
REFERENCE

CO ,
i:4::d.t5.9

:hØ rà:tris cú.r:r
::.:etrrrentcolorc

dering current
yfrentcd1:O:rsPad .:.

rt ran sfe:r:. Uti n
:U:r rentg b d'u r
::urre.n:thetiftone ót

dtoy :e rp r

urreritsharedr re n,
s:t :currenIS'Ystempart

a arrem
aitii arams finere

e del
ro --..fo'rm• e : . : .

f ilq
n

Forit01.rectot':
stete - ineo
ó'4iI in u f
•atinI En ctiti
epattern

jb éct p
c

e c u
ositi

g Y.t
fi

n u

ac k
6 d.tt

re

Adobe Adobe Systems Incorporated

PostScript®
LANGUAGE REFERENCE

third edition

Adobe Systems Incorporated

A
yle

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts • Harlow, England • Menlo Park, California

Berkeley, California • Don Mills, Ontario • Sydney

Bonn • Amsterdam • Tokyo • Mexico City

Library of Congress Cataloging-in-Publication Data
PostScript language reference manual / Adobe Systems Incorporated. — 3rd ed.

p. cm.
Includes bibliographical references and index.

ISBN 0-201-37922-8
1. PostScript (Computer program language) I. Adobe Systems.

QA76.73.P67 P67 1999
005.13 '3—dc21 98-55489

CIP

© 1985-1999 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

No part of this publication (whether in hardcopy or electronic form) may be reproduced
or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written consent of the publisher.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the

name PostScript in the text are references to the PostScript language as defined by Adobe
Systems Incorporated unless otherwise stated. The name PostScript also is used as a prod-
uct trademark for Adobe Systems' implementation of the PostScript language interpreter.

Except as otherwise stated, any mention of a "PostScript printer," "PostScript software," or
similar item refers to a product that contains PostScript technology created or licensed by
Adobe Systems Incorporated, not to one that purports to be merely compatible.

Adobe, Adobe Illustrator, Adobe Type Manager, Chameleon, Display PostScript, Frame-
Maker, Minion, Myriad, Photoshop, PostScript, PostScript 3, and the PostScript logo are

trademarks of Adobe Systems Incorporated. LocalTalk, QuickDraw, and TrueType are
trademarks and Mac OS is a registered trademark of Apple Computer, Inc. Helvetica and

Times are registered trademarks of Linotype-Hell AG and/or its subsidiaries. Times New
Roman is a trademark of The Monotype Corporation registered in the U.S. Patent and
Trademark Office and may be registered in certain other jurisdictions. Unicode is a regis-

tered trademark of Unicode, Inc. PANTONE is a registered trademark and Hexachrome is
a trademark of Pantone, Inc. Windows is a registered trademark of Microsoft Corporation.

All other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are subject to change
without notice, and should not be construed as a commitment by Adobe Systems Incorpo-

rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect

to this publication, and expressly disclaims any and all warranties of merchantability, fit-

ness for particular purposes, and noninfringement of third-party rights.

ISBN 0-201-37922-8

1 2 3 4 5 6 7 8 9 CRS 03 02 01 00 99
First printing February 1999

i iii

I

Contents

Preface xiii

Chapter 1: Introduction 1

1.1 About This Book 3

1.2 Evolution of the PostScript Language 5

1.3 LanguageLevel 3 Overview 6

1.4 Related Publications 7

1.5 Copyrights and Trademarks 9

Chapter 2: Basic Ideas 11

2.1 Raster Output Devices 11

2.2 Scan Conversion 12

2.3 Page Description Languages 13

2.4 Using the PostScript Language 15

Chapter 3: Language 23

3.1 Interpreter 24

3.2 Syntax 25

3.3 Data Types and Objects 34

3.4 Stacks 45

3.5 Execution 46

3.6 Overview of Basic Operators 51

3.7 Memory Management 56

3.8 File Input and Output 73

3.9 Named Resources 87

3.10 Functions 106

3.11 Errors 114

3.12 Early Name Binding 117

3.13 Filtered Files Details 123

3.14 Binary Encoding Details 156

Chapter 4: Graphics 175

4.1 Imaging Model 176

4.2 Graphics State 178

4.3 Coordinate Systems and Transformations 182

IContents

4.4 Path Construction 189

4.5 Painting 193
4.6 User Paths 197

4.7 Forms 206

4.8 Color Spaces 210

4.9 Patterns 248

4.10 Images 288

Chapter 5: Fonts 313

5.1 Organization and Use of Fonts 313

5.2 Font Dictionaries 321

5.3 Character Encoding 328

5.4 Glyph Metric Information 331

5.5 Font Cache 333
5.6 Unique ID Generation 335

5.7 Type 3 Fonts 337

5.8 Additional Base Font Types 343

5.9 Font Derivation and Modification 348

5.10 Composite Fonts 357

5.11 CID-Keyed Fonts 364

Chapter 6: Device Control 391

6.1 Using Page Devices 393

6.2 Page Device Parameters 398

6.3 In-RIP Trapping 439

6.4 Output Device Dictionary 455

Chapter 7: Rendering 457

7.1 CIE-Based Color to Device Color 459

7.2 Conversions among Device Color Spaces 473

7.3 Transfer Functions 478

7.4 Halftones 480

7.5 Scan Conversion Details 501

Chapter 8: Operators 505

8.1 Operator Summary 508

8.2 Operator Details 524

Appendix A: LanguageLevel Feature Summary 725

A.1 LanguageLevel 3 Features 725

A.2 LanguageLevel 2 Features 731

A.3 Incompatibilities 735

Contents 1

Appendix B: Implementation Limits 737

8.1 Typical Limits 738

B.2 Virtual Memory Use 742

Appendix C: Interpreter Parameters 745

C.1 Properties of User and System Parameters 746
C.2 Defined User and System Parameters 749

C.3 Details of User and System Parameters 753
C.4 Device Parameters 760

Appendix D: Compatibility Strategies 761

D.1 The LanguageLevel Approach 761

D.2 When to Provide Compatibility 763

D.3 Compatibility Techniques 765
D.4 Installing Emulations 769

Appendix E: Character Sets and Encoding Vectors 773

E.1 Times Family 775

E.2 Helvetica Family 776

E.3 Courier Family 777

E.4 Symbol 778

E.5 Standard Latin Character Set 779

E.6 StandardEncoding Encoding Vector 784

E.7 ISOLatinlEncoding Encoding Vector 785
E.8 CE Encoding Vector 786

E.9 Expert Character Set 787

E.10 Expert Encoding Vector 790

E.11 ExpertSubset Encoding Vector 791

E.12 Symbol Character Set 792

E.13 Symbol Encoding Vector 794

Appendix F: System Name Encodings 795

Appendix G: Operator Usage Guidelines 801

Bibliography 811

INDEX 817

VII

Figures

2.1 How the PostScript interpreter and an application interact 16

3.1 Mapping with the Decode array 112

3.2 Homogeneous number array 161

3.3 Binary object sequence 164

4.1 The two squares produced by Example 4.1 186

4.2 Effects of coordinate transformations 188
4.3 Nonzero winding number rule 195

4.4 Even-odd rule 196

4.5 Color specification 212

4.6 Color rendering 213

4.7 Component transformations in the CIEBasedABC color space 222
4.8 Component transformations in the CIEBasedA color space 229

4.9 CIEBasedDEFG pre-extension to the CIEBasedABC color space 232

4.10 Output from Example 4.21 256

4.11 Output from Example 4.23 259

4.12 Starting a new triangle in a free-form Gouraud-shaded triangle mesh 272

4.13 Connecting triangles in a free-form Gouraud-shaded triangle mesh 272
4.14 Varying the value of the edge flag to create different shapes 273
4.15 Lattice-form triangular meshes 275

4.16 Coordinate mapping from a unit square to a four-sided Coons patch 277
4.17 Painted area and boundary of a Coons patch 279

4.18 Color values and edge flags in Coons patch meshes 281

4.19 Edge connections in a Coons patch mesh 282

4.20 Control points in a tensor-product mesh 284

4.21 Typical sampled image 288

4.22 Image data organization and processing 293
4.23 Source image coordinate system 294

4.24 Mapping the source image 295

viii
lContents

5.1 Results of Example 5.2 317

5.2 Glyphs painted in 50% gray 318

5.3 Glyph outlines treated as a path 319

5.4 Graphics clipped by a glyph path 320

5.5 Encoding scheme for Type 1 fonts 329

5.6 Glyph metrics 331
5.7 Relationship between two sets of metrics 333

5.8 Output from Example 5.6 341

5.9 Composite font mapping example 359

5.10 CID-keyed font basics 367

5.11 Type 0 CIDFont character processing 372

6.1 Trapping example 440

6.2 Sliding trap 452

7.1 Various halftoning effects 486

7.2 Halftone cell with a nonzero angle 493
7.3 Angled halftone cell divided into two squares 493

7.4 Halftone cell and two squares tiled across device space 494
7.5 Tiling of device space in a type 16 halftone dictionary 497

7.6 Rasterization without stroke adjustment 504

8.1 arc operator 530
8.2 arc operator example 531

8.3 arcn operator example 532

8.4 arct operator 533

8.5 arct operator example 533

8.6 curveto operator 565

8.7 imagemask example 609

8.8 setflat operator 669

8.9 Line cap parameter shapes 673

8.10 Line join parameter shapes 674

8.11 Miter length 676

1

[ix

1

Tables

2.1 Control characters for the interactive executive 21

3.1 White-space characters 27

3.2 Types of objects 34

3.3 Standard local dictionaries 65
3.4 Standard global dictionaries 66

3.5 Access strings 79

3.6 Standard filters 85

3.7 Regular resources 91

3.8 Resources whose instances are implicit 91

3.9 Resources used in defining new resource categories 92
3.10 Standard procedure sets in LanguageLevel 3 96

3.11 Entries in a category implementation dictionary 101

3.12 Entries common to all function dictionaries 108

3.13 Additional entries specific to a type 0 function dictionary 109

3.14 Additional entries specific to a type 2 function dictionary 113

3.15 Additional entries specific to a type 3 function dictionary 114
3.16 Entries in the $error dictionary 116

3.17 Entries in an LZWEncode or LZWDecode parameter dictionary 133
3.18 Typical LZW encoding sequence 135

3.19 Entries in a FlateEncode or FlateDecode parameter dictionary 138

3.20 Predictor-related entries in an LZW or Flate filter parameter dictionary 141

3.21 Entries in a CCITTFaxEncode or CCITTFaxDecode parameter

dictionary 144

3.22 Entries in a DCTEncode parameter dictionary 148

3.23 Entries in a SubFileDecode parameter dictionary (LanguageLevel 3) 152

3.24 Entries in a ReusableStreamDecode parameter dictionary 155

3.25 Binary token interpretation 158
3.26 Number representation in header for a homogeneous number array 162

3.27 Object type, length, and value fields 166

4.1 Device-independent parameters of the graphics state 179
4.2 Device-dependent parameters of the graphics state 180

4.3 Operation codes for encoded user paths 201
4.4 Entries in a type 1 form dictionary 208

4.5 Entries in a CIEBasedABC color space dictionary 223

IContents 1

4.6 Entries in a CIEBasedA color space dictionary 229
4.7 Additional entries specific to a CIEBasedDEF color space dictionary 233

4.8 Additional entries specific to a CIEBasedDEFG color space dictionary 235

4.9 Entries in a type 1 pattern dictionary 251

4.10 Entries in a type 2 pattern dictionary 260

4.11 Entries common to all shading dictionaries 262

4.12 Additional entries specific to a type 1 shading dictionary 265

4.13 Additional entries specific to a type 2 shading dictionary 266

4.14 Additional entries specific to a type 3 shading dictionary 268
4.15 Additional entries specific to a type 4 shading dictionary 270

4.16 Additional entries specific to a type 5 shading dictionary 275

4.17 Additional entries specific to a type 6 shading dictionary 279

4.18 Data values in a Coons patch mesh 282

4.19 Data values in a tensor-product patch mesh 287

4.20 Entries in a type 1 image dictionary 298

4.21 Typical Decode arrays 300
4.22 Entries in a type 3 image dictionary 304

4.23 Entries in an image data dictionary 305

4.24 Entries in a mask dictionary 306

4.25 Entries in a type 4 image dictionary 307

5.1 Font types 322

5.2 Entries common to all font dictionaries 324

5.3 Additional entries common to all base fonts 325
5.4 Additional entries specific to Type 1 fonts 326

5.5 Entries in a FontInfo dictionary 327

5.6 Additional entries specific to Type 3 fonts 338
5.7 Additional entries specific to Type 42 fonts 346

5.8 Additional entries specific to Type 0 fonts 357

5.9 FMapType mapping algorithms 360

5.10 Entries in a CIDSystemInfo dictionary 368

5.11 CIDFontType and FontType values 370
5.12 Entries common to all CIDFont dictionaries 370

5.13 Additional entries specific to Type 0 CIDFont dictionaries 373

5.14 Entries in a dictionary in FDArray 374

5.15 Entries replacing Subrs in the Private dictionary of an FDArray

dictionary 375
5.16 Additional entry specific to Type 1 CIDFont dictionaries 377

5.17 Additional entries specific to Type 2 CIDFont dictionaries 378

5.18 Entries in a CMap dictionary 383

6.1 Categories of page device parameters 399

6.2 Page device parameters related to media selection 400

i
xi

1

6.3 Page device parameters related to roll-fed media 412

6.4 Page device parameters related to page image placement 414

6.5 Page device parameters related to page delivery 417

6.6 Page device parameters related to color support 420

6.7 Page device parameters related to device initialization and page
setup 426

6.8 Page device parameter related to recovery policies 433
6.9 Entries in the Policies dictionary 433

6.10 Entries in a Type 1001 trapping details dictionary 442
6.11 Entries in a colorant details dictionary 443

6.12 Entries in a colorant subdictionary 444

6.13 Entries in a trapping parameter dictionary 447

6.14 Example of normal trapping rule 451

6.15 Entries in a ColorantZoneDetails dictionary 454
6.16 Entries in an output device dictionary 455

7.1 Entries in a type 1 CIE-based color rendering dictionary 463
7.2 Rendering intents 470

7.3 Types of halftone dictionaries 485

7.4 Entries in a type 1 halftone dictionary 487
7.5 Entries in a type 3 halftone dictionary 490

7.6 Entries in a type 6 halftone dictionary 491

7.7 Entries in a type 10 halftone dictionary 495

7.8 Entries in a type 16 halftone dictionary 496

7.9 Entries in a proprietary halftone dictionary 500

8.1 Operand and result types 506

A.1 LanguageLevel 3 operators defined in procedure sets 726
A.2 New resource categories 727

A.3 New resource instances 727

A.4 New page device and interpreter parameters 728

B.1 Architectural limits 739

B.2 Typical memory limits in LanguageLevel 1 741

C.1 User parameters 749

C.2 System parameters 751

E.1 Encoding vectors 773

G.1 Guidelines summary 802

Contents I

Preface

IN THE 1980S, ADOBE DEVISED a powerful graphics imaging model that over
time has formed the basis for the Adobe PostScript technologies. These technolo-
gies—a combination of the PostScript language and PostScript language—based
graphics and text-formatting applications, drivers, and imaging systems—have
forever changed the printing and publishing world by sparking the desktop and
digital publishing revolutions. Since their inception, PostScript technologies have
enabled unprecedented control of the look and feel of printed documents and
have changed the overall process for designing and printing them as well. The
capabilities PostScript makes possible have established it as the industry page de-
scription language standard.

Today, as never before, application developers and imaging systems vendors
support the PostScript language as the industry standard. We at Adobe accept our
responsibility as stewards of this standard to continually advance the standard in
response to the creative needs of the industry.

With this third advance of the language, which we call LanguageLevel 3, Adobe
has greatly expanded the boundaries of imaging capabilities made possible
through the PostScript language. This most recent advance has yielded significant

improvements in the efficiency and performance of the language as well as in the
quality of final output.

To complement the strengths of LanguageLevel 3, Adobe PostScript 3 imaging
system technologies have been engineered to exploit the new LanguageLevel 3
constructs to the fullest extent, fulfilling the Adobe commitment to provide
printing solutions for the broad spectrum of users.

No significant change comes without the concerted effort of many individuals.
The work to advance the PostScript language and to create Adobe PostScript 3
imaging system technologies is no exception. Our goal since the introduction of
the first Adobe imaging model has been nothing less than to provide the most in-
novative, meaningful imaging solutions in the industry. Dedicated Adobe em-
ployees and many industry partners have striven to make that goal a reality. We
take this opportunity to thank all those who contributed to this effort.

John Warnock and Chuck Geschke
February 1999

CHAPTER 1

Introduction

THE POSTSCRIPT® LANGUAGE is a simple interpretive programming lan-

guage with powerful graphics capabilities. Its primary application is to describe
the appearance of text, graphical shapes, and sampled images on printed or dis-
played pages, according to the Adobe imaging model. A program in this language

can communicate a description of a document from a composition system to a
printing system or control the appearance of text and graphics on a display. The
description is high-level and device-independent.

The page description and interactive graphics capabilities of the PostScript lan-
guage include the following features, which can be used in any combination:

• Arbitrary shapes made of straight lines, arcs, rectangles, and cubic curves. Such
shapes may self-intersect and have disconnected sections and holes.

• Painting operators that permit a shape to be outlined with lines of any thick-
ness, filled with any color, or used as a clipping path to crop any other graphic.

Colors can be specified in a variety of ways: grayscale, RGB, CMYK, and CIE-
based. Certain other features are also modeled as special kinds of colors: re-
peating patterns, smooth shading, color mapping, and spot colors.

• Text fully integrated with graphics. In the Adobe imaging model, text charac-
ters in both built-in and user-defined fonts are treated as graphical shapes that
may be operated on by any of the normal graphics operators.

• Sampled images derived from natural sources (such as scanned photographs)
or generated synthetically. The PostScript language can describe images sam-
pled at any resolution and according to a variety of color models. It provides a
number of ways to reproduce images on an output device.

I CHAPTER 1
2

Introduction I

• A general coordinate system that supports all combinations of linear transfor-

mations, including translation, scaling, rotation, reflection, and skewing. These
transformations apply uniformly to all elements of a page, including text,

graphical shapes, and sampled images.

A PostScript page description can be rendered on a printer, display, or other out-
put device by presenting it to a PostScript interpreter controlling that device. As
the interpreter executes commands to paint characters, graphical shapes, and
sampled images, it converts the high-level PostScript description into the low-
level raster data format for that particular device.

Normally, application programs such as document composition systems, illustra-
tors, and computer-aided design systems generate PostScript page descriptions
automatically. Programmers generally write PostScript programs only when cre-
ating new applications. However, in special situations a programmer can write
PostScript programs to take advantage of capabilities of the PostScript language

that are not accessible through an application program.

The extensive graphics capabilities of the PostScript language are embedded in
the framework of a general-purpose programming language. The language
includes a conventional set of data types, such as numbers, arrays, and strings;
control primitives, such as conditionals, loops, and procedures; and some unusu-
al features, such as dictionaries. These features enable application programmers
to define higher-level operations that closely match the needs of the application
and then to generate commands that invoke those higher-level operations. Such a
description is more compact and easier to generate than one written entirely in

terms of a fixed set of basic operations.

PostScript programs can be created, transmitted, and interpreted in the form of
ASCII source text as defined in this book. The entire language can be described in
terms of printable characters and white space. This representation is convenient
for programmers to create, manipulate, and understand. It also facilitates storage

and transmission of files among diverse computers and operating systems, en-

hancing machine independence.

There are also binary encoded forms of the language for use in suitably controlled
environments—for example, when the program is assured of a fully transparent
communications path to the PostScript interpreter. Adobe recommends strict ad-

herence to the ASCII representation of PostScript programs for document inter-

change or archival storage.

3
II

1.1 About This Book

About This Book I

This is the programmer's reference for the PostScript language. It is the definitive
documentation for the syntax and semantics of the language, the imaging model,
and the effects of the graphics operators.

• Chapter 2, "Basic Ideas," is an informal presentation of some basic ideas under-
lying the more formal descriptions and definitions to come in later chapters.
These include the properties and capabilities of raster output devices, require-
ments for a language that effectively uses those capabilities, and some pragmat-
ic information about the environments in which the PostScript interpreter
operates and the kinds of PostScript programs it typically executes.

• Chapter 3, "Language," introduces the fundamentals of the PostScript lan-
guage: its syntax, semantics, data types, execution model, and interactions with
application programs. This chapter concentrates on the conventional program-
ming aspects of the language, ignoring its graphical capabilities and use as a
page description language.

• Chapter 4, "Graphics," introduces the Adobe imaging model at a device-
independent level. It describes how to define and manipulate graphical enti-
ties—lines, curves, filled areas, sampled images, and higher-level structures
such as patterns and forms. It includes complete information on the color
models that the PostScript language supports.

• Chapter 5, "Fonts," describes how the PostScript language deals with text.
Characters are defined as graphical shapes, whose behavior conforms to the
imaging model presented in Chapter 4. Because of the importance of text in
most applications, the PostScript language provides special capabilities for or-
ganizing sets of characters as fonts and for painting characters efficiently.

• Chapter 6, "Device Control," describes how a page description communicates

its document processing requirements to the output device. These include page
size, media selection, finishing options, and in-RIP trapping.

• Chapter 7, "Rendering," details the device-dependent aspects of rendering page
descriptions on raster output devices (printers and displays). These include
color rendering, transfer functions, halftoning, and scan conversion, each of
which is device-dependent in some way.

I CHAPTER 1
4

i
Introduction I

• Chapter 8, "operators:' describes all PostScript operators and procedures. The
chapter begins by categorizing operators into functional groups. Then the
operators appear in alphabetical order, with complete descriptions of their op-
erands, results, side effects, and possible errors.

The appendices contain useful tables and other auxiliary information.

• Appendix A, "LanguageLevel Feature Summary," summarizes the ways the
PostScript language has been extended with new operators and other features
over time.

• Appendix B, "Implementation Limits," describes typical limits imposed by im-
plementations of the PostScript interpreter—for example, maximum integer

value and maximum stack depth.

• Appendix C, "Interpreter Parameters:' specifies various parameters to control
the operation and behavior of the PostScript interpreter. Most of these parame-
ters have to do with allocation of memory and other resources for specific pur-
poses.

• Appendix D, "Compatibility Strategies," helps PostScript programmers take
advantage of newer PostScript language features while maintaining compatibil-
ity with the installed base of older PostScript interpreter products.

• Appendix E, "Character Sets and Encoding Vectors," describes the organization
of common fonts that are built into interpreters or are available as separate
software products.

• Appendix F, "System Name Encodings," assigns numeric codes to standard
names, for use in binary-encoded PostScript programs.

• Appendix G, "Operator Usage Guidelines," provides guidelines for PostScript
operators whose use can cause unintended side effects, make a document
device-dependent, or inhibit postprocessing of a document by other programs.

The book concludes with a Bibliography and an Index.

The enclosed CD-ROM contains the entire text of this book in Portable Docu-
ment Format (PDF).

5
I 2 Evolution of the PostScript Language I

1.2 Evolution of the PostScript Language

Since its introduction in 1985, the PostScript language has been considerably ex-
tended for greater programming power, efficiency, and flexibility. Typically, these

language extensions have been designed to adapt the PostScript language to new
imaging technologies or system environments. While these extensions have intro-

duced significant new functionality and flexibility to the language, the basic
imaging model remains unchanged.

Extensions are organized into major groups, called LanguageLevels. Three
LanguageLevels have been defined, numbered 1, 2, and 3. Each LanguageLevel
encompasses all features of previous LanguageLevels as well as a significant num-
ber of new features. A PostScript interpreter claiming to support a given
LanguageLevel must implement all features defined in that LanguageLevel and
lower. Thus, for example, a feature identified in this book as "LanguageLevel 2" is

understood to be available in all LanguageLevel 3 implementations as well.

This book documents the entire PostScript language, which consists of three dis-

tinct groups of features. Features that are part of the LanguageLevel 2 or

LanguageLevel 3 additions are clearly identified as such. Features that are not
otherwise identified are LanguageLevel 1.

A PostScript interpreter can also support extensions that are not part of its base
LanguageLevel. Some such extensions are specialized to particular applications,
while others are of general utility and are candidates for inclusion in a future
LanguageLevel.

The most significant special-purpose extension is the set of features for the
Display PostScript® system. Those features enable workstation applications to use

the PostScript language and the Adobe imaging model for managing the appear-

ance of the display and for interacting with the workstation's windowing system.

The Display PostScript extensions were documented in the second edition of this
book but have been removed for this edition. Further information is available in
the Display PostScript System manuals.

Appendix D describes strategies for writing PostScript programs that can run

compatibly on interpreters supporting different LanguageLevels. With some care,
a program can take advantage of features in a higher LanguageLevel when avail-

able but will still run acceptably when those features are not available.

I CHAPTER 1
6
I

Introduction I

1.3 LanguageLevel 3 Overview

In addition to unifying many previous PostScript language extensions, Language-
Level 3 introduces a number of new features. This section summarizes those fea-
tures, for the benefit of readers who are already familiar with LanguageLevel 2.

• Functions. A PostScript function is a self-contained, static description of a

mathematical function having one or more arguments and one or more results.

• Filters. Three filters have been added, named FlateDecode, FlateEncode, and
ReusableStreamDecode. Some existing filters accept additional optional

parameters.

• Idiom recognition. The bind operator can find and replace certain commonly
occurring procedures, called idioms, typically appearing in application prologs.
The substituted procedure achieves equivalent results with significantly im-
proved performance or quality. This enables LanguageLevel 3 features to work
in applications that have not yet been modified to use those features directly.

• Clipping path stack. The clipsave and cliprestore operators save and restore just
the clipping path without affecting the rest of the graphics state.

• Color spaces. Three color spaces have been added: CIEBasedDEF and CIEBased-
DEFG provide increased flexibility for specifying device-independent colors;
DeviceN provides a means of specifying high-fidelity and multitone colors.

• Color space substitution. Colors that have been specified in DeviceGray,
DeviceRGB, or DeviceCMYK color spaces can be remapped into CIE-based

color spaces. This capability can be useful in a variety of circumstances, such as
for redirecting output intended for one device to a different one or for pro-
ducing CIE-based colors from an application that generates LanguageLevel 1
output only (and thus is unable to specify them directly).

• Smooth shading. It is now possible to paint with a color that varies smoothly
over the object or region being painted.

• Masked images. A sampled image can be clipped by a mask as it is painted. The
mask can be represented explicitly or encoded with a color key in the image

data. This enables the background to show through parts of the image.

• CID-keyed fonts. This font organization provides a convenient and efficient
means for defining multiple-byte character encodings and for creating base
fonts containing a very large number of character descriptions.

7

I
Related Publications I

• Font formats. Support has been added for additional types of base fonts, includ-
ing CFF (Compact Font Format), Chameleon®, TrueTypeni, and bitmap fonts.

• Device setup. There are many additional page device parameters to control col-
orant selection, finishing options, and other features. Any device can now pro-
duce arbitrary separations, even in a monochrome printing system (which can
mark only one colorant at a time).

• In-RIP trapping. Certain products support trapping, which is the automatic
generation of overlaps to correct for colorant misregistration during the print-
ing process.

• Color rendering intent. A PostScript program can specify a rendering intent for
color reproduction, causing automatic selection of an appropriate CIE-based
color rendering dictionary.

• Halftones. Several standard halftone types have been added. They include 16-
bit threshold arrays and more flexible tiling organizations for improved color

accuracy on high-resolution devices. Halftone supercells increase the number
of gray levels achievable on low-resolution devices.

1.4 Related Publications

A number of publications related to this book are listed in the Bibliography; some
notable ones are mentioned here. For more details, see the Bibliography.

1.4.1 The Supplement

The PostScript Language Reference Supplement documents PostScript language
extensions that are available in certain releases of Adobe PostScript' software. A
new edition of the Supplement is published along with each major release of
Adobe PostScript software.

The Supplement documents three major classes of extensions:

• New PostScript language features that have been introduced since the most re-
cent LanguageLevel and that are candidates for inclusion in the next Language-
Level.

• Extensions for controlling unique features of products, such as communication
parameters, print engine options, and so on. Certain PostScript language fea-
tures, such as setdevparams, setpagedevice, and the named resource facility,

8

i
Introduction I I CHAPTER 1

are designed to be extended in this way. Although the framework for this is a
standard part of the PostScript language, the specific extensions are product-

dependent.

• LanguageLevel 1 compatibility operators, principally in the statusdict diction-

ary. Those features were the LanguageLevel 1 means for controlling unique fea-
tures of products, but they have been superseded. They are not formally a part
of the PostScript language, but many of them are still supported in Adobe Post-
Script interpreters as a concession to existing applications that depend on

them.

1.4.2 Font Formats

PostScript interpreters support several standard formats for font programs, in-

cluding Adobe Type 1, CFF (Compact Font Format), TrueType, and CID-keyed
fonts. The PostScript language manifestations of those fonts are documented in
this book. However, the specifications for the font files themselves are published
separately, because they are highly specialized and are of interest to a different
user community. A variety of Adobe publications are available on the subject of

font formats, most notably the following:

• Adobe Type I Font Format and Adobe Technical Note #5015, Type I Font Format

Supplement

• Adobe Technical Note #5176, The Compact Font Format Specification

• Adobe Technical Note #5012, The Type 42 Font Format Specification

• Adobe Technical Note #5014, Adobe CMap and CID Font Files Specification

1.4.3 Document Structure

Some conventions have been established for the structure of PostScript programs
that are to be treated as documents. Those conventions, while not formally part
of the PostScript language, are highly recommended, since they enable interoper-

ability with applications that pay attention to them.

• Adobe Technical Note #5001, PostScript Language Document Structuring Con-
ventions Specification, describes a convention for structuring PostScript page
descriptions to facilitate their handling and processing by other programs.

9

l
Copyrights and Trademarks l

• Adobe Technical Note #5002, Encapsulated PostScript File Format Specification,
describes a format that enables applications to treat each other's output as in-
cluded illustrations.

1.4.4 Portable Document Format (PDF)

Adobe has specified another format, PDF, for portable representation of electron-
ic documents. PDF is documented in the Portable Document Format Reference
Manual.

PDF and the PostScript language share the same underlying Adobe imaging
model. A document can be converted straightforwardly between PDF and the
PostScript language; the two representations produce the same output when
printed. However, PDF lacks the general-purpose programming language frame-

work of the PostScript language. A PDF document is a static data structure that is
designed for efficient random access and includes navigational information suit-
able for interactive viewing.

1.5 Copyrights and Trademarks

The general idea of using a page description language is in the public domain.
Anyone is free to devise his or her own set of unique commands that constitute a

page description language. However, Adobe Systems Incorporated owns the
copyright for the list of operators and the written specification for Adobe's Post-

Script language. Thus, these elements of the PostScript language may not be cop-

ied without Adobe's permission. Additionally, Adobe owns the trademark
"PostScript," which is used to identify both the PostScript language and Adobe's
PostScript software.

Adobe will enforce its copyright and trademark rights. Adobe's intentions are to:

• Maintain the integrity of the PostScript language standard. This enables the
public to distinguish between the PostScript language and other page descrip-
tion languages.

• Maintain the integrity of "PostScript" as a trademark. This enables the public

to distinguish between Adobe's PostScript interpreter and other interpreters
that can execute PostScript language programs.

10
I CHAPTER 1 Introduction

However, Adobe desires to promote the use of the PostScript language for in-
formation interchange among diverse products and applications. Accordingly,

Adobe gives permission to anyone to:

• Write programs in the PostScript language.

• Write drivers to generate output consisting of PostScript language commands.

• Write software to interpret programs written in the PostScript language.

• Copy Adobe's copyrighted list of commands to the extent necessary to use the

PostScript language for the above purposes.

The only condition of such permission is that anyone who uses the copyrighted
list of commands in this way must include an appropriate copyright notice. This
limited right to use the copyrighted list of commands does not include a right to

copy this book, other copyrighted publications from Adobe, or the software in
Adobe's PostScript interpreter, in whole or in part.

The trademark PostScript® (or a derivative trademark, such as PostScript® 3)
may not be used to identify any product not originating from or licensed by

Adobe. However, it is acceptable for a non-Adobe product to be described as be-
ing PostScript-compatible and supporting a specific LanguageLevel, assuming

that the claim is true.

i

CHAPTER 2

Basic Ideas

OBTAINING A COMPLETE UNDERSTANDING of the PostScript language
requires considering it from several points of view:

• As a general-purpose programming language with powerful built-in graphics
primitives

• As a page description language that includes programming features

• As an interactive system for controlling raster output devices (printers and
displays)

• As an application- and device-independent interchange format for page de-
scriptions

This chapter presents some basic ideas that are essential to understanding the

problems the PostScript language is designed to solve and the environments in
which it is designed to operate. Terminology introduced here appears throughout
the manual.

2.1 Raster Output Devices

Much of the power of the PostScript language derives from its ability to deal with
the general class of raster output devices. This class encompasses such technology
as laser, dot-matrix, and ink-jet printers, digital imagesetters, and raster scan
displays.

The defining property of a raster output device is that a printed or displayed im-
age consists of a rectangular array of dots, called pixels (picture elements), that
can be addressed individually. On a typical black-and-white output device, each

pixel can be made either black or white. On certain devices, each pixel can be set

I CHAPTER 2
12

Basic Ideas I

to an intermediate shade of gray or to some color. The ability to individually set
the colors of pixels means that printed or displayed output can include text, arbi-
trary graphical shapes, and reproductions of sampled images.

The resolution of a raster output device is a measure of the number of pixels per
unit of distance along the two linear dimensions. Resolution is typically—but not

necessarily—the same horizontally and vertically.

Manufacturers' decisions on device technology and price/performance tradeoffs

create characteristic ranges of resolution:

• Computer displays have relatively low resolution, typically 75 to 110 pixels per
inch.

• Dot-matrix printers generally range from 100 to 250 pixels per inch.

• Ink-jet and laser-scanned xerographic printing technologies are capable of

medium-resolution output of 300 to 1400 pixels per inch.

• Photographic technology permits high resolutions of 2400 pixels per inch or

more.

Higher resolution yields better quality and fidelity of the resulting output, but is

achieved at greater cost. As the technology improves and computing costs de-

crease, products evolve to higher resolutions.

2.2 Scan Conversion

An abstract graphical element (for example, a line, a circle, a text character, or a
sampled image) is rendered on a raster output device by a process known as scan

conversion. Given a mathematical description of the graphical element, this pro-
cess determines which pixels to adjust and what values to assign those pixels to

achieve the most faithful rendition possible at the device resolution.

The pixels on the page can be represented by a two-dimensional array of pixel

values in computer memory. For an output device whose pixels can be only black
or white, a single bit suffices to represent each pixel. For a device whose pixels can
reproduce gray shades or colors, multiple bits per pixel are required.

Note: Although the ultimate representation of a printed or displayed page is logically
a complete array of pixels, its actual representation in computer memory need not

l 2.3
13
I Page Description Languages I

i

consist of one memory cell per pixel. Some implementations use other representa-
tions, such as display lists. The Adobe imaging model has been carefully designed not
to depend on any particular representation of raster memory.

For each graphical element that is to appear on the page, the scan converter sets
the values of the corresponding pixels. When the interpretation of the page de-
scription is complete, the pixel values in memory represent the appearance of the
page. At this point, a raster output process can make this representation visible
on a printed page or a display.

Scan-converting a graphical shape, such as a rectangle or a circle, involves deter-
mining which device pixels lie "inside" the shape and setting their values appro-
priately (for example, setting them to black). Because the edges of a shape do not
always fall precisely on the boundaries between pixels, some policy is required for
deciding which pixels along the edges are considered to be "inside." Scan-
converting a text character is conceptually the same as scan-converting an arbi-
trary graphical shape; however, characters are much more sensitive to legibility

requirements and must meet more rigid objective and subjective measures of
quality.

Rendering grayscale elements on a bilevel device—one whose pixels can only be

black or white—is accomplished by a technique known as halftoning. The array
of pixels is divided into small clusters according to some pattern (called the

halftone screen). Within each cluster, some pixels are set to black and some to
white in proportion to the level of gray desired at that place on the page. When
viewed from a sufficient distance, the individual dots become unnoticeable and
the result is a shade of gray. This enables a bilevel raster output device to repro-
duce shades of gray and to approximate natural images, such as photographs.
Some color devices use a similar technique.

2.3 Page Description Languages

Theoretically, an application program could describe any page as a full-page pixel
array. But this would be unsatisfactory, because the description would be bulky,
the pixel array would be device-dependent, and memory requirements would be
beyond the capacity of many personal computers.

A page description language should enable applications to produce files that are
relatively compact for storage and transmission, and independent of any particu-
lar output device.

I CHAPTER 2
14

I
Basic Ideas I

2.3.1 Imaging Model

In today's computer printing industry, raster output devices with different prop-
erties are proliferating, as are the applications that generate output for those de-
vices. Meanwhile, expectations are also rising; typewriter emulation (text-only
output in a single typeface) is no longer adequate. Users want to create, display,
and print documents that combine sophisticated typography and graphics.

A high-level imaging model enables an application to describe the appearance of

pages containing text, graphical shapes, and sampled images in terms of abstract
graphical elements rather than in terms of device pixels. Such a description is

economical and device-independent. It can be used to produce high-quality out-
put on many different printers and displays.

A page description language is a language for expressing an imaging model. An
application program produces printed output through a two-stage process:

1. The application generates a device-independent description of the desired

output in the page description language.

2. A program controlling a specific raster output device interprets the descrip-

tion and renders it on that device.

The two stages may be executed in different places and at different times; the page
description language serves as an interchange standard for transmission and stor-

age of printable or displayable documents.

2.3.2 Static versus Dynamic Formats

A page description language may have either a static or a dynamic format.

• A static format provides some fixed set of operations and a syntax for specifying
the operations and their arguments. Static formats have been in existence since
computers first used printers; classic examples are format control codes for line

printers and "format effector" codes in standard character sets. Historically,
static formats have been designed to capture the capabilities of a specific class

of printing device and have evolved to include new features as needed.

• A dynamic format allows more flexibility than a static format. The operator set

may be extensible and the exact meaning of an operator may not be known un-
til it is actually encountered. A page described in a dynamic format is a pro-

I 2.4
15

I Using the PostScript Language 1

gram to be executed, rather than data to be consumed. Dynamic page
description languages contain elements of programming languages, such as
procedures, variables, and control constructs.

The PostScript language design is dynamic. The language includes a set of primi-
tive graphics operators that can be combined to describe the appearance of any
printed or displayed page. It has variables and allows arbitrary computations
while interpreting the page description. It has a rich set of programming-
language control structures for combining its elements.

2.4 Using the PostScript Language

It is important to understand the PostScript interpreter and how it interacts with
applications using it.

2.4.1 The Interpreter

The PostScript interpreter controls the actions of the output device according to
the instructions provided in a PostScript program generated by an application.
The interpreter executes the program and produces output on a printer, display,
or other raster device.

There are three ways the PostScript interpreter and the application interact
(Figure 2.1 illustrates these scenarios):

• In the conventional output-only printing model, the application creates a page
description—a self-contained PostScript language description of a document.
The page description can be sent to the PostScript interpreter immediately or

stored for transmission at some other time (via an intermediate print manager

or spooler, for example). The interpreter consumes a sequence of page descrip-
tions as "print jobs" and produces the requested output. The output device is
typically a printer, but it can be a preview window on a workstation's display.

The PostScript interpreter is often implemented on a dedicated processor that
has direct control over the raster output device.

• In the integrated display model, an application interacts with the PostScript
interpreter controlling a display or windowing system. Instead of a one-way
transmission of a page description, a two-way interactive session takes place
between the application and the interpreter. In response to user actions, the

I CHAPTER 2
16

Basic Ideas l

application issues commands to the PostScript interpreter and sometimes reads

information back from it.

• In the interactive programming language model, an interactive session takes
place directly between a programmer and the PostScript interpreter; the pro-
grammer issues PostScript commands for immediate execution. Many Post-
Script interpreters (for both printers and displays) have a rudimentary

interactive executive to support this mode of use; see Section 2.4.4, "Using the

Interpreter Interactively."

Conventional output-only printing model

Application
Page

description

Integrated display model

Application

PostScript
interpreter

PostScript
interpreter

Interactive session

Interactive programming language model

-
Human

programmer

Interactive session

PostScript

interpreter

Printer or
preview device

Interactive
display

Any

device

FIGURE 2.1 How the PostScript interpreter and an application interact

Even when a PostScript interpreter is being used noninteractively to execute page
descriptions prepared previously, there may be some dynamic interactions be-

tween the print manager or spooler and the PostScript interpreter. For example,
the sender may ask the PostScript interpreter whether certain fonts referenced by

a document are available. This is accomplished by sending the interpreter a short
program to read and return the information. The PostScript interpreter makes no
distinction between a page description and a program that makes environmental

queries or performs other arbitrary computations.

l 2.4
17

I Using the PostScript Language l

To facilitate document interchange and document management, a page descrip-
tion should conform to the structuring conventions discussed below. The struc-
turing conventions do not apply in an interactive session, since there is no notion
that the information being communicated represents a document to be preserved
for later execution; a session has no obvious overall structure.

2.4.2 Program Structure

A well-structured PostScript page description generally consists of two parts: a
prolog followed by a script. There is nothing in the PostScript language that for-

mally distinguishes the prolog from the script or imposes any overall document
structure. Such structuring is merely a convention, but one that is quite useful
and is recommended for most applications.

• The prolog is a set of application-specific procedure definitions that an applica-
tion may use in the execution of its script. It is included as the first part of every

PostScript file generated by the application. It contains definitions that match
the output functions of the application with the capabilities supported by the
PostScript language.

• The script is generated automatically by the application program to describe
the specific elements of the pages being produced. It consists of references to
PostScript operators and to procedure definitions in the prolog, together with
operands and data. The script, unlike the prolog, is usually very stylized, repet-
itive, and simple.

Dividing a PostScript program into a prolog and a script reduces the size of each
page description and minimizes data communication and disk storage. An exam-
ple may help explain the purpose ola separate prolog and script. One of the most

common tasks in a PostScript program is placing text at a particular location on
the current page. This is really two operations: "moving" the current point to a

specific location and "showing" the text. A program is likely to do this often, so it
is useful for the prolog to define a procedure that combines the operations:

/ms {moveto show} bind def

Later, the script can call the ms procedure instead of restating the individual op-
erations:

(some text) 100 200 ms

I CHAPTER 2
18

I
Basic Ideas I

The script portion of a printable document ordinarily consists of a sequence of
separate pages. The description of an individual page should stand by itself, de-
pending only on the definitions in the prolog and not on anything in previous
pages of the script. The language includes facilities (described in Section 3.7,
"Memory Management") that can be used to guarantee page independence.

Adobe has established conventions to make document structure explicit. These
document structuring conventions appear in Adobe Technical Note #5001, Post-
Script Language Document Structuring Conventions Specification. Document
structure is expressed in PostScript comments; the interpreter pays no attention
to them. However, there are good reasons to adhere to the conventions:

• Utility programs can operate on structured documents in various ways: change
the order of pages, extract subsets of pages, embed individual pages within oth-
er pages, and so on. This is possible only if the original document maintains

page independence.

• Print managers and spoolers can obtain useful information from a properly
structured document to determine how the document should be handled.

• The structuring conventions serve as a good basis for organizing printing from

an application.

An application has its own model of the appearance of printable output that it
generates. Some parts of this model are fixed for an entire document or for all
documents; the application should incorporate their descriptions into the prolog.
Other parts vary from one page to another; the application should produce the
necessary descriptions of these as they appear. At page boundaries, the applica-

tion should generate commands to restore the standard environment defined by
the prolog and then explicitly reestablish nonstandard portions of the environ-
ment for the next page. This technique ensures that each page is independent of

any other.

The structuring conventions also include standard methods for performing envi-
ronmental queries. These conventions ensure consistent and reliable behavior in
a variety of system environments, including those with print spoolers.

2.4.3 Translating from Other Print Formats

Many existing applications generate printable documents in some other print file

format or in some intermediate representation. It is possible to print such docu-

I 2.4
19

Using the PostScript Language I

ments by translating them into PostScript page descriptions. There are two sce-
narios in which this need arises:

• An application describes its printable output by making calls to an application
programming interface, such as GDI in Microsoft Windows® or QuickDrawn"

in the Apple Mac® OS. A software component called a printer driver interprets
these calls and produces a PostScript page description.

• An application produces printable output directly in some other file format,
such as PCL, HPGL, or DVI. A separate program must then translate this file
into a PostScript page description.

Implementing a driver or translator is often the least expensive way to interface
an existing application to a PostScript printer. Unfortunately, while such transla-
tion is usually straightforward, a translator may not be able to generate page
descriptions that make the best use of the high-level Adobe imaging model. This

is because the information being translated often describes the desired results at a
level that is too low; any higher-level information maintained by the original ap-
plication has been lost and is not available to the translator.

While direct PostScript output from applications is most desirable, translation
from another print format may be the only choice available for some applica-
tions. A translator should do the best it can to produce output that conforms to
the document structuring conventions (see Technical Note #5001). This ensures

that such output is compatible with the tools for manipulating PostScript page
descriptions.

2.4.4 Using the Interpreter Interactively

Normally, the interpreter executes PostScript programs generated by application
programs; a user does not interact with the PostScript interpreter directly. How-
ever, many PostScript interpreters provide an interactive executive that enables a
user to control the interpreter directly. That is, from a terminal or terminal emu-
lator connected directly to the PostScript interpreter, you can issue commands
for immediate execution and control the operation of the interpreter in limited
ways. This is useful for experimentation and debugging.

To use the interpreter this way, you must first connect your keyboard and display
directly to the standard input and output channels of the PostScript interpreter,

so that characters you type are sent directly to the interpreter and characters the

20
I CHAPTER 2 Basic Ideas

interpreter sends appear on the screen. How to accomplish this depends on the
product. A typical method is to connect a personal computer running terminal

emulation software to a PostScript printer, either by direct physical connection or
by establishing communication over a network.

Once the input and output connections are established, you can invoke the inter-

active executive by typing

executive

(all lowercase) and pressing the Return key. The interpreter responds with a

herald, such as

PostScript(r) Version 3010.106

Copyright (c) 1984-1998 Adobe Systems Incorporated
All Rights Reserved.

PS>

The PS> prompt is an indication that the PostScript interpreter is waiting for a

command.

Each time you type a complete PostScript statement followed by the Return key,
the interpreter executes that statement and then sends another PS> prompt. If the

statement causes the interpreter to send back any output (produced by execution
of the print or = operator, for example), that output appears before the PS>
prompt. If the statement causes an error to occur, an error message appears be-

fore the PS> prompt; control remains in the interactive executive, whereas errors
normally cause a job to terminate. The interactive executive remains in operation
until you invoke the quit operator or enter a channel-dependent end-of-file indi-
cation (for example, Control-D for a serial connection).

The interactive executive provides a few simple amenities. While you are typing,

the interpreter ordinarily "echoes" the typed characters (sends them back to your
terminal so that you can see them). You can use the control characters in
Table 2.1 to make corrections while entering a statement.

i 2.4
21

Using the PostScript Language I

TABLE 2.1 Control characters for the interactive executive

CHARACTER FUNCTION

Backspace (BS) Backs up and erases one character.

Delete (DEL) Same as backspace.

Control-U Erases the current line.

Control-R Redisplays the current line.

Control-C Aborts the entire statement and starts over. Control-C can also

abort a statement that is executing and force the executive to revert
to a PS> prompt.

There are several important things to understand about the interactive executive:

• It is intended solely for direct interaction with the user; an application that is
generating PostScript programs should never invoke executive. In general, a
PostScript program will behave differently when sent through the interactive

executive than when executed directly by the PostScript interpreter. For exam-
ple, the executive produces extraneous output such as echoes of the input char-
acters and PS> prompts. Furthermore, a program that explicitly reads data
embedded in the program file will malfunction if invoked via the executive,
since the executive itself is interpreting the file.

• The user amenities are intentionally minimal. The executive is not a full-scale

programming environment; it lacks a text editor and other tools required for
program development and it does not keep a record of your interactive session.
The executive is useful mainly for experimentation and debugging.

• The executive operator is not necessarily available in all PostScript interpreters.
Its behavior may vary among different products.

23

CHAPTER 3

Language

SYNTAX, DATA TYPES, AND EXECUTION SEMANTICS are essential aspects
of any PostScript program. Later chapters document the graphics and font capa-
bilities that specialize PostScript programs to the task of controlling the appear-

ance of a printed page. This chapter explains the PostScript language as a
programming language.

Like all programming languages, the PostScript language builds on elements and
ideas from several of the great programming languages. The syntax most closely
resembles that of the programming language FORTH. It incorporates a postfix

notation in which operators are preceded by their operands. The number of spe-
cial characters is small and there are no reserved words.

Note: Although the number of built-in operators is large, the names that represent

operators are not reserved by the language. A PostScript program may change the
meanings of operator names.

The data model includes elements, such as numbers, strings, and arrays, that are
found in many modern programming languages. It also includes the ability to
treat programs as data and to monitor and control many aspects of the language's
execution state; these notions are derived from programming languages such as
LISP.

The PostScript language is relatively simple. It derives its power from the ability
to combine these features in unlimited ways without arbitrary restrictions.
Though you may seldom fully exploit this power, you can design sophisticated

graphical applications that would otherwise be difficult or impossible.

Because this is a reference book and not a tutorial, this chapter describes each as-
pect of the language systematically and thoroughly before moving on to the next.

24

I
Language l I CHAPTER 3

It begins with a brief overview of the PostScript interpreter. The following sec-
tions detail the syntax, data types, execution semantics, memory organization,
and general-purpose operators of the PostScript language (excluding those that

deal with graphics and fonts). The final sections cover file input and output,
named resources, function dictionaries, errors, how the interpreter evaluates

name objects, and details on filtered files and binary encoding.

3.1 Interpreter

The PostScript interpreter executes the PostScript language according to the rules
in this chapter. These rules determine the order in which operations are carried
out and how the pieces of a PostScript program fit together to produce the de-

sired results.

The interpreter manipulates entities called PostScript objects. Some objects are

data, such as numbers, boolean values, strings, and arrays. Other objects are ele-
ments of programs to be executed, such as names, operators, and procedures.
However, there is not a distinction between data and programs; any PostScript
object may be treated as data or be executed as part of a program.

The interpreter operates by executing a sequence of objects. The effect of exe-
cuting a particular object depends on that object's type, attributes, and value. For
example, executing a number object causes the interpreter to push a copy of that
object on the operand stack (to be described shortly). Executing a name object
causes the interpreter to look up the name in a dictionary, fetch the associated
value, and execute it. Executing an operator object causes the interpreter to
perform a built-in action, such as adding two numbers or painting characters in

raster memory.

The objects to be executed by the interpreter come from two principal sources:

• A character stream may be scanned according to the syntax rules of the Post-
Script language, producing a sequence of new objects. As each object is
scanned, it is immediately executed. The character stream may come from an
external source, such as a file or a communication channel, or it may come

from a string object previously stored in the PostScript interpreter's memory.

• Objects previously stored in an array in memory may be executed in sequence.
Such an array is known as a procedure.

i 3.2
25

I
Syntax I

The interpreter can switch back and forth between executing a procedure and
scanning a character stream. For example, if the interpreter encounters a name in
a character stream, it executes that name by looking it up in a dictionary and re-
trieving the associated value. If that value is a procedure object, the interpreter
suspends scanning the character stream and begins executing the objects in the
procedure. When it reaches the end of the procedure, it resumes scanning the
character stream where it left off. The interpreter maintains an execution stack for
remembering all of its suspended execution contexts.

3.2 Syntax

As the interpreter scans the text of a PostScript program, it creates various types

of PostScript objects, such as numbers, strings, and procedures. This section dis-
cusses only the syntactic representation of such objects. Their internal representa-
tion and behavior are covered in Section 3.3, "Data Types and Objects."

There are three encodings for the PostScript language: ASCII, binary token, and

binary object sequence. The ASCII encoding is preferred for expository purposes
(such as this book), for archiving documents, and for transmission via communi-
cations facilities, because it is easy to read and does not rely on any special charac-
ters that might be reserved for communications use. The two binary encodings
are usable in controlled environments to improve the efficiency of representation
or execution; they are intended exclusively for machine generation. Detailed in-

formation on the binary encodings is provided in Section 3.14, "Binary Encoding
Details."

3.2.1 Scanner

The PostScript language differs from most other programming languages in that
it does not have any syntactic entity for a "program," nor is it necessary for an en-
tire "program" to exist in one place at one time. There is no notion of "reading in"

a program before executing it. Instead, the PostScript interpreter consumes a pro-
gram by reading and executing one syntactic entity at a time. From the interpret-

er's point of view, the program has no permanent existence. Execution of the

program may have side effects in the interpreter's memory or elsewhere. These
side effects may include the creation of procedure objects in memory that are in-
tended to be invoked later in the program; their execution is deferred.

26
I CHAPTER 3 i

Language I

It is not correct to think that the PostScript interpreter "executes" the character

stream directly. Rather, a scanner groups characters into tokens according to the
PostScript language syntax rules. It then assembles one or more tokens to create a
PostScript object—in other words, a data value in the interpreter's memory.

Finally, the interpreter executes the object.

For example, when the scanner encounters a group of consecutive digits sur-
rounded by spaces or other separators, it assembles the digits into a token and

then converts the token into a number object represented internally as a binary
integer. The interpreter then executes this number object; in this case, it pushes a

copy of the object on the operand stack.

3.2.2 ASCII Encoding

The standard character set for ASCII-encoded PostScript programs is the visible
printable subset of the ASCII character set, plus characters that appear as "white
space," such as space, tab, and newline characters. ASCII is the American Stan-
dard Code for Information Interchange, a widely used convention for encoding
characters as binary numbers. ASCII encoding does not prohibit the use of char-
acters outside this set, but such use is not recommended, because it impairs port-
ability and may make transmission and storage of PostScript programs more

difficult.

Note: Control characters are often usurped by communications functions. Control
codes are device-dependent—not part of the PostScript language. For example, the

serial communication protocol supported by many products uses the Control-D
character as an end-of-file indication. In such cases, Control-D is a communications
function and should not be part of a PostScript program.

White-space characters (Table 3.1) separate syntactic constructs such as names
and numbers from each other. The interpreter treats any number of consecutive
white-space characters as if there were just one. All white-space characters are

equivalent, except in comments and strings.

The characters carriage return (CR) and line feed (LF) are also called newline

characters. The combination of a carriage return followed immediately by a line

feed is treated as one newline.

I 3 . 2
27

Syntax

TABLE 3.1 White-space characters

OCTAL HEXADECIMAL DECIMAL NAME

000 00 0 Null (nul)

011 09 9 Tab (tab)

012 OA 10 Line feed (LF)

014 OC 12 Form feed (FF)

015 OD 13 Carriage return (CR)

040 20 32 Space (SP)

The characters (,), <, >, (,), {,), I, and % are special. They delimit syntactic entities
such as strings, procedure bodies, name literals, and comments. Any of these
characters terminates the entity preceding it and is not included in the entity.

All characters besides the white-space characters and delimiters are referred to as
regular characters. These include nonprinting characters that are outside the rec-
ommended PostScript ASCII character set.

Comments

Any occurrence of the character % outside a string introduces a comment. The
comment consists of all characters between the % and the next newline or form
feed, including regular, delimiter, space, and tab characters.

The scanner ignores comments, treating each one as if it were a single white-
space character. That is, a comment separates the token preceding it from the one
following. Thus the ASCII-encoded program fragment

abc% comment (/%) blah blah blah

123

is treated by the scanner as just two tokens: abc and 123.

I CHAPTER 3
28

l
Language I

Numbers

Numbers in the PostScript language include:

• Signed integers, such as

123 —98 43445 0 +17

• Real numbers, such as

—.002 34.5 —3.62 123.6e10 1.0E-5 1E6 —1. 0.0

• Radix numbers, such as

8#1777 16#FFFE 2#1000

An integer consists of an optional sign followed by one or more decimal digits.

The number is interpreted as a signed decimal integer and is converted to an inte-
ger object. If it exceeds the implementation limit for integers, it is converted to a

real object. (See Appendix B for implementation limits.)

A real number consists of an optional sign and one or more decimal digits, with
an embedded period (decimal point), a trailing exponent, or both. The exponent,
if present, consists of the letter E or e followed by an optional sign and one or
more decimal digits. The number is interpreted as a real number and is converted
to a real (floating-point) object. If it exceeds the implementation limit for real

numbers, a limitcheck error occurs.

A radix number takes the form base#number, where base is a decimal integer in
the range 2 through 36. number is interpreted in this base; it must consist of digits
ranging from 0 to base — 1. Digits greater than 9 are represented by the letters A
through Z (or a through z). The number is treated as an unsigned integer and is
converted to an integer object having the same twos-complement binary repre-

sentation. This notation is intended for specifying integers in a nondecimal radix,
such as binary, octal, or hexadecimal. If the number exceeds the implementation
limit for integers, a limitcheck error occurs.

l 3.2
29

I

Strings

There are three conventions for quoting a literal string object:

• As literal text, enclosed in (and)

• As hexadecimal data, enclosed in < and >

• As ASCII base-85 data, enclosed in <— and —> (LanguageLevel 2)

Literal Text Strings

Syntax I

A literal text string consists of an arbitrary number of characters enclosed in

(and). Any characters may appear in the string other than (,), and \, which must
be treated specially. Balanced pairs of parentheses in the string require no special
treatment.

The following lines show several valid strings:

(This is a string)

(Strings may contain newlines

and such.)

(Strings may contain special characters 18)A% and

balanced parentheses () (and so on).)

(The following is an empty string.)

0

(It has 0 (zero) length.)

Within a text string, the \ (backslash) character is treated as an "escape" for vari-

ous purposes, such as including newline characters, unbalanced parentheses, and
the \ character itself in the string. The character immediately following the \ de-
termines its precise interpretation.

\n line feed (LF)

\r carriage return (CR)
\t horizontal tab

\b backspace
\f form feed

\\ backslash

\(left parenthesis
\) right parenthesis

\ddd character code ddd (octal)

I CHAPTER 3
30

Language I

If the character following the \ is not in the preceding list, the scanner ignores the
\ If the \ is followed immediately by a newline (CR, LF, or CR-LF pair), the scan-

ner ignores both the initial \ and the newline; this breaks a string into multiple
lines without including the newline character as part of the string, as in the fol-

lowing example:

(These \

two strings \

are the same.)

(These two strings are the same.)

But if a newline appears without a preceding \, the result is equivalent to \n. For

example:

(This string has a newline at the end of it.

(So does this one.\n)

For more information about end-of-line conventions, see Section 3.8, "File Input

and Output."

The \ddd form may be used to include any 8-bit character constant in a string.

One, two, or three octal digits may be specified, with high-order overflow ig-

nored. This notation is preferred for specifying a character outside the recom-
mended ASCII character set for the PostScript language, since the notation itself
stays within the standard set and thereby avoids possible difficulties in transmit-
ting or storing the text of the program. It is recommended that three octal digits
always be used, with leading zeros as needed, to prevent ambiguity. The string

(\0053), for example, contains two characters—an ASCII 5 (Control-E) followed
by the digit 3—whereas the strings (\53) and (\053) contain one character, the
ASCII character whose code is octal 53 (plus sign).

Hexadecimal Strings

A hexadecimal string consists of a sequence of hexadecimal digits (0-9 and either
A—F or a—f) enclosed within < and >. Each pair of hexadecimal digits defines one

character of the string. White-space characters are ignored. If a hexadecimal
string contains characters outside the allowed character set, a syntaxerror occurs.

Hexadecimal strings are useful for including arbitrary binary data as literal text.

I 3.2
31

I Syntax 1

If the final digit of a given hexadecimal string is missing—in other words, if there
is an odd number of digits—the final digit is assumed to be 0. For example,
<901fa3> is a 3-character string containing the characters whose hexadecimal

codes are 90, 1f, and a3, but <901fa> is a 3-character string containing the charac-
ters whose hexadecimal codes are 90, 1f, and a0.

ASCII Base-85 Strings

An ASCII base-85 string (LanguageLevel 2) consists of a sequence of printable

ASCII characters enclosed in <— and —>. This notation represents arbitrary bi-
nary data using an encoding technique that produces a 4:5 expansion as opposed
to the 1:2 expansion for hexadecimal. The ASCII base-85 encoding algorithm is

described under "ASCII85Encode Filter" on page 131. If an ASCII base-85 string
is malformed, a syntaxerror occurs.

Names

Any token that consists entirely of regular characters and cannot be interpreted as
a number is treated as a name object (more precisely, an executable name). All
characters except delimiters and white-space characters can appear in names, in-
cluding characters ordinarily considered to be punctuation.

The following are examples of valid names:

abc Offset $$ 23A 13-456 a.b $MyDict @pattern

Use care when choosing names that begin with digits. For example, while 23A is a
valid name, 23E1 is a real number, and 23#1 is a radix number token that repre-
sents an integer.

A / (slash—not backslash) introduces a literal name. The slash is not part of the

name itself, but is a prefix indicating that the following sequence of zero or more
regular characters constitutes a literal name object. There can be no white-space

characters between the / and the name. The characters // (two slashes) introduce

an immediately evaluated name. The important properties and uses of names and
the distinction between executable and literal names are described in Section 3.3,
"Data Types and Objects"; immediately evaluated names are discussed in
Section 3.12.2, "Immediately Evaluated Names."

Note: The token / (a slash followed by no regular characters) is a valid literal name.

I CHAPTER 3
32

i
Language l

Arrays

The characters [and] are self-delimiting tokens that specify the construction of

an array. For example, the program fragment

[123 /abc (xyz))

results in the construction of an array object containing the integer object 123,

the literal name object abc, and the string object xyz. Each token within the

brackets is executed in turn.

The [and] characters are special syntax for names that, when executed, invoke
PostScript operators that collect objects and construct an array containing them.
Thus the example

[123 ¡abc (xyz)]

contains these five tokens:

• The name object [

• The integer object 123

• The literal name object abc

• The string object xyz

• The name object]

When the example is executed, a sixth object (the array) results from executing

the [and] name objects.

Procedures

The special characters 1 and 1 delimit an executable array, otherwise known as a

procedure. The syntax is superficially similar to that for the array construction op-
erators [and I; however, the semantics are entirely different and arise as a result of
scanning the procedure rather than executing it.

Scanning the program fragment

{add 2 divl

I 3.2
33

I Syntax I

produces a single procedure object that contains the name object add, the integer
object 2, and the name object div. When the scanner encounters the initial {, it
continues scanning and creating objects, but the interpreter does not execute
them. When the scanner encounters the matching 1, it puts all the objects created
since the initial { into a new executable array (procedure) object.

The interpreter does not execute a procedure immediately, but treats it as data; it
pushes the procedure on the operand stack. Only when the procedure is explicitly
invoked (by means yet to be described) will it be executed. Execution of the pro-

cedure—and of all objects within the procedure, including any embedded proce-
dures—has been deferred. The matter of immediate versus deferred execution is
discussed in Section 3.5, "Execution."

The procedure object created by { and 1 is either an array or a packed array,
according to the current setting of a mode switch. The distinction between these
array types is discussed in Section 3.3, "Data Types and Objects!'

Dictionaries

The special character sequences « and » (LanguageLevel 2) are self-delimiting
tokens that denote the construction of a dictionary, much the same as [and] de-
note the construction of an array. They are intended to be used as follows:

« key, value, key2value2 ... key„ valuer, »

This creates a dictionary containing the bracketed key-value pairs and pushes it

on the operand stack. Dictionaries are introduced in Section 3.3, "Data Types and
Objects!'

« and » are merely special names for operators that, when executed, cause a
dictionary to be constructed. They are like the [and] array construction opera-
tors, but unlike the { and 1 delimiters for procedure literals.

The « and » tokens are self-delimiting, so ' they need not be surrounded by
white-space characters or other delimiters. Do not confuse these tokens with
< and >, which delimit a hexadecimal string literal, or <— and —>, which delimit
an ASCII base-85 string literal. The « and » tokens are objects in their own
right (specifically, name objects), whereas in < ... > and <— ... —> the delimiting
characters are merely punctuation for the enclosed literal string objects.

I CHAPTER 3
34

I
Language 1

3.3 Data Types and Objects

All data accessible to PostScript programs, including procedures that are part of
the programs themselves, exists in the form of objects. Objects are produced, ma-
nipulated, and consumed by the PostScript operators. They are also created by

the scanner and executed by the interpreter.

Each object has a type, some attributes, and a value. Objects contain their own dy-
namic types; that is, an object's type is a property of the object itself, not of where

it is stored or what it is called. Table 3.2 lists all the object types supported by the
PostScript language. Extensions to the language may introduce additional object

types. The distinction between simple and composite objects is explained below.

TABLE 3.2 Types of objects

SIMPLE OBJECTS COMPOSITE OBJECTS

boolean array

fontID dictionary

integer file

mark gstate (LanguageLevel 2)

name packedarray (LanguageLevel 2)

null save

operator string

real

3.3.1 Simple and Composite Objects

Objects of most types are simple, atomic entities. An atomic object is always con-
stant—a 2 is always a 2. There is no visible substructure in the object; the type, at-
tributes, and value are irrevocably bound together and cannot be changed.

However, objects of certain types indicated in Table 3.2 are composite. Their
values are separate from the objects themselves; for some types of composite ob-
ject, the values have internal substructure that is visible and can sometimes be

35
Data Types and Objects I

modified selectively. The details of the substructures are presented later in the de-
scriptions of these individual types.

An important distinction between simple and composite objects is the behavior
of operations that copy objects. Copy refers to any operation that transfers the
contents of an object from one place to another in the memory of the PostScript
interpreter. "Fetching" and "storing" objects are copying operations. It is possible
to derive a new object by copying an existing one, perhaps with modifications.

When a simple object is copied, all of its parts (type, attributes, and value) are
copied together. When a composite object is copied, the value is not copied; in-
stead, the original and copy objects share the same value. Consequently, any
changes made to the substructure of one object's value also appear as part of the
other object's value.

The sharing of composite objects' values in the PostScript language corresponds
to the use of pointers in system programming languages such as C and Pascal. In-
deed, the PostScript interpreter uses pointers to implement shared values: a com-
posite object contains a pointer to its value. However, the PostScript language
does not have any explicit notion of a pointer. It is better to think in terms of the
copying and sharing notions presented here.

The values of simple objects are contained in the objects themselves. The values
of composite objects reside in a special region of memory called virtual memory
or Vivl. Section 3.7, "Memory Management," describes the behavior of VM.

3.3.2 Attributes of Objects

In addition to type and value, each object has one or more attributes. These
attributes affect the behavior of the object when it is executed or when certain op-
erations are performed on it. They do not affect its behavior when it is treated
strictly as data; so, for example, two integers with the same value are considered
"equal" even if their attributes differ.

36
I CHAPTER 3

I
Language I

Literal and Executable

Every object is either literal or executable. This distinction comes into play when
the interpreter attempts to execute the object.

• If the object is literal, the interpreter treats it strictly as data and pushes it on
the operand stack for use as an operand of some subsequent operator.

• If the object is executable, the interpreter executes it.

What it means to execute an object depends on the object's type; this is described
in Section 3.5, "Execution!' For some object types, such as integers, execution
consists of pushing the object on the operand stack; the distinction between lit-
eral and executable integers is meaningless. But for other types, such as names,
operators, and arrays, execution consists of performing a different action.

• Executing an executable name causes it to be looked up in the current diction-
ary context and the associated value to be executed.

• Executing an executable operator causes some built-in action to be performed.

• Executing an executable array (otherwise known as a procedure) causes the ele-
ments of the array to be executed in turn.

As described in Section 3.2, "Syntax," some tokens produce literal objects and
some produce executable ones.

• Integer, real, and string constants are always literal objects.

• Names are literal if they are preceded by / and executable if they are not.

• The [and] operators, when executed, produce a literal array object with the en-
closed objects as elements. Likewise, « and » (LanguageLevel 2) produce a
literal dictionary object.

• { and } enclose an executable array or procedure.

Note: As mentioned above, it does not matter whether an object is literal or execut-
able when it is accessed as data, only when it is executed. However, referring to an
executable object by name often causes that object to be executed automatically; see
Section 3.5.5, "Execution of Specific Types." To avoid unintended behavior, it is best
to use the executable attribute only for objects that are meant to be executed, such as
procedures.

37

I
Data Types and Objects I

Access

The other attribute of an object is its access. Only composite objects have access
attributes, which restrict the set of operations that can be performed on the ob-
ject's value.

There are four types of access. In increasing order of restriction, they are:

1. Unlimited. Normally, objects have unlimited access: all operations defined for
that object are allowed. However, packed array objects always have read-only
(or even more restricted) access.

2. Read-only. An object with read-only access may not have its value written, but
may still be read or executed.

3. Execute-only. An object with execute-only access may not have its value either
read or written, but may still be executed by the PostScript interpreter.

4. None. An object with no access may not be operated on in any way by a Post-
Script program. Such objects are not of any direct use to PostScript programs,
but serve internal purposes that are not documented in this book.

The literal/executable distinction and the access attribute are entirely indepen-

dent, although there are combinations that are not of any practical use (for exam-
ple, a literal array that is execute-only).

With one exception, attributes are properties of an object itself and not of its
value. Two composite objects can share the same value but have different
literal/executable or access attributes. The exception is the dictionary type: a dic-
tionary's access attribute is a property of the value, so multiple dictionary objects
sharing the same value have the same access attribute.

3.3.3 Integer and Real Objects

The PostScript language provides two types of numeric object: integer and real.
Integer objects represent mathematical integers within a certain interval centered
at O. Real objects approximate mathematical real numbers within a much larger
interval, but with limited precision; they are implemented as floating-point num-
bers.

I CHAPTER 3
38

Language I

Most PostScript arithmetic and mathematical operators can be applied to num-
bers of both types. The interpreter performs automatic type conversion when
necessary. Some operators expect only integers or a subrange of the integers as
operands. There are operators to convert from one data type to another explicitly.
Throughout this book, number means an object whose type is either integer or

real.

The range and precision of numbers is limited by the internal representations
used in the machine on which the PostScript interpreter is running. Appendix B
gives these limits for typical implementations of the PostScript interpreter.

Note: The machine representation of integers is accessible to a PostScript program
through the bitwise operators. However, the representation of integers may depend
on the CPU architecture of the implementation. The machine representation of real
numbers is not accessible to PostScript programs.

3.3.4 Boolean Objects

The PostScript language provides boolean objects with values true and false for
use in conditional and logical expressions. The names true and false are associ-
ated with values of this type. Boolean objects are the results of the relational
(comparison) and logical operators. Various other operators return them as sta-
tus information. Boolean objects are mainly used as operands for the control op-
erators if and ifelse.

3.3.5 Array Objects

An array is a one-dimensional collection of objects accessed by a numeric index.
Unlike arrays in many other computer languages, PostScript arrays may be heter-
ogeneous; that is, an array's elements may be any combination of numbers,
strings, dictionaries, other arrays, or any other objects. A procedure is an array
that can be executed by the PostScript interpreter.

All arrays are indexed from 0, so an array of n elements has indices from 0
through n — 1. All accesses to arrays are bounds-checked, and a reference with an
out-of-bounds index results in a rangecheck error. The length of an array is sub-
ject to an implementation limit; see Appendix B.

39

i
Data Types and Objects I

The PostScript language directly supports only one-dimensional arrays. Arrays of
higher dimension can be constructed by using arrays as elements of arrays, nested
to any depth.

As discussed earlier, an array is a composite object. When an array object is cop-
ied, the value is not copied. Instead, the old and new objects share the same value.
Additionally, there is an operator (getinterval) that creates a new array object
whose value is a subinterval of an existing array; the old and new objects share
the array elements in that subinterval.

3.3.6 Packed Array Objects

A packed array is a more compact representation of an ordinary array, intended

primarily for use as a procedure. A packed array object is distinct from an ordi-
nary array object (it has type packedarray instead of array), but in most respects it
behaves the same as an ordinary array. Its principal distinguishing feature is that
it usually occupies much less space in memory (see Section B.2, "Virtual Memory
Use").

Throughout this book, any mention of a procedure may refer to either an execut-
able array or an executable packed array. The two types of array are not distin-
guishable when they are executed, only when they are treated as data. See the
introduction to the array operators in Section 3.6, "Overview of Basic Operators."

3.3.7 String Objects

A string is similar to an array, but its elements must be integers in the range 0 to
255. The string elements are not integer objects, but are stored in a more compact

format. However, the operators that access string elements accept or return ordi-
nary integer objects with values in the range 0 to 255. The length of a string is
subject to an implementation limit; see Appendix B.

String objects are conventionally used to hold text, one character per string

element. However, the PostScript language does not have a distinct "character"
syntax or data type and does not require that the integer elements of a string en-
code any particular character set. String objects may also be used to hold arbi-
trary binary data.

I CHAPTER 3
ao
I

Language l

To enhance program portability, strings appearing literally as part of a PostScript
program should be limited to characters from the printable ASCII character set,
with other characters inserted by means of the \ddd escape convention (see
Section 3.2.2, "ASCII Encoding"). ASCII text strings are fully portable; ASCII

base-85 text strings are fully portable among LanguageLevel 2 and
LanguageLevel 3 PostScript interpreters.

Like an array, a string is a composite object. Copying a string object or creating a
subinterval (substring) results in sharing the string's value.

3.3.8 Name Objects

A name is an atomic symbol uniquely defined by a sequence of characters. Names
serve the same purpose as "identifiers" in other programming languages: as tags

for variables, procedures, and so on. However, PostScript names are not just lan-
guage artifacts, but are first-class data objects, similar to "atoms" in LISP.

A name object is ordinarily created when the scanner encounters a PostScript to-
ken consisting entirely of regular characters, perhaps preceded by /, as described
in Section 3.2, "Syntax." However, a name may also be created by explicit conver-
sion from a string, so there is no restriction on the set of characters that can be
included in names. The length of a name, however, is subject to an implementa-
tion limit; see Appendix B.

Unlike a string, a name is a simple object not made up of other objects. Although
a name is defined by a sequence of characters, those characters are not "elements"

of the name. A name object, although logically simple, does have an invisible
"value" that occupies space in VM.

A name is unique. Any two name objects defined by the same sequence of charac-
ters are identical copies of each other. Name equality is based on an exact match
between the corresponding characters defining each name. The case of letters
must match, so the names A and a are different. Literal and executable objects can
be equal, however.

The interpreter can efficiently determine whether two existing name objects are
equal without comparing the characters that define the names. This makes names

useful as keys in dictionaries.

41
Data Types and Objects I

Names do not have values, unlike variable or procedure names in other program-
ming languages. However, names can be associated with values in dictionaries.

3.3.9 Dictionary Objects

A dictionary is an associative table whose entries are pairs of PostScript objects.
The first element of an entry is the key and the second element is the value. The
PostScript language includes operators that insert an entry into a dictionary, look
up a key and fetch the associated value, and perform various other operations.

Keys are normally name objects. The PostScript syntax and the interpreter are
optimized for this most common case. However, a key may be any PostScript ob-
ject except null (defined later). If you attempt to use a string as a key, the Post-
Script interpreter will first convert the string to a name object; thus, strings and
names are interchangeable when used as keys in dictionaries. Consequently, a string
used as a dictionary key is subject to the implementation limit on the length of a
name.

A dictionary has the capacity to hold a certain maximum number of entries; the
capacity is specified when the dictionary is created. PostScript interpreters of dif-

ferent LanguageLevels differ in their behavior when a program attempts to insert
an entry into a dictionary that is full: in LanguageLevel 1, a dictfull error occurs;
in LanguageLevels 2 and 3, the interpreter enlarges the dictionary automatically.
The length of a dictionary is also subject to an implementation limit; see
Appendix B.

Dictionaries ordinarily associate the names and values of a program's compo-
nents, such as variables and procedures. This association corresponds to the con-
ventional use of identifiers in other programming languages. But there are many
other uses for dictionaries. For example, a PostScript font program contains a

dictionary that associates the names of characters with the procedures for draw-
ing those characters' shapes (see Chapter 5).

There are three primary methods for accessing dictionaries:

• Operators exist to access a specific dictionary supplied as an operand.

• There is a current dictionary and a set of operators to access it implicitly.

• The interpreter automatically looks up executable names it encounters in the
program being executed.

I CHAPTER 3
42

Language I

The interpreter maintains a dictionary stack defining the current dynamic name
space. Dictionaries may be pushed on and popped off the dictionary stack at will.

The topmost dictionary on the stack is the current dictionary.

When the interpreter looks up a key implicitly—for example, when it executes a
name object—it searches for the key in the dictionaries on the dictionary stack. It
searches first in the topmost dictionary, then in successively lower dictionaries on
the dictionary stack, until it either finds the key or exhausts the dictionary stack.

In LanguageLevel 1, there are two built-in dictionaries permanently on the dic-
tionary stack; they are called systemdict and userdict. In LanguageLevels 2 and 3,

there are three dictionaries: systemdict, globaldict, and userdict.

• systemdict is a read-only dictionary that associates the names of all the Post-
Script operators (those defined in this book) with their values (the built-in ac-
tions that implement them). It also contains other definitions, including the
standard local and global dictionaries listed in Section 3.7.5, "Standard and
User-Defined Dictionaries," as well as various named constants such as true

and false.

• globaldict (LanguageLevel 2) is a writeable dictionary in global VM. This is ex-
plained in Section 3.7.2, "Local and Global VM."

• userdict is a writeable dictionary in local VM. It is the default modifiable nam-
ing environment normally used by PostScript programs.

userdict is the topmost of the permanent dictionaries on the dictionary stack.
The def operator puts definitions there unless the program has pushed some oth-
er dictionary on the dictionary stack. Applications can and should create their
own dictionaries rather than put things in userdict.

A dictionary is a composite object. Copying a dictionary object does not copy the

dictionary's contents. Instead, the contents are shared.

3.3.10 Operator Objects

An operator object represents one of the PostScript language's built-in actions.
When the object is executed, its built-in action is invoked. Much of this book is
devoted to describing the semantics of the various operators.

43
Data Types and Objects

Operators have names. Most operators are associated with names in systemdict:
the names are the keys and the operators are the associated values. When the in-
terpreter executes one of these names, it looks up the name in the context of the

dictionary stack. Unless the name has been defined in some dictionary higher on
the dictionary stack, the interpreter finds its definition in systemdict, fetches the
associated value (the operator object itself), and executes it.

All standard operators are defined in systemdict. However, an application that
tests whether an operator is defined should not use the known operator to deter-

mine whether the operator is in systemdict; it should instead use the where oper-
ator to check all dictionaries on the dictionary stack. Using where enables proper
handling of operator emulations (see Appendix D).

Note: There are some special internal PostScript operators whose names begin with
an at sign (@). These operators are not officially part of the PostScript language and

are not defined in systemdict. They may appear as an "offending command" in error
messages.

There is nothing special about an operator name, such as add, that distinguishes
it as an operator. Rather, the name add is associated in systemdict with the oper-
ator for performing addition, and execution of the operator causes the addition

to occur. Thus the name add is not a "reserved word," as it might be in other pro-
gramming languages. Its meaning can be changed by a PostScript program.

Throughout this book, the notation add means "the operator object associated
with the name add in systemdict" or, occasionally, in some other dictionary.

3.3.11 File Objects

Afile is a readable or writeable stream of characters transferred between the Post-
Script interpreter and its environment. The characters in a file may be stored per-
manently—in a disk file, for instance—or may be generated dynamically and
transferred via a communication channel.

Afile object represents a file. There are operators to open a file and create a file ob-

ject for it. Other operators access an open file to read, write, and process charac-
ters in various ways—as strings, as PostScript tokens, as binary data represented
in hexadecimal, and so on.

44
I CHAPTER 3 Language I

Standard input and output files are always available to a PostScript program. The
standard input file is the usual source of programs to be interpreted; the standard
output file is the usual destination of such things as error and status messages.

Although a file object does not have components visible at the PostScript lan-
guage level, it is composite in the sense that all copies of a file object share the
same underlying file as their value. If a file operator has a side effect on the under-
lying file, such as closing it or changing the current position in the stream, all file

objects sharing the file are affected.

The properties of files and the operations on them are described in more detail in

Section 3.8, "File Input and Output."

3.3.12 Mark Objects

A mark is a special object used to denote a position on the operand stack. This

use is described in the presentation of stack and array operators in Section 3.6,
"Overview of Basic Operators." There is only one value of type mark, created by
invoking the operator mark, L, or «. Mark objects are not legal operands for
most operators. They are legal operands for I, », counttoma rk, cleartomark, and
a few generic operators such as pop and type.

3.3.13 Null Objects

The PostScript interpreter uses null objects to fill empty or uninitialized positions
in composite objects when they are created. There is only one value of type null;

the name null is associated with a null object in systemdict. Null objects are not
legal operands for most operators.

3.3.14 Save Objects

Save objects represent snapshots of the state of the PostScript interpreter's memo-

ry. They are created and manipulated by the save and restore operators, intro-
duced in Section 3.7.3, "Save and Restore."

45

I
Stacks 1

3.3.15 Other Object Types

Fond') objects are special objects used in the construction of fonts; see
Section 5.2, "Font Dictionaries."

A gstate object (LanguageLevel 2) represents an entire graphics state; see
Section 4.2, "Graphics State."

3.4 Stacks

The PostScript interpreter manages five stacks representing the execution state of

a PostScript program. Three of them—the operand, dictionary, and execution

stacks—are described here; the other two—the graphics state stack and clipping
path stack—are presented in Chapter 4. Stacks are "last in, first out" (LIFO) data
structures. In this book, "the stack" with no qualifier always means the operand
stack.

• The operand stack holds arbitrary PostScript objects that are the operands and
results of PostScript operators being executed. The interpreter pushes objects
on the operand stack when it encounters them as literal data in a program be-
ing executed. When an operator requires one or more operands, it obtains
them by popping them off the top of the operand stack. When an operator re-

turns one or more results, it does so by pushing them on the operand stack

• The dictionary stack holds only dictionary objects. The current set of dictionar-

ies on the dictionary stack defines the environment for all implicit name

searches, such as those that occur when the interpreter encounters an execut-
able name. The role of the dictionary stack is introduced in Section 3.3, "Data
Types and Objects," and is further explained in Section 3.5, "Execution."

• The execution stack holds executable objects (mainly procedures and files) that

are in intermediate stages of execution. At any point in the execution of a Post-
Script program, this stack represents the program's call stack. Whenever the in-
terpreter suspends execution of an object to execute some other object, it

pushes the new object on the execution stack When the interpreter finishes ex-
ecuting an object, it pops that object off the execution stack and resumes exe-
cuting the suspended object beneath it.

I CHAPTER 3
46

Language I

The three stacks are independent and there are different ways to access each of

them:

• The operand stack is directly under the control of the PostScript program being
executed. Objects may be pushed and popped arbitrarily by various operators.

• The dictionary stack is also under PostScript program control, but it can hold
only dictionaries. The bottom three dictionaries on the stack—systemdict,
globaldict, and userdict—(or the bottom two, in LanguageLevel 1) cannot be
popped off. The only operators that can alter the dictionary stack are begin,

end, and cleardictstack.

• The execution stack is under the control of the PostScript interpreter. It can be
read but not directly modified by a PostScript program.

When an object is pushed on a stack, the object is copied onto the stack from

wherever it was obtained; however, in the case of a composite object (such as an
array, a string, or a dictionary), the object's value is not copied onto the stack, but
rather is shared with the original object. Similarly, when a composite object is
popped off a stack and put somewhere, only the object itself is moved, not its

value. See Section 3.3, "Data Types and Objects," for more details.

The maximum capacity of stacks may be limited; see Appendices B and C.

3.5 Execution

Execution semantics are different for each of the various object types. Also, exe-

cution can be either immediate, occurring as soon as the object is created by the

scanner, or deferred to some later time.

3.5.1 Immediate Execution

Some example PostScript program fragments will help clarify the concept of exe-

cution. Example 3.1 illustrates the immediate execution of a few operators and
operands to perform some simple arithmetic.

Example 3.1

40 60 add 2 div

47
Execution I

The interpreter first encounters the literal integer object 40 and pushes it on the
operand stack. Then it pushes the integer object 60 on the operand stack.

Next, it encounters the executable name object add, which it looks up in the envi-
ronment of the current dictionary stack. Unless add has been redefined else-

where, the interpreter finds it associated with an operator object, which it

executes. This invokes a built-in function that pops the two integer objects off the
operand stack, adds them together, and pushes the result (a new integer object
whose value is 100) back on the operand stack.

The rest of the program fragment is executed similarly. The interpreter pushes

the integer 2 on the operand stack and then executes the name div. The div oper-
ator pops two operands off the stack (the integers whose values are 2 and 100),

divides the second-to-top one by the top one (100 divided by 2, in this case), and
pushes the real result 50.0 on the stack.

The source of the objects being executed by the PostScript interpreter does not

matter. They may have been contained within an array or scanned in from a char-
acter stream. Executing a sequence of objects produces the same result regardless
of where the objects come from.

3.5.2 Operand Order

In Example 3.1, 40 is the first and 60 is the second operand of the add operator.

That is, objects are referred to according to the order in which they are pushed on
the operand stack This is the reverse of the order in which they are popped off by
the add operator. Similarly, the result pushed by the add operator is the first op-
erand of the div operator, and 2 is its second operand.

The same terminology applies to the results of an operator. If an operator pushes

more than one object on the operand stack, the first object pushed is the first
result. This order corresponds to the usual left-to-right order of appearance of
operands in a PostScript program.

3.5.3 Deferred Execution

The first line of Example 3.2 defines a procedure named average that computes
the average of two numbers. The second line applies that procedure to the inte-
gers 40 and 60, producing the same result as Example 3.1.

48
i

Language I I CHAPTER 3

Example 3.2

/average { add 2 div} def

40 60 average

The interpreter first encounters the literal name average. Recall from Section 3.2,
"Syntax," that / introduces a literal name. The interpreter pushes this object on

the operand stack, as it would any object having the literal attribute.

Next, the interpreter encounters the executable array (add 2 div). Recall that
{ and } enclose a procedure (an executable array or executable packed array object)
that is produced by the scanner. This procedure contains three elements: the exe-

cutable name add, the literal integer 2, and the executable name div. The inter-

preter has not encountered these elements yet.

Here is what the interpreter does:

1. Upon encountering this procedure object, the interpreter pushes it on the
operand stack, even though the object has the executable attribute. This is ex-

plained shortly.

2. The interpreter then encounters the executable name def. Looking up this
name in the current dictionary stack, it finds def to be associated in
systemdict with an operator object, which it invokes.

3. The def operator pops two objects off the operand stack (the procedure
{add 2 div} and the name average). It enters this pair into the current diction-
ary (most likely userdict), creating a new association having the name average

as its key and the procedure {add 2 div} as its value.

4. The interpreter pushes the integer objects 40 and 60 on the operand stack,

then encounters the executable name average.

5. It looks up average in the current dictionary stack, finds it to be associated
with the procedure {add 2 div}, and executes that procedure. In this case, exe-
cution of the array object consists of executing the elements of the array—the
objects add, 2, and div—in sequence. This has the same effect as executing
those objects directly. It produces the same result: the real object 50.0.

Why did the interpreter treat the procedure as data in the first line of the example
but execute it in the second, despite the procedure having the executable attribute
in both cases? There is a special rule that determines this behavior: An executable
array or packed array encountered directly by the interpreter is treated as data

3.5 Execution I
49

(pushed on the operand stack), but an executable array or packed array encoun-
tered indirectly—as a result of executing some other object, such as a name or an
operator—is invoked as a procedure.

This rule reflects how procedures are ordinarily used. Procedures appearing di-
rectly (either as part of a program being read from a file or as part of some larger
procedure in memory) are usually part of a definition or of a construct, such as a
conditional, that operates on the procedure explicitly. But procedures obtained
indirectly—for example, as a result of looking up a name—are usually intended
to be executed. A PostScript program can override these semantics when
necessary.

3.5.4 Control Constructs

In the PostScript language, control constructs such as conditionals and iterations
are specified by means of operators that take procedures as operands. Example

3.3 computes the maximum of the values associated with the names a and b, as in
the steps that follow.

Example 3.3

a bgt { a} { b} ifelse

1. The interpreter encounters the executable names a and b in turn and looks

them up. Assume both names are associated with numbers. Executing the
numbers causes them to be pushed on the operand stack.

2. The gt (greater than) operator removes two operands from the stack and com-
pares them. If the first operand is greater than the second, it pushes the bool-
ean value true. Otherwise, it pushes false.

3. The interpreter now encounters the procedure objects { a} and {b}, which it
pushes on the operand stack.

4. The ifelse operator takes three operands: a boolean object and two procedures.

If the boolean object's value is true, ifelse causes the first procedure to be exe-

cuted; otherwise, it causes the second procedure to be executed. All three oper-
ands are removed from the operand stack before the selected procedure is
executed.

In this example, each procedure consists of a single element that is an executable
name (either a or b). The interpreter looks up this name and, since it is associated

50
Language I I CHAPTER 3

with a number, pushes that number on the operand stack. So the result of execut-
ing the entire program fragment is to push on the operand stack the greater of the

values associated with a and b.

3.5.5 Execution of Specific Types

An object with the literal attribute is always treated as data—pushed on the oper-

and stack by the interpreter—regardless of its type. Even operator objects are
treated this way if they have the literal attribute.

For many objects, executing them has the same effect as treating them as data.

This is true of integer, real, boolean, dictionary, mark, save, gstate, and fontID
objects. So the distinction between literal and executable objects of these types is

meaningless. The following descriptions apply only to objects having the execut-

able attribute.

• An executable array or executable packed array (procedure) object is pushed on
the operand stack if it is encountered directly by the interpreter. If it is invoked
indirectly as a result of executing some other object (a name or an operator), it
is called instead. The interpreter calls a procedure by pushing it on the execu-

tion stack and then executing the array elements in turn. When the interpreter
reaches the end of the procedure, it pops the procedure object off the execution

stack. (Actually, it pops the procedure object when there is one element
remaining and then pushes that element; this permits unlimited depth of "tail
recursion" without overflowing the execution stack.)

• An executable string object is pushed on the execution stack. The interpreter
then uses the string as a source of characters to be converted to tokens and
interpreted according to the PostScript syntax rules. This continues until the

interpreter reaches the end of the string. Then it pops the string object from the

execution stack.

• An executable file object is treated much the same as a string: The interpreter
pushes it on the execution stack. It reads the characters of the file and interprets
them as PostScript tokens until it encounters end-of-file. Then it closes the file
and pops the file object from the execution stack. See Section 3.8, "File Input

and Output."

• An executable name object is looked up in the environment of the current dic-
tionary stack and its associated value is executed. The interpreter looks first in
the top dictionary on the dictionary stack and then in other dictionaries suc-

I 3.6
51

Overview of Basic Operators

cessively lower on the stack. If it finds the name as a key in some dictionary, it
executes the associated value. To do that, it examines the value's type and exe-
cutable attribute and performs the appropriate action described in this section.
Note that if the value is a procedure, the interpreter executes it. If the interpret-
er fails to find the name in any dictionary on the dictionary stack, an undefined
error occurs.

• An executable operator object causes the interpreter to perform one of the built-
in operations described in this book.

• An executable null object causes the interpreter to perform no action. In partic-
ular, it does not push the object on the operand stack.

3.6 Overview of Basic Operators

This is an overview of the general-purpose PostScript operators, excluding all op-
erators that deal with graphics and fonts, which are described in later chapters.
The information here is insufficient for actual programming; it is intended only
to acquaint you with the available facilities. For complete information about any

particular operator, you should refer to the operator's detailed description in
Chapter 8.

3.6.1 Stack Operators

The operand stack is the PostScript interpreter's mechanism for passing argu-
ments to operators and for gathering results from operators. It is introduced in
Section 3.4, "Stacks?'

There are various operators that rearrange or manipulate the objects on the oper-
and stack Such rearrangement is often required when the results of some opera-
tors are to be used as arguments to other operators that require their operands in
a different order. These operators manipulate only the objects themselves; they
do not copy the values of composite objects.

• dup duplicates an object.

• exch exchanges the top two elements of the stack.

• pop removes the top element from the stack.

• copy duplicates portions of the operand stack.

[CHAPTER 3
52

-L
Language I

• roll treats a portion of the stack as a circular queue.

• index accesses the stack as if it were an indexable array.

• mark marks a position on the stack.

• clear clears the stack.

• count counts the number of elements on the stack.

• counttomark counts the elements above the highest mark. This is used prima-
rily for array construction (described later), but has other applications as well.

• cleartomark removes all elements above the highest mark and then removes

the mark itself.

3.6.2 Arithmetic and Mathematical Operators

The PostScript language includes a conventional complement of arithmetic and

mathematical operators. In general, these operators accept either integer or real
number objects as operands. They produce either integers or real numbers as
results, depending on the types of the operands and the magnitude of the results.

If the result of an operation is mathematically meaningless or cannot be repre-
sented as a real number, an undeflnedresult error occurs.

• add, sub, mul, div, idiv, and mod are arithmetic operators that take two argu-

ments.

• abs, neg, ceiling, floor, round, and truncate are arithmetic operators that take

one argument.

• sqrt, exp. In, log, sin, cos, and atan are mathematical and trigonometric func-

tions.

• rand, srand, and rrand access a pseudo-random number generator.

3.6.3 Array, Packed Array, Dictionary, and String Operators

A number of operators are polymorphic: they may be applied to operands of sev-
eral different types and their precise functions depend on the types of the oper-

ands. Except where indicated otherwise, the operators listed below apply to any of

the following types of composite objects: arrays, packed arrays, dictionaries, and

strings.

I 3.6
53

I
Overview of Basic Operators 1

• get takes a composite object and an index (or a key, in the case of a dictionary)
and returns a single element of the object.

• put stores a single element in an array, dictionary, or string. This operator does
not apply to packed array objects, because they always have read-only (or even
more restrictive) access.

• copy copies the value of a composite object to another composite object of the
same type, replacing the second object's former value. This is different from
merely copying the object. See Section 3.3.1, "Simple and Composite Objects"
for a discussion of copying objects.

• length returns the number of elements in a composite object.

• forall accesses all of the elements of a composite object in sequence, calling a
procedure for each one.

• geti n terva I creates a new object that shares a subinterval of an array, a packed
array, or a string. This operator does not apply to dictionary objects.

• putinterval overwrites a subinterval of one array or string with the contents of
another. This operator does not apply to dictionary or packed array objects, al-

though it can overwrite a subinterval of an array with the contents of a packed
array.

In addition to the polymorphic operators, there are operators that apply to only
one of the array, packed array, dictionary, and string types. For each type, there is
an operator (array, packedarray, dict, string) that creates a new object of that
type and a specified length. These four operators explicitly create new composite
object values, consuming virtual memory (VM) resources (see Section 3.7.1,

"Virtual Memory"). Most other operators read and write the values of composite
objects but do not create new ones. Operators that return composite results usu-
ally require an operand that is the composite object into which the result values
are to be stored. The operators are organized this way to give programmers maxi-
mum control over consumption of VM.

Array, packed array, and string objects have a fixed length that is specified when
the object is created. In LanguageLevel 1, dictionary objects also have this proper-
ty. In LanguageLevels 2 and 3, a dictionary's capacity can grow beyond its initial
allocation.

I CHAPTER 3
54

Language I

The following operators apply only to arrays and (sometimes) packed arrays:

• abad and astore transfer all the elements of an array to or from the operand

stack in a single operation. abad may also be applied to a packed array.

• The array construction operators [and] combine to produce a new array object
whose elements are the objects appearing between the brackets. The [operator,
which is a synonym for mark, pushes a mark object on the operand stack. Exe-

cution of the program fragment between the [and the] causes zero or more ob-
jects to be pushed on the operand stack. Finally, the] operator counts the
number of objects above the mark on the stack, creates an array of that length,
stores the elements from the stack in the array, removes the mark from the

stack, and pushes the array on the stack.

• setpacking and currentpacking (both LanguageLevel 2) control a mode setting

that determines the type of procedure objects the scanner generates when it en-
counters a sequence of tokens enclosed in [and I. If the array packing mode is
true, the scanner produces packed arrays; if the mode is false, it produces ordi-
nary arrays. The default value is false.

• Packed array objects always have read-only (or even more restricted) access, so
the put, putinterval, and astore operations are not allowed on them. Accessing

arbitrary elements of a packed array object can be quite slow; however, access-
ing the elements sequentially, as the PostScript interpreter and the forall opera-

tor do, is efficient.

The following operators apply only to dictionaries:

• begin and end push new dictionaries on the dictionary stack and pop them off.

• def and store associate keys with values in dictionaries on the dictionary stack;
load and where search for keys there.

• countdictstack, cleardictstack, and dictstack operate on the dictionary stack.

• known queries whether a key is present in a specific dictionary.

• maxlength obtains a dictionary's maximum capacity.

• undef (LanguageLevel 2) removes an individual key from a dictionary.

• « and » (LanguageLevel 2) construct a dictionary consisting of the bracketed

objects interpreted as key-value pairs.

I 3.6
55

I

The following operators apply only to strings:

Overview of Basic Operators I

• search and anchorsearch perform textual string searching and matching.

• token scans the characters of a string according to the PostScript language syn-
tax rules, without executing the resulting objects.

There are many additional operators that use array, dictionary, or string operands
for special purposes—for instance, as transformation matrices, font dictionaries,
or text.

3.6.4 Relational, Boolean, and Bitwise Operators

The relational operators compare two operands and produce a boolean result in-

dicating whether the relation holds. Any two objects may be compared for equal-

ity (eq and ne— equal and not equal); numbers and strings may be compared by
the inequality operators (gt, ge, It, and le—greater than, greater than or equal to,
less than, and less than or equal to).

The boolean and bitwise operators (and, or, xor, true, false, and not) compute

logical combinations of boolean operands or bitwise combinations of integer op-
erands. The bitwise shift operator bitshift applies only to integers.

3.6.5 Control Operators

The control operators modify the interpreter's usual sequential execution of ob-

jects. Most of them take a procedure operand that they execute conditionally or
repeatedly.

• if and ifelse execute a procedure conditionally depending on the value of a

boolean operand. (ifelse is introduced in Section 3.5, "Execution.")

• exec executes an arbitrary object unconditionally.

• for, repeat, loop, and forall execute a procedure repeatedly. Several specialized

graphics and font operators, such as pathforall and kshow, behave similarly.

• exit transfers control out of the scope of any of these looping operators.

• countexecstack and execstack are used to read the execution stack.

I CHAPTER 3
56

Language I

A PostScript program may terminate prematurely by executing the stop operator.
This occurs most commonly as a result of an error; the default error handlers (in

errordict) all execute stop.

The stopped operator establishes an execution environment that encapsulates
the effect of a stop. That is, stopped executes a procedure given as an operand,
just the same as exec. If the interpreter executes stop during that procedure, it
terminates the procedure and resumes execution at the object immediately after

the stopped operator.

3.6.6 Type, Attribute, and Conversion Operators

These operators deal with the details of PostScript types, attributes, and values,

introduced in Section 3.3, "Data Types and Objects!'

• type returns the type of any operand as a name object (integertype, realtype,

and so on).

• xcheck, rcheck, and wcheck query the literal/executable and access attributes of

an object.

• cvlit and cvx change the literal/executable attribute of an object.

• readonly, executeonly, and noaccess reduce an object's access attribute. Access

can only be reduced, never increased.

• cvi and cvr convert between integer and real types, and interpret a numeric

string as an integer or real number.

• cvn converts a string to a name object defined by the characters of the string.

• cvs and cvrs convert objects of several types to a printable string representa-

tion.

3.7 Memory Management

A PostScript program executes in an environment with these major components:
stacks, virtual memory, standard input and output files, and the graphics state.

• The operand stack is working storage for objects that are the operands and re-
sults of operators. The dictionary stack contains dictionary objects that define

57
Memory Management I

the current name space. The execution stack contains objects that are in partial
stages of execution by the PostScript interpreter. See Section 3.4, "Stacks."

• Virtual memory (VM) is a storage pool for the values of all composite objects.
The adjective "virtual" emphasizes the behavior of this memory visible at the
PostScript language level, not its implementation in computer storage.

• The standard input file is the normal source of program text to be executed by
the PostScript interpreter. The standard output file is the normal destination of
output from the print operator and of error messages. Other files can exist as
well. See Section 3.8, "File Input and Output."

• The graphics state is a collection of parameters that control the production of
text and graphics on a raster output device. See Section 4.2, "Graphics State."

This section describes the behavior of VM and its interactions with other compo-

nents of the PostScript execution environment. It describes facilities for control-
ling the environment as a whole. The PostScript interpreter can execute a

sequence of self-contained PostScript programs as independent "jobs"; similarly,
each job can have internal structure whose components are independent of each
other.

Some PostScript interpreters can support multiple execution contexts—the execu-

tion of multiple independent PostScript programs at the same time. Each context
has an environment consisting of stacks, VM, graphics state, and certain other
data. Under suitable conditions, objects in VM can be shared among contexts;
there are means to regulate concurrent access to the shared objects.

This edition of this book does not document the multiple contexts extension,
although it does indicate which components of a PostScript program's environ-
ment are maintained on a per-context basis. Further information about multiple

contexts can be found in the second edition of this book and in the Display Post-
Script System manuals.

3.7.1 Virtual Memory

As described in Section 3.3, "Data Types and Objects," objects may be either sim-

ple or composite. A simple object's value is contained in the object itself. A com-

posite object's value is stored separately; the object contains a reference to it.
Virtual memory (VM) is the storage in which the values of composite objects
reside.

I CHAPTER 3
58

Language I

For example, the program fragment

234 (stringl)

pushes two objects, an integer and a string, on the operand stack. The integer,
which is a simple object, contains the value 234 as part of the object itself. The

string, which is a composite object, contains a reference to the value string1,
which is a text string that resides in VM. The elements of the text string are char-
acters (actually, integers in the range 0 to 255) that can be individually selected or

replaced.

Here is another example:

{234 (string1)}

This pushes a single object, a two-element executable array, on the operand stack.
The array is a composite object whose value resides in VM. The value in turn
consists of two objects, an integer and a string. Those objects are elements of the

array; they can be individually selected or replaced.

Several composite objects can share the same value. For example, in

{234 (stringl)) dup

the dup operator pushes a second copy of the array object on the operand stack.
The two objects share the same value—that is, the same storage in VM. So replac-
ing an element of one array will affect the other. Other types of composite ob-
jects, including strings and dictionaries, behave similarly.

Creating a new composite object consumes VM storage for its value. This occurs
in two principal ways:

• The scanner allocates storage for each composite literal object that it encoun-
ters. Composite literals are delimited by (), < >, <— —>, and ... 1. The

first three produce strings; the fourth produces an executable array or packed
array. There also are binary encodings for composite objects.

• Some operators explicitly create new composite objects and allocate storage for
them. The array, packedarray, dict, string, and gstate operators create new
array, packed array, dictionary, string, and gstate objects, respectively. Also, the
bracketing constructs [... I and « » create new array and dictionary ob-

59

I
Memory Management 1

jects, respectively. The brackets are just special names for operators; the closing
bracket operators allocate the storage.

For the most part, consumption and management of VM storage is under the
control of the PostScript program. Aside from the operators mentioned above
and a few others that are clearly documented, most operators do not create new
composite objects or allocate storage in VM. Some operators place their results in
existing objects supplied by the caller. For example, the cvs (convert to string) op-
erator overwrites the value of a supplied string operand and returns a string ob-
ject that shares a substring of the supplied string's storage.

3.7.2 Local and Global VM

There are two divisions of VM containing the values of composite objects: local
and global. Only composite objects occupy VM. An "object in VM" means a
‘`composite object whose value occupies VM"; the location of the object (for ex-
ample, on a stack or stored as an element of some other object) is immaterial.

Global VM exists only in LanguageLevel 2 and LanguageLevel 3 interpreters. In
LanguageLevel 1 interpreters, all of VM is local.

Local VM is a storage pool that obeys a stacklike discipline. Allocations in local
VM and modifications to existing objects in local VM are subject to the save and
restore operators. These operators bracket a section of a PostScript program
whose local VM activity is to be encapsulated. restore deallocates new objects and

undoes modifications to existing objects that were made since the matching save
operation. save and restore are described in Section 3.7.3, "Save and Restore."

Global VM is a storage pool for objects that do not obey a fixed discipline. Ob-
jects in global VM can come into existence and disappear in an arbitrary order
during execution of a program. Modifications to existing objects in global VM
are not affected by occurrences of save and restore within the program. However,
an entire job's VM activity can be encapsulated, enabling separate jobs to be exe-
cuted independently. This is described in Section 3.7.7, "Job Execution Environ-
ment."

In a hierarchically structured program such as a page description, local VM is
used to hold information whose lifetime conforms to the structure; that is, it per-
sists to the end of a structural division, such as a single page. Global VM may be

60

I
Language I I CHAPTER 3

used to hold information whose lifetime is independent of the structure, such as
definitions of fonts and other resources that are loaded dynamically during the

execution of a program.

Control over allocation of objects in local versus global VM is provided by the
setglobal operator (LanguageLevel 2). This operator establishes a VM allocation

mode, a boolean value that determines where subsequent allocations are to occur
(false means local, true means global). It affects objects created implicitly by the
scanner and objects created explicitly by operators. The default VM allocation
mode is local; a program can switch to global allocation mode when it needs to.

The following example illustrates the creation of objects in local and global VM:

/Istr (string1) def

/Idict 10 dict def

true setglobal

/gstr (string2) def

/gdict 5 dict def

false setglobal

In the first line, when the scanner encounters (string1), it allocates the string ob-
ject in local VM. In the second line, the dict operator allocates a new dictionary in
local VM. The third line switches to global VM allocation mode. The fourth and
fifth lines allocate a string object and a dictionary object in global VM. The sixth
line switches back to local VM allocation mode. The program associates the four
newly created objects with the names lstr, Idict, gstr, and gdict in the current dic-
tionary (presumably userdict).

An object in global VM is not allowed to contain a reference to an object in local
VM. An attempt to store a local object as an element of a global object will result

in an invalidaccess error. The reason for this restriction is that subsequent execu-
tion of the restore operator might deallocate the local object, leaving the global
object with a "dangling" reference to a nonexistent object.

This restriction applies only to storing a composite object in local VM as an ele-
ment of a composite object in global VM. All other combinations are allowed. The
following example illustrates this, using the objects that were created in the pre-

ceding example.

61
Memory Management I

ldict /a lstr put

gdict /b gstr put

ldict /c gstr put

gdict /d Istr put

gdict /e 7 put

% Allowed—a local object into a local dict

% Allowed—a global object into a global dict

% Allowed—a global object into a local dict

% Not allowed (invalidaccess error)—a local object into a global dict

% Allowed—a simple object into any dict

There are no restrictions on storing simple objects, such as integers and names, as

elements of either local or global composite objects. The gcheck operator in-
quires whether an object can be stored as an element of a global composite
object. It returns true for a simple object or for a composite object in global VM,
or false for a composite object in local VM.

3.7.3 Save and Restore

The save operator takes a snapshot of the state of local VM and returns a save ob-
ject that represents the snapshot. The restore operator causes local VM to revert
to a snapshot generated by a preceding save operation. Specifically, restore does
the following:

• Discards all objects in local VM that were created since the corresponding save,
and reclaims the memory they occupied

• Resets the values of all composite objects in local VM, except strings, to their
state at the time of the save

• Performs an implicit grestoreall operation, which resets the graphics state to its
value at the time of the save (see Section 4.2, "Graphics State")

• Closes files that were opened since the corresponding save, so long as those
files were opened while local VM allocation mode was in effect (see Section 3.8,
"File Input and Output")

The effects of restore are limited to the ones described above. In particular,
restore does not:

• Affect the contents of the operand, dictionary, and execution stacks. If a stack
contains a reference to a composite object in local VM that would be discarded
by the restore operation, the restore is not allowed; an invalidrestore error oc-
curs.

• Affect any objects that reside in global VM, except as described in Section 3.7.7,
"Job Execution Environment."

62

l
Language I I CHAPTER 3

• Undo side effects outside VM, such as writing data to files or rendering graph-
ics on the raster output device. (However, the implicit grestoreall may deacti-
vate the current device, thereby erasing the current page; see Section 6.2.6,

"Device Initialization and Page Setup," for details.)

The save and restore operators can be nested to a limited depth (see Appendix B
for implementation limits). A PostScript program can use save and restore to en-
capsulate the execution of an embedded program that also uses save and restore.

save and restore are intended for use in structured programs such as page de-
scriptions. The conventions for structuring programs are introduced in
Section 2.4.2, "Program Structure," and described in detail in Adobe Technical
Note #5001, PostScript Language Document Structuring Conventions Specification.

In such programs, save and restore serve the following functions:

• A document consists of a prolog and a script. The prolog contains definitions
that are used throughout the document. The script consists of a sequence of in-
dependent pages. Each page has a save at the beginning and a restore at the
end, immediately before the showpage operator. Each page begins execution
with the initial conditions established in local VM by the prolog. There are no
unwanted legacies from previous pages.

• A page sometimes contains additional substructure, such as embedded illustra-

tions, whose execution needs to be encapsulated. The encapsulated program
can make wholesale changes to the contents of local VM to serve its own pur-

poses. By bracketing the program with save and restore, the enclosing program
can isolate the effects of the embedded program.

• As a PostScript program executes, new composite objects accumulate in local

VM. These include objects created by the scanner, such as literal string tokens,
and objects allocated explicitly by operators. The restore operator reclaims all
local VM storage allocated since the corresponding save; executing save and
restore periodically ensures that unredaimed objects will not exhaust available

VM resources. In LanguageLevel 1, save and restore are the only way to reclaim
VM storage. Even in higher LanguageLevels, explicit reclamation by save and
restore is much more efficient than automatic reclamation (described in

Section 3.7.4, "Garbage Collection").

• The PostScript interpreter uses save and restore to encapsulate the execution of

individual jobs, as described in Section 3.7.7, "Job Execution Environment."

63

1

3.7.4 Garbage Collection

Memory Management I

In addition to the save and restore operators for explicit VM reclamation,
LanguageLevels 2 and 3 include a facility for automatic reclamation, popularly
known as a garbage collector. The garbage collector reclaims the memory occu-
pied by composite objects that are no longer accessible to the PostScript program.

For example, after the program

/a (stringl) def

/a (string2) def

(string3) show

is executed, the string object string1 is no longer accessible, since the dictionary
entry that referred to it has been replaced by a different object, string2. Similarly,
the string object string3 is no longer accessible, since the show operator con-
sumes its operand but does not store it anywhere. These inaccessible strings are
candidates for garbage collection.

Garbage collection normally takes place without explicit action by the PostScript
program. It has no effects that are visible to the program. However, the presence
of a garbage collector strongly influences the style of programming that is per-
missible. If no garbage collector is present, a program that consumes VM endless-

ly and never executes save and restore will eventually exhaust available memory
and cause a VMerror.

There is a cost associated with creating and destroying composite objects in VM.
The most common case is that literal objects—particularly strings, user paths,
and binary object sequences—are immediately consumed by operators such as
show and ufill, and never used again. The garbage collector is engineered to deal

with this case inexpensively, so application programs should not hesitate to take
advantage of it. However, the cost of garbage collection is greater for objects that
have longer lifetimes or are allocated explicitly. Programs that frequently require
temporary objects are encouraged to create them once and reuse them instead of
creating new ones—for example, allocate a string object before an image data ac-

quisition procedure, rather than within it (see Section 4.10.7, "Using Images").

Even with garbage collection, the save and restore operators still have their stan-
dard behavior. That is, restore resets all accessible objects in local VM to their

state at the time of the matching save. It reclaims all composite objects created in

I CHAPTER 3
64

Language

local VM since the save operation, and does so very cheaply. On the other hand,
garbage collection is the only way to reclaim storage in global VM, since save and

restore normally do not affect global VM.

With garbage collection comes the ability to explicitly discard composite objects
that are no longer needed. This can be done in an order unrelated to the time of
creation of those objects, as opposed to the stacklike order imposed by save and
restore. This technique is particularly desirable for very large objects, such as font

definitions.

If the only reference to a particular composite object is an element of some array
or dictionary, replacing that element with something else (using put, for in-

stance) renders the object inaccessible. Alternatively, the undef operator removes
a dictionary entry entirely; that is, it removes both the key and the value of a key-
value pair, as opposed to replacing the value with some other value. In either case,
the removed object becomes a candidate for garbage collection.

Regardless of the means used to remove a reference to a composite object, if the

object containing the reference is in local VM, the action can be undone by a sub-
sequent restore. This is true even for undef. Consider the following example:

/a (stringl) def

save

currentdict /a undef

restore

Execution of undef removes the key a and its value from the current dictionary,

seemingly causing the object string1 to become inaccessible. However, assuming
that the current dictionary is userdict (or some other dictionary in local VM),

restore reinstates the deleted entry, since it existed at the time of the correspond-
ing save. The value is still accessible and cannot be garbage-collected.

As a practical matter, this means that the technique of discarding objects explicit-
ly (in expectation of their being garbage-collected) is useful mainly for objects in

global VM, where save and restore have no effect, and for objects in local VM
that were created at the current level of save nesting.

65
Memory Management

3.7.5 Standard and User-Defined Dictionaries

A job begins execution with three standard dictionaries on the dictionary stack
(in order from bottom to top):

• systemdict, a global dictionary that is permanently read-only and contains
mainly operators

• globaldict (LanguageLevel 2), a global dictionary that is writeable

• userdict, a local dictionary that is writeable

There are other standard dictionaries that are the values of permanent named en-
tries in systemdict. Some of these are in local VM and some in global VM, as
shown in Tables 3.3 and 3.4.

A PostScript program can also create new dictionaries in either local or global
VM, then push them on the dictionary stack or store them as entries in userdict
or globaldict.

TABLE 3.3 Standard local dictionaries

DICTIONARY DESCRIPTION

userdict

errordict

Serror

statusdict

FontDirectory

Standard writeable local dictionary. Initially, it is the top dictionary
on the dictionary stack, making it the current dictionary.

Error dictionary. See Section 3.11, "Errors."

Dictionary accessed by the built-in error-handling procedures to
store stack snapshots and other information. See Section 3.11,

"Errors?'

Dictionary for product-specific operators and other definitions. See
Chapter 8.

Dictionary for font definitions. It is normally read-only, but is

updated by definefont and consulted by findfont. See Sections 3.9,

"Named Resources," and 5.2, "Font Dictionaries."

I CHAPTER 3
66

i
Language i

TABLE 3.4 Standard global dictionaries

DICTIONARY DESCRIPTION

systemdict Read-only system dictionary containing all operators and other
definitions that are standard parts of the PostScript language. It is
the bottom dictionary on the dictionary stack.

globaldict (LanguageLevel 2) Standard writeable global dictionary. It is on the
dictionary stack between systemdict and userdict.

Globa I FontDirectory (LanguageLevel 2) Dictionary for font definitions in global VM. It is
normally read-only, but is updated by definefont and consulted by
findfont. See Sections 3.9, "Named Resources," and 5.2, "Font
Dictionaries?'

The dictionaries userdict and globaldict are intended to be the principal reposi-
tories for application-defined dictionaries and other objects. When a PostScript
program creates a dictionary in local VM, it then typically associates that diction-

ary with a name in userdict. Similarly, when the program creates a dictionary in
global VM, it typically associates the dictionary with a naine in globaldict. Note
that the latter step requires explicit action on the part of the program. Entering
global VM allocation does not alter the dictionary stack (say, to put globaldict on

top).

Note: systemdict, a global dictionary, contains several entries whose values are local
dictionaries, such as userdict and Serror. This is an exception to the normal rule, de-

scribed in Section 3.7.2, "Local and Global VM," that prohibits objects in global VM
from referring to objects in local VM.

The principal intended use of global VM is to hold font definitions and other re-
sources that are loaded dynamically during execution of a PostScript program.
The findresource operator loads resources into global VM automatically when
appropriate. However, any program can take advantage of global VM when its
properties are useful. The following guidelines are suggested:

• Objects that are created during the prolog can be in either local or global VM;
in either case, they will exist throughout the job, since they are defined outside
the save and restore that enclose individual pages of the script. A dietionary in
local VM reverts to the initial state defined by the prolog at the end of each
page. This is usually the desirable behavior. A dictionary in global VM accumu-

67

i

I
Memory Management I

lates changes indefinitely and never reverts to an earlier state; this is useful
when there is a need to communicate information from one page to another
(strongly discouraged in a page description).

• When using a writeable dictionary in global VM, you must be careful about
what objects you store in it. Attempting to store a local composite object in a
global dictionary will cause an invalidaccess error. For this reason, it is advis-
able to segregate local and global data and to use global VM only for those ob-
jects that must persist through executions of save and restore.

• In general, the prologs for most existing PostScript programs do not work cor-
rectly if they are simply loaded into global VM. The same is true of some fonts,
particularly Type 3 fonts. These programs must be altered to define global and
local information separately. Typically, global VM should be used to hold pro-
cedure definitions and constant data; local VM should be used to hold tempo-
rary data needed during execution of the procedures.

• Creating gstate (graphics state) objects in global VM is particularly risky. This
is because the graphics state almost always contains one or more local objects,
which cannot be stored in a global gstate object (see the currentgstate operator
in Chapter 8).

3.7.6 User Objects

Some applications require a convenient and efficient way to refer to PostScript

objects previously constructed in VM. The conventional way to accomplish this is
to store such objects as named entries in dictionaries and later refer to them by
name. In a PostScript program written by a programmer, this approach is natural
and straightforward. When the program is generated mechanically by another
program, however, it is more convenient to number the objects with small inte-
gers and later refer to them by number. This technique simplifies the bookkeep-
ing the application program must do.

LanguageLevel 2 provides built-in support for a single space of numbered
objects, called user objects. There are three operators, defineuserobject,
undefineuserobject, and execuserobject, that manipulate an array named
UserObjects. These operators do not introduce any fundamental capability, but
merely provide convenient and efficient notation for accessing the elements of a

special array.

I CHAPTER 3
68

Language I

Example 3.4 illustrates the intended use of user objects.

Example 3.4

17 {ucache 132 402 316 554 setbbox cyht defineuserobject

17 execuserobject ufill

The first line of the example constructs an interesting object that is to be used re-
peatedly (in this case, a user path; see Section 4.6, "User Paths") and associates
the index 17 with this object.

The second line pushes the user object on the operand stack, from which ufill
takes it. execuserobject executes the user object associated with index 17. How-

ever, because the object in this example is not executable, the result of the execu-
tion is to push the object on the operand stack.

defineuserobject manages the UserObjects array automatically; there is no rea-
son for a PostScript program to refer to UserObjects explicitly. The array is allo-
cated in local VM and defined in userdict. This means that the effect of
defineuserobject is subject to save and restore. The values of user objects given
to defineuserobject can be in either local or global VM.

3.7.7 Job Execution Environment

As indicated in Section 2.4, "Using the PostScript Language," the conventional
model of a PostScript interpreter is a "print server"—a single-threaded process
that consumes and executes a sequence of "print jobs," each of which is a com-
plete, independent PostScript program. This model is also appropriate for certain
other environments, such as a document previewer running on a host computer.

The notion of a print job is not formally a part of the PostScript language, be-
cause it involves not only the PostScript interpreter but also some description of

the environment in which the interpreter operates. Still, it is useful to describe a
general job (and job server) model that is accurate for most PostScript printers,
though perhaps lacking in some details. Information about communication pro-
tocols, job control, system management, and so on, does not appear here, but
rather in documentation for specific products.

69
Memory Management I

A job begins execution in an initial environment that consists of the following:

• An empty operand stack

• A dictionary stack containing the standard dictionaries—systemdict,
globaldict (LanguageLevel 2), and userdict

• Execution and graphics state stacks reset to their standard initial state, with no
vestiges of previous jobs

• The contents of VM (local and global)

• Miscellaneous interpreter parameters

During execution, the job may alter its environment. Ordinarily, when a job fin-
ishes, the environment reverts to its initial state to prepare for the next job. That
is, the job is encapsulated. The server accomplishes this encapsulation by execut-
ing save and restore and by explicitly resetting stacks and parameters between

jobs.

With suitable authorization, a job can make persistent alterations to objects in
VM. That is, the job is not encapsulated. Instead, its alterations appear as part of
the initial state of the next and all subsequent jobs. This is accomplished by
means of the startjob and exitserver facilities, described below.

Server Operation

A job server is presented with a sequence of files via one or more communication
channels. For each file, the server performs the following sequence of steps:

1. Establish standard input and output file objects for the channel from which
the file is to be obtained. The means by which this is done is implementation-
dependent.

2. Execute save. This is the outermost save, which unlike a normal save obtains a
snapshot of the initial state of objects in both local and global VM.

3. Establish the default initial state for the interpreter: empty operand stack, local
VM allocation mode, default user space for the raster output device, and so
on.

4. Execute the standard input file until it reaches end-of-file or an error occurs. If
an error occurs, report it and flush input to end-of-file.

70
I CHAPTER 3 Language I

5. Clear the operand stack and reset the dictionary stack to its initial state.

6. Execute restore, causing objects in VM (both local and global) to revert to the
state saved in step 2.

7. Close the standard input and output files, transmitting an end-of-file indica-
tion over the communication channel.

Ordinarily, the server executes all of the above steps once for each file that it re-
ceives. Each file is treated as a separate job, and each job is encapsulated.

Altering Initial VM

A program can circumvent job encapsulation and alter the initial VM for subse-
quent jobs. To do so, it can use either startjob (LanguageLevel 2) or exitserver

(available in all implementations that include a job server). This capability is
controlled by a password. The system administrator can choose not to make the
capability available to ordinary users. Applications and drivers must be prepared
to deal with the possibility that altering the initial VM is not allowed.

Note: startjob and exitserver should be invoked only by a print manager, spooler, or
system administration program. They should never be used by an application pro-
gram composing a page description. Appendix G gives more guidelines for using
startjob and exitserver.

startjob is invoked as follows:

true password startjob

where password is a string or an integer (see Section C.3.1, "Passwords"). If the

password is correct, startjob causes the server to execute steps 5, 6, 3, and 4 in the
sequence above. In other words, it logically ends the current job, undoing all
modifications it has made so far, and starts a new job. However, it does not

precede the new job with a save operation, so its execution is not encapsulated.
Furthermore, it does not disturb the standard input and output files; the inter-
preter resumes consuming the remainder of the same input file.

Having started an unencapsulated job, the PostScript program can alter VM in
arbitrary ways. Such alterations are persistent. If the job simply runs to comple-
tion, ending step 5 in the sequence above, the server skips step 6 (since there is no

71

i
Memory Management I

saved VM snapshot to restore), continues with step 7, and processes the next job
normally starting at step 1.

Alternatively, a program can explicitly terminate its alterations to initial VM:

false password startjob

This operation has the effect of executing steps 2, 3, and 4, logically starting yet
another job that is encapsulated in the normal way, but still continuing to read
from the same file.

If startjob executes successfully, it always starts a new job in the sense described
above. It resets the stacks to their initial state and then pushes the result true on
the operand stack. But if startjob is unsuccessful, it has no effect other than to

push false on the operand stack; the effect is as if the program text before and af-
ter the occurrence of startjob were a single combined job.

The example sequence

true password startjob pop

... Application prolog here ...

false password startjob pop

... Application script here ...

installs the application prolog in initial VM if it is allowed to do so. However, the
script executes successfully regardless of whether the attempt to alter initial VM

was successful. The program can determine the outcome by testing the result re-
turned by startjob.

The above sequence is an example; there is no restriction on the sequence of en-
capsulated and unencapsulated jobs. If the password is correct and the boolean
operand to startjob is true, the job that follows it is unencapsulated; if false, the
job is encapsulated. But if the password is incorrect, startjob does not start a new
job; the current job simply continues.

startjob also fails to start a new job if, at the time it is executed, the current save

nesting is more than one level deep. In other words, startjob works only when the
current save level is equal to the level at which the current job started. This per-
mits a file that executes startjob to be encapsulated as part of another job simply
by bracketing it with save and restore.

I CHAPTER 3
72

Language I

Note: If an unencapsulated job uses save and restore, the save and restore op-
erations affect global as well as local VM, since they are at the outermost save level.
Also, if the job ends with one or more save operations pending, a restore to the outer-
most saved VM is performed automatically.

exitserver

exitserver is an unofficial LanguageLevel 1 feature that is retained in higher
LanguageLevels for compatibility. Although exitserver has never been a formal
part of the PostScript language, it exists in nearly every Adobe PostScript prod-

uct, and some applications have come to depend on it. The startjob feature, de-
scribed above, is more flexible and is preferred for new applications in
LanguageLevels 2 and 3.

The canonical method of invoking exitserver is

serverdict begin password exitserver

This has the same effect as

true password startjob not

{/exitserver errordict /invalidaccess get exec}

if

In other words, if successful, exitserver initiates an unencapsulated job that can
alter initial VM; if unsuccessful, it generates an invalidaccess error. Like startjob,
a successful exitserver operation resets the stacks to their initial state: it removes
serverdict from the dictionary stack. The program that follows (terminated by

end-of-file) is executed as an unencapsulated job.

In many implementations, successful execution of exitserver sends the message

%913fexitserver: permanent state may be changec096%

to the standard output file. This message is not generated by startjob. It is sup-
pressed if binary is true in the $error dictionary; see Section 3.11.2, "Error Han-
dling."

Note: Aside from exitserver, the other contents of serverdict are not specified as part
of the language. In LanguageLevels 2 and 3, the effect of executing exitserver more
than once in the same file is the same as that of executing the equivalent startjob se-

I 3.8
73

I
File Input and Output I

quence multiple times. In LanguageLevel 1, the effect of executing the exitserver op-
erator multiple times is undefined and unpredictable.

3.8 File Input and Output

A file is a finite sequence of characters bounded by an end-of-file indication.
These characters may be stored permanently in some place (for instance, a disk
file) or they may be generated on the fly and transmitted over some communica-

tion channel. Files are the means by which the PostScript interpreter receives exe-
cutable programs and exchanges data with the external environment.

There are two kinds of file: input and output. An input file is a source from which
a PostScript program can read a sequence of characters; an output file is a destina-

tion to which a PostScript program can write characters. Some files can be both
read and written.

The contents of a file are treated as a sequence of 8-bit bytes. In some cases, those
bytes can be interpreted as text characters, such as the ASCII text representing a
PostScript program. In other cases, they can be interpreted as arbitrary binary
data. In the descriptions of files and file operators, the terms character and byte
are synonymous.

3.8.1 Basic File Operators

A PostScript file object represents a file. The file operators take a file object as an
operand to read or write characters. Ignoring for the moment how a file object
comes into existence, the file operators include the following:

• read reads the next character from an input file.

• write appends a character to an output file.

• readstring, readline, and writestring transfer the contents of strings to and
from files.

• readhexstring and writehexstring read and write binary data represented in the
file by hexadecimal notation.

• token scans characters from an input file according to the PostScript language
syntax rules.

74
I CHAPTER 3 Language I

• exec, applied to an input file, causes the PostScript interpreter to execute a
PostScript program from that file.

The operators that write to a file do not necessarily deliver the characters to their
destination immediately. They may leave some characters in buffers for reasons
of implementation or efficiency. The flush and flushfile operators deliver these

buffered characters immediately. These operators are useful in certain situations,
such as during two-way interactions with another computer or with a human

user, when such data must be transmitted immediately.

Standard Input and Output Files

All PostScript interpreters provide a standard input file and a standard output file,
which usually represent a real-time communication channel to and from another
computer. The standard input and output files are always present; it is not neces-
sary for a program to create or close them.

The PostScript interpreter reads and interprets the standard input file as Post-
Script program text. It sends error and status messages to the standard output
file. Also, a PostScript program may execute the print operator to send arbitrary
data to the standard output file. Note that print is a file operator; it has nothing to
do with placing text on a page or causing pages to emerge from a printer.

It is seldom necessary for a PostScript program to deal explicitly with file objects
for the standard files, because the PostScript interpreter reads the standard input
file by default and the print operator references the standard output file implicit-

ly. Additionally, the file currently being read by the PostScript interpreter is avail-

able via the currentfile operator; this file need not be the standard input file.
However, when necessary, a program may apply the file operator to the identify-
ing strings %stdin or %stdout to obtain file objects for the standard input and
output files; see Section 3.8.3, "Special Files."

End-of-Line Conventions

The PostScript language scanner and the readline operator recognize all three ex-
ternal forms of end-of-line (EOL)—CR alone, LF alone, and the GR-LP pair—
and treat them uniformly, translating them as described below. The PostScript
interpreter does not perform any such translation when reading data by other
means or when writing data by any means.

I 3.8
75

File Input and Output I

End-of-line sequences are recognized and treated specially in the following situa-
tions:

• Any of the three forms of EOL appearing in a literal string is converted to a sin-
gle LF character in the resulting string object. These three examples produce
identical string objects, each with an LF character following the second word in
the string:

(any textMsome more text)
(any text(u)some more text)

(any text(cRXI-F>some more text)

• Any of the three forms of EOL appearing immediately after \ in a string is

treated as a line continuation; both the \ and the EOL are discarded. These four
examples produce identical string objects:

(any text \(CR)some more text)

(any text \(LF)some more text)
(any text \(cRxip 'some more text)
(any text some more text)

• Any of the three forms of EOL appearing outside a string is treated as a single
white-space character. Since the language treats multiple white-space charac-
ters as a single white-space character, the treatment of EOL is interesting only

when a PostScript token is followed by data to be read explicitly by one of the
file operators. The following three examples produce identical results: the oper-

ator reads the character x from the current input file and leaves its character
code (the integer 120) on the stack.

cu rrentfi le rule%

currentfile reaceLF)x

currentfile reacl<CRXI-F)x

• The readline operator treats any of the three forms of EOL as the termination
condition.

• Data read by read and readstring does not undergo EOL translation: the Post-
Script interpreter reads whatever characters were received from the channel.

The same is true of data written by write and writestring: whatever characters
the interpreter provides are sent to the channel. However, in either case the
channel itself may perform some EOL translation, as discussed below.

76
I CHAPTER 3 I

Language I

Communication Channel Behavior

Communications functions often usurp control characters. Control codes are
device-dependent and not part of the PostScript language. For example, the serial
communication protocol supported by many products uses the Control-D char-

acter as an end-of-file indication. In this case, Control-D is a communications
function and not logically part of a PostScript program. This applies specifically
to the serial channel; other channels, such as LocalTalk' and Ethernet, have dif-
ferent conventions for end-of-file and other control functions. In all cases, com-
munication channel behavior is independent of the actions of the PostScript

interpreter.

There are two levels of PostScript EOL translation: one in the PostScript inter-
preter and one in the serial communication channel. The previous description
applies only to the EOL conventions at the level of the PostScript interpreter. The

purpose of the seemingly redundant communication-level EOL translation is to
maintain compatibility with diverse host operating systems and communications

environments.

As discussed in Section 3.2, "Syntax," the ASCII encoding of the language is de-

signed for maximum portability. It avoids using control characters that might be
preempted by operating systems or communication channels. However, there are
situations in which transmission of arbitrary binary data is desirable. For exam-
ple, sampled images are represented by large quantities of binary data. The Post-
Script language has an alternative binary encoding that is advantageous in certain
situations. There are two main ways to deal with PostScript programs that con-

tain binary information:

• Communicate with the interpreter via binary channels exclusively. Some chan-

nels, such as LocalTalk and Ethernet, are binary by nature. They do not pre-
empt any character codes, but instead communicate control information
separately from the data. Other channels, such as serial channels, may support
a binary communication protocol that allows control characters to be quoted.

This approach presupposes a well-controlled environment. PostScript pro-
grams produced in that environment may not be portable to other environ-

ments.

• Take advantage of filters for encoding binary data as ASCII text. Filters are a
LanguageLevel 2 feature, described in Section 3.8.4, "Filters!' Programs repre-

sented in this way do not include any control codes and are therefore portable
to any LanguageLevel 2 or 3 interpreter in any environment.

77

1

3.8.2 Named Files

File Input and Output I

The PostScript language provides access to named files in secondary storage. The
file access capabilities are part of the integration of the language with an underly-
ing operating system; there are variations from one such integration to another.
Not all the file system capabilities of the underlying operating system are neces-
sarily made available at the PostScript language level.

The PostScript language provides a standard set of operators for accessing named

files. These operators are supported in LanguageLevels 2 and 3, as well as in cer-
tain LanguageLevel 1 implementations that have access to file systems. The oper-
ators are file, deletefile, renamefile, status, filenameforall, setfileposition, and
fileposition. Even in LanguageLevel 1 implementations that do not support

named files, the file operator is supported, because the special file names %stdin,
%stdout, and %stderr are always allowed (see Section 3.8.3, "Special Files").
Although the language defines a standard framework for dealing with files, the

detailed semantics of the file system operators, particularly file naming conven-
tions, are operating system—dependent.

Files are stored in one or more "secondary storage devices," hereafter referred to

simply as devices. (These are not to be confused with the "current device," which
is a raster output device identified in the graphics state.) The PostScript language
defines a uniform convention for naming devices, but it says nothing about how
files in a given device are named. Different devices have different properties, and
not all devices support all operations.

A complete file name has the form %device%file, where device identifies the sec-
ondary storage device and file is the name of the file within the device. When a
complete file name is presented to a file system operator, the device portion se-
lects the device; the file portion is in turn presented to the implementation of that
device, which is operating system—dependent and environment-dependent.

Note: Typically, file names cannot contain null characters (ASCII code 0); if a file
name is specified by a string object containing a null character, the null character will

effectively terminate the file name.

When a file name is presented without a %device% prefix, a search rule deter-
mines which device is selected. The available storage devices are consulted in or-
der; the requested operation is attempted on each device until the operation
succeeds. The number of available devices, their names, and the order in which

I CHAPTER 3
78

Language

they are searched is environment-dependent. Not all devices necessarily partici-

pate in such searches; some devices can be accessed only by explicitly naming

them.

In an interpreter that runs on top of an operating system, there may be a device

that represents the complete file system provided by the operating system. If so,
by convention that device's name is os; thus, complete file names are in the form
%os%file, where file conforms to underlying file system conventions. This device
always participates in searches, as described above; a program can access ordinary
files without specifying the %os% prefix. There may be more than one device that
behaves in this way; the names of such devices are product-dependent.

Note: The os device may impose some restrictions on the set of files that can be ac-
cessed. Restrictions are necessary when the PostScript interpreter executes with a user

identity different from that of the user running the application program.

In an interpreter that controls a dedicated product, such as a typical printer prod-
uct, there can be one or more devices that represent file systems on disks and car-
tridges. Files on these devices have names such as %diskO%file, %diskl %file, and
%cartridge0%ffle. Again, these devices participate in searches when the device
name is not specified.

Each of the operators file, deletefile, renamefile, status, and filenameforall takes
a filename operand—a string object that identifies a file. The name of the file can

be in one of three forms:

• %device%file identifies a named file on a specific device, as described above.

• file (first character not %) identifies a named file on an unspecified device,
which is selected by an environment-specific search rule, as described above.

• %device or %device% identifies an unnamed file on the device. Certain devices,
such as cartridges, support a single unnamed file as opposed to a collection of
named files. Other devices represent communication channels rather than per-
manent storage media. There are also special files named %stdin, %stdout,
%stderr, %statementedit, and %lineedit, described in Section 3.8.3, "Special
Files." The deletefile, renamefile, and filenameforall operators do not apply to

file names of this form.

"Wildcard" file names are recognized by the filenameforall operator; see
filenameforall in Chapter 8 for more information.

r

79

l

Creating and Closing a File Object

File Input and Output I

File objects are created by the file operator. This operator takes two strings: the
first identifies the file and the second specifies access. file returns a new file object
associated with that file.

An access string is a string object that specifies how a file is to be accessed. File
access conventions are similar to the ones defined by the ANSI C standard, al-
though some file systems may not support all access methods. The access string
always begins with r, w, or a, possibly followed by +; any additional characters
supply operating system—specific information. Table 3.5 lists access strings and
their meanings.

TABLE 3.5 Access strings

ACCESS STRING MEANING

r Open for reading only. Generate an error if the file does not already
exist.

w Open for writing only. Create the file if it does not already exist.
Truncate and overwrite it if it does exist.

a Open for writing only. Create the file if it does not already exist.
Append to it if it does exist.

r+ Open for reading and writing. Generate an error if the file does not
already exist.

w+ Open for reading and writing. Create the file if it does not already
exist. Truncate and overwrite it if it does exist.

a+ Open for reading and writing. Create the file if it does not already
exist. Append to it if it does exist.

Note: The special files %stdin, 961ineedit, and %statementedit allow only r access;

%stclout and %stderr allow only w access (see Section 3.8.3, "Special Files").

Like other composite objects, such as strings and arrays, file objects have access
attributes. The access attribute of a file object is based on the access string used to

create it. Attempting to access a file object in a way that would violate its access
attribute causes an invalidaccess error.

I CHAPTER 3
80

I
Language I

Certain files—in particular, named files on disk—are positionable, meaning that
the data in the file can be accessed in an arbitrary order rather than only sequen-
tially from the beginning. The setfileposition operator adjusts a file object so that

it refers to a specified position in the underlying file; subsequent reads or writes
access the file at that new position. Specifying a plus sign (+) in the access string
opens a positionable file for reading and writing, as shown in Table 3.5. To ensure
predictable results, it is necessary to execute setfileposition when switching be-

tween reading and writing.

At the end of reading or writing a file, a program should close the file to break the
association between the PostScript file object and the actual file. The file opera-
tors close a file automatically if end-of-file is encountered during reading (see be-
low). The closefile operator closes a file explicitly, restore closes a file if the file
object was created since the corresponding save operation while in local VM allo-
cation mode. Garbage collection closes a file if the file object is no longer accessi-

ble.

All operators that access files treat end-of-file and exception conditions the same.
During reading, if an end-of-file indication is encountered before the requested

item can be read, the file is closed and the operation returns an explicit end-of-
file result. This also occurs if the file has already been closed when the operator is
executed. All other exceptions during reading and any exceptions during writing
result in execution of the error ioerror, invalidfileaccess, or invalidaccess.

3.8.3 Special Files

The file operator can also return special files that are identified as follows:

• %stdin, the standard input file.

• %stdout, the standard output file.

• %stderr, the standard error file. This file is for reporting low-level errors. In

many configurations, it is the same as the standard output file.

• %statementedit, the statement editor filter file, described below.

• %lineedit, the line editor filter file, described below.

I 3.8
81

For example, the statements

(%stdin) (r) file

(%stdout) (w) file

File Input and Outputl

push copies of the standard input and output file objects on the operand stack.
These are duplicates of existing file objects, not new objects. Each execution of
the file operator for %stdin, %stdout, or %stderr within a given job returns the
same file object. A PostScript program should not close these files. In an inter-
preter that supports multiple execution contexts, the standard input and output
files are private to each context; the standard error file is shared among all con-
texts.

Some PostScript interpreters support an interactive executive, invoked by the
executive operator; this is described in Section 2.4.4, "Using the Interpreter Inter-
actively." executive obtains commands from the user by means of a special file

named %statementedit. Applying the file operator to the file name string
%statementedit causes the following to happen:

• The file operator begins reading characters from the standard input file and
storing them in a temporary buffer. While doing so, it echoes the characters to

the standard output file. It also interprets certain control characters as editing
functions for making corrections, as described in Section 2.4.4.

• When a complete statement has been entered, the file operator returns. A state-

ment consists of one or more lines terminated by a newline that together form
one or more complete PostScript tokens, with no opening brackets

({, (, <, or <--) left unmatched. A statement is also considered complete if it con-
tains a syntax error.

• The returned file object represents a temporary file containing the statement
that was entered, including the terminating end-of-line character. Reading
from this file obtains the characters of the statement in turn; end-of-file is re-

ported when the end of the statement is reached. Normally, this file is used as
an operand to the exec operator, causing the statement to be executed as a
PostScript program.

The %lineedit special file is similar to %statementedit, except that when reading

from %lineedit, the file operator returns after a single line has been entered,
whether or not it constitutes a complete statement. For both the special files

%statementedit and %lineedit, if the standard input file reaches end-of-file before

I CHAPTER 3
82

Language I

any characters have been entered, the file operator issues an u ndefi nedfi lena me

error.

It is important to understand that the file object returned by file for the
%statementedit and %lineedit special files is not the same as the standard input
file. It represents a temporary file containing a single buffered statement. When
the end of that statement is reached, the file is closed and the file object is no
longer of any use. Successive executions of file for %statementedit and %lineedit

return different file objects.

The %statementedit and %lineedit special files are not available in PostScript in-

terpreters that do not support an interactive executive. PostScript programs that
are page descriptions should never refer to these files.

3.8.4 Filters

A filter (LanguageLevel 2) is a special kind of file object that can be layered on top
of some other file to transform data being read from or written to that file. When
a PostScript program reads characters from an input filter, the filter reads charac-
ters from its underlying file and transforms the data in some way, depending on

the filter. Similarly, when a program writes characters to an output filter, the filter
transforms the data and writes the results to its underlying file.

An encoding filter is an output file that takes the data written to it, converts it to
some encoded representation depending on the filter, and writes the encoded
data to the underlying file. For example, the ASCIIHexEncode filter transforms bi-

nary data to an ASCII hexadecimal-encoded representation, which it writes to its
underlying file. All encoding filters have Encode as part of their names.

A decoding filter is an input file that reads encoded data from its underlying file
and decodes it. The program reading from the filter receives the decoded data.
For example, the ASCIIHexDecode filter reads ASCII hexadecimal-encoded data
from its underlying file and transforms it to binary. All decoding filters have

Decode as part of their names.

Decoding filters are most likely to be used in page descriptions. An application
program generating a page description can encode certain information (for ex-
ample, data for sampled images) to compress it or to convert it to a portable
ASCII representation. Then, within the page description itself, it invokes the cor-
responding decoding filter to convert the information back to its original form.

I 3.8
83

I
File Input and Output l

Encoding filters are unlikely to be used in most page descriptions. However, a

PostScript program can use them to encode data to be sent back to the applica-
tion or written to a disk file. In the interest of symmetry, the PostScript language
defines both encoding and decoding filters for all of its standard data transforma-
tion algorithms. However, encoding filters are optional; not all PostScript inter-
preters support them.

Creating Filters

Filter files are created by the filter operator (LanguageLevel 2). The filter operator
expects the following operands in the order given:

1. A data source or data target. This is ordinarily a file object that represents the
underlying file the filter is to read or write. However, it can also be a string or a
procedure. Details are provided in Section 3.13.1, "Data Sources and Targets."

2. Filter parameters. All filters may take additional parameters, and some require

additional parameters, to control how they operate. These parameters may be
specified in a dictionary given as an operand following the data source or tar-
get; in some cases, required parameters must be given as operands following

the data source or target or following the dictionary operand, if any. The dic-
tionary operand may be omitted whenever all the dictionary-supplied param-
eters have the corresponding default values for that filter. Exactly which
parameters and operands are required for the various filters is described in
Section 3.13, "Filtered Files Details."

3. Filter name. This is a name object, such as ASCIIHexDecode, that specifies the
data transformation the filter is to perform. It also determines how many pa-
rameters there are and how they are to be interpreted.

The filter operator returns a new file object that represents the filtered file. For an
encoding filter, this is an output file, and for a decoding filter, an input file. The
direction of the underlying file—that is, its read/write attribute—must match

that of the filter. Filtered files can be used just the same as other files; they are val-
id as operands to file operators such as read, write, readstring, and writestring.
Input filters are also valid as data sources for operators such as exec or image.

Since a filter is itself a file, it can be used as the underlying file for yet another fil-

ter. Filters can be cascaded to form a pipeline that passes the data stream through
two or more encoding or decoding transformations in sequence. Example 3.5 il-
lustrates the construction of an input pipeline for decoding sampled image data

I CHAPTER 3
et

Language I

that is embedded in the program. The application has encoded the image data
twice: once using the RunLengthEncode method to compress the data, and then
using the ASCI185Encode method to represent the binary compressed data as

ASCII text.

Example 3.5

256 256 8 [256 0 0 —256 0 256] % Other operands of the image operator

currentfile

/ASCI185Decode filter

/RunLengthDecode filter

image

... Encoded image data ...

—> % ASCI185 end-of-data marker

The currentfile operator returns the file object from which the PostScript inter-

preter is currently executing. The first execution of filter creates an ASCI185-
Decode filter whose underlying file is the one returned by currentfile. It pushes
the filter file object on the stack. The second execution of filter creates a
RunLengthDecode filter whose underlying file is the first filter file; it pushes the
new filter file object on the stack. Finally, the image operator uses the second fil-
ter file as its data source. As image reads from its data source, the data is drawn

from the underlying file and transformed by the two filters in sequence.

Standard Filters

The PostScript language supports a standard set of filters that fall into three main

categories:

• ASCII encoding and decoding filters enable arbitrary 8-bit binary data to be rep-
resented in the printable subset of the ASCII character set. This improves the
portability of the resulting data, since it avoids the problem of interference by

operating systems or communication channels that preempt the use of control
characters, represent text as 7-bit bytes, or impose line-length restrictions.

• Compression and decompression filters enable data to be represented in a com-
pressed form. Compression is particularly valuable for large sampled images,
since it reduces storage requirements and transmission time. There are several
compression filters, each of which is best suited for particular kinds of data.
Note that the compressed data is in 8-bit binary format, even if the original
data happens to be ASCII text. For maximum portability of the encoded data,

I 3.8
85

i
File Input and Output I

I
I

these filters should be used with ASCII encoding filters, as illustrated above in

Example 3.5.

• Subfile filters pass data through without modification. These filters permit the

creation of file objects that access arbitrary user-defined data sources or data

targets. Input filters also can read data from an underlying file up to a specified

end-of-data marker.

Table 3.6 summarizes the available filters. A program can determine the complete

set of filters that the PostScript interpreter supports by applying the

resourceforall operator to the Filter resource category; see Section 3.9, "Named

Reso urces."

TABLE 3.6 Standard filters

REQUIRED
FILTER NAME PARAMETERS DESCRIPTION

ASCIIHexEncode (none) Encodes binary data in an ASCII hexadecimal representation. Each

binary data byte is converted to two hexadecimal digits, resulting in
an expansion factor of 1:2 in the size of the encoded data.

ASCIIHexDecode (none) Decodes ASCII hexadecimal-encoded data, producing the original
binary data.

ASCI185Encode (none) Encodes binary data in an ASCII base-85 representation. This encod-
ing uses nearly all of the printable ASCII character set. The resulting

expansion factor is 4:5, making this encoding much more efficient
than hexadecimal.

ASCI185Decode

LZWEncode

LZWDecode

FlateEncode

(none) Decodes ASCII base-85 data, producing the original binary data.

(none) Compresses data using the LZW (Lempel-Ziv-Welch) adaptive com-

pression method, optionally after pretransformation by a predictor
function. This is a good general-purpose encoding that is especially

well suited for natural-language and PostScript-language text, but it
is also useful for image data.

(none) Decompresses LZW-encoded data, producing the original data.

(none) (LanguageLevel 3) Compresses data using the public-domain zlib/de-
flate compression method, optionally after pretransformation by a
predictor function. This is a variable-length Lempel-Ziv adaptive
compression method cascaded with adaptive Huffman coding. It is a

good general-purpose encoding that is especially well suited for
natural-language and PostScript-language text, but it is also useful

for image data.

I CHAPTER 3
86

I
Language l

FlateDecode (none) (LanguageLevel 3) Decompresses data encoded in zlib/deflate com-

pressed format, producing the original data.

RunLengthEncode record size Compresses data using a simple byte-oriented run-length encoding

algorithm. This encoding is best suited to monochrome image data,
or any data that contains frequent long runs of a single byte value.

RunLengthDecode (none) Decompresses data encoded in the run-length encoding format, pro-

ducing the original data.

CCITTFaxEncode (none) Compresses data using a bit-oriented encoding algorithm (the

CCITT facsimile standard). This encoding is specialized to mono-
chrome image data at 1 bit per pixel.

CCITTFaxDecode (none) Decompresses facsimile-encoded data, producing the original data.

DCTEncode dictionary Compresses continuous-tone (grayscale or color) sampled image
data using a DCT (discrete cosine transform) technique based on the

JPEG standard. This encoding is specialized to image data. It is

"lossy," meaning that the encoding algorithm can lose some informa-
tion.

DCTDecode (none) Decompresses DCT-encoded data, producing image sample data that
approximate the original data.

ReusableStreamDecode (none) (LanguageLevel 3) From any data source, creates an input stream that
can be treated as a random-access, repositionable file.

NullEncode (none) Passes all data through, without any modification. This permits an
arbitrary data target (procedure or string) to be treated as an output
file.

SubFileDecode count, string Passes all data through, without any modification. This permits an
arbitrary data source (procedure or string) to be treated as an input

file. Optionally, this filter detects an end-of-data marker in the source

data stream, treating the preceding data as a subfile.

Note: In LanguageLevel 3, all encoding filters, with the exception of the NullEncode

filter, are optional—that is, they may or may not be present in a PostScript interpret-

er product. Additional nonstandard filters may be available in some products. To en-

sure portability, PostScript programs that are page descriptions should not depend on

optional or nonstandard filters.

Section 3.13, "Filtered Files Details," provides complete information about indi-

vidual filters, including specifications of the encoding algorithms for some of

87
I3.9 Named Resources I

them. The section also describes the semantics of data sources and data targets in
more detail.

3.8.5 Additional File Operators

There are other miscellaneous file operators:

• status and bytesavailable return status information about a file.

• currentfile returns the file object from which the interpreter is currently read-
ing.

• run is a convenience operator that combines the functions of file and exec.

Several built-in procedures print the values of objects on the operand stack, send-
ing a readable representation of those values to the standard output file:

• = pops one object from the operand stack and writes a text representation of its
value to the standard output file, followed by a newline.

• == is similar to =, but produces results closer to full PostScript language syntax
and expands the values of arrays.

• stack prints the entire contents of the operand stack with =, but leaves the stack
unchanged.

• pstack performs a similar operation to stack, but uses ==.

Input/output and storage devices can be manipulated individually by
LanguageLevel 2 operators. In particular:

• setdevparams and currentdevparams access device-dependent parameters (see
Appendix C).

• resourceforall, applied to the 10Device resource category, enumerates all avail-

able device parameter sets (see the next section).

3.9 Named Resources

Some features of the PostScript language involve the use of open-ended col-
lections of objects to control their operation. For example, the font machinery

uses font dictionaries that describe the appearance of characters. The number of
possible font dictionaries is unlimited. In LanguageLevels 2 and 3, this same idea

I CHAPTER 3
88

Language I

applies to forms, patterns, color rendering dictionaries, and many other catego-
ries of objects.

It is often convenient to associate these objects with names in some central regis-
try. This is particularly true for fonts, which are assigned standard names (such as
Times-Roman or Palatino-Boldltalic) when they are created. Other categories of
objects also can benefit from a central naming convention.

If all available objects in a particular category (for example, all possible fonts)
were permanently resident in VM, they could simply be stored in some dictionary.
Accessing a named object would be a matter of performing get from the diction-
ary; checking whether a named object is available would be accomplished by per-
forming a known operation on the dictionary.

There are many more fonts and objects of other categories than can possibly re-
side in VM at any given time. These objects originate from a source external to
the PostScript interpreter. They are introduced into VM in two ways:

• The application or print spooler embeds the objects' definitions directly in the
job stream.

• During execution, the PostScript program requests the objects by name. The
interpreter loads them into VM automatically from an external source, such as
a disk file, a ROM cartridge, or a network file server.

The notion of named resources (LanguageLevel 2) supports the second method. A
resource is a collection of named objects that either reside in VM or can be located
and brought into VM on demand. There are separate categories of resources with
independent name spaces; for example, fonts and forms are distinct resource cat-
egories. Within each category, there is a collection of named resource instances.
Each category can have its own policy for locating instances that are not in VM
and for managing the instances that are in VM.

3.9.1 Resource Operators

There are five LanguageLevel 2 operators that apply to resources: findresource,
resourcestatus, resourceforall, defineresource, and undefineresource. A more
limited pair of operators applicable only to fonts, findfont and definefont, are
available in LanguageLevel 1.

89

1
i

I
Named Resources I

The findresource operator is the key feature of the resource facility. Given a re-
source category name and an instance name, findresource returns an object. If
the requested resource instance does not already exist as an object in VM,
findresource gets it from an external source and loads it into VM. A PostScript
program can access named resources without knowing whether they are already
in VM or how they are obtained from external storage.

Other important features include resourcestatus, which returns information
about a resource instance, and resourceforall, which enumerates all available

resource instances in a particular category. These operators apply to all resource
instances, whether or not they reside in VM; the operators do not cause the re-
source instances to be brought into VM. resourceforall should be used with care
and only when absolutely necessary, since the set of available resource instances is
potentially extremely large.

A program can explicitly define a named resource instance in VM. That is, it can
create an object in VM, then execute defineresource to associate the object with a
name in a particular resource category. This resource instance will be visible in
subsequent executions of findresource, resourcestatus, and resourceforall. A
program can also execute undefineresource to reverse the effect of a prior
defineresource. The findresource operator automatically executes define-
resource and undefineresource to manage VM for resource instances that it ob-
tains from external storage.

Resource instances can be defined in either local or global VM. The lifetime of the
definition depends on the VM allocation mode in effect at the time the definition
is made (see Section 3.7.2, "Local and Global VM"). Normally, both local and
global resource instances are visible and available to a program. However, when
the current VM allocation mode is global, only global instances are visible; this
ensures correct behavior of resource instances that are defined in terms of other
resource instances.

When a program executes defineresource to define a resource instance explicitly,
the program has complete control over whether to use local or global VM. How-
ever, when execution of findresource causes a resource instance to be brought
into VM automatically, the decision whether to use local or global VM is inde-
pendent of the VM allocation mode at the time findresource is executed. Usually,
resource instances are loaded into global VM; this enables them to be managed
independently of the save and restore activity of the executing program. How-
ever, certain resource instances do not function correctly when they reside in glo-

I CHAPTER 3
90

l
Language I

bal VM; they are loaded into local VM instead. In general, PostScript programs
using resources should not depend on knowing anything about the policies used
by the resource machinery, since those policies can vary among different resource

implementations.

The language does not specify a standard method for installing resources in ex-
ternal storage. Installation typically consists of writing to a named file in a file
system. However, details of how resource names are mapped to file names and
how the files are managed are environment-dependent. In some environments,
resources may be installed using facilities entirely separate from the PostScript in-
terpreter.

Resource instances are identified by keys that ordinarily are name or string ob-
jects; the resource operators treat names and strings equivalently. Use of other
types of keys is permitted but not recommended. The defi n e re so u rce operator
can define a resource instance with a key that is not a name or a string, and the
other resource operators can access the instance using that key. However, such a
key can never match any resource instance in external storage.

3.9.2 Resource Categories

Resource categories are identified by name. Tables 3.7, 3.8, and 3.9 list the stan-
dard resource categories. Within a given category, every resource instance that re-
sides in VM is of a particular type and has a particular intended interpretation or
use.

Regular resources are those whose instances are ordinary useful objects, such as
font or halftone dictionaries. For example, a program typically uses the result re-
turned by findresource as an operand of some other operator, such as scalefont
or sethalftone

Implicit resources represent some built-in capability of the PostScript interpreter.
For example, the instances of the Filter category are filter names, such as
ASCI185Decode and CCITTFaxDecode, that are passed directly to the filter opera-
tor. For such resources, the findresource operator returns only its name operand.
However, resourceforall and resourcestatus are useful for inquiring about the
availability of capabilities such as specific filter algorithms.

91
3.9

1
Named Resources I

TABLE 3.7 Regular resources

CATEGORY NAME OBJECT TYPE DESCRIPTION

Font dictionary Font definition

CIDFont dictionary CIDFont definition (LanguageLevel 3)

CMap dictionary Character code mapping (LanguageLevel 3)

FontSet dictionary Bundle of font definitions (LanguageLevel 3)

Encoding array Encoding vector

Form dictionary Form definition

Pattern dictionary Pattern definition (prototype)

ProcSet dictionary Procedure set

ColorSpace array Parameterized color space

Halftone dictionary Halftone dictionary

ColorRendering dictionary Color rendering dictionary

IdiomSet dictionary Procedure substitution dictionary

(LanguageLevel 3)

InkParams dictionary Colorant details dictionary (LanguageLevel 3)

TrapParams dictionary Trapping parameter set (LanguageLevel 3)

OutputDevice dictionary Page device capabilities (LanguageLevel 3)

ControlLanguage dictionary Control language support (LanguageLevel 3)

Localization dictionary Natural language support (LanguageLevel 3)

PDL dictionary PDL interpreter support (LanguageLevel 3)

HWOptions dictionary Hardware options (LanguageLevel 3)

TABLE 3.8 Resources whose instances are implicit

CATEGORY NAME OBJECT TYPE DESCRIPTION

Filter name Filter algorithm

ColorSpaceFamily name Color space family

Emulator name Language interpreter

10Device string Device parameter set

I CHAPTER 3
92

l
Language I

ColorRenderingType

FMapType

FontType

FormType

HalftoneType

ImageType

PatternType

FunctionType

ShadingType

TrappingType

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Color rendering dictionary type

Composite font mapping algorithm

Font dictionary type

Form dictionary type

Halftone dictionary type

Image dictionary type

Pattern dictionary type

Function dictionary type (LanguageLevel 3)

Shading dictionary type (LanguageLevel 3)

Trapping method (LanguageLevel 3)

TABLE 3.9 Resources used in defining new resource categories

CATEGORY NAME OBJECT TYPE DESCRIPTION

Category

Generic

dictionary Resource category (recursive)

any Prototype for new categories

The Category and Generic resources are used in defining new categories of
resources. This capability is described in Section 3.9.3, "Creating Resource Cate-

gories!'

The resource operators—findresource, resourcestatus, resourceforall, define-

resource, and undefineresource—have standard behavior that is uniform across

all resource categories. This behavior is specified in the operator descriptions in
Chapter 8. For some categories, the operators have additional semantics that are
category-specific. The following sections describe the semantics of each resource
category.

Note: Except as indicated below, the PostScript language does not prescribe that a re-

source category must contain any standard instances. Some categories may be popu-
lated with predefined instances, but the set of instances is product-dependent.

93
Named Resources I 3.9

Font

Instance names of the Font resource category are font names, such as Times-
Roman. The instances are font dictionaries that are suitable for use as operands to
sca I efont or makefont, which produce a transformed font dictionary that can be
used to paint characters on the page.

The following special-purpose operators apply only to fonts but are otherwise
equivalent to the resource operators:

• findfont, equivalent to /Font find resource

• definefont, equivalent to /Font defineresource

• undefinefont, equivalent to /Font undefineresource

The definefont and undefinefont operators have additional font-specific seman-
tics, which are described under those operators in Chapter 8. Those semantics
also apply to defineresource and undefineresource when applied to the Font cat-
egory findfont and definefont are available in LanguageLevel 1, even though the
general facility for named resources is a LanguageLevel 2 feature.

The font operators also maintain dictionaries of font names and Font resource
instances that are defined in VM. Those dictionaries are FontDirectory (all Font
resources in VM) and GlobalFontDirectory (only Font resources in global VM).
They are obsolete, but are provided for compatibility with existing applications.
The preferred method of enumerating all available Font resources is

(Iproc scratch /Font resourceforall

where proc is a procedure and scratch is a string used repeatedly to hold font
names. This method works for all available Font resources, whether or not they

are in VM. Normally, it is preferable to use resourcestatus to determine the avail-
ability of specific resources rather than enumerate all resources and check wheth-
er those of interest are in the list.

When findresource or findfont loads a font from an external source into VM, it
may choose to use global VM rather than the current VM allocation mode. This
choice depends on memory management algorithms used by the interpreter. It
also depends on the font type, since certain Type 3 fonts do not work correctly
when loaded into global VM. The details of this policy are implementation-
dependent; a PostScript program should not depend on knowing what they are.

I CHAPTER 3
94

I
Language I

CIDFont

Instances of the CIDFont resource category (LanguageLevel 3) are dictionaries
that are suitable for use with the composefont operator to construct CID-keyed
fonts, as described in Section 5.11, "CID-Keyed Fonts." The defineresource oper-
ator has certain category-specific semantics when applied to the CIDFont catego-
ry; furthermore, the definefont and undefinefont operators can be applied to

CIDFonts as well as fonts. For more information on the behavior of these opera-

tors, see Section 5.11.3, "CIDFont Dictionaries."

CMap

Instances of the CMap resource category (LanguageLevel 3) are character code

mapping dictionaries that are suitable for use with the composefont operator to
construct CID-keyed fonts, as described in Section 5.11, "CID-Keyed Fonts."

FontSet

Instances of the FontSet resource category (LanguageLevel 3) are bundles of font
definitions that are represented in the Compact Font Format (CFF) or other

multiple-font representations, as described in Section 5.8.1, "Type 2 and Type 14
Fonts (CFF and Chameleon)." Each FontSet instance contains the material from

which one or more Font instances can be constructed.

Encoding

Instances of the Encoding resource category are array objects, suitable for use as
the Encoding entry of font dictionaries (see Section 5.3, "Character Encoding").

An encoding array usually contains 256 names, permitting it to be indexed by any
8-bit character code. An encoding array for use with composite fonts (described
in Section 5.10, "Composite Fonts") contains integers instead of names, and can

be of any length.

There are two standard encodings that are permanently defined in VM and avail-
able by name in systemdict:

• StandardEncoding, whose value is the same as the array returned by

/StandardEncoding /Encoding findresource

NI. -

95
Named Resources I

• ISOLatinl Encoding, whose value is the same as the array returned by

/ISOLatinl Encoding /Encoding findresource

If any other encodings exist, they are available only through findresource. The
convenience operator findencoding is equivalent to /Encoding findresource.

Form

Instances of the Form resource category are form dictionaries, described in
Section 4.7, "Forms." A form dictionary is suitable as the operand to the
execform operator to render the form on the page.

Pattern

Instances of the Pattern resource category are prototype pattern dictionaries, de-
scribed in Section 4.9, "Patterns." A prototype pattern dictionary is suitable as the

operand to the makepattern operator, which produces a transformed pattern
dictionary; a PostScript program can then use the resulting dictionary in painting
operations by establishing a Pattern color space or by invoking the setpattern op-
erator.

ProcSet

Instances of the ProcSet resource category are procedure sets. A procedure set is a
dictionary containing named procedures or operators. Application prologs can
be organized as one or more procedure sets that are available from a library
instead of being included in-line in every document that uses them. The ProcSet
resource category provides a way to organize such a library.

In LanguageLevel 3, there are several standard instances of the ProcSet category
that are associated with specific features of the PostScript language. These proce-
dure sets, listed in Table 3.10, contain procedures, operators, and other objects
that a PostScript program can access as part of using those features.

96
I CHAPTER 3 Language

TABLE 3.10 Standard procedure sets in LanguageLevel 3

PROCEDURE SET ASSOCIATED LANGUAGE FEATURE

BitmapFontlnit

CIDInit

ColorRendering

FontSetInit

Incremental downloading and management of glyph bitmaps in a

Type 4 CIDFont (see "Type 4 CIDFonts" on page 379)

Building a Type 0 CIDFont ("Type 0 CIDFonts" on page 371) or a

CMap dictionary (Section 5.11.4, "CMap Dictionaries")

Selecting a color rendering dictionary (Section 7.1.3, "Rendering

Intents")

Building a FontSet resource ("FontSet Resources" on page 344)

Trapping In-RIP trapping (Section 6.3, "In-RIP Trapping")

ColorSpace

Instances of the ColorSpace resource category are array objects that represent ful-
ly parameterized color spaces. The first element of a color space array is a color
space family name; the remaining elements are parameters to the color space (see
Section 4.8, "Color Spaces").

Note: The ColorSpace resource category is distinct from the ColorSpaceFamily cate-
gory, described below.

Halftone

Instances of the Halftone resource category are halftone dictionaries, suitable as
operands to the sethalftone operator (see Section 7.4, "Halftones").

ColorRendering

Instances of the ColorRendering resource category are color rendering diction-
aries, suitable as operands to the setcolorrendering operator (see Section 7.1,
"CIE-Based Color to Device Color").

97
l

IdiomSet

Named Resources I

Instances of the IdiomSet resource category (LanguageLevel 3) are procedure sub-
stitution dictionaries, for use with the bind operator (see Section 3.12.1, "bind
Operator").

InkParams and TrapParams

The LanguageLevel 3 resource categories InkParams and TrapParams are present

only in products that support in-RIP trapping (see Section 6.3, "In-RIP Trap-
ping"). Instances of InkParams are dictionaries that define trapping-related prop-

erties of device colorants; instances of TrapParams are dictionaries that define sets

of trapping parameters suitable as operands to the settra ppa rams operator.

OutputDevice

Instances of the OutputDevice resource category (LanguageLevel 3) are diction-
aries that describe certain capabilities of a particular page device, such as the pos-
sible page sizes or resolutions (see Section 6.4, "Output Device Dictionary").

ControlLanguage, PDL, Localization, and HWOptions

Instances of the LanguageLevel 3 resource categories ControlLanguage, PDL,
Localization, and HWOptions provide information that is product-dependent, as

summarized below. For further details, see the PostScript Language Reference Sup-
plement.

• Instances of ControlLanguage are dictionaries that describe the control lan-
guages available in a product. A control language is a means for controlling

product features, such as default configuration and status reporting.

• Instances of PDL are dictionaries that describe the page description language
interpreters available in a product. This category supersedes the Emulator im-

plicit resource category, because its instances provide a more complete descrip-
tion of each interpreter (or emulator).

• Instances of Localization are dictionaries that describe the natural languages
(for example, English, Japanese, or German) supported by a product.

98
I CHAPTER 3 Language I

• Instances of HWOptions are strings that indicate the special hardware options
that are present in this product.

Implicit Resources

For all implicit resources, the findresource operator returns the instance's key if
the instance is defined. The resourcestatus and resourceforall operators have
their normal behavior, although the status and size values returned by
resourcestatus are meaningless. The defineresource and undefineresource
operators are ordinarily not allowed, but the ability to define new instances of
implicit resources may exist in some implementations. The mechanisms are
implementation-dependent. •

The instances of the Filter category are filter names, such as ASC1185Decode and
RunLengthEncode, which are used as an operand of the filter operator to deter-
mine its behavior. Filters are described in Section 3.8.4, "Filters!'

The instances of the ColorSpaceFamily category are color space family names,
which appear as the first element of a color space array object. Some color spaces,
such as DeviceRGB, are completely determined by their family name; others, such
as CIEBasedABC, require additional parameters to describe them. Color spaces
are described in Section 4.8, "Color Spaces!'

The instances of the Emulator category are names of emulators for languages
other than PostScript that may be built into a particular implementation. Those
emulators are not a standard part of the PostScript language, but one or more of
them may be present in some products. This category has been superseded by the
PDL resource category in LanguageLevel 3.

The instances of the 10Device category are names of device parameter sets. Some
parameter sets are associated with input/output devices, from which the category
name 10Device originates. However, there are also some parameter sets that do
not correspond to physical devices. The keys for all instances of this category are
expressed as strings of the form %device%. See Section C.4, "Device Parameters!'

The instances of the ColorRenderingType, FMapType, FontType, FormType,
HalftoneType, ImageType, PatternType, FunctionType, ShadingType, and
TrappingType categories are integers that are the acceptable values for the corre-
spondingly named entries in various classes of special dictionaries. For example,
in LanguageLevel 3 the FMapType category includes the integers 1 through 9 as

99
Named Resources

keys; if an interpreter supports additional FMapType values, the FMapType cate-
gory will also include those values as instances.

3.9.3 Creating Resource Categories

The language support for named resources is quite general. Most of it is indepen-
dent of the semantics of specific resource categories. It is occasionally useful to
create new resource categories, each containing an independent collection of
named instances. This is accomplished through a level of recursion in the re-
source machinery itself.

The resource category named Category contains all of the resource categories as
instances. The instance names are resource category names, such as Font, Form,
and Halftone. The instance values are dictionary objects containing information
about how the corresponding resource category is implemented.

A new resource category is created by defining a new instance of the Category
category. Example 3.6 creates a category named Widget.

Example 3.6

true setglobal

/Widget catdict /Category defineresource pop

false setglobal

In this example, catdict is a dictionary describing the implementation of the
Widget category. Once it is defined, instances of the Widget category can be ma-
nipulated like other categories:

/Frobl w /Widget defineresource

/Frobl /Widget findresource

/Frobl /Widget resourcestatus

(*) proc scratch /Widget resourceforall

% Returns w

% Returns w

% Returns status size true

% Pushes (Frobl) on the stack, then calls proc

Here w is an instance of the Widget category whose type is whatever is appropri-

ate for widgets, and /Frobl is the name of that instance.

It is possible to redefine existing resource categories in this way. Programs that do
this must ensure that the new definition correctly implements any special seman-

tics of the category.

I CHAPTER 3
100

I
Language I

Category Implementation Dictionary

The behavior of all the resource operators, such as defineresource, is determined
by entries in the resource category's implementation dictionary. This dictionary
was supplied as an operand to defineresource when the category was created. In
the example

/Frobl w /Widget defineresource

the defineresource operator does the following:

1. Obtains catdict, the implementation dictionary for the Widget category.

2. Executes begin on the implementation dictionary.

3. Executes the dictionary's DefineResource entry, which is ordinarily a proce-
dure but might be an operator. When the procedure corresponding to the
DefineResource entry is called, the operand stack contains the operands that
were passed to defineresource, except that the category name (Widget in this
example) has been removed. DefineResource is expected to consume the re-

maining operands, perform whatever action is appropriate for this resource
category, and return the appropriate result.

4. Executes the end operator. If an error occurred during step 3, it also restores
the operand and dictionary stacks to their initial state.

The other resource operators—undefineresource, findresource, resourcestatus,
and resourceforall—behave the same way, with the exception that resourceforall
does not restore the stacks upon error. Aside from the steps described above, all
of the behavior of the resource operators is implemented by the corresponding
procedures in the dictionary.

A category implementation dictionary contains the entries listed in Table 3.11.

The dictionary may also contain other information useful to the procedures in
the dictionary. Since the dictionary is on the dictionary stack at the time those

procedures are called, the procedures can access the information conveniently.

101

i
Named Resources I

TABLE 3.11 Entries in a category implementation dictionary

KEY TYPE VALUE

DefineResource procedure

UndefineResource procedure

FindResource procedure

ResourceStatus procedure

ResourceForAll procedure

(Required) A procedure that implements defineresource behavior.

(Required) A procedure that implements undefineresource behavior.

(Required) A procedure that implements findresource behavior. This pro-

cedure determines the policy for using global versus current VM when
loading a resource from an external source.

(Required) A procedure that implements resourcestatus behavior.

(Required) A procedure that implements resourceforall behavior. This
procedure should remove the category implementation dictionary from
the dictionary stack before executing the procedure operand of

resourceforall, and should put that dictionary back on the dictionary
stack before returning. This ensures that the procedure operand is execut-
ed in the dictionary context in effect at the time resourceforall was in-

voked.

Category name (Required) The category name. This entry is inserted by defineresource

when the category is defined.

InstanceType name (Optional) The expected type of instances of this category. If this entry is

present, defineresource checks that the instance's type, as returned by the
type operator, matches it.

ResourceFileName procedure (Optional) A procedure that translates a resource instance name to a file
name (see Section 3.9.4, "Resources as Files").

A single dictionary provides the implementation for both local and global in-
stances of a category. The implementation must maintain the local and global

instances separately and must respect the VM allocation mode in effect at the
time each resource operator is executed. The category implementation dictionary
must be in global VM; the defineresource operator that installs it in the Category
category must be executed while in global VM allocation mode.

The interpreter assumes that the category implementation procedures will be
reasonably well behaved and will generate errors only due to circumstances not
under their control. In this respect, they are similar to the BuildChar procedure in
a Type 3 font or to the PaintProc procedure in a form or pattern, but are unlike
the arbitrary procedures invoked by operators such as forall or resourceforall.

I CHAPTER 3
102

Language I

If an error occurs in a category implementation procedure, the resource operator
makes a token attempt to restore the stacks and to provide the illusion that the
error arose from the operator itself. The intent is that the resource operators
should have the usual error behavior as viewed by a program executing them.

The purpose is not to compensate for bugs in the resource implementation pro-
cedures.

Generic Category

The preceding section describes a way to define a new resource category, but it
does not provide guidance about how the individual procedures in the category's
dictionary should be implemented. In principle, every resource category has

complete freedom over how to organize and manage resource instances, both in
VM and in external storage.

Since different implementations have different conventions for organizing re-

source instances, especially in external storage, a program that seeks to create a
new resource category might need implementation-dependent information. To
overcome this problem, it is useful to have a generic resource implementation
that can be copied and used to define new resource categories. The Category cat-
egory contains an instance named Generic, whose value is a dictionary contain-
ing a generic resource implementation.

Example 3.7 defines the Widget resource category and is similar to Example

3.6 on page 99; however, it generates the category implementation dictionary by
copying the one belonging to the Generic category. This avoids the need to know
anything about how resource categories actually work.

Example 3.7

currentglobal % Save the current VM status on the stack.

true setglobal

/Generic /Category findresource

dup length 1 add dict copy

dup /InstanceType /dicttype put

/Widget exch /Category defineresource pop

setglobal % Restore the saved VM status.

The Generic resource category's implementation dictionary does not have an

InstanceType entry; instances need not be of any particular type. The example
above makes a copy of the dictionary with space for one additional entry and in-

103
Named Resources

serts an InstanceType entry with the value dicttype. As a result, defineresource
requires that instances of the Widget category be dictionaries.

3.9.4 Resources as Files

The PostScript language does not specify how external resources are installed,
how they are loaded, or what correspondence, if any, exists between resource
names and file names. In general, all knowledge of such things is in the category
implementation dictionary and in environment-dependent installation software.

Typically, resource instances are installed as named files, which can also be access-
ed by ordinary PostScript file operators such as file and run. There is a straight-
forward mapping from resource names to file names, though the details of this
mapping vary because of restrictions on file name syntax imposed by the under-
lying file system.

In some implementations, including many dedicated printers, the only access to
the file system is through the PostScript interpreter. In such environments, it is
important for PostScript programs to be able to access the underlying resource
files directly in order to install or remove them. Only resource installation or oth-
er system management software should do this. Page descriptions should never

attempt to access resources as files; they should use only resource operators, such
as findresource.

The implementation dictionary for a category can contain an optional entry,

ResourceFileName, which is a procedure that translates from a resource name to
a file name. If the procedure exists, a program can call it as follows:

1. Push the category implementation dictionary on the dictionary stack. The
ResourceFileName procedure requires this step in order to obtain category-
specific information, such as Category.

2. Push the instance name and a scratch string on the operand stack. The scratch
string must be long enough to accept the complete file name for the resource.

3. Execute ResourceFileName.

4. Pop the dictionary stack.

ResourceFileName builds a complete file name in the scratch string and returns

on the operand stack the substring that was used. This string can then be used as

I CHAPTER 3
104

I
Language I

the filename operand of file operators such as file, de letefi le, status, and so on.
For example, the following program fragment obtains the file name for the Tim es-
Roman font:

/Font /Category findresource

begin

/Times-Roman scratch ResourceFileName

end

If a ResourceFileName procedure for a particular category and instance name ex-
ists and executes without a PostScript error, it will leave a string on the stack. If
that category maintains all of its instances as named files, this string is the name

of the file for that instance. This file name may or may not contain the %device%
prefix. Use of this file name with file operators may not succeed for a variety of
reasons, including:

• The category does not maintain all of its instances as named files.

• The operator tried to delete a file from a read-only file system.

• The operator tried to write to a file system with insufficient space.

There may be a limit on the length of a resource file name, which in turn imposes
a length limit on the instance name. The inherent limit on resource instance
names is the same as that on name objects in general (see Appendix B). By con-
vention, font names are restricted to fewer than 40 characters. This convention is

recommended for other resource categories as well. Note that the resource file
name may be longer or shorter than the resource instance name, depending on

details of the name-mapping algorithm. When calling ResourceFileName, it is
prudent to provide a scratch string at least 100 characters long.

Some implementations provide additional control over the behavior of
ResourceFileName; see Section C.3.6, "Resource File Location!'

A resource file contains a PostScript program that can be executed to load the re-
source instance into VM. The last action the program should take is to execute
defineresource or an equivalent operator, such as definefont, to associate the

resource instance with a category and a name. In other words, each resource file
must be self-identifying and self-defining. The resource file must be well behaved:
it must leave the stacks in their original state and it must not execute any opera-
tors (graphics operators, for instance) that are not directly related to creating the
resource instance.

105

I
Named Resources I

For most resource categories, including Generic, the category's FindResource
procedure executes true setglobal before executing the resource file and restores
the previous VM allocation mode afterward. As a result, the resource instance is
loaded into global VM and defineresource defines the resource instance globally,

regardless of the VM allocation mode at the time findresource is invoked. Unfor-
tunately, certain resource instances behave incorrectly if they reside in global VM.
Some means are required to defeat the automatic loading into global VM. Two
methods are currently used:

• Some implementations of the Font category's FindResource procedure omit ex-

ecuting true setglobal before executing the font file. This causes fonts to be
defined in the VM allocation mode in effect when findresource is invoked,
rather than always in global VM. Details of this policy are implementation-
dependent.

• If a particular resource instance is known not to work in global VM, the re-
source file should begin with an explicit false setglobal.

A resource file can contain header comments, as specified in Adobe Technical
Note #5001, PostScript Language Document Structuring Conventions Specification.

If there is a header comment of the form

°/e/oVMusage: int inr

then the resourcestatus operator returns the larger of the two integers as its size
result. If the %%VMusage: comment is not present, resourcestatus may not be
able to determine the VM consumption for the resource instance, in which case it
will return a size of—i.

The definition of an entire resource category—that is, an instance of the
Category category—can come from a resource file in the normal way. If any re-

source operator is presented with an unknown category name, it automatically
executes

category /Category findresource

in an attempt to cause the resource category to become defined. Only if that fails

will the resource operator generate an undefined error to report that the resource
category is unknown.

I CHAPTER 3
106

I
Language I

3.10 Functions

The PostScript language includes operators and procedures that take arguments
off the operand stack and put their results back on the stack. The add operator,
for example, pops two arguments, which must be numbers, and pushes the sum
of those numbers back on the stack. add could be viewed as a function with two
input values and one output value:

f(xo, xi) = xo +xi

Similarly, the following procedure computes the average and the square root of
the product of two numbers:

2 copy add

2 div

3 1 roll mul

sqrt

This could be viewed as a function of two input values and two output values:

x0 +x
f(xo, xi) = 2 1, Jx0 x xi

In general, a function can take any number (m) of input values and produce any
number (n) of output values:

f(X0, ..., Xm _ i) = yo, • • •, Yn _ i

LanguageLevel 3 supports an explicit, static representation for functions, known
as function dictionaries. Functions are less general than PostScript procedures: all
the input values and all the output values are numbers, and functions have no
side effects. On the other hand, functions can be considerably more efficient than
procedures, since they entail no PostScript operator execution.

At present, there is only one use for functions in the PostScript language: they are
used to define the color values in a shading pattern (see Section 4.9.3, "Shading
Patterns," and the shfill operator in Chapter 8). There is no operator like exec
that explicitly calls a function. Functions are also used extensively in PDF, where
there are no procedures; for more information, see the Portable Document Format
Reference Manual.

i 3.10
107

1 Functions l

Each function definition includes a domain, the set of legal values for the input.
Some types of function also define a range, the set of legal values for the output.
Values passed to the function are clipped to the domain, and values produced by
the function are clipped to the range. For example, suppose the function
f(x) = x + 2 is defined with a domain of [-1 1]. If the function is called with the
value 6, that value is replaced with the nearest value in the defined domain, 1,
before the function is evaluated, and the result is therefore 3. Similarly, if the
function f(xo, x1) = 3 x xo + x1 is defined with a range of [0 100], and if the values
—6 and 4 are passed to the function (and are within its domain), then the value

produced by the function, — 14, is replaced with 0, the nearest value in the defined
range.

3.10.1 Function Dictionaries

A function dictionary specifies a function's representation, the set of attributes
that parameterize that representation, and the additional data needed by that
representation. Three types of function are available, as indicated by the diction-
ary's FunctionType entry:

• A sampled function (type 0) uses a table of sample values to represent the func-
tion. Various techniques are used to interpolate values between the sample
values.

• An exponential interpolation function (type 2) defines a set of coefficients for an
exponential function.

• A stitching function (type 3) is a combination of other functions, partitioned
across a domain.

All function dictionaries share the entries listed in Table 3.12. In addition, each

type of function dictionary must include attributes appropriate to the particular
function type. The number of output values can usually be inferred from other
attributes of the function; if not (as is always the case for type 0 functions), the
Range attribute is required. The dimensionality of the function implied by the

Domain and Range attributes must be consistent with the dimensionality implied
by other attributes of the function; otherwise, a rangecheck error will occur.

108
I CHAPTER 3 Language I

TABLE 3.12 Entries common to all function dictionaries

KEY TYPE VALUE

FunctionType integer (Required) The function type:

0 Sampled function

2 Exponential interpolation function
3 Stitching function

Domain array (Required) An array of 2 x m numbers, where m is the number of input val-
ues. For each i from 0 to m — 1, Domain2i must be less than or equal to
Domain2i.,4, and the ith input value, xi, must lie in the interval
Domain2i ≤ x _5 Domain2i.i.i. Input values outside the declared domain are

clipped to the nearest boundary value.

Range array (Required for type 0 functions, optional otherwise; see below) An array of 2 x n
numbers, where n is the number of output values. For each j from 0 to n — 1,

Rangez must be less than or equal to Range2i,i, and the jth output value,
must lie in the interval Range2i 5 yi ≤ Range2i4.1. Output values outside the
declared range are clipped to the nearest boundary value. If the Range entry

is absent, no clipping is done.

Type 0 Function Dictionaries (Sampled Functions)

Type 0 function dictionaries use a sequence of sample values to provide an ap-
proximation for functions whose domains and ranges are bounded. The samples

are organized as an m-dimensional table in which each entry has n components.

Sampled functions are highly general and offer reasonably accurate repre-
sentations of arbitrary analytic functions at low expense. For example, a 1-input
sinusoidal function can be represented over the range [0 180] with an average
error of only 1 percent, using just ten samples and linear interpolation. Two-

input functions require significantly more samples, but usually not a prohibitive
number, so long as the function does not have high frequency variations.

The dimensionality of a sampled function is restricted only by implementation
limits. However, the number of samples required to represent high-dimensionality
functions multiplies rapidly unless the sampling resolution is very low. Also, the
process of multilinear interpolation becomes computationally intensive if m is
greater than 2. The multidimensional spline interpolation is even more computa-

tionally intensive.

I 3.10
109

i
Functions I

In addition to the entries in Table 3.12, a type 0 function dictionary includes the

entries listed in Table 3.13.

TABLE 3.13 Additional entries specific to a type 0 function dictionary

KEY TYPE VALUE

Order integer (Optional) The order of interpolation between samples. Allowed values are 1

and 3, specifying linear and cubic spline interpolation, respectively. Default
value: 1.

DataSource string or file (Required) A string or positionable file providing the sequence of sample

values that specifies the function. (A file object derived from a Reusable-
Stream Decode filter may be used here.)

BitsPerSample integer (Required) The number of bits used to represent each component of each

sample value. The number must be 1, 2, 4, 8, 12, 16, 24, or 32.

Encode array (Optional) An array of 2 x m numbers specifying the linear mapping of input

values into the domain of the function's sample table. Default value:
(0 (Sizeo — 1) 0 (Sizei — 1) ... 1.

Decode array (Optional) An array of 2 x n numbers specifying the linear mapping of

sample values into the range of values appropriate for the function's output

values. Default value: Same as the value of Range.

