Curves of discharge of a capacitor through an L circuit for two values
of R.

an initial charge ¢, on the capacitor. Likewise, they hold where
the transient is the discharge of an initially charged capacitor,
with no battery in the circuit. The curves of charge and current
for this case are determined by setting & = 0 in (5.12) and (5.20).
Two curves of ¢ are shown in Fig. 5.5.
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It is of interest to examine the energy stored in the inductance
and in the capacitor during an oscillatory transient. The energy
stored in the inductance is U, where

U L= %‘Liz

and in the capacitor Ug, where
1
UC-' - g C

From (5.14) and (5.22), the total stored energy is

2
U= U+ Ug = '%%?G—RUL (1 -+ TL}%’;SiD 2wt
+ B2 int ot (5.23)
20203 wo )

Graphs of the energy stored in the inductance and in the capacitance
as well as of the total energy are shown in Fig. 5.6.

Fie. 5.6.—Graph of equation (5.23) showing: (solid lin2) total stored energy in
the system during the discharge of a capacitor in an LOR e¢“reuit; (dash line) energy
stored in the capacitor; (dot-dash line) energy stored in the inductor. The curves
are plotted for the case where woll/R = w.

In setting up a CR circuit it was assumed that such a cireuit is
physically possible. Actually, however, every ecircuit has some
series inductance, and a more rigorous examination of the circuit
is sometimes desirable. If a very small series inductance is present,
in a series CR e¢ircuit, the condition that 1 > > 4L/R*C is fulfilled
and (5.19) is applicable. Graphs of the current in a series LORE
cireuit, Fig. 5.1, are shown in Fig. 5.7 for various values of L,
including zero. I L = 0, the eurrent jumps from zero to the value
E/R when the switch is closed, and the initial slope E/L is infinite.
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oolrm

,L=0
,L=0.25 CR% (CRITICAL DAMPING)

,L=0.5CR?

! ;
CR 20R 3CR T~

Fic. 5.7—Showing the effect on the transient current of adding inductance to a
series CR circuit.

=y
L=0.25CR?- -L=0
q
-1.=05CR?
L=0.
\ 1 I
CR 2CR ICR t->
F1a. 5.8.—Showing the effect on the transient charge of adding inductance to a series
CR circuit.
Ep ______
R -C=00
i /
. C‘=%(CRITlCAL DAMPING)
2L .~
C=—R§ -

- T—

Fia. 5.9.—Effect on the current transient of varying the capacitance in a series
LCR circuit, starting from infinite series capacitance or the equivalent of a series LR
cireuit.
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The second curve for small L shows the form typical of actual CR
circuits. This type of curve may be observed in any physical
CR circuit where it is possible to resolve the transient by expanding
the time scale.

Note that the curves for L < R*C/4 (I. = R*C/4 is the eriti-
cally damped case) all intersect the curve for L = 0 at two places.
Another point of interest is the curve for L = R*C/2. This
curve intersects the zero axis in the shortest time and corresponds
to the largest value of w,, the natural frequeney of the circuit, that
can be obtained by variation of L. This particular value of L
will appear in the discussion of amplifier compensation.! The
corresponding curves of charge on the capacitor are shown in Fig.
5.8.

Families of curves of current vs. time for various values of
series capacitance with L and R held constant are shown in Fig.
5.9,

6. Mechanical Analogues of the LCR Circuit.—The simplest
analogue in mechanies to an LCR circuit is a mass suspended from
a rigid support by a spring, Fig. 6.1. The force of gravity W
acting downward corresponds to the battery voltage in the circuit
of Fig. 5.1. The acceleration
force ma acting in a direction
opposite to the acceleration is
analogous to the L di/dt volt-
age. The friction force by,
where v is the velocity and b is ¢
a constant depending on the 1
size and shape of the mass and W
on the viscosity of the medium (@) (b)
in which the mass is suspended, Fic. 6.1.—(a) Spring and weight sys-
. . tem showing scale along which displace-
18 ana,logeus to the Voltage B ments s are measured; (b) free-body
and acts in a direction opposite diagram showing the forces exerted on the
to the velocity. The force ks Tass 3 & dynamio system.
exerted by the spring, where % is the stiffness of the spring and s is
the displacement, is the analogue of the voltage across the eapacitor.
Equating the sum of all these forces to zero,

ks

" J;ma

LANBNE M SN S SR M Snun s |

W —ma—by —ks =0 {6.1)

! Bee Chap. XIII. L = R2C/2 corresponds to the condition where N = 0.5
for high-frequency compensation.
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and since the acceleration a = d%/dt* and the velocity v = ds/dt,
(6.1) may be written

2
w d®s ds

—md—tz—bﬂ_ks=0 (6.2)
This equation is of the same form as (5.2) and has the same
form of solution. If the mass is disturbed from its equilibrium
position, given by the condition W = ks, it will oscillate up and
down about the equilibrium position if the experiment is performed
in air where b is small. If the experiment is repeated in a medium
of sufficient viscosity, the motion becomes critically damped or
overdamped. The equation of the angular displacement of a
pendulum is similar to (6.2) when the displacement is small.