Size array (Required) An array of m positive integers specifying the number of samples

in each input dimension of the sample table.

The Domain, Encode, and Size attributes determine how the function's input

variable values are mapped into the sample table. For example, if Size is [21 31],

the default Encode array is [0 20 0 30], which maps the entire domain into the full

set of sample table entries. Other values of Encode may be used.

To explain the relationship between Domain, Encode, Size, Decode, and Range,

we use the following notation:

(Ymax — Ymin) y = Interpolate(x, xmm, xmax, ymin, ymax) = (x — xmin) x
(xmax — xmin) + Ymin

For a given value of x, Interpolate calculates they value on the line defined by the

two points (xmin, ymin) and (x.., y„,,c).

110
I CHAPTER 3 Language

When a sampled function is called, each input value ;, for 0 ≤ i < m, is clipped to

the domain:

= min(max(x• Domain 1• Domain 2i + 1)

That value is encoded:

ei = Interpolate(xr, Domain 2i, Domain 2i 1, Encode2i, Encode 2i i)

That value is clipped to the size of the sample table in that dimension:

= min(max(ei, 0), Sizei - 1)

The encoded input values are real numbers, not restricted to integers. Interpola-
tion is then used to determine output values from the nearest surrounding values

in the sample table. Each output value ri, for 0 j < n, is then decoded:

r!=Interpolate(r. 0, 2BitsPersanwie - 1. Decode, Decode2j+ 1)

Finally, each decoded value is clipped to the range:

= min(max(Rangezi), Range2i+ i)

Sample data is represented as a stream of unsigned 8-bit bytes (integers in the
range 0 to 255). The bytes constitute a continuous bit stream, with the high-order

bit of each byte first. Each sample value is represented as a sequence of
BitsPerSample bits. Successive values are adjacent in the bit stream; there is no

padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the
sample values in the first dimension vary fastest, and the values in the last dimen-

sion vary slowest. For example, for a function f(a, b, c), where a, b, and c vary
from 0 to 9 in steps of 1, the sample values would appear in this order: f(0, 0, 0),
f(1, 0, 0), f(9, 0, 0), f(0, 1, 0), f(1, 1, 0), f(9, 1, 0), f(0, 2, 0), f(1, 2, 0), ...,

f(9, 9, 0),f(0, 0, 1),f(1, 0, 1), and so on.

For a function with multidimensional output (more than one output value), the

values are stored in the same order as Range.

The DataSource string or file must be long enough to contain the entire sample
array, as indicated by Size, Range, and BitsPerSample; otherwise, a rangecheck

I 3.10
111

Functions I

error will occur. If Data So urce is a file, the sample data begins at file position O.

The operators that use the function will reposition this file at unpredictable
times; a PostScript program should not attempt to access the same file. A
ReusableStreamDecode filter is required if in-line data or a subfile is to be used as
data for a sampled function.

Example 3.8 illustrates a sampled function with 4-bit samples in an array con-
taining 21 columns and 31 rows. The function takes two arguments, x and y, in
the domain [-1 1], and returns one value, z, in that same range.

Example 3.8

« /FunctionType

/Domain [- 1 1 -1 1]

/Size [21 31]

/Encode [0 20 0 30]

/BitsPerSample 4

/Range [-1 1]

/Decode [-1 1]

/DataSource < >

> >

The x argument is linearly transformed by the encoding to the domain [0 20] and

the y argument to the domain [0 30]. Using bilinear interpolation between sam-
ple points, the function computes a value for z, which (because BitsPerSample is
4) will be in the range [0 15], and the decoding transforms z to a number in the
range [-1 1] for the result. The sample array is stored in a string of 326 bytes, cal-
culated as follows (rounded up):

326 bytes = 31 rows X 21 samples/row x 4 bits/sample ÷ 8 bits/byte

The first byte contains the sample for the point (-1, —1) in the high-order 4 bits
and the sample for the point (-0.9, — 1) in the low-order 4 bits.

The Decode entry can be used creatively to increase the accuracy of encoded

samples corresponding to certain values in the range. For example, if the desired
range of the function is [-1 1] and BitsPerSample is 4, the usual value of Decode

would be [-1 1] and the sample values would be integers in the interval [0 15] (as
shown in Figure 3.1). But if these values were used, the midpoint of the range (0)

would not be represented exactly by any sample value, since it would fall halfway
between 7 and 8. On the other hand, if the Decode array were [-1 +1.1428571]
(or more precisely, [-1 16 14 div]) and the sample values supplied were in the in-

I CHAPTER 3
112

Language I

terval [0 14], then the desired effective range of [-1 I] would be achieved, and the

range value 0 would be represented by the sample value 7.

c 0
cc 7 8

Samples

FIGURE 3.1 Mapping with the Decode array

15 7 8

Samples

/Decode [-I 1] /Decode [-1 1.1429]

14

The Size value for an input dimension can be 1, in which case all input values in
that dimension will be mapped to the single allowed value. If Size is less than 4,
cubic spline interpolation is not possible and Order 3 will be ignored if specified.

Type 2 Function Dictionary (Exponential Interpolation Functions)

Type 2 function dictionaries include a set of parameters that define an exponen-

tial interpolation of one input value and n output values:

f(x) Yo, Yn —

In addition to the entries in Table 3.12 on page 108, a type 2 function dictionary

includes the entries listed in Table 3.14.

Values of Domain must constrain x in such a way that if N is not an integer, all
values of x must be greater than or equal to 0, and if N is negative, no value of x

may be O.

For typical use as an interpolation function, Domain will be declared as [0 1], and
N will be a number greater than 0. The Range parameter is optional and can be

used to clip the output to a desired range.

113
3.10 Functions I

TABLE 3.14 Additional entries specific to a type 2 function dictionary

KEY TYPE VALUE

CO array (Optional) An array of n numbers defining the function result when x= 0
(hence the "0" in the name). Default value: [0].

C1 array (Optional) An array of n numbers defining the function result when x=1
(hence the " 1" in the name). Default value: [1].

number (Required) The interpolation exponent. Each input value x will return n
values, given by yi = COj + xN x (C1i — C01), for 0 ≤ j< n.

Type 3 Function Dictionaries (Stitching Functions)

Type 3 function dictionaries define a "stitching" of the subdomains of several
1-input functions to produce a single new 1-input function. Since the resulting
stitching function is a 1-input function, the domain is given by a two-element
array, [Domain° Domain 1]. This domain is partitioned into k subdomains, as in-
dicated by the dictionary's Bounds entry, which is an array of k - 1 numbers that
obey the following inequality:

Domain < Bounds () < Bounds < < Boundsk— 2 < Domain 0 • • • 1

The value of the Functions entry is an array of k functions. The first function
applies to x values in the first subdomain, Domain° 5 x < Boundso; the second

function applies to x values in the second subdomain, Bounds° 5 x < Boundsi;
and so on. The last function applies to x values in the last subdomain, which in-
cludes the upper bound: Boundsk_2 ≤ x ≤ Domain 1.

The Encode array contains 2 x k numbers. A value x from the ith subdomain is
encoded as follows:

= Interpolate(x, Bounds, Bounds. Encode ,• Encode 2i i)

for 0 ≤ i < k. In this equation, Bounds means Domaine, and Boundsk_i means

Domain1.

The value of k may be 1, in which case the Bounds array is empty and the single
item in the Functions array applies to all x values, Domain° ≤ x ≤ Domaini.

I CHAPTER 3
114

Language I

In addition to the entries in Table 3.12 on page 108, a type 3 function dictionary

includes the entries listed in Table 3.15.

TABLE 3.15 Additional entries specific to a type 3 function dictionary

KEY TYPE VALUE

Functions array (Required) An array of k 1-input functions making up the stitching function.
The output dimensionality of all functions must be the same, and compatible

with the value of Range if Range is present.

Bounds array (Required) An array of k — 1 numbers that, in combination with Domain, de-
fine the intervals to which each function from the Functions array applies.
Bounds elements must be in order of increasing value, and each value must

be within the limits specified by Domain.

Encode array (Required) An array of 2 x k numbers that, taken in pairs, map each subset of
the domain defined by Domain and the Bounds array to the domain of the

corresponding function.

Domain must be of size 2 (that is, m = 1). Note that Domain () must be strictly less

than Domain ' unless k = 1.

The stitching function is designed to make it easy to combine several functions to
be used within one shading pattern, over different parts of the shading's domain.
The same effect could be achieved by creating separate shading dictionaries for
each of the functions, with adjacent domains. However, since each shading would

have similar parameters, and because the overall effect is one shading, it is more
convenient to have a single shading with multiple function definitions.

Also, function type 3 provides a general mechanism for inverting the domains of
1-input functions. For example, consider a function f with a Domain of [0 1], and
a stitching function g with a Domain of [0 1], a Functions array containing f, and

an Encode array of [1 0]. In effect, g(x) =f(1 — x).

3.11 Errors

Various sorts of errors can occur during execution of a PostScript program. Some
errors are detected by the PostScript interpreter, such as overflow of one of the in-
terpreter's stacks. Others are defected during execution of the built-in operators,

such as occurrence of the wrong type of operand.

115
Errors

Errors are handled in a uniform fashion that is under the control of the Post-

Script program. Each error is associated with a name, such as stackoverflow or
typecheck. Each error name appears as a key in a special dictionary called
errordict and is associated with a value that is the handler for that error. The
complete set of error names appears in Section 8.1, "Operator Summary?'

3.11.1 Error Initiation

When an error occurs, the interpreter does the following:

1. Restores the operand stack to the state it was in when it began executing the
current object.

2. Pushes that object on the operand stack.

3. Looks up the error's name in errordict and executes the associated value,
which is the error handler for that error.

This is everything the interpreter itself does in response to an error. The error

handler in errordict is responsible for all other actions. A PostScript program can
modif-y error behavior by defining its own error-handling procedures and associ-
ating them with the names in errordict.

The interrupt and timeout errors, which are initiated by events external to the
PostScript interpreter, are treated specially. The interpreter merely executes

interrupt or timeout from errordict, sandwiched between execution of two ob-
jects being interpreted in normal sequence. It does not push the object being exe-

cuted, nor does it alter the operand stack in any other way. In other words, it
omits steps 1 and 2 above.

3.11.2 Error Handling

The errordict dictionary present in the initial state of VM provides standard
handlers for all errors. However, errordict is a writeable dictionary; a program

can replace individual error handlers selectively. errordict is in local VM, so

changes are subject to save and restore; see Section 3.7, "Memory Management."

The default error-handling procedures all operate in a standard way. They record
information about the error in a special dictionary named $error, set the VM al-

116
I CHAPTER 3 Language I

location mode to local, and invoke the stop operator. They do not print anything

or generate any text messages to %stdout or %stderr.

Execution of stop exits the innermost enclosing context established by the
stopped operator. Assuming the user program has not invoked stopped, inter-
pretation continues in the job server, which invoked the user program with

stopped.

As part of error recovery, the job server executes the name handleerror from
errordict. The default handleerror procedure accesses the error information in
the $error dictionary and reports the error in an installation-dependent fashion.

In some environments, handleerror simply writes a text message to the standard
output file. In other environments, it invokes more elaborate error reporting

mechanisms.

After an error occurs and one of the default error-handling procedures is exe-
cuted, $error contains the entries shown in Table 3.16.

TABLE 3.16 Entries in the Serror dictionary

KEY TYPE VALUE

newerror boolean A flag that is set to true to indicate that an error has occurred. handleerror

sets it to false.

errorname name The name of the error that occurred.

command any The operator or other object being executed by the interpreter at the time the

error occurred.

errorinfo array or null (LanguageLevel 2) If the error arose from an operator that takes a parameter
dictionary as an operand (such as setpagedevice or setdevparams), this

array contains the key and value of the incorrect parameter. (It a required
entry was missing, this array contains the expected key with a null value.)

handleerror sets errorinfo to null.

ostack array A snapshot of the entire operand stack immediately before the error, stored

as if by the astore operator.

estack array A snapshot of the execution stack, stored as if by the execstack operator.

dstack array A snapshot of the dictionary stack, stored as if by the dictstack operator.

117
3.12 Early Name Binding

recordstacks boolean (LanguageLevel 2) A flag that controls whether the standard error handlers

record the ostack, estack, and dstack snapshots. Default value: true.

binary boolean (LanguageLevel 2) A flag that controls the format of error reports produced

by the standard handleerror procedure. false produces a text message; true

produces a binary object sequence (see Section 3.14.6, "Structured Output").
Default value: false.

A program that wishes to modify the behavior of error handling can do so in one
of two ways:

• It can change the way errors are reported simply by redefining handleerror in
errordict. For example, a revised error handler might report more information

about the context of the error, or it might produce a printed page containing
the error information instead of reporting it to the standard output file.

• It can change the way errors are invoked by redefining the individual error
names in errordict. There is no restriction on what an error-handling proce-
dure can do. For example, in an interactive environment, an error handler
might invoke a debugging facility that would enable the user to examine or
alter the execution environment and perhaps resume execution.

3.12 Early Name Binding

Normally, when the PostScript language scanner encounters an executable name
in the program being scanned, it simply produces an executable name object; it
does not look up the value of the name. It looks up the name only when the name
object is executed by the interpreter. The lookup occurs in the dictionaries that
are on the dictionary stack at the time of execution.

A name object contained in a procedure is looked up each time the procedure is
executed. For example, given the definition

/average (add 2 div) clef

the names add and div are looked up, yielding operators to be executed, every
time the average procedure is invoked.

This so-called late binding of names is an important feature of the PostScript lan-

guage. However, there are situations in which early binding is advantageous.

I CHAPTER 3
118

I
Language l

There are two facilities for looking up the values of names before execution: the

bind operator and the immediately evaluated name.

3.12.1 bind Operator

The bind operator takes a procedure operand and returns a possibly modified

procedure. There are two kinds of modification: operator substitution and idiom
recognition.

Operator Substitution

The bind operator first systematically replaces names with operators in a proce-
dure. For each executable name whose value is an operator (not an array, pro-

cedure, or other type), it replaces the name with the operator object. This lookup
occurs in the dictionaries that are on the dictionary stack at the time bind is exe-

cuted. The effect of bind applies not only to the procedure being bound but to all
subsidiary procedures (executable arrays or executable packed arrays) contained

within it, nested to arbitrary depth.

When the interpreter subsequently executes this procedure, it encounters the
operator objects, not the names of operators. For example, if the average proce-

dure has been defined as

/average { add 2 divJ bind def

then during the execution of average, the interpreter executes the add and div

operators directly, without looking up the names add and div.

There are two main benefits to using bind:

• A procedure that has been bound will execute the sequence of operators that
were intended when the procedure was defined, even if one or more of the

operator names have been redefined in the meantime. This benefit is mainly of
interest in procedures that are part of the PostScript implementation, such as
findfont and =. Those procedures are expected to behave correctly and uni-

formly, regardless of how a user program may have altered its name environ-

ment.

• A bound procedure executes somewhat faster than one that has not been
bound, since the interpreter need not look up the operator names each time,

I 3.12
119

Early Name Binding

but can execute the operators directly. This benefit is of interest in most Post-

Script programs, particularly in the prologs of page descriptions. It is worth-
while to apply bind to any procedure that will be executed more than a few
times.

It is important to understand that bind replaces only those names whose values
are operators at the time bind is executed. Names whose values are of other types,
particularly procedures, are not disturbed. If an operator name has been rede-
fined in some dictionary above systemdict on the dictionary stack before the exe-

cution of bind, occurrences of that name in the procedure will not be replaced.

Note: Certain standard language features, such as fi nd font, are implemented as
built-in procedures rather than as operators. Also, certain names, such as true, false,
and null, are associated directly with literal values in systemdict. Occurrences of such
names in a procedure are not altered by bind.

Idiom Recognition

In LanguageLevel 3, the bind operator performs an additional task, known as

idiom recognition, following the replacement of names in the bound procedure
with operators. The goal of idiom recognition is to replace certain procedures

("idioms") with other procedures, typically ones that have equivalent behavior
but produce better-quality results or execute more efficiently. Performing such
substitution on procedures in an application's prolog can take advantage of new
language features without changing the application.

The idioms and their replacements are stored as instances of the IdiomSet re-
source category. An IdiomSet instance is a procedure substitution dictionary,
which typically contains idioms for a particular application's prolog. The keys in
this dictionary are arbitrary Each value in this dictionary is an array containing
two procedures, a template procedure and a substitute procedure.

The bind operator first tests the value of the user parameter Idiom Recognition to
see whether idiom recognition is enabled. If so, the bound procedure is compared
to every template procedure in every IdiomSet instance. If a match is found, bind
returns the associated substitute procedure; otherwise, it returns the bound pro-
cedure.

Two arrays or procedures are considered to match if corresponding elements
either are equal (in the sense of the eq operator) or are both arrays whose corre-

I_ CHAPTER 3
120

Language I

sponding elements match in turn. The objects' attributes are disregarded during

this comparison, just as they are by eq. Nested arrays or procedures are compared

to a maximum depth of ten levels.

If substitutions may have an undesirable effect, idiom recognition can be disabled
by setting the value of the user parameter IdiomRecognition to false before in-
voking the bind operator. For example, IdiomRecognition should be set to false
during the construction of instances of the IdiomSet resource category, so that

the template and substitute procedures are not themselves recognized as idioms.

Example 3.9 demonstrates how to construct an instance of the IdiomSet resource

category.

Example 3.9

0/0Temporarily turn off idiom recognition so that bind does not change our template.

currentuserparams /IdiomRecognition get % Save current value on stack

«/IdiomRecognition false» setuserparams

% Define an IdiomSet resource named AdobeWinDriver containing a single substitution.

/AdobeWinDriver

/snap % Name of this particular idiom (any name)

[% The template procedure.

%This is a common method in LanguageLevel 1 for aligning points

% on a grid in device space.

{ transform

0.25 sub round 0.25 add exch

0.25 sub round 0.25 add exch

itransform

bind

%The substitute procedure.

0/0This procedure does not change the coordinates.

% Assume that setstrokeadjust is on.

{} bind

/IdiomSet defineresource pop

«/Idioneecognition 3 -1 roll» setuserparams % Return idiom recognition

% to its previous state

% If the restored value was true, bind will now replace occurrences of the template

% procedure with the substitute procedure.

I 3.12
121

Early Name Binding I

The template and substitute procedures should be bound explicitly during the
definition of the IdiomSet instance, since no automatic binding occurs on either
of these procedures during idiom recognition. The comparison during idiom

recognition occurs after the candidate procedure is bound; a successful match de-
pends on the template also being bound. Generally, the substitute procedure
should be bound, unless lookup of operator names during each execution of the
substitute procedure is specifically desired.

Instances of the IdiomS et resource category reside in VM, either local or global; if
local, they are subject to the save and restore operators. The bind operator
follows the usual rules about visibility of resources according to the current VM
allocation mode. That is, if the current VM allocation mode is global, only glo-
bally defined instances of IdiomSet are considered, whereas if the current alloca-

tion mode is local, both locally and globally defined instances are considered.
Additionally, substitution will not occur if the candidate procedure is in global
VM but the proposed substitute procedure is in local VM.

Multiple instances of the IdiomSet resource category may contain identical
template procedures, but only one will be in effect when idiom recognition is
enabled. The instance that takes precedence is not predictable.

As mentioned earlier, idiom recognition is performed by matching the template
procedures in the IdiomSet resource instances. This is unlike all other resource
categories, whose instances are selected according to their keys. This matching by
value occurs only for IdiomSet instances that are defined in VM; bind does not
consider instances that are not in VM but only in external storage.

To ensure that the instances in VM are consistent with the external ones, the in-

terpreter automatically invokes findresource to load external IdiomSet instances
into VM at the beginning of each job and at certain other times. If a PostScript
program installs an external IdiomSet instance, it should then execute
undefineresource to ensure that any existing instance of IdiomSet in VM with the
same key is removed and replaced by the external instance.

3.12.2 Immediately Evaluated Names

LanguageLevels 2 and 3, as well as most LanguageLevel I implementations (see

Appendix A), include a syntax feature called immediately evaluated names. When
the PostScript language scanner encounters a token of the form //name (a name
preceded by two slashes with no intervening spaces), it immediately looks up the

I CHAPTER 3
122

Language I

name and substitutes the corresponding value. This lookup occurs in the diction-
aries on the dictionary stack at the time the scanner encounters the token. If it

cannot find the name, an undefined error occurs.

The substitution occurs immediately—even inside an executable array delimited
by and 1, where execution is deferred. Note that this process is a substitution and
not an execution; that is, the name's value is not executed, but rather is substituted
for the name itself, just as if the load operator were applied to the name.

The most common use of immediately evaluated names is to perform early bind-
ing of objects (other than operators) in procedure definitions. The bind operator,

described in the previous section, performs early binding of operators; binding
objects of other types requires the explicit use of immediately evaluated names.

Example 3.10 illustrates the use of an immediately evaluated name to bind a ref-
erence to a dictionary.

Example 3.10

/mydict « » def

/proc

//mydict begin

end

} bind def

In the definition of proc, //mydict is an immediately evaluated name. At the mo-
ment the scanner encounters the name, it substitutes the name's current value,
which is the dictionary defined earlier in the example. The first element of the

executable array proc is a dictionary object, not a name object. When proc is exe-
cuted, it will access that dictionary, even if in the meantime mydic-t has been rede-

fined or the definition has been removed.

Another use of immediately evaluated names is to refer directly to permanent ob-
jects: standard dictionaries, such as systemdict, and constant literal objects, such
as the values of true, false, and null. On the other hand, it does not make sense to
treat the names of variables as immediately evaluated names. Doing so would

cause a procedure to be irrevocably bound to particular values of those variables.

A word of caution: Indiscriminate use of immediately evaluated names may
change the behavior of a program. As discussed in Section 3.5, "Execution," the

3.13
123

Filtered Files Details I

behavior of a procedure differs depending on whether the interpreter encounters
it directly or as the result of executing some other object (a name or an operator).
Execution of the program fragments

(...b...)

{...//b...}

will have different effects if the value of the name b is a procedure. So it is inad-
visable to treat the names of operators as immediately evaluated names. A pro-
gram that does so will malfunction in an environment in which some operators
have been redefined as procedures. This is why bind applies only to names whose
values are operators, not procedures or other types.

3.13 Filtered Files Details

LanguageLevels 2 and 3 define a special kind of file called a filter, which reads or
writes an underlying file and transforms the data in some way. Filters are intro-

duced in Section 3.8.4, "Filters!' This section describes the semantics of filters in
more detail. It includes information about:

• The use of files, procedures, and strings as data sources and targets

• End-of-data conventions

• Details of individual filters

• Specifications of encoding algorithms for some filters

All features described in this section are LanguageLevel 2 features except for those
labeled as LanguageLevel 3.

3.1 3.1 Data Sources and Targets

As stated in Section 3.8.4, "Filters," there are two kinds of filters: decoding filters
and encoding filters. A decoding filter is an input file that reads from an underly-
ing data source and produces transformed data as it is read. An encoding filter is
an output file that takes the data written to it and writes transformed data to an
underlying data target. Data sources and data targets may be files, procedures, or
strings.

124
Language I I CHAPTER 3

Files

I

A file is the most common data source or target for a filter. A file used as a data
source must be an input file, and one used as a data target must be an output file;
otherwise, an invalidaccess error occurs.

If a file is a data source for a decoding filter, the filter reads from it as necessary to
satisfy demands on the filter, until either the filter reaches its end-of-data (EOD)
condition or the data source reaches end-of-file. If a file is a data target for an en-
coding filter, the filter writes to it as necessary to dispose of data that has been
written to the filter and transformed.

Closing a filter file does not close the underlying file, unless explicitly directed by
the CloseSource or CloseTarget filter parameter (LanguageLevel 3). A program
typically creates a decoding filter to process data embedded in the program file it-
self—the one designated by currentfile. When the filter reaches EOD, execution
of the underlying file resumes. Similarly, a program can embed the output of an
encoding filter in the middle of an arbitrary data stream being written to the un-
derlying output file.

Once a program has begun reading from or writing to a filter, it should not
attempt to access the underlying file in any way until the filter has been closed.
Doing so could interfere with the operation of the filter and leave the underlying
file in an unpredictable state. However, it is safe to access the underlying file after
execution of filter but before the first read or write of the filter file, except in cer-
tain uses of the ReusableStreamDecode filter. The method for establishing a filter
pipeline in Example 3.5 on page 84 depends on this.

Procedures

The data source or target can be a procedure. When the filter file is read or writ-
ten, it calls the procedure to obtain input data to be decoded or to dispose of out-
put data that has been encoded. This enables the data to be supplied or consumed
by an arbitrary program.

If a procedure is a data source, the filter calls it whenever it needs to obtain input
data. The procedure must return on the operand stack a readable string contain-
ing any number of bytes of data. The filter pops this string from the stack and
uses its contents as input to the filter. This process repeats until the filter encoun-
ters end-of-data (EOD). Any leftover data in the final string is discarded. The

I 3.13
125

I
Filtered Files Details I

procedure can return a string of length 0 to indicate that no more data is avail-
able.

If a procedure is a data target, the filter calls it whenever it needs to dispose of
output data. Before calling the procedure, it pushes two operands on the stack: a
string and a boolean flag. It expects the procedure to consume these operands
and return a string. The filter calls the procedure in the following three situations:

• On the first write to the filter after the filter operator creates it, the filter calls
the data target procedure with an empty string and the boolean value true. The
procedure must return a writeable string of nonzero length, into which the fil-
ter can write filtered data.

• Whenever the filter needs to dispose of accumulated output data, it calls the
procedure again, passing it a string containing the data and the boolean value
true. This string is either the same string that was returned from the previous

call or a substring of that string. The procedure must now do whatever is ap-
propriate with the data, then return either the same string or another string
into which the filter can write additional filtered data.

• When the filter file is closed, it calls the procedure a final time, passing it a

string or substring containing the remaining output data, if any, and the bool-
ean value false. The procedure must now do whatever is appropriate with the

data and perform any required end-of-data actions, then return a string. Any
string (including one of length 0) is acceptable. The filter does not use this
string, but merely pops it off the stack.

It is normal for the data source or target procedure to return the same string each

time. The string is allocated once at the beginning and serves simply as a buffer
that is used repeatedly. Each time a data source procedure is called, it fills the
string with one buffer's worth of data and returns it. Similarly, each time a data

target procedure is called, it first disposes of any buffered data passed to it, then
returns the original string for reuse.

Between successive calls to the data source or target procedure, a program should
not do anything that would alter the contents of the string returned by that pro-
cedure. The filter reads or writes the string at unpredictable times, so altering it
could disrupt the operation of the filter. If the string returned by the procedure is

reclaimed by a restore operation before the filter becomes closed, the results are
unpredictable. Typically, an ioerror occurs.

126
I CHAPTER 3 Language I

Note: If a filter file object is reclaimed by restore or garbage collection before being
closed, it is closed automatically; however, the data target procedure is not called.

One use of procedures as data sources or targets is to run filters "backward?' Fil-

ters are organized so that decoding filters are input files and encoding filters are
output files. Normally, a PostScript program obtains encoded data from some ex-
ternal source, decodes it, and uses the decoded data; or it generates some data,
encodes it, and sends it to some external destination. The organization of filters
supports this model. However, if a program must provide the input to a decoding
filter or consume the output of an encoding filter, it can do so by using proce-
dures as data sources or targets.

Strings

If a string is a data source, the filter simply uses its contents as data to be decoded.
If the filter encounters EOD, it ignores the remainder of the string. Otherwise, it
continues until it has exhausted the string data. Until the filter is closed, the string
should be treated as read-only. Writing into such a string will have unpredictable

consequences for the data read from the filter.

If a string is a data target, the filter writes encoded data into it. This continues un-
til the filter is closed. The contents of the string are not dependable until that

time. If the filter exhausts the capacity of the string, an ioerror occurs. There is no
way to determine how much data the filter has written into the string; if a pro-

gram needs to know, it should use a procedure as the data target.

3.13.2 End-of-Data and End-of-File

A filter can reach a state in which it cannot continue filtering data. This is called
the end-of-data (EOD) condition. Most decoding (input) filters can detect an
EOD marker encoded in the data they are reading. The nature of this marker de-
pends on the filter. Most encoding (output) filters append an EOD marker to the
data they are writing. This generally occurs automatically when the filter file is
closed. In a few instances, the EOD condition is based on predetermined infor-

mation, such as a byte count or a line count, rather than on an explicit marker in
the encoded data.

A file object, including a filter, can be closed at an arbitrary time, and a readable
file can run out of data. This is called the end-of-file (EOF) condition. When a

3.13 I Filtered Files Details I
127

decoding filter detects EOD and all the decoded data has been read, the filter
reaches the EOF condition. The underlying data source or target for a filter can it-
self reach EOF. This usually results in the filter reaching EOF, perhaps after some
delay.

For efficient operation, filters must be buffered. The PostScript interpreter auto-
matically provides buffering as part of the filter file object. Because of the effects
of buffering, the filter reads from its data source or writes to its data target at ir-
regular times, not necessarily each time the filter file itself is read or written. Also,
many filtering algorithms require an unpredictable amount of state to be held
within the filter object.

Decoding Filters

Before encountering EOD, a decoding filter reads an unpredictable amount of

data from its data source. However, when it encounters EOD, it stops reading
from its data source. If the data source is a file, encoded data that is properly ter-
minated by EOD can be followed by additional unencoded data, which a pro-
gram can then read directly from that file.

When a filter reaches EOD and all the decoded data has been read from it, the
filter file reaches EOF and is closed automatically. Automatic closing of input files
at EOF is a standard feature of all file objects, not just of filters. (The

ReusableStreamDecode filter is an exception; see "ReusableStreamDecode Filter"
on page 153.) Unlike other file objects, a filter reaches EOF and is closed im-
mediately after the last data character is read from it, rather than at the following
attempt to read a character. A filter also reaches EOF if its data source runs out of
data by reaching EOF.

Note: Data for a filter must be terminated by an explicit EOD, even if the program
reading from the filter (executing the image operator, for example) reads only the ex-
act amount of data that is present.

Applying flushfile to a decoding filter causes data to be drawn from the data
source until the filter reaches EOD or the source runs out of data, whichever oc-
curs first. This operator can be used to flush the remainder of the encoded data
from the underlying file when the reading of filtered data must be terminated
prematurely. After the flushfile operation, the underlying file is positioned so that
the next read from that file will begin immediately following the EOD of the en-
coded data. If a program closes a decoding filter prematurely before it reaches

I CHAPTER 3
128

I
Language I

EOD and without explicitly flushing it, the data source will be in an indeter-
minate state. Because of buffering, there is no dependable way to predict how
much data will have been consumed from the data source.

Encoding Filters

As stated earlier, writing to an encoding (output) filter causes it to write encoded
data to its data target. However, because of the effects of buffering, the writes to
the data target occur at unpredictable times. The only way to ensure that all en-
coded data has been written is to close the filter.

Most encoding filters can accept an indefinite amount of data to be encoded. The
amount usually is not specified in advance. Closing the filter causes an EOD
marker to be written to the data target at the end of the encoded data. The nature
of the EOD marker depends on the filter being used; it is sometimes under the
control of parameters specified when the filter is created.

The DCTEncode filter requires the amount of data to be specified in advance,
when the filter is created. When that amount of data has been encoded, the filter
reaches the EOD condition automatically. Attempting to write additional data to
the filter causes an ioerror, possibly after some delay.

Some data targets can become unable to accept further data. For instance, if the
data target is a string, the string may become full. If the data target is a file, the file
may become closed. Attempting to write to a filter whose data target cannot ac-
cept data causes an ioerror.

Applying flushfile to an encoding filter file causes the filter to flush buffered data
to its data target to the extent possible. If the data target is a file, flushfile is also
invoked for it. The effect of flushfile will propagate all the way down a filter pipe-
line. However, because of the nature of filter algorithms, it is not possible to guar-

antee that all data stored as part of a filter's internal state will be flushed.

On the other hand, applying closefile to an encoding filter flushes both the buff-
ered data and the filter's internal state. This causes all encoded data to be written
to the data target, followed by an EOD marker, if appropriate.

When a program closes a pipeline consisting of two or more encoding filters, it
must close each component filter file in sequence, starting with the one that was

I 3.13
129

Filtered Files Details

created last (in other words, the one farthest upstream). This ensures that all
buffered data and all appropriate EOD markers are written in the proper order.

If a filter file object is reclaimed by restore or garbage collection before being
closed, it is closed automatically (as is the case for all file objects); however, no at-
tempt is made to close a filter pipeline in the correct order. Errors arising from
closing in the wrong order are ignored, and filter target procedures are not called.

CloseSource and CloseTarget

CloseSource and CloseTarget (both LanguageLevel 3) are optional boolean
parameters in the parameter dictionary for decoding and encoding filters, re-
spectively. These parameters govern the disposition of the filter's data source or
target when the closefile operator is applied to the filter explicitly, or implicitly in
one of the following ways: by the restore operator, by garbage collection, or (ex-
cept for the ReusableStreamDecode filter) by reaching EOD.

If CloseSource or CloseTarget is false (as they are by default), no additional action
is taken on the data source or target; this is the behavior in LanguageLevel 2.
However, if the parameter is true, then after closefile has been applied to the filter,
it is also applied to the filter's data source or target. This process propagates

through an entire pipeline, unless a filter is reached whose CloseSource or
CloseTarget parameter is false; that filter is closed, but its source or target is not.

3.13.3 Details of Individual Filters

As stated in Section 3.8.4, "Filters," the PostScript language supports three cate-
gories of standard filters: ASCII encoding and decoding filters, compression and
decompression filters, and subfile filters. The following sections document the in-
dividual filters.

Some of the encoded formats these filters support are the same as or similar to
those supported by applications or utility programs on many computer systems.

It should be straightforward to make those programs compatible with the filters.

Also, C language implementations of some filters are available from the Adobe
Developers Association.

I CHAPTER 3
130

1
Language I

ASCIIHexDecode Filter

source /ASCIIHexDecode filter

source dictionary /ASCIIHexDecode filter

The ASCIIHexDecode filter decodes data encoded as ASCII hexadecimal and pro-
duces binary data. For each pair of ASCII hexadecimal digits (0-9 and either A-F

or a-f), it produces one byte of binary data. All white-space characters—space,
tab, carriage return, line feed, form feed, and null— are ignored. The character >
indicates EOD. Any other characters will cause an ioerror.

If the filter encounters EOD when it has read an odd number of hexadecimal

digits, it will behave as if it had read an additional 0 digit.

The parameter dictionary can be used to specify the CloseSource parameter

(LanguageLevel 3).

ASCIIHexEncode Filter

target /ASCIIHexEncode filter

target dictionary /ASCIIHexEncode filter

The ASCIIHexEncode filter encodes binary data as ASCII hexadecimal. For each

byte of binary data, it produces two ASCII hexadecimal digits (0-9 and either A-F
or a-f). It inserts a newline in the encoded output at least once every 80 charac-

ters, thereby limiting the lengths of lines.

When the ASCIIHexEncode filter is closed, it writes a > character as an EOD

marker.

The parameter dictionary can be used to specify the CloseTarget parameter

(LanguageLevel 3).

ASCI185Decode Filter

source /ASCI185Decode filter

source dictionary /ASCI185Decode filter

The ASCI185Decode filter decodes data encoded in the ASCII base-85 encoding
format and produces binary data. See the description of the ASCI185Encode filter

for a definition of the ASCII base-85 encoding.

l 3.13
131

I
Filtered Files Details I

The ASCII base-85 data format uses the characters ! through u and the character
z. All white-space characters—space, tab, carriage return, line feed, form feed,
and null—are ignored. If the ASCI185Decode filter encounters the character •-• in
its input, the next character must be > and the filter will reach EOD. Any other
characters will cause the filter to issue an ioerror. Also, any character sequences
that represent impossible combinations in the ASCII base-85 encoding will cause
an ioerror.

The parameter dictionary can be used to specify the CloseSource parameter

(LanguageLevel 3).

ASCI185Encode Filter

target /ASCI185Encode filter

target dictionary /ASCI185Encode filter

The ASCI185Encode filter encodes binary data in the ASCII base-85 encoding.

Generally, for every 4 bytes of binary data, it produces 5 ASCII printing charac-
ters in the range 1 through u. It inserts a newline in the encoded output at least
once every 80 characters, thereby limiting the lengths of lines.

When the ASCI185Encode filter is closed, it writes the 2-character sequence ,-.> as
an EOD marker.

Binary data bytes are encoded in 4-tuples (groups of 4). Each 4-tuple is used to
produce a 5-tuple of ASCII characters. If the binary 4-tuple is (b1 b2 b3 b4) and
the encoded 5-tuple is (c1 c2 c3 ct c5), then the relation between them is

(bi x 2563) + (b2 x 2562) + (b3 x 2561) + b4 =

(c1 x 854) + (c2 x 853) + (c3 x 852) + (c4 x 85 1) + cs

In other words, 4 bytes of binary data are interpreted as a base-256 number and
then converted into a base-85 number. The five "digits" of this number,

(c1 c2 c3 c4 c5), are then converted into ASCII characters by adding 33, which is
the ASCII code for!, to each. ASCII characters in the range ! to u are used, where!

represents the value 0 and u represents the value 84. As a special case, if all five

digits are 0, they are represented by a single character z instead of by lull

I CHAPTER 3
132

1
Language I

If the ASCI185Encode filter is closed when the number of characters written to it is
not a multiple of 4, it uses the characters of the last, partial 4-tuple to produce a
last, partial 5-tuple of output. Given n (1, 2, or 3) bytes of binary data, it first ap-
pends 4 — n zero bytes to make a complete 4-tuple. Then, it encodes the 4-tuple
in the usual way, but without applying the z special case. Finally, it writes the first
n + 1 bytes of the resulting 5-tuple. Those bytes are followed immediately by the

—> EOD marker. This information is sufficient to correctly encode the number of
final bytes and the values of those bytes.

The following conditions constitute encoding violations:

• The value represented by a 5-tuple is greater than 232 — 1.

• A z character occurs in the middle of a 5-tuple.

• A final partial 5-tuple contains only one character.

These conditions never occur in the output produced by the ASCI185Encode
filter. Their occurrence in the input to the ASC1185Decode filter causes an ioerror.

The ASCII base-85 encoding is similar to one used by the public domain utilities
btoa and atob, which are widely available on workstations. However, it is not ex-

actly the same; in particular, it omits the begin-data and end-data marker lines,
and it uses a different convention for marking end-of-data.

The parameter dictionary can be used to specify the CloseTarget parameter
(LanguageLevel 3).

LZWDecode Filter

source /LZWDecode filter

source dictionary /LZWDecode filter

The LZWDecode filter decodes data that is encoded in a Lempel-Ziv-Welch com-
pressed format. See the description of the LZWEncode filter for details of the for-
mat and a description of the filter parameters.

133
3.13 Filtered Files Details

LZWEncode Filter

target /I1WEncode filter

target dictionary /LZWEncode filter

The LZWEncode filter encodes ASCII or binary data according to the basic LZW
(Lempel-Ziv-Welch) data compression method. LZW is a variable-length, adap-
tive compression method that has been adopted as one of the standard compres-
sion methods in the tag image file format (TIFF) standard. The output produced
by the LZWEncode filter is always binary, even if the input is ASCII text.

LZW compression can discover and exploit many patterns in its input data. In its
basic form, it is especially well suited to natural-language and PostScript-
language text. The filter also supports optional pretransformation by a predictor
function, as described in the section "Predictor Functions" on page 139; this im-
proves compression of sampled image data.

Note: The LZW compression method is the subject of United States patent number

4,558,302 and corresponding foreign patents owned by the Unisys Corporation.
Adobe Systems has licensed this patent for use in its products. Independent software
vendors (ISVs) may be required to license this patent to develop software using the

LZW method to compress PostScript programs or data for use with Adobe products.
Unisys has agreed that ISVs may obtain such a license for a modest one-time fee.
Additional information can be obtained on the World Wide Web at

<http://www.unisys.com/LeadStory/lzwfaq.html>.

An LZWDecode or LZWEncode parameter dictionary may contain any of the en-

tries listed in Table 3.17. Unless otherwise noted, a decoding filter's parameters

must match the parameters used by the encoding filter that generated its input

data.

TABLE 3.17 Entries in an LZWEncode or LZWDecode parameter dictionary

KEY TYPE VALUE

EarlyChange integer (Optional) A code indicating when to increase the code word length. The
TIFF specification can be interpreted to imply that code word length in-
creases are postponed as long as possible. However, some existing imple-
mentations of LZW increase the code word length one code word earlier
than necessary. The PostScript language supports both interpretations. If
EarlyChange is 0, code word length increases are postponed as long as
possible. If it is 1, they occur one code word early. Default value: 1.

I CHAPTER 3
134

1
Language I

UnitLength integer

LowBitFirst

Predictor

Columns

Colors

BitsPerComponent

CloseSource

CloseTarget

(Optional; LanguageLevel 3) The size of the units encoded, in bits. The al-

lowed values are 3 through 8. See "UnitLength and LowBitFirst" on page

136. Default value: 8. A value other than the default is permitted only for

LZWDecode and should not be used in combination with a predictor

(specified by a Predictor value greater than 1; see Table 3.20).

boolean (Optional; LanguageLevel 3) A flag that determines whether the code

words are packed into the encoded data stream low-order bit first (true)
or high-order bit first (false). See "UnitLength and LowBitFirst" on page

136. Default value: false. A value other than the default is permitted only
for LZWDecode

integer

integer

integer

integer

boolean

boolean

(Optional) See Table 3.20 on page 141.

(Optional) See Table 3.20 on page 141.

(Optional) See Table 3.20 on page 141.

(Optional) See Table 3.20 on page 141.

(Optional; LanguageLevel 3; LZWDecode only) A flag specifying whether

closing the filter should also close its data source. Default value: false.

(Optional; LanguageLevel 3; LZWEncode only) A flag specifying whether

closing the filter should also close its data target. Default value: false.

In LanguageLevel 3, the size of the units encoded is determined by the optional
UnitLength entry in the LZWDecode parameter dictionary; its default value is 8.
The following general discussion of the encoding scheme refers to this
LanguageLevel 3 parameter; for LanguageLevel 2, assume a unit size of 8.

The encoded data consists of a sequence of codes that can be from
(UnitLength + 1) to a maximum of 12 bits long. Each code denotes a single char-
acter of input data (0 to 2UnitLength _ 1), a clear-table marker (2UnitLength), an
EOD marker (2UnitLength 4.) - ,, i or a table entry representing a multicharacter
sequence that has been encountered previously in the input (2UnitLength + 2 and

greater). In the normal case where UnitLength is 8, the clear-table marker is 256
and the EOD marker is 257.

Initially, the code length is (UnitLength + 1) bits and the table contains only
entries for the (2UnitLength + z) -, fixed codes. As encoding proceeds, entries are
appended to the table, associating new codes with longer and longer input char-

acter sequences. The encoding and decoding filters maintain identical copies of
this table.

I 3."
135

I
Filtered Files Details I

Whenever both the encoder and decoder independently (but synchronously) re-

alize that the current code length is no longer sufficient to represent the number
of entries in the table, they increase the number of bits per code by 1. For a
UnitLength of 8, the first output code that is 10 bits long is the one following the

creation of table entry 511, and so on for 11 (1023) and 12 (2047) bits. Codes are
never longer than 12 bits, so entry 4095 is the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each output
code:

1. Accumulate a sequence of one or more input characters matching some
sequence already present in the table. For maximum compression, the encoder
should find the longest such sequence.

2. Emit the code corresponding to that sequence.

3. Create a new table entry for the first unused code. Its value is the sequence
found in step 1 followed by the next input character.

For example, suppose UnitLength is 8 and the input consists of the following
sequence of ASCII character codes:

45 45 45 45 45 65 45 45 45 66

Starting with an empty table, the encoder proceeds as shown in Table 3.18.

TABLE 3.18 Typical LZW encoding sequence

INPUT OUTPUT CODE ADDED SEQUENCE REPRESENTED

SEQUENCE CODE TO TABLE BY NEW CODE

— 256 (clear-table) — —

45 45 258 45 45

45 45 258 259 45 45 45

45 45 258 260 45 45 65

65 65 261 65 45

45 45 45 259 262 45 45 45 66

— 257 (EOD)

I CHAPTER 3
136

i
Language 1

Codes are packed into a continuous bit stream, high-order bit first (assuming
that LowBitFirst is false). This stream is then divided into 8-bit bytes, high-order
bit first. Thus, codes can straddle byte boundaries arbitrarily. After the EOD
marker (code value of 257), any leftover bits in the final byte are set to O.

In the example above, all the output codes are 9 bits long; they would pack into
bytes as follows (represented in hexadecimal):

80 OB 60 50 22 OC OE 02

To adapt to changing input sequences, the encoder may at any point issue a clear-
table code, which causes both the encoder and decoder to restart with initial
tables and 9-bit codes. By convention, the encoder begins by issuing a clear-table
code. It must issue a clear-table code when the table becomes full; it may do so
sooner.

UnitLength and LowBitFirst

As indicated earlier, the default value of UnitLength is 8 and of LowBitFirst is
false. These are the only values supported in LanguageLevel 2. Moreover, even in
LanguageLevel 3, values other than the default are permitted only for
LZWDecode, not for LZWEncode. This support is provided as a convenience for
decoding images from other sources (principally GIF files) that use representa-
tions other than the default. The default values are recommended for general
document interchange.

Data that has been LZW-encoded with a UnitLength less than 8 consists only of
codes in the range 0 to 2UnitLength _ 1; consequently, the LZWDecode filter pro-
duces only codes in that range when read. UnitLength also affects the encoded
representation, as described above.

LZW is a bit-stream protocol, and the codes of compressed data do not necessar-
ily fall on byte boundaries. The LowBitFirst parameter controls how these codes
get packed into a byte stream.

• If LowBitFirst is false (the default), codes are packed into bytes high-order bit
first. That is, bits of a code are stored into the available bits of a byte starting
with the highest-order bit. When a code straddles a byte boundary, the high-
order portion of the code appears in the low-order bits of one byte; the low-

l 3.13
137

I
Filtered Files Details I

order portion of the code appears in the high-order bits of the next byte. For
example, the sequence of 9-bit output codes in Table 3.18 is encoded as

80 OB 60 50 22 OC OE 02

• If LowEitFirst is true, codes are packed into bytes low-order bit first. That is,
bits of a code are stored into the available bits of a byte starting with the lowest-
order bit. When a code straddles a byte boundary, the low-order portion of the
code appears in the high-order bits of one byte; the high-order portion of the
code appears in the low-order bits of the next byte. For example, the sequence
of 9-bit output codes in Table 3.18 would be encoded as

00 56 08 14 18 64 60 40

FlateDecode Filter

source /FlateDecode filter

source dictionary !FlateDecode filter

The FlateDecode filter (LanguageLevel 3) decodes data encoded in zlib/deflate
compressed format. See the description of the FlateEncode filter for details of the
format.

FlateEncode Filter

target /FlateEncode filter

target dictionary /FlateEncode filter

The FlateEncode filter (LanguageLevel 3) encodes ASCII or binary data. Encoding

is based on the public-domain zlib/deflate compression method, which is a
variable-length Lempel-Ziv adaptive compression method cascaded with adap-
tive Huffman coding. This method is referred to below as the Plate method. It is
fully defined in Internet Engineering Task Force Requests for Comments (IETF
RFCs) 1950 and 1951. The output produced by the FlateEncode filter is always bi-
nary, even if the input is ASCII text.

Plate compression can discover and exploit many patterns in its input data. In its
basic form, it is especially well suited to natural-language and PostScript-
language text. The filter also supports optional pretransformation by a predictor
function, as described in the section "Predictor Functions" on page 139; this im-
proves compression of sampled image data.

I CHAPTER 3
138

Language I

A FlateDecode or FlateEncode parameter dictionary may contain any of the en-
tries listed in Table 3.19. Unless otherwise noted, a decoding filter's parameters
must match the parameters used by the encoding filter that generated its input
data.

TABLE 3.19 Entries in a FlateEncode or FlateDecode parameter dictionary

KEY TYPE VALUE

Effort

Predictor

Columns

Colors

BitsPerComponent

CloseSource

CloseTarget

integer

integer

integer

integer

integer

boolean

boolean

(Optional; FlateEncode only) A code controlling the amount of memory
used and the execution speed for Flare compression. Allowed values range
from —1 to 9. A value of 0 compresses rapidly but not tightly, using little
auxiliary memory. A value of 9 compresses slowly but as tightly as possi-
ble, using a large amount of auxiliary memory. A value of —1 is mapped to
a value within the range 0 to 9 that is a "reasonable" default for the imple-
mentation. Default value: — 1.

(Optional) See Table 3.20 on page 141.

(Optional) See Table 3.20 on page 141.

(Optional) See Table 3.20 on page 141.

(Optional) See Table 3.20 on page 141.

(Optional; FlateDecode only) A flag specifying whether
should also close its data source. Default value: false.

(Optional; FlateEncode only) A flag specifying whether
should also close its data target. Default value: false.

closing the filter

closing the filter

Comparison of LZW and Rate Encoding

Flate encoding, like LZW encoding, discovers and exploits many patterns in its
input data, whether text or images. Thanks to its cascaded adaptive Huffinan
coding, Flate-encoded output is usually substantially more compact than LZW-
encoded output for the same input. Flate and LZW decoding speeds are com-
parable, but Flate encoding is considerably slower than LZW encoding.

Usually, the FlateEncode and LZWEncode filters compress their inputs substan-
tially. In the worst case, however, the FlateEncode filter expands its input by no
more than a factor of 1.003, plus the effects of algorithm tags added by PNG pre-
dictors (described below) and the effects of any explicit flushfile operations. LZW

139
I 3.13 Filtered Files Details I

compression has a worst-case expansion of at least a factor of 1.125, which can
increase to nearly 1.5 in some implementations (plus the effects of PNG tags).

Predictor Functions

LZWEncode and FlateEncode filters compress more compactly if their input data
is highly predictable. One way to increase the predictability of many continuous-
tone sampled images is to replace each sample with the difference between that
sample and some predictor function applied to earlier neighboring samples. If
the predictor function works well, the postprediction data will cluster toward O.

The parameter dictionary for the LZW and Flate filters may contain any of the
four entries Predictor, Columns, Colors, and BitsPerComponent to specify a pre-
dictor function. When a predictor is selected, the encoding filter applies the
predictor function to the data before compression; the decoding filter applies the

complementary predictor function after decompression. Unless otherwise noted,
a decoding filter's parameters must match the parameters used by the encoding
filter that generated its input data.

Two groups of predictor functions are supported. The first, the TIFF group, con-
sists of the single function that is Predictor 2 in the TIFF standard. (In the TIFF
standard, Predictor 2 applies only to LZW compression, but here it applies to
Flate compression as well.) TIFF Predictor 2 predicts that each color component
of a sample will be the same as the corresponding color component of the sample
immediately to the left.

The second supported group of predictor functions, the PNG group, consists of
the "filters" of the World Wide Web Consortium's Portable Network Graphics
recommendation, documented in IETF RFC 2083. The term predictors is used
here instead of filters to avoid confusion. There are five basic PNG predictor algo-
rithms:

None No prediction
Sub Predicts the same as the sample to the left
Up Predicts the same as the sample above
Average Predicts the average of the sample to the left and the sample above
Paeth A nonlinear function of the sample above, the sample to the left,

and the sample to the upper-left

I CHAPTER 3
140

I
Language I

The two groups of predictor functions have some common features. Both assume
the following:

• Data is presented in order, from the top row to the bottom row and from left to

right within a row.

• A row occupies a whole number of bytes, rounded up if necessary.

• Samples and their components are packed into bytes from high- to low-order
bits.

• All color components of samples outside the image (which are necessary for
predictions near the boundaries) are O.

The two groups differ in the following ways:

• With PNG predictors, the encoded data explicitly identifies the predictor func-
tion used for each row, so different rows can be predicted with different algo-
rithms to improve compression. The TIFF predictor has no such identifier; the
same algorithm applies to all rows.

• The TIFF function group predicts each color component from the prior in-
stance of that color component, taking into account the bits per component
and the number of components per sample. In contrast, the PNG function
group predicts each byte of data as a function of the corresponding byte of one
or more previous image samples, regardless of whether there are multiple color
components in a byte, or whether a single color component spans multiple
bytes. This can yield significantly better speed but with somewhat worse com-
pression.

Table 3.20 describes the predictor-related entries in a parameter dictionary for an
LZW or Flate filter.

141

i
Filtered Files Details I

TABLE 3.20 Predictor-related entries in an LZW or Flate filter parameter dictionary

KEY TYPE VALUE

Predictor integer (Optional) A code that selects the predictor function:

1 No predictor (normal encoding or decoding)

2 TIFF Predictor 2

>10 (LanguageLevel 3) PNG predictor. For LZWEncode and
FlateEncode, this selects the specific PNG predictor function(s)

to be used, as indicated below. For LZWDecode and

FlateDecode, any of these values merely indicates that PNG pre-

dictors are in use; the predictor function is explicitly encoded in

the incoming data. The values of Predictor for the encoding and

decoding filters need not match if they are both greater than or
equal to 10.

10 PNG predictor, None function

11 PNG predictor, Sub function

12 PNG predictor, Up function

13 PNG predictor, Average function

14 PNG predictor, Paeth function

15 PNG predictor in which the encoding filter automati-

cally chooses the optimum function separately for each

row

Default value: 1.

Columns integer (Optional; used only if Predictor is greater than 1) The number of samples in

each row. Default value: 1.

Colors integer (Optional; used only if Predictor is greater than I) The number of interleaved

color components per sample; must be 1 or greater. Default value: 1.

BitsPerComponent integer (Optional; used only if Predictor is greater than 1) The number of bits used to

represent each color component of a sample; must be 1, 2, 4, or 8. Default

value: 8.

142
I CHAPTER 3

I
Language I

RunLengthDecode Filter

source /RunLengthDecode filter

source dictionary /RunLengthDecode filter

The RunLengthDecode filter decodes data encoded in the run-length encoding
format. The encoded data consist of pairs of run-length bytes and data. See the
description of the RunLengthEncode filter for details of the format. A run length

of 128 indicates EOD.

The parameter dictionary may be used to specify the CloseSource parameter

(LanguageLevel 3).

RunLengthEncode Filter

target recordsize /RunLengthEncode filter

target dictionary recordsize /RunLengthEncode filter

The RunLengthEncode filter encodes data in a simple byte-oriented format based
on run length. The compressed data format is a sequence of runs, where each run
consists of a length byte followed by 1 to 128 bytes of data. If the length byte is in
the range 0 to 127, the following length + 1 bytes (1 to 128 bytes) are to be copied
literally upon decompression. If length is in the range 129 to 255, the following

single byte is to be replicated 257 — length times (2 to 128 times) upon decom-

pression.

When the RunLengthEncode filter is closed, it writes a final byte, with value 128
as an EOD marker.

recordsize is a nonnegative integer specifying the number of bytes in a "record" of
source data. The RunLengthEncode filter will not create a run that contains data

from more than one source record. If recordsize is 0, the filter does not treat its

source data as records. The notion of a "record" is irrelevant in the context of the

PostScript interpreter (in particular, the image operator does not require its data
to be divided into records). A nonzero recordsize is useful only if the encoded data

is to be sent to some application program that requires it.

This encoding is very similar to that used by the Apple® Macintosh® PackBits
routine and by TIFF Data Compression scheme #32773. Output from PackBits is

acceptable as input to the RunLengthDecode filter if an EOD marker (byte value
128) is appended to it. Output from t he RunLengthEncode filter is acceptable to

3.13
143

Filtered Files Details I

UnpackBits if the recordsize parameter is equal to the length of one scan line for
the image being encoded.

The parameter dictionary can be used to specify the CloseTarget parameter
(LanguageLevel 3). Note that there is no means for specifying recordsize in the pa-

rameter dictionary; it must be an explicit operand of the RunLengthEncode filter.

CCITTFaxDecode Filter

source /CCITTFaxDecode filter

source dictionary /CCITTFaxDecode filter

The CCITTFaxDecode filter decodes image data that has been encoded according
to the CCITT facsimile standard. See the description of the CCITTFaxEncode filter

for details of the filter parameters.

If the CCITTFaxDecode filter encounters improperly encoded source data, it will

issue an ioerror. It will not perform any error correction or resynchronization,
except as noted for DamagedRowsBeforeError in Table 3.21.

CCITTFaxEncode Filter

target /CCITTFaxEncode filter

target dictionary /CCITTFaxEncode filter

The CCITTFaxEncode filter encodes image data according to the CCITT facsimile
(fax) standard. This encoding is defined by an international standards organiza-
tion, the International Telecommunication Union (ITU), formerly known as the

Comité Consultatif International Téléphonique et Télégraphique (International

Coordinating Committee for Telephony and Telegraphy). The encoding is de-

signed to achieve efficient compression of monochrome (1 bit per pixel) image
data at relatively low resolutions. The encoding algorithm is not described in this

book, but rather in the ITU standard (see the Bibliography). We refer to that
standard as the CCITT standard for historical reasons.

Note: PostScript language support for the CCITT standard is limited to encoding

and decoding of image data. It does not include initial connection and handshaking

protocols that would be required to communicate with a fax machine. The purpose of
these filters is to enable efficient interchange of bileyel sampled images between an
application program and a PostScript interpreter.

I CHAPTER 3
144

1
Language I

The CCITTFaxDecode and CCITTFaxEncode filters support two encoding schemes,

Group 3 and Group 4, and various optional features of the CCITT standard.

Table 3.21 describes the contents of the parameter dictionary for these filters.

TABLE 3.21 Entries in a CCITTFaxEncode or CCITTFaxDecode parameter dictionary

KEY TYPE VALUE

Uncompressed boolean (Optional) A flag indicating whether the CCITTFaxEncode filter is per-

mitted to use uncompressed encoding when advantageous. Uncom-
pressed encoding is an optional part of the CCITT fax encoding

standard. Its use can prevent significant data expansion when encoding
certain image data, but many fax machine manufacturers and software
vendors do not support it. The CCITTFaxDecode filter always accepts
uncompressed encoding. Default value: false.

K integer (Optional) An integer that selects the encoding scheme to be used:

<0 Pure two-dimensional encoding (Group 4)

0 Pure one-dimensional encoding (Group 3, 1-D)

>0 Mixed one- and two-dimensional encoding (Group 3, 2-D),
in which a line encoded one-dimensionally can be followed
by at most K — 1 lines encoded two-dimensionally

The CCITTFaxEncode filter uses the value of K to determine how to en-
code the data. The CCITTFaxDecode filter distinguishes among nega-
tive, zero, and positive values of K to determine how to interpret the
encoded data; however, it does not distinguish between different posi-

tive K values. Default value: 0.

End0fLine

EncodedByteAlign

Columns

boolean (Optional) A flag indicating whether the CCITTFaxEncode filter prefixes
an end-of-line bit pattern to each line of encoded data. The
CCITTFaxDecode filter always accepts end-of-line bit patterns, but re-
quires them to be present only if End0fLine is true. Default value: false.

boolean (Optional) A flag indicating whether the CCITTFaxEncode filter inserts

extra 0 bits before each encoded line so that the line begins on a byte
boundary. If true, the CCITTFaxDecode filter skips over encoded bits to
begin decoding each line at a byte boundary. If false, the filters neither
generate nor expect extra bits in the encoded representation. Default

value: false.

integer (Optional) The width of the image in pixels. If Columns is not a multi-
ple of 8, the filters adjust the width of the unencoded image to the next
multiple of 8. This adjustment is necessary for consistency with the

3.13

Rows

145
Filtered Files Details I

Image operator, which requires that each line of source data start on a
byte boundary. Default value: 1728.

integer (Optional; CCITTFaxDecode only) The height of the image in scan lines.
If Rows is 0 or absent, the image's height is not predetermined; the en-
coded data must be terminated by an end-of-block bit pattern or by
the end of the filter's data source. Default value: O.

EndOfBlock boolean (Optional) A flag indicating whether the CCITTFaxEncode filter ap-

pends an end-of-block pattern to the encoded data. If true, the
CCITTFaxDecode filter expects the encoded data to be terminated by

end-of-block, overriding the Rows parameter. If false, the
CCITTFaxDecode filter stops when it has decoded the number of lines

indicated by Rows or when its data source is exhausted, whichever hap-
pens first. Default value: true.

The end-of-block pattern is the CCITT end-of-facsimile-block

(EOFB) or return-to-control (RTC) appropriate for the K parameter.

Black1s1 boolean (Optional) A flag indicating whether 1 bits are to be interpreted as
black pixels and 0 bits as white pixels, the reverse of the normal Post-

Script language convention for image data. Default value: false.

DamagedRowsBeforeError integer (Optional; CCITTFaxDecode only) The number of damaged rows of data
to be tolerated before an ioerror is generated; applies only if End0fLine

is true and K is nonnegative. Tolerating a damaged row means locating
its end in the encoded data by searching for an End0fLine pattern, then

substituting decoded data from the previous row if the previous row
was not damaged, or a white scan line if the previous row was also
damaged. Default value: O.

CloseSource boolean (Optional; LanguageLevel 3; CCITTFaxDecode only) A flag specifying
whether closing the filter should also close its data source. Default
value: false.

CloseTarget boolean (Optional; LanguageLevel 3; CCITTFaxEncode only) A flag specifying

whether closing the filter should also close its data target. Default
value: false.

The CCITT fax standard specifies a bilevel picture encoding in terms of black and

white pixels. It does not define a representation for the unencoded image data in

terms of 0 and 1 bits in memory. However, the PostScript language (specifically,

the image operator) does impose a convention: normally, 0 means black and 1

means white. Therefore, the CCITTFaxEncode filter normally encodes 0 bits as

black pixels and 1 bits as white pixels. Similarly, the CCITTFaxDecode filter

I CHAPTER 3
146

I
Language I

normally produces 0 bits for black pixels and 1 bits for white pixels. The Black1s1
parameter can be used to reverse this convention if necessary

The fax encoding method is bit-oriented, not byte-oriented. This means that, in

principle, encoded or decoded data might not end at a byte boundary. The
CCITTFaxEncode and CCITTFaxDecode filters deal with this problem in the fol-
lowing ways:

• Unencoded data is treated as complete scan lines, with unused bits inserted at
the end of each scan line to fill out the last byte. This is compatible with the
convention the image operator uses.

• Encoded data is ordinarily treated as a continuous, unbroken bit stream. The
EncodedByteAlign parameter can be used to cause each encoded scan line to be
filled to a byte boundary; this method is not prescribed by the CCITT standard,
and fax machines never do this, but some software packages find it convenient

to encode data this way.

• When a filter reaches EOD, it always skips to the next byte boundary following
the encoded data.

DCTDecode Filter

source /DCTDecode filter

source dictionary /DCTDecode filter

The DCTDecode filter decodes grayscale or color image data in JPEG baseline
encoded format. The description of the DCTEncode filter provides details of the
format and the related filter parameters. All of the DCTEncode parameters (except
CloseTarget) are allowed for DCTDecode; however, usually no parameters are
needed except ColorTransform (and possibly CloseSource, in LanguageLevel 3),
because all information required for decoding an image is normally contained in
the JPEG signalling parameters, which accompany the encoded data in the com-

pressed data stream.

The decoded data is a stream of image samples, each of which consists of 1, 2, 3,
or 4 color components, interleaved on a per-sample basis. Each component value
occupies one 8-bit byte. The dimensions of the image and the number of com-
ponents per sample depend on parameters that were specified when the image
was encoded. Given suitable parameters, the image operator can consume data

directly from a DCTDecode filter.

I 3.13
147

I
Filtered Files Details I

Note: The JPEG standard also allows an image's components to be sent as separate

scans instead of interleaved; however, that format is not use/id with the image op-
erator, because image requires that components from separate sources be read in
parallel.

DCTEncode Filter

target dictionary /DCTEncode filter

The DCTEncode filter encodes grayscale or color image data in JPEG baseline for-

mat. JPEG is the ISO Joint Photographic Experts Group, an organization respon-
sible for developing an international standard for compression of color image
data (see the Bibliography). Another informal abbreviation for this standard is
JFIF, for JPEG File Interchange Format. DCT refers to the primary technique

(discrete cosine transform) used in the encoding and decoding algorithms. The

algorithm can achieve very impressive compression of color images. For example,
at a compression ratio of 10 to 1, there is little or no perceptible degradation in
quality.

Note: The compression algorithm is "lossy," meaning that the data produced by the

DCTDecode filter is not exactly the same as the data originally encoded by the

DCTEncode filter. These filters are designed specifically for compression of sampled
continuous-tone images, not for general data compression.

Input to the DCTEncode filter is a stream of image samples, each of which consists
of 1, 2, 3, or 4 color components, interleaved on a per-sample basis. Each com-

ponent value occupies one 8-bit byte. The dimensions of the image and the num-
ber of components per sample must be specified in the filter's parameter

dictionary. The dictionary can also contain other optional parameters that con-

trol the operation of the encoding algorithm. Table 3.22 describes the contents of
this dictionary.

148
I CHAPTER 3 Language

TABLE 3.22 Entries in a DCTEncode parameter dictionary

KEY TYPE VALUE

Columns integer (Required) The width of the image in samples per scan line.

Rows integer (Required) The height of the image in scan lines.

Colors integer (Required) The number of color components in the image; must be 1, 2, 3,
or 4.

HSamples array, (Optional) A sequence of horizontal sampling factors (one per color

packed array, component). If HSamples is an array or a packed array, the elements must
or string be integers; if it is a string, the elements are interpreted as integers in the

range 0 to 255. The ith element of the sequence specifies the sampling fac-
tor for the ith color component. Allowed sampling factors are 1, 2, 3, and

4. The default value is an array containing 1 for all components, meaning
that all components are to be sampled at the same rate.

When the sampling factors are not all the same, DCTEncode subsamples
the image for those components whose sampling factors are less than the

largest one. For example, if HSamples is [4 3 2 1] for a 4-color image,
then for every 4 horizontal samples of the first component, DCTEncode
sends only 3 samples of the second component, 2 of the third, and 1 of the

fourth. However, DCTDecode inverts this sampling process so that it pro-
duces the same amount of data as was presented to DCTEncode. In other
words, this parameter affects only the encoded, and not the unencoded or
decoded, representation. The filters deal correctly with the situation in

which the width or height of the image is not a multiple of the corre-
sponding sampling factor.

VSamples array, (Optional) A sequence of vertical sampling factors (one per color

packed array, component). Interpretation and default value are the same as for
or string HSamples.

The JPEG standard imposes a restriction on the values in the HSamples

and VSamples sequences, taken together: For each color component, mul-
tiply its HSamples value by its VSamples value, then add all of the prod-

ucts together. The result must not exceed 10.

QuantTables array or (Optional) An array or packed array of quantization tables (one per color
packed array component). The ith element of QuantTables is the table to be used, after

scaling by QFactor, for quantization of the ith color component. As many
as four unique quantization tables can be specified, but several elements

of the QuantTables array can refer to the same table.

149
3.13 Filtered Files Details I

Each table must be an array, a packed array, or a string. If it is an array or a

packed array, the elements must be numbers; if it is a string, the elements

are interpreted as integers in the range 0 to 255. In either case, each table

must contain 64 numbers organized according to the zigzag pattern

defined by the JPEG standard. After scaling by QFactor, every element is
rounded to the nearest integer in the range 1 to 255. Default value:
implementation-dependent.

QFactor number (Optional) A scale factor applied to the elements of QuantTables. This

parameter enables straightforward adjustment of the tradeoff between
image compression and image quality without respecifying the quantiza-

tion tables. Valid values are in the range 0 to 1,000,000. A value less than 1
improves image quality but decreases compression; a value greater than 1

increases compression but degrades image quality. Default value: 1.0.

HuffTables array or (Optional) An array or packed array of at least 2 x Colors encoding tables.

packed array The pair of tables at indices 2 x i and 2 x i+ 1 in HuffTables are used to

construct Huffman tables for coding the ith color component. The first

table in each pair is used for the DC coefficients, the second for the AC

coefficients. At most two DC tables and two AC tables can be specified,

but several elements of the HuffTables array can refer to the same tables.

Default value: implementation-dependent.

Each table must be an array, a packed array, or a string. If it is an array or a
packed array, the elements must be numbers; if it is a string, the elements
are interpreted as integers in the range 0 to 255. The first 16 values specify

the number of codes of each length from 1 to 16 bits. The remaining

values are the symbols corresponding to each code; they are given in order

of increasing code length. This information is sufficient to construct a

Huffman coding table according to an algorithm given in the JPEG stan-

dard. A QFactor value other than 1.0 may alter this computation.

ColorTransform mtugt_T (Optional) A code specifying a transformation to be performed on the

sample values:

0 No transformation.

1 If Colors is 3, transform RGB values to YUV before encoding and

from YUV to RGB after decoding. If Colors is 4, transform CMYK

values to YUVK before encoding and from YUVK to CMYK after

decoding. This option is ignored if Colors is 1 or 2.

If performed, these transformations occur entirely within the DCTEncode

and DCTDecode filters. The RGB and YUV used here have nothing to do
with the color spaces defined as part of the Adobe imaging model. The

purpose of converting from RGB to YUV is to separate luminance and

chrominance information (see below).

150
CHAPTER 3 I Language I

The default value of ColorTransform is 1 if Colors is 3 and 0 otherwise. In
other words, conversion between RGB and YUV is performed for all
three-component images unless explicitly disabled by setting Color-
Transform to O. Additionally, the DCTEncode filter inserts an Adobe-
defined marker code in the encoded data indicating the ColorTransform
value used. If present, this marker code overrides the ColorTransform val-
ue given to DCTDecode. Thus it is necessary to specify ColorTransform
only when decoding data that does not contain the Adobe-defined marker
code.

CloseTarget boolean (Optional; LanguageLevel 3) A flag specifying whether closing the filter
should also close its data target. Default value: false.

Specifying the optional parameters properly requires understanding the details of
the encoding algorithm, which is described in the JPEG standard. The
DCTDecode and DCTEncode filters do not support certain features of the stan-

dard that are irrelevant to images following PostScript language conventions; in
particular, progressive JPEG is not supported. Additionally, Adobe has made cer-
tain choices regarding reserved marker codes and other optional features of the
standard; contact the Adobe Developers Association for further information.

The default values for QuantTables and HuffTables in a DCTEncode parameter
dictionary are chosen without reference to the image color space and without
specifying any particular tradeoff between image quality and compression.
Although they will work, they will not produce optimal results for most applica-
tions. For superior compression, applications should provide custom Quant-
Tables and HuffTables arrays rather than relying on the default values.

Better compression is often possible for color spaces that treat luminance and
chrominance separately than for those that do not. The RGB to YUV conversion
provided by the filters is one attempt to separate luminance and chrominance; it
conforms to CCIR recommendation 601-1. Other color spaces, such as the CIE

1976 L*a*b* space, may also achieve this objective. The chrominance compo-
nents can then be compressed more than the luminance by using coarser sam-
pling or quantization, with no degradation in quality.

Unlike other encoding filters, the DCTEncode filter requires that a specific
amount of data be written to it: Columns x Rows samples of Colors bytes each.

The filter reaches EOD at that point. It cannot accept further data, so attempting

I '3
151

i
Filtered Files Details I

to write to it will cause an ioerror. The program must now close the filter file to
cause the buffered data and EOD marker to be flushed to the data target.

SubFileDecode Filter

source EODCount EODString /SubFileDecode filter

source dictionary EODCount EODString /SubFileDecode filter

source dictionary /SubFileDecode filter (LanguageLevel 3)

The SubFileDecode filter does not perform data transformation, but it can detect

an EOD condition. Its output is always identical to its input, up to the point

where EOD occurs. The data preceding the EOD is called a subfile of the underly-
ing data source.

The SubFileDecode filter can be used in a variety of ways:

• A subfile can contain data that should be read or executed conditionally, de-
pending on information that is not known until execution. If a program

decides to ignore the information in a subfile, it can easily skip to the end of the
subfile by invoking flushfile on the filter file.

• Subfiles can help recover from errors that occur in encapsulated programs. If

the encapsulated program is treated as a subfile, the enclosing program can re-

gain control if an error occurs, flush to the end of the subfile, and resume exe-
cution from the underlying data source. The application, not the PostScript

interpreter, must provide such error handling; it is not the default error han-
dling provided by the PostScript interpreter.

• The SubFileDecode filter enables an arbitrary data source (procedure or string)
to be treated as an input file. This use of subfiles does not require detection of
an EOD marker.

The SubFileDecode filter requires two parameters, EODCount and EODString,
which specify the condition under which the filter is to recognize EOD. The filter
will allow data to pass through the filter until it has encountered exactly
EODCount instances of the EODString; then it will reach EOD.

In LanguageLevel 2, EODCount and EODString are specified as operands on the
stack. In LanguageLevel 3, they may alternatively be specified in the

SubFileDecode parameter dictionary (as shown in Table 3.23). They must be
specified in the parameter dictionary if the SubFileDecode filter is used as one of
the filters in a ReusableStreamDecode filter (described in the next section).

I CHAPTER 3
152

Language I

TABLE 3.23 Entries in a SubFileDecode parameter dictionary (LanguageLevel 3)

KEY TYPE VALUE

EODCount integer (Required) The number of occurrences of EODString that will be passed
through the filter and made available for reading.

EODString string (Required) The end-of-data string.

CloseSource boolean (Optional) A flag specifying whether closing the filter should also close its
data source. Default value: false.

EODCount must be a nonnegative integer. If it is greater than 0, all input data up
to and including that many occurrences of EODString will be passed through the
filter and made available for reading. If EODCount is 0, the first occurrence of EOD-
String will be consumed by the filter, but it will not be passed through the filter.

EODString is ordinarily a string of nonzero length. It is compared with successive
subsequences of the data read from the data source. This comparison is based on

equality of 8-bit character codes, so matching is case-sensitive. Each occurrence
of EODString in the data is counted once. Overlapping instances of EODString will
not be recognized. For example, an EODString of eee will be recognized only once

in the input XeeeeX.

EODString may also be of length 0, in which case the SubFileDecode filter will
simply pass EODCount bytes of arbitrary data. This is dependable only for binary
data, when suitable precautions have been taken to protect the data from any

modification by communication channels or operating systems. Ordinary ASCII
text is subject to modifications such as translation between different end-of-line

conventions, which can change the byte count in unpredictable ways.

A recommended value for EODString is a document structuring comment, such as
%%EndBinary. Including newline characters in EODString is not recommended;
translating the data between different end-of-line conventions could subvert the

string comparisons.

If EODCount is 0 and EODString is of length 0, detection of EOD markers is dis-
abled; the filter will not reach EOD. This is useful primarily when using proce-
dures or strings as data sources. EODCount is not allowed to be negative.

I 3.13

ReusableStreamDecode Filter

153

I

source /ReusableStreamDecode filter

source dictionary /ReusableStreamDecode filter

Filtered Files Details I

Certain PostScript features require that large blocks of data be available, in their

entirety, for use one or more times during the invocation of those features. Exam-
ples of such data blocks include:

• Data for a sampled function (see Section 3.10, "Functions")

• Image data or encapsulated PostScript (EPS) referenced from the PaintProc
procedure of a form dictionary (see Section 4.7, "Forms")

• Mesh data for shading dictionaries (see Section 4.9.3, "Shading Patterns")

Such data can be stored in strings, but only if the amount of data is less than the
implementation limit imposed on string objects. (See Appendix B for implemen-
tation limits.) To overcome this limit, LanguageLevel 3 defines reusable streams.

A reusable stream is a file object produced by a ReusableStreamDecode filter.
Conceptually, this filter consumes all of its source data at the time the filter oper-
ator is invoked and then makes the data available as if it were contained in a tem-
porary file. The filter file can be positioned as if it were a random-access disk file;
its capacity is limited only by the amount of storage available.

Except for ReusableStreamDecode filters, a decoding filter is an input file that
can be read only once. When it reaches EOF, it is automatically closed, and no

further data can be read from it. No data is read from the filter's source during the
execution of the filter operator.

In contrast, a ReusableStreamDecode filter is an input file that can be read many
times. When it reaches EOF, it does not automatically close, but merely stays at

EOF. It can be repositioned, when it reaches EOF or at any other time, for further
reading. In some cases, all of the data is read from the filter's source during the
execution of the filter operator.

A reusable stream has a length, which is the total number of bytes in its data
source. The stream can be positioned anywhere from 0, which denotes the begin-
ning of the stream, to length, which denotes the EOF.

154
I CHAPTER 3 Language I

When data is read from the filter's source, it may or may not be buffered in mem-
ory or written to a temporary disk file, depending on the type of data source, the
availability of storage, and details of the implementation and system memory
management.

The AsyncRead flag in the filter's parameter dictionary specifies whether all of the

data should be read from the data source during the execution of the filter opera-
tor (AsyncRead false, the default), or whether this may be postponed until the
data is needed (AsyncRead true). Asynchronous reading may require less memo-
ry or have better performance, but caution is required: attempts to read from the
same data source through a separate stream may produce incorrect results.

Regardless of the value of AsyncRead, a string or file that is used as the dpta
source for a reusable stream, as for any other decoding filter, should be consid-
ered read-only until the stream is closed. Writing into such a string or file will
have unpredictable consequences for the data read from the stream.

A reusable stream's parameter dictionary can also specify additional filters that
are to be applied to the data source before it is read by the ReusableStream-
Decode filter. This has an effect equivalent to supplying the same filter pipeline as
the data source of the ReusableStreamDecode filter. However, specifying those
filters in the ReusableStreamDecode filter dictionary can improve efficiency by
allowing the implementation more flexibility in determining how to read and
buffer the data.

The following operators can be applied to a reusable stream:

• closefile closes the file. This occurs implicitly when the file is reclaimed by the
restore operator or garbage collection. Closing the file reclaims any temporary
memory or disk space that was used to buffer the file's contents.

• fileposition returns the current file position. The result is always in the range 0
to length.

• setfileposition sets the file position to a value in the range 0 to length.

• resetfile sets the file position to O.

• flushfile sets the file position to length.

• bytesavailable returns length minus the current file position.

Table 3.24 lists the entries in the ReusableStreamDecode parameter dictionary.

155
Filtered Files Details I

TABLE 3.24 Entries in a ReusableStreamDecode parameter dictionary

KEY TYPE VALUE

Filter array or name (Optional) An array of names of decoding filters that are to be applied be-

fore delivering data to the reader. The names must be specified in the order

they should be applied to decode the data. For example, data encoded using
LZW and then ASCII base-85 encoding filters should be decoded with the

Filter value [/ASC1185Decode AZWDecode]. If only one filter is required, the
value of Filter may be the name of that filter.

DecodeParms array or (Optional) An array of parameter dictionaries used by the decoding filters

dictionary that are specified by the Filter parameter, listed in the same order. If a filter
requires no parameters, the corresponding item in the DecodeParms array
must be null. If the value of Filter is a name, DecodeParms must be the pa-

rameter dictionary for that filter. If no parameters are required for any of
the decoding filters, DecodeParms may be omitted.

Note that the SubFileDecode filter requires a parameter dictionary with en-
tries for both EODCount and EODString.

All occurrences of CloseSource in the parameter dictionaries are ignored.
When the reusable stream is closed, all the filters are also closed, indepen-
dent of the value of CloseSource in the reusable stream itself. The original
source of the reusable stream is closed only if the value of CloseSource in
the reusable stream is true.

Intent integer (Optional) A code representing the intended use of the reusable stream,
which may help optimize the data storage or caching strategy If the value is
omitted or is not one of the following values, the default value of 0 is used.

0 Image data
1 Image mask data

2 Sequentially accessed lookup table data (such as a threshold array)
3 Randomly accessed lookup table data (such as the table of values

for a sampled function)

AsyncRead boolean (Optional) A flag that controls when data from the source is to be read. If

false, all the data from the source is read when the filter is created. If true,

data from the source may or may not be read when the filter is created;
reading may be postponed until the data is needed. Any operation on the
filter may cause all of the data to be read. Default value: false.

CloseSource boolean (Optional) A flag specifying whether closing the filter should also close its
data source. Default value: false.

I CHAPTER 3
156

l
Language I

NullEncode Filter

target /NullEncode filter

target dictionary /NullEncode filter

The NullEncode filter is an encoding filter that performs no data transformation;
its output is always identical to its input. The purpose of this filter is to allow an
arbitrary data target (procedure or string) to be treated as an output file. as de-
scribed in Section 3.13.1, "Data Sources and Targets?' Note that there is no
NullDecode filter as such, because the SubFileDecode filter can be configured to
serve that function.

The parameter dictionary can be used to specify the CloseTarget parameter
(LanguageLevel 3).

3.14 Binary Encoding Details

In LanguageLevels 2 and 3, the scanner recognizes two encoded forms of the
PostScript language in addition to ASCII. These are binary token encoding and
binary object sequence encoding. All three encoding formats can be mixed in any
program.

The binary token encoding represents elements of the PostScript language as indi-
vidual syntactic entities. This encoding emphasizes compactness over efficiency
of generation or interpretation. Still, the binary token encoding is usually more
efficient than ASCII. Most elements of the language, such as integers, real num-
bers, and operator names, are represented by fewer characters in the binary en-
coding than in the ASCII encoding. Binary encoding is most suitable for
environments in which communication bandwidth or storage space is the scarce
resource.

The binary object sequence encoding represents a sequence of one or more Post-
Script objects as a single syntactic entity. This encoding is not compact, but it can
be generated and interpreted very efficiently. In this encoding, most elements of
the language are in a natural machine representation or something very close to
one. Also, this encoding is oriented toward sending fully or partially precompiled
sequences of objects, as opposed to sequences generated "on the fly." Binary ob-
ject sequence encoding is most suitable for environments in which execution
costs dominate communication costs.

I 3.14
157

Binary Encoding Details I

Use of the binary encodings requires that the communication channel between

the application and the PostScript interpreter be fully transparent. That is, the
channel must be able to carry an arbitrary sequence of 8-bit character codes, with
no characters reserved for communications functions, no "line" or "record"
length restrictions, and so on. If the communication channel is not transparent,
an application must use the ASCII encoding. Alternatively, it can make use of the
filters that encode binary data as ASCII text (see Section 3.13, "Filtered Files De-
tails").

The various language encodings apply only to characters the PostScript language
scanner consumes. Applying exec to an executable file or string object invokes the
scanner, as does the token operator. File operators such as read and readstring,

however, read the incoming sequence of characters as data, not as encoded Post-
Script programs.

The first character of each token determines what encoding is to be used for that

token. If the character code is in the range 128 to 159 (that is, one of the first 32
codes with the high-order bit set), one of the binary encodings is used. For binary

encodings, the character code is treated as a token type: it determines which
encoding is used and sometimes also specifies the type and representation of the
token.

Note: The codes 128 to 159 are control characters in most standard character sets,

such as ISO and JIS; they do not have glyphs assigned to them and are unlikely to be
used to construct names in PostScript programs. Interpretation of binary encodings
can be disabled; see the setobjectformat operator in Chapter 8.

Characters following the token type character are interpreted according to the
same encoding until the end of the token is reached, regardless of character codes.
A character code outside the range 128 to 159 can appear within a multiple-byte

binary encoding. A character code in the range 128 to 159 can appear within an
ASCII string literal or a comment. However, a binary token type character termi-
nates a preceding ASCII name or number token.

In the following descriptions, the term byte is synonymous with character but
emphasizes that the information represents binary data instead of ASCII text.

I CHAPTER 3
158

i
Language I

3.14.1 Binary Tokens

Binary tokens are variable-length binary encodings of certain types of PostScript
objects. A binary token represents an object that can also be represented in the
ASCII encoding, but it can usually represent the object with fewer characters. The
binary token encoding is usually the most compact representation of a program.

Semantically, a binary token is equivalent to some corresponding ASCII token.
When the scanner encounters the binary encoding for the integer 123, it pro-
duces the same result as when it encounters an ASCII token consisting of the
characters 1, 2, and 3. That is, it produces an integer object whose value is 123;

the object is the same and occupies the same amount of space if stored in VM,
whether it came from a binary or an ASCII token.

Unlike the ASCII and binary object sequence encodings, the binary token en-
coding is incomplete; not everything in the language can be expressed as a binary
token. For example, it does not make sense to have binary token encodings of
{ and), because their ASCII encodings are already compact. It also does not make

sense to have binary encodings for the names of operators that are rarely used,
because their contribution to the overall length of a PostScript program is negli-
gible. The incompleteness of the binary token encoding is not a problem, because
ASCII and binary tokens can be mixed.

The binary token encoding is summarized in Table 3.25. A binary token begins

with a token type byte. A majority of the token types (132 to 149) are used for bi-
nary tokens; the remainder are used for binary object sequences or are unas-
signed. The token type determines how many additional bytes constitute the
token and how the token is interpreted.

TABLE 3.25 Binary token interpretation

TOKEN ADDITIONAL
TYPE(5) BYTES INTERPRETATION

128-131 Binary object sequence (see Section 3.14.2, "Binary Object Sequences").

132 4 32-bit integer, high-order byte first.

133 4 32-bit integer, low-order byte first.

134 2 16-bit integer, high-order byte first.

135 2 16-bit integer, low-order byte first.

I 3.14
159

l
Binary Encoding Details I

136 1 8-bit integer, treating the byte after the token type as a signed number n;

—128 ≤ n ≤ 127.

137 3 or 5 16- or 32-bit fixed-point number. The number representation (size, byte

order, and scale) is encoded in the byte immediately following the token type;

the remaining 2 or 4 bytes constitute the number itself. The representation

parameter is treated as an unsigned integer n

0 ≤ r≤ 31 32-bit fixed-point number, high-order byte first. scale

(the number of bits of fraction) is equal to r.

32 ≤ r ≤ 47 16-bit fixed-point number, high-order byte first; scale

equals r — 32.

128 ≤ r ≤ 175 Same as r — 128, except that all numbers are given low-

order byte first.

138 4 32-bit IEEE standard real, high-order byte first.

139 4 32-bit IEEE standard real, low-order byte first.

140 4 32-bit native real.

141 1 Boolean. The byte following the token type gives the value 0 for false, 1 for

true.

142 1 + n String of length n. The parameter n is in the byte following the token type;

0 ≤ n ≤ 255. The n characters of the string follow the parameter.

143 2 + n Long string of length n. The 16-bit parameter n is contained in the two bytes

following the token type, represented high-order byte first; 0 ≤ n ≤ 65,535.
The n bytes of the string follow the parameter.

144 2 + n Same as 143 except that n is encoded low-order byte first.

145 or 146 1 Literal (145) or executable (146) encoded system name. The system name in-

dex (in the range 0 to 255) is contained in the byte following the token type.

This is described in detail in Section 3.14.3, "Encoded System Names."

147-148 Reserved (Display PostScript extension).

149 3 + data Homogeneous number array, which consists of a 4-byte header, including the

token type, followed by a variable-length array of numbers whose size and

representation are specified in the header. The header is described in detail
below.

150-159 — Unassigned. Occurrence of a token with any of these types will cause a
syntaxerror.

I CHAPTER 3
160

Language

The encodings for integer, real, and boolean objects are straightforward; they are
explained in Section 3.14.4, "Number Representations." The other token types re-

quire additional discussion.

Fixed- Point Numbers

A fixed-point number is a binary number having integer and fractional parts. The
position of the binary point is specified by a separate scale value. In a fixed-point
number of n bits, the high-order bit is the sign, the next n — scale — 1 bits are the
integer part, and the low-order scale bits are the fractional part. For example, if
the number is 16 bits wide and scale is 5, it is interpreted as a sign, a 10-bit integer
part, and a 5-bit fractional part. A negative number is represented in twos-

complement form.

There are both 16- and 32-bit fixed-point numbers, enabling an application to
make a tradeoff between compactness and precision. Regardless of the token's
length, the object produced by the scanner for a fixed-point number is an integer
if scale is 0; otherwise it is a real number. A 32-bit fixed-point number takes more

bytes to represent than a 32-bit real number. It is useful only if the application al-
ready represents numbers that way. Using this representation makes somewhat
more sense in homogeneous number arrays, described below.

String Tokens

A string token specifies the string's length as a 1- or 2-byte unsigned integer. The
specified number of characters of the string follow immediately. All characters are
treated literally. There is no special treatment of (backslash) or other characters.

Encoded System Names

An encoded system name token selects a name object from the system name table
and uses it as either a literal or an executable name. This mechanism is described
in Section 3.14.3, "Encoded System Names?'

[3.14
161

Homogeneous Number Arrays

Binary Encoding Details I

A homogeneous number array is a single binary token that represents a literal array
object whose elements are all numbers. Figure 3.2 illustrates the organization of
the homogeneous number array.

Number representation

High byte first

Sign [7 -

_ _ LSB

Sign

Sign

LSB of
exponent

7 -

 LSB

 Exponent

1 Fraction
1

2-byte
integer/fixed

4-byte
integer/fixed

IEEE
real

Header

Header
(4 bytes)

Array of numbers
(2 or 4 bytes each;
all the same size)

Note: First byte is at top in all diagrams.

149 Token type

 Representation }Array length
(number
of elements)

Number representation

Low byte first

[- - 7
 LSB

Sign

Sign

LSB of
exponent

Sign

LSB

1 Fraction
Exponent

FIGURE 3.2 Homogeneous number array

The token consists of a 4-byte header, including the token type, followed by an

arbitrarily long sequence of numbers. All of the numbers are represented in the
same way, which is specified in the header. The header consists of the token type

byte (149, denoting a homogeneous number array), a byte that describes the
number representation, and two bytes that specify the array length (number of

162
I CHAPTER 3 i Language I

elements). The number representation is treated as an unsigned integer r in the
range 0 to 255 and is interpreted as shown in Table 3.26.

TABLE 3.26 Number representation in header for a homogeneous number array

REPRESENTATION INTERPRETATION

0 < r< 31 32-bit fixed-point number, high-order byte first. scale (the number
of bits of fraction) is equal to r.

32 ≤ r≤ 47 16-bit fixed-point number, high-order byte first. scale equals r — 32.

48 32-bit IEEE standard real, high-order byte first.

49 32-bit native real.

128 ≤ r≤ 177 Same as r — 128, except that all numbers are given low-order byte
first.

This interpretation is similar to that of the representation parameter r in indi-
vidual fixed-point number tokens.

The array length is given by the last two bytes of the header, treated as an un-
signed 16-bit number n. The byte order in this field is specified by the number
representation: r < 128 indicates high-order byte first; r ≥ 128 indicates low-order

byte first. Following the header are 2 x n or 4 x n bytes, depending on representa-
tion, that encode successive numbers of the array.

When the homogeneous number array is consumed by the PostScript language
scanner, the scanner produces a literal array object. The elements of this array are
all integers if the representation parameter r is 0, 32, 128, or 160, specifying fixed-

point numbers with a scale of 0. Otherwise, they are all real numbers. Once
scanned, such an array is indistinguishable from an array produced by other
means and occupies the same amount of space.

Although the homogeneous number array representation is useful in its own
right, it is particularly useful with operators that take an encoded number string

as an operand. This is described in Section 3.14.5, "Encoded Number Strings."

163

3.14.2 Binary Object Sequences

Binary Encoding Details I

A binary object sequence is a single token that describes an executable array of ob-
jects, each of which may be a simple object, a string, or another array nested to
arbitrary depth. The entire sequence can be constructed, transmitted, and
scanned as a single, self-contained syntactic entity.

Semantically, a binary object sequence is an ordinary executable array, as if the
objects in the sequence were surrounded by { and }, but with one important dif-
ference: its execution is immediate instead of deferred. That is, when the Post-
Script interpreter encounters a binary object sequence in a file being executed
directly, the interpreter performs an implicit exec operation instead of pushing
the array on the operand stack, as it ordinarily would do. This special treatment
does not apply when a binary object sequence appears in a context where execu-
tion is already deferred—for example, nested in ASCII-encoded and 1 or con-

sumed by the token operator.

Because a binary object sequence is syntactically a single token, the scanner pro-

cesses it completely before the interpreter executes it. The VM allocation mode in
effect at the time the binary object sequence is scanned determines whether the
entire array and all of its composite objects are allocated in local or in global VM.

The encoding emphasizes ease of construction and interpretation over compact-
ness. Each object is represented by 8 successive bytes. In the case of simple ob-
jects, these 8 bytes describe the entire object—type, attributes, and value. In the

case of composite objects, the 8 bytes include a reference to some other part of
the binary object sequence where the value of the object resides. The entire struc-
ture is easy to describe using the data type definition facilities of implementation
languages, such as C and Pascal.

Figure 3.3 shows the organization of the binary object sequence.

I CHAPTER 3
164

Language I

Normal header
(4 bytes)

Token type
Top-level array length
(number of objects)

Overall length {
(in bytes)

O = literal
1 = executable

Object

(8 bytes)

Type

O

Length

Value

8
bits h— Extended header

_ _ - - - - (8 bytes) _

Header
(4 or 8 bytes) Token type

Top-level
array of objects
(8 bytes each)

Subsidiary
arrays of objects
(8 bytes each)

String
values
(variable length)

Note: First byte is at top in all diagrams.

o

Top-level array length
(number of objects)

Overall length
(in bytes)

FIGURE 3.3 Binary object sequence

A binary object sequence consists of four parts, in the following order:

1. Header. 4 or 8 bytes of information about the binary object sequence as a
whole

2. Top-level array A sequence of objects, 8 bytes each, which constitute the value
of the main array object

3. Subsidiary arrays. More 8-byte objects, which constitute the values of nested
array objects

I 3.14
165

I
Binary Encoding Details I

4. String values. An unstructured sequence of bytes, which constitute the values

of string objects and the text of name objects

The first byte of the header is the token type, mentioned earlier. Four token types
denote a binary object sequence and select a number representation for all inte-
gers and real numbers embedded within it (see Section 3.14.4, "Number Repre-

sentations"):

128 High-order byte first, IEEE standard real format
129 Low-order byte first, IEEE standard real format

130 High-order byte first, native real format
131 Low-order byte first, native real format

There are two forms of header, normal and extended, as shown in Figure 3.3. The

normal header can describe a binary object sequence that has no more than 255

top-level objects and 65,535 bytes overall. The extended header is required for se-
quences that exceed these limits.

Following the header is an uninterrupted sequence of 8-byte objects that consti-
tute the top-level array and subsidiary arrays. The length of this sequence is not

explicit. It continues until the earliest string value referenced from an object in
the sequence, or until the end of the entire token.

The first byte of each object in the sequence gives the object's literal/executable
attribute in the high-order bit and its type in the low-order 7 bits. The attribute

values are:

0 Literal

1 Executable

The meaning of the type field is given in Table 3.27.

The second byte of an object is unused; its value must be 0. The third and fourth

bytes constitute the object's length field; the fifth through eighth bytes constitute
its value field. The interpretation of the length and value fields depends on the
object's type and is given in Table 3.27. Again, the byte order within these fields is

determined by the number representation for the binary object sequence overall.

I CHAPTER 3
166

Language I

TABLE 3.27 Object type, length, and value fields

TYPE CODE OBJECT TYPE LENGTH FIELD VALUE FIELD

o

1

null

integer

real

3 name

4

5

6

9

10

boolean

string

immediately
evaluated name

array

mark

Unused

Unused

Selects representation
of value

Selects interpretation
of value

Unused

Number of elements

Selects interpretation
of value

Number of elements

Unused

Unused

32-bit signed integer

Floating- or fixed-point
number

Offset or index

0 for false, 1 for true

Offset of first element

Offset or index

Offset of first element

Unused

For a real number, the length field selects the representation of the number in the
value field: if the length n is 0, the value is a floating-point number; otherwise, the
value is a fixed-point number, using n as its scale factor (see Section 3.14.1, "Bi-
nary Tokens").

For strings and arrays, the length field specifies the number of elements (charac-

ters in a string or objects in an array). It is treated as a 16-bit unsigned integer.
The value field specifies the offset, in bytes, of the start of the object's value rela-
tive to the first byte of the first object in the top-level array. An array offset must
refer somewhere within the top-level or subsidiary arrays; it must be a multiple of
8. A string offset must refer somewhere within the string values. The strings have

no alignment requirement and need not be null-terminated or otherwise delim-
ited. If the length of a string or array object is 0, its value is disregarded.

i
1

I 3.14
167

I
Binary Encoding Details I

For name objects, the length field is treated as a 16-bit signed integer n that se-
lects one of three interpretations of the value field:

n > 0 The value is an offset to the text of the name, just as with a string, n is
the name's length, which must be within the implementation limit for
names.

n = 0 Reserved (Display PostScript extension).

n = —1 The value is a system name index (see Section 3.14.3, "Encoded System
Names").

An immediately evaluated name object corresponds to the //name syntax of the
ASCII encoding (see Section 3.12.2, "Immediately Evaluated Names"). Aside
from the type code, its representation is the same as a name. However, with an
immediately evaluated name object, the scanner immediately looks up the name
in the environment of the current dictionary stack and substitutes the cor-
responding value for that name. If the name is not found, an undefined error
occurs.

For the composite objects, there are no enforced restrictions against multiple ref-

erences to the same value or to recursive or self-referential arrays. However, such
structures cannot be expressed directly in the ASCII or binary token encodings of
the language; their use violates the interchangeability of the encodings. The rec-
ommended structure of a binary object sequence is for each composite object to
refer to a distinct value. There is one exception: references from multiple name
objects to the same string value are encouraged, because name objects are unique
by definition.

The scanner generates a syntaxerror when it encounters a binary object sequence

that is malformed in any way. Possible causes include:

• An object type that is undefined

• An "unused" field that is not 0

• Lengths and offsets that, combined, would refer outside the bounds of the bi-

nary object sequence

• An array offset that is not a multiple of 8 or that refers beyond the earliest

string offset

I CHAPTER
168

1
Language I

When a syntaxerror occurs, the PostScript interpreter pushes the object that
caused the error onto the operand stack. For an error detected by the scanner,
however, there is no such object, because the error occurs before the scanner has
finished creating one. Instead, the scanner fabricates a string object consisting of
the characters encountered so far in the current token. If a binary token or binary
object sequence was being scanned, the string object produced is a description of
the token, such as

(bin obj seq,type=128, elements=23, size=234, array out of bounds)

rather than the literal characters, which would be gibberish if printed as part of
an error message.

3.14.3 Encoded System Names

Both the binary token and binary object sequence encodings provide optional
means for representing certain names as small integers rather than as full text
strings. Such an integer is referred to as a system name index.

A name index is a reference to an element of a name table already known to the
PostScript interpreter. When the scanner encounters a name token that specifies a
name index rather than a text name, it immediately substitutes the corresponding
element of the table. This substitution occurs at scan time, not at execution time.
The result of the substitution is an ordinary PostScript name object.

The system name table contains standard operator names, single-letter names,
and miscellaneous other useful names. The contents of this table are documented
in Appendix F. They are also available as a machine-readable file for use by driv-
ers, translators, and other programs that deal with binary encodings; contact the
Adobe Developers Association.

If there is no name associated with a specified system name index, the scanner

generates an undefined error. The offending command is systemn, where n is the
decimal representation of the index.

An encoded system name specifies, as part of the encoding, whether the name is
to be literal or executable. A given element of the system name table can be treat-
ed as either literal or executable when referenced from a binary token or object
sequence.

169
3.14 Binary Encoding Details

In the binary object sequence encoding, an immediately evaluated name object
analogous to //name can be specified. When such an object specifies a name in-
dex, there are two substitutions: the first obtains a name object from the table,
and the second looks up that name object in the current dictionary stack. The lit-
eral or executable attribute of the immediately evaluated name object is disre-
garded; it has no influence on the corresponding attribute of the resulting object.

A program can depend on a given system name index representing a particular
name object. Applications that generate binary-encoded PostScript programs are
encouraged to take advantage of encoded system names, because they save both
space and time.

Note: The binary token encoding can reference only the first 256 elements of the sys-
tem name table. Therefore, this table is organized so that the most commonly used
names are in the first 256 elements. The binary object sequence encoding does not
have this limitation.

3.14.4 Number Representations

Binary tokens and binary object sequences use various representations for num-
bers. Some numbers are the values of number objects (integer and real). Others
provide structural information, such as lengths and offsets within binary object
sequences.

Different machine architectures use different representations for numbers. The
two most common variations are the byte order within multiple-byte integers
and the format of real (floating-point) numbers.

Rather than specify a single convention for representing numbers, the language
provides a choice of representations. The application program chooses whichever
convention is most appropriate for the machine on which it is running. The Post-
Script language scanner accepts numbers conforming to any of the conventions,
translating to its own internal representation when necessary. This translation is
needed only when the application and the PostScript interpreter are running on
machines with different architectures.

The number representation to be used is specified as part of the token type—the
initial character of the binary token or binary object sequence. There are two in-

170
I CHAPTER 3 Language I

dependent choices, one for byte order and one for real format. The byte order
choices are:

• High-order byte first in a multiple-byte integer or fixed-point number. The

high-order byte comes first, followed by successively lower-order bytes.

• Low-order byte first in a multiple-byte integer or fixed-point number. The low-
order byte comes first, followed by successively higher-order bytes.

The real format choices are:

• IEEE standard. A real number is represented in the 32-bit floating-point format
defined in the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic.
The order of bytes is the same as the integer byte order. For example, if the
high-order byte of an integer comes first, then the byte containing the sign and
first 7 exponent bits of an IEEE standard real number comes first.

• Native. A real number is represented in the native format for the machine on
which the PostScript interpreter is running. This may be a standard format or
something completely different. The choice of byte order is not relevant. The
application program is responsible for finding out the correct format. In gener-
al, this choice is useful only in environments where the application and the
PostScript interpreter are running on the same machine or on machines with
compatible architectures. PostScript programs that use this real number repre-
sentation are not portable.

Because each binary token or binary object sequence specifies its own number
representation, binary encoded programs with different number representations
can be mixed. This is a convenience for applications that obtain portions of Post-
Script programs from different sources.

The ByteOrder and Real Format system parameters indicate the native byte order
and real number representation of the machine on which the PostScript inter-

preter is running (see Appendix C). An interactive application can query
Rea IFormat to determine whether the interpreter's native real number format is
the same as that of the application. If so, translation to and from IEEE format can
be avoided.

I 3.14

3.14.5 Encoded Number Strings

171
Binary Encoding Details I

Several operators require as operands an indefinitely long sequence of numbers
to be used as coordinate values, either absolute or relative. The operators include
those dealing with user paths, rectangles, and explicitly positioned text. In the
most common use of these operators, all of the numbers are provided as literal
values by the applications rather than being computed by the PostScript pro-
gram.

To facilitate this common use and to streamline the generation and interpretation
of numeric operand sequences, these operators permit their operands to be pre-
sented in either of two ways:

• As an array object whose elements are numbers to be used successively

• As a string object to be interpreted as an encoded number string

An encoded number string is a string that contains a single homogeneous number
array according to the binary token encoding. That is, the first 4 bytes are treated
as a header. The remaining bytes are treated as a sequence of numbers encoded as
described in the header. (See Figure 3.2 on page 161.)

An encoded number string is a compact representation of a number sequence
both in its external form and in VM. Syntactically, it is simply a string object. It
remains in that form after being scanned and placed in VM. It is interpreted as a
sequence of numbers only when it is used as an operand of an operator that is ex-
pecting a number array. Furthermore, even then it is neither processed by the
scanner nor expanded into an array object; instead, the numbers are consumed
directly by the operator. This arrangement is compact and efficient, particularly
for large number sequences.

Example 3.11 shows equivalent ways of invoking rectfill, which is one of the
LanguageLevel 2 operators that expect number sequences as operands.

Example 3.11

[100 200 40 50] rectfill

<95 200004 0064 00c8 0028 0032> rectfill

The first line constructs an ordinary PostScript array object containing the num-
bers and passes it to rectfill. This is the most general form, because the [and]

I CHAPTER 3
172

I
Language I

could enclose an arbitrary computation that produces the numbers and pushes
them on the stack.

On the second line, a string object appears in the program. When rectfill notices
that it has been given a string object, it interprets the value of the string, expect-
ing to find the binary token encoding of a homogeneous number array.

Example 3.11 does not use encoded number strings to best advantage. In this
example, it is an ASCII-encoded hexadecimal string enclosed in < and >. A real
application would use a more efficient encoding, such as a binary string token or
an ASCII base-85 string literal. An ordinary ASCII string enclosed in (and) is un-
suitable because of the need to quote special characters.

Operators that use encoded number strings include rectfill, rectstroke, rectclip,
xshow, yshow, and xyshow. An encoded user path can represent its numeric op-
erands as an encoded number string; the relevant operators are ufill, ueofill,
ustroke, uappend, inufill, inueofill, and inustroke.

3.14.6 Structured Output

In some environments, a PostScript program can transmit information back to
the application program that generated it. This information includes the values
of objects produced by queries, error messages, and unstructured text generated
by the print operator.

A PostScript program writes all of this data to its standard output file. The appli-
cation requires a way to distinguish among these different kinds of information
received from the PostScript interpreter. To serve this need, the language includes
operators to write output in a structured output format. This format is basically
the same as the binary object sequence representation for input, described in
Section 3.14.2, "Binary Object Sequences!'

A program that writes structured output should take care when using unstruc-
tured output operators, such as print and .. Because the start of a binary object
sequence is indicated by a character whose code is in the range 128 to 131,
unstructured output should consist only of character codes outside that range;
otherwise, confusion will ensue in the application. Of course, this is only a con-
vention. By prior arrangement, a program can send arbitrary unstructured data
to the application.

173
Binary Encoding Details I

The operator printobject writes an object as a binary object sequence to the stan-
dard output file. A similar operator, writeobject, writes to any file. The binary ob-
ject sequence contains a top-level array consisting of one element that is the

object being written (see Section 3.14.2, "Binary Object Sequences"). That object,
however, can be composite, so the binary object sequence may include subsidiary
arrays and strings.

In the binary object sequences produced by printobject and writeobject, the
number representation is controlled by the setobjectformat operator. The binary

object sequence has a token type that identifies the representation used.

Accompanying the top-level object in the object sequence is a 1-byte tag, which is
specified as an operand of printobject and writeobject. This tag is carried in the
second byte of the object, which is otherwise unused (see Figure 3.3 on page 164).

Only the top-level object receives a tag; the second byte of subsidiary objects is 0.
Despite its physical position, the tag is logically associated with the object se-
quence as a whole.

The purpose of the tag is to enable the PostScript program to specify the intended

disposition of the object sequence. A few tag values are reserved for reporting
errors (see below). The remaining tag values may be used arbitrarily.

Tag values 0 through 249 are available for general use. Tag values 250 through 255

are reserved for identifying object sequences that have special significance. Of
these, only tag value 250 is presently defined; it is used to report errors.

Errors are initiated as described in Section 3.11, "Errors!' Normally, when an

error occurs, control automatically passes from the PostScript program to a built-

in procedure that catches errors. That procedure invokes handleerror. Subse-

quent behavior depends on the definition of handleerror. The following descrip-
tion applies to the standard definition of handleerror.

If the value of binary in the $error dictionary is true and binary encoding is en-
abled, handleerror writes a binary object sequence with a tag value of 250. But if

binary is false or binary encoding is disabled, handleerror writes a human-

readable text message whose format is product-dependent.

I CHAPTER 3
174

l
Language I

The binary object sequence that reports an error contains a four-element array as
its top-level object. The array elements, ordered as they appear, are:

1. The name Error, which indicates an ordinary error detected by the PostScript

interpreter. A different name could indicate another class of errors, in which

case the meanings of the other array elements might be different.

2. The name that identifies the specific error—for example, typecheck.

3. The object that was being executed when the error occurred. If the object that

raised the error is not printable, some suitable substitute is provided—for ex-
ample, an operator name in place of an operator object.

4. A boolean object (used in the Display PostScript extension), whose normal
value is false.

175

I

CHAPTER 4

Graphics

THE POSTSCRIPT GRAPHICS OPERATORS describe the appearance of pages

that are to be reproduced on a raster output device. The facilities described here
are intended for both printer and display applications.

The graphics operators form seven main groups:

• Graphics state operators. These operators manipulate the data structure called
the graphics state, which is the global framework within which the other graph-
ics operators execute.

• Coordinate system and matrix operators. The graphics state includes the current
transformation matrix (CTM), which maps coordinates specified by the Post-
Script program into output device coordinates. The operators in this group

manipulate the CTM to achieve any combination of translation, scaling, rota-
tion, reflection, and skewing of user coordinates onto device coordinates.

• Path construction operators. The graphics state includes the current path, which
defines shapes and line trajectories. Path construction operators begin a new
path, add line segments and curves to the current path, and close the current

path. All of these operators implicitly reference the CTM parameter in the
graphics state.

• Painting operators. The operators in this group paint graphical elements, such
as lines, filled areas, and sampled images, into the raster memory of the output

device. These operators are controlled by the current path, current color, and
many other parameters in the graphics state.

• Glyph and font operators. These operators select and paint character glyphs

from fonts (descriptions of typefaces for representing text characters). Because
the PostScript language treats glyphs as general graphical shapes, many of the
font operators should be grouped with the path construction or painting oper-

 1

I CHAPTER 4
176

Graphics I

ators. However, the data structures and mechanisms for dealing with glyph and
font descriptions are sufficiently specialized that Chapter 5 focuses on them.

• Device setup operators. These operators establish the association between raster

memory and a physical output device, such as a printer or a display. They are

discussed in detail in Chapter 6.

• Output operators. Once a page has been completely described, executing an

output operator transmits the page to the output device.

This chapter presents general information about device-independent graphics in
the PostScript language: how a program describes the abstract appearance of a

page. Rendering—the device-dependent part of graphics—is covered in
Chapter 7.

4.1 Imaging Model

The Adobe imaging model is a simple and unified view of two-dimensional
graphics borrowed from the graphic arts. A PostScript program builds an image
by placing "paint" on a "page" in selected areas.

• The painted figures may be in the form of letter shapes, general filled shapes,
lines, or digitally sampled representations of photographs.

• The paint may be in color or in black, white, or any shade of gray.

• The paint may take the form of a repeating pattern (LanguageLevel 2) or a
smooth transition between colors (LanguageLevel 3).

• Any of these elements may be clipped to appear within other shapes as they are
placed onto the page.

• Once a page has been built up to the desired form, it may be transmitted to an

output device.

The PostScript interpreter maintains an implicit current page that accumulates
the marks made by the painting operators. When a program begins, the current
page is completely blank. As each painting operator executes, it places marks on
the current page. Each new mark completely obscures any marks it may overlay
(subject to the effects of the overprint parameter in the graphics state; see
Section 4.8.5). This method is known as a painting model: no matter what color a

mark has—white, black, gray, or color—it is put onto the current page as if it
were applied with opaque paint. Once the page has been completely composed,

177
1

Imaging Model I

invoking the showpage operator renders the accumulated marks on the output
media and then clears the current page to white again.

The principal painting operators (among many others) are as follows:

• fill paints an area.

• stroke paints lines.

• image paints a sampled image.

• show paints glyphs representing character shapes.

The painting operators require various parameters, some explicit and others im-

plicit. Chief among the implicit parameters is the current path used by fill, stroke,
and show. A path consists of a sequence of connected and disconnected points,
lines, and curves that together describe shapes and their positions. It is built up
through the sequential application of the path construction operators, each of
which modifies the current path in some way, usually by appending one new ele-
ment.

Path construction operators include newpath, moveto, lineto, curveto, arc, and
closepath. None of the path construction operators places marks on the current
page; the painting operators do that. Path construction operators create the
shapes that the painting operators paint. Some operators, such as ufill and

ustroke, combine path construction and painting in a single operation for effi-
ciency

Implicit parameters to the painting operators include the current color, current
line width, current font (typeface and size), and many others. There are operators

that examine and set each implicit parameter in the graphics state. The values
used for implicit parameters are those in effect at the time an operator is invoked.

PostScript programs contain many instances of the following typical sequence of
steps:

1. Build a path using path construction operators.

2. Set any implicit parameters if their values need to change.

3. Perform a painting operation.

I CHAPTER 4
178

I
Graphics I

There is one additional implicit element in the Adobe imaging model that modi-

fies this description: the current clipping path outlines the area of the current page
on which paint may be placed. Initially, this path outlines the entire imageable
area of the current page. By using the clip operator, a PostScript program can
shrink the path to any shape desired. Although painting operators may attempt
to place marks anywhere on the current page, only those marks falling within the
current clipping path will affect the page; those falling outside it will not.

4.2 Graphics State

The PostScript interpreter maintains an internal data structure called the graphics
state that holds current graphics control parameters. These parameters define the
global framework within which the graphics operators execute. For example, the
stroke operator implicitly uses the current line width parameter from the graphics
state, and the fill operator implicitly uses the current color parameter.

Most graphics state parameters are ordinary PostScript objects that can be read
and altered by the appropriate graphics state operators. For example, the opera-
tor setlinewidth changes the current line width parameter, and currentlinewidth
reads that parameter from the graphics state. In general, the operators that set
graphics state parameters simply store them unchanged for later use by other
graphics operators. However, certain parameters have special properties or be-

havior:

• Most parameters must be of the correct type or have values that fall into a cer-
tain range.

• Parameters that are numeric values, such as color, line width, and miter limit,
are forced into legal range, if necessary, and stored as real numbers. If they are
later read out, they are always real, regardless of how they were originally speci-

fied. However, they are not adjusted to reflect capabilities of the raster output
device, such as resolution or number of distinguishable colors. Graphics ren-
dering operators perform such adjustments, but the adjusted values are not
stored back into the graphics state.

• Certain parameters are composite objects, such as arrays or dictionaries.
Graphics operators consult the values of these objects at unpredictable times
and may cache them for later use, so altering them can have unpredictable re-

sults. A PostScript program should treat the values of graphics state parameters
(including those in saved graphics states) as if they were read-only.

I 4.2
179

Graphics State I

• The current path, clipping path, and device parameters are internal objects that

are not directly accessible to a PostScript program.

Table 4.1 lists those graphics state parameters that are device-independent and

are appropriate to specify in page descriptions. The parameters listed in Table 4.2

control details of the rendering (scan conversion) process and are device-

dependent. A page description that is intended to be device-independent should
not alter these parameters.

TABLE 4.1 Device-independent parameters of the graphics state

PARAMETER TYPE VALUE

CTM array The current transformation matrix, which maps positions from user

coordinates to device coordinates. This matrix is modified by each ap-

plication of the coordinate system operators. Initial value: a matrix
that transforms default user coordinates to device coordinates.

position two numbers The coordinates of the current point in user space, the last element of

the current path. Initial value: undefined.

path (internal) The current path as built up by the path construction operators. Used

as an implicit argument by operators such as fill, stroke, and clip. Ini-
tial value: empty.

clipping path (internal) A path defining the current boundary against which all output is to be

cropped. Initial value: the boundary of the entire imageable portion of
the output page.

clipping path stack (internal) (LanguageLevel 3) A stack holding clipping paths that have been saved

with the clipsave operator and not yet restored with cliprestore.

color space array (LanguageLevel 2) The color space in which color values are to be in-
terpreted. Initial value: DeviceGray.

color (various) The color to use during painting operations. The type and interpreta-

tion of this parameter depends on the current color space. For most

color spaces, a color value consists of one to four numbers. Initial
value: black.

font dictionary The set of graphic shapes (glyphs) that represent characters in the cur-
rent typeface. Initial value: an invalid font dictionary.

line width number The thickness (in user coordinate units) of lines to be drawn by the
stroke operator. Initial value: 1.0.

I CHAPTER 4
180

Graphics I

line cap

line join

miter limit

dash pattern

integer

integer

number

array and
number

stroke adjustment boolean

A code that specifies the shape of the endpoints of any open path that

is stroked. Initial value: 0 for a square butt end.

A code that specifies the shape of joints between connected segments
of a stroked line. Initial value: 0 for mitered joins.

The maximum length of mitered line joins for the stroke operator.
This limits the length of "spikes" produced when line segments join at
sharp angles. Initial value: 10.0 for a miter cutoff below 11 degrees.

A description of the dash pattern to be used when lines are painted by

the stroke operator. Initial value: a normal solid line.

(LanguageLevel 2) A flag that specifies whether to compensate for reso-
lution effects that may be noticeable when line thickness is a small

number of device pixels. Initial value: false.

TABLE 4.2 Device-dependent parameters of the graphics state

PARAMETER TYPE VALUE

color rendering

overprint

black generation

dictionary

boolean

procedure

undercolor removal procedure

transfer

halftone

procedure

(various)

(LanguageLevel 2) A collection of parameters that determine how to
transform CIE-based color specifications to device color values. Initial

value: installation-dependent.

(LanguageLevel 2) A flag that specifies (on output devices that support
the overprint control feature) whether painting in one set of colorants
cause the corresponding areas of other colorants to be erased (false) or

left unchanged (true). Initial value: false.

(LanguageLevel 2) A procedure that calculates the amount of black to
use when converting RGB colors to CMYK. Initial value: installation-

dependent.

(LanguageLevel 2) A procedure that calculates the reduction in the
amount of cyan, magenta, and yellow components to compensate for
the amount of black added by black generation. Initial value:

installation-dependent.

A transfer function that adjusts device gray or color component values
to correct for nonlinear response in a particular device. Support for
four transfer functions is a LanguageLevel 2 feature. Initial value:

installation-dependent.

A halftone screen for gray and color rendering, specified either as fre-
quency, angle, and spot function or as a halftone dictionary. Halftone
dictionaries, as well as support for four halftone screens, are Language-
Level 2 features. Initial value: installation-dependent.

I 4.2
181

Graphics State

flatness number The precision with which curves are to be rendered on the output de-

vice. This number gives the maximum error tolerance, measured in
output device pixels. Smaller numbers give smoother curves at the ex-
pense of more computation and memory use. Initial value: 1.0.

smoothness number (LanguageLevel 3) The precision with which color gradients are to be

rendered on the output device. This number gives the maximum error
tolerance between a shading approximated by piecewise linear interpo-
lation and the true value of a (possibly nonlinear) shading function,
expressed as a fraction of the range of each color component. Smaller
numbers give smoother color transitions at the expense of more com-
putation and memory use. Initial value: installation-dependent.

device (internal) An internal data structure representing the current output device. Ini-
tial value: installation-dependent.

Although it contains many objects, the graphics state is not itself a PostScript ob-
ject and cannot be accessed directly from within a PostScript program. However,
there are two mechanisms for saving and later restoring the entire graphics state.
One is the graphics state stack, managed by the following operators:

• gsave pushes a copy of the entire graphics state onto the stack.

• g restore restores the entire graphics state to its former value by popping it from
the stack.

The graphics state stack, with its LIFO (last in, first out) organization, serves the
needs of PostScript programs that are page descriptions. A well-structured docu-

ment typically contains many graphical elements that are essentially independent

of each other and sometimes nested to multiple levels. The gsave and grestore
operators can be used to encapsulate these elements so that they can make local
changes to the graphics state without disturbing the graphics state of the sur-
rounding environment.

In some interactive applications, however, a program must switch its attention

among multiple, more-or-less independent imaging contexts in an unpredictable
order. The second mechanism, available in LanguageLevels 2 and 3, uses gstate

I CHAPTER 4
182

Graphics I

objects in virtual memory that contain saved copies of the graphics state. The fol-

lowing LanguageLevel 2 operators manipulate gstate objects:

• gstate creates a new gstate object.

• currentgstate copies the entire current graphics state into a gstate object.

• setg state replaces the entire current graphics state by the value of a gstate ob-
ject.

Interactive programs can use these operators to create a separate gstate object for
each imaging context and switch among them dynamically as needed.

Note: Saving a graphics state, with either gsave or currentgstate, captures every

parameter, including such things as the current path and current clipping path. For
example, if a nonempty current path exists at the time that gsave, gstate, or
currentgstate is executed, that path will be reinstated by the corresponding grestore
or setgstate. Unless this effect is specifically desired, it is best to minimize storage de-
mands by saving a graphics state only when the current path is empty and the cur-
rent clipping path is in its default state.

4.3 Coordinate Systems and Transformations

Paths and shapes are defined in terms of pairs of coordinates on the Cartesian

plane. A coordinate pair is a pair of real numbers x and y that locate a point hori-
zontally and vertically within a Cartesian (two-axis) coordinate system superim-
posed on the current page. The PostScript language defines a default coordinate

system that PostScript programs can use to locate any point on the page.

4.3.1 User Space and Device Space

Coordinates specified in a PostScript program refer to locations within a coordi-
nate system that always bears the same relationship to the current page, regardless
of the output device on which printing or displaying will be done. This coordi-

nate system is called user space.

Output devices vary greatly in the built-in coordinate systems they use to address
pixels within their imageable areas. A particular device's coordinate system is a
device space. A device space origin can be anywhere on the output page. This is
because the paper moves through different printers and imagesetters in different

183
I4.3 1 Coordinate Systems and Transformations l

directions. On displays, the origin can vary depending on the window system.
Different devices have different resolutions. Some devices even have resolutions
that are different in the horizontal and vertical directions.

The operands of the path operators are coordinates expressed in user space. The
PostScript interpreter automatically transforms user space coordinates into de-

vice space. For the most part, this transformation is hidden from the PostScript
program. A program must consider device space only rarely, for certain special

effects. This independence of user space from device space is essential to the
device-independent nature of PostScript page descriptions.

A coordinate system can be defined with respect to the current page by stating:

• The location of the origin

• The orientation of the x and y axes

• The lengths of the units along each axis

Initially, the user space origin is located at the lower-left corner of the output
page or display window, with the positive x axis extending horizontally to the

right and the positive y axis extending vertically upward, as in standard mathe-
matical practice. The length of a unit along both the x and y axes is 1/72 inch.
This coordinate system is the default user space. In default user space, all points
within the current page have positive x and y coordinate values.

Note: The default unit size (1/72 inch) is approximately the same as a "point," a unit
widely used in the printing industry. It is not exactly the same as a point, however;
there is no universal definition of a point.

The default user space origin coincides with the lower-left corner of the physical
page. Portions of the physical page may not be imageable on certain output de-
vices. For example, many laser printers cannot place marks at the extreme edges

of their physical page areas. It may not be possible to place marks at or near the
default user space origin. The physical correspondence of page corner to default

origin ensures that marks within the imageable portion of the output page will be

consistently positioned with respect to the edges of the page.

I CHAPTER 4
184

I
Graphics I

Coordinates in user space may be specified as either integers or real numbers.
Therefore, the unit size in default user space does not constrain locations to any ar-

bitrary grid. The resolution of coordinates in user space is not related in any way
to the resolution of pixels in device space.

The default user space provides a consistent, dependable starting place for Post-
Script programs regardless of the output device used. If necessary, the PostScript
program may then modify user space to be more suitable to its needs by applying
coordinate transformation operators, such as translate, rotate, and scale.

What may appear to be absolute coordinates in a PostScript program are not ab-
solute with respect to the current page, because they are expressed in a coordinate
system that may slide around and shrink or expand. Coordinate system transfor-
mation not only enhances device independence but is a useful tool in its own
right. For example, a page description originally composed to occupy an entire
page can be incorporated without change as an element of another page descrip-
tion by shrinking the coordinate system in which it is drawn.

Conceptually, user space is an infinite plane. Only a small portion of this plane

corresponds to the imageable area of the output device: a rectangular area above
and to the right of the origin in default user space. The actual size and position of
the area is device- and media-dependent. An application can request a particular

page size or other media properties by using the LanguageLevel 2 operator
setpagedevice, described in Section 6.1.1, "Page Device Dictionary!'

4.3.2 Transformations

A transformation matrix specifies how to transform the coordinate pairs of one
coordinate space into another coordinate space. The graphics state includes the
current transformation matrix (CTM), which describes the transformation from

user space to device space.

The elements of a matrix specify the coefficients of a pair of linear equations that
transform the values of coordinates x and y. However, in graphical applications,
matrices are not often thought of in this abstract mathematical way. Instead, a
matrix is considered to capture some sequence of geometric manipulations:
translation, rotation, scaling, reflection, and so forth. Most of the PostScript lan-

guage's matrix operators are organized according to this latter model.

I4.3 Coordinate Systems and Transformations I
185

The most commonly used matrix operators are those that modify the current
transformation matrix in the graphics state. Instead of creating a new transfor-
mation matrix from nothing, these operators change the existing transformation
matrix in some specific way. Operators that modify user space include the follow-
ing:

• translate moves the user space origin to a new position with respect to the cur-
rent page, leaving the orientation of the axes and the unit lengths unchanged.

• rotate turns the user space axes about the current user space origin by some
angle, leaving the origin location and unit lengths unchanged.

• scale modifies the unit lengths independently along the current x and y axes,
leaving the origin location and the orientation of the axes unchanged.

• concat applies an arbitrary linear transformation to the user coordinate sys-
tem.

Such modifications have a variety of uses:

• Changing the user coordinate system conventions for an entire page. For example,

in some applications it might be convenient to express user coordinates in cen-
timeters rather than in 72nds of an inch, or it might be convenient to have the
origin in the center of the page rather than in the lower-left corner.

• Defining each graphical element of a page in its own coordinate system, indepen-
dent of any other element. The program can then position, orient, and scale
each element to the desired location on the page by temporarily modifying the
user coordinate system. This allows the description of an element to be de-
coupled from its placement on the page.

Example 4.1 may aid in understanding the second type of modification. Com-

ments explain what each operator does.

Example 4.1

/box % Define a procedure to construct a unit-square path in the

(newpath % current user coordinate system, with its lower- left corner at

0 O moveto % the origin.

0 1 lmeto

1 1 lmeto

1 0 lmeto

closepath

clef

186
I CHAPTER 4 Graphics

gsave % Save the current graphics state and create a new one that we

% can modify.

72 72 scale % Modify the current transformation matrix so that everything

% subsequently drawn will be 72 times larger; that is, each unit

% will represent an inch instead of 1/72 inch.

box fill % Draw a unit square with its lower-left corner at the origin and

% fill it with black. Because the unit size is now 1 inch, this box

% is 1 inch on a side.

2 2 translate % Change the transformation matrix again so that the origin is

% displaced 2 inches in from the left and bottom edges of the

% page.

box fill % Draw the box again.This box has its lower-left corner 2 inches

% up from and 2 inches to the right of the lower-left corner of

%the page.

g restore % Restore the saved graphics state. Now we are back to default

% user space.

(0 0) Inches

FIGURE 4.1 The two squares produced by Example 4.1

Figure 4.1 is a reduction of the entire page containing the two squares painted by

Example 4.1, along with scales indicating x and y positions in inches. This shows
how coordinates, such as the ones given to the moveto and lineto graphics opera-

tors, are transformed by the current transformation matrix. By combining trans-

187
I4.3 1 Coordinate Systems and Transformations I

lation, scaling, and rotation, very simple prototype graphics procedures—such as
box in the example—can be used to generate an infinite variety of instances.

4.3.3 Matrix Representation and Manipulation

This section presents a brief introduction to the representation and manipulation

of matrices. Some knowledge of this topic will make the descriptions of the coor-
dinate system and matrix operators in Chapter 8 easier to understand. It is not
essential to understand the details of matrix arithmetic on first reading, but only

to obtain a clear geometrical model of the effects of the various transformations.

A two-dimensional transformation is described mathematically by a 3-by-3
matrix:

a b 0

c d 0

tx ty 1
_

In the PostScript language, this matrix is represented as a six-element array object

[a b c d tx ty]

omitting the matrix elements in the third column, which always have constant
values.

This matrix transforms a coordinate pair (x,y) into another coordinate pair
(x', y') according to the linear equations

X' = ax+ cy+ tx

y' = bx+ dy+ ty

The common transformations are easily described in this matrix notation. Trans-
lation by a specified displacement (tx, ty) is described by the matrix

7

1 0 0

0 1 0

tx ty 1
-

I CHAPTER 4
188

l
Graphics I

Scaling by the factor sx in the horizontal dimension and sy in the vertical dimen-
sion is accomplished by the matrix

Rotation counterclockwise about the origin by an angle e is described by the
matrix

[- cos 0 sin 0 0

—sin 0 cos 0 0

0 0 1 _

Figure 4.2 illustrates the effects of these common transformations.

Translation

r sr e.

Scaling Rotation

FIGURE 4.2 Effects of coordinate transformations

A PostScript program can describe any desired transformation as a sequence of
these operations performed in some order. An important property of the matrix

notation is that a program can concatenate a sequence of operations to form a
single matrix that embodies all of them in combination. That is, transforming
any pair of coordinates by the single concatenated matrix produces the same re-
sult as transforming them by all of the original matrices in sequence. Any linear

189

I
Path Construction I

transformation from user space to device space can be described by a single
transformation matrix, the CTM.

Note: Concatenation is performed by matrix multiplication. The order in which
transformations are concatenated is significant (technically, matrix operations are

associative, but not commutative). The requirement that matrices conform during
multiplication is what leads to the use of 3-by-3 matrices. Otherwise, 2-by-3 matri-
ces would suffice to describe transformations.

The operators translate, scale, and rotate each concatenate the CTM with a
matrix describing the desired transformation, producing a new matrix that com-
bines the original and additional transformations. This matrix is then established
as the new CTM:

newCTM = transformation x originalCTM

It is sometimes necessary to perform the inverse of a transformation—that is, to

find the user space coordinates that correspond to a specific pair of device space
coordinates. PostScript programs explicitly do this only occasionally, but it oc-
curs commonly in the PostScript interpreter itself.

Not all transformations are invertible in the way just described. For example, if a
matrix contains a, b, c, and d elements that are all 0, all user coordinates map to

the same device coordinates and there is no unique inverse transformation. Such
noninvertible transformations are not very useful and generally arise from unin-
tentional operations, such as scaling by O. A noninvertible CTM can sometimes
cause an undefinedresult error to occur during the execution of graphics and
font operators.

4.4 Path Construction

In the PostScript language, paths define shapes, trajectories, and regions of all
sorts. Programs use paths to draw lines, define the shapes of filled areas, and
specify boundaries for clipping other graphics.

A path is composed of straight and curved line segments, which may connect to
one another or may be disconnected. A pair of segments are said to connect only if
they are defined consecutively, with the second segment starting where the first
one ends. Thus the order in which the segments of a path are defined is signifi-

I CHAPTER 4
190

I
Graphics I

cant. Nonconsecutive segments that meet or intersect fortuitously are not consid-

ered to connect.

A path is made up of one or more disconnected subpaths, each comprising a se-

quence of connected segments. The topology of the path is unrestricted: it may be
concave or convex, may contain multiple subpaths representing disjoint areas,
and may intersect itself in arbitrary ways. There is an operator, closepath, that ex-

plicitly connects the end of a subpath back to its starting point; such a subpath is
said to be closed. A subpath that has not been explicitly closed is open.

Paths are represented by data structures internal to the PostScript interpreter. Al-
though a path is not directly accessible as an object, its construction and use are
under program control. A path is constructed by sequential application of one or
more path construction operators. PostScript programs can read out the path or,
more commonly, use it to control the application of one of the painting operators
described in Section 4.5, "Painting."

Note: Because the entire set of points defining a path must exist as data simulta-
neously, there is a limit to the number of segments it may have. Because several paths
may also exist simultaneously (the current path and the clipping path, both discussed
below, as well as any paths saved by the save, gsave, clipsave, g state, and
currentgstate operators), this limit applies to the total amount of storage occupied by
all paths. If a path exhausts the available storage, a limitcheck error occurs.

LanguageLevel I has a fixed limit for path storage that is implementation-
dependent; see Appendix B for more information. In LanguageLevels 2 and 3, there
is no such fixed limit; path storage competes with other uses of memory.

As a practical matter, the limits on path storage are large enough not to impose an
unreasonable restriction. It is important, however, that each distinct element of a
page be constructed as a separate path, painted, and then discarded before con-

structing the next element. Attempting to describe an entire page as a single path is
likely to exceed the path storage limit.

4.4.1 Current Path

The current path is part of the graphics state. The path construction operators
modify the current path, usually by appending to it, and the painting operators
implicitly refer to the current path. The gsave and g restore operators respectively
save and restore the current path, as they do all components of the graphics state.

191
I 4.4 Path Construction

A program begins a new path by invoking the newpath operator. This initializes
the current path to be empty. (Some of the painting operators also reinitialize the
current path at the end of their execution.) The program then builds up the defi-
nition of the path by applying one or more of the operators that add segments to

the current path. These operators may be invoked in any sequence, but the first
one invoked must be moveto.

The trailing endpoint of the segment most recently added is referred to as the
current point. If the current path is empty, the current point is undefined. Most
operators that add a segment to the current path start at the current point. If the
current point is undefined, they generate the error nocurrentpoint.

Following is a list of the most common path construction operators. There are
other, less common ones as well; see Chapter 8 for complete details.

• moveto establishes a new current point without adding a segment to the cur-
rent path, thereby beginning a new subpath.

• lineto adds a straight line segment to the current path, connecting the previous
current point to the new one.

• arc, arcn, arct, and arcto add an arc of a circle to the current path.

• curveto adds a section of a cubic Bézier curve to the current path.

• rmoveto, rlineto, and rcurveto perform the moveto, lineto, and curveto opera-

tions, but specify new points via displacements in user space relative to the cur-
rent point, rather than by absolute coordinates.

• closepath adds a straight line segment connecting the current point to the

starting point of the current subpath (usually the point most recently specified
by moveto), thereby closing the current subpath.

Note: Remember that the path construction operators do not place any marks on the
page; only the painting operators do that. The usual procedure for painting a graph-

ical element on the page is to define that element as a path and then invoke one of the
painting operators. This is repeated for each element on the page.

All of the points used to describe the path are specified in user space. All coordi-
nates are transformed by the CTM into device space at the time the program adds

the point to the current path. Changing the CTM does not affect the coordinates
of existing points in device space.

192
I CHAPTER 4 Graphics I

A path that is to be used more than once in a page description can be defined by a
PostScript procedure that invokes the operators for constructing the path. Each

instance of the path can then be constructed and painted on the page by a three-
step sequence:

1. Modify the CTM, if necessary, by invoking coordinate transformation opera-
tors to locate, orient, and scale the path to the desired place on the page.

2. Call the procedure to construct the path.

3. Invoke a painting operator to mark the path on the page in the desired
manner.

In the common situation that the path description is constant, the
LanguageLevel 2 user path operators (described in Section 4.6, "User Paths") can

be used to combine steps 2 and 3. The entire sequence can be encapsulated by
surrounding it with the operators gsave and g restore. See Example 4.1 on
page 185 for a simple illustration of this technique.

4.4.2 Clipping Path

The graphics state also contains a clipping path that limits the regions of the page
affected by the painting operators. The closed subpaths of this path define the
area that can be painted. Marks falling inside this area will be applied to the page;
those falling outside it will not. (Precisely what is considered to be "inside" a path

is discussed in Section 4.5.2, "Filling.") The clipping path affects current painting
operations only; it has no effect on paths being constructed with the path con-
struction operators listed in Section 4.4.1. When such a path is eventually paint-

ed, the results will be limited only by the clipping path current at that time, and
not by the one in effect when the path was constructed.

In LanguageLevel 3, the graphics state can also contain a subsidiary stack of saved

clipping paths, which are pushed and popped by the clipsave and cliprestore op-
erators. This enables a program to save and restore just the clipping path without
affecting the rest of the graphics state. Because the clipping path stack is an ele-
ment of the graphics state, wholesale replacement of the graphics state by
grestore or setgstate will replace the entire clipping path stack.

-.M1M

193

I

The following operators manage the clipping path:

Painting I

• clip computes a new clipping path from the intersection of the current path
with the existing clipping path.

• clippath replaces the current path with a copy of the current clipping path.

• clipsave (LanguageLevel 3) pushes a copy of the current clipping path onto the
clipping path stack.

• cliprestore (LanguageLevel 3) pops the topmost element off the clipping path
stack and makes it the current clipping path.

4.5 Painting

The painting operators mark graphical shapes on the current page. This section
describes the principal, general-purpose painting operators, stroke and fill. Vari-
ants of these operators combine path construction and painting in a single oper-

ation; see Section 4.6, "User Paths." More specialized operators include shfill,
described in Section 4.9.3, "Shading Patterns"; image, described in Section 4.10,
"Images"; and the glyph and font operators, described in Chapter 5.

The operators and graphics state parameters described here control the abstract
appearance of graphical shapes and are device-independent. Additional, device-

dependent facilities for controlling the rendering of graphics in raster memory
are described in Chapter 7.

4.5.1 Stroking

The stroke operator draws a line along the current path. For each straight or
curved segment in the path, the stroked line is centered on the segment with sides
parallel to the segment. Each of the path's subpaths is treated separately.

The results of the stroke operator depend on the current settings of various
parameters in the graphics state. See Section 4.2, "Graphics State," for further in-
formation on these parameters, and Chapter 8 for detailed descriptions of the
operators that set them.

• The width of the stroked line is determined by the line width parameter (see
setlinewidth).

194
I CHAPTER 4 Graphics I

• The color or pattern of the line is determined by the color parameter (see
setgray, setrgbcolor, sethsbcolor, setcmykcolor, setcolor, and setpattern; the

last three are LanguageLevel 2 operators).

• The line can be drawn either solid or with a program-specified dash pattern,
depending on the dash pattern parameter (see setdash).

• If the subpath is open, the unconnected ends are treated according to the line
cap parameter, which may be butt, rounded, or square (see setlinecap).

• Wherever two consecutive segments are connected, the joint between them is
treated according to the line join parameter, which may be mitered, rounded, or
beveled (see setlinejoin). Mitered joins are also subject to the miter limit

parameter (see setmiterlimit).

Note: Points at which unconnected segments happen to meet or intersect receive no

special treatment. In particular, "closing" a subpath with an explicit lineto rather
than with dosepath may result in a messy corner, because line caps will be applied

instead of a line join.

• The stroke adjustment parameter (LanguageLevel 2) requests that coordinates
and line widths be adjusted automatically to produce strokes of uniform thick-
ness despite rasterization effects (see setstrokeadjust and Section 7.5.2, "Auto-
matic Stroke Adjustment").

4.5.2 Filling

The fill operator uses the current color or pattern to paint the entire region en-

closed by the current path. If the path consists of several disconnected subpaths,
fill paints the insides of all subpaths, considered together. Any subpaths that are
open are implicitly closed before being filled.

For a simple path, it is intuitively clear what region lies inside. However, for a
more complex path—for example, a path that intersects itself or has one subpath
that encloses another—the interpretation of "inside" is not always obvious. The
path machinery uses one of two rules for determining which points lie inside a
path: the nonzero winding number rule and the even-odd rule, both discussed in

detail below.

The nonzero winding number rule is more versatile than the even-odd rule and is
the standard rule the fill operator uses. Similarly, the clip operator uses this rule
to determine the inside of the current clipping path. The even-odd rule is occa-

195

I
Painting l

sionally useful for special effects or for compatibility with other graphics systems.
The eofill and eoclip operators invoke this rule.

Nonzero Winding Number Rule

The nonzero winding number rule determines whether a given point is inside a
path by conceptually drawing a ray from that point to infinity in any direction
and then examining the places where a segment of the path crosses the ray. Start-
ing with a count of 0, the rule adds 1 each time a path segment crosses the ray

from left to right and subtracts 1 each time a segment crosses from right to left.
After counting all the crossings, if the result is 0 then the point is outside the path;

otherwise it is inside.

Note: The method just described does not specify what to do if a path segment coin-
cides with or is tangent to the chosen ray. Since the direction of the ray is arbitrary,
the rule simply chooses a ray that does not encounter such problem intersections.

For simple convex paths, the nonzero winding number rule defines the inside and
outside as one would intuitively expect. The more interesting cases are those in-
volving complex or self-intersecting paths like the ones in Figure 4.3. For a path

consisting of a five-pointed star, drawn with five connected straight line segments
intersecting each other, the rule considers the inside to be the entire area enclosed
by the star, including the pentagon in the center. For a path composed of two
concentric circles, the areas enclosed by both circles are considered to be inside,
provided that both are drawn in the same direction. If the circles are drawn in op-

posite directions, only the "doughnut" shape between them is inside, according to
the rule; the "doughnut hole" is outside.

FIGURE 4.3 Nonzero winding number rule

I CHAPTER 4
196

Graphics

Even-Odd Rule

An alternative to the nonzero winding number rule is the even-odd rule. This rule
determines the "insideness" of a point by drawing a ray from that point in any di-
rection and simply counting the number of path segments that cross the ray, re-
gardless of direction. If this number is odd, the point is inside; if even, the point is
outside. This yields the same results as the nonzero winding number rule for

paths with simple shapes, but produces different results for more complex
shapes.

Figure 4.4 shows the effects of applying the even-odd rule to complex paths. For
the five-pointed star, the rule considers the triangular points to be inside the path,
but not the pentagon in the center. For the two concentric circles, only the

"doughnut" shape between the two circles is considered inside, regardless of the
directions in which the circles are drawn.

4.5.3 Insideness Testing

FIGURE 4.4 Even-odd rule

It is sometimes useful for a program to test whether a point lies inside a path, or

whether a path intersects another path, without actually painting anything. The
LanguageLevel 2 insideness-testing operators can be used for this purpose. They
are useful mainly for interactive applications, where they can assist in hit detec-
tion; however, they have other uses as well.

There are several insideness-testing operators that vary according to how the
paths to be tested are specified. All of the operators return a single boolean result.
What it means for a point to be inside a path is that painting the path (by fill or

I 4.6
197

User Paths I

stroke) would cause the device pixel lying under that point to be marked. The in-
sideness tests disregard the current clipping path.

• infill tests the current path in the graphics state. There are two forms of this op-
erator. One returns true if painting the current path with the fill operator
would result in marking the device pixel corresponding to a specific point in
user space. The second tests whether any pixels within a specified aperture
would be marked. The aperture is specified by a user path supplied as an oper-
and (see Section 4.6, "User Paths").

• instroke is similar to infill, but it tests pixels that would be marked by applying
the stroke operator to the current path, using the current settings of the stroke-
related parameters in the graphics state (line width, dash pattern, and so forth).

• inufill and inustroke are similar to infill and instroke, but they test a user path

supplied as a separate operand, rather than the current path in the graphics
state.

• ineofill and inueofi II are similar to infill and inufill, but they use the even-odd
rule instead of the nonzero winding number rule for insideness testing; see

Section 4.5.2, "Filling," for more information.

4.6 User Paths

A user path is a procedure that is a completely self-contained description of a path
in user space. It consists entirely of path construction operators and their coordi-
nate operands expressed as literal numbers. User paths are a LanguageLevel 2 fea-

ture.

Special user path painting operators, such as ustroke and ufill, combine the ex-
ecution of a user path description with painting operations such as stroking or
filling the resulting path. Although these operators can be fully expressed in terms
of other path construction and painting operators, they offer a number of advan-
tages in efficiency and convenience:

• They closely match the needs of many application programs.

• Because a user path consists solely of path construction operators and numeric
operands, rather than arbitrary computations, it is entirely self-contained: its
behavior is guaranteed not to depend on an unpredictable execution environ-

ment.

I CHAPTER 4
198

I
Graphics l

• Every user path carries information about its own bounding box, ensuring that
its coordinates will fall within predictable bounds.

• Most of the user path painting operators have no effect on the graphics state.
The absence of side effects is a significant reason for the efficiency of the opera-
tions. There is no need to build up an explicit current path only to discard it
after one use. Although the operators behave as if the path were built up, paint-
ed, and discarded in the usual way, their actual implementation is optimized to
avoid unnecessary work.

• Because a user path is represented as a self-contained procedure object, the
PostScript interpreter can save its output in a cache. This eliminates redundant
interpretation of paths that are used repeatedly.

As a result of all these factors, interpreting a user path may be much more effi-
cient than executing an arbitrary PostScript procedure.

4.6.1 User Path Construction

A user path is an array or packed array object consisting of only the following op-
erators and their operands:

ucache

/I, Ily ur, ury setbbox

x y moveto

dx dy rmoveto

x y lineto

dx dy rlineto

X1 Yi)(2 Y2)(3 y3 curveto

dxi dyi dx2 dy2 dx3 dy3 rcurveto

x y r anglei angle2 arc

x y r anglei angle2 arcn

/(1 Yi)(2 Y2 r arct

closepath

In addition to the special operators ucache and setbbox, which are used only in

constructing user paths, this list includes all standard PostScript operators that
append to the current path, with two exceptions: arcto is not allowed because it

would push results onto the operand stack, and charpath is not allowed because
the resulting user path would depend on the current font and so would not be
self-contained.

199
4.6 User Paths I

Note: The operators in a user path may be represented either as name objects or as
operator objects (such as those associated with the operator names in systemdict).
The latter might result, for example, from applying the bind operator to the user path
or to a procedure containing it. Either form of operator designation is acceptable; no
advantage is gained by using one in favor of the other.

The only operands permitted in a user path are literal integers and real numbers.
The correct number of operands must be supplied to each operator. The user
path must be structured as follows:

1. The optional ucache operator places the user path in a special cache, speeding
up execution for paths that a program uses frequently. If present, ucache must
be the first operator invoked in the user path. See Section 4.6.3, "User Path
Cache."

2. The next operator invoked must be setbbox, which establishes a bounding box
in user space enclosing the entire path. Every user path must include a call to
setbbox.

3. The remainder of the user path must consist entirely of path construction op-
erators and their operands. The path is assumed to be empty initially, so the
first operator after setbbox must be an absolute positioning operator (moveto,
arc, or arch).

All coordinates specified as operands must fall within the bounds specified by
setbbox, or a rangecheck error will occur when the path definition is executed.
Any other deviation from the rules above will result in a typecheck error.

The user path painting operators interpret a user path as if systemdict were the
current dictionary. This guarantees that all path construction operators invoked
within the path definition will have their standard meanings. To ensure that the
definition is self-contained and its meaning independent of its execution envi-
ronment, aliases are prohibited within a user path definition: it is illegal to use
names other than the standard path construction operator names listed above.

To illustrate the construction and use of a user path, Example 4.2 defines a path
and paints its interior with the current color.

I CHAPTER 4
200

1
Graphics

Example 4.2

ucache

100 200 400 500 setbbox

150 200 moveto

250 200 400 390 400 460 curveto

400 480 350 500 250 500 curveto

100 400 lineto

closepath

1 ufill

4.6.2 Encoded User Paths

%This is optional

%This is required

An encoded user path is a very compact representation of a user path. It is an array
consisting of two string objects or an array and a string, representing the oper-
ands and operators of an equivalent user path definition in a compact binary en-
coding. Encoded user paths are not actually "executed" directly in the same sense
as an ordinary PostScript procedure. Rather, user path painting operators such as
ufill interpret the encoded data structure and perform the operations it encodes.

Note: The form of operator encoding used in encoded user paths is unrelated to the
alternative external encodings of the PostScript language described in Section 3.14,
"Binary Encoding Details."

The elements of an encoded user path are:

• A data string or data array containing numeric operands. If a string, it is inter-
preted as an encoded number string according to the representation described
in Section 3.14.5, "Encoded Number Strings"; if an array, its elements must all
be numbers and are simply used in sequence.

• An operator string containing a sequence of encoded path construction opera-
tors, one operation code (opcode) per character. Table 4.3 shows the allowed
opcode values.

This two-part organization is for the convenience of application programs that

generate encoded user paths. In particular, operands always fall on natural
addressing boundaries. All characters in both the data and operator strings are
interpreted as binary numbers, rather than as ASCII character codes.

201
I 4.6

I
User Paths I

TABLE 4.3 Operation codes for encoded user paths

OPCODE OPERATOR OPCODE OPERATOR

0

i

2

3

4

5

32 <n ≤ 255

setbbox 6 rcurveto

moveto 7 arc

rmoveto 8 arcn

lineto 9 arct

rlineto 10 closepath

curveto 11 ucache

repetition count: repeat

next code n — 32 times

Associated with each opcode in the operator string are zero or more operands in

the data string or data array. The order of the operands is the same as in an ordi-
nary user path; for example, the lineto operator (opcode 3) consumes an x and a
y operand from the data sequence.

Note: If the encoded user path does not conform to the rules described above, a
typecheck error will occur when the path is interpreted. Possible errors include in-
valid opcodes in the operator string or premature end of the data sequence.

Example 4.3 shows an encoded version of the user path from Example 4.2, speci-

fying its operands as an ordinary data array encoded in ASCII. Example 4.4
shows the same user path with the operands given as an encoded number string.

Example 4.3

f f 100 200 400 500

150 200

250 200 400 390 400 460

400 480 350 500 250 500

100 400

I

< OB 00 01 22 05 03 OA >

J ufill

202
I CHAPTER 4

I
Graphics I

Example 4.4

1 < 95200014

0064 0008 0190 01F4

0096 0008

00FA 0008 0190 0186 0190 01CC

0190 01E0 015E 01F4 00FA 01F4

0064 0190

>

< OB 00 01 22 05 03 OA >

}ufill

Example 4.4 illustrates how encoded user paths are likely to be used. Although it
does not appear to be more compact than Example 4.3 in its ASCII representa-
tion, it occupies less space in virtual memory and executes considerably faster.
For clarity of exposition, the example shows the operand as a hexadecimal literal
string; an ASCII base-85 string literal or a binary string token would be more
compact.

4.6.3 User Path Cache

Some PostScript programs define paths that are repeated many times. To opti-
mize the interpretation of such paths, the PostScript language provides a facility
called the user path cache. This cache, analogous to the font cache, retains the re-
sults from previously interpreted user path definitions. When the PostScript
interpreter encounters a user path that is already in the cache, it substitutes the
cached results instead of reinterpreting the path definition.

There is a nontrivial cost associated with caching a user path: extra computation
is required and existing paths may be displaced from the cache. Because most
user paths are used once and immediately thrown away, it does not make sense to
place every user path in the cache. Instead, the application program must explic-
itly identify which user paths are to be cached. It does so by invoking the ucache
operator as the first operation in a user path definition, before setbbox, as shown
in Example 4.5.

203
I -1.6 User Pathl

Example 4.5

/Circle1

(ucache

-1 -1 1 1 setbbox

0 0 1 0 360 arc

} cvlit def

Circle1 ufill

The ucache operator notifies the PostScript interpreter that the enclosing user
path should be placed in the cache if it is not already there, or retrieved from the
cache if it is. (Invoking ucache outside a user path has no effect.) This cache man-
agement is not performed directly by ucache; rather, it is performed by the paint-
ing operator applied to the user path (ufill in Example 4.5). This is because the
results retained in the cache differ according to what painting operation is per-
formed. User path painting operators produce the same effects on the current
page whether the cache is accessed or not.

Caching is based on the value of a user path object. That is, two user paths are
considered the same for caching purposes if all of their corresponding elements
are equal, even if the objects themselves are not. A user path placed in the cache
need not be explicitly retained in virtual memory. An equivalent user path ap-
pearing literally later in the program can take advantage of the cached informa-
tion. Of course, if it is known that a given user path will be used many times,
defining it explicitly in VM avoids creating it multiple times.

User path caching, like font caching, is effective across translations of the user co-
ordinate system, but not across other transformations, such as scaling or rota-
tion. In other words, multiple instances of a given user path painted at different
places on the page will take advantage of the user path cache when the current
transformation matrix has been altered only by translate. If the CTM has been al-
tered by scale or rotate, the instances will be treated as if they were described by
different user paths.

Two other features of Example 4.5 are important to note:

• The user path object is explicitly saved for later use (as the value of Circle1 in

this example). This is done in anticipation of painting the same path multiple
times.

I CHAPTER 4
204

i
Graphics I

• The cvlit operator is applied to the user path object to remove its executable at-
tribute. This ensures that the subsequent reference to Circlel pushes the object
on the operand stack rather than inappropriately executing it as a procedure. It
is unnecessary to do this if the user path is to be consumed immediately by a
user path painting operator and not saved for later use.

Note: It is necessary to build the user path as an executable array with { and }, rather
than as a literal array with [and], so that the user path construction operators are
not executed while the array is being built. Executable arrays have deferred execu-
tion.

4.6.4 User Path Operators

There are three categories of user path operator:

• User path painting operators such as ustroke, ufill, and ueofill, which combine
interpretation of a user path with a standard painting operation (stroke or fill)

• Some of the insideness-testing operators (see Section 4.5.3, "Insideness Test-
¡mg")

• Miscellaneous operators involving user paths, such as uappend, upath, and
ustrokepath

The userpath operand to any of these operators is one of the following:

• For an ordinary user path, an array (not necessarily executable) whose length is
at least 5.

• For an encoded user path, an array of two elements. The first element is either
an array whose elements are all numbers or a string that can be interpreted as
an encoded number string (see Section 3.14.5, "Encoded Number Strings").
The second element is a string that encodes a sequence of operators, as de-
scribed in Table 4.3 on page 201.

In either case, the value of the object must conform to the rules for constructing
user paths, as detailed in preceding sections. If the user path is malformed, a
typecheck error will occur.

The user path painting operators ustroke, ufill, and ueofill interpret a user path as
if it were an ordinary PostScript procedure being executed with systemdict as the
current dictionary; they then perform the corresponding standard painting oper-

I 4.6
205

User IIth›

ation (stroke, fill, or eofill). The user path operators implicitly invoke newpath

before interpreting the user path, and enclose the entire operation with gsave
and grestore. The overall effect is to define a path and paint it, leaving no side ef-
fects in the graphics state or anywhere else except in raster memory.

Several of the operators take an optional matrix as their final operand. This is a
six-element array of numbers describing a transformation matrix. A matrix is
distinguished from a user path (which is also an array) by the number and types
of its elements.

There is no user path clipping operator. Because the whole purpose of the clip-
ping operation is to alter the current clipping path, there is no way to avoid build-
ing the path. The best way to clip with a user path is

newpathuserpath uappend clip newpath

Under favorable conditions, this operation can still take advantage of informa-
tion in the user path cache.

Note: The uappend operator and the user path painting operators perform a tempo-
rary adjustment to the current transformation matrix as part of their execution,
rounding the tx and ty components of the CTM to the nearest integer values. This en-

sures that scan conversion of the user path produces uniform results when it is placed
at different positions on the page through translation. This adjustment is especially
important if the user path is cached. The adjustment is not ordinarily visible to a
PostScript program, and is not mentioned in the descriptions of the individual oper-
ators.

4.6.5 Rectangles

Because rectangles are used very frequently, it is useful to have a few operators to
paint them directly as a convenience to application programs. Also, knowing that
the figure will be a rectangle allows execution to be significantly optimized. The
rectangle operators are similar to the user path painting operators in that they
combine path construction with painting, but their operands are considerably
simpler in form.

I CHAPTER 4
206

1
Graphics I

A rectangle is defined in the user coordinate system, just as if it were constructed
as an ordinary path. The LanguageLevel 2 rectangle operators rectfi I I , rectstroke,
and rectclip accept their operands in any of three different forms:

• Four numbers x, y, width, and height, describing a single rectangle. The rectan-
gle's sides are parallel to the axes in user space. It has corners located at coordi-
nates (x, y), (x + width, y), (x + width, y + height), and (x, y + height). Note that

width and height can be negative.

• An arbitrarily long sequence of numbers represented as an array.

• An arbitrarily long sequence of numbers represented as an encoded number
string, as described in Section 3.14.5, "Encoded Number Strings."

The sequence in the latter two operand forms must contain a multiple of four
numbers. Each group of four consecutive numbers is interpreted as the x, y,
width, and height values defining a single rectangle. The effect produced is equiv-

alent to specifying all the rectangles as separate subpaths of a single combined
path, which is then operated on by a single stroke, fill, or clip operator.

The PostScript interpreter draws all rectangles in a counterclockwise direction in
user space, regardless of the signs of the width and height operands. This ensures
that when multiple rectangles overlap, all of their interiors are considered to be
inside the path according to the nonzero winding number rule.

4.7 Forms

A form is a self-contained description of any arbitrary graphics, text, or sampled
images that are to be painted multiple times, either on several pages or at several
locations on the same page. The appearance of a form is described by a PostScript
procedure that invokes graphics operators. Language support for forms is a
LanguageLevel 2 feature.

What distinguishes a form from an ordinary procedure is that it is self-contained
and behaves according to certain rules. By defining a form, a program declares
that each execution of the form will produce the same output, which depends
only on the graphics state at the time the form is executed. The form's definition
does not refer to variable information in virtual memory, and its execution has
no side effects in VM.

207

I
Forms I

These rules permit the PostScript interpreter to save the graphical output of the
form in a cache. Later, when the same form is used again, the interpreter substi-
tutes the saved output instead of reexecuting the form's definition. This can sig-
nificantly improve performance when the form is used many times.

There are various uses for forms:

• As its name suggests, a form can serve as the template for an entire page. For
example, a program that prints filled-in tax forms can first paint the fixed tem-
plate as a form, then paint the variable information on top of it.

• A form can also be any graphical element that is to be used repeatedly. For ex-
ample, in output from computer-aided design systems, it is common for cer-
tain standard components to appear many times. A company's logo can be
treated as a form.

4.7.1 Using Forms

The use of forms requires two steps:

1. Describe the appearance of the form. Create a form dictionary containing de-

scriptive information about the form. A crucial element of the dictionary is
the PaintProc procedure, a PostScript procedure that can be executed to paint
the form.

2. Invoke the form. Invoke the execform operator with the form dictionary as the
operand. Before doing so, a program should set appropriate parameters in the
graphics state; in particular, it should alter the current transformation matrix
to control the position, size, and orientation of the form in user space.

Every form dictionary must contain a FormType entry, which identifies the par-

ticular form type that the dictionary describes and determines the format and
meaning of its remaining entries. At the time of publication, only one form type,
type 1, has been defined. Table 4.4 shows the contents of the form dictionary for
this form type. (The dictionary can also contain any additional entries that its
PaintProc procedure may require.)

208
I CHAPTER 4 Graphics I

TABLE 4.4 Entries in a type 1 form dictionary

KEY TYPE VALUE

FormType integer (Required) A code identifying the form type that this dictionary describes.
The only valid value defined at the time of publication is 1.

XUID array (Optional) An extended unique ID that uniquely identifies the form (see
Section 5.6.2, "Extended Unique ID Numbers"). The presence of an XUID

entry in a form dictionary enables the PostScript interpreter to save cached
output from the form for later use, even when the form dictionary is loaded

into virtual memory multiple times (for instance, by different jobs). To en-
sure correct behavior, XUID values must be assigned from a central registry.

This is particularly appropriate for forms treated as named resources. Forms

that are created dynamically by an application program should not contain
XUID entries.

BBox array (Required) An array of four numbers in the form coordinate system, giving
the coordinates of the left, bottom, right, and top edges, respectively, of the
form's bounding box. These boundaries are used to clip the form and to de-

termine its size for caching.

Matrix matrix (Required) A transformation matrix that maps the form's coordinate space
into user space. This matrix is concatenated with the current transformation
matrix before the PaintProc procedure is called.

PaintProc procedure (Required) A PostScript procedure for painting the form.

Implementation any An additional entry inserted in the dictionary by the execform operator, con-
taining information used by the interpreter to support form caching. The
type and value of this entry are implementation-dependent.

The form is defined in its own form coordinate system, defined by concatenating

the matrix specified by the form dictionary's Matrix entry with the current trans-

formation matrix each time the execform operator is executed. The form diction-

ary's BBox value is interpreted in the form coordinate system, and the PaintProc

procedure is executed within that coordinate system.

The execform operator first checks whether the form dictionary has previously

been used as an operand to execform. If not, it verifies that the dictionary con-

tains the required elements and makes the dictionary read-only. It then paints the

form, either by invoking the form's PaintProc procedure or by substituting

cached output produced by a previous execution of the same form.

209
Forms I

Whenever execform needs to execute the form definition, it does the following:

1. Invokes gsave

2. Concatenates the matrix from the form dictionary's Matrix entry with the
CTM

3. Clips according to the BBox entry

4. Invokes newpath

5. Pushes the form dictionary on the operand stack

6. Executes the form's PaintProc procedure

7. Invokes grestore

The PaintProc procedure is expected to consume its dictionary operand and to
use the information at hand to paint the form. It must obey certain guidelines to
avoid disrupting the environment in which it is executed:

• It should not invoke any of the operators listed in Appendix G as unsuitable for
use in encapsulated PostScript files.

• It should not invoke showpage, copypage, or any device setup operator.

• Except for removing its dictionary operand, it should leave the stacks un-
changed.

• It should have no side effects beyond painting the form. It should not alter ob-

jects in virtual memory or anywhere else. Because of the effects of caching, the
PaintProc procedure is called at unpredictable times and in unpredictable envi-
ronments. It should depend only on information in the form dictionary and
should produce the same effect every time it is called.

Form caching is most effective when the graphics state does not change between

successive invocations of exec-form for a given form. Changes to the translation
components of the CTM usually do not influence caching behavior; other chang-

es may require the interpreter to reexecute the PaintProc procedure.

I CHAPTER 4
210

Graphics I

4.8 Color Spaces

The PostScript language includes powerful facilities for specifying the colors of
graphical objects to be marked on the current page. The color facilities are divid-
ed into two parts:

• Color specification. A PostScript program can specify abstract colors in a device-
independent way. Colors can be described in any of a variety of color systems,
or color spaces. Some color spaces are related to device color representation
(grayscale, RGB, CMYK), others to human visual perception (CIE-based). Cer-
tain special features are also modeled as color spaces: patterns, color mapping,
separations, and high-fidelity and multitone color.

• Color rendering. The PostScript interpreter reproduces colors on the raster out-
put device by a multiple-step process that includes color conversion, gamma
correction, halftoning, and scan conversion. Certain aspects of this process are
under PostScript language control. However, unlike the facilities for color spec-
ification, the color rendering facilities are device-dependent and ordinarily
should not be accessed from a page description.

This section describes the color specification facilities of the PostScript language.
It covers everything that most PostScript programs need in order to specify col-
ors. Chapter 7 describes the facilities for controlling color rendering; a program
should use those facilities only to configure or calibrate an output device or to
achieve special device-dependent effects.

Figures 4.5 and 4.6 on pages 212 and 213 illustrate the organization of the Post-
Script language features for dealing with color, showing the division between
(device-independent) color specification and (device-dependent) color render-
ing.

4.8.1 Types of Color Space

As described in Section 4.5, "Painting," marks placed on the page by operators
such as fill and stroke have a color that is determined by the current color parame-

ter of the graphics state. A color value consists of one or more color components,
which are usually numbers. For example, a gray level can be specified by a single
number ranging from 0.0 (black) to 1.0 (white). Full color values can be specified
in any of several ways; a common method uses three numbers to specify red,
green, and blue components.

I 4.8
211

Color Spaces I

In LanguageLevels 2 and 3, color values are interpreted according to the current
color space, another parameter of the graphics state. A PostScript program first
selects a color space by invoking the setcolorspace operator. It then selects color
values within that color space with the setcolor operator. There are also
convenience operators— setgray, setrgbcolor, sethsbcolor, setcmykcolor, and
setpattern—that select both a color space and a color value in a single step.

In LanguageLevel 1, this distinction between color spaces and color values is not
explicit, and the set of color spaces is limited. Colors can be specified only by

setgray, setrgbcolor, sethsbcolor, and (in some implementations) setcmykcolor.
However, in those color spaces that are supported, the color values produce con-
sistent results from one LanguageLevel to another.

The image and colorimage operators, introduced in Section 4.10, "Images," en-
able sampled images to be painted on the current page. Each individual sample in
an image is a color value consisting of one or more components to be interpreted
in some color space. Since the color values come from the image itself, the cur-
rent color in the graphics state is not used.

Whether color values originate from the graphics state or from a sampled image,
all later stages of color processing treat them the same way. The following sections

describe the semantics of color values that are specified as operands to the
setcolor operator, but the same semantics also apply to color values originating as
image samples.

Color spaces can be classified into color space families. Spaces within a family

share the same general characteristics; they are distinguished by parameter values
supplied at the time the space is specified. The families, in turn, fall into three cat-
egories:

• Device color spaces directly specify colors or shades of gray that the output de-
vice is to produce. They provide a variety of color specification methods,

including gray level, RGB (red-green-blue), HSB (hue-saturation-brightness),
and CMYK (cyan-magenta-yellow-black), corresponding to the color space
families DeviceGray, DeviceRGB, and DeviceCMYK. (HSB is merely an alternate

convention for specifying RGB colors.) Since each of these families consists of
just a single color space with no parameters, they are sometimes loosely re-
ferred to as the DeviceGray, DeviceRGB, and DeviceCMYK color spaces.

I CHAPTER 4
212

Graphics I

CIE-
based
color
spaces

Device
color •
spaces

Special
color
spaces

Color spaces

CIEBasedABC

CIEBasedA

CIEBasedDEF

CIEBasedDEFG

DeviceRGB

DeviceCMYK

DeviceGray

Separation

DeviceN

Indexed

Pattern

Sources of
color values Color values

A, B, C

setcolor
image

A

setcolor
image

D, E, F

setcolor
image

D, F, G

setcolor
image

R, G, B

Conversion

to internal
X, Y, Z
values

X, Y,Z

UseCIEColor
true

Another
(CIE-based)
color space

setcolor
setrgbcolor
image
colorimage H, S, B

sethsbcolor

C, M, Y, K

R,G,B

HSB to RGB
conversion

UseCIEColor
true

Another
(CIE-based)
color space

setcolor
setcmykcolor
image
colorimage

setcolor
setgray
image

gray

tint

UseCIEColor
true

Another
(CIE-based)
color space

Alternative
color

transform

Another
color space

setcolor
image

components

Alternative
color

transform

setcolor
image

index

setcolor
image

pattern

setcolor
setpattern

Another
color space

Table
lookup

Pattern
dictionary

 Another
color space

Another
color space

FIGURE 4.5 Color specification

I 4.8
213

I
Color Spaces I

X, Y, Z

R, G, B

CIE-based
color

rendering
dictionary

setcolorrendenng

CM, Y, K

gray

tint

R, G, 8 Device color values

C, M, Y, K (depending on
contents of rendering

gray dictionary)

Conversion
from input
device color
space to
device's

process color
model

Component(s)
of device's
process

color model

setundercolorremoval
setblackgeneration

n
components

Transfer
functions

(per
component)

Halftones
(per

component)

sethalftone sethalftone
settransfer setscreen
setcolortransfer setcolorscreen

Device's
process

colorant(s)

Any single
device
colorant

Any n device
colorants

FIGURE 4.6 Color rendering

I CHAPTER 4
214

I
Graphics I

• CIE-based color spaces are based on an international standard for color specifi-
cation created by the Commission Internationale de l'Éclairage (International

Commission on Illumination). These spaces allow colors to be specified in a
way that is independent of the characteristics of any particular output device.
Color space families in this category include CIEBasedABC, CIEBasedA,
CIEBasedDEF, and CIEBasedDEFG. Individual color spaces within these families
are specified by means of dictionaries containing the parameter values needed

to define the space.

• Special color spaces add features or properties to an underlying color space.
They include facilities for patterns, color mapping, separations, and high-
fidelity and multitone color. The corresponding color space families are
Pattern, Indexed, Separation, and DeviceN. Individual color spaces within

these families are specified by means of additional parameters.

Whatever type of color space a PostScript program uses to specify a color, the pro-
cess of rendering that color on a particular output device is under separate con-

trol. Color rendering is discussed in Chapter 7.

The following operators control the selection of color spaces and color values:

• setcolorspace sets the color space parameter in the graphics state; currentcolor-

space returns the current color space parameter.

The operand to setcolorspace is an array object containing as its first element a

name object identifying the desired color space. The remaining array elements,
if any, are parameters that further characterize the color space; their number
and types vary according to the particular color space selected. For color spaces

that do not require parameters, the operand to setcolorspace can simply be the
color space name itself instead of an array; currentcolorspa ce always returns an

array.

The following color space families are standard in LanguageLevel 2:

DeviceGray CIEBasedABC Pattern

DeviceRGB CIEBasedA Indexed

DeviceCMYK Separation

LanguageLevel 3 supports the following additional families:

CIEBasedDEF

CIEBasedDEFG

DeviceN

I 4.8
215

Color Spaces I

• setcolor sets the current color parameter in the graphics state; currentcolor re-
turns the current color parameter. Depending on the color space, setcolor

requires one or more operands, each specifying one component of the color
value.

• setgray, setrgbcolor, sethsbcolor, setcmykcolor, and setpattern set the color
space implicitly and the current color value as specified by the operands.

currentgray, currentrgbcolor, currenthsbcolor, and currentcmykcolor return

the current color according to an implicit color space; in certain limited cases,
the latter operators also perform conversions if the current color space differs
from the implicit one.

Note: Color specification operators such as setcolorspace, setcolor, and setpattern

sometimes install composite objects, such as arrays or dictionaries, as parameters in

the graphics state. To ensure predictable behavior, a PostScript program should
thereafter treat all such objects as if they were read-only.

In certain circumstances, it is illegal to invoke operators that specify colors or
other color- related parameters in the graphics state. This restriction occurs when
defining graphical figures whose colors are to be specified separately each time
they are used. Specifically, the restriction applies:

• After execution of setcachedevice or setcachedevice2 in a BuildGlyph,

BuildChar, or CharStrings procedure of a font dictionary (see Sections 5.7,

"Type 3 Fonts"; "Type 1 CIDFonts" on page 376; and 5.9.3, "Replacing or Add-
ing Individual Glyphs")

• In the PaintProc procedure of an uncolored tiling pattern (see Section 4.9,
"Patterns")

In these circumstances, invoking any of the following operators will cause an
undefined error:

colorimage setcolorscreen setpattern

image setcolorspace setrgbcolor

setblackgeneration setcolortransfer setscreen

setcmykcolor setg ray settransfer

setcolor sethalftone setundercolorremoval

setcolorrendering sethsbcolor shfill

I CHAPTER 4
216

I
Graphics I

Note that the imagemask operator is not restricted. This is because it does not
specify colors, but rather designates places where the current color is to be paint-

ed.

4.8.2 Device Color Spaces

The device color spaces enable a page description to specify color values that are
directly related to their representation on an output device. Color values in these
spaces map directly—or via simple conversions—to the application of device col-
orants, such as quantities of ink or intensities of display phosphors. This enables

a PostScript program to control colors precisely for a particular device, but the re-
sults may not be consistent between different devices.

Output devices form colors either by adding light sources together or by sub-
tracting light from an illuminating source. Computer displays and film recorders
typically add colors, while printing inks typically subtract them. These two ways
of forming colors give rise to two complementary forms of color specification:
the additive RGB specification and the subtractive CMYK specification. The cor-
responding device color spaces are as follows:

• DeviceRGB controls the intensities of red, green, and blue light, the three addi-
tive primary colors used in displays. Colors in this space can alternatively be
specified by hue, saturation, and brightness values.

• DeviceCMYK controls the concentrations of cyan, magenta, yellow, and black
inks, the four subtractive process colors used in printing.

• DeviceGray controls the intensity of achromatic light, on a scale from black to
white.

Although the notion of explicit color spaces is a LanguageLevel 2 feature, the op-
erators for specifying colors in the DeviceRGB and DeviceGray color spaces—
setrgbcolor, sethsbcolor, and setgray—are available in all LanguageLevels. The

setcmykcolor operator is also supported by some (but not all) LanguageLevel 1
implementations.

I 4.8
217

I
Color Spaces I

DeviceRGB Color Space

Colors in the DeviceRGB color space can be specified according to either of two
color models: red-green-blue (RGB) and hue-saturation-brightness (HSB). Each of
these models can specify any reproducible color with three numeric parameters,
but the numbers have different meanings in the two models. Example 4.6 shows
different ways to select the DeviceRGB color space and a specific color within that
space.

Example 4.6

[/DeviceRGB] setcolorspace red green blue setcolor

/DeviceRGB setcolorspace red green blue setcolor

red green blue setrgbcolor

hue saturation brightness sethsbcolor

In the RGB model, a color is described as a combination of the three additive pri-

mary colors (red, green, and blue) in particular concentrations. The intensity of
each primary color is specified by a number in the range 0.0 to 1.0, where 0.0 de-

notes no contribution at all and 1.0 denotes maximum intensity of that color.

If all three primary colors have equal intensity, the perceived result theoretically is
a pure gray on the scale from black to white. If the intensities are not all equal, the
result is some color other than a pure gray.

In the HSB model, a color is described by a combination of three parameters
called hue, saturation, and brightness:

• Hue corresponds to the property that is intuitively meant by the term "color,"
such as yellow or blue-green.

• Saturation indicates how pure the color is. A saturation of 0.0 means that none
of the color's hue is visible; the result is a shade of gray. A saturation of 1.0 de-
notes a pure color, consisting entirely of the specified hue. Intermediate values
represent a mixture between pure hue and pure gray.

• Brightness determines how light the color determined by the hue and satura-
tion will be. A brightness of 0.0 is always black. A brightness of 1.0 denotes the
lightest color that the given combination of hue and saturation can allow. (For
example, pure red can never be as light as the brightest white, because it is
missing two components.)

I CHAPTER 4
218

Graphics I

HSB colors are often illustrated as arranged around a color wheel. The hue param-
eter determines the angular position of a color on this wheel, with 0.0 corre-
sponding to pure red, 1/3 (0.333) to pure green, 2/3 (0.666) to pure blue, and 1.0
to red again. The saturation parameter denotes the color's radial position be-
tween the center of the wheel (saturation = 0.0) and the edge (saturation = 1.0).
The brightness parameter controls the brightness of the colors displayed on the
wheel itself.

Note: HSB is not a color space in its own right. It is simply an alternative convention

for specifying color values in the DeviceRGB color space.

As shown in Example 4.6, the setcolorspace and setcolor operators select the col-
or space and color value separately; setrgbcolor and sethsbcolor set them in
combination. When the specified color space is DeviceRGB, setcolorspace sets the

red, green, and blue components of the current color to 0.0.

When DeviceRGB is the current color space, both currentcolor and currentrgb-
color return the current color value in the form of its red, green, and blue compo-

nents, regardless of how it was originally specified. currenthsbcolor returns the
current color value as a hue, saturation, and brightness, converting among color
models as necessary. When one of the other device color spaces (DeviceCMYK or
DeviceGray) is current, currentcolor returns the current color value expressed in
that space; currentrgbcolor and currenthsbcolor convert it to DeviceRGB. (The
conversions are described in Section 7.2, "Conversions among Device Color
Spaces.") These operators cannot convert from CIE-based or special color spaces.

Note: Of the operators just described, only setrgbcolor, sethsbcolor, currentrgbcolor,
and currenthsbcolor are supported in LanguageLevel 1.

DeviceCMYK Color Space

The DeviceCMYK color space allows colors to be specified according to the sub-
tractive CMYK model typical of printers and other paper-based output devices.
Each color component in a DeviceCMYK color value specifies the amount of light
that the corresponding ink or other colorant absorbs. In theory, each of the three
standard process colors used in printing (cyan, magenta, and yellow) absorbs one
of the additive primary colors (red, green, and blue, respectively). Black, a fourth
standard process color, absorbs all additive primaries in equal amounts. Each of
the four components in a CMYK color specification is a number between 0.0 and

l 4.8
219

1
Color Spaces I

1.0, where 0.0 represents no ink (that is, absorbs no light) and 1.0 represents the
maximum quantity of ink (absorbs all the light it can). Note that the sense of
these numbers is opposite to that of RGB color components.

Example 4.7 shows different ways to select the DeviceCMYK color space and a
specific color within that space.

Example 4.7

[/DeviceCMYK] setcolorspace cyan magenta yellow black setcolor

/DeviceCMYK setcolorspace cyan magenta yellow black setcolor

cyan magenta yellow black setcmykcolor

The setcolorspace and setcolor operators select the color space and color value
separately; setcmykcolor sets them in combination. When the specified color
space is DeviceCMYK, setcolorspace sets the cyan, magenta, and yellow compo-
nents of the current color to 0.0 and the black component to 1.0.

When DeviceCMYK is the current color space, both currentcolor and current-
cmykcolor return the current color value in the form of its cyan, magenta, yellow,
and black components. When one of the other device color spaces (DeviceRGB or
DeviceGray) is current, currentcolor returns the current color value expressed in
that space; currentcmykcolor converts it to DeviceCMYK. (The conversions are
described in Section 7.2, "Conversions among Device Color Spaces.") This opera-
tor cannot convert from CIE-based or special color spaces.

Note: The setcmykcolor and currentcmykcolor operators are supported by some, but
not all, LanguageLevel 1 implementations.

DeviceGray Color Space

Black, white, and intermediate shades of gray are special cases of full color. A
grayscale value is represented by a single number in the range 0.0 to 1.0, where
0.0 corresponds to black, 1.0 to white, and intermediate values to different gray
levels. Example 4.8 shows different ways to select the DeviceGray color space and
a specific gray level within that space.

I CHAPTER 4
220

I
Graphics I

Example 4.8

[/DeviceGray] setcolorspace gray setcolor
/DeviceGray setcolorspace gray setcolor
gray setg ray

The setcolorspace and setcolor operators select the color space and color value
separately; setgray sets them in combination. When the specified color space is

DeviceGray, setcolorspace sets the current color to 0.0.

When DeviceGray is the current color space, both currentcolor and currentgray

return the current color value in the form of a single gray component. When one
of the other device color spaces (DeviceRGB or DeviceCMYK) is current,
currentcolor returns the current color value expressed in that space; currentgray
converts it to DeviceGray. (The conversions are described in Section 7.2, "Con-

versions among Device Color Spaces.") This operator cannot convert from CIE-
based or special color spaces.

Note: The setgray and currentgray operators are supported by all PostScript imple-
mentations.

4.8.3 CIE-Based Color Spaces

CIE-based color is defined relative to an international standard used in the
graphic arts, television, and printing industries. It enables a page description to

specify color values in a way that is related to human visual perception. The goal
of this standard is for a given CIE-based color specification to produce consistent

results on different output devices, up to the limitations of each device.

Note: The detailed semantics of the CIE colorimetric system and the theory on which

it is based are beyond the scope of this book. See the Bibliography for sources of fur-
ther information.

The semantics of the CIE-based color spaces are defined in terms of the relation-

ship between the space's components and the tristimulus values X, Y, and Z of the
CIE 1931 XYZ space. LanguageLevel 2 supports two CIE-based color space fami-
lies, named CIEBasedABC and CIEBasedA; LanguageLevel 3 adds two more such
families, CIEBasedDEF and CIEBasedDEFG. CIE-based color spaces are normally

selected by

[name dictionary] setcolorspace

I 4.8
221

Color Spaces I

where name is the name of one of the CIE-based color space families and
dictionary is a dictionary containing parameters that further characterize the
color space. The entries in this dictionary have specific interpretations that vary
depending on the color space; some entries are required and some are optional.

Having selected a color space, a PostScript program can then specify color values
using the setcolor operator. Color values consist of a single component in a
CIEBasedA color space, three components in a CIEBasedABC or CIEBasedDEF col-
or space, and four components in a CIEBasedDEFG color space. The interpreta-
tion of these values varies depending on the specific color space.

Note: To use any of the CIE-based color spaces with the image operator requires
using the one-operand (dictionary) form of that operator, which interprets sample

values according to the current color space. See Section 4.10.5, "Image Dictionaries."

CIE-based color spaces are a feature of LanguageLevel 2 (CIEBasedABC,
CIEBasedA) and LanguageLevel 3 (CIEBasedDEF, CIEBasedDEFG). Such spaces are

entirely separate from device color spaces. Operators that refer to device color
spaces implicitly, such as setrgbcolor and currentrgbcolor, have no connection
with CIE-based color spaces; they do not perform conversions between CIE-
based and device color spaces. (Note, however, that the PostScript interpreter
may perform such conversions internally under the control of the UseCIEColor
parameter in the page device dictionary; see "Remapping Device Colors to CIE"
on page 237.) The setrgbcolor operator changes the color space to DeviceRGB.
When the current color space is CIE-based, currentrgbcolor returns the initial

value of the DeviceRGB color space, which has no relation to the current color in
the graphics state.

CIEBasedABC Color Spaces

CIEBasedABC color space (LanguageLevel 2) is defined in terms of a two-stage,
nonlinear transformation of the CIE 1931 XYZ space. The formulation of
CIEBasedA BC color spaces models a simple zone theory of color vision, consisting
of a nonlinear trichromatic first stage combined with a nonlinear opponent-color
second stage. This formulation allows colors to be digitized with minimum loss
of fidelity, an important consideration in sampled images.

I CHAPTER 4
222

Graphics I

The CIEBasedABC family includes a variety of interesting and useful color spaces,

such as the CIE 1931 XYZ space, a class of calibrated RGB spaces, and a class of
opponent-color spaces such as the CIE 1976 L*a*b* space and the NTSC,
SECAM, and PAL television spaces.

Color values in CIEBasedABC color spaces have three components, arbitrarily

named A, B, and C. They can represent a variety of independent color compo-
nents, depending on how the space is parameterized. For example, A, B, and C
may represent:

• X, Y, and Z in the CIE 1931 XYZ space

• R, G, and B in a calibrated RGB space

• L*, a*, and h* in the CIE 1976 L*a*b* space

• Y, I, and Q in the NTSC television space

• Y, U, and Vin the SECAM and PAL television spaces

The initial values of A, B, and C are 0.0 unless the range of valid values for a color
component does not include 0.0, in which case the nearest valid value is substi-
tuted.

The parameters for a CIEBasedABC color space must be provided in a dictionary
that is the second element of the array operand to the setcolorspace operator.

Table 4.5 describes the contents of this dictionary; Figure 4.7 illustrates the trans-
formations involved.

DecodeABC

MatrixABC

Dec od eLMN

L

M --

N

I I MatrixLMN

FIGURE 4.7 Component transformations in the CIEBasedABC color space

223

l
Color Spaces I

TABLE 4.5 Entries in a CIEBasedABC color space dictionary

KEY TYPE VALUE

RangeABC array (Optional) An array of six numbers [A0 A1 Bo B1 Co CO specifying the range
of valid values for the A, B, and C components of the color space—that is,
Ao ≤ A 5 A1, Bo 5 B ≤ B1, and Co ≤ C ≤ C1. Component values falling outside

the specified range will be adjusted to the nearest valid value without error
indication. Default value: [0.0 1.0 0.0 1.0 0.0 1.0].

DecodeABC array (Optional) An array of three PostScript procedures [DA DB Dc] that decode
the A, B, and C components of the color space into values that are linear with

respect to an intermediate LMN representation; see MatrixABC below for fur-
ther explanation. Default value: the array of identity procedures [{} 0 {}].

Each of the three procedures is called with an encoded A, B, or C component

on the operand stack and must return the corresponding decoded value. The
result must be a monotonically nondecreasing function of the operand. The
procedures must be prepared to accept operand values outside the ranges

specified by the RangeABC entry and to deal with such values in a robust way.
Because these procedures are called at unpredictable times and in unpredict-

able environments, they must operate as pure functions without side effects.

MatrixABC array (Optional) An array of nine numbers [LAMA NA LB MB NB Lc Mc Nc] spec-

ifying the linear interpretation of the decoded A, B, and C components of the
color space with respect to the intermediate LMN representation. Default
value: the identity matrix [1 0 0 0 1 0 0 0 1].

The transformation defined by the DecodeABC and MatrixABC entries is

L = DA(A) x LA + DB(B) X LB+ 1)c(C) x Lc

M = DA(A) x MA + DB(B)xMB+Dc(C) x Mc

N = DA(A)x NA + DB(B) X NB+ D c(C) x Nc

In other words, the A, B, and C components of the color space are first de-

coded individually by the DecodeABC procedures. The results are treated as a
three-element vector and multiplied by MatrixABC (a 3-by-3 matrix) to ob-

tain the L, M, and N components of the intermediate representation.

RangeLMN array (Optional) An array of six numbers [Lo L1 Mo M1 No NO specifying the range

of valid values for the L, M, and N components of the intermediate represen-
tation: that is, Lo ≤ L ≤ L1, Mo ≤ M ≤ MI, and No 5 N ≤ N1. Default value:
[0.0 1.0 0.0 1.0 0.0 1.0].

DecodeLMN array (Optional) An array of three PostScript procedures [DL DM DN] that decode
the L, M, and N components of the intermediate representation into values
that are linear with respect to the CIE 1931 XYZ space; see MatrixLMN below

224
LCHAPTER 4 I Graphics I

for further explanation. Default value: the array of identity procedures

Ell {I { Il.

Each of the three procedures is called with an encoded L, M, or N component

on the operand stack and must return the corresponding decoded value. The
result must be a monotonically nondecreasing function of the operand. The
procedures must be prepared to accept operand values outside the ranges

specified by the RangeLMN entry and to deal with such values in a robust
way. Because these procedures are called at unpredictable times and in un-
predictable environments, they must operate as pure functions without side

effects.

MatrixLMN array (Optional) An array of nine numbers [XL YL, Zi, Xm Yid Zm XN YNZN] speci-
fying the linear interpretation of the decoded L, M, and N components of the
intermediate representation with respect to the CIE 1931 XYZ space. Default
value: the identity matrix [1 0 0 0 1 0 0 0 1].

The transformation defined by the DecodeLMN and MatrixLMN entries is

X = DL(L)x XL + Dm (M)x Xm + DN(N)x XN

Y = D L(L) x YL + Dm (M)x Ym + DN(N)x YN

Z = DL(L)x Zi, + Dm (M)x ZA,1 + DN(N)x ZN

WhitePoint array (Required) An array of three numbers [Xw Yw Zw] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse white point; see below for
further explanation. The numbers Xw and Zw must be positive, and Yw

must be equal to 1.

BlackPoint array (Optional) An array of three numbers [XBYB ZB] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse black point; see below for
further explanation. All three of these numbers must be nonnegative. Default
value: [0.0 0.0 0.0].

The WhitePoint and BlackPoint entries in the color space dictionary control the
overall effect of the CIE-based gamut mapping function described in Section 7.1,

"CIE-Based Color to Device Color." Typically, the colors specified by WhitePoint
and BlackPoint are mapped to the nearly lightest and nearly darkest achromatic
colors that the output device is capable of rendering in a way that preserves color
appearance and visual contrast.

WhitePoint is assumed to represent the diffuse achromatic highlight, not a specu-
lar highlight. Specular highlights, achromatic or otherwise, are often reproduced
lighter than the diffuse highlight. BlackPoint is assumed to represent the diffuse
achromatic shadow; its value is typically limited by the dynamic range of the in-

I 4.8
225

Color Spaces I

put device. In images produced by a photographic system, the values of

WhitePoint and BlackPoint vary with exposure, system response, and artistic in-

tent; hence, their values are image-dependent.

The following PostScript program fragments illustrate various interesting and

useful special cases of CIEBasedABC. Example 4.9 establishes the CIE 1931 XYZ

space with the CCIR XA/11-recommended D65 white point.

Example 4.9

[/CIEBasedABC

/RangeABC [0.0 0.9505 0.0 1.0 0.0 1.0890]

/RangeLMN [0.0 0.9505 0.0 1.0 0.0 1.0890]

/WhitePoint [0.9505 1.0 1.0890]

1setcolorspace

Example 4.10 establishes the sRGB color space found in the IEC 61966 Standard

(see Bibliography). It uses the ITU-R BT.709-2 reference primaries and the CCIR

XA/11-recommended D65 white point.

Example 4.10

/CIEBasedABC

/DecodeLMN

[I dup 0.03928 le

{12.92321 div}

{0.055 add 1.055 div 2.4 exp}

ifelse

} bind dup dup

/MatrixLMN [0.412457 0.212673 0.019334

0.357576 0.715152 0.119192

0.180437 0.072175 0.950301]

/WhitePoint [0.9505 1.0 1.0890]

>>

] setcolorspace

I CHAPTER 4
226

1
Graphics I

In many cases, the parameters of calibrated RGB color spaces are specified in

terms of the CIE 1931 chromaticity coordinates (xR, yR), (xG, YG), (x13, YB) of the

red, green, and blue phosphors, respectively, and the chromaticity (xw yw) of the

diffuse white point corresponding to some linear RGB value (R, G, B), where

usually R=G=B= 1.0. Note that standard CIE notation uses lowercase letters to

specify chromaticity coordinates and uppercase letters to specify tristimulus

values. Given this information, MatrixLMN and WhitePoint can be found as fol-

lows:

z = yw X ((xG — xB) x yR — (xR — xB) X yG + (xR — xG) x y)

= yR (xG — xB) X yw — (xw — xB) x yG + (xw — xG) x yB
Y x L R

xR 1 — xR a)
— ZL =

X L Lx YLX(—
= Y YR YR

(xR — x) x yw — (xw — x) X yR + (xw — x) x yB
Y =
m G

xG

X M = YM x —YG

1 — xG
ZM Ylvf

a)
= x(—

YG

YB (xR — xG)x yw — (xw — xG) x yR + (xw — xR) x yG
YkT = X

xB 1 — xB a)
XN = YN x — ZN Y= NX(

YB YB

Xw = RxXL +GxXm +BxXN

Yw = RxYL +GxYm +BxYN

Zw = RxZ + GxZm +BxZN

i 4.8
227

Color Spaces I

Example 4.11 establishes the CIE 1976 L*a*b* space with the CCIR XA/11—

recommended D65 white point. The a* and h* components, although theoreti-

cally unbounded, are defined to lie in the useful range — 128 to +127. The trans-
formation from L*, a*, and h* component values to tristimulus values X, Y, and Z

in the CIE 1931 XYZ space is defined as

+ 16 an
X = Xw xg(L*

116 500)

= y w x g * ÷ 16)

116)

(L* + 16 b*)
Z = Zw xg

116 200)

where the function g(x) is defined as

g(x) = x3 if x ≥ —6
29

g(x) = 108 x (x otherwise
841 29)

Example 4.11

[/CIEBasedABC

« /RangeABC [0 100 -128 127 -128 127]

/DecodeABC

[{ 16 add 116 div} bind

{500 div} bind

{200 div} bind

/MatrixABC [1 1 1

1 0 0

0 0 - 1]

/DecodeLMN

[{ dup 6 29 div ge

{dup dup mul mull

{4 29 div sub 108 841 div mull

ifelse

0.9505 mul

} bind

I CHAPTER 4
228

Graphics I

{ dup 6 29 div ge

[de dup mul mull

{4 29 div sub 108 841 div mull

ifelse

I bind

dup 6 29 div ge

{dup dup mul mull

{4 29 div sub 108 841 div mull

ifelse

1.0890 mul

}bind

/WhitePoint [0.9505 1.0 1.0890]

I setcolorspace

CIEBasedA Color Spaces

The CIEBasedA color space family (LanguageLevel 2) is the one-dimensional (and
usually achromatic) analog of CIEBasedABC. Color values in CIEBasedA have a
single component, arbitrarily named A. It can represent a variety of color compo-
nents, depending on how the space is parameterized. For example, A may repre-
sent:

• The luminance Y component of the CIE 1931 XYZ space

• The gray component of a calibrated gray space

• The CIE 1976 psychometric lightness L* component of the CIE 1976 L*a*b*
space

• The luminance Y component of the NTSC, SECAM, and PAL television spaces

The initial value of A is 0.0 unless the range of valid values does not include 0.0,
in which case the nearest valid value is substituted.

The parameters for a CIEBasedA color space must be provided in a dictionary
that is the second element of the array operand to the setcolorspace operator.

Table 4.6 describes the contents of this dictionary; Figure 4.8 illustrates the trans-
formations involved.

229
I 4.8 Color Spaces I

DecodeA

A —• - • MatrixA

DecodeLMN

I 1
MatrixLMN

KEY

FIGURE 4.8 Component transformations in the CIEBasedA color space

TABLE 4.6 Entries in a CIEBasedA color space dictionary

TYPE VALUE

RangeA array (Optional) An array of two numbers [A0 Al] specifying the range of valid
values for the A component of the color space—that is, Ao _5 A 5 Al. Compo-
nent values falling outside the specified range will be adjusted to the nearest
valid value without error indication. Default value: [0.0 1.0].

DecodeA procedure (Optional) A PostScript procedure DA that decodes the A component of the

color space into a value that is linear with respect to an intermediate LMN
representation; see MatrixA below for further explanation. Default value: the
identity procedure {}.

The procedure is called with an encoded A component on the operand stack
and must return the corresponding decoded value. The result must be a
monotonically nondecreasing function of the operand. The procedure must
be prepared to accept operand values outside the range specified by the

RangeA entry and to deal with such values in a robust way. Because this pro-
cedure is called at unpredictable times and in unpredictable environments, it
must operate as a pure function without side effects.

MatrixA array (Optional) An array of three numbers [LA MA NA] specifying the linear inter-
pretation of the decoded A component of the color space with respect to the

intermediate LMN representation. Default value: the matrix [1 1 1].

The transformation defined by the DecodeA and MatrixA entries is

L = DA(A)x LA

M = DA(A) X MA

N = DA(A) x NA

CHAPTER 4
230

Graphics I

In other words, the A component of the color space is first decoded by the
DecodeA procedure. The result is then multiplied by MatrixA (a three-

element vector) to obtain the L, M, and N components of the intermediate
representation.

RangeLMN array (Optional) An array of six numbers [L0 L1 M0 M1 N0 N1] specifying the range

of valid values for the L, M, and N components of the intermediate represen-
tation—that is, L0 ≤ L Li, Mo M M 1, and N0 N NI. Default value:
[0.0 1.0 0.0 1.0 0.0 1.0].

DecodeLMN array (Optional) An array of three PostScript procedures [DL Dm DN] that decode

the L, M, and N components of the intermediate representation into values
that are linear with respect to the CIE 1931 XYZ space; see DecodeLMN and

MatrixLMN in Table 4.5 for further explanation. Default value: the array of
identity procedures MG 0].

MatrixLMN array (Optional) An array of nine numbers [XL YL ZL Xm M Zm XN YNZN] speci-
fying the linear interpretation of the decoded L, M, and N components of the
intermediate representation with respect to the CIE 1931 XYZ space; see
MatrixLMN in Table 4.5 for further explanation. Default value: the identity
matrix [1 0 0 0 1 0 0 0 1].

WhitePoint array (Required) An array of three numbers [Xw Yw Zw] specifying the tristimulus

value, in the CIE 1931 XYZ space, of the diffuse white point; see the discus-
sion following Table 4.5 for further explanation. The numbers Xw and Zw
must be positive, and Yw must be equal to 1.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] specifying the tristimulus

value, in the CIE 1931 XYZ space, of the diffuse black point; see the discus-
sion following Table 4.5 for further explanation. All three of these numbers
must be nonnegative. Default value: [0.0 0.0 0.0].

The following PostScript program fragments illustrate various interesting and

useful special cases of CIEBasedA. Example 4.12 establishes a space consisting of

the Y dimension of the CIE 1931 XYZ space with the CCIR XA/11—recommended

D65 white point.

[4.8

Example 4.12

231

/CIEBasedA

• /MatrixA [0.9505 1.0 1.0890]

/RangeLMN [0.0 0.9505 0.0 1.0 0.0 1.0890]

/WhitePoint [0.9505 1.0 1.0890]

] setcolorspace

Color Spaces I

Example 4.13 establishes a calibrated gray space with the CCIR XA/11-

recommended D65 white point and opto-electronic transfer function.

Example 4.13

[/CIEBasedA

• /DecodeA 11 0.45 div expl bind

/MatrixA [0.9505 1.0 1.0890]

/RangeLMN [0.0 0.9505 0.0 1.0 0.0 1.0890]

/WhitePoint [0.9505 1.0 1.0890]

] setcolorspace

Example 4.14 establishes a space consisting of the V' dimension of the CIE 1976

L*a*b* space with the CCIR XA/11-recommended D65 white point. See the dis-

cussion of Example 4.11 on page 227 for further explanation.

Example 4.14

[/CIEBasedA

« /RangeA [0 100]

/DecodeA

{ 16 add 116 div dup 629 div ge

{dup dup mul mull

{4 29 div sub 108 841 div mull

ifelse

I bind

/MatrixA [0.9505 1.0 1.0890]

/RangeLMN [0.0 0.9505 0.0 1.0 0.0 1.0890]

/VVhitePoint [0.9505 1.0 1.0890]

>>

] setcolorspace

I CHAPTER 4,
232

Graphics I

CIEBasedDEF and CIEBasedDEFG Color Spaces

The CIEBasedDEF and CIEBasedDEFG color space families (LanguageLevel 3) ex-
tend the PostScript language's CIE-based color capabilities to support additional
color spaces, including:

• The CIE 1976 L*u*v space

• Calibrated RGB from scanners

• Calibrated CMYK

The first two of these are three-component spaces and can be represented by

CIEBasedDEF color spaces; the last has four components and can be represented
by a CIEBasedDEFG space.

Both CIEBasedDEF and CIEBasedDEFG are simple pre-extensions to the
CIEBasedABC color space family. Figure 4.9 illustrates the relationship between
CIEBasedDEFG and CIEBasedABC. The components (D, E, F, G) of a color in a
CIEBasedDEFG space are first transformed by applying a PostScript decoding pro-

cedure, DecodeDEFG; the resulting values are then used to look up and interpo-
late in a four-dimensional mapping table. The table lookup yields a color value
with components A, B, and C, which is then mapped into the CIE 1931 XYZ
space in the same way as for a CIEBasedABC color space; see "CIEBasedABC Col-

or Spaces" on page 221. (The equivalent diagram for a three-component
CIEBasedDEF space would look the same as Figure 4.9, except that the lookup
table would have three inputs instead of four and the initial decoding procedure
would be named DecodeDEF instead of DecodeDEFG.)

DecodeDEFG

D .

E

F .

G

H
I I

. H .

J

K

Table

A

B

C

DecodeABC

MatrixABC

L

M

N

DecodeLMN

MatrixLMN

FIGURE 4.9 CIEBasedDEFG pre-extension to the CIEBasedABC color space

233
I 4.8

l
Color Spaces I

The parameters for a CIEBasedDEF or CIEBasedDEFG color space must be pro-

vided in a dictionary that is the second element of the array operand to the

setcolorspace operator. This dictionary must contain all the same entries re-

quired for a CIEBasedABC space, as listed in Table 4.5 on page 223, and may also

include any of the entries listed there as optional. Tables 4.7 and 4.8 show the ad-

ditional dictionary entries, both required and optional, specific to CIEBasedDEF

and CIEBasedDEFG color spaces, respectively. When one of these spaces is selected

with the setcolorspace operator, the initial values of the color components D, E,

and F (or D, E, F, and G) are set to 0.0 unless the range of valid values for a

component does not include 0.0, in which case the nearest valid value is substi-

tuted.

TABLE 4.7 Additional entries specific to a CIEBasedDEF color space dictionary

KEY TYPE VALUE

RangeDEF array (Optional) An array of six numbers [D0 DI 4 E1 F0 F1] specifying the range
of valid values for the D, E, and F components of the color space—that is,
D0 ≤ D ≤ D1, E0 ≤ E 5 El, and F0 5 F 5 F1. Component values falling outside

the specified range will be adjusted to the nearest valid value without error
indication. Default value: [0.0 1.0 0.0 1.0 0.0 1.0].

DecodeDEF array (Optional) An array of three PostScript procedures [DD DE DF] that decode

the D, E, and F components of the color space into intermediate values H, I,
and J, respectively, that are more suitable for performing a table lookup. De-

fault value: the array of identity procedures [ll [I 0].

Each of the three procedures is called with an encoded D, E, or F component
on the operand stack and must return the corresponding decoded value H, I,

or J. The result must be a monotonically nondecreasing function of the oper-
and and must be within the range for the corresponding component, as spec-
ified in the RangeHIJ entry. The procedures must be prepared to accept

operand values outside the ranges specified by the RangeDEF entry and to
deal with such values in a robust way. Because these procedures are called at

unpredictable times and in unpredictable environments, they must operate

as pure functions without side effects.

RangeHU array (Optional) An array of six numbers [H0 H1 k, II Jo li] specifying the range of
valid values for the table lookup components H, I, and I—that is, Ho É H ≤ H1,
Io ≤ I 5 II, and 10 ≤ J ≤ Ji. Default value: [0.0 1.0 0.0 1.0 0.0 1.0].

I CHAPTER 4
234

Graphics I

Table array (Required) An array of the form [NH N1 N1 table] defining a three-

dimensional lookup table that maps colors in the intermediate HIJ color
space into a three-dimensional target space with components A, B, and C.
The ABC space is then mapped into the CIE 1931 XYZ space in the same way
as for a CIEBasedABC color space, and guided by the same dictionary entries;
see Table 4.5 on page 223 for further explanation.

The first three elements of the Table array, NH, NI, and NI, must be integers

greater than 1 specifying the dimensions of the lookup table. The table con-

tains NH x N1 x 1NI1 entries, each consisting of three components making up
an ABC color value.

The fourth array element, table, holds the contents of the lookup table itself

in the form of an array of NH strings, each containing 3 x N1 x NI bytes. Like
all PostScript arrays, the table array is indexed from 0; index h thus varies
from 0 to NH— 1, index i from 0 to N1— 1, and index j from 0 to 1%11— 1. The
table entry for coordinates (h, i, j) is found in the string at index h in the
lookup table, in the 3 bytes starting at position 3 x (i x j). This entry
corresponds to the following color value in the HIJ space:

h x (Ili — H0)
H = Ho +

NH—
i X (I — I0)

/ = I +
0 N1—

j x (11— Jo)

= + N1— 1

The limiting values Ho, HI, Io, 11, Jo, and Ji are specified by the color space

dictionary's RangeHIJ entry.

The ABC component values corresponding to a given color in HIJ space are
computed by locating the nearest adjacent table entries and then interpolat-
ing among the encoded byte values contained in those entries. The resulting
interpolated, encoded components are mapped linearly to the range of valid
values for the corresponding ABC component, as defined by the dictionary's
RangeABC entry (see Table 4.5 on page 223). For example, a byte value of 0

for the A color component denotes a component value of Ao as defined by
RangeABC, a byte value of 255 denotes a component value of Ai, and similar-
ly for the B and C components.

235

l
Color Spaces I

TABLE 4.8 Additional entries specific to a CIEBasedDEFG color space dictionary

KEY TYPE VALUE

RangeDEFG array (Optional) An array of eight numbers [D0 DI E0 E1 Fo Fi Go G1] specifying
the range of valid values for the D, E, F, and G components of the color space--
that is, Do ≤D≤DI,E0≤E≤EI,F05_F≤ fi, and Go ≤ G≤Gi. C,omponent val-

ues falling outside the specified range will be adjusted to the nearest valid value

without error indication. Default value: [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0].

DecodeDEFG array (Optional) An array of four PostScript procedures [DD DE DF DG] that de-
code the D, E, F, and G components of the color space into intermediate val-
ues H, I, 1, and K, respectively, that are more suitable for performing a table
lookup. Default value: the array of identity procedures [{) 0 {} 0].

Each of the four procedures is called with an encoded D, E, F, or G compo-

nent on the operand stack and must return the corresponding decoded value
H, I, J, or K. The result must be a monotonically nondecreasing function of

the operand and must be within the range for the corresponding component,

as specified in the RangeHIJK entry The procedures must be prepared to ac-

cept operand values outside the ranges specified by the RangeDEFG entry and
to deal with such values in a robust way. Because these procedures are called
at unpredictable times and in unpredictable environments, they must oper-
ate as pure functions without side effects.

RangeHIJK array (Optional) An array of eight numbers [H0 H1 lo ii Jo li Ko KO specifying the
range of valid values for the table lookup components H, I, J, and K—that is,

Ho ≤ H ≤ Hi, lo ≤ I ≤ II, Jo ≤ I ≤ JD and Ko ≤ K ≤ Ki. Default value:
[0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0].

Table array (Required) An array of the form [NH .1%11N1 NK table] defining a four-
dimensional lookup table that maps colors in the intermediate HIJK color

space into a three-dimensional target space with components A, B, and C.
The ABC space is then mapped into the CIE 1931 XYZ space in the same way
as for a CIEBasedABC color space, and guided by the same dictionary entries;

see Table 4.5 on page 223 for further explanation.

The first four elements of the Table array, NH, NI, Nj, and NK, must be inte-

gers greater than 1 specifying the dimensions of the lookup table. The table
contains NH X NI XN/X NK entries, each of which consists of three compo-
nents making up an ABC color value.

The fifth array element, table, holds the contents of the lookup table itself in
the form of an array of NH arrays, each in turn containing N1 strings of
3 x Nj x NK bytes. Like all PostScript arrays, the table array and each of the
arrays that are its elements are indexed from 0; index h thus varies from 0 to

I CHAPTER 4
236

Graphics I

NH — 1, index i from 0 to N1— 1, and so on. The table entry for coordinates
(h, i, j, k) is found in the array at index h in the lookup table, in the ith string
of the array, in the 3 bytes starting at position 3 x(jxNK+ k). This entry
corresponds to the following color value in the HIJK space:

h x(H1— Ho)
H = H +

° NH — 1

i X (Ili — 10)

1 = 10+ N — 1

x(J1— 10)

N — 1

k x (K — Ko)
K = K0+ NK 1

The limiting values Ho, 111, lo, II, J0, Ji, Ko, and K1 are specified by the color
space dictionary's RangeHIJK entry.

The ABC component values corresponding to a given color in HIJK space are
computed by locating the nearest adjacent table entries and then interpolat-
ing among the encoded byte values contained in those entries. The resulting
interpolated, encoded components are mapped linearly to the range of valid
values for the corresponding ABC component, as defined by the dictionary's
RangeABC entry (see Table 4.5 on page 223). For example, a byte value of 0
for the A color component denotes a component value of Ao as defined by
Rang eABC, a byte value of 255 denotes a component value of Ai, and similar-
ly for the B and C components.

Example 4.15 illustrates in schematic form the use of a CIEBasedDEFG color

space.

Example 4.15

[/CIEBasedDEFG

/DecodeLMN [0 0.45 div exp} bind dup dup]

/MatrixLMN [0.4124 0.2126 0.0193

0.3576 0.7152 0.1192

0.1805 0.0722 0.9505]

/WhitePoint [0.9505 1.0 1.0890]

237
4.8

/Table [15 30 25 20

1setcolorspace

<... String containing 3 x 25 x 20 bytes ... >

<... String containing 3 x 25 x 20 bytes ... >

... 28 additional strings omitted ...

... 14 additional arrays omitted ...

Remapping Device Colors to CIE

Color Spaces I

Specifying colors in a device color space (DeviceGray, DeviceRGB, or Device-
CMYK) makes them device-dependent. By setting the UseCIEColor parameter
(LanguageLevel 3) in the page device dictionary (see Section 6.2.5, "Color Sup-
port"), a PostScript program can request that such colors be systematically trans-
formed into a device-independent CIE-based color space. This capability can be
useful in a variety of circumstances, such as the following:

• A page description originally intended for one device is redirected to a different
device.

• An application generates LanguageLevel 1 output only, and thus is unable to
specify CIE-based colors directly. This is especially common for encapsulated
PostScript (EPS) files.

• Color corrections or rendering intents need to be applied to device colors.

(Rendering intents allow the application to set priorities regarding which color
properties to preserve and which to compromise in order to compensate for

the limitations of a particular output device; see Section 7.1.3, "Rendering In-
tents," for details.)

When UseCIEColor is true, all colors specified in the DeviceGray, DeviceRGB, or

DeviceCMYK color space are remapped into a corresponding target color space,
which must previously have been defined as a resource in the ColorSpace re-
source category. This substitution occurs at the moment a device color space is
selected by setcolorspace (or implicitly by setgray, setrgbcolor, or setcmykcolor);
it is unaffected by subsequent changes to the ColorSpace resource category. The
resources specifying the target spaces for the three device color spaces are named

[CHAPTER 4
238

1
Graphics

DefaultGray, DefaultRGB, and DefaultCMYK, respectively. Their values must be as
follows; if they are absent, an error will occur.

• DefaultGray must be a CIEBasedA color space or [/DeviceGray] (for no remap-
ping).

• DefaultRGB must be a CIEBasedABC color space, a CIEBasedDEF color space, or

[/DeviceRGB] (for no remapping).

• DefaultCMYK must be a CIEBasedDEFG color space or [/DeviceCMYK] (for no
remapping).

If the color space in use is a special color space based on an underlying device
color space, UseCIEColor will remap the underlying space. This applies to the fol-
lowing:

• The base color space of an Indexed color space

• The underlying color space of a Pattern color space

• The alternative color space of a Separation or DeviceN color space (but only if
the alternative color space is actually selected)

See Section 4.8.4, "Special Color Spaces," for details on these color spaces.

Enabling UseCIEColor does not alter the current color space or current color
values in the graphics state. The remapping of device colors into CIE-based col-

ors is entirely internal to the implementation of the PostScript color operators.
Once transformed, the colors are then processed according to the current color

rendering dictionary, as is normally done for CIE-based colors. See Section 7.1,
"CIE-Based Color to Device Color," for more information.

4.8.4 Special Color Spaces

Special color spaces add features or properties to an underlying color space.
There are four special color space families: Pattern, Indexed, Separation, and
DeviceN.

Pattern Color Space

A Pattern color space (LanguageLevel 2) enables PostScript programs to paint an
area with a "color" defined as a pattern, which may be either a graphical figure re-

I 4.8
239

Color Spaces I

peated indefinitely to fill the area (LanguageLevel 2) or a gradient fill defining a
smooth color transition across the area (LanguageLevel 3). Section 4.9, "Patterns,"
discusses patterns in detail.

Indexed Color Space

An Indexed color space (LanguageLevel 2) allows a PostScript program to select
from a color map or color table of arbitrary colors in some other space, using small
integers as indices. The PostScript interpreter treats each sample value as an index

into the color table and uses the color value it finds there. This technique can

considerably reduce the amount of data required to represent a sampled image—
for example, by using 8-bit index values as samples instead of 24-bit RGB color
values.

An Indexed color space is selected as follows:

[/Indexed base hival lookup] setcolorspace

In other words, the operand to setcolorspace is a four-element array. The first
element is the color space family name Indexed; the remaining elements are the
parameters base, hival, and lookup, which the Indexed color space requires.
setcolorspace sets the current color to 0.

The base parameter is an array or name that identifies the base color space in

which the values in the color table are to be interpreted. It can be any device or
CIE-based color space or (in LanguageLevel 3) a Separation or DeviceN space,

but not a Pattern or another Indexed space. For example, if the base color space is
DeviceRGB, the values in the color table are to be interpreted as red, green, and

blue components; if the base color space is a CIEBasedABC space, the values are to
be interpreted as A, B, and C components. The base parameter should be speci-
fied in the same way as if it were being used directly as an operand to the
setcolorspace operator.

Note: Attempting to use a Separation o r DeviceN color space as the base for an
Indexed color space will generate an undefined error in LanguageLevel 2.

The hival parameter is an integer that specifies the maximum valid index value. In
other words, the color table is to be indexed by integers in the range 0 to hival.
hival can be no greater than 4095, which is what would be required to index a
table with 12-bit color sample values.

I CHAPTER 4
240

i
Graphics I

The color table is defined by the lookup parameter, which can be either a proce-
dure or a string. It provides the mapping between index values and the corre-
sponding colors in the base color space.

If lookup is a procedure, the PostScript interpreter calls it to transform an index
value into corresponding color component values in the base color space. The
procedure is called with the index on the operand stack and must return the color
component values in a form acceptable to the setcolor operator in the base color
space. The number of components and the interpretation of their values depend
on the base color space. Because the lookup procedure is called by the setcolor
and image operators at unpredictable times, it must operate as a pure function
without side effects. It must be able to return color component values for any in-

teger from 0 to hi val.

If lookup is a string object, it must be of length m x (hival + 1), where m is the
number of color components in the base color space. Each byte in the string is in-
terpreted as an integer. To look up an index, the PostScript interpreter multiplies
the index by m and uses the result to access the lookup string. The m bytes begin-
ning at that position in the string are interpreted as coded values for the m color
components of the base color space. Those bytes are treated as 8-bit integers in
the range 0 to 255, which are then divided by 255, yielding component values in
the range 0.0 to 1.0.

Note: This method of specification is useful only when the range of all color compo-
nents in the base color space is 0.0 to 1.0. For color spaces with different ranges, such
as a CIEBasedABC space representing Ca*b* (see Example 4.11 on page 227), lookup
should be a procedure.

Example 4.16 illustrates the specification of an Indexed color space that maps
8-bit index values to three-component color values in the DeviceRGB color space.

Example 4.16

[/Indexed

/DeviceRGB 255

<000000 FF0000 OOFFOO 000OFF B57342 ... >

] setcolorspace

The example shows only the first five color values in the lookup string; in all, there
should be 256 color values and the string should be 768 bytes long. Having
established this color space, the program can now specify colors using single-

I 4.8
241

I
Color Spaces I

component values in the range 0 to 255. For example, a color value of 4 selects an
RGB color whose components are coded as the hexadecimal integers B5, 73, and
42. Dividing these by 255 yields a color whose red, green, and blue components
are 0.710, 0.451, and 0.259, respectively.

Note: To use an Indexed color space with the image operator requires using the one-
operand (dictionary) form of that operator, which interprets sample values according
to the current color space. See Section 4.10.5, "Image Dictionaries."

Although an Indexed color space is useful mainly for images, index values can
also be used with the setcolor operator. For example,

123 setcolor

selects the same color as does an image sample value of 123. The index value
should be an integer in the range 0 to hival. If it is a real number, it is rounded to
the nearest integer; if it is outside the range 0 to hi val, it is clipped to the nearest
bound.

Separation Color Spaces

Color output devices produce full color by combining primary or process colors in

varying amounts. On a display, the primary colors consist of red, green, and blue
phosphors; on a printer, they consist of cyan, magenta, yellow, and sometimes
black inks. In addition, some devices can apply special colorants, often called spot
colors, to produce effects that cannot be achieved with the primary colors alone.
Examples include metallic and fluorescent colors and special textures.

When the showpage or copypage operator is invoked, most devices produce a
single composite page on which all primary colors (and spot colors, if any) are

combined. However, some devices, such as imagesetters, produce a separate,
monochromatic rendition of the page, called a separation, for each individual col-

orant. When the separations are later combined—on a printing press, for exam-
ple—and the proper inks or other colorants are applied to them, a full-color page
results.

A Separation color space (LanguageLevel 2) provides a means for PostScript pro-
grams to specify the use of additional colorants or to isolate the control of indi-
vidual color components of a device color space. When such a space is the current

I CHAPTER 4
242

I
Graphics I

color space, the current color is a single-component value, called a tint, that con-
trols the application of the given colorant or color component only.

Note: The term separation is often misused as a•synonym for an individual device

colorant. In the context of this discussion, a printing system that produces separa-
tions generates a separate piece of physical medium (generally film) for each colo-
rant. It is these pieces of physical medium that are correctly referred to as separations.
A particular colorant properly constitutes a separation only if the device is generating
physical separations, one of which corresponds to the given colorant. The Separation

color space is so named for historical reasons, but it has evolved to the broader pur-
pose of controlling the application of individual colorants in general, whether or not

they are actually realized as physical separations.

Note also that the operation of a Separation color space itself is independent of the
characteristics of any particular output device. Depending on the device, the space
may or may not correspond to a true, physical separation or to an actual colorant.
For example, a Separation color space could be used to control the application of a
single process colorant (such as cyan) on a composite device that does not produce
physical separations, or could represent a color (such as orange) for which no specific
colorant exists on the device. A Separation color space provides consistent, predict-
able behavior, even on devices that cannot directly generate the requested color.

A Separation color space is selected as follows:

[/Separation name altemativeSpace tintTransform] setcolorspace

In other words, the operand to setcolorspace is a four-element array whose first
element is the color space family name Separation. The remaining elements are
parameters that a Separation color space requires; their meanings are discussed
below.

A color value in a Separation color space consists of a single tint component in
the range 0.0 to 1.0. The value 0.0 represents the minimum amount of colorant
that can be applied; 1.0 represents the maximum. Tints are always treated as
subtractive colors, even if the device produces output for the designated compo-
nent by an additive method. Thus a tint value of 0.0 denotes the lightest color
that can be achieved with the given colorant, and 1.0 the darkest. (Note that this

is the same as the convention for DeviceCMYK color components, but opposite to
the one for DeviceRGB and DeviceGray.) The setcolor operator sets the current
color in the graphics state to a tint value; the initial value is 1.0. A sampled image
with single-component samples can also be used as a source of tint values.

I 4.8
243

Color Spaces I

Note: To use a Separation color space with the image operator requires using the
one-operand (dictionary) form of that operator, which interprets sample values ac-
cording to the current color space. See Section 4.10.5, "Image Dictionaries."

The name parameter in the parameter array passed to setcolors pa ce is a name or
string object specifying the name of the colorant that this Sepa ration color space
is intended to represent (or one of the special names All or None; see below).
Such colorant names are arbitrary, and there can be any number of them, subject

to implementation limits. Name and string objects can be used interchangeably
as names; a string may be more convenient if the desired name contains spaces or
other special characters.

The set of available colorant names is determined from the ProcessColorModel
and SeparationColorNames entries in the page device dictionary (Section 6.2.5,
"Color Support"). ProcessColorModel defines the native color space of the de-
vice, and hence the set of available process colorants (Cyan, Magenta, Yellow, and
Black for DeviceCMYK; Red, Green, and Blue for DeviceRGB; Gray for
DeviceGray . SeparationColorNames lists additional available colorants.

Note: In LanguageLevel 2 implementations lacking the ProcessColorModel and

SeparationColorNames page device parameters, the set of available colorants is im-
plicit and cannot be queried by a PostScript program.

The special colorant name All refers collectively to all colorants available on a de-

vice, including those for the standard process colorants as well as any additional

colorants named explicitly in the page device dictionary's SeparationColorNames
entry. When a Separation space with this colorant name is the current color
space, painting operators apply tint values to all available colorants at once. This
is useful for purposes such as painting registration marks in the same place on
every separation. A program would typically paint such marks as the last step in
composing a page, immediately before invoking showpage, to ensure that they
are not overwritten by subsequent drawing operations.

The special colorant name None will never produce any visible output. Painting
operations in a Separation space with this colorant name have no effect on the
current page.

I CHAPTER 4
244

Graphics I

All devices support Separation color spaces with the colorant names All and
None, even if they do not support any others. Separation spaces with either of

these colorant names ignore the altemativeSpace and tintTransform parameters
(discussed below), though dummy values must still be provided.

At the moment the color space is set to a Separation space, the setcolorspace op-
erator checks the ProcessColorModel and SeparationColorNames entries in the
page device dictionary to determine whether the device has an available colorant
corresponding to the name of the requested space. If so, setcolorspace ignores its
altemativeSpace and tintTransform parameters; subsequent painting operations
within the space will apply the designated colorant directly, according to the tint

values supplied.

If the colorant name associated with a Separation color space does not corre-

spond to a colorant available on the device, setcolorspace arranges instead for
subsequent painting operations to be performed in an alternative color space. This

enables the intended colors to be approximated by colors in some device or CIE-
based color space, which are then rendered using the usual primary or process
colors. This works as follows:

• The alternativeSpace parameter must be an array or name object that identifies
the alternative color space. This can be any device or CIE-based color space,
but not another special color space (Pattern, Indexed, Separation, or DeviceN).
The altemativeSpace parameter should be specified in the same way as if it were
being used directly as an operand to the setcolorspace operator.

• The tintTransform parameter must be a PostScript procedure. During subse-

quent painting operations, the PostScript interpreter will call this procedure to

transform a tint value into color component values in the alternative color
space. The procedure is called with the tint value on the operand stack and
must return the corresponding color component values in a form acceptable to
the setcolor operator in the alternative color space. The number of compo-
nents and the interpretation of their values depend on the alternative color
space. Because the tintTransform procedure is called by the setcolor and image
operators at unpredictable times, it must operate as a pure function without

side effects.

Example 4.17 illustrates the specification of a Separation color space that is in-
tended to produce a color named LogoGreen. If the output device has no colorant
corresponding to this color, DeviceCMYK will be used as the alternative color

I 4.8
245

I
Color Spaces I

space; the tintTransform procedure provided maps tint values linearly into shades
of a CMYK color value approximating the "logo green" color.

Example 4.17

[/Separation

(LogoGreen)

/DeviceCMYK

{ dup 0.84 mul

exch 0.0 exch dup 0.44 mul

exch 0.21 mul

}

I setcolorspace

DeviceN Color Spaces

DeviceN color spaces (LanguageLevel 3) support the use of high-fidelity and
multitone color. High-fidelity color is the use of more than the standard CMYK
process colorants to produce an extended gamut, or range of colors. A popular
example of such a system is the PANTONC Hexachrome system, which uses
six colorants: the usual cyan, magenta, yellow, and black, plus orange and green.

Multitone color systems use a single-component image to specify multiple color
components. In a duotone, for example, a single-component image can be used to

specify both the black component and a spot color component. The tone
reproduction is generally different for the different components; for example, the
black component might be painted with the exact sample data from the single-
component image, while the spot color component might be generated as a non-
linear function of the image data in a manner that emphasizes the shadows.

DeviceN color spaces allow any subset of the available device colorants to be
treated as a device color space with multiple components. This provides greater

flexibility than is possible with standard device color spaces such as DeviceCMYK
or with individual Separation color spaces. For example, it is possible to create a
DeviceN color space consisting of only the cyan, magenta, and yellow color com-

ponents, while excluding the black component. If overprinting is enabled (see
Section 4.8.5, "Overprint Control"), painting in this color space will leave the
black component unchanged.

I CHAPTER 4
246

Graphics I

A DeviceN color space is selected as follows:

[/DeviceN names altemativeSpace tintTransform] setcolorspace

In other words, the operand to setcolorspace is a four-element array whose first
element is the color space family name DeviceN. The remaining elements are pa-
rameters that a DeviceN color space requires; their meanings are discussed below.

A DeviceN color space works almost the same as a Separation color space—in
fact, a DeviceN color space with only one component is exactly equivalent to a
Separation color space. The following are the only differences between DeviceN
and Separation:

• Color values in a DeviceN color space consist of multiple tint components,
rather than only one.

• The names parameter in the color space array passed to setcolorspace is an
array of colorant names, specified as name or string objects. (The special colo-
rant names All and None are not allowed.) The length of the array determines
the number of components, and hence the number of operands required by the
setcolor operator when this space is the current color space. Operand values
supplied to setcolor are interpreted as color component values in the order in
which the colors are given in the names array.

• The setcolorspace operator will select the requested set of colorants only if all
of them are available on the device; otherwise, it will select the alternative color
space designated by the altemativeSpace parameter.

• The tintTransform procedure is called with n tint values on the operand stack
and must return the corresponding m color component values, where n is the
number of components needed to specify a color in the DeviceN color space
and m is the number required by the alternative color space.

The following PostScript program fragments illustrate various interesting and

useful special cases of DeviceN. Example 4.18 shows the specification of an
Indexed color space that maps 8-bit index values to a duotone DeviceN space in
cyan and black.

I 4.8
247

I

Example 4.18

[/Indexed

[/DeviceN

[/Cyan /Black]

/DeviceCMYK

{0 0 3 -1 roll}

1

255

<6605 6806 6907 6809 6COA...>

] setcolorspace

Color Spaces I

Example 4.19 defines an Indexed color space that maps 8-bit index values to a tri-

tone DeviceN space in magenta, yellow, and black. Because all of the correspond-
ing magenta and yellow components in the lookup table are equal, the effect is
equivalent to a duotone in red and black.

Example 4.19

[/Indexed

[/DeviceN

[/Magenta [Yellow /Black]

/DeviceCMYK

{0 4 1 roll}

]

255

<4C4C05 4E4E06 505007 525208 545409... >

] setcolorspace

4.8.5 Overprint Control

The graphics state contains an overprint parameter, controlled by the

setoverprint operator. Overprint control is useful mainly on devices that produce
true physical separations, but it is available on some composite devices as well.

Although the operation of this parameter is device-dependent, it is described
here, rather than in the chapter on color rendering, because it pertains to an as-
pect of painting in device color spaces that is important to many applications.

Any painting operation marks some specific set of device colorants, depending
on the color space in which the painting takes place. In a Separation or DeviceN
color space, the colorants to be marked are specified explicitly; in a device or CIE-

based space, they are implied by the process color model of the output device (see

I CHAPTER 4
248

I
Graphics I

"Process Color Model" on page 422). The overprint parameter is a boolean flag
that determines how painting operations affect colorants other than those explic-

itly or implicitly specified by the current color space.

If the overprint flag is false (the default value), painting a color in any color space

causes the corresponding areas of unspecified colorants to be erased (painted
with a tint value of 0.0). The effect is that the color marked at any position on the
page is whatever was painted there last; this is consistent with the normal opaque

painting behavior of the Adobe imaging model.

If the overprint flag is true and the output device supports overprinting, no such
erasing actions are performed; anything previously painted in other colorants is

left undisturbed. Consequently, the color at a given position on the page may be a
combined result of several painting operations in different colorants. The effect
produced by such overprinting is device-dependent and is not defined by the

PostScript language.

Note: Not all devices support overprinting. Furthermore, many LanguageLevel 2
implementations support it only when separations are being produced, not for com-
posite output. If overprinting is not supported, the value of the overprint parameter

is ignored.

4.9 Patterns

When operators such as fill, stroke, and show paint an area of the page with the
current color, they ordinarily apply a single color that covers the area uniformly.

Sometimes, however, it is desirable to apply "paint" that consists of a repeating

figure or a smoothly varying color gradient instead of a simple color. Such a re-
peating figure or smooth gradient is called a pattern. Patterns are quite general,
and have many uses. They can be used to create various graphical textures, such
as weaves, brick walls, sunbursts, and similar geometrical and chromatic effects.

PostScript patterns come in two varieties:

• Tiling patterns consist of a small graphical figure (called a pattern cell) that is
replicated at fixed horizontal and vertical intervals to fill the area to be painted.

• Shading patterns define a gradient fill that produces a smooth transition be-

tween colors across the area.

249
4.9 Patterns I

Note: The ability to paint with patterns is a feature of LanguageLevels 2 (tiling pat-
terns) and 3 (shading patterns). With some effort, it is possible to achieve a limited
form of tiling patterns in LanguageLevel 1 by defining them as character glyphs in a
special font and painting them repeatedly with the show operator. Another tech-
nique, defining patterns as halftone screens, is not recommended, because the effects
produced are device-dependent.

Patterns are specified in a special color space family named Pattern, whose "color
values" are pattern dictionaries instead of the numeric component values used
with other color spaces. This section describes Pattern color spaces and the speci-

fication of color values within them; see Section 4.8, "Color Spaces," for informa-
tion about color spaces and color values in general.

4.9.1 Using Patterns

A pattern dictionary contains descriptive information defining the appearance
and properties of a pattern. All pattern dictionaries contain an entry named
PatternType, whose value identifies the kind of pattern the dictionary describes:
type 1 denotes a tiling pattern, type 2 a shading pattern. The remaining contents
of the dictionary depend on the pattern type, and are detailed below in the sec-
tions on each pattern type.

Painting with a pattern is a five-step procedure:

1. Define the prototype pattern. Create a pattern dictionary containing descriptive
information about the pattern's appearance and other properties.

2. Instantiate the pattern. Pass the prototype pattern dictionary to the
makepattern operator. This produces a copy of the dictionary representing an

instance of the pattern that is locked to current user space. The copy may
contain an optional additional entry, named Implementation, containing

implementation-dependent information to be used by the interpreter in
painting the pattern.

3. Select a Pattern color space. Use the setcolorspace operator to set the current
color space to a Pattern space. The initial color value in this color space is a
null object, which is treated as if it were a pattern dictionary representing an
empty tiling pattern. Painting with this pattern produces no marks on the cur-
rent page.

I CHAPTER 4
250

Graphics I

4. Make the pattern the current color. Invoke setcolor with the instantiated pattern
dictionary from step 2 as an operand (and possibly other operands as well) to
select the pattern as the current color.

5. Invoke painting operators, such as fill, stroke, imag e ma sk, or show. All areas
that normally would be painted with a uniform color will instead be filled with

the selected pattern.

A convenience operator, setpattern, combines steps 3 and 4 above into a single
operation: it takes a pattern dictionary as an operand, selects a Pattern color
space, and sets the specified pattern as the current color. setpattern is the normal
method for selecting patterns; in practice, it is rarely necessary to set the color
space and color value separately. For purposes of exposition, however, the exam-
ples presented here will separate the two steps for maximum clarity.

4.9.2 Tiling Patterns

A tiling pattern consists of a small graphical figure called a pattern cell. Painting
with the pattern replicates the cell at fixed horizontal and vertical intervals to fill
an area. The effect is as if the figure were painted on the surface of a clear glass
tile, identical copies of which were then laid down in an array covering the area
and trimmed to its boundaries. This is called tiling the area.

The pattern cell can include graphical elements such as filled areas, text, and sam-
pled images. Its shape need not be rectangular, and the spacing of tiles can differ
from the dimensions of the cell itself. The cell's appearance is defined by an arbi-
trary PostScript procedure, the PaintProc procedure, which paints a single in-
stance of the cell. The PostScript interpreter obtains the PaintProc procedure
from the pattern dictionary and calls it (with the graphics state altered in certain
ways) to obtain the pattern cell. When performing painting operations such as fill
or stroke, the interpreter then paints the cell on the current page as many times as
necessary to fill an area. To optimize execution, the interpreter maintains a cache
of recently used pattern cells.

Tiling patterns are defined by pattern dictionaries of type 1. Table 4.9 lists the en-

tries in this type of dictionary. (The dictionary can also contain any additional
entries that its PaintProc procedure may require.) All entries except
Implementation can appear in a prototype pattern dictionary supplied as an op-
erand to makepattern. The pattern dictionary instantiated and returned by

251
Patterns I

makepattern may contain an Implementation entry in addition to those included
in the prototype.

TABLE 4.9 Entries in a type 1 pattern dictionary

KEY TYPE VALUE

PatternType Intoger (Required) A code identifying the pattern type that this dictionary describes;
must be 1 for a tiling pattern.

XUID array (Optional) An extended unique ID that uniquely identifies the pattern (see

Section 5.6.2, "Extended Unique ID Numbers"). The presence of an XUID en-
try in a pattern dictionary enables the PostScript interpreter to save cached

instances of the pattern for later use, even when the pattern dictionary is

loaded into virtual memory multiple times (for instance, by different jobs).
To ensure correct behavior, XUID values must be assigned from a central reg-
istry. This is particularly appropriate for patterns treated as named resources.
Patterns that are created dynamically by an application program should not
contain XUID entries.

PaintProc procedure (Required) A PostScript procedure for painting the pattern cell.

BBox array (Required) An array of four numbers in the pattern coordinate system, giving

the coordinates of the left, bottom, right, and top edges, respectively, of the

pattern cell's bounding box. These boundaries are used to clip the pattern cell
and to determine its size for caching.

XStep number (Required) The desired horizontal spacing between pattern cells, measured in
the pattern coordinate system.

YStep number (Required) The desired vertical spacing between pattern cells, measured in
the pattern coordinate system. Note that XStep and YStep may differ from
the dimensions of the pattern cell implied by the BBox entry. This allows

tiling with irregularly shaped figures. XStep and YStep may be either positive
or negative, but not zero.

PaintType integer (Required) A code that determines how the color of the pattern cell is to be
specified:

1 Colored tiling pattern. The PaintProc procedure itself specifies the col-
ors used to paint the pattern cell. When the PaintProc procedure be-
gins execution, the current color is the one that was in effect at the
time the tiling pattern was instantiated with makepattern.

2 Uncolored tiling pattern. The PaintProc procedure does not specify
any color information. Instead, the entire pattern cell is painted with
a separately specified color each time the tiling pattern is used. Essen-

I CHAPTER 4
252

Graphics I

TilingType

Implementation any

tially, the PaintProc procedure describes a stencil through which the
current color is to be poured. The PaintProc procedure must not in-
voke operators that specify colors or other color-related parameters
in the graphics state; otherwise, an undefined error will occur (see
Section 4.8.1, "Types of Color Space"). Use of the imagemask opera-
tor is permitted, however, since it does not specify any color informa-
tion.

integer (Required) A code that controls adjustments to the spacing of tiles relative to
the device pixel grid:

1 Constant spacing. Pattern cells are spaced consistently—that is, by a

multiple of a device pixel. To achieve this, makepattern may need to
distort the pattern cell slightly by making small adjustments to XStep,
YStep, and the transformation matrix. The amount of distortion
does not exceed 1 device pixel.

2 No distortion. The pattern cell is not distorted, but the spacing

between pattern cells may vary by as much as 1 device pixel, both
horizontally and vertically, when the tiling pattern is painted. This
achieves the spacing requested by XStep and YStep on average, but
not for each individual pattern cell.

3 Constant spacing and faster tiling. Pattern cells are spaced consistently
as in tiling type 1, but with additional distortion permitted to enable
a more efficient implementation.

An additional entry inserted in the dictionary by the makepattern operator,
containing information used by the interpreter to achieve proper tiling of the
pattern. The type and value of this entry are implementation-dependent.

The pattern cell is described in its own coordinate system, defined when the tiling
pattern is instantiated from its prototype with the makepattern operator. This
pattern coordinate system is formed by concatenating the operator's matrix oper-
and with the current transformation matrix at the time of instantiation. The pat-
tern dictionary's XStep, YStep, and BBox values are interpreted in the pattern
coordinate system, and the PaintProc procedure is executed within that coordi-
nate system.

The placement of pattern cells in the tiling is based on the location of one key pat-
tern cell, which is then displaced by multiples of XStep and YStep to replicate the
pattern. The origin of the key pattern cell coincides with the origin of the pattern
coordinate system; the phase of the tiling can be controlled by the translation

253
I4.9 Patterns

components of the makepattern operator's matrix operand. Because the pattern
coordinate system is locked into user space at the time of instantiation, properties
of the pattern that depend on the coordinate system, such as the size of the pat-
tern cell and the phase of the tiling in device space, are frozen at that time and are
unaffected by subsequent changes in the CTM or other graphics state parameters.

PaintProc Procedure

As described above in Section 4.9.1, "Using Patterns," the first step in painting
with a pattern is to establish the pattern dictionary as the current color in the
graphics state. In the case of a tiling pattern, subsequent painting operations will
tile the painted areas with the pattern cell described in the dictionary. Whenever
it needs to obtain the pattern cell, the interpreter does the following:

1. Invokes gsave

2. Installs the graphics state that was in effect at the time the tiling pattern was
instantiated, with certain parameters altered as documented in the description
of the ma ke pattern operator in Chapter 8

3. Pushes the pattern dictionary on the operand stack

4. Executes the pattern's PaintProc procedure

5. Invokes grestore

The PaintProc procedure is expected to consume its dictionary operand and to
use the information at hand to paint the pattern cell. It must obey certain guide-
lines to avoid disrupting the environment in which it is executed:

• It should not invoke any of the operators listed in Appendix G as unsuitable for
use in encapsulated PostScript files.

• It should not invoke showpage, copypage, or any device setup operator.

• Except for removing its dictionary operand, it should leave the stacks un-
changed.

• It should have no side effects beyond painting the pattern cell. It should not
alter objects in virtual memory or anywhere else. Because of the effects of cach-
ing, the PaintProc procedure is called at unpredictable times and in
unpredictable environments. It should depend only on information in the pat-
tern dictionary and should produce the same effect every time it is called.

I CHAPTER 4

Colored Tiling Patterns

254

1
Graphics I

A colored tiling pattern is one whose color is self-contained. In the course of
painting the pattern cell, the PaintProc procedure explicitly sets the color of each

graphical element it paints. A single pattern cell can contain elements that are
painted different colors; it can also contain sampled grayscale or color images.

A Pattern color space representing a colored tiling pattern requires no additional
parameters and can be specified with just the color space family name Pattern.
The color space operand to setcolorspace can be either the name Pattern or a

one-element array containing the name Pattern. A second parameter, the
underlying color space—required as a second element of the array for uncolored

tiling patterns—may optionally be included, but is ignored when using colored
tiling patterns.

A color value operand to setcolor in such a color space has a single component, a
pattern dictionary whose PaintType value is 1. Example 4.20 shows how to estab-
lish a colored tiling pattern as the current color, where pattern is a pattern dic-
tionary of paint type 1.

Example 4.20

[/Pattern] setcolorspace

pattern setcolor

% Alternatively, /Pattern setcolorspace

Subsequent executions of painting operators, such as fill, stroke, show, and
imagemask, will use the designated pattern to tile the areas to be painted.

Note: The image operator in its five-operand form and the colorimage operator use

a predetermined color space (DeviceGray, DeviceRGB, or DeviceCMYK) for interpret-
ing their color samples, regardless of the current color space. Setting a Pattern color
space has no effect on these operators. The one-operand (dictionary) form of image
is not allowed, since numeric color components are not meaningful in a Pattern color
space. The imagemask operator is allowed, however, because the image samples do
not represent colors, but rather designate places where the current color is to be
painted.

255

I
Patterns I

Example 4.21 defines a colored tiling pattern and then uses it to paint a rectangle
and a character glyph; Figure 4.10 shows the results.

Example 4.21

« /PatternType 1 %Tiling pattern

/PaintType 1 % Colored

frilingType 1

/BBox [0 0 60 60]

/XStep 60

/YStep 60

/star

I gsave % Private procedure used by PaintProc

0 12 moveto

41144 rotate 0 12 lineto} repeat

closepath fill

grestore

} bind

/PaintProc

{ begin

0.3 setgray

15 15 translate star

30 30 translate star

0.7 setgray

-30 0 translate star

30 -30 translate star

end

} bind

>>

% Push pattern on dictionary stack

% Set color for dark gray stars

% Set color for light gray stars

% End prototype pattern dictionary

matrix % Identity matrix

makepattern % Instantiate the pattern

/Star4 exch def

120 120 184 120 4 copy %Two copies of rectangle operands

/Pattern setcolorspace

Star4 setcolor rectfill

0.0 setgray rectstroke

/Times-Roman 270 selectfont

160 100 translate

0.9 setgray 0 0 moveto (A) show

Star4 setpattern 0 0 moveto (A) show

% Fill rectangle with stars

% Stroke black outline

% Paint glyph with gray

% Paint glyph with stars

256
I CHAPTER 4 Graphics I

* * * * *

* * * * * *

FIGURE 4.10 Output from Example 4.21

The pattern consists of four stars in two different colors. The PaintProc procedure
specifies the colors of the stars. Several features of Example 4.21 are noteworthy:

• After constructing the prototype pattern dictionary, the program immediately
invokes makepattern on it. The value assigned to Star4 is the instantiated pat-
tern returned by makepattern. There is no need to save the prototype pattern
unless it is to be instantiated in multiple ways, perhaps with different sizes or
orientations.

• The program illustrates both methods of selecting a pattern for painting. The
first time, it invokes the setcolorspace and setcolor operators separately. The
second time, it uses the convenience operator setpattern. Note that the calls to
setgray also change the color space to DeviceGray.

• The rectangle and the glyph representing the letter A are painted with the same
instantiated pattern (the pattern dictionary returned by a single execution of
makepattern). The pattern cells align, even though the current transformation
matrix is altered between the two uses of the pattern.

• The pattern cell does not completely cover the tile: it leaves the spaces between
the stars unpainted. When the tiling pattern is used as a color, the existing

257
I4.9 Patterns I

background shows through these unpainted areas, as the appearance of the A
glyph in Figure 4.10 demonstrates. The letter is first painted solid gray; when it
is painted again with the star pattern, the gray continues to show between the
stars.

Uncolored Tiling Patterns

An uncolored tiling pattern is one that has no inherent color: the color must be
specified separately whenever the pattern is used. This provides a way to tile dif-
ferent regions of the page with pattern cells having the same shape but different
colors. The pattern's PaintProc procedure does not explicitly specify any colors; it
can use the imagemask operator, but not image or colorimage. (See
Section 4.8.1, "Types of Color Space," for further discussion.)

A Pattern color space representing an uncolored tiling pattern requires a parame-
ter: an array or name that identifies the underlying color space in which the actual

color of the pattern is to be specified. Operands supplied to setcolor in such a col-
or space must include both a color value in the underlying color space, specified
by one or more numeric color components, and a pattern dictionary whose paint
type is 2.

Note: The underlying color space of a Pattern color space cannot itself be a Pattern
color space.

Example 4.22 establishes an uncolored tiling pattern as the current color, using
DeviceRGB as the underlying color space. The component values r, g, and b spec-
ify a color in DeviceRGB space; pattern is a pattern dictionary with a paint type
of 2.

Example 4.22

[/ Pattern

[iDeviceRGB]

] setcolorspace

r g b pattern setcolor

Subsequent executions of painting operators, such as fill, stroke, show, and
imagemask, will tile the areas to be painted with the pattern cell defined by
pattern, using the color specified by the components r, g, and b.

I CHAPTER 4
258

Graphics I

Example 4.23 defines an uncolored tiling pattern and then uses it to paint a rect-
angle and a circle in different colors; Figure 4.11 shows the results.

Example 4.23

« /PatternType 1 %Tiling pattern

/PaintType 2 cYo Uncolored

/TilingType 1

/BBox [- 12 - 12 12 12]

/XStep 30

/YStep 30

/PaintProc

{ Pop
0 12 moveto

4 { 144 rotate 0 12 lineto} repeat

closepath

fill

} bind

> >

% Pop pattern dictionary

% End prototype pattern dictionary

matrix % Identity matrix

makepattern % Instantiate the pattern

/Star exch def

140 110 170 100 4 copy %Two copies of rectangle operands

0.9 setgray rectfill

[/Pattern /DeviceGray] setcolorspace

1.0 Star setcolor rectfill

225 185 60 0 360 arc

0.0 Star setpattern gsave fill grestore

0.0 setgray stroke

% Fill rectangle with gray

% Fill rectangle with white stars

% Build circular path

% Fill circle with black stars

% Stroke black outline

The pattern consists of a single star, which the PaintProc procedure paints with-

out first specifying a color. Most of the remarks after Example 4.21 on page 255

also apply to Example 4.23. Additionally:

• The program paint the rectangle twice, first with gray, then with the tiling pat-
tern. To paint with the pattern, it supplies two operands to setcolor: the num-
ber 1.0, denoting white in the underlying DeviceGray color space, and the
pattern dictionary.

L49

259

I
Patterns 1

FIGURE 4.11 Output from Example 4.23

• The program paints the circle with the same pattern, but with the color set to

0.0 (black). Note that in this instance, setpattern inherits parameters from the
existing color space (see the description of the setpattern operator in Chapter 8
for details).

4.9.3 Shading Patterns

Shading patterns (LanguageLevel 3) provide a smooth transition between colors

across an area to be painted, independent of the resolution of any particular out-
put device and without specifying the number of steps in the color transition.
Patterns of this type are described by pattern dictionaries with a pattern type of 2.
Table 4.10 shows the contents of this type of dictionary, most of whose entries are
identical to corresponding entries in the type 1 pattern dictionary (Table 4.9).
The most significant entry is Shading, whose value is a shading dictionary de-
fining the properties of the shading pattern's gradient fill. This is a complex
"paint" that determines the type of color transition the shading pattern produces

when painted across an area.

CHAPTER 4
260

Graphics I

TABLE 4.10 Entries in a type 2 pattern dictionary

KEY TYPE VALUE

PatternType integer (Required) A code identifying the pattern type that this dictionary describes;
must be 2 for a shading pattern.

Shading dictionary (Required) A shading dictionary defining the shading pattern's gradient fill.
The contents of the dictionary consist of the entries in Table 4.11 plus those

in one of Tables 4.12 to 4.17. To ensure predictable behavior, once the pattern

has been instantiated with the makepattern operator, this shading dictionary
and all of its contents should be treated as if they were read-only.

XUID array (Optional) An extended unique ID that uniquely identifies the pattern (see

Section 5.6.2, "Extended Unique ID Numbers). The presence of an XUID en-

try in a pattern dictionary enables the PostScript interpreter to save cached

instances of the pattern for later use, even when the pattern dictionary is

loaded into virtual memory multiple times (for instance, by different jobs).

To ensure correct behavior, XUID values must be assigned from a central reg-

istry. This is particularly appropriate for patterns treated as named resources.
Patterns that are created dynamically by an application program should not
contain XUID entries.

Implementation any An additional entry inserted in the dictionary by the makepattern operator,

containing information used by the interpreter to achieve proper shading of

the pattern. The type and value of this entry are implementation-dependent.

By setting a shading pattern as the current color in the graphics state, a PostScript
program can use it with painting operators such as fill, stroke, show, or
imagemask to paint a path, glyph, or mask with a smooth color transition. When
a shading is used in this way, the geometry of the gradient fill is independent of
the geometry of the object being painted.

When the area to be painted is a relatively simple shape whose geometry is the
same as that of the gradient fill itself, the shfill operator can be used instead. shfill
accepts a shading dictionary as an operand and applies the corresponding gradi-
ent fill directly to current user space. This operator does not require the creation
of a pattern dictionary and works without reference to the current path or cur-

rent color in the graphics state. See the description of the shfill operator in
Chapter 8 for details.

261

1
Patterns

Note: Patterns defined by type 2 pattern dictionaries do not tile. To create a tiling
pattern containing a gradient fill, invoke the shfill operator from the PaintProc proce-
dure of a type 1 (tiling) pattern.

Shading Dictionaries

A shading dictionary specifies details of a particular gradient fill, including the
type of shading to be used, the geometry of the area to be shaded, and the geom-
etry of the gradient fill itself. Various shading types are available, depending on

the value of the dictionary's ShadingType entry:

• Function-based shadings (type 1) define the color of every point in the domain
using a mathematical function (not necessarily smooth or continuous).

• Axial shadings (type 2) define a color blend along a line between two points,
optionally extended beyond the boundary points by continuing the boundary
colors.

• Radial shadings (type 3) define a blend between two circles, optionally ex-
tended beyond the boundary circles by continuing the boundary colors. This
type of shading is commonly used to represent three-dimensional spheres and

cones.

• Free-form Gouraud-shaded triangle meshes (type 4) define a common construct
used by many three-dimensional applications to represent complex colored
and shaded shapes. Vertices are specified in free-form geometry.

• Lattice-form Gouraud-shaded triangle meshes (type 5) are based on the same
geometrical construct as type 4, but with vertices specified as a pseudorectan-
gular lattice.

• Coons patch meshes (type 6) construct a shading from one or more color
patches, each bounded by four Bézier curves.

• Tensor-product patch meshes (type 7) are similar to type 6, but with 16 control
points in each patch instead of 12.

Table 4.11 shows the entries that all shading dictionaries share in common;
entries specific to particular shading types are described in the relevant sections

below.

Note: Many of the following descriptions refer to "the coordinate space into which
the shading is painted." For shadings used with a type 2 pattern dictionary, this is the

I CHAPTER 4
262

i
Graphics I

pattern coordinate system established at the time the pattern is instantiated with

makepattern. For shadings used directly with the shfill operator, it is the current user

space.

TABLE 4.11 Entries common to all shading dictionaries

KEY TYPE VALUE

ShadingType integer (Required) The shading type:

1 Function-based shading

2 Axial shading
3 Radial shading
4 Free-form Gouraud-shaded triangle mesh

5 Lattice-form Gouraud-shaded triangle mesh
6 Coons patch mesh
7 Tensor-product patch mesh

ColorSpace name or array (Required) The color space in which color values are expressed. May be any
device, CIE-based, or special color space except a Pattern space. All color

values in the shading are interpreted relative to this color space. See "Color
Space: Special Considerations" on page 263 for further information.

Background array (Optional) An array of color components appropriate to the color space,
specifying a single background color value. If present, this color is used be-

fore any painting operation involving the shading, to fill the entire area to be
painted. The effect is as if the painting operation were performed twice: first
with the background color and then again with the shading.

BBox array (Optional) An array of four numbers giving the left, bottom, right, and top

coordinates, respectively, of the shading's bounding box. The coordinates are
interpreted in the coordinate space into which the shading is painted. If
present, this bounding box is applied as a temporary clipping boundary
when the shading is painted, in addition to the current clipping path and any
other clipping boundaries in effect at that time.

AntiAlias boolean (Optional) A flag indicating whether to filter the shading function to prevent

aliasing artifacts. The shading operators sample shading functions at a rate
determined by the resolution of the output device. Aliasing can occur if the

function is not smooth—that is, if it has a high spatial frequency relative to
the sampling rate. Anti-aliasing can be computationally expensive and is usu-
ally unnecessary, since most shading functions are smooth enough, or are
sampled at a high enough frequency, to avoid aliasing effects. This feature

may not be implemented on some devices, in which case this flag is ignored.
Default value: false.

263

I
Patterns 1

Some types of shading dictionary include a DataSource entry, whose value is an
array, string, or file containing arbitrary amounts of descriptive data characteriz-
ing the shading's gradient fill. Since a shading pattern may access its shading dic-
tionary multiple times, the descriptive data must be provided in reusable form.
An array or string is reusable, but its length is subject to an implementation limit.
A file can be of unlimited length, but only positionable files are reusable. In-line
data obtained from currentfile is not reusable, and must be converted into re-
usable form by means of the ReusableStreamDecode filter. Nonreusable data
sources may be used only with the shfill operator.

In addition, some shading dictionaries also include a function dictionary de-
fining how colors vary across the area to be shaded. In such cases, the shading
dictionary usually defines the geometry of the shading, while the function dic-
tionary defines the color transitions across that geometry. The function diction-
ary is required for some types of shading and optional for others. Function
dictionaries are described in detail in Section 3.10.1, "Function Dictionaries!'

Note: Discontinuous color transitions, or those with high spatial frequency, may ex-
hibit aliasing effects when painted at low effective resolutions.

Color Space: Special Considerations

Conceptually, a shading determines a color value for each individual point within
the area to be painted. In practice, however, the shading may actually be used to
compute color values only for some subset of the points in the target area, with
the colors of the intervening points determined by interpolation between the
ones computed. PostScript implementations are free to use this strategy as long as

the interpolated color values approximate those defined by the shading to within
the tolerance specified by the smoothness parameter in the graphics state (see the
description of the setsmoothness operator in Chapter 8). The ColorSpace entry
common to all shading dictionaries not only defines the color space in which the
shading specifies its color values, but also determines the color space in which
color interpolation is performed.

Note: Some shading types (4, 5, 6, and 7) perform interpolation on a parametric
value supplied as input to the shading's color mapping function, as described in the
relevant sections below. This form of interpolation is conceptually distinct from the

interpolation described here, which operates on the output color values produced by
the color mapping function and takes place within the shading's target color space.

I CHAPTER 4
264

Graphics I

Gradient fills between colors defined by most shadings are implemented using a

variety of interpolation algorithms, and these algorithms are sensitive to the char-
acteristics of the color space. Linear interpolation, for example, may have observ-
ably different results when applied in CMYK color space than in the CIE 1976
L*a*b* color space, even if the starting and ending colors are perceptually identi-
cal. The difference arises because the two color spaces are not linear relative to
each other. Shadings are rendered according to the following rules:

• If ColorSpace is a device color space different from the native color space of the
output device, color values in the shading will be converted to the native color
space using the standard conversion formulas described in Section 7.2, "Con-
versions among Device Color Spaces!' To optimize performance, these conver-
sions may take place at any time (either before or after any interpolation on the
color values in the shading). Thus, shadings defined with device color spaces
may have color gradient fills that are less accurate and somewhat device-
dependent. (This does not apply to axial and radial shadings—shading types 2
and 3—because those shading types perform gradient fill calculations on a
single variable and then convert to parametric colors.)

• If ColorSpace is a CIE-based color space, all gradient fill calculations will be
performed in that space. Conversion to device colors will occur only after all
interpolation calculations are performed. Thus, the color gradients will be
device-independent for the colors generated at each point.

• If ColorSpace is a Separation or DeviceN color space and the specified colo-

rants are supported, no color conversion calculations are needed. If the speci-
fied colorants are not supported (so that the color space's altemativeSpace
parameter must be used), gradient fill calculations will be performed in the

designated Separation or DeviceN color space before conversion to the alterna-
tive space. Thus, nonlinear tintTransform functions will be accommodated for
the best possible representation of the shading.

• If ColorSpace is an Indexed color space, all color values specified in the shading
will be immediately converted to the base color space. Depending on whether
the base color space is a device or CIE-based space, gradient fill calculations
will be performed as stated above. Interpolation never occurs in an Indexed
color space, which is quantized and inappropriate for calculations that assume

a continuous range of colors. For similar reasons, an Indexed color space is not
allowed in any shading whose color values are generated by a function; this ap-
plies to any shading dictionary that contains a Function entry.

265

i
Patterns I

Shading Types

In addition to the entries listed in Table 4.11, all shading dictionaries must have
entries specific to the type of shading they represent, as indicated by the value of
their ShadingType key. The following sections describe the available shading
types and the dictionary entries specific to each.

Type 1 (Function-Based) Shadings

In type 1 (function-based) shadings, the color of every point in the domain is de-
fined by a specified mathematical function. The function is not necessarily
smooth or continuous. This is the most general of the available shading types,
and is useful for shadings that cannot be adequately described with any of the
other types. In addition to the entries in Table 4.11, a type 1 shading dictionary
includes the entries listed in Table 4.12.

Note: This type of shading may not be used with an Indexed color space.

TABLE 4.12 Additional entries specific to a type 1 shading dictionary

KEY TYPE VALUE

Domain

Matrix

Function

array (Optional) An array of four numbers specifying the rectangular domain of

coordinates over which the color function(s) are defined. Default value:

[0 1 0 1].

array (Optional) A transformation matrix mapping the coordinate space specified

by the Domain entry into the coordinate space in which the shading is paint-
ed. For example, to map the domain rectangle [0 1 0 1] to a 1-inch square

with lower-left corner at coordinates (100, 100) in default user space, the
Matrix value would be [72 0 0 72 100 100]. Default value: the identity
matrix [1 0 0 1 0 0].

dictionary (Required) A 2-in, n-out function dictionary or an array of n 2-in, 1-out
or array function dictionaries (where n is the number of color components in the

shading dictionary's color space). Each function dictionary's domain must be
a superset of that of the shading dictionary. If the values returned by the
function(s) for a given color component are out of range, they will be adjust-
ed to the nearest valid value.

I CHAPTER 4
266

l
Graphics I

The domain rectangle (Domain) establishes an internal coordinate space for the
shading that is independent of the coordinate space in which it is to be painted.
The color function(s) (Function) specify the color of the shading at each point
within this domain rectangle. The transformation matrix (Matrix) then maps the
domain rectangle into a corresponding rectangle or parallelogram in the coordi-
nate space in which the shading is painted. Points within the shading's bounding
box (BBox) that fall outside this transformed domain rectangle will be painted
with the shading's background color (Background); if the shading dictionary has
no Background entry, such points will be left unpainted. If the function is
undefined at any point within the declared domain rectangle, an undefinedresu It
error may occur, even if the corresponding transformed point falls outside the
shading's bounding box.

Type 2 (Axial) Shadings

Type 2 (axial) shadings define a color blend that varies along a linear axis between
two endpoints and extends indefinitely perpendicular to that axis. The shading
may optionally be extended beyond either or both endpoints by continuing the
boundary colors indefinitely. In addition to the entries in Table 4.11 on page 262,
a type 2 shading dictionary includes the entries listed in Table 4.13.

Note: This type of shading may not be used with an Indexed color space.

TABLE 4.13 Additional entries specific to a type 2 shading dictionary

KEY TYPE VALUE

Coords array (Required) An array of four numbers [xo yo x1 yi I specifying the starting and

ending coordinates of the axis, expressed in the coordinate space in which the
shading is painted.

Domain array (Optional) An array of two numbers [to t1] specifying the limiting values of a
parametric variable t. The variable is considered to vary linearly between
these two values as the color gradient varies between the starting and ending
points of the axis. The variable t becomes the argument with which the color
function(s) are called. Default value: [0 1].

Function dictionary (Required) A 1-in, n-out function dictionary or an array of n 1-in, 1-out

or array function dictionaries (where n is the number of color components in the
shading dictionary's color space). The function(s) are called with values of

the parametric variable t in the domain defined by the shading dictionary's
Domain entry. Each function dictionary's domain must be a superset of that

267
4.9 Patterns I

of the shading dictionary. If the values returned by the function(s) for a given
color component are out of range, they will be adjusted to the nearest valid
value.

Extend array (Optional) An array of two boolean values specifying whether to extend the
shading beyond the starting and ending points of the axis, respectively.
Default value: [false false].

The color blend is accomplished by linearly mapping each point (x, y) along the
axis between the endpoints (xo, yo) and (xi, yi) to a corresponding point in the
domain specified by the shading dictionary's Domain entry. The point (0, 0) in
the domain corresponds to (xo, yo) on the axis, and (1, 0) corresponds to (x1, yi).
Since all points along a line in domain space perpendicular to the line from (0, 0)
to (1, 0) will have the same color, only the new value of x needs to be computed:

(x1 — x0)(x — x0) + (y1 — yo)(y — yo)
=

(x1 — x0)2 + (y1 — y0)2

The value of the parametric variable t is then determined from x' as follows:

• For 0 ≤ x' 5 1, t = to + (ti — to) x'.

• For x' < 0, if the first value in the Extend array is true, then t = to; otherwise, t is
undefined and the point is left unpainted.

• For x' > 1, if the second value in the Extend array is true, then t = ti; otherwise,
t is undefined and the point is left unpainted.

The value of t is then passed as the input argument to the function(s) defined by
the shading dictionary's Function entry, yielding the component values of the
color with which to paint the point (x, y).

Type 3 (Radial) Shadings

Type 3 (radial) shadings define a color blend that varies between two circles. They
are commonly used to depict three-dimensional spheres and cones. In addition
to the entries in Table 4.11 on page 262, a type 3 shading dictionary includes the
entries listed in Table 4.14.

I CHAPTER 4
268

i
Graphics I

Note: This type of shading may not be used with an Indexed color space.

TABLE 4.14 Additional entries specific to a type 3 shading dictionary

KEY TYPE VALUE

Coords array (Required) An array of six numbers [xo h ro x1 Yi r1] specifying the centers

and radii of the starting and ending circles, expressed in the coordinate space
in which the shading is painted. The radii ro and r1 must both be greater than
or equal to O. If one radius is 0, the corresponding circle is treated as a point;
if both are 0, nothing is painted.

Domain array (Optional) An array of two numbers [to t1] specifying the limiting values of a
parametric variable t. The variable is considered to vary linearly between
these two values as the color gradient varies between the starting and ending
circles. The variable t becomes the argument with which the color func-
tion(s) are called. Default value: [0 1].

Function dictionary (Required) A 1-in, n-out function dictionary or an array of n 1-in, 1-out
or array function dictionaries (where n is the number of color components in the

shading dictionary's color space). The function(s) are called with values of
the parametric variable tin the domain defined by the shading dictionary's
Domain entry. Each function dictionary's domain must be a superset of that
of the shading dictionary. If the values returned by the function(s) for a given
color component are out of range, they will be adjusted to the nearest valid
value.

Extend array (Optional) An array of two boolean values specifying whether to extend the

shading beyond the starting and ending circles, respectively. Default value:
[false false].

The color blend is based on a family of blend circles interpolated between the

starting and ending circles that are defined by the shading dictionary's Coords

entry. The blend circles are defined in terms of a subsidiary parametric variable

t— to
5 =

269

I
Patterns 1

which varies linearly between 0.0 and 1.0 as t varies across the domain from to to
t1, as specified by the dictionary's Domain entry. The center and radius of each
blend circle are given by the parametric equations

xc(s) = x0 + s x (xi — x0)

YC(5) = Y0 4- 5 X (Y1 —Y0)
r(s) = r0 + s x (ri — r0)

Each value of s between 0.0 and 1.0 determines a corresponding value of t, which
is then passed as the input argument to the function(s) defined by the shading
dictionary's Function entry. This yields the component values of the color with
which to fill the corresponding blend circle. For values of s not lying between 0.0
and 1.0, the boolean values in the shading dictionary's Extend entry determine
whether and how the shading will be extended. If the first of the two boolean
values is true, the shading is extended beyond the defined starting circle to values
of s less than 0.0; if the second boolean value is true, the shading is extended be-
yond the defined ending circle to s values greater than 1.0.

Note that either of the starting or ending circles may be larger than the other. If
the shading is extended at the smaller end, the family of blend circles continues as
far as that value of s for which the radius of the blend circle r(s) = 0; if the shading
is extended at the larger end, the blend circles continue as far as that s value for
which r(s) is large enough to encompass the shading's entire bounding box
(BBox). Extending the shading can thus cause painting to extend beyond the
areas defined by the two circles themselves.

Conceptually, all of the blend circles are painted in order of increasing values of s,
from smallest to largest. Blend circles extending beyond the starting circle are
painted in the same color defined by the shading dictionary's Function entry for
the starting circle (s = 0.0, t = to); those extending beyond the ending circle are
painted in the color defined for the ending circle (s = 1.0, t = t1). The painting is
opaque, with the color of each circle completely overlaying those preceding it;
thus if a point lies within more than one blend circle, its final color will be that of
the last of the enclosing circles to be painted, corresponding to the greatest value
of s. Note the following points:

• If one of the starting and ending circles entirely contains the other, the shading
will depict a sphere.

I CHAPTER 4
270

Graphics I

• If neither circle contains the other, the shading will depict a cone. If the starting
circle is larger, the cone will appear to point out of the page; if the ending circle
is larger, the cone will appear to point into the page.

Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)

Type 4 shadings (free-form Gouraud-shaded triangle meshes) are commonly
used to represent complex colored and shaded three-dimensional shapes. The
area to be shaded is defined by a path composed entirely of triangles. The color at
each vertex of the triangles is specified, and a technique known as Gouraud inter-
polation is used to color the interiors. The interpolation functions defining the
shading may be linear or nonlinear. In addition to the entries in Table 4.11 on
page 262, a type 4 shading dictionary includes the entries listed in Table 4.15.

TABLE 4.15 Additional entries specific to a type 4 shading dictionary

KEY TYPE VALUE

DataSource array, string, (Required) The sequence of vertex coordinates and colors defining the

or file free-form triangle mesh.

BitsPerCoordinate integer (Required, unless DataSource is an array) The number of bits used to

represent each vertex coordinate. Allowed values are 1, 2, 4, 8, 12, 16, 24,

and 32.

BitsPerComponent integer (Required, unless DataSource is an array) The number of bits used to rep-

resent each color component. Allowed values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag integer (Required, unless DataSource is an array) The number of bits used to rep-

resent the edge flag for each vertex (see below). Allowed values of

BitsPerFlag are 2, 4, and 8, but only the least significant 2 bits in each flag

value are used. Allowed values for the edge flag itself are 0, 1, and 2.

Decode array (Required, unless DataSource is an array) An array of numbers describing

how to map vertex coordinates and color components into the appropri-

ate ranges of values. The decoding method is similar to that used in image

dictionaries (see "Sample Decoding" on page 299). The ranges are speci-

fied as follows:

(xmin xmax Ymin Ymax cl,min cl,max • • • cn,rnin cn,maxi

Note that only one pair of c values should be specified if a Function entry

is present.

I Function

271

I
Patterns I

dictionary (Optional) A 1-in, n-out function dictionary or an array of n 1-in, 1-out
or array function dictionaries (where n is the number of color components in the

shading dictionary's color space). If this entry is present, the color data for
each vertex must be specified by a single parametric variable rather than
by n separate color components; the designated function(s) will be called
with each interpolated value of the parametric variable to determine the

actual color at each point. If DataSource is a string or a file, each input
value will be clipped to the range interval specified for the corresponding

color component in the shading dictionary's Decode array. If DataSource
is an array (in which case Decode is not relevant), each input value will be

clipped to the interval [0.0 1.01 In either case, each function dictionary's
domain must be a superset of the stated interval. If the values returned by

the function(s) for a given color component are out of range, they will be
adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

The shading dictionary's DataSource entry provides a sequence of vertex coordi-
nates and color data that defines the triangle mesh. Each vertex is specified by the
following values, in the order shown:

f x y ci... cn

where

f is the vertex's edge flag (discussed below)
x and y are its horizontal and vertical coordinates
c1 ... c, are its color components

All vertex coordinates are expressed in the coordinate space in which the shading
is painted. If the shading dictionary includes a Function entry, then only a single
parametric value, t, is permitted for each vertex in place of the color components
ci ... ca.

The edge flag associated with each vertex determines the way it connects to the

other vertices of the triangle mesh. A vertex va with an edge flag value fa = 0 be-
gins a new triangle, unconnected to any other. At least two more vertices (vb and

ye) must be provided, but their edge flags will be ignored. These three vertices de-
fine a triangle (va, vb, ve), as shown in Figure 4.12.

I CHAPTER 4
272

1
Graphics I

FIGURE 4.12 Starting a new triangle in a free-form Gouraud-shaded triangle mesh

Subsequent triangles are defined by a single new vertex combined with two verti-
ces of the preceding triangle. Given triangle (va, vb, ve), where vertex va precedes
vertex vb in the data source and vb precedes ve, a new vertex vd can form a new tri-
angle on side vbc or side vac, as shown in Figure 4.13. (Side vab is assumed to be
shared with a preceding triangle and so is not available for continuing the mesh.)
If the edge flag is fd = 1 (side vbc), the next vertex forms the triangle (vb, vc, vd); if
the edge flag is fd = 2 (side vac), the next vertex forms the triangle (va, ve, vd). An
edge flag offd = 0 would start a new triangle, as described above.

FIGURE 4.13 Connecting triangles in a free-form Gouraud-shaded triangle mesh

273
Patterns I

Complex shapes can be created by using the edge flags to control the edge on
which subsequent triangles are formed. Figure 4.14 shows two simple examples.
Mesh 1 begins with triangle 1 and uses the following edge flags to draw each suc-
ceeding triangle:

1 (fa = fb = fc = 0)

2 (fd = 1)

3 (fe = 1
4 (ff= 1)

5 (fg = 1)

6 (fh = 1)

7 (fi = 2)

8 (fi = 2)

9 (fk = 2)
10 (fi= 1)

11 (fm = 1)

v. Vi Vf Ve
Vk= Vd

Mesh 1 Mesh 2

FIGURE 4.14 Varying the value of the edge flag to create different shapes

Mesh 2 again begins with triangle 1 and uses the edge flags

1 (fa = fh = fe = 0)

2 (fd = 1)

3 (fe = 2)

4 (ff.= 2)

5 (fg = 2)

6 (fh = 2)

The data source must provide vertex data for a whole number of triangles with
appropriate edge flags; otherwise, a rangecheck error will occur. If the mesh con-

tains only a few vertices, they may be represented by an array of numeric values
(integers for edge flags, integers or real numbers for coordinates and colors); in

I CHAPTER 4
274

I
Graphics I

this case, only the ShadingType, DataSource, and Function entries in the shading
dictionary are relevant. If the mesh contains many vertices, the data should be

encoded compactly and drawn from a string or a file. The encoding is specified by
the dictionary's BitsPerFlag, BitsPerCoordinate, BitsPerComponent, and Decode

entries.

The data for each vertex consists of the following items, reading in sequence from
higher-order to lower-order bit positions:

• An edge flag, expressed in BitsPerFlag bits

• A pair of horizontal and vertical coordinates, each expressed in BitsPer-
Coord in ate bits

• A set of n color components (where n is the number of components in the
shading's color space), each expressed in BitsPerComponent bits, in the order
expected by the setcolor operator

Each set of vertex data must occupy a whole number of bytes; if the total number
of bits required is not divisible by 8, the last data byte for each vertex is padded at
the end with extra bits, which are ignored. The coordinates and color values are
decoded according to the Decode array in the same way as in an image diction-
ary; see "Sample Decoding" on page 299 for details.

If the shading dictionary contains a Function entry, the color data for each vertex
must be specified by a single parametric value t, rather than by n separate color
components. All linear interpolation within the triangle mesh is done using the t
values; after interpolation, the results are passed to the function(s) specified in
the Function entry to determine the color of each point.

Type 5 Shadings (Lattice-Form Gouraud-Shaded Triangle Meshes)

Type 5 shadings (lattice-form Gouraud-shaded triangle meshes) are similar to
type 4, but instead of using free-form geometry, their vertices are arranged in a
pseudorectangular lattice, which is topologically equivalent to a rectangular grid.
The vertices are organized into rows, which need not be geometrically linear (see
Figure 4.15). In addition to the entries in Table 4.11 on page 262, a type 5 shading
dictionary includes the entries listed in Table 4.16.

275
Patterns

j) (i, j+1)

(i+ 1, j) (i+ 1 , j+1)

Ideal lattice Pseudorectangular lattice

FIGURE 4.15 Lattice-form triangular meshes

TABLE 4.16 Additional entries specific to a type 5 shading dictionary

KEY TYPE VALUE

DataSource array, string, (Required) The sequence of vertex coordinates and colors defining the
or file lattice-form triangle mesh.

BitsPerCoordinate integer (Required, unless DataSource is an array) The number of bits used to rep-

resent each vertex coordinate. Allowed values are 1, 2, 4, 8, 12, 16, 24, and
32.

BitsPerComponent integer (Required, unless DataSource is an array) The number of bits used to rep-
resent each color component. Allowed values are 1, 2, 4, 8, 12, and 16.

VerticesPerRow integer (Required) The number of vertices in each row of the lattice; must be
greater than or equal to 2. The number of rows need not be specified.

Decode array (Required, unless DataSource is an array) An array of numbers describing
how to map vertex coordinates and color components into the appropri-
ate ranges of values. The decoding method is similar to that used in image

dictionaries (see "Sample Decoding" on page 299). The ranges are speci-
fied as follows:

Function

[Xmin Xmax Ymin ymax Cl,min Chmax • • • Cn,min Cn,max]

Note that only one pair of c values should be specified if a Function entry
is present.

dictionary (Optional) A 1-in, n-out function dictionary or an array of n 1-in, 1-out
or array function dictionaries (where n is the number of color components in the

shading dictionary's color space). If this entry is present, the color data for
each vertex must be specified by a single parametric variable rather than

by n separate color components; the designated function(s) will be called

I CHAPTER 4
276

Graphics I

with each interpolated value of the parametric variable to determine the

actual color at each point. If DataSource is a string or a file, each input
value will be clipped to the range interval specified for the corresponding

color component in the shading dictionary's Decode array. If DataSource

is an array (in which case Decode is not relevant), each input value will be
clipped to the interval [0.0 1.0]. In either case, each function dictionary's

domain must be a superset of the stated interval. If the values returned by
the function(s) for a given color component are out of range, they will be

adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

The data source for a type 5 shading has the same format as for type 4, except that

it does not use edge flags to define the geometry of the triangle mesh. The data
for each vertex thus consists of the following values, in the order shown:

x y ci cn

where

x and y are the vertex's horizontal and vertical coordinates

c1 c, are its color components

All vertex coordinates are expressed in the coordinate space in which the shading
is painted. If the shading dictionary includes a Function entry, then only a single
parametric value, t, is permitted for each vertex in place of the color components

cn.

The VerticesPerRow entry in the shading dictionary gives the number of vertices
in each row of the lattice. All of the vertices in a row are specified sequentially, fol-
lowed by those for the next row. Given m rows of k vertices each, the triangles of
the mesh are constructed using the following triplets of vertices, as shown in

Figure 4.15:

(V• • V1• ,• •1+1, V• i+1,j)

• • (V ;• • • • el' V i+14, V i+1,J+1)

tor 0≤i≤ m — 2, 0≤j — 2

See "Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)" on
page 270 for further details on the format of the vertex data.

277

u

Patterns I

Type 6 Shadings (Coons Patch Meshes)

Type 6 shadings (Coons patch meshes) are constructed from one or more color
patches, each bounded by four Bézier curves. Degenerate Bézier curves are al-
lowed and are useful for certain graphical effects. At least one complete patch
must be specified.

A Coons patch generally has two independent aspects:

• Colors are specified for each corner of the unit square, and bilinear interpola-
tion is used to fill in colors over the entire unit square.

• Coordinates are mapped from the unit square into a four-sided patch whose
sides are not necessarily linear. The mapping is continuous: the corners of the

unit square map to corners of the patch, and the sides of the unit square map to
sides of the patch, as shown in Figure 4.16.

C2

FIGURE 4.16 Coordinate mapping from a unit square to a four-sided Coons patch

The sides of the patch are given by four cubic Bézier curves, C1, C2, D 1, and D2,

defined over a pair of parametric variables u and y that vary horizontally and ver-

I CHAPTER 4
278

1
Graphics I

tically across the unit square. The four corners of the Coons patch satisfy the

equations

C1(0) = D1(0)

C1(1) = D2(0)

C2(0) = D1(1)

C2(1) = D2(1)

Two surfaces can be described that are linear interpolations between the bound-
ary curves. Along the u axis, the surface Sc is defined by

Sc(u, y) = (1 — v) x Ci(u) + v x C2(u)

Along the y axis, the surface SD is given by

SD(u, v) = (I — u) x Di(v) + u x D2(v)

A third surface is the bilinear interpolation of the four corners:

SB(u' v) = (1 — v) X [(1 — u) X C 1(0) + u X Ci(1)]

+ v X [(1 — u) X C2(0) + u X C2(1)]

The coordinate mapping for the shading is given by the surface S, defined as

S = SC + SD — SB

This defines the geometry of each patch. A patch mesh is constructed from a
sequence of one or more such colored patches.

Patches can sometimes appear to fold over on themselves—for example, if a
boundary curve intersects itself. As the value of parameter u or y increases in
parameter space, the location of the corresponding pixels in device space may

change direction, so that new pixels are mapped onto previous pixels already

mapped. If more than one point (u, v) in parameter space is mapped to the same
point in device space, the point selected will be the one with the largest value of v;
if multiple points have the same v, the one with the largest value of u will be se-

lected. If one patch overlaps another, the patch that appears later in the data

source paints over the earlier one.

Note also that the patch is a control surface, rather than a painting geometry. The
outline of a projected square (that is, the painted area) may not be the same as the

279
4.9

I
Patterns I

patch boundary if, for example, the patch folds over on itself, as shown in

Figure 4.17.

L,

Appearance

f

Painted area Patch boundary

f

FIGURE 4.17 Painted area and boundary of a Coons patch

In addition to the entries in Table 4.11 on page 262, a type 6 shading dictionary

includes the entries listed in Table 4.17.

TABLE 4.17 Additional entries specific to a type 6 shading dictionary

KEY TYPE VALUE

DataSource array, string,
or file

BitsPerCoordinate integer

BitsPerComponent integer

(Required) The sequence of coordinates and colors defining the patch mesh.

(Required, unless DataSource is an array) The number of bits used to rep-
resent each geometric coordinate. Allowed values are 1, 2, 4, 8, 12, 16, 24,
and 32.

(Required, unless DataSource is an array) The number of bits used to rep-
resent each color component. Allowed values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag integer (Required, unless DataSource is an array) The number of bits used to rep-

resent the edge flag for each patch (see below). Allowed values of
BitsPerFlag are 2, 4, and 8, but only the least significant 2 bits in each flag
value are used. Allowed values for the edge flag itself are 0, 1, 2, and 3.

I CHAPTER 4
280

i
Graphics I

Decode array (Required, unless DataSource is an array) An array of numbers describing

how to map coordinates and color components into the appropriate
ranges of values. The decoding method is similar to that used in image
dictionaries (see "Sample Decoding" on page 299). The ranges are speci-

fied as follows:

Function

[xmin xmax Yrnin Ymax cl,rnin cl,max • • • cn,min cn,max)

Note that only one pair of c values should be specified if a Function entry

is present.

dictionary (Optional) A 1-in, n-out function dictionary or an array of n 1-in, 1-out

or array function dictionaries (where n is the number of color components in the
shading dictionary's color space). If this entry is present, the color data for
each vertex must be specified by a single parametric variable rather than
by n separate color components; the designated function(s) will be called

with each interpolated value of the parametric variable to determine the
actual color at each point. If DataSource is a string or a file, each input

value will be clipped to the range interval specified for the corresponding

color component in the shading dictionary's Decode array. If DataSource
is an array (in which case Decode is not relevant), each input value will be
clipped to the interval [0.0 1.0]. In either case, each function dictionary's

domain must be a superset of the stated interval. If the values returned by
the function(s) for a given color component are out of range, they will be

adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

The dictionary's data source provides a sequence of Bézier control points and

color values that define the shape and colors of each patch. All of a patch's control

points are given first, followed by the color values for its corners. Note that this
differs from a triangle mesh (shading types 4 and 5), in which the coordinates
and color of each vertex are given together. All control point coordinates are ex-
pressed in the coordinate space in which the shading is painted.

As in triangle meshes, the data source can be either an array of numeric values or
a string or stream containing encoded values, whose representation is specified
by the BitsPerFlag, BitsPerCoordinate, BitsPerComponent, and Decode entries.
In the latter case, if the total number of data bits required to define the patch is
not divisible by 8, the last byte is padded at the end with extra bits, which are

ignored.

281

I
Patterns 1

As in free-form triangle meshes (type 4), each patch has an edge flag that tells
which edge, if any, it shares with the previous patch. An edge flag of 0 begins a

new patch, unconnected to any other. This must be followed by 12 pairs of coor-
dinates, x1 Yi x2 y2 ... X12 y12, which specify the Bézier control points that define
the four boundary curves. Figure 4.18 shows how these control points corre-

spond to the Bézier curves C1, C2, DI, and D2 identified in Figure 4.16 on
page 277. Color values are then given for the four corners of the patch, in the

same order as the control points corresponding to the corners. Thus, c1 is the

color at coordinates (xi , yi), c2 at (x4, y4), c3 at (x7, y7), and c4 at (xio, yi0), as
shown in the figure.

FIGURE 4.18 Color values and edge flags in Coons patch meshes

Figure 4.18 also shows how nonzero values of the edge flag (f= 1, 2, or 3) connect
a new patch to one of the edges of the previous patch. In this case, some of the
previous patch's control points serve implicitly as control points for the new

patch as well (see Figure 4.19), and so are not explicitly repeated in the data
source. Table 4.18 summarizes the required data values for various values of the

edge flag.

I CHAPTER 4
282

i
Graphics I

FIGURE 4.19 Edge connections in a Coons patch mesh

TABLE 4.18 Data values in a Coons patch mesh

EDGE FLAG NEXT SET OF DATA VALUES

f= 0 xl Y1 x2 Y2 x3 Y3 x4 Y4 x5 Y5 x6 Y6 x7 Y7 x8 Y8 x9 Y9 x10 Y10 x11 Yll x12 Y12

CI C2 C3 C4

New patch; no implicit values

283
Patterns I

f=1

f=2

f=3

X5 Y5 X6 Y6 X7 Y7 x8 Y8 x9 Y9 x10 Y10 x11 Y1 1 x12 Y12

C3 c4

Implicit values:

(xi, yi) = (x4, h) previous

(x2, y2) = (x5, y5) previous

(x3, y3) = (x6, y6) previous

(x4, h) = (x7, y7) previous

ci = c2 previous

C2 = c3 previous

X5 Y5 x6 Y6 x7 Y7 x8 Y8 x9 Y9 x10 Y10 x11 Yll x12 Y12

C3 C4

Implicit values:

(x1, y1) = (x7, y7) previous

(x2, y2) = (x8, yii) previous

(x3, y3) = (x9, y9) previous

(x4, Y4) = (x1o, y1o) previous

• = c3 previous

C2 = C4 previous

x5 Y5 x6 Y6 x7 Y7 x8 Y8 x9 Y9 x10 Y10 x11 Y1 1 x12 Y12

C3 C4

Implicit values:

(xpri)= (x1o, Yto) previous
(x2, y2) = (xi 1, hi) previous

(x3, y3) = (x12, Y12) previous
(x4, y4) = (x1, Yi) previous

• = c4 previous

• = ci previous

If the shading dictionary contains a Function entry, the color data for each corner
of a patch must be specified by a single parametric value t, rather than by n sepa-
rate color components c1 cn. All linear interpolation within the mesh is done
using the t values; after interpolation, the results are passed to the function(s)

specified in the Function entry to determine the color of each point.

Type 7 Shadings (Tensor-Product Patch Meshes)

Type 7 shadings (tensor-product patch meshes) are identical to type 6, except
that they are based on a bicubic tensor-product patch defined by 16 control
points, instead of the 12 control points that define a Coons patch. The shading
dictionaries representing the two patch types differ only in the value of the
Shad ingType entry and in the number of control points specified for each patch

I CHAPTER 4
284

Graphics I

in the data source. Although the Coons patch is more concise and easier to use,
the tensor-product patch affords greater control over color mapping.

Like the Coons patch mapping, the tensor-product patch mapping is controlled
by the location and shape of four cubic Bézier curves marking the boundaries of
the patch. However, the tensor-product patch has four additional, "internal"
control points to adjust the mapping. The 16 control points can be arranged in a

4-by-4 array indexed by row and column, as follows (see Figure 4.20):

Poo Po 1 P02 P03
P10 Pu l P12 P13
P20 P21 P22 P23

P30 P31 P32 P33

FIGURE 4.20 Control points in a tensor-product mesh

As in a Coons patch mesh, the geometry of the tensor-product patch is described
by a surface defined over a pair of parametric variables, u and y, which vary hori-
zontally and vertically across the unit square. The surface is defined by the equa-
tion

3 3

S(U, = Epii xBi(u)x.iii(v)
i = 0 j =

285
Patterns I

where pii is the control point in row i and column j of the tensor, and Bi and Bi are
the Bernstein polynomials

Bo(t) = (1 —

B (t) = 3tx(1

B2(0 = 3t2 X (1 —

B3(t) = t3

Since each point pii is actually a pair of coordinates (xii, yii), the surface can also
be expressed as

3 3

x(u, = Ext.j..Bi(u)x/3.(v)
i= 0 j = 0

3 3

y(u, v) = z Eyii xBi(u)xBi(v)
i= 0 j = 0

The geometry of the tensor-product patch can be visualized in terms of a cubic
Bézier curve moving from the top boundary of the patch to the bottom. At the
top and bottom, the control points of this curve coincide with those of the patch's
top (poo p03) and bottom (p30 p33) boundary curves, respectively. As the
curve moves from the top edge of the patch to the bottom, each of its four control
points follows a trajectory that is in turn a cubic Bézier curve defined by the four
control points in the corresponding column of the array. That is, the starting
point of the moving curve follows the trajectory defined by control points
poo p30, the trajectory of the ending point is defined by points p03 p33, and
those of the two intermediate control points by poi ... P31 and p02 p32. Equiva-
lently, the patch can be considered to be traced by a Bézier curve moving from the
left edge to the right, with its control points following the trajectories defined by
the rows of the coordinate array instead of the columns.

The Coons patch (type 6) is actually a special case of the tensor-product patch

(type 7) in which the four internal control points (Pii,P12)P21) P22) are implicit-

I CHAPTER 4
286

1
Graphics I

ly defined by the boundary curves. The values of the internal control points are
given by the equations

p11 = S(1/3, 2/3)

P12 = S(2/3, 2/3)

P21 = S(1/3, 1/3)

P22 = S(2/3, 1/3)

where S is the Coons surface equation

S = SC + SD — SB

discussed above under "Type 6 Shadings (Coons Patch Meshes)" on page 277. In
the more general tensor-product patch, the values of these four points are unre-
stricted.

The coordinates of the control points in a tensor-product patch are actually
stored in the shading dictionary's data source in the following order:

1 12 11 10
2 13 16 9
3 14 15 8
4 5 6 7

All control point coordinates are expressed in the coordinate space in which the

shading is painted. These are followed by the color values for the four corners of
the patch, in the same order as the corners themselves. If the patch's edge flag

f = 0, all 16 control points and four corner colors must be explicitly specified in
the data source; if f = 1, 2, or 3, the control points and colors for the patch's

shared edge are implicitly understood to be the same as those along the specified
edge of the previous patch, and are not repeated in the data source. Table 4.19
summarizes the data values for various values of the edge flag f, expressed in
terms of the row and column indices used in Figure 4.20.

287
Patterns

TABLE 4.19 Data values in a tensor-product patch mesh

EDGE FLAG NEXT SET OF DATA VALUES

f =

f= 1

f= 2

f= 3

xoo Yoo xto Ylo x2o Y20 x30 Y30 x31 Y31 x32 Y32 X33 Y33 X23 Y23
X13 Y13 x03 YO3 x02 YO2 x01 YO1 x11 Yl 1 x21 Y21 x22 Y22 x12 Y12
coo C30 C33 CO3

New patch; no implicit values

X31 Y31 x32 Y32 x33 Y33 x23 Y23 x13 Y13 x03 Yo3

X02 YO2 x01 YO1 x11 Y1 1 x21 Y21 x22 Y22 x12 Y12

C33 CO3

Implicit values:

(x00, y00) = (x30, y30) previous

(x1o, yto) = (x31, y31) previous
(x2o, y20) = (x32, y32) previous
(x30, y30) = (x33, y33) previous

coo = c30 previous
C30 = c33 previous

x31 hl x32 Y32 x33 Y33 x23 Y23 x13 Y13 x03 Yo3

X02 YO2 x01 YO1 x11 Y1 1 x21 Y21 x22 Y22 x12 Y12
C33 CO3

Implicit values:

(x00, yoo) = (x33, y33) previous coo = c33 previous

(x10, y10) = (x23, Y23) previous c30 = co3 previous

(x20, y20) = (x13, Y13) previous
(x30, y30) = (x03, yo3) previous

x31 hl x32 Y32 x33 Y33 x23 Y23 x13 Y13 x03 YO3

x02 YO2 x01 YO1 x11 Yl 1 x21 Y21 x22 Y22 x12 Y12

C33 co3

Implicit values:

(x00, yoo) = (x03, y03) previous

(x10, Yio) = (x02, Yo2) Previous
(x20, y20) = (xot, y01) Previous
(x30, y30) = (x0o, yoo) previous

C00 = co3 previous
C30 = coo previous

I CHAPTER 4
288

I
Graphics I

4.10 Images

The PostScript language's painting operators include general facilities for dealing
with sampled images. A sampled image (or just "image" for short) is a rectangular
array of sample values, each representing a color. The image may approximate the
appearance of some natural scene obtained through an input scanner or a video
camera, or it may be generated synthetically.

FIGURE 4.21 Typical sampled image

An image is defined by a sequence of samples obtained by scanning the image
array in row or column order. Each sample in the array consists of as many color
components as are needed for the color space in which they are specified—for
example, one component for DeviceGray, three for DeviceRGB, four for
DeviceCMYK, or whatever number is required by a particular DeviceN space.
Each component consists of a 1-, 2-, 4-, 8-, or 12-bit integer, permitting the rep-
resentation of 2, 4, 16, 256, or 4096 different values for each component.

Depending on LanguageLevel, PostScript implementations differ in the facilities
they offer for images:

• Most LanguageLevel 1 implementations support only grayscale images—that
is, ones whose image samples consist of a single gray component. These can be
painted by means of the five-operand form of the image operator. Image sam-
ples must consist of 1, 2, 4, or 8 bits per component; 12-bit components are not
supported. The image's source data must be provided by a procedure and not
directly by a file or string.

289
I 4.10

I
Images I

• A few LanguageLevel 1 implementations have been extended to support color
images containing three or four components per sample, interpreted as RGB or
CMYK. These can be painted by means of the colorimage operator.
LanguageLevel 1 products containing this feature are primarily color printers,
and also support the setcmykcolor operator and 4-color rendering features.

• LanguageLevel 2 includes all features of LanguageLevel 1. Additionally, it sup-
ports a one-operand form of the image operator in which the operand is an
image dictionary, providing a more general means for specifying the image's
characteristics. Other LanguageLevel 2 features include 12-bit component val-
ues, direct use of files or strings as data sources, interpretation of sample values
in arbitrary color spaces (such as CIE-based), and additional decoding and
rendering options.

• All implementations support the imagemask operator, which paints the cur-
rent color through a stencil mask specified as a bitmap (see "Stencil Masking"
on page 302). However, specification of the operands using an image diction-
ary is a LanguageLevel 2 feature.

• LanguageLevel 3 supports two additional forms of masking, using explicit
masks and color key masks. These features are described in the sections "Explicit
Masking" on page 303 and "Color Key Masking" on page 307.

There are often several ways to paint a given image, depending on the level of lan-

guage features to be used. Fortunately, most properties of images do not depend
on how painting is invoked or how operands are represented. The sections that
follow frequently refer to specific features, such as colorimage or image diction-
aries; see the summary above to determine which features are available in a par-
ticular PostScript implementation.

4.10.1 Image Parameters

The properties of an image—resolution, orientation, scanning order, and so
forth—are entirely independent of the characteristics of the raster output device
on which the image is to be rendered. The PostScript interpreter usually renders
images by a sampling and halftoning technique that attempts to approximate the
color values of the source as accurately as possible. The actual accuracy achieved
depends on the resolution and other properties of the output device.

I CHAPTER 4
290

Graphics I

To paint an image, a PostScript program must specify four interrelated items:

• The format of the source image: number of columns (width), number of rows
(height), number of color components per sample, and number of bits per
color component

• A data source capable of providing the image's sample data, which consists of
height x width x components x bits/component bits of information

• The correspondence between coordinates in user space and coordinates in the
source image space, defining the region of user space that will receive the image

• The mapping from component values in the source image to component values
in the current color space

The PostScript program entirely controls these four aspects of image specifica-
tion.

4.10.2 Sample Representation

The source format for an image can be described by four parameters: width,
height, components, and bits/component. A PostScript program specifies width,
height, and bits/component explicitly. The interpreter infers the components
parameter as follows:

• With the five-operand form of the image operator and with imagemask,
components is always 1.

• With the one-operand (image dictionary) form of the image operator,
components is the number of components in the current color space (see
Section 4.8, "Color Spaces").

• With the colorimage operator, components is specified explicitly as the ncomp
operand.

Sample data is represented as a stream of bytes, interpreted as 8-bit integers in the
range 0 to 255, obtained from some data source (either returned from a proce-
dure or read from a file or string). The bytes constitute a continuous bit stream,
with the high-order bit of each byte first. This bit stream is in turn divided into
units of bits/component bits each, ignoring byte boundaries. Sample values of 12
bits straddle byte. boundaries; other sizes never do. Each unit encodes a color
component value, given with the high-order bit first.

I 4.10
291

Images I

Each row of the source image begins on a byte boundary. If the number of data bits
per row is not a multiple of 8, the end of the row must be padded with extra bits
to fill out the last byte. The PostScript interpreter ignores these padding bits.

Each source sample component is interpreted as an integer in the range 0 to
2" — 1, where n is the number of bits per component. The PostScript interpreter
maps this to a color component value (equivalent to what could be used with op-
erators such as setgray or setcolor) by one of two methods:

• With the five-operand form of image, and with all forms of colorimage, the in-
teger 0 maps to the number 0.0, the integer 2" — 1 maps to the number 1.0, and
intermediate values map linearly to numbers between 0.0 to 1.0.

• With the one-operand (dictionary) form of image, the mapping is specified ex-
plicitly by the Decode entry in the image dictionary.

• With imagemask, image samples do not represent color values, so mapping is
not relevant (see Section 4.10.6, "Masked Images").

The imaging operators (image, colorimage, and imagemask) can obtain sample
data from any of three types of object:

• Procedure. Whenever the interpreter requires additional sample data, it calls the
procedure, which is expected to return a string containing some more data.
The amount of data returned by each call is arbitrary. However, returning one
or more complete rows at a time simplifies programming, especially when

reading image data that appears in-line in a PostScript program. This is the
only type of data source permitted in LanguageLevel 1.

• File. The interpreter simply reads data from the file as necessary. Note that the
file can be filtered to perform some kind of decoding or decompression (see

Section 3.8.4, "Filters"). This type of data source is a LanguageLevel 2 feature.

• String. The interpreter simply reads data from the string, reusing the string as

many times as necessary to satisfy the needs of the imaging operation. This
type of data source is a LanguageLevel 2 feature, though equivalent behavior
can be obtained in LanguageLevel 1 by providing a procedure that simply re-

turns the same string each time it is called.

Data sources for images are much the same as those for filters; for further elabo-

ration on their semantics, see Section 3.13.1, "Data Sources an Targets." When
reading from a data source causes a PostScript procedure to be invoked, that pro-

CHAPTER 4
292

Graphics

cedure must not do anything to disturb the ongoing imaging operation, such as
alter the graphics state or image dictionary or initiate a new imaging operation.

A data source can end prematurely. This occurs if a procedure returns a zero-
length string or a file encounters end-of-file. If a data source ends before all sam-
ples have been read, the remainder of the image that would have been painted by

the missing samples is left unpainted. If the last source row is incomplete—that
is, if the data source ends in the middle of a row—the partial source row may be
discarded and not painted.

When there are multiple color components per sample (the value of components
is greater than 1), the source data can be organized in either of two ways:

• Single data source. All color components are obtained from the same source,
interleaved sample by sample. For example, in a three-component RGB image,
the red, green, and blue components for one sample are followed by the red,
green, and blue components for the next sample.

• Multiple data sources. Each color component is obtained from a separate
source—for example, all red components from one source, all green compo-
nents from a second, and all blue components from a third. If the data sources
are strings, they must all be of the same length. If they are procedures, they
must all return strings of the same length on any given call. The interpreter
calls each procedure in turn, in the order in which they are specified as oper-
ands to the colorimage operator or in which they appear in the image diction-
ary's DataSource array. The procedures may read data from the same file, but
they must return their results in separate strings, since the interpreter does not

copy this data elsewhere in the course of assembling the values for a single
sequence of samples. If the data sources are files, the interpreter may read un-
predictable amounts of data from them in unpredictable orders, so they must
be completely independent of each other—that is, they must not be the same
file, nor filters that ultimately read from the same file.

A PostScript program specifies which organization to use by means of the multi
operand of the colorimage operator or the MultipleDataSources entry in the
image dictionary. Figure 4.22 illustrates some typical organizations for data

sources. It also shows the image sample decoding operation.

I 4.10
293

1
Images I

Single-component image

Data source*
Image samples

Multiple-component image (such as RGB), single source

Data source*

Image samples interleaved
...RGBRG8...

Multiple-component image (such as RGB), separate sources

Independent

Data source*
R image samples

Data source*

G image samples

Data source*

8 image samples

• Data source is a single file, procedure, or string.

Decode

Decode R

Decode G

Decode

Decode R

Decode G

Decode

Color values

Color values

Color values

FIGURE 4.22 Image data organization and processing

4.10.3 Source Coordinate System

The image operators impose a coordinate system on the source image. They con-
sider the source image to be a rectangle h units high and w units wide. Each sam-

ple occupies one square unit. The origin (0, 0) is in the lower-left corner, with

coordinates ranging from 0 to w horizontally and 0 to h vertically.

The image operators assume that the sample data they receive from their data
source is ordered by row, with the horizontal coordinate varying most rapidly.
The lower-left corner of the first sample is at coordinates (0, 0), the second at

(1, 0), and so on through the last sample of the first row, whose lower-left corner
is at (w— 1, 0) and whose lower-right corner is at (w, 0). The next samples after

that are at coordinates (0, 1), (1, 1), and so on, until the final sample of the image,

I CHAPTER 4
294

i
Graphics I

whose lower-left corner is at (w — 1, h — 1) and whose upper-right corner is at
(w, h). Figure 4.23 illustrates the organization of the source coordinate system.
The numbers inside the squares indicate the order of the samples, counting
from O.

(h- 1)w

h-1

(h- 1)w+-1

2

hw-1

w-1 w

FIGURE 4.23 Source image coordinate system

The source coordinate system and scanning order imposed by the image opera-
tors do not preclude using different conventions in the actual source image. Co-
ordinate transformation can be used to map other conventions into the
PostScript convention.

The correspondence between this source image coordinate system (or image
space) and user space is specified by a special matrix. This is a general linear
transformation that defines a mapping from user space to image space; that is, it
transforms user space coordinates to the corresponding coordinates in image
space. It can include translation, rotation, reflection, and shearing (see
Section 4.3, "Coordinate Systems and Transformations"). The matrix is provided
in one of two ways:

• In the five-operand forms of image and image m a sk and in all forms of
colorimage, there is a separate matrix operand.

• In image dictionaries, there is a required ImageMatrix entry.

I 4.10
295

i
Images l

Although it is possible to map directly from current user space to image space by

defining the image matrix appropriately, it is easier to think about the transfor-
mation by dividing it into two stages (see Figure 4.24):

1. The image matrix maps the unit square of user space, bounded by user coordi-
nates (0, 0) and (1, 1), to the boundary of the source image in image space.

2. The current transformation matrix (CTM) maps the unit square of user space
to the rectangle or parallelogram on the page that is to receive the image.

This is just a convention, but it is a useful one that is recommended. Under this
convention, the image matrix is used solely to describe the image itself, indepen-
dently of how it is to be positioned, oriented, and scaled on a particular page. It
defines an idealized image space consisting of a unit square that conforms to
PostScript conventions for coordinate system and scanning order. A program can
then map this idealized image space into current user space by altering the CTM
in straightforward ways.

h

o
o w

Source image

Image

matrix

(0,1)

CTM

(1 0)

Unit square
in user space Current page

FIGURE 4.24 Mapping the source image

An image that happens to use the PostScript conventions (scanning from left to
right and bottom to top) can be described by the image matrix

[w 0 0 h 0 01

I CHAPTER 4
296

Graphics I

(where w and h are the width and height of the image, respectively). An image
that is scanned from left to right and top to bottom (a commonly used order) is
described by the image matrix

[w O 0 -h 0 h]

Images scanned in other common orders can be described in similar ways.

An image that has been mapped into the unit square in this way can then be
placed on the output page in the desired position, orientation, and size by invok-
ing PostScript operators that transform user space: translate, rotate, and scale.

For example, to map such an image into a rectangle whose lower-left corner is at
coordinates (100, 200), that is rotated 45 degrees counterclockwise, and that is
150 units wide and 80 high, a program can execute

100 200 translate

45 rotate

150 80 scale

before invoking the image, colorimage, or imagemask operator. This works for
any image that has been mapped into the unit square by an appropriate image
matrix. Of course, if the aspect ratio (width to height) of the source image in this
example were different from 150:80, the result would be distorted.

4.10.4 Images and Color Spaces

The color samples in an image are interpreted according to some color space (see
Section 4.8, "Color Spaces"). The color space to be used depends on how imaging
is invoked:

• The five-operand form of the image operator ignores the current color space
and always interprets color samples according to the DeviceGray color space. It
does not alter the current color space parameter in the graphics state.

• The colorimage operator always interprets color samples according to the
DeviceGray, DeviceRGB, or DeviceCMYK color space, depending on whether its
ncomp operand is 1, 3, or 4. It neither reads nor alters the current color space
parameter in the graphics state.

• The one-operand (dictionary) form of the image operator interprets color
samples according to the current color space. The number of components per

I 4.10
297

Images I

sample and the interpretation of the component values depend on the color
space. This form of image can be used with any color space except Pattern.

• The imagemask operator always interprets its source data as a stencil mask for
applying the current color in the current color space (see "Stencil Masking" on
page 302). This works for any color space.

4.10.5 Image Dictionaries

The image and imagemask operators (but not colorimage) have a one-operand
form (LanguageLevel 2) in which all imaging parameters are bundled together in
an image dictionary. This arrangement provides more flexibility than the five-
operand form of image or any form of colorimage. The following features are
available only by means of image dictionaries:

• Use of arbitrary color spaces, such as CIEBasedABC or Separation spaces

• User-defined decoding of image sample values

• Interpolation between samples

• Explicit masking and color key masking (LanguageLevel 3)

Every image dictionary contains an entry named ImageType, which indicates the
general organization of the dictionary and the type of image it represents. The
most straightforward are type 1 dictionaries (LanguageLevel 2). When used with
the image operator, type 1 defines an opaque rectangular image to be painted in
its entirety, completely overlaying any previous marks already existing on the
page. Two more image types, 3 and 4 (LanguageLevel 3), represent masked images.
Images of these types may include transparent areas, allowing previously existing
marks to show through. Type 3 and 4 image dictionaries are discussed in
Section 4.10.6, "Masked Images!'

Note: Type 1 dictionaries can be used with the imagemask operator to achieve a
form of transparent masking known as stencil masking. They are subject to certain
restrictions when used in this way, however, as detailed below.

Type 1 Image Dictionaries

Table 4.20 lists the entries in a type 1 image dictionary, some of which are re-
quired and some optional. There are many relationships among these entries,

I CHAPTER 4
298

Graphics I

and the current color space may limit the choices for some of them. Attempting

to use an image dictionary whose entries are inconsistent with each other or with

the current color space will cause a rangecheck error; if any of the required en-

tries are missing or of the wrong type, an undefined or typecheck error will

result.

TABLE 4.20 Entries in a type 1 image dictionary

KEY TYPE VALUE

ImageType integer (Required) A code identifying the image type that this dictionary describes;
must be 1 for an opaque image.

Width integer (Required) The width of the source image, in samples.

Height integer (Required) The height of the source image, in samples.

ImageMatrix array (Required) An array of six numbers defining a transformation from user
space to image space.

MultipleDataSources boolean (Optional) A flag indicating whether the image samples are provided
through a separate data source for each color component (true) or packed
into one data stream, interleaved sample by sample (false). In an image dic-
tionary used with imagemask, this entry must be false or absent. Default

value: false.

DataSource (various) (Required) The source from which image samples are to be taken. If
MultipleDataSources is false or absent, DataSource must be a single file,

procedure, or string. If MultipleDataSources is true, DataSource must be an
array of n such data sources, where n is the number of color components in
the current color space.

BitsPerComponent integer (Required) The number of bits used to represent each color component.
Only a single number may be specified; the number of bits is the same for
all color components. Allowed values are 1, 2, 4, 8, and 12. In an image dic-
tionary used with imagemask, the value of this entry must be 1.

Decode array (Required) An array of numbers describing how to map image samples into

the range of values appropriate for the current color space; see "Sample De-

coding," below. The length of the array must be twice the number of color
components in the current color space. In an image dictionary used with
imagemask, the value of this entry must be either [0 1] or [1 0].

Interpolate boolean (Optional) A flag indicating whether image interpolation is to be per-

formed; see "Image Interpolation," below. Default value: false.

299
I 4.10 Images I

The following sections describe the meaning and use of some of these entries in
more detail. All of this information applies to image dictionaries used with the
image operator, and most of it also applies to those used with the imagemask op-
erator (see "Stencil Masking" on page 302).

Sample Decoding

The sample data in an image dictionary's data source is initially decomposed into
integers in the range 0 to 2" — 1, where n is the value of the dictionary's
BitsPerComponent entry. There is one such integer for each component of a
given color sample; the number of components depends on the current color
space.

The Decode array in the image dictionary specifies a linear mapping of an integer
component value to a number that would be appropriate as an operand to the
setcolor operator in the current color space. For each color component, Decode
specifies a minimum and maximum output value for the mapping. The linear
mapping is defined by

Dmax —)min
min) c = D + (i X

where

n is the value of BitsPerComponent
i is the input value, in the range 0 to e - 1
Dmin and Dim are the parameters in the Decode array
c is the output value, to be interpreted as a color component

In other words, an input value of 0 will be mapped to Dmin, an input value of

2n — 1 will be mapped to Dm, and intermediate input values will be mapped
linearly to values between Dmin and

The numbers in the Decode array are interpreted in pairs, with successive pairs
applying to successive components of the current color space in their standard
order. Table 4.21 lists recommended Decode arrays for use with the various color
spaces.

300
I CHAPTER 4 Graphics

TABLE 4.21 Typical Decode arrays

COLOR SPACE Decode ARRAY

DeviceGray [0 1]

DeviceRGB [0 1 0 1 0 1]

DeviceCMYK [0 1 0 1 0 1 0 1]

CIEBasedABC [0 1 0 1 0 1]

CIEBasedA [0 1]

CIEBasedDEF [0 1 0 1 0 1]

CIEBasedDEFG [0 1 0 1 0 1 0 1]

DeviceN [0 1 0 1 ... 0 1] (one pair for each color component)

Separation [0 1]

Indexed [0 N], where N = 2" — 1

Pattern (image not permitted)

For most color spaces, the Decode arrays listed in the table map into the full
range of allowed component values. For all CIE-based color spaces, the suggested
arrays map to component values in the range 0.0 to 1.0. This is typical for the

class of calibrated gray or RGB color spaces, but the appropriate values actually
depend on how the color spaces have been parameterized. For an Indexed color

space, the suggested Decode array ensures that component values that index a
color table are passed through unchanged.

It is possible to specify a mapping that inverts sample color intensities, by specify-
ing a Dmin value greater than Dm. For example, if the current color space is
DeviceGray and the Decode array is 1 01, an input value of 0 will be mapped to

1.0 (white), while an input value of 2" — 1 will be mapped to 0.0 (black).

The Dr= and Dm ax parameters for a color component are not required to fall
within the range of values allowed for that component. For instance, if an appli-
cation uses 6-bit numbers as its native image sample format, it can send those

samples to the PostScript interpreter in 8-bit form, setting the two unused high-
order bits of each sample to 0. The image dictionary should then specify a
Decode array of [0.0 4.04762], which maps input values from 0 to 63 into the

I 4.10
301

Images I

range 0.0 to 1.0. If an output value falls outside the range allowed for a compo-
nent, it will automatically be adjusted to the nearest allowed value.

Image Interpolation

When the resolution of a source image is significantly lower than that of the out-
put device, each source sample covers many device pixels. This can cause images
to appear "jaggy" or "blocky!' These visual artifacts can be reduced by applying
an image interpolation algorithm during rendering. Instead of painting all pixels
covered by a source sample with the same color, image interpolation attempts to
produce a smooth transition between adjacent sample values. Because it may in-
crease the time required to render the image, image interpolation is disabled by
default; setting the Interpolate entry in the image dictionary to true for either
image or imagemask enables it.

Note: The interpolation algorithm is implementation-dependent and not under
PostScript program control. Image interpolation may not always be performed for
some classes of image or on some output devices.

4.10.6 Masked Images

In LanguageLevel 1 or 2, images painted with the image or colorimage operator
mark all affected areas of the page as if with opaque paint (see Section 4.1, "Imag-
ing Model"). All portions of the image, whether black, white, gray, or color, com-
pletely obscure any marks that may previously have existed in the same place on
the page.

In the graphic arts industry and page layout applications, however, it is common
to crop or "mask out" the background of an image and then place the masked im-
age on a different background, allowing the existing background to show through
the masked areas. A number of PostScript features are available for achieving
such masking effects:

• The imagemask operator, available in all LanguageLevels, uses a monochrome
(black-and-white) image as a stencil mask for painting in the current color.

• Type 3 image dictionaries (LanguageLevel 3) include an explicit mask specifying
which areas of the image to paint and which to mask out.

I CHAPTER 4
302

l
Graphics I

• Type 4 image dictionaries (LanguageLevel 3) specify a color or range of colors
to be masked out wherever they occur within the image; this technique is
known as color key masking.

Note: Although type 3 and 4 image dictionaries are a LanguageLevel 3 feature, their
effects are commonly simulated in lower LanguageLevels by defining a clipping path
enclosing only those of an image's samples that are to be painted. However, imple-
mentation limits can cause limitcheck errors if the clipping path is very complex (or
if there is more than one clipping path). An alternative way to achieve the effect of a
type 3 image dictionary in LanguageLevel 2 is to define the image being clipped as a
pattern, make it the current color, and then paint it with the imagemask operator. In
any case, the LanguageLevel 3 features allow masked images to be placed on the page
without regard to the complexity of the clipping path.

Stencil Masking

The imagemask operator operates on a monochrome image, in which each sam-
ple is specified by a single bit. However, instead of painting the image in opaque
black and white, imagemask treats it as a stencil mask that is partly opaque and
partly transparent. Sample values in the image do not represent black and white
pixels; rather, they designate places on the page that should either be marked with
the current color or masked out (not marked at all). Areas that are masked out re-
tain their former contents. The effect is like applying paint in the current color
through a cut-out stencil: a sample value of 1 in the image permits the paint to
reach the page and a 0 masks it out, or vice versa.

A program invokes imagemask in much the same way as image; most of the
parameters have equivalent meanings. As with image, there is a five-operand
form available in all LanguageLevels and a one-operand image dictionary form
that is a LanguageLevel 2 feature. imagemask differs from image in the following
significant ways:

• The number of components per sample is always 1, regardless of the current
color space, because sample values represent masking properties rather than
colors.

• The number of bits per component is always 1. In its five-operand form,
imagemask has no bits/sample operand; in the one-operand (image dictionary)
form, the dictionary's BitsPerComponent value must be 1.

4.10 Images I
303

• The five-operand form of imagemask includes a polarity operand that deter-
mines how the source samples are to be interpreted. If polarity is true, a sample
value of 1 designates a painted sample and 0 designates a masked (unpainted)

sample; if false, these meanings are reversed. The one-operand form of
imagemask uses the Decode entry in the image dictionary for the same pur-
pose: Decode arrays of [1 0] and [0 11 correspond to polarity values of true and
false, respectively.

One of the most important uses of stencil masking is for painting character
glyphs represented as bitmaps. Using such a glyph as a stencil mask transfers only

its "black" bits to the page, while leaving the "white" bits (which are really just
background) unchanged. For reasons discussed in Section 5.5, "Font Cache,"
imagemask rather than image should almost always be used to paint glyph bit-
maps.

Note: If image interpolation is requested during stencil masking, the effect is to
smooth the edges of the mask, not to interpolate the painted color values (see "Image

Interpolation" on page 301). This can minimize the "jaggy" appearance of a low-
resolution stencil mask

Explicit Masking

Type 3 image dictionaries combine a sampled image with an explicit mask The
image and mask need not have the same resolution, but their positions on the
page must coincide; that is, they must overlay each other. The mask is treated
essentially the same as the stencil mask supplied to the imagemask operator: it
indicates which places on the page are to be painted and which are to be masked
out (left unchanged). Unmasked areas are painted with the corresponding por-
tions of the sampled image; masked areas are not.

Table 4.22 lists the entries in a type 3 image dictionary. The properties of the
image and the mask are defined by two subsidiary dictionaries, an image data dic-
tionary (DataDict) and a mask dictionary (MaskDict). Both are ordinary type 1
image dictionaries with a few additional restrictions on their contents, as detailed
in Tables 4.23 and 4.24. The only other significant entry is InterleaveType, which
specifies the format in which the image and mask data are organized: the mask
samples may be included in the same data source with the image samples or pro-
vided separately, depending on the interleave type. In general, any inconsistency
among the three dictionaries or violation of the stated restrictions will result in a
typecheck error.

I CHAPTER 4
304

Graphics

TABLE 4.22 Entries in a type 3 image dictionary

KEY TYPE VALUE

ImageType integer (Required) A code identifying the image type that this dictionary de-
scribes; must be 3 for explicit masking.

DataDict dictionary (Required) A modified type 1 image dictionary defining the contents of

the image (see Table 4.23).

MaskDict dictionary (Required) A modified type 1 image dictionary defining the image's mask

(see Table 4.24).

InterleaveType integer (Required) A code indicating how the image and mask samples are or-

ganized:

1 Interleaved by sample. Image and mask samples are combined into

a single data source, identified by the DataSource entry in the
image data dictionary; the mask dictionary must contain no
DataSource entry. Components are interleaved sample by sample,
with the mask component preceding all color components; for ex-
ample, in the DeviceRGB color space, each sample would consist
of a mask component followed by three color components (red,
green, and blue). The mask sample must have the same number of
bits as each color component of the image sample, with all bits set
to the same value (that is, either all 0 or all 1); any other value will
be treated as if the bits were all 1.

2 Interleaved by row. Image and mask samples are combined into a
single data source, identified by the DataSource entry in the image
data dictionary; the mask dictionary must contain no DataSource
entry. Mask and image data are organized into interleave blocks
whose format is determined by the Height entries in the image

data and mask dictionaries. The heights given in the two diction-
aries may differ, with the restriction that one must be an integral

multiple of the other. Each interleave block thus consists of either
one row of mask data followed by one or more rows of image
data, or one or more rows of mask data followed by one row of
image data, according to the ratio of the heights specified in the
two dictionaries.

All interleave blocks have the same format. Within each block, all

of the mask data precedes all of the image data. Mask data is
always one bit per sample, regardless of the number of bits per
sample in the image data. Within the image data, color compo-

I 4.10
305

Images I

nents are interleaved on a sample-by-sample basis. Each row of

mask and image samples is padded separately to byte boundaries.

3 Separate data sources. Image and mask samples are provided
through separate data sources, identified by the DataSource en-
tries in the image data dictionary and the mask dictionary, respec-

tively. The color components of the image samples themselves
may in turn be interleaved or separate, depending on the value of
the MultipleDataSources entry in the image data dictionary. The
width and height of the mask are independent of those of the
image, but the image and mask must have the same orientation
and placement.

TABLE 4.23 Entries in an image data dictionary

KEY TYPE VALUE

ImageType

Width

Height

ImageMatrix

MultipleDataSources boolean

DataSource

integer (Required) A code identifying the image type that this dictionary de-

scribes; must be 1 for an image data dictionary.

integer (Required) The width of the source image, in samples. In interleave type 1,
this value must equal that of the Width entry in the mask dictionary.

integer (Required) The height of the source image, in samples. In interleave

type 1, this value must equal that of the Height entry in the mask diction-
ary. In interleave type 2, the image and mask heights may differ, with the

restriction that one must be an integral multiple of the other. In interleave
type 3, the heights of the image and mask are independent.

array (Required) An array of six numbers defining a transformation from user

space to image space.

(Optional) A flag indicating whether the image samples are provided

through a separate data source for each color component (true) or packed
into one data stream, interleaved sample by sample (false). If this entry is
true, the interleave type in the main image dictionary (Table 4.22) must be
3; that is, the image's mask data must also be provided through a separate

data source, designated by the DataSource entry in the mask dictionary
(Table 4.24). For interleave types 1 and 2, MultipleDataSources must be
false. Default value: false.

(various) (Required) The source from which image samples are to be taken. If
MultipleDataSources is false or absent, DataSource must be a single file,

procedure, or string. If MultipleDataSources is true, DataSource must be
an array of n such data sources, where n is the number of color compo-

nents in the current color space. For interleave types 1 and 2, the desig-
nated data source will also include mask samples interleaved with the

306
I CHAPTER 4 Graphics I

source samples in the manner implied by the interleave type (see Table
4.22); in this case, the mask dictionary (Table 4.24) must contain no Data-

Source entry

BitsPerComponent integer (Required) The number of bits used to represent each color component.
Only a single number may be specified; the number of bits is the same for

all color components. Allowed values are 1, 2, 4, 8, and 12.

Decode array (Required) An array of numbers describing how to map image samples

into the range of values appropriate for the current color space; see "Sam-
ple Decoding" on page 299. The length of the array must be twice the
number of color components in the current color space.

Interpolate boolean (Optional) A flag indicating whether image interpolation is to be per-
formed on the source data; see "Image Interpolation" on page 301.

Default value: false.

TABLE 4.24 Entries in a mask dictionary

KEY TYPE VALUE

ImageType integer (Required) A code identifying the image type that this dictionary de-
scribes; must be 1 for a mask dictionary.

Width integer (Required) The width of the mask, in samples. In interleave type 1, this
value must equal that of the Width entry in the image data dictionary.

Height integer (Required) The height of the mask, in samples. In interleave type 1, this
value must equal that of the Height entry in the image data dictionary. In
interleave type 2, the image and mask heights may differ, with the restric-
tion that one must be an integral multiple of the other. In interleave
type 3, the heights of the image and mask are independent.

ImageMatrix array (Required) An array of six numbers defining a transformation from user
space to image space. This matrix must align the corners of the mask with

the corresponding corners of the image, so that they coincide in user
space, and must perform any scaling needed to compensate for differences
in the dimensions of the mask and the image.

MultipleDataSources boolean (Optional) If present, must be false. Default value: false.

DataSource (various) (Required for interleave type 3) The source (a single file, procedure, or
string) from which mask samples are to be taken. This entry must be ab-

sent for interleave type 1 or 2.

BitsPerComponent integer (Required) The number of bits used to represent each color component.
In interleave type 1, this value must equal that of the BitsPerComponent

307
I 4.10 Images I

 1

entry in the image data dictionary. In interleave type 2 or 3, the value of
this entry must be 1.

Decode array (Required) An array of two numbers describing how to map mask samples
into the appropriate range of values; see "Sample Decoding" on page 299.
A decoded value of 0 designates a sample to be painted; a decoded value of
1 designates a sample that is to be masked out (not painted).

Interpolate boolean (Optional) A flag indicating whether image interpolation is to be per-

formed on the mask; see "Image Interpolation" on page 301. Default
value: false.

Color Key Masking

Type 4 image dictionaries (Table 4.25) are identical to type 1 with one additional

entry, MaskColor, specifying a color or range of colors to be masked out. Samples

in the image that match this color or fall within this range are not painted, allow-

ing the existing background to show through. The effect is similar to that of the

video technique known as chroma-key.

TABLE 4.25 Entries in a type 4 image dictionary

KEY TYPE VALUE

ImageType integer (Required) A code identifying the image type that this dictionary de-

scribes; must be 4 for color key masking.

MaskColor array (Required) An array of integers specifying the color to be masked. The

array may contain either n or 2 x n integers, where n is the number of
components required to specify a color in the current color space. If n in-
tegers are given, they specify the masked color exactly; any image sample
whose color components match the values in the array will be masked out
(not painted). If the array contains 2 x n integers, each pair of consecutive

integers specify a range of values for the corresponding color component;
an image sample will be masked if each of its component values falls with-
in the specified range.

Image samples are compared with the mask color as they are read from
the data source. This comparison occurs before the application of the de-
code mapping specified by the Decode array.

Width integer (Required) The width of the source image, in samples.

Height integer (Required) The height of the source image, in samples.

308
I CHAPTER 4 Graphics I

ImageMatrix array (Required) An array of six numbers defining a transformation from user

space to image space.

MultipleDataSources boolean (Optional) A flag indicating whether the image samples are provided

through a separate data source for each color component (true) or packed
into one data stream, interleaved sample by sample (false). Default value:

false.

DataSource (various) (Required) The source from which image samples are to be taken. If

MultipleDataSources is false or absent, DataSource must be a single file,
procedure, or string. If MultipleDataSources is true, DataSource must be
an array of n such data sources, where n is the number of color compo-

nents in the current color space.

The use of a DCTDecode filter as the data source of a type 4 image diction-
ary is not recommended. DCTDecode is a "lossy" filter, meaning that its

output is only an approximation of the original input data. This can lead
to slight changes in the color values of image samples, possibly causing
samples that were intended to be masked to be unexpectedly painted in-
stead, in colors slightly different from the mask color.

BitsPerComponent integer (Required) The number of bits used to represent each color component.
Only a single number may be specified; the number of bits is the same for
all color components. Allowed values are 1, 2, 4, 8, and 12.

Decode array (Required) An array of numbers describing how to map image samples
into the range of values appropriate for the current color space; see "Sam-
ple Decoding" on page 299. The length of the array must be twice the
number of color components in the current color space.

Interpolate boolean (Optional) A flag indicating whether image interpolation is to be per-
formed; see "Image Interpolation" on page 301. When used in combina-

tion with color key masking, image interpolation can cause unexpected or
unwanted visual artifacts in the resulting image. To prevent such artifacts,
the Interpolate flag should normally be set to false. Default value: false.

4.10.7 Using Images

This section gives some simple examples that demonstrate typical uses of images.

The examples are incomplete: they cannot show the image data itself, since it is

very bulky. For further information about the imaging operators, see the opera-

tor descriptions in Chapter 8.

I 4.10
309

Images I

Monochrome Image

Example 4.24 uses the image operator to paint a grayscale image, using facilities
available in all LanguageLevels. This program paints an image 256 samples wide
by 256 high, at 8 bits per sample. It positions the image with its lower-left corner
at coordinates (45, 140) in current user space and scales it to a width and height

of 132 user space units. The image data is stored with the first sample in the
upper-left corner, so the program uses the image matrix to match its coordinate
system with the normal PostScript convention (see Section 4.10.3, "Source Coor-
dinate System").

Example 4.24

/picstr 256 string def

45 140 translate

132 132 scale

256 256 8

[256 0 0 -256 0 256]

currentfile

picstr readhexstring pop

1

image

%String to hold image data

0/0 Locate lower-left corner of image

% Map image to 132-unit square

% Dimensions of source image

0/0 Map unit square to source

% Read image data from program file

4c47494b4d4c524c4d50535051554c5152...

... Total of 131,072 hexadecimal digits of image data, representing 65,536 samples ...

The image data appears in-line in the PostScript program. This is the most com-
mon way to access image data in a document. Only occasionally will a program
refer to image data stored elsewhere—in a file, for instance. The image data is
represented in hexadecimal rather than 8-bit binary, to maximize the document's

portability.

The program specifies a procedure as the data source. Each time the procedure is
called by the image operator, it invokes readhexstri ng to read one row of sample

data into a string, which it then returns to image. It reuses this same string dur-
ing every call. Reading one row at a time is not necessary, but it simplifies the
programming. If the procedure reads multiple rows at a time, or an amount of

data that is not a multiple of the image's width, it must take special care not to
read past the end of the image data the last time it is called by image. Doing so
would cause some program text following the image data to be lost.

I CHAPTER 4
310

Graphics I

With most images, it is very important to read the image data incrementally, as
shown in this example. Attempting to read the entire image into a single string or

to represent it as a PostScript string literal would risk exceeding implementation

limits or exhausting available virtual memory.

Color Image with Single Source

As indicated earlier, color images with multiple components per sample can be

organized in two ways: with all components interleaved in a single source or ob-
tained from separate sources. The first organization is the only one that is useful

for images whose data is provided in-line in a PostScript program. The second
organization is limited to situations in which the separate components are stored

elsewhere, such as in separate files that can be read in parallel.

Example 4.25 illustrates the use of the colorimage operator to paint an image
consisting of interleaved RGB data from a single source. This example works in

LanguageLevel 2, and also in those LanguageLevel 1 implementations that have
the CMYK color extensions.

Example 4.25

/picstr 768 string def

45 140 translate

132 132 scale

% String to hold 256 RGB samples

% Locate lower-left corner of image

% Map image to 132-unit square

256 256 8 % Dimensions of source image

[256 0 0 —256 0 256] % Map unit square to source

currentfile % Read image data from program file

picstr readhexstring pop

false 3

colorimage

% Single data source, 3 colors

94a1bec8c0b371a3a5c4d281

... Total of 393,216 hexadecimal digits of image data, representing 65,536 samples ...

This colorimage example is superficially similar to the image example given
earlier. The main change is that two additional operands are supplied to color-

image, specifying that the image has a single data source and three components.
The image data consists of 8-bit red, green, and blue color components for each
sample in turn.

311
4.10

Image Dictionary

Images I

Example 4.26 produces the same output as Example 4.25, but it uses a type 1

image dictionary and other LanguageLevel 2 features. In this program, the image
data source is a file instead of a procedure. The file is a filtered file that converts

the hexadecimally encoded data from currentfile to binary form. For an explana-

tion of this and an example of how to obtain image data that has been com-

pressed, see Section 3.8.4, "Filters."

Example 4.26

/DeviceRGB setcolorspace % How color values will be interpreted

45 140 translate

132 132 scale

<<

>>

/ImageType 1

/Width 256 % Dimensions of source image

/Height 256

/BitsPerComponent 8

/Decode [0 1 0 1 0 1] % Decode color values in normal way

/ImageMatrix [256 0 0 -256 0 256] % Map unit square to source

/DataSource currentfile /ASCIIHexDecode filter % Obtain in- line data through filter

% End image dictionary

image

% Locate lower-left corner of image

% Map image to 132-unit square

% Start image dictionary

94a1bec8c0b371a3a5c4d281

... Total of 393,216 hexadecimal digits of image data, representing 65,536 samples ...

% End-of-data marker for ASCIIHezDecode

313

I 1 i

CHAPTER 5

Fonts

THIS CHAPTER DESCRIBES the special facilities in the PostScript language for

dealing with text—more generally, for representing characters with glyphs from
fonts. A glyph is a graphical shape and is subject to all graphical manipulations,
such as coordinate transformation. Because of the importance of text in most
page descriptions, the PostScript language provides higher-level facilities that
permit a program to describe, select, and render glyphs conveniently and effi-
ciently.

The first section is a general description of how fonts are organized and accessed.
This description covers all normal uses of fonts that are already installed.

The information in subsequent sections is somewhat more complex, but is re-
quired only by programs with sophisticated needs. These sections discuss the or-
ganization of font dictionaries, the encoding scheme that maps character codes to
character names and glyph descriptions, the metric information available for
fonts, the operation of the font cache, and the construction of new fonts.

Details of the individual PostScript operators are given in Chapter 8. All facilities
are supported by LanguageLevel 1 except those specifically documented as
LanguageLevel 2 or LanguageLevel 3 features. Some of the LanguageLevel 2 fea-
tures are also available as part of composite font extensions; see Appendix A for
details.

5.1 Organization and Use of Fonts

A character is an abstract symbol, whereas a glyph is a specific rendering of a char-
acter. For example, the glyphs A, A, and A are renderings of the abstract "A" char-
acter. Historically these two terms have often been used interchangeably in

314
I CHAPTER 5 Fonts

computer typography (as evidenced by the names chosen for some PostScript op-
erators and keys), but advances in this area have made the distinction more
meaningful in recent times. Consequently this book distinguishes between char-
acters and glyphs, though with some residual names that are inconsistent.

Glyphs are organized into fonts. A font defines glyphs for a particular character
set; for example, the Helvetica and Times-Roman fonts define glyphs for a set of
standard Latin characters. A font for use with the PostScript interpreter is pre-
pared in the form of a program. When such a font program is introduced into a
PostScript interpreter, its execution causes a font dictionary to come into existence
and to be associated with a font name.

In the PostScript language, the term font refers to a font dictionary, through
which the PostScript interpreter obtains glyph descriptions that generate glyphs.
For each glyph to be painted, a program specifies a font dictionary and (usually)
a character code to select the glyph description that represents the character. The
glyph description, which is usually encoded in a special compact representation,
consists of a sequence of graphics operators that produce the specific shape for
that character in this font. To render a glyph, the PostScript interpreter executes
the glyph description.

If you have experience with scan conversion of general shapes, you may be con-
cerned about the amount of computation that this description seems to imply.
However, this is only the abstract behavior of glyph descriptions and font pro-
grams, not how they are implemented. In fact, the PostScript font machinery
works very efficiently.

5.1.1 The Basics of Showing Text

Example 5.1 illustrates the most straightforward use of a font. Suppose you want
to place the text ABC 10 inches from the bottom of the page and 4 inches from the
left edge, using 12-point Helvetica.

Example 5.1

/Helvetica findfont

12 scalefont setfont

288 720 moveto

(ABC) show

315
Organization and Use of Fonts I

The four lines of this program perform the following steps:

1. Select the font to use.

2. Scale it to the desired size and install it as the font parameter in the graphics
state.

3. Specify a starting position on the page.

4. Paint the glyphs for a string of characters there.

The following paragraphs explain these operations in more detail.

Each PostScript implementation includes a collection of fonts that are either built
in or can be obtained automatically from sources such as disks or cartridges. A
user can download additional fonts, and a PostScript program can define special
fonts for its own use. The interpreter maintains a font directory associating the
names of fonts, which are name objects, with their definitions, which are font
dictionaries. The findfont operator takes the name of the font and returns on the
operand stack a font dictionary containing all the information the PostScript in-
terpreter needs to render any of that font's glyphs.

A font defines the glyphs for one standard size. This standard is so arranged that
the nominal height of tightly spaced lines of text is 1 unit. In the default user co-
ordinate system, this means the standard glyph size is 1 unit in user space, or 1/72

inch. The standard-size font must then be scaled to be usable.

The scalefont operator scales the glyphs in a font without affecting the user coor-

dinate system. scalefont takes two operands: the original font dictionary and the
desired scale factor. It returns a new font dictionary that defines glyphs in the de-
sired size. It is possible to scale the user coordinate system with the coordinate
system operators, but it is usually more convenient to encapsulate the desired size

in the font dictionary. Another operator, makefont, applies more complicated
linear transformations to a font.

In Example 5.1, the scalefont operator scales the Helvetica font left on the stack
by findfont to a 12-unit size and returns the scaled font on the operand stack. The
setfont operator establishes the resulting font dictionary as the font parameter in
the graphics state.

Once the font has been selected, scaled, and set, it can be used to paint glyphs.
The moveto operator (described in Section 4.4, "Path Construction") sets the

I CHAPTER 5
316

l
Fonts I

current position to the specified x and y coordinates—in units of 1/72 inch—in
the default user coordinate system. This determines the position on the page at
which to begin painting glyphs.

The show operator takes a string from the operand stack and paints the corre-
sponding glyphs using the current font (usually the font parameter most recently
established in the graphics state by setfont). The show operator treats each ele-
ment of the string (an integer in the range 0 to 255) as a character code. Each
code selects a glyph description in the font dictionary; the glyph description is
executed to paint the desired glyph on the page. This is the behavior of show for
base fonts, such as ordinary Latin text fonts; interpretation of the show string as a
sequence of character codes is more complex for composite fonts, described in
Section 5.10, "Composite Fonts."

Note: What these steps produce on the page is not a 12-point glyph, but rather a 12-

unit glyph, where the unit size is that of the user space at the time the glyphs are ren-
dered on the page. If the user space is later scaled to make the unit size 1 centimeter,
showing glyphs from the same 12-unit font will generate results that are 12 centime-
ters high.

5.1.2 Selecting Fonts

Example 5.1 used PostScript operators in a direct way. It is usually desirable to
define procedures to help the application that is generating the text. To illustrate
this point, assume that an application is setting many independently positioned
text strings and requires switching frequently among three fonts: Helvetica,
Helvetica-Oblique, and Helvetica-Bold, all in a 10-point size. Example 5.2 shows
the programming to do this, and Figure 5.1 shows the results.

Example 5.2

/FSD { findfont exch scalefont def} bind def

/SMS { setfont moveto show} bind def

/MS { moveto show} bind def

/F1 10 /Helvetica FSD

/F2 10 /Helvetica-Oblique FSD

/F3 10 /Helvetica-Bold FSD

% In the document prolog: define

0/0 some useful procedures

% At the start of the script: set up

% commonly used font dictionaries

317
Organization and Use of Fonts

(This is in Helvetica.) 10 78 F1 SMS

(And more in Helvetica.) 10 66 MS

(This is in Helvetica-Oblique.) 10 54 F2 SMS

(This is in Helvetica-Bold.) 10 42 F3 SMS

(And more Helvetica-Bold.) 10 30 MS

% In the body of the script: show

% some text

This is in Helvetica.
And more in Helvetica.
This is in Helvetica-Oblique.
This is in Helvetica-Bold.
And more Helvetica-Bold.

FIGURE 5.1 Results of Example 5.2

Several features of Example 5.2 are noteworthy. The document prolog defines

three procedures:

• FSD takes a variable name, a scale factor, and a font name. It generates a font
dictionary described by the font name and scale factor, then executes def to as-

sociate the font dictionary with the variable name. This assists in setting up
fonts.

• SMS takes a string, a pair of coordinates, and a font dictionary; it shows the
glyphs for the string starting at those coordinates, using the specified font.

• MS takes a string and a pair of coordinates; it shows the glyphs for the string at
those coordinates, using the current font.

At the beginning of the document script, the program sets up font dictionaries
and associates them with the names F, F2, and F3. The body of the script shows
text using the procedures and font dictionaries defined earlier. This example

avoids switching fonts when it is unnecessary to do so; taking care in this respect
is important for efficient execution.

Many applications must switch frequently among arbitrarily named fonts, where

the names and sizes are not known in advance. To facilitate this, the operator
selectfont (LanguageLevel 2) combines the actions of the findfont, scalefont (or

318
I CHAPTER 5

l
Fonts I

makefont), and setfont operators. selectfont saves information from one call to

the next to avoid calling findfont or performing the scalefont or makefont com-
putations unnecessarily. In the common case of selecting a font and size combi-
nation that has been used recently, selectfont works with great efficiency.

The rootfont operator returns the font parameter in the graphics state, which is

the value most recently specified by setfont or selectfont. The currentfont opera-
tor returns the same value, except in certain cases where it may return a descen-
dant of a composite font; see Section 5.10, "Composite Fonts." The current font is

the value returned by currentfont and is the one implicitly referenced by show.

5.1.3 Achieving Special Graphical Effects

Normal uses of show and other glyph-painting operators cause black- filled
glyphs to be painted. Other effects can be obtained by combining font operators
with general graphics operators.

The color used for painting glyphs is the current color in the graphics state. The
default color is black, but other colors can be obtained by executing setgray or
some other color-setting operator before painting glyphs. Example 5.3 paints
glyphs in 50 percent gray, as shown in Figure 5.2.

Example 5.3

/Helvetica-Bold findfont 48 scalefont setfont

20 40 nnoveto

.5 setg ray

(ABC) show

ABC
FIGURE 5.2 Glyphs painted in 50% gray

319

1
Organization and Use of Fonts I

More general graphical manipulations can be performed by treating the glyph
outline as a path instead of immediately painting it. charpath is a path construc-
tion operator that appends the outlines of one or more glyphs to the current path
in the graphics state. This is useful mainly with glyphs that are defined as outlines
(as are most standard fonts). Paths derived from glyphs defined as strokes can be
used in limited ways. It is not possible to obtain paths for glyphs defined as imag-
es or bitmaps; charpath produces an empty path. Also, a path consisting of the
outlines of more than a few glyphs is likely to exceed the limit on number of path
elements (see Appendix B). If possible, it is best to deal with only one glyph's path
at a time.

Example 5.4 treats glyph outlines as a path to be stroked. This program uses
charpath to obtain the outlines for the string of characters ABC in the current
font. (The false operand to charpath is explained in the description of charpath
in Chapter 8.) The program then strokes this path with a line 2 points thick, ren-
dering the glyph outlines on the page (see Figure 5.3).

Example 5.4

/Helvetica findfont 48 scalefont setfont

20 38 moveto

(ABC) false charpath

2 setlinewidth stroke

FIGURE 5.3 Glyph outlines treated as a path

Example 5.5 obtains the glyphs' path as before, then establishes it as the current
clipping path. All subsequent painting operations will mark the page only within
this path, as illustrated in Figure 5.4. This state persists until some other clipping
path is established—for example, by the grestore operator.

I CHAPTER 5
320

Fonts I

Example 5.5

/Helvetica findfont 48 scalefont setfont

newpath

20 40 moveto

(ABC) true charpath

clip

... Graphics operators to draw a starburst

5.1.4 Glyph Positioning

,

FIGURE 5.4 Graphics clipped by a glyph path

A glyph's width is the amount of space the glyph occupies along the baseline of a
line of text. In other words, it is the distance the current point moves when the
glyph is shown. Note that the width is distinct from the dimensions of the glyph
outline (see Section 5.4, "Glyph Metric Information").

In some fonts, the width is constant; it does not vary from glyph to glyph. Such
fonts are called fixed-pitch or monospaced. They are used mainly for typewriter-
style printing. However, most fonts used for high-quality typography associate a
different width with each glyph. Such fonts are called proportional fonts or
variable-pitch fonts. In either case, the show operator positions the glyphs for
consecutive characters of a string according to their widths.

The width information for each glyph is stored in the font dictionary. A
PostScript program can use any of several glyph-painting operators—show,
xshow, yshow, xyshow, widthshow, ashow, awidthshow— to obtain a variety of

width modification effects. If necessary, it can execute stringwidth to obtain the
width information itself.

321

I 5.2 Font Dictionaries I

The standard operators for showing text (show and its variants) are designed on
the assumption that glyphs are ordinarily shown with their standard metrics.
(See Section 5.4, "Glyph Metric Information».) However, means are provided to
vary the metrics in certain limited ways. For example, the ashow operator sys-
tematically adjusts the widths of all the glyphs it paints. The optional Metrics en-
try of a font dictionary can be added to adjust the widths of all instances of
particular glyphs of a font.

Certain applications that show text require very precise control of the positioning
of each glyph. There are three LanguageLevel 2 operators to streamline the opera-
tion of showing individually positioned glyphs: xyshow, xshow, and yshow. Each
operator is given a string of text to be shown, the same as show. In addition, it ex-
pects a second operand, which is either an array of numbers or a string that can
be interpreted as an encoded number string, as described in Section 3.14.5, "En-
coded Number Strings." The numbers are used in sequence to control the widths
of the glyphs being shown. They completely override the standard widths of the
glyphs.

The lcshow and cshow operators provide ways for an arbitrary PostScript proce-
dure to intervene in the positioning and painting of each glyph they show. cshow
is a LanguageLevel 2 operator. These are the most general but least efficient
glyph-painting operations.

5.2 Font Dictionaries

Font dictionaries are ordinary dictionary objects, but with certain special entries.
The PostScript language has several operators that deal with font dictionaries (see
Chapter 8). Some of the contents of a font dictionary are optional and user-
definable, while other entries must be present and have the correct semantics in
order for the PostScript interpreter's font machinery to operate properly.

In addition to fonts, LanguageLevel 3 supports two classes of font-related objects,
called CIDFonts and CMaps, described in Section 5.11, "CID-Keyed Fonts."

There are several kinds of fonts, distinguished by the FontType entry in the font
dictionary. Each type of font has its own conventions for organizing and repre-

senting the information within it. Fonts of type 1, 2, 3, 14, and 42 are called base
fonts. The standard font types defined at present are listed in Table 5.1.

I CHAPTER 5
322

Fonts I

TABLE 5.1 Font types

TYPE DESCRIPTION

Type 0

Type 1

(LanguageLevel 2) A composite font—a font composed of other

fonts, organized hierarchically. See Section 5.10, "Composite

Fonts."

A font that defines glyph shapes by using a special encoded format.

Details on this format are provided in a separate book, Adobe Type 1

Font Format.

The multiple-master font format is an extension of the Type 1 font

format that allows the generation of a wide variety of typeface styles

from a single font. For details of the construction and uses of

multiple-master fonts, see Adobe Technical Note #5015, Type 1 Font

Format Supplement.

Type 2 (LanguageLevel 3) A Compact Font Format (CFF) font. See
Section 5.8.1, "Type 2 and Type 14 Fonts (CFF and Chameleon)."

Type 3 A font that defines glyphs with ordinary PostScript procedures,

which are the values of entries named BuildGlyph or BuildChar in

the font dictionary. See Section 5.7, "Type 3 Fonts."

Types 9, 10, 11, 32 (LanguageLevel 3) These FontType values identify a class of fontlike

objects, called CIDFonts, that can be used as descendants in CID-

keyed fonts. See Section 5.11, "CID-Keyed Fonts." CIDFonts have

their own type numbering, specified by a separate CIDFontType

entry; a Type 0 font and a Type 0 CIDFont are entirely different

kinds of objects. CIDFonts are not considered to be base fonts.

Type 14 (LanguageLevel 3) A Chameleon font. See Section 5.8.1, "Type 2

and Type 14 Fonts (CFF and Chameleon)."

Type 42 (LanguageLevel 3) A font based on the TrueType font format. See

Section 5.8.2, "Type 42 Fonts (TrueType)."

Some products support proprietary font types in addition to the standard ones
built into the PostScript language. These product-specific font types are not de-
scribed in this book, but rather in the manufacturer's documentation for individ-
ual products.

323
I5.2 Font Dictionaries I

As stated earlier, most fonts (and related objects, such as CIDFonts and CMaps)
originate as programs contained in files that conform to an external specification,
such as Adobe Type 1 Font Format. There are two main ways in which such a font
program can be introduced into a PostScript interpreter, causing a font dictio-

nary to be created in virtual memory:

• Execution of the findfont operator causes the interpreter to locate a font file in
external storage and to load its definition into VM on demand.

• The PostScript program defines the font explicitly, by including a copy of the
font file embedded directly within the job. (To facilitate document manage-
ment, a PostScript program containing an embedded font program should use
appropriate document structuring comments; see Adobe Technical Note
#5001, PostScript Language Document Structuring Conventions Specification.)

In either case, the PostScript interpreter executes the font program. For some font
types, a font program consists entirely of ordinary operators, such as dict, begin,

end, and def, that construct the font dictionary directly. For other font types, a
font program invokes a special-purpose operator, such as StartData, that inter-
prets binary-encoded font data appearing in-line and constructs a font dictionary

using material extracted from that data.

The font program makes the new font dictionary known to the interpreter by ex-
ecuting the definefont operator. definefont takes a name and a dictionary, checks

that the dictionary is a well-formed font dictionary, makes the dictionary's access
read-only, and associates the font name with the dictionary in the font directory.
It performs additional modifications that are documented in the definefont op-
erator description in Chapter 8. Successful execution of definefont makes the
font dictionary valid for use by other font operators (an inva lidfont error will oc-

cur otherwise).

The operator undefinefont (LanguageLevel 2) removes a named font from the
font directory. A font dictionary that has been removed in this fashion is still a

valid font (assuming it is still accessible), but it can no longer be returned by

findfont.

In LanguageLevels 2 and 3, fonts are actually a special case of named resources: a
font is an instance of the Font resource category. The findfont, definefont, and
undefinefont operators are merely conveniences for invoking findresource,
defineresource, and undefineresource. Other classes of font-related objects,
CIDFonts and CMaps, are ordinarily defined as instances of separate resource

I CHAPTER 5
324

I
Fonts I

categories, not the Font category (however, a CIDFont can be an instance of the
Font category). Like fonts, these objects become valid as a side effect of successful
execution of defi n ereso u rce.

A font dictionary can reside in either local or global VM. See Section 3.9, "Named

Resources," and the description of the defineresource operator for complete in-

formation on how resource instances are named and are loaded into VM.

5.2.1 Entries in Font Dictionaries

Table 5.2 lists the entries that have defined meanings in the font dictionaries of all

types of fonts. Table 5.3 lists additional entries that are meaningful in all base
fonts (fonts of type 1, 2, 3, 14, or 42). On top of that, Table 5.4 lists additional en-
tries that are meaningful in Type 1 fonts; most of them apply to other base font

formats as well. Entries specific to other types of fonts (and to CIDFonts and

CMaps) are described later in the sections that discuss those types. Any font dic-
tionary can have additional entries containing information useful to PostScript
procedures that are part of the font's definition; the interpreter pays no attention
to such entries.

TABLE 5.2 Entries common to all font dictionaries

KEY TYPE VALUE

FontType integer (Required) The font type; see Table 5.1. Indicates where the glyph descrip-
tions are to be found and how they are represented.

FontMatrix array (Required) An array that transforms the glyph coordinate system into the user
coordinate system (see Section 5.4, "Glyph Metric Information"). For

example, Type 1 font programs from Adobe are usually defined in terms of a

1000-unit glyph coordinate system, and their initial font matrix is

[0.001 0 0 0.001 0 0]. When a font is derived by the scalefont or ma kefont

operator, the new matrix is concatenated with the existing font matrix to

yield a new copy of the font with a different font matrix.

FontName name (Optional) The name of the font. This entry is for information only; it is not
used by the PostScript interpreter. Ordinarily, it is the same as the key passed
to definefont, but it need not be.

FontInfo dictionary (Optional) A dictionary containing font information that is not accessed by
the PostScript interpreter; see Table 5.5 on page 327.

I 5.2
325

Font Dictionaries I

LanguageLevel integer (Optional) The minimum LanguageLevel required for correct behavior of the
font. For example, any font that uses LanguageLevel 2 features for rendering
glyphs (such as a glyph description that uses rectfill or glyphshow) should
specify a LanguageLevel value of 2. On the other hand, the presence of
higher-LanguageLevel information that an interpreter can safely ignore does

not require LanguageLevel to be set to the higher LanguageLevel. For
example, an XUID entry in the font dictionary—LanguageLevel 2 informa-
tion that a LanguageLevel 1 interpreter can ignore—does not require setting
LanguageLevel to 2. Default value: 1.

WMode integer (Optional; LanguageLevel 2) The writing mode, which determines which of
two sets of metrics will be used when glyphs are shown from the font. Mode 0
specifies horizontal writing; mode 1 specifies vertical writing (see Section 5.4,

"Glyph Metric Information"). LanguageLevel 1 implementations lacking
composite font extensions ignore this entry Default value: O.

FID fontID (Inserted by definefont) A special object of type fontID that serves internal
purposes in the font machinery The definefont operator inserts this entry. In
LanguageLevel 1, an FID entry must not previously exist in the dictionary

presented to definefont; the dictionary must have sufficient space to insert

this entry.

TABLE 5.3 Additional entries common to all base fonts

KEY TYPE VALUE

Encoding array (Required) An array of character names to which character codes are
mapped. See Section 5.3, "Character Encoding!'

FontBBox array (Required) An array of four numbers in the glyph coordinate system giving

the left, bottom, right, and top coordinates, respectively, of the font bounding
box. The font bounding box is the smallest rectangle enclosing the shape that

would result if all of the glyphs of the font were placed with their origins co-

incident, and then painted. This information is used in making decisions
about glyph caching and clipping. If all four values are 0, the PostScript inter-

preter makes no assumptions based on the font bounding box.

If any value is nonzero, it is essential that the font bounding box be accurate;
if any glyph's marks fall outside this bounding box, incorrect behavior may

result.

In many Type 1 fonts, the FontBBox array is executable, though there is no

good reason for this to be so. Programs that access FontBBox should invoke

an explicit get or load operator to avoid unintended execution.

326
I CHAPTER 5 Fonts

UniquelD integer (Optional) An integer in the range 0 to 16,777,215 (224 — 1) that uniquely
identifies this font. See Section 5.6, "Unique ID Generation?'

XU ID array (Optional; LanguageLevel 2) An array of integers that uniquely identifies this
font or any variant of it. See Section 5.6, "Unique ID Generation?'

TABLE 5.4 Additional entries specific to Type 1 fonts

KEY TYPE VALUE

PaintType integer (Required) A code indicating how the glyphs of the font are to be painted:

0 Glyph outlines are filled.
2 Glyph outlines (designed to be filled) are stroked.

To get a stroked-outline font, a program can copy the font dictionary, change
the PaintType from 0 to 2, add a StrokeWidth entry, and define a new font us-
ing this dictionary. Note that the previously documented PaintType values of
1 and 3 are not supported.

StrokeWidth number (Optional) The stroke width (in units of the glyph coordinate system) for
stroked-outline fonts (PaintType 2). This entry is not initially present in

filled-outline fonts. It should be added (with a nonzero value) when a stroked
font is created from an existing filled font. Default value: O.

Metrics dictionary (Optional) A dictionary containing metric information (glyph widths and

sidebearings) for writing mode O. This entry is not normally present in the
original definition of a font. Adding a Metrics entry to a font overrides the
metric information encoded in the glyph descriptions. See Sections 5.4,
"Glyph Metric Information," and 5.9.2, "Changing Glyph Metrics?'

Metrics2 dictionary (Optional; LanguageLevel 2) Similar to Metrics, but for writing mode 1.

CDevProc procedure (Optional; LanguageLevel 2) A procedure that algorithmically derives global

changes to the font's metrics. LanguageLevel 1 implementations lacking
composite font extensions ignore this entry.

CharStrings dictionary (Required) A dictionary associating character names (the keys in the diction-
ary) with glyph descriptions. Each entry's value is ordinarily a string (called a
charstring) that represents the glyph description for that character in a special
encoded format; see Adobe Type 1 Font Format for details. The value can also
be a PostScript procedure; see Section 5.9.3, "Replacing or Adding Individual
Glyphs?' This dictionary must have an entry whose key is .notdef.

Private dictionary (Required) A dictionary containing other internal information about the
font. See Adobe Type 1 Font Format for details.

327
I5.2 Font Dictionaries I

WeightVector array (Required; multiple-master fonts only) An array specifying the contribution of
each master design to the current font instance. The array contains one num-
ber per master design, each typically in the range 0.0 to 1.0; the sum of the ar-
ray elements must be 1.0. The values in the array are used for calculating the
weighted interpolation. Elements outside the allowed range may produce un-
expected results.

Any font dictionary can contain a Fontinfo entry whose value is a dictionary con-

taining the information listed in Table 5.5. This information is entirely for the

benefit of PostScript programs using the font, or for documentation; it is not ac-

cessed by the PostScript interpreter, and all of its entries are optional.

TABLE 5.5 Entries in a Fontinfo dictionary

KEY TYPE VALUE

FamilyName

FullName

Notice

Weight

version

ItalicAngle

string A human-readable name for a group of fonts that are stylistic variants of a
single design. All fonts that are members of such a group should have exactly
the same FamilyName value.

string A unique, human-readable name for an individual font.

string A trademark or copyright notice, if applicable.

string A human-readable name for the weight, or "boldness," attribute of a font.

string The version number of the font program.

number The angle, in degrees counterclockwise from the vertical, of the dominant
vertical strokes of the font.

isFixedPitch boolean A flag indicating whether the font is a fixed-pitch (monospaced) font.

UnderlinePosition number The recommended distance from the baseline for positioning underlining
strokes. This number is the y coordinate (in the glyph coordinate system) of
the center of the stroke.

UnderlineThickness number The recommended stroke width for underlining, in units of the glyph coordi-
nate system.

The PostScript language does not specify any formal rules for the names of fonts

or for the entries in the Fontinfo dictionary. However, there are various conven-

tions for organizing fonts that facilitate their use by application programs.

I CHAPTER 5
328

Fonts I

• Some applications use FamilyName as part of a hierarchical font-selection user
interface. This divides a very large set of individual fonts into a smaller, more
manageable set of "font families." The FamilyName parameter should be suit-
able for use in a font selection menu.

• Typically, FullName begins with FamilyName and continues with various style
descriptors separated by spaces—for example, Adobe Garamond Bold Italic. In
some designs, a numbering system replaces or augments verbal descriptors—
for example, Univers 55 Medium.

• Weight is derived from the FullName parameter by dropping everything from

FullName that does not explicitly relate to weight. For example, the FullName
entry ITC Franklin Gothic Condensed Extra Bold Oblique reduces to a Weight en-
try of Extra Bold.

• The font dictionary's FontName parameter, which is also usually used as the
key passed to definefont, is a condensation of FullName. It is customary to re-
move spaces and to limit its length to fewer than 40 characters. The resulting
name should be unique.

5.3 Character Encoding

Font definitions use a flexible encoding scheme by which character codes select
glyph descriptions. The association between character codes and glyph descrip-
tions is not part of the glyph descriptions themselves, but instead is described by

a separate encoding vector. A PostScript program can change a font's encoding
vector to match the requirements of the application generating the description.

This section describes the character encoding scheme used with base fonts. Com-
posite fonts (Type 0) use a more complicated character mapping algorithm, as
discussed in Section 5.10, "Composite Fonts."

Note: Every base font must have an Encoding entry, which the PostScript font ma-
chinery accesses automatically as described below. A Type 3 font's BuildChar proce-
dure should use this entry in the standard way; see Section 5.7, "Type 3 Fonts."

In a font dictionary, the descriptions of the individual glyphs are keyed by char-

acter names, not by character codes. Character names are ordinary PostScript
name objects. Descriptions of Latin alphabetic characters are normally associated

with names consisting of single letters, such as A or a. Other characters are associ-
ated with names composed of words, such as three, ampersand, or parenleft.

329

1
Character Encoding I

The encoding vector is defined by the array object that is the value of the
Encoding entry in the font dictionary. The array is indexed by character code (an
integer in the range 0 to 255). The elements of the array must be character names,
and the array should be 256 elements long. (A base font used as a descendant in a
composite font may be accessed using a ¿ode that is not 8 bits long, in which case
the length of the Encoding array should be correspondingly different.)

The operand to the show operator is a PostScript string object. Each element of
the string is treated as a character code. When show paints a character:

1. It uses the character code as an index into the current font's Encoding array to
obtain a character name.

2. It invokes the glyph description by name. For a Type 1 font, it looks up the
name in the font's CharStrings dictionary to obtain an encoded glyph descrip-
tion (called a charstring), which it executes; Figure 5.5 illustrates this common
case. For a Type 3 font, it calls the font's BuildGlyph procedure (if present)
with the name as its operand; see Section 5.7, "Type 3 Fonts?' Other types of
fonts have their own conventions for associating character names with glyph
descriptions.

show
string

Character

code

Encoding
array

Character CharStrings ..- ., Glyph
name dictionary description

FIGURE 5.5 Encoding scheme for Type 1 fonts

For example, in the standard encoding vector used by Type 1 Latin-text fonts
such as Helvetica, the element at index 38 is the name object ampersand. When
show encounters the value 38 (the ASCII character code for &) as an element of a
string it is printing, it fetches the encoding vector entry at index 38, obtaining the
name object ampersand. It then uses ampersand as a key in the current font dic-
tionary's CharStrings subdictionary and executes the associated charstring that
renders the & glyph.

330
CHAPTER 5 Fonts

Changing an existing font's encoding involves creating a new font dictionary that
is a copy of the existing one except for its Encoding entry. The subsidiary dictio-
naries, such as CharStrings and FontInfo, continue to be shared with the original
font. Of course, a new font may be created with any desired encoding vector. This
flexibility in character encoding is valuable for two reasons:

• It permits showing text that is encoded according to any of the various existing
conventions. For example, the Microsoft Windows and Apple Mac OS operat-
ing systems use different standard encodings for Latin text, and many applica-
tions use their own special-purpose encodings.

• It allows applications to specify how characters selected from a large character
set are to be encoded. Some character sets consist of more than 256 characters,
including ligatures, accented characters, and other symbols required for high-
quality typography or non-Latin writing systems. Different encodings can se-
lect different subsets of the same character set.

Latin-text font programs produced by Adobe Systems use the "Adobe standard"
encoding vector, which is associated with the name StandardEncoding in
systemdict. An alternate encoding vector called ISO Latin-1 is associated with the
name ISOLatin1Encoding. Complete details of these encodings and of the charac-
ters present in typical fonts are provided in Appendix E.

All unused positions in an encoding vector must be filled with the character
name .notdef. Like any other character name, the name .notdef is defined in the
CharStrings dictionary. If an encoding maps to a character name that does not
exist in the font, the name .notdef is substituted. Every font must contain a glyph
description for the .notdef character, The effect produced by showing the .notdef
character is at the discretion of the font designer. In Type 1 font programs pro-
duced by Adobe, it is the same as the space character.

The glyphshow operator (LanguageLevel 2) shows the glyph for a single character
specified by name instead of by character code. This allows direct access to any
character in the font regardless of the font's Encoding array. The principal use of
glyphshow is in defining fonts whose glyph descriptions refer to other characters
in the same or a different font. Referring to such characters by name ensures
proper behavior if the font is subsequently reencoded.

• à.

331
Glyph Metric Information I

5.4 Glyph Metric Information

The glyph coordinate system is the space in which an individual character's glyph
is defined. All path coordinates and metrics are interpreted in glyph space.
Figure 5.6 shows a typical glyph outline and its metrics.

Glyph
bounding -

box

Glyph
origin

[0— Left sidebearing

Glyph width

Next
glyph
origin

FIGURE 5.6 Glyph metrics

The glyph origin, or reference point, is the point (0, 0) in the glyph coordinate sys-
tem. show and other glyph-painting operators position the origin of the first
glyph to be shown at the current point in user space. For example,

40 50 moveto

(ABC) show

places the origin of the A at coordinate (40, 50) in the user coordinate system.

The glyph width is the distance from the glyph's origin to the point at which the
origin of the next glyph should normally be placed when painting the consecutive
glyphs of a word. This distance is a vector in the glyph coordinate system; it has x
and y components. Most Indo-European alphabets, including the Latin alphabet,
have a positive x width and a zero y width. Semitic alphabets have a negative x
width, and some Asian writing systems have a nonzero y width.

The glyph bounding box is the smallest rectangle (oriented with the axes of the
glyph coordinate system) that will just enclose the entire glyph shape. The

332
CHAPTER 5 Fonts I

bounding box is expressed in terms of its left, bottom, right, and top coordinates
relative to the glyph origin in the glyph coordinate system.

The left sidebearing of a glyph is the position of the left sidebearing point in glyph
space. This is usually the intersection of the left edge of the bounding box with
the glyph's baseline; however, the exact interpretation of the left sidebearing de-
pends on details of the font technology (for Type 1, see Adobe Type 1 Font For-
mat). Note that the x coordinate of the left sidebearing can be negative for glyphs
that extend to the left of their origin. They coordinate is almost always O.

Type 1 fonts are defined in such a way that a glyph's left sidebearing and width
can be adjusted; that is, the glyph bounding box and the position of the next
glyph can be shifted relative to the origin (see Section 5.9, "Font Derivation and
Modification"). Some other types of base fonts work similarly.

In some writing systems, text is frequently aligned in two different directions. For
example, it is common to write Japanese and Chinese glyphs either horizontally
or vertically. To handle this, a font can optionally contain a second set of metrics
for each glyph. This feature is available only in LanguageLevel 2 or 3 or in
LanguageLevel 1 implementations with composite font extensions.

The metrics are accessed by show and other operators according to a writing
mode, given by a WMode entry in the font dictionary (or in some parent font dic-
tionary in a composite font). By convention, writing mode 0 (the default) speci-
fies horizontal writing and mode 1 specifies vertical writing. If a font contains
only one set of metrics, the WMode parameter is ignored.

When a glyph has two sets of metrics, each set specifies a glyph origin and a width
vector. Figure 5.7 illustrates the relationship between the two sets of metrics. The
left diagram illustrates the glyph metrics associated with writing mode O. The co-
ordinates 11 and ur specify the bounding box of the glyph relative to origin O. w0 is
the glyph width vector that specifies how the current point is changed after the
glyph is shown in writing mode O. The center diagram illustrates writing mode 1;
wl is the glyph width vector for writing mode 1. In the right diagram, vis a vector
defining the position of origin 1 relative to origin O.

333

I
Font Cache I

Ur

II New current
point

Writing mode 0

Origin 1 Origin 1
-,

w/

New current point

Writing mode 1

V

Origin
O

Mode 1 relative to mode 0

FIGURE 5.7 Relationship between two sets of metrics

Glyph metric information can be accessed procedurally by a PostScript program.

The stringwidth operator obtains glyph widths. The sequence

charpath flattenpath pathbbox

computes glyph bounding boxes, though this is relatively inefficient. The bound-
ing box for an entire font appears in the font dictionary as an array of four num-
bers associated with the key FontBBox.

Glyph metric information is also available separately in the form of Adobe font
metrics (AFM) and Adobe composite font metrics (ACFM) files. These files are
for use by application programs that generate PostScript page descriptions and
must make formatting decisions based on the widths and other metrics of glyphs.
Kerning information is also available in the AFM and ACFM files. When possible,
applications should use this information directly instead of generating PostScript
instructions to compute it.

Specifications for the AFM and ACFM file formats are available in Adobe Techni-
cal Note #5004, Adobe Font Metrics File Format Specification.

5.5 Font Cache

The PostScript interpreter includes an internal data structure called the font cache
whose purpose is to make the process of painting glyphs very efficient. For the
most part, font cache operation is automatic. However, fonts whose glyph de-
scriptions are PostScript procedures, such as Type 3 fonts, must adhere to certain

334
I CHAPTER 5 Fonts I

conventions to take advantage of the font cache. Also, there are several operators
that control the behavior of the font cache, including ones that directly update
the font cache on behalf of a Type 4 CIDFont.

Rendering a glyph from an outline or other high-level description is a relatively
costly operation, because it involves performing scan conversion of arbitrary
shapes. This presents special problems for printing text, because it is common for
several thousand glyphs to appear on a single page. However, a page description
that includes large amounts of text normally has many repetitions of the same
glyph in a given font, size, and orientation. The number of distinct glyphs thus is
very much smaller than the total number of glyphs.

The font cache operates by saving the results of glyph scan conversions (including
metric information and device pixel arrays) in temporary storage and using those

saved results when the same glyph is requested again. The font cache is usually
large enough to accommodate all of the distinct glyphs in a page description.
Painting a glyph that is already in the font cache is typically hundreds of times
faster than scan-converting it from the glyph description in the font.

The font cache does not retain color information; it remembers only which pixels
were painted and which pixels were left unchanged within the glyph's bounding

box. For this reason, there are a few restrictions on the set of graphical operators
that may be executed as part of glyph descriptions that are to be cached. In par-
ticular, the image operator is not permitted. However, imagemask may be used
to define a glyph according to a bitmap representation; see Section 4.10, "Imag-
es?' Execution of operators that specify colors or other color-related parameters
in the graphics state is also not permitted; see Section 4.8, "Color Spaces?'

The principal manifestation of the font cache visible to the PostScript program is
that showing a glyph does not necessarily result in the execution of the glyph's de-
scription. This means that glyph descriptions that are PostScript procedures must
interact with the font cache machinery to ensure that the results of their execu-
tion are properly saved; this interaction is accomplished by means of the
setcachedevice or setcachedevice2 operator, as described in Section 5.7, "Type 3

Fonts."

l 5.6
335

1
Unique ID Generation I

Each glyph saved in the font cache is identified by the combination of:

• The original base font or CIDFont dictionary from which the glyph description
was obtained.

• The character selector, which is a character name in a base font or a CID (char-
acter identifier) in a CIDFont; see Section 5.11, "CID-Keyed Fonts?'

• The current transformation matrix (CTM) at the time the glyph is shown.

To ensure predictable behavior despite font caching, a given combination of font
and character selector must always produce the same appearance when rendered.
Means exist to provide reliable identification of a font definition; see the next sec-
tion. Note that a character code is not part of the glyph identification in the font
cache, since a given glyph may be selected in more than one way.

5.6 Unique ID Generation

A unique ID is an optional entry in a font dictionary that helps identify the font
to the interpreter. Its primary purpose is to identify cached glyphs built from that
font. The PostScript interpreter can retain glyphs in the font cache even for a font
that is not permanently in virtual memory. Some implementations can save
cached glyphs on disk. This can have a beneficial effect on performance when us-
ing fonts that are loaded into VM dynamically, either by explicit downloading or

automatically via the resource facility.

If a font has a unique ID, the interpreter can recognize that the cached glyphs be-
long to that font, even if the font dictionary itself is removed from VM and is later
reloaded (by a subsequent job, for instance). If a font does not have a unique ID,
the interpreter can recognize cached glyphs for that font only while it remains in

VM. When the font is removed, the cached glyphs must be discarded.

Correct management of unique IDs is essential to ensure predictable behavior. If
two fonts have the same unique ID but produce glyphs with different appearanc-
es when executed, it is unpredictable which glyphs will appear when those fonts
are used. Therefore, unique IDs must be assigned systematically from some cen-
tral registry.

The reason that font caching is based on a special unique ID entry rather than on
the font's name or other identifying information is that font names are not neces-
sarily unique. A font with a particular name, such as Garamond-Bold, may be

I CHAPTER 5
336

Fonts I

available from several sources, and there may be successive releases of a font from

the same source.

For information about assigning unique IDs, consult the Adobe Developer Rela-
tions Web site (see the Bibliography) or send e-mail to the Adobe Unique ID Co-

ordinator at fontdev-person@adobe.com.

As described below, there are two kinds of unique ID entry that can appear in

font dictionaries: UniquelD and XUID. UniquelD is supported by all Language-
Levels and applies only to base fonts. XUID is a LanguageLevel 2 feature that
applies not only to base fonts but also to certain other categories of resources—

see Sections 4.7, "Forms"; 4.9, "Patterns"; 5.11.3, "CIDFont Dictionaries";

and 5.11.4, "CMap Dictionaries!'

When you create a new font program that will be saved permanently and perhaps
distributed widely, you should assign UniquelD and XUID values for that font and

embed those values in the definition of the font dictionary. On the other hand,
when an application program constructs a font as part of building a page descrip-

tion, it should not include a UniquelD or XUID entry in the font dictionary, be-
cause there is no opportunity for registering the ID and there is little to be gained
from doing so in any event.

When you copy a font dictionary for the purpose of creating a modified font, you

should not copy the UniquelD or XUID entry. As an exception to this general rule,
it is acceptable (and preferable) to retain the original UniquelD or XUID entry if

the only modified entries are FontName, Fontlnfo, FontMatrix, or Encoding, be-
cause those changes do not affect the glyphs' appearance or metrics.

5.6.1 Unique ID Numbers

The UniquelD entry in a font dictionary is an integer in the range 0 to 16,777,215
(224 _ 1). Each font type has its own space of UniquelD values. Therefore, a

Type 1 font and a Type 3 font could have the same UniquelD number and be safe-
ly used together without causing conflicts in the font cache.

The UniquelD numbers for Type 1 fonts are controlled: Adobe Systems maintains
a registry of these numbers. Numbers between 4,000,000 and 4,999,999 are re-

served for private interchange in closed environments and cannot be registered.

337

i
Type 3 Fonts I

5.6.2 Extended Unique ID Numbers

The XUID entry in a font dictionary is an extended unique ID—an array of inte-
gers that provides for distributed, hierarchical management of the space of
unique ID numbers. A font is uniquely identified by the entire sequence of num-
bers in the array. XUID is a LanguageLevel 2 feature; it is ignored by
LanguageLevel 1 implementations.

The first element of an XUID array is a unique organization ID, assigned to an or-
ganization by the Adobe registry. The remaining elements—and the allowed
length of XUID arrays—are controlled by the organization. An organization can
establish its own registry for managing the space of numbers in these remaining
elements, which are interpreted relative to the organization ID.

The organization ID 1,000,000 is reserved for private interchange in closed envi-
ronments. XUID arrays starting with this number may be of any length, subject to
an implementation limit (see Appendix B).

This scheme also makes it possible to derive unique IDs systematically when cre-
ating modifications of existing fonts. This is not possible for UniquelD values be-
cause the space of numbers is too small. A program can replace an XUID array
with a longer XUID array consisting of:

• The organization ID of the originator of the program

• The XUID array elements from the original font

• Additional elements indicating exactly what modifications have been per-
formed

PostScript interpreters that recognize the XUID array ignore UniquelD whenever
an XUID entry is present. For backward compatibility with the installed base of
interpreters, font creator and font modifier software should continue to use and
maintain appropriate UniquelD numbers for the foreseeable future.

5.7 Type 3 Fonts

A Type 3 font is one whose behavior is determined entirely by PostScript proce-

dures. In contrast, most other types of base fonts originate as font programs that
conform to an external specification, such as Adobe Type 1 Font Format, that has

338
CHAPTER 5 Fonts I

no direct connection with the PostScript language. This section describes how to

build a Type 3 font from scratch.

In addition to the entries common to all base fonts (Table 5.2 on page 324 and
Table 5.3 on page 325), a Type 3 font dictionary includes the entries listed in

Table 5.6.

TABLE 5.6 Additional entries specific to Type 3 fonts

KEY TYPE VALUE

BuildGlyph procedure (Optional; LanguageLevel 2) A procedure that constructs the requested glyph.

The font dictionary, followed by the character name, is on the stack when the

procedure is called. See Section 5.7.1, "BuildGlyph."

BuildChar procedure (Required for LanguageLevel I or if BuildGlyph is absent) A procedure that

constructs the requested glyph (only if no BuildGlyph entry is present, in

LanguageLevel 2 or 3). The font dictionary, followed by the character code, is

on the stack when the procedure is called. See Section 5.7.2, "BuildChar."

5.7.1 BuildGlyph

When a PostScript program tries to show a glyph from a Type 3 font, and the
glyph is not already present in the font cache, the PostScript interpreter:

1. Uses the character code as an index into the current font's Encoding array, ob-
taining the corresponding character name. (This step is omitted during a

glyphshow operation.)

2. Pushes the current font dictionary and the character name on the operand

stack.

3. Executes the font's BuildGlyph procedure. BuildGlyph must remove these two
objects from the operand stack and use this information to construct the re-
quested glyph. This typically involves determining the glyph description need-
ed, supplying glyph metric information, constructing the glyph, and painting

it.

All Type 3 fonts must include a character named .notdef. The BuildGlyph proce-

dure should be able to accept that character name regardless of whether such a
character is encoded in the Encoding array. If the BuildGlyph procedure is given a

339
Type 3 Fonts I

character name it does not recognize, it can handle that condition by painting the
glyph for the .notdef character instead.