Another excellent analogue of the oscillatory case is the oscilla-
tion of a balance-wheel and hairspring combination used to regulate
the rate of unwinding of the mainspring of a clock or watch. When
used in a clock, the pendulum or the balance-wheel system is an
example of an oscillatory system in which the damping is very
small, 7.e., the decrement is small or the @ is high. An example
of critical damping is met in the pointer on an indicating ammeter
or voltmeter. It is undesirable to have the pointer oscillate about
the final indication when a given current is sent through the instru-
ment. On the other hand, the damping may be too high, causing
the pointer to be sluggish in reaching its final reading. The critical
damping gives the most rapid arrival at the final reading without
overshooting. Actually, the damping is adjusted usually to be
slightly less than critical so that the pointer overshoots slightly
but does not make more than one visible oscillation. A spring
balance is not damped ordinarily and has to be stopped from
oscillating by hand in order to get a reading quickly.

Vibrations of plucked strings on musical instruments, vibrations
of drumheads, etc., are further examples of oscillatory transients
in mechanical systems, although the conditions are not analogous
to the simple LCR circuit.

The LCR combination having a high @ is used to fix the fre-
quency of oscillation of an oscillator just as the extremely high @
systems of the pendulum or balance wheel are used to govern
the frequency of a clock or watch. The oscillation of a piezo-
electric crystal is another example of an extremely high-Q electro-
mechanical system whose oscillations can be maintained electrically
and used in very accurate timing devices.
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7. Square-wave Testing.—Another application of ftransient
equations is in the analysis of the performance of an amplifier.
With an input voltage of square waveform together with an
examination of the output waveform it is possibie to determine the
phase and frequency distortion of the amplifier.

Then, if t = 0 at the beginning of any positive or negative
alternation, (3.5) applies and

7 ]caT/z = BEC(1 — e T/20R) - qge1/208 (7.1)

Since the charge at the end of an alternation is the negative of that
at the beginning {on the assumption that many cycles have elapsed),

q ] = —G
t=T/2
and (7.1) yields
1 o e-T/2CR

¢ ]g:y/g = EC W = =y (7.2)

T

= FC tanh m
When a voltage of square waveform is applied to a simple
CR circuit, the steady state is a series of recurring transients,
Fig. 4.1. Consider the graph of Fig. 4.1c. Since in the steady
state the flow of charge in one direction equals the flow of charge
in the opposite direction (there being no steady-state direet current
resulting from a square-wave voltage), the maximum voltage across
the capacitor in the positive direction is equal to the maximum
voltage across the capacitor in the negative direction. Hence the
charge on the capacitor at the end of one of the recurring transients
is equal and opposite to the charge at the beginning. This charge
is the charge left on the capacitor at the end of each half eycle of
operation and is positive at the end of a positive alternation of
the square wave. Substitution of this value asg initial charge
in (3.4) gives the analytic form of the current. At the beginning
of each positive half cycle, the initial charge is given by (7.1)

with a negative sign. The current then is

. _E _ E (1 — error _
1 = E t/CR ._{.. I_B (m) € t/CR

- ﬁ(_f:l."?——i’?w_x) L / (7.3)
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Figure 4.1 shows the applied square wave and the resultant voltages
across the resistor and the capacitor for several assumed time
constants. Note that the initial value of the voltage across the
resistor is approximately twice the applied square-wave voltage
for CR << T/2.
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Fig. 7.1.-—Typical RC-coupled amplifier; the coupling capacitor and grid resistor
are enclosed by the dashed line,
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Fig. 7.2.—Typical distortion of a square wave caused by distortion of the low-
frequency components.
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Fie. 7.3.—(a) Square wave and its fundamental component; (5) effect of only

reducing the amplitude of the fundamental component; (¢} effect of only shifting the
phase of the fundamental component,
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