BuildGlyph is called within the confines of a gsave and a grestore, so any changes
it makes to the graphics state do not persist after it finishes. Each call to
BuildGlyph is independent of any other call. Because of the effects of font cach-
ing, no assumptions can be made about the order in which glyph descriptions
will be executed. In particular, BuildGlyph should not depend on any noncon-
stant information in VM, and it should not leave any side effects in VM or on
stacks.

When BuildGlyph gets control, the current transformation matrix (CTM) is the
concatenation of the font matrix (FontMatrix in the current font dictionary) and
the CTM that was in effect at the time show was invoked. This means that shapes
described in the glyph coordinate system will be transformed into the user coor-
dinate system and will appear in the appropriate size and orientation on the page.

BuildGlyph should describe the glyph in terms of absolute coordinates in the
glyph coordinate system, placing the glyph origin at (0, 0) in this space. It should
make no assumptions about the initial value of the current point parameter.

The results of Build Glyph should depend only on the complete transformation

from glyph space to device space, and not on the relative contributions of the font
matrix and the CTM prior to BuildGlyph. In particular, BuildGlyph should not
attempt to vary its results depending on the font dictionary's FontMatrix entry.

Aside from the CTM, the graphics state is inherited from the environment of the
show operator (or show variant) that caused BuildGlyph to be invoked. To ensure
predictable results despite font caching, BuildGlyph must initialize any graphics
state parameters on which it depends. In particular, if it invokes the stroke opera-
tor, BuildGlyph should explicitly set the line width, line join, line cap, and dash
pattern to appropriate values. Normally, it is unnecessary and undesirable to ini-
tialize the current color parameter, because show is defined to paint glyphs with
the current color.

BuildGlyph must execute one of the following operators to pass width and
bounding box information to the PostScript interpreter. This must precede exe-
cution of any path construction or painting operators describing the glyph.

I CHAPTER 5
340

I
Fonts I

• setcachedevice establishes a single set of metrics for both writing modes, and
requests that the interpreter save the results in the font cache if possible.

• setcachedevice2 (LanguageLevel 2) establishes separate sets of metrics for writ-
ing modes 0 and 1, and requests that the interpreter save the results in the font

cache.

• setcharwidth passes just the glyph's width (to be used only once), and requests
that the glyph not be cached. This operator is typically used only if the glyph
description includes operators to set the color explicitly.

See the descriptions of setcachedevice, setcachedevice2, and setcharwidth in

Chapter 8 for more information.

After executing one of these operators, BuildGlyph should execute a sequence of
graphics operators to perform path construction and painting. The PostScript in-
terpreter transfers the results into the font cache, if appropriate, and onto the

page at the correct position. It also uses the width information to control the
spacing between this glyph and the next. The final position of the current point
in the glyph coordinate system does not influence glyph spacing.

5.7.2 BuildChar

In LanguageLevel 2 or 3, if there is no BuildGlyph procedure for the font, the in-
terpreter calls the BuildChar procedure instead. In LanguageLevel 1, BuildChar is

always called, whether or not a BuildGlyph procedure is present.

The semantics of BuildChar are essentially the same as for BuildGlyph. The only

difference is that BuildChar is called with the font dictionary and the character
code on the operand stack, instead of the font dictionary and the character name.
The BuildChar procedure must then perform its own lookup to determine what
glyph description corresponds to the given character code.

For backward compatibility with the installed base of LanguageLevel 1 interpret-
ers, all new Type 3 fonts should contain the following BuildChar procedure:

/BuildChar

{ 1 index /Encoding get exch get

1 index /BuildGlyph get exec

1 bind del

341
Type 3 Fonts I

This defines BuildChar in terms of the same font's BuildGlyph procedure, which
contains the actual commands for painting the glyph. This permits the font to be

used with higher-LanguageLevel features—such as the LanguageLevel 2 operator
glyphshow, which requires BuildGlyph to be present—yet retains compatibility
with LanguageLevel 1.

5.7.3 Example of a Type 3 Font

Example 5.6 shows the definition of a Type 3 font with only two glyphs—a filled
square and a filled triangle, selected by the characters a and b. Figure 5.8 shows

the output from this example. The glyph coordinate system is on a 1000-unit
scale. This is not a realistic example, but it does illustrate all the elements of a
Type 3 font, including a BuildGlyph procedure, an Encoding array, and a subsid-
iary dictionary for the individual glyph descriptions.

MANAMA

FIGURE 5.8 Output from Example 5.6

Example 5.6

8 dict begin

/FontType 3 def

/FontMatrix [.001 0 0 .001 0 0] def

/FontBBox [0 0 750 7501 def

/Encoding 256 array def

0 1 255 { Encoding exch /.notdef put} for

Encoding 97 /square put

Encoding 98 /triangle put

% Required elements of font

%Trivial encoding vector

% ASCII a = 97

% ASCII b = 98

I CHAPTER 5
342

I
Fonts I

/CharProcs 3 dict def

CharProcs begin

/.notdef { } def

/square

{ 0 0 moveto

750 0 lineto

750 750 lineto

0 750 lineto

closepath

fill

} bind def

/triangle

{ 0 0 moveto

375 750 lineto

750 0 lineto

closepath

fill

} bind def

end % End of CharProcs

% Subsidiary dictionary for

% individual glyph descriptions

/BuildGlyph % Stack contains: font charname

(1000 0 %Width

0 0 750 750 % Bounding box

setcachedevice

exch /CharProcs get exch % Get CharProcs dictionary

2 copy known not % See if charname is known

{pop /.notdef}

if

get exec % Execute BuildGlyph procedure

} bind def

/BuildChar

{ 1 index /Encoding get exch get

1 index /BuildGlyph get exec

I bind def

currentdict

end

/ExampleFont exch definefont pop

/ExampleFont findfont 12 scalefont setfont

36 52 moveto

(ababab) show

% LanguageLevel 1 compatibility

% End of font dictionary

% Now show some characters

343
Additional Base Font Types I

5.8 Additional Base Font Types

This section describes additional base font types besides Type 1 and Type 3:
Type 2 (CFF), Type 14 (Chameleon), and Type 42 (TrueType). These three addi-
tional font formats are LanguageLevel 3 features.

5.8.1 Type 2 and Type 14 Fonts (CFF and Chameleon)

The Type 2 (Compact Font Format, or CFF) and Type 14 (Chameleon) font for-

mats are compact representations that enable multiple fonts to be stored in a unit
called a font set. A font set is an instance of a resource category named FontSet.

This category is distinct from the Font category; however, the constituent fonts in
a font set are also available as instances of the Font category and can be accessed
by findfont or findresource

These formats are not expressed in PostScript language syntax, but as binary-
encoded data structures that are decoded by specialized interpreters. The binary
font data is enclosed, or "wrapped," in a minimal amount of PostScript syntax,
yielding a file that can be treated as an external resource in the FontSet category.
When a constituent font is accessed by findfont, the resulting PostScript font dic-
tionary has a FontType value of 2 for CFF or 14 for Chameleon.

CFF is a representation of one or more fonts based on the Type 1 charstring for-
mat. It retains full fidelity to the original fonts, while achieving significant space
reduction due to a compact binary representation and sharing of data that is
common to multiple fonts. For more information on this format, see Adobe
Technical Note #5176, Compact Font Format Specification.

The Chameleon font format is an implementation of a "shape library" that allows
compact representations of Latin-text fonts. This format consists of a master font
and its font descriptor database: the master font is tailored to address the needs of
a particular product, while the font descriptors define how to extract fonts of in-
terest from the master. The details of the Chameleon font format are not docu-
mented.

Typically, for a product's built-in fonts, there is one font set for all CFF fonts and
one each for a Chameleon master font and its descriptor database. Additional
font sets can be installed on disk or embedded in a PostScript page description.

344
CHAPTER 5 Fonts

FontSet Resources

The external representation for a FontSet resource instance consists of minimal
PostScript syntax enclosing the binary-encoded font data. Example 5.7 illustrates
the resource file for a CFF font set; the same syntax is used for the Chameleon
font format. For details on the document structuring comments used in this ex-
ample, see Adobe Technical Note #5001, PostScript Language Document Structur-
ing Conventions Specification.

Example 5.7

%!PS-Adobe-3.0 Resource-FontSet

MADocumentNeedResources: ProcSet (FontSetInit)

°/00/01-itle: (FontSet/CFFRoman27)

%%Version: 1.000

%%EndComments

°/0%IncludeResource: ProcSet (FontSetInit)

%%BeginResource: FontSet (CFFRoman27)

/FontSetlnit /ProcSet findresource begin

°/0%BeginData: 622532 Binary Bytes

/CFFRoman27 622503 StartData

... 622,503 bytes of binary data ...

%%End Data

%%End Resource

o/00/0EOF

When the code in Example 5.7 is executed, the StartData operator defined in the
FontSetInit procedure set processes the binary data, builds a FontSet resource in-
stance, and invokes the defineresource operator, naming the resource instance
CFFRoman27. The contents of the FontSet resource instance (a dictionary) are
undocumented and subject to change.

In this example the StartData operator takes two operands; in a FontSet resource
file containing Chameleon font descriptors, a third operand is present that gives
the name of the associated master font. For more information, see the description
of StartData in Chapter 8.

345
I 5.8 Additional Base Font Types I

Note: StartData is the only operator in the FontSettnit procedure set that is docu-
mented as part of the PostScript language. Other entries in this procedure set are pri-
vate to the implementation of font sets and should not be accessed by a PostScript
program.

Accessing CFF and Chameleon Fonts in a PostScript Program

The fonts contained in all CFF and Chameleon FontSet resources also appear as
instances of the Font resource category, which makes them individually accessible
via the findfont operator and the LanguageLevel 2 resource operators (such as

findresource and resourceforall). The mechanism by which this is achieved is not
specified as part of the PostScript language.

Note: FontSet resource instances can have arbitrary keys, which have nothing to do
witli the names of their constituent fonts. If a given font name appears in multiple
Fon tSet instances, it is unpredictable which one will be selected by findfont

When findfont or findresource finds a font contained in a FontSet resource in-
stance, it constructs a font dictionary containing information extracted from the

FontSet instance's binary data. The resulting font dictionary has a FontType value
of 2 (for CFF) or 14 (for Chameleon). It contains the same entries as a Type 1

font dictionary, as defined in Tables 5.2, 5.3, and 5.4 (starting on page 324), ex-
cept:

• An entry in its CharStrings dictionary is ordinarily a glyph index—an integer
used as an index into the binary data for the font. (The interpretation of a
glyph index is internal to the font; it has no external significance and, in partic-
ular, has nothing to do with a character code.) A PostScript' program can re-

place this integer with a procedure; see Section 5.9.3, "Replacing or Adding

Individual Glyphs."

• It does not contain a Private entry.

• It has additional entries that are undocumented and subject to change.

A PostScript program can copy the font dictionary and insert or modify entries as

specified in the aforementioned tables. These modifications have the same effects
as for Type 1 fonts.

In Adobe PostScript implementations, there exists a fictitious file system named
%fontset%, whose "files" are the constituent fonts in all available FontSet resource

I CHAPTER 5
346

Fonts I

instances. The purpose of this file system is to provide compatibility with com-
mon methods of querying external font instances, used in some existing applica-
tions and drivers.

LanguageLevel 1 does not provide any standard means for querying or enumerat-
ing external font instances (equivalent to resourcestatus or resourceforall in
LanguageLevel 2). Instead, some applications invoke the status and filename—
forall operators to refer to font files directly. The %fontset96 fictitious file system
enables such applications to work correctly with fonts defined in FontSet re-
sources. This compatibility mechanism is documented in the PostScript Language
Reference Supplement.

5.8.2 Type 42 Fonts (TrueType)

LanguageLevel 3 includes support for Type 42 fonts. The Type 42 font format en-
ables TrueType fonts to be accessed from within a PostScript program. Like the
CFF and Chameleon font formats, the TrueType font format is not expressed in
PostScript language syntax, but rather as binary-encoded data structures that are
decoded by specialized interpreters. The binary font data defining the TrueType
font is wrapped in PostScript language syntax to make it conform to the Post-
Script language font model: the font data is stored in an entry named sfnts in a
Type 42 font dictionary.

In addition to the entries common to all base fonts (Table 5.2 on page 324 and
Table 5.3 on page 325), a Type 42 font dictionary includes the entries listed in
Table 5.7. For further details, see Adobe Technical Note #5012, The Type 42 Font
Format Specification.

TABLE 5.7 Additional entries specific to Type 42 fonts

KEY TYPE VALUE

CharStrings dictionary (Required) A dictionary associating character names (keys) with glyph de-
scriptions. Each entry's value is ordinarily a glyph index—an integer used as
an index into the TrueType "loca" table, which contains the byte offsets of
glyph descriptions in the TrueType "glyf" table. If the font dictionary also has
a GlyphDirectory entry, the integer is instead used as an index or key in
GlyphDirectory. The value of an entry in CharStrings can also be a PostScript
procedure; see Section 5.9.3, "Replacing or Adding Individual Glyphs:' This
dictionary must have an entry whose key is .notdef.

I 5.8
347

i
Additional Base Font Types I

sfnts array (Required) An array of one or more strings which, when concatenated, are

treated as the binary representation of the TrueType font. (Multiple strings
may be required because of the implementation limit on the length of a
string; see Appendix B.) See also Adobe Technical Note #5012, The Type 42
Font Format Specification.

PaintType integer (Required) A code indicating how the glyphs of the font are to be painted:

0 Glyph outlines are filled.
2 Glyph outlines (designed to be filled) are stroked.

StrokeWidth number (Optional) The stroke width (in units of the glyph coordinate system) for
stroked-outline fonts (PaintType 2). This entry is not initially present in
filled-outline fonts. It should be added (with a nonzero value) when a stroked
font is created from an existing filled font. Default value: 0.

Metrics dictionary (Optional) A dictionary containing metric information (glyph widths and

sidebearings) for writing mode 0. This entry is not normally present in the
original definition of a font. Adding a Metrics entry to a font overrides the

metric information encoded in the glyph descriptions. See Sections 5.4,
"Glyph Metric Information," and 5.9.2, "Changing Glyph Metrics."

Metrics2 dictionary (Optional) Similar to Metrics, but for writing mode 1.

CDevProc procedure (Optional) A procedure that algorithmically derives global changes to the
font's metrics. LanguageLevel 1 implementations lacking composite font ex-
tensions ignore this entry.

GlyphDirectory array or (Optional) A mechanism for the subsetting or incremental definition of

dictionary glyphs in the font; see Section 5.9.4, "Subsetting and Incremental Definition
of Glyphs."

Type 42 fonts are usually defined in terms of an identity transform, so the value

of FontMatrix (which transforms the glyph coordinate system into the user coor-

dinate system) should be [1 0 0 1 0 0] in a Type 42 font dictionary. This is in

contrast to a Type 1 font, whose glyph coordinate system is typically defined at a

1000-unit scale relative to user space. This difference has implications related to

the interpretation of font dictionary entries whose values are defined in glyph

space. If a PostScript program adds or changes such entries, it must choose values

that are appropriate to the font's glyph coordinate system; values appropriate for

I CHAPTER 5
348

Fonts I

a Type 1 font would be 1000 times too large for a Type 42 font. The font dictio-
nary entries for which this issue arises include:

• The value of Stroke Width (when PaintType has been set to 2)

• The contents of the Metrics and Metrics2 dictionaries

• The operands and result of the CDevProc procedure

• The values of UnderlinePosition and UnderlineThickness in the FontInfo (JR.-
tionary

5.9 Font Derivation and Modification

A PostScript program can perform various useful manipulations on existing font
dictionaries. These manipulations fall into two categories:

• Derive a new font by copying an existing one and modifying certain things in
the copy, such as the encoding vector, character set, glyph metrics, or other en-
tries affecting the font's behavior.

• Alter an existing font in place, without copying it. This is permitted only under
certain circumstances; it is useful mainly for incremental definition of glyph
descriptions.

When such modifications are performed, considerable care must be taken to en-

sure predictable behavior despite font caching. When creating a new font derived
from an existing one, a PostScript program must manage the unique ID properly
to ensure that the interpreter can distinguish between the fonts; see Section 5.6,
"Unique ID Generation!' Alterations to an existing font must be limited to the
cases described below; the font machinery consults the font dictionary at unpre-
dictable times and will not necessarily detect modifications made in violation of
these guidelines.

All of the facilities described in this section are PostScript language features,
which are intended to be applied to font dictionaries already existing in Post-
Script VM. They are not part of the external font format specifications, such as
Adobe Type 1 Font Format. It is inappropriate to create external font programs
that use these features, since they will not work with font interpreters (such as the

Adobe Type Manager software) that lack a PostScript interpreter.

349

l
Font Derivation and Modification I

This section applies to base fonts. Similar techniques apply to some types of

CIDFonts, as described in Section 5.11.3, "CIDFont Dictionaries?'

5.9.1 Changing the Encoding Vector

The most common font derivation is the installation of a different encoding vec-
tor, discussed in Section 5.3, "Character Encoding?' Example 5.8 creates a copy of
the Helvetica font in which the Adobe standard encoding for the font is replaced
by the ISO Latin-1 encoding, described in Appendix E.

Example 5.8

/Helvetica findfont

dup length dict begin

{ 1 index /FID ne

{clef}

{pop pop)

ifelse

1 forall

/Encoding ISOLatin1Encoding def

currentdict

end

/Helvetica-ISOLatinl exch definefont pop

This program performs the following steps:

1. Makes a copy of the font dictionary, including all entries except the one whose

key is FID. (This exclusion is necessary only in LanguageLevel 1; in Language-
Level 2, the interpreter ignores any existing FID entry in a font being defined.)

2. Installs the desired change: replaces the font's Encoding array with the value of
ISOLatinl Encoding, which is a built-in, 256-element array of character names

defined in systemdict.

3. Registers this modified font under a new name (Helvetica-ISOLatin1).

In Type 1 fonts, the glyphs for some accented characters are produced by com-
bining the glyphs for two or more other characters (such as a letter and an ac-
cent) defined in the same font. In LanguageLevel 1, if an encoding vector includes

the name of an accented character, it must also include the names of the compo-
nents of that character.

I CHAPTER 5
350

Fonts

Note: If you create a new encoding for a Type 1 font, Adobe suggests that you place
the accents in control character positions, which are typically unused. The built-in
1SOLatinlEncoding array uses this technique.

As stated in Section 5.6, "Unique ID Generation," it is unnecessary to remove or
change the font's unique ID (UniquelD or XUID entry) if the Encoding entry is the
only one that is modified. This is because glyph caching is based on character
names, not character codes. However, changing any entries that affect the glyphs'
appearance, such as PaintType or StrokeWidth, does require proper management
of the unique ID.

5.9.2 Changing Glyph Metrics

A PostScript program may create a derived font whose glyph metrics are altered
from their native values. This is accomplished by adding Metrics, Metrics2
(LanguageLevel 2), or CDevProc (LanguageLevel 2) entries to the derived font dic-
tionary. Most standard types of fonts and CIDFonts support this method for
overriding metrics; however, Type 3 base fonts and Type 1 and 4 CIDFonts do
not.

Note: Determining a pleasing and correct glyph spacing is a difficult and laborious
art that requires considerable skill. A font's glyphs have been designed with certain
metrics in mind. Changing those metrics haphazardly will almost certainly produce
poor results.

The Metrics entry is a dictionary consisting of entries whose keys are character
names, as they appear in the CharStrings dictionary and Encoding array. (In a
CIDFont, the keys are integer CIDs.) Entries in the Metrics dictionary override
the normal metrics for the corresponding glyphs. The values of these entries take
various forms. An entry's value may be:

• A single number, specifying a new x width only (the y value is 0)

• An array of two numbers, specifying the x components of a new left sidebear-
ing and new width (the y values are 0)

• An array of four numbers, specifying the x and y components of the left side-
bearing followed by x and y components of the width

These forms can be intermixed in one Metrics dictionary. All of the numeric val-
ues are expressed in the glyph coordinate system of the font.

351
I

Font Derivation and Modification I

In a font that supports two writing modes (as described in Section 5.4, "Glyph
Metric Information"), the Metrics dictionary is used during writing mode O. An-
other dictionary, Metrics2, is used during writing mode 1; the value oían entry in
this dictionary must be an array of four numbers, which specify x and y compo-
nents of w/ followed by x and y components of y (see Figure 5.7 on page 333).

Whereas the Metrics and Metrics2 dictionaries allow modifications of individual
glyph metrics in a given font, a procedure named CDevProc allows global changes
to a font's metrics to be algorithmically derived from the native metrics in the
glyph descriptions.

If present, the CDevProc procedure is called after metric information has been ex-
tracted from the glyph description and from the Metrics and Metrics2 dictionar-
ies, but immediately before the interpreter makes an internal call to
setcachedevice2. Eleven operands are on the stack: the ten values that are to be
passed to setcachedevice2 followed by the character's name (or CID, in the case
of a CIDFont). On return, there should be ten values, which are then passed to
setcachedevice2.

5.9.3 Replacing or Adding Individual Glyphs

As stated earlier, a number of font formats, including Type 1, contain a
CharStrings dictionary that maps character names to glyph descriptions. De-
pending on the font type, the glyph description is represented by either a string (a
charstring) or an integer (a glyph index).

For any such font, a PostScript program can create a derived font whose
CharStrings dictionary is copied and altered. The alterations may include adding,
removing, or changing keys associated with existing values. Additionally, any val-
ue may be replaced with a PostScript procedure. If a CharStrings entry is a proce-
dure, the PostScript interpreter executes the procedure to render the glyph. (It is
possible to replace .notdef the same as any other character.)

The required behavior of a CharStrings procedure is very similar to that of the
BuildGlyph procedure for Type 3 fonts, described in Section 5.7, "Type 3 Fonts."
The CharStrings procedure must perform essentially the same functions as a
BuildGlyph procedure, including executing the setcachedevice, setcachedevice2,
or setcharwidth operator. Unlike the situation with Bu ildG lyph, there is poten-
tially a different procedure for each character, although several characters can

share one procedure.

I CHAPTER 5
352

Fonts I

The execution environment of a CharStrings procedure is slightly different from
that of a Type 3 BuildGlyph procedure.

• Before executing a CharStrings procedure, the PostScript interpreter first push-
es systemdict and then the font dictionary on the dictionary stack, and pushes
either the character code or the character name on the operand stack. The op-
erand is a character code if the interpreter is in the midst of an ordinary show
operation or any show variant that takes a string operand; it is a character
name if the interpreter is executing the glyphshow operator (LanguageLevel 2).

• After executing the procedure, the PostScript interpreter pops the two dictio-
naries that it pushed on the dictionary stack. It expects the procedure to have
consumed the character code or character name operand.

Because a CharStrings procedure must be able to accept either a character code or

a character name as an operand, it is strongly recommended that every
CharStrings procedure begin as follows:

dup type /integertype eq

{/Encoding load exch get}

if

This ensures that the object on the stack is a name object, which the procedure

can now use to look up the glyph description. If the glyph description is con-
tained in the CharStrings procedure itself, the procedure can simply discard its
operand.

Note that when executing a CharStrings procedure, the PostScript interpreter
does not consult the value of Metrics, Metrics2, or CDevProc.

5.9.4 Subsetting and Incremental Definition of Glyphs

When an application or driver must embed a font definition in a PostScript page
description, it may choose not to embed the entire font. Instead, it can create and
embed a subset font that contains only the glyph descriptions that are actually ref-
erenced from show strings in the document. This practice reduces communica-
tion costs and VM use, but at the expense of considerable effort by the
application to analyze the use of glyphs in the document and reconstruct the font
program.

353
Font Derivation and Modification

A subset font created in this way appears to be an ordinary, well-formed font that

happens to have a smaller character set than the font from which it was derived.
Of course, this font is useful only in the document for which it was created; it
cannot usefully be extracted and used with some other document. Furthermore,
the inclusion of a subset font precludes subsequent editing of the show strings in
the document, since some characters in the font's normal character set are miss-
ing and cannot be shown.

The creation and use of subset fonts, as described above, requires no special Post-
Script language features. However, it does require the application or driver to
have intimate knowledge of the font file format in order to disassemble and reas-
semble it. Furthermore, it requires complete analysis of the document's glyph use
before generating the subset fonts. This is not always convenient, particularly for
a driver that is called from an application programming interface or that trans-

lates from some other document format.

Some types of fonts can be defined to allow glyph descriptions to be added incre-
mentally during the execution of a PostScript program. This practice is called
incremental definition. With incremental definition, the glyph descriptions need
not be present at the time the font is defined by definefont. A given glyph de-
scription needs to be defined only before the first use of that glyph.

This section presents the general conventions and considerations for incremental
glyph definition, followed by details for Types 1, 3, and 42, which are the only
base font types that support this capability. Incremental definition of CIDFonts is
described in Section 5.11.3, "CIDFont Dictionaries?'

General Considerations

When defining glyph descriptions incrementally, a PostScript program must fol-
low some rules to ensure predictable behavior. Once definefont has been execut-
ed, only certain objects within an existing font can be updated; all others must be
treated as if they were read-only (even though they may not actually have read-
only access attributes).

Note: Although none of the rules described in this section are enforced by the Post-
Script interpreter, violation of the rules may result in inconsistent and unpredictable

behavior.

I CHAPTER 5
354

1
Fonts I

The method for installing a glyph description in a font varies by font type; it is
described in later sections. Regardless of the method used, incremental definition
is subject to the following rules:

• A glyph description may only be added to a font. It may not replace an existing
glyph description with a different value.

• The glyph description for a particular character name must be defined before
the first show operation that selects this character.

• If a glyph description is added to a font in local VM between save and restore
operations (such as the ones that usually bracket each page of a document), the
restore operation will remove the glyph description. The application or driver
that is embedding incremental glyph descriptions in the document must be
aware of this behavior; it must define the glyph description again (with the
same value) before the next use of that glyph.

These rules ensure predictable behavior despite font caching. A show operation
may obtain a previously rendered glyph from the font cache, without consulting
the glyph description at all. For consistent results, a given character name must
always map to the same glyph description any time a show operation might refer-
ence it.

In font types that support overriding of glyph metrics, the contents of the Metrics
and Metrics2 dictionaries may be defined incrementally, subject to the same rules
that apply to the glyph descriptions themselves.

Additionally, the contents of the Encoding array in a base font may be defined in-

crementally. This is a convenience in the situation where the application invents
not only the character set but also the character encoding as it goes along. Similar
rules apply to incremental definition of the Encoding array:

• A character name may replace only the name .notdef, thereby defining a char-
acter name for a previously unused character code. It may not replace an exist-
ing array element whose value is any name other than .notdef.

• The Encoding array entry for a particular character code must be defined be-
fore the first show operation that selects this code.

• The same considerations about save and restore operations apply to the
Encoding array as to glyph descriptions.

355

I

Incremental Definition of Type 1 Fonts

Font Derivation and Modification I

In a Type 1 font, the contents of the CharStrings dictionary may be defined incre-
mentally. Usually, this entails adding an entry whose key is a character name and
whose value is a string containing a Type 1 glyph description (a charstring). Al-

ternatively, the value can be a PostScript procedure, as described in Section 5.9.3,

"Replacing or Adding Individual Glyphs."

A charstring can contain references to one or more other glyphs in the same
font—for example, to produce accented characters; see Adobe Type 1 Font For-

mat. An incrementally downloaded font containing such glyphs must also con-

tain all component glyphs that they reference. Additionally, any subroutines that

the charstrings call must be present at the time the font is defined (in the Subrs
entry in the Private dictionary); subroutines cannot be defined incrementally.

Incremental Definition of Type 3 Fonts

Incremental definition is permitted for Type 3 fonts. How this is accomplished

depends on how the PostScript program defines the font's BuildGlyph or
BuildChar procedure. Because of the effects of font caching, it is still subject to the

general considerations described above.

Incremental Definition of Type 42 Fonts

In a Type 42 font (LanguageLevel 3), the glyph descriptions are normally embed-
ded in the TrueType font data that is contained in the sfnts array; see
Section 5.8.2, "Type 42 Fonts (TrueType)." To enable incremental definition, the

glyph descriptions are omitted from the TrueType font data; instead, they are de-
fined as strings in an array or dictionary named GlyphDirectory in the Type 42

font dictionary.

As described in Table 5.7 on page 346, a glyph description for a Type 42 font is

represented by an integer glyph index that is the value of an entry in the
Cha rStrings dictionary. In the absence of a GlyphDirectory entry, the glyph index
is used to access the TrueType data directly; otherwise, it is used as an index or a

key in GlyphDirectory, depending on whether GlyphDirectory is an array or a dic-

tionary.

I CHAPTER 5
356

Fonts I

If GlyphDirectory is an array, its length must be greater than the highest glyph in-
dex used in the font. Each array element can be either null (denoting an empty el-
ement) or a string containing the TrueType glyph description for the
corresponding glyph index. If GlyphDirectory is a dictionary, each key is a glyph
index and the value is a string containing the TrueType glyph description. As for
all fonts, there must be a glyph description for the .notdef character—that is,
.notdef must map to a glyph index for which there is a glyph description in
GlyphDirectory.

If GlyphDirectory is an array, any unused entries in the array will be wasted space.

An array of a given length consumes about 40 percent of the memory used by a
dictionary of the same length. Thus, the dictionary representation is advisable

only for a sparsely populated font containing less than 40 percent of its charac-
ters.

GlyphDirectory can be used only with TrueType font data (contained in the sfnts
entry) that meets the following requirements:

• The TrueType "loca" and "glyf" tables must not be present.

• There must be a TrueType "gdir" table whose size and offset are 0. This is sim-
ply an indication that the TrueType font was constructed for incremental
downloading; the "gdir" table contains no useful information.

A TrueType glyph description can contain references to one or more other glyphs
in the same font—for example, to produce accented characters. These references
are by glyph index. An incrementally downloaded font containing such glyphs
must also contain all component glyphs that they reference.

A TrueType glyph's metrics are not part of the glyph description itself; rather,
they come from a parallel table, "hmtx," which is also indexed by glyph index. No
provision is made for downloading the contents of the "hmtx" table incremental-
ly; this information must be present at the time the font is defined. The metrics
may be overridden, if desired, by entries in the Metrics and Metrics2 dictionaries,
which may be defined incrementally.

I 5.10
357

Composite Fonts

5.10 Composite Fonts

This section describes how to build composite fonts—fonts with a FontType of O.
Base fonts (fonts of type 1, 2, 3, 14, or 42) contain individual glyph descriptions;
composite fonts are combinations of base fonts, with Type 0 font dictionaries ty-

ing them together.

The ability to use composite fonts is supported by LanguageLevels 2 and 3 and by
LanguageLevel 1 implementations that have the composite font extensions. Addi-

tionally, LanguageLevel 3 introduces support for a special class of composite
fonts called CID-keyed fonts, described in Section 5.11, "CID-Keyed Fonts"; these

fonts can combine CIDFonts as well as base fonts.

A composite font, then, is a collection of base fonts, CIDFonts, and even other

composite fonts, organized hierarchically. The Type 0 font at the top level of the
hierarchy is the root font. Fonts and CIDFonts immediately below a Type 0 font
are called its descendant fonts. The Type 0 font immediately above a descendant

font is called its parent font.

When the current font is composite, the show operator and its variants behave
differently than with base fonts: they use a mapping algorithm that decodes show
strings to select characters from any of the descendant base fonts or CIDFonts.
This facility supports the use of very large character sets, such as those for the

Japanese and Chinese languages. It also simplifies the organization of fonts that
have complex encoding requirements.

In addition to the entries common to all font dictionaries (Table 5.2 on

page 324), a Type 0 font dictionary includes the entries listed in Table 5.8.

TABLE 5.8 Additional entries specific to Type 0 fonts

KEY TYPE VALUE

FMapType integer (Required) A code indicating which mapping algorithm to use when inter-
preting the sequence of bytes in a string. See Table 5.9 on page 360.

Encoding array (Required) An array of integers, each used as an index to extract a font dic-
tionary from the FDepVector array. Note that this is different from the use of
Encoding in base fonts.

FDepVector array (Required) An array of font or CIDFont dictionaries that are the descendants
of this Type 0 font. It is recommended that this array contain no more than

I CHAPTER 5
358

Fonts I

EscChar integer

ShiftOut integer

ShiftIn integer

SubsVector string

CMap dictionary

PrefEnc array

CurMID

MID Vector

any

any

one reference to any given descendant. The Encoding array can be used to

represent any desired repetitions.

(Optional) The escape code value, used only when FMapType is 3 or 7. If this

entry is needed but is not present, definefont inserts one with the value 255.

(Optional) The shift code value, used only when FMapType is 8. If this entry

is needed but is not present, definefont inserts one with the value 14.

(Optional) The shift code value, used only when FMapType is 8. If this entry

is not present but is needed, definefont inserts one with the value 15.

(Optional) A table that specifies the division of codes into ranges, used only
when FMapType is 6.

(Optional; LanguageLevel 3) A CMap dictionary, used only when FMapType

is 9. See Section 5.11.4, "CMap Dictionaries."

(Optional) An array that is usually the same as the Encoding array of the ma-

jority of the descendant base fonts. If this entry is not initially present,

definefont may insert one with a null value. See Section 5.10.2, "Other Dic-

tionary Entries for Type 0 Fonts."

(Optional) An object that serves internal purposes of the implementation.

definefont may insert this entry.

(Optional) An object that serves internal purposes of the implementation.

definefont may insert this entry

5.10.1 Character Mapping

The FMapType entry in the Type 0 font dictionary indicates which mapping algo-

rithm will be used to interpret the sequence of bytes in a show string. Instead of
each byte selecting a character independently, as is done for base fonts, the show
string encodes a more complex sequence of font and character selections. The
mapping algorithm does the following:

1. Decodes bytes from the show string to determine a font number and a charac-
ter selector. The character selector is always a character code unless the com-

posite font is a CID-keyed font (as described in Section 5.11, "CID-Keyed
Fonts").

2. Uses the font number as an index into the Encoding array of the Type 0 font,
obtaining an integer.

I 5.10
359

l
Composite Fonts I

3. Uses that integer in turn as an index into the FDepVector array, selecting a de-

scendant font or CIDFont and temporarily establishing it as the current font.

4. Uses the character selector to select a character from the descendant, in what-
ever way is appropriate for that font or CIDFont.

Figure 5.9 illustrates this mapping algorithm for a composite font with Type 1

fonts as its descendants.

show
string

Font

number

Character
selector

(character
code)

Encoding
array

Integer .

Encoding
array

FDepVector
array

Character.

name

1 Selects
descendant

CharStrings
dictionary

Type 1 font

.____,,. Glyph
description

FIGURE 5.9 Composite font mapping example

The code length—the number of bytes extracted from the show string for each
operation of the mapping algorithm—varies depending on the algorithm.

Table 5.9 lists the mapping algorithms that the FMapType value can select. If the
mapping of any string passed to a show operator is incomplete or if an attempt is
made to index beyond the end of an Encoding or FDepVector array, a rangecheck

error results.

CHAPTER 5
360

Fonts I

TABLE 5.9 FMapType mapping algorithms

ALGORITHM FMAPTYPE EXPLANATION

8/8 mapping Two bytes are extracted from the show string. The first byte is the font

number and the second is the character code.

Escape mapping 3 One byte is extracted from the show string. If it is equal to the value of
the font's EscChar entry, the next byte is the font number, and subse-
quent bytes (until the next escape code) are character codes for that

font. At the beginning of a show string, font 0 is selected. A font num-
ber equal to the escape code is treated specially; see Section 5.10.3,
"Nested Composite Fonts?'

1/7 mapping 4 One byte is extracted from the show string. The most significant bit is

the font number, and the remaining 7 bits are the character code.

9/7 mapping 5 Two bytes are extracted from the show string and combined to form a
16-bit number, high-order byte first. The most significant 9 bits are the
font number, and the remaining 7 bits are the character code.

SubsVector mapping 6 One or more bytes are extracted from the show string and decoded ac-

cording to information in the SubsVector entry of the font. The format
of SubsVector is described below.

Double escape mapping 7 This mapping is very similar to FMapType 3. However, when an escape

code is immediately followed by another escape code, a third byte is
extracted from the show string. The font number is the value of this

byte plus 256.

Shift mapping 8 This mapping provides exactly two descendant fonts. A byte is extract-

ed from the show string. If it is equal to the value of the font's Shiftln
entry, subsequent bytes are character codes for font 0; if equal to the
ShiftOut entry, subsequent bytes are character codes for font 1. At the

beginning of a show string, font 0 is selected.

CMap mapping 9 (LanguageLevel 3) One or more bytes are extracted from the show

string and decoded according to information in the font's CMap entry.
See "CMap Mapping" on page 388.

SubsVector Mapping

SubsVector is a string that controls the mapping algorithm for a Type 0 font with

a n FMapType value of 6. This mapping algorithm allows the space of character

361
I 5.10

1
Composite Fonts I

codes to be divided into ranges, where each range corresponds to one descendant
font. The ranges can be of irregular sizes that are not necessarily powers of 2.

The first byte of a SubsVector string specifies 1 less than the code length. A value
of 0 specifies a code length of 1 byte, 1 specifies 2 bytes, and so on. When a char-
acter code is longer than 1 byte, the bytes are interpreted high-order byte first.
The code length cannot exceed the number of bytes representable in an integer
(see Appendix B).

The remainder of the SubsVector string defines a sequence of ranges of consecu-
tive code values. The first range is the one for font 0, the second range is the one
for font 1, and so on. Each range is described by one or more bytes; the number
of bytes is the same as the code length. The value contained in those bytes (inter-
preted high-order byte first) gives the size of the code range. There is an implicit
code range at the end of the sequence that contains all remaining codes; this
range should not be specified explicitly.

When using a SubsVector mapping, the show operator interprets a character
code extracted from the show string as follows:

1. Determines the code range that contains the character code. The position of
the code range in the SubsVector sequence (counting from 0) is used as the in-
dex into the font's Encoding array, selecting a descendant font.

2. Subtracts the base of the code range from the character code. The result is
treated as a character code to select a character from the descendant font.

The following examples show how some of the other mapping algorithms could
be described in terms of the SubsVector mapping. This is for illustrative purposes
only; the other mapping algorithms should be used rather than the SubsVector
mapping if they achieve the desired effect. The SubsVector strings are shown as
hexadecimal string literals.

• 1/7 mapping: <00 80>

The code length is 1 byte. There are two code ranges. The first is explicitly of
length 80 hexadecimal; it contains character codes 0 to 127 decimal. The sec-
ond code range implicitly contains all remaining characters that can be coded
in 1 byte—that is, character codes in the range 128 to 255.

362
I CHAPTER 5 Fonts I

• 9/7 mapping: <01 0080 0080 ... 0080>

The code length is 2 bytes. There are up to 512 code ranges, each 80 hexadeci-
mal (128 decimal) in size. The SubsVector string that describes all 512 code
ranges would be 1023 bytes long. Remember that the last code range is speci-
fied implicitly.

• 8/8 mapping: <01 0100 0100 ... 0100>

The code length is 2 bytes. There are up to 256 code ranges, each 100 hexadeci-
mal (256 decimal) in size. The SubsVector string that describes all 256 code
ranges would be 511 bytes long. The last code range is specified implicitly.

5.10.2 Other Dictionary Entries for Type 0 Fonts

FontMatrix plays the same role in a Type 0 font as it does in a base font. When a
glyph is shown, both the font matrix of the Type 0 font and the font matrix of the
descendant base font or CIDFont are concatenated to the CTM. (Special consid-
erations apply if the descendant of a Type 0 font is itself a Type 0 font; see
Section 5.10.3, "Nested Composite Fonts.")

WMode is an integer with value 0 or 1, indicating which of two sets of glyph met-
rics will be used when glyphs from the base fonts are shown (see Section 5.4,

"Glyph Metric Information"). If it is omitted, writing mode 0 will be used. The
writing mode of the root font overrides the writing modes of all its descendants.
This allows a given base font to be used as part of many composite fonts, some of
which use writing mode 0 while some use writing mode 1.

PrefEnc (preferred encoding) is an array that should be the same as the Encoding
array of one or more of the descendant base fonts. Characters from descendant
fonts whose Encoding array is the same as the PrefEnc array of the Type 0 font
will be processed more efficiently than characters from other descendant fonts.

The definefont operator may insert one or more additional entries in a Type 0
font dictionary if they are needed but are not present. FID is always inserted; see

Table 5.2 on page 324. EscChar, ShiftIn, and ShiftOut are inserted if they are
required by the mapping algorithm indicated by the FMapType entry. PrefEnc,
MIDVector, and CurMID are inserted by some implementations. In a Language-
Level 1 implementation that supports the composite font extensions, the font
dictionary must be sufficiently large to allow these entries to be inserted.

I 5.10
363

i
Composite Fonts I

5.1 0.3 Nested Composite Fonts

The descendant fonts in a composite font may themselves be composite fonts,
nested to a maximum depth of five levels. The mapping algorithms nest accord-
ing to two sets of rules, depending on whether the constituent Type 0 fonts are
modal or nonmodal.

Type 0 fonts with FMapType 3, 7, or 8 are modal fonts: some byte codes select a
descendant font, and then successive bytes of the show string are interpreted with
respect to the selected font until a new descendant font is selected. Modal fonts
follow these rules:

• The parent of an FMapType 3 font must be of FMapType 3 or 7. The EscChar
entry of the root font overrides the EscChar entry of descendant escape-
mapped fonts.

• Fonts with FMapType 7 and 8 may not be used as descendant fonts.

• The occurrence of an escape or shift code in the show string causes the map-
ping algorithm to ascend the font hierarchy from the currently selected descen-
dant font to the nearest parent modal font. If that font's FMapType is 8, the
algorithm selects the new descendant according to the shift code. If FMapType
is 3 or 7, the algorithm extracts another byte from the show string. If the byte is
not an escape code, the algorithm uses it as a font number to select a descen-
dant of that font. But if the byte is an escape code and FMapType is 3, the algo-
rithm ascends to the parent of that font, extracts yet another byte from the
show string, and repeats the selection process.

• When a modal font is first encountered, if the next byte of the show string is
not an escape code, descendant font 0 of the modal font is chosen and the byte
is passed down to that font. This also occurs if an escape code is followed by an-
other escape code but the currently selected font has no parent.

Type 0 fonts with the other FMapType values (2, 4, 5, 6, 9) are nonmodal, in that
their mapping algorithm restarts for each new character. Nonmodal fonts follow
these rules:

• The parent of a nonmodal font may be any Type 0 font, including a modal font.

• If the parent of a nonmodal font is a modal font, the modal font's escape or
shift code is recognized only when it appears as the first byte of a multiple-byte
mapping sequence for the nonmodal font.

I CHAPTER 5
364

Fonts

• If the descendant of a nonmodal Type 0 font is itself a nonmodal Type 0 font,
the second part (character code) of the value extracted from the show string is
used in place of the first byte that would be extracted by the descendant font's
mapping algorithm. This rule is independent of the number of bits actually
contained in the code contributed by the parent font.

The FontMatrix entries of nested composite fonts are treated in a nonobvious
way. When a glyph is shown, the interpreter consults the FontMatrix entries of
only the selected base font and the immediate parent of the base font. The imme-
diate parent's FontMatrix entry contains the concatenation of the FontMatrix en-
tries of all ancestor fonts. To achieve this, the definefont, makefont, scalefont,
and selectfont operators give special treatment to any Type 0 font that has at least
one descendant Type 0 font:

• If the FontMatrix value is not the identity matrix, definefont constructs a new
FDepVector array in which each descendant Type 0 font is replaced by the re-
su I t of performing makefont on it using this font matrix. It does not perform
makefont on descendant base fonts or CIDFonts.

• makefont, scalefont, and selectfont apply their transformations recursively to
all descendant Type 0 fonts but not to base fonts or CIDFonts.

5.11 CID-Keyed Fonts

CID-keyed fonts provide a convenient and efficient method for defining multi-
ple-byte character encodings, base fonts with a large number of glyphs, and com-
posite fonts that use these base fonts and character encodings. Additionally, they
provide straightforward methods for creating a rearranged font, which selects
glyphs from one or more existing fonts by means of a revised encoding. These ca-
pabilities provide great flexibility for representing text in writing systems for lan-
guages with large character sets, such as Chinese, Japanese, and Korean.

The CID-keyed font architecture specifies the external representation of certain
font programs, called CMap and CIDFont files, along with some conventions for
combining and using those files. This architecture is independent of the Post-
Script language; CID-keyed fonts can be used in environments where no Post-
Script interpreter is present. For complete documentation on the architecture
and the file formats, see Adobe Technical Notes #5092, CID-Keyed Font Technolo-
gy Overview, and #5014, Adobe CMap and CIDFont Files Specification.

365

I
CID-Keyed Fonts I

This section describes the PostScript language support for CID-keyed fonts—
that is, their representation and behavior as objects in PostScript VM, as distinct
from their external file representation. Support for CID-keyed fonts is provided

in LanguageLevel 3 through the CIDFont and CMap resource categories and the
composefont operator. If a PostScript program accesses CID-keyed fonts using
these facilities, the CMap and CIDFont files materialize directly as dictionary ob-
jects in VM, as documented in this section.

An alternative method for using CID-keyed fonts makes use of the CID Support
Library (CSL). The CSL is a separate package of software, implemented in the

PostScript language, that accompanies CID-keyed font products from Adobe

Systems. The CSL serves two purposes:

• It enables CID-keyed fonts to be used with PostScript interpreters that do not

have built-in support for them.

• It provides compatibility with applications that access Chinese, Japanese, and
Korean fonts according to older conventions for identifying and organizing
them. Under this compatibility mode, accessing a CID-keyed font sometimes
results in a composite font hierarchy in VM that bears little resemblance to the

structure of the CMap and CIDFont programs.

The CSL is not further documented in this book. For information, see Adobe

Technical Note #5092, CID-Keyed Font Technology Overview. The CSL, certain

CMap files, and other related software are available from the Adobe Developers
Association.

5.11.1 The Basics of CID-Keyed Fonts

The term CID-keyed font reflects the fact that CID (character identifier) numbers
are used to index and access the glyph descriptions in the font. This method is
more efficient for large fonts than the method of accessing by character name, as
is used for base fonts. CIDs range from 0 to a maximum value that is subject to an
implementation limit (see Appendix B).

A character collection is an ordered set of all characters needed to support one or

more popular character sets for a particular language. The order of the characters
in the character collection determines the CID number for each character. Each

CID-keyed font must explicitly reference the character collection on which its
CID numbers are based; see Section 5.11.2, "CIDSystemInfo Dictionaries!'

I CHAPTER 5
366

i
Fonts I

A CMap (character map) file specifies the correspondence between character

codes and the CID numbers used to identify characters. It is equivalent to the
concept of an encoding vector as used in base fonts. Whereas a base font allows a

maximum of 256 characters to be encoded and accessible at one time, a CMap
can describe a mapping from multiple-byte codes to thousands of characters in a

large CID-keyed font. For example, it can describe JIS, one of several widely used
encodings for Japanese, or ISO 10646 (Unicode), an international standard en-
coding that covers many languages.

A CMap can reference an entire character collection, a subset, or multiple charac-
ter collections. It can also reference characters in base fonts (by character code or

character name) or composite fonts (by character code). The CMap mapping
yields a font number and a character selector that can be a CID, a character code,
or a character name. Furthermore, a CMap can incorporate another CMap by

reference, without having to duplicate it. These features enable character collec-
tions to be combined or supplemented, and make all the constituent characters
accessible to show operations through a single encoding.

A CIDFont file contains the glyph descriptions for a character collection. The
glyph descriptions themselves are typically in a format similar to those used in
base fonts, such as Type 1. However, they are identified by CIDs rather than by
names, and they are organized differently.

In the PostScript language, CMap and CIDFont files are treated as instances of

the CMap and CIDFont resource categories, respectively. When loaded into VM,
they are represented as dictionaries, whose contents are documented in
Sections 5.11.4, "CMap Dictionaries," and 5.11.3, "CIDFont Dictionaries!' As
stated earlier, the external file formats are not documented here, but in Adobe
Technical Note #5014, Adobe CMap and CIDFont Files Specification.

Finally, a CID-keyed font is the combination of a CMap with one or more
CIDFonts, base fonts, or composite fonts containing glyph descriptions. In the

PostScript language, a CID-keyed font is represented as a Type 0 font whose
FMapType value is 9. It contains a CMap entry whose value is a CMap dictionary,
and its FDepVector array references the CIDFont, base font, or composite font
dictionaries with which the CMap has been combined. The composefont opera-

tor provides a convenient means for creating a CID-keyed font dictionary.

367

—I
CID-Keyed Fonts 1

Figure 5.10 illustrates the concepts introduced above, including the mapping

from a CMap into a descendant of a CID-keyed font (with a Type 1 font as the ex-

ample descendant base font). Details are provided in the subsections that follow.

show Character
string code

CMap
dictionary

Font

number

-

Character
selector

-

Encoding
array

CID

Character

name

Character

Integer FDepVector
array

ISelects
descendant

CIDFont
(glyphs for character collection)

code L

i
ii

Composite font

Encoding
array

Character

name

CharStrings
dictionary

Base font (Type 1)

Glyph
description

Glyph
description

Glyph
description

FIGURE 5.10 CID-keyed font basics

5.11.2 CIDSystemInfo Dictionaries

CIDFont and CMap dictionaries contain a CIDSystemInfo entry that specifies the

character collection that the resource assumes—that is, the interpretation of the
CID numbers it uses. A character collection is uniquely identified by the Registry,

Ordering, and Supplement entries in the CIDSystemInfo dictionary, as described

in Table 5.10. Character collections whose Registry and Ordering values are the
same are compatible.

l CHAPTER 5
368

i
Fonts I

TABLE 5.10 Entries in a CIDSystemInfo dictionary

KEY TYPE VALUE

Registry string (Required) A string identifying an issuer of character collections—for exam-
ple, Adobe. For information about assigning a registry identifier, consult the

Adobe Developer Relations Web site (see the Bibliography) or send e-mail to

the Adobe Unique ID Coordinator at fontdev-person@adobe.com.

Ordering string (Required) A string that uniquely names a character collection issued by a

specific registry—for example, Japan1.

Supplement integer (Required) The supplement number of the character collection. An original
character collection has a supplement number of O. Whenever additional

CIDs are assigned in a character collection, the supplement number is in-
creased. Supplements do not alter the ordering of existing CIDs in the char-
acter collection. This value is not used in determining compatibility between

character collections.

In a CIDFont, the CIDSystemInfo entry is a dictionary that specifies the
CIDFont's character collection. Note that the CIDFont need not contain glyph
descriptions for all the CIDs in a collection; it can contain a subset. In a CMap,
the CIDSystemInfo entry is either a single dictionary or an array of dictionaries,

depending on whether it associates codes with a single character collection or
with multiple character collections; see Section 5.11.4, "CMap Dictionaries:'

For proper behavior, the CIDSystemInfo entry of a CMap should be compatible
with that of the CIDFont or CIDFonts with which it is used. The PostScript inter-
preter (specifically, the composefont operator) does not enforce compatibility.

However, the CID Support Library (CSL) and other application and support

software do depend on it.

5.11.3 CIDFont Dictionaries

A CIDFont dictionary contains glyph descriptions that are accessed using a CID
as the character selector. The glyph descriptions may take the form of Type 1

charstrings, BuildGlyph procedures, TrueType glyph descriptions, or bitmaps in-
stalled in the font cache. The CIDFontType entry in the CIDFont dictionary indi-

cates which kind it is.

369

1
CID-Keyed Fonts I

Every CIDFont must contain a glyph description for CID 0, which is analogous to
the .notdef character name in base fonts. See "Handling Undefined Characters"

on page 389.

As explained earlier, the primary use of CIDFont dictionaries is as descendants in
CID-keyed fonts, which are composite fonts whose root Type 0 font has an
FMapType value of 9. However, a CIDFont dictionary may be treated as if it were
a font dictionary by the ma kefont, scalefont, selectfont, and setfont operators.
The following limitations apply when a CIDFont is the current font:

• The glyphshow operator can be used, but it accepts only an integer operand

specifying a CID as the character selector.

• The show operator, any show variant except glyphshow, and the stringwidth

and charpath operators cannot be used. (Some exceptions to this rule are de-
scribed in the section "CMap Mapping" on page 388 and in the cs h ow operator

description in Chapter 8.)

Having a CIDFont as a descendant in a composite font raises certain compatibili-

ty issues. Applications that manipulate composite font hierarchies expect all de-
scendants to have a FontType entry. Furthermore, applications sometimes
produce modified descendants (changing PaintType, for example) and invoke
definefont on those fonts. For these reasons, a CIDFont is treated as if it were a

font in the following respects:

• Every CIDFont dictionary also includes a FontType entry (inserted by

definefont or defineresource).

• A CIDFont dictionary can be treated as an instance of either the CIDFont re-
source category or the Font resource category, with no difference in structure

or behavior except the resource category in which the instance gets defined.

• All font operators are prepared to recognize either a CIDFont dictionary or a
font dictionary. These operators distinguish between a CIDFont and a font by

the presence or absence of a CIDFontType entry in the dictionary.

Table 5.11 lists the CIDFontType and FontType values corresponding to the differ-
ent types of CIDFont. Note that references to a CIDFont by type, as in "Type 0
CIDFont," indicate the font's CIDFontType, not its FontType.

I CHAPTER 5
370

Fonts I

TABLE 5.11 CIDFontType and FontType values

CIDFONTTYPE FONTTYPE GLYPH DESCRIPTIONS

0 9 Charstrings, as in Type 1 base fonts

1 10 BuildGlyph procedures, similar to Type 3 base fonts

2 11 TrueType glyph descriptions, similar to Type 42 base fonts

4 32 Bitmaps installed in the font cache

Table 5.12 lists the entries that have defined meanings in all CIDFont dictionar-

ies, regardless of the CIDFontType value.

TABLE 5.12 Entries common to all CIDFont dictionaries

KEY TYPE VALUE

CIDFontType integer (Required) The CIDFont type; see Table 5.11. Indicates where the glyph de-

scriptions are to be found and how they are represented.

CIDFontName name (Required, except for CIDFontType 4) The name of the CIDFont. Ordinarily,

this is the same as the key given to defineresource when defining the dictio-
nary as an instance of the CIDFont resource category. The StartData operator,

used during the creation of a Type 0 CIDFont, requires CIDFontName to be

interpreted in this way.

CIDSystemInfo dictionary (Required, except for aDFontrype 4) The character collection used by the

CIDFont. The entries contained in the CIDSystemInfo dictionary are listed in

Table 5.10 on page 368.

FontBBox array (Required) An array of four numbers in the glyph coordinate system giving

the left, bottom, right, and top coordinates, respectively, of the font bounding

box. See Table 5.3 on page 325.

FontMatrix array (Required, except for CIDFont Type 0) An array that transforms the glyph coor-

dinate system into the user coordinate system (see Section 5.4, "Glyph Metric

Information"). See the next section for special considerations that apply only

to Type 0 CIDFonts.

FontType integer (Inserted by definefont or defineresource) The font type; see Table 5.11. In a

Type 2 CIDFont, this entry must be present with value 42 at the time

definefont or defineresource is invoked; its value is replaced with 11.

Fontlnfo dictionary (Optional) A dictionary containing font information that is not accessed by

the PostScript interpreter; see Table 5.5 on page 327.

371
CID-Keyed Fonts I

UlDBase integer (Optional) An integer used in combination with the UIDOffset entry in a

CMap to form UniquelD entries for the base fonts within a composite font.
This entry is used only in PostScript interpreters lacking built-in CID-keyed

font support but having other means, such as the CID Support Library
(CSL), to achieve similar capabilities.

WMode integer (Optional) The writing mode, which indicates which of two sets of metrics

will be used when glyphs are shown from the font; see Section 5.4, "Glyph

Metric Information?' This value applies only when characters are shown di-

rectly from the CIDFont. When the CIDFont is used as a descendant in a

composite font, this value is overridden by the composite font's writing
mode. Default value: 0.

XUID array (Optional) An array of integers that uniquely identifies this font or any vari-

ant of it; see Section 5.6, "Unique ID Generation?'

FID fontID (Inserted by definefont or defineresource) A special object of type fontID that

serves internal purposes in the font machinery.

Type 0 CIDFonts

A Type 0 CIDFont is the analog of a Type 1 base font whose charstrings (Type 1
glyph descriptions) are identified by CIDs rather than by character names. A
CIDFont file is partitioned into two contiguous sections:

• A PostScript section that defines the CIDFont dictionary, as described below

• A binary data section that contains all the charstrings and any subroutines that
they call

The two sections are separated by an invocation of the StartData operator defined
in the CIDInit procedure set. The binary data section begins immediately follow-
ing the white-space character that delimits the StartData token. The length of the

binary data section is given as an operand to StartData. StartData processes the
binary data, completes the construction of the CIDFont dictionary, and automat-
ically invokes defineresource to define it as an instance of the CIDFont category,
using the value of the CIDFontName entry as its key. For further information on
the construction of a Type 0 CIDFont, see Adobe Technical Note #5014, Adobe
CMap and CID Font Files Specification.

The PostScript section defines the CIDFont dictionary, which contains many of
the entries found in Type 1 font dictionaries, as well as various other data struc-

I CHAPTER 5
372

Fonts I

tures that contain information required to interpret the binary data section. As

shown in Figure 5.11, the FDArray entry in the CIDFont dictionary is an array of

subsidiary dictionaries, each of which contains a few of the entries found in
Type 1 fonts (including FontMatrix and Private) and is used by a subset of the
charstrings in the CIDFont. For example, the charstrings access subroutines

through information found in the Private dictionary.

CID

CIDFont dictionary

CIDFontType (0)

FontMatrix

FDArray

Binary data section

Charstring offset table

Charstrings

•
Subroutine offset table

•

Subroutines

Array of dictionaries

Offset to
charstring

FDArray
index

Dictionary in FDArray

- FontMatrix

FontName

Private

FIGURE 5.11 Type 0 CIDFont character processing

The binary data section contains charstrings that conform to the same format as
those in the CharStrings dictionary in a Type 1 font. An offset table in this section
is indexed by CID; for each CID, it contains an FDArray index (FDBytes long) fol-

lowed by an offset (GD Bytes long). The FDArray index specifies which FDArray
dictionary to use for Private information; the offset gives the location of the char-

string for that CID.

In addition to the entries common to all CIDFont dictionaries (Table 5.12 on

page 370), Type 0 CIDFont dictionaries includes the entries listed in Table 5.13.

373
CID-Keyed Fonts I

TABLE 5.13 Additional entries specific to Type 0 CIDFont dictionaries

KEY TYPE VALUE

CIDCount integer (Required) The number of valid CIDs in the CIDFont. Valid ODs range from
0 to (CIDCount — 1); CIDs outside this range are treated as undefined glyphs.

GDBytes integer (Required) The length in bytes of the offset to the charstring for each CID in
the CIDFont. If the length is greater than 1, the bytes within an offset are in-
terpreted high-order byte first.

CIDMapOffset integer (Required) The offset in bytes to the charstring offset table in the binary data

section of the CIDFont. The offset is relative to the beginning of the binary
data section and is typically O. The table is indexed by CID, and each entry
consists of an FDArray index (FDBytes long) followed by an offset (GDBytes

bytes long) to the charstring relative to the beginning of the binary data sec-
tion.

FDArray array (Required) An array of dictionaries containing private information used with

charstrings to render glyphs. There must be at least one dictionary in this ar-

ray; typically there are more. A dictionary in FDArray contains the entries
listed in Table 5.14. Glyphs having common private information reference
the same dictionary in FDArray.

FDBytes integer (Required) The length in bytes of the FDArray index for each CID. It FDBytes

is 0, the charstring offset table contains no FDArray indices, and an FDArray
index of 0 is assumed for all CIDs.

PaintType integer (Optional) A code indicating how the glyphs of the CIDFont are to be painted:

O Glyph outlines are filled.
2 Glyph outlines (designed to be filled) are stroked.

Default value: O.

Stroke Width integer (Optional) The stroke width (in units of the glyph coordinate system) for

stroked-outline fonts (PaintType 2). This entry is not initially present in
filled-outline CIDFonts. It should be added (with a nonzero value) when a
stroked font is created from an existing filled font. Default value: O.

Metrics dictionary (Optional) A dictionary containing the metric information (glyph widths
and sidebearings) for writing mode O. This entry is not normally present in
the original definition of a CIDFont. Adding a Metrics dictionary to a
CIDFont overrides the metric information encoded in the glyph descrip-
tions. See Sections 5.4, "Glyph Metric Information," and 5.9.2, "Changing
Glyph Metrics." In this dictionary, the keys are CIDs and the values are speci-
fied in the units defined by the FontMatrix entry in the top-level CIDFont
dictionary.

I CHAPTER 5
374

Fonts I

Metrics2

CDevProc

dictionary (Optional) Similar to Metrics, but for writing mode 1.

procedure (Optional) A procedure that algorithmically derives global changes to the
font's metrics. When this procedure is executed, 11 elements are put on the

stack; the eleventh operand is the CID. See Section 5.9.2, "Changing Glyph
Metrics."

GlyphDirectory array or (Optional) A mechanism for the subsetting or incremental definition of
dictionary glyphs in the font; see "GlyphDirectory for Type 0 CIDFonts" on page 375.

Glyph Data string, array, (Inserted by StartData) If the CIDFont has been defined by direct execution of
or integer a CIDFont file embedded in the PostScript program, GlyphData is either a

string or an array of strings containing the binary data section of the
CIDFont. (An array of strings may be required because of the implementa-
tion limit on the length of a string; see Appendix B.) However, if the font has
been loaded from a random-access file system by findresource, GlyphData is

an integer whose meaning is implementation-dependent. In the latter case,
the binary data section is not loaded into VM; instead, portions of it are ac-

cessed dynamically as needed during glyph rendering.

TABLE 5.14 Entries in a dictionary in FDArray

KEY TYPE VALUE

FontMatrix array (Required) An array defining the transformation from the glyph space for

glyphs associated with this dictionary to the glyph space for the CIDFont
overall.

Private dictionary (Required) A dictionary containing internal information that is shared

among the glyphs associated with this dictionary; see below.

FontName string (Optional) A name for the glyph subset associated with this dictionary. This
entry is for information only; it is not used by the PostScript interpreter.

At glyph rendering time, the glyph coordinate system is defined by the concate-

nation of the FontMatrix entry in the selected FDArray dictionary with the

FontMatrix entry in the CIDFont dictionary. Since the FDArray dictionaries can

contain different FontMatrix values, this allows the definition of glyphs that use

different glyph space units in the same Type 0 CIDFont.

As noted in Table 5.12 on page 370, the FontMatrix entry is optional in the Type 0

CIDFont dictionary. Typically, a Type 0 CIDFont file defines FontMatrix only in

the subsidiary dictionaries in the FDArray. However, the PostScript font machin-

375
CID-Keyed Fonts I

ery requires FontMatrix to be present in the main CIDFont dictionary for inter-
preting coordinate information that applies to the CIDFont as a whole. If it is not
present:

• defineresource inserts a FontMatrix entry in the CIDFont dictionary with a

value of [.001 0 0 .001 0 0] (since Type 0 CIDFonts, like Type 1 fonts, are usu-
ally defined in terms of a 1000-unit glyph coordinate system).

• In each FDArray dictionary, defineresource replaces its FontMatrix value with
one scaled by a factor of 1000.

The Private dictionary in the FDArray subdictionary of a Type 0 CIDFont serves
the same purpose as a Private dictionary in a Type 1 font (see Adobe Type 1 Font
Format); however, in a Type 0 CIDFont it applies only to those glyphs in the
CIDFont that specify its FDArray index. Normally an array named Subrs in the
Private dictionary contains the subroutines, but there is an alternative that is use-
ful with CIDFonts: the subroutines can instead be contained in the binary data

section of the CIDFont. In this case, the Subrs array is replaced by the Private dic-
tionary entries listed in Table 5.15.

TABLE 5.15 Entries replacing Subrs in the Private dictionary of an FDArray dictionary

KEY TYPE VALUE

SubrCount integer (Required if Subrs is absent) The number of subroutines, which are numbered
from 0 to (SubrCount — 1). If there are no subroutines, SubrCount is 0, but
the other two entries must be present nonetheless.

SDBytes integer (Required if Subrs is absent) The length in bytes of each offset in the subrou-
tine offset table for glyphs referencing this FDArray dictionary. If the length is
greater than 1, the bytes within an offset are interpreted high-order byte first.

SubrMapOffset intcget (Required if Subrs is absent) The offset in bytes to the subroutine offset table
in the binary data section of the CIDFont. The offset is relative to the begin-
ning of the binary data section. The table is indexed by subroutine number.
Each entry in the table is SDBytes long and is interpreted as the offset to the

subroutine relative to the beginning of the binary data section.

Glyph Directory for Type 0 CIDFonts

GlyphDirectory is a mechanism for the subsetting or incremental definition of

glyphs in the CIDFont. Section 5.9.4, "Subsetting and Incremental Definition of

I CHAPTER 5
376

Fonts I

Glyphs," explains the general motivations for incremental definition and consid-
erations for using it. The following information is specific to Type 0 CIDFonts.

In the absence of a GlyphDirectory entry, the CID is used as an index into the

charstring offset table as described previously, selecting an FDArray index and a
charstring in the binary data section of the CIDFont. However, if GlyphDirectory
is present, the CID is used as an index or a key in GlyphDirectory, depending on
whether GlyphDirectory is an array or a dictionary.

If GlyphDirectory is an array, its length must be at least as great as the value of the
CIDCount entry. Each array element can be either null (indicating an empty ele-
ment) or a string. If GlyphDirectory is a dictionary, the keys are integers inter-
preted as CIDs and the values are strings. In either case, each string consists of an
optional FDArray index followed by a charstring. The FDArray index is FDBytes
long, or absent if FDBytes is O. As for all CIDFonts, there must be a glyph descrip-
tion for CID 0.

If GlyphDirectory is an array, any unused entries in the array will be wasted space.
An array of a given length consumes about 40 percent of the memory used by a
dictionary of the saine length. Thus, the dictionary representation is advisable
only for a sparsely populated font containing less than 40 percent of its charac-
ters.

The binary data section of a CIDFont with a GlyphDirectory entry does not need
a charstring offset table or charstrings; if present, they will be ignored. However,
the information contained in FDArray, including Private dictionaries and subrou-
tines used by any charstrings that will ever be defined in GlyphDirectory, must be
supplied when the CIDFont is created. No provision is made for downloading
any of this data incrementally.

Type 1 CIDFonts

Type 1 CIDFonts use PostScript procedures to construct glyphs; they are the

CIDFont analog to Type 3 base fonts. However, instead of a character code or
character name, they use a CID to select the glyph to build. They do not have a
binary data section; they consist of PostScript code only.

In addition to the entries common to all CIDFont dictionaries (Table 5.12 on
page 370), Type 1 CIDFont dictionaries contain a BuildGlyph entry, as shown in
Table 5.16.

5.11
377

CID-Keyed Fonts

TABLE 5.16 Additional entry specific to Type 1 CIDFont dictionaries

KEY TYPE VALUE

BuildGlyph procedure (Required) A procedure that constructs the requested glyph. The CIDFont
dictionary, followed by the CID for the character, is on the stack when the
procedure is called.

When a PostScript program tries to show a glyph from a Type 1 CIDFont and the
glyph is not already present in the font cache, the PostScript interpreter pushes
the current CIDFont dictionary and the CID on the operand stack and executes
the font's BuildGlyph procedure. The BuildGlyph procedure must remove these
two objects from the operand stack and use this information to construct the re-

quested glyph, following the guidelines described in Section 5.7, "Type 3 Fonts?'

In particular, the procedure must supply the metrics for the glyph by executing
the setcachedevice, setcachedevice2, or setcharwidth operator.

Incremental definition is also permitted for Type 1 CIDFonts. How this is accom-
plished depends on how the PostScript program defines the font's BuildGlyph

procedure. See Section 5.9.4, "Subsetting and Incremental Definition of Glyphs."

Type 2 CIDFonts

A Type 2 CIDFont is the analog of a Type 42 (TrueType) base font whose glyph

descriptions are identified by CIDs rather than by character names. As in a

Type 42 font, the binary font data defining the TrueType font is wrapped in Post-
Script language syntax to make it conform to the PostScript language font model:
the font data is stored in an entry named sfnts in a Type 2 CIDFont dictionary.

The contents of a Type 2 CIDFont dictionary are an upward-compatible exten-
sion of a Type 42 font. This is intended to enable Type 2 CIDFonts to be used

with PostScript interpreters that do not have built-in support for them. (Such use
requires the assistance of a separate software package, analogous to the CID Sup-
port Library; at the time of publication, no such package has been developed by
Adobe.) Two entries in a Type 42 font dictionary, CharStrings and Encoding, are

required to be present in a Type 2 CIDFont dictionary, even though they are not
meaningful and have no effect. Also, the FontType value must be 42 at the time a

Type 2 CIDFont is defined; definefont or defineresource replaces its value
with 11.

I CHAPTER 5
378

I
Fonts I

In addition to the entries common to all CIDFont dictionaries (Table 5.12 on

page 370), Type 2 CIDFont dictionaries include the entries listed in Table 5.17.

KEY

TABLE 5.17 Additional entries specific to Type 2 CIDFont dictionaries

TYPE VALUE

CIDCount integer (Required) The number of valid CIDs in the CIDFont. Valid CIDs range from
0 to (CIDCount — 1); CIDs outside this range are treated as undefined glyphs.

GDBytes integer (Required) The length in bytes of the TrueType glyph index in the CIDMap ta-

ble. If the length is greater than 1, the bytes comprising a glyph index are in-
terpreted high-order byte first. In most cases GDBytes will be 2, allowing
glyph indices in the range 0 to 65,535.

CIDMap string or array (Required) A table containing the glyph index for each CID. The table must

be CIDCount x GDBytes long. It may be represented as a single string or as an
array of strings in which each element is a multiple of GDBytes long. (An ar-

ray may be required because of the implementation limit on the length of a
string; see Appendix B.)

sfnts array (Required) An array of one or more strings that, when concatenated, are
treated as the binary representation of the TrueType font. (Multiple strings
may be required because of the implementation limit on the length of a
string; see Appendix B.) See also Adobe Technical Note #5012, The Type 42

Font Format Specification.

Encoding array (Required) Required for compatibility with Type 42 fonts. The contents of

this array are ignored.

CharStrings dictionary (Required) Required for compatibility with Type 42 fonts. At a minimum, the

CharStrings dictionary must have a .notdef entry that maps to a valid glyph
index. The contents of this dictionary are otherwise ignored.

Pa i ntType integer (Optional) A code indicating how the glyphs of the CIDFont are to be paint-
ed:

0 Glyph outlines are filled.
2 Glyph outlines (designed to be filled) are stroked.

Default value: 0.

StrokeWidth integer (Optional) The stroke width (in units of the glyph coordinate system) for

stroked-outline fonts (PaintType 2). This entry is not initially present in
filled-outline CIDFonts. It should be added (with a nonzero value) when a
stroked font is created from an existing filled font. Default value: 0.

379

Metrics

Metrics2

CDevProc

CID-Keyed Fonts I

dictionary (Optional) A dictionary containing the metric information (glyph widths
and sidebearings) for writing mode O. This entry is not normally present in

the original definition of a CIDFont. Adding a Metrics dictionary to a

CIDFont overrides the metric information encoded in the glyph descrip-
tions. See Sections 5.4, "Glyph Metric Information," and 5.9.2, "Changing

Glyph Metrics." In this dictionary, the keys are CIDs and the values are speci-

fied in the units defined by the FontMatrix entry in the top-level CIDFont

dictionary.

dictionary (Optional) Similar to Metrics, but for writing mode 1.

procedure (Optional) A procedure that algorithmically derives global changes to the
font's metrics. When this procedure is executed, 11 elements are put on the

stack; the eleventh operand is the CID. See Section 5.9.2, "Changing Glyph

Metrics."

GlyphDirectory array or (Optional) A mechanism for the subsetting or incremental addition of glyphs
dictionary in the font; see "Incremental Definition of Type 42 Fonts" on page 355.

GlyphDirectory works exactly the same in a Type 2 CIDFont as it does in a

Type 42 font, except that the glyph index used to access GlyphDirectory is ob-

tained from the CIDMap table instead of the CharStrings dictionary.

The FontMatrix value of a Type 2 CIDFont is usually defined as an identity trans-

formation, just as it is in a Type 42 base font. See Section 5.8.2, "Type 42 Fonts

(TrueType)" for a discussion of the implications of this.

Type 4 CIDFonts

A Type 4 CIDFont consists entirely of glyphs that have been prerendered as de-
vice pixel arrays (bitmaps). Unlike all other types of fonts and CIDFonts, the

Type 4 CIDFont dictionary does not contain any glyph descriptions; instead,
glyph bitmaps for the CIDFont are incrementally loaded directly into the font
cache by explicit execution of special operators.

Note: For correct results, the application or driver generating the PostScript page de-

scription must know certain device-dependent details of the target device, including
the resolution and orientation of device space and the capacity of the font cache.

Therefore, Type 4 CIDFonts should be used only for attached printer systems that are

under the direct control of host software. They should not be used in a document that
is intended to be portable.

I CHAPTER 5
380

Fonts I

The results produced by a Type 4 CIDFont are essentially similar to those pro-
duced by a Type 3 base font or a Type 1 CIDFont whose BuildGlyph or BuildChar
procedure invokes the imag em ask operator to paint a prerendered glyph bitmap
as a stencil mask. The latter technique is sometimes used by applications or driv-
ers that choose to render glyphs on the host, either because the glyph descrip-
tions cannot be embedded in the document or because doing the rendering on
the host is faster than doing it in the PostScript interpreter. Using a Type 4
CIDFont for this purpose has the following advantages:

• A Type 4 CIDFont requires only a small amount of VM for the font dictionary,
in addition to the font cache memory for the glyph bitmaps. In contrast, the
equivalent Type 3 font or Type 1 CIDFont requires VM for strings containing
all the glyph bitmaps; when the font's BuildGlyph or BuildChar procedure is in-
voked, those bitmaps are then replicated in the font cache, effectively doubling
the storage required.

• Installing a glyph directly into the font cache is much more efficient than first
defining it in VM and then invoking BuildGlyph ind imagemask to cause the
glyph to be installed in the font cache.

A Type 4 CIDFont is compatible with any PostScript interpreter that supports
this feature. Nevertheless, ideal results are obtained only when the font is used
with the device for which the prerendered glyphs were intended—in particular,
one having the proper resolution and orientation of device space. Some usage re-
strictions apply to Type 4 CIDFonts:

• They should not be used within encapsulated PostScript (EPS) files or in appli-

cation-generated PostScript code that drivers pass through, because there is no
guarantee that the interpreter that eventually processes this code is capable of
supporting these fonts or that the prerendered bitmaps will be appropriate for
the device.

• Since they do not contain glyph descriptions, they cannot be used in any oper-
ation that requires obtaining the glyph outline as a path, such as clipping. The
charpath operator has no effect when used with a Type 4 CIDFont.

• They do not support any of the effects that can be produced in most types of
fonts and CIDFonts by modifying entries such as PaintType, StrokeWidth,
Metrics, Metrics2, and CDevProc.

381
CID-Keyed Fonts I

A Type 4 CIDFont dictionary can contain the entries listed in Table 5.12 on
page 370. Note the following:

• The CIDFontName and CIDSystemInfo entries, which are required in other
types of CIDFonts, are optional in a Type 4 CIDFont. (Typically, a Type 4
CIDFont does not contain a standard character collection but is used with a
special-purpose, custom CMap.)

• FontMatrix must be the inverse of the transformation from default user space
to device space of the device for which the bitmap is designed to be used. Ini-

tially, the translation components of the font matrix should be 0 (although a
subsequent makefont operation may impose a translation). Defining the font
matrix this way ensures that when glyphs are shown at their intended size and
orientation, the glyph coordinate system will be the same as the device coordi-
nate system except for translation.

Operators for Type 4 CIDFonts

Once a Type 4 CIDFont has been defined by invoking defineresource, the follow-
ing three operators may be used to manage the CIDFont's glyph bitmaps in the

font cache. Because of their specialized use, these operators are defined in the
BitmapFontlnit procedure set rather than in systemdict.

• addglyph loads the glyph bitmap (and metrics) associated with a CID in a
Type 4 CIDFont.

• removeglyphs removes the bitmaps for specified CIDs associated with a Type 4

CIDFont.

• re m ovea II removes all bitmaps associated with a Type 4 CIDFont.

Unlike most glyphs in the font cache, glyphs loaded by addglyph cannot be re-

moved automatically to make room for other glyphs (except in the case that the

Type 4 CIDFont itself is removed from VM). The PostScript program must man-
age the font cache properly to avoid exhausting it. As indicated earlier, this re-
quires it to know device-dependent details about the memory consumed by
cached glyphs and about the total capacity of the font cache.

The removeglyphs and removeall operators logically remove glyphs from the
font cache at the moment the operators are executed; the glyphs are no longer ac-
cessible during subsequent show operations. However, glyphs that have been re-

I CHAPTER 5
382

l
Fonts I

moved may continue to occupy font cache memory until all pages on which the
glyphs were used have been produced. Such glyphs compete with new glyphs for
font cache memory; their consumption is reflected in the value of the
CurFontCache system parameter. As a general rule, if glyphs from any Type 4
CIDFonts are used on a page, all the glyphs for the page must fit in the font cache;
otherwise, a limitcheck error may occur.

When characters are shown from a Type 4 CIDFont, the font machinery first per-
forms its usual action of checking the font cache to see if the glyphs are already
present. If a glyph has previously been loaded by addglyph and the concatenation
of the FontMatrix entry and the CTM is the identity matrix (except for transla-
tion), the cached glyph is transferred directly to the current page. This is the nor-
mal behavior that occurs when a Type 4 CIDFont is used as intended.

If a character being shown is not present in the font cache, one of two exceptional
conditions has arisen:

• No glyph for the requested CID has been loaded into the font cache by
addglyph. This case is handled by performing a glyph substitution, just as in
any other type of CIDFont; see "Handling Undefined Characters" on page 389.

• The glyph exists in the font cache, but the concatenation of the FontMatrix en-
try and the CTM is not the identity matrix (because one or the other has been
scaled or otherwise transformed). In this case, the glyph bitmap is treated as if
it were image source data and is painted as if by the imagemask operator, using
the transformed coordinate system.

Note: Such a transformation degrades the quality of prerendered glyphs for Type 4
CIDFonts in the same way as for Type 3 base fonts or Type 1 CIDFonts that describe
glyphs as bitmaps.

5.11.4 CMap Dictionaries

As stated earlier, a CMap dictionary specifies the mapping from character codes
to character selectors (CIDs, character names, or character codes) in one or more
associated fonts or CIDFonts. The CMap does not refer directly to specific fonts
or CIDFonts; instead, it is combined with them as part of a Type 0 font whose
FMapType value is 9.

383
CID-Keyed Fonts I

Within the CMap, the character mappings refer to the associated fonts or

CIDFonts by font number, indexing from O. All of the mappings for a particular

font number must specify the same kind of character selector. If the character se-

lectors are CIDs, the associated dictionary is expected to be a CIDFont. If the

character selectors are names or codes, the associated dictionary is expected to be

a font.

A CMap dictionary is created with the assistance of operators defined in the

CIDInit procedure set, described below. It includes the entries listed in Table 5.18.

TABLE 5.18 Entries in a CMap dictionary

KEY TYPE VALUE

CMapType integer (Required) The CMap type, indicating how the CMap is organized. The only

defined values are 0 and 1, which are equivalent; 1 is recommended.

CMapName name (Required) The name of the CMap. Ordinarily, it is the same as the key given

to defineresource when defining the dictionary as an instance of the CMap

resource category.

c IDSystemInfo dictionary (Required) A dictionary or array identifying the character collection for each

or array associated font or CIDFont. If the CMap selects only font 0 and specifies

character selectors that are CIDs, this entry can be a dictionary identifying

the character collection for the associated CIDFont. Otherwise, it is an array
indexed by the font number. If the character selectors for a given font num-

ber are CIDs, the corresponding entry is a dictionary identifying the charac-

ter collection for the associated CIDFont. If the character selectors are names

or codes (to be used with an associated font, not a CIDFont), the entry

should be null. For details of the CIDSystemInfo dictionaries, see

Section 5.11.2, "CIDSystemInfo Dictionaries:'

CodeMap varies (Inserted by the CMap construction operators) The information used to map

from character codes to a font number and character selector. This is an

internal representation of the information presented to the CMap construc-

tion operators (defined in the CIDInit procedure set) executed during the def-

inition of the CMap. The contents and format are implementation-

dependent.

CMapVersion number (Optional) The version number of this CMap. This entry is for information

only; it is not used by the PostScript interpreter.

XUID array (Optional) An array of integers that uniquely identifies the CMap or any vari-

ant of it. See Section 5.6.2, "Extended Unique ID Numbers:'

I CHAPTER 5
384

Fonts I

UIDOffset integer (Optional) An integer used in combination with the = Base entry in a
CIDFont to form UniquelD entries for the base fonts within a composite font.
This entry is used only in PostScript interpreters lacking built-in CID-keyed
font support but having other means, such as the CID Support Library
(CSL), to achieve similar capabilities.

WMode integer (Optional) The value to be used for the WMode entry in any font constructed
by the composefont operator using this CMap; see Section 5.4, "Glyph Met-
ric Information." Default value: O.

CMap Operators in the CIDInit Procedure Set

The operators needed to construct a CMap dictionary are contained in the
CIDInit procedure set (an instance of the ProcSet resource category); this includes

the operators needed in a rearranged font's CMap to derive the rearranged font
from an existing CID-keyed font. The following is a summary of the CMap con-

struction operators. The use of these operators to construct a CMap for a CID-
keyed font is discussed in Section 5.11.5, "FMapType 9 Composite Fonts."

Chapter 8 gives the syntax and brief descriptions of all the operators in CIDInit;
for complete documentation, see Adobe Technical Note #5014, Adobe CMap and
CIDFont Files Specification.

• begincmap and endcmap enclose the CMap definition.

• usecmap incorporates the code mappings from another CMap resource in-
stance.

• beginrearrangedfont and endrearrangedfont, in the CMap for a rearranged

CID-keyed font, specify an array of component fonts for the rearranged font.

• begincodespacerange and endcodespacerange define codespace ranges—the

valid input character code ranges—by specifying a pair of codes of some partic-
ular length giving the lower and upper bounds of each range; see "CMap Map-

ping" on page 388.

• usefont specifies a font number that is an implicit operand of all the character
code mapping operations that follow.

• beginbfchar and endbfchar define mappings of individual input character

codes to character codes or character names in the associated font.
beginbfrange and endbfrange do the same, but for ranges of input codes.

385

I
CID-Keyed Fonts I

• begincidchar and endcidchar define mappings of individual input character
codes to CIDs in the associated CIDFont. begincidrange and endcidrange do
the same, but for ranges of input codes.

• beginnotdefchar, endnotdefchar, beginnotdefrange, and endnotdefrange de-

fine notdef mappings from character codes to CIDs. As described in the section
"Handling Undefined Characters" on page 389, a notdef mapping is used if the
normal mapping produces a CID for which no glyph is present in the associat-
ed CIDFont.

• beginusematrix and end usematrix define a transformation matrix to be ap-

plied to an associated font or CIDFont.

In addition to the operators listed above, the CIDInit procedure set also includes

the StartData operator, which is used in defining Type 0 CIDFonts (as described
in the section "Type 0 CIDFonts" on page 371). Other entries in the CIDInit pro-

cedure set are private and should not be accessed by a PostScript program.

Note: Although the contents of the Mink procedure set are documented as "opera-
tors," they may actually be implemented as procedures rather than as operator ob-
jects. Since they are always directly executed by name, there is no difference in
behavior between procedures and operators.

CMap Example

The following example (with paragraphs of comments interspersed) creates a
simple CMap dictionary. It demonstrates the use of several of the operators in the
CIDInit procedure set to define mappings from character codes to a character se-
lector and font number. The example is contrived and is not entirely explained by
the comments; its purpose is to provide background for subsequent descriptions.

/CIDInit /ProcSet findresource begin
8 dict begin

begincmap

The CMap definition begins here. It maps character codes to a CIDFont and a
base font; therefore, the CIDSystemInfo entry must be an array with two ele-

ments. Font 0 is a CIDFont that references the Adobe-Japan1-1 character collec-
tion, and font 1 is a base font (represented by the null element of the array).

I. CHAPTER 5
386

I
Fonts I

/CIDSystemInfo

[3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 1 def

end

null

I def

The following operators fill in some other CMap entries.

/CMapName /ExampleCMap def

/CMapVersion 1 def

/CMapType 1 def

/XUID [1000000 10] def

/WMode 0 def

The mapping information from here on gets stored in the CodeMap entry by the
CMap construction operators. First, four valid codespace ranges are defined for a
mixed single-byte and double-byte encoding.

4 begincodespacerange

<00> <80>

<8140> <9FFC>

<AO> <DF>

<E040> <FCFC>
endcodespacerange

Next come the mappings for font 0 (as specified by the usefont operator below).
The ... cidrange operators define a mapping from four character code ranges to
CIDs, with each range mapping to consecutive CIDs starting at a specified num-
ber.

0 usefont

4 begincidrange

<20> < 7e> 231

<8140> < 817e> 633

<8180> < 81ac> 696

<8940> <897e> 1219

endcidrange

387

—I-
C1D-Keyed Fonts I

The following operators apply a transformation to font 1 that rotates the glyphs

counterclockwise by 90 degrees.

1 usefont

1 beginusematrix

[0 1 —1 0 0 0]

endusematrix

The mappings for font 1 follow. Here each character code range is mapped to an-
other range of consecutive codes or to a list of character names in a font.

2 beginbfrange

<C1> <C3> <63>

<A1> <A3> [IA /B IC]

endbfrange

Codes can also be mapped one code at a time.

3 beginbfchar

<CA> /j

<CB> <6B>

<CC> <6C>

endbfchar

Finally, the CMap definition is ended and the CMap resource instance is defined.

endcmap

currentdict CMapName exch /CMap defineresource pop

end % CMap dictionary

end cY0CIDInit ProcSet

5.11.5 FMapType 9 Composite Fonts

This section explains how to combine a CMap with one or more fonts or

CIDFonts to produce a CID-keyed font, and it describes the behavior of such

fonts during show operations.

As indicated earlier, a CID-keyed font is represented as a Type 0 font whose
FMapType value is 9. It contains a CMap entry whose value is a CMap dictionary.

Its FDepVector array references the CIDFont, base font, or composite font dictio-

naries with which the CMap has been combined.

I CHAPTER 5
388

Fonts I

A PostScript program can directly create a Type 0 font having this structure. As a
convenience, the composefont operator performs most of the required work. The

following example combines the CMap created in the preceding section with a
CIDFont, Ryu min-Light, and a base font, Times-Roman (which must previously

exist as instances of the CIDFont and Font resource categories, respectively). It de-
fines a composite font named ExampleFont in the Font category.

/ExampleFont /ExampleCMap [/Ryumin-Light [rimes-Roman] composefont pop

CMap Mapping

Type 0 fonts with FMapType 9 require a CMap entry in the font dictionary. The
mapping algorithm for these fonts starts out by using the information in the

CodeMap entry of the CMap dictionary to decode bytes from the show string.
This information is derived from the operands of the CMap construction opera-
tors that were invoked while the CMap was being defined; see Section 5.11.4,
"CMap Dictionaries!'

The number of bytes extracted from the show string for each successive character
is determined exclusively by the codespace ranges in the CMap (delimited by

begincodespacerange and endcodespacerange). A codespace range is specified
by a pair of codes of some particular length giving the lower and upper bounds of
that range. A code is considered to match the range if it is the same length as the

bounding codes and the value of each of its bytes lies between the corresponding
bytes of the lower and upper bounds. The code length cannot exceed the number
of bytes representable in an integer (see Appendix B).

A sequence of one or more bytes is extracted from the show string and matched
against the codespace ranges in the CMap. That is, the first byte is matched
against one-byte codespace ranges; if no match is found, a second byte is extract-
ed, and the two-byte code is matched against two-byte codespace ranges. This

continues for successively longer codes until a match is found or all codespace

ranges have been tested. There will be at most one match, since codespace ranges
do not overlap.

The code extracted from the show string is then looked up in the character code
mappings for codes of that length. (These are the mappings defined by
beginbfchar, endbfchar, begincidchar, endcidchar, and corresponding operators
for ranges.) Failing that, it is looked up in the notdef mappings, as described in
the next section.

389

I
CID-Keyed Fonts l

The results of the CMap mapping algorithm are a font number and a character
selector. Character selection from the descendant font depends on whether the

descendant is a base font, composite font, or CIDFont and whether the character
selector is a character name, a character code, or a CID, as described below (and
illustrated in Figure 5.10 on page 367).

• If the character selector is a character name, the descendant must be a base

font. The equivalent of a glyphshow operation is performed on the name, us-
ing the descendant font as the current font. If the descendant font contains no
glyph for that name, the .notdef character is used instead.

• If the character selector is a character code, the descendant may be either a base
font or another composite font, but not a CIDFont. In the case of a base font,
the code must be only one byte long; the Encoding entry in the base font is con-

sulted in the usual manner to determine which glyph to render. In the case of a
composite font, the code may be multiple bytes long; it is interpreted according
to the mapping algorithm specified by the FMapType value for that font. Dur-

ing this interpretation, no additional bytes will be consumed from the show

string.

• If the character selector is a CID, the descendant must be a CIDFont (except in

a special case described below). The equivalent of a glyphshow operation is
performed on the CID, using the descendant CIDFont as the current font. If
the CIDFont contains no glyph for that CID, the notdef mappings are consult-

ed, as described in the next section.

Under special conditions, a CID can be used when the descendant is a Type 3
base font. The font's BuildGlyph or BuildChar procedure is invoked to render a

character whose code is the last byte originally extracted from the show string.

If this procedure executes setfont to establish a CIDFont as the current font

and then executes a show operation on a string consisting of just that character
code, the code is ignored; instead, the CID determined by the earlier CMap
mapping is used to look up the glyph in the CIDFont. This special case exists

for compatibility with applications that substitute Type 3 fonts for base fonts in

a composite font hierarchy to achieve certain special effects.

Handling Undefined Characters

A CMap mapping operation can fail to select a glyph for any of a variety of rea-
sons. This section describes what happens when that occurs.

CHAPTER 5 Fonts I
390

If a code maps to a character selector that is a CID, but there is no such glyph in
the descendant CIDFont, the notdef mappings in the CMap are consulted to ob-
tain a substitute character selector. These mappings (so called by analogy with the
.notdef character mechanism in base fonts) are delimited by beg in n otdefcha r,
endnotdefchar, beginnotdefrange, and endnotdefrange; they always map to a
CID. If a matching notdef mapping is found, the CID selects a glyph in the asso-
ciated descendant, which must be a CIDFont. (Note that the font number in the
notdef mapping can be different from the font number in the original character
mapping.) If there is no glyph for that CID, the glyph for CID 0 (which is re-
quired to be present) is substituted.

Note: For Type I CIDFonts, the BuildGlyph procedure must handle a missing glyph
by rendering the glyph for CID O. The BuildGlyph procedure cannot consult the
CMap dictionary again.

If the CMap does not contain either a character mapping or a notdef mapping for

the code, font 0 is selected and a glyph is substituted from the associated font or
CIDFont. If it is a base font, the character name .notdef is used; if it is a CIDFont,

CID 0 is used. If it is a composite font, the behavior is implementation-
dependent.

If the code is invalid—that is, the bytes extracted from the show string do not
match any codespace range in the CMap—a substitute glyph is chosen as just de-

scribed. The character mapping algorithm is reset to its original position in the
show string, and a modified mapping algorithm chooses the best partially match-
ing codespace range, as follows:

1. If the first byte extracted from the show string does not match the first byte of
any codespace range, the range having the shortest codes is chosen.

2. Otherwise (that is, if there is a partial match), then for each additional byte ex-
tracted, the code accumulated so far is matched against the beginnings of all
longer codespace ranges, until the longest such partial match has been found.

If multiple codespace ranges have partial matches of the same length, the one
having the shortest codes is chosen.

The length of the codes in the chosen codespace range determines the total num-

ber of bytes to consume from the show string for the current mapping operation.

1
391

I

CHAPTER 6

Device Control

THIS CHAPTER DESCRIBES the PostScript language's facilities for configuring
a page device: a raster output device capable of realizing PostScript page descrip-
tions on a physical medium. The term medium (plural media) refers to the physi-
cal material on which the device generates its results, such as paper, film,
transparency material, or a virtual page on a display. Most of the processing op-
tions discussed in this chapter are oriented toward printers that produce output
on paper, so paper is a good universal material to envision when you read the
term medium.

Note: A page device is only one of several kinds of raster output device. Other kinds
include the cache device to put characters into the font cache and the null device to
discard output entirely. These are set, usually temporarily, by the setcachedevice and
n ulldevice operators.

The state of any device, including a page device, is represented as an internal ob-
ject that is an element of the graphics state. Each execution of a device setup op-
erator, such as setpagedevice (described below), setcachedevice, or nulldevice,
creates a new instance of an internal device object (referred to hereafter simply as
a "device"). Multiple devices can refer to the same physical resource, such as a
printing engine, perhaps with different values of configuration options such as
page sizes or feature settings.

Only one device—the current device in the graphics state—is active at any given
time. However, there can be multiple inactive devices belonging to copies of the
graphics state that have been saved by save, gsave, gstate, or currentgstate. An
inactive device can be reactivated when a saved graphics state is reinstated with
restore, grestore, grestoreall, or setgstate. When a device is reactivated, it brings
its device parameters with it. (In an interpreter that supports multiple execution
contexts, each context can have an independent active device.)

 1

I CHAPTER 6
392

i
Device Control I

Configuring a page device includes:

• Selecting the proper medium

• Establishing a default transformation matrix from user space to device space,
along with other device-dependent rendering parameters for producing output
on the medium

• Selecting processing options such as multiple copies, or special features of the
output device such as duplex (two-sided) printing

Once a device has been configured, a PostScript program can proceed to describe
a sequence of pages. The program paints the contents of each page in turn in ras-
ter memory, with everything that is to appear on that page: text, graphics, and
sampled images. It then invokes the showpage operator to cause the page to be
rendered on the physical output device. showpage transmits the contents of ras-
ter memory to the device, then erases the page and partially resets the graphics

state in preparation for the next page. (Another operator, copypage, is similar to
showpage, but its behavior varies by LanguageLevel and its use is not recom-
mended.)

The facilities for configuring a page device differ by LanguageLevel:

• LanguageLevel 1 provides a collection of device control operators, defined in a
special dictionary named statusdict. The contents of statusdict are device-
dependent (although an attempt has been made to maintain a consistent speci-
fication for features common to multiple devices). They are not described in
this book, but rather in the PostScript Language Reference Supplement. Applica-

tion programs wishing to use statusdict features can extract information from
PostScript printer description (PPD) files; for the format of these files, see Adobe
Technical Note #5003, PostScript Printer Description File Format Specification.

• LanguageLevels 2 and 3 support a page device setup operator named setpage-
device. This operator provides a standard framework for specifying the re-
quirements of a page description and for controlling both standard and
optional features of a page device.

• LanguageLevel 3 includes an optional feature, in-RIP trapping, whose purpose
is to compensate for misregistration between colorants. This feature is sup-
ported primarily in devices (such as imagesetters) that are used in the produc-
tion of plates for printing presses. It is controlled partially by setpagedevice

393
Using Page Devices

and partially by two special-purpose operators, sett ra p zone and settra p-
params, defined in the Trapping procedure set.

The remainder of this chapter describes the page device configuration facilities of
LanguageLevels 2 and 3. Features that are specifically part of LanguageLevel 3 are
so indicated, though many such features have historically originated as exten-
sions to LanguageLevel 2 and are available in some LanguageLevel 2 implementa-
tions (see Appendix A). Furthermore, as discussed below, not all page device
features are supported on all devices.

6.1 Using Page Devices

Many output devices have special hardware features, such as multiple paper trays
with different sizes of paper, duplex (two-sided) printing, collation, finishing op-
tions, and so forth. Not all such features are available on all devices, however. The
PostScript interpreter knows what features a device supports and which are cur-
rently available and ready for use.

A document's device configuration requirements may limit the set of devices on
which the document can be printed. Specifying such configuration information
within a PostScript page description allows the interpreter to match the docu-
ment's requirements with the features and options available on a given output
device. The setpagedevice operator provides a uniform framework for specifying
configuration requirements and options. It uses a standard format to request fea-
tures supported by all devices (such as selecting a page size) and those supported
only by some devices (such as duplex printing). In addition, setpagedevice
allows a user or system administrator to establish default device configuration
parameters to be used when a page description does not specify them explicitly. It
also provides a standard mechanism for determining what to do when a page de-
scription makes feature requests that the device cannot fulfill.

It is useful, at least in concept, to envision two separate tasks when printing from
an application:

1. Generate a device-independent page description.

2. Request that the page description be rendered on a particular device. At this
point, the user should have an opportunity to add processing options, includ-
ing device-dependent ones, to the page description.

I CHAPTER 6
394

Device Control I

Even if a single application performs both of these functions, it is best to main-
tain the distinction. Many applications have an option to store the generated page
description in a file for later use. Such a file should not contain unnecessary
device-dependent processing options. The distinction between document gener-
ation and document rendering is essential when using PostScript programs for
document storage and interchange.

While there is no clear division between device-independent processing requests
and device-dependent ones, you should keep in mind the important goal of pro-
ducing device-independent page descriptions. One important criterion to apply
is whether a particular feature is inherently part of the document specification it-
self or merely a processing option. For example, the page size—in particular, the
aspect ratio between width and height—is an important part of the document
specification, because the application generating the document must make for-
matting decisions based on it. On the other hand, the number of copies to be
printed or the color of the paper to be used is not an inherent part of the docu-
ment description, but rather a processing option.

6.1.1 Page Device Dictionary

The current internal state of a page device is modeled by a page device dictionary
containing entries called page device parameters. The keys in this dictionary rep-
resent device features or processing options; the associated values represent the
current settings of those features or options. The page device dictionary is not di-
rectly accessible to a PostScript program, but its contents can be read and altered
by the currentpagedevice and setpagedevice operators.

Note: setpagedevice is a page-oriented operator used to control the output process-
ing of one or more pages of a page description. Any call to setpagedevice implicitly
invokes erasepage and initgraphics, and thus must precede the descriptions of the
pages to be affected. If the current device is not a page device, the effect of invoking
setpagedevice is device-dependent.

The operand to setpagedevice is a request dictionary whose entries specify
desired settings or values for one or more page device parameters. The request
dictionary is simply a container that can hold multiple parameter requests to be
issued in a single call to setpagedevice. The interpreter uses the contents of the
request dictionary to alter the state of the page device parameters, but it does not
retain the request dictionary itself. Note that the entries in the request dictionary
are merely requests for certain parameter settings; depending on the capabilities

Í

395

I
Using Page Devices I

of a given page device, these requests may or may not be honored. The
currentpagedevice operator returns a dictionary whose entries reflect the actual
current settings of the page device parameters, not necessarily those that have
been requested via setpagedevice.

Because setpagedevice merges new parameter settings into the existing state of
the device, its effects are cumulative over multiple executions. That is, the effect
of setting a particular page device parameter persists through subsequent invoca-
tions of setpagedevice until explicitly overridden or until the device is restored
to some previous state by a restore, grestore, grestoreall, or setg state operation.
This cumulative behavior also applies recursively (to one level) to the contents of
subsidiary dictionaries that are the values of the page device parameters Policies,
InputAttributes, and OutputAttributes (all of which are described in detail later

in this chapter). It does not apply to the contents of other entries whose values
happen to be dictionaries (except possibly to the contents of details dictionaries
passed to setpagedevice; see Section 6.1.2, "Details Dictionaries").

Because the effects of setpagedevice are cumulative, a PostScript program can
make multiple calls to setpagedevice, each requesting particular parameter set-
tings but leaving the settings of other parameters undisturbed. This allows differ-
ent features or options to be specified independently. In particular:

• When an application generates a page description, it can include a call to
setpagedevice specifying parameters that reflect assumptions the application
has made in formatting the document, such as the page size and bounding box.

• When a user requests printing, an additional call to setpagedevice can be
prepended to the page description to specify print-time options such as two-
sided printing or the number of copies.

• The person operating the device can invoke setpagedevice, as part of an unen-

capsulated job, to specify the available media, establish recovery policies for
dealing with unsatisfied requests, and establish default values for other device
options. (Jobs and encapsulation are discussed in Section 3.7.7, "Job Execution
Environment')

For certain parameters, there is a null value that indicates the absence of any spe-
cific request or preference. In all cases, the null object (that is, the value of null in
systemdict) is used for this purpose. For example, a null value for the MediaColor
parameter indicates that no specific paper color has been requested. Null values

I CHAPTER 6
396

Device Control I

are permitted only for certain features, as indicated in the relevant table entries in
Section 6.2, "Page Device Parameters?'

Omitting a parameter key from the request dictionary has a different meaning
than including the key with a null value. Omitting the key leaves the parameter's
previous value unchanged; specifying a null value sets it to the null object, cancel-
ing any previous value it may have had. The dictionary returned by
currentpagedevice always contains an entry for every parameter supported by
the device, though the value for some parameters may be null (indicating that the
feature is supported but no setting has yet been requested for it).

Note: The PostScript language does not prescribe a default value for any page device
parameter. The usual default value for optional features is either false or null, but
this is not invariably the case for all devices. A PostScript program can change the de-
fault values by invoking setpagedevice as part of an unencapsulated job.

If the request dictionary requests parameter settings that the device cannot satisfy
(for example, if a program requests duplex printing on a device that does not
support it), the PostScript interpreter invokes a uniform recovery policy for deter-
mining what to do. This policy may vary depending on the specific page device
parameter involved. For most parameters, there are three possibilities:

• Ignore the request (for example, print simplex on a device that cannot honor a
request for duplex printing).

• Generate a configurationerror (reject the job).

• Notify the human operator or the print management software to determine •
what to do.

The choice is based on information in the Policies subdictionary of the page de-
vice dictionary, which in turn can be altered by setpagedevice; see Section 6.2.7,
"Unsatisfied Parameter Requests," for further details.

Note: In the descriptions of individual page device parameters in this chapter, the
statement "a configuration error will occur" actually means that the PostScript inter-
preter will take one of the three possible actions listed above, according to specified
policy. Thus a "configuration error" is not necessarily the same thing as a PostScript
configurationerror.

397
Using Page Devices I

If a device does not support a particular feature, setpagedevice will not recognize
any request to specify a value for the corresponding parameter. For example, if a
device does not have a duplexing mechanism, setpagedevice will not recognize
the parameter key Duplex—even if the request is to set the value of Duplex to
false, indicating no duplexing. Instead, setpagedevice will consult policy to de-
termine what to do. (Note that this means a print job cannot expand the set of
keys in a device's page device dictionary, though it can add new keys to the
Policies dictionary.) This behavior may seem surprising, but it is necessitated by
the fact that the set of device features is open-ended.

6.1.2 Details Dictionaries

The operation of some page device features depends on the values of variables

(which may be quite different for different devices) that determine precisely how
the feature functions. Features of this type are generally controlled by two sepa-
rate page device parameters: a boolean parameter that enables or disables the fea-
ture as a whole and a details dictionary containing the variables that determine its
precise behavior. This allows an application that is not knowledgeable about the
feature to use it in a straightforward way, while more sophisticated applications
can exercise greater control over the details of its operation.

Details dictionaries follow a consistent naming convention: the name of the dic-

tionary is taken from the name of the page device parameter that enables or dis-
ables it, with the word Details appended. For example, the feature enabled by the
Trapping parameter is controlled by a details dictionary named Tra pp ing Details.

Since the details of a particular feature may not be the same on all devices, every
details dictionary must contain a Type entry indicating the overall composition
of the dictionary. The value of this entry is an integer that determines how the
dictionary's entries are organized and interpreted (as well as whether changçs to
its contents are cumulative, as discussed in Section 6.1.1, "Page Device Diction-
ary"). When a request dictionary passed to setpagedevice includes a details dic-
tionary as the value of one of its entries, a configuration error will occur if the
device does not support the Type value specified in the details dictionary.

I CHAPTER 6
398

Device Control I

6.2 Page Device Parameters

This section describes specific page device parameters that have been defined at
the time of publication of this book. Table 6.1 classifies them into general cate-
gories for easier understanding. (This classification is not rigid, however; param-
eters in different categories can sometimes interact with each other.) In the
future, other parameters may be defined as needed to cover new processing op-
tions or device features. Once defined for any device, a given parameter name will
always be used for the same feature in any subsequent devices that support it.

Note: Excluded from the table (and from this chapter) are parameters that are
device-specific, controlling features unique to a particular device or limited to only a
few devices; for information on these, see the PostScript Language Reference Supple-
ment and individual product documentation. Note also that not all parameters de-
scribed here are supported by all devices; consult the product documentation for each
device to see exactly which parameters it supports.

6.2.1 Media Selection

A given output device may support one or more physical sources for the media
on which PostScript page descriptions are rendered. These media sources (often
called trays or positions) are arbitrarily numbered by small integer position num-
bers. A position number usually designates a specific physical location in the
hardware, though it may refer instead to some logical capability such as a pair of
trays that contain the same medium and are used alternately. The correspon-
dence between position numbers and media sources is device-dependent; it is not
described in this book, but rather in individual product documentation.

The page device parameters shown in Table 6.2 control the selection of an input
media source. Some of these parameters (PageSize, MediaColor, MediaWeight,
MediaType, MediaClass, InsertSheet) are used by a page description to specify its
media requirements. The InputAttributes parameter describes the properties of
the physical media currently available on the device. The setpagedevice operator
uses this information to match a page's requirements with the available media
and decide which physical media source to use for that page. The remaining
parameters in Table 6.2 specify additional requirements for input media handling
that may also influence the media selection process.

399
6.2 Page Device Parameters I

TABLE 6.1 Categories of page device parameters

CATEGORY DESCRIPTION PARAMETERS

Media selection

Roll-fed media

Page image placement

Page delivery

Color support

Device initialization
and page setup

Unsatisfied parameter
requests

Select the appropriate type of
paper or other physical medium

Provide additional information
pertaining to media that are fed
from a continuous roll, such as
film in an imagesetter.

Specify how page images are to
be rendered onto the physical
medium.

Control the disposition of
physical output.

Specify various aspects of color
output on devices capable of
producing it.

Define special actions to be
performed when the device is
installed and before and after
each page is printed.

Specifies recovery policies for
handling requests for unsup-
ported features.

DeferredMediaSelection

InputAttributes

InsertSheet

LeadingEdge

ManualFeed

MediaClass

AdvanceDistance

AdvanceMedia

CutMedia

Duplex

HWResolution

ImageShift

ImagingBBox

Margins

Collate

Jog

NumCopies

OutputAttributes

MaxSeparations

PageDeviceName

ProcessColorModel

SeparationColorNames

SeparationOrder

BeginPage

EndPage

Policies

MediaColor

MediaPosition

MediaType

MediaWeight

PageSize

TraySwitch

Orientation

RollFedMedia

MirrorPrint

NegativePrint

PageOffset

Tumble

OutputDevice

OutputFaceUp

OutputType

Separations

Trapping

TrappingDetails

UseCIEColor

Install

I CHAPTER 6
400

I
Device Control I

Media selection is performed according to one of two models:

• Immediate media selection. All information about the available media is present
in the InputAttributes and other page device parameters at the time
setpagedevice is invoked. setpagedevice uses this information, along with the
policies established for handling unsatisfied parameter requests, to select a
media source. The outcome of this decision is immediately visible to the Post-
Script program.

• Deferred media selection. Information about the available media is not known
at the time setpagedevice is invoked. Instead of selecting the media source im-
mediately, setpagedevice merely collects the selection requests and saves them
for use at some later time when the page image is actually applied to the medi-
um.

Most of this section is devoted to describing the immediate media selection pro-
cess in detail. Deferred media selection is discussed in "Deferred Media Selec-
tion" on page 411.

TABLE 6.2 Page device parameters related to media selection

KEY TYPE VALUE

InputAttributes dictionary A dictionary specifying the attributes of all input media currently available
or null for use by this output device. The dictionary contains an entry for each

available media source on the device—for example, each input paper tray
on a printer. The key for each entry is an arbitrary integer position number;
the value is a subdictionary describing the medium currently available from
that source. Entries in these subdictionaries include PageSize, MediaColor,
MediaWeight, MediaType, MediaClass, and InsertSheet, with the same

meanings as the corresponding page device parameters described in this

table. Two other optional entries, Priority and MatchAll, control details of
the matching algorithm; see "Matching Requests with Attributes" on page

403.

Changes to the contents of the InputAttributes dictionary are cumulative;

that is, the setpagedevice operator merges the contents of InputAttributes
from the request dictionary with those of the existing In putAttri butes dic-
tionary for the current device. However, this cumulative merging is not re-
cursive: the contents of subdictionaries representing individual media
sources within the InputAttributes dictionary are replaced outright rather
than merged.

I 6.2
401

Page Device Parameters I

On devices that perform deferred media selection (see "Deferred Media Se-

lection" on page 411), the PostScript interpreter has no prior knowledge of

the available input media. In such cases, InputAttributes is either an empty
dictionary or null. Instead of attempting to fulfill the PostScript program's
input media requests, the setpagedevice operator will then simply save
them and pass them to the device's printing subsystem along with the con-
tents of the rendered page image.

PageSize array An array of two numbers, [width height], specifying the overall dimensions

of the physical medium that were assumed during the generation of this
page description. The dimensions are expressed in units of the default user
space (72nds of an inch) and include any unprinted borders along the edges
of the page; thus the lower-left and upper-right corner of the assumed phys-

ical page are at user space coordinates (0, 0) and (width, height), respec-
tively.

The specified page dimensions are considered to match those of an available
input medium if they are within a tolerance of 5 units in each dimension.
(For roll-fed media, the tolerance applies only to the amount by which the

requested size may exceed the actual size of the physical medium; it may be

smaller by an unlimited amount.) The order in which the dimensions are
specified is immaterial; that is, a requested page size of fa b] is considered to

match an input medium whose dimensions are specified as [b a]. Likewise,
the physical orientation of the medium in the printing mechanism is un-

specified and can vary from one device to another. The PostScript inter-
preter will set up the transformation from user space to device space so that
the longer and shorter dimensions specified by PageSize are properly ori-
ented with those of the physical medium.

To allow pages of the same dimensions in portrait (height greater than

width) and landscape (width greater than height) orientations to be inter-
spersed on the same physical medium, the setpagedevice operator rotates

the default user space for landscape orientation 90 degrees counterclock-
wise with respect to that for portrait orientation. This relationship holds

only for pages rendered on the same physical medium; no such relationship

is guaranteed between different media. For roll-fed media, the page orienta-
tion is further determined by the Orientation page device parameter (see
Table 6.3 on page 412).

MediaColor string or null A string identifying the color of the medium.

MediaWeight number The weight of the medium in grams per square meter. "Basis weight" or

or null "ream weight" in pounds can be converted to grams per square meter by
multiplying by 3.76; for example, 10-pound paper is approximately 37.6

grams per square meter.

402
I CHAPTER 6 Device Control

MedlaType string or null An arbitrary string representing special attributes of the medium other
than its size, color, and weight. This parameter can be used to identify spe-
cial media such as envelopes, letterheads, or preprinted forms.

MediaClass string or null (LanguageLevel 3) An arbitrary string representing attributes of the medi-
um that may require special action by the output device, such as the selec-

tion of a color rendering dictionary. Devices should use the value of this

parameter to trigger such media-related actions, reserving the MediaType
parameter (above) for generic attributes requiring no device-specific ac-

tion.

The MediaClass entry in the output device dictionary defines the allowable
values for this parameter on a given device (see Section 6.4, "Output Device

Dictionary"); attempting to set it to an unsupported value will cause a con-

figuration error.

InsertSheet boolean (LanguageLevel 3) A flag specifying whether to insert a sheet of some special

medium directly into the output document. Media coming from a source
for which this attribute is true are sent directly to the output bin without

passing through the device's usual imaging mechanism (such as the fuser
assembly on a laser printer). Consequently, nothing painted on the current
page is actually imaged on the inserted medium. See "Special Media Han-
dling" on page 407.

LeadingEdge integer or null (LanguageLevel 3) A code specifying the edge of the input medium that will
enter the printing engine or imager first and across which data will be im-

aged. Values reflect positions relative to a canonical page in portrait orienta-

tion (width smaller than height):

null No request for media orientation
O Short edge; top of canonical page

1 Long edge; right side of canonical page
2 Short edge; bottom of canonical page

3 Long edge; left side of canonical page

When duplex printing is enabled, the canonical page orientation refers only
to the front (recto) side of the medium; the orientation of the back (verso)
side depends on the Tumble parameter (see Section 6.2.3, "Page Image
Placement") and is independent of the value of LeadingEdge.

ManualFeed boolean A flag indicating whether the input medium is to be fed manually by a hu-

man operator (true) or automatically (false). A true value asserts that the
human operator will manually feed media conforming to the specified at-
tributes (PageSize, MediaColor, MediaWeight, MediaType, MediaClass, and

InsertSheet). Thus, those attributes are not used to select from available
media sources in the normal way, although their values may be presented to

the human operator as an aid in selecting the correct medium. On devices

6.2
403

Page Device Parameters I

that offer more than one manual feeding mechanism, the attributes may se-
lect among them.

TraySwitch boolean (LanguageLevel 3) A flag specifying whether the output device supports

automatic switching of media sources. When the originally selected source
runs out of medium, some devices with multiple media sources can switch
automatically, without human intervention, to an alternate source with the

same attributes (such as PageSize and MediaColor) as the original. The
choice of such an alternate media source is device-specific, and may or may

not be influenced by the Priority array specified in the InputAttributes dic-
tionary (see "Matching Requests with Attributes," below).

MediaPosition integer or null (LanguageLevel 3) The position number of the media source to be used.
This parameter does not override the normal media selection process
described in the text, but if specified it will be honored—provided it can
satisfy the input media request in a manner consistent with normal media

selection—even if the media source it specifies is not the best available
match for the requested attributes.

DeferredMediaSelection (LanguageLevel 3) A flag determining when to perform media selection.
booledn If true, media will be selected by an independent printing subsystem associ-

ated with the output device itself, at some time after the execution of the
setpagedevice operator (see "Deferred Media Selection" on page 411). If

false, media selection is to be done in the normal way, as described below.

Matching Requests with Attributes

The page device parameters include a special dictionary, InputAttributes, that de-
scribes the attributes of all physical media available on the current output device.
Depending on the device, this information may either be discovered automatical-
ly by the PostScript interpreter or configured manually by a human operator or
system administrator. The setpagedevice operator matches the media require-
ments specified by the page description against the attributes described in the
InputAttributes dictionary to determine which media source to select.

The keys in the InputAttributes dictionary are integer position numbers repre-
senting media sources on the device. The value associated with each key is a sub-

dictionary whose entries describe the attributes of the medium currently
available from that source. Entries in this subdictionary include PageSize,
MediaColor, MediaWeight, MediaType, MediaClass, and InsertSheet. These keys
have the same meanings as the correspondingly named page device parameters,

404
I CHAPTER 6 Device Control I

but they describe the actual attributes of the medium instead of the requirements

of the page description.

Note:All implementations of setpagedevice support input media selection by means
of the PageSize, MediaColor, Media Weight, MediaType, MediaClass, and Insert-

Sheet attributes, whether or not the device can sense these attributes automatically.
On some devices, other attributes may also influence media selection; those at-
tributes can appear in the InputAttributes dictionary as well.

Each time setpagedevice is invoked, it uses the following algorithm to match the
requested media attributes with those of the available media in order to select a
media source:

1. Merge the entries in the request dictionary passed to setpagedevice with the
existing parameter values in the page device dictionary (see Section 6.1.1,
"Page Device Dictionary"). The resulting set of entries are considered together,
without regard to which ones were specified in the request dictionary and
which were inherited from the existing page device parameters.

2. Collect together those of the relevant entries (PageSize, MediaColor,
MediaWeight, MediaType, MediaClass, and InsertSheet) whose values are not
null and treat them as an input media request. Ignore any entries whose values
are null.

3. Compare the attributes specified in the input media request with those of each

media source in the InputAttributes dictionary. If all of the corresponding at-
tributes are equal, then the given media source matches the media request.
(PageSize values need not match exactly but must only fall within a tolerance
of 5 units of default user space in each dimension, as described under

PageSize in Table 6.2.)

4. If step 3 identifies exactly one media source matching the media request, select
that source. If there is more than one match, select the source with the highest
priority (see below). If there are no matches at all, consult the Policies diction-
ary to determine what further action to take. (See Section 6.2.7, "Unsatisfied
Parameter Requests," for information on the Policies dictionary in general,

and "Recovery Policies and Media Selection" on page 436 for its use in media
selection.)

I 6.2
405

1
Page Device Parameters I

For example, suppose the value of the InputAttributes dictionary for a device is as
follows:

<< 0 «/PageSize [612 1008] »

1 «/PageSize [612 792]»

>>

This describes a device with two paper trays: tray 0, containing legal-size (8.5-by-

14-inch) paper, and tray 1, containing letter-size (8.5-by- 11-inch) paper. Now
suppose a page description executes the following PostScript code:

« /PageSize [612 792] » setpagedevice

Since the requested value of PageSize matches the PageSize attribute for tray 1

and there are no nonmatching requests, setpagedevice will select tray 1 as the
media source for this page description.

Each InputAttributes subdictionary is required to have a PageSize entry, but
other attributes are optional. A nonnull attribute value in the media request will

not match a media source for which the corresponding attribute is absent. For ex-
ample, consider an output device with two paper trays, both containing letter-

size (8.5-by- 11-inch) paper: a high-quality white office paper in tray 0 and a less
expensive paper in tray 1. The contents of the InputAttributes dictionary for this
device might be as follows:

<< 0 « /PageSize [612 792]

/MediaColor (white)

/MediaType (office)

»

1 « /PageSize [612 792]»

/Priority [1 0]

>>

Note that the MediaColor and MediaType attributes are given for media source 0

but not for source 1, and that other attributes (MediaWeight, MediaClass, and
InsertSheet) are not given for either source. (The meaning of the Priority entry is
discussed below.) If a page description now issues the input media request

« /PageSize [612 792]

/MediaColor (white)

»setpagedevice

i

I CHAPTER 6
406

Device Control I

setpagedevice will select input tray O. This is because, although the requested
PageSize value matches those in both entries of the InputAttributes dictionary,

the nonnull value specified for MediaColor cannot match source 1, for which that

attribute is absent. Source 0 is therefore the only media source matching the re-
quest. The values of the MediaWeight, MediaType, MediaClass, and InsertSheet
attributes in the request are null (assuming that nonnull values have not been in-
herited from the existing state of the device), and are therefore ignored for
matching purposes. In effect, a null attribute value in a media request means

"don't care

Given the same InputAttributes dictionary as in the previous example, the media

request

« /PageSize [612 792)

/MediaColor (red)

»setpagedevice

will not match either media source. The requested value of MediaColor does not
match the MediaColor attribute for tray 0, and the MediaColor attribute for tray 1
is unspecified and therefore cannot satisfy any request for a specific color. Infor-
mation in the Policies dictionary determines what to do when there is no match
with any available medium; see Section 6.2.7, "Unsatisfied Parameter Requests."

Now consider the media request

« /PageSize [612 792] » setpagedevice

This request matches both tray 0 and tray 1 (again, assuming that nonnull values
for MediaColor, Media Weight, MediaType, MediaClass, and InsertSheet have not

been inherited from the existing state of the device). In this situation, the Priority
entry in the InputAttributes dictionary determines which tray to select. Its value

is an array of integer position numbers designating available media sources in or-
der of decreasing priority. When an input media request matches two or more
media sources, setpagedevice chooses the source that appears earliest in the
Priority array. (If none of the matching sources appears in the array, or if no
Priority entry is present, one of the sources is chosen arbitrarily.)

The effect of the InputAttributes dictionary in the example above is that a page
description explicitly requesting a MediaColor of white or a MediaType of office
(or both) will be printed on paper from tray 0, but a page description not re-

407
I 6.2

l
Page Device Parameters 1

questing either of these attributes will be printed on the less expensive paper from
tray 1.

Special Media Handling

Certain media are intended for special purposes, such as company letterhead or
preprinted forms. Such media should be selected only if a page description spe-
cifically requests all of their attributes. For example, company letterhead should
be selected only if a program explicitly requests it. If the program simply requests
letter-size paper, it is inappropriate for setpagedevice to satisfy this request by se-

lecting company letterhead, even if it happens to be the only available medium of
the requested size.

Suppose the available media consist of legal-size paper (8.5 by 14 inches) in tray 0
and letter-size company letterhead (8.5 by 11 inches) in tray 1. The contents of

the device's InputAttributes dictionary might be something like this:

« 0 « /PageSize [612 1008] »

1 « /PageSize [612 792]

/MediaType (letterhead)

/MatchAll true

>>

>>

The MatchAll attribute in entry 1 indicates that media source 1 can satisfy only

requests that explicitly specify all of that source's attributes. That is, the request

« /PageSize [612 792]

/MediaType (letterhead)

» setpagedevice

will select media source 1, but

« /PageSize [612 7921» setpagedevice

will select neither media source; setpagedevice will consult the Policies diction-

ary to decide what to do.

I CHAPTER 6
408

Device Control I

The precise effects of MatchAll are as follows:

• If MatchAll is present in an InputAttributes subdictionary and its value is true,
an input media request will match that media source only if it specifies match-
ing (nonnull) values for all attributes present in the subdictionary (except the

MatchAll attribute itself).

• If MatchAll is false or absent, an input media request will match the media
source if it specifies any subset of the subdictionary's attributes and leaves the

others null (meaning "don't care").

Some devices support media sources that insert a sheet of medium directly into
the output bin, bypassing the normal printing mechanism. This can be useful for

special media that require no imaging, such as divider pages made of heavy card
stock, or for delicate, preprinted media such as photographic materials, which
might be damaged if passed through a laser printer's high-temperature toner sta-
tion. The boolean page device parameter InsertSheet provides support for media
sources of this type. Setting InsertSheet to true in a source's InputAttributes entry
signifies that it bypasses the printing mechanism and feeds media directly to the
output bin; the source can then be selected by an input media request with
InsertSheet equal to true. For example, the following PostScript code fragment
inserts a sheet of special media as page n + 1 of a document:

... PostScript code for page n

gsave % Save previous media attributes

« /InsertSheet true » setpagedevice % Select InsertSheet media source

showpage % Send to output bin

grestore % Restore previous media attributes

... PostScript code for page n + 2...

Managing the InputAttributes Dictionary

Although the InputAttributes dictionary is an ordinary page device parameter
and can be altered with the setpagedevice operator, a page description should
never do this. This dictionary is intended to describe the attributes of the avail-
able media sources; it should be changed only by a human operator or by system

management software in control of the physical device.

I 6.2
409

Page Device Parameters I

Some devices can sense the attributes of the available media sources automati-
cally. For example, many printers can sense the size of the paper loaded into an
input paper tray. Some printers can sense other attributes as well, usually by read-
ing coded tags attached to the trays.

When a PostScript implementation can sense media attributes, it automatically
updates the contents of the InputAttributes dictionary to reflect the physical state
of the hardware. How and when this is done is product-dependent, but the fol-

lowing conventions are typical:

• At the beginning of a job (see Section 3.7.7, "Job Execution Environment"), the
job server senses the attributes of all available media sources. It then invokes
setpagedevice to update the InputAttributes dictionary accordingly.

• Additionally, the job server selects a default media source. This default is used if
a page description fails to specify any media requirements. (Nonnull attributes

of the default medium will be inherited during a setpagedevice request that
does not explicitly override those attributes.) How defaults are selected is
device-dependent; a common method is to use the first element of the Priority
array if one is present.

• Execution of setpagedevice at other times may also result in InputAttributes

being updated to reflect the state of the hardware. In particular, this occurs if a
Policies recovery policy specifies interaction with a human operator and the
operator installs different media (see Section 6.2.7, "Unsatisfied Parameter Re-

quests"). It can occur at other times as well.

Some devices cannot sense media attributes automatically, or they can sense page
size but not other attributes. For such devices, setpagedevice must be invoked
explicitly to update the InputAttributes dictionary whenever media are changed.
This is usually done by a system management program submitted by a human
operator and executed as an unencapsulated job. Some devices provide a "front

panel" user interface to accomplish this.

Changes to the contents of the InputAttributes dictionary are cumulative.
setpagedevice combines the entries supplied to it with those in the existing page
device dictionary, replacing or adding entries as appropriate. However, this cu-
mulative behavior does not extend to the contents of the subdictionaries that are

410
I CHAPTER 6

—I—
Device Control I

the values of individual entries in InputAttributes. For example, suppose the con-
tents of the device's InputAttributes dictionary are as follows:

« 0 « /PageSize [612 10081»

1 « /PageSize [612 792]

/MediaType (letterhead)

/MatchAll true

>>

>>

If a program executes

« /InputAttributes

«1 « /PageSize [612 792] »

/Priority [1 0]

»

» setpagedevice

then the device's InputAttributes dictionary becomes

« 0 « /PageSize [612 1008]»

1 « /PageSize [612 792] »

/Priority [1 0]

»

In other words, entry 0 is left undisturbed, entry 1 is replaced by the one given in
the request dictionary supplied to setpagedevice, and the new Priority entry is
inserted. Note that the contents of the subdictionary in entry 1 are not merged cu-
mulatively, but are simply replaced.

Note: If an entry in InputAttributes has a null value instead of a dictionary, it repre-

sents a media source that is unavailable for use—for example, no paper tray is in-

stalled. If a single execution of setpagedevice includes changes to InputAttributes as
well as requests for other features, the merging of the InputAttributes dictionary oc-
curs before the processing of other features.

Deferred Media Selection

Page Device Parameters I

On some output devices, printing is performed by an independent subsystem
that is not under the direct control of the PostScript interpreter. The actual print-
ing of pages may, in fact, take place long after the PostScript program describing
them has finished executing. For example, the result of executing a PostScript
page description may be to produce an electronic representation of the document
in some other format, such as Portable Document Format (PDF). In such cases,
the setpagedevice operator's usual media selection process may not be feasible,
because the needed information about the available media may not be available
at the time the operator is invoked.

The boolean page device parameter DeferredMediaSelection indicates that media
selection is to be performed by the output device itself, rather than by the
setpagedevice operator. When this parameter is true, setpagedevice merely
saves the contents of the PostScript program's input media request and passes
them to the device's printing subsystem along with the contents of the rendered
page image. The device assumes responsibility for all media selection decisions,
including any needed interactions with the human operator and any error pro-
cessing in the event that the media request cannot be satisfied.

When media selection is deferred, setpagedevice must nevertheless make certain
decisions immediately. The most important of these is establishing the proper
transformation matrix from default user space to device space. This precludes
deferring decisions such as the orientation of the media or application of the ad-
justments required by PageSize recovery policies 3 and 4 (see Section 6.2.7, "Un-
satisfied Parameter Requests").

Note: Usually, a given device will support either immediate or deferred media selec-
tion, but not both. However, some devices can support either model, depending on

the value of the DeferredMediaSelection parameter. Changing DeferredMedia-
Selection may cause certain other page device parameters to be reinitialized to de-
fault values instead of being inherited from their previous values. The details of this
behavior are device-dependent.

I CHAPTER 6
412

i
Device Control I

AdvanceMedia integer

6.2.2 Roll- Fed Media

Some types of medium, such as photographic filin, are fed into the printing
mechanism from a continuous roll, rather than as individual sheets. Typically, the
medium is cut after printing to produce a separate physical sheet for each page
image, though this may vary from one medium or device to another. Table 6.3
shows page device parameters pertaining to media of this type.

TABLE 6.3 Page device parameters related to roll-fed media

KEY TYPE VALUE

RollFedMedia boolean (LanguageLevel 3) A flag specifying whether the medium is roll-fed. The

value of this flag may affect the matching criteria used for the PageSize page

device parameter (see the description of PageSize in Table 6.4 on page 414).

Orientation integer A code specifying the orientation of the page image on the medium. (The

PageSize page device parameter may not determine this orientation unam-

biguously, since pages on a roll-fed medium have no inherent orientation.)

0 Use normal default orientation as specified by PageSize.

1 Rotate the image on the medium 90 degrees counterclockwise with

respect to the default orientation.

2 Rotate the image 180 degrees with respect to the default orientation.

3 Rotate the image 270 degrees counterclockwise (equivalent to 90 de-

grees clockwise) with respect to the default orientation.

A code indicating whether and when to advance the medium by an extra

amount (specified by AdvanceDistance) in addition to the space occupied by

the page images themselves:

0 Do not advance the medium.

1 Advance the medium at device deactivation.

2 Advance the medium at the end of the job. Advancing between jobs is

controlled by the value of AdvanceMedia for the page device that is

current between jobs. Thus, this feature can be turned on or off only
by executing setpagedevice as part of an unencapsulated job.

3 Advance the medium after each page set, as defined by the Collate

parameter (see Section 6.2.4, "Page Delivery").

4 Advance the medium after each showpage or copypage operation.

413
I 6.2

Adva nceDista nce integer

CutMedia integer

Page Device Parameters I

The extra distance, in units of the default user space (72nds of an inch), by

which to advance the medium as indicated by AdvanceMedia.

A code indicating when to cut the medium:

0 Do not cut the medium.

1 Cut the medium at device deactivation.

2 Cut the medium at the end of the job. Cutting between jobs is con-

trolled by the value of CutMedia for the page device that is current
between jobs. Thus, this feature can be turned on or off only by exe-

cuting setpagedevice as part of an unencapsulated job.

3 Cut the medium after each page set, as defined by the Collate param-

eter (see Section 6.2.4, "Page Delivery").

4 Cut the medium after each showpage or copypage operation.

6.2.3 Page Image Placement

The page device parameters shown in Table 6.4 control the placement of page im-
ages on the physical medium. This includes such things as:

• The size and location of the image's outer boundary

• The size of the margins, if any

• Whether and how far to shift right-hand and left-hand pages to allow extra

space for binding or stapling

• Whether to reflect the page image, either horizontally or vertically, for photo-

graphic reproduction

• Whether to generate photographic negatives

• Whether to print on one side (simplex) or both sides (duplex) of the medium

414
CHAPTER 6 Device Control I

TABLE 6.4 Page device parameters related to page image placement

KEY TYPE VALUE

HWResolution array An array of two numbers, Ex y], specifying the resolution of the physical de-

vice in pixels per inch along the horizontal and vertical dimensions of device
space. Most devices support only a single resolution or certain specific reso-
lutions, not arbitrary ones. The HWResolution entry in the output device dic-

tionary (see Section 6.4, "Output Device Dictionary") defines the allowable

values for this parameter on a given device; attempting to set it to an unsup-
ported value will cause a configuration error.

ImagingBBox array or null An optional bounding box defining an outer boundary for each page image.
If not null, the value is an array of four numbers in the default user coordi-
nate system giving the left, bottom, right, and top coordinates, respectively,
of the bounding box. By specifying a page bounding box, a PostScript pro-
gram asserts that it will not paint any marks outside the box. Marks that do
fall outside the bounding box may or may not be rendered on the output me-
dium. ImagingBBox does not necessarily produce the same effect as the clip
operator, and it should not be used in place of that operator for clipping page
content.

The page bounding box should lie entirely within the overall page boundaries
defined by the PageSize parameter (see Table 6.2 on page 400). A value of
null denotes the largest bounding box that is possible for the given value of
PageSize. (This may not encompass the entire sheet of physical medium,
however, since many devices are incapable of placing marks close to the edges
of the medium.) If a program specifies PageSize but not ImagingBBox, it

should explicitly set ImagingBBox to null to prevent it from inheriting an in-
appropriate value from the previous device state.

Applications should provide a page bounding box whenever possible, since it
can improve performance by freeing raster memory for other purposes. For
example, if an application knows that all pages will carry an unpainted bor-
der, it should indicate this by excluding the unpainted area from
ImagingBBox.

ImageShift array (LanguageLevel 3) An array of two numbers, Ex y], indicating the distance, in
default user space units, that each page image is to be shifted horizontally (x)
and vertically (y) with respect to the physical medium. For page images ap-
pearing on the front (recto) side of the medium, the horizontal shift is to the

right if x > 0 and to the left if x < 0; the vertical shift is upward if y > 0 and

downward if y < 0. For page images appearing on the back (verso) side, these
directions are reversed.

415
L6.2 Page Device Parameters I

PageOffset array (LanguageLevel 3) An array of two numbers, Ex y], that reposition the page
image on the physical medium by x units horizontally and y units vertically,
in the direction of increasing coordinate values in the device coordinate sys-
tem. x and y are expressed in units of the default user space (72nds of an
inch). This parameter is typically used on imagesetters to control the place-
ment of the page image on the medium. It differs from Margins (below) in
that the repositioning is typically accomplished by altering the current trans-
formation matrix, although on some devices it may instead be accomplished
by device-dependent means that are independent of the graphics state (in
particular, of the CTM).

Margins array An array of two numbers, Ex y], that reposition the page image on the physi-

cal medium by x units horizontally and y units vertically, in the direction of
increasing coordinate values in the device coordinate system. x and y are ex-
pressed in device-specific units, usually units of device space at one of the
supported resolutions. The purpose of this parameter is to compensate for
mechanical misalignments in the device, not to perform purposeful position-
ing of the page image itself. It differs from PageOffset (above) in that the re-
positioning is typically accomplished by device-dependent means that are

independent of the graphics state (in particular, of the current transforma-
tion matrix). The range and precision of the parameter values may be re-
stricted by the physical implementation.

MirrorPrint boolean A flag specifying whether the page image should be reflected along one of the

axes of device space. The reflection is typically accomplished by device-

dependent means that are independent of the graphics state (in particular, of
the current transformation matrix). This feature is supported only by certain
devices, such as imagesetters, that produce output intended for further pho-
tographic processing. For example, when output is produced on transparent
film, MirrorPrint controls whether the page image should be viewed with the
film emulsion face up or face down.

NegativePrint boolean A flag specifying, if true, that the page image should be produced in color-

inverted (negative) form. The inversion is typically accomplished by device-
dependent means that are independent of the graphics state (in particular, of

the transfer functions). The entire page is inverted, perhaps including por-
tions that lie outside the imageable area or that are generated independently
of the PostScript interpreter. This feature is supported only by certain de-
vices, such as imagesetters, that produce output intended for further photo-
graphic processing.

I CHAPTER 6
416

i
Device Control I

Duplex

Tumble

boolean A flag determining whether the output is to be printed duplex (on both sides
of the physical medium) or simplex (on one side of the medium only). If this
flag is true, pairs of consecutive page images will be printed on opposite sides
of a single sheet of medium; if false, each page will be printed on a separate
sheet.

On device activation, a duplex device always prints the first page on a new
sheet of medium; on deactivation, it automatically delivers the last sheet of
medium if it has been printed on only one side.

boolean A flag specifying the relative orientation of page images on opposite sides of a
sheet of medium in duplex output (that is, when Duplex is true). If Tumble is

false, the default user spaces of the two pages are oriented suitably for binding
at the left or right, with vertical (y) coordinates in the two spaces increasing
toward the same edge of the physical medium. If Tumble is true, the default

user spaces are oriented suitably for binding at the top or bottom, with verti-
cal coordinates increasing toward opposite edges of the medium. If Duplex is
false, the Tumble parameter has no effect.

Note that Tumble is defined in terms of default user space—the user space
established by setpagedevice. The orientation of default user space with re-
spect to the medium is determined by the PageSize and Orientation
parameters, possibly altered by the Install procedure. Consistent results are
obtained across all devices that support duplexing, regardless of how the me-
dium moves through the printing mechanism. However, if a page description
alters user space by invoking operators such as rotate, the visual orientation
of the material printed on the page may differ from the orientation of default
user space.

6.2.4 Page Delivery

Just as a device can draw its input medium from one or more media sources, it

can have one or more media destinations, such as output trays or collating bins, to

which to deliver the finished output. The selection of an output destination is

similar to that of an input source, as described above (see "Matching Requests

with Attributes" on page 403). In place of InputAttributes, destination selection

uses a device parameter named OutputAttributes to describe the media destina-

tions available on the device. This is a dictionary similar in structure to

InputAttributes, except that the subdictionaries describing individual media des-

tinations contain only the single attribute OutputType. A page description can

request a specific value for this attribute, which setpagedevice matches against

those of the available destinations to determine which destination to select.

417
I 6.2 Page Device Parameters I

OutputAttributes and OutputType are supported only for those devices that pro-

vide multiple output destinations. Table 6.5 summarizes these parameters, as well

as others pertaining to the disposition of output, such as the number of copies to

be printed and the direction in which printed pages are stacked in the output

tray.

TABLE 6.5 Page device parameters related to page delivery

KEY TYPE VALUE

OutputDevice name or string (LanguageLevel 3) The name of the output device for which this page de-

scription is destined. The name should match that of an instance of the

OutputDevice resource category (see Section 6.4, "Output Device Diction-
ary"). In environments in which the PostScript interpreter can generate

output for multiple page devices, this parameter can be used to select be-
tween devices of different types (such as a printer and an imagesetter) or
between similar devices (such as two or more imagesetters). In an inter-

preter that supports only a single page device, the OutputDevice parameter
is typically absent.

When a request dictionary passed to setpa g edev ice changes the value of
OutputDevice, all other page device parameters not explicitly specified in

the request dictionary are reinitialized to default values specific to the new
device, rather than simply inheriting their previous values in the usual way.

The set of valid page device parameters themselves may also change, since
different devices have different configurable features.

OutputType string or null An arbitrary string representing special attributes of the output destination,

analogous to the MediaType parameter for input (see Table 6.2 on
page 400). If not null, this parameter is used in conjunction with Output-
Attributes to select an appropriate output destination.

NumCopies integer or null The number of copies to produce, either of each page individually or of the

document as a whole, depending on the value of the Collate parameter (see
below). A null value indicates that the interpreter should consult the value
associated with the name #copies in the current dictionary stack each time
a page is printed (by showpage, copypage, or device deactivation); this is
compatible with the LanguageLevel 1 convention.

Collate boolean A flag specifying how the output is to be organized when multiple copies

are requested (via NumCopies or #copies) for a multiple-page document.
Output consists of page sets that are delivered together. If Collate is true, a
page set consists of one copy of all pages of the document; if it is false, a

page set consists of all copies of one page of the document.

I CHAPTER 6
418

Device Control I

If the Collate flag is true, the exact manner in which collation is performed
is device-dependent. If the device has a physical sorting mechanism and the

number of copies requested is no greater than the number of available
sorting bins, the device itself handles the collation by mechanical means.
Otherwise, the interpreter may need to reorder the output in order to deliv-
er all pages of a set together. This may potentially require executing all page
descriptions for the entire document and storing the results so that they can

be delivered repeatedly to the printing engine in the correct order. This
method of collation is supported by relatively few devices and is subject to
resource limits in those that do support it.

A collated page set can span multiple invocations of setpagedevice within a
single job, as long as the requested number of copies does not change and

the device is physically capable of delivering the output in collated form. If
this is not possible, the document is broken into sections determined by the
device's collating capacity; pages are collated only within each section.

Jog integer A code specifying when output pages should be "jogged" (physically shifted

in the output tray):

0 Do not jog pages at all.

1 Jog at device deactivation.

2 Jog at the end of the job. Jogging between jobs is controlled by the
value of Jog for the page device that is current between jobs. Thus,
this feature can be turned on or off only by executing setpage-
device as part of an unencapsulated job.

3 Jog after each page set (as defined by the Collate parameter).

OutputFaceUp boolean A flag specifying the order in which pages are stacked in the output tray. If

this flag is true, pages are stacked with the back side of each page placed

against the front of the previous page; the resulting stack is thus ordered
backwards from normal reading order. If the flag is false, the pages are
stacked with the front side of each page placed against the back of the previ-
ous page; this places the pages in correct reading order. These are the effects
usually produced by face-up and face-down stackers, respectively; however,
the name OutputFaceUp is a misnomer, since the parameter actually indi-
cates stacking order rather than orientation. Most devices support only one
or the other of these two stacking methods; relatively few can support both.
The value of OutputFaceUp typically indicates the single stacking direction
that the device supports.

6.2
419

Page Device Parameters I

OutputAttributes dictionary A dictionary specifying the attributes of all media destinations currently
available for use by this output device. The dictionary contains an entry for
each available destination—for example, each output paper tray on a print-
er. The key for each entry is an arbitrary integer position number; the value
is a subdictionary describing the attributes of that destination. Each such

subdictionary must include an OutputType entry, with the same meaning
as the corresponding page device parameter described in this table. Two
other optional entries, Priority and MatchAll, control details of the match-
ing algorithm in a way analogous to the corresponding entries in an
InputAttributes subdictionary; see "Matching Requests with Attributes" on
page 403 for more information. The cumulative merging convention and
the interaction with deferred media selection are also the same as for

InputAttributes.

One parameter in the table that is particularly worth noting is Collate. When
multiple copies of a document are requested (NumCopies > 1), pages are de-

livered to the output destination in page sets. The boolean value of the Collate
parameter determines the makeup of these sets and thus the order in which the

pages are delivered:

• When Collate is true, each page set consists of one complete copy of the entire

document—one copy of each page, arranged in their correct order. The num-
ber of page sets delivered is equal to the number of copies requested.

• When Collate is false, each page set consists of the requested number of copies
of a single page of the document. The number of page sets delivered is equal to
the number of pages in the document.

This notion of a page set is important because it affects the behavior of several
other page device parameters, such as Jog in Table 6.5 and AdvanceMedia and

CutMedia in Table 6.3.

6.2.5 Color Support

The page device parameters discussed in this section control various aspects of
color output on devices capable of producing it. These include:

• The basic model used for rendering process colors on the device, such as

CMYK (cyan-magenta-yellow-black)

420
l CHAPTER 6 Device Control I

• Whether the device produces multiple separations (one for each colorant) or
composite output (all colorants combined)

• The number and names of the available colorants

• The subset of colorants that are applied or the order in which separations are
generated

Table 6.6 shows the page device parameters related to color. See Section 4.8, "Col-
or Spaces," and Chapter 7, "Rendering," for more information on the subject of
color in general.

TABLE 6.6 Page device parameters related to color support

KEY TYPE VALUE

PageDeviceName string, name,
or null

(LanguageLevel 3) The name of the device configuration represented
by this page device dictionary The GetPageDeviceName procedure

in the ColorRendering procedure set returns this value, which is used

by the findcolorrendering operator to construct the name of a color
rendering dictionary for a requested rendering intent. See

Section 7.1.3, "Rendering Intents," and "Customizing CRD Selec-
tion" on page 472 for information on findcolorrendering and

GetPageDeviceName, respectively. See also the MediaClass page

device parameter in Table 6.2 on page 400, which can affect CRD se-
lection.

ProcessColorModel name or string (LanguageLevel 3) The model used for rendering process colors on

the device (see "Process Color Model" on page 422). This parameter

controls the rendering process only; it does not affect the interpreta-

tion of color values in any color space.

The ProcessColorModel entry in the output device dictionary (see

Section 6.4, "Output Device Dictionary") defines the allowable
values for this parameter on a given device; attempting to set it to an

unsupported value will cause a configuration error. Valid values are
DeviceGray, DeviceRGB, DeviceCMYK, DeviceCMY, DeviceRGBK, and

(in LanguageLevel 3) DeviceN.

Separations boolean A flag specifying whether the device should produce separations or

composite output. If this flag is true, multiple color separations will

be generated for each page of output; that is, a separate sheet of phys-

ical medium will be produced for each individual device colorant

(primary or spot color) specified by the SeparationOrder parameter.
If the flag is false, all colorants will be combined into a single com-

421 1 6.2
i Page Device Parameters I

posite page on a single sheet of physical medium. See "Separations
and Device Colorants" on page 424.

In LanguageLevel 2, the availability of this feature is device-
dependent; most devices cannot produce separations. In Language-
Level 3, every device is capable of producing at least one separation;
the maximum number of separations is given by the MaxSeparations
parameter.

MaxSeparations integer (Read-only; LanguageLevel 3) The maximum number of separations

that the device is capable of producing for each page. This limit is a

static property of the device, and is independent of the values of page
device parameters that control the production of colorants and sepa-
rations, such as Separations and SeparationColorNames. However,
its value can depend on other parameters affecting memory needs,
such as PageSize and HWResolution. Valid range: 1 to 250.

SeparationColorNames array (LanguageLevel 3) An array specifying the names of all colorants

that are valid values for Separation or (in LanguageLevel 3) DeviceN

color spaces. Colorants implied by the process color model (see "Pro-
cess Color Model" on page 422) are available automatically and need

not be explicitly declared. The DeviceN process color model
(LanguageLevel 3) has no such implicit colorant names; all device
colorants in that model must be declared explicitly in
SeparationColorNames. The DeviceN entry in the output device dic-

tionary (see Section 6.4, "Output Device Dictionary") defines the al-
lowable sets of process colorants for the DeviceN process color
model.

Array elements may be either name or string objects, which are treat-

ed equivalently. The order of elements is not significant, and dupli-
cate elements are ignored.

SeparationOrder array (LanguageLevel 3) An array specifying the colorants to be applied

when generating output on the device. Array elements may be either
name or string objects, which are treated equivalently. Legal element

values are the process colorant names implied by the process color

model (see "Process Color Model" on page 422), as well as any addi-
tional colorant names declared by the SeparationColorNames param-

eter. The presence of any other names will result in a configuration
error.

If physical separations are being produced (the Separations

parameter is true), a separation will be generated for each colorant
named in the SeparationOrder array, in the order specified. Although

all colorants implied by the process color model or explicitly named

422
I CHAPTER 6

UseCIEColor

Trapping

TrappingDetails

Device Control I

in SeparationColorNames are defined and can be specified via

Separation or DeviceN color spaces without recourse to their
altemativeSpace and tintTransform parameters, only those colorants

named in SeparationOrder will generate physical separations. Multi-

ple occurrences of the same colorant name in the SeparationOrder

array will produce multiple separations for the same colorant.

If composite output is being produced (Separations is false),

SeparationOrder merely specifies which colorants are to be applied to

the medium. The order of application is unspecified; the order in
which the colorants are named in the SeparationOrder array is ig-
nored.

An empty SeparationOrder array specifies that all colorants implied
by the process color model or named explicitly in SeparationColor-

Na mes are to be applied in an unspecified order.

boolean (LanguageLevel 3) A flag that enables or disables the remapping of

colors from device color spaces to device-independent CIE-based
color spaces (see "%mapping Device Colors to CIE" on page 237).

boolean (LanguageLevel 3) A flag that enables or disables in-RIP trapping (see
Section 6.3, "In-RIP Trapping"). Trapping is enabled if the flag is true

and the device supports multiple colorants, whether in the form of

physical separations or composite output. If the flag is false or the de-
vice supports only one colorant, trapping is disabled.

dictionary (LanguageLevel 3) A dictionary containing parameters that control

the operation of in-RIP trapping on this device. See Table 6.10 on
page 442 for the contents of this dictionary.

Process Color Model

The page device parameter ProcessColorModel specifies the process color model
used for rendering colors on an output device. Process colors are ones that are pro-

duced by combinations of one or more standard process colorants. Colors speci-
fied in any color space except Separation or DeviceN are rendered as process
colors. The process color model defines the set of standard process colorants

available on the device, as well as the native color space into which program-
specified colors are converted, if necessary (see Section 7.2, "Conversions among
Device Color Spaces").

I 6.2
423

Page Device Parameters I

The value of ProcessColorModel can be either a name object or an equivalent

string. Valid values are as follows:

• DeviceCMYK specifies Cyan, Magenta, Yellow, and Black as process colorants,
with DeviceCMYK as the native color space.

• DeviceCMY specifies Cyan, Magenta, and Yellow as process colorants, with
DeviceRGB as the native color space. Additive (RGB) color values will be ren-
dered into equivalent combinations of the complementary subtractive (CMY)
process colorants.

• DeviceRGB specifies Red, Green, and Blue as process colorants, with
DeviceRGB as the native color space.

• DeviceRGBK specifies Red, Green, Blue, and Gray as process colorants, with

DeviceRGB as the native color space. RGB color values representing pure shades

of gray (that is, with all three color components equal) will be rendered into
equivalent levels of the gray colorant.

• DeviceGray specifies Gray as the only process colorant, with DeviceGray as the
native color space.

• DeviceN (LanguageLevel 3) specifies DeviceN as the native color space. No stan-
dard process colorants are defined; all colorants must be explicitly declared via
the SeparationColorNames page device parameter (see "Separations and De-

vice Colorants," below). This model is used for devices whose available process
colorants do not correspond to one of the standard device color spaces.

The standard colorant names implied by the process color model are automati-

cally assumed to be available on the output device. These names can be used to
produce separations or isolate the control of individual color components in a
Separation color space (see "Separation Color Spaces" on page 241) or to select
halftones in a type 5 halftone dictionary (see "Type 5 Halftone Dictionaries" on
page 498). Additional colorant names can be specified with the Separation-

ColorNames and SeparationOrder page device parameters, as described in "Sepa-
rations and Device Colorants;' below.

Note that the process color model applies only to color rendering, not to color
specification. A PostScript program can use any convenient color space to specify
colors in a page description; in particular, colors can be specified in a DeviceN

color space in LanguageLevel 3 implementations, even on devices that do not

support the DeviceN process color model.

I CHAPTER 6
424
I

Device Control

Note: Because conversions from standard device color spaces to a DeviceN color mod-
el are device-specific, different devices that support such a model may produce differ-
ent results, even for the same colorants: the output will appear similar, but the
separations or composite colorants used to produce it may differ. If the DeviceN pro-
cess color model is requested for a device that does not support it, a configuration
error will occur. If the recovery policy for dealing with an unsatisfied

ProcessColorModel request is to ignore the request, the previous value will remain in
effect. This may cause the printing results to differ significantly from expectations (if;
for example, the device is a monochrome printer with a native process color model of
DeviceGray). For this reason, explicitly requesting a DeviceN process color model in a
page description is not recommended; DeviceN is useful primarily as a device's de-
fault color model.

Separations and Device Colorants

The boolean page device parameter Separations specifies whether an output de-
vice produces separations or composite output:

• If Separations is true, each single page of a document will generate multiple
pieces of physical output medium, or separations—one for each individual de-
vice colorant to be applied during the final printing run. These separations can
then be used to create a separate printing plate for each colorant. Because out-
put is generated for only one colorant at a time, the ProcessColorModel param-
eter may be set to models other than the one normally used to render process
colors on the device. For example, a monochrome device can use the
DeviceCMYK color model to produce separations for Cyan, Magenta, Yellow,

and Black colorants (or some subset of these colorants, subject to the
MaxSeparations limit discussed below).

• If Separations is false, the device will combine all colorants to form a single
sheet of composite output for each page. Any value of ProcessColorModel other
than the one native to the device will result in a configuration error.

As noted in the section "Process Color Model" above, the standard process colo-
rants implied by a device's process color model (such as Cyan, Magenta, Yellow,
and Black in the DeviceCMYK model) are always available for use in Separation or
DeviceN color spaces, as well as for selecting halftones in a type 5 halftone dic-
tionary. The page device parameter SeparationColorNames declares the names of
additional spot colorants to be used for these purposes. (All colorants used in the
DeviceN process color model must be declared in SeparationColorNames, since

425
6.2 Page Device Parameters I

that model has no implicit colorant names of its own.) Any colorant name used
in a Separation or DeviceN color space that is not either implied by the process
color model or explicitly declared in SeparationColorNames will be emulated
using the color space's tintTransform and altemativeSpace parameters (see "Sepa-
ration Color Spaces" on page 241) and rendered into the process color model of
the output device.

Some devices support the additional colorants needed to produce high-fidelity
color, as described in "DeviceN Color Spaces" on page 245. For example, con-
sider a six-color device using the PANTONE® Hexachrome" system, whose colo-
rants are cyan, magenta, yellow, black, orange, and green. This can be modeled in
either of two ways:

• Set ProcessColorModel to DeviceCMYK and name orange and green as spot col-
orants in the SeparationColorNames array. Any colors specified in one of the

other device color spaces (DeviceRGB or DeviceGray) or in a CIE-based color
space will be transformed into DeviceCMYK using the normal color conversion
rules (see Section 7.2, "Conversions among Device Color Spaces"). The orange
and green colorants are not considered process colorants in this case; they will
be used only if they are named explicitly in a Separation or DeviceN color
space.

• Set ProcessColorModel to DeviceN and name all six colorants explicitly in
SeparationColorNames. Colors specified in any device or CIE-based color

space will be converted to the six DeviceN colorants in a device-specific man-
ner.

Because these two models differ in their definition of the process colorants,
source colors that are rendered using process colorants will produce different re-
sults in the two models. On the other hand, source colors specified in a DeviceN
color space will produce the same results in both models, so long as they use only
colorants named in the SeparationColorNames array.

The page device parameter SeparationOrder is an array of colorant names speci-

fying which colorants should be applied in the final output and in what order.
This parameter can be used to limit the set of separations generated or colorants
applied to a subset of those available (either implied by ProcessColorModel or de-

clared in SeparationColorNames). The MaxSeparations parameter specifies the
maximum number of separations that a device is capable of producing for each
page. When Separations is true, the number of uniquely named colorants in the

426
Device Control I I CHAPTER 6

SeparationOrder array must not exceed the value of MaxSeparations, or a config-

uration error will occur.

Note: An error will be raised if the set of colorants named in SeparationColorNames
is inconsistent with the capabilities of the device. The net effect of such an error may
be to emulate any named colorants using the available process colorants, via the
tintTransform and altemativeSpace parameters of the current color space. If the de-
vice cannot resolve a set of requested colorants in the DeviceN process color model, it
may revert to a previous state or (for some devices) to some new state in which it can
convert all color spaces. All color spaces will always be printed, but the colorants ac-

tually used may differ from those requested.

6.2.6 Device Initialization and Page Setup

The page device parameters shown in Table 6.7 are PostScript procedures that are
called by the interpreter at certain critical times: at the beginning and end of each
page of a document and whenever the identity of the current page device
changes. PostScript programs can use these parameters to perform needed tasks
such as initializing the graphics state or painting recurrent elements that appear
on every page.

TABLE 6.7 Page device parameters related to device initialization and page setup

KEY TYPE VALUE

Install procedure A procedure to install parameter values in the graphics state during each in-

vocation of setpagedevice. setpagedevice calls this procedure after setting
up the device and installing it as the current device in the graphics state, but
before invoking erasepage and initgraphics.

The Install procedure should not do anything besides alter parameters in the
graphics state. In general, it can usefully alter only device-dependent parame-

ters, because the succeeding initgraphics operation resets all device-
independent parameters to their standard values. The only exception is the
current transformation matrix; see the discussion following this table.

In a device that supports in-RIP trapping (see Section 6.3, "In-RIP Trap-

ping"), the Install procedure can invoke settrapzone to establish default

trapping zones to be reestablished at the beginning of each page.

427
6.2 Page Device Parameters I

BeginPage procedure A procedure to be executed at the beginning of each page. Before calling the
procedure, the interpreter initializes the graphics state, erases the current
page if appropriate, and pushes an integer on the operand stack indicating

how many times showpage has been invoked since the current device was ac-
tivated.

EndPage procedure A procedure to be executed at the end of each page. Before calling the proce-
dure, the interpreter pushes two integers on the operand stack—a count of
previous showpage executions for this device and a reason code indicating
the circumstances under which this call is being made:

0 During showpage or (LanguageLevel 3) copypage

1 During copypage (LanguageLevel 2 on/y)
2 At device deactivation

The procedure must return a boolean value specifying whether to transmit
the page image to the physical output device.

Each time the setpagedev ice operator is invoked, it calls the currently defined
Install procedure. This gives the PostScript program an opportunity to initialize
device-dependent graphics state parameters such as the halftone screen, color

rendering dictionary, and flatness tolerance (see Table 4.2 on page 180). In gener-
al, the Install procedure cannot usefully alter device-independent graphics state
parameters such as the current path or color (Table 4.1 on page 179), since these
are reinitialized with the initgraphics operator after the procedure is executed. An
exception is the current transformation matrix; any new CTM set by the Install
procedure becomes the default matrix for the device and will be used by
in itg ra p h i cs in reinitializing the graphics state.

The PostScript interpreter calls the current device's BeginPage and EndPage pro-
cedures, respectively, before beginning and after completing the execution of each
page description. With suitable definitions, these procedures can:

• Cause multiple virtual pages within a document to be printed on a single phys-
ical page ("2-up" or "n-up" printing)

• Shift the positions of even- and odd-page images differently for binding

• Add marks to each page that either underlie or overprint the material provided
by the page description

Note: The use of BeginPage and EndPage to achieve effects spanning multiple pages
sacrifices any page independence the document may have. In general, a page descrip-

428
I CHAPTER 6 Device Control

tion should not include definitions of BeginPage or EndPage in its invocations of
setpagedevice. Instead, a software print manager should prepend such commands to
the page description when printing is requested.

Note: The following descriptions refer to the showpage and copypage operators.
The distinction between those operators exists only in LanguageLevel 2; in

LanguageLevel 3, the effects of copypage on the device are the same as those of
showpage.

The BeginPage procedure is called at the beginning of each page:

• setpagedevice normally calls Begin Page as its last action before returning (ex-
cept for a possible call to the PolicyReport procedure, if needed; see
Section 6.2.7, "Unsatisfied Parameter Requests"). This indicates the beginning
of the first page to be rendered on the device.

• showpage and copypage call BeginPage as their last action before returning.
This indicates the beginning of the next page, following the one that showpage
or copypage has just ended.

• Operators that reactivate an existing page device call BeginPage as their last ac-
tion before returning.

When BeginPage is called, the graphics state has been initialized and the current
page erased, if appropriate, in preparation for beginning the execution of the
PostScript commands describing a page. The operand stack contains an integer
stating the number of executions of showpage (but not copypage) that have oc-
curred since the current device was activated; that is, the operand is 0 at the first
call to BeginPage, 1 at the call that occurs during the first execution of
showpage, and so on. The BeginPage procedure is expected to consume this op-
erand. The procedure is permitted to alter the graphics state and to paint marks
on the current page.

The EndPage procedure is called at the end of each page:

• showpage and copypage call EndPage as their first action. This indicates the

end of the preceding page.

• Operators that deactivate the page device call EndPage as their first action.

When EndPage is called, the PostScript commands describing the preceding page
have been completely executed, but the contents of raster memory have not yet

I 6.2
429

Page Device Parameters I

been transferred to the medium and the graphics state is undisturbed. The oper-
and stack contains two integers:

• The number of executions of showpage (but not copypage) that have oc-
curred since the device was activated, not including this one. That is, the oper-
and is 0 at the call to EndPage during the first execution of showpage, 1 during
the second execution of showpage, and so on.

• A reason code indicating the circumstances under which EndPage is being
called: 0 during showpage, 1 during copypage, 2 during device deactivation.

The EndPage procedure is expected to consume these operands. The procedure is
permitted to alter the graphics state and to paint marks on the current page; such
marks are added to the page just completed.

EndPage must return a boolean result specifying the disposition of the current
page:

• The value true means transfer the contents of raster memory to the medium.
Then, if showpage is being executed, execute the equivalent of initgraphics and
erasepage in preparation for the next page. (The latter actions are not per-
formed during copypage.)

• The value false means do not transfer the contents of raster memory to the
medium or erase the current page. (If showpage is being executed, initgraphics
is still performed; if the device is being deactivated, the page is still erased.)

The normal definition of EndPage returns true during showpage or copypage
(reason code 0 or 1) but false during device deactivation (reason code 2). That is,
normally every showpage or copypage operation causes a physical page to be
produced, but an incomplete last page (not ended by showpage or copypage)
produces no output. Other behavior can be obtained by defining EndPage fe -
ently.

When setpagedevice is executed or when restore, g restore, grestoreall or
setgstate causes a page device to be deactivated and a different page device to be
activated, the interpreter takes the following actions:

1. Calls the EndPage procedure of the device being deactivated, passing it a rea-

son code of 2. At the time this call is made, the current device in the graphics

I CHAPTER 6
430

I
Device Control I

state is still the old device. This enables any necessary cleanup actions to be
performed, such as printing an incomplete "n-up" page.

2. Performs any actions needed on device deactivation, such as those indicated
by the Jog, Adva n ceMedia , and CutMedia page device parameters.

3. If the Duplex page device parameter is true and the last sheet has been printed
on only one side, delivers this final sheet.

4. Calls the BeginPage procedure of the device being activated. At the time this
call is made, the current device in the graphics state is the new one. Its count of
previous showpage executions is reset to O.

With the exception of step 4 (which setpagedevice always performs), these
actions occur only when switching from one page device to another. They do not
occur when the current device remains unchanged or when switching to or from
devices of other kinds, such as the cache device or the null device set up by the
setcachedevice or nulldevice operator. Usually, the latter devices are installed
only temporarily; for example, setcachedevice and the operations for rendering a
character into the font cache are bracketed by gsave and grestore, thereby rein-
stating the page device that was previously in effect. The page device's BeginPage
and EndPage procedures are not called in such cases and the current page is not
erased or otherwise disturbed.

A few examples will illustrate this distinction. Example 6.1 switches between two
page devices. All of the activations and deactivations cause the devices'
BeginPage and EndPage procedures to be called, as described above.

Example 6.1

dict1 setpagedevice

gsave

dict2 setpagedevice

grestore

% BeginPage for device 1

% EndPage for device 1, BeginPage for device 2

% EndPage for device 2, BeginPage for device 1

In Example 6.2, on the other hand, temporary activation of the null device does
not cause the page device's End Page procedure to be called, nor does reactivation
of the page device cause its Begin Page procedure to be called. In fact, the state of
the page device is not disturbed in any way, since the null device is not a page de-

vice.

431
I 6.2

Example 6.2

dict3 setpagedevice

gsave

nulldevice

grestore

Page Device Parameters I

% BeginPage for device 3

It is possible to switch devices in an order that prevents a page device's EndPage
procedure from ever being called. Example 6.3 switches from a page device to a
null device without saving a graphics state that refers to the page device. Thus,
there is no possibility of reactivating the page device in order to call its EndPage

procedure. This sequence of operations is not recommended.

Example 6.3 (not recommended)

gsave

dict4 setpagedevice

nulldevice

grestore

% BeginPage for device 4

Example 6.4 shows the skeleton structure of a simple two-page document. For
clarity, it includes some of the recommended document structuring conventions,

(described in Adobe Technical Note #500I, PostScript Language Document Struc-

turing Conventions Specification). The comments to the right indicate the points

at which the interpreter calls BeginPage and EndPage and the arguments it pass-
es to each.

Example 6.4

%!PS-Adobe-3.0

... Document prolog ...

%%13eginSetup

%%BeginFeature:*Duplex DuplexNoTumble

«¡Duplex true

/Tumble false

» setpagedevice % O BeginPage

%%EndFeature

%%BeginFeature:*PageSize Letter

« /PageSize [612 792]

/ImagingBBox null

» setpagedevice

%%EndFeature

,Yo%EndSetup

0/00 2 EndPage O BeginPage

432
I CHAPTER 6 Device Control I

%%Page: 1 1

save

... PostScript language description for page 1 ...

restore

showpage % 00 EndPage 1 BeginPage

0/00/0Page: 2 2

save

... PostScript language description for page 2 ...

restore

showpage % 1 0 EndPage 2 BeginPage

% % E 0 F

... Job server executes restore, which deactivates the page device ...

% 22 EndPage

6.2.7 Unsatisfied Parameter Requests

The setpagedevice operator is not always able to satisfy a page description's re-
quests for particular settings of the page device parameters. It may be unable to
do so for either of two reasons:

• The device does not support the requested parameter at all; the PostScript in-
terpreter has no idea what it means. For example, if the page description
attempts to set a value for the Duplex parameter but that parameter is not de-
fined in the page device dictionary, setpagedevice treats it as a request for an

unknown feature—even if the requested value is false.

• The device supports the requested parameter but cannot achieve the requested
value at the moment—for example, an A4-size page is requested when the A4
paper tray is not currently installed.

The interpreter can respond to such an unsatisfied parameter request in a variety

of ways, such as by ignoring it, raising a PostScript error, or displaying a message
on the front panel of the device requesting intervention by the human operator.
The Policies page device parameter (Table 6.8) is a dictionary specifying which of

these actions to take, depending on the particular page device parameter involved
in the request.

433
I 6. 2 Page Device Parameters I

TABLE 6.8 Page device parameter related to recovery policies

KEY TYPE VALUE

Policies dictionary A dictionary specifying recovery policies for responding to unsatisfied

parameter requests. Entries in this dictionary are keyed by the names of indi-
vidual page device parameters; the corresponding value for each parameter is

an integer code specifying what action to take when a requested setting for
that parameter cannot be satisfied. The entry for any given parameter is op-
tional; the dictionary also includes an overall default policy for parameters
for which no specific recovery policy is defined.

Changes to the contents of the Policies dictionary are cumulative; new entries
are merged with those already present.

For most entries in the Policies dictionary, the key is the name of a page device

parameter; the corresponding value is an integer code specifying the recovery pol-

icy for handling unsatisfied requests for that parameter. For most parameters,

there are three policy choices: generate an error (configurationerror), ignore the

request, or interact with a human operator or a software print manager. For

PageSize requests, there are additional policy choices. Table 6.9 describes the en-

t ries that can appear in the Policies dictionary.

TABLE 6.9 Entries in the Policies dictionary

KEY TYPE VALUE

PolicyNotFound integer A code specifying the recovery policy to use when a requested setting for a
page device parameter cannot be satisfied and no specific entry for that pa-
rameter is present in the Policies dictionary:

O Generate a PostScript configurationerror—that is, do not attempt re-
covery, but simply abandon the execution of setpagedevice, leaving
the current values of all page device parameters undisturbed. Before
generating the error, setpagedevice inserts an errorinfo entry into

the Serror dictionary. Error handling in general and errorinfo in par-
ticular are discussed in Section 3.11, "Errors."

1 Ignore the request and do not consider this parameter in media selec-
tion. This is the usual default policy in most products. Subsequent
calls to currentpagedevice will return a dictionary in which the entry
for this parameter is modified as follows:

434
I CHAPTER 6 i Device Control

• Replaced by null if it is a media selection request

• Unchanged from its former value if the parameter (other than a
media selection request) is known to the device

• Absent if the parameter is unknown to the device

2 Interact with a human operator or print management software to de-

termine what to do. The precise effects of this policy vary among dif-
ferent output devices and environments. Some devices may issue a

message (on a front panel, for instance) indicating an operator action
that is required, then wait for confirmation. Other devices have no

ability to interact with an operator and may generate a
configurationerror in this case.

PageSize integer A code specifying the recovery policy to use when a requested value for the
PageSize parameter cannot be matched (within a tolerance of ±5 units) by
any available medium:

0 Generate a configurationerror, as described above for PolicyNot-
Found. This is the usual default policy on most devices.

1 Do not consider the PageSize parameter in media selection. Subse-
quent calls to currentpagedevice will return a dictionary whose
PageSize entry describes the medium that was actually selected.

2 Interact with a human operator or print management software, as

described above for PolicyNotFound.

3 Select the nearest available medium and adjust the page to fit, as de-
scribed below under "Recovery Policies and Media Selection:'

4 Select the next larger available medium and adjust the page to fit.

5 Select the nearest available medium but do not adjust the page.

6 Select the next larger available medium but do not adjust the page.

7 (LanguageLevel 3) If the requested page size is within ±5 units of any

page size supported by the device, disable media selection altogether
and impose the requested page size on the previously selected medi-

um without adjustment; otherwise, generate a configurationerror. In
the former case, the page device is set up as if the selected medium
were of the requested size, ignoring the actual size of the medium.

Positioning of the page image on the medium is device-dependent
and unpredictable.

This policy exists solely for use in the emulations of certain
LanguageLevel 1 compatibility operators that perform media selec-

tion and page device setup separately. Unlike all other policies (which

I 6.2
435

Page Device Parameters I

take effect only if a request cannot be satisfied), this policy takes ef-
fect during every execution of the setpagedevice operator. Because
its behavior violates the PostScript page device model, documents

that use this policy are not portable; for this reason, it should never
be used directly in a page description.

Note that if DeferredMediaSelection is true, policies 3 and 4 may result in a
configurationerror, since the needed adjustments to the current transforma-

tion matrix cannot be deferred; the effect of policy 7 under these circum-
stances is device-dependent.

any feature name integer A code specifying the recovery policy to use when a requested setting for the
designated parameter cannot be satisfied. Keys of this type are not limited to
page device parameters recognized by the device, but may include any key

that can appear in a request dictionary supplied to setpagedevice. The
Policies dictionary is consulted in the same way for an unknown feature as
for a known feature whose requested value cannot be achieved. Except for
PageSize (which has its own special set of policy codes, as described above),
the possible values associated with any such key are the same as those de-
scribed above for PolicyNotFound.

PolicyReport procedure A procedure to be called on successful completion of setpagedevice if it en-

countered one or more unsatisfied parameter requests requiring consultation

of the Policies dictionary. Before calling this procedure, the interpreter push-
es a dictionary on the stack identifying the parameters for which unsatisfied

requests were encountered and the corresponding recovery actions specified
in the dictionary; see "PolicyReport Procedure" on page 438 for details. The

procedure can report the actions that were taken or perform alternative ac-
tions. Default value: pop).

Note: In addition to generating a configurationerror, the setpagedevice operator

can also generate a typecheck, rangecheck, undefined, limitcheck, or invalidaccess

error; see the descriptions of these errors in Chapter 8 for further information.

Because the Policies dictionary is itself a page device parameter, it can be altered

with setpagedevice like any other such parameter. Ordinarily, a page description

composed by an application program should not do this; recovery policies should

be changed only by a human operator or by system management software in con-

trol of the physical device. However, if a user requests special policies when sub-

mitting a print job, it is appropriate for the print management software to insert a

setpagedevice command to change the contents of the Policies dictionary at the

beginning of the page description. For example, the user might consider it essen-

436
I CHAPTER 6 Device Control I

tial that a particular job use certain features; if they are not available, the job

should be rejected with a configurationerror instead of being executed with the
requests for those features ignored.

Changes to the contents of the Policies dictionary are cumulative. The
setpagedevice operator merges the entries in the request dictionary supplied to

it with those in the existing page device dictionary, replacing or adding page de-
vice entries as appropriate. If a single invocation of setpagedevice includes
changes to Policies as well as requests for other parameters, the merging of

Policies entries occurs before the processing of the other parameters. Thus, the
revised Policies dictionary governs the recovery policy if one of the other parame-

ter requests cannot be satisfied. For example, the code

« /Duplex true
/Policies « /Duplex 0 »

» setpagedevice

requests duplex printing and generates a configuration error if the device does not

support this feature.

Recovery Policies and Media Selection

If a media request fails to match any of the available media sources or destina-
tions described in InputAttributes or OutputAttributes, setpagedevice consults
the Policies dictionary in an attempt to make an alternative media selection. For
each relevant page device parameter (PageSize, MediaColor, MediaWeight,
MediaType, MediaClass, and I nsertSheet for a source; OutputType for a destina-
tion), if the recovery policy specified in Policies is 1 (ignore), setpagedevice re-
places the media request with null. It then repeats the matching algorithm

(steps 2 through 4 on page 404).

Note: If a media source or destination has a MatchAll attribute of true, its attributes
will not be matched by media requests that have been ignored.

If setpagedevice can satisfy a nonmatching request in multiple ways, it employs
an unspecified algorithm to decide which way is best. In general, for media
matching, the strategy is to try to minimize the number of parameter requests
that must be ignored in order to achieve a match. PageSize is typically considered
to be more important than the others, and Priority (if present) is used to break

ties.

I 6.2
437

I
Page Device Parameters 1

If this second attempt at media selection succeeds, the resulting page device dic-
tionary will contain null values for all parameters other than PageSize that were
ignored. If PageSize was ignored, the dictionary will contain the PageSize at-
tribute of the media source that was actually selected.

If the second attempt at media selection fails, the next action depends on whether
any of the nonmatching parameters have a recovery policy of 2 (interact with a
human operator or print management software). If so, setpagedevice performs
such interaction, which may cause new media to be installed and InputAttributes
or OutputAttributes to be updated. It then restarts the media selection process
from the beginning. If no recovery policy specifies user interaction or if user
interaction is not possible, setpagedevice terminates unsuccessfully and gener-
ates a configurationerror.

For PageSize, there are additional policy choices that permit compromises to be
made in matching the requested page size to the available media. These include
all four combinations of the following pair of choices:

• Select an alternative medium that is either nearest in size or the next larger size
to the one requested.

• Either adjust the page (by scaling and centering) to fit the alternative medium
or perform no adjustment.

The nearest size is the one closest in area to the requested size. The next larger size

is the one smallest in area that is at least as large as the requested size in both
width and height. If the specified policy is to select the next larger size but no
larger size is available, the nearest size is used.

Once an alternative medium has been selected, the adjustment option determines
how the page image is to be placed on the medium—in other words, how the
transformation matrix defining the device's default user space is to be computed.
To adjust the page means to scale the page image (if necessary) to fit the medium,

then center the image on the medium. More precisely, adjustment consists of the
following two steps:

1. If the selected medium is smaller than the requested page size in either dimen-
sion, scale the page image to fit the medium in the more restrictive dimension.
Use the same scale factor in both dimensions, so as to preserve the page's as-

438
CHAPTER 6 i Device Control I

pect ratio (height to width). Perform no scaling if the selected medium is at
least as large as the requested page size in both dimensions.

2. Center the page image on the medium along both dimensions.

The effect is to set up a "virtual page" conforming to the requested page size
(scaled down if necessary) and centered on the physical medium. The origin of
user space is the lower-left corner of the virtual page, not that of the physical me-
dium. The value of PageSize in the resulting page device dictionary is the
PageSize value that was requested, not that of the physical medium.

In the case where the page is not adjusted, the default user space is not scaled and
is aligned with its origin at the lower-left corner of the medium. The effect is pre-
cisely as if the medium's actual PageSize value had been requested in the first
place. If the actual page size is smaller than the requested one along either dimen-
sion, the page image will be clipped.

The limited set of built-in policies for handing unsatisfied parameter requests can
be augmented by judicious use of the PolicyReport procedure in the Policies dic-
tionary (see the next section). Additional adjustments to the current transforma-

tion matrix can be implemented as part of the device's Install procedure (see
Section 6.2.6, "Device Initialization and Page Setup").

Pol icyReport Procedure

The Policies dictionary contains an entry named PolicyReport, whose value is a
procedure. setpagedevice calls this procedure on successful completion if it en-

countered one or more unsatisfied parameter requests for which it needed to
consult Policies during its execution. (setpagedevice does not call PolicyReport if
it was able to satisfy all requests without consulting Policies or if it terminated
unsuccessfully with a configurationerror.)

Before calling the PolicyReport procedure, setpagedevice constructs a dictionary

and pushes it on the operand stack. The dictionary contains one entry for each
parameter request that was initially unsatisfied—that is, each parameter in the
original request that was ignored or whose value was adjusted. Each entry's key is

the name of the requested parameter; the value is the integer policy code ob-
tained from the Policies dictionary. The PolicyReport procedure is expected to

consume this dictionary from the stack.

l 6.3
439

I
In-RIP Trapping 1

For example, suppose the request dictionary supplied to setpagedevice includes
a request for duplex printing that cannot be met and a page size that does not
match any available medium. Suppose further that the Policies dictionary speci-
fies policy codes of 1 (ignore the request) for the Duplex parameter and 5 (select
the nearest available medium and do not adjust) for PageSize. Then, on success-
ful completion, setpagedevice will call the PolicyReport procedure with the fol-
lowing dictionary on the operand stack:

« /Duplex 1

/PageSize 5

>>

There are two main uses for a PolicyReport procedure:

• It can transmit a notification to the human operator or print management soft-

ware, warning that one or more parameter requests were unsatisfied and that
substitute actions have been taken.

• It can inspect the resulting page device dictionary and perhaps make additional
alterations. This provides additional flexibility when the standard set of policy
choices is inadequate.

At the time setpagedevice calls the PolicyReport procedure, it has completed set-
ting up the new page device and installing it as the current device in the graphics
state. It has also called the device's BeginPage procedure (see Section 6.2.6, "De-
vice Initialization and Page Setup"). Thus, invoking currentpagedevice within
the PolicyReport procedure will return the page device dictionary for the newly
installed device. It is permissible for the PolicyReport procedure to invoke
setpagedevice recursively.

6.3 In-RIP Trapping

On devices such as offset printing presses, which mark multiple colorants on a
single sheet of physical medium, mechanical limitations of the device can cause
imprecise alignment, or misregistration, between colorants. This can produce un-
wanted visual artifacts such as brightly colored gaps or bands around the edges of
printed objects. In high-quality reproduction of color documents, such artifacts
are commonly avoided by creating an overlap, called a trap, between areas of ad-
jacent color.

I CHAPTER 6
440

Device Control

Intended result

Figure 6.1 shows an example of trapping. The light and medium grays represent
two different colorants, which are used to paint the background and the glyph
denoting the letter A. The first figure shows the intended result, with the two col-
orants properly registered. The second figure shows what happens when the colo-

rants are misregistered. In the third figure, traps have been overprinted along the
boundaries, obscuring the artifacts caused by the misregistration. (For emphasis,
the traps are shown here in dark gray; in actual practice, their color would be

similar to one of the adjoining colors.)

1

Misregistration
with no trap

Misregistration
with trap

FIGURE 6.1 Trapping example

Although trapping can be implemented by the application generating the Post-
Script page description, such application-level trapping suffers from several disad-

vantages:

• The final set of colorants to be used is not known to the application.

• There may be mismatches with the resources (including fonts) available on the
final output device.

• The trapping computations are inherently device-dependent.

In LanguageLevel 3, the optional in-RIP trapping feature allows trapping to take
place in the raster image processor (RIP) of the output device itself, rather than in
the application. This has the advantage of applying consistent trapping tech-
niques to the entire page as late in the output process as possible, when the exact
colorants and resources available on the device are known.

6.3 441
In-RIP Trapping

Only certain devices support the in-RIP trapping feature, primarily those used in

the production of plates for printing presses. On devices that do support it, it is
controlled by the following features:

• The Trapping page device parameter (see Table 6.6 on page 420) enables or dis-
ables trapping as a whole.

• The TrappingDetails page device parameter consists of a trapping details dic-

tionary (described in the next section) containing additional device-level
parameters related to the operation of the trapping facility.

• Independent of the page device dictionary, there is a Trapping procedure set

containing settrapzone and settrapparams operators, which specify trapping
zones and their associated trapping parameters to control how trapping is per-
formed in various regions of a page (see Sections 6.3.2, "Trapping Zones,"
and 6.3.3, "Trapping Parameters").

• Instances of the predefined resource category In kParams are colorant details

dictionaries (see Table 6.11 on page 443); instances of the TrapParams resource
category are trapping parameter dictionaries (see Table 6.13 on page 447).
These categories ordinarily do not have any predefined instances; they are for
the convenience of PostScript programs in managing commonly used sets of
colorant details and trapping parameters.

Note: The set of process color models to which in-RIP trapping applies is
implementation-dependent. In general, trapping makes sense only for subtractive

color models such as DeviceCMYK, DeviceCMY, or DeviceN; at the time of publica-
tion, it is implemented only for DeviceCMYK.

6.3.1 Trapping Details Dictionary

The TrappingDetails page device parameter holds a trapping details dictionary
containing information about the operation of trapping on a particular output
device. The entries in this dictionary apply globally to all trapping operations on
the device. Section 6.3.3, "Trapping Parameters," describes additional trapping

parameters that provide finer control over the details of trapping in specific re-
gions of specific pages in a document.

I CHAPTER 6
442

Device Control I

Every trapping details dictionary must contain a Type entry, which identifies the

particular trapping type to which the dictionary applies and determines the for-

mat and meaning of its remaining entries (see Section 6.1.2, "Details Dictionar-

ies"). At the time of publication, only one trapping type, type 1001, has been

defined. Table 6.10 shows the contents of the trapping details dictionary for this

trapping type.

TABLE 6.10 Entries in a Type 1001 trapping details dictionary

KEY TYPE VALUE

Type Integer (Required) A code identifying the trapping type to which this dictionary ap-
plies. The value of this type code determines not only the format and mean-
ing of other entries in the trapping details dictionary, but also the contents of
the trapping parameter dictionary and the Trapping procedure set.

The TrappingDetailsType entry in the output device dictionary (see
Section 6.4, "Output Device Dictionary") defines the allowable trapping
types for a given device. The only valid value defined at the time of publica-
tion is 1001; the entries described in this table correspond to that type.
Changes to the contents of a type 1001 trapping details dictionary are cumu-

lative, and this cumulative behavior applies recursively to all levels of in-
cluded subdictionaries.

TrappingOrder array An array specifying the order in which colorants are assumed, for trapping
purposes, to be applied to the output medium. This may differ from the or-
der in which colorants are named in the SeparationOrder page device param-

eter (see Section 6.2.5, "Color Support").

Array elements may be either name or string objects, which are treated equiv-
alently. Colorants are assumed to be applied to the medium in the order in

which they appear in the array. After all colorants named in the array have
been applied, any remaining device colorants specified or implied by the
ProcessColorModel and SeparationColorNames page device parameters are
assumed to be applied in an unspecified order. Colorants named in the
TrappingOrder array that are neither implied by ProcessColorModel nor ex-

plicitly declared in SeparationColorNames are ignored. If the array is empty,
all device colorants are assumed to be applied in an unspecified order.

ColorantDetails dictionary A dictionary defining trapping-related properties of individual device colo-
rants. See Table 6.11 for the contents of this dictionary.

443
6.3 In-RIP Trapping I

The value of the ColorantDetails entry in the trapping details dictionary is a sub-
sidiary colorant details dictionary (see Table 6.11) holding information on the
properties of the available device colorants. This information is used, for exam-
ple, to determine which of two adjacent colors is darker or when a color should
be considered black and thus subject to special treatment for trapping purposes.

TABLE 6.11 Entries in a colorant details dictionary

KEY TYPE VALUE

ColorantSetName name, string, The name of the InkParams resource instance from which the contents of
or null this dictionary were most recently updated, or null if the dictionary does

not correspond to such a resource instance. This entry is strictly for infor-
mation; it is ignored by the PostScript trapping machinery

any device dictionary A colorant subdictionary describing the properties of the device colorant
colorant name named by the key. There must be one such subdictionary for each device

colorant implied by ProcessColorModel or explicitly declared in
SeparationColorNames. See Table 6.12 for the contents of a colorant sub-
dictionary.

Dictionaries representing commonly used sets of colorants can be stored as
instances of the InkParams resource category (see Section 3.9, "Named Resourc-

es"). Each instance takes the form of a colorant details dictionary whose
ColorantSetName value is the same as the resource instance's key. A PostScript
program can then retrieve an instance with the fmdresource operator and use it
to construct a request to update the colorant details dictionary for the page de-
vice. The ColorantSetName entry in the colorant details dictionary identifies the
InkPa rams resource from which the dictionary was most recently updated.

The remaining contents of the colorant details dictionary consist of a set of colo-
rant subdictionaries, one for each process colorant implied by ProcessColorModel

and each spot colorant explicitly declared in SeparationColorNames. Each colo-
rant subdictionary is keyed by the name of the colorant it represents. Table 6.12
shows the contents of these subdictionaries.

444
I CHAPTER 6 1 Device Control I

TABLE 6.12 Entries in a colorant subdictionary

KEY TYPE VALUE

ColorantName name, string, A name identifying the colorant that this subdictionary describes. The name

or null is unrelated to the key that identifies this colorant in the colorant details dic-
tionary; it can be any arbitrary string, such as a vendor name or part number.
This entry is strictly for information; it is ignored by the PostScript trapping

machinery.

Colora ntType name A name object specifying how areas marked with this colorant are affected by
trapping:

Normal Marks made with, covered by, or placed on top of this
colorant are subject to trapping.

Transparent Marks made with this colorant are not subject to trap-
ping.

Opaque Marks made with or covered by this colorant are never
spread (see "Normal Trapping Rule" on page 449). Oth-
er colorants may trap to this colorant, and colorants
covered by this colorant may choke back from it (see
"Black Trapping Rule" on page 451).

OpaqueIgnore Marks made with or covered by this colorant are never
spread, and other colorants do not trap to it.

NeutralDensity number The neutral density of this colorant (see below) when it is at its maximum

concentration (tint value 1.0). Valid range: 0.001 to 10.0.

A colorant's neutral density is used in comparing colors for lightness or darkness.
Neutral density is a measure of a colorant's capacity to absorb light—that is, of
how dark it is. A neutral density of 0.0 represents the lightest possible color, a
pure white that absorbs no light at all and thus reflects all of the light falling on it.
The overall neutral density of a composite color is found by adding the neutral
densities of its component colorants. The neutral density of a component colo-

rant is given by

neutralDensity = —1.7 x log (1 — (c x (1 — 104 .6 x d)))

where c is the concentration (tint value) of the colorant and d is the Neutral-
Density value given in the colorant subdictionary for that colorant.

445
I 6.3

I In-RIP Trapping I

In addition to its neutral density, each colorant also has a colorant type that speci-
fies how it is affected by the trapping rules. Marks made with a transparent colo-
rant, such as a colorless varnish, are exempt from any application of the trapping

rules. (Such colorants are also excluded from the neutral density calculation.) An
opaque colorant, such as a metallic ink that obscures anything it covers, is always

treated as if it were black, even if its neutral density would not ordinarily be con-
sidered dark enough for such treatment. Any marks in other colorants that are

covered by the subsequent application of an opaque colorant (according to the
trapping order specified in the trapping details dictionary) are considered to be
invisible and are not subject to trapping.

6.3.2 Trapping Zones

Trapping always takes place within a trapping zone specified by the PostScript
program. Each zone defines an area of the page and a set of trapping parameters

that govern the way trapping is performed within that area. A graphical object is
subject to trapping if it falls within one or more trapping zones, but only those

parts of the object that lie within at least one zone will be trapped. If two or more
trapping zones overlap, the one most recently defined takes precedence within
the area of intersection.

Trapping zones are specified with the settrapzone operator, part of the Trapping
procedure set. The area covered by a zone is defined by the current path in the
graphics state at the time settrapzone is invoked. The zone's trapping parameters

are copied from the current contents of the trapping parameter dictionary, de-
scribed in the next section. Trapping zones are cumulative within a page, and are

unaffected by subsequent changes to the graphics state (except ones that activate
a different page device).

Trapping zones established as part of a page description apply only to that partic-
ular page and are erased when the page is printed (or when a different page de-

vice is activated). A PostScript program can establish default trapping zones that
apply to all pages of a document by defining them in the page device's Install pro-
cedure (see Section 6.2.6, "Device Initialization and Page Setup"). They will then

be reestablished before the BeginPage procedure is executed at the beginning of
each new page. Restoring a deactivated page device via restore, grestore, or
setg state will reestablish only these default trapping zones; any page-specific
zones associated with the current page will be lost.

I CHAPTER 6
446

l
Device Control I

Note: Trapping zones should be established before any of the objects that fall within
them are painted. The results of defining a trapping zone over existing marks already
on the page are implementation-dependent and unpredictable.

6.3.3 Trapping Parameters

Each trapping zone has its own set of trapping parameters. Unlike the parameters
in the trapping details dictionary, which apply globally to all trapping performed
on a given device, the zone-specific trapping parameters govern trapping behav-
ior only within a single zone.

Trapping parameters are stored, altered, and read similarly to page device param-
eters. The current values of the trapping parameters are stored in a global trap-
ping parameter dictionary analogous to the page device dictionary. The keys in
this dictionary designate features or options pertaining to a zone's trapping be-
havior; the associated values represent the current settings of those features or
options. The dictionary resides in virtual memory, and hence is subject to save
and restore.

When a new trapping zone is created, its trapping parameters are taken from the
current contents of the trapping parameter dictionary. A PostScript program can
thus specify each zone's trapping parameters by setting the desired values in the
trapping parameter dictionary before invoking settrapzone to create the zone.
The trapping parameters are fixed at the time the zone is created, and cannot be
changed thereafter; subsequent changes to the trapping parameter dictionary
have no effect on zones already in existence.

The trapping parameter dictionary, like the page device dictionary, is not directly
accessible to a PostScript program. Its contents can be altered and read only indi-
rectly, using the settrapparams and currenttrapparams operators (both defined

in the Trapping procedure set). These work similarly to setpagedevice and
currentpagedevice:

• settrapparams takes a single operand, a request dictionary whose entries specify
desired settings or values for one or more trapping parameters. The operator
uses the contents of the request dictionary to alter the current trapping param-
eters, but it does not retain the request dictionary itself.

447
l 6.3

I
In-RIP Trapping I

• The effects of settrapparams are cumulative over multiple executions: it merg-
es new parameter requests into the existing trapping parameter dictionary.
(However, this cumulative behavior does not apply recursively to the contents
of any subsidiary dictionaries contained as entries within the trapping parame-
ter dictionary.)

• Omitting a parameter key from the request dictionary has a different meaning
than including the key with a null value. Omitting the key leaves the parame-
ter's previous value unchanged; specifying a null value sets it to the null object,
canceling any previous value it may have had.

• The PostScript language does not prescribe a default value for any trapping pa-
rameter; all default values are device-specific. A PostScript program can change
the defaults by invoking settra ppara ms as part of an unencapsulated job.

• currenttrapparams returns a dictionary whose entries reflect the current con-
tents of the trapping parameter dictionary.

The structure and meaning of the entries in the trapping parameter dictionary
are determined by the particular trapping type to which they refer, as specified by
the Type entry in the trapping details dictionary (see Section 6.3.1, "Trapping
Details Dictionary"). Table 6.13 shows the trapping parameters for trapping type
1001, the only type defined at the time of publication.

TABLE 6.13 Entries in a trapping parameter dictionary

KEY TYPE VALUE

TrapSetName

Enabled

StepLimit

name, string, The name of the TrapParams resource instance from which the

or null contents of this dictionary were most recently updated, or null if the

dictionary does not correspond to such a resource instance. This en-
try is strictly for information; it is ignored by the PostScript trapping
machinery.

boolean A flag that enables or disables trapping for this zone.

number The step limit governing the creation of traps by the normal trapping
rule (see "Normal Trapping Rule" on page 449). The value of this
parameter must be greater than O.

The step limit can be overridden for an individual colorant by in-
cluding a StepLimit entry for that colorant in the ColorantZone-
Details dictionary (see "Zone-Specific Colorant Details" on page
454).

448
I CHAPTER 6 Device Control I

TrapWidth number

TrapColorScaling

BlackDensityLimit

BlackColorLimit

BlackWidth

SlidingTrapLimit

number

number

number

number

number

ImageToObjectTrapping boolean

ImagelnternalTrapping boolean

The width of traps created under the normal trapping rule, expressed
in units of the default user space (72nds of an inch). The size of the
unit is not affected by any scaling performed by the current transfor-

mation matrix. This parameter also defines the unit used by the

BlackWidth trapping parameter (see below).

The value of this parameter must be greater than 0, and may also be
subject to an upper bound imposed by the implementation. If this
upper bound is exceeded, the maximum allowed value is substituted

without error indication.

A scaling factor for reducing the total amount of colorant applied to
a trap (see "Normal Trapping Rule" on page 449). Valid range: 0.0 to

1.0.

The scaling factor can be overridden for an individual colorant by
including a TrapColorScaling entry in the ColorantZoneDetails dic-

tionary (see "Zone-Specific Colorant Details" on page 454).

The minimum neutral density required for a colorant to be consid-
ered black for purposes of the black trapping rule. The value of this
parameter must be greater than 0.

The minimum concentration of a black colorant needed in order to
invoke the black trapping rule. Valid range: 0.0 (no colorant) to 1.0
(full concentration).

The width of traps created under the black trapping rule, expressed
in the units defined by the TrapWidth trapping parameter (see
above). The value of this parameter must be greater than 0.

A threshold value specifying when a trap should begin to straddle the
boundary between two colors. This is useful for creating sliding traps
when one of a pair of adjacent objects is painted with a shading pat-
tern whose color shifts along the boundary (see "Sliding Traps" on

page 452). The trap will slide to a straddling position when the ratio

between the neutral densities of the lighter and darker colors exceeds
the specified limit. The higher the limit is, the closer the neutral den-
sities must be for the trap to slide. Valid range: 0.0 (always slide) to
1.0 (never slide).

A flag specifying whether trapping should be performed between
sampled images and other graphical objects, such as filled or stroked

paths or character glyphs (see "Image Trapping" on page 453).

A flag specifying whether trapping should be performed between in-
dividual colorants within a sampled image (see "Image Trapping" on

page 453).

I 6.3
449

In-RIP Trapping I

ImageTrapPlacement name A name object specifying the positioning of traps between sampled
images and adjacent graphical objects (see "Image Trapping" on page
453):

Normal Within the area of either the image or the adjacent ob-
ject, depending on their respective colors according to
the normal trapping rule

Spread Always within the area of the adjacent object

Choke Always within the area of the image

Center Centered on the boundary between the image and the

adjacent object

ImageResolution integer The minimum resolution, in pixels per inch, to which images will be
downsampled. Downsampling is the conversion of a sampled image
to a resolution lower than the one at which it is specified. The image
is marked on the output medium at its original resolution; the down-
sampled version is used only for calculating traps.

ColorantZoneDetails dictionary A dictionary containing colorant-specific parameters for this trap-
ping zone (see "Zone-Specific Colorant Details" on page 454).

Dictionaries representing commonly used sets of trapping parameters can be
stored as instances of the TrapParams resource category (see Section 3.9, "Named

Resources"). Each instance takes the form of a trapping parameter dictionary
whose TrapSetName value is the same as the resource instance's key. A PostScript
program can then retrieve an instance with the findresource operator and use it
to construct a settrapparams request. The TrapSetName entry in the trapping
parameters dictionary identifies the TrapPa ra ms resource from which the dic-
tionary was most recently updated.

Normal Trapping Rule

Trapping can occur wherever two distinct colors meet along a common bound-
ary. Depending on the specific situation, various trapping rules may be applied to
minimize the effects of possible misregistration. The most common of these, the
normal trapping rule, is to extend, or spread, some of the colorants making up the
lighter color into the area occupied by the darker. If all colorants are applied in
proper alignment, the spread of the lighter color will be obscured by the darker
color on the opposite side of the boundary and will not be perceptible to the eye.

I CHAPTER 6
450

Device Control I

In the event of misregistration, the spread will fill the gap where the two colors
fail to align precisely, avoiding a visible separation between them.

When two graphical objects share a boundary within a trapping zone, the normal
trapping rule compares their colors to determine whether to create a trap. Colo-
rant concentrations are compared separately for each individual device colorant,
and a trap is created if the concentrations of at least two colorants differ suffi-
ciently in opposite directions across the boundary. Colorant concentrations are
considered to differ sufficiently if they meet both of the following conditions:

• The magnitude of the absolute difference between the two concentrations is
greater than 0.05.

• The magnitude of the relative difference between the two concentrations, in
proportion to the lower of the two, is greater than a specified step limit.

These two conditions can be expressed mathematically as follows:

highLevel — lowLevel ≥ 0.05

highLevel — lowLevel stepLimit

lowLevel

where highLevel and lowLevel are the higher and lower of the concentrations of
the given colorant on either side of the boundary. The StepLimit trapping param-

eter establishes a general step limit for a given trapping zone, but this value can be
overridden for any individual colorant by including a StepLimit entry for that
colorant in the ColorantZoneDetails dictionary (see "Zone-Specific Colorant De-
tails" on page 454).

For example, suppose two adjacent objects within a trapping zone have the color
values shown in Table 6.14, on an output device that uses the DeviceCMYK pro-
cess color model. Because both objects have the same concentration of magenta,
that colorant is not a candidate for trapping by the normal trapping rule. The
black colorant also is not eligible for trapping, because, although the concentra-
tions of black differ between the two objects, the magnitude of the absolute dif-
ference is below the threshold value of 0.05. Both cyan and yellow do meet the

first condition for trapping. however, because their concentrations differ by more
than 0.05 and in opposite directions. Dividing each of the absolute differences by
the smaller of the two concentrations for that colorant yields relative differences
of 0.90 in one direction for cyan and 0.75 in the other direction for yellow. If the

I 6.3
451

I
In-RIP Trapping I

step limit for this zone is, say, 0.50, then a trap will be created between these two
objects; if the step limit were 0.80, the relative difference for the yellow colorant

would be too small and no trapping would occur.

TABLE 6.14 Example of normal trapping rule

COLORANT

ABSOLUTE RELATIVE

COLOR 1 COLOR 2 DIFFERENCE DIFFERENCE

Cyan 0.95 0.50 0.45 0.90

Magenta 0.80 0.80 0.00 0.00

Yellow 0.20 0.35 —0.15 —0.75

Black 0.10 0.12 —0.02 —0.20

Once it is determined that trapping should take place between two objects, the
TrapWidth trapping parameter specifies how wide a trap to create. The width is
expressed in units of the default user space, and so is unaffected by any scaling

performed by the current transformation matrix.

Spreading colorants from one side of a trap boundary to the other may some-
times result in a conspicuously dark color within the area of the trap. The

TrapColorScaling trapping parameter is intended to avoid this problem by scaling
back the colorant concentrations to achieve a specified neutral density. The de-

sired density is expressed proportionally on a scale from 0.0 to 1.0, with 0.0 repre-
senting the neutral density of the darker of the two adjacent colors and 1.0
representing that of the lighter and darker colors combined.

Black Trapping Rule

A special rule, the black trapping rule, governs the case when one of a pair of ad-
jacent colors is black and the other is not. In these circumstances, trapping will
always spread the nonblack color toward the black, regardless of their compara-
tive neutral densities. This ensures that the visible edge of the color boundary will

always be defined by the black color. The BlackWidth trapping parameter speci-
fies the width of traps created under the black trapping rule.

452
I CHAPTER 6 I Device Control

A color need not contain any of the DeviceCMYK process black colorant to be
considered black for purposes of the black trapping rule. Rather, this determina-
tion is based on a pair of trapping parameters of the zone in which the trap falls.
The BlackDensityLimit parameter defines the minimum neutral density required

for any colorant to be considered black; the BlackColorLimit parameter defines
the minimum concentration of such a colorant that is needed in order to invoke
the black trapping rule.

Because process black colorants are typically translucent rather than fully
opaque, and because it is difficult to apply solid colorants smoothly over large
areas, true process black is often combined with one or more support colorants to
achieve a more intense black result. When such a "rich black" region adjoins an

unpainted region or one whose color lacks any of the support colorants, a reverse
trap is created: the support colorants of the rich black color are choked back from
the boundary, thereby preventing a misregistration from creating a halo on one
side of the rich black region.

Sliding Traps

The use of shading patterns (described in Section 4.9.3, "Shading Patterns") can
lead to still another unusual situation, illustrated in Figure 6.2. As the color varies
continuously across the shading, it may change from lighter to darker than the
color on the opposite side of the boundary. Under the normal trapping rule, this
would cause the trap to jump suddenly from one side of the boundary to the

other at the point of the transition, as shown in the figure on the left. This unde-
sirable effect is avoided by creating a sliding trap that shifts gradually, rather than

abruptly, from one side of the boundary to the other, as in the figure on the right.

FIGURE 6.2 Sliding trap

I 6.3
453

In-RIP Trapping I

The SlidingTrapLimit trapping parameter controls the position of the trap be-

tween the adjoining colors. The value of this parameter is a number in the range
0.0 to 1.0. As long as the ratio between the neutral densities of the lighter and
darker colors is less than the specified limit, the trap will be positioned on the
darker side of the boundary according to the normal trapping rule. When the col-
or of the shading pattern darkens sufficiently for the ratio of the neutral densities
to exceed the limit, the trap will begin to slide to a straddling position on the
boundary. The trap will be centered at the point where the neutral densities are
equal, then continue to slide fully to the opposite side of the boundary at the
point where the ratio (now reversed) is equal to the sliding trap limit. The higher
the value of the limit, the closer the neutral densities of the two colors must be for
the trap to slide. A limit of 1.0 prevents any sliding traps from being created; a
limit of 0.0 causes all traps within the given trapping zone to be centered on the
boundary between two colors.

Note: Although the problem addressed by sliding traps arises mainly from the use of
smooth shading patterns, sliding traps in fact will be created any time the normal
trapping rule is in effect and the relative neutral densities dictate their creation.

Image Trapping

Traps between a sampled image and an adjacent graphical object require further
special treatment. Because the colors in the image can vary wildly from one sam-

ple to the next, the normal trapping rule can result in traps switching rapidly
from one side of the boundary to the other. Sliding traps do not help in this case,
because the color transitions are not gradual but sudden and unpredictable.

The boolean trapping parameter ImageToObjectTrapping can be used to sup-

press the creation of traps between images and other graphical objects. Alterna-
tively, another trapping parameter, ImageTrapPlacement, controls the placement

of traps between images and other objects. The available options are:

• Follow the normal trapping rule, placing the trap on the side of the boundary

where the color is darker. This option is vulnerable to the uneven trap place-
ment described above.

• Always spread from the image toward the other object, placing the trap within

the object. This is useful when dark text is painted on top of a light image, since
it avoids enlarging the character shapes.

454
I CHAPTER 6 I Device Control

• Always choke the image data, spreading the other object and placing the trap
within the image. This is useful when light text is painted on top of a dark
image, since it avoids shrinking the character shapes.

• Center the trap on the boundary between the image and the other object. This
is the most generally useful option.

In addition, depending on the nature of the image, it may or may not be appro-
priate to create traps between individual colorants within the image itself. The
I m agelnternalTrapping parameter enables or disables such internal image trap-
ping. This is not ordinarily done; it is useful for unusually high-contrast images,
such as screen shots, where internal color abutments occur along sharp edges.

Note that all of these parameters apply only to true sampled images; images used
as stencil masks (see "Stencil Masking" on page 302) are trapped according to the
normal trapping rule.

Zone-Specific Colorant Details

The ColorantZoneDetails trapping parameter allows certain settings to be speci-
fied independently for individual colorants, providing greater control over trap-
ping behavior than the zone-level settings in the main trapping parameter
dictionary. The value of ColorantZoneDetails is a dictionary that can contain zero
or more entries, each keyed by the name of a single device colorant. The value of

each entry is in turn a subdictionary containing either or both of the entries
shown in Table 6.15. These specify the step limit and the color scaling factor for
that individual colorant, overriding the zone-level settings specified by the
StepLimit and TrapColorScaling trapping parameters. If no subdictionary is de-
fined for a given colorant, the zone-level values are used instead.

TABLE 6.15 Entries in a ColorantZoneDetails dictionary

KEY TYPE VALUE

StepLimit

TrapColorScaling number

number (Optional) The step limit governing the creation of traps for this colorant by
the normal trapping rule (see "Normal Trapping Rule" on page 449 and the
StepLimit entry in Table 6.13 on page 447).

(Optional) A scaling factor for reducing the total amount of this colorant
applied to a trap (see "Normal Trapping Rule" on page 449 and the
TrapColorScaling entry in Table 6.13 on page 447).

455

6.4 Output Device Dictionary

Output Device Dictionary I

In LanguageLevel 3, certain capabilities of a page device, such as the possible page
sizes or resolutions, can be summarized in an output device dictionary that is
stored as an instance of the OutputDevice resource category. This enables appli-
cations to query device capabilities directly and also maintains functional equiva-
lence with LanguageLevel 1 (where information on page size capabilities is
indicated by the presence of userdict entries such as letter, legal, and a4).

Most PostScript interpreters support only a single page device; the OutputDevice

resource category contains a single instance (whose key is arbitrary) describing
that device. However, some interpreters support multiple devices, which can be
selected by the OutputDevice parameter in the page device dictionary (see

Table 6.5 on page 417). In that case, the OutputDevice resource category contains
multiple instances, whose keys are the same as the allowed values of the

OutputDevice page device parameter.

An output device dictionary does not represent the current state of the page de-
vice; it simply provides a static list of some of its capabilities. Table 6.16 shows the
entries in an output device dictionary as of the time of publication; additional
entries may exist in some products.

TABLE 6.16 Entries in an output device dictionary

KEY TYPE VALUE

MediaClass

PageSize

ManualSize

array (Optional) An array of names or strings specifying the values supported by
this device for the MediaClass page device parameter (see Table 6.2 on

page 400).

array (Required) An array specifying page sizes that can be fed automatically on

this device. Page dimensions are expressed in units of the default user space
(72nds of an inch). Each array element is in turn a subarray, which may con-
sist of two numbers [width height], denoting the width and height of a sup-
ported page size, or of four numbers [width' heighti width2height2],
indicating that page sizes in the range [width' heighti] to [width2height2] are
supported. Page sizes may be specified redundantly within the array.

array (Optional) An array specifying page sizes that can be fed manually on this de-
vice. Array elements are in the same format as for PageSize (see above). On

devices that do not support the ManualFeed page device parameter (see

Table 6.2 on page 400), the ManualSize array should be empty or absent.

I CHAPTER 6
456

i
Device Control I

HWResolution array (Optional) An array specifying pixel resolutions supported by this device.
The contents of this array define the allowable values for the HWResolution

page device parameter (see Table 6.4 on page 414). Most devices support only
a single pixel resolution.

Resolutions are expressed in pixels per inch. Each array element is in turn a
subarray consisting either of two numbers Ex y], denoting a supported hori-

zontal and vertical pixel resolution, or of four numbers [xi yi x2 y2], indi-
cating that resolutions in the range [xi yi] to [x2 y2] are supported. Available
resolutions may be specified redundantly within the array.

ProcessColorModel array (Optional) An array of names or strings specifying the process color models

supported by this device. The contents of this array define the allowable
values for the ProcessColorModel page device parameter (see Table 6.6 on
page 420). Valid values for elements of the array are DeviceGray, DeviceRGB,

DeviceCMYK, DeviceCMY, DeviceRGBK, and (in LanguageLevel 3) DeviceN.

This entry is required if the device supports more than one possible value for
the ProcessColorModel parameter.

DeviceN array (Optional; LanguageLevel 3) An array specifying sets of colorants supported
by this device under the DeviceN process color model. Each array element is

in turn a subarray identifying a set of DeviceN colorants. Subarray elements
may be either name or string objects, which are treated equivalently.

This entry is not required for devices that support only standard process
color models with implied colorants of their own. Because the DeviceN color

model has no such implied colorants, however, all colorants for that model
must be declared explicitly. In that case, the contents of this array define the
allowable sets of values for the SeparationCoIorNames page device parameter
(see Table 6.6 on page 420).

Trapping DetailsType array (Required if in-RIP trapping is supported; LanguageLevel 3) An array of inte-

gers specifying the trapping types supported by this device. The contents of

this array define the allowable values of the Type entry in the trapping details
dictionary (see Table 6.10 on page 442). At the time of publication, only one
trapping type, 1001, has been defined.

457

1 I 1

CHAPTER 7

Rendering

THE POSTSCRIPT LANGUAGE separates graphics (the specification of shapes
and colors) from rendering (controlling a raster output device). Figures 4.5
and 4.6 on pages 212 and 213 illustrate this division. Chapter 4 describes the fa-
cilities for specifying the appearance of pages in a device-independent way. This

chapter describes the facilities for controlling how shapes and colors are rendered
on the raster output device. All of the facilities discussed here depend on the spe-
cific characteristics of the output device; PostScript programs that are intended to
be device-independent should limit themselves to the general graphics facilities

described in Chapter 4.

Nearly all of the rendering facilities that are under program control have to do

with the reproduction of color. The interpreter renders colors by a multiple-step
process outlined below. (Depending on the current color space and on the char-

acteristics of the device, it is not always necessary to perform every step.)

1. If a color has been specified in a CIE-based color space (as described in
Section 4.8.3, "CIE-Based Color Spaces"), the interpreter must first transform
it to the native color space of the raster output device. For devices using the
standard device color spaces (DeviceRGB, DeviceCMYK, or DeviceGray), this

transformation is controlled by a CIE-based color rendering dictionary.

2. If a color has been specified in a device color space that is inappropriate for the

output device (for example, RGB color with a CMYK or grayscale device), the
interpreter invokes a color conversion function. A PostScript program can also

request explicit conversions between device color spaces.

3. The interpreter now maps the device color values through transfer functions,

one for each color component. The transfer functions compensate for pecu-
liarities of the output device, such as nonlinear gray-level response. This step is
sometimes called gamma correction.

I CHAPTER 7
458

Rendering I

4. If the device cannot reproduce continuous tones, but only certain discrete col-
ors such as black and white pixels, the interpreter invokes a halftone function,
which approximates the desired colors by means of patterns of pixels.

5. Finally, the interpreter performs scan conversion to mark the appropriate pixels

of the raster output device with the requested colors.

Depending on the LanguageLevel, PostScript implementations differ in the facili-

ties they offer for rendering:

• LanguageLevel 2 supports CIE-based color rendering dictionaries to control
the conversion of CIE-based colors to a device color space.

• LanguageLevel 3 supports the selection of color rendering dictionaries based
on a rendering intent that expresses the program's priorities in rendering colors
for a given output device.

• LanguageLevel 3 also supports the UseC I EColor page device parameter, which
systematically remaps colors originally specified in a device color space into a
corresponding CIE-based color space; see "Remapping Device Colors to CIE"

on page 237.

• LanguageLevel 3 introduces an explicit process color model parameter that de-
termines the device's native color space, and it includes a new family of native

color spaces, DeviceN (see Section 6.2.5, "Color Support").

• Most LanguageLevel 1 implementations support only a single transfer func-
tion, controlled by the settransfer operator, and a single halftone function,
controlled by the setscreen operator.

• LanguageLevel 1 implementations with the color extensions support multiple
transfer functions controlled by setcolortransfer, multiple halftone functions
controlled by setcolorscreen, and various color conversion facilities. These op-

erators provide independent rendering control for each individual color com-
ponent. LanguageLevel 1 products containing this feature also support the

setcmykcolor and colorimage operators.

• LanguageLevel 2 also supports halftone dictionaries as a means of specifying
halftone screen thresholds, transfer functions, and many other rendering de-
tails. Halftone dictionaries are more general and more flexible than the

LanguageLevel 1 facilities, and they override those facilities when used.

LanguageLevel 3 offers several additional types of halftone dictionary beyond
those available in LanguageLevel 2. Of course, LanguageLevels 2 and 3 support

all LanguageLevel 1 facilities.

459

I
CIE-Based Color to Device Color I

Note: Many of the rendering-related operators discussed in this chapter can install
composite objects, such as arrays or dictionaries, as parameters in the graphics state.
To ensure predictable behavior, a PostScript program should thereafter treat all such
objects as if they were read-only.

7.1 CIE-Based Color to Device Color

To render CIE-based colors on a device, the PostScript interpreter must convert
from the specified CIE-based color space to the device's native color space, taking
into account the known properties of the device. As discussed in Section 4.8.3,
"CIE-Based Color Spaces," CIE-based color is based on a model of human color
perception. The goal of CIE-based color rendering is to produce output in the de-
vice's native color space that accurately reproduces the requested CIE-based color
values as perceived by a human observer. Typically, the native color space is one
of the standard PostScript device color spaces (DeviceGray, DeviceRGB, or
DeviceCMYK) and the conversion is performed by means of a CIE-based color
rendering dictionary. CIE-based color specification and rendering are a feature of
LanguageLevel 2 (CIEBasedABC, CIEBasedA) and LanguageLevel 3 (CIEBasedDEF,
CIEBasedDEFG).

The conversion from CIE-based color to device color is complex, and the theory
on which it is based is beyond the scope of this book; see the Bibliography for
sources of further information. The algorithm has many parameters, including
an optional, full three-dimensional color lookup table. The color fidelity of the
output depends on having these parameters properly set, usually by a method

that includes some form of calibration. Each product includes a default set of col-
or rendering parameters that have been chosen to produce reasonable output
based on the nominal characteristics of the device. The PostScript language does
not prescribe methods for calibrating the device or for computing a proper set of

color rendering parameters.

Conversion from a CIE-based color value to a device color value requires two
main operations:

1. Adjust the CIE-based color value according to a CIE-based gamut mapping
function. A gamut is a subset of all possible colors in some color space. A page
description has a source gamut consisting of all the colors it uses. A device has a
device gamut consisting of all the colors it can reproduce. This step transforms
colors from the source gamut to the device gamut in a way that attempts to

I CHAPTER 7
460

Rendering I

preserve color appearance, visual contrast, or some other explicitly specified
rendering intent (see Section 7.1.3, "Rendering Intents").

2. Generate a corresponding device color value according to a CIE-based color
mapping function. For a given CIE-based color value, this function computes a
color value in the device's native color space.

The CIE-based gamut and color mapping functions are applied only to color val-
ues presented in a CIE-based color space. By definition, color values in device
color spaces directly control the device color components (though this can be al-

tered by the UseCIEColor page device parameter; see "Remapping Device Colors
to CIE" on page 237).

The source gamut is specified by a page description when it selects a CIE-based
color space by invoking the setcolorspace operator. This specification, which in-
cludes the values defined by the WhitePoint and BlackPoint entries of the color
space dictionary, is device-independent.

Together, the device gamut, the gamut mapping function, and the color mapping
function are described by a CIE-based color rendering dictionary, a parameter of
the graphics state that is set when the device is installed or recalibrated. Every-
thing in this dictionary is device-dependent. The setcolorrendering operator in-
stalls a color rendering dictionary in the graphics state; currentcolorrendering
returns the current color rendering dictionary.

7.1.1 CIE-Based Color Rendering Dictionaries

The CIE-based gamut and color mapping functions, embodied by the color ren-
dering dictionary, are defined in an extensible way. The PostScript language sup-
ports one standard type of color rendering dictionary, which works in all
implementations. Some output devices support additional types that define oth-
er, possibly proprietary, gamut and color mapping methods. The set of available
types and the meanings of specific color rendering dictionaries are device-
dependent; they are not described in this book, but in individual product docu-

mentation.

Most of the entries in a color rendering dictionary together define a composite
color rendering function that transforms CIE-based color values to device color
values by applying the gamut and color mapping functions. The output from this

461
CIE-Based Color to Device Color I

color rendering function is subject to further transformations: device color space
conversion, transfer function, and halftoning.

Every color rendering dictionary must have a ColorRenderingType entry whose
value is an integer. The value specifies the architecture of the composite color
rendering function as a whole. The remaining entries in the dictionary are inter-

preted according to this value.

7.1.2 Type 1 Color Rendering Dictionary

The type 1 color rendering dictionary is a standard part of the PostScript lan-
guage. Some output devices support other types, and the default color rendering
dictionary for any particular device may have a type other than 1.

Type 1 color rendering is based on the CIEBasedABC color space, which is a two-
stage, nonlinear transformation of the CIE 1931 XYZ space. This space is called

the render color space. Values in this space can be treated in one of two ways:

• Used directly as color values in the DeviceRGB or DeviceGray color space

• Used to index a three-dimensional lookup table, which in turn contains color
values to be interpreted in the DeviceRGB or DeviceCMYK color space

The first method usually works well with additive, linear color devices, which in-
clude many black-and-white and color displays. The second method is required
for high-fidelity reproductions with most color printers, whose color rendition

cannot be described by a simple formula.

Conceptually, conversion of a color value from a CIE-based color space to a de-
vice color space involves the following steps. In practice, the implementation
does not perform these steps in sequence, but in combination. Furthermore,
there are important special cases in which the effects of two or more of the steps
cancel out. The implementation detects these cases and omits the unnecessary

transformations.

1. Transform the CIE-based color value from its original color space (CIEBased-

ABC, CIEBasedA, CIEBasedDEF, or CIEBasedDEFG) to the CIE 1931 XYZ space.
This transformation depends on various parameters of the color space, as de-

scribed in Section 4.8.3, "CIE-Based Color Spaces."

I CHAPTER 7
462

i
Rendering I

2. Adjust the X, Y, and Z values to account for differences in the diffuse white and
black points of the source and the device. This transformation attempts to sat-
isfy the requested rendering intent, according to the Matri x PQR and

TransformPQR entries of the color rendering dictionary. The diffuse white and
black points of the source are given by the WhitePoint and BlackPoint entries
in the color space dictionary; those of the device are given by the same entries
in the color rendering dictionary. If the corresponding WhitePoint and
BlackPoint entries in both dictionaries are equal, the MatrixPQR and
TransformPQR entries are ignored and this step reduces to the identity trans-
formation.

3. Transform the color value from the CIE 1931 XYZ space into the render color
space according to the EncodeLMN, MatrixLMN, EncodeABC, and MatrixABC

entries in the CIE-based color rendering dictionary, producing three compo-
nents A, B, and C. (These are unrelated to the A, B, and C components of color
values in the source CIEBasedABC or CIEBasedA color space.)

4. If a RenderTable entry is present in the color rendering dictionary, use the A,
B, and C components to index into this three-dimensional lookup table, yield-
ing an interpolated color value. This value consists of three or four color com-
ponents, depending on how the table is defined. Each component is then
transformed by a procedure to produce color components in device color
space. If there are three components, they specify red, green, and blue values in

the DeviceRGB color space; if there are four components, they specify cyan,
magenta, yellow, and black in the DeviceCMYK color space.

If the color rendering dictionary has no Ren derTa b le entry, use the A, B, and C
components as the device color value directly. If the device's native color space

is DeviceGray, the A component specifies the gray value and the B and C com-
ponents are ignored. Otherwise, the A, B, and C components specify the red,
green, and blue values, respectively, in the DeviceRGB color space.

If the output of the color rendering dictionary is in a color space different from
the device's native color space, a further conversion will take place, as described
in Section 7.2, "Conversions among Device Color Spaces!' Note that such a con-
version will always occur when the native color space is a DeviceN space.

Table 7.1 describes the entries that a type 1 color rendering dictionary can con-
tain and describes the details of the transformations.

463

I
CIE-Based Color to Device Color I

TABLE 7.1 Entries in a type 1 CIE-based color rendering dictionary

KEY TYPE VALUE

ColorRenderingType integer (Required) A code identifying the type of color rendering that this dictionary

describes; must be 1 for a standard color rendering dictionary.

MatrixLMN array (Optional) An array of nine numbers [Lx Mx Nx Ly My Ny Lz Mz Nz] speci-

fying the linear interpretation of the X, Y, and Z components of the CIE 1931

XYZ space with respect to an intermediate LMN representation; see

EncodeLMN below for further explanation. Default value: the identity matrix

[1 0 0 0 1 0 0 0 1].

EncodeLMN

RangeLMN

MatrixABC

array (Optional) An array of three PostScript procedures [EL EM EN] that encode

the L, M, and N components of the intermediate representation. Default val-

ue: the array of identity procedures [{} 0 01.

Each of the three procedures is called with an unencoded L, M, or N compo-

nent on the operand stack and must return the corresponding encoded value.

The result must be a monotonically nondecreasing function of the operand.
The procedures must be prepared to accept operand values outside the

ranges specified by the RangeLMN entry and to deal with such values in a ro-

bust way. Because these procedures are called at unpredictable times and in

unpredictable environments, they must operate as pure functions without

side effects.

The transformation defined by the MatrixLMN and EncodeLMN entries is

L = EL (X x Lx + YxLy+Zx Lz)

M = Em (X x Mx + Yx M y+ Zx Mz)

N = EN (X x Nx + YxNy+ZxNz)

In other words, the X, Y and Z components of the CIE 1931 XYZ space are

treated as a three-element vector and multiplied by MatrixLMN (a 3-by-3

matrix). The results are then individually transformed by the EncodeLMN

procedures to obtain the L, M, and N components of the intermediate repre-

sentation.

array (Optional) An array of six numbers [Lo L1 Mo M1 No N1] specifying the range

of valid values for the L, M, and N components of the intermediate represen-

tation: that is, Lo 5_ L ≤ Li, Mo ≤ M 5_ Mi, and No ≤ N ≤ NI. Default value:

[0.0 1.0 0.0 1.0 0.0 1.0].

array (Optional) An array of nine numbers [AL BL CL Am BM Cm AN BN CN] speci-

fying the linear interpretation of the encoded L, M, and N components of the
intermediate representation with respect to the render color space; see

I CHAPTER 7
464

Rendering I

EncodeABC

RangeABC

WhitePoint

EncodeABC below for further explanation. Default value: the identity matrix

[1 00 0 1 0 0 0 1].

array (Optional) An array of three PostScript procedures [EA EB Ec] that encode
the A, B, and C components of the color space. Default value: the array of

identity procedures [{} Ill

Each of the three procedures is called with an unencoded A, B, or C compo-
nent on the operand stack and must return the corresponding encoded value.
The result must be a monotonically nondecreasing function of the operand.

The procedures must be prepared to accept operand values outside the
ranges specified by the RangeABC entry and to deal with such values in a ro-

bust way. Because these procedures are called at unpredictable times and in
unpredictable environments, they must operate as pure functions without
side effects.

The transformation defined by the MatrixABC and EncodeABC entries is

A = EA (LxAL+MxAm +NxAN)

B = EB (Lx EL + Mx Bm + Nx BN)

C = Ec (LxCL+ Mx Cm + Nx CN)

In other words, the L, M, and N components of the intermediate
representation are treated as a three-element vector and multiplied by
MatrixABC (a 3-by-3 matrix). The results are then individually transformed
by the EncodeABC procedures to obtain the A, B, and C components of the
render color space.

array (Optional) An array of six numbers [A0 A1 B0 B1 Co CO specifying the range

of valid values for the A, B, and C components: that is, A0 ≤ A ≤ A1,
Bc, 5 B ≤ B1, and Co ≤ C≤ C1. If there is no RenderTable entry, these ranges

must lie within the range 0.0 to 1.0, since the render color space maps directly
onto a device color space. If a RenderTable entry is present, these ranges de-
fine the boundaries of the three-dimensional lookup table. Default value:
[0.0 1.0 0.0 1.0 0.0 1.0].

array (Required) An array of three numbers [Xw Yw Zw] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the device's diffuse white point. The
numbers Xw and Zw must be positive, and Yw must be equal to 1.

WhitePoint is assumed to represent the device's diffuse achromatic highlight,
and hence its value must correspond to the nearly lightest achromatic color

that the device can produce. A color somewhat darker than the absolutely
lightest color may be used to avoid blocking of highlights and to provide

some flexibility for rendering specular highlights.

465
CIE-Based Color to Device Color I

BlackPoint

MatrixPQR

RangePQR

TransformPQR

array (Optional) An array of three numbers [XR YB ZR] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the device's diffuse black point. All three
of these numbers must be nonnegative. Default value: [0 0 0].

BlackPoint is assumed to represent the device's diffuse achromatic shadow. Its
value is defined by the nearly darkest, nearly achromatic color that the device
can produce. A color somewhat lighter than the absolutely darkest color may
be used to avoid blocking of shadows; a slightly chromatic color may be used
to increase dynamic range in situations where the darkest color that the de-
vice can produce is not purely achromatic.

array (Optional) An array of nine numbers [Px Qx Rx Py Qy Ry Pz Qz Rz] specify-
ing the linear interpretation of the X, Y, and Z components of the CIE 1931
XYZ space with respect to an intermediate PQR representation; see
TransformPQR below for further explanation. Default value: the identity
matrix [1 0 0 0 1 0 0 0 1].

array (Optional) An array of six numbers [P0 Pi Q0 Q1 R0 R1] specifying the range
of valid values for the P, Q, and R components of the intermediate represen-

tation: that is, P0 P Pi, Qo Qi, and R0 R Ri. Default value:
[0.0 1.0 0.0 1.0 0.0 1.0].

array (Required) An array of three PostScript procedures [Tp TQ TR] that trans-

form the P, Q, and R components of the intermediate representation to com-
pensate for the differences between the source's and the device's diffuse white
and black points, while observing the requested rendering intent.

Let Xws, Yws, Zw, and XB„YB„ Zas be the tristimulus values, in the CIE 1931

XYZ space, of the source's diffuse white and black points, respectively, and let
Xwd, Ywd, Zwd and XBd, YBd, Zad be those of the device's diffuse white and
black points. Then the source and device tristimulus values X,, Y5, Z5 and Xd,
Yd,Zd are related by the MatrixPQR and TransformPQR entries as follows:

Ps = Xsx Px +YsxPy+ZsxPz

Qs = Xsx Qx+ Ys x Qy+ Zsx Qz

Rs = XsxRx +YsxRy+ZsxRz

Pd = Tp(W s,B 5, Wd, Bd, Ps)

Qd = TQ(Ws, B5, Wd, Bd, Qs)

Rd = T R(Ws, B s, Wd, Bd, R5)

Xd = PdxXp+ Qdx X(s2 + Rdx XR

Yd = PdX YP+ Qd X YQ + Rd X YR
Zd = PdXZp+QdXZeRdXZR

I CHAPTER 7
466

I
Rendering I

where

Ws = [xws Yws zws Pws Qws R ws]
Bs = [X BS.• s. Y.,s

DO Z Bs "Bs Ql3s B Bs]

W d = [X Wd YWd Z Wd PWd QWd B led]

Bd = [X Bd 'Bd Z Bd PBd QBd B IM]

Pws = Xws X Px + Yws X Py+ Zws X Pz

Qws = Xws x Qx + Yws x Qy+ Zws x Qz

Rws = Xws X Rx + Yws X Ry+ Zws X Rz

PRs = Xils X Px + YRs X Py+ ZRs X Pz

QB5 = Xlis x Qx + Iles X Qy+ ZEis X Qz

leRs = X& X Rx + YRs X Ry+ Zlis X Rz

Pwd = Xwd X Px + Ywd X Py+ Zwd X Pz

Qwd = Xwd X Qx + Ywd X Qy+ Zwd X Qz

Rwd = Xwd X Rx + Ywd X Ry+ Zwd X Rz

'Bd = X Bd XPX+ YBd XPY + Z Bd XPZ

QBd = X Bd X QX+ YBd x QY + Z Bd x QZ
B IM = X Bd XBX+ YBd X B Y + ZBd X Rz

.-
Xp Yp Zp Px Qx Rx

XQ YQ ZQ = PQRy

XR YR ZR Pz Qz Rz
- -

In other words, the X,, 115, and Z, components of the source color in CIE

1931 XYZ space are treated as a three-element vector and multiplied by

MatrixPQR (a 3-by-3 matrix), yielding the Ps, Q, and R, components of the

source color with respect to the intermediate PQR representation. These

components are then individually transformed by the TransformPQR proce-

dures to obtain the Pd, Qd, and Rd components of the corresponding device

color. Each of the components is transformed separately; there is no interac-

tion between components. Finally, the Pd, Qd, and Rd components of the de-

vice color are treated as a three-element vector and multiplied by the inverse

of MatrixPQR, yielding the Xd, Yd, and Zd components of the device color in

the CIE 1931 XYZ space.

The transformation embodied by the TransformPQR procedures typically

consists of two conceptually separate processes. The first allows for chromatic

adaptation when the two diffuse white points differ, the second for contrast

467
7.1 CIE-Based Color to Device Color

adaptation when the dynamic ranges between the two sets of diffuse white
and black points differ.

Besides the appropriate P„ C25, or R, component, each procedure takes four
additional operands, W,, B„ Wd, and Bd, which specify the diffuse white and
black points of the source and the device, respectively. Each of these operands
is an array of six elements giving the white or black point twice: once in CIE
1931 XYZ space and again in PQR space.

Each of these three procedures is called with the W„ B,, Wd, and Bd arrays
and the appropriate P„ Q„ or R, component on the operand stack, in that
order, and must return the corresponding transformed Pd, Qd, or Rd compo-
nent. The result must be a monotonically nondecreasing function of the last
operand. The procedures must be prepared to accept operand values outside
the ranges specified by the RangePQR entry and to deal with such values in a
robust way. Because these procedures are called at unpredictable times and in

unpredictable environments, they must operate as pure functions without
side effects.

RenderTable array (Optional) An array of the form [NA NB Nc table m T1 T2 ... T„,] defining a
three-dimensional lookup table that maps colors in render color space into
device color space.

The first three elements of the RenderTable array, NA, NB, and No must be
integers greater than 1 specifying the dimensions of the lookup table. The
table contains NA X NB X Nc entries, each consisting of m encoded color
components making up a device color value (where m, the fifth element of
the RenderTable array, must be the integer 3 or 4).

The fourth array element, table, holds the contents of the lookup table itself
in the form of an array of NA strings, each containing m x NB X Nc bytes.
Like all PostScript arrays, the table array is indexed from 0; index a thus varies

from 0 to NA— 1, index b from 0 to NB— 1, and index c from 0 to Nc— 1. The
table entry for coordinates (a, b, c) is found in the string at index a in the
lookup table, in the m bytes starting at position m x (b x Nc+ c). This entry

corresponds to the following color value in the render color space:

A = Ao + a x (Ai — A0)/ (NA— 1)

B = Bo+ b x (B — B0)/(NB— 1)

C = Co + c x (C — Co)/ (Nc — 1)

The limiting values Ao, A1, Bo, B1, Co, and C1 are specified by the color ren-
dering dictionary's RangeABC entry. The m encoded device color component
values el, e2, en, corresponding to a given color in ABC space are com-
puted by locating the nearest adjacent table entries and then interpolating
among the encoded byte values contained in those entries.

CHAPTER 7
468

I
Rendering I

The elements T1, T2, ..., T„, are PostScript procedures that transform the in-

terpolated, encoded components to device color components. These trans-
formations are

d = T(e /255) 1 i i
d2 = 7(e2/255)

dm = Tm (em /255)

In other words, the interpreter divides each encoded component by 255, pro-

ducing a number in the range 0.0 to 1.0, and pushes it on the operand stack.

It then calls the corresponding T procedure, which is expected to consume its

operand and produce a result in the range 0.0 to 1.0. Because these proce-

dures are called at unpredictable times and in unpredictable environments,
they must operate as pure functions without side effects.

The values dp d2, ..., d, constitute the components of the final device color

value. That is, if m is 3, then d1, d2, and d3 are the red, green, and blue com-

ponents; if m is 4, then d1, d2, d3, and d4 are the cyan, magenta, yellow, and
black components.

Creation Date string (Optional; LanguageLevel 3) The date and time at which the color rendering

dictionary was created or most recently modified. The value of this entry

should be coordinated with the calibrationDateTimeTag attribute of any

associated ICC profile, and its syntax should conform to the international

standard ASN.1, defined in the document ITU X.208 or ISO/IEC 8824. (ICC

profiles are a standard means, defined by an organization called the Inter-

national Color Consortium, for describing the color properties of a device;

they can be translated in a straightforward way to or from a PostScript ren-

dering dictionary.) This entry is included for information only; the Post-

Script interpreter does not consult it.

Renderinglntent name or (Optional; LanguageLevel 3) The rendering intent that this color rendering

string dictionary is designed to achieve (see Section 7.1.3, "Rendering Intents").

This entry is included for information only; the PostScript interpreter does
not consult it.

469
CIE-Based Color to Device Color

7.1.3 Rendering Intents

Although CIE-based color specifications are theoretically .device-independent,

they are subject to practical limitations in the color reproduction capabilities of
the output device. Such limitations may sometimes require compromises to be
made among various properties of a color specification when rendering colors for
a given device. Specifying a rendering intent (LanguageLevel 3) allows a PostScript
program to set priorities regarding which of these properties to preserve and
which to sacrifice. For example, the program might request that in-gamut colors

be reproduced exactly while sacrificing the accuracy of out-of-gamut colors, or
that a scanned image such as a photograph be rendered in a perceptually "pleas-
ing" manner at the cost of strict colorimetric accuracy.

Table 7.2 lists the standard rendering intents recognized in the initial release of
LanguageLevel 3 interpreters from Adobe Systems. These have been deliberately

chosen to correspond closely with the rendering intents defined by the Inter-
national Color Consortium (ICC), an industry organization that has developed
standards for device-independent color. Note, however, that the exact set of ren-
dering intents supported may vary from one output device to another; a particu-

lar device may not support all possible intents, or may support additional ones
beyond those listed in the table. As discussed below, the PostScript interpreter

provides reasonable default behavior even for rendering intents that it does not
recognize.

Rendering intents are specified with the findcolorrendering operator. This opera-
tor accepts a single operand, a name or string identifying the desired rendering

intent. The operator uses this information, along with the current values of the

page device and the current halftone, to select a suitable color rendering diction-
ary (CRD) for rendering colors on the device according to the requested intent. If
no appropriate CRD is available, the operator proposes an alternate CRD instead.
In either case, it returns the name of the CRD on the stack, along with a boolean

value indicating whether the CRD satisfies the requested rendering intent or is
merely an alternate. The CRD name can then be passed to the findresource oper-
ator to find the corresponding dictionary in the ColorRendering resource cate-

gory. See the description of the findcolorrendering operator in Chapter 8 for
further details.

I CHAPTER 7
470

I
Rendering l

TABLE 7.2 Rendering intents

RENDERING INTENT DESCRIPTION

AbsoluteColorimetric Colors are represented solely with respect to the light source; no
correction is made for the medium's white point (such as the

color of unprinted paper). Thus, for example, a monitor's white
point, which is bluish compared to that of a printer's paper,

would be reproduced with a blue cast. In-gamut colors are
reproduced exactly; out-of-gamut colors are mapped to the
nearest value within the reproducible gamut. This style of
reproduction has the advantage of providing exact color
matches from one output medium to another. It has the

disadvantage of causing colors with Y values between the
medium's white point and 1.0 to be out of gamut. A typical use

might be for logos and solid colors that require exact

reproduction across different media.

RelativeColorimetric Colors are represented with respect to the combination of the
light source and the medium's white point (such as the color of
unprinted paper). Thus, for example, a monitor's white point
would be reproduced on a printer by simply leaving the paper
unprinted, ignoring color differences between the two media.
In-gamut colors are reproduced exactly; out-of-gamut colors are
mapped to the nearest value within the reproducible gamut.

This style of reproduction has the advantage of adapting for the
varying white points of different output media. It has the

disadvantage of not providing exact color matches from one
medium to another. A typical use might be for vector graphics.

Saturation Colors are represented in a manner that preserves or emphasizes

saturation. Reproduction of in-gamut colors may or may not be
colorimetrically accurate. A typical use might be for business
graphics, where saturation is the most important attribute of the

color.

Perceptual Colors are represented in a manner that provides a pleasing
perceptual appearance. This generally means that both in-gamut
and out-of-gamut colors are modified from their precise

colorimetric values in order to preserve color relationships. A

typical use might be for scanned images.

471
CIE-Based Color to Device Color I

Note: The only graphics state parameters considered by the findcolorrendering oper-
ator are the current device and halftone. Other parameters of the graphics state, such
as black-generation, undercolor-removal, and transfer functions, are not taken into
account, since (unlike halftoning) they depend only on the output device and not on
the particular graphical element being rendered.

To ensure that all relevant parameters are correctly accounted for, the invocation
of the findcolorrendering operator should follow any other operations that may
influence either the halftone or the device configuration. Example 7.1 illustrates
the use of findcolorrendering to request the Perceptual rendering intent.

Example 7.1

/Perceptual findcolorrendering

% CRD found that satisfies combination of rendering intent,

% device configuration, and halftone

/ColorRendering findresource setcolorrenderirg

% Exact match for CRD not found. Use it or find a CRD another way.

% In this example, we'll use it if it's not DefaultColorRendering.

dup /DefaultColorRendering eq

{pop}

{/ColorRendering findresource setcolorrendering }

ifelse

ifelse

The example first uses the findcolorrendering operator to request a color render-
ing dictionary for the Perceptual rendering intent. If successful, findcolor-
rendering returns the name of an appropriate CRD for this intent on the stack,
along with a boolean result of true; the example then proceeds to retrieve the
CRD with findresource and install it in the graphics state with setcolorrend e ring.

If the boolean result from findcolorrendering is false, then no appropriate color
rendering dictionary could be found and the name returned on the stack is mere-
ly a proposed alternate. In this case, three actions are possible:

• Use the alternate CRD name that is returned.

• Select a different CRD using your own method.

• Leave the graphics state's current CRD installed.

472
I CHAPTER 7 Rendering I

It findcolorrendering returns false, the code in Example 7.1 first tests whether the
CRD returned is equal to the default CRD, DefaultColorRendering. In general,
this signifies that no useful substitution is possible to achieve the requested ren-
dering intent. In this case, the example simply leaves the current CRD installed in
the graphics state. If findcolorrendering returns an alternate CRD other than

DefaultColorRendering, the example uses findresource and setcolorrendering to
retrieve it and install it in the graphics state.

Customizing CRD Selection

Although the findcolorrendering operator itself is not meant to be overridden, it
delegates portions of its task to the procedures GetPageDeviceName, Get-
HalftoneName, and GetSubstituteCRD, which can be overridden. t hese are not
operators residing in systemdict, but procedures defined in the ColorRendering
procedure set (an instance of the ProcSet resource category). Adobe supplies
baseline versions that satisfy the stated requirements for the three procedures and
serve as templates for customizing them to a particular output device. See the de-
scriptions of these procedures in Chapter 8 for further information.

The findcolorrendering operator forms the name of a color rendering dictionary

from the requested rendering intent, the current device configuration, and the
halftone. The resulting name takes the form

renderingintent.deviceconfig.halftone

The renderingintent portion of the name is taken verbatim from the operand sup-
plied on the stack by the PostScript program; devicecon fig and halftone are found
by calling the GetPageDeviceName and GetHalftoneName procedures, respec-
tively. If no CRD with this name exists in the ColorRendering resource category,
findcolorrendering then calls the GetSubstituteCRD procedure to supply the

name of an alternate CRD.

In general, the GetPageDeviceName procedure first looks in the page device dic-
tionary for a PageDeviceName entry. If this entry is found, the procedure returns

its value. If the entry is not present or if its value is null, the procedure may con-
struct a name for the device configuration from the current page device parame-
ters—for example, MediaType or Mediadass—or may simply return the name

none. A particular device can override this default behavior by replacing the defi-
nition of the GetPageDeviceName procedure.

473
I7.2 Conversions among Device Color Spaces I

Similarly, the GetHa IftoneNa me procedure looks in the current halftone diction-
ary for a HalftoneName entry and returns its value if found. If the entry is not

present, GetH a lftone N a me may analyze the current halftone and attempt to form
a name or may simply return none. Again, a device can customize the behavior of
the GetHalftoneNa me procedure by overriding its definition.

The behavior of the default GetSubstituteCRD procedure is device-dependent. As
a last resort, GetSubstituteCRD returns the name of some built-in color rendering

dictionary, such as DefaultColorRendering.

7.2 Conversions among Device Color Spaces

Each raster output device has a native color space, which typically is one of the

standard device color spaces (DeviceGray, DeviceRGB, or DeviceCMYK). In other
words, most devices support reproduction of colors according to a grayscale

(monochrome), red-green-blue, or cyan-magenta-yellow-black model. If the de-
vice supports continuous-tone output, reproduction occurs directly. Otherwise,
it is accomplished by means of halftoning.

Note: In LanguageLevel 3, a device's native color space may be a DeviceN space rath-

er than one of the standard device color spaces. See Section 7.2.5, "Conversion to
DeviceN Spaces," for details on the color conversion process in this case.

A device's native color space is determined by the ProcessColorModel entry in its

page device dictionary (see Section 6.2.5, "Color Support"). Knowing the native
color space and other output capabilities of the device, the PostScript interpreter

can automatically convert the color values specified in a PostScript program to
those appropriate for the device's native color space. For example, if a PostScript

program specifies colors in the DeviceRGB color space, but the device supports
grayscale (such as a monochrome display) or CMYK (such as a color printer), the

interpreter performs the necessary conversions. If the program specifies colors di-
rectly in the device's native color space, no conversions are necessary.

A program can also request explicit conversions among device color spaces by in-
voking the operators currentgray, currentrgbcolor, currenthsbcolor, or current-
cmykcolor, which return color values according to specific color spaces. These
operators are described in Section 4.8.2, "Device Color Spaces!' All PostScript

implementations support conversions between DeviceRGB and DeviceGray; con-

versions to and from DeviceCMYK are a LanguageLevel 2 feature (also available in
LanguageLevel 1 implementations with the color extensions).

I CHAPTER 7
474

Rendering I

Note: These operators can convert colors only among device color spaces, not to or

from CIE-based or special color spaces. If the current color space is an Indexed color
space or is a Separation or DeviceN color space with its alternative color space select-
ed, these operators are applied to the underlying color space.

The conversions described here do not involve the use of transfer functions or
halftone functions. When colors are to be rendered on the output device, the
transfer functions and halftone functions are applied at a later stage to the output
of the color conversion operation. When colors are simply read back by a Post-
Script program with one of the operators mentioned above, transfer functions
and halftone functions are not applied at all.

The algorithms used to convert among device color spaces are very simple. As
perceived by a human viewer, the conversions produce only crude approxima-
tions of the original colors. More sophisticated control over color conversion can

be achieved by means of CIE-based color specification and rendering. Addition-
ally, device color spaces can be remapped into CIE-based color spaces (see
"Remapping Device Colors to CIE" on page 237).

7.2.1 Conversion between DeviceRGB and DeviceGray

Black, white, and intermediate shades of gray can be considered special cases of

RGB color. A grayscale value is described by a single number: 0.0 corresponds to
black, 1.0 to white, and intermediate values to different gray levels.

A gray level is equivalent to an RGB value with all three components the same. In
other words, the RGB color value equivalent to a specific gray value is simply

red = gray
green = gray
blue = gray

The gray value for a given RGB value is computed according to the NTSC video

standard. This standard determines how a color television signal is rendered on a
black-and-white television set.

gray = 0.3 x red + 0.59 x green + 0.11 x blue

Colors specified according to the HSB (hue-saturation-brightness) model are
equivalent to those specified in the RGB model, but expressed in a different co-
ordinate system called the hexcone model; see the Bibliography for sources of fur-

I 7.2
475

Conversions among Device Color Spaces I

ther information. Either form of specification produces colors in the DeviceRGB

color space; HSB is not a color space in its own right.

7.2.2 Conversion between DeviceCMYK and DeviceGray

Nominally, a gray level is the complement of the black component of CMYK.
Therefore, the CMYK color value equivalent to a specific gray level is simply

cyan = 0.0
magenta = 0.0
yellow = 0.0
black = 1.0 — gray

To obtain the equivalent gray level for a given CMYK value, the contributions of

all components must be taken into account:

gray = 1.0 — min(1.0, 0.3 x cyan + 0.59 x magenta + 0.11 X yellow + black)

The interactions between the black component and the other three are elaborated

below.

7.2.3 Conversion from DeviceRGB to DeviceCMYK

Conversion of a color value from RGB to CMYK is a two-step process. The first

step is to convert the red-green-blue value to equivalent cyan, magenta, and yel-
low components. The second step is to generate a black component and alter the

other components to produce a better approximation of the original color.

The subtractive color primaries cyan, magenta, and yellow are the complements
of the additive primaries red, green, and blue. For example, a cyan ink subtracts

the red component of white light. In theory, the conversion is very simple:

cyan = 1.0 — red
magenta = 1.0 — green
yellow = 1.0 — blue

For example, a color that is 0.2 red, 0.7 green, and 0.4 blue can also be expressed
as 1.0 — 0.2 = 0.8 cyan, 1.0 — 0.7 = 0.3 magenta, and 1.0 — 0.4 = 0.6 yellow.

476
I CHAPTER 7

i Rendering l

Logically, only cyan, magenta, and yellow are needed to generate a printing color.
An equal level of cyan, magenta, and yellow should create the equivalent level of
black.

In practice, colored printing inks do not mix perfectly; such combinations often
form dark brown shades instead of true black. To obtain a truer color rendition
on a printer, it is often desirable to substitute true black ink for the mixed-black
portion of a color. Most color printers support a black component (the K compo-
nent of CMYK). Computing the quantity of this component requires some addi-
tional steps:

1. Black generation calculates the amount of black to be used when trying to re-
produce a particular color.

2. Undercolor removal reduces the amounts of the cyan, magenta, and yellow
components to compensate for the amount of black that was added by black
generation.

The complete conversion from RGB to CMYK is as follows, where BG(k) and
UCR(k) are invocations of the black-generation and undercolor-removal func-
tions, respectively:

c = 1.0 — red
m = 1.0 — green
y = 1.0— blue
k = min (c, m, y)

cyan = min (1.0, max (0.0, c — UCR(k)))
magenta = min (1.0, max (0.0, m — UCR(k)))
yellow = min (1.0, max (0.0, y — UCR(k)))
black = min (1.0, max (0.0, BG(k)))

The black-generation and undercolor-removal functions are defined as Post-
Script procedures. The setblackgeneration and setundercolorremoval operators

set these parameters in the graphics state. The interpreter calls these procedures
when it needs to perform RGB-to-CMYK conversion. Each procedure is called
with a single numeric operand and is expected to return a single numeric result.
Because these procedures are called at unpredictable times, they must operate as
pure functions without side effects.

The operand of both procedures is k, the minimum of the intermediate c, m, and
y values that have been computed by subtracting the original red, green, and blue

477
I7.2 i Conversions among Device Color Spaces I

components from 1.0. Nominally, k is the amount of black that can be removed
from the cyan, magenta, and yellow components and be substituted as a separate

black component.

The black-generation function computes the black component as a function of
the nominal k value. It can simply return its k operand unchanged, or it can re-
turn a larger value for extra black, a smaller value for less black, or 0.0 for no
black at all.

The undercolor-removal function computes the amount to subtract from each of
the intermediate c, m, and y values to produce the final cyan, magenta, and yellow
components. It can simply return its k operand unchanged, or it can return 0.0
(so no color is removed), some fraction of the black amount, or even a negative

amount, thereby adding to the total amount of ink.

The final component values that result after applying black generation and
undercolor removal are expected to be in the range 0.0 to 1.0. If a value falls out-
side this range, the nearest valid value is substituted automatically, without error
indication. This is indicated explicitly by invocations of min and max operations

in the formulas given above.

The correct choice of black-generation and undercolor-removal functions de-
pends on the characteristics of the output device—for example, how inks mix.
Each device is configured with default values that are appropriate for that device.

7.2.4 Conversion from DeviceCMYK to DeviceRGB

Conversion of a color value from CMYK to RGB is a simple operation that does
not involve black generation or undercolor removal:

red = 1.0 — min (1.0, cyan + black)
green = 1.0 — min (1.0, magenta + black)
blue = 1.0 — min (1.0, yellow + black)

In other words, the black component is simply added to each of the other compo-
nents, which are then converted to their complementary colors by subtracting
them each from 1.0.

[CHAPTER 7
478
I

Rendering l

7.2.5 Conversion to DeviceN Spaces

In LanguageLevel 3, a device's native color space can be a DeviceN space. The set
of process colorants used to render such a color space is device-dependent. The
SeparationColorNames entry in the page device dictionary (see Section 6.2.5,
"Color Support") lists the possible device colorants from which they are drawn.

Conversions from DeviceRGB, DeviceCMYK, or DeviceGray to a DeviceN space
are performed by device-dependent means, which generally are not under Post-
Script program control. Some devices may use the defined undercolor-removal
and black-generation functions when converting from DeviceRGB to a four-
component DeviceN color space.

Note: There is no corresponding conversion from DeviceN to standard device color
spaces. If a PostScript program invokes setcolorspace to specify a DeviceN color
space, all components of that color space will map directly to correspondingly named
device colorants, regardless of the native color space of the device. If the device does
not support all of those colorants (as indicated in SeparationColorNames), the
DeviceN color space will revert to its alternative space (see "DeviceN Color Spaces"
on page 245).

7.3 Transfer Functions

A transfer function adjusts the values of color components to compensate for
nonlinear response in an output device and in the human eye. Each component
of a device color space—for example, the red component of the DeviceRGB
space—is intended to represent the perceived lightness or intensity of that color
component in proportion to the component's numeric value. Many devices do
not actually behave this way, however; the purpose of a transfer function is to
compensate for the device's actual behavior. This operation is sometimes called
gamma correction (not to be confused with the CIE-based gamut mapping
function performed as part of CIE-based color rendering).

In the sequence of steps for processing colors, the PostScript interpreter applies
the transfer function after performing any needed conversions between color
spaces, but before applying a halftone function, if necessary. Each color compo-
nent has its own separate transfer function; there is no interaction between com-
ponents.

479
Transfer Functions I

Transfer functions always operate in the native color space of the output device,
regardless of the color space in which colors were originally specified. For exam-
ple, for a CMYK device, the transfer functions apply to the device's cyan, magen-
ta, yellow, and black color components, even if the colors were originally
specified in, say, the DeviceRGB or CIEBasedABC color space.

There are three ways to specify transfer functions:

• The settransfer operator establishes a single transfer function to be applied to
all color components. Most LanguageLevel 1 implementations support only a
single transfer function.

• The setcolortransfer operator establishes four separate transfer functions, one
each for red, green, blue, and gray or their complements cyan, magenta, yellow,
and black. An RGB device uses the first three; a monochrome device uses the
gray transfer function only; and a CMYK device uses all four. setcolortransfer

is supported in LanguageLevel 2 and in some LanguageLevel 1 implementa-
tions, primarily those in color printers.

• The sethalftone operator can establish transfer functions as optional entries in
halftone dictionaries (see Section 7.4.3, "Halftone Dictionaries"). This is the
only way to set transfer functions for nonprimary color components, or for any
component in devices whose native color space is a DeviceN space. Transfer
functions specified in halftone dictionaries override those specified by
settransfer or setcolortransfer. Halftone dictionaries are a LanguageLevel 2 fea-

ture.

A transfer function is a PostScript procedure that can be called with a numeric
operand in the range 0.0 to 1.0 on the operand stack and returns a number in the
same range. The operand is the value of a color component in the output device's
native color space, either specified directly or produced by conversion from some
other color space. The procedure's result is the transformed component value to
be transmitted to the device (after halftoning, if necessary). Both the operand and
the result are always interpreted as if the color component were additive (red,
green, blue, or gray): the greater the numeric value, the lighter the color. If the
component is subtractive (cyan, magenta, yellow, black, or a spot color), the
PostScript interpreter converts the operand to additive form by subtracting it
from 1.0 before passing it to the transfer function. The result returned by the
transfer function is always in additive form, and is passed on to the halftone func-

tion in that form.

I CHAPTER 7
480

Rendering

Because the transfer function is called at unpredictable times and in unpredict-

able environments, it must operate as a pure function: it must not depend on
variable data other than its operand, and must have no side effects.

In addition to their intended use for gamma correction, transfer functions can be
used to produce a variety of special, device-dependent effects. For example, on a
monochrome device, the transfer function

{1 exch sub}

inverts the output colors, producing a negative rendition of the page. In general,

this method does not work for color devices; inversion can be more complicated
than merely inverting each of the components. Because transfer functions pro-
duce device-dependent effects, a page description that is intended to be device-
independent should not alter them.

Note: When the current color space is DeviceGray and the output device's native
color space is DeviceCMYK, the interpreter uses only the gray transfer function. The
normal conversion from DeviceGray to DeviceCMYK produces 0.0 for the cyan,
magenta, and yellow components. These components are not passed through their
respective transfer functions, but are rendered directly, producing output containing
no colored inks. This special case exists for compatibility with existing applications
that use settransfer to obtain special effects on monochrome devices, and applies
only to colors specified in the DeviceGray color space.

7.4 Halftones

Halftoning is a process by which continuous-tone colors are approximated on an
output device that can achieve only a limited number of discrete colors. Colors
that the device cannot produce directly are simulated by using patterns of pixels

in the colors available. Perhaps the most familiar example is the rendering of gray
tones with black and white pixels, as in a newspaper photograph.

Some output devices can reproduce continuous-tone colors directly. Halftoning
is not required for such devices; after gamma correction by the transfer functions,
the color components are transmitted directly to the device. On devices that do
require halftoning, it occurs after all color components have been transformed by

the applicable transfer functions. The input to the halftone function consists of
continuous-tone, gamma-corrected color components in the device's native color
space. Its output consists of pixels in colors the device can reproduce.

481

I
Halftones I

The PostScript language provides a high degree of control over details of the half-
toning process. For example, in color printing, independent halftone screens
must be specified for each of several colorants. When rendering on low-
resolution displays, fine control over halftone patterns is needed to achieve the
best approximations of gray levels or colors and to minimize visual artifacts.

Note: Remember that everything pertaining to halftones is, by definition, device-
dependent. In general, when an application provides its own halftone specifications,
it sacrifices portability. Associated with every device is a default halftone definition
that is appropriate for most applications. Only relatively sophisticated applications
need to define their own halftones to achieve special effects.

All halftones are defined in device space, unaffected by the current transformation
matrix. For correct results, a PostScript program that defines a new halftone must
know the resolution and orientation of device space. The best choice of halftone
parameters often depends on specific physical properties of the output device,
such as pixel shape, overlap between pixels, and effects of electronic or mechani-
cal noise.

7.4.1 How Halftones Are Defined

In general, halftoning methods are based on the notion of a halftone screen, which
divides the array of device pixels into cells that can be modified to produce the de-
sired halftone effects. (Halftone screens are described in Section 7.4.2) There are
three ways to specify halftones in a PostScript program:

• The setscreen operator establishes a single halftone screen to be applied to all
color components. The halftone screen can be specified in only one way: by its
frequency, angle, and spot function. (These operands have the same meanings
as the Frequency, Angle, and SpotFunction entries in a type 1 halftone diction-
ary, described in Section 7.4.4, "Spot Functions.") Most LanguageLevel 1 im-
plementations support only a single halftone screen.

• The setcolorscreen operator establishes four separate halftone screens, one
each for red, green, blue, and gray or their complements cyan, magenta, yellow,
and black An RGB device uses the first three; a monochrome device uses the
gray screen only; and a CMYK device uses all four. setcolorscreen is supported
in LanguageLevel 2 and in some LanguageLevel 1 implementations, primarily
those in color printers.

I CHAPTER 7
482

Rendering I

• The sethalftone operator installs a halftone dictionary, which can describe any

of several types of halftones. The dictionary contains the parameters of the
halftoning algorithm, either for all color components together or for each com-
ponent separately. It may optionally contain other rendering controls as well,
such as transfer functions.

sethalftone is the most general way to specify halftones. Any halftone that can be
defined in the other two ways can also be defined as a halftone dictionary. Addi-
tionally, sethalftone is the only way to establish a halftone for a nonprimary color
component, or for any color component on a device whose native device space is
a DeviceN space. However, halftone dictionaries are a LanguageLevel 2 feature,
whereas setscreen (and sometimes setcolorscreen) is available in all Language-
Levels.

For compatibility between LanguageLevels, the setscreen, setcolorscreen,
sethalftone, currentscreen, currentcolorscreen, and currenthalftone operators
interact in various ways to ensure reasonable behavior when a halftone that has
been defined in one way is read out in a different way. Details of these interac-
tions are given in the descriptions of the six operators in Chapter 8. Additionally,
three user parameters affect the behavior of the halftone-setting operators:

• AccurateScreens (LanguageLevel 2) enables the accurate halftoning feature for
halftones defined by setscreen and colorscreen. The effect is equivalent to that
of setting the AccurateScreens flag in a type 1 halftone dictionary (see "Type 1
Halftone Dictionaries" on page 487).

• HalftoneMode (LanguageLevel 3) allows requested halftones to be overridden
by a built-in device-specific halftone (see Section C.3.4, "Halftone Screens," on
page 756).

• MaxSuperScreen (LanguageLevel 3) controls the maximum size of a supercell,

which can increase the number of achievable gray levels (see Section 7.4.8, "Su-
percells.")

7.4.2 Halftone Screens

As noted above, PostScript halftone functions are based on the use of a halftone

screen. A screen is defined by conceptually laying a uniform rectangular grid of
halftone cells over the device pixel array. Each pixel belongs to one cell of the grid;
a single cell usually contains many pixels. The screen grid is defined entirely in
device space, and is unaffected by modifications to the current transformation

483
Halftones I

matrix (CTM). This property is essential to ensure that adjacent areas colored by
halftones are properly stitched together without visible "seams?'

On a black-and-white device, each cell of a screen can be made to approximate a
shade of gray by painting some of the cell's pixels black and some white. Numeri-
cally, the gray level produced within a cell is the ratio of the cell's pixels that are
white to the total number of pixels in that cell. If a cell contains n pixels, then it
can render n + 1 different gray levels: all pixels black, 1 pixel white, 2 pixels
white, ... n — 1 pixels white, all n pixels white. A desired gray value g in the range
0.0 to 1.0 is produced by making i pixels white, where i = floor (g x n).

The foregoing description also applies to color output devices whose pixels con-
sist of primary colors that are either completely on or completely off. Most color
printers, but not color displays, work this way. Halftoning is applied to each color
component independently, producing shades of that color.

Color components are presented to the halftoning machinery in additive form,
regardless of whether they were originally specified in additive (RGB or gray) or
subtractive (CMYK or tint) form. Larger values of a color component represent
lighter colors—greater intensity in an additive device such as a display, and less
ink in a subtractive device such as a printer. Transfer functions produce color val-
ues in additive form; see Section 7.3, "Transfer Functions?'

7.4.3 Halftone Dictionaries

A halftone dictionary is a dictionary object whose entries are parameters to the
halftoning machinery. The graphics state includes a current halftone dictionary,
which specifies the halftoning process to be used by the painting operators. The
operator currenthalftone returns the current halftone dictionary; sethalftone
establishes a different halftone dictionary as the current one. The halftone dic-
tionary is a LanguageLevel 2 feature; in LanguageLevel 1, the setscreen operator

controls halftoning in a more limited way.

A halftone dictionary is a self-contained description of a halftoning process.
Painting operations, such as fill, stroke, and show, consult the current halftone
dictionary when they require information about the halftoning process. The
interpreter consults the halftone dictionary at unpredictable times, and can cache
the results internally for later use. For these reasons, once a halftone dictionary
has been passed to sethalftone, its contents should be considered read-only.
Some of the entries in the dictionary are procedures that are called to compute

I CHAPTER 7
484

Rendering I

the required information. Such procedures must compute results that depend
only on information in the halftone dictionary and not on outside information
such as the graphics state itself, and they must have no side effects.

Note: This restriction rules out certain techniques, such as the "pattern fill" example
in the PostScript Language Tutorial and Cookbook, that depend on the spot func-
tion (Section 7.4.4) being executed at predictable times. Such techniques work for
halftones defined by setscreen, but not for those defined by halftone dictionaries. See
Section 4.9, "Patterns," for recommended ways to create device-independent pat-
terns.

Every halftone dictionary must have a HalftoneType entry whose value is an inte-
ger. This specifies the overall type of halftoning process. The remaining entries in
the dictionary are interpreted according to this type. Table 7.3 lists the standard
halftone types.

7.4.4 Spot Functions

A common way of defining a halftone screen is by specifying a frequency, angle,
and spot function. The frequency is the number of halftone cells per inch; the
angle indicates the orientation of the grid lines relative to the device coordinate
system. As a cell's desired gray level varies from black to white, individual pixels
within the cell change from black to white in a well-defined sequence: if a partic-

ular gray level includes certain white pixels, lighter grays will include the same
white pixels and some additional ones as well. The order in which pixels change

from black to white for increasing gray levels is determined by a PostScript pro-
cedure called a spot function, which specifies the order of pixel whitening in an in-
direct way that minimizes interactions with the screen frequency and angle.

Consider a halftone cell to have its own coordinate system: the center of the cell is
the origin and the corners are at coordinates ±1.0 horizontally and vertically.
Each pixel in the cell is centered at horizontal and vertical coordinates that both
lie in the range —1.0 to + 1.0. For each pixel, the PostScript interpreter pushes the
pixel's coordinates on the operand stack and calls the spot function procedure.
The procedure must return a single number in the range —1.0 to +1.0 that defines
the pixel's position in the whitening order.

485
Halftones I

TABLE 7.3 Types of halftone dictionaries

TYPE MEANING

1 Defines a single halftone screen by a frequency, angle, and spot function. (The
setscreen operator, available in all LanguageLevels, also defines halftones this

way, but expects the parameters to be given as separate operands rather than
bundled into a halftone dictionary.)

2 Defines four separate halftone screens, one for each primary color component.
Each screen is defined by a frequency, angle, and spot function. (The

setcolorscreen operator, available in some LanguageLevel 1 implementations,
also defines halftones this way, but expects the parameters to be given as
separate operands rather than bundled into a halftone dictionary.)

3 Defines a single halftone screen by a threshold array containing 8-bit sample
values taken from a string.

4 Defines four separate halftone screens, one for each primary color component.
Each screen is defined by a threshold array containing 8-bit sample values
taken from a string.

5 Defines an arbitrary number of halftone screens, one for each color
component (including both primary and spot color components). The keys in
this dictionary are names of color components; the values are halftone
dictionaries of other types, each defining the halftone screen for a single color
component.

6 (LanguageLevel 3) Defines a single halftone screen by a threshold array

containing 8-bit sample values taken from a file.

9 (LanguageLevel 3) Defines a single halftone screen whose data is proprietary.
The halftone dictionary may contain only the standard entries defined by

Adobe.

10 (LanguageLevel 3) Defines a single halftone screen by a threshold array
representing a halftone cell that may have a nonzero screen angle.

16 (LanguageLevel 3) Defines a single halftone screen by a threshold array
containing 16-bit sample values taken from a file.

100 (LanguageLevel 3) Defines a single halftone screen whose data is proprietary.

The halftone dictionary may contain optional, proprietary entries in addition
to the standard ones defined by Adobe.

I CHAPTER 7 486
Rendering

The specific values the spot function returns are not significant; all that matters is
the relative values returned for different pixels. As a cell's gray level varies from
black to white, the first pixel whitened is the one for which the spot function

returns the lowest value, the next pixel is the one with the next higher spot func-
tion value, and so on. If two pixels have the same spot function value, their rela-
tive order is chosen arbitrarily.

Figure 7.1 shows the effects of some relatively simple spot functions that define
common halftone patterns.

50 per inch at 45 100 per inch at 45 50 per inch at 45 75 per inch at 45
Round dot screen Round dot screen Round dot screen Line screen

FIGURE 7.1 Various halftoning effects

A spot function whose value is inversely related to the distance from the center of
the cell produces a "dot screen" in which the black pixels are clustered within a
circle whose area is inversely proportional to the gray level. An example of such a
spot function is

{ 180 mu' cos

exch 180 mul cos

add

2 div

487
Halftones I

A spot function whose value is the distance from a line through the center of the
cell produces a "line screen" in which the white pixels grow away from that line.
More complex patterns are occasionally useful as well.

Type 1 Halftone Dictionaries

Table 7.4 describes the contents of a halftone dictionary of type 1, which defines a
halftone screen in terms of its frequency, angle, and spot function. Like any half-
tone dictionary, it is selected with the sethalftone operator. This type of halftone
can also be set with the setscreen operator, available in all LanguageLevels, which
accepts the frequency, angle, and spot function directly as operands rather than
as entries in a halftone dictionary. Both sethalftone and setscreen may make

slight adjustments to the requested frequency and angle to ensure that the pat-
terns of enclosed pixels remain constant as screen cells are replicated over the en-
tire page.

TABLE 7.4 Entries in a type 1 halftone dictionary

KEY TYPE VALUE

HalftoneType integer (Required) A code identifying the halftone type that this dictionary describes;
must be 1 for this type of halftone.

HalftoneName name or (Optional; LanguageLevel 3) The name of the halftone dictionary Returned
string by the GetHalftoneName procedure and used by findcolorrendering in con-

structing the name of a color rendering dictionary (see "Customizing CRD
Selection" on page 472).

Frequency number (Required) The screen frequency, measured in halftone cells per inch in de-
vice space.

Angle number (Required) The screen angle, in degrees of rotation counterclockwise with re-

spect to the device coordinate system. (Note that most output devices have
left-handed device spaces; on such devices, a counterclockwise angle in de-
vice space will correspond to a clockwise angle in default user space and on

the physical medium.)

SpotFunction procedure (Required) A procedure defining the order in which device pixels within a

screen cell are adjusted for different gray levels.

AccurateScreens boolean (Optional) A flag specifying whether to invoke a special halftone algorithm
that is extremely precise, but computationally expensive.

ActualFrequency number (Optional) A numeric value to be set, if present, to the actual frequency
achieved.

488
I CHAPTER 7 Rendering I

ActualAngle number (Optional) A numeric value to be set, if present, to the actual angle achieved.

TransferFunction procedure (Optional) A transfer function that overrides the one specified by settransfer
or setcolortransfer. Required if this dictionary is an element in a type 5 half-
tone dictionary (see "Type 5 Halftone Dictionaries" on page 498) and repre-
sents either a nonprimary color component or a component of a DeviceN
native color space.

A type I halftone dictionary's required entries Frequency, Angle, and
SpotFunction specify the basic parameters of the halftone screen. If the optional
entries ActualFrequency and ActualAngle are present, the sethalftone operator

sets their values to the actual frequency and angle achieved. The Frequency and
Angle entries remain undisturbed, reflecting the values originally requested by
the program. This feature is not available for screens defined with the setscreen
operator.

If the optional entry AccurateScreens is present with a boolean value of true, a
highly precise halftoning algorithm is substituted in place of the standard one; if

the AccurateScreens entry is false or is not present, ordinary halftoning is used.
Accurate halftoning achieves the requested screen frequency and angle with very

high accuracy, whereas ordinary halftoning adjusts them so that a single screen
cell is quantized to device pixels. High accuracy is important mainly for making
color separations on high-resolution devices. However, it may be computational-
ly expensive and so is ordinarily disabled. For screens defined with the setscreen
operator, this feature can be requested with the AccurateScreens user parameter.

When AccurateScreens is true, the sethalftone operator intentionally defers call-
ing the spot function until the screen is needed by some operator, such as fill, that
renders marks on the current page. sethalftone itself executes quickly; the poten-
tially high cost of building the screen is not incurred until the screen is actually
used. This makes it convenient to obtain ActualFrequency and ActualAngle
values for various candidate screens without incurring the cost of building them.

In principle, the PostScript language permits the use of halftone screens with

arbitrarily large cells—in other words, arbitrarily low frequencies. However, cells
that are very large relative to the device resolution or that are oriented at unfavor-
able angles may exceed the capacity of available memory. If this occurs, setscreen

or sethalftone executes a limitcheck error. The AccurateScreens feature often re-
quires very large amounts of memory to achieve the highest accuracy. (See

489
Halftones I

Appendix C for information on this and other user and system parameters affect-
ing halftone screens.)

7.4.5 Threshold Arrays

Another way to define a halftone screen is with a threshold array that directly
controls individual device pixels in a halftone cell. This technique provides a high
degree of control over halftone rendering. It also permits halftone cells to be rect-
angular, whereas those controlled by a spot function are always square.

A threshold array is much like a sampled image—a rectangular array of pixel
values—but is defined entirely in device space. Depending on the halftone type,
the threshold values occupy 8 or 16 bits each. Threshold values nominally repre-
sent gray levels in the usual way, from 0 for black up to the maximum (255 or
65,535) for white. The threshold array is replicated to tile the entire device space:
each pixel in device space is mapped to a particular sample in the threshold array.
On a bilevel device, where each pixel is either black or white, halftoning with a
threshold array proceeds as follows:

1. For each device pixel that is to be painted with some gray level, consult the
corresponding threshold value from the threshold array.

2. If the requested gray level is less than the threshold value, paint the device pixel
black; otherwise, paint it white. Gray levels in the range 0.0 to 1.0 correspond
to threshold values from 0 to the maximum available (255 or 65,535).

Note: A threshold value of 0 is treated as if it were 1; therefore, a gray level of 0.0
paints all pixels black, regardless of the values in the threshold array.

This scheme easily generalizes to monochrome devices with multiple bits per pix-
el. For example, if there are 2 bits per pixel, each pixel can directly represent one
of four different gray levels: black, dark gray, light gray, and white, encoded as 0,
1, 2, and 3, respectively. For any device pixel that is specified with some in-
between gray level, the halftoning algorithm consults the corresponding value in
the threshold array to determine whether to use the next-lower or next-higher
representable gray level. In this situation, the threshold values do not represent
absolute gray levels, but rather gradations between any two adjacent represent-
able gray levels.

I CHAPTER 7
490

l
Rendering I

A halftone defined in this way can also be used with color displays that have a
limited number of values for each color component. The red, green, and blue
components are simply treated independently as gray levels, applying the appro-
priate threshold array to each. (This technique also works for a screen defined as
a spot function, since the PostScript interpreter uses the spot function to com-
pute a threshold array internally.)

Type 3 Halftone Dictionaries

Table 7.5 describes the contents of a halftone dictionary of type 3, which defines a
halftone screen with a threshold array. The Width and Height entries specify the
dimensions of the array in device pixels. The contents of the array are given by a
string object in the dictionary's Thresholds entry, with each byte in the string rep-
resenting a single 8-bit threshold value.

TABLE 7.5 Entries in a type 3 halftone dictionary

KEY TYPE VALUE

HalftoneType integer (Required) A code identifying the halftone type that this dictionary describes;
must be 3 for this type of halftone.

HalftoneName name or (Optional; LanguageLevel 3) The name of the halftone dictionary. Returned

string by the GetHalftoneName procedure and used by findcolorrendering in con-

structing the name of a color rendering dictionary (see "Customizing CRD
Selection" on page 472).

Width integer (Required) The width of threshold array, in device pixels.

Height integer (Required) The height of threshold array, in device pixels.

Thresholds string (Required) A string containing threshold values. The string must contain
Width X Height bytes of threshold data. Each byte represents a single thresh-

old value, defined in the same order as samples in a sampled image: the first

value is at device coordinates (0, 0), and horizontal coordinates change faster
than vertical.

TransferFunction procedure (Optional) A transfer function that overrides the one specified by settransfer

or setcolortransfer. Required if this dictionary is an element in a type 5 half-

tone dictionary (see "Type 5 Halftone Dictionaries" on page 498) and repre-
sents either a nonprimary color component or a component of a DeviceN
native color space.

491
7.4

Type 6 Halftone Dictionaries

Halftones I

The type 6 halftone dictionary (LanguageLevel 3) is similar to type 3, except that
the contents of the threshold array are obtained from a file instead of a string
object. This allows the threshold array to exceed the implementation limit for
strings (typically 65,535 bytes), although smaller threshold arrays can also be
defined in this way. Table 7.6 describes the contents of this type of halftone dic-
tionary.

TABLE 7.6 Entries in a type 6 halftone dictionary

KEY TYPE VALUE

HalftoneType integer

HalftoneName

Width

Height

Thresholds

(Required) A code identifying the halftone type that this dictionary describes;
must be 6 for this type of halftone.

name or (Optional) The name of the halftone dictionary. Returned by the GetHalftone-
string Name procedure and used by findcolorrendering in constructing the name of

a color rendering dictionary (see "Customizing CRD Selection" on

page 472).

integer (Required) The width of threshold array, in device pixels.

integer (Required) The height of threshold array, in device pixels.

file (Required) An input file from which at least Width x Height bytes of thresh-

old data can be read. Each byte represents a single threshold value, defined in

the same order as samples in a sampled image: the first value is at device co-

ordinates (0, 0), and horizontal coordinates change faster than vertical.

TransferFunction procedure (Optional) A transfer function that overrides the one specified by settransfer

or setcolortransfer. Required if this dictionary is an element in a type 5 half-

tone dictionary (see "Type 5 Halftone Dictionaries" on page 498) and repre-

sents either a nonprimary color component or a component of a DeviceN

native color space.

When presented with a type 6 halftone dictionary, the sethalftone operator im-

mediately reads Width x Height bytes from the file designated by the dictionary's
Thresholds entry and saves the contents of the resulting threshold array in inter-

nal storage. (If the file is the same one returned by the currentfile operator, the
threshold data is read in-line from the PostScript program itself.) The file must
be open for reading, but the file object's access attribute is disregarded;

setha none can read from an execute-only or no-access file object. sethalftone

I CHAPTER 7
492

Rendering I

closes the file if it encounters an end-of-file; otherwise, the file is left open. A
rangecheck error is raised if the file ends prematurely (that is, if end-of-file is en-
countered before the requisite number of bytes have been read).

When the current halftone is of type 6, the currenthalftone operator returns a
halftone dictionary whose Thresholds entry represents the contents of the thresh-
old array as if it were a file. That is, the Thresholds file object in the dictionary re-
turned by currenth a lftone is different from that originally given to setha non e.
Its access attribute and VM allocation mode are the same as those of the original

file. If the access attribute permits, a PostScript program can read the contents of
the threshold array from this file. The file treats the contents of the threshold
array as a circular buffer that can be read repeatedly; end-of-file will never be

reached. Regardless of the file object's access attribute, the dictionary returned by
currenthalftone can be presented to sethalftone to reinstall the same threshold
array.

Type 10 Halftone Dictionaries

Although type 3 and 6 halftone dictionaries can be used to specify a threshold
array with a zero screen angle, they make no provision for other angles. The
type 10 halftone dictionary (LanguageLevel 3) removes this restriction and allows
the use of threshold arrays for halftones with nonzero screen angles as well.

Halftone cells at nonzero angles can be difficult to specify, because they may not
line up well with scan lines and because it may be difficult to determine where a
given sampled point goes. The type 10 halftone dictionary addresses these diffi-
culties by dividing the halftone cell into a pair of squares that line up at zero
angles with the output device's pixel grid. The squares contain the same informa-
tion as the original cell, but are much easier to store and manipulate. In addition,
they can be mapped easily into the internal representation used for all rendering.

Figure 7.2 shows a halftone cell with a frequency of 38.4 cells per inch and an
angle of 50.2 degrees, represented graphically in device space at a resolution of
300 dots per inch. Each asterisk in the figure represents a location in device space
that is mapped to a specific location in the threshold array.

493

I
Halftones I

* *

* * * *

* * * * * *

* * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * *

* * * *

* *

*

FIGURE 7.2 Halftone cell with a nonzero angle

Figure 7.3 shows how the halftone cell can be divided into two squares. If the

squares and the original cell are tiled across device space, the area to the right of

the upper square maps exactly into the empty area of the lower square, and vice
versa (see Figure 7.4). The last row in the first square is immediately adjacent to

the first row in the second, and starts in the same column.

FIGURE 7.3 Angled halftone cell divided into two squares

I CHAPTER 7
494

Rendering I

X a

a a

a a a

a a a a

a a a a a

a

a a

a a a

a a a a

a a a a a

a a a a a a

a a a a a

a a a a

a a a

a a

Y a

CC

CCC

CC CC

CC

a a a ab

a a abb

a abbb

abbbb

bbbbb

bb

bbb

bbbb

*bbbb

bbbbbb

cbbbbb

ccbbbb

cccbbb

ccccbb

*cc ccb

CCCC

CCC

CC

bbbb

bbb

bb

FIGURE 7.4 Halftone cell and two squares tiled across device space

Any halftone cell can be divided in this way. The side of the upper square (X) is

equal to the horizontal displacement from a point in one halftone cell to the cor-

responding point in the adjacent cell, such as those marked by asterisks in
Figure 7.4. The side of the lower square (Y) is the vertical displacement between
the same two points. The frequency of a halftone screen constructed from squares
X and Y is thus given by

resolution
frequency =

jx2 + y2

and the angle by

angle = atan (TY()

Table 7.7 lists the entries in a type 10 halftone dictionary.

495
Halftones I

TABLE 7.7 Entries in a type 10 halftone dictionary

KEY TYPE VALUE

HalftoneType integer

Halftone Name

Xsquare

Ysquare

Thresholds

(Required) A code identifying the halftone type that this dictionary describes;

must be 10 for this type of halftone.

name or (Optional) The name of the halftone dictionary. Returned by the GetHalftone-

string Name procedure and used by findcolorrendering in constructing the name of
a color rendering dictionary (see "Customizing CRD Selection" on

page 472).

integer (Required) The side of square X, in device pixels.

integer (Required) The side of square Y, in device pixels.

string or (Required) A string or file containing threshold values, as in a type 3 or type 6

file halftone, respectively. If a string, it must contain Xsquare2 + Ysquare2 bytes

of threshold data; if a file, the stream must contain at least that many bytes. In

either case, the contents of square X are specified first, followed by those of

square Y Threshold values within each square are defined in the same order

as samples in a sampled image, with the first value at device coordinates

(0, 0) and horizontal coordinates changing faster than vertical.

If the value of Thresholds is a file, the currenthalftone operator will replace it

with a new file object representing the threshold array, as described under

"Type 6 Halftone Dictionaries" on page 491.

TransferFunction procedure (Optional) A transfer function that overrides the one specified by settransfer

or setcolortransfer. Required if this dictionary is an element in a type 5 half-

tone dictionary (see "Type 5 Halftone Dictionaries" on page 498) and repre-

sents either a nonprimary color component or a component of a DeviceN

native color space.

Type 16 Halftone Dictionaries

Like type 10, a type 16 halftone dictionary (LanguageLevel 3) defines a halftone

screen by specifying a threshold array whose contents are taken from a file, and it

allows nonzero screen angles. In type 16, however, each element of the threshold

array is 16 bits wide instead of 8. This allows the threshold array to distinguish

65,536 levels of color rather than only 256 levels. Table 7.8 describes the contents

of this type of halftone dictionary.

496
I CHAPTER 7

I
Rendering I

TABLE 7.8 Entries in a type 16 halftone dictionary

KEY TYPE VALUE

HalftoneType integer (Required) A code identifying the halftone type that this dictionary describes;

must be 16 for this type of halftone.

HalftoneName name or (Optional) The name of the halftone dictionary. Returned by the GetHalftone-

string Name procedure and used by findcolorrendering in constructing the name of
a color rendering dictionary (see "Customizing CRD Selection" on
page 472).

Width integer (Required) The width of the first (or only) rectangle in the threshold array, in
device pixels.

Height integer (Required) The height of the first (or only) rectangle in the threshold array, in
device pixels.

Width2 integer (Optional) The width of the optional second rectangle in the threshold array,
in device pixels. If present, then the Height2 entry must be present as well; if
absent, then the Height2 entry must also be absent and the threshold array
has only one rectangle.

Height2 integer (Optional) The height of the optional second rectangle in the threshold array,
in device pixels.

Thresholds file (Required) An input file from which at least 2 x Width x Height (or

2 x Width x Height + 2 x Width2 x Height2) bytes of threshold data can be
read. Each threshold value is 2 bytes (16 bits) wide, with the high-order byte
stored first. The contents of the first rectangle are specified first, followed by
those of the second rectangle. Threshold values within each rectangle are de-
fined in the same order as samples in a sampled image, with the first value at
device coordinates (0, 0) and horizontal coordinates changing faster than
vertical.

TransferFunction procedure (Optional) A transfer function that overrides the one specified by settransfer

or setcolortransfer. Required if this dictionary is an element in a type 5 half-
tone dictionary (see "Type 5 Halftone Dictionaries" on page 498) and repre-
sents either a nonprimary color component or a component of a DeviceN
native color space.

The threshold array can consist of either one or two rectangles. The dimensions

of the first (or only) rectangle are defined by the dictionary's Width and Height

entries; those of the second, optional rectangle are defined by the optional entries

Width2 and Height2. If two rectangles are specified, they will tile the device space

497
Halftones I

as shown in Figure 7.5. The last row in the first rectangle is immediately adjacent
to the first row in the second, and starts in the same column.

FIGURE 7.5 Tiling of device space in a type 16 halftone dictionary

When presented with a type 16 halftone dictionary, the sethalftone operator
reads the contents of the first rectangle from the next 2 x Width x Height bytes of

the file designated by the dictionary's Thresholds entry. It Width2 and Height2
entries are present, the operator reads an additional 2 x Width2 x Height2 bytes
representing the contents of the second rectangle. In either case, the operator
then saves the contents of the resulting threshold array in internal storage.

In most other respects, the Thresholds file and the internal threshold array are
treated the same as for a type 6 halftone dictionary. However, the currenthalftone
operator returns a halftone dictionary whose Thresholds file is no-access, regard-
less of the access attribute of the file originally presented to sethalftone. Conse-
quently, a PostScript program cannot read the contents of the threshold array;
however, it can present this dictionary to sethalftone to reinstall the same thresh-
old array.

7.4.6 Halftone Dictionaries with Multiple Color Components

Some devices, particularly color printers, require separate halftones for each indi-
vidual color component. Also, devices that can produce named separations may

require individual halftones for each separation. Halftone dictionaries of types 2,
4, and 5 allow individual halftones to be specified for an arbitrary number of

color components.

498
I CHAPTER 7 I

Rendering I

Type 2 and 4 Halftone Dictionaries

The type 2 halftone dictionary is similar to type 1 (see "Type 1 Halftone Diction-
aries" on page 487), but defines four halftone screens—one for each primary
color—instead of just one. Each of the four screens has its own frequency, angle,
and spot function. In place of a single Frequency entry, the dictionary has sepa-
rate entries named RedFrequency, GreenFrequency, BlueFrequency, and
GrayFrequency. Likewise, in place of the Angle and SpotFunction entries, it has
entries named RedAngle, RedSpotFunction, and so on. Of the optional entries
listed in Table 7.4 on page 487 for a type 1 halftone dictionary, only Accurate-
Screens and (in LanguageLevel 3) HalftoneName are available in type 2.

Similarly, a type 4 halftone dictionary resembles type 3 ("Type 3 Halftone Dic-
tionaries" on page 490), but defines four threshold arrays instead of just one. The
Width, Height, and Thresholds entries are replicated for each color, just as in a
type 2 halftone dictionary. The optional Tra n sfe rFu n cti o n entry is not available.

Note: The use of type 2 and 4 halftone dictionaries is not recommended, because the
same effects can be obtained using the type 5 halftone dictionary (see "Type 5 Half-
tone Dictionaries," below). These types are supported only for compatibility with

existing applications that use them.

Type 5 Halftone Dictionaries

A type 5 halftone dictionary is a composite dictionary containing independent
halftone definitions for multiple color components. Its keys are the names of in-

dividual colorants or color components; these may be either name or string ob-
jects, which are treated equivalently. The values associated with these keys are

other halftone dictionaries, each defining the halftone screen and transfer func-
tion for a single colorant or color component. The component halftone diction-

aries may be of any type except 2, 4, or 5.

The color components represented in a type 5 halftone dictionary fall into two

categories:

• Primary color components for the standard native device color spaces, as indi-
cated by the ProcessColorModel entry in the page device dictionary (Red,

499
Halftones I

Green, and Blue for DeviceRGB; Cyan, Magenta, Yellow, .incl Black for
DeviceCMYK; Gray for DeviceGray).

• Nonstandard color components listed in the SeparationColorNames entry in
the page device dictionary. These color components are available for use as spot
colorants in Separation and DeviceN color spaces. Some of them may also be
used as process colorants if the native color space is a DeviceN space. (Note that
a type 5 halftone dictionary is the only way to specify independent halftones for
colorants on a device whose native color space is a DeviceN space.)

The dictionary must also contain an entry whose key is Default and whose value

is a halftone dictionary to be used for any color component that does not have an
entry of its own. In LanguageLevel 3, there may optionally be an additional entry
named HalftoneName, a name or string object specifying the name of the type 5

dictionary. If present, this value is returned by the GetHalftoneName procedure
and used by the findcolorrendering operator in constructing the name of a color
rendering dictionary (see "Customizing CRD Selection" on page 472).

When a halftone dictionary of some other type appears as the value of an entry in
a type 5 halftone dictionary, it applies only to the single color component named

by that entry's key. This is in contrast to such a dictionary being used as the main
halftone dictionary (set with the sethalftone operator), which applies to all color
components. If nonprimary color components are requested when the current

halftone is defined by any means other than a type 5 halftone dictionary, the gray
halftone screen and transfer function are used for all such components.

7.4.7 Proprietary Halftone Dictionaries

Some output devices support special halftone techniques in addition to the stan-
dard ones built into the PostScript language itself. Some of these techniques work

well only with certain types of device technology or require special hardware to
work efficiently. These device-specific halftoning techniques are not described in
this book, but rather in the manufacturer's product documentation for individ-
ual devices.

Two special types of halftone dictionary, types 9 and 100 (both LanguageLevel 3),

support such device-dependent technologies. Both represent halftoning methods
whose data is proprietary to a specific product. It is not possible for a PostScript

program to gain any information about the contents or appearance of a type 9 or
type 100 halftone.

I CHAPTER 7
500

Rendering I

A type 9 halftone dictionary contains only the generic entries HalftoneType and
(optionally) HalftoneName, as shown in Table 7.9; a type 100 dictionary can also
include additional entries that a particular device or halftoning technique may
require. Any such optional entries are strictly private: although they are visible to
PostScript programs in the dictionary returned by the currenthalftone operator,
there is no way for a program to know what they control or what their permissi-

ble values are.

TABLE 7.9 Entries in a proprietary halftone dictionary

KEY TYPE VALUE

HalftoneType integer (Required) A code identifying the halftone type that this dictionary de-
scribes; must be 9 or 100 for a proprietary halftone.

HalftoneName name or string (Optional) The name of the halftone dictionary. Returned by the
GetHalftoneName procedure and used by findcolorrendering in con-
structing the name of a color rendering dictionary (see "Customizing
CRD Selection" on page 472).

other any type (Optional; type 100 only) Device-specific data.

Type 9 and 100 halftone dictionaries will be present only on those devices whose
manufacturers have specifically requested this type of support. If present, they

will usually be the device's default halftone dictionary; consequently, any printing
that a PostScript program does will automatically take advantage of them (unless
the program performs its own sethalftone call).

Note: Ordinarily, a page description should not define halftone dictionaries with

proprietary types; doing so makes the page description dependent on a specific out-
put device. Indeed, any use of halftone dictionaries in a page description compro-

mises device independence.

7.4.8 Supercells

The use of supercells (LanguageLevel 3) can increase the number of achievable
gray levels in most halftones by a factor of 4, up to 1016 grays, without increasing

the frequency of the halftone. This can greatly reduce the incidence of rendering
artifacts such as banding in shadings or contouring in images of faces or of the

sky.

501

l
Scan Conversion Details I

A supercell is an aggregate of four halftone cells that are manipulated as a single
unit. A gray level that cannot be faithfully rendered with a single halftone cell can
be more accurately achieved by slightly varying halftone cell values within a

supercell. For example, suppose the halftone cells are 6 pixels wide by 6 high, and
a gray level of 0.76 is specified. A single cell could mark 8 pixels for a gray level of
0.778, or 9 pixels for a gray level of 0.750; but a supercell could mark one of its
cells with 8 pixels and three with 9, producing a gray level of 0.757.

The creation of supercells is controlled by certain user and system parameters
(see Appendix C). The user parameter Ma x S u pe rScreen sets an upper limit on

the number of pixels in a supercell. The highest effective value is 1016 (254 x 4)
for halftones other than type 16; higher parameter values will not add more

printable gray levels. A change in the parameter value will affect subsequent

executions of sethalftone or setscreen, but it will not affect halftones already in
existence.

For a supercell to be created, the following conditions must hold:

• The number of pixels in the supercell must be less than or equal to
MaxSuperScreen.

• The supercell must be within the limits of the MaxScreenItem user parameter
and the MaxScreenStorage system parameter.

• The number of pixels in the original halftone cell must be less than the number
of distinct colorant values that the device supports.

If any of these conditions is not met, the supercell is not created and the original
halftone cell is used.

7.5 Scan Conversion Details

The final step of rendering is scan conversion. As discussed in Section 2.2, "Scan
Conversion," the PostScript interpreter executes a scan conversion algorithm to
paint graphics, text, and images in the raster memory of the output device.

The specifics of the scan conversion algorithm are not defined as part of the Post-

Script language. Different implementations can perform scan conversion in dif-

ferent ways; techniques that are appropriate for one device may be inappropriate
for another. Most scan conversion details are not under program control.

I CHAPTER 7
502

Rendering I

Still, it is useful to have a general understanding of how scan conversion works.

Developers creating applications intended to drive computer displays must pay
some attention to scan conversion details. At the low resolutions typical of
displays, variations of even one pixel's width can have a noticeable effect on the

appearance of painted shapes.

The following sections describe the scan conversion algorithms that are typical of
LanguageLevel 2 implementations from Adobe, including the basic rules and the
effects of using the automatic stroke adjustment feature. Once again, these details

are not a standard part of the PostScript language.

7.5.1 Scan Conversion Rules

The following rules determine which device pixels a painting operation will
affect. All references to coordinates and pixels are in device space. A shape is a
path to be painted with the current color or with an image. Its coordinates are
mapped into device space, but not rounded to device pixel boundaries. At this
level, curves have been flattened to sequences of straight lines, and all "inside-
ness" computations have been performed.

Pixel boundaries always fall on integer coordinates in device space. A pixel is a
square region identified by the location of its corner with minimum horizontal
and vertical coordinates. The region is half-open, meaning that it includes its low-

er but not its upper boundaries. More precisely, for any point whose real-number
coordinates are (x, y), let i = floor (x) and j = floor (y). The pixel that contains this
point is the one identified as (i, j). The region belonging to that pixel is defined to
be the set of points (x', y') such that i ≤ x' < i + 1 and j ≤ y' < j + 1. Like pixels,
shapes to be painted by operators such as fill or stroke are also treated as half-
open regions that include the boundaries along their "floor" sides, but not along

their "ceiling" sides.

A shape is scan-converted by painting any pixel whose square region intersects
the shape, no matter how small the intersection is. This ensures that no shape

ever disappears as a result of unfavorable placement relative to the device pixel
grid, as might happen with other possible scan conversion rules. The area covered
by painted pixels is always at least as large as the area of the original shape. This
rule applies both to fill operations and to strokes with nonzero width. Zero-width
strokes are done in a device-dependent manner that may include fewer pixels
than the rule specifies.

503
I7.5 Scan Conversion Details I

The region of device space to be painted by the image operator is determined
similarly to that of a filled shape, though not identically. The interpreter trans-
forms the image's source rectangle into device space and defines a half-open
region, just as for fill operations. However, only those pixels whose centers lie
within the region are painted. The position of the center of such a pixel—in other
words, the point whose coordinate values have fractional parts of one-half—is
mapped back into source space to determine how to color the pixel. There is no
averaging over the pixel area; if the resolution of the source image is higher than
that of device space, some source samples will not be used.

For clipping, the clipping region consists of the set of pixels that would be includ-
ed by a fill operation. Subsequent painting operations affect a region that is the
intersection of the set of pixels defined by the clipping region with the set of pix-
els for the region to be painted.

Scan conversion of character shapes is performed by a different algorithm from
the one above. That font rendering algorithm uses hints in the character descrip-
tions and techniques that are specialized to character rasterization.

7.5.2 Automatic Stroke Adjustment

When a stroke is drawn along a path, the scan conversion algorithm may produce

lines of nonuniform thickness because of rasterization effects. In general, the line
width and the coordinates of the endpoints, transformed into device space, are
arbitrary real numbers not quantized to device pixels. A line of a given width can
intersect with different numbers of device pixels, depending on where it is posi-
tioned. Figure 7.6 illustrates this effect.

For best results, it is important to compensate for the rasterization effects to pro-
duce strokes of uniform thickness. This is especially important in low-resolution
display applications. To meet this need, LanguageLevel 2 provides an optional
stroke adjustment feature. When stroke adjustment is enabled, the line width and
the coordinates of a stroke are automatically adjusted as necessary to produce
lines of uniform thickness. The thickness is as near as possible to the requested
line width—no more than half a pixel different.

I CHAPTER 7
504

Rendering I

Line width Line width

pixel

Path

Resulting line

Path

Resulting line

FIGURE 7.6 Rasterization without stroke adjustment

Note: If stroke adjustment is enabled and the requested line width, transformed into
device space, is less than half a pixel, the stroke is rendered as a single-pixel line. This
is the thinnest line that can be rendered at device resolution. It is equivalent to the ef-
fect produced by setting the line width to 0 (see Section 7.5.1, "Scan Conversion
Rules").

Because automatic stroke adjustment can have a substantial effect on the appear-
ance of lines, an application must be able to control whether the adjustment is to
be performed. The setstrokeadjust operator alters a boolean flag in the graphics
state that determines whether stroke adjustment will be performed during subse-
quent stroke and related operations.

505

CHAPTER 8

Operators

THIS CHAPTER CONTAINS detailed information about all the standard opera-
tors in the PostScript language. It is divided into two sections:

• Section 8.1 gives a summary of the operators, organized into groups of related

functions. The summary is intended to help locate the operators needed to per-
form specific tasks. Less commonly used operators, such as those defined in
procedure sets, are not included in this summary.

• Section 8.2 provides detailed descriptions of all operators, organized alphabeti-
cally by operator name.

Each operator description is presented in the following format:

operator operand, ... operand„ operator result, ... resultm

A detailed explanation of the operator.

Example

An example of the use of this operator.

The symbol designates the values left on the operand stack by the example.

Errors: A list of errors that this operator might execute

See Also: A list of related operators

At the head of an operator description, operand, through operand„ are the oper-
ands that the operator requires, with operand, being the topmost element on the
operand stack. The operator pops these objects from the operand stack and con-
sumes them; then it executes. After executing, the operator leaves the objects
result, through result, on the stack, with result, being the topmost element.

I CHAPTER 8
506

I
Operators I

Normally, the operand and result names suggest either their types or their uses.

Table 8.1 explains some commonly used names (other than basic type names).

TABLE 8.1 Operand and result types

NAME DESCRIPTION

angle Angle (number of degrees)

any Object of any type

boo! Boolean value (true or false)

cidfont CIDFont dictionary

dict Dictionary object

filename File name string

font Font dictionary

form Form dictionary

halftone Halftone dictionary

int Integer number

key Object of any type except null, used as a key in a dictionary or a resource

matrix Array of six numbers describing a transformation matrix

num Number (integer or real)

numarray Array of numbers

numstring Encoded number string

pattern Pattern dictionary

proc Procedure (executable array or executable packed array)

real Real (floating-point) number

userpath Array of path construction operators and their operands

Some operators are polymorphic: their operands may be any of several types. For
example, the notation file I proc I string indicates an operand that may be a file, a
procedure, or a string.

1
507

i

The notation " H " indicates the bottom of the stack. The notation "—" in the op-
erand position indicates that the operator expects no operands, and a "—" in the
result position indicates that the operator returns no results.

The documented effects on the operand stack and the possible errors are those
produced directly by the operator itself. Many operators invoke arbitrary Post-
Script procedures. Such procedures can have arbitrary effects that are not men-
tioned in the operator descriptions.

In several descriptions of operators, the operator is described as being "equivalent
to" a PostScript program using lower-LanguageLevel operators. Unless explicitly
documented to the contrary, operator definitions are independent; redefining an
operator name does not change the behavior of any other operator.

The PostScript language consists of three distinct groups of operators:
LanguageLevel 1, LanguageLevel 2, and LanguageLevel 3 operators. This chapter
clearly identifies LanguageLevel 2 and LanguageLevel 3 operators with the fol-
lowing icons:

e
to

LanguageLevel 2 operator

LanguageLevel 3 operator

LanguageLevel 1 operators are not identified with a specific icon. Some operators
are available in LanguageLevel 1 but have alternate forms that are supported only
in LanguageLevel 2 or higher; such forms are identified in the operator descrip-
tions with the notation "(LanguageLevel 2)." Note that some LanguageLevel 2 op-
erators are present in LanguageLevel 1 implementations that contain various
language extensions; see Appendix A for details.

All operators are defined in systemdict except as noted otherwise in the operator
description—with, for example, "(aDlnit procedure see

1

anYo-i •••

I CHAPTER 8

8.1 Operator Summary

Operand Stack Manipulation Operators

any

anyi any2

any

anyi ... any, n

any, ... anyo n

anyo n j

anYi ••• any,

anyi ... any,

mark obji • • • aain

mark obji • • • obi,

508

pop -

exch any2 anyi

dup any any

copy anyi ... any, anyi ... any,

index any, ... anyo any,

roll any(i-1) mod n • • • anyo anyn_i

clear H

count H anyi ... any, n

mark mark

cleartomark -

counttomark mark obji obj, n

Arithmetic and Math Operators

numi num2 add sum

numi num2 div quotient

inti int2 idiv quotient

inti int2 mod remainder

numi num2 mul product

numi num2 sub difference

numi abs num2

numi neg num2

numi ceiling num2

numi floor num2

numi round num2

numi truncate num2

num sqrt real

num den atan angle

angle cos real

angle sin real

base exponent exp real

num In real

num log real

Operators I

Discard top element

Exchange top two elements

Duplicate top element

Duplicate top n elements

Duplicate arbitrary element

anYj mod n
Roll n elements up] times

Discard all elements

Count elements on stack

Push mark on stack

Discard elements down through mark

Count elements down to mark

Return numi plus num2

Return numi divided by num2

Return inti divided by int2

Return remainder after dividing inti by int2

Return numi times num2

Return numi minus num2

Return absolute value of num

Return negative of num

Return ceiling of num

Return floor of numi

Round numi to nearest integer

Remove fractional part of numi

Return square root of num

Return arctangent of num/den in degrees

Return cosine of angle degrees

Return sine of angle degrees

Raise base to exponent power

Return natural logarithm (base e)

Return common logarithm (base 10)

8.1
509

Operator Summary I

- rand int

int srand -

rrand int

Array Operators

Generate pseudo-random integer

Set random number seed

Return random number seed

int array array Create array of length int

- [mark Start array construction

mark objo objn_i] array End array construction

array length int Return number of elements in array

array index get any Return array element indexed by index

array index any put - Put any into array at index

array index count getinterval subarray Return subarray of array starting at index for

count elements

arrayi index array2Ipackedarray2 putinterval Replace subarray of arrayi starting at index
by array2Ipackedarray2

anyo anyn_i array astore array Pop elements from stack into array

array aload anyo anyn_i array Push all elements of array on stack

arrayi array2 copy subarray2 Copy elements of arrayi to initial subarray of

array proc forall -

Packed Array Operators

array2

Execute proc for each element of array

anyo anyn_i n packedarray packedarray Create packed array consisting of n elements

from stack

boo! setpacking - Set array packing mode for ... 1 syntax
(true = packed array)

- currentpacking boot Return array packing mode

packedarray length int Return number of elements in packedarray

packedarray index get any Return packedarray element indexed by index

packedarray index count getinterval subarray Return subarray of packedarray starting at

index for count elements

packedarray abad anyo anyn_i packedarray

Push all elements of packedarray on stack

packedarrayi array2 copy subarray2 Copy elements of packedarrayi to initial
subarray of array2

packedarray proc forall - Execute proc for each element of packedarray

I CHAPTER 8
510

I
Operators I

Dictionary Operators

int dict dict

-

mark key, value, ... key„ valuer

dict

dict

dict

-

key value

key

« mark

» dict

length int

maxlength int

begin -

end -

def -

load value

key value store -

dict key get any

dict key value put -

dict key undef -

dict key known bool

key where dict true

or false

dict, dict2 copy dict2

dict proc forall -

- currentdict dict

- errordict dict

- 5error dict

- systemdict dict

- userdict dict

globaldict dict

- statusdict dict

- countdictstack int

array dictstack subarray

- cleardictstack -

Create dictionary with capacity for int

elements

Start dictionary construction

End dictionary construction

Return number of entries in dict

Return current capacity of dict

Push dict on dictionary stack

Pop current dictionary off dictionary stack

Associate key and value in current dictionary

Search dictionary stack for key and return
associated value

Replace topmost definition of key

Return value associated with key in dict

Associate key with value in dict

Remove key and its value from dict

Test whether key is in dict

Find dictionary in which key is defined

Copy contents of dicti to dict2

Execute proc for each entry in dict

Return current dictionary

Return error handler dictionary

Return error control and status dictionary

Return system dictionary

Return writeable dictionary in local VM

Return writeable dictionary in global VM

Return product-dependent dictionary

Count elements on dictionary stack

Copy dictionary stack into array

Pop all nonpermanent dictionaries off

dictionary stack

511

i

String Operators

int

string

string index

string index int

string index count

string string

length int

get int

put -

getinterval substring

stringi index string2 putinterval -

stringi string2 copy substring2

string proc forall -

string seek anchorsearch post match true

or string false

string seek search post match pre true

or string false

string token post any true

or false

Relational, Boolean, and Bitwise Operators

anyi any2

anyi any2

num 1 Istri nu m21 str2

numilstri num2Istr2

numilstri num2Istr2

num 1 1st') num2istr2

bool 1 I inti boo12I int2

bool 1 I int 1

bool 1 l inti boo12I int2

bool 1 I int.' bool2lint2

-

-

inti shift

eq

ne

ge

gt

le

bool

bool

bool

bool

bool

It bool

and boo/3 I int3

not boo/2 I inr2

or booI3 I int3

xor boo/3 I int3

true true

false false

bitshift int2

Operator Summary 1

Create string of length int

Return number of elements in string

Return string element indexed by index

Put int into string at index

Return substring of string starting at index
for count elements

Replace substring of stringi starting at index
by string2

Copy elements of stringi to initial substring
of string2

Execute proc for each element of string

Search for seek at start of string

Search for seek in string

Read token from start of string

Test equal

Test not equal

Test greater than or equal

Test greater than

Test less than or equal

Test less than

Perform logical I bitwise and

Perform logical I bitwise not

Perform logical I bitwise inclusive or

Perform logical I bitwise exclusive or

Return boolean value true

Return boolean value false

Perform bitwise shift of inti (positive is left)

512
CHAPTER 8 Operators I

any

Control Operators

any

bool proc

bool proci proc2

initial increment limit proc

int proc

proc

exec -

if -

ifelse

for -

repeat -

loop -

- exit -

stop -

stopped boo!

- countexecstack

array

int

execstack subarray

quit -

start -

Type, Attribute, and Conversion Operators

any

any

any

any

arrayIpackedarraylfilelstring

arrayIpackedarrayldictlfilelstring

arraylpackedarrayldictlfilelstring

arrayIpackedarrayldictlfilelstring

arrayIpackedarrayldictlfileistring

numIstring

string

numIstring

num radix string

any string

type name

cvlit any

cvx any

xcheck bool

Execute arbitrary object

Execute proc if bool is true

Execute proci if bool is true, proc2 if false

Execute proc with values from initial by steps

of increment to limit

Execute proc int times

Execute proc an indefinite number of times

Exit innermost active loop

Terminate stopped context

Establish context for catching stop

Count elements on execution stack

Copy execution stack into array

Terminate interpreter

Executed at interpreter startup

Return type of any

Make object literal

Make object executable

Test executable attribute

executeonly arrayIpackedarraylfilelstring
Reduce access to execute-only

noaccess arrayIpackedarrayldictIfilelstring

Disallow any access

readonly arrayIpackedarrayIdictIfilelstring
Reduce access to read-only

rcheck boo! Test read access

wcheck boo! Test write access

cvi int Convert to integer

cvn name Convert to name

cvr real Convert to real

cvrs substring Convert with radix to string

cvs substring Convert to string

513
Operator Summary I

File Operators

filename access file file Open named file with specified access

datasrcidatatgt dict

parami paramn filtemame filter file Establish filtered file

file closefile - Close file

file read int true Read one character from file
or false

file int write - Write one character to file

file string readhexstring substring bool Read hexadecimal numbers from file into
string

file string writehexstring - Write string to file as hexadecimal

file string readstring substring bool Read string from file

file string writestring - Write string to file

file string readline substring bool Read line from file into string

file token any true Read token from file
or false

file bytesavailable int Return number of bytes available to read

- flush - Send buffered data to standard output file

file flushfile - Send buffered data or read to EOF

file resetfile - Discard buffered characters

file status bool Return status of file (true = valid)

filename status pages bytes referenced created true

or false Return information about named file

filename run - Execute contents of named file

- currentfile file Return file currently being executed

filename deletefile - Delete named file

&enamel filename2 renamefile - Rename file &enamel to filename2

template proc scratch filenameforall - Execute proc for each file name matching
template

file position setfileposition - Set file to specified position

file fileposition position Return current position in file

string print - Write string to standard output file

any = - Write text representation of any to standard
output file

any == - Write syntactic representation of any to
standard output file

anyi any,, stack H anyi any, Print stack nondestructively using =

anyi any,, pstack anyi any,, Print stack nondestructively using ==

I CHAPTER 8
514

Operators I

obj tag printobject -

file obj tag writeobject -

int setobjectformat -

Resource Operators

- currentobjectformat int

key instance category defineresource instance

key category undefineresource -

key category findresource instance

renderingintent findcolorrendering name bool

key category resourcestatus status size true
or false

template proc scratch category resourceforall -

Virtual Memory Operators

- save save

save restore -

bool setglobal -

- currentglobal bool

any gcheck boo/

booli password startjob boo/2

index any defineuserobject

index execuserobject -

index undefineuserobject

- UserObjects array

Write binary object to standard output file,
using tag

Write binary object to file, using tag

Set binary object format (0 = disable,

1 = IEEE high, 2 = IEEE low, 3 = native
high, 4 = native low)

Return binary object format

Register named resource instance in category

Remove resource registration

Return resource instance identified by key in
category

Select CIE-based color rendering dictionary
by rendering intent

Return status of resource instance

Enumerate resource instances in category

Create VM snapshot

Restore VM snapshot

Set VM allocation mode (false = local,
true = global)

Return current VM allocation mode

Return true if any is simple or in global VM,
false if in local VM

Start new job that will alter initial VM if
boo/1 is true

Define user object associated with index

Execute user object associated with index

Remove user object associated with index

Return current UserObjects array defined in
userdict

515
 I— Operator Summary I

Miscellaneous Operators

proc bind proc

- null null

- version string

- realtime int

- usertime int

- languagelevel int

product string

- revision int

- serialnumber int

- executive -

bool echo -

- prompt -

Graphics State Operators (Device-Independent)

- gsave -

- grestore -

- clipsave -

- cliprestore

- grestoreall -

initgraphics

- gstate gstate

gstate setgstate -

gstate currentgstate gstate

num setlinewidth -

- currentlinewidth num

int setlinecap -

-

- currentlinecap int

int setlinejoin -

- currentlinejoin int

num setmiterlimit -

- currentmiterlimit num

bool setstrokeadjust -

Replace operator names in proc with
operators; perform idiom recognition

Push null on stack

Return interpreter version

Return real time in milliseconds

Return execution time in milliseconds

Return LanguageLevel

Return product name

Return product revision level

Return machine serial number

Invoke interactive executive

Turn echoing on or off

Executed when ready for interactive input

Push graphics state

Pop graphics state

Push clipping path

Pop clipping path

Pop to bottommost graphics state

Reset graphics state parameters

Create graphics state object

Set graphics state from gstate

Copy current graphics state into gstate

Set line width

Return current line width

Set shape of line ends for stroke (0 = butt,
1 = round, 2 = square)

Return current line cap

Set shape of corners for stroke (0 = miter,
1 = round, 2 = bevel)

Return current line join

Set miter length limit

Return current miter limit

Set stroke adjustment (false = disable,
true = enable)

I CHAPTER 8
516

Operators I

array

frequency angle proc setscreen -

frequency angle halftone setscreen -

- currentstrokeadjust bool

array offset setdash

- currentdash array offset

arrayIname setcolorspace

- currentcolorspace

comp, ... comp,, setcolor

pattern setcolor

comp, comp„ pattern setcolor

- currentcolor comp, ... compn

num setgray -

- currentgray num

hue saturation brightness sethsbcolor -

- currenthsbcolor hue

red green blue setrgbcolor -

- currentrgbcolor

cyan magenta yellow black setcmykcolor -

- currentcmykcolor

Return current stroke adjustment

Set dash pattern for stroking

Return current dash pattern

Set color space

Return current color space

Set color components

Set colored tiling pattern as current color

Set uncolored tiling pattern as current color

Return current color components

Set color space to DeviceGray and color to
specified gray value (0 = black, 1 = white)

Return current color as gray value

Set color space to DeviceRGB and color to
specified hue, saturation, brightness

saturation brightness

Return current color as hue, saturation,
brightness

Set color space to DeviceRGB and color to
specified red, green, blue

red green blue Return current color as red, green, blue

Set color space to DeviceCMYK and color to

specified cyan, magenta, yellow, black

cyan magenta yellow black

Return current color as cyan, magenta,
yellow, black

Graphics State Operators (Device-Dependent)

halftone sethalftone - Set halftone dictionary

- currenthalftone halftone

Return current halftone dictionary

Set gray halftone screen by frequency, angle,
and spot function

Set gray halftone screen from halftone
dictionary

- currentscreen frequency angle proclhalftone

Return current gray halftone screen

redfreq redang redprocIredhalftone

greenfreq greenang greenprocIgreenhalftone

bluefreq blueang blueprocIbluehalftone

grayfreq grayang grayprocIgrayhalftone setcolorscreen - Set all four halftone screens

[8.1
517

i—
Operator Summary I

proc settransfer -

- currentcolorscreen redfreq redang redprociredhalftone

greenfreq greenang greenprocIgreenhalftone

bluefreq blueang blueprocIbluehalftone

grayfreq grayang grayprocIgrayhalftone

Return all four halftone screens

Set gray transfer function

- currenttransfer proc

Return current gray transfer function

redproc green proc blueproc grayproc setcolortransfer - Set all four transfer functions

currentcolortransfer redproc greenproc blueproc grayproc

Return current transfer functions

Set black-generation function

proc

Return current black-generation function

Set undercolor-removal function

- proc

Return current undercolor-removal

function

Set CIE-based color rendering dictionary

proc setblackgeneration -

- currentblackgeneration

proc setundercolorremoval -

currentundercolorremoval

dict setcolorrendering -

- currentcolorrendering

num

-

bool

num

-

dict

setflat -

currentflat num

setoverprint -

currentoverprint boo!

setsmoothness -

currentsmoothness num

Coordinate System and Matrix Operators

-

-

matrix

matrix

matrix

matrix

tx ty

tx ty matrix

matrix matrix

initmatrix -

identmatrix matrix

defaultmatrix matrix

currentmatrix matrix

setmatrix

translate

translate matrix

-
-

Return current CIE-based color rendering
dictionary

Set flatness tolerance

Return current flatness

Set overprint parameter

Return current overprint parameter

Set smoothness parameter

Return current smoothness parameter

Create identity matrix

Set CTM to device default

Fill matrix with identity transform

Fill matrix with device default matrix

Fill matrix with CTM

Replace CTM by matrix

Translate user space by (ti, ty)

Define translation by (ti, ty)

I CHAPTER 8
518

1
Operators

sx sy

sy matrix

angle

angle matrix

matrix

matrixi matrix2 matrix3

x y

x y matrix

dx dy

dx dy matrix

x' y'

scale -

scale matrix

rotate

rotate matrix

concat

concatmatrix matrix3

transform x'

transform x' y'

dtransform dx' dy'

dtransform dx' dy'

itransform xy

x' y' matrix itransform x y

dx' dy' idtransform dx dy

dx' dy' matrix idtransform dx dy

matrixi matrix2 invertmatrix matrix2

Path Construction Operators

x y

dx dy

x y

dx dy

x y r anglei angle2

x y r anglei angle2

x1 Yi x2 Y2 r

x1 y 1 x2 Y2 r

)(1Yi X2 Y2 x3 Y3

dxi dyi dx2 dy2 dx3 dy3

newpath -

currentpoint xy

moveto -

rmoveto -

lineto -

rlineto -

arc -

arcn -

arct -

arcto xti yti xt2 yt2

curveto -

rcurveto -

closepath -

flattenpath -

reversepath -

strokepath -

Scale user space by sx and sy

Define scaling by sx and sy

Rotate user space by angle degrees

Define rotation by angle degrees

Replace CTM by matrix x CTM

Fill matrix3 with matrixi x matrix2

Transform (x, y) by CTM

Transform (x, y) by matrix

Transform distance (dx, dy) by CTM

Transform distance (dx, dy) by matrix

Perform inverse transform of (x', y') by
CTM

Perform inverse transform of (x', y') by
matrix

Perform inverse transform of distance
(dx', dy') by CTM

Perform inverse transform of distance
(dx', dy') by matrix

Fill matrix2 with inverse of matrixi

Initialize current path to be empty

Return current point coordinates

Set current point to (x, y)

Perform relative moveto

Append straight line to (x, y)

Perform relative lineto

Append counterclockwise arc

Append clockwise arc

Append tangent arc

Append tangent arc

Append Bézier cubic section

Perform relative curveto

Connect subpath back to its starting point

Convert curves to sequences of straight lines

Reverse direction of current path

Compute outline of stroked path

519
Operator Summary I

userpath

userpath matrix

string boo!

userpath

11,11y ur„ ury

move line curve close

bool

x y width height

numarrayInumstring

Painting Operators

x y width height

x y width height matrix

ustrokepath

ustrokepath

charpath -

uappend -

clippath -

setbbox -

pathbbox 1!, Il,, ur, ury

pathforall -

upath userpath

initclip -

clip -

eoclip -

rectclip -

rectclip -

ucache -

erasepage

stroke

fill -

eofill -

rectstroke

rectstroke

numarraylnumstring rectstroke -

numarrayInumstring matrix rectstroke -

x y width height rectfill -

numarraylnumstring rectfill -

userpath

userpath matrix

ustroke

ustroke

userpath ufill -

userpath ueofill -

dict shfill -

Compute outline of stroked userpath

Compute outline of stroked userpath

Append glyph outline to current path

Interpret userpath and append to current
path

Set current path to clipping path

Set bounding box for current path

Return bounding box of current path

Enumerate current path

Create userpath for current path; include

ucache if bool is true

Set clipping path to device default

Clip using nonzero winding number rule

Clip using even-odd rule

Clip with rectangular path

Clip with rectangular paths

Declare that user path is to be cached

Paint current page white

Draw line along current path

Fill current path with current color

Fill using even-odd rule

Define rectangular path and stroke

Define rectangular path, concatenate matrix,

and stroke

Define rectangular paths and stroke

Define rectangular paths, concatenate
matrix, and stroke

Fill rectangular path

Fill rectangular paths

Interpret and stroke userpath

Interpret userpath, concatenate matrix, and

stroke

Interpret and fill userpath

Fill userpath using even-odd rule

Fill area defined by shading pattern

I CHAPTER 8
520

I
Operators I

dict

width height bits/sample matrix datasrc

width height bits/comp matrix

datasrco ... datasrc„„p_i multi ncomp

dict

width height polarity matrix datasrc

lnsideness-Testing Operators

image -

image -

colorimage

imagemask

imagemask

xy infill bool

userpath infill bool

xy ineofill bool

userpath ineofill bool

xy userpath inufill boot

userpathi userpath2 inufill bool

x y userpath inueofill bool

userpathi userpath2 inueofill bool

xy instroke bool

xy userpath inustroke bool

x y userpath matrix inustroke bool

userpathi userpath2 inustroke bool

userpathi userpath2 matrix inustroke boo!

Form and Pattern Operators

pattern matrix

pattern

compi ... comp, pattern

form

-
-
-

makepattern pattern'

setpattern -

setpattern -

execform -

Paint any sampled image

Paint monochrome sampled image

Paint color sampled image

Paint current color through mask

Paint current color through mask

Test whether (x, y) would be painted by fill

Test whether pixels in userpath would be

painted by fill

Test whether (x, y) would be painted by eofill

Test whether pixels in userpath would be
painted by eofill

Test whether (x, y) would be painted by ufill
of userpath

Test whether pixels in userpathi would be

painted by ufill of userpath2

Test whether (x, y) would be painted by
ueofill of userpath

Test whether pixels in userpathi would be
painted by ueofill of userpath2

Test whether (x, y) would be painted by
stroke

Test whether (x, y) would be painted by
ustroke of userpath

Test whether (x, y) would be painted by
ustroke of userpath

Test whether pixels in userpathi would be
painted by ustroke of userpath2

Test whether pixels in userpathi would be
painted by ustroke of userpath2

Create pattern instance from prototype

Install pattern as current color

Install pattern as current color

Paint form

521

-[
Operator Summary I

Device Setup and Output Operators

-
-

dict

_

_

showpage -

copypage -

setpagedevice -

currentpagedevice dict

nulldevice -

Glyph and Font Operators

key fonticidfont definefont fontIcidfont

key namelstringldict array composefont font

key undefinefont -

key findfont fontIcidfont

fonticidfont scale

fontIcidfont matrix

fontIcidfont

-

-

scalefont font' Icidfont'

makefont font' Icidfont'

setfont -

rootfont fontIcidfont

currentfont fontIcidfont

key scale matrix selectfont -

string show -

a a string ashow - x y

c cy char string widthshow - x

c, cy char ax ay string awidthshow -

string numarrayInumstring xshow

string numarrayInumstring xyshow

string numarraylnumstring yshow

-

-

-

Transmit and reset current page

Transmit current page

Install page-oriented output device

Return current page device parameters

Install no-output device

Register fonticidfont in Font resource
category

Register composite font dictionary created
from CMap and array of CIDFonts or fonts

Remove Font resource registration

Return Font resource instance identified by
key

Scale fonticidfont by scale to produce
font' Icidfont'

Transform fontIcidfont by matrix to produce

font' Icidfont'

Set font or CIDFont in graphics state

Return last set font or CIDFont

Return current font or CIDFont, possibly a
descendant of rootfont

Set font or CIDFont given name and
transform

Paint glyphs for string in current font

Add (a„, ay) to width of each glyph while

showing string

Add (c„, cy) to width of glyph for char while
showing string

Combine effects of ashow and widthshow

Paint glyphs for string using x widths in
numarrayInumstring

Paint glyphs for string using x and y widths
in numarraylnumstring

Paint glyphs for string using y widths in
numarrayInumstring

CHAPTER 8
522

Operators I

namelcid glyphshow -

string stringwidth w wy

proc string cshow -

proc string kshow -

- FontDirectory dict

- GlobalFontDirectory dict

key

wx wy II„ Ily ur, ury

wO, wOyllx Il>, ur, ury

wiz wly vx vy

StandardEncoding array

ISOLatin 1 Encoding array

findencoding array

setcachedevice -

setcachedevice2 -

setcharwidth -

Interpreter Parameter Operators

dict

dict

string dict

string

int

int

int

mark size lower upper

setcachelimit -

setcacheparams -

setsystemparams -

currentsystemparams dict

setuserparams -

currentuserparams dict

setdevparams -

currentdevparams dict

vmreclaim -

setvmthreshold -

vmstatus level used maximum

Paint glyph for character identified by
name cid

Return width of glyphs for string in current
font

Invoke character mapping algorithm and
call proc

Execute proc between characters shown from
string

Return dictionary of Font resource instances

Return dictionary of Font resource instances
in global VM

Return Adobe standard font encoding vector

Return ISO Latin-1 font encoding vector

Find encoding vector

Declare cached glyph metrics

Declare cached glyph metrics

Declare uncached glyph metrics

Set systemwide interpreter parameters

Return systemwide interpreter parameters

Set per-context interpreter parameters

Return per-context interpreter parameters

Set parameters for input/output device

Return device parameters

Control garbage collector

Control garbage collector

Report VM status

cachestatus bsize bmax msize mmax csize cmax blimit

Return font cache status and parameters

Set maximum bytes in cached glyph

Set font cache parameters

currentcacheparams mark size lower upper

Return current font cache parameters

523

I
Operator Summary I

Errors

mark blimit setucacheparams - Set user path cache parameters

- ucachestatus mark bsize bmax rsize rmax blimit

Return user path cache status and
parameters

configurationerror setpagedevice or setdevparams request
cannot be satisfied

dictfull No more room in dictionary

dictstackoverflow Too many begin operators

dictstackunderflow Too many end operators

execstackoverflow Executive stack nesting too deep

handleerror Called to report error information

interrupt External interrupt request (for example,
Control-C)

invalidaccess Attempt to violate access attribute

invalidexit exit not in loop

invalidfileaccess Unacceptable access string

invalidfont Invalid Font resource name or font or
CIDFont dictionary

invalidrestore Improper restore

ioerror Input/output error

limitcheck Implementation limit exceeded

nocurrentpoint Current point undefined

rangecheck Operand out of bounds

stackoverflow Operand stack overflow

stackunderflow Operand stack underflow

syntaxerror PostScript language syntax error

timeout Time limit exceeded

typecheck Operand of wrong type

undefined Name not known

undefinedfilename File not found

undefinedresource Resource instance not found

undefinedresult Overflow, underflow, or meaningless result

unmatchedmark Expected mark not on stack

unregistered Internal error

VMerror Virtual memory exhausted

I CHAPTER 8
524

Operators I

8.2 Operator Details

[- [mark

pushes a mark object on the operand stack (the same as the mark and « opera-

tors). The customary use of the E operator is to mark the beginning of an indefi-
nitely long sequence of objects that will eventually be formed into a new array
object by a matching] operator. See the discussion of array syntax in Section 3.2,
"Syntax," and of array construction in Section 3.6, "Overview of Basic Opera-

tors."

Errors: stackoverflow

See Also: I, «, mark, array, astore

] mark objo objn_i] array

creates a new array of n elements (where n is the number of elements above the
topmost mark on the operand stack), stores those elements into the array, and re-
turns the array on the operand stack. The] operator stores the topmost object
from the stack into element n — 1 of array and the bottommost one (the one im-
mediately above the mark) into element 0 of array. It removes all the array ele-
ments from the stack, as well as the mark object.

The array is allocated in local or global VM according to the current VM alloca-
tion mode. An invalidaccess error occurs if the array is in global VM and any of
the objects objo objn_i are in local VM. See Section 3.7.2, "Local and Global
VM."

Examples

[5 4 3] % A three-element array, with elements 5,4,3
mark 543 counttomark array astore exch pop % Same as above

[1 2 add] % A one-element array, with element 3

The first two lines of code above have the same effect, but the second line uses
lower-level array and stack manipulation primitives instead oft and I.

In the last example, note that the PostScript interpreter acts on all of the array ele-

ments as it encounters them (unlike its behavior with the ... I syntax for execut-
able array construction), so the add operator is executed before the array is

constructed.

Errors: stackoverflow, unmatchedmark, VMerror

See Also: [, mark, array, astore

l 8.2

<< - « mark

O

525

I
Operator Details I

pushes a mark object on the operand stack (the same as the mark and (operators).

Errors: stackoverflow

See Also: », mark

>> mark keyi valuei ... key, value, » dict

g
creates and returns a dictionary containing the specified key-value pairs. The op-

erands are a mark followed by an even number of objects, which the operator uses

alternately as keys and values to be inserted into the dictionary. The dictionary is

allocated space for precisely the number of key-value pairs supplied.

The dictionary is allocated in local or global VM according to the current VM

allocation mode. An invalidaccess error occurs if the dictionary is in global VM

and any keys or values are in local VM (see Section 3.7.2, "Local and Global

VM"). A rangecheck error occurs if there is an odd number of objects above the

topmost mark on the stack.

The » operator is equivalent to the following code:

counttomark 2 idiv

dup dict

begin

{clef} repeat

pop

currentdict

end

Example

<< /Duplex true

/PageSize [612 792]

/Collate false

» setpagedevice

This example constructs a dictionary containing three key-value pairs, which it

immediately passes to the setpagedevice operator.

Errors: invalidaccess, rangecheck, typecheck, unmatchedmarlç VMerror

See Also: «, mark, dict

I CHAPTER 8
526

= any = —

Operators I

pops an object from the operand stack, produces a text representation of that ob-
ject's value, and writes the result to the standard output file, followed by a newline
character. The text is that produced by the cvs operator; thus, = prints the value of

a number, boolean, string, name, or operator object and prints -nostringval- for
an object of any other type.

The name = is not special. In PostScript programs it must be delimited by white-
space or special characters the same as names composed of alphabetical charac-
ters. The value of = is not an operator, but rather a built-in procedure.

Errors: stackunderflow

See Also: ==, stack, cvs, print, flush

== any == -

pops an object from the operand stack, produces a text representation of that ob-
ject, and writes the result to the standard output file, followed by a newline char-

acter. This operator attempts to produce a result that resembles the PostScript
syntax for creating the object. It precedes literal names with /, brackets strings
with (), and expands the values of arrays and packed arrays and brackets them

with E...] or }. For an object with no printable representation, == produces
the name of its type in the form -type-, such as -mark- or -dict-. For an operator ob-

ject, it produces the operator's name in the form --operator-, such as -add-.

The name == is not special. In PostScript programs it must be delimited by white-
space or special characters the same as names composed of alphabetical charac-
ters. The value of == is not an operator, but rather a built-in procedure.

The == operator is intended for convenience in debugging. The details of how this
operator formats its output are intentionally unspecified. A program requiring
detailed control over output format should do its own formatting explicitly, using

lower-level operators such as cvs. Also, the LanguageLevel 2 operators printobject
and writeobject may be more suitable for generating machine-readable output.

Errors: stackunderflow

See Also: =, print, pstack, flush

I 8.2
527

Serror - error dict

Operator Details I

pushes the dictionary object Serror on the operand stack (see Section 3.11.2, "Er-

ror Handling"). Serror is not an operator; it is a name in systemdict associated
with the dictionary object.

Errors: stackoverflow

See Also: errordict

abs numi abs num2

returns the absolute value of numl. The type of the result is the same as the type of

numi unless numi is the smallest (most negative) integer, in which case the result

is a real number.

Examples

4.5 abs

-3 abs

O abs

4.5

3

O

Errors: stackunderflow, typecheck

See Also: neg

add numi num2 add sum

returns the sum of numi and num2. If both operands are integers and the result is

within integer range, the result is an integer; otherwise, the result is a real number.

Examples

3 4 add 7

9.9 1.1 add = 11.0

Errors: stackunderflow, typecheck, undefinedresult

See Also: div, mul, sub, idiv, mod

528
CHAPTER 8 Operators I

addglyph metrics bitmap cid cidfont addglyph - (BitmapFontlnit procedure set)

abad

loads into the font cache the glyph bitmap (and metrics) for the character identi-

fied by cid in cidfont, a Type 4 CIDFont. It replaces the existing bitmap for that

character, if any. See "Type 4 CIDFonts" on page 379.

The metrics operand is a 6- or 10-number array, [w„wylixliyurxury] or

[wOy //(Ilyurxuryw1,w 1 y Vyi whose elements represent the glyph metrics

and have the same meaning as the operands to setcachedevice and

setcachedevice2, respectively.

The bitmap operand is a string object that contains the bitmap data. The bitmap

representation is the normal PostScript representation for a 1-bit-per-pixel im-

age. Logically, this image is painted in glyph space with its (0, 0) corner coinciding

with (fix, Ily).

When the CTM is the transformation matrix for which the font was designed, the

transformation from glyph space to device space is the identity transformation.

Thus, the image is treated as a device-resolution bitmap, positioned with the im-

age origin at (ii fly) relative to the current point.

A rangecheck error occurs if urx is less than lix or ury is less than lIy, if the image di-

mensions implied by these values are inconsistent with the length of the bitmap

string, or if cid is outside the valid range of CIDs (see Appendix B). A limitcheck

error occurs if the glyph cannot be placed in the font cache, either because it is too

large or because the cache is full.

Errors: invalidfont, limitcheck, rangecheck, stackunderflow, typecheck

See Also: removeall, removeglyphs

array abad anyo anYn-i array

packedarray abad anyo anyn_i packedarray

successively pushes all n elements of array or packedarray on the operand stack

(where n is the length of the operand), and then pushes the operand itself.

Example

[23 (ab) -6] abad 23 (ab) -6 [23 (ab) -6]

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: astore, get, getinterval

I 8.2
529

Operator Details

anchorsearch string seek anchorsearch post match true (iffound)

string false (if not found)

determines whether the string seek matches the initial substring of string (that is,
whether string is at least as long as seek and the corresponding characters are

equal). If it matches, anchorsearch splits string into two segments—match, the

portion of string that matches seek, and post, the remainder of string—and returns

the string objects post and match followed by the boolean value true. Otherwise, it

returns the original string followed by false. anchorsearch is a special case of the
search operator.

Examples

(abbc) (ab) anchorsearch (bc) (ab) true

(abbc) (bb) anchorsearch (abbc) false

(abbc) (bc) anchorsearch (abbc) false

(abbc) (B) anchorsearch (abbc) false

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: search, token

and boo/1 boo/2 and bool3

inti int2 and int3

returns the logical conjunction of the operands if they are boolean. If the oper-

ands are integers, and returns the bitwise "and" of their binary representations.

Examples

true true and true % A complete truth table

true false and false

false true and false

false false and false

99 1 and

52 7 and 4

Errors: stackunderflow, typecheck

See Also: or, xor, not, true, false

530
I CHAPTER 8 Operators I

arc x y r anglei angle2 arc -

appends an arc of a circle to the current path, possibly preceded by a straight line

segment. The arc is centered at coordinates (x, y) in user space, with radius r. The

operands angle, and angle2 define the endpoints of the arc by specifying the angles
of the vectors joining them to the center of the arc. The angles are measured in de-
grees counterclockwise from the positive x axis of the current user coordinate sys-
tem (see Figure 8.1).

Second
endpoint

First
angle2 endpoint

,,• angle,

Current
point

FIGURE 8.1 arc opennot

The arc produced is circular in user space. If user space is scaled nonuniformly

(that is, differently in the x and y dimensions), the resulting curve will be elliptical
in device space.

If there is a current point, a straight line segment from the current point to the
first endpoint of the arc is added to the current path preceding the arc itself. If the
current path is empty, this initial line segment is omitted. In either case, the sec-

ond endpoint of the arc becomes the new current point.

If angle2 is less than angle', it is increased by multiples of 360 until it becomes
greater than or equal to angle,. No other adjustments are made to the two angles.
In particular, the angle subtended by the arc is not reduced modulo 360; if the dif-
ference angle2 - angle, exceeds 360, the resulting path will trace portions of the

circle more than once.

The arc is represented internally by one or more cubic Bézier curves (see curveto)
approximating the required shape. This is done with sufficient accuracy to pro-

duce a faithful rendition of the required arc. However, a program that reads the

I 8.2
531

Operator Details

constructed path using pathforall will encounter curveto segments where arcs
were specified originally.

Example

newpath

0 O moveto

0 0 1 0 45 arc

closepath

This example constructs a 45-degree "pie slice" with a 1-unit radius, centered at
the coordinate origin (see Figure 8.2).

FIGURE 8.2 arc operator example

Errors: limitcheck, ra ngecheck, stackunderflow, typecheck

See Also: arcn, arct, arcto, curveto

arcn x y r anglei angle2 arcn —

(arc negative) appends an arc of a cirde to the current path, possibly preceded by

a straight line segment. Its behavior is identical to that of arc, except that the
angles defining the endpoints of the arc are measured clockwise from the positive
x axis of the user coordinate system, rather than counterclockwise. If angle2 is
greater than anglei, it is decreased by multiples of 360 until it becomes less than or
equal to anglei.

Example

newpath

0 0 2 0 90 arc

0 0 1 90 0 arcn

closepath

I CHAPTER 8
532

Operators I

This example constructs a 90-degree "windshield wiper swath" 1 unit wide, with
an outer radius of 2 units, centered at the coordinate origin (see Figure 8.3).

FIGURE 8.3 arcn operator example

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: arc, arct, arcto, curveto

arct x1 Yi x2 y2 r arct -

appends an arc of a circle to the current path, possibly preceded by a straight line
segment. The arc is defined by a radius r and two tangent lines, drawn from the

current point (x0, yo) to (x1, Yi) and from (x1,) to (x2, y2). The center of the arc
is located within the inner angle formed by the two tangent lines (see Figure 8.4),
and is the only point located at a perpendicular distance r from both lines. The arc
begins at the tangent point (xti, yti) on the first tangent line, passes between the
center and the point (x1, Yi), and ends at the tangent point (xt2, yt2) on the second
tangent line. If the current point is undefined, a nocurrentpoint error occurs.

The arc produced is circular in user space. If user space is scaled nonuniformly
(that is, differently in the x and y dimensions), the resulting curve will be elliptical
in device space.

If the first tangent point (xti, yti) is different from the current point (xo, yo), a
straight line segment joining those two points is added to the current path preced-
ing the arc. In any event, the second tangent point (xt2, yt2) becomes the new cur-
rent point.

If the two tangent lines are collinear, the points (xti, yti) and (xt2, yt2) are identi-
cal. In this case, the joining arc has length 0 and arct merely appends to the cur-
rent path a straight line segment from (x0, yo) to (x1,).

I 8.2
533

1
Operator Details I

Example

newpath

0 0 moveto

0 4 4 4 1 arct

44 lineto

FIGURE 8.4 arct operator

This example constructs a right angle 4 units wide and 4 units high, with a round-

ed corner of radius 1 unit (see Figure 8.5).

(0,4) (1,4) (4,4)
• ,

7 1

(0,0) •

FIGURE 8.5 arct operator example

Errors: limitchecic, nocurrentpoint, rangecheck, stackunderflow, typecheck,

undefinedresult

See Also: arc, arcn, arcto, curveto

I CHAPTER 8
534

i
Operators I

arcto x1 Yi x2 y2 r arcto xti yti xt2 yt2

appends an arc of a circle to the current path, possibly preceded by a straight line

segment. Its behavior is identical to that of arct, except that it also returns the user

space coordinates of the two tangent points (xti, yti) and (xt2, yt2) on the operand
stack.

arcto is not allowed as an element of a user path (see Section 4.6, "User Paths"),
whereas arct is allowed.

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck, undefinedresult
See Also: arc, arcn,arct, curveto

array int array array

creates an array of length int, each of whose elements is initialized with a null ob-
ject, and pushes this array on the operand stack. The int operand must be a non-
negative integer not greater than the maximum allowable array length (see
Appendix B). The array is allocated in local or global VM according to the current
VM allocation mode (see Section 3.7.2, "Local and Global VM").

Example

3 array = [null null null]

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: [,], aload, astore, packedarray

ashow a, ay string ashow -

paints glyphs for the characters of string in a manner similar to show; however,

while doing so, ashow adjusts the width of each glyph shown by adding ax to the
glyph's x width and ay to its y width, thus modifying the spacing between glyphs.
The numbers ax and ay are x and y displacements in the user coordinate system,
not in the glyph coordinate system.

This operator enables fitting a string of text to a specific width by adjusting all the
spacing between glyphs by a uniform amount. For a discussion of glyph widths,
see Section 5.4, "Glyph Metric Information."

r8.2 535
Operator Details I

Example

/Helvetica findfont 12 scalefont setfont

Normal spacing 14 61 moveto (Normal spacing) show

Wide spacing 14 47 moveto 4 0 (Wide spacing) ashow

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow, typecheck

See Also: show, awidthshow, cshow, kshow, widthshow, xshow, xyshow, yshow

astore anyo anyn_i array astore array

stores the objects anyo to anyn_i from the operand stack into array, where n is the

length of array. The astore operator first removes the array operand from the stack

and determines its length. It then removes that number of objects from the stack,

storing the topmost one into element n — 1 of array and the bottommost one into

element 0. Finally, it pushes array back on the stack. Note that an astore operation
cannot be performed on packed arrays.

If the value of array is in global VM and any of the objects anyo through anyn_i are

composite objects whose values are in local VM, an invalidaccess error occurs (see
Section 3.7.2, "Local and Global VM").

Example

(a) (bcd) (ef) 3 array astore [(a) (bcd) (ef)]

This example creates a three-element array, stores the strings a, bcd, and ef into it

as elements 0, 1, and 2, and leaves the array object on the operand stack.

Errors: invalidaccess, stackunderflow, typecheck

See Also: abad, put, putinterval

atan num den atan angle

returns the angle (in degrees between 0 and 360) whose tangent is num divided by

den. Either num or den may be 0, but not both. The signs of num and den deter-

mine the quadrant in which the result will lie: a positive num yields a result in the

positive y plane, while a positive den yields a result in the positive x plane. The re-
sult is a real number.

I CHAPTER 8
536

I
Operators I

Normal spacing
Wide spacing

Examples

0 1 atan = 0.0

1 0 atan 90.0

-100 0 atan 270.0

4 4 atan 45.0

Errors: stackunderflow, typecheck, undefmedresult

See Also: cos, sin

awidthshow c„. ci,, char ax ay string awidthshow -

paints glyphs for the characters of string in a manner similar to show, but com-

bines the special effects of ashow and widthshow. awidthshow adjusts the width
of each glyph shown by adding a, to its x width and ay to its y width, thus modify-

ing the spacing between glyphs. Furthermore, awidthshow modifies the width of
each occurrence of the glyph for the character char by an additional amount

(ci, Cy). The interpretation of char is as described for the widthshow operator.

This operator enables fitting a string of text to a specific width by adjusting the

spacing between all glyphs by a uniform amount, while independently controlling
the width of the glyph for a specific character, such as the space character. For a

discussion of glyph widths, see Section 5.4, "Glyph Metric Information."

Example

/Helvetica findfont 12 scalefont setfont

30 60 moveto (Normal spacing)show

30 46 moveto 6 0 8#040 .5 0 (Wide spacing)awidthshow

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheclç stackunderflow,

typecheck

See Also: ashow, cshow, kshow, show, widthshow, xshow, xyshow, yshow

begin dict begin -

pushes dict on the dictionary stack, making it the current dictionary and installing

it as the first of the dictionaries consulted during implicit name lookup and by

def, load, store, and where.

Errors: dictstackoverflow, invalidaccess, stackunderflow, typecheck

See Also: end, countdictstack, dictstack

I 8.2
537

I
Operator Details I

beginbfchar n beginbfchar - (CIDlnit procedure set)

ie starts a mapping (completed by endbfchar) from n individual character codes to

character codes or names (which usually select characters in base fonts); see

Section 5.11.4, "CMap Dictionaries."

beginbfrange n beginbfrange - (Mink procedure set)

rill
starts a mapping (completed by endbfrange) from n character code ranges to

character codes or names (which usually select characters in base fonts); see
Section 5.11.4, "CMap Dictionaries."

begincidchar n begincidchar -

o
(CIDInit procedure set)

starts a mapping (completed by endcidchar) from n individual character codes to

CIDs; see Section 5.11.4, "CMap Dictionaries."

begincidrange n begincidrange -

ro

(CIDInit procedure set)

starts a mapping (completed by endcidrange) from n character code ranges to

CIDs; see Section 5.11.4, "CMap Dictionaries."

begincmap begincmap - (CIDInit procedure set)

e -HT denotes the start of a CMap definition (ended by endcmap); see Section 5.11.4,

"CMap Dictionaries."

begincodespacerange n begincodespacerange - (ODInit procedure set)

'IM begins the definition of n codespace ranges (completed by endcodespacerange);

see Section 5.11.4, "CMap Dictionaries."

I CHAPTER 8
538

i
Operators I

beginnotdefchar n beginnotdefchar - (CIDInit procedure set)

a starts a notdef mapping (completed by endnotdefchar) from n individual charac-

ter codes to CIDs; see Section 5.11.4, "CMap Dictionaries."

beginnotdefrange n beginnotdefrange - (CIDInit procedure set)

a starts a notdef mapping (completed by endnotdefrange) from n character code ranges to CIDs; see Section 5.11.4, "CMap Dictionaries."

beginrearrangedfont key array beginrearrangedfont - (CIDInit procedure set)

g begins the definition (ended by endrearrangedfont) of a rearranged font identi-
 fied by key, using the component fonts listed in array; see Section 5.11.4, "CMap

Dictionaries."

beginusematrix fontnum beginusematrix - (CIDInit procedure set)

0 denotes the start of a transformation matrix (completed by endusematrix) to use with font fontnum; see Section 5.11.4, "CMap Dictionaries."

bind proc bind proc

replaces executable operator names in proc by their values. For each element of

proc that is an executable name, bind looks up the name in the context of the cur-

rent dictionary stack as if by the load operator. If the name is found and its value

is an operator object, bind replaces the name with the operator in proc. If the

name is not found or its value is not an operator, bind does not make a change.

For each procedure object contained within proc, bind applies itself recursively to

that procedure, makes the procedure read-only, and stores it back into proc. bind

applies to both arrays and packed arrays, but it treats their access attributes differ-

ently. It will ignore a read-only array; that is, it will neither bind elements of the

array nor examine nested procedures. On the other hand, bind will operate on a

packed array (which always has read-only or even more restricted access), disre-

garding its access attribute. No error occurs in either case.

I 8.2
539

i
Operator Details I

The effect of bind is that all operator names in proc and in procedures nested

within proc to any depth become tightly bound to the operators themselves. Dur-

ing subsequent execution of proc, the interpreter encounters the operators them-

selves rather than their names. See Section 3.12, "Early Name Binding."

In LanguageLevel 3, if the user parameter IdiomRecognition is true, then after re-

placing executable names with operators, bind compares proc with every template

procedure defined in instances of the IdiomSet resource category. If it finds a

match, it returns the associated substitute procedure. See Section 3.12.1, "bind

Operator."

Errors: typecheck

See Also: load

bitshift inti shift bitshift int2

shifts the binary representation of inti left by shift bits and returns the result. Bits

shifted out are lost; bits shifted in are O. If shift is negative, a right shift by -shift

bits is performed. This operation produces an arithmetically correct result only

for positive values of in t1. Both inti and shift must be integers.

Examples

7 3 bitshift 56

142 -3 bitshift 17

Errors: stackunderflow, typecheck

See Also: and, or, xor, not

bytesavailable file bytesavailable int

returns the number of bytes immediately available for reading from file without

waiting. The result is —I if end-of-file has been encountered or if the number of

bytes available cannot be determined for other reasons.

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: read, readhexstring, readline, readstring

540
I CHAPTER 8

cachestatus - cachestatus bsize bmax msize mmax csize cmax blimit

Operators I

returns measurements of several aspects of the font cache (see Section 5.5, "Font
Cache"). This operator reports the current consumption and limit for each of

three font cache resources: bytes of bitmap storage (bsize and bmax), font/matrix
combinations (msize and mmax), and total number of cached glyphs (csize and

cmax). It also reports the limit on the number of bytes occupied by a single cached
glyph (blimit); glyph bitmaps larger than this are not cached.

Except for blimit, which corresponds to the MaxFontltem user parameter, the val-
ues returned by cachestatus cannot be controlled directly by a PostScript pro-
gram. They will vary as a function of the MaxFontCache system parameter, but the
behavior is implementation-dependent.

Errors: stackoverflow
See Also: setcachelimit, setsystemparams

ceiling numi ceiling num2

returns the least integer value greater than or equal to numi. The type of the result
is the same as the type of the operand.

Examples

3.2 ceiling 4.0
-4.8 ceiling -4.0
99 ceiling 99

Errors: stackunderflow, typecheck
See Also: floor, round, truncate, cvi

charpath string boo! charpath -

obtains the path for the glyph outlines that would result if string were shown at the
current point using show. Instead of painting the path, however, charpath ap-
pends it to the current path. This yields a result suitable for general filling, strok-
ing, or clipping (see Sections 4.4, "Path Construction"; 4.5, "Painting"; and 5.1,
"Organization and Use of Fonts").

The boo! operand determines what happens if the glyph path is designed to be
stroked rather than filled or outlined. If bool is false, charpath simply appends the
glyph path to the current path; the result is suitable only for stroking. If boo! is
true, charpath applies the strokepath operator to the glyph path; the result is suit-

I 8.2
541

Operator Details I

able for filling or clipping, but not for stroking. charpath does not produce results

for portions of a glyph defined as images or masks rather than as paths.

The outlines of some fonts are protected. (In LanguageLevel 1, this applies to all

fonts; in LanguageLevels 2 and 3, it applies only to certain fonts that are explicitly

marked as protected.) If the current font is outline-protected, using charpath to

obtain its outlines causes the pathforall and upath operators to be disabled for as

long as those outlines remain in the current path.

Errors: invalidfont, limitcheck, nocurrentpoint, stackunderflow, typecheck

See Also: show, flattenpath, pathbbox, clip

clear H anyi ... any, clear H

pops all objects from the operand stack and discards them.

Errors: none

See Also: count, cleartomark, pop

cleardictstack - cleardictstack -

pops all dictionaries off the dictionary stack except for the permanent entries. In

LanguageLevel 1, the permanent entries are systemdict and userdict; in Language-

Levels 2 and 3, they are systemdict, globaldict, and userdict. (In LanguageLevel 1,

cleardictstack is a procedure defined in userdict instead of an operator defined in

systemdict.)

Errors: none

See Also: begin, end

cleartomark mark obji obj, cleartomark -

pops entries from the operand stack repeatedly until it encounters a mark, which

it also pops from the stack. obji through obj, are any objects other than marks.

Errors: unmatchedmark

See Also: clear, mark, counttomark, pop

I CHAPTER 8
542

Operators

clip - clip —

intersects the area inside the current clipping path with the area inside the current
path to produce a new, smaller clipping path. The nonzero winding number rule
(see "Nonzero Winding Number Rule" on page 195) is used to determine what
points lie inside the current path, while the inside of the current clipping path is
determined by whatever rule was used at the time the path was created.

In general, clip produces a new path whose inside (according to the nonzero

winding number rule) consists of all areas that are inside both of the original
paths. The way this new path is constructed (the order of its segments, whether it
self-intersects, and so forth) is not specified. clip treats an open subpath of the
current path as though it were closed; it does not actually alter the path itself. It is
permissible for the current path to be empty. The result of executing clip is always
a nonempty clipping path, though it may enclose zero area.

There is no way to enlarge the current clipping path (other than by initclip or
initgraphics) or to set a new clipping path without reference to the current one.
The recommended way of using clip is to bracket the clip operation and the
sequence of graphics operations to be clipped between gsave and grestore or
between clipsave and cliprestore. The grestore will restore the clipping path that

was in effect before the gsave Thc setgstate operator can also be used to reset the
clipping path to an earlier state.

Unlike fill and stroke, clip does not implicitly perform a newpath operation after
it has finished using the current path. Any subsequent path construction opera-
tors will append to the current path unless newpath is invoked explicitly; this can

cause unexpected behavior.

Errors: limitcheck

See Also: eoclip, clippath, initclip, rectclip

clippath - clippath -

sets the current path to the current clipping path. This operator is useful for de-

termining the exact extent of the imaging area on the current output device.

If the current clipping path was set with clip or eoclip, the path set by clippath is
generally suitable only for filling or clipping. It is not suitable for stroking, be-

cause it may contain interior segments or disconnected subpaths produced by the
clipping process.

-mile- -.di.- -miMMam.

543

i

Example

clippath

1 setgray

fill

Operator Details I

This example erases (fills with white) the area inside the current clipping path.

Errors: none

See Also: clip, eoclip, initclip, rectclip

cliprestore - cliprestore -

rEl
resets the current clipping path (see Section 4.4.2, "Clipping Path") from the one
on the top of the clipping path stack in the current graphics state and pops the
clipping path stack, restoring the clipping path in effect at the time of the match-
ing clipsave operation. This operator provides a way to restore only the clipping
path without affecting any of the other graphics state parameters associated with a

grestore operation.

If there has been no clipsave operation since the most recent unmatched gsave,

the cliprestore operator replaces the clipping path with the one that was in effect
at the time of the gsave operation. (This also applies to a gsave that was per-

formed implicitly by a save operation.) Note that the restored clipping path is not
taken from the top of the clipping path stack associated with the previously saved

graphics state, but rather from the clipping path parameter of the saved graphics
state itself. If both the current clipping path stack and the graphics state stack are
empty (which can occur only during an unencapsulated job), the cliprestore op-
eration has no effect.

Errors: none

See Also: clipsave, gsave, grestore

clipsave - clipsave -

ilu pushes a copy of the current clipping path (see Section 4.4.2, "Clipping Path") on

the clipping path stack in the current graphics state. The saved clipping path can
later be restored by a matching cliprestore operation.

The gsave operator also saves the clipping path as part of the total graphics state;

clipsave saves only the clipping path, without any of the other graphics state pa-
rameters.

544
I CHAPTER 8 Operators I

Errors: limitcheck

See Also: cliprestore, gsave, grestore

closefile file closefile -

closes file, breaking the association between the file object and the underlying file

(see Section 3.8, "File Input and Output"). For an output file, closefile first per-
forms a flushfile operation. It may also take device-dependent actions, such as

truncating a disk file to the current position or transmitting an end-of-file indica-
tion. Executing closefile on a file that has already been closed has no effect; it does
not cause an error.

Errors: ioerror, stackunderflow, typecheck

See Also: file, filter, status

closepath - closepath -

closes the current subpath by appending a straight line segment connecting the
current point to the subpath's starting point, which is generally the point most re-
cently specified by moveto (see Section 4.4, "Path Construction").

closepath terminates the current subpath; appending another segment to the cur-
rent path will begin a new subpath, even if the new segment begins at the end-

point reached by the closepath operation. If the current subpath is already closed
or the current path is empty, closepath does nothing.

Errors: limitcheck

See Also: newpath, moveto, lmeto

colorimage width height bits/comp matrix

datasrco datasrc„omp imulti ncomp colorimage -

paints a sampled color image onto the current page. This description only

summarizes the general behavior of the colorimage operator; see Section 4.10,
"Images," for full details.

The image is a rectangular array of width x height sample values, each consisting
of 1, 3, or 4 color components, as specified by ncomp. Each component consists of

I 8.2
545

i
Operator Details I

bits/comp bits of data; valid values of bits/comp are 1, 2, 4, 8, or 12. All components
are the same size.

The image is considered to exist in its own source coordinate system, or image

space. The rectangular boundary of the image has its lower-left corner at coordi-
nates (0, 0) and its upper-right corner at (width, height). The matrix operand de-
fines a transformation from user space to image space.

If ncomp is 1, image samples have only one (gray) component; the behavior of
colorimage is equivalent to that of image using the first five operands. If ncomp is
3, samples consist of red, green, and blue components; if ncomp is 4, they consist
of cyan, magenta, yellow, and black components. The 1-, 3-, and 4-component
sample values are interpreted according to the DeviceGray, DeviceRGB, and
DeviceCMYK color spaces, respectively (see Section 4.8.2, "Device Color Spaces"),
regardless of the current color space.

The multi operand is a boolean value that determines how colorimage obtains
sample data from its data sources. If multi is false, there is a single data source,
datasrco; colorimage obtains all components from that source, interleaved on a
per-sample basis. If multi is true, there are multiple data sources,

datasrco through datasrcncomp_i—one for each color component. The data
sources may be procedures, strings, or files (including filtered files), but must all

be of the same type (see Section 4.10.2, "Sample Representation").

Unlike image and imagemask, colorimage does not have an alternate form in
which the parameters are bundled into a single image dictionary operand. In
LanguageLevels 2 and 3, given the appropriate image dictionary, the image opera-
tor can do anything that colorimage can do, and much more. For example, image

can interpret color samples in any color space, whereas colorimage is limited to
the DeviceGray, DeviceRGB, and DeviceCMYK color spaces.

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,

typecheck, undefined, undefinedresult
See Also: image, imagemask

composefont key name array composefont font
key string array composefont font
key dict array composefont font

91
creates a composite font dictionary—a CID-keyed font—from the CMap speci-
fied by the second operand and the CIDFonts or .fonts in array. It then performs

I CHAPTER 8
546

Operators

the equivalent of a definefont operation, associating this dictionary with key in the

Font resource category.

The CMap can be specified by a name or string operand to be looked up (by

findresource) as a key in the CMap resource category, or the operand can be an ac-

tual CMap dictionary. Similarly, each element of array can be a name or a string to

be looked up as a key in the CIDFont or Font resource category (first in CIDFont

and then, if not found, in Font), or the array element can be an actual CIDFont or

font dictionary.

composefont defines entries in the resulting composite font dictionary as follows:

CMap The specified CMap

Encoding Identity mapping whose length is the same as FDepVector

(consecutive integers starting from 0)

FDepVector CIDFont or font dictionaries specified by array

FMapType 9

FontMatrix Identity transformation

FontName key

FontType
WMode Value of WMode in the specified CMap if present, otherwise 0

If the CMap specifies that the glyph space of any of the descendant fonts or

CIDFonts is to be transformed, an appropriate makefont operation is performed

on each such font during the process of building FDepVector. The transformation

applied is the one specified by beginusematrix and endusematrix in the CMap.

composefont always creates a new font dictionary, regardless of whether there al-

ready exists one made from the same CMap and array of CIDFonts or fonts. A

PostScript program should invoke composefont before the first use of a CID-

keyed font, and then findfont each time it needs to access the resulting font.

Errors: dictfull, invalidaccess, invalidfont, limitcheck, rangecheck,

stackunderflow, typecheck, undefinedresource, VMerror

See Also: definefont, findfont, makefont, beginusematrix, endusematrix

1 8.2
547

i

concat matrix concat -

Operator Details I

applies the transformation represented by matrix to the user coordinate space.

concat accomplishes this by concatenating matrix with the current transformation
matrix (CTM); that is, it replaces the CTM with the matrix product matrix X CTM

(see Section 4.3, "Coordinate Systems and Transformations").

Example

[72 0 0 72 0 0] concat

72 72 scale

Both lines of code above have the same effect on the user coordinate space.

Errors: rangecheck, stackunderflow, typecheck

See Also: concatmatrix, setmatrix, currentmatrix, translate, scale, rotate

concatmatrix matrixi matrix2 matrix3 concatmatrix matrix3

replaces the value of matrix3 with the matrix product matrix 1 x matrix2 and pushes

the result back on the operand stack. The current transformation matrix is not af-

fected.

Errors: rangecheck, stackunderflow, typecheck

See Also: concat, setmatrix, currentmatrix, translate, scale, rotate

configurationerror (error)

0 A setpagedevice or setdevparams operator has been executed with a request for a feature that either is not available in the interpreter implementation or is not cur-

rently available because of the state of the hardware. For setpagedevice, this error

is generated only if the Policies entry in a page device dictionary specifies that an

error should be generated.

When a configurationerror is generated, a two-element array called errorinfo is

placed in Senor. This array contains the key and value of the request that could

not be met. See Section 3.11, " Errors."

See Also: setpagedevice, setdevparams

I CHAPTER 8
548

Operators I

COPY anyi ... any, n copy anyi ... any, anyi any

arrayi array2 copy subarray2

dicti dict2 copy dict2

stringi string2 copy substring2

packedarrayi array2 copy subarray2

gstatei gstate2 copy gstate2

performs two entirely different functions, depending on the type of the topmost
operand.

In the first form, where the top element on the operand stack is a nonnegative in-
teger n, copy pops n from the stack and duplicates the top n elements on the stack
as shown above. This form of copy operates only on the objects themselves, not
on the values of composite objects.

Examples

(a) (b) (c) 2 copy (a) (b) (c)(b)(c)

(a)(b)(c)0 copy (a) (b) (c)

In the other forms, copy copies all the elements of the first composite object into

the second. The composite object operands must be of the same type, except that
a packed array can be copied into an array (and only into an array—copy cannot
copy into packed arrays, because they are read-only). This form of copy copies the
value of a composite object. This is quite different from dup and other operators
that copy only the objects themselves (see Section 3.3.1, "Simple and Composite

Objects"). However, copy performs only one level of copying. It does not apply

recursively to elements that are themselves composite objects; instead, the values
of those elements become shared.

In the case of arrays or strings, the length of the second object must be at least as
great as the first; copy returns the initial subarray or substring of the second oper-
and into which the elements were copied. Any remaining elements of array2 or
string2 are unaffected.

In the case of dictionaries, LanguageLevel 1 requires that dict2 have a length (as re-
turned by the length operator) of 0 and a maximum capacity (as returned by the

maxlength operator) at least as great as the length of dicti. LanguageLevels 2 and 3
do not impose this restriction, since dictionaries can expand when necessary.

The literal/executable and access attributes of the result are normally the same as
those of the second operand. However, in LanguageLevel 1 the access attribute of

dict2 is copied from that of dicti.

If the value of the destination object is in global VM and any of the elements cop-

ied from the source object are composite objects whose values are in local VM, an
invalidaccess error occurs (see Section 3.7.2, "Local and Global VM").

I 8.2
549

Operator Details I

Example

/al [1 2 3] def

al dup length array copy __> [1 2 3]

Errors: invalidaccess, rangecheck, stackoverflow, stackunderflow, typecheck

See Also: dup, get, put, putinterval

copypage - copypage -

transmits the contents of the current page to the current output device, but with-
out performing the additional reinitialization actions that showpage performs.
Specifically, its behavior differs from that of showpage in the following ways:

• showpage usually performs the equivalent of an erasepage operation after
transmitting the page, clearing the contents of raster memory in preparation

for the next page. copypage performs this step only in LanguageLevel 3; in

LanguageLevels 1 and 2, it does not erase the page after transmission.

• showpage then always performs the equivalent of an initgraphics operation,
reinitializing the graphics state for the next page. copypage never does this.

• If an EndPage procedure is defined in the page device dictionary, showpage

passes it a reason code of 0 on the operand stack, indicating that it is being
called from showpage. In LanguageLevels 1 and 2, copypage passes a reason

code of 1 to inform the EndPage procedure that it is being called from
copypage rather than showpage; in LanguageLevel 3, copypage passes a rea-

son code of 0, as if the call were coming from showpage instead. See
Section 6.2.6, "Device Initialization and Page Setup," for more information on

EndPage procedures and reason codes.

If a device's BeginPage or EndPage procedure invokes copypage, an undefined
error occurs.

Note that because copypage behaves differently in LanguageLevel 3 than in

LanguageLevels 1 and 2, some uses of this operator will produce different results
depending on LanguageLevel. For example, some old applications used the code

n { copypage} repeat

erasepage

to produce n copies of the current page; in LanguageLevel 3, this will instead pro-
duce one copy followed by n - 1 blank pages. Similarly, applications that used
copypage to implement forms in LanguageLevels 1 and 2 can no longer do so in

LanguageLevel 3; the first page will be printed correctly, showing both fixed and

I CHAPTER 8
550

Operators

variable contents, but subsequent pages will show only the variable contents, the
fixed contents having been erased.

The use of this operator is discouraged. It is intended primarily as a debugging

aid. Routine use of copypage as a substitute for showpage may severely degrade
the page throughput of some PostScript devices. To print multiple copies of the

same page, use the NumCopies page device parameter (LanguageLevel 2) or set the

value of #copies in the current dictionary, as discussed in the description of the
showpage operator.

Errors: limitcheck, undefined

See Also: showpage, erasepage

cos angle cos real

returns the cosine of angle, which is interpreted as an angle in degrees. The result
is a real number.

Examples

0 cos

90 cos

1.0

0.0

Errors: stackunderflow, typecheck

See Also: atan, sin

count H anyi anyn count H anyi anyn n

counts the number of items on the operand stack and pushes this count on the
operand stack.

Examples

clear count

clear 1 2 3 count 1 233

Errors: stackoverflow

See Also: counttomark

551
8.2

countdictstack - countdictstack int

Operator Details I

counts the number of dictionaries currently on the dictionary stack and pushes

this count on the operand stack.

Errors: stackoverflow

See Also: dictstack, begin, end

countexecstack - countexecstack int

counts the number of objects on the execution stack and pushes this count on the

operand stack.

Errors: stackoverflow

See Also: execstack

counttomark mark obji objn counttomark mark obji objn n

counts the number of objects on the operand stack, starting with the top element

and continuing down to but not including the first mark encountered. obji

through objn are any objects other than marks.

Examples

1 mark 2 3 counttomark 1 mark 2 3 2

1 mark counttomark 1 mark 0

Errors: stackoverflow, unmatchedmark

See Also: mark, count

cshow proc string cshow -

invokes proc once for each operation of the character mapping algorithm. cshow

is intended primarily for use with composite fonts (see Section 5.10, "Composite

Fonts"—in particular, Section 5.10.1, "Character Mapping").

The value of currentfont during the execution of proc is the base font or CIDFont

that the character mapping algorithm selects (unless proc calls setfont or

selectfont). When proc is invoked, the stack contains three values: the selected

character's code (an integer) and the x and y components of the width vector for

the character's glyph in the user coordinate system. cshow does not paint the

I CHAPTER 8
552

l
Operators I

glyph and does not change the current point, although proc may do so. When proc

completes execution, the value of currentfont is restored.

cshow takes special measures so that proc can execute show (or any of its variants)

even when the mapping algorithm selects a CIDFont—that is, when the CMap

yields a CID. In this case, the character code from string (or its last byte, if the code

is more than 1 byte long) is put on the stack for proc. If proc executes a show oper-
ator (without changing the current font), the string passed to show must consist

of a single byte equal to the code given to proc, or a rangecheck error occurs; how-

ever, the code is otherwise ignored. The glyph that is actually shown is the one

identified by the originally selected CID.

cshow can be used to provide careful positioning of individual glyphs while taking

advantage of the composite font mapping machinery of the interpreter. However,

it can also be used with a base font; the mapping algorithm for a base font simply
selects consecutive characters from the string.

Errors: invalidaccess, invalidfont, rangecheck, stackunderflow, typecheck
See Also: show, ashow, awidthshow, kshow, widthshow, xshow, xyshow, yshow

currentblackgeneration - currentblackgeneration proc

ro returns the current black-generation function in the graphics state.

Errors: stackoverflow

See Also: setblackgeneration, setundercolorremoval

currentcacheparams - currentcacheparams mark size lower upper

ire pushes a mark object followed by the current font cache parameters on the

operand stack. The number of cache parameters returned is variable (see

setcacheparams).

Errors: stackoverflow

See Also: setcacheparams, setsystemparams, setuserparams

553
8.2 Operator Details I

currentcmykcolor - currentcmykcolor cyan magenta yellow black

returns the four components of the current color in the graphics state according

to the CMYK (cyan-magenta-yellow-black) color model. The result is determined
in various ways, depending on the current color space:

• If the current color space is DeviceCMYK, currentcmykcolor returns the value

of the current color directly.

• If the current color space is DeviceGray or DeviceRGB, currentcmykcolor con-

verts the current color to equivalent CMYK components by the formulas dis-

cussed in Section 7.2, "Conversions among Device Color Spaces."

• If the current color space is an Indexed space or is a Separation or DeviceN

space with its alternative color space selected, currentcmykcolor applies the

methods above to the underlying color space.

• For any other color space, currentcmykcolor

components.

returns 0.0 for all four CMYK

Errors: stackoverflow

See Also: setcmykcolor, currentcolorspace, currentcolor, currentg ray,

currentrgbcolor, currenthsbcolor

currentcolor - currentcolor compi ... comp,

returns the components of the current color in the graphics state, expressed in the

current color space. The number of components returned, n, is determined by the

color space.

Errors: stackoverflow

See Also: setcolor, setcolorspace

currentcolorrendering - currentcolorrendering dict

returns the current CIE-based color rendering dictionary parameter in the graph-

ics state.

Errors: stackoverflow

See Also: setcolorrendering, findcolorrendering

I CHAPTER 8
554

i

currentcolorscreen - currentcolorscreen redfreq redang redproc

greenfreq greenang greenproc

bluefreq blueang blueproc

grayfreq grayang grayproc

el

- currentcolorscreen redfreq redang redhalftone

greenfreq greenang greenhalftone

bluefreq blueang bluehalftone

grayfreq grayang grayhalftone

Operators I

returns the frequency, angle, and spot function for all four color components of

the current halftone screen parameter in the graphics state (see Section 7.4, "Half-

tones"). If the current halftone was established via the setcolorscreen operator,

the four screens are described independently; if setscreen was used instead, the
same parameter values are repeated for all four.

If the current halftone was defined via the sethalftone operator, currentcolor-

screen returns a frequency of 60 and an angle of 0 for each of the four screens,

along with a halftone dictionary describing the properties of the halftone screen,
substituted in place of the spot function.

Errors: stackoverflow

See Also: setcolorscreen, setscreen, sethalftone, currentscreen, currenthalftone

currentcolorspace - currentcolorspace array

m returns an array containing the family name and parameters of the current color space in the graphics state (see setcolorspace). The results are always returned in

an array, even if the color space has no parameters and was specified to
setcolorspace by name.

Errors: stackoverflow
See Also: setcolorspace, setcolor

r8. 2

Cu rrentcolortra nsfer - currentcolortransfer redproc greenproc blueproc grayproc

555

1
Operator Details I

returns the current transfer functions in the graphics state (see Section 7.3,

lJP "Transfer Functions") for all four primary color components of the output device

(cyan, magenta, yellow, and black). If the current transfer functions were estab-

lished via the setcolortransfer operator, the four transfer functions are returned

independently; if settransfer was used, the same transfer function is repeated for

all four.

Errors: stackoverflow

See Also: setcolortransfer, settransfer, currenttransfer

currentdash - currentdash array offset

returns an array and offset defining the current value of the dash pattern parame-

ter in the graphics state.

Errors: stackoverflow

See Also: setdash, stroke

currentdevparams string currentdevparams dict

returns a dictionary containing the keys and current values of all parameters for

the device or other named parameter set identified by string (see Section C.4, "De-

vice Parameters"). The returned dictionary is merely a container for key-value

pairs. Each execution of currentdevparams allocates and returns a new dictionary.

Errors: stackoverflow, undefined, VMerror

See Also: setdevparams

currentdict - currentdict dict

pushes the current dictionary (the dictionary on the top of the dictionary stack)

on the operand stack. currentdict does not pop the dictionary stack; it just pushes

a duplicate of its top element on the operand stack.

Errors: stackoverflow

See Also: begin, dictstack

I CHAPTER 8
556

i
Operators I

currentfile - currentfile file

returns the file object from which the PostScript interpreter is currently or was

most recently reading program input—that is, the topmost file object on the exe-
cution stack. The returned file has the literal attribute.

If there is no file object on the execution stack, currentfile returns an invalid file

object that does not correspond to any file. This never occurs during execution of
ordinary user programs.

The file returned by currentfile is usually but not always the standard input file.

An important exception occurs during interactive mode operation (see Section

3.8.3, "Special Files"). In this case, the interpreter does not read directly from the

standard input file; instead, it reads from a file representing an edited statement
(each statement is represented by a different file).

The currentfile operator is useful for obtaining images or other data residing in

the program file itself (see the example below). At any given time, this file is posi-

tioned at the end of the last PostScript token read from the file by the interpreter.

If that token was a number or a name immediately followed by a white-space

character, the file is positioned after the white-space character (the first, if there

are several); otherwise, it is positioned after the last character of the token.

Example

/str 100 string clef

currentfile str readline

here is a line of text

pop /textline exch def

After execution of this example, the name textline is associated with the string
here is a line of text.

Errors: stackoverflow

See Also: exec, run

currentflat - currentflat num

returns the current value of the flatness parameter in the graphics state.

Errors: stackoverflow

See Also: setflat, flattenpath

557
I 8.2

I
Operator Details I

currentfont - currentfont font

- currentfont cidfont

returns the current font or CIDFont dictionary, based on the font parameter in
the graphics state. Normally, currentfont returns the value of the font parameter,

as set by setfont or selectfont (and also returned by rootfont). However, when the

font parameter denotes a composite font, and currentfont is executed inside the

BuildGlyph, BuildChar, or CharStrings procedure of a descendant base font or

CIDFont (or inside a procedure invoked by cshow), currentfont returns the cur-

rent descendant base font or CIDFont. (Of course, if the procedure calls setfont

or selectfont first, rootfont and currentfont both return the newly selected font.)

Errors: stackoverflow

See Also: rootfont, selectfont, setfont

currentglobal - currentglobal boo!

0 returns the VM allocation mode currently in effect.
Errors: stackoverflow

See Also: setglobal

currentgray - currentgray num

returns the gray level equivalent to the current color in the graphics state. The re-

sult is determined in various ways, depending on the current color space:

• If the current color space is DeviceGray, currentgray returns the value of the

current color directly.

• If the current color space is DeviceRGB or DeviceCMYK, currentgray converts

the current color to an equivalent gray level by the formulas discussed in

Section 7.2, "Conversions among Device Color Spaces."

• If the current color space is an Indexed space or is a Separation space with its

alternative color space selected, currentgray applies the methods above to the

underlying color space.

. For any other color space, currentgray returns 0.0.

Errors: stackoverflow

See Also: setgray, currentcolorspace, currentcolor, currenthsbcolor,

currentrgbcolor, currentcmykcolor

558
CHAPTER 8 Operators I

currentgstate gstate currentgstate gstate

copies the current graphics state to a gstate (graphics state) object and pushes the

result back on the operand stack. An invalidaccess error will occur if gstate is in

global VM and any of the composite objects in the current graphics state are in lo-

cal VM (see Section 3.7.2, "Local and Global VM"). Such objects might include

the current halftone screen, transfer function, or dash pattern. In general, allocat-

ing gstate objects in global VM is risky and should be avoided.

Errors: invalidaccess, stackunderflow, typecheck

See Also: gstate, setgstate

currenthalftone - currenthalftone halftone

returns a halftone dictionary describing the current halftone screen parameter in

the graphics state. If the current halftone was established via the setscreen or

setcolorscreen operator instead of sethalftone, currenthalftone fabricates and re-

turns a halftone dictionary of type 1 or 2.

Errors: stackoverflow, VMerror

See Also: sethalftone, setscreen, setcolorscreen, sethalftone, currentscreen,

currentcolorscreen

currenthsbcolor - currenthsbcolor hue saturation brightness

returns the three components of the current color in the graphics state according

to the HSB (hue-saturation-brightness) color model. If the current color space is

not DeviceRGB, the current color is first converted to RGB as described for the

currentrgbcolor operator. The resulting RGB color is then converted to HSB

form; see the Bibliography for further sources of information on this conversion.

Errors: stackoverflow

See Also: sethsbcolor, currentcolorspace currentcolor, currentgray,

currentrgbcolor, currentcmykcolor

559
[8.2

currentlinecap - currentlinecap int

Operator Details I

returns the current value of the line cap parameter in the graphics state.

Errors: stackoverflow

See Also: setlinecap, stroke, currentlinejoin

currentlinejoin - currentlinejoin int

returns the current value of the line join parameter in the graphics state.

Errors: stackoverflow

See Also: setlinejoin, stroke, currentlinecap

currentlinewidth - currentlinewidth num

returns the current value of the line width parameter in the graphics state.

Errors: stackoverflow

See Also: setlinewidth, stroke

currentmatrix matrix currentmatrix matrix

replaces the value of matrix with the current transformation matrix (CTM) in the

graphics state and pushes this modified matrix back on the operand stack (see

Section 4.3.2, "Transformations").

Errors: rangecheck, stackunderflow, typecheck

See Also: setmatrix, initmatrix, defaultmatrix, translate, scale, rotate

560 LCHAPTER 8 1 Operators I

currentmiterlimit - currentmiterlimit num

returns the current value of the miter limit parameter in the graphics state.

Errors: stackoverflow

See Also: setmiterlimit, stroke

currentobjectformat - currentobjectformat int

Íg
returns the object format parameter currently in effect.

Errors: stackoverflow

See Also: setobjectformat

currentoverprint - currentoverprint boo!

a returns the current value of the overprint parameter in the graphics state.

Errors: stackoverflow

See Also: setoverprint

currentpacking - currentpacking bool

lie returns the array packing mode currently in effect.

Errors: stackoverflow

See Also: setpacking, packedarray

currentpagedevice - currentpagedevice dict

el
returns a read-only dictionary reflecting the current contents of the page device

dictionary in the graphics state (see Section 6.1.1, "Page Device Dictionary"). If

the current output device is not a page device, the dictionary returned will be

empty. currentpagedevice creates a new dictionary if necessary. It is unspecified

whether parameters that are composite objects are copied from or shared with the

original parameters that were given to setpagedevice.

I 8.2
561

Operator Details I

Changes made to the hardware state of the output device since the last execution
of setpag ed ev ice, such as changing paper trays or switch settings, are not imme-
diately reflected in the dictionary returned by currentpagedevice. If the execution

environment is under the control of a job server (see Section 3.7.7, "Job Execu-
tion Environment"), the server sets up a page device dictionary that matches the
hardware state before starting each job. At the beginning of each job, therefore,
the dictionary returned by currentpagedevice correctly matches the current hard-
ware state of the device.

Errors: stackoverflow, VMerror

See Also: setpagedevice

currentpoint - currentpoint x y

returns the x and y coordinates, in the user coordinate system, of the current
point in the graphics state (the trailing endpoint of the current path).

As discussed in Section 4.4.1, "Current Path," points entered into a path are im-
mediately converted to device coordinates by the current transformation matrix

(CTM); subsequent modifications to the CTM do not affect existing points.
currentpoint computes the user space coordinates corresponding to the current

point according to the current value of the CTM. Thus, if a current point is set
and then the CTM is changed, the coordinates returned by currentpoint will be
different from those that were originally specified for the point.

If the current point is undefined because the current path is empty, a nocurrent-
point error occurs.

Errors: nocurrentpoint, stackoverflow, undefinedresult

See Also: moveto, lmeto, curveto, arc

currentrgbcolor - currentrgbcolor red green blue

returns the three components of the current color in the graphics state according
to the RGB (red-green-blue) color model. The result is determined in various
ways, depending on the current color space:

• If the current color space is DeviceRGB, currentrgbcolor returns the value of
the current color directly.

I CHAPTER 8
562

I
Operators I

• If the current color space is DeviceGray or DeviceCMYK, currentrgbcolor con-

verts the current color to equivalent RGB components by the formulas dis-

cussed in Section 7.2, "Conversions among Device Color Spaces."

• If the current color space is an Indexed space or is a Separation or DeviceN

space with its alternative color space selected, currentrgbcolor applies the

methods above to the underlying color space.

• For any other color space, currentrgbcolor returns 0.0 for all three RGB com-

ponents.

Errors: stackoverflow

See Also: setrgbcolor, currentcolorspace, currentcolor, currentgray,

currenthsbcolor, currentcmykcolor

currentscreen - currentscreen frequency angle proc

- currentscreen frequency angle halftone (LanguageLevel 2)

returns the frequency, angle, and spot function of the current halftone screen pa-

rameter in the graphics state (see Section 7.4, "Halftones"), assuming that the
halftone was established via the setscreen operator. If setcolorscreen was used in-

stead, the values returned describe the screen for the gray color component only.

If the current halftone was defined via the sethalftone operator, currentscreen re-

turns a halftone dictionary describing its properties in place of the spot function.

For type 1 halftone dictionaries, the values returned for frequency and angle are

taken from the dictionary's Frequency and Angle entries; for all other halftone

types, currentscreen returns a frequency of 60 and an angle of O.

Errors: stackoverflow

See Also: setscreen, setcolorscreen, sethalftone, currentcolorscreen,

currenthalftone

currentshared - currentshared bool

m performs the same operation as currentglobal. This operator is defined for com-patibility with earlier PostScript interpreter implementations.

Errors: stackoverflow

See Also: setglobal, setshared

563
8.2

currentsmoothness - currentsmoothness num

Operator Details

returns the current value of the smoothness parameter in the graphics state.

Errors: stackoverflow

See Also: setsmoothness

currentstrokeadjust - currentstrokeadjust boot

returns the current value of the stroke adjustment parameter in the graphics state.

Errors: stackoverflow

See Also: setstrokeadjust, setlinewidth

currentsystemparams - currentsystemparams dict

returns a dictionary containing the keys and current values of all system parame-

ters that are defined in the implementation. The returned dictionary is merely a
container for key-value pairs. Each execution of currentsystemparams allocates

and returns a new dictionary. See Appendix C for information about specific sys-

tem parameters.

Errors: stackoverflow, VMerror

See Also: setsystemparams

currenttransfer - currenttransfer proc

returns the current transfer function in the graphics state (see Section 7.3, "Trans-
fer Functions"), assuming that the transfer function was established via the

settransfer operator. If setcolortransfer was used instead, only the transfer func-
tion for the gray color component is returned.

Errors: stackoverflow

See Also: settransfer, setcolortransfer, currentcolortransfer

I CHAPTER 8
564

I
Operators l

currenttrapparams - currenttrapparams dict (Trapping procedure set)

al

currentundercolorremoval

a

returns a copy of the current trapping parameter dictionary.

For trapping parameters whose values are dictionaries or arrays, the value

returned in the result dictionary is a copy of the original; for parameters whose
values are strings, it is a shared reference to the original rather than a copy. The

dictionary returned by currenttrapparams can be modified and used as an oper-

and to settrapparams.

Errors: stackoverflow

See Also: settrapparams, settrapzone

- currentundercolorremoval proc

returns the current undercolor-removal function in the graphics state.

Errors: stackoverflow

See Also: setundercolorremoval, setblackgeneration

currentuserparams - currentuserparams dict

1111 returns a dictionary containing the keys and current values of all user parameters
that are defined in the implementation. The returned dictionary is a container for

key-value pairs. Each execution of currentuserparams allocates and returns a new

dictionary. See Appendix C for information about specific user parameters.

Errors: stackoverflow, VMerror

See Also: setuserparams

curveto x1 Yi x2 y2 x3 y3 curveto -

appends a section of a cubic Bézier curve to the current path between the current

point (xo, yo) and the endpoint (x3, y3), using (xi, yi) and (x2, y2) as the Bézier con-

trol points. The endpoint (x3, y3) becomes the new current point. If the current

point is undefined because the current path is empty, a nocurrentpoint error

occurs.

565
I 8.2 Operator Details I

The four points (x0, yo), (x1, A), (x2, y2), and (x3, y3) define the shape of the curve

geometrically (see Figure 8.6). The curve is always entirely enclosed by the convex

quadrilateral defined by the four points. It starts at (xo, yo), is tangent to the line
from (xo, yo) to (x1,) at that point, and leaves the starting point in that direction.
It ends at (x3, y3), is tangent to the line from (x2, y2) to (x3, y3) at that point, and
approaches the endpoint from that direction. The lengths of the lines from (xo, yo)
to (x1,) and from (x2, y2) to (x3, y3) represent, in a sense, the "velocity" of the
path at the endpoints.

FIGURE 8.6 curveto operator

Mathematically, a cubic Bézier curve is derived from a pair of parametric cubic
equations:

x(t) = axt3 + bxt2 + cxt + xo

y(t) = ayt3 byt2 cyt yo

The cubic section produced by curveto is the path traced by x(t) and y(t) as t
ranges from 0 to 1. The Bézier control points corresponding to this curve are:

= x0+ cx/3

X2 = x1 + (bx+ cx)/3

X3 = x + a + b + cx 0 xx

y1 = Yo + cy/ 3

Y2 = Y1 + (by+ cy)l3

y3 = yo+ ay+ by+ cy

Errors: limitcheck, nocurrentpoint, rangecheck, stackunderflow, typecheck

See Also: moveto, lmeto, arcto, arc, a rcn, arct

566
I CHAPTER 8 Operators I

Cvi num cvi int

string cvi int

(convert to integer) takes an integer, real, or string object from the stack and

produces an integer result. If the operand is an integer, cvi simply returns it. If the

operand is a real number, it truncates any fractional part (that is, rounds it toward

0) and converts it to an integer. If the operand is a string, cvi invokes the equiv-

alent of the token operator to interpret the characters of the string as a number

according to the PostScript syntax rules. If that number is a real number, cvi con-

verts it to an integer. A rangecheck error occurs if a real number is too large to
convert to an integer. (See the round, truncate, floor, and ceiling operators, which

remove fractional parts without performing type conversion.)

Examples

(3.3E1) cvi 33

-47.8 cvi = -47

520.9 cvi = 520

Errors: invalidaccess, rangecheck, stackunderflow, syntaxerror, typecheck,

undefinedresult

See Also: cvr, ceiling, floor, round, truncate

CVlit any cvlit any

(convert to literal) makes the object on the top of the operand stack have the liter-

al instead of the executable attribute.

Errors: stackunderflow

See Also: cvx, xcheck

cvn string cvn name

(convert to name) converts the string operand to a name object that is lexically

the same as the string. The name object is executable if the string was executable.

Examples

(abc) cvn /a bc

(abc) cvx cvn abc

Errors: invalidaccess, limitcheck, stackunderflow, typecheck

See Also: cvs, type

I 8.2
567

i
Operator Details I

cvr num cvi real

string cvi real

(convert to real) takes an integer, real, or string object and produces a real result.

If the operand is an integer, cvr converts it to a real number. If the operand is a

real number, cvr simply returns it. If the operand is a string, cvr invokes the equiv-

alent of the token operator to interpret the characters of the string as a number

according to the PostScript syntax rules. If that number is an integer, cvr converts

it to a real number.

Errors: invalidaccess, limitcheck, stackunderflow, syntaxerror, typecheclç

undefinedresult

See Also: cvi

cvrs num radix string cvrs substring

(convert with radix to string) produces a text representation of the number num

in the specified radix, stores the text into string (overwriting some initial portion

of its value), and returns a string object designating the substring actually used. If

string is too small to hold the result of the conversion, a rangecheck error occurs.

If radix is 10, cvrs produces the same result as the cvs operator when applied to

either an integer or a real number. That is, it produces a signed integer or real

token that conforms to the PostScript language syntax for that number.

If radix is not 10, cvrs converts num to an integer, as if by the cvi operator. Then it

treats the machine representation of that integer as an unsigned positive integer

and converts it to text form according to the specific radix. The resulting text is

not necessarily a valid number. However, if it is immediately preceded by the

same radix and #, the combination is a valid PostScript token that represents the

same number.

Examples

/temp 12 string def

123 10 temp cvrs

—123 10 temp cvrs

123.4 10 temp cvrs

123 16 temp cvrs

—123 16 temp cvrs

123.4 16 temp cvrs

(123)

(-123)

(123.4)

(78)

(FFFFFF85)

(78)

Errors: invalidaccess, rangecheclç stackunderflow, typecheck
See Also: cvs

I CHAPTER 8
568

Operators

cvs any string cvs substring

(convert to string) produces a text representation of an arbitrary object any, stores

the text into string (overwriting some initial portion of its value), and returns a
string object designating the substring actually used. If string is too small to hold

the result of the conversion, a rangecheck error occurs.

If any is a number, cvs produces a string representation of that number. If any is a

boolean value, cvs produces either the string true or the string false. If any is a

string, cvs copies its contents into string. If any is a name or an operator, cvs pro-

duces the text representation of that name or the operator's name. If any is any

other type, cvs produces the text --nostringval--.

If any is a real number, the precise format of the result string is implementation-

dependent and not under program control. For example, the value 0.001 might be

represented as 0.001 or as 1.0E-3.

Examples

istr 20 string def
123 456 add str cvs (579)
mark str cvs (--nostringval--)

Errors: invalidaccess, rangecheclç stackunderflow, typecheck

See Also: cvi, cvr, string, type

cvx any cvx any

(convert to executable) makes the object on the top of the operand stack have the

executable instead of the literal attribute.

Errors: stackunderflow

See Also: cvlit, xcheck

def key value def —

associates key with value in the current dictionary—the one on the top of the dic-

tionary stack (see Section 3.4, "Stacks"). If key is already present in the current

dictionary, def simply replaces its value; otherwise, def creates a new entry for key

and stores value with it.

I 8.2
569

Operator Details I

If the current dictionary is in global VM and value is a composite object whose
value is in local VM, an invalidaccess error occurs (see Section 3.7.2, "Local and

Global VM").

Examples

/ncnt 1 def

mont ncnt 1 add def

% Define ncnt to be 1 in current dict

% ncnt now has value 2

Errors: dictfull, invalidaccess, limitcheck, stackunderflow, typecheck, VMerror

See Also: store, put

defaultmatrix matrix defaultmatrix matrix

replaces the value of matrix with the default transformation matrix for the current
output device and pushes this modified matrix back on the operand stack.

Errors: rangecheck, stackunderflow, typecheck

See Also: in itmatrix, setmatrix, currentmatrix

definefont key font definefont font

key cidfont definefont cidfont

registers font or cidfont in the Font resource category as an instance associated with

key (usually a name). definefont first checks that font or cidfont is a well-formed
dictionary—in other words, that it contains all entries required in that type of dic-
tionary. It inserts an additional entry whose key is FID and whose value is an ob-
ject of type fontID. It makes the dictionary's access read-only. Finally, it associates
key with font or cidfont in the font directory.

definefont distinguishes between a CIDFont and a font by the presence or absence
of a CIDFontType entry. If the operand is a CIDFont, definefont also inserts a
FontType entry with an appropriate value (see Table 5.11 on page 370).

If the operand is a composite font (see Section 5.10, "Composite Fonts"),
definefont inserts the entries EscChar, Shiftln, and ShiftOut if they are not present

but are required; it may also insert the implementation-dependent entries
PrefEnc, MIDVector, and CurMID. All the descendant fonts must have been
registered by definefont previously; descendant CIDFonts must have been either

registered by definefont or defined as CIDFont resource instances (with define-
resource).

I CHAPTER 8
570

i
Operators l

In LanguageLevel 1, the dictionary must be large enough to accommodate all of

the additional entries inserted by definefont. The font must not have been regis-

tered previously, and an FID entry must not be present.

In LanguageLevels 2 and 3, a Font resource instance can be associated with more

than one key. If font or cidfont has already been registered, definefont does not

alter it in any way.

Subsequent invocation of findfont with key will return the same resource instance.

Font registration is subject to the normal semantics of virtual memory (see

Section 3.7, "Memory Management"). In particular, the lifetime of the definition
depends on the VM allocation mode at the time definefont is executed. A local

definition can be undone by a subsequent restore operation.

definefont is actually a special case of defineresource operating on the Font cate-

gory. For details, see defineresource and Section 3.9, "Named Resources."

Errors: dictfull, invalidaccess, invalidfont, limitcheclç rangecheck,

stackunderflow, typecheck

See Also: ma kefont, scalefont, setfont, defineresource, FontDirectory,
GlobalFontDirectory, setglobal

defineresource key instance category defineresource instance

a associates a resource instance with a resource name in a specified category. category is a name object that identifies a resource category, such as Font (see

Section 3.9.2, "Resource Categories"), key is a name or string object that will be
used to identify the resource instance. (Names and strings are interchangeable;

other types of keys are permitted but are not recommended.) instance is the re-

source instance itself; its type must be appropriate to the resource category.

Before defining the resource instance, defineresource verifies that the instance ob-
ject is the correct type. Depending on the resource category, it may also perform

additional validation of the object and may have other side effects (see
Section 3.9.2); these side effects are determined by the DefineResource procedure

in the category implementation dictionary. Finally, defineresource makes the ob-

ject read-only if its access is not already restricted.

The lifetime of the definition depends on the VM allocation mode at the time
defineresource is executed. If the current VM allocation mode is local

(currentglobal returns fa/se), the effect of defineresource is undone by the next

nonnested restore operation. If the current VM allocation mode is global

(currentglobal returns true), the effect of defineresource persists until global VM

is restored at the end of the job. If the current job is not encapsulated, the effect of

571
I8.2 Operator Details

a global defineresource operation persists indefinitely, and may be visible to other

execution contexts.

Local and global definitions are maintained separately. If a new resource instance

is defined with the same category and key as an existing one, the new definition

overrides the old one. The precise effect depends on whether the old definition is

local or global and whether the new definition (current VM allocation mode) is

local or global. There are two main cases:

• The new definition is local. defineresource installs the new local definition,

replacing an existing local definition if there is one. If there is an existing global

definition, defineresource does not disturb it. However, the global definition is

obscured by the local one. If the local definition is later removed, the global

definition reappears.

• The new definition is global. defineresource first removes an existing local defi-

nition if there is one. It then installs the new global definition, replacing an

existing global definition if there is one.

defineresource can be used multiple times to associate a given resource instance

with more than one key.

If the category name is unknown, an undefined error occurs. If the instance is of

the wrong type for the specified category, a typecheck error occurs. If the instance

is in local VM but the current VM allocation mode is global, an invalidaccess

error occurs; this is analogous to storing a local object into a global dictionary.

Other errors can occur for specific categories; for example, when dealing with the

Font or CIDFont category, defineresource may execute an invalidfont error.

Errors: invalidaccess, stackunderflow, typecheck, undefined

See Also: undefineresource, findresource, resourcestatus, resourceforall

defineuserobject index any defineuserobject -

a establishes an association between the nonnegative integer index and the object any in the UserObjects array (see Section 3.7.6, "User Objects"). First, it creates a

UserObjects array in userdict if one is not already present, or extends an existing

UserObjects array if necessary. It then executes the equivalent of

userdict /UserObjects get

3 1 roll put

In other words, it simply stores any into the array at the position specified by

index.

I CHAPTER 8
572

Operators I

If defineuserobject creates or extends the UserObjects array, it allocates the array

in local VM, regardless of the current VM allocation mode.

The behavior of defineuserobject obeys normal PostScript language semantics in
all respects. In particular, the modification to the Use rObjects array and to

userdict, if any, is immediately visible to all contexts that share the same local VM.
It can be undone by a subsequent restore operation according to the usual VM
rules.

index values must be within the range permitted for arrays; a large index value may
cause allocation of an array that would exhaust VM resources. Assigning index

values sequentially starting at 0 is strongly recommended.

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: execuserobject, undefineuserobject, UserObjects

deletefile filename deletefile -

removes the specified file from its storage device (see Section 3.8.2, "Named
Files"). If no such file exists, an undefinedfilename error occurs. If the device does

not allow this operation, an invalidfileaccess error occurs. If an environment-
dependent error is detected, an ioerror occurs.

Errors: invalidfileaccess, ioerror, stackunderflow, typecheck,

undefinedfilename

See Also: file, renamefile, status

dict int dict dict

creates an empty dictionary with an initial capacity of int elements and pushes the

created dictionary object on the operand stack. int is expected to be a nonnegative

integer. The dictionary is allocated in local or global VM according to the VM al-
location mode (see Section 3.7.2, "Local and Global VM").

In LanguageLevel 1, the resulting dictionary has a maximum capacity of int ele-
ments. Attempting to exceed that limit causes a dictfull error.

In LanguageLevels 2 and 3, the int operand specifies only the initial capacity; the
dictionary can grow beyond that capacity if necessary. The dict operator immedi-
ately consumes sufficient VM to hold int entries. If more than that number of en-
tries are subsequently stored in the dictionary, additional VM is consumed at that
time.

8.2
573

Operator Details I

There is a cost associated with expanding a dictionary beyond its initial allocation.
For efficiency reasons, a dictionary is expanded in chunks rather than one ele-

ment at a time, so it may contain a substantial amount of unused space. If a pro-

gram knows how large a dictionary it needs, it should create one of that size
initially. On the other hand, if a program cannot predict how large the dictionary
will eventually grow, it should choose a small initial allocation sufficient for its
immediate needs. The built-in writeable dictionaries (for example, userdict) fol-
low the latter convention.

Errors: limitcheck, stackunderflow, typecheck, VMerror

See Also: begin, end, length, maxlength

dictfull (error)

A clef, put, or store operation has attempted to define a new entry in a dictionary

that is already full—in other words, whose length and maximum capacity (as re-
turned by length and maxlength) are already equal. This can occur only in
LanguageLevel 1, where a dictionary has a fixed limit on the number of entries
with distinct keys that it can hold. This limit is established by the operand to the

dict operator that creates the dictionary.

See Also: def, put, store, dict

dictstack array dictstack subarray

stores all elements of the dictionary stack into array and returns an object describ-
ing the initial n-element subarray of array, where n is the current depth of the dic-

tionary stack. dictstack copies the topmost dictionary into element n — 1 of array

and the bottommost one into element O. The dictionary stack itself is unchanged.
If the length of array is less than the depth of the dictionary stack, a rangecheck
error occurs.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: countdictstack

I CHAPTER 8
574

I
Operators I

dictstackoverflow (error)

The dictionary stack has grown too large; too many begin operators without cor-

responding end operators have pushed dictionaries on the dictionary stack. See

Appendix B for the limit on the size of the dictionary stack.

Before invoking this error, the interpreter creates an array containing all elements

of the dictionary stack stored as if by dictstack, pushes this array on the operand

stack, and resets the dictionary stack to contain only the permanent entries.

See Also: begin, countdictstack, cleardictstack

dictstackunderflow (error)

An attempt has been made to remove (with end) the bottommost instance of

userdict from the dictionary stack. This occurs if an end operator is executed for

which there was no corresponding begin.

See Also: end

div numi num2 div quotient

divides numi by num2, producing a result that is always a real number even if both

operands are integers. Use idiv instead if the operands are integers and an integer

result is desired.

Examples

3 2 div = 1.5

4 2 div 2.0

Errors: stackunderflow, typecheck, undefmedresult

See Also: idiv, add, mul, sub, mod

dtransform dx dy dtransform dx' dy'

dx dy matrix dtransform dx' dy'

(delta transform) applies a transformation matrix to the distance vector (dx, dy),

returning the transformed distance vector (dx', dy'). The first form of the opera-

tor uses the current transformation matrix in the graphics state to transform the

I 8.2
575

i
Operator Details I

distance vector from user space to device space coordinates. The second form ap-

plies the transformation specified by the matrix operand rather than the CTM.

A delta transformation is similar to an ordinary transformation (see Section 4.3,
"Coordinate Systems and Transformations"), but does not use the translation
components tx and ty of the transformation matrix. The distance vectors are thus

positionless in both the original and target coordinate spaces, making this opera-

tor useful for determining how distances map from user space to device space.

Errors: rangecheck, stackunderflow, typecheck

See Also: transform, idtransform

dup any dup any any

duplicates the top element on the operand stack. dup copies only the object; the

value of a composite object is not copied but is shared. See Section 3.3, "Data
Types and Objects."

Errors: stackoverflow, stackunderflow

See Also: copy, index

echo boo! echo -

specifies whether the special files %lineedit and 96statementedit are to copy char-

acters from the standard input file to the standard output file. This affects only the

behavior of executive; it does not apply to normal communication with the Post-

Script interpreter, echo is not defined in products that do not support executive.

See Sections 2.4.4, "Using the Interpreter Interactively," and 3.8.3, "Special Files."

Errors: stackunderflow, typecheck

See Also: executive, file

I CHAPTER 8

eexec file eexec -

string eexec -

576

i
Operators I

causes the contents of file (open for reading) or string to be decrypted and then ex-
ecuted in a manner similar to the exec operator. The decryption operation does

not cause file or string to be modified.

eexec creates a new file object that serves as a decryption filter on file or string. It
pushes the new file object on the execution stack, making it the current file for the

PostScript interpreter. Subsequently, each time the interpreter reads a character

from this file, or a program reads explicitly from the file returned by currentfile,
the decryption filter reads one character from the original file or string and de-
crypts it.

The decryption filter file is closed automatically when the end of the original file
or string is encountered, or it can be closed explicitly by closefile. If the file passed
to eexec was the current file, this resumes direct execution of that file with the de-

cryption filter removed. The file may consist of encrypted text followed by unen-
crypted text if the last thing executed in the encrypted text is currentfile closefile.

Before beginning execution, eexec pushes systemdict on the dictionary stack,
thus ensuring that the operators executed by the encrypted program have their
standard meanings. When the decryption filter file is closed either explicitly or

implicitly, the dictionary stack is popped. The program must be aware that it is
being executed with systemdict as the current dictionary; in particular, any defini-

tions that it makes must be into a specific dictionary rather than the current one,
since systemdict is read-only.

The encrypted file may be represented in either binary or hexadecimal; eexec can
decrypt it without being told which type it is. The recommended representation is

hexadecimal, because hexadecimal data can be transmitted through communica-
tion channels that are not completely transparent. Regardless of the representa-

tion of the encrypted file, the encryption and decryption processes are
transparent—that is, an arbitrary binary file can be encrypted, transmitted as
either binary or hexadecimal, and decrypted to yield the original information.

The encryption employed by eexec is intended primarily for use in Type 1 font

programs. The book Adobe Type 1 Font Format contains a complete description of
the encryption algorithm and recommended uses of eexec.

Errors: dictstackoverflow, invalidaccess, invalidfileaccess, limitcheck,

stackunderflow, typecheck

See Also: exec, filter

1 8.2
577

Operator Details

end - end -

pops the current dictionary off the dictionary stack, making the dictionary below

it the current dictionary. If end tries to pop the bottommost instance of userdict,

a dictstackunderflow error occurs.

Errors: dictstackunderflow

See Also: begin, dictstack, countdictstack

endbfchar srccodei dstcodeildstnamei (CIDInit procedure set)

srccoden dstcodenidstnamen endbfchar -

completes the mapping started by beginbfchar from individual character codes to

character codes or names. The single code specified by the string srccodei is

mapped either to a code, dstcodei, or to a name, dstnamei; likewise for the re-

maining srccode values. See Section 5.11.4, "CMap Dictionaries."

endbfrange srccodeloi srccodehii dstcodeloildstnamearrayi (CIDInit procedure set)

srccodelon srccodehin dstcodelonldstnamearrayn endbfrange -

completes the mapping started by beginbfrange from character code ranges to

character codes or names. The codes in the interval specified by the strings

srccodeloi through srccodehii are mapped either to a range of consecutive codes

beginning with dstcodeloi or to a sequence of names listed in an array,

dstnamearrayi; likewise for the remaining intervals. See Section 5.11.4, "CMap

Dictionaries."

endcidchar srccodei dstcidi srccoden dstcidn endcidchar - (CIDInit procedure set)

111 completes the mapping started by begincidchar from individual character codes

to CIDs. The single code specified by the string srccodei is mapped to an integer

CID, decidi; likewise for the remaining srccode values. See Section 5.11.4, "CMap

Dictionaries."

I CHAPTER 8
578

i
Operators I

endcidrange srccodeloi srccodehii dstcidloi ... (CIDInit procedure set)

srccodelon srccodehin dstcidlon endcidrange -

a completes the mapping started by begincidrange from character code ranges to CIDs. The codes in the interval specified by the strings srccodeloi through

srccodehii are mapped to a range of consecutive CIDs beginning with the integer

dstcidioi; likewise for the remaining intervals. See Section 5.11.4, "CMap Diction-

aries."

endcmap - endcmap - (CIDInit procedure set)

i denotes the end of the CMap definition started by begincmap; see Section 5.11.4,

"CMap Dictionaries."

endcodespacerange srccodeloi srccodehii ... (CIDInit procedure set)

srccodelon srccodehin endcodespacerange -

0 completes the definition of codespace ranges started by begincodespacerange. The codes in the interval specified by the strings srccodeloi through srccodehii are

declared to be valid codes; likewise for the remaining intervals. See Section 5.11.4,

"CMap Dictionaries."

endnotdefchar srccodei dstcidi ... srccoden dstcid, endnotdefchar -

rill

(CIDInit procedure set)

completes the notdef mapping started by beginnotdefchar from individual char-

acter codes to CIDs. The single code specified by the string srccodei is mapped to

an integer CID, dstcidi; likewise for the remaining srccode values. See

Section 5.11.4, "CMap Dictionaries."

I 8.2
579

l
Operator Details I

endnotdefrange srccodeloi srccodehi 1 dstcidi ... (CIDInit procedure set)

srccodelon srccodehin dstcid, endnotdefrange -

0
completes the notdef mapping started by beginnotdefrange from character code

ranges to CIDs. The codes in the interval specified by the strings srccodeloi

through srccodehii are mapped to a single integer CID, dstcidi; likewise for the re-

maining intervals. See Section 5.11.4, "CMap Dictionaries."

endrearrangedfont - endrearrangedfont - (CIDInit procedure set)

a
ends the definition of a rearranged font started by beginrearrangedfont; see

Section 5.11.4, "CMap Dictionaries."

endusematrix matrix endusematrix - (CIDInit procedure set)

a completes the specification of the transformation matrix started by beginuse-matrix; see Section 5.11.4, "CMap Dictionaries."

eoclip - eoclip -

intersects the area inside the current clipping path with the area inside the current

path to produce a new, smaller clipping path. The even-odd rule (see "Even-Odd

Rule" on page 196) is used to determine what points lie inside the current path,

while the inside of the current clipping path is determined by whatever rule was
used at the time the path was created. In all other respects, the behavior of eoclip

is identical to that of clip.

Errors: limitcheck

See Also: clip, clippath, initclip, rectclip

I CHAPTER 8
580

I
Operators I

eofill - eofill -

paints the area inside the current path with the current color. The even-odd rule is
used to determine what points lie inside the path (see "Even-Odd Rule" on

page 196). In all other respects, the behavior of eofill is identical to that of fill.

Errors: limitcheck

See Also: fill, ineofill, ueofill

eq anyi any2 eq bool

pops two objects from the operand stack and pushes true if they are equal, or false

if not. The definition of equality depends on the types of the objects being com-

pared. Simple objects are equal if their types and values are the same. Strings are

equal if their lengths and individual elements are equal. Other composite objects

(arrays and dictionaries) are equal only if they share the same value. Separate val-

ues are considered unequal, even if all the components of those values are the
same.

This operator performs some type conversions. Integers and real numbers can be

compared freely: an integer and a real number representing the same mathemati-

cal value are considered equal by eq. Strings and names can likewise be compared
freely: a name defined by some sequence of characters is equal to a string whose
elements are the same sequence of characters.

The literal/executable and access attributes of objects are not considered in com-
parisons between objects.

Examples

4.0 4 eq true % A real number and an integer may be equal
(abc) (abc) eq true % Strings with equal elements are equal

(abc) ¡abc eq true % A string and a name may be equal

[1 2 3] dup eq = true % An array is equal to itself

[1 2 3] [1 2 3] eq false % Distinct array objects are not equal

Errors: invalidaccess, stackunderflow

See Also: ne, le, It, ge, gt

I
581

Operator Details

erasepage - erasepage -

erases the current page by painting it with gray level 1.0 (which is ordinarily white,

but may be some other color if an atypical transfer function has been defined).
The entire page is erased, without reference to the clipping path currently in force.
erasepage affects only the contents of raster memory; it does not modify the

graphics state, nor does it cause a page to be transmitted to the output device.

The showpage operator automatically invokes erasepage after imaging a page.
There are few situations in which a PostScript page description should invoke
erasepage explicitly, since it affects portions of the page outside the current clip-

ping path. It is usually more appropriate to erase just the area inside the current
clipping path (see clippath). This allows the page description to be embedded

within another, composite page without undesirable effects.

Errors: none
See Also: showpage, fill, clippath

errordict - errordict dict

pushes the dictionary object errordict on the operand stack (see Section 3.11, "Er-

rors"). errordict is not an operator; it is a name in systemdict associated with the

dictionary object.

Errors: stackoverflow

See Also: Serror

exch anyi any2 exch any2 anyi

exchanges the top two elements on the operand stack.

Example

1 2 exch = 21

Errors: stackunderflow

See Also: dup, roll, index, pop

I CHAPTER 8
582

Operators

exec any exec -

pushes the operand on the execution stack, executing it immediately. The effect of
executing an object depends on the object's type and literal/executable attribute;
see Section 3.5, "Execution." In particular, executing a literal object will cause it

only to be pushed back on the operand stack. Executing a procedure, however,
will cause the procedure to be called.

Examples

(3 2 add)cvx exec 5
3 2 /add exec 3 2 /add

3 2 /add cvx exec 5

In the first example, the string 32 add is made executable and then executed. Exe-
cuting a string causes its characters to be scanned and interpreted according to the
PostScript language syntax rules.

In the second example, the literal objects 3, 2, and /add are pushed on the operand

stack, then exec is applied to /add. Since /add is a literal name, executing it simply
causes it to be pushed back on the operand stack. The exec operator in this case
has no useful effect.

In the third example, the literal name /add on the top of the operand stack is

made executable by cvx. Applying exec to this executable name causes it to be
looked up and the add operation to be performed.

Errors: stackunderflow
See Also: xcheck, cvx, run

execform form execform -

paints a form defined by a form dictionary constructed as described in
Section 4.7, "Forms." The graphical output produced by execform is defined by
the form dictionary's PaintProc procedure.

If this is the first invocation of execform for form, execform first verifies that the
dictionary contains the required entries. Then it adds an entry to the dictionary

with the key Implementation, whose value is private to the PostScript interpreter.
Finally, it makes the dictionary read-only. (execform performs these alterations
directly to the operand dictionary; it does not copy the dictionary. These actions

succeed even if the dictionary is already read-only.)

I 8.2
583

Operator Details I

When execform needs to call the PaintProc procedure, it pushes the form diction-

ary on the operand stack, then executes the equivalent of the following code:

gsave

dup /Matrix get concat

dup /BBox get abad pop

exch 3 index sub

exch 2 index sub

rectclip

dup /PaintProc get

exec

grestore

% Operand stack: dict

% Stack: dict Ilx by urx ury

% Stack: dict Ilx Dy width height

% Also does a newpath

% Stack: dict proc

% Execute procedure with dict on stack

The PaintProc procedure is expected to consume the dictionary operand and to
execute a sequence of graphics operators to paint the form. The PaintProc proce-

dure must always produce the same output given the same graphics state parame-

ters, independently of the number of times it is called and independently, for

example, of the contents of userdict. The PostScript program should not expect

any particular invocation of execform to cause the specified PaintProc procedure

to be executed.

The errors listed below are those produced directly by execform. The PaintProc

procedure can, of course, cause other errors.

Errors: limitcheck, rangecheck, stackunderflow, typecheck, undefined, VMerror

See Also: findresource

execstack array execstack subarray

stores all elements of the execution stack into array and returns an object describ-

ing the initial n-element subarray of array, where n is the current depth of the exe-

cution stack. execstack copies the topmost object into element n — 1 of array and

the bottommost one into element 0 of array. The execution stack itself is un-

changed. If the length of array is less than the depth of the execution stack, a

rangecheck error occurs.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: countexecstack, exec

I CHAPTER 8
584

Operators I

execstackoverflow (error)

The execution stack has grown too large; procedure invocation is nested deeper

than the PostScript interpreter permits. See Appendix B for the limit on the size of
the execution stack.

See Also: exec

execuserobject index execuserobject -

executeonly

executes the object associated with the nonnegative integer index in the

UserObjects array (see Section 3.7.6, "User Objects"). execuserobject is equiva-

lent to

userdict /UserObjects get

exch get exec

execuserobject's behavior is similar to that of exec or other explicit execution op-
erators. That is, if the object is executable, it is executed; otherwise, it is pushed on

the operand stack.

If UserObjects is not defined in userdict because defineuserobject has never been

executed, an undefined error occurs. If index is not a valid index for the existing
UserObjects array, a rangecheck error occurs. If index is a valid index but define-

userobject has not been executed previously for that index, a null object is re-
turned.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck, undefined

See Also: defineuserobject, undefineuserobject, UserObjects

array executeonly array

packedarray executeonly packedarray

file executeonly file

string executeonly string

reduces the access attribute of an array, packed array, file, or string object to

execute-only (see Section 3.3.2, "Attributes of Objects"). Access can only be re-
duced by this operator, never increased. When an object is execute-only, its value

cannot be read or modified explicitly by PostScript operators (an invalidaccess

error will result), but it can still be executed by the PostScript interpreter—for ex-

ample, by invoking it with the exec operator.

L8.2
585

i
Operator Details I

executeonly affects the access attribute only of the object that it returns. If there

are other composite objects that share the same value, their access attributes are

unaffected.

Errors: invalidaccess, stackunderflow, typecheck

See Also: rcheclç wcheck, xcheck, readonly, noaccess

executive - executive -

invokes the interactive executive, which facilitates direct user interaction with the

PostScript interpreter; see Section 2.4.4, "Using the Interpreter Interactively."

executive uses the special %statementedit file to obtain commands from the user

(see Section 3.8.3, "Special Files"). The echo operator and the value of prompt

also affect the behavior of executive.

executive is not necessarily defined in all products. It should not be considered a

standard part of the PostScript language.

Errors: undefined

See Also: prompt, echo, file

exit - exit -

terminates execution of the innermost, dynamically enclosing instance of a loop-

ing context without regard to lexical relationship. A looping context is a procedure

invoked repeatedly by one of the following control operators:

cshow forall pathfora II

filenameforall kshow repeat
for loop resourcefora II

exit pops the execution stack down to the level of that operator. The interpreter

then resumes execution at the next object in normal sequence after that operator.

exit does not affect the operand stack or dictionary stack. Any objects pushed on

these stacks during execution of the looping context remain after the context is

exited.

If exit would escape from the context of a run or stopped operator, an invalidexit

error occurs (still in the context of the run or stopped). If there is no enclosing

looping context, the interpreter prints an error message and executes the built-in

I CHAPTER 8
586

Operators I

operator quit. This never occurs during execution of ordinary user programs, be-
cause they are enclosed by a stopped context.

Errors: invalidexit

See Also: stop, stopped

exitserver password exitserver - (serverdict)

initiates an unencapsulated job, similarly to the operation

true password startjob

in LanguageLevel 2 or 3, except that an invalidaccess error occurs if password is

incorrect. See Section 3.7.7, "Job Execution Environment."

Errors: invalidaccess, stackunderflow, typecheck

See Also: startjob

exp base exponent exp real

raises base to the exponent power. The operands may be either integers or real

numbers. If the exponent has a fractional part, the result is meaningful only if the
base is nonnegative. The result is always a real number.

Examples

9 0.5 exp 3.0

-9 -1 exp = -0.111111

Errors: stackunderflow, typecheck, undefinedresult
See Also: sqrt, In, log, mul

I 8.2
587

false - false false

Operator Details I

pushes a boolean object whose value is false on the operand stack, false is not an

operator; it is a name in systemdict associated with the boolean value false.

Errors: stackoverflow

See Also: true, and, or, not, xor

file filename access file file

creates a file object for the file identified by filename, accessing it as specified by

access. Both operands are strings. Conventions for file names and access specifica-

tions depend on the operating system environment in which the PostScript inter-

preter is running. See Section 3.8.2, "Named Files."

Once created and opened, the returned file object remains valid until the file is

closed either explicitly (by invoking closefile) or implicitly (by encountering end-

of-file while reading or executing the file). A file is also closed by restore if the file

object was created more recently than the save snapshot being restored, or is

closed by garbage collection if the file object is no longer accessible. There is a lim-

it on the number of files that can be open simultaneously; see Appendix B.

If filename is malformed, or if the file does not exist and access does not permit

creating a new file, an undefinedfilename error occurs. If access is malformed or

the requested access is not permitted by the device, an invalidfileaccess error oc-

curs. If the number of files opened by the current context exceeds an implementa-

tion limit, a limitcheck error occurs. If an environment-dependent error is

detected, an ioerror occurs.

Examples

(%stdin) (r) file = % Standard input file object

(myfile) (w) file = % Output file object, writing to named file

Errors: invalidfileaccess, ioerror, limitcheck, stackunderflow, typecheck,

undefinedfilename

See Also: closefile, currentfile, filter, status

I CHAPTER 8
588

l
Operators I

filenameforall template proc scratch filenameforall -

MI enumerates all files whose names match the specified template string. For each

matching file, filenameforall copies the file's name into the supplied scratch string,
pushes a string object designating the substring of scratch actually used, and calls

proc. filenameforall does not return any results of its own, but proc may do so.

The details of template matching are device-dependent, but the typical conven-

tion is that all characters in template are case-sensitive and are treated literally,
with the exception of the following:

. Matches zero or more consecutive characters.

? Matches exactly one character.

\ Causes the next character of the template to be treated literally, even if it is
*, ?, or \. Note that \ is treated as an escape character in a string literal.
Thus, if template is a string literal, \\ must be used to represent \ in the
resulting string.

If template does not begin with %, it is matched against device-relative file names
of all devices in the search order (see Section 3.8.2, "Named Files"). When a

match occurs, the file name passed to proc is likewise device-relative—in other
words, it does not have a %device% prefix.

If template does begin with %, it is matched against complete file names in the
form %device%file. Template matching can be performed on device, file, or both

parts of the name. When a match occurs, the file name passed to proc is likewise in
the complete form %device%file.

The order of enumeration is unspecified and device-dependent. There are no re-

strictions on what proc can do. However, if proc causes new files to be created, it is
unspecified whether those files will be encountered later in the same enumera-
tion. Likewise, the set of file names considered for template matching is device-
dependent.

Errors: invalidaccess, ioerror, rangecheck, stackoverflow, stackunderflow,

typecheck

See also: file, status

I 8.2
589

Operator Details I

fileposition file fileposition position

returns the current position in an existing open file. The result is a nonnegative

integer interpreted as number of bytes from the beginning of the file. If the file
object is not valid or the underlying file is not positionable, an ioerror occurs.

Errors: ioerror, stackunderflow, typecheck

See also: setfileposition, file

fill - fill -

paints the area inside the current path with the current color. The nonzero wind-

ing number rule is used to determine what points lie inside the path

(see "Nonzero Winding Number Rule" on page 195).

fill implicitly closes any open subpaths of the current path before painting. Any

previous contents of the filled area are obscured, so an area can be erased by filling

it with the current color set to white.

After filling the current path, fill clears it with an implicit newpath operation. To

preserve the current path across a fill operation, use the sequence

gsave
fill

g restore

Errors: limitcheck

See Also: stroke, eofill, ufill, shfill

filter datasrc dict paratni param, filtemame filter file

datatgt dict parami paramn filtemame filter file

creates and returns a filtered file (see Sections 3.8.4, "Filters," and 3.13, "Filtered

Files Details").

The first operand specifies the underlying data source or data target that the filter

is to read or write. It can be a file, a procedure, or a string.

The dict operand contains additional parameters that control how the filter is to

operate. It can be omitted whenever all dictionary-supplied parameters have their

default values for the given filter. The operands parami through param, are addi-

tional parameters that some filters require as operands rather than in dict; most

I CHAPTER 8
590

Operators I

filters do not require these operands. The number and types of parameters speci-

fied in dict or as operands depends on the filter name.

The filtemame operand identifies the data transformation that the filter is to per-

form. The standard filter names are as follows:

ASCIIHexEncode ASCIIHezDecode

ASCI185Encode ASCI185Decode

LZWEncode LZWDecode

FlateEncode (LanguageLevel 3) FlateDecode (LanguageLevel 3)

RunLengthEncode RunLengthDecode

CCITTFaxEncode CCITTFaxDecode

DCTEncode DCTDecode

NullEncode SubFileDecode

ReusableStreamDecode (LanguageLevel 3)

An encoding filter is an output (writeable) file; a decoding filter is an input (read-

able) file. The file object returned by the filter can be used as an operand to nor-

mal file input and output operators, such as read and write. Reading from an

input filtered file causes the filter to read from the underlying data source and

transform the data. Similarly, writing to an output filtered file causes the filter to
transform the data and write it to the underlying data target.

The filter operator disregards the current VM allocation mode. Instead, the re-

turned file object is created in global VM if and only if all the composite objects it

retains after filter creation are in global VM. These objects include the underlying

source or target object, the end-of-data string for SubFileDecode, and the dict op-

erand of DCTDecode or DCTEncode (which can contain strings and arrays used

during operation of the filter).

Note that the dict operand is not retained by filters other than DCTDecode and

DCTEncode. The dictionary is used only as a container for parameters, which are

completely processed by the filter operator. Therefore, the VM allocation mode of

this dictionary is irrelevant.

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,

typecheck, undefined

See Also: file, closefile, resourceforall

I 8.2
591

-I

findcolorrendering renderingintent findcolorrendering name boo!

a

Operator Details I

selects a CIE-based color rendering dictionary (CRD) for rendering colors on the

current output device according to a specified rendering intent (see Section 7.1.3,

"Rendering Intents"). renderingintent is a name or string specifying the desired

rendering intent, name is a name representing a CRD present in the Color-

Rendering resource category. The CRD can then be established as current in the

graphics state with the findresource and setcolorrendering operators.

If bool is true, the CRD designated by name exactly satisfies the requested render-

ing intent for the current device configuration and halftone. If bool is false, a CRD

exactly satisfying the request is not available; in this case, name proposes an alter-

nate CRD instead.

findcolorrendering combines the requested rendering intent with the current de-

vice configuration and halftone to form a CRD name of the form

renderingintent.deviceconfig.halftone

where renderingintent is taken verbatim from the renderingintent operand, and

devicecon fig and halftone are the names returned by calls to the GetPageDevice-

Name and GetHalftoneName procedures, respectively, in the ColorRendering pro-

cedure set.

To ensure that all parameters that may influence the selection of a color rendering

dictionary are correctly accounted for, findcolorrendering should not be called

until after any other operators that can affect either the device configuration or

the current halftone.

Errors: stackoverflow, stackunderflow, typecheck

See Also: setcolorrendering, currentcolorrendering, GetPageDeviceName,

GetHalftoneName, GetSubstituteCRD

findencoding key findencoding array

a obtains an encoding vector identified by key and pushes it on the operand stack. Encoding vectors are described in Section 5.3, "Character Encoding."

findencoding is a special case of findresource applied to the Encoding category

(see Section 3.9, "Named Resources"). If the encoding vector specified by key does

not exist or cannot be found, an undefinedresource error occurs.

Errors: stackunderflow, typecheck, undefinedresource

See Also: findresource, StandardEncoding, ISOLatin1 Encoding

I CHAPTER 8
592

I
Operators I

findfont key findfont font

key findfont cidfont

obtains a Font resource instance whose name is key and pushes the instance

(which may be a font or CIDFont dictionary) on the operand stack (see

Section 5.1, "Organization and Use of Fonts"). key may be a key previously passed

to definefont, in which case the Font resource instance associated with key (in the

font directory) is returned.

If the Font resource identified by key is not defined in virtual memory, findfont

takes an action that varies according to the environment in which the PostScript

interpreter is operating. In some environments, findfont may attempt to read a

font definition from an external source, such as a file. In other environments,

findfont substitutes a default font or executes the invalidfont error. findfont is a

special case of findresource applied to the Font category. See Section 3.9, "Named

Resources."

findfont, like findresource, normally looks first for Font resources defined in local

VM, then for those defined in global VM. However, if the current VM allocation
mode is global, findfont considers only Font resources defined in global VM. If

findfont needs to load a font or CIDFont into VM, it may use either local or global

VM; see Section 3.9.2, "Resource Categories," for more information.

findfont is not an operator, but rather a built-in procedure. It may be redefined by

a PostScript program that requires different strategies for finding fonts.

Errors: invalidfont, stackunderflow, typecheck

See Also: scalefont, makefont, setfont, selectfont, definefont, findresource,

FontDirectory, GlobalFontDirectory

findresource key category findresource instance

a attempts to obtain a named resource instance in a specified category. category is a name object that identifies a resource category, such as Font (see Section 3.9.2,

"Resource Categories"), key is a name or string object that identifies the resource

instance. (Names and strings are interchangeable; other types of keys are permit-

ted but are not recommended.) If it succeeds, findresource pushes the resource

instance on the operand stack; this is an object whose type depends on the re-

source category.

593
Operator Details I

findresource first attempts to obtain a resource instance that has previously been
defined in virtual memory by defineresource. If the current VM allocation mode
is local, findresource considers local resource definitions first, then global defini-
tions (see defineresource). However, if the current VM allocation mode is global,
findresource considers only global resource definitions.

If the requested resource instance is not currently defined in VM, findresource at-
tempts to obtain it from an external source. The way this is done is not specified
by the PostScript language; it varies among different implementations and differ-
ent resource categories. The effect of this action is to create an object in VM and

execute defineresource. findresource then returns the newly created object. If key
is not a name or a string, findresource will not attempt to obtain an external re-

source.

When findresource loads an object into VM, it may use global VM even if the cur-

rent VM allocation mode is local. In other words, it may set the VM allocation
mode to global (true setglobal) while loading the resource instance and executing
defineresource. The policy for whether to use global or local VM resides in the
FindResource procedure for the specific resource category; see Section 3.9.2, "Re-

source Categories."

During its execution, findresource may remove the definitions of resource in-
stances that were previously loaded into VM by findresource. The mechanisms

and policies for this depend on the category and the implementation; reclamation
of resources may occur at times other than during execution of findresource.
However, resource definitions that were made by explicit execution of define-

resource are never disturbed by automatic reclamation.

If the specified resource category does not exist, an undefined error occurs. If the

category exists but there is no instance whose name is key, an undefinedresource
error occurs.

Errors: stackunderflow, typecheck, undefined, undefinedresource

See Also: defineresource, resourcestatus, resourceforall, undefineresource

flattenpath - flattenpath -

replaces the current path with an equivalent path in which all curved segments are
approximated by sequences of straight lines. The precision of the approximation

is controlled by the current flatness parameter in the graphics state (see setflat).

Straight line segments in the original path are not affected. If the current path
does not contain any curved segments, flattenpath leaves it unchanged.

I CHAPTER 8
594

i
Operators I

The flattening of curves to straight line segments is done automatically when a

path is used to control painting (for example, by stroke, fill, eofill, or clip). Only

rarely does a program need to flatten a path explicitly (see pathbbox).

Errors: limitcheck

See Also: setflat, curveto, arc, arcn, arct, arcto, pathbbox

floor numi floor num2

returns the greatest integer value less than or equal to numi. The type of the result

is the same as the type of the operand.

Examples

3.2 floor r 3.0

-4.8 floor = -5.0

99 floor = 99

Errors: stackunderflow, typecheck

See Also: ceiling, round, truncate, cvi

flush - flush -

causes any buffered characters for the standard output file to be delivered imme-

diately. In general, a program requiring output to be sent immediately, such as

during real-time, two-way interactions, should call flush after generating that out-

put.

Errors: ioerror

See Also: flushfile, print

flushfile file flushfile -

If file is an output file, flushfile causes any buffered characters for that file to be de-

livered immediately. In general, a program requiring output to be sent immedi-

ately, such as during real-time, two-way interactions, should call flushfile after

generating that output.

I 8.2
595

Operator Details I

If file is an input file, flushfile reads and discards data from that file until the end-

of- file indication is encountered. This is useful during error recovery, and the

PostScript job server uses it for that purpose. flushfile does not close the file, un-
less it is a decoding filter file.

Errors: ioerror, stackunderflow, typecheck

See Also: flush, read, write

FontDirectory - FontDirectory dict

pushes a dictionary of Font resource instances on the operand stack. Font-

Directory is not an operator; it is a name in systemdict associated with the dic-
tionary object.

The FontDirectory dictionary associates Font resource names with font or

CIDFont dictionaries. definefont places entries in FontDirectory, and findfont
looks there first. The dictionary is read-only; only definefont and undefinefont
can change it.

Although FontDirectory contains all Font resources that are currently defined in
virtual memory, it does not necessarily describe all the Font resources available to

a PostScript program. This is because the findfont operator can sometimes obtain

fonts from an external source and load them into VM dynamically. Consequently,

examining FontDirectory is not a reliable method of inquiring about available

Font resources. The preferred method is to use the LanguageLevel 2 operators

resourcestatus and resourceforall to inquire about the Font resource category. See

Section 3.9, "Named Resources."

In LanguageLevel 2 or 3, when the VM allocation mode is global, the name

FontDirectory is temporarily rebound to the value of GlobalFontDirectory, which

contains only those Font resources that have been defined in global VM (see

Section 3.7.2, "Local and Global VM"). This ensures the correct behavior of fonts
that are defined in terms of other fonts.

Errors: stackoverflow

See Also: definefont, undefinefont, findfont, findresource,GlobalFontDirectory

596
I CHAPTER 8 Operators I

for initial increment limit proc for -

executes the procedure proc repeatedly, passing it a sequence of values from initial
by steps of increment to limit. The for operator expects initial, increment, and limit to
be numbers. It maintains a temporary internal variable, known as the control

variable, which it first sets to initial. Then, before each repetition, it compares the
control variable to the termination value limit. If limit has not been exceeded, for
pushes the control variable on the operand stack, executes proc, and adds incre-
ment to the control variable.

The termination condition depends on whether increment is positive or negative.
If increment is positive, for terminates when the control variable becomes greater
than limit. If increment is negative, for terminates when the control variable be-
comes less than limit. If initial meets the termination condition, for does not exe-
cute proc at all. If proc executes the exit operator, for terminates prematurely.

Usually, proc will use the value on the operand stack for some purpose. However,

if proc does not remove the value, it will remain there. Successive executions of
proc will cause successive values of the control variable to accumulate on the oper-
and stack.

Examples

0 1 1 4 {add} for 10
1 2 6 {} for 1 3 5
3 -.5 1 { I for 3.0 2.5 2.0 1.5 1.0

In the first example above, the value of the control variable is added to whatever is

on the stack, so 1, 2, 3, and 4 are added in turn to a running sum whose initial val-
ue is 0. The second example has an empty procedure, so the successive values of
the control variable are left on the stack. The last example counts backward from
3 to 1 by halves, leaving the successive values on the stack.

Beware of using real numbers instead of integers for any of the first three oper-
ands. Most real numbers are not represented exactly. This can cause an error to
accumulate in the value of the control variable, with possibly surprising results. In
particular, if the difference between initial and limit is a multiple of increment, as in

the last example, the control variable may not achieve the limit value.

Errors: stackoverflow, stackunderflow, typecheck
See Also: repeat, loop, foral I, exit

597
i 8.2

forall array proc forall -

packedarray proc forait -

dict proc forait -

string proc forait -

Operator Details I

enumerates the elements of the first operand, executing the procedure proc for
each element. If the first operand is an array, packed array, or string object, forait
pushes an element on the operand stack and executes proc for each element in the

object, beginning with the element whose index is 0 and continuing sequentially.
In the case of a string, the elements pushed on the operand stack are integers in
the range 0 to 255, not 1-character strings.

If the first operand is a dictionary, forait pushes a key and a value on the operand
stack and executes proc for each key-value pair in the dictionary. The order in

which forait enumerates the entries in the dictionary is arbitrary. New entries put
in the dictionary during the execution of proc may or may not be included in the

enumeration. Existing entries removed from the dictionary byproc will not be en-
countered later in the enumeration.

If the first operand is empty (that is, has length 0), forait does not execute proc at
all. If proc executes the exit operator, forait terminates prematurely.

Although forall does not leave any results on the operand stack when it is finished,
the execution of proc may leave arbitrary results there. If proc does not remove

each enumerated element from the operand stack, the elements will accumulate
there.

Examples

0 [13 29 3 -8 21] { add} forall 58

/d 2 dict def

d /abc 123 put

d /xyz (test) put

d {} forall /xyz (test) /abc 123

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: for, repeat, loop, exit

I CHAPTER 8
598

i
Operators I

gcheck any gcheck boo!

Ol
returns true if the operand is a simple object, or if it is composite and its value re-

sides in global VM. It returns false if the operand is composite and its value resides

in local VM. In other words, gcheck returns true if its operand could legally be

stored as an element of another object in global VM. See Section 3.7.2, "Local and

Global VM."

Errors: stackunderflow

ge numi num2 ge bool

stringi string2 ge bool

get

pops two objects from the operand stack and pushes true if the first operand is

greater than or equal to the second, or false otherwise. If both operands are num-

bers, ge compares their mathematical values. If both operands are strings, ge

compares them element by element, treating the elements as integers in the range

0 to 255, to determine whether the first string is lexically greater than or equal to

the second. If the operands are of other types or one is a string and the other is a

number, a typecheck error occurs.

Examples

4.2 4 ge true

(abc) (d) ge false

(aba)(ab)ge true

(aba)(aba)ge = true

Errors: invalidaccess, stackunderflow, typecheck

See Also: gt, eq, ne, le, It

array index get any

packedarray index get any

dict key get any

string index get int

returns a single element from the value of the first operand. If the first operand is
an array, a packed array, or a string, get treats the second operand as an index and

returns the element identified by the index, counting from O. index must be in the
range 0 to n — 1, where n is the length of the array, packed array, or string. If it is

outside this range, a rangecheck error occurs.

599
8.2 Operator Details I

If the first operand is a dictionary, get looks up the second operand as a key in the

dictionary and returns the associated value. If the key is not present in the diction-
ary, an undefined error occurs.

Examples

[31 41 59] 0 get 31

[0 (string1) {) { add 2 div}] % A mixed-type array
2 get % An empty array

/mykey (myvalue) clef

currentdict /mykey get (myvalue)

(abc) 1 get 98 % Character code for b
(a) 0 get 97

Errors: invalidaccess, rangecheck, stackunderflow, typecheck, undefined

See Also: put, getinterval

GetHalftoneName - GetHalftoneName name (ColorRendering procedure set)

getinterval

returns the name of the current halftone. This is not an operator but a procedure

used by the findcolorrendering operator in constructing the name of a color ren-

dering dictionary.

The name is typically taken from the optional HalftoneName entry in the current

halftone dictionary. If no such entry is present, GetHalftoneName may simply re-

turn the default name none, or it may make more elaborate efforts to return a

meaningful name, such as by constructing one based on the angle and frequency
of the current halftone.

Errors: stackoverflow

See Also: findcolorrendering,GetPageDeviceName, GetSubstituteCRD

array index count getinterval subarray

packedarray index count getinterval subarray

string index count getinterval substring

creates a new array, packed array, or string object whose value consists of some

subsequence of the original array, packed array, or string. The subsequence con-

sists of count elements starting at the specified index in the original object. The ele-

ments in the subsequence are shared between the original and new objects (see
Section 3.3.1, "Simple and Composite Objects").

I CHAPTER 8
600

Operators I

The returned subarray or substring is an ordinary array, packed array, or string

object whose length is count and whose elements are indexed starting at O. The
element at index 0 in the result is the same as the element at index in the original

object.

getinterval requires index to be a valid index in the original object and count to be

a nonnegative integer such that index + count is not greater than the length of the

original object.

Examples

[9 8 7 6 5] 1 3 getinterval [8 7 6]

(abcde) 1 3 getinterval (bcd)

(abcde) O O getinterval () % An empty string

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: get, putinterval

GetPageDeviceName - GetPageDeviceName name (ColorRendering procedure set)

returns a name representing the current configuration of the page device. This is

not an operator but a procedure used by the findcolorrendering operator in con-

structing the name of a color rendering dictionary.

The name is typically taken from the optional PageDeviceName entry in the page

device dictionary. If no such entry is present, GetPageDeviceName may simply re-

turn the default name none, or it may make more elaborate efforts to return a
meaningful name, such as by constructing one based on the current page device

parameters.

Errors: stackoverflow
See Also: findcolorrendering,GetHalftoneName, GetSubstituteCRD

GetSubstituteCRD renderingintent GetSubstituteCRD name (ColorRendering procedure set)

returns the name of an alternate color rendering dictionary (CRD) when no suit-
able CRD can be found to satisfy a requested rendering intent, given the current

device configuration and halftone. This is not an operator but a procedure used

by the findcolorrendering operator to propose an alternate CRD when the re-

quested rendering intent cannot be satisfied.

601
I 8.2 Operator Details I

renderingintent is the rendering intent passed to the findcolorrendering operator.

name is the name of an alternate CRD that exists in the ColorRendering resource

category. After calling GetSubstituteCRD, findcolorrendering always returns false

(since the requested CRD could not be found), along with the alternate CRD

name received from GetSubstituteCRD. (If a suitable CRD is found, findcolor-

rendering returns true without calling GetSubstituteCRD.) In the event it cannot

generate a meaningful CRD substitution, GetSubstituteCRD simply returns the

name of some built-in CRD, such as DefaultColorRendering.

Errors: stackoverflow, stackunderflow, typecheck

See Also: findcolorrendering, GetHalftoneName, GetPageDeviceName

globaldict - globaldict dict

pushes the dictionary object globaldict on the operand stack (see Section 3.7.5,

"Standard and User-Defined Dictionaries"). globaldict is not an operator; it is a

name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: systemdict, userdict

GlobalFontDirectory - GlobalFontDirectory dict

pushes a dictionary of Font resource instances on the operand stack. Its contents

are limited to those Font resources that have been defined in global VM. See

FontDirectory for a complete explanation. GlobalFontDirectory is not an operator;

it is a name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: FontDirectory

602
I CHAPTER 8 Operators I

glyphshow name glyphshow -

cid glyphshow -

shows the glyph for a single character from the current font or CIDFont; the char-

acter is identified by name if a base font or by CID if a CIDFont. If the current

font is a composite (Type 0) font, an inva I dfont error occurs.

Unlike all other show variants, glyphshow bypasses the current font's Encoding
array; it can access any character in the font, whether or not that character's name

is present in the font's encoding vector. glyphshow is the only show variant that

works directly with a CIDFont.

For a base font, the behavior of glyphshow depends on the current font's
FontType value. For fonts that contain a CharStrings dictionary, such as Type 1
fonts, glyphshow looks up name there to obtain a glyph description to execute. If
name is not present in the CharStrings dictionary, glyphshow substitutes the
.notdef entry, which must be present.

For Type 3 fonts, if the font dictionary contains a BuildGlyph procedure,
glyphshow pushes the current font dictionary and name on the operand stack and

then invokes BuildGlyph in the usual way (see Section 5.7, "Type 3 Fonts"). If
there is no BuildGlyph procedure, but only a BuildChar procedure, glyphshow

searches the font's Encoding array for an occurrence of name. If it finds one, it
pushes the font dictionary and the array index on the operand stack, then invokes

BuildChar in the usual way. If name is not present in the encoding, glyphshow
substitutes the name .notdef and repeats the search. If .notdef is not present either,
an invalidfont error occurs.

For a CIDFont, glyphshow proceeds as show would for a CID-keyed font whose

mapping algorithm yields this CIDFont with cid as the character selector. A
rangecheck error occurs if cid is outside the valid range of CIDs (see Appendix B).

Except for the means of selecting the character to be shown, glyphshow behaves

the same as show. Like show, glyphshow can access glyphs that are already in the
font cache; glyphshow does not always need to execute the character's glyph de-

scription.

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow, typecheck

See Also: show

603
Operator Details

grestore - grestore -

resets the current graphics state from the one on the top of the graphics state stack
and pops the graphics state stack, restoring the graphics state in effect at the time
of the matching gsave operation. This operator provides a simple way to undo
complicated transformations and other graphics state modifications without hav-
ing to reestablish all graphics state parameters individually.

If the topmost graphics state on the stack was saved with save rather than gsave
(that is, if there has been no gsave operation since the most recent unmatched
save), grestore restores that topmost graphics state without popping it from the
stack. If there is no unmatched save (which can happen only during an unencap-
sulated job) and the graphics state stack is empty, grestore has no effect.

Errors: none
See Also: gsave, grestoreall, save, setgstate

grestoreall - grestoreall -

repeatedly performs grestore operations until it encounters a graphics state that
was saved by a save operation (as opposed to gsave), leaving that state on the top
of the graphics state stack and resetting the current graphics state from it. If no
such graphics state is encountered (which can happen only during an unencapsu-
lated job), the current graphics state is reset to the bottommost state on the stack
and the stack is cleared to empty. If the graphics state stack is empty, grestoreall
has no effect.

Errors: none

See Also: gsave, grestore, save, setgstate

gsave - gsave -

pushes a copy of the current graphics state on the graphics state stack (see
Section 4.2, "Graphics State"). All elements of the graphics state are saved, includ-
ing the current transformation matrix, current path, clipping path, and identity of
the raster output device, but not the contents of raster memory. The saved state
can later be restored by a matching grestore. After saving the graphics state, gsave
resets the clipping path stack in the current graphics state to empty.

I CHAPTER 8
604

Operators I

The save operator also implicitly performs a gsave operation, but restoring a

graphics state saved by save is slightly different from restoring one saved by gsave;

see the descriptions of grestore and grestoreall.

Note that, unlike save, gsave does not return a save object on the operand stack to

represent the saved state. gsave and grestore work strictly in a stacldike fashion,

except for the wholesale restoration performed by restore and grestoreall.

Errors: limitcheck

See Also: grestore, grestoreall, save, restore, gstate, currentgstate, clipsave,

cliprestore

gstate - gstate gstate

returns a copy of the current graphics state on the operand stack.

The result is returned as a new gstate (graphics state) object, allocated in either

local or global VM according to the current VM allocation mode (see Section

3.7.2, " Local and Global VM"). gstate is thus the only graphics state operator that

consumes VM.

If gstate is allocated in global VM, an invalidaccess error will occur if any of the

composite objects in the current graphics state are in local VM. Such objects

might include the current halftone screen, transfer function, or dash pattern. In

general, allocating gstate objects in global VM is risky and should be avoided.

Errors: invalidaccess, stackoverflow, VMerror

See Also: setgstate, currentgstate

gt numi num2 gt bool

stringi string2 gt bool

pops two objects from the operand stack and pushes true if the first operand is

greater than the second, or false otherwise. If both operands are numbers, gt com-

pares their mathematical values. If both operands are strings, gt compares them

element by element, treating the elements as integers in the range 0 to 255, to

determine whether the first string is lexically greater than the second. If the oper-

ands are of other types or one is a string and the other is a number, a typecheck

error occurs.

Errors: invalidaccess, stackunderflow, typecheck

See Also: ge, eq, ne, le, It

605
I 8.2

l
Operator Details I

handleerror (error)

is looked up in errordict and executed to report error information saved by the

default error handlers (see Section 3.11, "Errors"). There is also a procedure
named handleerror in systemdict; it merely calls the procedure in errordict.

identmatrix matrix identmatrix matrix

replaces the value of matrix with the identity matrix

[1 0 0 1 0 01

and pushes the result back on the operand stack. This matrix represents the iden-

tity transformation, which leaves all coordinates unchanged.

Errors: rangecheck, stackunderflow, typecheck

See Also: matrix, initmatrix, defaultmatrix, setmatrix, currentmatrix

idiv inti int2 idiv quotient

divides inti by int2 and returns the integer part of the quotient, with any fractional

part discarded. Both operands of idiv must be integers and the result is an integer.

Examples

3 2 idiv = 1

4 2 idiv = 2

—5 2 idiv —2

Errors: stackunderflow, typecheck, undefinedresult

See Also: div, add, mul, sub, mod, cvi

I CHAPTER 8
606

i
Operators I

idtransform dx' dy' idtransform dx dy

dx' dy' matrix idtransform dx dy

(inverse delta transform) applies the inverse of a transformation matrix to the dis-

tance vector (dx', dy'), returning the transformed distance vector (dx, dy). The

first form of the operator uses the inverse of the current transformation matrix in

the graphics state to transform the distance vector from device space to user space

coordinates. The second form applies the inverse of the transformation specified

by the matrix operand rather than that of the CTM.

A delta transformation is similar to an ordinary transformation (see Section 4.3,

"Coordinate Systems and Transformations"), but does not use the translation

components tx and ty of the transformation matrix. The distance vectors are thus

positionless in both the original and target coordinate spaces, making this opera-

tor useful for determining how distances map from device space to user space.

Errors: rangecheck, stackunderflow, typecheck, undefinedresult

See Also: dtransform, itransform, invertmatrix

if bool proc if -

removes both operands from the stack, then executes proc if bool is true. The if op-

erator pushes no results of its own on the operand stack, but proc may do so (see

Section 3.5, "Execution").

Example

3 4 It {(3 is less than 4)) if (3 is less than 4)

Errors: stackunderflow, typecheck

See Also: ifelse

607

l

ifelse boot proci proc2 ifelse -

Operator Details1

removes all three operands from the stack, then executes proci if bool is true or

proc2 if bool is false. The ifelse operator pushes no results of its own on the oper-
and stack, but the procedure it executes may do so (see Section 3.5, "Execution").

Example

4 3 It

{(TruePart)}

{(FalsePart)}

ifelse (FalsePart) % Since 4 is not less than 3

Errors: stackunderflow, typecheck

See Also: if

image width height bits/sample matrix datasrc image -

dict image - (LanguageLevel 2)

paints a sampled image onto the current page. This description only summarizes

the general behavior of the image operator; see Section 4.10, "Images," for full de-

tails.

The image is a rectangular array of width x height sample values, each consisting

of bits/sample bits of data. Valid values of bits/sample are 1, 2, 4, 8, or 12. The data
is received as a sequence of characters—that is, 8-bit integers in the range 0 to 255.

If bits/sample is less than 8, sample values are packed from left to right within a
character (see Section 4.10.2, "Sample Representation").

The image is considered to exist in its own coordinate system, or image space. The
rectangular boundary of the image has its lower-left corner at coordinates (0, 0)

and its upper-right corner at (width, height). The matrix operand defines a trans-
formation from user space to image space.

In the first form of the operator, the parameters are specified as separate oper-
ands. This form always renders a monochrome image according to the
DeviceG ray color space, regardless of the current color space in the graphics state.

This is the only form supported in LanguageLevel 1.

In the second form (LanguageLevel 2), the parameters are contained as entries in
an image dictionary dict, which is supplied as the single operand. This form ren-
ders either a monochrome or a color image, according to the current color space.

The number of component values per source sample and the interpretation of
those values depend on the color space.

I CHAPTER 8
608

I
Operators l

In LanguageLevel 1, datasrc must be a procedure. In LanguageLevel 2 or 3, it may
be any data source—a procedure, a string, or a readable file, including a filtered
file (see Section 3.13, "Filtered Files Details").

If datasrc is a procedure, it is executed repeatedly to obtain the actual image data.

datasrc must return a string on the operand stack containing any number of addi-

tional characters of sample data. The sample values are assumed to be received in
a fixed order: (0, 0) to (width - 1, 0), then (0, 1) to (width - 1, 1), and so on. If
datasrc returns a string of length 0, image will terminate execution prematurely.

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,

typecheck, undefined, undefinedresult

See Also: imagemask, colorimage

imagemask width height polarity matrix datasrc imagemask —

dict imagemask - (LanguageLevel 2)

uses a monochrome sampled image as a stencil mask of 1-bit samples to control
where to apply paint to the current page in the current color (see "Stencil Mask-
ing" on page 302.)

In the first form of the operator (LanguageLevel 1), the parameters are specified as
separate operands. In the second form (LanguageLevel 2), the parameters are con-
tained as entries in an image dictionary dict, which is supplied as the single oper-
and. The behavior of the operator is the same in both forms.

imagemask uses the width, height, matrix, and datasrc operands in precisely the
same way the image operator uses them. The polarity operand is a boolean value
that determines the polarity of the mask. If polarity is true, portions of the page

corresponding to mask values of 1 are painted in the current color, while those

corresponding to mask values of 0 are left unchanged; if polarity is false, these
polarities are reversed. The polarity controls the interpretation of mask samples
only; it has no effect on the color of the pixels that are painted.

In the second form of imagemask, the polarity is specified by means of the
Decode entry in the image dictionary. Decode values of [1 0] and [0 1] denote
polarity values of true and false, respectively.

In LanguageLevel 1, datasrc must be a procedure. In LanguageLevel 2 or 3, it may
be any data source—a procedure, a string, or a readable file, including a filtered

file (see Section 3.13, "Filtered Files Details").

609
I 8.2

I
Operator Details I

imagemask is most useful for painting character glyphs represented as bitmaps.

Such bitmaps represent masks through which a color is to be transferred; the bit-

maps themselves do not have a color.

Example

54 112 translate

120 120 scale

0 0 moveto

0 1 lineto

1 1 lineto

1 0 lineto

closepath

.9 setgray

fill

0 setgray

24 23

true

[24 0 0 —23 0 23]

{< 003600 002700 002480 0E4940

114920 146220 3C6650 75FE88

17FF8C 175F14 1C07E2 3803C4

703182 F8EDFC B2BBC2 BB6F84

31BFC2 18EA3C 0E3E00 07FC00

03F800 1E1800 1FF800 >}

imagemask

% Locate lower-left corner of square

% Scale 1 unit to 120 points

% Define square

% Set current color to gray

% Fill with gray background

% Set current color to black

% Specify dimensions of source mask

% Set polarity to paint the 1 bits

% Map unit square to mask

% Define mask data

This example paints the image shown in Figure 8.7.

FIGURE 8.7 imagemask example

I CHAPTER 8
610

i
Operators I

Errors: invalidaccess, ioerror, limitcheck, stackunderflow, typecheck,

undefinedresult

See Also: image, colorimage

index any,, ... anyo n index any,, ... anyo any,,

removes the nonnegative integer n from the operand stack, counts down to the

nth element from the top of the stack, and pushes a copy of that element on the

stack.

Examples

(a) (b) (c) (d) 0 index (a) (b) (c)(d)(d)

(a) (b) (c) (d) 3 index (a) (b) (c)(d) (a)

Errors: rangecheck, stackunderflow, typecheck

See Also: copy, dup, roll

ineofill x y ineofill boot

userpath ineofill bool

a tests whether the area that would be painted by filling the current path with the eofill operator includes a specified point or intersects a specified region. The area

is determined according to the even-odd rule (see "Even-Odd Rule" on page 196).
In all other respects, the behavior of ineofill is identical to that of infill.

Note that in the second form of the operator, the area inside userpath is deter-

mined by the nonzero winding number rule (see "Nonzero Winding Number
Rule" on page 195), not by the even-odd rule.

Errors: invalidaccess, limitcheck, rangecheclç stackunderflow, typecheck

See Also: eofill, fill, infill

infill x y infill boo!

userpath infill boo!

93 tests whether the area that would be painted by filling the current path with the fill

operator includes a specified point or intersects a specified region. The area inside

the current path is determined according to the nonzero winding number rule

(see "Nonzero Winding Number Rule" on page 195). The operation does not ac-

I 8.2
611

l
Operator Details I

tually place any marks on the current page, nor does it disturb the current path in

the graphics state.

The first form of the operator returns true if the device pixel containing the point

at coordinates (x, y) in user space would be painted by applying the fill operator to
the current path. The second form returns true if any of the pixels enclosed by

userpath would be painted. If the stated conditions are not met, both forms return

false.

The operator ignores the current clipping path; that is, it returns true for any pixel

that lies within the current path, even if the fill operator would not actually mark

that pixel because it lies outside the clipping path. The following program frag-

ment performs an infill test taking the current clipping path into account:

g save

clippath

x y infill

grestore

x y infill and

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: fill, instroke, ineofill, inufill

initclip - initclip —

sets the current clipping path in the graphics state to the default clipping path for

the current output device. This path usually corresponds to the boundary of the

maximum imageable area on the current device. For a page device, its dimensions

are those established by the setpagedevice operator. For a display device, the clip-

ping region established by initclip is not well defined.

There are few situations in which a PostScript program should invoke initclip ex-

plicitly. A page description that invokes initclip usually produces incorrect results

if it is embedded within another, composite page.

Errors: none

See Also: clip, eoclip, rectclip, clippath, initgraphics

I CHAPTER 8
612

Operators I

initgraphics - initgraphics -

resets the following parameters of the current graphics state to their default val-
ues, as follows:

current transformation matrix (CTM)—default for device

current position (current point)—undefined

current path—empty

current clipping path—default for device

current color space—DeviceGray

current color—black

current line width—I user space unit

current line cap—butt end caps

current line join—miter joins

current miter limit-10

current dash pattern—solid, unbroken lines

All other graphics state parameters are left unchanged. These include the current
output device, font parameter, stroke adjustment, clipping path stack, and all
device-dependent parameters. initgraphics affects only the graphics state, not the
contents of raster memory or the configuration of the current output device.

initgraphics is equivalent to the following code:

initmatrix
newpath
initclip

O setgray
1 setlinewidth

O setlinecap
O setlinejoin
10 setmiterlimit

E] O setdash

There are few situations in which a PostScript program should invoke
initgraphics explicitly. A page description that invokes initgraphics usually pro-
duces incorrect results if it is embedded within another, composite page. A pro-
gram requiring information about its initial graphics state should explicitly read

and save that state at the beginning of the program rather than assume that the
default state prevailed initially.

Errors: none
See Also: grestoreall

s.2
613

Operator Details I

initmatrix - initmatrix -

sets the current transformation matrix (CTM) in the graphics state to the default
matrix for the current output device. This matrix transforms the default user co-
ordinate system to device space (see Section 4.3.1, "User Space and Device
Space"). For a page device, the default matrix is initially established by the
setpa g ed evice operator.

There are few situations in which a PostScript program should invoke initmatrix
explicitly. A page description that invokes initmatrix usually produces incorrect
results if it is embedded within another, composite page.

Errors: none
See Also: defaultmatrix, setmatrix, currentmatrix

instroke x y instroke bool
userpath instroke boo!

Z2,1
tests whether the area that would be painted by stroking the current path with the

stroke operator includes a specified point or intersects a specified region. The op-
eration does not actually place any marks on the current page, nor does it disturb
the current path in the graphics state.

The first form of the operator returns true if the device pixel containing the point
at coordinates (x, y) in user space would be painted by applying the stroke opera-
tor to the current path. The second form returns true if any of the pixels enclosed
by userpath would be painted. If the stated conditions are not met, both forms re-
turn false.

In computing the shape of the stroke, instroke takes into account all current
stroke-related parameters in the graphics state: line width, line cap, line join,
miter limit, dash pattern, and stroke adjustment. (If the current line width is 0,
the set of pixels considered to be part of the stroke is device-dependent.) Howev-
er, the operator ignores the current clipping path; that is, it returns true for any
pixel that lies within the computed stroke, even if the stroke operator would not

actually mark that pixel because it lies outside the clipping path.

Errors: invalidaccess, limitchecic, rangecheck, stackunderflow, typecheck
See Also: stroke, infill, ineofill, inustroke

614
I CHAPTER 8

internaldict int internaldict dict

Operators I

pushes the internal dictionary object on the operand stack. The int operand must
be the integer 1183615869. The internal dictionary is in local VM and is writeable.
It contains operators and other information whose purpose is internal to the

PostScript interpreter. It should be referenced only in special circumstances, such
as during construction of Type 1 font programs. (See the book Adobe Type 1 Font

Format for specific information about constructing Type 1 fonts.) The contents of
internaldict are undocumented and subject to change at any time.

This operator is not present in some PostScript interpreters.

Errors: invalidaccess, stackunderflow, undefined

interrupt (error)

processes an external request to interrupt execution of a PostScript program.

When the interpreter receives an interrupt request, it executes interrupt as if it
were an error—in other words, it looks up the name interrupt in errordict. Exe-

cution of interrupt is sandwiched between execution of two objects being inter-
preted in normal sequence.

Unlike most other errors, occurrence of an interrupt error does not cause the
object being executed to be pushed on the operand stack, nor does it disturb the
operand stack in any way.

The precise nature of an external interrupt request depends on the environment
in which the PostScript interpreter is running. For example, in some environ-

ments, receipt of a Control-C character from a serial communication channel
gives rise to the interrupt error. This enables a user to explicitly abort a PostScript
computation. The default definition of interrupt executes a stop operation.

inueofill x y userpath inueofill bool

userpathi userpath2 inueofill bool

interprets a user path definition (see Section 4.6, "User Paths") and tests whether
the area that would be painted by filling the resulting path with the ueofill opera-
tor includes a specified point or intersects a specified region. The area inside the

path is determined according to the even-odd rule (see "Even-Odd Rule" on
page 196). In all other respects, the behavior of inueofill is identical to that if
inufill.

I 8.2
615

Operator Details I

Note that in the second form of the operator, the area inside userpathi is deter-
mined by the nonzero winding number rule (see "Nonzero Winding Number
Rule" on page 195), not by the even-odd rule.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck
See Also: eofill, ueofill, inufill, ineofill

inufill x y userpath inufill bool

userpathi userpath2 inufill bool

interprets a user path definition (see Section 4.6, "User Paths") and tests whether

the area that would be painted by filling the resulting path with the ufill operator
includes a specified point or intersects a specified region. The area inside the path

is determined according to the nonzero winding number rule (see "Nonzero
Winding Number Rule" on page 195). The operation does not actually place any

marks on the current page, nor does it disturb the current path in the graphics
state. Except for the manner in which the path is specified, the behavior of inufill
is identical to that of infill.

The first form of the operator returns true if the device pixel containing the point
at coordinates (x, y) in user space would be painted by applying the ufill operator
to userpath. The second form returns true if any of the pixels enclosed by userpathi
would be painted by applying ufill to userpath2. If the stated conditions are not
met, both forms return false.

In itself, inufill would seem to be a trivial composition of several other operators:

gsave % Save graphics state

newpath % Clear current path
uappend % Interpret userpath

infill % Test for inclusion

grestore % Restore graphics state

However, when used with a user path that includes the ucache operator, inufill

can potentially take advantage of cached information to optimize execution.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck
See also: fill, ufill, inueofill, infill

I CHAPTER 8
616

Operators

inustroke x y userpath inustroke bool

x y userpath matrix inustroke bool

userpathi userpath2 inustroke bool

userpathi userpath2 matrix inustroke bool

interprets a user path definition (see Section 4.6, "User Paths") and tests whether

the area that would be painted by stroking the resulting path with the ustroke op-

erator includes a specified point or intersects a specified region. The operation

does not actually place any marks on the current page, nor does it disturb the cur-

rent path in the graphics state. Except for the manner in which the path is speci-

fied, the behavior of inustroke is identical to that of instroke.

The first and second forms of the operator return true if the device pixel contain-

ing the point at coordinates (x, y) in user space would be painted by applying the

ustroke operator to userpath. The third and fourth forms return true if any of the

pixels enclosed by userpathi would be painted by applying ustroke to userpath2. If

the stated conditions are not met, all four forms return false.

The second and fourth forms concatenate matrix to the current transformation

matrix after interpreting the user paths, but before computing the area occupied

by the stroke (see ustroke).

If userpath is already present in the user path cache, inustroke can take advantage

of the cached information to optimize execution.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See also: stroke, ustroke, instroke

invalidaccess (error)

An access violation has occurred. The principal causes of this error are:

• Accessing the value of a composite object in violation of its access attribute (for

example, storing into a read-only array or reading an execute-only string)

• Storing a composite object in local VM as an element of a composite object in

global VM

• Executing pathforall if the current path contains an outline for a protected font

See Also: rcheclç wcheck, gcheck, readonly, executeonly, noaccess

617
Operator Details

i nva I i d exit (error)

An exit operator has been executed for which there is no dynamically enclosing

looping context (for example, for, loop, repeat, or pathforall), or it has attempted
to leave the context of a run or stopped operator.

invalidfileaccess (error)

The access string specification to the file operator is unacceptable or a file opera-
tion has been attempted (for example, deletefile) that is not permitted by the
storage device. See Section 3.8.2, "Named Files."

inva I idfont (error)

The key operand to findfont is not a valid Font resource name, the dictionary
operand to other font operators is not a well-formed or valid font or CIDFont
dictionary, as required, or the show operator (or show variant) is executed before
the font parameter in the graphics state has been set. The invalidfont error may

also be executed by other font operators upon discovering that a font or CIDFont
dictionary has the wrong FontType or CI DFontType value for the operation or that

a glyph description is malformed.

invalidrestore (error)

An improper restore operation has been attempted. One or more of the operand,

dictionary, and execution stacks contain composite objects whose values were
created more recently than the save operation whose context is being restored.

Since restore would destroy those values, but the stacks are unaffected by restore,
the outcome would be undefined and cannot be allowed.

See Also: restore, save

I CHAPTER 8
618

Operators I

invertmatrix matrix1 matrix2 invertmatrix matrix2

replaces the value of matrix2 with the inverse of matrixi and pushes the result back
on the operand stack. If matrixi transforms coordinates (x, y) to (x', y'), then its
inverse transforms (x', y') to (x, y) (see Section 4.3.3, "Matrix Representation and
Manipulation").

Errors: rangecheck, stackunderflow, typecheck, undefinedresult

See Also: itransform, idtransform

ioerror (error)

An exception other than end-of-file has occurred during execution of one of the
file operators. The nature of the exception is environment-dependent, but may

include events such as parity or checksum errors or broken network connections.
Attempting to write to an input file or to a file that has been closed will also cause
an ioerror. Occurrence of an ioerror does not cause the file to become closed un-
less it was already closed or unless the error occurs during closefile.

ISOLatin 1 Encoding - ISOLatin 1 Encoding array

pushes the ISO Latin-1 encoding vector on the operand stack. This is a
256-element literal array object, indexed by character codes, whose values are the
character names for those codes. ISOLatin1Encoding is not an operator; it is a
name in systemdict associated with the array object.

Latin-text fonts produced by Adobe usually use the StandardEncoding encoding
vector. However, they contain all the characters needed to support the use of
ISOLatin1Encoding. A font can have its Encoding array changed to
ISOLatinlEncoding by means of the procedure shown in Section 5.9.1, "Changing

the Encoding Vector." The contents of ISOLatinlEncoding are documented in
Appendix E.

Errors: stackoyerflow

See Also: StandardEncoding,findencoding

619
Operator Details I

itransform x' y' itransform x y
x' y' matrix itransform x y

(inverse transform) applies the inverse of a transformation matrix to the coordi-
nates (x', y'), returning the transformed coordinates (x, y). The first form of the

operator uses the inverse of the current transformation matrix in the graphics
state to transform device space coordinates to user space. The second form applies

the inverse of the transformation specified by the matrix operand rather than that
of the CTM.

Errors: rangetheck, stackunderflow, typecheck, undefinedresult
See Also: transform, idtransform, invertmatrix

known dict key known bool

returns true if there is an entry in the dictionary dict whose key is key, otherwise, it
returns false. dict does not have to be on the dictionary stack.

Examples

/mydict 5 dict def
mydict /total 0 put
mydict /total known = true

mydict /badname known false

Errors: invalidaccess, stackunderflow, typecheck

See Also: where, load, get

kshow proc string kshow -

paints glyphs for the characters of string in a manner similar to show, but allows
program intervention between characters. If the character codes in string are

charo, chat), charn, kshow proceeds as follows: First it shows the glyph for charo

at the current point, updating the current point by the width of that glyph. Then it
pushes the character codes charo and chari on the operand stack (as integers) and

executes proc. proc may perform any actions it wishes; typically, it will modify the
current point to affect the subsequent placement of the glyph for chari. kshow
continues by showing the glyph for chari, pushing chari and char2 on the stack,

executing proc, and so on. It finishes by pushing char„...i and charn on the stack,
executing proc, and finally showing the glyph for char,.

I CHAPTER 8
620

Operators I

When proc is called for the first time, the graphics state (in particular, the current

transformation matrix) is the same as it was at the time kshow was invoked, ex-
cept that the current point has been updated by the width of the glyph for char°.
Execution of proc is permitted to have any side effects, including changes to the
graphics state. Such changes persist from one call of proc to the next and may af-
fect graphical output for the remainder of ks how's execution and afterward.
When proc completes execution, the value of currentfont is restored.

The name kshow is derived from "kern-show." To kern glyphs is to adjust the
spacing between adjacent glyphs in order to achieve a visually pleasing result. The
kshow operator enables user-defined kerning and other manipulations, because
arbitrary computations can be performed between pairs of glyphs.

kshow can be applied only to base fonts. If the current font is a composite font or
a CIDFont, an invalidfont error occurs.

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow, typecheck
See Also: show, ashow, awidthshow, widthshow, xshow, xyshow, yshow, cshow

languagelevel - languagelevel int

returns an integer designating the LanguageLevel supported by the PostScript in-
terpreter. If languagelevel is not defined in systemdict, the interpreter supports
only LanguageLevel 1 features.

Errors: stackoverflow, undefined
See Also: product, revision, serialnumber, version

le numi num2 le bool
stringi string2 le bool

pops two objects from the operand stack and pushes true if the first operand is less

than or equal to the second, or false otherwise. If both operands are numbers, le
compares their mathematical values. If both operands are strings, le compares
them element by element, treating the elements as integers in the range 0 to 255,

to determine whether the first string is lexically less than or equal to the second. If
the operands are of other types or one is a string and the other is a number, a
typecheck error occurs.

Errors: invalidaccess, stackunderflow, typecheck
See Also: It, eq, ne, ge, gt

l 8.2
621

I
Operator Details I

length array length int

packedarray length int

dict length int

string length int

name length int

returns the number of elements in the value of its operand if the operand is an
array, a packed array, or a string. If the operand is a dictionary, length returns the

current number of entries it contains (as opposed to its maximum capacity, which

is returned by maxlength). If the operand is a name object, the length returned is

the number of characters in the text string that defines it.

Examples

[1 24] length 3

[] length 0 % An array of zero length

lar 20 array def

ar length

/mydict 5 dict def

mydict length

mydict /firstkey (firstvalue) put

mydict length

(abc\ n) length

O length

/foo length

20

0

1

4 % Newline (\n) is one character

0 % No characters between (and)

3

Errors: invalidaccess, stackunderflow, typecheck

See Also: maxlength

limitcheck (error)

An implementation limit has been exceeded (for example, too many files have
been opened simultaneously or a path has become too complex). Appendix B

gives typical values for such limits.

I CHAPTER 8
622

I
Operators I

lineto x y lineto -

appends a straight line segment to the current path (see Section 4.4, "Path Con-

struction"), starting from the current point and extending to the coordinates

(x, y) in user space. The endpoint (x, y) becomes the new current point.

If the current point is undefined because the current path is empty, a nocurrent-

point error occurs.

Errors: limitcheck, nocurrentpoint, rangecheck, stackunderflow, typecheck

See Also: rlineto, moveto, curveto, arc, closepath

In num In real

returns the natural logarithm (base e) of num. The result is a real number.

Examples

10 In 2.30259

100 In 4.60517

Errors: rangecheck, stackunderflow, typecheck

See Also: log, exp

load key load value

searches for key in each dictionary on the dictionary stack, starting with the top-

most (current) dictionary. If key is found in some dictionary, load pushes the as-

sociated value on the operand stack; otherwise, an undefined error occurs.

load looks up key the same way the interpreter looks up executable names that it

encounters during execution. However, load always pushes the associated value

on the operand stack; it never executes the value.

Examples

/avg {add 2 div} def

/avg load = {add 2 div}

Errors: invalidaccess, stackunderflow, typecheck, undefined

See Also: where, get, store

I 8.2
623

log num log real

Operator Details I

returns the common logarithm (base 10) of num. The result is a real number.

Examples

10 log 1.0

100 log = 2.0

Errors: rangecheck, stackunderflow, typecheck

See Also: In, exp

loop proc loop -

It

repeatedly executes proc until proc executes the exit operator, at which point
interpretation resumes at the object next in sequence after the loop operator.
Control also leaves proc if the stop operator is executed. If proc never executes exit
or stop, an infinite loop results, which can be broken only via an external inter-

rupt (see interrupt).

Errors: stackunderflow, typecheck

See Also: for, repeat, forall, exit

num i num2 It bool

stringi string2 It bool

pops two objects from the operand stack and pushes true if the first operand is less
than the second, or false otherwise. If both operands are numbers, It compares
their mathematical values. If both operands are strings, It compares them element
by element, treating the elements as integers in the range 0 to 255, to determine

whether the first string is lexically less than the second. If the operands are of
other types or one is a string and the other is a number, a typecheck error occurs.

Errors: invalidaccess, stackunderflow, typecheck

See Also: le, eq, ne, ge, gt

I CHAPTER 8
624

makefont font matrix makefont font'

cidfont matrix makefont cidfont'

Operators I

applies matrix to font or cidfont, producing a new font' or cidfont' whose glyphs are
transformed by matrix when they are shown. makefont first creates a copy of font
or cidfont. Then it replaces the copy's FontMatrix entry with the result of concate-

nating the existing entry with matrix. It inserts two additional entries, OrigFont
and ScaleMatrix, whose purpose is internal to the implementation. Finally, it re-
turns the result as font' or cidfont'.

Normally, makefont does not copy subsidiary objects in the dictionary, such as
the CharStrings and FontInfo subdictionaries; these are shared with the original

font or CIDFont. However, if font is a composite font, makefont recursively

copies any descendant Type 0 font dictionaries and updates their FontMatrix en-
tries as well. It does not copy descendant base fonts or CIDFonts.

Showing glyphs from font' or cidfont' produces the same results as showing from
font or cidfont after having transformed user space by matrix. makefont is essen-
tially a convenience operator that permits the desired transformation to be encap-
sulated in the font or CIDFont description. The most common transformation is

to scale by a uniform factor in both the x and y dimensions. scalefont is a special
case of the more general makefont and should be used for such uniform scaling.
Another operator, selectfont, combines the effects of findfont and makefont.

The interpreter keeps track of font or CIDFont dictionaries recently created by

makefont. Calling makefont multiple times with the same font or cidfont and
matrix will usually return the same result. However, it is usually more efficient for

a PostScript program to apply makefont only once for each font or CIDFont that
it needs and to keep track of the resulting dictionaries on its own.

See Chapter 5 for general information about fonts and CIDFonts, and Section 4.3,
"Coordinate Systems and Transformations," for a discussion of transformations.

The derived dictionary is allocated in local or global VM according to whether the
original dictionary is in local or global VM. This behavior is independent of the
current VM allocation mode.

Example

/Helvetica findfont [10 0 0 12 0 makefont setfont

This example obtains the standard Helvetica font, which is defined with a 1-unit

line height, and scales it by a factor of 10 in the x dimension and 12 in the y
dimension. This produces a font 12 units high (that is, a 12-point font in default
user space) whose glyphs are "condensed" in the x dimension by a ratio of 10/12.

Errors: invalidfont, rangecheck, stackunderflow, typecheck, VMerror
See Also: scalefont, setfont, findfont, selectfont

8.2
625

Operator Details I

makepattern dict matrix makepattern pattern

instantiates the pattern defined by the pattern dictionary dict, producing an in-
stance of the pattern locked to the current user space. After verifying that dict is a
prototype pattern dictionary with all required entries (see Section 4.9, "Pat-

terns"), makepattern creates a copy of dict in local VM, adding an Implementa-
tion entry for use by the PostScript interpreter. Only the contents of dict itself are
copied; any subsidiary composite objects the dictionary contains are not copied,
but are shared with the original dictionary.

makepattern saves a copy of the current graphics state, to be used later when the
pattern's PaintProc procedure is called to render the pattern cell. It then modifies
certain parameters in the saved graphics state, as follows:

• Concatenates matrix with the saved copy of the current transformation matrix

• Adjusts the resulting matrix to ensure that the device space can be tiled prop-

erly with a pattern cell of the given size in accordance with the pattern's tiling
type

• Resets the current path to empty

• Replaces the clipping path with the pattern cell bounding box specified by the
pattern dictionary's BBox entry

• Replaces the current device with a special one provided by the PostScript
implementation

Finally, makepattern makes the new dictionary read-only and returns it on the
operand stack. The resulting pattern dictionary is suitable for use as an operand to
setpattern or as a color value in a Pattern color space.

Errors: limitcheck, rangecheck, stackunderflow, typecheck, undefined, VMerror

See Also: setpattern

mark - mark mark

pushes a mark object on the operand stack. All marks are identical, and the oper-
and stack may contain any number of them at once.

The primary use of marks is to indicate the stack position of the beginning of an
indefinitely long list of operands being passed to an operator or procedure. The]

operator (array construction) is the most common operator that works this way;
it treats as operands all elements of the stack down to a mark that was pushed by

the E operator (E is a synonym for mark). It is possible to define procedures that

I CHAPTER 8
626

Operators I

work similarly. Operators such as counttomark and cleartomark are useful within

such procedures.

Errors: stackoverflow

See Also: counttomark, cleartomarlc, pop

matrix - matrix matrix

returns a six-element array object filled with the identity matrix

[1 0 0 1 0 0]

This matrix represents the identity transformation, which leaves all coordinates

unchanged. The array is allocated in local or global VM according to the current

VM allocation mode (see Section 3.7.2, "Local and Global VM").

Example

matrix

6 array identmatrix

Both lines of code above return the same result on the stack.

Errors: stackoverflow, VMerror

See Also: identmatrix, defaultmatrix, setmatrix, currentmatrix, array

maxlength dict maxlength int

returns the capacity of the dictionary dict—in other words, the maximum number
of entries that dict can hold using the virtual memory currently allocated to it. In

LanguageLevel 1, maxlength returns the length operand of the dict operator that

created the dictionary; this is the dictionary's maximum capacity (exceeding it

causes a dictfull error). In a LanguageLevels 2 and 3, which permit a dictionary to

grow beyond its initial capacity, maxlength returns its current capacity, a number

at least as large as that returned by the length operator.

Examples

/mydict 5 dict def

mydict length

mydict maxlength 5

Errors: invalidaccess, stackunderflow, typecheck

See Also: length, dict

627
8.2

mod inti int2 mod remainder

Operator Details I

returns the remainder that results from dividing inti by int2. The sign of the result

is the same as the sign of the dividend intl. Both operands must be integers and
the result is an integer.

Examples

5 3 mod 2

5 2 mod 1

-5 3 mod -2

The last example above demonstrates that mod is a remainder operation rather

than a true modulo operation.

Errors: stackunderflow, typecheck, undefinedresult

See Also: idiv, div

moveto x y moveto -

starts a new subpath of the current path (see Section 4.4, "Path Construction") by

setting the current point in the graphics state to the coordinates (x, y) in user

space. No new line segments are added to the current path.

If the previous path operation in the current path was moveto or rmoveto, that

point is deleted from the current path and the new moveto point replaces it.

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: rmoveto, lineto, curveto, arc, closepath

mul numi num2 mul product

returns the product of numi and num2. If both operands are integers and the re-

sult is within integer range, the result is an integer; otherwise, the result is a real

number.

Errors: stackunderflow, typecheck, undefinedresult

See Also: div, idiv, add, sub, mod

628
I CHAPTER 8

i
Operators I

ne anyi any2 ne bool

pops two objects from the operand stack and pushes fa/se if they are equal, or true

if not. What it means for objects to be equal is presented in the description of the

eq operator.

Errors: invalidaccess, stackunderflow

See Also: eq, ge, gt, le, It

neg numi neg num2

returns the negative of numi. The type of the result is the same as the type of numi

unless numi is the smallest (most negative) integer, in which case the result is a

real number.

Examples

4.5 neg
-3 neg

-4.5

3

Errors: stackunderflow, typecheck

See Also: abs

newpath - newpath -

noaccess

initializes the current path in the graphics state to an empty path. The current

point becomes undefined.

Errors: none

See Also: closepath, stroke, fill, eofill, currentpoint

array noaccess array

packedarray noaccess packedarray

dict noaccess dict

file noaccess file

string noaccess string

reduces the access attribute of an array, packed array, dictionary, file, or string ob-

ject to none (see Section 3.3.2, "Attributes of Objects"). The value of a no-access

object cannot be executed or accessed directly by PostScript operators. No-access

629
I 8.2 Operator Details

objects are of no use to PostScript programs, but serve certain internal purposes

that are not documented in this book.

For an array, packed array, file, or string object, noaccess affects the access at-

tribute only of the object that it returns. If there are other objects that share the

same value, their access attributes are unaffected. However, in the case of a dic-

tionary, noaccess affects the value of the object, so all dictionary objects sharing

the same dictionary are affected. Applying noaccess to a dictionary whose access

is already read-only causes an invalidaccess error.

Errors: invalidaccess, stackunderflow, typecheck

See Also: rcheck, wcheck, xcheclç readonly, executeonly

nocurrentpoint (error)

The current path is empty, thus there is no current point, but an operator requir-

ing a current point has been executed (for example, lineto, curveto, currentpoint,
or show). The most common cause of this error is neglecting to perform an initial

moveto.

See Also: moveto

not booli not bool2

inti not int2

returns the logical negation of the operand if it is boolean. If the operand is an

integer, not returns the bitwise complement (ones complement) of its binary rep-

resentation.

Examples

true not

false not

52 not

false

true

—53

% A complete truth table

Errors: stackunderflow, typecheck

See Also: and, or, xor, if

I CHAPTER 8
630

I
Operators I

null - null null

pushes a literal null object on the operand stack. null is not an operator; it is a
name in systemdict associated with the null object.

Errors: stackoverflow

nulldevice - nulldevice -

installs the null device as the current output device. The null device corresponds

to no physical output device and has no raster memory associated with it. When it

is the current device, marks placed on the current page by painting operators such
as stroke or show are discarded, and the output operators showpage and

copypage do nothing. In all other respects, the null device behaves like a real ras-
ter output device: graphics operators have their normal side effects on the graph-
ics state, font operators invoke the font machinery, and so on.

nulldevice sets the default transformation matrix to be the identity transforma-
tion [1.0 0.0 0.0 1.0 0.0 0.0]. If desired, a PostScript program may change this to
any other matrix (using setmatrix) in order to simulate the device coordinate
system of some real device. nulldevice also establishes the clipping path as a de-
generate path consisting of a single point at the coordinate origin.

The null device is useful for exercising the PostScript interpreter's graphics and
font machinery for such purposes as operating on paths, computing bounding
boxes for graphical shapes, and performing coordinate transformations without

generating output. Such manipulations should be bracketed by gsave and
grestore so that the previous current device can be reinstated and other side ef-
fects of nulldevice undone.

Errors: none

See Also: setpagedevice

631
I 8.2 Operator Details I

or boo/1 boo/2 or bool3

inti int2 or int3

returns the logical disjunction of the operands if they are boolean. If the operands
are integers, or returns the bitwise "inclusive or" of their binary representations.

Examples

true true or true % A complete truth table

true false or true

false true or true

false false or false

17 5 or 21

Errors: stackunderflow, typecheck

See Also: and, not, xor

packedarray any() anyn_i n packedarray packedarray

creates a packed array object of length n containing the objects any() through

anyn_i as elements. packedarray first removes the nonnegative integer n from the

operand stack. It then removes that number of objects from the operand stack,

creates a packed array containing those objects as elements, and finally pushes the

resulting packed array object on the operand stack.

The resulting object has a type of packedarraytype, a literal attribute, and read-

only access. In all other respects, its behavior is identical to that of an ordinary

array object.

The packed array is allocated in local or global VM according to the current VM

allocation mode. An invalidaccess error occurs if the packed array is in global VM

and any of the objects any') through anyn_i are in local VM (see Section 3.7.2,

"Local and Global VM").

Errors: invalidaccess, rangecheck, stackunderflow, typechecic, VMerror

See Also: abad

pathbbox - pathbbox //, Ily ur, ury

returns the bounding box of the current path, the smallest rectangle enclosing all

elements of the path. The results are four real numbers describing a rectangle in

user space, oriented with its sides parallel to the axes of the user coordinate sys-

I CHAPTER 8
632

i
Operators I

tern: 11„ and lly are the coordinates of the rectangle's lower-left corner, ur„ and ury

the upper-right corner. If the current path is empty, a nocurrentpoint error
occurs.

If an explicit bounding box has been established with the setbbox operator,
pathbbox returns a result derived from that bounding box rather than from the
actual path. Otherwise, pathbbox first computes the bounding box of the current
path in device space. It then transforms the corners of this box from device to user
coordinates, by applying the inverse of the current transformation matrix, and

constructs the smallest rectangle in user space that is oriented parallel to the user

space axes and encloses all four corners of the resulting figure. If the user coordi-
nate system is rotated (other than by a multiple of 90 degrees) or skewed, the
bounding box returned may be larger than expected.

If the current path includes curve segments, the computed bounding box will en-
close the curves' control points as well as the curves themselves. A bounding box

fitting the path more tightly can be obtained by first "flattening" the curve seg-
ments with the flattenpath operator.

In LanguageLevel 2 or 3, if the current path ends with a moveto operation, the co-
ordinates of the moveto are not considered during the computation of the
bounding box unless the moveto is the only element of the path.

Errors: nocurrentpoint, stackoverflow

See Also: setbbox,flattenpath

pathforall move line curve close pathforall -

enumerates the elements of the current path in order, executing one of the four
procedures move, line, curve, or close for each element, depending on its nature.

The four basic kinds of element that can occur in a path are moveto, lmeto,
curveto, and closepath. (The relative variants rmoveto, rlineto, and rcurveto are
converted to the corresponding absolute forms; arc, arcn, arct, and arcto are con-
verted to equivalent sequences of curveto.) For each element in the path,
pathforall pushes the element's coordinates on the operand stack and executes

one of the four procedures, as follows:

moveto Push xy; execute move

lineto Push xy; execute line
curveto Push x1 yl x2 y2 x3 y3; execute curve
closepath Execute close

The operands passed to the procedures are coordinates in user space; pathforall
transforms them from device space using the inverse of the current transforma-

633
8.2 Operator Details I

tion matrix. Ordinarily, these coordinates will be the same as the ones originally
specified to moveto, I ineto, and so forth. However, if the CTM has been changed
since the path was constructed, the coordinates reported by pathforall will be dif-

ferent from those originally specified. Thus, among other uses, pathforall enables
a path constructed in one user coordinate system to be read out in another user

coordinate system.

pathforall enumerates the current path existing at the time it begins execution. If
any of the operand procedures change the current path, such changes do not af-
fect the results of the operation.

If charpath was used to construct any portion of the current path from a font
whose outlines are protected, pathforall is not allowed. Its execution will cause an
invalidaccess error (see charpath).

Errors: invalidaccess, rangechecic, stackoverflow, stackunderflow, typecheck
See Also: moveto, lineto, curveto, closepath, charpath

pop any pop -

removes the top element from the operand stack and discards it.

Examples

1 2 3 pop 1 2

1 2 3 pop pop 1

Errors: stackunderflow

See Also: clear, dup

print string print -

writes the characters of string to the standard output file (see Section 3.8, "File In-
put and Output"). This operator provides the simplest means of sending text to
an application or an interactive user. Note that print is a file operator; it has noth-
ing to do with painting glyphs for characters on the current page (see show) or
with sending the current page to a raster output device (see showpage).

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: write, flush, =,==, printobject

634
CHAPTER 8 Operators I

printobject obj tog printobject -

writes a binary object sequence to the standard output file (see Section 3.14.6,
"Structured Output"). The binary object sequence contains a top-level array con-
sisting of a single element that is an encoding of obj. If obj is composite, the binary
object sequence also includes subsidiary array and string values for the compo-
nents of obj. The tag operand, which must be an integer in the range 0 to 255, is
used to tag the top-level object; it appears as the second byte of the object's repre-
sentation. Tag values 0 to 249 are available for general use; tag values 250 to 255
are reserved for special purposes, such as reporting errors.

The binary object sequence uses the number representation established by the
most recent execution of setobjectformat. The token type given as the first byte of

the binary object sequence reflects the number representation that was used. If the
object format parameter has been set to 0, an undefined error occurs.

The object obj and its components must be of type null, integer, real, name, bool-

ean, string, array, or mark (see Section 3.14, "Binary Encoding Details"). Appear-
ance of an object of any other type, including a packed array, results in a
typecheck error. If arrays are nested too deeply or are cyclical, a limitcheck error
occurs.

printobject always encodes a name object as a reference to a text name in the
string value portion of the binary object sequence, never as a system name index.

As is the case for all operators that write to files, the output produced by

printobject may accumulate in a buffer instead of being transmitted immediately.
To ensure immediate transmission, invoking flush is required. This is particularly

important in situations where the output produced by printobject is the response
to a query from the application.

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,

typecheck, undefined

See Also: print, setobjectformat, writeobject

product - product string

is a read-only string object that is the name of the product in which the PostScript
interpreter is running. The value of this string is typically a manufacturer-defined
trademark; it has no direct connection with specific features of the PostScript
language.

Errors: stackoverflow

See Also: languagelevel, revision, serialnumber, version

I 8.2
635

prompt - prompt -

Operator Details

is a procedure executed by executive whenever it is ready for the user to enter a
new statement. The standard definition of prompt is ((PS>) print flush} and is
defined in systemdict; it can be overridden by defining prompt in userdict or

some other dictionary higher on the dictionary stack. prompt is not defined in
products that do not support executive. See Section 2.4.4, "Using the Interpreter

Interactively."

Errors: none
See Also: executive

pstack I- any, ... any,, pstack r- any, ... any,,

writes text representations of every object on the stack to the standard output file,
but leaves the stack unchanged. pstack applies the == operator to each element of
the stack, starting with the topmost element. See the == operator for a description
of its effects.

Errors: none
See Also: stack,=,==

put array index any put -

dict key any put -
string index int put -

replaces a single element of the value of the first operand. If the first operand is an
array or a string, put treats the second operand as an index and stores the third
operand at the position identified by the index, counting from O. index must be in
the range 0 to n - 1, where n is the length of the array or string. If it is outside this
range, a rangecheck error occurs.

If the first operand is a dictionary, put uses the second operand as a key and the
third operand as a value, and stores this key-value pair into dict. If key is already
present as a key in dict, put simply replaces its value by any; otherwise, put creates
a new entry for key and associates any with it. In LanguageLevel 1, if dict is already

full, a dictfull error occurs.

If the value of array or dict is in global VM and any is a composite object whose
value is in local VM, an invalidaccess error occurs (see Section 3.7.2, "Local and

Global VM").

I CHAPTER 8
636

Operators

putinterval

Examples

/ar [5 173 8] def

ar 2 (abcd) put

ar

/d 5 dict def

d /abc 123 put

d {} forall

/st (abc) def

st 0 65 put

st

[5 17 (abcd) 8]

¡abc 123

(Abc)

% 65 is the ASCII code for the character A

Errors: dictfull, invalidaccess, rangecheck, stackunderflow, typecheck

See Also: get, putinterval

arrayl index array2 putinterval -

arrayi index packedarray2 putinterval -

stringi index string2 putinterval -

replaces a subsequence of the elements of the first operand by the entire contents

of the third operand. The subsequence that is replaced begins at index in the first

operand; its length is the same as the length of the third operand.

The objects are copied from the third operand to the first, as if by a sequence of

individual get and put operations. In the case of arrays, if the copied elements are

themselves composite objects, the values of those objects are shared between

array2 and arrayi (see Section 3.3.1, "Simple and Composite Objects").

putinterval requires index to be a valid index in arrayi or stringi such that index

plus the length of array2 or string2 is not greater than the length of arrayi or stringi.

If the value of arrayi is in global VM and any of the elements copied from array2 or

packedarray2 are composite objects whose values are in local VM, an invalidaccess

error occurs (see Section 3.7.2, "Local and Global VM").

Examples

/ar [5 82 7 3] def

ar 1 [(a) (b) (c)] putinterval

ar

/st (abc) def

st 1 (de) putinterval

st

[5 (a) (b) (c) 3]

(ade)

I 8.2
637

Operator Details I

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: getinterval, put

quit - quit -

terminates operation of the PostScript interpreter. The precise action of quit de-

pends on the environment in which the interpreter is running. It may, for exam-
ple, give control to an operating system command interpreter, or halt or restart

the machine.

In an interpreter that supports multiple execution contexts, the quit operator
causes termination of the current context only.

In a context that is under the control of a job server (see Section 3.7.7, "Job Exe-
cution Environment"), the definition of the quit operator in systemdict is masked
by another definition of quit in userdict, which usually is searched before
systemdict. The default definition of quit in userdict is the same as stop, which
terminates the current job but not the interpreter as a whole. The quit operator in

systemdict can be executed only by an unencapsulated job; in an encapsulated

job, it causes an invalidaccess error.

Errors: invalidaccess

See Also: stop, start

rand - rand int

returns a random integer in the range 0 to 231 - 1, produced by a pseudo-random

number generator. The random number generator's state can be reset by srand
and interrogated by rrand.

Errors: stackoverflow

See Also: srand, rrand

I CHAPTER 8
638

Operators I

rangecheck (error)

rcheck

A numeric operand's value is outside the range expected by an operator—for ex-

ample, an array or string index is out of bounds, or a negative number appears

where a nonnegative number is required. A rangecheck error can also occur if an

object's length differs from what is expected, such as when a matrix operand does

not contain exactly six elements.

array rcheck bool

packedarray rcheck bool

dict rcheck bool

file rcheck boo!

'string rcheck bool

tests whether the operand's access permits its value to be read explicitly by Post-

Script operators. It returns true if the operand's access is unlimited or read-only,

or fa/se otherwise.

Errors: stackunderflow, typecheck

See Also: executeonly, noaccess, readonly, wcheck

rcurveto dxi dyi dx2 dy2 dx3 dy3 rcurveto -

(relative curveto) appends a section of a cubic Bézier curve to the current path in

the same manner as curveto. However, the operands are interpreted as relative
displacements from the current point rather than as absolute coordinates. That is,

rcurveto constructs a curve between the current point (x0, yo) and the endpoint

(xo + dx3, yo + dy3), using (xo + dxi, yo + dyi) and (xo + dx2, yo + dy2) as the Bézier

control points. In all other respects, the behavior of rcurveto is identical to that of

curveto.

Errors: limitcheclç nocurrentpoint, stackunderflow, typecheck, undefinedresult

See Also: curveto, rlineto, rmoveto

I 8.2
639

Operator Details I

read file read int true (if not end-of-file)
false (if end-of-file)

reads the next character from the input file file, pushes it on the operand stack as
an integer, and pushes true as an indication of success. ¡fan end-of-file indication
is encountered before a character has been read, read returns false. If some other
error indication is encountered (for example, a parity or checksum error), an
ioerror occurs.

Errors: invalidaccess, ioerror, stackoverflow, stackunderflow, typecheck

See Also: readhexstring, readline, readstring, bytesavailable

readhexstring file string readhexstring substring bool

reads characters from file, expecting to encounter a sequence of hexadecimal
digits 0 to 9 and A through F (or a through f). readhexstring interprets each suc-

cessive pair of digits as a two-digit hexadecimal number representing an integer
value in the range 0 to 255. It then stores these values into successive elements of
string starting at index 0 until either the entire string has been filled or an end-of-
file indication is encountered in file. Finally, readhexstring returns the substring

of string that was filled and a boolean value indicating the outcome (true normal-
ly, false if end-of-file was encountered before the string was filled).

readhexstring ignores any characters that are not valid hexadecimal digits, so the
data in file may be interspersed with spaces, newlines, and so on, without chang-
ing the interpretation of the data.

See Section 3.8.4, "Filters," for more information about ASCII-encoded, binary

data representations and how to deal with them.

Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

See Also: read, readline, readstring, filter

readline file string readline substring bool

reads a line of characters (terminated by a newline character) from file and stores
them into successive elements of string. readline returns the substring of string
that was filled and a boolean value indicating the outcome (true normally, false if
end-of-file was encountered before a newline character was read).

A line of characters is a sequence of ASCII characters, including space, tab, and

control characters, that terminates with a newline—a carriage return character, a

I CHAPTER 8
640

Operators I

readonly

line feed character, or both. See Sections 3.2, "Syntax," and 3.8, "File Input and
Output."

The terminating newline character is not stored into string or included at the end
of the returned substring. If readline completely fills string before encountering a

newline character, a rangecheck error occurs.

Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

See Also: read, readhexstring, readonly

array readonly array

packedarray readonly packedarray

dict readonly dict

file readonly file

string readonly string

reduces the access attribute of an array, packed array, dictionary, file, or string ob-
ject to read-only (see Section 3.3.2, "Attributes of Objects"). Access can only be
reduced by this operator, never increased. When an object is read-only, its value
cannot be modified by PostScript operators (an invalidaccess error will result),
but it can still be read by operators or executed by the PostScript interpreter.

For an array, packed array, file, or string object, readonly affects the access at-

tribute only of the object that it returns. If there are other objects that share the
same value, their access attributes are unaffected. However, in the case of a dic-
tionary, readonly affects the value of the object, so all dictionary objects sharing
the same dictionary are affected.

Errors: invalidaccess, stackunderflow, typecheck

See Also: executeonly, noaccess, rcheck, wcheck

641
Operator Details

readstring file string readstring substring boo!

reads characters from file and stores them into successive elements of string until
either the entire string has been filled or an end-of-file indication is encountered
in file. readstring then returns the substring of string that was filled and a boolean
value indicating the outcome (true normally, false if end-of-file was encountered
before the string was filled). If string is zero-length, a rangecheck error occurs.

All character codes are treated the same—as integers in the range 0 to 255. There
are no special characters (in particular, the newline character is not treated spe-
cially). However, the communication channel may usurp certain control charac-
ters; see Section 3.8, "File Input and Output."

Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

See Also: read, readhexstring, readline

realtime - realtime int

tin returns the value of a clock that counts in real time, independently of the exe-
cution of the PostScript interpreter. The clock's starting value is arbitrary; it has
no defined meaning in terms of calendar time. The unit of time represented by
the realtime value is one millisecond. However, the rate at which it changes is

implementation-dependent. As the time value becomes greater than the largest
integer allowed in a particular implementation, it "wraps" to the smallest (most
negative) integer.

Errors: stackoverflow

See Also: usertime

rectclip x y width height rectclip -

numarray rectclip -

numstring rectclip -

intersects the area inside the current clipping path with a rectangular path defined
by the operands to produce a new, smaller clipping path. In the first form, the op-
erands are four numbers that define a single rectangle. In the other two forms, the

operand is an array or an encoded number string that defines an arbitrary num-
ber of rectangles (see Sections 3.14.5, "Encoded Number Strings," and 4.6.5,
"Rectangles"). After computing the new clipping path, rectclip clears the current
path with an implicit newpath operation.

642
CHAPTER 8 Operators

Assuming width and height are positive, the first form of the operator is equivalent

to the following code:

newpath

x y moveto

width 0 rlineto

0 height rlineto

width neg 0 rlineto

closepath

clip

newpath

Note that if the second or third form is used to specify multiple rectangles, the

rectangles are treated together as a single path and used for a single clip operation.

The area inside this combined path is the union of all the rectangular subpaths,

because the paths are all drawn in the same direction and the nonzero winding

number rule is used (see "Nonzero Winding Number Rule" on page 195).

Errors: limitcheck, stackunderflow, typecheck

See Also: clip, eoclip, clippath, initclip, rectfill, rectstroke

rectfill x y width height rectfill -

numarray rectfill -

numstring rectfill -

paints the area inside a path consisting of one or more rectangles defined by the

operands, using the current color. In the first form, the operands are four num-

bers that define a single rectangle. In the other two forms, the operand is an array

or an encoded number string that defines an arbitrary number of rectangles (see

Sections 3.14.5, "Encoded Number Strings," and 4.6.5, "Rectangles"). rectfill

neither reads nor alters the current path in the graphics state.

Assuming width and height are positive, the first form of the operator is equivalent

to the following code:

gsave

newpath

x y moveto

width 0 rlineto

0 height rlineto

width neg 0 rlineto

closepath

fill

grestore

1 8.2
643

l

Errors: limitcheck, stackunderflow, typecheck

See Also: fill, rectstroke, rectclip

rectstroke x y width height rectstroke -

x y width height matrix rectstroke -

numarray rectstroke -

numarray matrix rectstroke -

numstring rectstroke -

numstring matrix rectstroke -

a

Operator Details I

strokes a path consisting of one or more rectangles defined by the operands. In

the first two forms, the operands x, y, width, and height are four numbers that de-

fine a single rectangle. In the remaining forms, numarray or numstring is an array

or an encoded number string that defines an arbitrary number of rectangles (see
Sections 3.14.5, "Encoded Number Strings," and 4.6.5, "Rectangles"). rectstroke

neither reads nor alters the current path in the graphics state.

The forms of the operator that include a matrix operand concatenate it to the cur-
rent transformation matrix after defining the path, but before stroking it. The re-

sulting matrix affects the line width and dash pattern, if any, but not the path

itself.

Assuming width and height are positive, the first two forms of the operator are

equivalent to the following code:

gsave

newpath

x y moveto

width 0 rlineto

0 height rlineto

width neg 0 rlineto

closepath

matrix concat % Second form only

stroke

grestore

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: stroke, rectfill, rectclip

I CHAPTER 8 644
Operators I

removeall cidfont removeall - (BitmapFontlnit procedure set)

removes all glyph bitmaps defined for cidfont, which must be a Type 4 CIDFont

(see "Type 4 CIDFonts" on page 379). The glyphs are removed from the font

cache immediately, although they may continue to occupy memory until all pages
on which they appear have been produced.

Errors: invalidfont, stackunderflow, typecheck

See Also: addglyph, removeglyphs

removeglyphs firstcid lastcid cidfont removeglyphs - (BitmapFontinit procedure set)

removes the glyph bitmaps for the characters identified by CID numbers from

firstcid through lastcid in cidfont, which must be a Type 4 CIDFont (see "Type 4

CIDFonts" on page 379). The glyphs are removed from the font cache immediate-

ly, although they may continue to occupy memory until all pages on which they
appear have been produced.

A rangecheck error occurs if lastcid is less than firstcid or if these numbers are
outside the valid range of CIDs (see Appendix B). However, no error arises from
references to nonexistent glyphs.

Errors: invalidfont, rangecheck, stackunderflow, typecheck

See Also: addglyph, removeall

renamefile filenamei filename2 renamefile -

changes the name of a file from filenamei to filename2. The operands are strings

that specify file names on the same storage device (see Section 3.8.2, "Named

Files"). If the file named filenamei does not exist, an undefinedfilename error

occurs. Whether or not an error occurs if a file named filename2 already exists is
environment-dependent.

If the device does not allow this operation, an invalidfileaccess error occurs. If an

environment-dependent error is detected, an ioerror occurs.

Errors: invalidfileaccess, ioerror, stackunderflow, typecheck,

undefinedfilename

See Also: file, deletefile, status

I 8.2
645

i
Operator Details I

repeat int proc repeat -

executes the procedure proc int times, where int is a nonnegative integer. This op-

erator removes both operands from the stack before executing proc for the first

time. If proc executes the exit operator, repeat terminates prematurely. repeat

leaves no results of its own on the stack, but proc may do so.

Examples

4 {(abc)) repeat

1 2 3 4 3 (pop) repeat

4 { } repeat

mark 0 ((will not happen)} repeat

(abc) (abc) (abc) (abc)
1 % Pops 3 values (down to the 1)

% Does nothing four times

mark

In the last example above, a 0 repeat count means that the procedure is not exe-

cuted at all, thus the mark is still topmost on the stack.

Errors: rangecheclç stackunderflow, typecheck

See Also: for, loop, forait, exit

resetfile file resetfile -

discards buffered characters belonging to a file object. For an input file, resetfile

discards any characters that have been received from the source but not yet con-
sumed. For an output file, it discards any characters that have been written to the

file but not yet delivered to their destination. resetfile never generates an ioerror.

This operator may have other side effects that depend on the properties of the un-

derlying file. For example, it may restart communication via a channel that was

blocked waiting for buffer space to become available. resetfile never waits for

characters to be received or transmitted.

Errors: stackunderflow, typecheck

See Also: file, closefile, flushfile

I CHAPTER 8
646

Operators I

resourceforall template proc scratch category resourceforall -

9-
enumerates the names of all instances of a specified resource category or a subset
selected by template. category is a name object that identifies a resource category,
such as Font (see Section 3.9.2, "Resource Categories"), template is a string object
to be matched against names of resource instances. For each matching name,

resourceforall copies the name into the supplied scratch string, pushes a string ob-
ject designating the substring of scratch actually used, and calls proc. resourceforall

does not return any results of its own, but proc may do so.

template is matched against the names of resource instances, treating them as if

they were strings. Within the template, all characters are case-sensitive and are
treated literally, with the exception of the following:

Matches zero or more consecutive characters.

Matches exactly one character.

\ Causes the next character of the template to be treated literally, even if it is
*, ?, or \. Note that \ is treated as an escape character in a string literal.
Thus, if template is a string literal, \\ must be used to represent \ in the
resulting string.

The scratch string is reused during every call to proc. If proc wishes to save the
string that is passed to it, it must make a copy or use the cvn operator to convert
the string to a name. The use of strings instead of names allows resourceforall to

function without creating new name objects, which would consume virtual mem-

ory needlessly during a large enumeration. It is prudent to provide a scratch string
at least as long as the implementation limit for names (see Appendix B).

A resource instance can have a key that is not a name or a string, but such a key

matches only the template (*). In this case, resourceforall passes the key directly to
proc instead of copying it into the scratch string. This case can arise only for a re-
source instance defined in virtual memory by a previous defineresource; the keys
for external resource instances are always names or strings.

Like resourcestatus, but unlike fi nd resource, resourceforall never loads a resource
instance into VM.

resourceforall enumerates the resource instances in order of status (the status

value returned by resourcestatus); that is, it enumerates groups in this order:

1. Instances defined in VM by an explicit defineresource; not subject to auto-
matic removal

2. Instances defined in VM by a previous execution of findresource; subject to
automatic removal

3. Instances not currently defined in VM, but available from external storage

I 8.2
647

Operator Details I

Within each group, the order of enumeration is unpredictable; it is unrelated to

order of definition or to whether the definition is local or global. A given resource

instance is enumerated only once, even if it exists in more than one group. If proc

adds or removes resource instances, those instances may or may not appear later

in the same enumeration.

Like resourcestatus, resourceforall considers both local and global definitions if

the current VM allocation mode is local, but only global definitions if the current

VM allocation mode is global (see resourcestatus and defineresource).

If the specified resource category does not exist, an undefined error occurs. How-

ever, no error occurs if there are no instances whose names match the template.

Of course, proc can generate errors of its own.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck, undefined
See Also: defineresource, undefineresource, findresource, resourcestatus

resourcestatus key category resourcestatus status size true (if resource exists)
false (if not)

Lie returns status information about a named resource instance, category is a name

object that identifies a resource category, such as Font (see Section 3.9.2, " Re-

source Categories"), key is a name or string object that identifies the resource in-

stance. (Names and strings are interchangeable; keys of other types are permitted

but are not recommended.)

If the named resource instance exists, either defined in virtual memory or avail-

able from some external source, resourcestatus returns status, size, and the value

true; otherwise, it returns false. Unlike findresource, resourcestatus never loads a

resource instance into virtual memory.

status is an integer with the following meanings:

0 Defined in VM by an explicit defineresource; not subject to automatic

removal

1 Defined in VM by a previous execution of findresource; subject to auto-

matic removal

2 Not currently defined in VM, but available from external storage

size is an integer giving the estimated VM consumption of the resource instance in

bytes. This information may not be available for certain resources; if the size is

unknown, —1 is returned. Usually, resourcestatus can obtain the size of a status 1

or 2 resource (derived from the %%VMusage: comment in the resource file), but it

has no general way to determine the size of a status 0 resource. See Section 3.9.4,

I CHAPTER 8
648

Operators I

"Resources as Files," for an explanation of how the size is determined. A size value
of 0 is returned for implicit resources, whose instances do not occupy VM.

If the current VM allocation mode is local, resourcestatus considers both local
and global resource definitions, in that order (see defineresource). However, if

the current VM allocation mode is global, only global resource definitions are vis-
ible to resourcestatus. Resource instances in external storage are visible without
regard to the current VM allocation mode.

If the specified resource category does not exist, an undefined error occurs.

Errors: stackoverflow, stackunderflow, typecheck, undefined
See Also: defineresource, undefineresource, findresource, resourceforall

restore save restore -

resets virtual memory (VM) to the state represented by the supplied save object—

in other words, the state at the time the corresponding save operator was exe-
cuted. See Section 3.7, "Memory Management," for a description of VM and the
effects of save and restore.

If the current execution context supports job encapsulation and if save represents
the outermost saved VM state for this context, then objects in both local and
global VM revert to their saved state. If the current context does not support job

encapsulation or if save is not the outermost saved VM state for this context, then
only objects in local VM revert to their saved state; objects in global VM are un-
disturbed. Job encapsulation is described in Section 3.7.7, "Job Execution Envi-
ronment."

restore can reset VM to the state represented by any save object that is still valid,

not necessarily the one produced by the most recent save. After restoring VM,
restore invalidates its save operand along with any other save objects created more

recently than that one. That is, a VM snapshot can be used only once; to restore
the same environment repeatedly, it is necessary to do a new save each time.

restore does not alter the contents of the operand, dictionary, or execution stack,
except to pop its save operand. If any of these stacks contains composite objects

whose values reside in local VM and are newer than the snapshot being restored,
an invalidrestore error occurs. This restriction applies to save objects and, in
LanguageLevel 1, to name objects.

restore does alter the graphics state stack: it performs the equivalent of a
grestoreall and then removes the graphics state created by save from the graphics

•••••111,13111.1'

I 8.2
649

l
Operator Details 1

state stack, restore also resets several per-context parameters to their state at the

time of save. These include:

• Array packing mode (see setpacking)

• VM allocation mode (see setglobal)

• Object output format (see setobjectformat)

• All user interpreter parameters (see setuserparams)

Errors: invalidrestore, stackunderflow, typecheck

See Also: save, grestoreall, vmstatus, startjob

reversepath - reversepath -

replaces the current path with an equivalent one whose segments are defined in

the reverse order. The operation reverses the directions and order of segments

within each subpath of the current path; the relative order of subpaths within the

path as a whole is unspecified and unpredictable.

If a subpath ends with a closepath operation, the reversed subpath begins at the

point that was the beginning of the original closepath segment. The segment

added by closepath thus remains at the end of the subpath, though it is traversed

in the opposite direction.

Errors: limitcheck

See Also: closepath

revision - revision int

a is an integer designating the current revision level of the product in which the PostScript interpreter is running. Each product has its own numbering system for

revisions, independent of those of any other product. This is distinct from the

value of version in systemdict, which is the revision level of the PostScript inter-

preter, without regard to the product in which it is running.

Errors: stackoverflow

See Also: languagelevel, product, serialnumber, version

650
I CHAPTER 8 Operators I

rlineto dx dy rlineto -

(relative lineto) appends a straight line segment to the current path (see

Section 4.4, "Path Construction"), starting from the current point and extending

dx user space units horizontally and dy units vertically. That is, the operands dx

and dy are interpreted as relative displacements from the current point rather

than as absolute coordinates. In all other respects, the behavior of rlineto is identi-

cal to that of lineto.

If the current point is undefined because the current path is empty, a
nocurrentpoint error occurs.

Errors: limitcheck, nocurrentpoint, rangecheck, stackunderflow, typecheck

See Also: lineto, rmoveto, rcurveto

rmoveto dx dy rmoveto -

(relative moveto) starts a new subpath of the current path (see Section 4.4, "Path

Construction") by displacing the coordinates of the current point dx user space

units horizontally and dy units vertically, without connecting it to the previous

current point. That is, the operands dx and dy are interpreted as relative displace-
ments from the current point rather than as absolute coordinates. In all other re-

spects, the behavior of rmoveto is identical to that of moveto.

If the current point is undefined because the current path is empty, a

nocurrentpoint error occurs.

Errors: limitcheck, nocurrentpoint, rangecheck, stackunderflow, typecheck

See Also: moveto, rlineto, rcurveto

roll any-1 ••• any() n j roll any (j-1) mod n anY0 any--1 anyi mod

performs a circular shift of the objects anyn_i through any() on the operand stack

by the amount j. Positive j indicates upward motion on the stack, whereas nega-

tive j indicates downward motion.

n must be a nonnegative integer and j must be an integer, roll first removes these

operands from the stack; there must be at least n additional elements. It then per-

forms a circular shift of these n elements by j positions.

If] is positive, each shift consists of removing an element from the top of the stack

and inserting it between element n - 1 and element n of the stack, moving all in-

651
I 8.2 Operator Details I

tervening elements one level higher on the stack. Ifj is negative, each shift consists

of removing element n - 1 of the stack and pushing it on the top of the stack,

moving all intervening elements one level lower on the stack.

Examples

(a) (b) (c) 3-1 roll z (b) (c) (a)

(a) (b)(c) 3 1 roll (c) (a) (b)

(a) (b) (c) 3 0 roll (a) (b) (c)

Errors: rangecheck, stackunderflow, typecheck

See Also: exch, index, copy, pop

rootfont - rootfont font

- rootfont cid font

returns the font or CIDFont most recently established by setfont or selectfont.

Normally, rootfont returns the same result as currentfont. However, when execut-

ed inside the BuildGlyph, BuildChar, or CharStrings procedure of a descendant

base font or CIDFont, or inside a procedure invoked by cshow, rootfont returns

the root composite font, whereas currentfont returns the current descendant base

font or CIDFont. (Of course, if the procedure calls setfont or selectfont first,

rootfont and currentfont both return the newly selected font.)

Errors: stackoverflow

See Also: setfont, selectfont, currentfont

rotate angle rotate -

angle matrix rotate matrix

rotates the axes of the user coordinate space by angle degrees counterclockwise

about the origin, or returns a matrix representing this transformation. The posi-

tion of the coordinate origin and the sizes of the coordinate units are unaffected.

The transformation is represented by the matrix

R =
cos° sin 0 0

-sin e cos

0 0 1

where e is the angle specified by the angle operand. The first form of the operator

applies this transformation to the user coordinate system by concatenating matrix

R with the current transformation matrix (CTM); that is, it replaces the CTM

I CHAPTER 8
652

i
Operators I

with the matrix product R x CTM. The second form replaces the value of the

matrix operand with an array representing matrix R and pushes the result back on

the operand stack without altering the CTM. See Section 4.3.3, "Matrix Represen-

tation and Manipulation," for a discussion of how matrices are represented as

arrays.

Errors: rangecheclç stackunderflow, typecheck
See Also: setmatrix, currentmatrix, translate, scale, concat

round numi round num2

returns the integer value nearest to numi. If numi is equally close to its two nearest

integers, round returns the greater of the two. The type of the result is the same as

the type of the operand.

Examples

3.2 round
6.5 round

-4.8 round

-6.5 round

99 round

3.0
7.0

-5.0

-6.0

99

Errors: stackunderflow, typecheck

See Also: ceiling, floor, truncate, cvi

rrand - rrand int

returns an integer representing the current state of the random number generator

used by rand. This may later be presented as an operand to srand to reset the

random number generator to the current position in the sequence of numbers

produced.

Errors: stackoverflow

See Also: rand, srand

653
I 8.2 Operator Details I

run filename run -

executes the contents of the specified file—in other words, interprets the charac-

ters in that file as a PostScript program. When run encounters end-of- file or ter-

minates for some other reason (for example, execution of the stop operator), it

closes the file.

run is essentially a convenience operator for the sequence

(r) file cvx exec

except for its behavior upon abnormal termination. Also, the context of a run op-

erator cannot be left by executing exit; an attempt to do so produces the error

invalidexit. The run operator leaves no results on the operand stack, but the pro-

gram executed by run may alter the stacks arbitrarily.

Errors: ioerror, limitcheck, stackunderflow, typecheck, undefinedfilename

See Also: exec, file

save - save save

creates a snapshot of the current state of virtual memory (VM) and returns a save

object representing that snapshot. The save object is composite and logically be-

longs to the local VM, regardless of the current VM allocation mode.

Subsequently, the returned save object may be presented to restore to reset VM to

this snapshot. See Section 3.7, "Memory Management," for a description of VM

and of the effects of save and restore. See the restore operator for a detailed de-

scription of what is saved in the snapshot.

save also saves the current graphics state by pushing a copy of it on the graphics

state stack in a manner similar to gsave. This saved graphics state is restored by

restore and grestoreall.

Example

/saveobj save def

... Arbitrary computation ...

saveobj restore % Restore saved VM state

Errors: limitcheck, stackoverflow

See Also: restore, gsave, grestoreall, vmstatus

I CHAPTER 8
654

Operators I

scale s s scale - x y
Sx Sy matrix scale matrix

scales the units of the user coordinate space by a factor of s, units horizontally and
sy units vertically, or returns a matrix representing this transformation. The posi-
tion of the coordinate origin and the orientation of the axes are unaffected.

The transformation is represented by the matrix

s 0

sx 0 0

s =

1

Y
0 0 1

The first form of the operator applies this transformation to the user coordinate

system by concatenating matrix S with the current transformation matrix (CTM);
that is, it replaces the CTM with the matrix product S x CTM. The second form
replaces the value of the matrix operand with an array representing matrix S and
pushes the result back on the operand stack without altering the CTM. See
Section 4.3.3, "Matrix Representation and Manipulation," for a discussion of how
matrices are represented as arrays.

Errors: rangecheck, stackunderflow, typecheck

See Also: setmatrix, currentmatrix, translate, rotate, concat

scalefont font scale scalefont font'

cidfont scale scalefont cidfont'

applies the scale factor scale to font or cidfont, producing a new font' or cidfont'
whose glyphs are scaled by scale (in both the x and y dimensions) when they are
shown. scalefont first creates a copy of font or cidfont. Then it replaces the copy's
FontMatrix entry with the result of scaling the existing FontMatrix by scale. It in-
serts two additional entries, OrigFont and ScaleMatrix, whose purpose is internal

to the implementation. Finally, it returns the result as font' or cidfont'.

Showing glyphs from font' or cidfont' produces the same results as showing from
font or cidfont after having scaled user space by scale in by means of the scale oper-

ator. scalefont is essentially a convenience operator that enables the desired scale

factor to be encapsulated in the font or CIDFont description. Another operator,

makefont, performs more general transformations than simple scaling. See the

description of makefont for more information on how the transformed font is de-
rived. selectfont combines the effects of findfont and scalefont.

655
8.2 Operator Details I

Example

/Helvetica findfont 12 scalefont setfont

This example obtains the standard Helvetica font, which is defined with a 1-unit

line height, and scales it by a factor of 12 in both the x and y dimensions. This pro-

duces a font 12 units high (that is, a 12-point font in default user space) whose

glyphs have the same proportions as those in the original font.

Errors: invalidfont, stackunderflow, typecheck, undefined

See Also: makefont, setfont, findfont, selectfont

scheck any scheck bool

has the same behavior as gcheck. This operator is defined for compatibility with

earlier PostScript interpreter implementations.

Errors: stackunderflow

See Also: gcheck

search string seek search post match pre true (i f found)

string false (if not found)

looks for the first occurrence of the string seek within string and returns the results

of this search on the operand stack. The topmost result is a boolean value that in-

dicates whether the search succeeded.

If search finds a subsequence of string whose elements are equal to the elements of

seek, it splits string into three segments: pre, the portion of string preceding the

match; match, the portion of string that matches seek; and post, the remainder of

string. It then pushes the string objects post, match, and pre on the operand stack,
followed by the boolean value true. All three of these strings are substrings sharing

intervals of the value of the original string.

If search does not find a match, it pushes the original string followed by false.

Examples

(abbc) (ab) search

(abbc) (bb) search

(abbc) (bc) search

(abbc) (B) search

(bc) (ab) () true

(c) (bb) (a) true

() (bc) (ab) true

(abbc) false

656
[CHAPTER 8

I
Operators I

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: anchorsearch, token

selectfont key scale selectfont -

key matrix selectfont -

a obtains a Font resource instance whose name is key, transforms the instance

(which may be a font or CIDFont dictionary) according to scale or matrix, and es-

tablishes it as the font parameter in the graphics state. selectfont is equivalent to
one of the following, according to whether the second operand is a number or a

matrix:

key findfont scale scalefont setfont

key findfont matrix makefont setfont

If the Font resource instance named by key is already defined in virtual memory,

selectfont obtains the corresponding dictionary directly and does not execute
findfont. However, if the Font resource instance is not defined, selectfont invokes

findfont. In the latter case, it actually executes the name object findfont, so it uses

the current definition of that name in the environment of the dictionary stack. On
the other hand, redefining scalefont, makefont, or setfont would not alter the be-

havior of selectfont.

selectfont can give rise to any of the errors possible for the component opera-

tions, including arbitrary errors from a user-defined findfont procedure.

Example

/Helvetica 10 selectfont % More efficient

/Helvetica findfont 10 scalefont setfont

Both lines of code above have the same effect, but the first one is almost always

more efficient.

Errors: invalidfont, rangecheck, stackunderflow, typecheck

See Also: findfont, makefont, scalefont, setfont

657
Operator Details I

serialnumber - serialnumber int

returns an integer that purports to represent the specific machine on which the

PostScript interpreter is running. The precise significance of this number (includ-
ing any claim of its uniqueness) is product-dependent.

Errors: stackoverflow
See Also: languagelevel, product, revision, version

serverdict - serverdict dict

pushes a job server dictionary on the operand stack. serverdict is not an operator;
it is a name in systemdict associated with the dictionary object. The only docu-

mented entry in this dictionary is exitserver; see Section 3.7.7, "Job Execution En-
vironment."

Errors: stackoverflow
See Also: exitserver

setbbox II ily ur, ury setbbox -

establishes a bounding box for the current path, within which the coordinates of
all path construction operators must fall. Any subsequent attempt to append a
path element with a coordinate lying outside the bounding box will cause a

rangecheck error; subsequent invocations of pathbbox will return a result derived
from the bounding box rather than from the actual path. The bounding box re-
mains in effect for the lifetime of the current path—that is, until the next newpath

or any operator that resets the path implicitly.

The operands define a rectangle in user space, oriented with its sides parallel to

the axes of the user coordinate system: ll and ily are the coordinates of the rectan-
gle's lower-left corner, ur, and ury the upper-right corner. The upper-right coordi-
nate values must be greater than or equal to the lower-left values, or a rangecheck
error will occur. setbbox transforms the corners of the specified bounding box
from user to device coordinates, then constructs the smallest rectangle in device
space that is oriented parallel to the device space axes and encloses all four cor-
ners. All subsequent bounding box checking is done in device space.

Note that arcs constructed with the arc, oral, arct, and arcto operators are con-

verted to equivalent sequences of curveto operations. The coordinates computed
as control points for these curves must also fall within the bounding box. This

I CHAPTER 8
658

i
Operators I

means that the figure of the arc must be entirely enclosed by the bounding box.

On the other hand, the bounding box only constrains the path itself, not the re-
sults of rendering it. For example, stroking the path may place marks outside the

bounding box without causing an error.

Although the setbbox operator can be used for any path, its main use is in defin-
ing user paths, where it is mandatory (see Section 4.6, "User Paths"). Any user

path procedure passed to one of the user path rendering operators (such as ufill)
must begin with a setbbox operation (optionally preceded by ucache). The
bounding box information enables the user path rendering operator to optimize

execution.

If setbbox is invoked more than once during the definition of a path, the path's
effective bounding box is successively enlarged to enclose the union of all of the
individual bounding boxes specified. Such multiple invocation is not permitted
within a user path definition, but could conceivably arise in building up a single
current path by concatenating several user paths with multiple invocations of
uappend.

Errors: rangecheck, stackunderflow, typecheck

See Also: pathbbox

setblackgeneration proc setblackgeneration -

e sets the black-generation function in the graphics state to proc. The value of this

parameter is a procedure that computes the value of the black color component
during the conversion of color values from the DeviceRGB color space to
DeviceCMYK (see Section 7.2.3, "Conversion from DeviceRGB to DeviceCMYK").

The procedure is called with a number in the range 0.0 to 1.0 on the operand stack

and must return a number in the same range.

Because the effect of the black-generation function is device-dependent,
setblackgeneration should not be used in a page description that is intended to be

device-independent. Execution of this operator is not permitted in certain cir-
cumstances; see Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currentblackgeneration, setundercolorremoval

659
8.2

setcachedevice wx wy //„ Ily ur, ury setcachedevice -

Operator Details I

passes width and bounding box information to the PostScript interpreter's font

machinery. setcachedevice can be executed only within the context of a
BuildGlyph, BuildChar, or CharStrings procedure for a font or CIDFont. The pro-
cedure must invoke setcachedevice, setcachedevice2, or setcharwidth before exe-
cuting graphics operators to define and paint the glyph. setcachedevice requests

the font machinery to transfer the results of those operators both into the font
cache, if possible, and onto the current page.

The operands to setcachedevice are all numbers interpreted in the glyph coordi-

nate system (see Section 5.4, "Glyph Metric Information"). wx and wy define the
basic width vector for this glyph—in other words, the normal position of the ori-

gin of the next glyph relative to origin of this one.

/1, and lly are the coordinates of the lower-left corner, and ur, and ury the upper-

right corner, of the glyph bounding box. The glyph bounding box is the smallest
rectangle, oriented with the glyph coordinate system axes, that completely en-
closes all marks placed on the page as a result of executing the glyph's description.

For a glyph defined as a path, this may be determined by means of the pathbbox
operator. The font machinery needs this information to make decisions about
clipping and caching. The declared bounding box must be correct—in other
words, sufficiently large to enclose the entire glyph. If any marks fall outside this
bounding box, the result is unpredictable.

setcachedevice installs identical sets of metrics for writing modes 0 and 1, while

setcachedevice2 installs separate metrics.

After execution of setcachedevice and until the termination of the BuildGlyph,

BuildChar, or CharStrings procedure, invocation of color-setting operators or the
image operator is not allowed; see Section 4.8, "Color Spaces." Note that use of
the imagemask operator is permitted.

Errors: stackunderflow, typecheck, undefined

See Also: setcachedevice2, setcharwidth, setcachelimit, cachestatus

setcachedevice2 w0„ wOy 111 urx ury w1, w1y v„ vy setcachedevice2 -

[21 passes two sets of glyph metrics to the font machinery (see Section 5.4, "Glyph
Metric Information"). WOx and wOy are the distances from the current point to the
new current point when showing text in writing mode O. Hy and urx, ury are the

distances from origin 0 to the lower-left and upper-right corners of the glyph
bounding box. w/, and w/y are the distances from the current point to the new

I CHAPTER 8
660

Operators I

current point when showing text in writing mode 1. v„ and vy are the distances

from origin 0 to origin 1.

Aside from its interpretation of the operands, setcachedevice2 works the same as

setcachedevice in all respects.

Errors: stackunderflow, typecheck, undefined
See Also: setcachedevice, setcharwidth, setcachelimit, cachestatus

setcachelimit int setcachelimit -

establishes the maximum number of bytes the pixel array (bitmap) of a single
cached glyph may occupy. Any glyph larger than this (according to the glyph

bounding box information passed to setcachedevice) is not saved in the font

cache. Instead, its description is executed every time the glyph is encountered.

setcachelimit affects the decision whether to place new glyphs in the font cache; it
does not disturb any glyphs already in the cache. Making the limit larger allows
larger glyphs to be cached, but may decrease the total number of different glyphs
that can be held in the cache simultaneously. Changing this parameter is appro-
priate only in very unusual situations.

The maximum limit for int is implementation-dependent, representing the total

available size of the font cache (see cachestatus). As a practical matter, int should

not be larger than a small fraction of the total font cache size.

Modifications to the cache limit parameter are subject to save and restore. In an
interpreter that supports multiple contexts, this parameter is maintained sepa-

rately for each context.

The parameter set by setcachelimit is the same as the MaxFontltem user parame-
ter set by setuserpara ms (see Appendix C).

Errors: stackunderflow, typecheck

See Also: cachestatus, setuserparams

661
Operator Details I

setcacheparams mark size lower upper setcacheparams -

L'e sets font cache parameters as specified by the integer objects above the topmost
mark on the stack, then removes all operands and the mark object as if by
cleartomark.

The number of cache parameters is variable. If more operands are supplied to

setcacheparams than are needed, the topmost ones are used and the remainder
ignored. If fewer are supplied than are needed, setcacheparams implicitly inserts
default values between the mark and the first supplied operand.

The size, lower, and upper parameters set by setcacheparams are the same as the
MaxFontCache system parameter and the MinFontCompress and MaxFontltem

user parameters, respectively (see Appendix C). If a specified value lies outside the
range achievable by the implementation, the nearest achievable value is substi-
tuted with no error indication.

Changing the font cache size is allowed only in a system administrator job, since it

is equivalent to changing a system parameter. If size is not specified, the font cache
size is unchanged.

Errors: invalidaccess, typecheck, unmatchedmark

See Also: currentcacheparams, setcachelimit, setsystemparams, setuserparams

setcharwidth w wy setcharwidth -

is similar to setcachedevice, but it passes only width information to the PostScript
interpreter's font machinery and it declares that the glyph being defined is not to
be placed in the font cache.

setcharwidth is useful in the unusual case of defining glyphs that incorporate two
or more specific opaque colors, such as opaque black and opaque white. Most
glyphs have no inherent color, but are painted with the current color within the

glyph's outline, leaving the area outside unpainted (transparent).

Another use of setcharwidth is in defining glyphs that intentionally change their
behavior based on the environment in which they execute. Such glyphs must not
be cached, because that would subvert the intended variable behavior.

Errors: stackunderflow, typecheck, undefined

See Also: setcachedevice, setcachedevice2

662
I CHAPTER 8 Operators

setcmykcolor cyan magenta yellow black setcmykcolor -

setcolor

n711

sets the current color space in the graphics state to DeviceCMYK and the current

color to the component values specified by cyan, magenta, yellow, and black. Each
component must be a number in the range 0.0 to 1.0. If any of the operands is
outside this range, the nearest valid value is substituted without error indication.

Color values set by setcmykcolor are not affected by black-generation and under-
color-removal computations (see Section 7.2.3, "Conversion from DeviceRGB to

DeviceCMYK").

Execution of this operator is not permitted in certain circumstances; see

Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currentrgbcolor, setcolorspace, setcolor, setgray, setrgbcolor,

sethsbcolor

compi compn setcolor -

pattern setcolor -

compi compn pattern setcolor -

sets the current color in the graphics state.

The appropriate form of the operator depends on the current color space. All
color spaces except Pattern use the first form, in which the operands compi
through comp, specify the values of the color components describing the desired
color. The number of components and the valid ranges of their values depend on
the specific characteristics of the color space; see Section 4.8, "Color Spaces." (In
the case of an Indexed color space, the single operand cornpi is actually an index
into the space's color table rather than a true color component.) If the wrong
number of components is specified, an error will occur, such as stackunderflow or
typecheck. If a component value is outside the valid range, the nearest valid value

will be substituted without error indication.

The second and third forms of setcolor are used when the current color space is a

Pattern space. In both forms, the pattern operand is a pattern dictionary describ-

ing the pattern to be established as the current color. The values of the diction-
ary's PatternType and PaintType entries determine whether additional operands

are needed:

• Shading patterns (PatternType 2) or colored tiling patterns (PatternType 1,
PaintType 1) use the second form of the operator, in which the pattern diction-

ary is the only operand.

I 8.2
663

i
Operator Details I

• Uncolored tiling patterns (PatternType 1, PaintType 2) use the third form, in
which the dictionary is accompanied by one or more component values in the
pattern's underlying color space, defining the color in which the pattern is to
be painted.

The setcolorspace operator initializes the current color to a value that depends on
the specific color space selected.

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currentcolor, setcolorspace, setgray, setrgbcolor, sethsbcolor,

setcmykcolor

setcolorrendering dict setcolorrendering —

a sets the current CIE-based color rendering dictionary (CRD) in the graphics state to dict. The default CRD is device-dependent (see Section 7.1, "CIE-Based Color
to Device Color").

Because the effect of the CRD is device-dependent, this operator ordinarily

should not be used in a page description that is intended to be device-

independent. However, it is acceptable to use it to establish a CRD that has been
obtained by means of the findcolorrendering operator; this does not compromise

the device independence of the page description, even though the CRD itself is
device-dependent.

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: limitcheck, rangecheck, stackunderflow, typecheck, undefined

See Also: currentcolorrendering, findcolorrendering

I CHAPTER 8

setcolorscreen

a

664

I

redfreq redang redproc

greenfreq greenang greenproc

bluefreq blueang blueproc

grayfreq grayang grayproc setcolorscreen -

redfreq redang redhalftone

greenfreq greenang greenhalftone

bluefreq blueang bluehalftone

grayfreq grayang grayhalftone setcolorscreen -

Operators l

sets the halftone screen parameter in the graphics state (see Section 7.4, "Half-
tones") as specified by the operands. setcolorscreen sets independent halftone

screens for the four primary color components of the output device (red, green,
blue, and gray) or their complements (cyan, magenta, yellow, and black); this dis-
tinguishes it from setscreen, which sets the screen identically for all four primary
components.

In the first form of the operator, the operands define a separate frequency, angle,
and spot function for each component, which are interpreted the same as in the
setscreen operator. The second form substitutes halftone dictionaries in place of
the spot functions. This form sets all the halftone screens for all four components
identically, using the grayfreq, grayang, and grayhalfrone operands in the same
manner as setscreen; the first nine operands (redfreq through bluehalftone) are ig-
nored.

In LanguageLevel 3, the behavior of setcolorscreen can be altered by the user
parameters AccurateScreens (see "Type 1 Halftone Dictionaries" on page 487),

HalftoneMode ("Halftone Setting" on page 757), and MaxSuperScreen (Section
7.4.8, "Supercells").

Because the effect of the halftone screen is device-dependent, setcolorscreen

should not be used in a page description that is intended to be device-

independent. Execution of this operator is not permitted in certain circum-
stances; see Section 4.8.1, "Types of Color Space."

Example

/sfreq 50 def % 50 halftone cells per inch

/sproc { dup mul % Dot-screen spot function

exch dup mul

add 1

exch sub

1 def

665
8.2 Operator Details I

sfreq 75 /sproc load

sfreq 15 /sproc load

sfreq O /sproc load

sfreq 45 /sproc load

setcolorscreen

% 75-degree red (cyan) screen

% 15-degree green (magenta) screen

% 0-degree blue (yellow) screen

% 45-degree gray (black) screen

This example establishes 50-line dot screens angled at 75 degrees for cyan, 15 de-
grees for magenta, 0 degrees for yellow, and 45 degrees for black, which are com-

monly used for color printing.

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: currentcolorscreen, setscreen, sethalftone

setcolorspace array setcolorspace -

name setcolorspace -

sets the current color space in the graphics state. It also initializes the current

color to a value that depends on the specific color space selected. The initial value
of the current color space is DeviceGray.

In the first form of the operator, the color space is specified by an array of the

form

[family parami ... paraffin]

where family is the name of the color space family and the parameters

parami through paramn further describe the space within that family. The number

and meanings of these parameters vary depending on the family; see Section 4.8,

"Color Spaces," for details.

In the second form, the color space is specified by its family name only. This is al-

lowed only for those color space families that require no parameters: DeviceGray,

DeviceRGB, DeviceCMYK, and Pattern. Specifying a color space by name is equiva-

lent to specifying it by a one-element array containing just that name with no

other parameters.

Execution of this operator is not permitted in certain circumstances; see

Section 4.8.1, "Types of Color Space."

Errors: rangecheck, stackunderflow, typecheck, undefined

See Also: currentcolorspace, setcolor

I CHAPTER 8
666

l
Operators I

setcolortransfer redproc greenproc blueproc grayproc setcolortransfer -

rali sets the transfer function parameter in the graphics state. setcolortransfer specifies

transfer functions for all four primary color components of the output device
(red, green, blue, and gray) or their complements (cyan, magenta, yellow, and

black). Each operand must be a PostScript procedure that is called with a number
in the range 0.0 to 1.0 on the operand stack and will return a number in the same

range.

These procedures adjust the values of device color components (see Section 7.3,

"Transfer Functions"). A device's output will be affected only by those transfer

functions corresponding to color components that the device supports. For ex-
ample, redproc, greenproc, and blueproc will have no effect on a black-and-white

device, while grayproc will have no effect on an RGB device. On a device whose
ProcessColorModel is DeviceN, none of the transfer functions set by setcolor-

transfer have any effect; in this case, all components' transfer functions must be
specified via TransferFunction entries in a halftone dictionary supplied to
sethalftone.

Because the effect of the transfer function parameter is device-dependent,
setcolortransfer should not be used in a page description that is intended to be

device-independent. Execution of this operator is not permitted in certain cir-
cumstances; see Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined
See Also: currentcolortransfer, settransfer

setdash array offset setdash -

sets the dash pattern parameter in the graphics state. This parameter controls the
lines to be drawn by subsequent invocations of stroke and related operators, such
as rectstroke and ustroke. An empty (zero-length) array operand denotes solid,
unbroken lines. If array is not empty, its elements (which must be nonnegative
numbers and not all zero) define the sequence of dashes and gaps constituting the

dash pattern.

The elements of array alternately specify the length of a dash and the length of a

gap between dashes, expressed in units of the user coordinate system. The stroke
operator uses these elements cyclically; when it reaches the end of the array, it

starts again at the beginning.

Dashed strokes wrap around curves and corners in the same way as solid strokes.

The ends of each dash are treated with the current line cap, and corners within a
dash are treated with the current line join, stroke takes no measures to coordinate

8.2
667

Operator Details I

BIM

• MI

Ma al IM

the dash pattern with features of the path itself; it simply dispenses dashes along
the path in the pattern defined by array.

The offset operand can be thought of as the "phase" of the dash pattern relative to
the start of the path. It is interpreted as a distance into the dash pattern (measured
in user space units) at which to start the pattern. Before beginning to stroke a
path, the stroke operator cycles through the elements of array, adding up dis-
tances and alternating dashes and gaps as usual, but without generating any out-
put. When the accumulated distance reaches the value specified by offset, it begins
stroking from the starting point of the path, using the dash pattern from the point
that has been reached. Each subpath of a path is treated independently; the dash
pattern is restarted and the offset reapplied at the beginning of each subpath.

Examples

[1 0 setdash

[3] 0 setdash

setdash

O setdash

6 setdash

11 setdash

% Solid, unbroken lines

% 3 units on, 3 units off, ...

% 1 on, 2 off, 2 on, 2 off, ...

% 2 on, 1 off, 2 on, 1 off,...

% 2 off, 3 on, 5 off, 3 on, 5 off, ...

% 1 on, 3 off, 2 on, 3 off, 2 on, ...

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: currentdash, stroke

setdevparams string dict setdevparams —

attempts to set one or more parameters for the device identified by string accord-
ing to keys and new values contained in the dictionary dict. string identifies a

named parameter set, which usually but not always corresponds to an input/

output or other device (see Section C.4, "Device Parameters"). The dictionary is
merely a container for key-value pairs; setdevparams reads the information from
the dictionary but does not retain the dictionary itself. Device parameters whose

keys are not mentioned in the dictionary are left unchanged.

Each parameter is identified by a key, which is always a name object. The value is
usually (but not necessarily) an integer. String values should consist of nonnull
characters; if a null character is present, it will terminate the string. The names of
parameter sets and the names and semantics of the parameters are product-

dependent. They are not documented in this book, but rather in the PostScript
Language Reference Supplement and in product-specific documentation.

668
CHAPTER 8 i Operators

Permission to alter device parameters is controlled by a password. The dictionary
may need to contain an entry named Password whose value is a string or integer

equal to the system parameter password (see Section C.1.2, "System Parame-
ters"). If the password is incorrect, an invalidaccess error occurs and
setdevparams does not alter any parameters.

Some device parameters can be set permanently in nonvolatile storage that sur-

vives restarts of the PostScript interpreter. This capability is implementation-
dependent. No error occurs if parameters cannot be stored permanently. For

more details on device parameters, see Appendix C.

Various errors are possible. Details of error behavior are product-dependent, but

the following behavior is typical:

• If a parameter name is not known to the implementation, an undefined error
occurs.

• If a parameter value is of the wrong type, a typecheck error occurs.

• If a numeric parameter value is unreasonable—for instance, a negative integer

for a parameter that must be positive—a rangecheck error occurs.

• If a numeric parameter value is reasonable but cannot be achieved by the
implementation, either the nearest achievable value is substituted or a
configurationerror occurs, depending on the device and the parameter.

• If a string parameter value exceeds either the general implementation limit on
strings (noted in Appendix B) or an implementation-dependent limit specific
to that parameter, a limitcheck error occurs.

Errors: configurationerror, invalidaccess, limitcheck, rangecheck,
stackunderflow, typecheck, undefined

See Also: currentdevparams, setsystemparams, setuserparams

setfileposition file position setfileposition -

repositions an existing open file to a new position so that the next read or write
operation will commence at that position. The position operand is a nonnegative

integer interpreted as number of bytes from the beginning of the file. For an out-
put file, setfileposition first performs an implicit flushfile operation (see
Section 3.8, "File Input and Output").

The result of positioning beyond end-of-file for both reading and writing depends
on the behavior of the underlying file system. Typically, positioning beyond the
existing end-of-file will lengthen the file if it is open for writing and the file's ac-
cess permits this. The storage appended to the file has unspecified contents. If

I 8.2
669

I
Operator Details I

lengthening the file is not permitted, an ioerror occurs. Possible causes of an

ioerror are that the file object is not valid, the underlying file is not positionable,
the specified position is invalid for the file, or a device-dependent error condition
is detected.

Errors: ioerror, rangecheck, stackunderflow, typecheck, undefinedfilename

See Also: fileposition, file

setflat num setflat -

sets the flatness parameter in the graphics state to num, which must be a positive

number. This parameter controls the precision with which curved path segments
are rendered on the raster output device by operators such as stroke, fill, and clip.

These operators render curves by approximating them with a series of straight
line segments. Flatness is the error tolerance of this approximation; it is the maxi-

mum allowable distance of any point of the approximation from the correspond-
ing point on the true curve, measured in output device pixels. The acceptable
range of values is 0.2 to 100.0. If num is outside this range, the nearest valid value
is substituted without error indication.

FIGURE 8.8 setflat operator

Figure 8.8 is exaggerated for emphasis. If the flatness parameter is large enough to
cause visible straight line segments to appear, the result is unpredictable. The pur-
pose of setflat is to control the precision of curve rendering, not to draw inscribed

polygons.

670
I CHAPTER 8 Operators I

The choice of a flatness value is a tradeoff between precision and execution effi-

ciency. Very small values (less than 1 device pixel) produce very precise curves at

high cost, because enormous numbers of tiny line segments must be generated.

Larger values produce cruder approximations with substantially less computa-

tion. A default value of the flatness parameter is established by the device setup

(Install) procedure for each raster output device. This value is based on the char-
acteristics of the individual device and is suitable for most applications.

setflat sets a graphics state parameter whose effect is device-dependent. It should

not be used in a page description that is intended to be device-independent.

Errors: stackunderflow, typecheck

See Also: currentflat, flattenpath, stroke, fill, clip

setfont font setfont -

cidfont setfont -

establishes font or cidfont as the font parameter in the graphics state (subsequently
returned by rootfont). This in turn determines the current font or CIDFont (re-

turned by currentfont)—the font to be used by subsequent glyph operators, such

as show and stringwidth, or the CIDFont to be used by a subsequent glyphshow
operator. The operand must be a valid font or CIDFont dictionary. See

Section 5.1, "Organization and Use of Fonts."

Example

/Helvetica findfont % Obtain prototype Helvetica font
10 scalefont % Scale it to 10-unit size

setfont % Establish it as font parameter

Errors: invalidfont, stackunderflow, typecheck

See Also: currentfont, rootfont, scalefont, makefont, findfont, selectfont

setglobal boo! setglobal -

sets the VM allocation mode: true denotes global, false denotes local. This controls

the VM region in which the values of new composite objects are to be allocated

(see Section 3.7, "Memory Management"). It applies to objects created implicitly

by the scanner and to those created explicitly by PostScript operators.

Modifications to the VM allocation mode are subject to save and restore. In an

interpreter that supports multiple execution contexts, the VM allocation mode is

maintained separately for each context.

I 8.2
671

I
Operator Details I

The standard error handlers in errordict execute false setglobal, reverting to local
VM allocation mode if an error occurs.

Errors: stackunderflow, typecheck

See Also: currentglobal

setgray num setgray -

sets the current color space in the graphics state to DeviceGray and the current

color to the gray level specified by num. The gray level must be a number in the

range 0.0 to 1.0, with 0.0 denoting black and 1.0 denoting white. If num is outside
this range, the nearest valid value is substituted without error indication.

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currentgray, setcolorspace, setcolor, setrgbcolor, sethsbcolor,

setcmykcolor

setgstate gstate setgstate -

rgi replaces the current graphics state with the value of a gstate (graphics state) object

(see Section 4.2, "Graphics State"). The contents of gstate are copied to the graph-
ics state, so subsequent modifications to one will not affect the other. Note that
this operation replaces all components of the graphics state; in particular, the cur-
rent clipping path is replaced by the value in gstate, not intersected with it.

Errors: invalidaccess, stackunderflow, typecheck

See Also: gstate, currentgstate, gsave, grestore

sethalftone halftone sethalftone -

a sets the halftone screen parameter in the graphics state (see Section 7.4, "Half-tones") as specified by a halftone dictionary. This distinguishes it from setscreen
and setcolorscreen, which specify the halftone's properties by passing individual

frequency, angle, and spot function operands directly on the stack.

halftone must be a halftone dictionary constructed as described in Section 7.4.3,
"Halftone Dictionaries." If the dictionary's HalftoneType value is out of bounds

I CHAPTER 8
672

Operators I

or is not supported by the PostScript interpreter, a rang echeck error occurs; if a

required entry is missing, an undefined error occurs; if an entry's value is of the
wrong type, a typecheck error occurs. Once established as the current halftone,

the dictionary should be treated as read-only.

In LanguageLevel 3, the behavior of sethalftone can be altered by the user param-

eters HalftoneMode (see "Halftone Setting" on page 757) and MaxSuperScreen

(Section 7.4.8, "Supercells").

Because the effect of the halftone screen is device-dependent, sethalftone should
not be used in a page description that is intended to be device-independent.
Execution of this operator is not permitted in certain circumstances; see

Section 4.8.1, "Types of Color Space."

Errors: limitcheck, rangecheck, stackunderflow, typecheck, undefined

See Also: currenthalftone, setscreen, setcolorscreen

sethsbcolor hue saturation brightness sethsbcolor —

sets the current color space in the graphics state to DeviceRGB and the current
color to the color described by the parameters hue, saturation, and brightness. Each
parameter must be a number in the range 0.0 to 1.0. If any of the operands is out-
side this range, the nearest value is substituted without error indication.

Note that the HSB parameter values supplied to sethsbcolor are immediately con-
verted into RGB color components. HSB is not a color space in its own right, but

merely an alternate way of specifying color values in the DeviceRGB color space.

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currenthsbcolor, setcolorspace, setcolor, setgray, setrgbcolor,

setcmykcolor

673
8.2 Operator Details I

setlinecap int setlinecap -

sets the line cap parameter in the graphics state to int, which must be 0, 1, or 2.

This parameter controls the shape to be painted at the ends of open subpaths (and

dashes, if any) by subsequent invocations of stroke and related operators, such as

ustroke (see Section 4.5.1, "Stroking"). Possible values are as follows (see

Figure 8.9):

O Butt cap. The stroke is squared off at the endpoint of the path. There is no

projection beyond the end of the path.

1 Round cap. A semicircular arc with a diameter equal to the line width is

drawn around the endpoint and filled in.

2 Projecting square cap. The stroke continues beyond the endpoint of the
path for a distance equal to half the line width and is then squared off.

VIM
Butt cap

all=11 --0

Round cap Projecting square cap

FIGURE 8.9 Line cap parameter shapes

Errors: rangecheck, stackunderflow, typecheck

See Also: currentlinecap, stroke, setlinejoin

setlinejoin int setlinejoin -

sets the line join parameter in the graphics state to int, which must be 0, 1, or 2.

This parameter controls the shape to be painted at corners by subsequent invoca-

tions of stroke and related operators, such as rectstroke and ustroke (see

Section 4.5.1, "Stroking"). Possible values are as follows (see Figure 8.10):

O Miter join. The outer edges of the strokes for the two segments are

extended until they meet at an angle, as in a picture frame. If the segments

meet at too sharp an angle (as defined by the miter limit parameter—see

setmiterlimit), a bevel join is used instead.

I CHAPTER 8
674

Operators

1 Round join. A circular arc with a diameter equal to the line width is drawn

around the point where the two segments meet and is filled in, producing
a rounded corner, stroke draws a full circle at this point; if path segments

shorter than half the line width meet at sharp angles, an unintended
‘`wrong side" of this circle may appear.

2 Bevel join. The two segments are finished with butt caps (see setlinecap),

and the resulting notch beyond the ends of the segments is filled with a
triangle.

AA
Miter join Round join Bevel join

FIGURE 8.10 Line join parameter shapes

Join styles are significant only at points where consecutive segments of a path
connect at an angle. Segments that meet or intersect fortuitously receive no spe-
cial treatment. Curved segments are actually rendered as sequences of straight line

segments, and the current line join is applied to the "corners" between these seg-
ments. However, for typical values of the flatness parameter (see setflat), the cor-
ners are so shallow that the difference between join styles is not visible.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentlinejoin, stroke, setlinecap, setmiterlimit

setlinewidth nurn setlinewidth

sets the line width parameter in the graphics state to num. This parameter controls
the thickness of lines to be drawn by subsequent invocations of stroke and related
operators, such as rectstroke and ustroke. When stroking a path, stroke paints all

points whose perpendicular distance from the path in user space is less than or
equal to half the absolute value of num. The effect produced in device space de-
pends on the current transformation matrix (CTM) in effect at the time the path
is stroked. If the CTM specifies scaling by different factors in the x and y dimen-

I 8.2
675

Operator Details I

sions, the thickness of stroked lines in device space will vary according to their

orientation.

A line width of 0 is acceptable, and is interpreted as the thinnest line that can be
rendered at device resolution-1 device pixel wide. However, some devices can-
not reproduce 1-pixel lines, and on high-resolution devices, they are nearly invis-
ible. Since the results of rendering such "zero-width" lines are device-dependent,

their use is not recommended.

The actual line width achieved by stroke can differ from the requested width by as
much as 2 device pixels, depending on the positions of lines with respect to the
pixel grid. Automatic stroke adjustment (see setstrokeadjust) can be used to en-

sure uniform line width.

Errors: stackunderflow, typecheck

See Also: currentlinewidth, stroke, setstrokeadjust

setmatrix matrix setmatrix -

sets the current transformation matrix (CTM) in the graphics state to matrix with-

out reference to the former CTM. Except in device setup procedures, the use of
this operator should be very rare. PostScript programs should ordinarily modify
the CTM with the translate, scale, rotate, and concat operators rather than re-

place it.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentmatrix, tnitmatrix, translate, scale, rotate, concat

setmiterlimit num setmiterlimit —

sets the miter limit parameter in the graphics state to num, which must be a num-

ber greater than or equal to 1. This parameter controls the treatment of corners by
stroke and related operators, such as rectstroke and ustroke (see Section 4.5.1,

"Stroking"), when miter joins have been specified by setlinejoin. When path seg-

ments connect at a sharp angle, a miter join will result in a spike that extends well
beyond the connection point. The purpose of the miter limit is to cut off such

spikes when they become objectionably long.

At any given corner, the miter length is the distance from the point at which the
inner edges of the strokes intersect to the point at which their outer edges inter-

sect (see Figure 8.11). This distance increases as the angle between the segments

I CHAPTER 8
676

l
Operators 1

decreases. If the ratio of the miter length to the line width exceeds the specified

miter limit, the stroke operator treats the corner with a bevel join instead of a
miter join.

FIGURE 8.11 Miter length

The ratio of miter length to line width is directly related to the angle q) between
the segments in user space by the following formula:

miterLength _ 1

lineWidth — sin((2)
2

Example miter limit values are:

. 1.414 cuts off miters (converts them to bevels) at angles less than 90 degrees.

• 2.0 cuts off miters at angles less than 60 degrees.

• 10.0 cuts off miters at angles less than 11 degrees.

• 1.0 cuts off miters at all angles, so that bevels are always produced even when
miters are specified.

The default value of the miter limit is 10.0.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentmiterlimit, stroke, setlinejoin

677
Operator Details

setobjectformat mt setobjectformat -

establishes the number representation to be used in binary object sequences writ-

ten by subsequent execution of printobject and writeobject. Output produced by

those operators will have a token type that identifies the representation used. The

int operand is one of the following (see Section 3.14, "Binary Encoding Details"):

O Disable binary encodings (see below)

1 High-order byte first, IEEE standard real format

2 Low-order byte first, IEEE standard real format

3 High-order byte first, native real format

4 Low-order byte first, native real format

Note that the latter four values specify the number representation only for output.

Incoming binary encoded numbers use a representation that is specified as part of

each token (in the initial token type byte).

The value 0 disables all binary encodings for both input and output. That is, the

PostScript language scanner treats all incoming characters as part of the ASCII en-

coding, even if a token starts with a character code in the range 128 to 159. The

printobject and writeobject operators are disabled; executing them will cause an

undefined error. This mode is provided for compatibility with certain existing

PostScript programs.

The initial value of this parameter is implementation-dependent. A program must

invoke setobjectformat to generate output with a predictable number representa-

tion.

Modifications to the object format parameter are subject to save and restore. In
an interpreter that supports multiple contexts, this parameter is maintained sepa-

rately for each context.

Errors: rangecheck, stackunderflow, typecheck
See Also: currentobjectformat, printobject, writeobject

setoverprint boo! setoverprint -

sets the overprint parameter in the graphics state to boo!. On output devices capa-
ble of producing separations or of generating composite output in multiple colo-

rants, this parameter controls whether painting in one separation or colorant

causes the corresponding areas of other separations or colorants to be erased
(false) or left unchanged (true); see Section 4.8.5, "Overprint Control." The de-

fault value is false.

678
I CHAPTER 8

i Operators 1

When overprint is false, the color marked at any position on the page is whatever
was painted there last; this is consistent with the normal opaque painting behavior

of the Adobe imaging model. When overprint is true, the color at a given position
may be a combined result of several painting operations in different colorants.

Because the effect of the overprint parameter is device-dependent, setoverprint
should not be used in a program that is intended to be device-independent.

Errors: stackunderflow, typecheck

See Also: currentoverprint, setcolorspace

setpacking boo/ setpacking -

a sets the array packing mode to bool. This determines the type of executable arrays subsequently created by the PostScript language scanner. The value true selects
packed arrays; false selects ordinary arrays.

The packing mode affects only the creation of procedures by the scanner when it
encounters program text bracketed by f and } during interpretation of an exe-

cutable file or string object, or during execution of the token operator. It does not
affect the creation of literal arrays by the E and I operators or by the array operator.

Modifications to the array packing mode parameter are subject to save and
restore. In an interpreter that supports multiple contexts, this parameter is main-
tained separately for each context.

Example

systemdict /setpacking known

/savepacking currentpacking def

true setpacking

if

... Arbitrary procedure definitions...

systemdict isetpacking known

{savepacking setpacking}
if

This example illustrates how to use packed arrays in a way that is compatible with
all LanguageLevels. If the packed array facility is available, the procedures repre-

sented by the arbitrary procedure definitions are defined as packed arrays; other-
wise, they are defined as ordinary arrays. The example is careful to preserve the
array packing mode in effect before its execution.

I 8.2
679

Errors: stackunderflow, typecheck

See Also: currentpacking, packedarray

setpagedevice dict setpagedevice —

Operator Details I

modifies the contents of the page device dictionary in the graphics state based on

the contents of the dictionary operand. The operand is a request dictionary con-
taining requested new values for one or more page device parameters. If valid for
the current page device, these requested values are merged by setpagedevice into
the current page device dictionary. The interpretation of these parameters is de-

scribed in Section 6.2, "Page Device Parameters."

The results of setpagedevice are cumulative. The request dictionary for any given
invocation is not required to include any particular keys; parameter values estab-
lished in previous invocations will persist unless explicitly overridden. This
cumulative behavior applies not only to the top-level dictionary, but also recur-
sively to the subdictionaries InputAttributes, OutputAttributes, and Policies, as

well as to some types of details dictionaries.

The result of executing setpagedevice is to instantiate a page device dictionary,
perform the equivalent of initgraphics and erasepage, and install the new device

dictionary as an implicit part of the graphics state. The effects of setpagedevice
are subject to save and restore, gsave and grestore, and setg state.

setpagedevice can be used by system administrators to establish a default state for
a device by invoking it as part of an unencapsulated job (see Section 3.7.7, "Job
Execution Environment"). This default state persists until the next restart of the
PostScript interpreter. Some PostScript implementations store some of the device
parameters in persistent storage when setpagedevice is executed as part of an un-

encapsulated job, making those parameters persist through interpreter restart.

setpagedevice reinitializes everything in the graphics state except the font param-
eter, including parameters not affected by initgraphics. Device-dependent render-

ing parameters, such as the halftone screen, transfer functions, flatness tolerance,
and color rendering dictionary, are reset to built-in default values or to ones pro-

vided in the Install procedure of the page device dictionary.

When the current device in the graphics state is not a page device—for example,
after nul Id evice has been invoked or when an interactive display device is active—

setpagedevice creates a new device dictionary from scratch before merging in the
parameters from dict. The contents of this dictionary are implementation-

dependent.

680
I CHAPTER 8 Operators I

If a device's BeginPage or EndPage procedure invokes setpagedevice, an
undefined error occurs.

Errors: configurationerror, invalidaccess, limitcheck, rangecheck,

stackunderflow, typecheck, undefined, VMerror

See Also: currentpagedevice, nulldevice, gsave, grestore

setpattern pattern setpattern -

compi ... comp, pattern setpattern -

sets the current color space in the graphics state to Pattern and establishes a speci-

fied pattern as the current color. Subsequent painting operations (except image

and colorimage) will use this pattern to paint the required areas of the current
page.

setpattern is a convenience operator for patterns that performs the equivalent of

setcolorspace and setcolor in a single operation. It is equivalent to the following
code

currentcolorspace 0 get /Pattern ne

[/Pattern currentcolorspace] setcolorspace
1 if

setcolor

Normally, setpattern establishes a Pattern color space whose underlying color

space is the one in effect at the time setpattern is invoked. However, if the current

color space is already a Pattern space, setpattern simply leaves it unchanged.

setpattern then invokes setcolor to establish the specified pattern as the current
colo r in the graphics state, passing it the same operand values that were supplied

to setpattern itself. The pattern operand is a pattern dictionary constructed as
specified in Section 4.9, "Patterns," and instantiated by makepattern. The need
for the remaining operands depends on the value of the pattern dictionary's
PatternType and PaintType entries:

• Shading patterns (PatternType 2) and colored tiling patterns (PatternType 1,

PaintType 1) define their own colors as part of the pattern itself; there is no
underlying color space. Therefore, the operands compi through comp„ should
not be specified.

• Uncolored tiling patterns (PatternType 1, PaintType 2) have no inherent color;

the color must be specified explicitly by the components comp,' through comp„

in the underlying color space of the Pattern space. If the Pattern color space

does not have an underlying color space, a rangecheck error occurs.

I 8.2
681

Operator Details I

Execution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: rangecheck, stackunderflow, typecheck, undefined

See Also: makepattern, setcolor, setcolorspace

setrgbcolor red green blue setrgbcolor -

sets the current color space in the graphics state to DeviceRGB and the current col-

or to the component values specified by red, green, and blue. Each component
must be a number in the range 0.0 to 1.0. If any of the operands is outside this
range, the nearest valid value is substituted without error indication.

Execution of this operator is not permitted in certain circumstances; see

Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currentrgbcolor, setcolorspace, setcolor, setgray, sethsbcolor,

setcmykcolor

setscreen frequency angle proc setscreen -

frequency angle halftone setscreen - (LanguageLevel 2)

sets the halftone screen parameter in the graphics state (see Section 7.4, "Half-

tones") as specified by the operands. setscreen sets the screen identically for all
four primary color components of the output device (red, green, blue, and gray);
this distinguishes it from setcolorscreen, which sets the four screens independent-

ly.

frequency is a number specifying the screen frequency, measured in halftone cells

per inch in device space. angle specifies the number of degrees by which the cells
are rotated counterclockwise with respect to the device coordinate system. (Note,
however, that most output devices have left-handed device spaces; on such de-

vices, a counterclockwise angle in device space will correspond to a clockwise
angle in default user space and on the physical medium.)

In the first form of the operator, the proc operand is a PostScript procedure defin-
ing the spot function, which determines the order in which pixels within a halftone

cell are whitened to produce any desired shade of gray. In the second form,
halftone is a halftone dictionary defining the desired screen; in this case, setscreen

performs the equivalent of sethalftone, except that if the dictionary is of type 1,

the values of the frequency and angle operands are copied into the dictionary's

I CHAPTER 8
682

Operators I

Frequency and Angle entries, overriding the original values of those entries. (If

the dictionary is read-only, setscreen makes a copy of it before copying the
values.) For halftone dictionaries of types other than 1, the frequency and angle
operands are ignored.

A rangecheck error occurs if proc returns a result outside the range —1.0 to 1.0. A

limitcheck error occurs if the size of the screen cell exceeds implementation limits.

In LanguageLevel 3, the behavior of setscreen can be altered by the user
parameters AccurateScreens (see "Type 1 Halftone Dictionaries" on page 487),

HalftoneMode ("Halftone Setting" on page 757), and MaxSuperScreen

(Section 7.4.8, "Supercells").

Because the effect of the halftone screen is device-dependent, setscreen should
not be used in a page description that is intended to be device-independent. Exe-

cution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: currentscreen, setcolorscreen, sethalftone

setshared boo/ setshared -

rfil
has the same behavior as setglobal. This operator is defined for compatibility with
earlier PostScript interpreter implementations.

Errors: stackunderflow, typecheck

See Also: setglobal

setsmoothness num setsmoothness -

sets the smoothness parameter in the graphics state to num, which must be a

number from 0.0 to 1.0. This parameter controls the precision of smoothly

shaded output, and thus indirectly affects rendering performance. Smoothness is
the allowable color error, or tolerance, between a shading approximated by piece-
wise linear interpolation and the true value of a (possibly nonlinear) shading

function. The error is measured for each color component, and the maximum
error is used. The tolerance is expressed as a fraction of the range of the color

component, from 0.0 to 1.0. Thus, a smoothness parameter of 0.1 represents a tol-
erance of 10 percent in each color component. If the value of num is outside the
range 0.0 to 1.0, the nearest valid value is substituted without error indication.

I 8.2
683

Operator Details I

Each output device may have internal limits on the maximum and minimum tol-
erances attainable. For example, setting smoothness to 1.0 may result in an effec-

tive smoothness of 0.5 on a high-quality color device, while setting it to 0.0 on the
same device may yield an effective smoothness of 0.01.

The choice of a smoothness value is a tradeoff between precision and execution

efficiency. Very small values produce very precise color shadings at high cost, be-
cause enormous numbers of tiny colored areas must be generated. Larger values

produce cruder approximations with substantially less computation. A default
value of the smoothness parameter is established by the device setup (Install) pro-

cedure for each raster output device. This value is based on the characteristics of
the individual device and is suitable for most applications.

The smoothness parameter may also interact with the accuracy of color conver-
sion. In the case of a color conversion defined by a PostScript procedure or table,
the conversion function is unknown; if the color error is sampled at too low a fre-

quency, the accuracy defined by the smoothness parameter cannot be guaranteed.
In most cases, however, where the conversion function is smooth and continuous,
the accuracy should be within the specified tolerance.

setsmoothness sets a graphics state parameter whose effect is device-dependent. It
should not be used in a page description that is intended to be device-
independent.

Errors: rangecheck, stackoverflow

See Also: currentsmoothness

setstrokeadjust bool setstrokeadjust -

sets the stroke adjustment parameter in the graphics state to boo!. This parameter
controls whether automatic stroke adjustment will be performed during subse-
quent invocations of stroke and related operators, including strokepath (see
Section 7.5.2, "Automatic Stroke Adjustment").

The initial value of the stroke adjustment parameter is device-dependent; typical-
ly it is true for displays and false for printers. It is set to false when a font's
BuildChar. BuildGlyph, or CharStrings procedure is called, but the procedure can
Lhange it. It is not altered by initgraphics.

Errors: stackunderflow, typecheck

See Also: currentstrokeadjust, stroke, setlinewidth

I CHAPTER 8
684

I
Operators I

setsystemparams dict setsystemparams -

le.
attempts to set one or more system parameters whose keys and new values are
contained in the dictionary dict. The dictionary is merely a container for key-value
pairs; setsystemparams reads the information from the dictionary but does not
retain the dictionary itself. System parameters whose keys are not mentioned in
the dictionary are left unchanged.

Each parameter is identified by a key, which is always a name object. If the named
system parameter does not exist in the implementation, it is ignored. If a specified

numeric value is not achievable by the implementation, the nearest achievable
value is substituted without error indication.

String values should consist of nonnull characters; if a null character is present, it
will terminate the string. String-valued parameters may be subject not only to the
general implementation limit on strings (noted in Appendix B), but also to

implementation-dependent limits specific to certain parameters. If either limit is
exceeded, a limitcheck error occurs.

The names of system parameters and details of their semantics are given in
Appendix C. Additional parameters are described in the PostScript Language Ref-
erence Supplement and in product-specific documentation. Some user parameters
have default values that can be specified as system parameters with the same
names.

Permission to alter system parameters is controlled by a password. The dictionary
usually must contain an entry named Password whose value is a string or integer

equal to the system parameter password (see Section C.1.2, "System Parame-
ters"). If the password is incorrect, an invalidaccess error occurs and
setsystemparams does not alter any parameters.

Some system parameters can be set permanently in nonvolatile storage that sur-
vives restarts of the PostScript interpreter. This capability is implementation-
dependent. No error occurs if parameters cannot be stored permanently.

Example

<< /MaxFontCache 500000

/MaxFontltem 7500

/Password (mooc)

» setsystemparams

This example attempts to set the MaxFontCache system parameter to 500,000 and
the default value of the MaxFontltem user parameter to 7500.

Errors: invalidaccess, limitcheck, stackunderflow, typecheck

See Also: currentsystemparams, setuserparams, setdevparams

I 8.2
685

i
Operator Details I

settransfer proc settransfer -

sets the transfer function parameter in the graphics state to proc (see Section 7.3,
"Transfer Functions"). A transfer function is a procedure that adjusts the value of
a color component to compensate for nonlinear response in an output device and
in the human eye. The procedure is called with a number in the range 0.0 to 1.0
on the operand stack and must return a number in the same range. settransfer

sets the transfer function identically for all four primary color components of the
output device (red, green, blue, and gray); this distinguishes it from setcolor-
transfer, which sets the four transfer functions independently.

Because the effect of the transfer function is device-dependent settransfer should
not be used in a page description that is intended to be device-independent. Exe-
cution of this operator is not permitted in certain circumstances; see
Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck

See Also: currenttransfer, setcolortransfer

settrapparams dict settrapparams - (Trapping procedure set)

, 3 sets or updates the contents of the current trapping parameter dictionary (see
Section 6.3.3, "Trapping Parameters").

dict is a dictionary with the same structure as the trapping parameter dictionary
and usually contains a subset of the possible trapping parameters. settrapparams

merges the contents of this dictionary with those of the existing trapping parame-
ter dictionary, replacing or adding entries as appropriate. Unrecognized entries in
dict are ignored. Changes to the current trapping parameter dictionary do not af-
fect trapping zones already defined.

The effects of calls to settrapparams are cumulative. The value assigned to a given
trapping parameter persists through subsequent invocations of settrapparams

until explicitly overridden or until the contents of the trapping parameter diction-
ary are restored to some previous state by a restore operation. A PostScript pro-
gram can thus specify individual trapping options independently by invoking
settrapparams separately for each, setting a particular trapping parameter or set

of parameters while leaving the values of other parameters unaffected.

This cumulative behavior does not apply to the contents of the ColorantZone-
Details dictionary. A program wishing to change the value of just one entry in the
ColorantZoneDetails dictionary must retrieve the dictionary's current contents
and explicitly merge them with the new value before calling settrapparams. This
enables the program to remove entries from the ColorantZoneDetails dictionary.

I CHAPTER 8
686

Operators I

Note that this differs from the cumulative behavior of the setpagedevice o tIc t oi
for ColorantDetails.

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: currenttrapparams, settrapzone

settrapzone - settrapzone - (Trapping procedure set)

sets a trapping zone (see Section 6.3.2, "Trapping Zones") whose area is the re-

gion inside the current path, as determined by the normal PostScript nonzero
winding number rule (see "Nonzero Winding Number Rule" on page 195). The

new zone's trapping parameters are defined by the current contents of the

trapping parameter dictionary. Subsequent changes to the current path or the
trapping parameter dictionary will not affect this trapping zone.

Like the fill and stroke operators, settrapzone implicitly performs a newpath op-
eration after defining a trapping zone.

Errors: limitcheck

See Also: currenttrapparams, settrapparams

setucacheparams mark blimit setucacheparams -

sets user path cache parameters as specified by the integer objects above the top-

most mark on the stack, then removes all operands and the mark object itself, as if
by cleartomark.

The number of cache parameters is variable. If more operands are supplied than
are needed, the topmost ones are used and the remainder ignored. If too few are

supplied, setucacheparams implicitly inserts default values between the mark and
the first supplied operand.

blimit specifies the maximum number of bytes that can be occupied by the re-
duced representation of a single path in the user path cache. Any reduced path
larger than this limit is not saved in the cache. Changing blimit does not disturb

any paths that are already in the cache. A blimit value that is too large is automati-

cally reduced to the maximum permissible value without error indication.

Modifications to the cache limit parameter are subject to save and restore. In an
interpreter that supports multiple contexts, this parameter is maintained sepa-
rately for each context.

I 8.2
687

Operator Details I

The parameter that setucacheparams sets is the same as the Ma xUPathitem

parameter set by setuserparams (see Appendix C).

Errors: rangecheck, typecheck, unmatchedmark

See Also: ucachestatus, setuserparams

setundercolorremoval proc setundercolorremoval -

Re_

user

sets the undercolor-removal function in the graphics state to proc. The value of this

parameter is a procedure that computes the amount by which to reduce the cyan,

magenta, and yellow color components in order to compensate for black genera-

tion during the conversion of color values from the DeviceRGB color space to

DeviceCMYK (see Section 7.2.3, "Conversion from DeviceRGB to DeviceCMYK").

The procedure is called with a number in the range 0.0 to 1.0 on the operand stack

and must return a number in the range —1.0 to + 1.0. Negative result values

increase the levels of the cyan, magenta, and yellow color components; positive

values decrease them.

Because the effect of the undercolor-removal function is device-dependent,

setundercolorremoval should not be used in a page description that is intended to

be device-independent. Execution of this operator is not permitted in certain cir-

cumstances; see Section 4.8.1, "Types of Color Space."

Errors: stackunderflow, typecheck, undefined

See Also: currentundercolorremoval, setblackgeneration

setuserparams dia setuserparams -

attempts to set one or more user parameters whose keys and new values are con-

tained in the dictionary dict. The dictionary is merely a container for key-value

pairs; setuserparams reads the information from the dictionary but does not re-

tain the dictionary itself. User parameters whose keys are not mentioned in the

dictionary are left unchanged.

Each parameter is identified by a key, which is always a name object. If the named

user parameter does not exist in the implementation, it is ignored. If a specified

numeric value is not achievable by the implementation, the nearest achievable

value is substituted without error indication.

String values should consist of nonnull characters; if a null character is present, it

will terminate the string. String-valued parameters may be subject not only to the

general implementation limit on strings (noted in Appendix B) but also to

688
i CHAPTER 8 Operators I

implementation-dependent limits specific to certain parameters. If either limit is
exceeded, a limitcheck error occurs.

The names of user parameters and details of their semantics are given in

Appendix C. Additional parameters are described in the PostScript Language Ref-
erence Supplement and in product-specific documentation. Some user parameters

have default values that are system parameters with the same names. These de-
faults can be set by setsystemparams.

User parameters, unlike system parameters, can be set without supplying a pass-

word. Alterations to user parameters are subject to save and restore. In an inter-
preter that supports multiple execution contexts, user parameters are maintained
separately for each context.

Example

« /MaxFontltem 7500 » setuserparams

This example attempts to set the MaxFontltem user parameter to 7500.

Errors: invalidaccess, limitcheck, stackunderflow, typecheck

See Also: currentuserparams, setsystemparams, setdevparams

setvmthreshold int setvmthreshold -

sets the allocation threshold used to trigger garbage collection. Ifint is less than the
implementation-dependent minimum value, the threshold is set to that minimum
value. If int is greater than the implementation-dependent maximum value, the

threshold is set to that maximum value. If int is — 1, the threshold is set to the
implementation-dependent default value. All other negative values of int result in
a rangecheck error.

Modifications to the allocation threshold parameter are subject to save and
restore. In an interpreter that supports multiple contexts, this parameter is main-
tained separately for each context.

The parameter specified by setvmthreshold is the same as the VMThreshold user
parameter set by setuserparams (see Appendix C).

Errors: rangecheck

See Also: setuserparams

I
689

Operator Details I

shareddict - shareddict dict

is the same dictionary as globaldict. The name shareddict is defined for compati-

bility with earlier PostScript interpreter implementations.

Errors: stackoverflow
See Also: globaldict

SharedFontDirectory - SharedFontDirectory dict

is the same dictionary as GlobalFontDirectory. The name SharedFontDirectory

defined for compatibility with earlier PostScript interpreter implementations.

Errors: stackoverflow
See Also: GlobalFontDirectory

shfill dict shfill -

01-
paints the shape and color shading described by a shading dictionary, subject to
the current clipping path. The current path and current color in the graphics state
are neither used nor altered. The effect of shfill is different from that of painting a
path using a color defined as a shading pattern; see Section 4.9.3, "Shading Pat-

terns."

dict is a shading dictionary defining the shape to be filled and the gradient fill to be
used. All coordinates in the dictionary are interpreted in current user space. All
color values are interpreted in the color space identified by the dictionary's
ColorSpace entry. The Background entry, if present, is ignored.

shfill should be applied only to bounded or geometrically defined shadings. If ap-
plied to an unbounded shading, it will paint the corresponding field of color
across the entire current clipping region, which may be time-consuming.

If the shading dictionary contains a DataSource entry that is a file, shfill will read
the file exactly once. It is permissible to read from the file returned by currentfile,
thereby reading in-line data from the executing PostScript program itself, im-

mediately following the invocation of the shfill operator. Since the shading data

continues until end-of-file, it is necessary to employ a filter, such as SubFile-

Decode, to provide an explicit end-of-data indication. (This differs from the case
in which a shading dictionary is used to define a shading pattern, where the Data-
Source must be a positionable file, usually a ReusableStreamDecode filter.)

690
I CHAPTER 8

i
Operators I

Execution of this operator is not permitted in certain circumstances; see
Section 4.8, "Color Spaces."

Errors: rangecheck, undefinedresult
See Also: fill, eofill, stroke

show string show -

paints glyphs for the characters identified by the elements of string on the current

page starting at the current point, using the font face, size, and orientation speci-

fied by the current font (as returned by currentfont). The spacing from each glyph

to the next is determined by the glyph's width, which is an (x, y) displacement
that is part of the glyph description. When it is finished, show adjusts the current

point in the graphics state by the sum of the widths of all the glyphs shown, show
requires that the current point initially be defined (for example, by moveto);
otherwise, a nocurrentpoint error occurs.

If a character code would index beyond the end of the font's Encoding array, or if
the character mapping algorithm goes out of bounds in other ways, a rangecheck
error occurs.

See Chapter 5 for complete information about the definition, manipulation, and
rendition of fonts.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck, stackunderflow,
typecheck

See Also: ashow, awidthshow, widthshow, kshow, cshow, xshow, yshow, xyshow,

charpath, moveto, setfont

showpage - showpage -

transmits the contents of the current page to the current output device, causing

any marks painted on the page to be rendered on the output medium. showpage

then erases the current page and reinitializes the graphics state in preparation for

composing the next page. (The actions of showpage may be modified by the
EndPage procedure, as discussed below.)

If the current device is a page device that was installed by setpagedevice
(LanguageLevel 2), the precise behavior of showpage is determined by the values

of parameters in the page device dictionary (see Sections 6.1.1, "Page Device Dic-

tionary," and 6.2, "Page Device Parameters"). Parameters affecting the behavior

of showpage include NumCopies, Collate, Duplex, and perhaps others as well.

I 8.2
691

Operator Details I

Whether or not the current device is a page device, the precise manner in which

the current page is transmitted is device-dependent. For certain devices (such as
displays), no action is required, because the current page is visible while it is being
composed.

The main actions of showpage are as follows:

1. Executes the EndPage procedure in the page device dictionary, passing an inte-
ger page count on the operand stack along with a reason code indicating that

the procedure was called from showpage; see Section 6.2.6, "Device Initializa-
tion and Page Setup," for more information.

2. If the boolean result returned by the EndPage procedure is true, transmits the
page's contents to the current output device and performs the equivalent of an
erasepage operation, clearing the contents of raster memory in preparation
for the next page. If the EndPage procedure returns false, showpage skips this
step.

3. Performs the equivalent of an initgraphics operation, reinitializing the graph-
ics state for the next page.

4. Executes the BeginPage procedure in the page device dictionary, passing an
integer page count on the operand stack.

If the BeginPage or EndPage procedure invokes showpage, an undefined et it)1
occurs.

For a device that produces output on a physical medium such as paper, showpage
can optionally transmit multiple copies of the page in step 2 above. In Language-

Level 2 or 3, the page device parameter NumCopies specifies the number of copies
to be transmitted. In LanguageLevel 1 (or in higher LanguageLevels if NumCopies
is null), the number of copies is given by the value associated with the name

#copies in the naming environment defined by the current dictionary stack. (The
default value of #copies is 1, defined in userdict.) For example, the code

Mcopies 5 def
showpage

prints five copies of the current page, then erases the current page and reinitializes

the graphics state.

Errors: limitcheck, undefined

See Also: copypage, erasepage, setpagedevice

692
I CHAPTER 8 Operators I

sin angle sin real

returns the sine of angle, which is interpreted as an angle in degrees. The result is a

real number.

Errors: stackunderflow, typecheck

See Also: cos, atan

sqrt num sqrt real

returns the square root of num, which must be a nonnegative number. The result
is a real number.

Errors: rangecheck, stackunderflow, typecheck

See Also: exp

srand int srand —

initializes the random number generator with the seed int, which may be any inte-
ger value. Executing srand with a particular value causes subsequent invocations
of rand to generate a reproducible sequence of results. In an interpreter that sup-
ports multiple execution contexts, the random number state is maintained sepa-

rately for each context.

Errors: stackunderflow, typecheck

See Also: rand, rrand

stack I— anyi anyn stack H any, any,,

writes text representations of every object on the stack to the standard output file,
but leaves the stack unchanged. stack applies the = operator to each element of the

stack, starting with the topmost element. See the = operator for a description of its
effects.

Errors: none

See Also: pstack, =, ==, count

8.2
693

i
Operator Details I

stackoverflow (error)

The operand stack has grown too large; too many objects have been pushed on

the stack and not popped off. See Appendix B for the limit on the size of the oper-
and stack.

Before invoking this error, the interpreter creates an array containing all elements
of the operand stack (stored as if by astore), resets the operand stack to empty,
and pushes the array on the operand stack.

stackunderflow (error)

An attempt has been made to remove an object from the operand stack when it is
empty. This usually occurs because some operator did not have all of its required
operands on the stack.

StandardEncoding - StandardEncoding array

pushes the standard encoding vector on the operand stack. This is a 256-element
literal array object, indexed by character codes, whose values are the character
names for those codes. See Section 5.3, "Character Encoding," for an explanation
of encoding vectors. StandardEncoding is not an operator; it is a name in
systemdict associated with the array object.

StandardEncoding is the Adobe standard encoding vector used by most Latin-text
fonts, but not by special fonts, such as Symbol. A new Latin-text font having no
unusual encoding requirements should specify its Encoding entry to be the value

of StandardEncoding rather than define its own private array. The contents of the
standard encoding vector are tabulated in Appendix E.

Errors: stackoverflow

See Also: ISOLatinl Encoding, findencoding

start - start -

is executed by the PostScript interpreter when it starts up. After setting up the
virtual memory (restoring it from a file, if appropriate), the interpreter executes
the name start in the context of the default dictionary stack (systemdict,
globaldict, and userdict). The procedure associated with the name start is expect-

694
I CHAPTER 8 Operators I

cd to provide whatever top-level control is required—for example, for receiving
page descriptions, interacting with a user, or recovering from errors. The precise
definition of start depends on the environment in which the PostScript interpret-

er is operating. It is not of any interest to ordinary PostScript programs and the
effect of executing it explicitly is undefined.

Errors: none
See Also: quit

Sta rtData key int StartData -

key int name StartData -
(FontSetinit procedure set)
(Fondellnit procedure set)

string int StartData - (C/Dinit procedure set)

introduces the binary data section of a font set or Type 0 CIDFont file and regis-
ters the resulting dictionary as an instance in the FontSet nr CIDFont resource cat-

egory.

For either operator, int specifies the number of bytes in the binary data section

that follows. The data begins immediately after the white-space character that ter-
minates the invocation of StartData. If StartData is invoked directly as part of a

PostScript program, it consumes this data and incorporates it into the dictionary
being constructed (as the value of the Glyph Data entry). However, if StartData is
invoked from within a resource file being loaded by the findresource operator, it

does not load the data into virtual memory; instead, it arranges for the data to be
accessed from the file system dynamically, as needed, during glyph rendering.

For a font set, StartData expects to be invoked when the dictionary stack contains

the FontSetInit procedure set dictionary. It creates a FontSet instance from the
binary data, which is expected to conform to the Compact Font Format (CFF)
specification or to other recognized multiple-font formats, such as Chameleon. If
the data consists of Chameleon font descriptors, the name operand must be used
to specify the name of the associated master font. After creating the FontSet in-
stance, StartData invokes the equivalent of

key /FontSet defineresource pop

and removes one dictionary from the dictionary stack. See Section 5.8.1, "Type 2
and Type 14 Fonts (CFF and Chameleon)" for information on the fonts stored in
these resources.

For a Type 0 CIDFont, StartData expects to be invoked when the dictionary stack
contains the CIDInit procedure set dictionary and the CIDFont dictionary being
built. The string operand specifies the format of the following data as either Binary

695
8.2 Operator Details I

(which is strongly recommended) or Hex. From the data, StartData completes the

construction of the CID Font dictionary and then invokes the equivalent of

CIDFontName /CIDFont defineresource pop

Finally, it removes two dictionaries from the dictionary stack. See "Type 0

CIDFonts" on page 371 for more information.

Errors: invalidfont, ioerror, stackunderflow, typecheck, VMerror

See Also: findresource

startjob booli password startjob boo/2

conditionally starts a new job whose execution may alter the initial virtual mem-

ory for subsequent jobs (see Section 3.7.7, "Job Execution Environment"), booli

specifies whether the new job's side effects are to be persistent.

The behavior of startjob depends on whether the following three conditions are

true:

• The current execution context supports job encapsulation—in other words, is

under the control of a job server.

• password is correct—in other words, matches the StartJobPassword or

SystemParamsPassword system parameter.

• The current level of save nesting is no deeper than it was at the time the cur-

rent job started.

If all three conditions are satisfied, startjob performs the following actions:

1. Ends the current job—in other words, resets the stacks and, if the current job

was encapsulated, performs a restore operation.

2. Begins a new job. If boo/1 is true, the usual save operation at the beginning of

the job is omitted, enabling the new job to make persistent alterations to the

initial VM. If booli is false, the usual save operation is performed, encapsulat-

ing the new job.

3. Returns true on the operand stack.

If any of the three conditions is not satisfied, startjob pushes false on the operand

stack and has no other effect.

password is a string that authorizes switching between encapsulated and unencap-

sulated jobs, as well as between an ordinary encapsulated job and a system admin-

istrator job. If password is an integer, it is first converted to a string, as if by the cvs

I CHAPTER 8
696

Operators I

operator. It is compared to the StartJobPassword and SystemParamsPassword

system parameters; see Section C.3.1, "Passwords," for details.

Errors: invalidaccess, stackunderflow, typecheck

See Also: exitserver, setsystemparams, save, restore

status file status boo!

filename status pages bytes referenced created true (i f found)

false (if not found)

If the operand is a file object, status returns true if it is still valid (that is, is associ-

ated with an open file), or false otherwise.

If the operand is a string, status treats it as a file name according to the conven-

tions described in Section 3.8.2, "Named Files." If there is a file by that name,

status pushes four integers of status information followed by the value true;
otherwise, it pushes false. The four integer values are:

pages The storage space occupied by the file, in implementation-
dependent units.

bytes The length of the file in bytes.

referenced The date and time the file was last referenced for reading or writ-

ing. This value is interpreted according to the conventions of the

underlying operating system. The only assumption that a pro-

gram can make is that larger values indicate later times.

created The date and time the contents of the file were created.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck
See Also: file, closefile, filenameforall

statusdict — statusdict dict

pushes a product-dependent dictionary on the operand stack. statusdict is not an
operator; it is a name associated with the dictionary in systemdict. The statusdict

dictionary is in local VM and is writeable.

statusdict contains product-dependent operators and other data whose names

and values vary from product to product, and sometimes from one version of a
product to another. Information in statusdict is associated with unique features

I 8.2
697

i
Operator Details 1

of a product that cannot be accessed in any standard way. The contents of
statusdict are not documented here, but in product-specific documentation.

In LanguageLevel 1, statusdict includes operators to select print-engine features,
to set communication parameters, and to control other aspects of the interpreter's
operating environment. In LanguageLevel 2 or 3, most of these functions have
been subsumed by standard operators, such as setpagedevice, setdevparams, and
setsystem pa rams.

statusdict is not necessarily defined in all products. Any reference to statusdict in
a PostScript program impairs the portability of that program.

Errors: stackoverflow, undefined

stop - stop -

terminates execution of the innermost, dynamically enclosing instance of a
stopped context, without regard to lexical relationship. A stopped context is a
procedure or other executable object invoked by the stopped operator. stop pops
the execution stack down to the level of the stopped operator. The interpreter

then pushes the boolean value true on the operand stack and resumes execution at
the next object in normal sequence after the stopped operator. It thus appears
that stopped returned the value true, whereas it normally returns false.

stop does not affect the operand stack or dictionary stack. Any objects pushed on
these stacks during the execution of the stopped context remain after the context
is terminated.

If stop is executed when there is no enclosing stopped context, the interpreter
prints an error message and executes the built-in operator quit. This never occurs
during execution of ordinary user programs.

Errors: none

See Also: stopped, exit

stopped any stopped bool

executes any, which is typically, but not necessarily, a procedure, executable file,
or executable string object. If any runs to completion normally, stopped returns
false on the operand stack. If any terminates prematurely as a result of executing
stop, stopped returns true. Regardless of the outcome, the interpreter resumes ex-
ecution at the next object in normal sequence after stopped.

I CHAPTER 8
698

i
Operators I

This mechanism provides an effective way for a PostScript program to "catch"

errors or other premature terminations, retain control, and perhaps perform its

own error recovery. See Section 3.11, "Errors."

When an error occurs, the standard error handler sets newerror to true in the

$error dictionary. When using stopped to catch and continue from an error

(without invoking handleerror), it is prudent to explicitly reset newerror to false

in $error; otherwise, any subsequent execution of stop may result in inadvertent

reporting of the leftover error. Also, note that the standard error handler sets the

VM allocation mode to local.

Example

{ ... } stopped

{handleerror}

if

If execution of the procedure { ... I causes an error, the default error reporting

procedure is invoked (by handleerror). In any event, normal execution continues

at the token following the if operator.

Errors: stackunderflow

See Also: stop

store key value store -

searches for key in each dictionary on the dictionary stack, starting with the top-

most (current) dictionary. If key is found in some dictionary, store replaces its

value by the value operand; otherwise, store creates a new entry with key and value

in the current dictionary.

If the chosen dictionary is in global VM and value is a composite object whose

value is in local VM, an invalidaccess error occurs (see Section 3.7.2, "Local and

Global VM").

Example

/abc 123 store

¡abc where

{ }
{currentdict}

ifelse

¡abc 123 put

The two code fragments above have the same effect.

699
r 8.2

I
Operator Details I

Errors: dictfull, invalidaccess, limitcheck, stackunderflow

See Also: def, put, where, load

string int string string

creates a string of length int, each of whose elements is initialized with the integer

0, and pushes this string on the operand stack. The int operand must be a nonneg-

ative integer not greater than the maximum allowable string length (see

Appendix B). The string is allocated in local or global VM according to the cur-

rent VM allocation mode; see Section 3.7.2, "Local and Global VM."

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: length, type

stringwidth string stringwidth wx wy

calculates the change in the current point that would occur if string were given as

the operand to show with the current font. wx and wy are computed by adding to-

gether the width vectors of all the individual glyphs for string and converting the

result to user space. They form a distance vector in the x and y dimensions de-

scribing the width of the glyphs for the entire string in user space. See Section 5.4,

"Glyph Metric Information," for a discussion of glyph widths.

To obtain the glyph widths, stringwidth may execute the descriptions of one or

more of the glyphs in the current font and may cause the results to be placed in

the font cache. However, stringwidth prevents the graphics operators that are exe-

cuted from painting anything onto the current page.

Note that the width returned by stringwidth is defined as movement of the cur-

rent point. It has nothing to do with the dimensions of the glyph outlines (see

charpath and pathbbox).

Errors: invalidaccess, invalidfont, rangecheck, stackunderflow, typecheck

See Also: show, setfont

I CHAPTER 8
700

Operators I

stroke - stroke -

paints a line centered on the current path, with sides parallel to the path segments.

The line's graphical properties are defined by various parameters of the graphics
state. Its thickness is determined by the current line width parameter (see
setlinewidth) and its color by the current color (see setcolor). The joints between
connected path segments and the ends of open subpaths are painted with the cur-
rent line join (see setlinejoin) and the current line cap (see setlinecap), respective-
ly. The line is either solid or broken according to the dash pattern established by

setdash. Uniform stroke width can be ensured by enabling automatic stroke ad-
justment (see setstrokeadjust). All of these graphics state parameters are consult-

ed at the time stroke is executed; their values during the time the path is being
constructed are irrelevant.

If a subpath is degenerate (consists of a single-point closed path or of two or more
points at the same coordinates), stroke paints it only if round line caps have been

specified, producing a filled circle centered at the single point. If butt or project-
ing square line caps have been specified, stroke produces no output, because the
orientation of the caps would be indeterminate. A subpath consisting of a single-
point open path produces no output.

After painting the current path, stroke clears it with an implicit newpath opera-
tion. To preserve the current path across a stroke operation, use the sequence

gsave
fill

grestore

Errors: limitcheck

See Also: setlinewidth, setlinejoin, setlinecap, setmiterlimit, setdash,

setstrokeadjust, ustroke, fill

strokepath - strokepath -

replaces the current path with one enclosing the shape of the line that the stroke
operator would draw if applied to the current path. The result is not influenced by
the current clipping path. The rules for degenerate subpaths (see stroke) apply to
strokepath as well: if stroke would produce no output, strokepath will produce an

empty subpath.

The path produced by stroke path is suitable for use as the implicit operand to a
subsequent fill, clip, or path bbox operation. In general, it is not suitable for
stroke, as it may contain interior segments or disconnected subpaths produced by
strokepath's conversion from stroke to outline.

701
Operator Details I

Errors: limitcheck

See Also: stroke, fill, clip, charpath, pathbbox

sub numi num2 sub difference

returns the result of subtracting num2 from numi. If both operands are integers
and the result is within integer range, the result is an integer; otherwise, the result
is a real number.

Errors: stackunderflow, typecheck, undefinedresult

See Also: add, div, mul, idiv, mod

syntaxerror (error)

The scanner has encountered program text that does not conform to the Post-
Script language syntax rules (see Section 3.2, "Syntax"). This can occur either dur-
ing interpretation of an executable file or executable string object or during

explicit invocation of the token operator.

Because the syntax of the PostScript language is simple, the set of possible causes

for a syntaxerror is very small:

• An opening string or procedure bracket—(, <, or {—is not matched by a
corresponding closing bracket before the end of the file or string being inter-
preted.

• A closing string or procedure bracket—), >, or I—is not matched by a cor-
responding previous opening bracket.

• A character other than a hexadecimal digit or white-space character appears
within a hexadecimal string literal bracketed by <...>.

• An encoding violation occurs in an ASCII base-85 string literal bracketed by

• A binary token or binary object sequence has incorrect structure (see

Section 3.14, "Binary Encoding Details").

Erroneous tokens, such as malformed numbers, do not produce a syntaxerror;
such tokens are instead treated as name objects (often producing an undefined
error when executed). Tokens that exceed implementation limits, such as names
that are too long or numbers whose values are too large, produce a limitcheck
error (see Appendix B).

702
I CHAPTER 8

systemdict - systemdict dia

i
Operators I

pushes the dictionary object systemdict on the operand stack (see Section 3.7.5,
"Standard and User-Defined Dictionaries"). systemdict is not an operator; it is a
name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: errordict, globaldict, userdict

timeout (error)

A time limit has been exceeded; that is, a PostScript program has executed for too
long or has waited too long for some external event to occur.

Execution of timeout is sandwiched between execution of two objects being inter-
preted in normal sequence. Unlike most other errors, the occurrence of a timeout
error does not cause the object being executed to be pushed on the operand stack,
nor does it disturb the operand stack in any way.

The PostScript language does not define any standard causes for timeout errors.
However, a PostScript interpreter running in a particular environment may pro-
vide a set of timeout facilities appropriate for that environment.

token file token any true (if found)
false (if not found)

string token post any true (iffound)

false (if not found)

reads characters from file or string, interpreting them according to the PostScript
language syntax rules (see Section 3.2, "Syntax"), until it has scanned and con-
structed an entire object.

In the file case, token normally pushes the scanned object followed by true. If

token reaches end-of-file before encountering any characters besides white-space
characters, it returns false.

In the string case, token normally pushes post (the substring of string beyond the
portion consumed by token), the scanned object, and true. If token reaches the

end of string before encountering any characters besides white-space characters, it
simply returns false.

703
I 8.2

i
Operator Details I

In either case, the any result is an ordinary object. It may be a simple object—an
integer, a real number, or a name—or a composite object—a string bracketed by
(...) or a procedure bracketed by { ... }. The object returned by token is the same

as the object that would be encountered by the interpreter if file or string were exe-
cuted directly. However, token scans just a single object and it always pushes that
object on the operand stack rather than executing it.

token consumes all characters of the token and sometimes the terminating char-
acter as well. If the token is a name or a number followed by a white-space charac-
ter, token consumes the white-space character (only the first one if there are
several). If the token is terminated by a special character that is part of the
token—), >, or }—token consumes that character, but no following ones. If the
token is terminated by a special character that is part of the next token—I, (, <, [,
or (—token does not consume that character, but leaves it in the input sequence.
If the token is a binary token or a binary object sequence, token consumes no ad-

ditional characters.

Examples

(15 (St1){1 2 add})token = ((St1){1 2 add})15true

{(5t1){1 2 add}) token = ({1 2 add))(St1) true

WI 2 add)) token = 0{1 2 add} true

()token = false

Errors: invalidaccess, ioerror, limitcheck, stackoverflow, stackunderflow,

syntaxerror, typecheck, undefinedresult, VMerror

See Also: search, anchorsearch, read

transform x y transform x' y'

x y matrix transform x' y'

applies a transformation matrix to the coordinates (x, y), returning the trans-

formed coordinates (x', y'). The first form of the operator uses the current trans-
formation matrix in the graphics state to transform user space coordinates to
device space. The second form applies the transformation specified by the matrix
operand rather than the CTM.

Errors: rangecheck, stackunderflow, typecheck

See Also: itransform, dtransform, idtransform

704
I CHAPTER 8

l
Operators I

translate tx ty translate -

tx ty matrix translate matrix

moves the origin of the user coordinate space by tx units horizontally and ry units

vertically, or returns a matrix representing this transformation. The orientation of

the axes and the sizes of the coordinate units are unaffected.

The transformation is represented by the matrix
_

T =

The first form of the operator applies this transformation to the user coordinate

system by concatenating matrix T with the current transformation matrix (CTM);

that is, it replaces the CTM with the matrix product Tx CTM. The second form

replaces the value of the matrix operand with an array representing matrix T and

pushes the result back on the operand stack without altering the CTM. See

Section 4.3.3, "Matrix Representation and Manipulation," for a discussion of how
matrices are represented as arrays.

Errors: rangecheck, stackunderflow, typecheck

See Also: setmatrix, currentmatrix, scale, rotate, concat

true - true true

pushes a boolean object whose value is true on the operand stack. true is not an

operator; it is a name in systemdict associated with the boolean value true.

Errors: stackoverflow

See Also: false, and, or, not, xor

I 8.2
705

1
Operator Details I

truncate numi truncate num2

truncates numi toward 0 by removing its fractional part. The type of the result is

the same as the type of the operand.

Examples

3.2 truncate = 3.0

—4.8 truncate = —4.0

99 truncate 99

Errors: stackunderflow, typecheck

See Also: ceiling, floor, round, cvi

type any type name

returns a name object that identifies the type of the object any. The possible

names that type can return are as follows:

arraytype nametype

booleantype nulltype

dicttype operatortype

filetype packedarraytype (LanguageLevel 2)

fonttype realtype

gstatetype (LanguageLevel 2) savetype

integertype stringtype

marktype

The name fonttype identifies an object of type fontID. It has nothing to do with a

font dictionary, which is identified by dicttype the same as any other dictionary.

The returned name has the executable attribute. This makes it convenient to per-

form type-dependent processing of an object simply by executing the name re-

turned by type in the context of a dictionary that defines all the type names to

have procedure values (this is how the == operator works).

The set of types is subject to enlargement in future revisions of the language. A

program that examines the types of arbitrary objects should be prepared to be-

have reasonably if type returns a name that is not in this list.

Errors: stackunderflow

I CHAPTER 8
706

Operators I

typecheck (error)

An operand's type is different from what an operator expects, or an operand is a
literal array or a literal packed array when an operator expects a procedure (an ex-

ecutable array or an executable packed array). This is probably the most frequent-
ly occurring error. It is often the result of faulty stack manipulation, such as
operands supplied in the wrong order or procedures leaving results on the stack
when they are not supposed to.

Certain operators require dictionaries or other composite objects as operands,
constructed according to specific rules (for example, pattern dictionaries or user
paths). A typecheck error can occur if the contents of such objects are of incorrect
type or are otherwise malformed.

uappend userpath uappend -

interprets a user path definition (see Section 4.6, "User Paths") and appends the
result to the current path in the graphics state. All operator names mentioned in
the user path have their standard definitions, unaffected by any name redefini-
tions that may have occurred.

If userpath is an ordinary user path (an array or packed array whose length is at
least 5), uappend is equivalent to the following code:

systemdict begin
cvx exec

end

°A) Ensure standard operator meanings

% Interpret userpath

If userpath is an encoded user path, uappend interprets it and performs the en-
coded operations. It does not matter whether the user path object is literal or exe-
cutable.

The bounding box specified by the setbbox operator in the user path applies only
to elements of the user path itself. It does not apply to other elements of the cur-

rent path constructed either before or after the execution of uappend.

A ucache operation appearing in the user path may or may not have an effect, de-
pending on the environment in which uappend is executed. If the current path is
initially empty and no path construction operators are executed after uappend, a

subsequent painting operator may or may not access the user path cache; other-
wise, it definitely will not. This is particularly useful in the case of clip.

As part of its execution, uappend temporarily rounds the tx and ty components of

the current transformation matrix to the nearest integer values. The reason for
this is discussed in Section 4.6.4, "User Path Operators."

8.2
707

Operator Details

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: upath, ucache

ucache - ucache -

notifies the PostScript interpreter that the user path in which the operator occurs
is to be retained in the user path cache if it is not already there (see Section 4.6.3,

"User Path Cache"). If present, this operator must appear as the first element of a
user path definition (before the mandatory setbbox); if executed outside a user

path definition, the operator does nothing.

The ucache operator has no effect of its own when executed. It is useful only with
a user path painting operator, such as ufill or ustroke, that takes the enclosing user
path as an operand. If the user path is not already in the cache, the painting oper-
ator performs the path construction operations specified in the user path defini-
tion and places the results (referred to as the reduced path) in the cache. If the user
path is already present in the cache, the painting operator does not interpret the

user path, but rather obtains and uses the reduced path from the cache.

Errors: none

See Also: uappend, upath

ucachestatus - ucachestatus mark bsize bmax rsize rmax blimit

reports the current consumption and maximum limit for two quantities related to
the user path cache: bytes of storage occupied by reduced paths (bsize and bmax)
and total number of reduced paths cached (rsize and rmax). It also reports the lim-
it on the number of bytes that can be occupied by a single reduced path (blimit);
reduced paths that exceed this limit are not cached. A PostScript program can
change blimit (see setucacheparams); all other results are for information only.

The number of result values returned on the operand stack is variable. They are
preceded by a mark object pushed on the stack as a delimiter, enabling a program
to determine how many values were returned (using counttomark) and to discard

any unused ones (using cleartomark).

The bsize, bmax, and blimit results reported by ucachestatus are the same as the
system parameters CurUPathCache and MaxUPathCache and the user parameter

MaxUPathltem (see Appendix C).

Errors: stackoverflow

See Also: setucacheparams, setsystemparams, setuserparams

708 I CHAPTER 8

ueofill userpath ueofill -

i Operators 1

interprets a user path definition (see Section 4.6, "User Paths") and fills the result-

ing path as if by the eofill operator. The even-odd rule is used to determine what

points lie inside the path (see "Even-Odd Rule" on page 196). In all other re-
spects, the behavior of ueofill is identical to that of ufill.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck
See Also: eofill, ufill

ufill userpath Will -

0] interprets a user path definition (see Section 4.6, "User Paths") and fills the result-

ing path as if by the fill operator. The nonzero winding number rule is used to de-

termine what points lie inside the path (see "Nonzero Winding Number Rule" on
page 195). The entire operation is effectively bracketed between gsave and

grestore, so it has no lasting effect on the graphics state.

ufill is equivalent to the following code:

gsave % Save graphics state

newpath % Clear current path
uappend % Interpret userpath

fill % Fill the path

grestore % Restore graphics state

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck
See Also: fill, ueofill, uappend

undef dict key undef -

u removes key and its associated value from the dictionary dict. dict does not need to be on the dictionary stack. No error occurs if key is not present in dict.

If the value of dict is in local VM, the effect of undef can be undone by a subse-

quent restore operation. That is, if key was present in dict at the time of the match-

ing save operation, restore will reinstate key and its former value. But if dict is in
global VM, the effect of undef is permanent.

Errors: invalidaccess, stackunderflow, typecheck
See Also: def, put, undefinefont

I
709

Operator Details I

undefined (error)

A name used as a dictionary key in some context cannot be found. This occurs if a
name is looked up explicitly in a specified dictionary (get) or in the current dic-
tionary stack (load) and is not found. It also occurs if an executable name is en-
countered by the interpreter and is not found in any dictionary on the dictionary

stack.

A few PostScript operators are disabled in certain contexts—for example, it is il-
legal to execute image, or operators that specify colors or set color-related param-
eters in the graphics state, after invoking setcachedevice or setcachedevice2 in a

BuildChar, BuildGlyph, or CharStrings procedure. Attempting to execute such dis-
abled operators results in an undefined error.

See Also: known, where, load, exec, get

undefinedfilename (error)

A file identified by a filename string operand of file, run, deletefile, or renamefile

cannot be found or cannot be opened. The undefinedfilename error also occurs if
the special file %statementedit or %lineedit is opened when the standard input file
has reached end-of-file.

undefinedresource (error)

A named resource instance sought by findresource cannot be found; that is, no

such instance exists either in virtual memory or in external storage. This error
arises only in the case of findresource with a defined resource category. If the cat-
egory itself is not defined, resource operators execute the undefined error.

See Also: findresource

undefinedresult (error)

A numeric computation would produce a meaningless result or one that cannot
be represented as a number. Possible causes include numeric overflow or under-
flow, division by 0, or inverse transformation of a noninvertible matrix. A large

number of graphics and font operators can generate an undefinedresult error if
the current transformation matrix is not invertible (if it is scaled by 0, for in-

I CHAPTER 8
710

Operators

stance). See Appendix B for the limits of the values representable as integers and
real numbers.

undefinefont key undefinefont -

removes key and its associated value (a font or CIDFont dictionary) from the font
directory, reversing the effect of a previous definefont operation. undefinefont is a
special case of the undefineresource operator applied to the Font category. For de-

tails, see undefineresource and Section 3.9, "Named Resources."

Errors: stackunderflow, typecheck
See Also: definefont, undefineresource

undefineresource key category undefineresource -

e_ removes the named resource instance identified by key from the specified resource
category. This undoes the effect of a previous defineresource. If no such resource
instance exists in virtual memory, undefineresource does nothing; no error

occurs. However, the resource category must exist, or else an undefined error
occurs.

Local and global resource definitions are maintained separately; the precise effect
of undefineresource depends on the current VM allocation mode:

• In local VM allocation mode, undefineresource removes a local definition if
there is one. If there is a global definition with the same key, undefineresource

does not disturb it; the global definition, formerly obscured by the local one,
now reappears.

• In global VM allocation mode, undefineresource removes a local definition, a
global definition, or both.

Depending on the resource category, undefineresource may have other side ef-

fects (see Section 3.9.2, "Resource Categories"); these side effects are determined
by the UndefineResource procedure in the category implementation dictionary.

However, undefineresource does not alter the resource instance in any way. If the
instance is still accessible (say, stored directly in some dictionary or defined as a

resource under another name), it can still be used in whatever ways are appropri-
ate. The object becomes a candidate for garbage collection only if it is no longer
accessible.

711
I 8.2 Operator Details I

The effect of undefineresource is subject to normal VM semantics. In particular,

removal of a local resource instance can be undone by a subsequent nonnested

restore. In this case, the resource instance is not a candidate for garbage collec-

tion.

undefineresource removes the resource instance definition from VM only. If the

resource instance also exists in external storage, it can still be found by

findresource, resourcestatus, and resourceforall.

Errors: stackunderflow, typecheck, undefined

See Also: defineresource, findresource, resourcestatus, resourceforall

undefineuserobject index undefineuserobject -

breaks the association between the nonnegative integer index and an object estab-

lished by some previous execution of defineuserobject. It does so simply by re-
placing the specified UserObjects array element with the null object. This operator

is equivalent to the following code:

userdict /UserObjects get

exch null put

undefineuserobject does not take any other actions, such as shrinking the

UserObjects array. If index is not a valid index for the existing UserObjects array, a

rangecheck error occurs. See Section 3.7.6, "User Objects."

There is no need to invoke undefineuserobject before invoking a defineuser-

object operator that reuses the same index. The purpose of undefineuserobject is
to eliminate references to objects that are no longer needed, which may enable the

garbage collector to reclaim such objects.

Errors: rangecheck, stackunderflow, typecheck

See Also: defineuserobject, UserObjects

unmatchedmark (error)

The I, », cleartomark, counttomark, setcacheparams, or setucacheparams oper-

ator is seeking a mark object on the operand stack, but none is present.

I CHAPTER 8
712

unregistered (error)

Operators I

An operator object has been executed for which the interpreter has no built-in
action. This represents an internal malfunction in the PostScript interpreter and
should not occur.

upath bool upath userpoth

creates a new user path object equivalent to the current path in the graphics state.

The current path itself is not disturbed. The result is an ordinary user path array,

not an encoded user path. The bool operand specifies whether the user path
should include a ucache operator as its first element.

upath creates a new executable array object of the appropriate length and fills it
with the operands and operators needed to describe the current path. It is approx-

imately equivalent to the following code:

[exch {/ucache cvx} if
pathbbox /setbbox cvx

{/moveto cvx}{/lineto cvx} {/curveto cvx} {/closepath cvx} pathforall
] cvx

If the path ends with a moveto operation, upath adjusts the bounding box if nec-
essary to enclose it. (Note that pathbbox disregards a trailing moveto operation.)

Since the current path's coordinates are maintained in device space, upath trans-

forms them to user space while constructing the user path, using the inverse of the
current transformation matrix. Applying uappend to the resulting user path will

reproduce the original current path only if the same CTM is in effect as at the time
the path was constructed.

If charpath was used to construct any portion of the current path from a font
whose outlines are protected, upath is not allowed; its execution will produce an
invalidaccess error (see charpath).

Errors: invalidaccess, stackoverflow, typecheck, VMerror
See Also: uappend, ucache, pathforall

usecmap key usecmap - (CIDInit procedure set)

specifies that the CMap resource instance identified by key is to be used; see
Section 5.11.4, "CMap Dictionaries."

713
Operator Details I

usefont fontnum usefont - (CIDlnit procedure set)

specifies the font number of the font or CIDFont to which the subsequent CMap

mapping operations apply; see Section 5.11.4, "CMap Dictionaries."

userdict - userdict dict

pushes the dictionary object userdict on the operand stack (see Section 3.7.5,

"Standard and User-Defined Dictionaries"). userdict is not an operator; it is a
name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: systemdict, globaldict, errordict

UserObjects - UserObjects array

arM
returns the current UserObjects array defined in userdict. UserObjects is not an

operator; it is simply a name associated with an array in userdict. This array is cre-

ated and managed by the operators defineuserobject, undefineuserobject, and

execuserobject. It defines a mapping from small integers (used as array indices)
to arbitrary objects (the elements of the array). See Section 3.7.6, "User Objects."

The UserObjects entry in userdict is present only if defineuserobject has been ex-

ecuted at least once. The length of the array depends on the index operands of all

previous executions of defineuserobject.

Note that defineuserobject, undefineuserobject, and execuserobject operate on
the value of UserObjects in userdict, without regard to the dictionaries currently

on the dictionary stack. Defining UserObjects in some other dictionary on the

dictionary stack changes the value returned by executing the name object

UserObjects, but does not alter the behavior of the user object operators.

Although UserObjects is an ordinary array object, it should be manipulated only

by the user object operators. Improper direct alteration of UserObjects can subse-

quently cause the user object operators to malfunction.

Errors: stackoverflow, undefined

See Also: defineuserobject, undefineuserobject, execuserobject

I CHAPTER 8
714

I
Operators I

usertime - usertime int

returns the value of a clock that is incremented by 1 for every millisecond of exe-

cution by the PostScript interpreter. The value has no defined meaning in terms

of calendar time or time of day; its only use is interval timing. The accuracy and

stability of the clock depends on the environment in which the PostScript inter-

preter is running. As the time value becomes greater than the largest integer al-

lowed in the implementation, it wraps to the smallest (most negative) integer.

In an interpreter that supports multiple execution contexts, the value returned by
usertime reports execution time on behalf of the current context only.

Errors: stackoverflow

See Also: realtime

ustroke userpath ustroke -

userpath matrix ustroke -

m interprets a user path definition (see Section 4.6, "User Paths") and strokes the re-sulting path as if by the stroke operator. The entire operation is effectively brack-

eted between gsave and grestore, so it has no lasting effect on the graphics state.

The first form of the operator is equivalent to the following code:

gsave % Save graphics state

newpath % Clear current path

uappend % Interpret userpath

stroke % Stroke the path

grestore % Restore graphics state

The second form concatenates matrix to the current transformation matrix after

interpreting userpath, but before executing stroke. The resulting matrix affects the

line width and the dash pattern, if any, but not the path itself. This form of

ustroke is equivalent to the following code:

gsave % Save graphics state

newpath % Clear current path

exch uappend % Interpret userpath

concat % Concatenate matrix to CTM

stroke % Stroke the path

grestore % Restore graphics state

The main use of this second form is to compensate for variations in line width

and dash pattern that occur if the CTM has been scaled by different amounts hor-

I 8.2
715

i
Operator Details I

izontally and vertically. This is accomplished by defining matrix to be the inverse

of the unequal scaling transformation.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: stroke, uappend

ustrokepath userpath ustrokepath -

userpath matrix ustrokepath -

al interprets a user path definition (see Section 4.6, "User Paths") and replaces the

current path with one enclosing the shape of the line that the ustroke operator

would draw if applied to that user path. The resulting path is suitable for use as

the implicit operand to a subsequent fill, clip, or pathbbox operation. In general,

it is not suitable for stroke, as it may contain interior segments or disconnected

subpaths produced by ustrokepath's conversion from stroke to outline.

The first form of the operator is equivalent to the following code:

newpath % Clear current path

uappend % Interpret userpath

strokepath % Convert stroke to outline

The second form concatenates matrix to the current transformation matrix after

interpreting userpath, but before executing strokepath. The CTM is restored to its

original value afterward, so ustrokepath has no lasting effect on it. This form of

ustrokepath is equivalent to the following code:

newpath % Clear current path

exch uappend % Interpret userpath

matrix currentmatrix exch % Save CTM

concat % Concatenate matrix to CTM

strokepath % Convert stroke to outline

setmatrix % Restore original CTM

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: ustroke, strokepath

I CHAPTER 8
716

I
Operators I

version - version string

returns a string that identifies the version of the PostScript interpreter being used.
This identification does not include information about the language features or
the hardware or operating system environment in which the PostScript interpret-
er is running.

Errors: stackoverflow

See Also: languagelevel, product, revision, serialnumber

VM error (error)

An error has occurred in the virtual memory (VM) machinery. The most likely
problems are:

• An attempt to create a new composite object (string, array, dictionary, or
packed array) would exhaust VM resources. Either the program's requirements
exceed available capacity or, more likely, the program has failed to use the
save-restore facility appropriately (see Section 3.7, "Memory Management").

• The interpreter has attempted to perform an operation that should be impossi-
ble due to access restrictions (for example, storing into systemdict, which is

read-only). This represents an internal error in the interpreter.

The default handler for this error, unlike those for all other errors, does not snap-
shot the stacks.

vmreclaim int vmreclaim —

a controls the garbage collection machinery as specified by int:
-2 Disables automatic collection in both local and global VM

-1 Disables automatic collection in local VM
0 Enables automatic collection

1 Performs immediate collection in local VM
2 Performs immediate collection in local and global VM

Garbage collection causes the memory occupied by the values of inaccessible ob-

jects to be reclaimed and made available for reuse. It does not have any effects that
are visible to the PostScript program. There is normally no need to execute the

vmreclaim operator, because garbage collection is invoked automatically when

I 8.2
717

Operator Details I

necessary. However, there are a few situations in which this operator may be use-
ful:

• In an interactive application that is temporarily idle, an immediate garbage
collection can be invoked to put the idle time to good use. This defers the need
to perform an automatic collection subsequently. In a context that is under the
control of a job server (described in Section 3.7.7, "Job Execution Environ-
ment"), garbage collection is invoked automatically between jobs.

• For meaningful results when monitoring the VM consumption of a program,
garbage collection must be invoked before vmstatus is executed.

• For repeatable results when measuring a program's execution time, automatic
garbage collection must be disabled.

The negative values that disable garbage collection apply only to the current exe-
cution context; they do not prevent collection from occurring during execution of
other contexts. Note that disabling garbage collection for too long may eventually
cause a program to run out of memory and fail with a VMerror.

Executing vmreclaim with an operand of 0, — 1, or —2 has the same effect as setting
the VMReclaim user parameter to the same value by means of setuserpa rams (see
Appendix C).

Errors: rangecheck, stackunderflow, typecheck

See Also: setymthreshold, setuserparams

vmstatus - vmstatus level used maximum

returns three integers describing the state of the PostScript interpreter's virtual
memory (VM). level is the current depth of save nesting—in other words, the
number of save operations that have not been matched by a restore operation.
used and maximum measure VM resources in units of 8-bit bytes; used is the num-
ber of bytes currently in use and maximum is the maximum available capacity.

VM consumption is monitored separately for local and global VM. The used and
maximum values apply to either local or global VM according to the current VM

allocation mode (see setglobal).

The used value is meaningful only immediately after a garbage collection has
taken place (see vmreclaim). At other times, it may be too large because it includes
memory occupied by objects that have become inaccessible, but have not yet been
reclaimed.

The maximum value is an estimate of the maximum size to which the current VM
(local or global) could grow, assuming that all other uses of available memory re-

I CHAPTER 8
718

i
Operators I

wcheck

main constant. Because that assumption is never valid in practice, there is some

uncertainty about the maximum value. Also, in some environments (workstations,
for instance), the PostScript interpreter can obtain more memory from the oper-
ating system. In this case, memory is essentially inexhaustible and the maximum

value is meaningless—it is an extremely large number.

Errors: stackoverflow

See Also: setuserparams

array wcheck bool
packedarray wcheck false

dict wcheck bool

file wcheck bool
string wcheck bool

tests whether the operand's access permits its value to be written explicitly by
PostScript operators. It returns true if the operand's access is unlimited, or false
otherwise.

Errors: stackunderflow, typecheck

See Also: rcheck, readonly, executeonly, noaccess

where key where dict true (if found)

false (if not found)

determines which dictionary on the dictionary stack, if any, contains an entry
whose key is key. where searches for key in each dictionary on the dictionary stack,
starting with the topmost (current) dictionary. If key is found in some dictionary,
where returns that dictionary object and the boolean value true; otherwise, where
simply returns false.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: known, load, get

widthshow c, cy char string widthshow —

paints glyphs for the characters of string in a manner similar to show; however,
while doing so, it adjusts the width of each occurrence of the character char's

glyph by adding cx to its x width and cy to its y width, thus modifying the spacing

719
r8.2 Operator Detaill

between it and the next glyph. This operator enables fitting a string of text to a

specific width by adjusting the width of the glyph for a specific character, such as

the space character.

char is an integer used as a character code. For a base font, char is simply an inte-

ger in the range 0 to 255 that is compared to successive elements of string. For a

composite font, char is compared to integers computed from the character map-

ping algorithm (see Section 5.10.1, "Character Mapping"). The font number, f,

and character code, c, that are selected by the character mapping algorithm are

combined into a single integer according to the FMapType value of the immediate

parent of the selected base font. For FMapType values of 4 and 5, the integer value

is (f x 128) + c; for all other FMapType values (with one exception, noted below),

it is (fx 256) + c.

Example

/Helvetica findfont 12 scalefont setfont

Normal spacing 14 60 moveto (Normal spacing) show

Wide word spacing 14 46 moveto 6 0 8#040 (Wide word spacing) widthshow

An exception to the above occurs for an FMapType value of 9 if the character

mapping algorithm selects a character name or a CID rather than a character

code. In this case, char is compared to an integer formed from the entire input

character code, interpreted high-order byte first. For example, if the CMap de-

fines the mappings

o usefont
1 begincidchar

<8140> 633

endcidchar

1 usefont

2 beginbfchar

<61> /a

<40> < A9>

endbfchar

°A) Following mapping uses font number 0

% Maps two-byte code < 8140> to CID 633

% Following mapping uses font number 1

% Maps one-byte code < 61> to character name /a

% Maps one-byte code <40> to character code < A9>

and string is < 81406140 >, char is compared to 33308 (16#8140), 97 (16#61), and

425 ((1 x 256) + 16#A9), in sequence.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck, stackunderflow,

typecheck

See Also: show, ashow, awidthshow, kshow, xshow, yshow, xyshow, stringwidth

I CHAPTER 8
720

l
Operators I

write file int write —

appends a single character to the output file file. The int operand should be an in-
teger in the range 0 to 255 representing a character code (values outside this range

are reduced modulo 256). If file is not a valid output file or an error is encoun-
tered in writing to the file, an ioerror occurs.

As is the case for all operators that write to files, the output produced by write
may accumulate in a buffer instead of being transmitted immediately. To ensure
immediate transmission, invoking flushfile is required.

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: read, writehexstring, writestring, file

writehexstring file string writehexstring -

writes all of the characters of string to file as hexadecimal digits. For each element
of string (an integer in the range 0 to 255), writehexstring appends a two-digit
hexadecimal number composed of the characters 0 to 9 and a through f. The ex-
ample

(%stdout) (w) file (abz) writehexstring

writes the six characters 61627a to the standard output file.

See Section 3.8.4, "Filters," for more information about ASCII-encoded, binary

data representations and how to deal with them.

As is the case for all operators that write to files, the output produced by
writehexstring may accumulate in a buffer instead of being transmitted immedi-

ately. To ensure immediate transmission, invoking flu shfile is required.

Errors: invalidaccess, loerror, stackunderflow, typecheck

See Also: readhexstring, write, writestring, file, filter

721
s . 2 Operator Details

writeobject file obj tag writeobject

writes a binary object sequence to file. Except for taking an explicit file operand,

writeobject is identical to printobject in all respects.

As is the case for all operators that write to files, the output produced by

writeobject may accumulate in a buffer instead of being transmitted immediately.

To ensure immediate transmission, invoking flushfile is required.

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,

typecheck, undefined

See Also: printobject, setobjectformat

writestring file string writestring -

writes the characters of string to file. writestring does not append a newline char-

acter or interpret the value of string, which can contain arbitrary binary data.

However, the communication channel may usurp certain control characters or

impose other restrictions; see Section 3.8, "File Input and Output."

As is the case for all operators that write to files, the output produced by

writestring may accumulate in a buffer instead of being transmitted immediately.

To ensure immediate transmission, invoking flushfile is required.

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: readstring, write, writehexstring, file, filter

xcheck any xcheck bool

tests whether the operand has the executable or the literal attribute, returning true

if it is executable or false if it is literal. This has nothing to do with the object's

access attribute (for example, execute-only). See Section 3.3.2, "Attributes of Ob-

jects."

Errors: stackunderflow

See Also: cvx, cvlit

I CHAPTER 8
722

Operators I

xor boo/1 boo/2 xor bool3

inti int2 xor int3

returns the logical "exclusive or" of the operands if they are boolean. If the oper-

ands are integers, xor returns the bitwise "exclusive or" of their binary representa-

tions.

Examples

true true xor

true false xor

false true xor

false false xor

7 3 xor

12 3 xor

false

true

true

false

4

15

Errors: stackunderflow, typecheck

See Also: or, and, not

xshow string numarray xshow -

string numstring xshow -

m

% A complete truth table

is similar to xyshow; however, for each glyph shown, xshow extracts only one

number from numarray or numstring. It uses that number as the x displacement

and the value 0 as the y displacement. In all other respects, xshow behaves the

same as xyshow.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck, stackunderflow,

typecheck

See Also: xyshow, show

xyshow string numarray xyshow -

string numstring xyshow -

paints glyphs for the characters of string in a manner similar to show. After paint-

ing each glyph, it extracts two successive numbers from the array numarray or the

encoded number string numstring. These two numbers, interpreted in user space,

determine the position of the origin of the next glyph relative to the origin of the

glyph just shown. The first number is the x displacement and the second number

is the y displacement. In other words, the two numbers override the glyph's nor-
mal width.

I 8.2
723

I
Operator Details I

If numarray or numstring is exhausted before all the characters of string have been

shown, a rangecheck error occurs. See Section 5.1.4, "Glyph Positioning," for fur-

ther information about xyshow, and Section 3.14.5, "Encoded Number Strings,"

for an explanation of the numstring operand.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck, stackunderflow,

typecheck

See Also: xshow, yshow, show

yshow string numarray yshow -

string numstring yshow -

Ol is similar to xyshow; however, for each glyph shown, yshow extracts only one

number from numarray or numstring. It uses that number as the y displacement

and the value 0 as the x displacement. In all other respects, yshow behaves the
same as xyshow.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck, stackunderflow,

typecheck

See Also: xyshow, show

1
725

i i

APPENDIX A

LanguageLevel
Feature Summary

SINCE ITS INTRODUCTION IN 1985, the PostScript language has been ex-
tended several times to incorporate new operators and other features. This ap-
pendix summarizes these changes.

Extensions are organized into major groups called LanguageLevels, numbered 1,

2, and 3. A PostScript interpreter that is based on a particular LanguageLevel
supports all features of that LanguageLevel and lower. It may also support some

additional features that are not a standard part of its base LanguageLevel.

For an introduction to the LanguageLevel concept, see Section 1.2, "Evolution of

the PostScript Language." For guidelines about dealing compatibly with different
LanguageLevels and extensions, see Appendix D.

The grouping of features by LanguageLevel is definitive. On the other hand, the

grouping of features by other criteria, such as product version numbers, describes

only how those features have been introduced as extensions in Adobe PostScript
implementations. Such grouping, while of historical significance, is not part of

the PostScript language definition and does not necessarily apply to all products.

A.1 LanguageLevel 3 Features

The LanguageLevel 3 features listed in this section, along with the features docu-
mented in the second edition of this book, are present in all LanguageLevel 3 in-
terpreters.

I APPENDIX A
726

I
LanguageLevel Feature Summary I

The following LanguageLevel 3 operators are defined in systemdict:

cliprestore

dipsave

composefont

currentsmoothness

findcolorrendering

setsmoothness

shfill

Additionally, a number of standard LanguageLevel 3 operators are defined in

procedure sets (instances of the ProcSet resource category), rather than in

systemdict; see Table A.1.

TABLE A.1 LanguageLevel 3 operators defined in procedure sets

PROCEDURE SET OPERATORS

BitmapFontlnit addglyph

removeall

removeglyphs

CIDInit beginbfchar

beginbfrange

begincidchar

begincidrange

begincmap

begincodespacerange

beginnotdefchar

beginnotdefrange

beginrearrangedfont

beginusematrix

ColorRendering GetHalftoneName

GetPageDeviceName

GetSubstituteCRD

FontSetInit

Trapping

StartData

currenttrapparams

settrapparams

settrapzone

endbfchar

endbfrange

endcidchar

endcidrange

endcmap

endcodespacerange

endnotdefchar

endnotdefrange

endrearrangedfont

endusematrix

StartData

usecmap

usefont

Resource categories new in LanguageLevel 3 are listed in Table A.2, and Table A.3
lists some additional standard instances of existing resource categories.

LA . 1 727

I
LanguageLevel 3 Features I

TABLE A.2 New resource categories

TYPE OF RESOURCE NEW CATEGORIES

Regular resource CIDFont InkParams

CMap Localization

ControlLanguage OutputDevice

FontSet PDL

HWOptions TrapParams

IdiomSet

Implicit resource FunctionType

ShadingType

TrappingType

TABLE A.3 New resource instances

CATEGORY NEW INSTANCES

ColorSpaceFamily CIEBasedDEF

CIEBasedDEFG

DeviceN

Filter FlateDecode

FlateEncode

ReusableStreamDecode

Also, all encoding filters (with the exception of NullEncode) have

become optional in LanguageLevel 3.

FMapType 9

FontType 2, 9, 10, 11, 14, 32, 42

HalftoneType 6, 9, 10, 16, 100

ImageType 3, 4

PatternType 2

Table A.4 lists new page device parameters and interpreter parameters. These are
the new parameters documented in this book; see also the PostScript Language

Reference Supplement and product-specific documentation. Note that not all
products necessarily support every parameter.

I APPENDIX A
728

I
LanguageLevel Feature Summary I

TABLE A.4 New page device and interpreter parameters

TYPE OF PARAMETER NEW PARAMETERS

Page device parameters DeferredMediaSelection PageOffset

ImageShift ProcessColorModel

InsertSheet RollFedMedia

LeadingEdge SeparationColorNames

MaxSeparations SeparationOrder

MediaClass Trapping

MediaPosition TrappingDetails

OutputDevice TraySwitch

PageDeviceName UseCIEColor

User parameters

System parameters

In the InputAttributes subdictionary:

InsertSheet

In the Policies subdictionary:

PageSize (value 7)

MediaClass

AccurateScreens JobName

HalftoneMode MaxSuperScreen

IdiomRecognition

CurSourceList MaxDisplayAndSourceList

CurStoredScreenCache MaxlmageBuffer

FactoryDefaults MaxSourceList

FontResourceDir MaxStoredScreenCache

GenericResourceDir PageCount

GenericResourcePathSep PrinterName

LicenselD StartupMode

Miscellaneous language changes include the following:

• bind performs idiom recognition.

• copypage no longer preserves page contents.

• All filters have a CloseSource or CloseTarget parameter, and the LZWEncode
and LZWDecode filters have additional new parameters.

• Halftone dictionaries have a HalftoneName entry.

• The base for an Indexed color space can be Separation or DeviceN.

729

 1
LanguageLevel 3 Features I

• Overprinting is applied to colorants of a composite page, not just to separa-

tions.

• glyphshow accepts an integer operand.

A number of LanguageLevel 3 features were first introduced as extensions to

LanguageLevel 2. The following sections list the features introduced by each of

these extensions and, when possible, indicate which versions of Adobe PostScript

implementations support them.

A.1.1 Version 2017 Extensions

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-

mentations version 2017 and greater:

• HalftoneType category instances: 9, 100 (note that these halftone types are

product-dependent)

• Page device parameters: LeadingEdge, MediaClass, RollFedMedia, UseCIEColor

• Overprinting applied to colorants of a composite page, not just separations

A.1.2 Version 2016 Extensions

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-
mentations version 2016 and greater:

• BitmapFontlnit procedure set operators: addglyph, removeall, removeglyphs

• ColorSpaceFamily category instances: CIEBasedDEF, CIEBasedDEFG

• FontType category instance: 32

A.1.3 Version 2015 Extensions

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-

mentations version 2015 and greater:

• Operators: composefont, findcolorrendering

• CIDInit and ColorRendering procedure set operators (see Table A.1 on page 726)

I APPENDIX A
730
I— LanguageLevel Feature Summary l

• Regular resource categories: CIDFont, (Map, ControlLanguage, Localization,

PDL

• FMapType category instance: 9

• FontType category instances: 9, 10, 11

• HalftoneType category instance: 10

• HalftoneName entry in halftone dictionary

• Page device parameter: PageDeviceName

• glyphshow integer operand

• GlyphDirectory entry in Type 42 font

A.1.4 Version 2014 Extensions

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-

mentations version 2014 and greater:

• Page device parameters: DeferredMediaSelection, ImageShift, MediaPosition

A.1.5 Version 2013 Extensions

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-

mentations version 2013 and greater:

• FontType category instance: 42

• Page device parameter: PageOffset

A.1.6 Version 2012 Extensions

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-

mentations version 2012 and greater:

• Page device parameters: ProcessColorModel, SeparationColorNames,

SeparationOrder

r A . 2

A.1.7 Version 2011 Extensions

731

I
LanguageLevel 2 Features I

The following LanguageLevel 3 features are present in LanguageLevel 2 imple-
mentations version 2011 and greater:

• Regular resource categories: HWOptions, OutputDevice

• HalftoneType category instance: 6

• Page device parameters: InsertSheet, OutputDevice, TraySwitch

• Policies subdictionary, PageSize value: 7

• User parameters: AccurateScreens, JobName

• System parameters:

CurSourceList MaxlmageBuffer

CurStoredScreenCache MaxSourceList

FactoryDefaults MaxStoredScreenCache

FontResourceDir PageCount

GenericResourceDir PrinterName

GenericResourcePathSep StartupMode

LicenselD

A.2 LanguageLevel 2 Features

The following LanguageLevel 2 features, along with the LanguageLevel 1 features

documented in the original edition of this book, are present in all

LanguageLevel 2 interpreters:

• << ... >> syntax for constructing dictionary objects

• <— ... —> syntax for ASCII base-85 string literals

• // syntax for immediately evaluated names

• Binary encodings

• Object type packedarray

732
I APPENDIX A LanguageLevel Feature Summary I

• Operators:

glyphshow

gstate

arct ineofill

colorimage infill

cshow instroke

currentblackgeneration inueofill

currentcacheparams inufill

currentcmykcolor inustroke

currentcolor ISOLatin 1 Encoding

currentcolorrendering language level

currentcolorscreen makepattern

currentcolorspace packedarray

currentcolortransfer printobject

currentdevparams product

currentglobal realtime

currentgstate rectclip

currenthalftone rectfill

currentobjectformat rectstroke

currentoverprint renamefile

currentpacking resourceforall

currentpagedevice resourcestatus

currentshared revision

currentstrokeadjust rootfont

currentsystemparams scheck

currentundercolorremoval selectfont

currentuserparams serialnumber

defineresource setbbox

defineuserobject setblackgeneration

deletefile setcachedevice2

execform setcacheparams

execuserobject setcmykcolor

filenameforall setcolor

fileposition setcolorrendering

filter setcolorscreen

findencoding setcolorspace

fi nd resource setcolortranfer

gcheck setdevpa rams

globaldict setfileposition

GlobalFontDirectory setglobal

733
I A.2

 i
LanguageLevel 2 Features I

setgstate ucache

sethalftone ucachestatus

setobjectformat ueofill

setoverprint ufill

setpacking undef

setpagedevice undefinefont

setpattern undefineresource

setshared undefineuserobject

setstrokeadjust upath

setsystemparams UserObject

setucacheparams ustroke

setundercolorremoval ustrokepath

setuserparams vmreclaim

setvmthreshold writeobject

shareddict xshow

SharedFontDirectory xyshow

startjob yshow

uappend

A number of LanguageLevel 2 features were first introduced as extensions to
LanguageLevel 1. These extensions include functionality for CMYK color specifi-

cation, composite fonts, file system support, and various other features. The fol-
lowing sections list the features introduced by each of these extensions and, when
possible, indicate which Adobe PostScript implementations support them.

A.2.1 CMYK Color Extensions

The following LanguageLevel 2 operators are present in certain LanguageLevel 1
products, principally color printers and imagesetters.

colorimage

currentblackgeneration setblackgeneration

currentcmykcolor setcmykcolor

currentcolorscreen setcolorscreen

currentcolortransfer setcolortransfer

currentundercolorremoval setundercolorremoval

I APPENDIX A
734

I
LanguageLevel Feature Summary I

A.2.2 Composite Font Extensions

The following LanguageLevel 2 operators are present in certain LanguageLevel 1

printer products that are intended to support Asian languages:

cshow

findencoding

rootfont

setcachedevice2

A.2.3 File System Operators

The following LanguageLevel 2 operators are present in LanguageLevel 1 host-

based interpreters and in printer products that have disks or cartridges:

deletefile

filenameforall

fileposition

renamefile

setfileposition

A.2.4 Version 25.0 Language Additions

The following LanguageLevel 2 features and operators are present in all

LanguageLevel 1 implementations version 25.0 and greater:

• // syntax for immediately evaluated names

• Object type packedarray

• Operators:

currentcacheparams

currentpacking

packedarray

setcacheparams

setpacking

735

l
Incompatibilities I

A.2.5 Miscellaneous Language Additions

The following LanguageLevel 2 operators are present in some LanguageLevel 1
products that are not identifiable by specific versions or functions. (When
product and revision are not present in systemdict, they are present in statusdict
instead.)

ISOLatinl Encoding

product

realtime

revision

serialnumber

This book also incorporates a large number of corrections and clarifications

about LanguageLevel 2 features. These errata were documented in Adobe Techni-

cal Note #5085, Updates to the PostScript Language Reference Manual, Second Edi-
tion, which underwent several revisions. The changes are not listed here.

A.3 Incompatibilities

In a few instances, changes have been introduced that, strictly speaking, are not
forward-compatible from one LanguageLevel to the next. This section summa-
rizes those changes.

• If the source of text is a string instead of a file, an occurrence of a string literal

enclosed in parentheses is treated specially in LanguageLevel 1: the scanner re-

turns a substring of the original string instead of allocating a new string, and it
does not recognize \ escape sequences within the string literal. In Language-

Levels 2 and 3, the scanner operates in a consistent way for all sources of text.

• The copy operator, when applied to dictionaries, copies the source dictionary's

attribute to the destination dictionary in LanguageLevel 1; it does not do so in
LanguageLevels 2 and 3.

• The copy pag e operator preserves page contents in LanguageLevels 1 and 2, but

erases the page in LanguageLevel 3. The use of copypage was discouraged even
in LanguageLevel 2.

• The encoding filters that are a standard part of LanguageLevel 2, with the ex-
ception of NullEncode, have become optional in LanguageLevel 3 and may not

be supported in some products.

737

1

APPENDIX B

Implementation Limits

THE POSTSCRIPT LANGUAGE does not inherently restrict the sizes or quanti-
ties of things described in the language, such as numbers, arrays, stacks, paths,
and so forth. However, a PostScript interpreter running on a particular processor
in a particular operating environment does have such limits, and cannot execute
PostScript programs that exceed those limits. Attempting to perform an opera-
tion that would exceed one of the limits causes the error limitcheck (or VMerror if
the operation exhausts virtual memory resources).

Because the PostScript interpreter has been designed to handle very complex
page descriptions, all implementation limits are large enough that most Post-
Script page descriptions should never come close to exceeding them. On the
other hand, the interpreter is not designed for unlimited general programming.
Although the PostScript language makes no formal distinction between page de-

scriptions and general programs, a PostScript interpreter residing in a printer is
specifically optimized for its intended use: to produce raster output according to
a fully specified graphical description generated by some external application
program. For this reason, programs that are not page descriptions may well en-
counter some of the implementation limits.

Occurrence of a lim itc heck error during the execution of a page description often
points to an error in the PostScript program itself, such as unbounded recursion
on one of the stacks. A VMerror typically indicates that the program is not using
the save and restore operators properly.

I APPENDIX B
738

i
Implementation Limits I

B.1 Typical Limits

This section describes limits that are typical of PostScript implementations from
Adobe Systems. These limits fall into two main classes:

• Architectural limits. The hardware on which the PostScript interpreter executes
imposes certain constraints; for example, integers are usually represented in 32
bits, limiting the range of integer values that are allowed. Additionally, the de-
sign of the software imposes other constraints, such as a limit of 65,535 ele-
ments in an array or string.

• Memory limits. The amount of memory available to the PostScript interpreter
limits the number of memory-consuming objects that the interpreter can hold
simultaneously. Memory management is discussed below.

Table B.1 shows the typical architectural limits for most PostScript interpreters
running on 32-bit machines. Although these limits are likely to remain constant
across a wide variety of platforms, they do not necessarily apply to all PostScript
implementations. In particular, the limits for real numbers in any implementa-
tion are those imposed by the native floating-point representation of the underly-
ing hardware platform. The real-number limits shown in the table are based on
the IEEE 754 standard for normalized single-precision floating-point arithmetic.
(See the Bibliography for a reference to this document.) Not all implementations
adhere to this standard, however; see product documentation for the exact limits
in a particular implementation.

Memory limits cannot be characterized so precisely, because the amount of avail-
able memory and the ways in which it is allocated vary from one product to an-
other. Nevertheless, it is possible to give some general information about
memory limits that a complex page description is likely to encounter.

The PostScript interpreter requires memory for a variety of purposes, including:

• Virtual memory for the values of composite objects

• Stacks and other objects visible to a PostScript program

• Paths in the graphics state, including those saved by the save, gsave, gstate,
and currentgstate operators

739
B.1 Typical Limits I

• Frame buffer or other internal representation of the raster memory for the cur-

rent page

• Font cache, user path cache, form cache, pattern cache, and other internal data
structures that save the results of expensive computations in order to avoid re-

dundant work

TABLE B.1 Architectural limits

QUANTITY LIMIT DESCRIPTION

integer 2,147,483,647

-2,147,483,648

Largest integer value. This value is equal to 231 - 1, and its internal repre-

sentation is 16#7FFFFFFF. In most situations, an integer that would exceed

this limit is automatically converted to a real value.

Smallest integer value. This value is equal to -231, and its internal repre-

sentation is 16#80000000.

real ±1038 Largest and smallest real values (approximate).

±10-38 Nonzero real values closest to 0 (approximate). Values closer than these

are automatically converted to 0.

8 Significant decimal digits of precision (approximate).

array 65,535 Maximum length of an array, in elements.

dictionary 65,535 Maximum capacity of a dictionary, in entries.

string 65,535 Maximum length of a string, in characters.

name 127 Maximum length of a name, in characters.

file name 100 Maximum length of a file name, including the %device% prefix.

save level 15 Maximum number of active save operations that have not yet been

matched by a corresponding restore

gsave level 31 Maximum number of active gsave operations. Each save operation also

performs an implicit gsave.

clipsave level 31 Maximum number of active clipsave operations within a graphics state

that have not yet been matched by a corresponding cliprestore.

XUID array 16 Maximum number of elements in an XUID (extended unique ID) array.

65,535

250

CID

separations

Maximum value of a CID (character identifier).

Maximum number of separations, colorants, or color components in

Dev ice N color space.

740 I APPENDIX B
Implementation Limits I

Different LanguageLevels have somewhat different conventions for allocating

available memory among these uses. In LanguageLevel 1, there is usually a static
allocation for each purpose—so much memory for stacks, so much for paths,
and so on. If a PostScript program exceeds these static allocations, a lim itch eck
error occurs. Installing more memory in a LanguageLevel 1 product, if possible at
all, usually increases the limit on available virtual memory but seldom affects any
of the other limits.

In LanguageLevels 2 and 3, the allocation of memory is much more flexible.

Memory is automatically reallocated from one use to another when necessary.
When more memory is needed for a particular purpose, it can be taken away
from memory allocated for other purposes if that memory is currently unused or
if its use is nonessential (a cache, for instance). Installing more memory in a
LanguageLevel 2 or LanguageLevel 3 product causes most implementation limits
to increase.

Of course, the added flexibility in LanguageLevels 2 and 3 results in a loss of pre-
dictability. If a PostScript program consumes an unusually large amount of mem-
ory for a particular purpose, it may reduce other implementation limits below the
corresponding limits in LanguageLevel 1.

In general, it is unwise for applications to generate page descriptions that operate
near the implementation limits for resources. Such page descriptions cannot rea-
sonably be included as components of larger page descriptions, because the com-

bined resource requirements might exceed implementation limits.

Table B.2 gives memory limits that are typical of LanguageLevel 1 implementa-
tions. These are the smallest limits that are likely to be encountered in any prod-
uct; many products have larger limits for some resources. LanguageLevel 2 and
LanguageLevel 3 implementations have no fixed limits, though a program can es-
tablish certain artificial limits by means described in Appendix C.

741

l
Typical Limits I

There are other implementation limits on uses of memory that are not directly
under the control of a PostScript program and are difficult to quantify. For exam-

ple:

• Rendering extremely complex paths requires a substantial amount of memory,

particularly when the clip operator is invoked.

• Halftone screens occupy an amount of memory that depends on the screen

angle, frequency, and device resolution. Screens saved by gsave may occupy

additional memory.

• High-resolution devices, such as imagesetters, represent the current page as a
display list on the disk instead of a full pixel array in memory. If disk space is

exhausted, a limitcheck error occurs.

TABLE B.2 Typical memory limits in LanguageLevel 1

QUANTITY LIMIT DESCRIPTION

userdict 200

FontDirectory

operand stack 500

dictionary stack 20

execution stack 250

interpreter level 10

path

Capacity of userdict. Note that userdict starts out with a few entries already

defined.

100 Capacity of FontDirectory, determining the maximum number of fonts that

may be defined simultaneously.

Maximum depth of the operand stack: number of elements that may be

pushed on and not yet popped off. This also establishes a limit on the num-
ber of elements contained in all unfinished procedure definitions being pro-
cessed by the PostScript language scanner, since the scanner uses the operand

stack to accumulate them.

Maximum depth of the dictionary stack.

Maximum depth of the execution stack. Each procedure, file, or string whose
execution has been suspended occupies one element of this stack. Also, con-
trol operators such as for, repeat, and stopped push a few additional ele-

ments on the stack to control their execution.

Maximum number of recursive invocations of the PostScript interpreter.
Graphics operators that call PostScript procedures, such as pathfora II, show,

and image, invoke the interpreter recursively.

1500 Maximum number of points specified in all active path descriptions, includ-
ing the current path, the clipping path, and paths saved by save and gsave.

I APPENDIX B
742

Implementation Limits I

dash 11 Maximum number of elements in a dash pattern: the maximum length of the
array operand of the setdash operator.

VM 240,000 Maximum size of virtual memory, in bytes. Typically, this limit is influenced
by the size of the imageable area for the current page, which requires memory
in proportion to its area. Thus, increasing the page size reduces the VM limit.
The current and maximum size of VM are reported by the vmstatus operator.

file 6 Maximum number of open files, including the standard input and output

files. This limit is substantially larger in implementations that support named
files.

image 3300 Maximum width of an image's source data, in samples per scan line. (Most
implementations have a larger limit, but it varies from product to product.)

B.2 Virtual Memory Use

It is impossible to predict accurately how much virtual memory a program will
consume, but it is possible to make a rough estimate. VM is occupied primarily
by the values of composite objects. Simple objects do not consume VM, nor do
composite objects that share the values of other objects. Some typical memory re-
quirements are as follows:

• Array values are created and VM consumed when a program executes the array,
1, and matrix operators. An array value occupies 8 bytes per element.

• When the PostScript language scanner encounters a procedure delimited by
}, it creates either an array or a packed array, according to the current pack-

ing mode (see the description of the setpacking operator in Chapter 8). An
array value occupies 8 bytes per element. A packed array value occupies 1 to 9
bytes per element, depending on each element's type and value; a typical aver-
age is 2.5 bytes per element.

• String values are created and VM consumed when a program executes the
string operator and when the scanner encounters string literals delimited by
(), < >, and <— —>. A string value occupies 1 byte per element.

• Dictionary values are created by the dict and » operators and by certain other
operators that return collections of parameters as dictionaries. VM consump-
tion is based on the dictionary's capacity (its maxlength), regardless of how full
it currently is. A dictionary value occupies about 20 bytes per entry.

I B.2
743

Virtual Memory Use I

• Name objects consume VM at the time the scanner first encounters each dis-
tinct name. Computed names (generated by the cvn operator, for instance)

consume VM on their first use as names. Repeated occurrences of a particular
name require no additional storage. Each distinct name occupies about 40
bytes plus the number of characters in the name.

• The save-restore machinery consumes VM in proportion to the magnitude of
the changes that must be undone by restore, but independently of the total size
of VM. restore reclaims all local VM resources consumed since the correspond-
ing save.

• Loading a Type 1 font program typically consumes 20,000 to 30,000 bytes of
VM, depending on the size of the character set and the complexity of the
glyphs. VM consumption of a font remains essentially constant, regardless of
the number of ways in which its glyphs are scaled, rotated, or otherwise trans-

formed.

745

I 1

APPENDIX C

Interpreter Parameters

IN GENERAL, THE FACILITIES described in this appendix are available only in

LanguageLevels 2 and 3. A few special-purpose operators are explicitly identified
as LanguageLevel 1 operators, and some features are unique to LanguageLevel 3.

There are various parameters to control the operation and behavior of the Post-
Script interpreter. Most of these have to do with allocation of memory and other
resources for specific purposes; for example, there are parameters to control the

maximum amount of memory to be used for virtual memory, the font cache, and
halftone screens. Some parameters control the behavior of specific input/output
and other devices.

A PostScript product is initially configured with interpreter parameter values that
are appropriate for most applications. However, with suitable authorization, a

PostScript program can alter the interpreter parameters to favor certain applica-

tions or to adapt the product to special requirements.

The interpreter parameters are divided into three categories:

• User parameters can be altered at will (within reasonable limits) by any Post-
Script program without special authorization. The setuserparams and
currentuserparams operators manipulate user parameters. Alterations to user

parameters are subject to save and restore.

• System parameters, in general, can be altered only by a program that presents a
valid password. The setsystem params and currentsystempa rams operators
manipulate system parameters. Alterations to system parameters have a perma-
nent, systemwide effect, which may persist through restarts of the PostScript

interpreter.

I APPENDIX C
746

I
Interpreter Parameters I

• Device parameters are similar to system parameters but apply to individual

input/output or other devices. The setdevparams and cu rrentdev pa ra ms oper-
ators manipulate device parameters. Alterations to device parameters are per-
manent and systemwide, and may persist through interpreter restarts.

The operators that manipulate interpreter parameters are described in Chapter 8;

this appendix describes the individual parameters. Although these operators are a
standard LanguageLevel 2 feature, the exact set of interpreter parameters recog-
nized may vary from product to product. Not all products support all parame-
ters, and some products may support additional parameters beyond those
discussed here; in addition, the set of parameters supported by a given product
may be subject to change over time. The parameters described here are typical of
those supported by current PostScript products from Adobe.

Most of the user parameters establish temporary policies on matters such as
whether to insert new items into caches. It is reasonable for a user (or a spooler
program acting on the user's behalf) to alter user parameters when submitting
jobs with unusual requirements. The system parameters, on the other hand, per-
manently alter the overall configuration of the product. A user application should
never attempt to alter system or device parameters; only system management
software should do so.

C.1 Properties of User and System Parameters

A program alters user or system parameters by invoking the setuserparams or
setsystemparams operator, passing it a dictionary containing the names and new

values of the parameters to be changed. Each user or system parameter is identi-

fied by a key, which is always a name object. The dictionary may also contain ad-
ditional information; in particular, there can be an entry named Password, as
discussed in Section C.1.2, "System Parameters."

The dictionary passed to setuserparams or setsystemparams is similar to the re-
quest dictionary used with the setpagedevice operator (see Section 6.1.1, "Page
Device Dictionary"). It contains entries for one or more parameters whose values
are to be changed; parameters not included in the dictionary are left undisturbed.
The effects of such changes are cumulative over multiple invocations of
setuserparams or setsystemparams; that is, the effect of setting a particular pa-
rameter persists through subsequent invocations of the operators until explicitly
overridden or until the parameters are restored to some previous state by a

747
LC.1 1 Properties of User and System Parameters I

restore operation. This cumulative behavior allows individual parameters to be
set in a modular fashion.

The detailed semantics of user and system parameters are implementation-
dependent. For example, the effects of limits on the sizes of caches depend on
how cached items are represented internally. Still, there are some guidelines that
apply to interpreter parameters generally, as described in the subsections below.

C.1.1 User Parameters

The setuserparams operator sets user parameters; currentuserparams reads their
current values. Alterations to user parameters are subject to save and restore—
that is, restore resets all user parameters to their values at the time of the most re-
cent save operation. In an interpreter that supports multiple execution contexts,
user parameters are maintained separately for each context.

Usually, altering user parameters with setuserparams does not affect the behavior
of PostScript programs, only their performance. For example, increasing the
MinFontCompress parameter allows larger character glyphs to be stored as full
pixel arrays. This increases the speed at which those glyphs can be shown, but at
the cost of using font cache memory less efficiently.

In a few cases, however, user parameters affect implementation limits, as noted in
the descriptions in Section C.3, "Details of User and System Parameters." For ex-
ample, the MaxScreenItem parameter imposes an implementation limit on the

size of a halftone screen.

In general, reducing the limit on the size of an individual cached item will not
disturb any items that are already in the cache, even if they are larger than the
new limit.

User parameters have default values that are implementation-dependent. In some
implementations, these default values are supplied by correspondingly named
system parameters that can be altered with setsystemparams. If an unencapsu-
lated job changes a user parameter for which there is no corresponding system
parameter, the new value becomes the default value for subsequent jobs. Changes
made to a user parameter by an encapsulated job have no effect on the default
value of that parameter for subsequent jobs.

l APPENDIX C
748

i
Interpreter Parameters I

C.1.2 System Parameters

The setsystemparams operator sets system parameters; currentsystempa rams
reads their current values. In general, permission to alter system parameters is
controlled by a password: the dictionary passed to setsystemparams must con-
tain an entry named Password whose value is equal to the system parameter pass-
word. The value supplied for Password may be a string or an integer; if an integer,
it is converted to a string as if by the cvs operator. If the password supplied is in-
correct, the operation is not allowed.

There are three circumstances under which setsystemparams does not require
the dictionary to contain the system parameter password (and will ignore it if one
is supplied):

• If FactoryDefaults is the only entry in the dictionary (or if a password is the
only other entry)

• If the system parameter password has been set to the empty string

• During a system administrator job (as described in Section C.3.1, "Passwords")

Some system parameters can be set permanently—that is, in nonvolatile storage

that survives restarts of the PostScript interpreter. This capability is implementa-
tion-dependent. No error occurs if parameters cannot be stored permanently. In

some implementations, permanent parameter changes do not take effect until the
next restart of the PostScript interpreter.

System parameters are global to the PostScript environment and are not main-
tained separately for each context in an interpreter that support multiple con-

texts. The initial value of system parameters when the device is turned on for the
first time depends on the product implementation.

In general, the cache size parameters (for example, MaxFontCache) are simply
limits; they do not represent memory dedicated to a specific use. Caches compete
with each other for available memory. The main purpose of the limits is to pre-

vent excessive memory from being devoted to one use, to the exclusion of other
uses. Under some circumstances, memory in use by a cache may be unavailable
for satisfying the needs of a PostScript program—for instance, to allocate new
objects in virtual memory or to enlarge a stack.

[C.2
749

Defined User and System Parameters I

Usually, reducing the size of a cache causes cached items to be discarded to make
current consumption less than the new maximum. Sometimes, for implementa-
tion reasons, this operation must be deferred. Consequently, the current con-
sumption for a cache may temporarily exceed the maximum.

Certain system parameters are read-only—that is, they are returned by
currentsystemparams, but attempting to change one with setsystemparams has

no effect. The read-only parameters report information such as current memory
consumption. Certain other parameters, specifically SystemParamsPassword and
StartJobPassword, are write-only; they can be set by setsystemparams but are
not returned by currentsystemparams.

C.2 Defined User and System Parameters

The following tables summarize the commonly defined user and system parame-
ters; for more details, see Section C.3, " Details of User and System Parameters."
Additional parameters are described in the PostScript Language Reference Supple-

ment and in product-specific documentation.

TABLE C.1 User parameters

KEY TYPE VALUE

AccurateScreens

HalftoneMode

idiomRecognition

boolean A flag specifying whether to invoke an extremely precise (but compu-

tationally expensive) halftone algorithm during subsequent execu-

tions of setscreen and setcolorscreen.

integer (LanguageLevel 3) A code controlling the behavior of subsequent

halftone-setting operators:

0 Operators will behave as usual.

1 Operators may substitute a product-specific halftone.

2 Same as 1; in addition, if a product-specific halftone is substi-

tuted, further optimization may occur.

boolean (LanguageLevel 3) A flag specifying whether to enable procedure sub-

stitution during execution of the bind operator (see Section 3.12.1,
"bind Operator").

I APPENDIX C
750

i
Interpreter Parameters I

JobName string The name of the current job. Status messages displayed during the re-

mainder of the job may include a field consisting of the text of this

string. Consequently, the string should consist of characters that can

usefully be displayed as text; what this means depends on the product

and environment, taking into account the language for which the

product has been localized. The string should not contain a right

bracket (]) or a semicolon (;), because these characters conflict with a

very common syntax for presenting status messages. The string may

be up to 100 characters long; if it exceeds this length, it is truncated.

MaxDictStack integer The maximum number of elements in the dictionary stack.

MaxExecStack integer The maximum number of elements in the execution stack.

MaxFontltem integer The maximum number of bytes occupied by the pixel array of a

single glyph in the font cache.

MaxFormItem integer The maximum number of bytes occupied by a single cached form.

MaxLocalVM integer The maximum number of bytes occupied by values in local VM.

Max0pStack integer The maximum number of elements in the operand stack.

MaxPatternItem integer The maximum number of bytes occupied by a single cached pattern.

MaxScreenItem integer The maximum number of bytes occupied by a single halftone screen.

MaxSuperScreen integer (LanguageLevel 3) The maximum number of pixels in a supercell. A

value of 0 disables the use of supercells.

MaxUPathltem integer The maximum number of bytes occupied by a single cached user

path.

MinFontCompress integer The threshold (in bytes) at which a cached glyph is stored in com-
pressed form rather than as a full pixel array.

VM Reclaim integer A code controlling the behavior of the garbage collector:

0 Enables automatic garbage collection

VMThreshold

—1 Disables it for local VM

—2 Disables it for both local and global VM

integer The frequency of automatic garbage collection, which is triggered

whenever this many bytes have been allocated since the previous col-

lection.

751
c.2 Defined User and System Parameters I

TABLE C.2 System parameters

KEY TYPE VALUE

ByteOrder boolean (Read-only) The native (preferred) order of multiple-byte numbers

in binary-encoded tokens. false indicates high-order byte first; true
indicates low-order byte first.

BuildTime integer (Read-only) A time stamp identifying a specific build of the Post-
Script interpreter.

CurDisplayList integer (Read-only) The number of bytes currently occupied by display lists.
A display list is an internal representation of the marks that have been

painted on the current page or previous pages but have not yet been
scan-converted into raster memory.

CurFontCache integer (Read-only) The number of bytes currently occupied by the font
cache.

CurFormCache integer (Read-only) The number of bytes currently occupied by the form

cache.

CurOutImeCache integer (Read-only) The number of bytes currently occupied by cached glyph

descriptions for fonts whose definitions are kept on disk rather than
in VM.

CurPatternCache integer (Read-only) The number of bytes currently occupied by the pattern
cache.

CurScreenStorage integer (Read-only) The number of bytes currently occupied by all active
halftone screens.

CurSourceList integer (Read-only) The number of bytes currently occupied by source lists.
A source list holds the internal data representation of source data for
sampled images and pixel arrays for uncached glyphs.

CurStoredScreenCache integer (Read-only) The number of bytes occupied by halftone screens that
are cached on disk (or some other storage device).

CurUPathCache integer (Read-only) The number of bytes currently occupied by the user path
cache.

FactoryDefaults boolean A flag that, if set to true immediately before the printer is turned off,
causes all nonvolatile parameters to revert to their factory default
values at the next power-on. The set of nonvolatile parameters is
product-dependent. In most products, PageCount cannot be reset. If
the job that sets FactoryDefaults to true is not the last job executed

before power-off, the request is ignored; this reduces the chance that
malicious jobs will attempt to perform this operation.

752
IAPPENDIX C Interpreter Parameters I

FontResourceDir string The pathname of the directory in which external font resources are

located.

GenericResourceDir string The pathname of the directory in which generic external resources

are located.

GenericResourcePathSep string The separator character in pathnames; used in conjunction with

GenericResourceDir to determine where generic external resources

are located.

LicenselD string (Read-only) An Adobe-assigned license identifier whose value is

unique to each product.

MaxDisplayAndSourceList integer The maximum number of bytes occupied by display lists and source

lists combined. This value should be greater than or equal to

MaxDisplayList or MaxSourceList (whichever is larger).

MaxDisplayList integer The maximum number of bytes occupied by display lists, excluding

those held in caches.

MaxFontCache integer The maximum number of bytes occupied by the font cache.

MaxFormCache integer The maximum number of bytes occupied by the form cache.

MaxlmageBuffer integer The maximum number of bytes occupied by a single image buffer.

An image buffer holds an internal data representation of the source

data for a sampled image.

MaxOutlineCache integer The maximum number of bytes occupied by cached glyph descrip-

tions for fonts whose definitions are kept on disk rather than in VM.

MaxPatternCache integer The maximum number of bytes occupied by the pattern cache.

MaxScreenStorage integer The maximum number of bytes occupied by all active halftone
screens, including ones created by setscreen or setcolorscreen and

saved by gsave, gstate, and currentgstate.

MaxSourceList integer The maximum number of bytes occupied by source lists.

MaxStoredScreenCache integer The maximum number of bytes occupied by halftone screens that are

cached on disk (or some other storage device). Supplying a value that

is negative or too large sets the maximum to the logical size of the de-

vice, or to an implementation-dependent value if the logical size is

not known.

MaxUPathCache

PageCount

integer The maximum number of bytes occupied by the user path cache.

integer (Read-only) The number of pages that have been successfully pro-

cessed since manufacture, counting the number of copies for each

showpage (as specified by the value of #copies in the current diction-

ary stack or by the LanguageLevel 2 page device parameter

753
C.3 Details of User and System Parameters

PrinterName

RealFormat

Revision

StartJobPassword

StartupMode

NumCopies). Even pages not physically printed—because of manual
feed timeout, job abort, or any other reason—are included in the
count. The count will be accurate at the end of each job, but not nec-
essarily after each show page.

string The name of the output device. The value of this parameter is often

used as part of the name by which the device is identified on the net-
work it is attached to. Consequently, it should conform to whatever
syntax is appropriate for such names on the network. Setting

PrinterName to a zero-length string causes the name to be set to the
value of the product string in systemdict.

string (Read-only) The native (preferred) representation for real numbers
in binary-encoded tokens. This is either IEEE or the name of some
specific machine architecture. The interpreter will always accept IEEE
format, but it may process native-format real numbers more effi-
ciently (see Section 3.14.4, "Number Representations").

integer (Read-only) The current revision level of the product in which the
PostScript interpreter is running; equal to the value of the revision
entry in systemdict.

string (Write-only) A password authorizing use of the startjob or exitserver
operator.

integer A code controlling execution of startup files during subsequent re-
starts of the interpreter. A startup file is a PostScript program that is

invoked as an unencapsulated job; its purpose is to load initial defini-
tions into VM.

O Do not execute any startup file.

1 Execute the standard startup file, whose name is usually
Sys/Start in any searchable file system.

>1 Perform some other product-dependent startup action.

SystemParamsPassword string (Read-only) The system parameter password, which authorizes the

use of the setsystemparams and setdevparams operators, as well as
of the startjob and exitserver operators.

C.3 Details of User and System Parameters

The following sections give further details about user and system parameters.

I APPENDIX C
754
I

Interpreter Parameters I

C.3.1 Passwords

The password that controls the ability to change system parameters is itself a
system parameter, SystemParamsPassword, which can be changed by
setsystemparams. Another password, StartJobPassword, controls the ability to
execute the startjob operator to alter the initial VM (see Section 3.7.7, "Job Exe-
cution Environment"). The two passwords are separate so that the system admin-
istrator can be permissive about granting access to startjob without
compromising control over setsystemparams. On the other hand, should an
overlap of startjob and setsystemparams permissions be desired, SystemParams-
Password rather than StartJobPassword may be passed to startjob to start a job
that can invoke setsystemparams without presenting a password each time.

Note: All references here to startjob, a LanguageLevel 2 operator, apply equally to the
LanguageLevel I exitserver operator.

Which password is presented to startjob determines the type of unencapsulated
job that is started. If the password is equal to SystemParamsPassword, a system
administrator job is started; otherwise, if the password is equal to
StartJobPassword, an ordinary unencapsulated job is started. A system adminis-
trator job not only may alter VM but may invoke setsystemparams (and
setdevparams) without presenting a password each time. Also, LanguageLevel 1
compatibility operators that change system and device parameters may be exe-
cuted during a system administrator job; see the PostScript Language Reference
Supplement.

If an integer appears where a password is expected, it is automatically converted
to a string, as if by the cvs operator. All characters of a password are significant,
and password comparison is case-sensitive.

If a password is set to the empty (zero-length) string, password checking is
disabled. If SystemParamsPassword has been set to the empty string,
setsystemparams is always allowed, regardless of the Password value passed to it;
furthermore, startjob is always allowed, regardless of the password presented to
it, and it starts a system administrator job. Similarly, if StartJobPassword has
been set to the empty string, startjob is always allowed, and it starts an ordinary
unencapsulated job (unless SystemParamsPassword is also the empty string).
When a PostScript interpreter is initially installed, both passwords are set to emp-
ty strings.

C.3
755

Details of User and System Parameters I

To change SystemParamsPassword, execute the following PostScript code:

/Password (oldpassword)
/SystemParamsPassword (newpassword)

» setsystemparams

If the system parameter password is forgotten, there is still a way to reset it (along
with other factory defaults): by passing a dictionary to setsystemparams in which

FactoryDefaults is the only entry.

C.3.2 Font Cache

Two user parameters specify policies for inserting new items into the font cache.

These parameters, MaxFontltem and MinFontCompress, control the behavior of

the setcachedevice operator.

If the pixel array of a cached glyph, as determined from the bounding box passed

to setcachedevice, would be larger than the size specified by MaxFontltem, the
glyph will not be cached. If a glyph's pixel array is not larger than the size speci-

fied by MaxFontltem, the glyph will be cached (space permitting), as follows: If

the pixel array is larger than or equal to the size specified by MinFontCompress,
the glyph will be stored in a space-efficient, compressed representation in the

cache; otherwise, it will be stored in a time-efficient, full-pixel-array representa-
tion. Compressed glyphs consume much less space in the font cache than do full

pixel arrays (by factors of up to 40 in Adobe implementations), but they require
more computation because they need to be reconstituted from the compressed

representation each time they are needed. MinFontCompress controls the
tradeoff between time and space. Some devices do not support compression of

glyphs.

Setting MinFontCompress to 0 forces all glyphs to be compressed, permitting

more glyphs to be stored in the cache but increasing the work required to print
them. Setting it to a value greater than MaxFontltem disables compression alto-

gether.

There are three convenience operators that control the same font cache parame-
ters: setcachelimit, setcacheparams, and currentcacheparams. setcachelimit
exists in all LanguageLevel 1 implementations; setcacheparams and current-

cacheparams exist in most, but not all. The LanguageLevel 1 cachestatus opera-

756
I APPENDIX C Interpreter Parameters I

tor returns some implementation-dependent information in addition to what is

available from currentsystemparams.

The system parameter MaxFontCache specifies an overall limit on the size of the

font cache, including both the device pixel arrays themselves and other overhead,

such as cached metrics.

C.3.3 Other Caches

User paths, forms, and patterns all use caches that are controlled in similar ways.
The user parameters MaxUPathltem, MaxFormItem, and MaxPatternItem specify
limits on the sizes of individual items to be inserted into the respective caches.

The system parameters MaxUPathCache MaxFormCache, and MaxPatternCache
specify overall limits on the sizes of the caches.

Two convenience operators, setucacheparams and ucachestatus, also deal with
the user path cache parameters. These operators exist for compatibility with ear-

lier PostScript implementations.

C.3.4 Halftone Screens

Certain parameters affect the storage for halftone screens and the behavior of

subsequent halftone-setting operators.

Storage for Halftone Screens

Storage for halftone screens is managed somewhat differently than storage for
caches. The halftone machinery must have enough storage to hold an expanded
internal representation of the screen in use. It can use any excess storage to hold a

cache of screens that are not in use.

The user parameter MaxScreenItem specifies the maximum amount of memory a
single halftone screen can occupy. This is not a simple function of the size of a

halftone cell; it is influenced by frequency, angle, device resolution, and quantiza-
tion of raster memory. The MaxScreenItem parameter imposes an implementa-
tion limit on the size of screens that can be used. Furthermore, the user

parameter MaxSuperScreen (LanguageLevel 3) specifies the maximum number of
pixels in a supercell (see Section 7.4.8, "Supercells").

I C.3
757
l Details of User and System Parameters I

Use of the AccurateScreens feature of halftone dictionaries (or the user parame-
ter of the same name) substantially increases the memory requirement for a half-
tone screen. The highest accuracy is achieved only when sufficient memory is
available. As a rule of thumb, MaxScreen Item should be at least RXDx 5, where
R is the device resolution in pixels per huh and D is the diagonal length of the
imageable area of device space in inches.

The system parameter MaxScreenStorage specifies an overall limit on the
amount of memory for all active halftone screens. A screen is active if it is the cur-
rent screen, if it has been saved on the graphics state stack or in a gstate object, or
if marks were placed on the page while the screen was the current screen.

In systems with disk-based screens, MaxScreenStorage specifies how much mem-

ory is available to build and hold one screen. Since any other screens (those de-
scribed above) will have been saved on disk, they do not consume memory and
are thus ignored when the current screen storage amount is calculated.

In some implementations, internal representations of halftone screens are copied
to files on disk (or some other storage device) for more efficient setup if the same
screens are used again later. The system parameter MaxStoredScreenCache limits
the amount of space that will be used for this purpose.

Halftone Setting

Two user parameters, AccurateScreens and HalftoneMode, control the behavior
of subsequent halftone-setting operators.

AccurateScreens corresponds to the similarly named feature of halftone diction-
aries, but applies only to setscreen and setcolorscreen; it does not affect the op-
eration of sethalftone. If this parameter is true, an extremely precise (but
computationally expensive) halftoning algorithm is enabled; see "Type 1 Half-
tone Dictionaries" on page 487 for details.

HalftoneM ode (LanguageLevel 3) controls the behavior of subsequent executions

of setscreen, setcolorscreen, and sethalftone. A nonzero value may alter the be-
havior of these operators as follows:

• A HalftoneMode of 1 may cause the operator to ignore its halftone operand
and substitute a product-specific halftone. Whether this substitution actually

I APPENDIX C
758

Interpreter Parameters I

occurs is product-dependent. When a product-specific halftone is substituted,
certain pages may print faster; this behavior is also product-dependent.

• A HalftoneMode of 2 has the same effect as a HalftoneMode of 1; in addition, if
a product-specific halftone is substituted, further optimization may occur dur-
ing image rendering. This optimization, which results in additional speed im-
provement at the expense of some degradation in image quality, is disabled for
masked images, image masks, and images rotated at angles other than multi-
ples of 90 degrees.

Halftone substitution is strictly internal to the interpreter; its effects are not visi-
ble at the PostScript language level. If halftone substitution occurs during a
sethalftone operation, for example, a subsequent currenthalftone operation will

return the halftone dictionary that was originally supplied as an operand to
sethalftone, not the substituted halftone.

Note that HalftoneMode has no effect on the current halftone.

C.3.5 Virtual Memory and Stacks

The MaxLocalVM user parameter imposes a limit on the total amount of local vir-
tual memory in use. Attempting to create a new composite object in local VM will
fail (with a VMerror) if the VM would exceed its limit. There is no corresponding
limit for global VM. The method for sharing global VM among multiple execu-
tion contexts does not provide a way to attribute VM consumption to a particular
context.

Three other user parameters, Max0pStack, MaxDictStack, and MaxExecStack,
impose limits on the number of elements that can be pushed onto the operand,
dictionary, and execution stacks. Attempting to exceed one of these limits will re-
sult in a stackoverflow, dictstackoverflow, or execstackoverflow error, respec-
tively.

Normally, there are no effective limits on VM or stack allocation; that is, the de-
fault values of these user parameters are extremely large. VM and stacks can grow
without limit, subject only to the total amount of memory available in the ma-
chine on which the PostScript interpreter is running. As VM and stack consump-
tion increases, less memory is available for the font cache and other uses; this can
degrade performance. The main use of the VM and stack limit parameters is to
test the behavior of applications in limited memory.

I C.3
759

Details of User and System Parameters I

Two user parameters, VMReclaim and VMThres hold, control the behavior of the

garbage collector. Normally, garbage collection is triggered periodically and auto-
matically to reclaim inaccessible objects in VM. It is sometimes useful to disable

garbage collection temporarily—to obtain repeatable timing measurements, for
instance.

Like all user parameters, the VM and stack parameters are maintained separately
for each context in an interpreter that supports multiple execution contexts. In
particular, if VM is shared among multiple contexts, the effects of a particular
context's VM parameters apply only while that context is executing.

The vm status, vmreclaim, and setvmthreshold operators manipulate some of the
VM parameters. vmreclaim can also be used to trigger immediate garbage collec-
tion.

C.3.6 Resource File Location

Resource instances are typically installed as named files, as discussed in
Section 3.9.4, "Resources as Files!' Three system parameters—Generic-
ResourceDir, GenericResourcePathSep, and FontResourceDir—determine where

files containing external resources are located under certain conditions.

GenericResourceDir and GenericResourcePathSep control the location of re-
sources for the Generic resource category and all categories based on it (typically all

regular resource categories except Font). The implementation of the Generic cate-
gory concatenates the value of GenericResourceDir with the category name, the
value of GenericResourcePathSep, and the resource name to get the external loca-

tion of the resource. If, for example, GenericResourceDir and Generic-
ResourcePathSep were Resource/ and /, respectively, the AdobeLogo resource of

the Pattern category would be in Resource/Pattern/AdobeLogo.

GenericResourceDir must be an absolute pathname—that is, a pathname
beginning at the root of the storage device. It must end with a pathname separa-

tor, as defined by GenericResourcePathSep. It should include a storage device
(for example, %os%) if a single device is to be considered, or omit the device if all

searchable devices are to be considered. If a device is dedicated to generically

managed resources (for example, %GenericResource%) and may access resources
through a network server or along a search path, GenericResourceDir should be
set to that device.

760
I APPENDIX C Interpreter Parameters I

Resource files are expected to be in subdirectories with names corresponding to
category names. The resource file name should be the same as the name of the re-
source it defines. In the example above, the file named Resource/Pattern/
AdobeLogo should contain a PostScript program that, when run, will define the
AdobeLogo instance of the Pattern resource category.

For products with no external resources (and presumably no file systems),

GenericResourceDir should be set to %null. This mechanism can also be used by
site administrators to temporarily disable access to external resources.

FontResourceDir controls the location of external fonts, which are resources in
LanguageLevels 2 and 3. The implementation of the Font resource category
concatenates the value of FontResourceDir with the font name to get the external
location of the font. For example, if FontResourceDir were Resource/Font!, the

Times-Roman resource of the Font category would be in Resource/Font/Times-
Roman. This parameter is provided separately from GenericResourceDir to allow
backward compatibility with applications that expect fonts to be located under
fonts/, in which case FontResourceDir should be set to fonts/.

C.4 Device Parameters

Each PostScript interpreter supports a collection of input/output and other de-
vices, such as communication channels, disks, and cartridges. The standard file

operators, described in Section 3.8, "File Input and Output," access these devices
as files. Some devices have device-dependent parameters. In addition, there are
some named sets of parameters that do not correspond to physical devices. Given
a string identifying a device or other named parameter set, the setdevparams and
currentdevparams operators access these parameters.

A device is identified by a string of the form %device, or %device%, which is a pre-
fix of the %device%file syntax for named files in storage devices (see Section 3.8.2,
"Named Files"). The available devices can be enumerated by invoking the

resourceforall operator for the 10Device category (see Section 3.9, "Named Re-
sources").

setdevparams is very similar to setsystemparams; the same restrictions apply.
The names of parameter sets and the names and semantics of the parameters are

product-dependent. They are not documented in this book, but rather in the
PostScript Language Reference Supplement and in product-specific documenta-
tion.

76

APPENDIX D

Compatibility Strategies

AS DISCUSSED IN SECTION 1.2, "Evolution of the PostScript Language," the

PostScript language has undergone several significant extensions in order to
adapt to new technology and to incorporate new functionality and flexibility.
While the PostScript language is designed to be a universal standard for device-

independent page description, the reality is that there are different PostScript lan-

guage implementations that have different sets of features. This appendix pre-

sents guidelines for taking advantage of language extensions while maintaining
compatibility with all PostScript interpreters.

D.1 The LanguageLevel Approach

PostScript implementations are organized into LanguageLevels, of which three

have been defined:

• LanguageLevel 1 interpreters implement all LanguageLevel 1 features, These
features are documented in the first edition of this book In the present (third)
edition, LanguageLevel 1 consists of all features except those explicitly desig-

nated as LanguageLevel 2 or LanguageLevel 3.

• LanguageLevel 2 interpreters implement all LanguageLevel 1 and Language-
Level 2 features. These features are documented in the second edition of this

book In the present edition, LanguageLevel 2 consists of all features except
those explicitly designated as LanguageLevel 3.

• LanguageLevel 3 interpreters implement all features of all LanguageLevels.
Those features that are available only in LanguageLevel 3 are summarized in
Section 1.2, "Evolution of the PostScript Language."

I APPENDIX D
762

Compatibility Strategies I

Except as noted in Section A.3, "Incompatibilities," each LanguageLevel is
forward-compatible with higher LanguageLevels. For example, applications that
work with LanguageLevel 2 interpreters, using the language features documented

in the second edition of this book, will also work with LanguageLevel 3 interpret-
ers. Higher LanguageLevels are not, however, backward-compatible with lower
LanguageLevels. Thus, PostScript programs that use LanguageLevel 3 features do
not automatically work on LanguageLevel 2 or LanguageLevel 1 interpreters.
Applications wishing to take advantage of new LanguageLevel features while
remaining compatible with lower LanguageLevels must adopt one or more of the
strategies described in Section D.3, "Compatibility Techniques!'

In addition to the three standard LanguageLevels, there are several language
extensions. An extension is a collection of language features that are not a stan-
dard part of the LanguageLevel supported by an implementation. For example, if
a LanguageLevel 1 implementation includes CMYK color features, those features
are an extension, since CMYK color is not a standard part of LanguageLevel 1.
On the other hand, all LanguageLevel 2 (and LanguageLevel 3) implementations
include CMYK color features, since CMYK color is a standard part of
LanguageLevel 2.

Extensions exist because the PostScript language must evolve to support new
technologies and new applications. When an extension is introduced, it is based
on an existing LanguageLevel. Extensions that prove to be of general utility are
candidates for inclusion as standard features in the next higher LanguageLevel.
For example, many LanguageLevel 3 features originated as extensions to
LanguageLevel 2. Appendix A describes how these extensions are organized.

The advantages of the LanguageLevel approach are clear. Organizing features into

a small number of levels simplifies the choices that application software develop-
ers must make. In contrast, organizing them as independent extensions imple-
mented in arbitrary combinations leads to an exponential increase in choices. An
application using features of a given LanguageLevel is guaranteed to work with
PostScript interpreters at that LanguageLevel or higher.

Although the LanguageLevel approach simplifies application programming, it is
sometimes necessary for applications to depend on specific extensions for func-
tional reasons. The following sections emphasize techniques for creating applica-
tions that are compatible with interpreters of different LanguageLevels, but many
of these techniques are applicable when dealing with extensions as well.

763
When to Provide Compatibility I

D.2 When to Provide Compatibility

An application (or driver) must know what PostScript operators are available to
it. Essentially, there are two different scenarios:

• The application is sending output to a specific PostScript interpreter, in which
case it knows what the target interpreter is.

• The application is printing through a spooler or saving to a file, in which case it
does not know what the target interpreter is.

In the first case, the application can generate a PostScript program appropriate
for the target interpreter. The application simply needs to determine the
LanguageLevel that the interpreter supports before generating the PostScript page
description. There are two ways to do this:

• Consult a PPD file.

• Query the interpreter directly.

A PostScript printer description (PPD) file is a text file that can be read by an appli-
cation to obtain information about a specific printer product. In the PPD file, the
*LanguageLevel entry specifies the PostScript LanguageLevel that the product
supports. (If the entry is absent, the product supports LanguageLevel 1.) For in-
formation on PPD files, refer to Adobe Technical Note #5003, PostScript Printer
Description File Format Specification.

If there is a bidirectional communication channel between the application and
the PostScript interpreter, the application can determine the interpreter's capabil-
ities by sending it a query job. The following program queries the LanguageLevel
of the interpreter:

%WS-Adobe-3.0 Query

%%?BeginFeatureQuery:*LanguageLevel

/languagelevel where

(pop languagelevel)

(1)

ifelse

(") print 3 string cvs print (") = flush

%%?EndFeatureQuery: Unknown

I APPENDIX D
764

Compatibility Strategies I

This query job returns an integer enclosed in double quotes (following PPD con-
ventions for identifying features). The integer identifies the highest Language-
Level supported by the interpreter. Adobe Technical Note #5001, PostScript
Language Document Structuring Conventions Specification, presents guidelines for

constructing query jobs.

Checking for the existence of language extensions that are not part of a particular
LanguageLevel is very similar. For example, some LanguageLevel 1 implementa-
tions have the CMYK color extension; if the application wants to use the CMYK
color operators, it needs to find out whether the target interpreter supports them.
This, too, can be tested either by consulting the product's PPD file (specifically,
the *Extensions entry) or by sending a query job to the interpreter. For example:

%!PS-Adobe-3.0 Query

°/0%?BeginQuery: ColorExtensions

/setcmykcolor where

{pop true}

{false}

ifelse

= flush

%%?EndQuery:false

This query job returns either true or false, indicating whether the setcmykcolor
operator is available.

If an application is producing output not targeted to a particular interpreter, the
strategy is entirely different. The application has the following options:

• Generate a page description using LanguageLevel 1 features only. The resulting
program can be sent to any interpreter.

This is the simplest method for producing fully portable output, and is entirely
adequate for many applications. However, it sacrifices any improvements in
functionality, performance, or programming convenience available through
the use of LanguageLevel 2 or LanguageLevel 3 features.

• Generate a page description that uses LanguageLevel 2 or LanguageLevel 3 fea-
tures unconditionally. The resulting program will execute correctly only when
sent to an interpreter that supports the highest LanguageLevel of the features
that the program uses.

I D.3
765

I
Compatibility Techniques I

This approach allows the application to take full advantage of higher-
LanguageLevel features, but at the cost of incompatibility with lower-
LanguageLevel interpreters. This makes the most sense when an application
must use newer features to perform functions that are simply unavailable in
lower LanguageLevels, such as device-independent CIE-based color specifica-
tion in LanguageLevel 2. Especially in this case, the application should include
the appropriate document structuring comments (as described in Technical
Note #5001), so that a print manager or spooler can know that it must direct
the page description to an interpreter supporting the required LanguageLevel.

• Generate a page description that uses higher-LanguageLevel features but pro-
vides for compatibility with lower-LanguageLevel interpreters. The resulting
program can be sent to any interpreter that supports at least the lower
LanguageLevel.

This is the most desirable option, because the resulting page description is por-
table yet takes advantage of higher-LanguageLevel features when they are avail-
able. The idea behind this strategy is for the application to provide PostScript
emulations, using lower-LanguageLevel features, of the higher-LanguageLevel
features that the page description actually uses. When the program is executed,
it determines which features the interpreter supports and installs the emula-
tions only if necessary (see Section D.4, "Installing Emulations"). This strategy
may not be the simplest or most efficient, but it takes best advantage of the fea-
tures available in different interpreters.

D.3 Compatibility Techniques

It is not possible to emulate every feature of higher LanguageLevels in terms of
lower-LanguageLevel features, but many features can be at least partially emu-
lated. For example, LanguageLevel 2 user path operators with ordinary user paths
as operands can be emulated easily in LanguageLevel 1, but those with encoded
user paths as operands can be emulated only with great difficulty and probably
with unacceptable cost in performance. The application must determine an ap-
propriate tradeoff between the benefit of using a feature and the cost of providing
emulation for that feature.

The following sections outline three compatibility techniques: complete emula-
tion, partial emulation, and emulation in the application's PostScript driver.

766
1 APPENDIX D

D.3.1 Complete Emulation

i
Compatibility Strategies I

Some features of higher LanguageLevels are sufficiently simple that they can be
completely emulated in terms of lower-LanguageLevel features. For instance, the

LanguageLevel 2 operator selectfont is defined as follows:

key scale selectfont

key matrix selectfont

This operator obtains a font whose name is key, transforms it according to scale
or matrix, and establishes it as the current font dictionary in the graphics state.
This is equivalent to executing findfont, scalefont (or makefont), -and setfont.
But selectfont is more than just a convenience operator: its implementation
caches the scaled font dictionary for possible reuse, making it more efficient as

well. Using it can significantly improve the performance of programs that switch
fonts frequently.

The selectfont operator can be completely emulated in terms of LanguageLevel 1
features as follows:

/selectfont

{ exch findfont exch

dup type /arraytype eq

{rnakefont}

{scalefont}

ifelse

setfont

} bind def

A program can then invoke this emulation if the selectfont operator is unavail-

able. Section D.4, "Installing Emulations," describes the recommended method
for accomplishing this.

Note that this emulation of selectfont does not achieve the performance gain that
the actual selectfont operator does. Although it is possible to write a PostScript
emulation of selectfont that caches scaled font dictionaries, this is tricky and
probably not worthwhile.

—

767
1 D.3

D.3.2 Partial Emulation

-I-
Compatibility Techniques 1

Not all forms of certain operators can be emulated efficiently. For example, the
rectfill operator is defined as follows:

x y width height rectfill

numarray rectfill

numstring rectfill

It is straightforward to emulate the first form of rectfill, and, with a little more

work, the numarray form as well. However, it is difficult to emulate the numstring
form efficiently in terms of LanguageLevel 1 features. For this reason, Adobe rec-
ommends that applications avoid using the numstring form when compatibility
with LanguageLevel 1 interpreters is required.

Note that an application can choose to eliminate unnecessary overhead by emu-
lating only the form of an operator it actually uses. Example D.1 defines a proce-
dure named *RF that is a partial emulation of the rectfill operator. (The reason for
naming this emulation *RF and not rectfill is explained in Section D.4, "Installing
Emulations.")

Example D.1

/BuildRectPath

{ dup type dup /integertype eq exch /realtype eq or

{ 4 —2 roll moveto % Operands are: x y width height

dup 0 exch rlineto

exch 0 rlineto

neg 0 exch rlineto

closepath

1

{ dup length 4 sub 0 exch 4 exch % Operand is: numarray

{ 1 index exch 4 getinterval abad pop

BuildRectPath

1

for

pop

1

ifelse

} bind def

I APPENDIX D

CRF

{ gsave

newpath BuildRectPath fill

grestore

} bind def

768

l
Compatibility Strategies I

This emulation, in addition to omitting the numstring case altogether, does not
emulate the numarray case precisely. rectfill draws all rectangles counterclockwise
in user space, whereas *RF draws a rectangle clockwise if its height or width is
negative. This affects the insideness computation (see Section 4.5.3, "Insideness
Testing") if the rectangles overlap.

D.3.3 Emulation in the Driver

When a LanguageLevel 2 or LanguageLevel 3 feature is too costly to emulate in
terms of lower-LanguageLevel features, the alternative is to avoid using that
feature at all but to redesign the application's PostScript driver to obtain the same
effect in a more efficient way. This often requires the application to do more
work, such as keeping track of information that a higher-LanguageLevel inter-
preter would maintain automatically.

For example, instead of using the selectfont operator, a driver can keep track of
scaled font dictionaries it has referenced recently. When it detects that a given
font dictionary is needed multiple times, it can generate PostScript commands to
save the dictionary on first use and refer to the saved dictionary on later uses.
This achieves approximately the same performance benefits as using selectfont,
but at the cost of additional complexity in the driver.

A related technique is to implement a desired effect in different ways, depending
on the LanguageLevel that the interpreter supports. For example, when drawing
thin strokes, either of two different methods can be used, depending on the
LanguageLevel, to ensure that the strokes will be of uniform thickness when ras-
terized (see Section 7.5.2, "Automatic Stroke Adjustment"):

• When running on a LanguageLevel 2 or LanguageLevel 3 interpreter, all that is
necessary is to invoke the LanguageLevel 2 operator setstrokeadjust to enable
automatic adjustment before drawing any strokes.

• When running on a LanguageLevel 1 interpreter, a similar effect can be
achieved by using the transform, round, and itransform operators to "snap" all

I D.4
769

Installing Emulations

coordinates explicitly to pixel boundaries in device space before presenting
them to the path construction operators.

The prolog should define procedures that select one or the other of these meth-
ods for drawing strokes. The most efficient way to do this is to include two or
more different sets of procedures in the prolog, but conditionally define only one
of them, depending on the LanguageLevel of the interpreter on which the pro-
gram is running.

D.3.4 Syntax Considerations

LanguageLevel 2 includes additions to the syntax of the PostScript language as

well as to the set of available operators. These additions are:

• The « » notation for constructing dictionary objects

• The <-• notation for ASCII base-85 string literals

• The // notation for immediately evaluated names

• Binary encodings

Since these constructs are part of the syntax, they are parsed by the scanner,
whether or not they are ever executed. If a program containing these constructs is
sent to a LanguageLevel 1 interpreter, a syntaxerror will occur, even if the con-
structs appear only inside procedures that are to be executed conditionally ac-
cording to LanguageLevel.

Consequently, a program that is intended to be compatible with LanguageLevel 1

interpreters must avoid using any of the constructs listed above. There are
straightforward alternative methods for constructing dictionaries and strings,
but none for indicating an immediately evaluated name.

LanguageLevel 3 introduces no additional syntax to the language.

D.4 Installing Emulations

When defining a PostScript emulation of an operator, it is important not to give
the emulation the same name as the actual operator unless it is a complete emula-
tion. This is because another page description included in the same job (an en-
capsulated file, for instance) may require a particular form of the operator that is

I APPENDIX D
770

i
Compatibility Strategies I

not emulated; when it encounters the emulation, an error will result. Note that in
Example D. 1 on page 767, the emulation of the rectfill operator is not complete

and is not named rectfill.

Emulation of operators should be done conditionally, based on whether the op-
erator already exists. For example, it does not make sense to define a procedure

named selectfont if the real selectfont operator already exists. Conditional emu-
lation can be performed in one of two ways:

• Use the languagelevel operator to determine whether to install emulations of
all required features for a given LanguageLevel as a group.

• Use the where operator to determine whether to install emulations of individu-
al operators. This is appropriate for those operators that are available as exten-

sions to a lower LanguageLevel in some products (see Appendix A).

Example D.2 uses the first method to provide conditional emulation of the
LanguageLevel 2 selectfont and rectfill operators. This example makes use of the

*RF procedure defined in Example D.I.

Example D.2

/*SF

{ exch findfont exch

dup type /arraytype eq

{makefont}

{scalefont}

ifelse

setfont

} bind def

/languagelevel where

{pop languagelevel}
{1}

ifelse

2 It

1 /SF /*SF load def

/RF /*RF load def

1

{ /SF /selectfont load def

/RF /rectfill load def

1

ifelse

% Complete selectfont emulation

% Determine LanguageLevel of implementation

% Interpreter is LanguageLevel 1,

% so use emulations defined above

% Interpreter is LanguageLevel 2 or 3,

% so use LanguageLevel 2 operators

I D.4
771

i
Installing Emulations I

The examples together define procedures named *SF and *RF to emulate the
selectfont and rectfill operators, respectively. Then, based on the results of the
languagelevel operator, Example D.2 binds either the emulations or the actual
LanguageLevel 2 operators to short names—SF and RF— that can be used later in
the page description. This approach has three noteworthy features:

• An actual operator will always be used, if available, in preference to an emula-

tion.

• An emulation is never given the same name as an operator. Thus, embedded
programs will not be fooled into believing that an operator is defined when it is

not.

• The script of the page description can invoke operations using short names,
such as SF and RF, without regard to whether those operations are performed

by operators or by emulations.

In general, PostScript programs should not use the version operator to test for

the availability of specific features. When a feature is introduced as an extension
(rather than as part of a LanguageLevel), it may not be present in all products. To
determine whether a feature is supported, it is usually best to use the where oper-
ator to check for the presence of an operator associated with the feature. For
some features, it is better to use resourcestatus to query an implicit resource cat-

egory, such as FontType or HalftoneType.

Although using the where operator to test for PostScript operators is appropriate,
using it to test for application-defined procedures is not. Doing so can lead to

trouble in the future if an operator of the same name happens to come into exist-
ence. The correct way to test for application-defined procedures is to look them
up in the application's own dictionary with the known operator instead of the

where operator.

773

APPENDIX E

Character Sets and
Encoding Vectors

THIS APPENDIX DESCRIBES the character sets and encoding vectors of font
programs that are found in a typical PostScript interpreter or that are available

for downloading. While there is not a standard set of fonts that is required by the
PostScript language, most PostScript products include software for 13 standard
fonts from the Times*, Helvetica*, Courier, and Symbol families. Samples of these

fonts appear in the first few sections below.

Following the font samples are tables documenting the entire character set for
Adobe's standard Latin text fonts, expert fonts, and the Symbol font. For each

character set, every character is shown along with its full name and octal charac-
ter code (unencoded characters are indicated by —). This is followed by detailed

tables of the encoding vectors normally associated with a font program using that

character set. Table E.1 lists these encoding vectors.

TABLE E.1 Encoding vectors

ENCODING VECTOR DESCRIPTION

StandardEncoding

ISOLatinl Encoding

Built-in standard encoding vector. The default encoding used in
most regular Latin text fonts.

Built-in encoding vector that closely matches the ISO 8859-1
(Latin 1) standard. Encodes the characters used in most Western
European languages.

Central European encoding vector, matching Microsoft Windows
code page 1250. Encodes the characters used in some Central
European languages.

I APPENDIX E

Expert

ExpertSubset

Symbol

774

i
Character Sets and Encoding Vectors I

Encoding vector for "expert" fonts, which contain additional

characters useful for sophisticated typography, such as small
capitals, ligatures, and fractions.

Encoding vector for "expert" fonts that contains a subset of the
expert character set.

Encoding vector that is unique to the Symbol font.

StandardEncoding and ISOLatin1 Encoding are names in systemdict and in the

Encoding resource category associated with encoding array objects. The CE,
Expert, ExpertSubset, and Symbol encoding vectors are provided in the individu-
al font programs that use them; they are not defined as named encodings in the
PostScript interpreter itself.

Adobe defines two standard character sets for regular Latin text fonts: an "origi-

nal" set containing 229 characters and an "extended" set containing 315 charac-
ters. The original set includes all characters listed in StandardEncoding,

ISOLatinl Encoding, and several other common encodings. The extended set ad-

ditionally includes all characters listed in the CE encoding, as well as a number of
other characters.

For more information on encoding vectors, see Section 5.3, "Character Encod-
ing!'

E.1 Times Family

775

1
Times Family I

In 1931, The Times of London commissioned Monotype corporation, under the
direction of Stanley Morison, to design a newspaper typeface. Times New

Roman* was the result. The Linotype version shown here is called Times Roman.

It continues to be popular for both newspaper and business applications, such as

reports and correspondence.

Times-Roman ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&O 123456789

JEAÂAAAAÇDÉEEEfniL1;11:EÔÔÔÔija1)

üüülinir2œàââàââçéêëèafiliMilitifice6Selbeo0§1)13

titliirni£Vf$OriTm 00:0@ °° i't VP! i ?i,• ,;:""" ,"••• •"

<>«»0[11

#%%0 1/4 3/4 1/2 = - 1- X --<±>÷ -1"/•: 123

Times-Italic

Times-Bold

Times -Boldltalic

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

/EÀÁÁÀÁÁ ÇDÉÉEEÍMLN-ŒÔÔÔÔÓO.ePU

ClütIFÉ2ceildeiàdiiçéêéèàfifieirlipificeól35à50.ffilf

úlliii191ef¥f$01n10®@ °° 1'.#§1*.fi?i•.;:''"","•••'"

-+x-<±>÷-1"/•: 123

ABCDEFGHIJKLMNOPQRSTUVWXYZ

a bcdefghijklmn op qrstu y w xyz& 0123456789

iEÁLIÀÁÁÇDÉEÉÉMIL51111:54)15Ó150gI)CI

üüüliTYÏteáâaàâàçéêëèdfiflfriliplficeóôifsedio§bB

úûüù”i£Vf$02 1/4 ©®@"tt§i*!1?i,•,;:"""9”..."

<>«»0[]{}1/\---_„-----•

#%%,1/4 3/4 1/2= -+x,.<±>÷, 0 ^/.:123

A BCDEFGHIJKLMNOPQRSTUVW XYZ

abcdefghijklmnopqrstu vwxyz&0123456789

"EÀÁÁLLIÇDÉÉEEMILSIŒÔÔOÔÔOËPÚ

ilf't tedettiàddçéérnfiJIMitpliice666660INJ

liaüüYlei*Ff$OuTm©®@°*te§i*Ii?i•„*:""",„•••'"

I APPENDIX E
776

Character Sets and Encoding Vectors

E.2 Helvetica Family

Helvetica

One of the most popular typefaces of all time, Helvetica was designed by Max
Miedinger in 1957 for the Hass foundry in Switzerland. The name is derived from

Helvetia, the Swiss name for Switzerland. Helvetica's range of styles allows a vari-
ety of uses, including headlines, packaging, posters, and short text blocks such as
captions.

Helvetica-Oblique

Helvetica-Bold

Helvetica-BoldOblique

ABCDEFGHIJKLMNOPORSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&O 123456789

fEÁÁÁÀÁÀÇDÉÉÉÉÍiTitACEÔÔÔÓ(50à1D1)

C.JULOi \i2 œaâaàààçéêééeofifliriliptiiceelôiiàôoâpf3

úû üùjiy±£¥f$ 0aTm00 @ eQ tt§11 *!i?é,-;: - "",„- -

#°/0%. 1/43/41/2.-+x-<±>÷-,°^/•:' 23

ABCDEFGHIJKLMNOIDQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

..iiiC4 ,4,44ÇDÉÉEÉriaLN-CEÔÔÔÔÓOSPÚ

CJÚ (JYY2 œáâáàâàçéêéèófifIrriiiptficeóôdell50ÉpB

úûüùyYifef$O rirmiDe@ e21-#§11"!i?i-:: - "",„•••'"

#%%0Y$ 1/2 = - +X.- <±>+ -,°^A : 123

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&01 23456789

IEÁÁÁÀÁÀÇOÉÉEÉÍHILis-lIZEÓÔÔÔÉI- 0§PÚ

ÛÜÙYY 2 œáâaàââçéêéédfifliMiptficeót5dboo6130

Cifiiiù9 ii£Vf$C urm004§"T#§ 111 *!i?i,;: '''

0/0%. 14 34 1/2 ,+)‹...,<±>÷,.^/,:123

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

eá.4-ÁÁÀÁçeÉÉÉÉMiLecEcjódióó0Épú
ûüùel2œáââàââçéêëèófifiniiipificeóôeum30§po
LiciiiiisiÉu'vfseenwoo@get#§11*Ii?é,•,;: — ",„- -

#%%.,14 34 1/2 =-+X^•<±>÷ -10 AA:123

[E.3
777

Courier Family I

E.3 Courier Family

Courier

Courier was originally designed as a typewriter face for IBM in 1952 by Howard
Kettler. It is a monospaced, or fixed-pitch, font suitable for use in tabular materi-

al, program listings, or word processing.

Courier-Oblique

Courier-Bold

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

EÀÂAÁÀÀÇDÉÉËÉfniLDŒOnóôOSPÚ

f)Of.OPi2,máââàààçééeée5hflinlipIhœdódódo§pg

110.üilY“EYfStrom@e@ àQ tt§11*Ii?¿.,;:""",»- .

123

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

.WAA,21,4çDÉÉÉÉlfIlLRŒ6óóóôoËpti

12(YeJiââààJçéééedhflIfilip/rIcecióóddogIDE

tlûüùy.lí1fYf$0m Tm00@ lg t4.§9[* !i?.,;:''",.-'

<>«»()[]{}//\---__

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

AlUiLiailçDÉÉÉÉfniLitimóóefflia§Dú

üpiiÉmáââàààçéêéèdftfliliiiplaceddi51560141:1S

lio.m¡rI£vf set:0..0@o' 2 t 591 * ! • r r

<>«»()(1{}1/\—--_..“ —s•--•— •

9696o4 3/4 1/2 .—+ X~<±>÷ -1" /•: 123

Courier-BoldOblique ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&0123456789

AL4LiiiiiiÂÇDÉÉÉÉiffiLibIlM(56#50.*Pà

tjÜelee±máââààâçéêééelffiflilIiimIllœóóóóômétel3

thliità23>IfYf$Oune00@i2t#Sff*!;?e:.„.

I APPENDIX E
778

Character Sets and Encoding Vectors I

E.4 Symbol

al3x8elryque4tvorceparuegtÑptDeçJ f{11}[111(n)
ABXADITHIKAMN01-10PETYSZETZY 1 II I I

=*- ---=<><>Av J H Li
v3fa3nupcçcE«00(13.....

...(O®©T.e© TM Ell)L 1 V. 4. • ' 4
!#%*&0123456789.,;:_-11/tJ

Sample Uses

e=min(xl(l+x)*1) .>0

n{ I- IC; n{n I if Land'*"

û (t) M

Z, (t) n Zi (t) = 0 (i* j)

proposition true if and only if

(Vu) s (p)

(3u) s (p)

(Vu)s(-p)

(3u) s (- p)

-((Vu)s(p))

-((3u) s (p))

SnT;=0

SnTp#0

SnTp=0

SnT;*0

SnT,*0

SnTp=0

kp"tlk (at) <=> 1 s+ -‘1 s' - 441 1
22t,

-k

779
E.5 Standard Latin Character Set I

E.5 Standard Latin Character Set

CHAR CODE (OCTAL)
CHAR NAME STD ISO CE CHAR NAME

CHAR CODE (OCTAL)
STD ISO CE

A

À

À

A

À

D

A

E

É

É

E

E

É

E

E

G

G

H

A

AE

Aacute

Abreve I

Acircumflex

Adieresis

Agrave

Amacron

Aogonek l

Aring

Atilde

Cacute l

Ccaron l

Ccedilla

D

Dcaron l

Dcroat l

Delta

E

Eacute

Ecaron l

Ecircumflex

Edieresis

Edotaccent l

Egrave

Emacron l

Eogonek I

Eth

G

Gbreve l

Gcommaaccent l

H

101 101 101

341 306

- 301 301

- 303

302 302

304 304

300

— 245

- 305

- 303

102 102 102

103 103 103

- 306

- 310

307 307

104 104 104

- 317 N

- 320

— —
105 105 105 tT

— 311 311

- — 314 0

— 312 —

— 313 313

(7)

— 310 —

O
— 312

— 320 —

106 106 106

107 107 107 0

110 110 110

Iacute

Icircumflex

Idieresis

Idotaccent l

Igrave

'macron

Iogonek I

Kcommaaccent l

Lacute I

Lcaron l

Lcommaaccent l

Lslash

N

Nacute l

Ncaron l

Ncommaaccent l

Ntilde

o
OE

Oacute

Ocircumflex

Odieresis

Ograve

Ohungarumlaut l

Omacron l

Oslash

°tilde

Ill Ill Ill

315 315

316 316

317 —

— 314 —

112 112 112

113 113 113

114 114 114

305

274

350 - 243

115 115 115

116 116 116

- 321

322

— 321 —

117 117 117

352 —

323 323

324 324

326 326

322

— 325

351 330

- 325

120 120 120

121 121 121

122 122 122

I APPENDIX E
780

Character Sets and Encoding Vectors

CHAR CODE (OCTAL)
CHAR NAME STD ISO CE CHAR NAME

CHAR CODE (OCTAL)
STD ISO CE

5

0

V

V

X

Y

a

à

Racute l

Rcaron l

Rcommaaccent l

S

Sacute l

Scaron

Scedilla l

Scommaaccent l

Tcaron l

Tcommaaccent l

Thorn

U

Uacute

Ucircumflex

Udieresis

Ugrave

Uhungarumlaut l

Umacron l

Uogonek l

Uring l

V

X

Y

Yacute

Ydieresis

Zacute l

Zcaron

Zdotaccent l

a

aacute

abreve'

acircumflex

acute 2

adieresis

— 300

— 330

123 123

124 124

125

126

127

130

131

132

141

302

336

125

332

333

334

331

123

214

212

252

124

215

336

125

332

334

— 333

126

127

130

131

335

132

141

341

342

264

344

331

126

127

130

131

335

132

217

216

257

141

341

343
342

264

344

à

à

4
a
A

à

1

•

é

d

ae

agrave

amacron l

ampersand

aogonek l

aring

asciicircum

asciitilde

asterisk

at

atilde

backslash

bar

braceleft

braceright

bracketleft

bracketright

breve 2

brokenbar
bullet

cacute 1
caron
ccaron 1
ccedilla
cedilla 2
cent

circumflex

colon

comma

commaaccent l

copyright

currency

d

dagger

daggerdbl

361 346

— 340 —

—

046 046 046

- — 271

- 345

136 136 136

176 176 176

052 052 052

100 100 100

- 343

142 142 142

134 134 134

174 174 174

173 173 173

175 175V 175

133 133 133

135 135 135

306 226 242

- 246 246

267 225

143 143 143

— — 346

317 237 241

350

- 347 347

313 270 270

242 242

303 223

072 072 072

054 054 054

— —

- 251 251

250 244 244

144 144 144

262 206

263 207

781

1
Standard Latin Character Set I

CHAR NAME
CHAR CODE (OCTAL)
STD ISO CE

d'

d

dcaron l

dcroat l
o degree

dieresis 2

divide

dollar

dotaccent

1 dotlessi

e e

é eacute

e ecaron l

ecircumflex

edieresis

• edotaccent l

e egrave

8 eight

ellipsis

emacron l

- emdash

- endash

eogonek l

• equal

eth

exclam

exclamdown

fi fi

5 five

fl fl

florin

4 four

fraction

É

gbreve l

gcommaaccent l

germandbls

grave 3

CHAR NAME

- 357

- 360

- 260 260

310 250 250

- 367 367

044 044 044 >

307 227 377

365 220

145 145 145

- 351 351

- 354

— 352 —

— 353 353

— 350 —

070 070 070

274 — 205

— — —

320 - 227

261 - 226 1

— — 352 1

075 075 075

- 360

041 041 041

241 241

146 146 146

256

065 065 065 1

257

246

064 064 064

244 11
147 147 147

373 337 337 1'1

301 221 140

CHAR CODE (OCTAL)
STD ISO CE

greater

greaterequal l

guillemotleft 4

guillemotright 4

guilsinglleft

guilsinglright

h

hungarumlaut

hyphen

iacute

icircumflex

idieresis

igrave

imacron l

iogonek l

kcommaaccent l

1

lacute l

lcaron l

lcommaaccent l

less

lessequal l

logicalnot

lozenge 1

lslash

macron 2

minus

mu

multiply

nacute l

ncaron l

ncommaaccent

076 076 076

253 253 253

273 273 273

254 - 213

255 - 233

150 150 150

315 235 275

055 255 055

151 151 151

- 355 355

- 356 356

- 357

- 354

152 152 152

153 153 153

154 154 154

- 345

- 276

074 074 074

— —

— 254 254

370 - 263

155 155 155

305 257

- 055

- 265 265

- 327 327

156 156 156

- 361

- 362

782
I APPENDIX E Character Sets and Encoding Vectors I

CHAR CODE (OCTAL)
CHAR NAME STD ISO CE CHAR NAME

CHAR CODE (OCTAL)
STD ISO CE

nine

notequal 1

ntilde

numbersign

o

oacute

ocircumflex

odieresis

oe

ogonek

ograve

ohungarumlaut 1

°macron 1

one

onehalf

onequarter

onesuperior

ordfeminine

ordmasculine

oslash

otilde

paragraph

parenleft

parenright

partialdiffl

percent

period

periodcentered

perthousand

plus

plusminus

question

questiondown

quotedbl

quotedblbase

071 071 071

- 361

043 043 043

157 157 157

- 363 363

364 364

366 366

372

316 236 262

- 362

— — 365

061

343

353

371

160

266

050

051

045

056

264

275

053

161

077

277

042

271

061 061

275

274

271

252

272

370

365

160 160

266 266

050 050

051 051

045

056

267

053

261

161

077

277

042

045

056

267

211

053

261

161

077

042

204

CC

f

7

6

E

3
34

3

TM

2
2

quotedblleft

quotedblright

quoteleft

quoteright

quotesinglbase

quotesingle

racute 1

radical 1

rcaron 1

rcommaaccent 1

registered

ring

sacute 1

scaron

scedilla 1

scommaaccent 1

section

semicolon

seven

six

slash

space 5

sterling

summation 1

164

tcaron 1

tcommaaccent

thorn

three

threequarters

threesuperior

tilde

trademark

two

twosuperior

252

272

140

047

270

251

162

312

163

140

047

162

223

224

221

222

202

047

162

340

— 370

256

232

163

256

163

234

232

- 272

247 247 247

073 073 073

067 067 067

066 066 066

057 057 057

040 040 040

243 243

164 164

— 235

— 376

- 376

063 063 063

- 276

- 263

304 224

— 231

062 062 062

— 262 —

783
I E.5 Standard Latin Character Set I

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD ISO CE CHAR NAME STD ISO CE

u u 165 165 165 w w 167 167 167

ti uacute — 372 372 x x 170 170 170

û ucircumflex — 373 — y y 171 171 171

ü udieresis 374 374)'T yacute — 375 375

ù ugrave 371 — y ydieresis — 377 —

û uhungarumlaut l — 373 Y yen 245 245 —

û umacron i — — z z 172 172 172

_ underscore 137 137 137 i zacute l — 237

14 uogonek l — i zcaron — — 236

û uring l — — 371 2 zdotaccent i — 277

y y 166 166 166 0 zero 060 060 060

1. These characters are present in the extended (315-character) Latin character set, but

not in the original (229-character) set.

2. In the ISO 8859-1 standard, character codes in the range 220 through 237 are unused.

In the ISOLatin1Encoding encoding vector, these character codes are assigned to accent

characters, some of which are duplicated in other parts of the encoding. This is for his-

torical reasons only.

3. The ISOLatin1Encoding encoding vector deviates from the ISO 8859-1 standard in one

respect: the character at position 140 is quoteleft, whereas the ISO standard specifies

grave. A PostScript program needing to conform exactly to the ISO standard should

create a modified encoding vector with this entry changed.

4. The character names guillemotleft and guillemotright are misspelled. The correct

spelling for this punctuation character is "guillemet." However, the misspelled names

are the ones actually used in the fonts and encodings containing these characters.

5. This character is also encoded as 240 in the ISOLatin 1 Encoding and CE encoding vec-

tors. The meaning of code 240 is "nonbreaking space," but it is typographically the

same as space.

I APPENDIX E
784

I
Character Sets and Encoding Vectors I

E.6 StandardEncoding Encoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\Olx

\02x

\03x

\04x ! »
$ cYo & ,

\05x () * + , - . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 . , < = > ?

\10x @ A B C D E F G

\//x H I J K L M N 0

\/2x P Q R S T U V W

\13x X Y Z [\] A _

\I4x a b c d e f 8

\15x h i j k 1 m n o

\16x P cl r s t u y w

\17x x y z { l I —

\20x

\21x

\22x

\23x

\24x
I 4 £ / Y f 4

usx o » u u (> fi fl

\26x — t * • !

\27x , »
,, » • • • Oho i

\30x
,

\31x ,

\32x —

\33x

\34x A a

\35x L 0 Œ 0

\36x œ 1

\37x 1 ia ce 13

785
1 E . 7 ISOLatinlEncoding Encoding Vector I

E.7 ISOLatinl Encoding Encoding Vector

octal 0 1 2 3 4 5 6 7

\00x

Mx

\02x

\03x

\04x !
n

$ % 8c '

\05x () * + , — . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 . , < = > ?

\10x @ A B C D E F G

\/ /x H I J K L M N 0

\12x P Q R S T U V W

\13x X Y Z [\ I A —

\14x a b c d e f g

\15x h i j k 1 m n o

\16x p cl r s t u y w

\17x x y z { I I —

\20x

\21x

\22x 1 ' " ' _
_

'

\23x • , " ‘

\24x i tt £ 0 V 1 i §

\25x .. CO a « —1 - 0

\26x o + 2 3
II •

\27x , 1 o » IA 1/2
3/4 i

\30x A A A A A A 1E Ç

\31x È g E g 1 { I 1

\32x D Ñ 0 O 0 0 0 x

\33x 0 U 0 0 0 i 1) g

\34x à à à à â a œ ç

\35x è é ê ë 1 1 1 i

\36x 8 ñ a 6 ô O to ÷

\37x o ù it û ü 1) V

I APPENDIX E
786

Character Sets and Encoding Vectors I

E.8 CE Encoding Vector

octal 0 I 2 3 4 5 6 7

\O(hc

\Olx

\02x

\03x

\04x !
»

$ % & '

\05x () * + , - . /

\06x o 1 2 3 4 5 6 7

\07x 8 9 . ; < = > ?

\10x @ A B C D E F G

\l/x H I J K L M N 0

\12x P Q R S T U V W

\13x X Y Z [\ I A —

\14x a b c d e f g
\15x h i j k 1 m n o

\I6x p (1 r s t u v w

\I7x x y z { I } —

\20x , » ••• t t

\21x %o S < g 1' Z Z

\ 22x
« » • - —

\23x TM

\24x L o A i , g

\25x 0 « -1 0 Z

\26x o + ‘ 1 11 •

\27x , 4 » E r I
\30x r(A A A A L C Ç

\3Ix C É 4 Ë É I Î r)
\32x D N N (") 0 O 0 x

\33x ft Û I:1 0 0 7? T 8

\34x f à à à â I é ç
usx é é ç é é i I d'

\36x d 6 n 6 a a a ÷
\37x t 11 tí a a t

787
E.9

E.9 Expert Character Set

Expert Character Set I

CHAR NAME CODE CHAR NAME CODE

A

D

É

E

E

G

H

AEsmall

Aacutesmall

Acircumflexsmall

Acutesmall

Adieresissmall

Agravesmall

Aringsmall

Asmall

Atildesmall

Brevesmall

Bsmall

Caronsmall

Ccedillasmall

Cedillasmall

Circumflexsmall

Csmall

Dieresissmall

Dotaccentsmall

Dsmall

Eacutesmall

Ecircumflexsmall

Edieresissmall

Egravesmall

Esmall

Ethsmall

Fsmall

Gravesmall

Gsmall

Hsmall

Hungarumlautsmall

Iacutesmall

Icircumflexsmall

Idieresissmall

Igravesmall

Ismall

346

341

342

047

344

340

345 N

141

343 cE

251

142 ô

252 o

347

270 à

136

143 o

250 o

254

144
351 o

352

353

350

145

360

146

140

147 û

150

042

355

356

357

354

151

Jsmall

Ksmall

Lslashsmall

Lsmall

Macronsmall

Msmall

Nsmall

Ntildesmall

OEsmall

Oacutesmall

Ocircumflexsmall

Odieresissmall

Ogoneksmall

Ogravesmall

Oslashsmall

Osmall

Otildesmall

Psmall

Qsmall

Ringsmall

Rsmall

Scaronsmall

Ssmall

Thornsmall

Tildesmall

Tsmall

Uacutesmall

Ucircumflexsmall

Udieresissmall

Ugravesmall

Usmall

Vsmall

Wsmall

Xsmall

Yacutesmall

152

153

243

154

257

155

156

361

367

363

364

366

266

362

370

157

365

160

161

267

162

246

163

376

176

164

372

373

374

371

165

166

167

170

375

APPENDIX E
788

Character Sets and Encoding Vectors I

CHAR NAME CODE CHAR NAME CODE

Y

a

e

d

8

8
8

e

if

ffi

ffl
fi

5/8

5

5
5

fi

Ydieresissmall

Ysmall

Zcaronsmall

Zsmall

ampersandsmall

asuperior

bsuperior

centinferior

centoldstyle

centsuperior

colon

colonmonetary

comma

commainferior
commasuperior

dollarinferior

dollaroldstyle

dollarsuperior

dsuperior

eightinferior

eightoldstyle

eightsuperior

esuperior

exdamdownsmall

exclamsmall

if

ffi

ffl

fi

figuredash

fiveeighths

fiveinferior

fiveoldstyle

fivesuperior

fl

fourinferior

377 4
171 4

247

172

046

101

102

334

242

103 9

072 9
173 9

054

337
074 1/2

335 1
044 1/2

045 1

104 1

332 1/4

070

320 V3

105 0

241

041

126

131

132

127

262

302

327

065

315 RP
130

326 7/8

fouroldstyle

foursuperior

fraction

hyphen

hypheninferior

hyphensuperior

isuperior

lsuperior

msuperior

nineinferior

nineoldstyle

ninesuperior

nsuperior

onedotenleader

oneeighth

onefitted

onehalf

oneinferior

oneoldstyle

onequarter

onesuperior

onethird

osuperior

parenleftinferior

parenleftsuperior

parenrightinferior

parenrightsuperior

period

periodinferior

periodsuperior

questiondownsmall

questionsmall

rsuperior

rupiah

semicolon

seveneighths

064

314

057

055

263

137

111

114

115

333

071

321

116

053
300

174

275

323

061

274

311

304

117

133

050

135

051

056

336

076

277

077

122

175

073

303

I E.9
789

i
Expert Character Set I

CHAR NAME CODE CHAR NAME CODE

7 seveninferior

7 sevenoldstyle
7 sevensuperior
6 sixinferior
6 sixoldstyle
6 sixsuperior

space
s ssuperior

3/8 threeeighths
3 threeinferior

3 threeoldstyle
3/4 threequarters

331
067
317
330

066
316
040

123
301
325
063
276

-
3

2

2

2

2/3

o

o
o

threequartersemdash
threesuperior
tsuperior
twodotenleader
twoinferior

twooldstyle
twosuperior
twothirds
zeroinferior
zerooldstyle

zerosuperior

075
313
124
052
324
062
312

305
322
060
310

I APPENDIX E
790

Character Sets and Encoding Vectors I

E.1 0 Expert Encoding Vector

octal 0 I 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x ! $ $ &
,

\05x () .. - . /

\06x o 1 2 3 4 5 6 7

\07x 8 9 . '
— t

\/Ox a b a d e

\I IX I I m n o

\12x
, .,

r s t if fi

\13x fl ffi ffl
(Mr)

\14x A B C D E Fl G

\15x H I J K L M N 0

\16x P Q R s T U V W

\17x X Y Z It 1 RP

\20x

\21x

‘22x

\23x

\24x i a L A

\.25x '

\26x _ ,

\27x , 1/4 1/2 3/4 é

\30x V8 3/8 5/8 7/8 V3 34

\31x o 1 2 3 4 5 6 7

\32X 8 9 0 I 2 3 4 5

U3x 6 7 8 9 8 6

\34.% À À A A A A A ç

\35x h É Ê il I f I Ï

\ 36x o Fr 6 6 6 a O CE

\37x 0 Ù ÉJ Û ü Y P Y

791
ExpertSubset Encoding Vector I

E.11 ExpertSubset Encoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\Mx

\02x

\03x

\04x $

\05x . - .

7
,

\06x 0 1 2 3 4 5 6

\07x 8 9 . ; _

VOX a b ¢ d e
--t---

\11X i 1 m n o

fi\13x
\12% r s

t if

fl ffi ffl ()

\14x

\15x

\i6x

\17x (lt 1 RP
Vox

\21x

\22x

\23x

\24x a

\25x

\26x - _

\27x 1/2 1/2 3/4

\30x 1/2 3/4 5/8 7/8 1/2 1/2

\31x o 1 2 3 4 5 6 7

\32.% 8 9
0 1 2 3 4 5

\.33X 6 7 8 9 6 $

\.34X

\35X

\.36.16

\37x

I APPENDIX E
792

Character Sets and Encoding Vectors I

E.12 Symbol Character Set

CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE

A Alpha 101 4-) arrowboth 253 0 circlemultiply 304

B Beta 102 <=> arrowdblboth 333 ED circleplus 305

X Chi 103 1.1 arrowdbldown 337 4 club 247

à Delta 104 = arrowdblleft 334 colon 072

E Epsilon 105 = arrowdblright 336 comma 054
H Eta 110 11 arrowdblup 335 -- congruent 100

€ Euro 240 1 arrowdown 257 © copyrightsans 343

✓ Gamma 107 — arrowhorizex 276 © copyrightserif 323
3 Ifraktur 301 <— arrowleft 254 o degree 260

I Iota 111 —> arrowright 256 â delta 144

K Kappa 113 Í arrowup 255 • diamond 250
A Lambda 114 I arrowvertex 275 A- divide 270

M Mu 115 * asterislunath 052 dotmath 327

N Nu 116 I bar 174 8 eight 070

SI Omega 127 e beta 142 e element 316

O Omicron 117 { braceleft 173 ellipsis 274

Cre Phi 106 } braceright 175 0 emptyset 306
II Pi 120 r bracelefttp 354 E epsilon 145

Y Psi 131 braceleftmid 355 = equal 075

9î Rfraktur 302 L braceleftbt 356 E equivalence 272
P Rho 122 1 bracerighttp 374 Ti eta 150

E Sigma 123 bracerightmid 375 ! exclam 041
T Tau 124 J bracerightbt 376 3 existential 044

O Theta 121 I braceex 357 5 five 065
Y Upsilon 125 [bracketleft 133 f florin 246

T Upsilonl 241 1 bracketright 135 4 four 064

7-7 Xi 130 r bracketlefttp 351 / fraction 244

Z Zeta 132 I bracketleftex 352 y gamma 147

It aleph 300 L bracketleftbt 353 V gradient 321

a alpha 141 1 bracketrighttp 371 > greater 076

& ampersand 046 I bracketrightex 372 > greaterequal 263

L angle 320 _I bracketrightbt 373 v heart 251

angjeleft 341 • bullet 267 0.0 infinity 245
) angleright 361 .-I carriagereturn 277 1 integral 362

-,-- approxequal 273 x chi 143 f integraltp 363

793
Symbol Character Set I

CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE

I integralex 364 parenlefttp 346 " second 262

J integralbt 365 Í parenleftex 347 • , semicolon 073
n intersection 307 parenleftbt 350 7 seven 067

t iota 151 parenrighttp 366 a sigma 163

K kappa 153 1 parenrightex 367 ç sigmal 126
X lambda 154) parenrightbt 370 — similar 176

< less 074 a partialdiff 266 6 six 066

< lessequal 243 % percent 045 / slash 057

A logicaland 331 period 056 space 040

—, logicalnot 330 1 perpendicular 136 * spade 252

y logicalor 332 (I) phi 146 3 suchthat 047

0 lozenge 340 (1) phil 152 E summation 345

— minus 055 it pi 160 "C tau 164

, minute 242 + plus 053 therefore 134

pi mu 155 ± plusminus 261 9 theta 161

x multiply 264 il product 325 e thetal 112
9 nine 071 c propersubset 314 3 three 063

e notelement 317 D propersuperset 311 TM trademarlcsans 344

notequal 271 « proportional 265 TM trademarkserif 324

C notsubset 313 111 psi 171 2 two 062
y nu 156 ? question 077 _ underscore 137

numbersign 043 I radical 326 u union 310

co omega 167 radicalex 140 V universal 042

til omegal 166 g reflexsubset 315 u upsilon 165

o omicron 157 D reflexsuperset 312 p weierstrass 303

1 one 061 e registersans 342 xi 170

(parenleft 050 ® registerserif 322 0 zero 060

) parenright 051 P rho 162 ç zeta 172

APPENDIX E
794

Character Sets and Encoding Vectors I

E.13 Symbol Encoding Vector

octal 0 I 2 3 4 5 6 7

\00x

\Olx

\02x

\03x

\04x ! V 3 % & 3

\05x () * + , — /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 . , < = > ?

\10x '-• A B X à E (1) r
Wu H I e K A M N 0
\12x II o P E T Y ç SI

\13x E. 4' Z E .*. I 1 _

\14x
_

a R X 8 E 4) y

\15x i t (P x X II v o

\16x it 0 P a t 1) 155 CO

\17x V{ I } -
vox
\21x

\22x

\23x

\24x € Y
,

5 / co f 4.

\25x • V 6 4-* 4— is —> 1

\26x
o ±

”
> X oc a •

\27x + * m ::-... ••• I _ —I

\30x X 3 9I bo CEO PO 0 r-)

\31x Li D D a c Ç E e

\32x z V e 0 Tm n NI •
\33x -. A y <=> n 11
\34x o (e © r FA E (I
\35x r I L I l I
\36x) 5 r I J 1 I
\37x) 1 I J 1 J __

795

APPENDIX F

System Name Encodings

INDEX NAME INDEX NAME INDEX NAME

0 abs 23 concat 46 cvn

1 add 24 concatmatrix 47 cvr

2 abad 25 copy 48 cvrs

3 anchorsearch 26 count 49 cvs

4 and 27 counttomark 50 cvx

5 arc 28 currentcmykcolor 51 def

6 arcn 29 currentdash 52 defineusername

7 arct 30 currentdict 53 dict

8 arcto 31 currentfile 54 div

9 array 32 currentfont 55 dtransform

10 ashow 33 currentgray 56 dup

11 astore 34 currentgstate 57 end

12 awidthshow 35 currenthsbcolor 58 eoclip

13 begin 36 currentlinecap 59 eofill

14 bind 37 currentlinejoin 60 eoviewclip

15 bitshift 38 currentlinewidth 61 eq

16 ceiling 39 currentmatrix 62 exch

17 charpath 40 currentpoint 63 exec

18 clear 41 currentrgbcolor 64 exit

19 cleartomark 42 currentshared 65 file

20 clip 43 curveto 66 fill

21 clippath 44 cvi 67 findfont

22 closepath 45 cvlit 68 flattenpath

I APPENDIX F
796

I
System Name Encodings I

69 floor 101 loop 133 rlineto

70 flush 102 It 134 rmoveto

71 flushfile 103 makefont 135 roll

72 for 104 matrix 136 rotate

73 forall 105 maxlength 137 round

74 ge 106 mod 138 save

75 get 107 moveto 139 scale

76 getinterval 108 mu' 140 scalefont

77 grestore 109 ne 141 search

78 gsave 110 neg 142 selectfont

79 gstate 111 newpath 143 setbbox

80 e 112 not 144 setcachedevice

81 identmatrix 113 null 145 setcachedevice2

82 idiv 114 or 146 setcharwidth

83 idtransform 115 pathbbox 147 setcmykcolor

84 if 116 pathforall 148 setdash

85 ifelse 117 pop 149 setfont

86 image 118 print 150 setgray

87 imagemask 119 printobject 151 setgstate

88 index 120 put 152 sethsbcolor

89 ineofill 121 putinterval 153 setlinecap

90 infill 122 rcurveto 154 setlinejoin

91 initviewclip 123 read 155 setlinewidth

92 inueofill 124 readhexstring 156 setmatrix

93 inufill 125 readline 157 setrgbcolor

94 invertmatrix 126 readstring 158 setshared

95 itransform 127 rectclip 159 shareddict

96 known 128 rectfill 160 show

97 le 129 rectstroke 161 showpage

98 length 130 rectviewclip 162 stop

99 lineto 131 repeat 163 stopped

100 load 132 restore 164 store

797

i I 1

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

string

stringwidth

stroke

strokepath

sub

systemdict

token

transform

translate

truncate

type

uappend

ucache

ueofill

ufill

undef

upath

userdict

ustroke

viewclip

viewclippath

where

widthshow

write

writehexstring

writeobject

writestring

wtranslation

xor

xshow

xyshow

yshow

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

256

257

258

FontDirectory

SharedFontDirectory

Courier

Courier-Bold

Courier-BoldOblique

Courier-Oblique

Helvetica

Helvetica-Bold

Helvetica-BoldOblique

Helvetica-Oblique

Symbol

Times-Bold

Times-Boldltalic

Times-Italic

Times-Roman

execuserobject

currentcolor

currentcolorspace

currentglobal

execform

filter

findresource

globaldict

makepattern

setcolor

setcolorspace

setglobal

setpagedevice

setpattern

=

ISOLatinlEncoding

259 StandardEncoding

260

261

262 atan

263 banddevice

264 bytesavailable

265 cachestatus

266 closefile

267 colorimage

268 condition

269 copypage

270 cos

271 countdictstack

272 countexecstack

273 cshow

274 currentblackgeneration

275 currentcacheparams

276 currentcolorscreen

277 currentcolortransfer

278 currentcontext

279 currentflat

280 currenthalftone

281 currenthalftonephase

282 currentmiterlimit

283 currentobjectformat

284 currentpacking

285 currentscreen

286 currentstrokeadjust

287 currenttransfer

288 currentundercolorremoval

289 defaultmatrix

290 definefont

798
I APPENDIX F System Name Encodings I

291 deletefile 323 packedarray 355 sqrt

292 detach 324 quit 356 srand

293 deviceinfo 325 rand 357 stack

294 dictstack 326 rcheck 358 status

295 echo 327 readonly 359 statusdict

296 erasepage 328 realtime 360 true

297 errordict 329 renamefile 361 ucachestatus

298 execstack 330 renderbands 362 undefinefont

299 executeonly 331 resetfile 363 usertime

300 exp 332 reversepath 364 ustrokepath

301 false 333 rootfont 365 version

302 ftlenameforall 334 rrand 366 vmreclaim

303 fileposition 335 run 367 vmstatus

304 fork 336 scheck 368 wait

305 framedevice 337 setblackgeneration 369 wcheck

306 grestoreall 338 setcachelimit 370 xcheck

307 handleerror 339 setcacheparams 371 yield

308 initclip 340 setcolorscreen 372 defineuserobject

309 initgraphics 341 setcolortransfer 373 undefineuserobject

310 initmatrix 342 setfileposition 374 UserObjects

311 instroke 343 setflat 375 cleardictstack

312 inustroke 344 sethalftone 376 A

313 join 345 sethalftonephase 377 B

314 kshow 346 setmiterlimit 378 C

315 In 347 setobjectformat 379 D

316 lock 348 setpacking 380 E

317 log 349 setscreen 381 F

318 mark 350 setstrokeadjust 382 G

319 monitor 351 settransfer 383 H

320 noaccess 352 setucacheparams 384 I

321 notify 353 setundercolorremoval 385 J

322 nulldevice 354 sin 386 K

i
799

I

387 L

388 M

389 N

390 0

391 P

392 Q

393 R

394 S

395 T

396 U

397 V

398 W

399 X

400 Y

401 Z

402 a

403 b

404 c

405 d

406 e

407 f

408 g

409 h

410 i

411 j

412 k

413 1

414 m

415 n

416 o

417 P

418 (1

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

r

s

t

u

v

w

x

y

z

setvmthreshold

<<

>>

currentcolorrendering

currentdevparams

currentoverprint

currentpagedevice

currentsystemparams

currentuserparams

defineresource

findencoding

gcheck

glyphshow

languagelevel

product

pstack

resourceforall

resourcestatus

revision

serialnumber

setcolorrendering

setdevparams

setoverprint

 1

451 setsystemparams

452 setuserparams

453 startjob

454 undefineresource

455 GlobalFontDirectory

456 ASCII85Decode

457 ASCII85Encode

458 ASCIIHezDecode

459 ASCIIHexEncode

460 CCITTFaxDecode

461 CCITTFaxEncode

462 DCTDecode

463 DCTEncode

464 LZWDecode

465 LZWEncode

466 NullEncode

467 RunLengthDecode

468 RunLengthEncode

469 SubFileDecode

470 CIEBasedA

471 CIEBasedABC

472 DeviceCMYK

473 DeviceGray

474 DeviceRGB

475 Indexed

476 Pattern

477 Separation

478 CIEBasedDEF

479 CIEBasedDEFG

480 DeviceN

801

APPENDIX G

Operator Usage
Guidelines

IF NOT USED PROPERLY, some PostScript operators can cause unintended side

effects, render a document device-dependent, or inhibit postprocessing of a doc-
ument. The guidelines in this appendix will help ensure the proper use of those
operators. These guidelines apply to regular page descriptions and encapsulated
PostScript (EPS) files, as described below. In addition, most of the EPS guidelines
also apply to the definition of a PaintProc procedure in a form or pattern diction-
ary, a BuildGlyph procedure in a Type 3 base font or Type 1 CIDFont, and a
CharStrings procedure in any font format that allows glyph descriptions to be re-
placed by PostScript procedures.

As discussed in Section 2.4, "Using the PostScript Language," the primary use of
the PostScript language is to represent a page description, which is a device-
independent representation of the appearance of pages that are to be viewed or
printed. A page description not only is a valid PostScript program but also con-
forms to certain structuring conventions and usage guidelines. These guidelines

help to ensure device independence and facilitate postprocessing of a page de-
scription by other applications.

There are two main classes of page description:

• A regular page description is a PostScript program produced by a document
composition program—for example, a word processor or page-layout pro-
gram. Typically, the PostScript program produces several pages, uses a number
of fonts and other resources, and activates some printer-specific features such
as paper trays or other physical requirements. A regular page description does
not normally query the printer, perform calibration functions, cause VM to be
permanently modified, or produce color separations.

I APPENDIX G
802

Operator Usage Guidelines I

PostScript programs that have the notation %!PS-Adobe-3.0 as the first line of
the file are considered to be regular page descriptions that conform to the doc-
ument structuring conventions (DSC) version 3.0. See Adobe Technical Note
#5001, PostScript Language Document Structuring Conventions Specification, for
more information about DSC conformance and conventions. There is no re-
quirement that a regular page description conform to DSC, but it is strongly
recommended.

• An encapsulated PostScript (EPS) file is a PostScript program describing at most
a single page in a form that can be imported by other applications to embed
within a containing document. EPS files follow specific guidelines and have a
particular structure that is further described in Adobe Technical Note #5002,
Encapsulated PostScript File Format Specification. In particular, they must be
device-independent and must not invoke printer-specific operators.

Table G.1 summarizes the use of specific operators in either a regular page de-
scription or an EPS file; further details are provided for each of these operators
following the table. "No" in the table indicates that the operator should not be
used; alternate suggestions, if any, are given in the details for that operator.
"Careful" indicates that the operator can be used if appropriate precautions are
taken. The rationale for the guidelines and the precautions that should be taken
are provided in the details for each operator. Note that the guidelines are not en-
forced; however, failing to observe the guidelines may result in incorrect output.

TABLE G.1 Guidelines summary

OPERATOR REGULAR PAGE DESCRIPTION EPS FILE

banddevice No No

clear Careful No

cleardictstack No No

copypage No No

erasepage Careful No

executive No No

exitserver No No

framedevice No No

grestoreall Careful Careful

initclip Careful No

803

initgraphics Careful No

initmatrix Careful No

nulldevice Careful Careful

quit No No

renderbands No No

setblackgeneration Careful Careful

setcolorrendering Careful Careful

setcolorscreen Careful Careful

setcolortransfer Careful Careful

settlat Careful Careful

setglobal Careful Careful

setgstate Careful Careful

sethalftone Careful Careful

setmatrix Careful Careful

setoverprint Careful Careful

setpagedevice Careful No

setscreen Careful Careful

setshared Careful Careful

setsmoothness Careful Careful

settransfer Careful Careful

setundercolorremoval Careful Careful

startjob No No

undefinefont Careful Careful

undefineresource Careful Careful

statusdict operators Careful No

userdict imageable area operators Careful No

804
I APPENDIX G I Operator Usage Guidelines I

banddevice Obsolete LanguageLevel 1 device setup operator. It should never be used
in a page description.

clear Disrupts nesting of included documents and EPS files. Instead of using
clear, the application should keep track of which items have been placed

on the operand stack and clean up the stack intelligently. If it is necessary
to perform the equivalent of a clear operation, a count of the objects on
the operand stack can be saved at the beginning of the document:

count /numstack exch def

When it is time to remove all objects the document has left on the oper-
and stack, the following code should be executed:

count numstack sub

{pop}

repeat

cleardictstack Disrupts nesting of included documents and layering of document pro-
logs. Instead of using cleardictstack, the application should keep track of
which dictionaries have been used and clean up the stack intelligently. If it
is necessary to perform the equivalent of a cleardictstack operation, a
count of the dictionaries present on the stack can be saved at the begin-
ning of the document:

/numdict countdictstack def

When it is time to remove all dictionaries the document has left on the
dictionary stack, the following code should be executed:

countdictstack numdict sub

fend}

repeat

copypage Disrupts operations that depend on page independence. copypage is pri-
marily used for debugging and should not appear in a page description.
Furthermore, in LanguageLevel 3 copypage no longer preserves the page's
contents. For multiple copies of a document, use the #copies convention
or the NumCopies page device parameter. The copypage operator should

not be used to simulate forms functionality; use the execform operator
(see Section 4.7, "Forms").

805

I l i

erasepage Disrupts nesting of included documents. Normally, it is unnecessary to
erase the page explicitly; a program can assume that the page is already

erased. However, if necessary, the interior of the current clipping path can
be erased with the following code:

gsave

clippath

1 setgray

fill

grestore

executive Invokes an interactive session. It should never be used in a page descrip-

tion.

exitserver See startjob.

framedevice Obsolete LanguageLevel 1 device setup operator. It should never be used

in a page description.

grestoreall Discards any graphics state previously established by the document and
disrupts nesting of included documents. Instead of grestoreall, gsave and
grestore operators should be used in properly balanced pairs. However,

grestoreall is acceptable if used within a save-restore pair.

initclip Disrupts nesting of included documents. If the current clipping path in

the document must be changed, calls to clipping operators should be sur-
rounded by a save-restore or gsave-grestore pair.

initgraphics Disrupts nesting of included documents. If a document requires its graph-
ics state to be initialized, the graphics state should be set explicitly with
operators such as setgray and setlinewidth, surrounded by a save-restore

or gsave-grestore pair.

initmatrix Disrupts nesting of included documents. If a document requires its CTM

to be initialized, the current CTM should be modified (using the concat
operator), surrounded by a save-restore or gsave-grestore pair so that

the current CTM is preserved.

nulldevice Installs the "null device" as the current output device. This device pro-
duces no physical output, but behaves like a normal device—in other
words, the current point is moved, the font machinery is invoked, and so

I APPENDIX G
806

Operator Usage Guidelines I

quit

renderbands

setblackgeneration

setcolorrendering

setcolorscreen

setcolortransfer

setflat

setglobal

setgstate

on. If used carefully, it can be helpful when performing color separations,
where knockout control and overprinting are needed. A save-restore or
gsave-grestore pair around this operator is recommended.

Terminates the operation of the interpreter; the document will not be
printed. This operator should never be used in a page description.

Obsolete LanguageLevel 1 device setup operator. It should never be used
in a page description.

See settransfer.

Should be used only in conjunction with findcolorrendering to establish
the proper color rendering dictionary for a specified rendering intent.
Embedding a color rendering dictionary will cause a page description to
be device-dependent.

See sethalftone.

See settransfer.

Should be used with caution, since its effects are device-dependent.

If used improperly, can disrupt page independence and nesting of

included documents. In global VM allocation mode, the values of new
composite objects are allocated in global VM. Creation and modification
of global objects are unaffected by the save and restore operators.

There are proper uses of setglobal and global VM that do not violate page
independence or EPS embedding. Global VM can be used to hold data
that should be unaffected by save and restore operators occurring within

a page. It can also be used for read-only resources that are loaded by the

findresource operator on one page and are available for access (also by
findresource) on subsequent pages.

Disrupts page independence and nesting of included documents. Proper
use of setgstate involves resetting a previously obtained graphics state
from the cu rrentg state operator. To ensure page independence, the use of

807

setgstate must not impose a graphics state defined in another page in the
document. That is, it should impose a graphics state that is local to that
page only. The following example illustrates a proper use of setgstate:

/oldstate gstate def

306 392 translate

135 rotate

5 5 scale

10 setlinewidth

... Draw objects in the transformed coordinate system ...

oldstate setgstate
... Draw more objects in the original coordinate system ...

To obtain a similar effect in a page description, a save-restore or gsave-

grestore pair should be used instead.

sethalftone Should not normally appear in a page description; it can cause problems if
a postprocessor attempts to perform color separations. However, it is
appropriate for a system administrator to use sethalftone to establish
default screening values for the device. The use of sethalftone in a page

description is device-dependent; the results will vary from one device to

another.

sethalftone should not be used to create patterns; the resulting patterns

will vary depending on the resolution of the output device. Also, patterns
defined by sethalftone cannot be color-separated and will appear only on
devices that support halftoning. Patterns should be created with the

setpattern operator or by defining them as characters in a special font.

setmatrix Should be used with a matrix that was previously obtained using the
currentmatrix operator or its equivalent. It can be used for drawing
objects such as ovals, as in the following example:

matrix currentmatrix
rx ry scale

0 0 1 0 360 arc

setmatrix

stroke

I APPENDIX G
808

Operator Usage Guidelines I

1'h is example ensures that the oval is drawn with an even stroke. However,
setmatrix should not be used to perform such operations as flipping the
coordinate axes. Instead, the concat operator should be used to concate-
nate to the CTM. Ordinarily, PostScript programs should modify the
CTM (by using the translate, scale, rotate, and concat operators) rather
than replace it.

setoverprint Should be used with caution, since its effects are device-dependent.

setpagedevice Can be used to set printer-specific features in a device-independent way.

setpagedevice establishes a new device, implicitly performing the equiva-
lent of an initgraphics operation and an erasepage operation.
setpagedevice must not be used inside an EPS file, as it will erase the
entire page in which the EPS file is included. However, in a document
page description this operator is often useful in the document setup or
page setup section. Documents that want to promote device indepen-
dence and receive printer rerouting services from a document manager
must enclose calls to setpagedevice with %%Begin(End)Feature: com-

ments (see the section on requirement body comments in Adobe Techni-
cal Note #500I, PostScript Language Document Structuring Conventions
Specification).

When using setpagedevice at the page level, a program should save the
current page device and reestablish it at the end of the page to maintain
page independence.

setscreen See sethalftone.

setshared See setglobal.

setsmoothness Should be used with caution, since its effects are device-dependent.

settransfer Device setup code may have installed a transfer function that is tuned pre-
cisely to the device characteristics, and wholesale replacement of the cur-
rent transfer function can remove any calibration already in place.

i
809

l 1

Instead, the current transfer function should be modified. In the following
example, a negative transfer function is concatenated to the current trans-
fer function:

{ {1 exch sub} /exec load
currenttransfer /exec load

] cvx settransfer

Even when performed this way, this operation has a device-dependent

effect.

setundercolorremoval See settransfer.

startjob Should be used only by PostScript programs that perform system admin-
istration functions, such as downloading a font program as part of an

unencapsulated job to alter initial VM. During execution of an unencap-
sulated job, VM is not protected. Also, VM resources that the program
consumes remain in use until the printer is power-cycled. A program that
does call startjob should use the %!PS-Adobe-3.0 ExitServer comment (see
Adobe Technical Note #5001, PostScript Language Document Structuring
Conventions Specification).

undefinefont See undefineresource.

undefineresource Improper use of undefineresource can disrupt document manager pro-
cessing of a document. For example, if the document manager were to
perform resource optimization on the document and move the resource
within the document file, the undefineresource operator could cause that
resource to be unavailable for portions of the document.

statusdict operators There are operators defined in the statusdict dictionary that are likely to
be highly device-dependent—that is, some interpreters will have these
operators defined and others will not. These operators must not be used
in EPS files. Examples of such operators include, but are not limited to,
setsccbatch, duplexmode, setpapertray, tumble, and setmargins. Docu-
ments wanting to promote device independence and receive printer

rerouting services from a document manager must enclose the calls to
these operators with %%Begin(End)Feature: comments (see the section on
requirement body comments in Adobe Technical Note #5001, PostScript
Language Document Structuring Conventions Specification).

I APPENDIX G
810

Operator Usage Guidelines

userdict operators There are some operators defined in the userdict dictionary that cause an
imageable region to be defined. Examples of such operators include, but
are not limited to, a4, a4small, b5, ledger, legal, letter, lettersmall, and
note. These operators perform the equivalent of an in itgraphics operation
and an erasepage operation. They must not be used in an EPS file, as they

will erase the entire page that includes the EPS file. However, in a docu-
ment page description, they are valid in the document setup and page
setup sections.

The use of these operators is device-dependent: some interpreters will
have them defined and others will not. Documents wanting to promote
device independence and receive printer rerouting services from a docu-
ment manager must enclose the calls to these operators with
%%Begin(End)Feature: comments (see the section on requirement body
comments in Adobe Technical Note #5001, PostScript Language Document
Structuring Conventions Specification).

811

Bibliography

SOME DOCUMENTS LISTED IN THIS BIBLIOGRAPHY are indicated as being

available on the Adobe Developer Relations site on the World Wide Web. This site

is located at

<http://www.adobe.com/supportservice/devrelatione>

Document version numbers and dates given in this Bibliography are the latest at

the time of publication; more recent versions may be found on the Web site.

Other documents are indicated here as being available through the Adobe

Developers Association. Developers registered with the ADA receive software

development kits, regular electronic mailings, e-mail and telephone support, dis-

counted Adobe software products, and a "members only" Web site containing

documentation and sample code not available publicly. For information about

joining the ADA, visit the Adobe Developer Relations Web site, send e-mail to

ada@adobe.com, or write to

Printing Technologies Developer Support

do Adobe Developers Association

345 Park Avenue

San Jose, CA 95110-2704

Resources from Adobe Systems Incorporated

Adobe Type 1 Font Format, Addison-Wesley, Reading, MA, 1990. Explains the in-

ternal organization of a PostScript language Type 1 font program. This document

is available on the Adobe Developer Relations Web site. Also see Adobe Technical

Note #5015, Type 1 Font Format Supplement.

Display PostScript System. A suite of manuals containing reference documenta-

tion for the Display PostScript system. These documents are available on the

Adobe Developer Relations Web site.

Bibliography
812

Portable Document Format Reference Manual Version 1.2, 27 November 1996.

Describes PDF, the native file format of the Adobe Acrobat family of products,
and offers suggestions for producing efficient PDF files. This document is avail-
able on the Adobe Developer Relations Web site.

PostScript Language Program Design, Addison-Wesley, Reading, MA, 1988.

Though this edition of this book describes LanguageLevel 1 only, it is still useful
for programmers interested in the effective and efficient design of PostScript pro-
grams and printer drivers.

PostScript Language Reference Supplement. A new Supplement is published with
each major release of Adobe PostScript software. The Supplements for versions
2011 through the latest version are available on the Adobe Developer Relations

Web site. The latest version at the time of publication, Supplement: PostScript
Language Reference Manual (LanguageLevel 3 Specification and Adobe PostScript 3
Version 3010 Product Supplement), describes PostScript language extensions that
are available in the version 3010 release of Adobe PostScript software.

PostScript Language Tutorial and Cookbook, Addison-Wesley, Reading, MA, 1985.

Illustrates the many capabilities of the PostScript language through examples.
This edition of this book describes LanguageLevel 1 only and includes some reci-
pes that are no longer recommended by Adobe (in particular, the pattern fill ex-

ample); nevertheless, it can be a useful learning tool for those who are new to the
PostScript language.

Tag Image File Format Specification, Revision 6.0, 3 June 1992. The so-called TIFF

standard. Several PostScript language filters use encoding schemes similar to ones

included in TIFF. Also, the optional screen preview portion of an EPS file can be
in TIFF format. This document is available on the Adobe Developer Relations
Web site.

Technical Notes. The following Technical Notes are available on the Adobe Devel-
oper Relations Web site:

• Adobe CMap and CID Font Files Specification Version 1.0, Technical Note #5014

• Adobe Communications Protocols Specification, Technical Note #5009

• Adobe Font Metrics File Format Specification Version 4.1, Technical Note #5004

• CID-Keyed Font Technology Overview, Technical Note #5092

i
813

i
Bibliography I

• Color Separation Conventions for PostScript Language Programs, Technical Note
#5044

• The Compact Font Format Specification, Technical Note #5176

• Encapsulated PostScript File Format Specification Version 3.0, Technical Note

#5002

• PostScript Language Document Structuring Conventions Specification Version
3.0, Technical Note #5001

• PostScript Printer Description File Format Specification, Technical Note #5003

• Type 1 Font Format Supplement, Technical Note #5015

• The Type 2 Charstring Format, Technical Note #5177

• The Type 42 Font Format Specification, Technical Note #5012

• Updates to the PostScript Language Reference Manual, Second Edition, Technical
Note #5085

Other Resources

Fairchild, M., Color Appearance Models, Addison-Wesley, Reading, MA, 1997.

Covers color vision, basic colorimetry, color appearance models, cross-media
color reproduction, and the current CIE standards activities. Updates, software,
and color appearance data are available at <http://www.cis.rit.edu/people/
faculty/fairchild/CAM.html>.

Farin, G., Curves and Surfaces for Computer Aided Geometric Design: A Practical
Guide, 4th ed., Academic Press, San Diego, 1997. Includes chapters on Coons
patches.

Field, G. G., Color and its Reproduction, Graphic Arts Technical Foundation,
Pittsburgh, 1988. Includes information on trapping algorithms and techniques.

Foley, J. et al., Computer Graphics: Principles and Practice, Addison-Wesley, Read-

ing, MA, 1996. (First edition was Foley, J. and van Dam, A., Fundamentals of
Interactive Computer Graphics, Addison-Wesley, Reading, MA, 1982.) Covers
many graphics-related topics, including a thorough treatment of the mathemat-
ics of Bézier cubics and Gouraud shadings.

I Bibliography
814

i 1

Hunt, R. W. G., The Reproduction of Colour, 5th ed., Fisher Books, England, 1996.

A comprehensive general reference on color reproduction; includes an introduc-
tion to the CIE system.

Institute of Electrical and Electronics Engineers, Inc. (IEEE), Standard 754-1985
for Binary Floating-Point Arithmetic, 1985. May be ordered from IEEE at <http://
www.ieee.com>.

International Color Consortium, /CC Profile Format Specification. This specifica-
tion and related documents are available at <http://www.color.org>.

International Electrotechnical Commission (IEC), Colour measurement and man-
agement in multimedia systems and equipment, Part 2: Default RGB color space—

sRGB, 9 January 1998. Available at <http://www.srgb.com/sRGBstandard.pdf>.

International Standards Organization, ISO/IEC 10918-1, Digital Compression
and Coding of Continuous-Tone Still Images. Informally known as the JPEG stan-
dard, for the Joint Photographic Experts Group (the organization that developed
the standard). May be ordered from the American National Standards Institute at
<http://web.ansi.org>.

International Telecommunication Union (ITU), Recommendations T.4 and T.6.
These standards for Group 3 and Group 4 facsimile encoding (which replace

those formerly provided in the CCITT Blue Book, Volume VII.3) may be ordered
from ITU at <http://www.itu.ch>.

Internet Engineering Task Force (IETF) Requests for Comments (RFCs) 1950,
ZLIB Compressed Data Format Specification Version 3.3; 1951, DEFLATE
Compressed Data Format Specification Version 1.3; and 2083, PNG (Portable
Network Graphics) Specification Version 1.0. Available through the RFC Editor
home page at <http://www.rfc-editor.org>.

Pennebaker, W., and Mitchell, J., JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, New York, 1992.

Smith, A., "Color Gamut Transform Pairs," Computer Graphics (ACM SIG-

GRAPH), Volume 12, Number 3, August 1978. Explanation of color conversions
between RGB, HSB, and gray levels. In this article, HSB is referred to as hue-

saturation-value, with conversions performed according to the "hexcone" model.

i
815

I
Bibliography I

Stokes, M., et al., A Standard Default Color Space for the Internet—sRGB,
5 November 1996. Available at <http://www.w3.org/Graphics/Color/sRGB> or
<http://www.color.org/sRGB.html>.

Warnock, J. and Wyatt, D., "A Device Independent Graphics Imaging Model for

Use with Raster Devices," Computer Graphics (ACM SIGGRAPH), Volume 16,
Number 3, July 1982. Technical background for the Adobe imaging model.

Wyszecki, G. and Styles, W., Color Science: Concepts and Methods, Quantitative

Data and Formulae, 2nd ed., John Wiley and Sons, New York, 1982. A detailed
reference on color theory.

817

INDEX

> (angle bracket, right)
as EOD indication (ASCI1HexDecode) 130

<> (angle brackets)
as hexadecimal string delimiter 30
special syntactic treatment of 27

«»(angle brackets, double)
compared with other uses of angle brackets 33
literal dictionary object created by 36

« (angle brackets, double left) operator
dictionary constructor role 33, 54
mark objects created by 44, 525

» (angle brackets, double right) operator
as dictionary constructor 33, 525
dictionary constructor role 54

@ (at sign)
as internal PostScript operator prefix 43

\ (backslash)
as escape character in text strings 29

\\ (backslash, double)
as ASCII encoding for backslash character (list) 29

\13 (backslash b)
as ASCII encoding for backspace character (list) 29

\f (backslash f)
as ASCII encoding for form feed (list) 29

\((backslash left parenthesis)
as ASCII encoding for left parenthesis character (list)

29

\n (backslash n)
as ASCII encoding for line feed (list) 29

\) (backslash right parenthesis)
as ASCII encoding for right parenthesis character (list)

29

\r (backslash r)
as ASCII encoding for carriage return (list) 29

\t (backslash t)
as ASCII encoding for tab character (list) 29

0 (curly brackets)
executable arrays enclosed by 36
as procedure delimiter 32
special syntactic treatment of 27

= (equals) operator 87, 526
== operator compared with 87
printing operand stack contents using stack 87

== (equals, double) operator 87, 526
= operator compared with 87
printing operand stack contents using pstack 87

() (parentheses)
ASCII encoding (list) 29
as literal text string delimiters 29

((parenthesis, left)
special syntactic treatment of 27

) (parenthesis, right)
special syntactic treatment of 27

% (percent sign)
comments initiated by 27
special syntactic treatment of 27

/ (slash)
as literal name delimiter 31
special syntactic treatment of 27
as valid literal name 31

// (slash, double)
as immediately evaluated name delimiter 31

//name syntax
immediately evaluated name 121-123, 167

specifying in a binary object sequence 169

(square brackets) operator
creating arrays with 54
literal array object created by 36

[(square bracket, left) operator
array construction role 32
mark objects created by 44,524
special syntactic treatment of 27

(square bracket. right) operator
See also array(s)
as array constructor 32, 524
special syntactic treatment of 27

— (tilde)
as ASCII base-85 string delimiter 31

—> (tilde angle bracket)
as EOD indication

ASC1185Decode 131
ASCI185Encode 131

<—> (tilde angle brackets)
as ASCII base-85 strings delimiter 31

I INDEX
818

A

abs operator 52, 527

absolute value calculation
See abs operator

AbsoluteColorimetric rendering intent 470

accents
See character(s)

access
attributes 37

setting (executeonly) 584
setting (noaccess) 628
setting (readonly) 640
testing read (rcheck) 638
testing write (wcheck) 718

conventions, for files 79
execute-only, as object attribute 37
invalid

errors (invalidaccess) 60, 80, 616
errors (Invalidfileaccess) 80,617

as object attribute, categories of 37
read-only, as object attribute 37
strings, for files (table) 79
unlimited, as object attribute 37

accessing
See also retrieving
dictionaries, methods for 41
fonts

CFF and Chameleon, in a PostScript program
346

findfont 315,323
metrics 332

stacks
dictionary 46
execution 46
operand 46
operand, as if it were an array (Index) 52,610

AccurateScreens user parameter
as halftone setting user parameter 757
halftone-setting operator impact 482
as type 1 halftone dictionary entry (table) 487
value (table) 749

ACFM (Adobe composite font metrics) files 333
achromatic color spaces 228-231

ActualAngle entry
as type 1 halftone dictionary entry (table) 488

ActualFrequency entry
as type 1 halftone dictionary entry (table) 487

add operator 52,527
as a function (example) 106
immediate execution use 47

addglyph operator 528
Type 4 CIDFont use 381

adding
glyphs 351-352
numbers (add) 527

additive color
devices, render color space use 461
models (RGB and HSB) 217

adjusting
pages 437
strokes, automatically 503-504

AdvanceDistance page device parameter 413

AdvanceMedia page device parameter 412

AFM (Adobe font metrics) files 333

algorithms
See also guidelines; rules
ASCII base-85 131
bit-oriented encoding

See CCITTFaxEncode filter
CIE-based color conversion to device color 459
device color space conversion 474
font mapping

composite fonts 358-362
FMapType selection of 358-360
FMapType (table) 92
nesting rules 363-364
(table) 360

image compression
See DCT (discrete cosine transform)

image interpolation 301
345— LZW (Lempel-Ziv-Welch) adaptive compression

method
See FlateDecode filter; FlateEncode filter; LZWDecode

filter; LZWEncode filter
mapping, CMap 388-389
PNG predictor 139
run-length encodin

See RunLengthDecode filter; RunLengthEncode filter
scan conversion 501, 503

abasing
causes, in color transitions 263
preventing, in shading patterns, AntiAlias (table) 262

All colorant name
Separation color space use 243

allocation
VM

by composite object constructors 58
policies (Font) 105
retrieving (currentglobal) 557
setglobal control of 60
setting (setvmthreshold) 688

abad operator 54,528

anchorsearch operator 55, 529

and operator 55,529

L

angle bracket, right (>)
as EOD indication (ASCIIHexDecode) 130

angle brackets k>)
in ASCII base-85 strings delimiters 31
as hexadecimal string delimiter 30
special syntactic treatment of 27

angle brackets, double («») operators
compared with other uses of angle brackets 33
literal dictionary object created by 36

angle brackets, double left («) operator
dictionary constructor role 33, 54
mark objects created by 525

angle brackets, double right (») operator
as dictionary constructor 33, 525
dictionary constructor role 54

Angle entry
as type 1 halftone dictionary entry (table) 487

AntiAlias entry
as shading dictionary entry (table) 262

appending
characters (write) 720
curves

curvet, 564
rcurveto 638

glyphs (charpath) 319
lines

Ilneto 622
rlineto 650

user paths (uappend) 706

applications
PostScript interpreter interactions 15-22
userdict and globaldict dictionaries use by 66

arc
adding to current path

arc 191, 530-531
arcn 191, 531-532
arct 191, 532-533
arcto 191,534

arc operator 177, 191, 530-531
operation code for encoded user paths (table)
user path 198

structuring 199

architecture
CID-keyed font 364
limits (table) 739

arcn operator 191, 531-532
operation code for encoded user paths (table) 201
user path 198

structuring 199

arct operator 191, 198, 532-533
operation code for encoded user paths (table) 201

819

I
INDEX I

arcto operator 191, 534
reasons why it is not a user path operator 198

areas
painting (fill) 177
path-enclosed

even-odd rule 196
nonzero winding number rule 195

arithmetic
See also mathematics
addition (add) 527
division

div 574
idly 605

errors (undefinedresult) 709
multiplication (mul) 627
negation (neg) 628
operators

immediate execution use (example) 46-47
(list) 508
overview 52

remainder (mod) 627
square root (sqrt) 692
subtraction (sub) 701

array operator 534
as composite object constructor 58
creating arrays with 53

array(s) 38
See also matrix
accessing operand stack as if it were (Index) 52, 610
binary object sequence encoding 166
as composite object (table) 34
constructing

counttomark 551
square brackets use 32

copying 39
copy 53,548

creating
I] 54,524
array 53, 534

elements
201 loading onto the operand stack (abad) 54, 528

retrieving (get) 53,598
retrieving the number of (length) 53,621
storing objects into (astore) 54
storing (put) 53, 635
storing the operand stack into (astore) 535

encoding 94
executable

building user paths as 204
execution handling 50
interpreter handling of (example) 48
semantics of 36

I INDEX
820

array(s) (continued)
executable (continued)

with immediate execution, binary object sequence
as 163

expanding values of (==) 87
heterogeneous composition permitted in 38
homogeneous number

as binary tokens 161-162
encoded number string use 171

literal array object 162
mapping a procedure over (forall) 53,597
operators

(list) 509
overview 52-55
that apply only to 54

packed
See packed arrays

procedure
objects as 33
semantics compared with 32

strings compared with 39
subintervals of

creating objects that share (getinterval) 53,599
overwriting (putintenral) 53,636

syntax 32
threshold 489-497

type 3 halftone dictionaries 490
type 6 halftone dictionaries 491-492
type 10 halftone dictionaries 492-495
type 16 halftone dictionaries 495-497

ASCII
See also text
base-85

decoding binary data from (ASCI I85Decode) 130
decoding binary data from (ASCI185Decode) (over-

view table) 85
encoding 31
encoding, algorithm description 131
encoding binary data as (ASCI185Encode) 131
encoding binary data as (ASCI185Encode) (overview

table) 85
decoding, filters, overview 84
encoding

arrays 32
comments 27
dictionaries 33
filters, overview 84
names 31
numbers 28
procedures 32-33
standard character set use 26-34
strings 29
strings, ASCII base-85 31
strings, ASCII base-85 algorithm description 131

ASCII (continued)
encoding (continued)

strings, hexadecimal 30-31
strings, hexadecimal, reading from an input file

(readhexstring) 73
strings, hexadecimal, writing to an output file

(writehexstring) 73
strings, literal text 29-30

hexadecimal
decoding binary data from (ASCIIHexDecode) (over-

view table) 85
encoding binary data as (ASCII HexEncode) (over-

view table) 85
as PostScript language encoding 25
tokens, binary tokens compared with 158

ASCI185Decode filter 84,85,98,130

ASCI185Encode filter 85,131-132

ASCIIHexDecode filter 82,85,130
ASCI1HexEncode filter 82,85,130

ashow operator 320,534-535

Asian character sets
CID-keyed font use 364-390

associating keys with dictionary values
def 54,568

a store operator 54,535
ostack array relationship to (table) 116

AsyncRead entry
precautions 154
as ReusableStreamDecode dictionary entry (table) 155

at sign (@) 43

atan operator 52,535-536

atob utility
ASCII base-85 encoding compared with 132

atomic objects
See simple objects

attribute(s)
access 37

file objects 79
of composite objects 37
setting (executeonly) 584
setting (noaccess) 628
setting (readonly) 640
testing read (rcheck) 638
testing write (wcheck) 718

executable 36
execution of objects with 50-51
precautions 36
setting (cvx) 568
testing for (xcheck) 721

of an image 289
literal 36

handling objects with 50

1
821

I
INDEX

attribute(s) (continued)
literal (continued)

setting (cvlit) 566
testing for (xcheck) 721

matching requests with, in media selection 403-407
of objects 35-37
operators

(list) 512
overview 56

awidthshow operator 320,536

axial shading pattern 261,266-268

B

Background array
as shading dictionary entry (table) 262

backing up
characters, control characters for interactive executive

use (table) 21

backslash (\)
as escape character in text strings 29

backslash, double (\\)
as ASCII encoding for backslash character (list) 29

backslash b (\ b)
as ASCII encoding for backspace character (list) 29

backslash f (\f)
as ASCII encoding for form feed (list) 29

backslash left parenthesis (\()
as ASCII encoding for left parenthesis character (list)

29

backslash n (\n)
as ASCII encoding for line feed (list) 29

backslash r (\r)
as ASCII encoding for carriage return (list) 29

backslash right parenthesis (\))
as ASCII encoding for right parenthesis character (list)

29

backslash t (\t)
as ASCII encoding for tab character (list) 29

backspace (BS)
interactive executive use (table) 21

backspace character
\b as ASCII encoding (list) 29

banddevice operator
usage guidelines 804

bandwidth
as scarce resource, binary tokens suitable for 156

base fonts 321,357
See also font(s)
character encoding scheme 328-330
dictionary entries common to all (table) 325

base-85 ASCII
decoding binary data from (ASCI185Decode) (overview

table) 85,130
encoding 31

algorithm description 131
binary data as (ASCI185Encode) 85,131

BBox array
See also bounding box
as form dictionary entry (table) 208
as shading dictionary entry (table) 262
as type 1 pattern dictionary entry (table) 251

begin operator 54,536
defineresource use of 100
dictionary, stack modifiable by 46

beg i nbfchar operator 384, 537

beg in bfrange operator 384,537

begincidchar operator 385, 537

begi ncid range operator 385,537

beg incmap operator 384,537

begincodespacerange operator 384, 537

beginnotdefchar operator 385, 538

beginnotdefrange operator 385,538

Begin Page page device parameter
device initialization (table) 427
operations 427-428

beginrearrangedfont operator 384,538

beginusematrix operator 385,538

behavior
communication channels 76
of objects, attributes impact on 35

Bernstein polynomials 285

Bézier
control points, type 6 shading pattern data source use

280
curves

adding segment to current path (arcto) 191
appending to current path (curveto) 564
appending to current path (rcurveto) 638
in Coons patch meshes 277
in tensor-product patch meshes 284

bilevel picture encoding 145

bilinear interpolation Ill

binary
encoding, details 156-174
object sequences 163-168

binary tokens compared with 158,169
encoded system names in 168-169
setting format (setobjectformat) 677
writing to standard output (printobject) 634
writing (writeobject) 721

radix number representation of 28
representation of integers, shifting bits in (bitshift) 539

I INDEX
822

binary (continued)
tokens 156,158-162

ASCII tokens compared with 158
binary object sequences compared with 169
encoded number strings as 171-172
encoded system names in 168-169
interpretation (table) 158-159

binary data
ASCII base-85 strings encoding of 31
ASCII-encoded hexadecimal strings

reading from an input file (readhexstring) 73
writing to an output file (writehexstring) 73

decoding
ASCI185Decode (overview table) 85
ASCI1HexDecode (overview table) 85

encoding
ASCI185Encode (overview table) 85
ASCI1HexEncode (overview table) 85
of font sets 343

fonts (StartData) 694
handling of 76
producing ASCII base-85 encoded data from

ASC1185Encode 131
producing from ASCII base-85 encoded data

ASC1185Decode 130
representation

ASCII encoding/decoding filters use for 84
ASCII-encoded hexadecimal strings 30-31

binary entry
as Senor dictionary entry (table) 117

bind operator 538-539
benefits of using 118
early binding of names with 118-121
eligibility requirements for use of 119
IdiomSet resource category use 97
immediate evaluation of names by 122
user path use 199

binding 117
late 117
names

bind 538-539
early binding of (bind) 117-123,118-121,538-539

bit-oriented encoding
CCITT fax standard as, implications for LowBitFirst

key 146
data compression with CCITTFaxEncode (table) 86
data decompression with CCITTFaxDecode (table) 86
LZW as, implications for LowBitFirst key 136

BitmapFontInft procedure set
LanguageLevel 3 operators defined in (table) 726
as standard procedure set in LanguageLevel 3 (table) 96
Type 4 CIDFont operators defined in 381

bitmaps (glyph)
in a Type 4 CIDFont 379-382

BitmapFontlnit (table) 96
stencil masking use for painting 303

bitshift operator 55,539

BitsPerComponent entry
as FlateEncode/FlateDecode dictionary entry (table)

138
as image data dictionary entry (table) 306
as image mask dictionary entry (table) 306
as LZW dictionary entry (table) 134
as predictor-related entry in LZW and Flate filter dic-

tionaries (table) 141
as type 1 image dictionary entry (table) 298
as type 4 image dictionary entry (table) 308
as type 4 shading dictionary entry (table) 270
as type 5 shading dictionary entry (table) 275 .
as type 6 shading dictionary entry (table) 279

BitsPerCoordinate entry
as type 4 shading dictionary entry (table) 270
as type 5 shading dictionary entry (table) 275
as type 6 shading dictionary entry (table) 279

BitsPerFlag entry
as type 4 shading dictionary entry (table) 270
as type 6 shading dictionary entry (table) 279

BitsPerSample entry
(example) Ill
as type 0 function dictionary entry (table) 109

bitwise
and operation (and) 529
bit shifting (bitshift) 539
exclusive or operation (xor) 722
inclusive or operation (or) 631
not operation (not) 629
operators

(list) 511
overview 55

black
diffuse black point (BlackPoint) (table) 224,230,465
generation

See black generation
pixels, encoding (Black's.° (table) 145
trapping rule 451-452

black generation 476-477
as graphics state parameter (table) 180
retrieving function (currentblackgeneration) 552
setting function (setblackgeneration) 476,658

usage guidelines (setblackgeneration) 806

BlackColorLimit entry
Trapping dictionary, entries (table) 448

BlackDensityLimit entry
Trapping dictionary, entries (table) 448

823
INDEX I

BlackIsl entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 145

BlackPoint array
as CIEBasedA dictionary entry (table) 230
as CIEBasedABC dictionary entry (table) 224
as type 1 CIE-based CRD entry (table) 465

BlackWidth entry
Trapping dictionary, entries (table) 448

blend circles
radial shading color blend based on 268-270

boolean
and operator (and) 529
binary object sequence encoding 166
exclusive or operator (xor) 722
false value (false) 587
inclusive or operation (or) 631
not operator (not) 629
objects 38
operators

(list) 511
overview 55

as simple object (table) 34
true value (true) 704

bounding box
See also clipping
BuildGlyph procedure use 339
current path, retrieving (pathbox) 631
fonts

accessing (FontBBox) 333
FontBBox (table) 325,370

form (BBox) (table) 208
glyph

FontBBox 331
setting (setcachedevice) 659
setting (setcachedevice2) 659

page device (Imag ing BBox) 414
retrieving, for current path (pathbox) 631
setting

operation code for encoded user paths (setbox) 201
setbox 198,657
ucache required to precede (example) (setbox)

202-203
user path structuring (setbox) 199

shading pattern (BBox) (table) 262
tiling pattern (BBox) (table) 251
user path, encapsulated with the path 198

Bounds array
as type 3 function dictionary entry (table) 114

brackets
angle (<>)

special syntactic treatment of 27
use in delimiting ASCII base-85 strings 31

brackets (continued)
angle brackets

double («») operators 33,36
double left («) operator 33, 54, 525
double right (») operator 33, 54, 525

curly ((J), as procedure delimiters 27, 32, 36
square bracket

left (() operator 27, 32, 44, 524
right (1) operator 27, 32, 524

brightness 217

BS (backspace)
interactive executive use (table) 21

btoa utility
ASCII base-85 encoding compared with 132

buffer flushing
flush 594
resetfile 645

buffering
of characters, flush and flushfile operations on 74
decoding filter impact 128
encoding filter impact 128
filter use of 127

BulldChar procedure 340-341
as Type 3 font dictionary entry (table) 338

BuildGlyph procedure 338-340
CharStrings compared with 351-352
as Type 1 CIDFont dictionary entry (table) 377
as Type 3 font dictionary entry (table) 338

building
See creating

Buildrime system parameter 751

byte(s) 157
characters synonymous with, file operator treatment

as 73
order 170

ByteOrder system parameter
machine representation of byte order 170
value (table) 751

bytesavailable operator 87, 539
ReusableStreamDecode filter use 154

CO array 113

Cl array 113

cache
font 333-335

currentcacheparams 552
incremental definition of font impact 354
loading glyphs into (addglyph) 528
setting parameters (setcacheparams) 661
setting (setcachedevice) 659
setting (setcachedevice2) 659

824
INDEX

cache (continued)
font (continued)

setting size (setcachellmit) 660
status (cachestatus) 540
Type 4 CIDFont advantages 380

pattern cell 250
user path 202-204

output placed in 198
retrieving status (ucachestatus) 707
setting (setucacheparams) 686
setting (ucache) 707

cachestatus operator 540

caching forms 207,209

capacity
See dictionaries, capacity

carriage return (CR)
as EOL, scanner handling of 74-75
numeric values (table) 27
\r as ASCII encoding (list) 29

carriage return-line feed (CR-LF)
as EOL, scanner handling of 74-75

case sensitivity of names 40

categories, resource
See resource(s), categories

Category resource category
all resource categories contained within 99
as category implementation dictionary entry (table)

101
creating new resource categories (example) 99
resource file loading of 105
as resource for defining new resource categories (table)

92

CCITT facsimile standard
data compression with CCITTFaxEncode (table) 86
data decompression with CCITTFaxDecode (table) 86
defined by CCITT (Comité Consultatif International

Téléphonique et Télégraphique) 143

CCITTFaxDecode filter 86,143-146
dictionary entries (table) 144-145

CCITTFaxEncode filter 86,143-146
dictionary entries (table) 144-145

CDevProc procedure
modifying glyph metrics with 350-351
as Type 0 CIDFont dictionary entry (table) 374
as Type 1 font dictionary entry (table) 326
as Type 2 CIDFont dictionary entry (table) 379
as Type 42 font dictionary entry (table) 347

CE encoding vector
(table) 773,786

ceiling operator 52,540

cell
halftone 482

cell (continued)
pattern 248

key 252
tiling an area with 250

CFF (Compact Font Format)
FontSet resource category 94
Type 2 font type 343-346

Chameleon (Type 14) font type 343-346

changing
See modifying

character(s) 313
See also font(s); glyph(s)
accents, recommended encoding 350
backing up, control characters for interactive executive

use (table) 21
bitmap character, stencil masking use for painting 303
buffered, flush and flushfile operations on 74
bytes synonymous with, file operator treatment as 73
CMap code mapping resource (table) 91
code mapping dictionaries (CMap) 94
codes (ISOLatinl Encoding) 618
collection 365

CIDSystemInfo specification of 367
control

communications use of 26
control characters for interactive executive use

(table) 21
echoing, enabling/disabling (echo) 575
encoding 328-330
erasing, control characters for interactive executive use

(table) 21
mapping 358-362
multiple-byte encodings, CID-keyed font use 364-390
names

font dictionary access through 328
portability advantages over character codes 330

newline 26
handling 30

octal character codes 30
painting (show) 177,329
reading (read) 73,639
selector 335
set

encoding vectors and (appendix) 773-794
Expert (table) 787-789
standard Latin (table) 779-783
Symbol (table) 792-793

stream, as object source 24
string objects use for holding 39
undefined, handling 389-390
white-space 26

(table) 27
writing, to an output file (write) 73, 720

825
INDEX I

charpath operator 540-541
appending glyphs to current path with 319
reasons why it is not a user path operator 198

charstring 329
CFF based on 343
Type 0 CIDFont use 371

CharStrings dictionary
adding or replacing glyphs in 351-352
character names defined in 330
as Type 1 font dictionary entry (table) 326
as Type 2 CIDFont dictionary entry (table) 378
as Type 42 font dictionary entry (table) 346

chroma-key
color key masking compared with 307

CID (character identifier)
See CID-keyed fonts

CID-keyed fonts 364-390
basics of 365-367
CIDFont dictionary 368-382
CIDSystemInfo dictionary (table) 368
CMap resource category 94
creating 387-390

composefont 545-546
CSL use 365
dictionary, CIDSystemInfo dictionary entry 367-368
relationship among components (figure) 367
resource category 94
Type 0 371-376

bibliographic reference 371
CIDInit (table) 96
dictionary (table) 373
GlyphDlrectory 375-376

Type 1 376-377
Type 2 377-379

dictionary (table) 378
GlyphDirectory 379

Type 4 379-382
BitmapFontlnit (table) 96
operators for 381-382

CIDCount entry
as Type 0 CIDFont dictionary entry (table) 373
as Type 2 CIDFont dictionary entry (table) 378

CIDFont resource category 94
bibliographic reference 366
CID-keyed font use 364,366
CIDFont dictionaries 368-382

(table) 370
cshow 551

CIDFont resource category
tibie) 91

CIDFontName entry
CIDFont dictionary entry (table) 370

CIDFontType entry
as CIDFont dictionary entry (table) 370
values (table) 370

CIDInit procedure set 384-385
See also CMap (character map), operators
LanguageLevel 3 operators defined in (table) 726
as standard procedure set in LanguageLevel 3 (table) 96

CIDMap entry
as Type 2 CIDFont dictionary entry 378

CIDMapOffset entry
as Type 0 CIDFont dictionary entry (table) 373

CIDSystemInfo dictionary 367-368
as CIDFont dictionary entry (table) 370
as CMap dictionary entry (table) 383
(table) 368

CIE
as Commission Internationale de l'Éclairage standard

organization 214

CIE-based color spaces 220-238
color rendering dictionaries

customizing 472-473
setting (setcolorrendering) 663
type 1 460-473,461-468
type 1 (table) 463

converting to device colors 459-473
steps involved 461

Decode array mapping 300
gamut mapping function, gamma correction contrasted

with 478
operators (currentcolorrendering) 553
overview 214
page device color support parameter (UseCIEColor) 422
remapping device colors to 237-238
rendering

findcolorrendering 591
intents 469-473
overview 457
rules for shading patterns 264

CIEBasedA color space 228-231
as CIE-based color space family 214
dictionary (table) 229

CIEBasedABC color space 221-228
as CIE-based color space family 214
CIEBasedDEF and CIEBasedDEFG relationship 233
ColorSpaceFamily resource category 98
dictionary (table) 223-224

CIEBasedDEF color space 232-237
as CIE-based color space family 214
dictionary (table) 233

CIEBasedDEFG color space 232-237
as CIE-based color space family 214
dictionary (table) 235

I INDEX
826

I •

circle
See arc

circular queue
treating stack portion as (roll) 52,650

clear operator 52,541
usage guidelines 804

cleardictstack operator 54,541
dictionary stack modifiable by 46
usage guidelines 804

clearing operand stack
clear 52
elements above the highest mark (cleartomark) 52,541

cleartomark operator 44, 52, 541

clip operator 178,193,542

clippath operator 193, 542-543

clipping
See also bounding box
even-odd (eocIlp) 579
of function values 107
in imaging model 176
LanguageLevel 1 use for simulation of masking 302
operators

clip 542
clippath 542-543
cliprestore 543
clipsave 543-544
initclip 611
rectclip 641

path 178,192-193
as graphics state parameter (table) 179
computing a new path (clip) 193
current, insideness testing disregard of 197
operators 193
restoring (cliprestore) 193
retrieving (clippath) 193
saving (clipsave) 193
setting (initclip) 611
stack 192
stack, as graphics state parameter (table) 179
stack, as one of five execution state stacks 45

rectangles (rectclip) 641
scan conversion 503
user paths 205

cliprestore operator 192,193,543

clipsave operator 192,193,543-544

closefile operator 80,544
CloseTarget and CloseSource use by 129
with an encoding filter 128
ReusableStreamDecode filter use 154

closepath operator 177,191,198,544
operation code for encoded user paths (table) 201
subpath closing 190,194

CloseSource entry
ASCI185Decode use of 131
ASCIIHexDecode use of 130
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 145
decoding filters with 129
filter file closing 124
as FlateEncode/FlateDecode dictionary entry (table)

138
as LZW dictionary entry (table) 134
as ReusableStreamDecode dictionary entry (table) 155
as SubFileDecode dictionary entry (table) 152

CloseTarget entry
ASCI185Encode use of 132
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 145
as DCTEncode dictionary entry (table) 150
encoding filters with 129
filter file closing 124
as FlateEncode/FlateDecode dictionary entry (table)

138
as LZW dictionary entry (table) 134

closing
files 79-80

closefile 80,544
restore 80

paths (closepath) 544
subpaths (closepath) 191, 194

CMap (character map)
bibliographic reference 366
dictionaries 382-387

as font mapping algorithm (table) 360
as Type 0 font dictionary entry (table) 358
CID-keyed font use 364
CIDSystemInfo dictionary entry 367-368
(example) 385-387
operators in the CIDInit procedure set 384-385
(table) 383

mapping algorithm 388-389
operators 384-385

beginbfchar 537
beginbfrange 537
begincldchar 537
begincidrange 537
begincmap 537
begincodespacerange 537
beginnotdefchar 538
beginnotdefrange 538
beginrearrangedfont 538
beginusematrix 538
endbfchar 577
endbfrange 577
endcidchar 577
endcidrange 578
endcmap 578

827
INDEX

CMap (character map) (continued)
operators (continued)

endcodespacerange 578
endnotdefchar 578
endnotdefrange 579
endrearrangedfont 579
endusematrIx 579
usecmap 712

specification (usecmap) 712

CMap dictionary
as Type 0 font dictionary entry (table) 358

CMap resource category 94,388-389
(table) 91

CMapName entry
as CMap dictionary entry (table) 383

CMapType entry
as CMap dictionary entry (table) 383

CMapVersion entry
as CMap dictionary entry (table) 383

CMYK (cyan-magenta-yellow-black)
calibrated, CIEBasedDEF and CIEBasedDEFG use 232
color extensions, LanguageLevel 2 (list) 733
DeviceCMYK color space 211,218-219

conversion between DeviceGray color space and
475

conversion from DeviceRGB to 475-477
conversion to DeviceRGB from 477
currentcmykcolor 215,219
remapping to CIE-based color space 237-238
setcmykcolor 219
setcolor 219
setcolorspace use 219

operators
currentcmykcolor 553
setcmykcolor 662

setcmykcolor 194
as subtractive color model 218

CodeMap entry
as CMap dictionary entry (table) 383

codes
ASCII character set 26-27
character (ISOLatinl Encoding) 618
font encoding

for base fonts 328-330
for CID-keyed fonts 366
for composite fonts 356-362

Collate page device parameter 417

color
CIE-based, converting to device color 459-473
corrections, remapping device colors to CIE-based col-

or space use 237
data

compressing (DCTEncode) (table) 86

color (continued)
data (continued)

decompressing (DCTDecode) (table) 86
device, converting CIE-based color to 459-473
different, tiling with, uncolored tiling pattern use 257
duotone 245
facilities, overview 210
function use 106
glyph, not retained in font cache 334
glyph painting, setting 318
as graphics state parameter (table) 179
gray, setting (setgray) 671
halftone dictionaries, with multiple color components

497-499
halftone screen definition (setcolorscreen) 481
high-fidelity 245
images

colorlmage 544-545
compression, DCT algorithm impressive with 147
with a single source (example) 310

key masking, of images 307-308
lines, setting (sethsbcolor) 194
mapping

functions, as CIE-based color rendering dictionary
component 460

sample data to 291
maps, selecting colors from, Indexed color space use

239-241
media (MediaColor) 401
models

HSB 217
process colors (ProcessColorModel) 420,422-424
RGB 217
specification for rendering 419
subtractive, CMYK 218
subtractive, tints as, in Separation color spaces 242

multitone 245
patterns 248-287

colored tiling patterns 254-257
specifying (table) 251
uncolored tiling patterns 257-259

process 218,241
rendering

as graphics state parameter (table) 180
CIE-based 460-461
CIE-based, customizing 472-473
CIE-based, Type 1 461-468
(figu re) 213
overview 210
setting (setcolorrendering) 663

setting (setcolor) 662
spaces

See color spaces
specification

(figure) 212

INDEX
828

color (continued)
specification (continued)

overview 210
spot 241
support for

page device parameters 419-426
page device parameters (table) 420-422

transfer functions
retrieving (currenttransfer) 563
setting (setcolortransfer) 479,666
setting (settransfer) 479
TransferFunction in halftone dictionary 488,490,

491,495
transition

See gradient
values 210

operators 214-216
semantics of 211-248

vision, CIE-based color spaces modeling of 220-238,
459

wheel, HSB represented as 218

color spaces 210-248
as graphics state parameter (table) 179
CIE-based

See CIE-based color spaces
conversion between DeviceRGB and DeviceGray 474-

475
currentcolorspace 554
device 216-220

conversion of CIE-based color to 461
conversions among 473-478
DeviceCMYK 218-219
DeviceGray 211,219-220
DeviceGray setting (setgray) 671
DeviceN 245-247
DeviceRGB 217-218
overview and operators 211
Separation 241-245

DeviceCMYK 218-219
DeviceGray 211,219-220
DeviceGray setting (setgray) 671
DeviceN 245-247
DeviceRGB 217-218
families of 211-214
images and 296-297
Indexed 239-241
native 473
operators 214-216
Pattern 238-239,254

uncolored tiling pattern use 257
pattern, selecting 249
process color model contrasted with 423
relationships among (figure) 212
remapping DeviceGray to CIE-based 237-238

color spaces (continued)
render 461
retrieving (currentrgbcolor) 561-562
Separation 241-245
setcmykcolor 211
setcolorspace 211
setgray 211
sethsbcolor 211
setrgbcolor 211
setting

setcmykcolor 662
setcolorspace 665
sethsbcolor 672
setrgbcolor 681

special 238-247
special shading considerations 263-264
types of 210-216
underlying

for colored tiling pattern 254
for uncolored tiling pattern 257

Co lora ntDetails dictionary
TrappingDetails dictionary entry (table) 442

ColorantDetails page device parameter
dictionary entries (table) 443

colorants
available, determining for a Separation color space 243
device, separations and 424-426
InkParams resource category (table) 91
managing, Separation color space use 241
separations compared with 242
spot 424
zone-specific colorant details 454

ColorantSetName entry

as ColorantDetails dictionary entry (table) 443
ColorantZoneDetalls dictionary

entries (table) 454
as Trapping dictionary entry, entries (table) 449

colorimage operator 544-545
color space

conflicts with Pattern color space 254
use 296

images as color value source 211
sample

data sources 291
representation 290

uncolored tiling pattern prohibited from using 257

ColorRendering procedure set
customizing CRD selection use 472
LanguageLevel 3 operators defined in (table) 726
as standard procedure set in LanguageLevel 3 (table) 96

ColorRendering resource category 96
(table) 91

829
INDEX I

ColorRenderingType entry
as type 1 CIE-based CRD entry (table) 463

ColorRenderingType resource category 98

Colors entry
as DCTEncode dictionary entry (table) 148
as FlateEncode/FlateDecode dictionary entry (table)

138
as LZWEncode/LZWDecode dictionary entry (table) 134
as predictor-related entry in LZW and Flate filter dic-

tionaries (table) 141

ColorSpace entry
as shading dictionary entry (table) 262

ColorSpace resource category 96
(table) 91

ColorSpaceFamily resource category 98

ColorTransform entry
as DCTEncode dictionary entry (table) 149

Columns entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 144
as DCTEncode dictionary entry (table) 148
as FlateEncode/FlateDecode dictionary entry (table)

138
as LZWEncode/LZWDecode dictionary entry (table) 134
as predictor-related entry in LZW and Flate filter dic-

tionaries (table) 141

command array
as Serror dictionary entry (table) 116

comment syntax 27

communication
bandwith as scarce resource, binary tokens suitable for

156
channel behavior 76

Compact Font Format (CFF)
Type 2 font type 343-346

comparing objects
for equality (eq) 580
for greater-than-or-equal relation (ge) 598
for greater-than relation (gt) 604
for inequality (ne) 628
for less-than-or-equal relation (le) 620
for less-than relation (It) 623

compatibility
CIDFont issues, when composite font descendant 369
CIDSystemInfo requirements 368
CSL use as CID-keyed font handler 365
LanguageLevels, incompatibilities among 735
operators

currentshared 562
scheck 655
setshared 682
shareddict 689
SharedFontDirectory 689

compatibility (continued)
strategies for (appendix) 761-771
types 2 and 4 halftone directories supported for 498
upward, idiom recognition use for 119

composefont operator 545-546
CID-keyed font use 366
CIDFont resource category use by 94
CMap resource category use by 94

composite
fonts 357-364,357

cshow 551
encoding array use 94
LanguageLevel 2 (list) 734
mapping algorithm, FMapType resource category

(table) 92
nested 363-364

objects 34-35
access attributes 37
as graphics state parameters, handling of 178
binary object sequence structure recommendations

167
delimiters for literals 58
graphics state restrictions 215
types of (table) 34
VM as pool for values of 57

compression
Sée also decompression; filters
of data

CCITTFaxEncode (table) 86
FlateEncode (overview table) 85
image data (DCTEncode) (table) 86
LZWEncode (overview table) 85
RunLengthEncode (overview table) 86

data
LZW method 133-137
zlib/deflate compressed format, Flate encoding of

137-142
DCTEncode issues 150
filters, overview 84
of images, color, DCT algorithm impressive with 147

concat operator 547
user space modification by 185

concatmatrix operator 547

conditional execution
if 606
ifelse 607
subfile use for 151

cone depiction with radial shading 270

configurationerror error 547

connected segments 189

constants as literal objects 36

construction
See also creating; defining

830
INDEX

construction (continued)
of arrays (counttomark) 551
of dictionaries («») 54,525
of glyphs

BuildChar 340-341
BuildGlyph 338-340

of paths 189-193
operators 177,191
operators (list) 518-519
operators, overview 175

of user paths 198-200

constructors
array, square brackets as 32
dictionaries, double angle brackets use for 33

control
characters

communications use of 26
control characters for interactive executive use

(table) 21
codes, as device dependent elements independent of

PostScript language 76
constructs

control operators use as 49
(example) 49

language 97
support (ControlLanguage) (table) 91

operators
(list) 512
overview 55-56

overprint 247-248

control-C
interactive executive use (table) 21

control-R
interactive executive use (table) 21

control-U
interactive executive use (table) 21

ControlLanguage resource category 97
description (table) 91

controlling devices (chapter) 391-456

conventions
access, for files 79
end-of-line 74-75
font naming 328
naming

devices 78
file system 78
files 77

structured programs 17-18
further information on, "PostScript Language Doc-

ument Structuring Conventions" 813

conversion
CIE-based color space to device color space, steps

involved 461

color, as rendering step 457
among device color spaces 473-478
from DeviceCMYK to DeviceRGB 477
between DeviceGray and DeviceCMYK 475
to DeviceN 478
between DeviceRGB color space and DeviceGray 474-

475
from DeviceRGB to DeviceCMYK 475-477
of objects

to integers (cvi) 566
to literal (atilt) 566
to real numbers (cvr) 567
to strings (cvs) 568

operators
(list) 512
overview 56

of radix numbers to strings (cvrs) 567
scan 12-13

as potential glyph rendering component 334
as rendering step 458
details 501-504
rules 502-503

of strings to a name object (cvn) 566
type, between integer and real objects 38

Coons
patch mesh

as special case of tensor-product patch meshes 285
as type 6 shading 261,277-283
tensor-product patch meshes compared with 283

surface equations 278
in tensor-product patch meshes 286

coordinate(s)
space, shading 261
system 182-189

defining with respect to current page 183
forms 208
glyph 331
glyph, transforming into user coordinate system

324
operator overview 175
operators (list) 517,517-518
pattern 252
source image 293-296
specifying for each graphical element 185

transformation 182-189
effects (figure) 188
operators 184
operators, modifying user space with 184
rotate 651
scale 654
translate 704

in user space, specifying 184

Coords array
as type 2 shading dictionary entry (table) 266

831
INDEX I

Coords array (continued)
as type 3 shading dictionary entry (table) 268

copy operator 51,53,548-549

copying 35
arrays 39

copy 548
dictionaries 42

copy 548
files 44
objects

on the operand stack (dup) 51,575
simple vs. composite 35

packed arrays (copy) 548
portions of the operand stack (copy) 51,548
strings 40

copy 548

copypage operator 549-550
Pa i ntProc procedure prohibited from using 209
usage guidelines 804
use of 392

copyrights 9

cos operator 52,550

count operator 52,550

countdictstack operator 54, 551

countexecstack operator 55, 551

counting
entries on execution stack (countexecstack) 551
number of dictionaries on the dictionary stack

(countdictstack) 54, 551
operand stack elements

above the highest mark (counttomark) 52,551
count 52,550

counttomark operator 44,52,551

Courier font family 777

CR (carriage return)
as EOL, scanner handling of 74-75
numeric values (table) 27
V as ASCII encoding (list) 29

CR-LF (carriage return-line feed) 74-75

CRD (color rendering dictionaries) 460-473
customizing selection of 472-473
retrieving alternate (GetSubstituteCRD) 600
setting (setcolorrendering) 663
type 1 461-468

(table) 463

creating
See also construction; defining
arrays

(1 54,524
array 53, 534
counttomark 551

creating (continued)
arrays (continued)

that share a subinterval with an array (getinterval)
53,599

CID-keyed fonts 387-390
composefont 545-546

clipping path (clip) 193
composite

fonts 357-364
objects, impact on VM 58

dictionaries
«» 54,525
dict 53,572

files (file) 79-80,587
filters (filter) 83-84, 589
IdiomSet instance (example) 120
names 40
objects, in VM (example) 60
packed arrays

packedarray 53,631
that share a subinterval with a packed array

(getinterval) 53, 599
paths (newpath) 191,628
patterns 249

(makepattern) 625
random numbers (rand) 637
resource categories 99-102
resource category, Generic use as template for 102-103
resources (defineresource) 89
strings

string 53,699
that share a subinterval with a string (getinterval)

53,599
subpaths

moveto 627
rmoveto 650

tiling patterns with gradient fill 261
user paths (upath) 712

CreationDate entry
as type 1 CIE-based CRD entry (table) 468

cshow operator 321,551
CIDFont restrictions 369

CSL (CID Support Library)
bibliographic reference 365
purposes of 365

CTM (current transformation matrix) 175
See also matrix
BuildGlyph procedure use 339
current path unaffected by changes to 191
graphical element modification (example) 186
as graphics state parameter (table) 179
operators that modify 185
setting (setmatrix) 675

to default for current device (initmatrix) 613

832
I INDEX

CTM (current transformation matrix) (continued)
user paths interaction with 205
user space to device space transformation specified by

184

cubic section
appending, to current path (curveto) 564

CurDisplayList system parameter
value (table) 751

CurFontCache system parameter
glyph consumption reflected in 382
value (table) 751

CurFormCache system parameter
value (table) 751

curly brackets (0)
executable arrays enclosed by 36
as procedure delimiter 32
special syntactic treatment of 27

CurMID entry
as Type 0 font dictionary entry (table) 358

CurOutlineCache system parameter
value (table) 751

CurPatternCache system parameter
value (table) 751

current
clipping path 178

insideness testing disregard of 197
dictionary 42
file object, retrieving (currentfile) 87
font 316
page 176
path 190-192, 190
point 191

currentblackgeneration operator 552

currentcacheparams operator 552

currentcmykcolor operator 215, 553
CIE-based and special color spaces not convertable by

219
DeviceCMYK use 219

currentcolor operator 215, 553

currentcolorrendering operator 553

currentcolorscreen operator 554

currentcolorspace operator 214,554

currentcolortransfer operator 555

currentdash operator 555

currentdevparams operator 87, 555

currentdict operator 555

currentfile operator 87, 556
(example) 84
filter file use 124
obtaining current file with 74

currentflat operator 556

currentfont operator 557
rootfont compared with 318

currentglobal operator 557

cu rrentg ray operator 215, 557
DeviceGray use 220

currentgstate operator 558
global VM precautions 67
gstate object management 182

currenthalftone operator 558

currenthsbcolor operator 215, 558
DeviceRGB use 218

currentlinecap operator 559

currentlinejoin operator 559

currentlinewidth operator 559
current line width retrieving 178

currentmatrix operator 559

currentmiterlimit operator 560

currentobjectformat operator 560

currentoverprint operator 560

currentpacking operator 54,560

currentpagedevice operator 395, 560
recovery policies and 433-434

currentpoint operator 561

currentrgbcolor operator 215, 561-562
DeviceRGB use 218

currentscreen operator 562

currentshared operator 562

currentsmoothness operator 563

currentstrokeadjust operator 563

currentsystemparams operator 563

currenttransfer operator 563

currenttrapparams operator 564

currentundercolorremoval operator 564

currentuserparams operator 564

CurScreenStorage system parameter
value (table) 751

CurSourceList system parameter
value (table) 751

CurStoredScreenCache system parameter
value (table) 751

CurUPathCache system parameter
value (table) 751

curve
Bézier, adding segment to current path (arcto) 191

curves
appending

to current path (curveto) 564
to current path (rcurveto) 638

curveto operator 177, 191, 198, 564
operation code for encoded user paths (table) 201

833
INDEX I

CutMedia page device parameter 413

cvi operator 56,566

cvlit operator 56,566
user path object use 204

cvn operator 56,566

cvr operator 56,567

cvrs operator 56,567

cvs operator 56,568
overwriting behavior of 59

cvx operator 56,568

D

DamagedRowsBeforeError entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 145

dangling references
potential for, as reason for Invalidaccess error 60

dash
See also line(s)
as graphics state parameter (table) 180
pattern

currentdash 555
setdash 194,666

(1.0.1

compression
CCITTFaxEncode (table) 86
FlateEncode (overview table) 85
image data (DCTEncode) (table) 86
LZW method 133-137
LZWEncode (overview table) 85
RunLengthEncode (overview table) 86
zlib/deflate compressed format, Elate encoding of

137-142
decompression

CCITTFaxDecode (table) 86
FlateDecode (overview table) 86
image data (DCTDecode) (table) 86
LZWDecode (overview table) 85
RunLengthDecode (overview table) 86

pass-through
NullEncode (table) 86
ReusableStreamDecode 153-156
subfile filters use for, overview 85
SubFileDecode (table) 86

sample, decoding 299-301
sources 123-127
targets 123-127
transformation, filters use for 82
types and objects 34-45

DataDIct dictionary
as type 3 image dictionary entry (table) 304

DataSource entry
as image data dictionary entry (table) 305
as image mask dictionary entry (table) 306
as shading dictionary entry, requirements for 263
size requirements 110
as type 0 function dictionary entry (table) 109
as type 1 image dictionary entry (table) 298
as type 4 image dictionary entry (table) 308
as type 4 shading dictionary entry (table) 270
as type 5 shading dictionary entry (table) 275
as type 6 shading dictionary entry (table) 279

DCT (discrete cosine transform) algorithm
compression of image data (DCTEncode) (table) 86
decompression of image data (DCTDecode) (table) 86
as JPEG encoding technique, used by DCTEncode/

DCTDecode filters 147

DCTDecode filter 86,146-150
not recommended as source of type 4 image dictionary

308

DCTEncode filter 86,147-150
data requirements 128
dictionary, entries (table) 148

deallocation
issues, in VM management 60

debugging
See also errors
== (double equals) operator use 526

Decode array
as image data dictionary entry (table) 306
as image mask dictionary entry (table) 307
increasing the accuracy of encoded samples with Ill
mapping with (figure) 112
as type 0 function dictionary entry (table) 109
as type 1 image dictionary entry (table) 298
as type 4 image dictionary entry (table) 308
as type 4 shading dictionary entry (table) 270
as type 5 shading dictionary entry (table) 275
as type 6 shading dictionary entry (table) 280

DecodeA procedure
as CIEBa sed A dictionary entry (table) 229

DecodeABC array
a, CIEBasedABC dictionary entry (table) 223

DecodeDEF array
C EBa sedDEF dictionary entry (table) 233
CIEBasedDEFG dictionary entry (table) 235

DecodeLMN array
CIEBasedA dictionary entry (table) 230
CIEBasedABC dictionary entry (table) 223

DecodeParms Lmtt \
as ReusableStreamDecode dictionary entry (table) 155

decoding
See also encoding; filters
ASCII, filters, overview 84

I INDEX
834

decoding (continued)
binary data

ASCI185Decode (overview table) 85,130
ASCI1HexDecode (overview table) 85

filters 82,123,127-128
file use 124

LZW, LZWDecode filter 132-137
sample data, sample data 299-301

decompression
See also compression; filters
of data

CCITTFaxDecode (table) 86
FlateDecode (overview table) 86
image data (DCTDecode) (table) 86
LZWDecode (overview table) 85
RunLengthDecode (overview table) 86

filters, overview 84

def operator 54,568
userdict dictionary entry definition with 42

default
error handling

errordict 56
procedures 115-116

matrix (defaultmatrix) 569
user space 183

defaultmatrix operator 569

deferred execution 25,47-49
procedures characterized by 33

DeferredMediaSelection page device parameter 403

definefont operator 88,93,569
associating a resource instance with a category and

name 104
composite font handling 364
font dictionary use 323
font modification restrictions 353
FontDirectory dictionary updated by (table) 65
FontName parameter use with 328
GlobalFontDirectory dictionary updated by (table) 66

defineresource operator 88,570-571
associating a resource instance with a category and

name 104
Category key use by, category implementation diction-

ary (table) 101
creating resources with 89
DefineResource key use by, category implementation

dictionary (table) 101
font resource handling 324
implicit resource handling 98-99
InstanceType key use by, category implementation dic-

tionary (table) 101
resource category implementation dictionary use by

100
types of keys 90

defineresource operator (continued)
VM use 89

DefineResource procedure
as category implementation dictionary entry (table)

101
defineresource use of 100

defineuserobject operator 571
user objects

defining 67
defining (example) 68

defining
See also construction; creating
fonts (definefont) 569
glyphs

incrementally 352-356
incrementally, general considerations 353-354

halftones 481-482
patterns 249
resources

Category (table) 92
defineresource 89,570-571

user objects
defineuserobject 67,571
defineuserobject (example) 68

userdict entries, def use for 42

definitions of terms
access

attributes 37
string 79

adjusting pages 437
arrays 38

encoding 94
homogeneous number 161
literal array object 162
packed 39

attributes
access 37
executable 36
literal 36

base fonts 321,357
binary

object sequences 156,163
tokens 156

binding
early 117
late 117

black generation 476-477
(table) 180

bounding box
glyph 331
(table) 208

brightness 217
byte 157
cache, user path 202

i
835

I
INDEX I

definitions of terms (continued)
cell

halftone 482
key pattern 252
pattern 248

characters 313
CMap (character map) 366
collection 365
newline 26
selector 335
white-space 26

charstring 329
clipping path 178, 192

stack 192
stack (table) 179
(table) 179

closed path 190
CMap (character map) 366

dictionaries 366
collection

character 365
garbage 63

color
space, render 461
tiling patterns 254

colors
duotone 245
high-fidelity 245
models, HSB 217
models, RGB 217
multitone 245
process 218,242
rendering. (table) 180
space (table) 179
(table) 179
value 210

comments 27
composite

fonts 357
objects 34

connected segments 189
consume 25
control, language 97
coordinates 182

form coordinate system 208
glyph coordinate system 331
pattern coordinate system 252

copying 35
CTM (current transformation matrix)

(table) 179
current

clipping path 178
dictionary 42
font 316
page 176

definitions of terms (continued)
current (continued)

path 190
point 191

dash pattern (table) 180
decoding, filters 82, 123
default, user space 183
deferred execution 25
descendent font 357
details dictionary 397
device

file system 77
space 182
(table) 181

dictionaries, halftone 483
dictionary 41

current 42
function 107
globaldict 42
stack 42, 45, 56
systemdict 42
userdict 42

domain 107
duotone color 245
early binding 117
encapsulation 69
encoded

system names
user path 200

encoding
arrays 94
filters 82, 123

execution
multiple contexts 57
stack 25, 45, 57

exponential interpolation functions 107
file 43,73

objects 43
positionable 80
standard input 44,57
standard output 44,57
system devices 77

fill, gradient 248
filter 82

decoding 82, 123
encoding 82, 123

fixed-pitch fonts 320
fixed-point numbers 160

175 flatness (table) 181
fonts 314

base 321,357
composite 357
current 316
descendent 357
fixed-pitch 320

160

I INDEX
836

definitions of terms (continued)
fonts (continued)

modal 363
monospaced 320
parent 357
proportional 320
rearranged 364
root 357
set 343
(table) 179
variable-pitch 320

form coordinate system 208
format, structured output 172
forms 206
functions 106

dictionary 107
exponential interpolation 107
sampled 107
spot 484
stitching 107
transfer 478

gamma correction 457
gamut 245, 459-460
garbage collection 63
global virtual memory 59
globaldict dictionary 65
glyph 313

coordinate system 331
metric parameters 331
width 320

gradient fill 248,259
graphics state 57, 178

stack 181-182
halftone 480

cell 482
dictionaries 483
screens 481
(table) 180

high-fidelity color 245
homogeneous number arrays 161
HSB color model 217
hue 217
idiom recognition 119
image 288

current 176
space 294

implicit, resources 90
incremental definition 353
integer 28
interactive executive 81
interleave blocks 304
interpolation, exponential interpolation functions
inverse, of a transformation 189
job 57,68

server 68

definitions of terms (continued)
key, dictionary 41
key pattern cell 252
language, control 97 •
late binding 117
line

cap (table) 180
join (table) 180
width (table) 179

literal array object 162
local virtual memory 59
looping context 585
mark 44
media

destinations 416
sources 398

memory, virtual 57
misregistration 439
miter joins limit (table) 180
modal fonts 363
models, color 217
monospaced fonts 320
multiple execution contexts 57
multitone color 245
name 40

system name index 168
native color space 473
neutral density 444
newline characters 26
null objects 44
numbers 38

fixed-point 160
homogeneous number arrays 161
integer 28
real 28

numeric objects 37
objects 24

attributes, executable 36
attributes, literal 36
binary object sequences 156, 163
composite 34
file 43
literal array 162
null 44
save 44
simple 34
types 34
user 67

open path 190
operand stack 45,56
operators 42

107 overprint (table) 180
packed arrays 39
page, sets 419
painting 193

837 INDEX I

definitions of terms (continued)
parent font 357
path 177, 189

clipping 178, 192
clipping path stack 192
clipping (table) 179
closed 190
current 190
encoded user path 200
open 190
subpaths 190
(table) 179
user path cache 202

patterns 248
cell 248
coordinate system 252
dash (table) 180
key pattern cell 252
shading 248
tiling 248
tiling, colored 254
tiling, uncolored 257

pipeline 83
point 183

current 191
polymorphism 52
position (table) 179
position number 398
positionable 80
positions 398
procedure 24, 38

sets 95
process colors 218,242
proportional fonts 320
range 107
real numbers 28
rearranged font 364
recovery policy 433
regular, resources 90
render color spaces 461
request dictionary 394
resources 88

implicit 90
regular 90

reusable, streams 153
RGB color model 217
root font 357
sampled functions 107
saturation 217
save objects 44
screens, halftone 481
separation 242,424
sequences, binary object 156, 163
server, job 68
set

font 343

definitions of terms (continued)
set (continued)

procedure 95
shading patterns 248
simple objects 34
smoothness (table) 181

space
color (table) 179
device 182
image 294
user 182
user, default 183

spot colorants 424
spot functions 484
stack 45

clipping path 192
clipping path (table) 179
dictionary 42, 45, 56
execution 25, 45, 57
graphics state stack 181-182
operand 45,56

standard input file 44,57
standard output file 44,57

state
graphics 57, 178
graphics state stack 181-182

stencil mask 301
stitching functions 107, 113
streams, reusable 153
strings 39

access 79
stroke adjustment (table) 180
stroking 193
structured output format 172
subpaths 190
supercells 501
system name index 168
systemdict dictionary 65
tiling 250

patterns 248
patterns, colored 254
patterns, uncolored 257

token 26
binary 156
type 157

transfer
functions 478
(table) 180

transformation
inverse of 189
matrix form (table) 208

trap 439
trays 398
type

object 34
token 157

838
I INDEX

definitions of terms (continued)
uncolored tiling patterns 257
undercolor removal 476-477

(table) 180
unique ID 335
user

encoded user path 200
objects 67
path cache 202
space 182
space, default 183

userdict dictionary 65
value

color 210
dictionary 41

variable-pitch fonts 320
virtual memory 57

global 59
local 59

VM 57

white-space characters 26
width, glyph 320

DEL (delete)
interactive executive use (table) 21

deletefile operator 572
file system access by 77
operand formats 78
special file name not used by 78

deleting
See removing

deprecated practices
copypage 549-550

defining patterns as halftone screens 249
page device switching 431

deriving
fonts 348-356

descendent fonts 357

details dictionaries
for page devices 397
trapping 441-445

device(s)

See also hardware; input; output; product-dependent
color spaces 216-220

conversion between DeviceRGB and DeviceGray
474-475

conversion of CIE-based color space to, steps
involved 461

conversions among 473-478
DeviceCMYK 218-219
DeviceGray 211,219-220
DeviceGray setting (setgray) 671
DeviceN 245-247

DeviceRGB 217-218

l i
device(s) (continued)

color spaces (continued)
not equivalent to CIE-based color spaces 221
overview 211

remapping DeviceGray to CIE-based 237-238
rendering rules for shading patterns 264
Separation 241-245

colorants, separations and 424-426
colors

converting CIE-based color to 459-473

remapping to CIE-based color spaces 237-238
dependence

color handling, setoverprint operator 247-248
color rendering as 210
graphics operations (chapter) 457-504
graphics state parameters (table) 180-181
Type 4 CIDFont considerations 379

file system 77

gamut mapping function, as CIE-based color rendering
dictionary component 460

as graphics state parameter (table) 181
independence

color spaces, CIE-based 221
color spaces, overview 214
color specification as 210

coordinate system transformation enhancement of
184

graphics (chapter) 175-290
graphics state parameters (table) 179-180
image properties 289
painting operators 193-197
See also device(s), dependence

initialization
page device parameters (table) 426
page setup and 426-432

10Device resource category 98
(table) 91

naming conventions 78
null

nulldevice 630
nulldevice, usage guidelines 805-806

output, dictionary 455-456
page

See page devices
page, parameters

See page device parameters
parameters

retrieving (currentdevparams) 555
setting (setdevparams) 667

serial number, retrieving (serialnumber) 657
setup

operators (list) 521
operators, overview 176

setup operators, PaintProc procedure prohibited from
using 209

839

device(s) (continued)
space 182

halftones defined in 481
tiling of, in a type 16 halftone dictionary (»figure)

497
transformation of user space to 184
user space and 182-184

DeviceCMYK color space
conversion

between DeviceGray and 475
from DeviceRGB to 475-477
to DeviceRGB from 477

as device-dependent color space 211
remapping to CIE-based color space 237-238

DeviceGray color space
conversion

between DeviceCMYK and 475
between DeviceRGB color space and 474-475

as device-dependent color space 211
remapping to CIE-based color space 237-238
setting (setgray) 671

DeviceN color space 245-247
conversion to 478
remapping to CIE-based color space 238
rendering rules for shading patterns 264
as special color space 214

DeviceN process color model 422-426
as OutputDevice dictionary entry (table) 456
precautions on using 424

DeviceRGB color space
conversion

between DeviceGray color space and 474-475
from DeviceCMYK to 477
to DeviceCMYK from 475-477

as device-dependent color space 211
remapping to CIE-based color space 237-238

dict operator 572
as composite object constructor 58
creating dictionaries with 53

dictfull error 573
LanguageLevel 1 41

dictionaries 41
accessing, methods for 41
associating keys with values in, on the dictionary stack

(def) 54,568
capacity

extensible in LanguageLevels 2 & 3 53
retrieving the maximum (maxlength) 54,626

category implementation 100-102
(table) 101

CCITTFaxDecode, entries (table) 144-145
CCITTFaxEncode, entries (table) 144-145

INDEX I

dictionaries (continued)
CharStrings

adding or replacing glyphs in 351-352
as Type 1 font dictionary entry (table) 326
as Type 42 font dictionary entry (table) 346
character names defined in 330

CIDFont 368-382
CIDFont (table) 370
CIDSystemInfo 367-368
Type 0 CIDFont (table) 373
Type 0 font 366
Type 1 CIDFont (table) 377
Type 2 CIDFont (table) 378

CIDSystemInfo (table) 368
CIE-based color rendering 460,460-473

customizing 472-473
Type 1 461-468

c IEBasedA (table) 229
clEBased A BC (table) 223-224
CIEBasedDEF (table) 233,235
CIEBasedDEFG (table) 235
CMap 382-387

(example) 385-387
operators, in the CIDInit procedure set 384-385
(table) 383

CMap, as font mapping algorithm (table) 360
ColorantDetails

entries (table) 443
TrappingDetails dictionary entry (table) 442

ColoranaoneDetalls
as Trapping dictionary entry (table) 449
entries (table) 454

ColorRendering 460-468
as composite object (table) 34
constructors, double angle brackets use for 33
copying 42

copy 53,548
counting number on the dictionary stack

(countdictstack) 54,551
creating
«» 54,525
dict 53,572

current 42
currentdict 555
DCTEncode, entries (table) 148
details

for page devices 397
trapping 441-445

device, output 455-456
entries, for Type 0 fonts 362
Seruar

default error handling use 116
entries specific to (table) 116
error information recorded in 115
standard local dictionary (table) 65

I INDEX
840

dictionaries (continued)
errordict 581

PostScript errors maintained in 115
redefining errors in 117
standard local dictionary (table) 65
(table) 65

errors
dictfull 573
dictstackoverflow 574
dictstackunderflow 574

FlateEncode/FlateDecode (table) 138
font 321-328

See also CIDFont resource category
common entries (table) 324
entries common to all base fonts (table) 325
entries in 324-328
FontInfo (table) 327
GlobalFontDirectory 601
graphics state restrictions on procedures in 215
Type 1 (table) 326
Type 3 (table) 338
Type 42 (table) 346

Font, description 93
FontDIrectory

maintained by font operators 93
standard local dictionary (table) 65

form
describing 207
(table) 208

full, handling of 41
function 107-115

as function representation 106
type 0 107-115,108-112
type 2 112-113
type 2, entries specific to (table) 113
type 3 113-114
type 3, entries specific to (table) 114

globaldict 42,65
standard global dictionary (table) 66

GlobalFontDirectory
maintained by font operators 93
standard global dictionary (table) 66

halftone 483-484
installation (sethaiftone) 482
proprietary 499-500
proprietary (table) 500
type 1 487-489
type 1 (table) 487
type 2 498
type 3 490
type 3 (table) 490
type 4 498
type 5 498-499
type 6 491-492
type 6 (table) 491
type 9 499

dictionaries (continued)
halftone (continued)

type 10 492-495
type 10 (table) 495
type 16 495
type 16 (table) 496
type 100 499
types of (table) 485
with multiple color components 497-499

image 297-304
data (table) 305
mask (table) 306
type 1 297-299
type 1 (example) 311
type 1 (table) 298
type 3 (table) 304
type 4 (table) 307

immediate evaluation of names use with 122
InputAttributes, managing the 408-410
installing (begin) 536
internal (internaldict) 614
job server (serverdict) 72,657
key

searching for (known) 54,619
searching for (where) 54,718

LZW (table) 133
mapping a procedure over (forall) 53,597
Metrics, modifying glyph metrics with 350-351
Metrics2, modifying glyph metrics with 350-351
objects 41-42

execution handling 50
operators

(list) 510
overview 52-55

operators that apply only to 54
output device 455
OutputDevice, entries (table) 455
page device 394-397

retrieving (currentpagedevice) 560
setting (setpagedevice) 679

pattern
components of 249
type 1 (table) 251
type 2 (table) 260

Policies, entries (table) 433-435
popping off the dictionary stack (end) 54,577
Private

as FDArray array entry (table) 374
entries (table) 375
Type 0 compared with Type 1 375

procedure set 95-96
procedure substitution

idiom recognition use 119-121
IdiomSet resource category use 97

product-dependent (statusdict) 696
pushing onto the dictionary stack (begin) 54

841
INDEX

dictionaries (continued)
removing entries from (undef) 54,708
removing from the dictionary stack

all except for permanent entries (cleardictstack) 54,
541

topmost entry (end) 577
replacing values in, on the dictionary stack (store) 54,

698
request 394
retrieving all, from the dictionary stack (dictstack) 54,

573
retrieving elements of (get) 53, 598
retrieving the number of elements in (length) 53,621
ReusableStreamDecode (table) 155
shading 261-263

entries common to all (table) 262
type I (function-based) (table) 265
type 2 (axial) (table) 266
type 3 (radial) (table) 268
type 4 (free-form Gouraud-shaded triangle mesh)

(table) 270
type 5 (lattice-form Gouraud-shaded triangle mesh)

(table) 275
type 6 (Coons patch mesh) (table) 279
type 7 (tensor-product patch mesh) 283-287

specifying (userdict) 713
stack 42, 45, 56

accessing 46
associating keys with values in dictionaries on the

(def) 54, 568
contents of 42
counting the number of dictionaries on

(countdictstack) 54, 551
executable name handling use 50-51
locating values on (where) 54, 718
popping dictionaries off (end) 54,577
pushing dictionaries onto (begin) 54, 536
removing all dictionaries except for permanent en-

tries (cleardictstack) 54, 541
replacing values in dictionaries on (store) 54, 698
retrieving all dictionaries from (dictstack) 54, 573
retrieving values from (load) 54,622

standard 65-67
global (table) 66
local (table) 65

statusdict, standard local dictionary (table) 65
storing elements of (put) 53, 635
SubFileDecode filter (table) 152
syntax 33
systemdict 42, 65, 702

operator names as keys in 43
standard global dictionary (table) 66
user path operators 199

Trapping, entries (table) 447-449

dictionaries (continued)
trapping

retrieving (currenttrapparams) 564
setting (settrappa rams) 685

TrappingDetails, entries (table) 442
user-defined 65-67
userdict 42,65

standard local dictionary (table) 65
writeable, in global VM, guidelines for use 67

dictstack operator 54, 573
dstack array relationship to (table) 116

dictstackoverflow error 574

dictstackunderflow error 574

dimensionality
of functions, determination of 107
multidimensional functions, handling 110
multiple, constructing arrays with 39
of sampled functions, performance issues 108

discrete cosine transform (DCT) algorithm
compression of image data (DCTEncode) (table) 86
decompression of image data (DCTDecode) (table) 86

display
device color space specification 216

distance
vector, transforming (dtransform) 574-575

div operator 52, 574
immediate execution use 47

dividing numbers
div 574
idly 605

Domain array
as function dictionary entry (table) 108
as type 1 shading dictionary entry (table) 265
as type 2 shading dictionary entry (table) 266
as type 3 shading dictionary entry (table) 268

drawing
See path(s)
rectangles (rectstroke) 643

dstack array
as $error dictionary entry (table) 116

dtransform operator 574-575

duotone color 245

dup operator 51, 575
in value sharing example 58

Duplex page device parameter 416

duplicating
paths 192

dynamic
formats, static vs. 14-15
resource loading, as global VM intended use 66

INDEX
842

E
E

as real number exponent indicator 28

early binding 117
names (bind) 117-123,118-121,538-539

EarlyChange entry
as LZW dictionary entry (table) 133

echo operator 575

echoing
characters, enabling/disabling (echo) 575

edge flags
in type 4 shading dictionaries, vertex specification use

271-273
in type 6 shading dictionaries, vertex specification use

281

eexec operator 576

efficiency
LZW vs. Flate filters 138-139
user paths, lack of side effects contribution to 198

Effort entry
as FlateEncode/FlateDecode dictionary entry (table)

138

elements
of array

loading onto the operand stack (abad) 54, 528
storing objects into (astore) 54, 535

of composite objects
retrieving (get) 53, 598
retrieving the number of (length) 53,621
storing (put) 53,635

of packed array, loading onto the operand stack (abad)
54,528

embedded
programs, encapsulation of, save and restore functions

62

Emulator resource category 98
superseded by PDL resource category 97
(table) 91

Enabled entry
Trapping dictionary, entries (table) 447

encapsulation 69
of BulIdGlyph procedure 339

of embedded programs, save and restore functions 62
forms 206
job

overriding 70-72
overriding, LanguageLevel 1 (exitserver) 70, 72-73
overriding, LanguageLevel 2 (startjob) 70

of PaintProc tiling pattern procedure 253
of paths 192
of programs, subfile use for error recovery in 151
of stop effects (stopped) 697

encapsulation (continued)
of user path

gsave and grestore use for 205
predictability advantage 197

of VM 68-72

Encode array
as type 0 function dictionary entry (table) 109
as type 3 function dictionary entry (table) 114

EncodeABC array
as type 1 CIE-based CRD entry (table) 464

encoded
number strings

as binary tokens 171-172
homogeneous number array use 162,171
operators that use 172

system names 160,168-169
as binary tokens 160

user path 200-202
(example) 202

EncodedByteAlign entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 144
EncodeLMN array

as type 1 CIE-based CRD entry (table) 463

encoding
See also filters
arrays 94
ASCII

arrays 32
comments 27
dictionaries 33
filters, overview 84
names 31
numbers 28
procedures 32-33
standard character set use 26-34
strings, ASCII base-85 31
strings, hexadecimal 30-31
strings, hexadecimal, reading from an input file

(readhexstring) 73
strings, hexadecimal, writing to an output file

(writehexstring) 73
strings, literal text 29-30

binary data
ASCI185Encode (overview table) 85, 131
ASCIIHexEncode (overview table) 85
details 156-174
of font sets 343

bit-oriented
CCITT fax standard as (LowBitFirst) 146
CCITTFaxDecode (table) 86
CCITTFaxEncode (table) 86
LZW as (LowBitFirst) 136

843

encoding (continued)
of characters 328-330

multiple-byte, CID-keyed font use 364-390
data transmission requirements, ASCII compared with

binary 157
filters 82,123,128-129
Flate, LZW encoding compared with 138
font, modifying 330
LZW

Flate encoding compared with 138
LZWEncode filter 133-137

PostScript language
ASCII 25
binary 156-174

standard, StandardEncoding resource 94
system name (appendix) 795-799
Unicode, CMap use for 366
vector (StandardEncoding) 693
vectors

changing the 349-350
character code and glyph mapping 328-330
retrieving (findencoding) 591
(table) 773-774,784-794

Encoding array
as base font dictionary entry (table) 325
incremental definition rules 354
PrefEnc array relationship with 362
as Type 0 font dictionary entry (table) 357
as Type 2 CIDFont dictionary entry (table) 378

Encoding resource category
(table) 91

end operator 54,577
defineresource use of 100
dictionary stack modifiable by 46

endbfchar operator 384,577

endbfrange operator 384,577

endcidchar operator 385,577

endcidrange operator 385,578

endcmap operator 384,578

endcodespacerange operator 384,578

endnotdefchar operator 385,578

endnotdefrange operator 385,579

EndOfBlock entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 145

End0fLine entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 144

EndPage page device parameter
device initialization (table) 427
operations (table) 428-430

endrearrangedfont operator 384,579

endusematrix operator 385, 579

INDEX I

entries
See dictionaries

enumeration
array, dictionary, or string elements (forall) 55
font resources, preferred method 93
instances of resource category (resourceforall) 89
operators

filenameforall 588
forall 597
graphics (pathforall) 632
resourceforall 646

environment
execution

components, graphics state 178-182
components of 57
components, stacks and memory 56-72
components, standard input and output files 73-87

job execution 68-72

eoclip operator 579
even-odd rule use 195

EOD (end-of-data)
> (angle bracket) as indication of ASCIIHexDecode 130
CloseTarget and CloseSource use of 129
encoding filter transmission of 128
filter termination 126-129
required for filter data 127
—> (tilde angle bracket) as indication of

ASC1185Decode 131
ASCI185Encode 131

EODCount entr \
as SubFileDecode dictionary entry (table) 152

EODString entt \
as Su bFileDecode dictionary entry (table) 152

EOF (end-of-file) 80
file termination 126-129
filter handling contrasted to other files 127

eofill operator 580
even-odd rule use 195

EOL (end-of-line)
communication channel level translation 76
conventions 74-75
handling

readline 75
transparent (read) 75
transparent (readstring) 75
transparent (write) 75
transparent (writestring) 75

newline characters 26
handling 30

EPS (encapsulated PostScript)
bibliographic reference 9
files, remapping device colors to CIE-based color space

237

I INDEX
844

EPS (encapsulated PostScript) (continued)
PaintProc reference of, ReusableStreamDecode filter use

with 153

eq operator 55,580

equality
comparing objects for (eq) 580
testing

See also comparing
names 40
user path values 203

user paths, caching basis 203

equals, double (==) operator 87
= operator compared with 87
printing operand stack contents using (pstack) 87

equals (=) operator 87
== operator compared with 87
printing operand stack contents using (stack) 87

erasepage operator 581
usage guidelines 805

erasing
characters, control characters for interactive executive

use (table) 21
lines, control characters for interactive executive use

(table) 21
page (erasepage) 581

Senor dictionary 527
default error handling use 116
entries specific to (table) 116
error information recorded in 115
as standard local dictionary (table) 65
(table) 65

errordlct dictionary 581
default error handlers, stop use 56
as errors dictionary (overview) 56
PostScript errors maintained in 115
redefining errors in, as user error handling modification

mechanism 117
standard handlers maintained in 115
as standard local dictionary (table) 65
(table) 65

errorinfo array
Serror dictionary entry (table) 116

errorname entry
as $error dictionary entry (table) 116

errors 114-117
array out-of-bounds (rangecheck) 38
category implementation procedures, interpreter

assumptions 101
configurationerror 547
dictfull 573

LanguageLevel 1 41
dictstackoverflow 574
dictstackunderflow 574

errors (continued)
in encapsulated programs, subfile use for recovery

from 151
execstackoverflow 584
file access 80
handleerror 605

structured output error handling 173-174
handling 115-117

default procedures 115-116
encapsulating the effects of stop (stopped) 697
$error 527
terminating execution (stop) 697
unsatisfied parameter requests 432-439
user modification mechanisms 117

initiation 115-116
interrupt 614
invalidaccess 616

file access cause 80
local VM reference by global VM object cause 60

invalidexit 617
invalldfileaccess 617

file access cause 80
invalidfont 617
invalidrestore 617
ioerror 618

file access cause 80
LanguageLevel 1 (dictfull) 41
limitcheck 621

implementation limits 737-743
radix number use 28
real number use 28

(list) 523
malformed hexadecimal strings (syntaxerror) 30
mathematical operation use (undefinedresult) 52
memory exhaustion cause (VMerror) 62,716
name search failure (undefined) 51
nocurrentpoint 629
number tolerated, by a CCITTFaxEncode/

CCITTFaxDecode filter (table) 145
radix number use (limitcheck) 28
rangecheck 638

array out-of-bounds 38
real number use (limitcheck) 28
resource file loading 105
stackoyerflow 693
stackunderflow 693
standard error file, file handling 80
syntaxerror 701

(malformed hexadecimal strings) 30
timeout 702

translating resource names into file names 104
typecheck 706
undefined 709

name search failure 51

845
INDEX I

errors (continued)
undefinedfilename 709

invalid EOL cause 82
undefinedresource 709
undefinedresult 709

mathematical operation use 52
unmatchedmark 711
unregistered 712
VMerror, memory exhaustion cause 62,716

escape character (\)
special characters that use (list) 29

EscChar entry
as Type 0 font dictionary entry (table) 358

estack array
as Serror dictionary entry (table) 116

evaluation
of names

immediate evaluation 121-123
immediate, syntax of 31

even-odd rule 196
See also insideness testing
clipping (eoclip) 579
Ineofill 197
insideness testing

(ineofill) 610
(inueofill) 614

inueófill 197
nonzero winding number rule compared with
painting

areas (eofill) 580
user paths (ueofill) 708

exch operator 51,581

exchanging
objects, on the operand stack (exch) 51,581

exclusive or operation (xor) 722

exec operator 55,56,74,582
implicit, binary object sequence use 163
no equivalent operator for functions 106
run as combination of file and 87
scanner invoked by 157

execform operator 582
form

dictionary use 208-209
invocation by 207

Form resource category use 95

execstack operator 55,583
estack array relationship to (table) 116

execstackoverflow error 584

execuserobject operator 67, 68,584

executable
arrays

building user paths as 204
execution handling 50
interpreter handling of (example) 48
semantics of 36
with immediate execution, binary object sequence

as 163
attribute

setting (cvx) 568
testing for (xcheck) 721

encoded system name specification of 168
files, execution handling 50
names

ASCII encoding 31
handling (example) 49
semantics of 36

null, execution handling 51
object attribute 36-37,36
operator

execution handling 51
semantics of 36

strings, execution handling 50

execute access attribute
setting (executeonly) 584

execute-only
access, as object attribute 37

194 executeonly operator 56,584

execution
conditional

If 606
ifelse 607

deferred 47-49
procedures characterized by 33

of encrypted file (eexec) 576
environment

components, graphics state 178-182
components, stacks and memory 56-72
components, standard input and output files 73-87
encapsulating the effects of stop (stopped) 697
for a print job 68-72

of files (run) 87
immediate 46-47
multiple contexts 57
of objects

effects of 24
exec 582
with the executable attribute

of programs
exec 74
run 653

requirement, binary object sequences suitable for 156,
163

50-51

I INDEX
846

execution (continued)
semantics 46-51
stack 25, 45,57

accessing 46
counting entries on (countexecstack) 551
executable file handling use 50
executable string handling use 50
executing top element of (exec) 582
reading (execstack) 583

starting (start) 693
state, stacks used to manage 45
terminating

quit 637
stop 697

of user objects
execuserobject 67, 584
execuserobject (example) 68

executive
interactive

control characters (table) 21
invoking (executive) 81, 585
prompting user (prompt) 635

executive operator 585
interactive executive invoked by 81
usage guidelines 805

exit operator 55, 585
invalid execution error (invalidexit) 617

exitserver operator 72-73, 586
guidelines for use 70
as LanguageLevel 1 equivalent to startjob 70
multiple execution impact 72
as serverdict element 72
usage guidelines 805

exp operator 52, 586

Expert character set
(table) 787-789

Expert encoding vector
(table) 774,790

ExpertSubset encoding vector
(table) 774,791

explicit
masking, of images 303-307

exponential interpolation functions 107
type 2 function dictionary 112-113

entries specific to (table) 113

exponentiation
exp 586

exponents
in real numbers 28
type 2 function dictionary specification (N) (table)

Extend array
as type 2 shading dictionary entry (table) 267
as type 3 shading dictionary entry (table) 268

facsimile-encoding
CCITTFaxDecode filter 143-146
CCITTFaxEncode filter 143-146
data compression with (CCITTFaxEncode) (table) 86
data decompression from (CCITTFaxDecode) (table) 86

FactoryDefaults system parameter
value (table) 751

false 55, 587
bind not usable with 119
as boolean value 38

FamilyName entry
a, entry in FontInfo dictionary (table) 327

FDArray array
entries in dictionary (table) 374
as Type 0 CIDFont dictionary entry (table) 373

FDBytes entry
as Type 0 CIDFont dictionary entry (table) 373

FDepVector array
as Type 0 font dictionary entry (table) 357

FF (form feed)
\f as ASCII encoding (list) 29
numeric values (table) 27

FID entry
as CIDFont dictionary entry (table) 371
as font dictionary entry (table) 325

file operator 587
file

object creation by 79
system access by 77

%lineedit file handling 81
obtaining file objects for standard input and standard

output files 74
operand formats 78
run as combination of exec and 87
special file handling 80-82
%statementedit file handling 81

file(s)
access conventions (table) 79
closing 79-80

closefile 80,544
restore 80

as composite object (table) 34
copying 44
creating (file) 79-80, 587
as data sources and targets 124
deleting (deletefile) 572
errors (undefinedfilename) 709

113 executing 50
run 87

filtered
semantics of 123-156

847
INDEX I

file(s) (continued)
filtered (continued)

valid as operands to file operators 83
flushing (flushfile) 594
input 73

arbitrary data source as (SubFileDecode) (table) 86
executing programs from (exec) 74
reading characters from (read) 73
reading lines from (readline) 73
reading strings from (readstring) 73
scanning for PostScript tokens (token) 73

names 77-80
retrieving (filenameforall) 588
syntax 77

objects 43-44
files represented by 73
retrieving the current (currentfile) 87

operators
basic, overview 73-76
(list) 513-514
miscellaneous, overview 87

output 73
arbitrary data target as (NullEncode) (table) 86
writing characters to (write) 73
writing strings to (writestring) 73,720

position
retrieving (fileposition) 589
setting (setfileposition) 80, 668

random-access, creating (ReusableStreamDecode
(table) 86

reading, in arbitrary order (setfileposition
renaming (renamefile) 644
resetting (resetfile) 645
resources as 103-105
retrieving (currentfile) 556
as sample data source 291
special 80-82
standard

handling 74
input 44,57
input, as execution environment component 73-87
output 44,57
output, as execution environment component 73-

87
status, retrieving (status) 696
status information

retrieving (bytesavailable) 87
retrieving (status) 87

subfile filters, overview 85
system

access permitted (deletefile) 77
access permitted (file) 77
access permitted (filenameforall) 77
access permitted (fileposition) 77
access permitted (renamefile) 77
access permitted (setfileposition) 77

file(s) (continued)
system (continued)

access permitted (status) 77
naming conventions 78
operators, LanguageLevel 2 (list) 734

terminating, with EOF 126-129
writing, in arbitrary order (setfileposition) 80

filenameforall operator 588
file system access by 77
operand formats 78
special file name not used by 78
wildcard use with 78

fileposition operator 589
file system access by 77
ReusableStreamDecode filter use 154

fill gradient 259
shading dictionary specification 261
shfill 260,689

fill operator 177,589
current color use 178
path-enclosed region painting 194

filling 194-196
See also painting
insideness testing 196-197
rectangles (rectfill) 642
rules

even-odd 196
nonzero winding number 195

user paths
ufill 197
ueofill 708

Filter entry
as ReusableStreamDecode dictionary entry (table) 155

filter operator 589
creating filters with 83-84
procedure as data target use 125
ReusableStreamDecode filter use with 153

Filter resource category
implicit resources as instances of 90

filters
See also decoding; encoding
ASCII

decoding, overview 84
encoding, overview 84

ASCI185Decode 130
ASCI185Encode 131-132
ASCIIHexDecode 130
ASCIIHexEncode 130
as binary data handling mechanism 76
CCITTFaxDecode 143-146

dictionary entries (table) 144-145
CCITTFaxEncode 143-146

dictionary entries (table) 144-145
compression, overview 84

I INDEX
848

filters (continued)
creating (filter) 83-84,589
DCTDecode 146-150
DCTEncode 147-150
decoding 82,123,127-128
decompression, overview 84
details of individual 129-156
encoding 82,123,128-129

EOF handling contrasted to other files 127
file objects created by, valid as operands to file

operators 83
as files in a pipeline 83
filter operator, Filter resource category use by 98
Filter resource category 98

(table) 91
FlateDecode 137-142
FlateEncode 137-142
as image data source (example) 311
image data sources compared with 291
line editor, file handling 80
LZWDecode 132-137
LZWEncode 133-137
NullEncode 156
overview 82-87
ReusableStreamDecode 153-156
RunLengthDecode 142
RunLengthEncode 142-143
running backwards, procedures as data source and tar-

get use for 126
semantics of 123-156
standard 84-86

overview (table) 85
standard names (list) 590
statement editor, file handling 80
SubFileDecode 151-152
supported, determining (resourceforall) 85
terminating, with EOD 126-129

findcolorrendering operator 591
rendering intent specification with 469

findencoding operator 591

findfont operator 88,93,592
accessing fonts with 315
bind not usable with 119
font execution initiated by 323

FontDirectory dictionary accessed by (table) 65
GlobalFontDirectory dictionary accessed by (table) 66

findresource operator 88,592
FindResource key use by, category implementation dic-

tionary (table) 101
IdiomSet use 121
implementation dictionary 100
implicit resource handling 98-99
as page description resource accessor 103
as resource facility foundation 89
resourceforall and resourcestatus compared with 90

FindResource procedure
as category implementation dictionary entry (table)

101

fixed-pitch fonts 320

fixed-point numbers 160
See also mathematics; numbers
as binary tokens 160

Flate encoding
See also filters
dictionary (table) 138
as IETF standard 137
LZW encoding compared with 138
predictor functions use with 139-141

FlateDecode filter 86,137-142

FlateEncode filter 85,137-142

flatness parameter
graphics state (table) 181
retrieving (currentflat) 556
setting (setflat) 669

flattening
paths (flattenpath) 593

flattenpath operator 593

floor operator 52,594

flush operator 594
buffered character handling 74
flushfile operator 594
buffered character handling 74
with a decoding filter 127
with an encoding filter 128
ReusableStreamDecode filter use 154

flushing
buffers

flush 594
resetfile 645

files (flushfile) 594

FMapType entry
mapping algorithms 358-360

(table) 360

as Type 0 font dictionary entry (table) 357
FMapType resource category 98

(table) 92

Font resource category 93
(table) 91
VM allocation mode policies 105

font(s)
accessing

CFF and Chameleon fonts in a PostScript program
345-346

findfont 315
base 357

dictionary entries common to all (table) 325
binary data section (StartData) 694
BuildChar procedure 340-341

i
849

I
INDEX I

font(s) (continued)
BuildGlyph procedure 338-340
cache 333-335

currentcacheparams 552
incremental definition of font impact 354
loading glyphs into (addglyph) 528
setting parameters (setcacheparams) 661
setting (setcachedevice) 659
setting (setcachedevice2) 659
setting size (setcachelimit) 660
status (cachestatus) 540
Type 4 CIDFont advantages 380
user path cache analogous to 202

CFF 343-346
FontSet resource category 94

(chapter) 313-390
CID-keyed 364-390

CIDFont resource category 94
CMap 94
Type 0 371-376,375-376
Type 0 (CIDInit) (table) 96
Type 1 376-377
Type 2 377-379
Type 4 379-382
Type 4 (BitmapFontlnit) (table) 96

composite 357-364
CID-keyed 387-390
cshow 551
encoding array use 94
nested 363-364

current 316
defining (definefont) 569
definitions

FontDirectory dictionary (table) 65
in global VM, GlobalFontDirectory (table) 66

derivation 348-356
descendant 357
dictionaries 321-328

CIDFont (table) 370
CIDSystemInfo 367-368
common entries (table) 324
entries common to all base fonts (table) 325
entries in 324-328
FontInfo (table) 327
GlobalFontDirectory 601
graphics state restrictions on procedures in 215
Type 0 CIDFont (table) 373
Type 1 CIDFont (table) 377
Type 1 (table) 326
Type 2 CIDFont (table) 378
Type 3 (table) 338
Type 42 (table) 346
used to manage 41

encoding
modifying the encoding scheme 330

font(s) (continued)
encoding (continued)

modifying the encoding vector 349
execution of 323
families

Courier 777
Helvetica 776
Times 775

fixed-pitch 320
FontDirectory 595
formats 8
garbage collection benefits for management of 64
as graphics state parameter (table) 179
incremental definition of 352-356
introduction into VM 88
invalid specification error (invalidfont) 617
Latin-text

ISOLatinlEncoding 618
ISOLatini Encoding resource 95

mapping 358-362
modification 348-356
modifying, unique ID precautions 336
monospaced 320
naming conventions 328
operators

iteration (cshow) 551
iteration (kshow) 619
(list) 521-522
overview 175

organization and use 313-321
parent 357
proportional 320
rearranged 364
removing (undefinefont) 323
resource category 94
retrieving

currentfont 557
findfont 592
rootfont 651

root 357
scaling

makefont 315,624
scalefont 654
selectfont 656

selecting 316-318
selectfont 656

sets 343
FontSet 344-345

setting (setfont) 670
special graphics effects 318-320
specifying (usefont) 713
subsetting 352-356
TrueType 346-348
Type 0

CID-keyed 371-376

INDEX
850

font(s) (continued)
Type 0 (continued)

dictionary entries for 362
Type 1, incremental definition of 355
Type 2 343-346
Type 3 337-342

(example) 341-342
incremental definition of 355

Type 14 343-346
Type 42 346-348

incremental definition of 355-356
types (table) 322
undefining (undefinefont) 710
unique ID 335-337
variable-pitch 320

FontBBox array
See also bounding box
as base font dictionary entry (table) 325
as CIDFont dictionary entry (table) 370
fonts 333

(table) 370

FontDIrectory dictionary 595
maintained by font operators 93
as standard local dictionary (table) 65

fontID objects
execution handling 50
as an object type 45
as simple object (table) 34

FontInfo dictionary
as font dictionary entry (table) 324
(table) 327

FontMatrix array
as CIDFont dictionary entry (table) 370
as FDArray array dictionary entry (table) 374
as font dictionary entry (table) 324
nested composite font treatment 364
as Type 0 font dictionary entry 362
Type 4 CIDFont use 381

FontName entry
a, FDArray array dictionary entry (table) 374
‘t font dictionary entry (table) 324

FontResourceDir system parameter
value (table) 752

FontSet resource category 344-345
(table) 91
Type 2 and Type 14 fonts use of 343

FontSetInIt procedure set
LanguageLevel 3 operators defined in (table) 726
as standard procedure set in LanguageLevel 3 (table)

Fontlype entry 98
as CIDFont dictionary entry (table) 370
as font dictionary entry (table) 324
(table) 92

values (table) 370

for operator 55,596

forall operator 55,597
mapping a procedure over composite objects 53
packed array access permitted by 54

form feed (FF) character
\f as ASCII encoding (list)
numeric values (table) 27

Form resource category 95
(table) 91

formats
dynamic, static vs. 14-15
object

retrieving (currentobjectformat)
setting (setobjectformat) 677

print, translating from other 19-20
structured output 172-174,172

forms 206-209
appearance, describing 207
caching 207
coordinate system 208
dictionary, describing 207
operators (list) 520
painting

execform 582
procedure for (table) 208

transformation matrix (table)
using 207-209

FormType entry 98
as form dictionary entry (table)
purpose of 207
(table) 92

FORTH
as PostScript influence 23

framedevice operator
usage guidelines 805

free-form
Gouraud-shaded triangle meshes, as type 4 shading

261,270-274

Frequency entry
as type 1 halftone dictionary entry (table) 487

FullName entry
entry in FontInfo dictionary (table) 327

Function entry
as type 1 shading dictionary entry (table) 265
as type 2 shading dictionary entry (table) 266
as type 3 shading dictionary entry (table) 268

96 as type 4 shading dictionary entry (table) 271
as type 5 shading dictionary entry (table) 275
as type 6 shading dictionary entry (table) 280

function(s) 106-114
based shading patterns, as type 1 shading 261,265-266

29

208

208

560

851
INDEX I

function(s) (continued)
black-generation

retrieving (currentblackgeneration) 552
setting (setblackgeneration) 476,658
setting usage guidelines (setblackgeneration) 806

CIE-based color mapping, CIE-based color conversion
to device color use 460

CIE-based gamut mapping
as CIE-based color rendering dictionary component

460
CIE-based color conversion to device color use 459
gamma correction contrasted with 478

color conversion, use, as rendering step 457
color mapping, as CIE-based color rendering dictionary

component 460
dictionaries 107-115

entries common to (table) 108
type 0 108-112
type 2 112-113
type 2, entries specific to (table) 113
type 3 113-114
type 3, entries specific to (table) 114

dictionary, color transition definition by, shading dic-
tionary relationship to 263

exponential interpolation 107
type 2 function dictionary 112-113
type 2 function dictionary, entries specific to (table)

113
FunctionType resource category (table) 92
halftone, use, as rendering step 458
predictor

LZW or Flate dictionary entries related to (table)
141

PNG-based 139
TIFF-based 139
TIFF-based compared with PNG-based 140
with LZW and Flate filters 139-141

sampled
ReusableStreamDecode filter use 153
(type 0 function dictionary) 108-112

spot 484-489
stitching 107

type 3 function dictionary 113-114
type 3 function dictionary; entries specific to (table)

114
transfer 478-480,478

retrieving (currenttransfer) 563
setting (setcolortransfer) 479,666
setting (settransfer) 479,685
use, as rendering step 457

trigonometric
atan 535-536
cos 550
sin 692

function(s) (continued)
type 0 107
type 2 107
type 3 107
undercolor removal

retrieving (currentundercolorremoval) 564
setting (setundercolorremova I) 476,687

Functions array
as type 3 function dictionary entry (table) 114

FunctionType entry
as function dictionary entry (table) 108
function types specified in 107

FunctionType resource category 98

G
gamma correction 457

CIE-based gamut mapping function contrasted with
478

gamut 245,459-460
See also CIE-based color spaces
mapping functions

color rendering dictionary component 460
gamma correction contrasted with 478
WhitePoint and BlackPoint use 224

garbage collection
See also memory; VM (virtual memory)
CloseTarget and CloseSource use by 129
closing files with 80
filter pipeline impact 129
managing (vmreclaim) 716
save and restore compared with 63-64
setting VM allocation threshold for (setvmthreshold

688

gcheck operator 598
See also VM (virtual memory)
VM storage management role 61

GDBytes entry
as Type 0 CIDFont dictionary entry (table) 373
as Type 2 CIDFont dictionary entry (table) 378

ge operator 55,598

generating
random numbers

rand 637
retrieving current state (rrand) 652
srand 692

generation
black

retrieving function (currentblackgeneration) 552
setting function (setblackgeneration) 658
setting function usage guidelines

(setblackgeneration) 806

852
INDEX

generation (continued)
machine, binary encodings used for 25
of unique identifier 335-337

Generic resource category
category 102-103
(table) 92

GenericResourceDir system parameter
value (table) 752

GenericResourcePathSep system parameter
value (table) 752

get operator 53,598

GetHalftoneName operator 599
customizing CRD selection use 472

getinterval operator 599
array creation with 39
creating objects that share a subinterval with a compos-

ite object 53

GetPageDeviceName operator 600
customizing CRD selection use 472

GetSubstituteCRD operator 600
customizing CRD selection use 472

global
standard dictionaries (table) 66
VM 59-61

category implementation dictionary located in 101
guidelines for use 66
setting mode for (setglobal) 670
testing objects for eligibility (gcheck) 598

globaldict dictionary 42,65,601
as dictionary stack component 46
as standard global dictionary (table) 66

GlobalFontDirectory dictionary 601
maintained by font operators 93
as standard global dictionary (table) 66

glyph(s) 313
See also character(s); font(s)
adding 351-352
appending, to current path (charpath) 319
bitmaps

stencil masking use for painting 303
Type 4 CIDFont use 379
Type 4 CIDFont use (BitmapFontlnit) (table) 96

bounding box 331
setting (setcachedevice) 659
setting (setcachedevice2) 659

color, setting 318
coordinate system 331

transforming into user coordinate system 324
creating

BuildChar 340-341
BuildGlyph 338-340

descriptions 314
incremental definition of 352-356

glyph(s) (continued)
incremental definition of (continued)

general considerations 353-354
left sidebearing 332
loading into font cache (addglyph) 528
metrics 331-333

changing the 350-351
overriding 321

operators
(list) 521-522
overview 175

origin 331
outlines, treating as a path 319
painting

glyphshow 602
show 177,316,690
stencil masking use for bitmapped characters 303
widthshow 718
xshow 722
xyshow 722
yshow 723

positioning 320-321
ashow 320,534-535
awidthshow 320,536
cshow 321,551-
kshow 321,619
show 320,690
widthshow 320,718
xshow 320,722
xyshow 321,722
yshow 320,723

reference point 331
removing

removeall 644
removeglyphs 644

replacing 351-352
scaling (scalefont) 315
spacing, modification difficulties 350
subsetting 352-356

general considerations 353-354
width 320,331

adjusting (widthshow) 718
retrieving (stringwidth) 699
setting (setcharwidth) 661

GlyphData entry
as Type 0 CIDFont dictionary entry (table) 374

GlyphDir•ectory entry
as Type 0 CIDFont dictionary entry 375-376

(table) 374
as Type 2 CIDFont dictionary entry (table) 379
as Type 42 font dictionary entry 355-356

(table) 347
glyphshow operator 602

character name use with 330

853
INDEX I

GlyphDirectory entry (continued)
CharStrings interaction 352
CIDFont restrictions 369

Gouraud shading
See also patterns
free-form Gouraud-shaded triangle meshes 261,270-

274
lattice-form Gouraud-shaded triangle meshes 261,

274-276

gradient(s)
See also shading
fill 248,259

shading dictionary specification 261
in imaging model 176

graphical elements
defining independently of other elements 185

graphics
operators

facilities (chapter) 175-290
overview of main groups 175-176

special effects for fonts 318-320
state

See graphics state

graphics state 57,178-182
accessing (gstate) 58
current halftone dictionary 483
font parameter, accessing 318
initializing (initgraphics) 612
managing

currentgstate 182
gstate 182
setgstate 182

objects, global VM precautions 67
operators

device-dependent (list) 516-517
device-independent (list) 515-516
overview 175
restrictions 215

parameters
device-dependent (table) 180-181
device-independent (table) 179-180
used by findcolorrendering 471

restoring
grestore 603
grestoreall 61

retrieving
currentgstate 558
gstate 604

saving (gsave) 603
setting (setgstate) 671
stack 181-182

as one of five execution state stacks 45
user path no effect on 198

gray
See also color

graphics state (continued)
color space

conversion between DeviceGray and DeviceCMYK
475

conversion between DeviceRGB and DeviceGray
474-475

DeviceGray 211,219-220
remapping DeviceGray to CIE-based 237-238
setting (setgray) 671

component of calibrated gray space, CIEBasedA repre-
sentation 228

levels, halftones, supercell enhancement of 500-501
mapping sample data to color component values for

(setgray) 291
operators

currentgray 557
setgray 671

grayscale data
compressing (DCTEncode) (table) 86
decompressing (DCTDecode) (table) 86

greater-than-or-equal relation
comparing objects for (ge) 598

greater-than relation
comparing objects for (gt) 604

grestore operator 603
clipping path stack management 192
current path restored by 190
encapsulating paths with 192
execform invocation of 209
graphics state stack management 181
user path encapsulation by 205

grestoreall operator 603
graphics state reset by 61
usage guidelines 805

gsave operator 603
current path saved by 190
encapsulating paths with 192
execform invocation of 209
graphics state stack management 181
user path encapsulation by 205

gstate objects
execution handling 50
interactive application management with 181
as an object type 45
(table) 34

gstate operator 604
as composite object constructor 58
gstate object management 182

gt operator 49,55,604

guidelines
See also algorithms; rules
exltserver operator 70
operator usage (appendix) 801-810

854

I i l INDEX

guidelines (continued)
PaintProc procedure use

form 209
tiling pattern 253

startjob operator 70
VM, global 66

H
Halftone resource category 96

(table) 91

halftone(s) 480-501
See also color; gray; monochrome
defining 481-482

screens with spot functions 484-489
dictionaries 483-484

installation (sethalftone) 482
proprietary 499-500
proprietary (table) 500
type 1 487-489
type 1 (table) 487
type 2 498
type 3 490
type 3 (table) 490
type 4 498
type 5 498-499
type 6 491-492
type 6 (table) 491
type 9 499
type 10 492-495
type 10 (table) 495
type 16 495
type 16 (table) 496
type 100 499
types of (table) 485
with multiple color components 497-499

functions, use, as rendering step 458
as graphics state parameter (table) 180
name, retrieving (GetHalftoneName) 599
resource categories

Halftone 96
Halftone (table) 91
HalftoneType 98
HalftoneType (table) 92

screens 481,482-483
defining patterns as, deprecated practice 249
definition (setcolorscreen) 481
definition (setscreen) 481
retrieving (currenthalftone) 558
retrieving (currentscreen) 562
setting (setcolorscreen) 664
setting (sethalftone) 671
setting (setscreen) 681
threshold array definition of 489-497

halftone(s) (continued)
spot functions 484-489
supercells 500-501
transfer functions (sethalftone) 479
user parameters

AccurateScreens 482,487,757
HalftoneMode 482
MaxSuperScreen 482

HalftoneMode user parameter
halftone-setting operator impact 482
value (table) 749

HalftoneName entry
as proprietary halftone dictionary entry (table) 500
as type 1 halftone dictionary entry (table) 487
as type 3 halftone dictionary entry (table) 490
as type 6 halftone dictionary entry (table) 491
as type 10 halftone dictionary entry (table) 495
as type 16 halftone dictionary entry (table) 496

HalftoneType entry
as proprietary halftone dictionary entry (table) 500
as type 1 halftone dictionary entry (table) 487
as type 3 halftone dictionary entry (table) 490
as type 6 halftone dictionary entry (table) 491
as type 10 halftone dictionary entry (table) 495
as type 16 halftone dictionary entry (table) 496

HalftoneType resource category 98
(table) 92

handleerror error 605

handleerror operator
binary key use (table) 117
default error handling use 116
errorinfo array use (table) 116
newerror entry use (table) 116
redefining, as user error handling modification mech-

anism 117
structured output error handling 173-174

handling errors 115-117
default procedures 115-116
Serror 527
handleerror 605
unsatisfied parameter requests 432-439
user modification mechanisms 117

hardware
See also devices; input; output; product-dependent
HWOptions resource category 98
options (HWOptions) (table) 91
output, raster 11-12

headers
binary object sequences 163
resource file 105

Height entry
as image data dictionary entry (table) 305
as image mask dictionary entry (table) 306

855
INDEX

Height entry (continued)
as type 1 image dictionary entry (table) 298
as type 3 halftone dictionary entry (table) 490
as type 4 image dictionary entry (table) 307
as type 6 halftone dictionary entry (table) 491
as type 16 halftone dictionary entry (table) 496

Height2 entry
as type 16 halftone dictionary entry (table) 496

Helvetica font family 776

hexadecimal
ASCII

decoding binary data from (ASCII HexDecode) (over-
view table) 85

encoding binary data as (ASCIIHexEncode) (over-
view table) 85

radix number representation of 28
strings

ASCII encoding 30-31
reading (readhexstring) 639
writing (writehexstring) 720

high-fidelity color 245
render color space use 461

highlights
diffuse achromatic, WhitePoint use 224
specular, compared with diffuse achromatic highlights

224

hit detection
insideness testing use 196

homogeneous
number arrays

as binary tokens 161-162
encoded number string use 171

horizontal
sampling, DCTEncode dictionary entry (table) 148
writing, font metrics for 332

HSamples entry
as DCTEncode dictionary entry (table) 148

HSB (hue-saturation-brightness)
See also color, models
as additive color model 217
as alternative RGB convention 211
retrieving (currentsbcolor) 558
setting (sethsbcolor) 672

hue 217

Huffman coding
Flate encoding use 137
FlateDecode filter use, overview (overview table) 86
FlateEncode filter use, overview (overview table) 85

HuffTables a r ray
a DCTEncode dictionary entry (table) 149

HWOptions resource category 98
(table) 91

HWResolution page device parameter
Output Device dictionary entry (table) 456
page image placement parameter (table) 414

ID (identifier)
extended unique ID (table) 251
unique

extended
See XUID array

generation of 335-337
numbers 336
numbers, extended 337

identifiers
name objects use for 40

identifying
glyphs in font cache 335

identity
matrix (identmatrix) 605
transform

matrix 626
Type 2 CIDFont defined in terms of 379
Type 42 fonts defined in terms of 347

identmatrix operator 605

idiom recognition 119-121

IdlomRecognition user parameter
bind operator use 119-121
value (table) 749

IdiomSet resource category 97
creating an instance of (example) 120
idiom recognition use of 119-121
matching procedures different from other resource

categories 121

IdiomSet resource category description
(table) 91

idly operator 52,605

idtransform operator 606

IEEE 754 standard
real number representation 170

If operator 55,606
boolean object use with 38

ifelse operator 55,607
boolean object use with 38
(example) 49

image operator 177,607
bilevel picture encoding convention, CCITTFaxEncode/

CCITTFaxDecode filter use 145
CIE-based color space use 221
color space conflicts with Pattern color space 254
color space use 296
DCTDecode filter output 146

856
I INDEX

image operator (continued)
(example) 84
image dictionary use 297-304,299-301
images as color value source 211
Indexed color space use with 241
prohibited from font cache use 334
sample

data sources 291
representation 290

Separation color space use 243,244
uncolored tiling pattern prohibited from using 257

image(s)
color

colorimage 544-545
compression, DCT algorithm impressive with 147
maps, Indexed color space use 239-241
spaces and 296-297
values 211
with a single source (example) 310

compressing (DCTEncode) (table) 86
current 176
data

compressing (DCTEncode) (table) 86
decompressing (DCTDecode) (table) 86
ReusableStreamDecode filter use 153

DCTDecode filter output as stream of 146
decompressing (DCTDecode) (table) 86
dependence, WhitePoint and BlackPoint values 225
dictionaries 297-304

data (table) 305
mask (table) 306
type 1 297-299
type 1 (example) 311
type 1 (table) 298
type 3 (table) 304
type 4 (table) 307

height, in scan lines, specifying in a CCITTFaxEncode/
CCITTFaxDecode dictionary entry (table) 145

interpolation 301
stencil masking effect 303

masking 301-308
color key masking 307-308
explicit masking 303-307
LanguageLevel 1 and 2 mechanisms for 302
stencil masking 302-303

monochrome (example) 309-310
page

placement 413-416
placement, parameters (table) 414-416

painting 288-311
image 177,607
requirements for 290

parameters 289-290

image(s) (continued)
PostScript support for CCITT fax standard designed

for 143
sample representation 290-293
sampling

DCTDecode filter output 146
LZW support of predictor functions for 133

source, coordinate system 293-296
space, user space relationship to 294
trapping 453-454
using (examples) 308-314

ImagelnternalTrapping entry
Trapping dictionary, entries (table) 448

imagemask operator 608
color space use 297
image dictionary use 297-304,299-301
painting bitmapped character glyphs with 303
sample data sources 291
sample representation 290
stencil mask use 301
stencil masking 302-303
tiling pattern use (table) 252
uncolored tiling pattern use 257

ImageMatrix array
as image data dictionary entry (table) 305
as image mask dictionary entry (table) 306
as type 1 image dictionary entry (table) 298
as type 4 image dictionary entry (table) 308

ImageResolution entry
Trapping dictionary, entries (table) 449

images
threshold arrays compared with 489

ImageShift page device parameter 414

ImageToObjectTrapping entry
Trapping dictionary, entries (table) 448

ImageTrapPlacement entry
Trapping dictionary, entries (table) 449

ImageType entry
as image data dictionary entry (table) 305
as image mask dictionary entry (table) 306
as type 1 image dictionary entry (table) 298
as type 3 image dictionary entry (table) 304
as type 4 image dictionary entry (table) 307

ImageType resource category 98
(table) 92

imaging
model 14, 176-178
multiple contexts, gstate objects use with 181

Imaging BBox page device parameter 414

immediate execution 46-47

857
INDEX

immediately evaluated names 121-123
ASCII encoding compared with binary object sequence

encoding 167
binary object sequence encoding 166
specifying in a binary object sequence 169
syntax of 31

implementation
limits

(appendix) 737-743
exceeded error (limitcheck) 621

of resource categories, implementation dictionary use
100-102

Implementation entry
as form dictionary entry (table) 208
as type 1 pattern dictionary entry (table) 252
as type 2 pattern dictionary entry (table) 260

implicit
key lookup, dictionary stack search by 42
parameters, painting operators 177
resources 90,98-99

overview (table) 91-92

inclusive or operation (or) 631

incremental definition 353
of fonts

CIDFont glyphs, Glyph Directory use 375-376
CIDFont glyphs, Type 1 377
rules for 354
independence

device
color spaces, CIE-based 221
color spaces, overview 214
color specification as 210
coordinate system transformation enhancement of

184
graphics state parameters (table) 179-180
See also portability

user space vs device space 183

index operator 52,610

Indexed color space 239-241
axial shading pattern (type 2) prohibited with 266
Decode array mapping 300
DeviceN use, to produce multitone 246-247
Function parameter of type 4 shading dictionary pro-

hibited with 271
Function parameter of type 5 shading dictionary pro-

hibited with 275
Function parameter of type 6 shading dictionary pro-

hibited with 280
function-based shading (type 1) pattern prohibited

with 265
radial shading pattern (type 3) prohibited with 268
remapping to CIE-based color space 238
rendering rules for shading patterns 264

Indexed color space (continued)
as special color space 214

ineofill operator 610
insideness testing 197

infill operator 610
insideness testing 197

initclip operator 611
usage guidelines 805

initgraphIcs operator 612
Install procedure use 426
usage guidelines 805

initialization
clipping path (initclip) 611
CTM, to default for current device (InItmatrix) 613
device

page device parameters (table) 426-427
page setup and 426-432

graphics state (Initgraphics) 612

initiation
of error handling 115-116

Initmatrix operator 613
usage guidelines 805

ink
device color space specification 216

InkParams resource category 97

InkParams resource category description
(table) 91

input
See also output
errors (ioerror) 618
files 73

arbitrary data source as (SubFileDecode) (table) 86
executing programs from (exec) 74
reading characters from (read) 73
reading lines from (readline) 73
reading strings from (readstring) 73
scanning for PostScript tokens (token) 73

standard 57
as execution environment component 73-87
file handling 80
handling 74

stream, creating positionable (Reusa bleSt rea m Decode
(table) 86

InputAttributes dictionary
managing 408-410

InputAttributes page device parameter 400

InsertSheet page device parameter 402

insideness testing
See also clipping even-odd rule
Ineofill 610
infill 610
instroke 613

I INDEX
858

 i

insideness testing (continued)
inueofill 614
inufill 615
inustroke 616
operators (list) 520
painting use of 196-197

Install page device parameter 426

installing
dictionaries (begin) 536

insta nceType entry
as category implementation dictionary entry (table)

101

instroke operator 613
insideness testing 197

integer(s) 28
See also mathematics; numbers
binary object sequence encoding 166
converting

objects to (cvi) 566
to real numbers (cvr) 567

dividing (Idly) 605
numeric objects 37-38,37
objects, execution handling 50
rounding (round) 652
shifting bits in binary representation of (bItshift) 539
as simple object (table) 34
strings use of 39

Intent entry
as ReusableStreamDecode dictionary entry (table) 155

intents
rendering

remapping device colors to CIE-based color space
use 237

specifying for CIE-based color spaces 469-473

interaction
models, PostScript interpreter 15-17

interactive
applications

ByteOrder and RealFormat use 170
gstate objects use with 181-182
insideness testing 196

executive
control characters for (table) 21
invoking (executive) 81,585
prompting user (prompt) 635

interpreter, use 20-21

InterleaveType entry
as type 3 image dictionary entry (table) 304

interleaving
blocks 304
of image sample data stream, as DCTDecode filter

output 146

interleaving (continued)
JPEG standard alternative to, not useful for image

operator 147
by row (table) 304
by sample (table) 304
in sample data 292

internaldict operator 614

International Commission on Illumination
See CIE (Commission Internationale de l'Éclairage)

Interpolate entry
as image data dictionary entry (table) 306
as image mask dictionary entry (table) 307
as type 1 image dictionary entry (table) 298
as type 4 image dictionary entry (table) 308

interpolation
algorithms, for gradient fills, color space sensitivity 264
bilinear (example) Ill
exponent, type 2 function dictionary specification (N)

(table) 113
exponential interpolation functions 107

type 2 function dictionary 112-113
type 2 function dictionary, entries specific to

(table) 113
image, stencil masking effect 303
of images 301
as parametric value, compared with color space inter-

polation in gradient fills 263

interpreter
errors (unregistered) 712

interpreters
Emulator resource category (table) 91
interactive, control characters for (table) 21
interactive use 20-21
page description, PDL resource category 97
parameters

(appendix) 745-760
operators (list) 522

PostScript 24-25
application interactions with 15-22
interaction models 15-17

interrupt error 614
special handling 115

inueofill operator 614
encoded number string use 172
insideness testing 197

inufill operator 615
encoded number string use 172
insideness testing 197

inustroke operator 616
encoded number string use 172
insideness testing 197

invalidaccess error 616

859
INDEX

invalidaccess error (continued)
file

access 80
as data sources and targets 124
object access 79

local VM reference by global VM object 60

invalidexit error 617

invalidfileaccess error 617
file access 80

invalidfont error 617
definefont failure 323

invalidrestore error 617
stack modification 61

inversion
inverse delta transform (Idtransform) 606
matrix (invertmatrix) 618
of sample color intensities 300
stitching function use 114
of a transformation 189
transformation (itransform) 619

invertmatrix operator 618

nvoking
interactive executive (executive) 81,585
procedures, rule for 49

10Device resource category 98
resourceforall use with 87

ioerror error 618
DCTEncode filter 128
DCTEncode issues 150
file access 80
invalid EOD indicator

ASCI185Decode 131
ASCIIHexDecode 130

procedure as data target and source precautions 125
string as data target exhaustion 126
write to closed data target 128

isFixedPitch entry
as entry in Fontlnfo dictionary (table) 327

ISO
JPEG (Joint Photographic Experts Group) standard

See JPEG (Joint Photographic Experts Group)
standard

ISO 10646 Unicode standard
CMap use for encoding 366
ISOLatin1Encoding 618

ISOLatin1Encoding encoding array 95,618
as Latin-text encoding scheme 330

(table) 773, 785

ItalicAngle entry
as entry in FontInfo dictionary (table) 327

iteration operators
cshow 551

iteration operators (continued)
exit 585
fonts (kshow) 619
for 596
loop 623
repeat 645

it ra n sform operator 619

JFIF (JPEG File Interchange Format)
See JPEG (Joint Photographic Experts Group) standard

JIS Japanese encoding
CMap use for encoding 366

job 57
components of 69
encapsulation 70-72

LanguageLevel 1 (exitserver) 72-73
LanguageLevel 2 (startjob) 695

execution environment 68-72
initiating (exitserver) 586
server 68

dictionary (serverdict) 72,657
operations (step sequence) 69

starting (startjob) 695

JobName user parameter
value (table) 750

Jog page device parameter 418

join between line segments (setlinejoin) 194

JPEG (Joint Photographic Experts Group) standard
compression of image data (DCTEncode) (table) 86
DCTDecode/DCTEncode filter use 146
decompression of image data (DCTDecode) (table) 86
ISO/IEC 10918-1, bibliographic reference 814
PostScript relationship to 150

K entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 144

kerning
See also font(s)
information available in AFM and ACRM files 333

keys
associating with values, in dictionaries on the diction-

ary stack (def) 54,568
dictionary 41

searching for (known) 54,619
pattern cell 252
as resource identifiers (defineresource) 90

I INDEX
860

known operator 54,619
deprecated for locating operators in systemdict 43

kshow operator 55,321,619

language
control 97

support (ControlLanguage) (table) 91
Emulator resource category 98

(table) 91
natural

Localization resource category 97
LZW method suited to 133
Asian character sets, CID-keyed font use 364-390
support (Localization) (table) 91

page description 13-15
PDL resource category 97

PostScript
introduction (chapter) 1-10
programming language structure and components

(chapter) 23-174

LanguageLevel 1
accessing external font resources 346
clipping as simulation of masking 302
color space restrictions 211
definefont 88
deletefile 77
dictfull error 41
dictionary capacity, fixed 53
encapsulation overriding (ezitserver) 72-73
ezitserver 70,72-73
file 77
file system access (file) 77
filenameforall 77
fileposition 77
findfont 88
image facilities 288-289
path storage limits 190
renamefile 77
rendet ing support 458
save and restore as VM reclamation mechanisms 62
setfileposition 77
status 77
virtual memory, local 59

LanguageLevel 2
feature summary 731-735
LanguageLevel 3
feature summary 725-731
overview 5-7

LanguageLevel entry
as font dictionary entry (table) 325

languagelevel operator 620

LanguageLevels

compatibility strategies (appendix) 761-771
feature summary (appendix) 725-736
incompatibilities among 735

late binding 117

Latin-text
See also font(s)
Chamelion font format as implementation of 343
encoding schemes 330
standard Latin character set (table) 779-783

Latin-text fonts
ISOLatin1Encoding 618
ISOLatintEncoding resource 95

lattice-form
Gouraud-shaded triangle meshes 261,274-276

le operator 55,620

LeadingEdge page device parameter 402

left parenthesis (0
special syntactic treatment of 27

left sidebearing
glyph 332

length
See also size; width
of composite object, retrieving (length) 53,621
dictionary 41
of names 40

length operator 621

retrieving the number of elements in a composite
object 53

less-than-or-equal relation
comparing objects for (le) 620

less-than relation
comparing objects for (It) 623

LF (line feed)
as EOL, scanner handling of 74-75
\n as ASCII encoding (list) 29
numeric values (table) 27

libraries, procedure
See procedure(s), sets

LicenselD system parameter
value (table) 752

lifetime
of global virtual memory 60
of local virtual memory 59

limitcheck error 621
available storage exhausted by a path 190
clipping simulation of masking 302
font cache 382
halftone cell memory size 488
radix number cause 28
real number cause 28

limits
architectural (table) 739

i
861

I
INDEX I

limits (continued)
implementation

(appendix) 737-743
exceeded error (limitcheck) 621

memory (table) 741-742
miter joins, setting (setmiterlimit) 194
to path size 190

line feed (LF)
as EOL, scanner handling of 74-75
\n as ASCII encoding (list) 29
numeric values (table) 27

line(s)
See also path(s)
appending

to current path (lineto) 622
to current path (rlineto) 650

cap
as graphics state parameter (table) 180
retrieving (currentlinecap) 559
setting (setlinecap) 194,673

color, setting (sethsbcolor) 194
dashed

as graphics state parameter (table) 180
currentdash 555
setdash 194,666

end-of-line, conventions 74-75
erasing, control characters for interactive executive use

(table) 21
join

as graphics state parameter (table) 180
retrieving (currentlinejoin) 559
setting (setlinejoin) 673

painting (stroke) 177,700
reading (readline) 73,639
redisplaying, control characters for interactive executive

use (table) 21
straight, adding to current path (lineto) 191
stroking 193-194
width

retrieving (currentlinewidth) 559
setting (setlinewidth) 193,674
(table) 179

%lineedit file
file handling 80

lmeto operator 177, 191, 198,622
operation code for encoded user paths (table) 201

LISP
atoms, PostScript names similar to 40
as PostScript influence 23

literals
array object 162
attribute

handling objects with 50
setting (cvlit) 566

literals (continued)
attribute (continued)

testing for (xcheck) 721
composite, delimiters for 58
object attribute 36-37
syntax of 31
text strings, ASCII encoding 29-30

In operator 52,622

load operator 54,622

loading
elements of an array or packed array onto the operand

stack (abad) 54, 528
resources into VM 105
values from dictionary stack onto the operand stack

(load) 54,622

local
standard dictionaries (table) 65
VM 59-61

reference by global VM object prohibited 60
reference by global VM object prohibited,

systemdict exceptions 66
save and restore operations 61-62

localization
support (Localization) (table) 91

Localization resource category 97
(table) 91

locating
values on the dictionary stack (where) 54,718

location
page, decoupling from graphical element description

185

log operator 52,623

logarithms
common (log) 623
natural (In) 622

logical operations
See boolean

loop operator 55,623

looping
See iteration

loops
context 585
exiting (exit) 585

lossy
compression of image data (DCTEncode) (table) 86
DCTEncode/DCTDecode filters characterized as 147
decompression of image data (DCTDecode) (table) 86
filters, disadvantages 308

LowBitFirst entry
as LZW dictionary entry (table) 134
LZWEncode use 136-137

It operator 55,623

I INDEX
862

luminance
representation, CIEBasedA use 228

LZW (Lempel-Ziv-Welch) adaptive compression method
compressing data with (LZWEncode) (overview table)

85
decompressing data encoded with (LZWDecode) (over-

view table) 85
dictionary (table) 133
encoding sequence (example) 135
Flate encoding compared with 138
Flate encoding use 137
FlateDecode filter use, overview (overview table) 86
FlateEncode filter use, overview (overview table) 85
predictor functions use with 139-141
URL for information on 133

LZWDecode filter 85,132-137

LZWEncode filter 85,133-137

machine
generation, binary enc,odings used for 25
representation

ByteOrder and RealFormat use 170
of numeric objects, accessibility of 38

makefont operator 624
composite font handling 364
Font resource category instances as operands to 93
scaling fonts with 315

makepattern operator 625
creating patterns with 249
Pattern resource category use 95

management
of memory 56-72

manipulation
of matrices 187-189

ManualFeed page device parameter 402

ManualSize array
as OutputDevice dictionary entry (table) 455

mapping
algorithm, CMap 388-389
algorithms

FMapType selection of 358-360
FMapType (table) 360

characters 358-362
color, functions, as CIE-based color rendering diction-

ary component 460
colors, to device color, as rendering step 457
control for Type 0 fonts with 360-362
with the Decode array (figure) 112
fonts, FMapType resource category (table) 92
image space, into user space 294-296
a procedure over a composite object (forall) 53,597

mapping (continued)
color, selecting colors from, Indexed color space use

239-241

Margins page device parameter 415

mark 44
binary object sequence encoding 166
errors (unmatchedmark) 711
objects 44

execution handling 50
removing, from operand stack (cleartomark) 52
as simple object (table) 34

mark operator 52,625
See also square bracket, left (f) operator
mark objects created by 44

marking
an operand stack position (mark) 52,625

MaskColor array
as type 4 image dictionary entry (table) 307

MaskDict dictionary
as type 3 image dictionary entry (table) 304

masking
image, LanguageLevel 1 and 2 mechanisms for 302
image dictionary (table) 306
of images 301-308

color key masking 307-308
explicit masking 303-307

stencil 301
imagemask 608

of stencil 302-303

matching
requests with attributes, in media selection 403-407

mathematics
arithmetic

add 527
idly 605
mul 627
neg 628
sqrt 692
sub 701

ceiling 540
common logarithms (log) 623
errors (undefinedresult) 709
exponentiation (exp) 586
floor 594
natural logarithms (In) 622
operators

(fist) 508
overview 52

random number generation
rand 637
retrieving current state (rrand) 652
srand 692

remainder (mod) 627
rounding integers (round) 652

863

mathematics (continued)
trigonometric functions

atan 535-536
cos 550
sin 692

truncating numbers (truncate) 705

matrix
See also CTM (current transformation matrix)
concatenation of operations on 188-189
image space transformation 294-296
inversion (invertmatrix) 618
operators

concat 5.17
concatmatrix 547
currentmatrix 559
defaultmatrix 569
identmatrix 605
(list) 517-518
matrix 626
overview 175

representation and manipulation 187-189
rotation (rotate) 651
transformation 184-186

applying (transform) 703
inverting (idtransform) 606
(table) 208

user path operator use 205

Matrix array
as form dictionary entry (table) 208
as type 1 shading dictionary entry (table) 265

matrix operator 626

MatrixA array
as CIEBasedA dictionary entry (table) 229

MatrixABC array
as CIEBasedABC dictionary entry (table) 223
as type 1 CIE-based CRD entry (table) 463

MatrIxLMN array
calculation of 226
as CIEBasedA dictionary entry (table) 230
as CIEBasedABC dictionary entry (table) 224
as type 1 CIE-based CRD entry (table) 463

MatrixPQR array
as type 1 CIE-based CRD entry (table) 465

MaxDictStack user parameter
value (table) 750

MaxDisplayAndSourceList system parameter
value (table) 752

MaxDisplayList system parameter
value (table) 752

MaxExecStack user parameter
value (table) 750

MaxFontCache system parameter
value (table) 752

INDEX I

MaxFontltem user parameter
value (table) 750

MaxFormCache system parameter
value (table) 752

MaxFormItem user parameter
value (table) 750

MaxlmageBuffer system parameter
value (table) 752

maximum
dictionary capacity, retrieving (maxiength) 54,626

maxlength operator 54,626

MaxLocalVM user parameter
value (table) 750

Max0pStack user parameter
value (table) 750

MaxOutlineCache system parameter
value (table) 752

MaxPatternCache system parameter
value (table) 752

MaxPatternItem user parameter
value (table) 750

MaxScreenItem user parameter
value (table) 750

MaxScreenStorage system parameter
value (table) 752

MaxSeparations page device parameter 421

MaxSourceList system parameter
value (table) 752

MaxStoredScreenCache system parameter
value (table) 752

MaxSuperScreen user parameter
halftone-setting operator impact 482
value (table) 750

MaxUPathCache system parameter
value (table) 752

MaxUPathltem user parameter
value (table) 750

media
deferred, selection of 411
destinations 416
roll-fed, parameters (table) 412-413
selection 398-412

parameters (table) 400-403
recovery policies and 436-438

sources 398
special, handling of 407-408

MediaClass page device parameter
media selection parameter (table) 402
OutputDevice dictionary entry (table) 455

MediaColor page device parameter 401

MediaPosition page device parameter 403

MediaWeight page device parameter 401

I INDEX
864

memory
See also garbage collection
as execution environment component 56-72
limits (table) 741-742
management 56-72

composite object creation issues 53
reclamation of, save and restore functions 62
virtual

See VM (virtual memory)
VM (virtual memory), operators (list) 514

meshes
Coons patch, as type 6 shading 261,277-283
data, for shading dictionaries, ReusableStreamDecode

filter use with 153
free-form Gouraud-shaded triangle, as type 4 shading

261,270-274
lattice-form Gouraud-shaded, as type 5 shading 261,

274-276
tensor-product patch, as type 7 shading 261,283-287

metrics
glyphs

changing the 350-351
information 331-333
modifying 321

Metrics dictionary
modifying glyph metrics with 350-351
as Type 0 CIDFont dictionary entry (table) 373
as Type 1 font dictionary entry (table) 326
as Type 2 CIDFont dictionary entry (table) 379
as Type 42 font dictionary entry (table) 347

Metrics2 dictionary
modifying glyph metrics with 350-351
as Type 0 CIDFont dictionary entry (table) 374
as Type 1 font dictionary entry (table) 326
as Type 2 CIDFont dictionary entry (table) 379
as Type 42 font dictionary entry (table) 347

MIDVector entry

as Type 0 font dictionary entry (table) 358

MinFontCompress user parameter
value (table) 750

MirrorPrint page device parameter 415

misregistration
trapping as solution to 439

miter joins limit
See also line(s)
as graphics state parameter (table) 180
retrieving (currentmiterlimit) 560
setting (setmlterlimit) 194,675

mod operator 52,627

modal fonts 363

model(s)
color

additive (RGB and HSB) 217
contrasted with color space 423

model(s) (continued)
color (continued)

HSB 217
process color model (ProcessColorModel) 420,

422-424
RGB 217
subtractive, CMYK 218
subtractive, tints as, in Separation color spaces 242

of color, vision, CIE-based color spaces use for 220-238
data, elements and characteristics 23
DeviceN, precautions on using 424
imaging 14,176-178
interaction, PostScript interpreter 15-17
painting 176
of PostScript interpreter 68

modifying
encoding vectors 349-350
fonts 348-356
glyph metrics 350-351
initial virtual memory 70-72
rendering priorities, rendering intent use for 469-473
unit lengths independently (translate) 185
user space 185-187

monochrome

CCITT fax encoding used for compressing 143
images (example) 309-310
stencil masking (imagemask) 608

monospaced fonts 320

moveto operator 177,191,627
adding segments to a path 191
operation code for encoded user paths (table) 201
setting font position with 315
user path 198

structuring 199
moving

user space origin (translate) 185,704

mul operator 52,627

multiple
byte character encodings, CID-keyed font use 364-390
execution contexts

concurrent access management 57
Display PostScript System manuals 811
standard error file shared among 81
standard I/O files private to 81

imaging contexts, gstate objects use with 181

MultipleDataSources entry
as image data dictionary entry (table) 305
as image mask dictionary entry (table) 306
as type 1 image dictionary entry (table) 298
as type 4 image dictionary entry (table) 308

multiplication
matrix, concatenation performed by 189
numbers (mul) 627

multitone color 245

865
INDEX I

N
N entry

as type 2 fwiction dictionary entry (table) 113

name(s)
arrays, binary object sequence encoding 166
binary object sequence encoding 166
binding, early binding of (bind) 117-123,118-121,

538-539
booleans, binary object sequence encoding 166
converting strings to (cvn) 566
creating 40
encoded system 168-169

as binary tokens 160
equality, testing for 40
errors (undefined) 709
evaluation, immediate, syntax of 31
executable

effects of executing 24
execution handling 50-51
handling (example) 49
semantics of 36

as first-class data objects 40
halftone, retrieving (GetHalftoneName) 599
immediately evaluated 121-123

ASCII encoding compared with binary object se-
quence encoding 167

binary object sequence encoding 166
specifying in a binary object sequence 169

integers, binary object sequence encoding 166
length of 40
literal vs. executable 36
marks, binary object sequence encoding 166
names, binary object sequence encoding 166
nulls, binary object sequence encoding 166
numbers, binary object sequence encoding 166
objects 40-41
operator

as systemdict dictionary keys 43
not reserved in PostScript 23

PostScript product, retrieving (product) 634
real numbers, binary object sequence encoding 166
searches, environment for 45
as simple object (table) 34
strings, binary object sequence encoding 166
strings and, interchangeable in an dictionary 41
syntax 31
system name 168

encodings (appendix) 795-799
translation of, by ResourceFileName key 103-104

named
files 77-80
resources 87-105

naming conventions
devices 78
file system 78
font 328

native color space 473
process color model, specifying 422-424

natural language
Asian character sets, CID-keyed font use 364-390
Localization resource category 97
LZW method suited to 133
support (Localization) (table) 91

natural logarithms
In 622

ne operator 55,628

neg operator 52,628

negation
of numbers (neg) 628

NegativePrint page device parameter 415

nesting
of composite fonts 363-364
of save and restore 62

neutral density 444

newerror entry
as 5error dictionary entry (table) 116

newline characters 26
handling 30

newpath operator 177,628
beginning paths with 191
exec-form invocation of 209
user path invocation of 205

no-op
executable null object use for 51

noaccess operator 56,628

nocurrentpoint error 629
undefined current point 191

None colorant name
Separation color space use 243

nonzero winding number rule 195
See also clipping; even-odd rule; insideness testing
even-odd rule compared with 194
insideness testing

infill 610
inufill 615

painting, user paths (ufill) 708

not equals relation
comparing objects for (ne) 628

not operator 55,629

.notdef character name
beginnotdefrange operator 385
CIDFont equivalent for 369
encoding vector use 330

l INDEX
866

I I

.notdef character name (continued)
endnotdefrange operator 385
replacing 351
undefined character handling, in CMap mapping

operation 390

Notice entry
as entry in FontInfo dictionary (table) 327

nul (null) character
numeric values (table) 27

null
binary object sequence encoding 166
device

nuIldevice 630
nulldevice, usage guidelines 805-806

executable, execution handling 51
objects 44

null 630
(table) 34

null operator 630

nulldevice operator 630
usage guidelines 805-806

NullEncode filter 86,156
null

bind not usable with 119
dictionary keys not permitted to be 41
name, systemdict null object use 44

number(s) 37-38
See also mathematics
absolute value (abs) 527
adding (add) 527
binary object sequence encoding 166
dividing

div 574
Idiv 605

encoded number strings
as binary tokens 171-172
homogeneous number array use 162,171
operators that use 172

fixed-point 160
as binary tokens 160

graphics state parameters, handling of 178
homogeneous number arrays 161

as binary tokens 161-162
encoded number string use 171

multiplying (mul) 627
negation of (neg) 628
nonzero winding number rule 195
radix 28
random

generating (rand) 637
generating (srand) 692
retrieving current state (rrand) 652

real 28
representation

in homogeneous number array (table) 162
of binary tokens 169-170

rounding (round) 652
subtracting (sub) 701
syntax 28
truncating (truncate) 705
unique ID 336

extended 337

NumCoples page device parameter 417

o

object(s) 24
array 38
attributes of 35-37
binary object sequences 156,163-168

binary tokens compared with 158,169
encoded system names in 168-169
setting format (setobjectformat) 677
writing to standard output (printobject) 634
writing (writeobject) 721

boolean 38
comparing

for equality (eq) 580
for greater-than-or-equal relation (ge) 598
for greater-than relation (gt) 604
for inequality (ne) 628
for less-than-or-equal relation (le) 620
for less-than relation (It) 623

composite 34-35,34
access attributes 37
as graphics state parameters, handling of 178
binary object sequence structure recommendations

167
copying (copy) 53
graphics state restrictions 215
pushing/popping effects 46
retrieving elements of (get) 53,598
retrieving the number of elements in (get) 53
storing elements of (put) 53,635
VM as pool for values of 57

converting to strings (cvs) 568
copying

on the operand stack (dup) 51,575
simple vs. composite 35

creating, in VM (example) 60
data 34-45
dictionary 41-42
exchanging, on the operand stack (exch) 51,581
executable

effects of executing 24
exec 582
files, execution handling 50
names, execution handling 50-51

867
INDEX I

object(s) (continued)
executable (continued)

null, execution handling 51
sources of 24
strings, execution handling 50

external, introduction into VM 88
file 43-44, 43

files represented by 73
retrieving the current (currentfile) 87

fontID
as a simple object (table) 34
as an object type 45
execution handling 50

format, retrieving (currentobjectformat) 560
gstate, as an object type 45
literal array 162
mark 44
name 40-41

double angle brackets as 33
null 44
numeric 37

integer 37-38
real 37-38

operator 42-43
execution handling 51

packed array 39
removing, from the top of the operand stack (pop)

633
save 44
simple 34-35, 34

names as 40
source of, for immediate execution 47
storing into an array (astore) 54, 535
string 39-40
tokens as components of 26
types 34-45, 34

retrieving as a name object (type) 705
(table) 34

user 67-68, 67
defining (defineuserobject) 67,571
defining (defineuserobject) (example) 68
executing (execuserobject) 67,584
executing (execuserobject) (example) 68
manipulating (example) 68
undefining (undefineuserobject) 67, 711
UserObjects 713

writing
text representation, to standard output (=) 87
text representation, to standard output (==) 87

octal character codes
ASCII encoding (list) 29
radix number representation of 28
usage 30

opacity
overprint control of 247-248

opaque
painting model use of 176

operand stack
accessing 46

as an array (index) 52, 610
clearing

clear 52
elements above the highest mark (cleartomark)

541
copying

objects on (dup) 51, 575
portions of (copy) 51, 548

counting elements
above the highest mark (counttomark) 52, 551
count 52,550

exchanging objects on (exch) 51, 581
as execution environment component 56
loading

elements of an array or packed array onto (abad)
54,528

values from dictionary stack onto (load)
marking position on 44

mark 52, 625
as one of five execution state stacks 45
operators

(list) 508
51, overview 51-52

printing contents, using = (stack) 87
procedure handling use 50
removing

mark from (cleartomark) 52
objects from the top of (pop) 51, 633

treating as circular queue (roll) 52, 650
writing, to standard output (stack) 692

operands
order of, execution handling 47
procedures as, for control constructs 49

operating system
named file handling integration with 77

operators
arithmetic

(list) 508
overview 52

array
(list) 509
overview 52-55

attribute
(list) 512
overview 56

basic, overview of 51-56
bitwise

(list) 511
overview 55

boolean
(list) 511

52,

54,622

INDEX
868

operators (continued)
boolean (continued)

(overview) 55
(chapter) 505-723
clipping path 193
CMap, in the CIDInit procedure set 384-385
control

(list) 512
overview 55-56

conversion
(list) 512
overview 56

coordinate system (list) 517-518
detailed reference descriptions, in alphabetical order

524-723
device setup (list) 521
dictionaries (list) 510
dictionary, overview 52-55
executable, semantics of 36
executing, effects of 24
execution, handling 51
file

basic, overview 73-76
(list) 513-514
miscellaneous, overview 87

font (list) 521-522
form (list) 520
glyph (list) 521-522
graphics

display and printer facilities (chapter) 175-290
overview of main groups 175-176

graphics state
device-dependent (list) 516-517
device-independent (list) 515

insideness-testing 197
(list) 520

mathematical, overview 52
mathematics (list) 508
matrix (list) 517-518
names

as systemdict dictionary keys 43
not reserved in PostScript 23

objects 42-43
operand stack

(list) 508
overview 51-52

output (list) 521
packed array

(list) 509
overview 52-55

painting 177
(list) 519-520

path
clipping 193
construction 177,191

operators (continued)
path construction (list) 518-519
pattern (list) 520
polymorphic, overview 52-55
rectangle, user path operators relationship to 205-206
relational

(list) 511
overview 55

resource 88-90
(list) 514

as simple object (table) 34
string

(list) 511
overview 52-55

substitution, bind use of 118-119
systemdict dictionary use for (table) 66
type

(list) 512
overview 56

for Type 4 CIDFonts 381-382
usage guidelines (appendix) 801-810
user path 204-204

(list) 198
virtual memory 61-62
VM (virtual memory) (list) 514

or (inclusive or) operator 55,631

order
byte, token type specification 170
matrix multiplication significance 189
of operands, execution handling 47
path, reversing (reversepath) 649

Order entry
as type 0 function dictionary entry (table) 109

Ordering entry
as CIDSysteminfo dictionary entry (table) 368

Orientation page device parameter 412

origin
device space, location of 182
glyph 331
user space, physical page relationship 183

ostack array
as Serror dictionary entry (table) 116

outlines
glyph, treating as a path 319

output
See also input
delivery specification

for pages 416-419
for pages, parameters (table) 417-419

device dictionary 455-456
echoing characters on, enabling/disabling (echo) 575
errors (ioerror) 618

869
INDEX I

output (continued)
files 73

arbitrary data target as (NullEncode) (table) 86
writing characters to (write) 73,720
writing strings to (writestring) 73

operators
(list) 521
overview 176

standard 57
as execution environment component 73-87
file handling 80
handling 74
printing stack objects to (pstack) 635
writing binary object sequences (printobject) 634
writing characters to (print) 633
writing operand stack contents (stack) 692
writing text representation of an object to (--.) 87
writing text representation of an object to (==) 87

structured 172-174
format 172

OutputAttributes page device parameter 419

OutputDevice page device parameter
(table) 417

OutputDevice resource category 97
dictionary entries (table) 455
(table) 91

OutputFaceUp page device parameter 418

OutputType page device parameter 417

overflow
dictionary, handling of 41

overprinting
control 247-248
DeviceN color space use 245
as graphics state parameter (table) 180
parameter

retrieving (currentoverprint) 560
setting (setoverprint) 247,677

overriding
glyph metrics 350-351
resource categories 99

overview
of operators, general-purpose 51-56

overwriting
subintervals of

arrays (putinterval) 53,636
strings (putinterval) 53, 636

PackBits (Apple Macintosh)
RunLengthEncode filter similar to 142

packed arrays 39

See also array(s)
as composite object (table) 34
copying (copy) 53,548
creating (packedarray) 53,631
elements

loading onto the operand stack (abad) 54,528
retrieving (get) 53, 598
retrieving the number of (length) 53,621
storing (put) 53,635

mapping a procedure over (forall) 53,597
mode

retrieving the setting (currentpacking) 54,560
setting (setpacking) 54,678

operators
(list) 509
overview 52-55

procedure objects as 33
subintervals of, creating objects that share (getinterval)

53

packedarray operator 631
as composite object constructor 58
creating packed arrays with 53

page
See also POL resource category
adjusting 437
delivery specification 416-419

parameters (table) 417-419
descriptions

decoding filters use in 82
graphics state parameters appropriate for (table)

179
graphics state stack management of 181
language interpreters, PDL resource category 97
languages 13-15
PostScript program structure 17-18
resource access restrictions 103

devices
See page devices

device parameters
See page device parameters

erasing (erasepage) 581
image placement 413-416

parameters (table) 414-416
outputting (showpage) 549-550
physical, default user space origin relationship to 183
rendering (showpage) 177,690
sets 419
setup, device initialization and 426-432

page devices
capabilities (OutputDevice) (table) 91
controlling (chapter) 391-456
details dictionaries 397
dictionary 394-397

retrieving (currentpagedevice) 560

870
I INDEX

page devices (continued)
initialization (table) 426
OutputDevice resource category 97
parameters

See page device parameters
retrieving name of (GetPageDeviceName)

setting (setpagedevice) 679
using 393-398

page device parameters 398-439
AdvanceDistance 413
AdvanceMedia 412
BeginPage 427,427-428
categories (table) 399
Collate 417
color support 419-426

(table) 420-422
CutMedia 413
DeferredMediaSelection 403
Duplex 416
EndPage 427,428-430
handling of unsatisfied requests 432-439
HWResolution 414
ImageShift 414
Imagingnox 414
initialization (table) 426
InputAttributes 400
InsertSheet 402
Install 426
Jog 418
LeadingEdge 402
ManualFeed 402
Margins 415
MaxSeparations 421
media ,,elect ion (table) 400-403
MediaClass 402
MediaColor 401
MediaPosition 403
MediaWeight 401
MirrorPrint 415
NegativePrint 415
NumCopies 417
Orientation 412
OutputAttributes 419
OutputDevice 417
OutputFaceUp 418
OutputType 417
PageDeviceName 420

PageOffset 415
PageSize 401
Policies 433
ProcessColorModel 420,422-424
recovery policies (table) 433
roll-fed media (table) 412-413
RollFedMedia 402,412

page device parameters (continued)
SeparationColorNames 421
SeparationOrder 421
Separations 420
Trapping 422, 447

600 TrappingDetalls 422,442
TraySwitch 403
Tumble 416
UseCIEColor 422

PageCount system parameter
value (table) 752

PageDeviceName page device parameter 420

PageOffset page device parameter 415

PageSize page device parameter
media selection parameter (table) 401
OutputDevice dictionary entry (table) 455

Policies dictionary (table) 434

painting 193-197
See also drawing; filling; rendering
areas, with patterns, Pattern color space use 238-239
characters (show) 329
clipping path impact on
even-odd rule use in

eofill 580
ueofill 708

forms
execform 582
procedure for (table)

glyphs
glyphshow 602
show 316,690
widthshow 718
xshow 722
xyshow 722
yshow 723

images 288-311
image 177,607
requirements for 290

in imaging model 176
lines (stroke) 700
model 176
nonzero winding number rule use in (ufill) 708

operators
compared with path construction operators 191
halftone dictionary use 486

(list) 519-520
overview 177

overview 175
patterns 248-287, 250

procedures for 249
shading (shfill) 689

regions (fill) 194,589
user path (ustroke) 714

192

208

871
INDEX I

painting (continued)
user paths

operators for 204
ufill 197
ustroke 197

PaintProc procedure
creating a pattern cell with 250
EPS reference, ReusableStreamDecode filter use with

153
as form dictionary entry (table) 208
tiling pattern use 253-254
as type 1 pattern dictionary entry (table) 251

PaintType entry
as Type 0 CIDFont dictionary entry (table) 373
as Type 1 font dictionary entry (table) 326
as type 1 pattern dictionary entry (table) 251
as Type 2 CIDFont dictionary entry (table) 378
as Type 42 font dictionary entry (table) 347

parameters
device

10Device resource category (table) 91
retrieving (currentdevparams) 87,555
setting (setdevparams) 87,667

graphics state
device-dependent (table) 180-181
device-independent (table) 179-180,179

implicit, painting operators 177
interpreter

(appendix) 745-760
LanguageLevel 3 (table) 728
operators (list) 522

page device
See page device parameters

system
See system parameters

user
See user parameters

parent font 357

parentheses (0)
ASCII encoding (list) 29
as literal text string delimiters 29

passwords
startjob use 70

patch meshes
as control surfaces 278
Coons, as type 6 shading 261,277-283
tensor-product, as type 7 shading 261,283-287

path(s)
See also insideness testing
appending

curves to (curveto) 564
curves to (rcurveto) 638
glyphs to (charpath) 319

path(s) (continued)
appending (continued)

lines to (lineto) 622
lines to (dineto) 650

bounding box
retrieving (pathbox) 631
setting (setbox) 657

clipping 178,192-193,192
computing intersection path (clip) 193
current, insideness testing disregard of 197
operators 193
path stack 192
restoring (cllprestore) 193
retrieving (clIppath) 193
saving (clipsave) 193
setting (initclip) 611
stack, as one of five execution state stacks 45

closing (closepath) 544
construction 189-193

operators 177,191
operators compared with painting operators 191
operators (list) 518-519
operators, overview 175

creating (newpath) 628
current 190-192
encapsulating 192
enclosed regions

even-odd rule 196
insideness testing 196-197
nonzero winding number rule 195

enumerating elements (pathforall) 632
flattening (flattenpath) 593
as graphics state parameter (table) 179
insideness testing 196-197
new, beginning (newpath) 191
operators, operands as coordinates in user space 183
replacing (strokepath) 700
reversing (reversepath) 649
subpaths 190

closing (closepath) 191,194
creating (moveto) 627
creating (rmoveto) 650

treating glyph outlines as 319
user

See user paths
using repeatedly 192

pathbox operator 631

pathforall operator 55,632

Pattern color space 238-239,254
remapping to CIE-based color space 238
shading dictionary ColorSpace parameter value prohib-

ited from being 262
as special color space 214
uncolored tiling pattern use 257

I INDEX
872

1

Pattern resource category 95
(table) 91

pattern(s) 248-287
cell 248

tiling an area with 250
color, specifying (table) 251
color space, selecting 249
coordinate system 252
creating 249
dash

as graphics state parameter (table) 180
currentdash 555
setdash 194,666

defining 249
dictionaries

components of 249
type 1 (table) 251
type 2 (table) 260

function use 106
in imaging model 176
key pattern cell 252
LanguageLevel 2 use for simulation of masking 302
operators (list) 520
painting 250

painting areas with, Pattern color space use 238-239
painting with, procedures for 249
shading 248,259-290

painting (shfill) 689
rendering rules 264
stitching function use 114
type 1 (function-based) 261,265-266
type 2 (axial) 261,266-268
type 3 (radial) 261,267-270
type 4 (free-form Gouraud-shaded triangle mesh)

261,270-274
type 5 (lattice-form Gouraud-shaded triangle

mesh) 261,274-276
type 6 (Coons patch mesh) 261,277-283
type 7 (tensor-product patch mesh) 261,283-287
types of 265-290

stroked line
operators that determine 194
setdash 194

tiling 248,250-259
colored 254-257
uncolored 257-259
uncolored, restrictions on PaintProc 215

using 249-250

patterns
creating (makepattern) 625
setting (setpattern) 680

PatternType entry
as type 1 pattern dictionary entry (table) 251
as type 2 pattern dictionary entry (table) 260

PatternType resource category 98
(table) 92

PDF (Portable Document Format)
bibliographic reference 812
function use in 106
PostScript relationship 9

PDL resource category 97
Emulator resource category superseded by 97,98
(table) 91

percent sign (%)
comments initiated by 27
special syntactic treatment of 27

perception
human color, CIE-based color spaces modeling of 459

Perceptual rendering intent
characteristics (table) 470

performance
See also storage
as bind benefit 119

compression/decompression filters use to improve 84
DCTEncode issues 150
Elate encoding compared with LZW 138
glyph rendering issues 334
requirement, binary object sequences suitable for 156,

163
user paths, lack of side effects contribution to 198

persistence
of global virtual memory 60
issues, in global VM use 66
of local virtual memory 59

physical

page, default user space origin relationship to 183
pipeline 83

closing, for encoding filters 128
establishing 124
garbage collection and restore impact on 129
ReusableStreamDecode filter use 154

PNG (Portable Network Graphics) standard
predictor functions based on 139
as W3C standard 139

points 183

Bézier control, type 6 shading pattern data source use
280

current
error (nocurrentpoint) 629
establishing (moveto) 191
retrieving (currentpoint) 561

insideness testing 196-197
reference, glyph 331

policies
recovery

media selection and 436-438
page device parameter (table) 433

873
INDEX

Policies page device parameter 433-435

PolicyNotFound entry
Policies dictionary (table) 433

PolicyReport procedure
Policies dictionary (table) 435
unsatisfied parameter request handling with 438-439

polymorphism operators 52-55

pool
global VM storage 59
local VM storage 59

pop operator 51,633

popping
dictionaries, off the dictionary stack (end) 54,577

portability
See also device(s), independence
barrier to, filter use 86
character names advantages over character codes 330
device color space limitation on 216
string object values 40

position
as graphics state parameter (table) 179

positioning
files (setfileposition) 80,668
glyph (cshow) 321
glyphs 320-321

ashow 320, 534-535
awidthshow 320, 536
cshow 551
kshow 321,619
show 320,690
widthshow 320,718
xshow 320,722
xyshow 321,722
yshow 320,723

PostScript
interpreter 24-25

application interactions with 15-22
interaction models 15-17

language
binary encoding, details 156-174
introduction (chapter) 1-10
programming language structure and components

(chapter) 23-174
syntax 25-34

product
retrieving name (product) 634
retrieving revision level (revision) 649

scanner, operations 25-26
version, retrieving (version) 716

precautions
executable attribute 36
graphics state objects, global VM issues 67
immediate evaluation of names 122-123

precision
numeric objects 38
Predictor entry
as FlateEncode/FlateDecode dictionary entry (table)

138
as LZW dictionary entry (table) 134
as predictor-related entry in LZW and Flate filter dic-

tionaries (table) 141

predictor functions
LZW or Flate dictionary entries related to (table) 141
LZW support of 133
PNG-based 139
TIFF-based 139

compared with PNG-based 140
with LZW and Flate filters 139-141

PrefEnc array
as Type 0 font dictionary entry 362

(table) 358

print
formats, translating from other 19-20
job

See job
server, as PostScript interpreter model 68

print operator 74,633
output compared with structured output 172

PrinterName system parameter
value (table) 753

printing
operand stack contents

using == (pstack) 87
using = (stack) 87

stack objects (pstack) 635

printobject operator 634
binary object sequence writing 173

Private dictionary
as FDArray array entry (table) 374
of FDArray dictionary, entries (table) 375
Type 0 CIDFont compared with Type 1 375
as Type 1 font dictionary entry (table) 326

procedure(s) 24,38
array semantics compared with 32
bound, benefits of using 118
as data sources and targets 124-126
dictionaries used to manage 41
execution handling 50
forms compared with 206
functions compared with 106
IdlomSet resource category (table) 91
interpreter handling of (example) 48
invoking, rule for 49
libraries

See procedure(s), sets
object, self-contained, user path as 197

874

 1 I INDEX

procedure(s) (continued)
as operands for control constructs 49
PostScript, Type 3 fonts handled through 337
procedure substitution dictionary, idiom recognition

use 119-121
Prof..S.et resource category 95

(table) 91
as sample data source 291
semantics of 36
sets 95

BitmapFontinit (table) 96
CiDinit (table) 96
ColorRendering (table) 96
FontSetinit (table) 96
LanguageLevel 3 operators defined in (table) 726
standard, LanguageLevel 3 (table) 96
Trapping (table) 96

substitution, idiomSet resource category use 97
syntax 32-33

process colors 218,241
DeviceN, precautions on using 424
model

color space contrasted with 423
specifying (ProcessColorModel) 420,422-424

ProcessColorModel (table) 473

ProcessColorModel page device parameter
color support 422-424

(table) 420
native color space determined by 473
OutputDevice dictionary entry (table) 456
page device dictionary, Separation color space use 243

Prodet resource category 95
ColorRendering procedure set, customizing CRD selec-

tion use 472
(table) 91

product
dictionaries (statusdict) 696
PostScript

retrieving name (product) 634
retrieving revision level (revision) 649

product operator 634

product-dependent
dictionary, statusdict dictionary (table) 65
resources

ControlLanguage resource category 97
HWOptions resource category 97
Localization resource category 97
PDL resource category 97

programming style
garbage collection impact on 63

programs
control constructs

See control, operators
encapsulated, subfile use for error recovery in 151

programs (continued)
execution of

exec 74
run 653

structure of, PostScript page description 17-18
structured

conventions, further information on, "PostScript
Language Document Structuring Conventions"
813

save and restore intended for 62
prolog

modifications for correct global VM use 67
persistence issues, in global VM use 66
save and restore functions 62
in structured document 17-18

prompt operator 635

proportional fonts 320

proprietary
CRDs 460
font formats 322
halftone dictionaries 499-500

protocols
bit-stream, LZW as, implications for LowBitFirst key

136
communication 76

pstack operator 87,635

pushing
dictionaries, onto the dictionary stack (begin) 54

put operator 53,635

putinterval operator 636
overwriting subintervals of a composite object 53

Q
QFactor entry

as DCTEncode dictionary entry (table) 149

QuantTables entry
as DCTEncode dictionary entry (table) 148

queue
circular, treating as stack portion as (roll) 52,650

quit operator 637
usage guidelines 806

R
radial shading pattern 261,267-270

radix numbers 28
See also mathematics; numbers
converting to strings (cvrs) 567

rand operator 637
as pseudo-random number generator 52

875
INDEX

random numbers
generating

rand 637
retrieving current state (rrand) 652
srand 692

random-access file
creating a creating positionable stream for

(ReusableStreamDecode) (table) 86

range
errors (rangecheck) 638
of function 107
numeric objects 38
Range array
as function dictionary entry (table) 108

RangeA array
as CIEBasedA dictionary entry (table) 229

RangeABC array
as CIEBasedABC dictionary entry (table) 223
as type 1 CIE-based CRD entry (table) 464

rangecheck error 638
array out-of-bounds 38
DataSource size 110
edge flags in type 4 shading 273
function dimensionality inconsistency 107
type 6 halftone dictionary input file termination 492
user path structuring 199

RangeDEF array
as CIEBasedDEF dictionary entry (table) 233
as CIEBasedDEFG dictionary entry (table) 235

RangeHIJ .111,1\
as CIEBasedDEF dictionary entry (table) 233

RangeHIJK al,1\
as CIEBasedDEFG dictionary entry (table) 235

RangeLMN array
as CIEBasedA dictionary entry (table) 230
as CIEBasedABC dictionary entry (table) 223
as type 1 CIE-based CRD entry (table) 463

RangePQR array
as type 1 CIE-based CRD entry (table) 465

raster
image processor

See RIP (Raster Image Processor)
output devices 11-12

rcheck operator 56,638

rcurveto operator 191, 198,638
operation code for encoded user paths (table) 201

read access attribute
setting (readonly) 640
testing (rcheck) 638

read operator 639
characters treated as data not programs 157
EOL transparent to 75

read operator (continued)
reading, characters 73

read-only access
as object attribute 37

readhexstring operator 639
reading, hexadecimal strings 73

reading
asynchronous, precautions 154
characters

hexadecimal (readhexstring) 639
read 73,639

execution stack (execstack) 583
files

access convention 79
in arbitrary order (setfileposition) 80

hexadecimal characters (readhexstring) 639
hexadecimal strings (readhexstring 73
lines (readline) 73, 639
realtime clock (realtime) 641
strings

hexadecimal (readhexstring) 73
readstring 73,641

readline operator 639
EOL handling 75
reading, lines 73

readonly operator 56,640

readstring operator 641
characters treated as data not programs 157
EOL transparent to 75
reading, strings 73

real numbers 28
See also mathematics; numbers
binary object sequence encoding 166
converting, objects to (cvr) 567
converting to integers (cvi) 566
execution handling 50
numeric objects 37-38, 37
representation of, in binary tokens and binary object

sequences 170
as simple object (table) 34

Real Format system parameter
machine representation of real numbers 170
value (table) 753

realtime clock
reading (realtime) 641

realtime operator 641

rearranged
fonts 364

reclamation
of memory, save and restore functions 62

recognition
of idioms 119-121

INDEX
876

I

record
as irrelevant in PostScript environment 142
specifying as operand of RunLengthEncode filter 143

recordstacks entry
as $error dictionary entry (table) 117

recovery
policies

media selection and 436-438
page device parameter (table) 433

rectangles
clipping (rectclip) 641
drawing (rectstroke) 643
encoded number string use 171
filling (rectfill) 642
operators, user path operators relationship to 205-206

rectcllp operator 641
encoded number string use 172
rectangle operand formats 206
rectfill operator 642
encoded number string use 172

(example) 171
rectangle operand formats 206

rectstroke operator 643
encoded number string use 172
rectangle operand formats 206

recursion
tail, interpreter facilitation of 50

redefining
resource categories 99

redisplaying
lines, control characters for interactive executive use

(table) 21

reference point
glyph 331

regions
painting (fill) 194,589
path-enclosed

even-odd rule 196
insideness testing 196-197
nonzero winding number rule 195

Registry entry
as CIDSystemInfo dictionary entry (table) 368

regular resources 90
overview (table) 91

relational
operators

(list) 511
overview 55

RelativeColorimetric rendering intent
characteristics (table) 470

remainder
discarding (idly) 605

remainder (continued)
retrieving (mod) 627

remapping
device colors to CIE-based color spaces 237-238

removeall operator 644
Type 4 CIDFont use 381

removeglyphs operator 644
Type 4 CIDFont use 381

removing
dictionaries from the dictionary stack

all except for permanent entries (cleardictstack) 54,
541

end 54,577
entries from a dictionary (undef) 54,708
files (deletefile) 572
fonts (undefinefont) 323
glyphs

removeall 644
removeglyphs 644

mark, from operand stack (cleartomark) 52
objects, from the top of the operand stack (pop) 51,

633
operand stack elements

above the highest mark (cleartomark) 52,541
clear 52

resources (undefineresource) 89
undercolor 476-477

renamefile operator 644
file system access by 77
operand formats 78
special file name not used by 78

renaming
files (renamefile) 644

renderbands operator
usage guidelines 806

rendering
See also painting
(chapter) 457-504
color

(figure) 213
models specification 419
overview 210
setting (setcolorrendering) 663

ColorRendering resource category 96
ColorRenderingType resource category (table) 92
dictionary, CRD (findcolorrendering) 591
intents

customizing with CRD selection 472-473
specifying for CIE-based color spaces 469-473
(table) 470

pages (showpage) 177,690
process color model applicable only to 423
render color spaces 461

1
877

I
INDEX I

rendering (continued)
scan conversion 12-13

as potential glyph rendering component 334
details 501-504
overview 458

shading pattern rules 264
steps involved in 457

RenderingIntent entry
as type 1 CIE-based CRD entry (table) 468

RenderTable array
as type 1 CIE-based CRD entry (table) 467-468,467

repeat operator 55,645

replacing
glyphs 351-352
paths (strokepath) 700
user path (ustrokepath) 715
values in a dictionary on the dictionary stack (store)

54,698

representation
binary, of integers, shifting bits in (bitshift) 539
binary data, ASCII-encoded hexadecimal strings 30-31
FontSet resource 344-345
functions, dictionary use for 106
GlyphDirectory, recommendations for 356
of images 290-293
machine

ByteOrder and RealFormat use 170
of numeric objects, accessibility of 38

of matrices 187-189
non-decimal base numbers, radix number use for 28
of number, by binary tokens and binary object

sequences 169-170
number, in homogeneous number array (table) 162
of objects

behavior 34-45
internal 34-45
syntactic 25

of sampling, type 0 function dictionary use 108
user path operators 199

request dictionary 394

reserved words
non-existent in PostScript 43

resetfile operator 645
ReusableStreamDecode filter use 154

resetting
See also restoring
files (resetfile) 645

resolution
page device (HWResolution) 414

resource(s)
categories 90-99

creating 99-102
Generic 102-103

resource(s) (continued)
categories (continued)

implementation dictionary 100-102
implementation dictionary (table) 101
LariguageLevel 3 (table) 727

Category (table) 92
CIDFont 94

(table) 91
CMap 94

(table) 91
ColorRendering 96

(table) 91
ColorRenderingType 98

(table) 92
ColorSpace 96

(table) 91
ColorSpaceFamily 98
ControlLanguage 97

(table) 91
defining

Category (table) 92
defineresource 89,570-571

deleting (undefineresource) 89
dynamic loading, as global VM intended use 66
Emulator 98

(table) 91
Encoding 94

(table) 91
enumerating (resourceforall) 646
errors (undefinedresource) 709
as files 103-105
Filter 98

(table) 91
FMapType 98

(table) 92
Font

description 93
(table) 91

fonts as, in LanguageLevels 2 ik 3 323
FontSet 94,344-345

(table) 91
FontType 98

(table) 92
Form 95

(table) 91
FormType 98

(table) 92
FunctionType 98

(table) 92
Generic (table) 92
Halftone 96

(table) 91
HalftoneType 98

(table) 92

878
I INDEX

resource(s) (continued)
HWOptions 98

(table) 91
IdiomSet 97

(table) 91
ImageType 98

(table) 92
implicit 90, 98-99

overview (table) 91-92
InkParams 97

(table) 91
inquiring about, resourceforall and resourcestatus um2

for 90
10Device 98

(table) 91
keys as identifiers for (defineresource) 90
Localization 97

(table) 91
named 87-105
operators 88-90

(list) 514
OutputDevice 97

(table) 91
Pattern 95

(table) 91
PatternType 98

(table) 92
PDL 97

(table) 91
ProcSet 95

(table) 91
regular 90

overview (table) 91
retrieving

findresource 89, 592
resourceforall 85, 87, 89

ShadingType 98
(table) 92

status, retrieving (resourcestatus) 89, 647
TrapParams 97

(table) 91
TrappingType 98

(table) 92
undefining (undefineresource) 7 I 0
VM use 89

ResourceFileName procedure
as category implementation dictionary entry (table)

101
translating resource names into file names 103-104

rresourceforall operator 88, 646
findresource compared with 90
implementation dictionary 100
implicit resource handling 98-99

rresourceforaII operator (continued)
ResourceForAll entry, category implementation diction-

ary, use by (table) 101
resourcestatus compared with 93
retrieving

all available device parameter sets 87
all available resource instances in a particular

category 89
the complete set of supported filters 85

ResourceForAll procedure
as category implementation dictionary entry (table)

101

resourcestatus operator 88,647
findresource compared with 90
implementation dictionary 100
implicit resource handling 98-99
as preferred method of determining resource avail-

ability 93
resource file header use 105
ResourceStatus key use by, category implementation

dictionary (table) 101
retrieving status information about a resource 89

ResourceStatus procedure
as category implementation dictionary entry (table)

101

restore operator 648
CloseTarget and CloseSource use by 129
closing files with 80
deallocation issues 60
encapsulation by 69
errorclict changes subject to 115
garbage collection compared with 63-64
global virtual memory unaffected by 59
incremental definition of font impact 354
invalid execution error (Invalidrestore) 617
local VM operations 61-62
pipeline impact 129
procedure as data target and source precautions 125
ReusableStreamDecode filter use 154
save objects manipulated by 44
VM impact 72

restoring
See also resetting
clipping path (cliprestore) 193
graphics state

grestore 603
grestoreall 603

VM state (restore) 648

retrieving
See also accessing
alternate CRD (GetSubstituteCRD) 600
black-generation function (currentblackgeneration

552
bounding box, for current path (path box) 63 I

879
INDEX I

retrieving (continued)
clipping path (clippath) 193
color spaces (currentrgbcolor) 561-562
current file object (currentfile) 87
device

dependent parameters (currentdevparams) 87
retrieving name of (GetPageDeviceName) 600
serial number (seriainumber) 657

all dictionaries, from the dictionary stack (dIctstack)
54, 573

elements of composite objects (get) 53, 598
encoding vector (findencoding) 591
files

currentfile 556
filenameforall 588
position (fileposition) 589
status (status) 696

flatness parameter (currentflat) 556
fonts

cache parameters (currentcacheparams) 552
currentfont 557
findfont 592
rootfont 651
seiectfont 656

glyph, width (stringwidth 69)
graphics state

currentgstate 558
gstate 604

halftone
name (GetHalftoneName) 599
screen (currenthalftone) 558
screen (currentscreen) 562

line
cap parameter (currentlinecap) 559
join parameter (currentlinejoin) 559
width parameter (currentlinewidth) 559

maximum dictionary capacity (maxiength) 54,626
miter joins limit (currentmiterlimit) 560
the number of elements in composite objects (length)

53
object

format (currentobjectformat) 560
type as a name object (type) 705

overprinting parameter (currentoverprint) 560
packed array mode (currentpacking) 560
page device dictionary (currentpagedevice) 560
PostScript product

name (product) 634
revision level (revision) 649

resources (findresource) 89, 592
smoothness parameter (currentsmoothness) 563
status

file (status) 696
information for a file (bytesavailable) 87
information for a file (status) 87

retrieving (continued)
status (continued)

of a resource (resourcestatus) 89, 647
VM (vmstatus) 717

stroke adjustment parameter (currentstrokeadjust
563

system parameters (currentsystem pa rams) 563
time (usertime) 714
transfer functions

(currentcolortransfer) 555
(currenttransfer) 563

trapping dictionary (currenttrapparams) 564
undercolor removal function

(currentundercolorremoval) 564
user parameters (currentuserparams) 564
user path, cache status (ucachestatus) 707
values, from the dictionary stack (load) 54,622
VM allocation mode (currentglobal) 557

ReusableStreamDecode filter 86, 153-156
as DataSource entry in type 0 function dictionary

(table) 109
dictionary (table) 155
EOD not applicable to 129
filter file use precautions 124
SubFileDecode filter use with 151

reversepath operator 649

reversing
paths (reversepath) 649

revision level
PostScript product, retrieving (revision) 649

revision operator 649

Revision system parameter
value (table) 753

RGB (red-green-blue) color space
as additive color model 217
calibrated from scanners, CIEBasedDEF and

CIEBasedDEFG use 232
conversion

between DeviceRGB and DeviceGray 474-475
to DeviceCMYK from DeviceRGB 475-477
to DeviceRGB from DeviceCMYK 477

device (DeviceRGB) 98,211,217-218
DeviceRGB operator use

currentrgbcolor 218
setrgbcoior 218

remapping DeviceRGB to CIE-based color space 237-
238

retrieving (currentrgbcolor) 561-562
setting

sethsbcoior 672
setrgbcoior 681

stroked line color (setrgbcolor) 194

I INDEX
880

right parenthesis ())
\) as ASCII encoding (list) 29
special syntactic treatment of 27

RIP (Raster Image Processor)
in-RIP trapping 439-454

rlineto operator 191,198,650
operation code for encoded user paths (table) 201

rmoveto operator 191,198,650
operation code for encoded user paths (table) 201

roll operator 52,650

roll-fed media
parameters (table) 412-413

RollFedMedia page device parameter 402,412

root font 357

rootfont operator 651
accessing graphics state font parameter 318
currentfont compared with 318

rotate operator 184,651
CTM manipulation by 189
user space modification by 185

rotation
matrix

notation 188
rotate 651

user path caching not possible for (rotate) 203

round operator 52,652

rounding
integers (round) 652

Rows entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 145
as DCTEncode dictionary entry (table) 148

rrand operator 52,652

rules
See also algorithms; guidelines
CIDFont use, as current font 369
even-odd 196

clipping (eoclip) 579
ineofill 197
insideness testing (ineofill) 610
inueofill 197
nonzero winding number rule compared with 194
painting areas (eofill) 580
painting user paths (ueofill) 708

filling, nonzero winding number 195
GlyphDirectory use with TrueType font data 356
incremental definition of

Encoding array 354
fonts 354

interpreter execution, executable array handling 48-49
nesting of font mapping algorithms 363-364

rules (continued)
nonzero winding number

even-odd rule compared with 194
insideness testing (Infill) 610
insideness testing (inufill) 615
painting user paths (ufill) 708

rendering, of shading patterns 264
scan conversion 502-503
trapping

black 451-452
normal 449-451

run operator 87, 653

RunLengthDecode filter 84, 86, 142

RunLengthEncode filter 86, 142-143

sampled image
See image(s)

sampling
data

decoding of 299-301
functions, ReusableStreamDecode filter 153
functions, ReusableStreamDecode filter use 153

functions
(example) Ill
type 0 function dictionary 108-112

horizontal, DCTEncode dictionary entry (table) 148
images, LZW support of predictor functions for 133
representation 290-293

type 0 function dictionary use 108
size of sample, type 0 function dictionary specification

(table) 109
vertical, DCTEncode dictionary entry (table) 148

saturation 217

Saturation rendering intent
characteristics (table) 470

save objects 44
as composite object (table) 34
execution handling 50

save operator 653
encapsulation by 69
errordict changes subject to 115
garbage collection compared with 63-64
global virtual memory unaffected by 59
incremental definition of font impact 354
local VM operations 61-62
nesting impact on startjob operations 71
outermost execution by job server 69
save objects created by 44
VM impact 72

881
INDEX I

saving
clipping path (clipsave) 193
graphics state (gsave) 603
state, of VM (save) 653

scale
in fixed-point numbers 160

scale operator 184,654
CTM manipulation by 189
user space modification by 185

scalefont operator 654
composite font handling 364
Font resource category instances as operands to 93
scaling glyphs with 315

scaling
fonts

makefont 315,624
scalefont 315,654
selectfont 656

matrix notation 188
user coordinate space (scale) 654
user path caching not possible for (scale) 203

scan
conversion 12-13

as potential glyph rendering component 334
as rendering step 458
details 501-504
rules 502-503

of input files, for PostScript tokens (token) 73
order, source image 294
of strings, for PostScript tokens (token) 702

scanner
calibrated RGB from, CIEBasedDEF and CIEBasedDEFG

use 232
comments treatment 27
PostScript, operations 25-26

scheck operator 655

screens
See halftone(s), screens

script
save and restore functions 62
in structured document 17-18

SDBytes entry
as Private dictionary entry (table) 375

search operator 55,655

searching
for dictionary key (known) 54,619
for name, environment for 45
strings

for initial substring (anchorsearch) 529
for substrings in (search) 655

segments
connected 189

selectfont operator 656
composite font handling 364
font selection efficiency 317-318

selecting
fonts 316-318

selectfont 656
media

deferred 411
for page devices 398-412
parameters (table) 400-403
recovery policies and 436-438

semantics
array vs. procedures 32
of binary tokens 158
BuildChar compared with BuildGlyph 340
CIE-based color spaces 220-221
of color values 211-248
data sources, filters and images compared 291
of executable objects 36
execution 46-51
of filters 123-156
form dictionary 207

Separation color space 241-245
DeviceN color space compared with 246
remapping to CIE-based color space 238
rendering rules for shading patterns 264
as special color space 214

SeparationColorNames page device parameter
color support (table) 421
page device dictionary, Separation color space use 243

SeparationOrder page device parameter 421

separations
colorants compared with 242
device colorants and 424-426

Separations page device parameter 420

sequence(s)
binary object 156,163-168

binary tokens compared with 158,169
encoded system names in 168-169
setting format (setobjectformat) 677
writing to standard output (printobject) 634
writing (writeobject) 721

files as 73

serial
communications protocol, independent of PostScript

language 76

serial number
device, retrieving (serialnumber) 657

serialnumber operator 657

server
job 68

dictionary (serverdict) 72, 657
operations (step sequence) 69

I INDEX
882

I 1

server (continued)
print, as PostScript interpreter model 68

serverdict dictionary 657
contents of 72

setbbox operator 198,657
operation code for encoded user paths (table) 201
ucache required to precede (example) 202-203
user path structuring 199

setblackgeneration operator 658
black generation with 476
usage guidelines 806

setcachedevice operator 659
BuildGlyph procedure use 340

setcachedevice2 operator 659
BuildGlyph procedure use 340

setcachelimit operator 660

setcacheparams operator 661

setcharwidth operator 661
BuildGlyph procedure use 340

setcmykcolor operator 194, 211, 215, 662
DeviceCMYK use 219

setcolor operator 211, 215, 662
CIE-based color space use 221
DeviceCMYK use 219
DeviceGray use 220
DeviceN color space use 246
DeviceRGB use 218
mapping sample data to color component values for

291
pattern use 250
Separation color space use 244

setcolorrendering operator 663
ColorRendering resource category use 96
usage guidelines 806

setcolorscreen operator 664
halftone screen definition 481
usage guidelines 806

setcolorspace operator 211, 214, 665
CIEBasedA use 228
CIEBasedABC use 222
CIEBasedDEF use 233
CIEBasedDEFG use 233
DeviceCMYK use 219
DeviceGray use 220
DeviceN use 246
DeviceRGB use 218
Pattern use 249
Separation use 242,244

setcolortransfer operator 666
specifying transfer functions 479
type 1 halftone dictionary overriding of 488
usage guidelines 806

setdash operator 666
stroked line pattern 194

setdevparams operator 87, 667
errorinfo array use (table) 116

setfileposition operator 668
file system access by 77
positioning a file object with 80
ReusableStreamDecode filter use 154

settlat operator 669
usage guidelines 806

setfont operator 670

setglobal operator 670
usage guidelines 806
VM allocation controlled by 60

setgray operator 211, 215
DeviceGray use 220
mapping sample data to color component values for

291
stroked line color 194

setgray operators 671

setgstate operator 671
clipping path stack management 192
gstate object management 182
usage guidelines 806-807

sethalftone operator 671
halftone dictionary installation by 482
Halftone resource category use
specifying transfer functions 479
type 1 halftone dictionary selected by 487
usage guidelines 807

sethsbcolor operator 194, 211, 215, 672
DeviceRGB use 218

setlinecap operator 194,673

setlinejoin operator 194, 673

setlinewidth operator 178, 193,674

setmatrix operator 675
usage guidelines 807-808

setmiterlimit operator 194, 675

setobjectformat operator 677
disabling binary encodings with 157
number representation of binary object sequence con-

trolled by 173

setoverprInt operator 677
overprint control by 247
usage guidelines 808

setpacking operator 678
setting array packing mode 54

setpagedevice operator 679
See also page devices
errorinfo array use (table) 116
media property handling with 184
usage guidelines 808

883
INDEX I

setpattern operator 194,215,680
Pattern resource category use 95
selecting patterns with 250

setrgbcolor operator 211,215,681
DeviceRGB use 218
stroked line color 194

sets
character

Expert (table) 787-789
standard Latin (table) 779-783
Symbol (table) 792-793

font (FontSet) 344-345
procedure

See procedure(s), sets

setscreen operator 681
halftone screen definition 481
as type 1 halftone dictionary alternative 487
usage guidelines 808

setshared operator 682
usage guidelines 808

setsmoothness operator 682
interpolation use, in shading color spaces 263
usage guidelines 808

setstrokeadjust operator 683
automatic stroke adjustment 503-504
stroked line thickness consistency 194

setsystemparams operator 684

setting
access attributes

executeonly 584
readonly 640
to noaccess (noaccess) 628

binary object sequence format (setobjectformat) 677
black-generation function (setblackgeneration) 658
bounding box (setbox) 657
clipping path, to default setting (InItclip) 611
color

rendering (setcolorrendering) 663
setcolor 662
spaces (setcmykcolor) 662
spaces (setcolorspace) 665
spaces (setgray) 671
spaces (sethsbcolor) 672
spaces (setrgbcolor) 681
transfer function (setcolortransfer) 479, 666
transfer function (settransfer) 479

CTM
setmatrix 675
to default for current device (initmatrix) 613

dash pattern (setdash) 666
device, parameters (setdevparams) 667
device-dependent parameters (setdevparams) 87
executable attribute (cvx) 568

setting (continued)
file position (setfileposition) 668
flatness parameter (setflat) 669
font cache

parameters (setcacheparams) 661
setcachedevice 659
setcachedevice2 659
size (setcachelimit) 660

fonts (setfont) 670
global VM mode (setglobal) 670
glyph width (setcharwidth) 661
graphics state

setgstate 671
to default values (initgraphics) 612

halftone screen
setcolorscreen 664
sethalftone 671

halftone screens (setscreen) 681
line, width (setlinewidth) 674
lines

cap (setlinecap) 673
join (setlinecap) 673

literal attribute (cvlit) 566
miter joins limit (setmiterlimit) 194,675
overprinting parameter (setoverprint) 247,677
packed array mode (setpacking) 54,678
page device parameters (setpagedevice) 679
patterns (setpattern) 680
rendering priorities, rendering intent use for 469-473
smoothness parameter (setsmoothness) 682
stroke adjustment parameter (setstrokeadjust) 683
system parameters (setsystemparams) 684
transfer functions (settransfer) 685
trapping, zone (settrapzone) 686
trapping parameters, dictionary (settrapparams I 685
undercolor removal function (setundercolorremoval)

476,687
user parameters (setuserparams) 687
user path

cache (setucacheparams) 686
cache (ucache) 707

VM allocation threshold (setvmthreshold) 688

settransfer operator 685
halftone dictionary overriding of 488
specifying transfer functions 479
usage guidelines 808-809

settrapparams operator 685
TrapParams resource category use 97

settrapzone operator 686

setucacheparams operator 686

setundercolorremoval operator 687
undercolor removal 476
usage guidelines 809

I INDEX
884

setup
of pages, device initialization and 426-432

setuserparams operator 687

setvmthreshold operator 688

sfnts array
as Type 2 CIDFont dictionary entry (table) 378
as Type 42 font dictionary entry (table) 347

shading
axial, as type 2 shading 261,266-268
color space considerations 263-264
Coons patch meshes, as type 6 shading 261,277-283
dictionaries 261-263

entries common to all (table) 262
type 1 (function-based) (table) 265
type 2 (axial) (table) 266
type 3 (radial) (table) 268
type 4 (free-form Gouraud-shaded triangle mesh)

(table) 270
type 5 (lattice-form Gouraud-shaded triangle mesh)

(table) 275
type 6 (Coons patch mesh) (table) 279
type 7 (tensor-product patch mesh) 283-287

function use 106
function-based, as type 1 shading 261
Gouraud

free-form Gouraud-shaded triangle meshes, as type
4 shading 261,270-274

lattice-form Gouraud-shaded triangle meshes, as
type 5 shading 261,274-276

pattern types 265-290
type 1 (function-based) 261,265-266
type 2 (axial) 261,266-268
type 3 (radial) 261,267-270
type 4 (free-form Gouraud-shaded triangle mesh)

261,270-274
type 5 (lattice-form Gouraud-shaded triangle

mesh) 261,274-276
type 6 (Coons patch mesh) 261,277-283
type 7 (tensor-product patch mesh) 261,283-287

patterns 248,259-290
painting (shfill) 689
ReusableStreamDecode filter use with 153

radial, as type 3 shading 261,267-270
ShadingType resource category (table) 92
stitching function use 114
tensor-product patch meshes, as type 7 shading 261,

283-287

Shading dictionary
as type 2 pattern dictionary entry (table) 260

ShadingType entry
as shading dictionary entry (table) 262

ShadingType resource category 98

shadowing
of operator definitions, in systemdict dictionary 43

shadows
diffuse achromatic, BlacicPoint use 224

shape library
Chamelion font format as implementation of 343

shapes
complex, creating with type 4 shading patterns 273

shareddict operator 689

Shared Fo ntDirectory dictionary 689

sharing
access management provision 57
composite object values, between composite object

copies 35
values, among composite objects 58

shfill operator 689
shading pattern use 260
tiling patterns with gradient fill use 261
Shiftln entry
as Type 0 font dictionary entry (table) 358

shifting
bits (bitshift) 539

ShiftOut entry
as Type 0 font dictionary entry (table) 358

show operator 177,690
character painting steps 329
CIDFont restrictions 369
composite font use 357-359
FMapType 9 composite font use 387-390
in garbage collection example 63
glyph positioning 320
painting glyphs with 316

showpage operator 690
copypage compared with 549-550
PaintProc procedure prohibited from using 209
rendering by 177
use of 392

side effects
defineresource 324
of file operations, impact on file objects 44
forms free of 206
operator usage, guidelines for avoiding unintended

801-810
prohibited to

BuildGlyph font procedure 339
DecodeABC procedures 223
DecodeLMN procedures 223
functions 106
halftone dictionary procedures 484
Indexed color space lookup procedures 240
Pa intProc form procedure 209
Pa intProc pattern procedures 253
Separation color space tintTransform operator 244

user paths free of 198

simple objects 34-35
names as 40

885
INDEX I

simple objects (continued)
types of (table) 34

sin operator 52,692

size
See also length; width
font cache, setting (setca ch el im it) 660
page (PageSize) 401
reduction, compression/decompression filters use to

improve 84

Size array
as type 0 function dictionary entry (table) 109

slash (/)
as literal name delimiter 31
special syntactic treatment of 27

slash, double (//)
as immediately evaluated name delimiter 31

sliding
traps 452-453
SlidingTrapLimit entry
Trapping dictionary, entries (table) 448

smoothness
as graphics state parameter (table) 181
parameter

retrieving (currentsmoothness) 563
setting (setsmoothness) 682

snapshots
state, save objects use for 44
of VM state, as save operations 61

source(s)
color images (examples) 310
data 123-127
image, coordinate system 293-296
of objects, for immediate execution 47
sample data

multiple, handling 292
object types 291
organization of 292
premature termination handling 292

SP (space) character
numeric values (table) 27

space(s)
character (SP), numeric values (table) 27
color

See color spaces
device 182

halftones defined in 481
tiling of, in a type 16 halftone dictionary (figure)

497
transformation of user space to 184
unaffected by changes to CTM 191
user space and 182-184

image, user space relationship to 294
user 182

coordinates in 184

space(s) (continued)
user (continued)

default 183
device space and 182-184
image space relationship to 294
modifying 185-187
origin, physical page relationship 183
transformation to device space 184

spacing
glyph, modification difficulties 350
text

ashow 320,534-535
awidthshow 320,536
cshow 321,551
kshow 321,619
show 320
widthshow 320,718
xshow 320,722
xyshow 321,722
yshow 320,723

of tiling patterns, specifying (table) 252

special
color spaces 238-247
files 80-82

specification
color (figure) 212
of color, overview 210

specular highlights
compared with diffuse achromatic highlight 224

sphere
depiction of, radial shading use 269

spot
colorants 424
colors 241
functions 484-489

SpotFunction procedure
as type 1 halftone dictionary entry (table) 487

sqrt operator 52,692

square bracket. left (I) operator
array construction role 32
mark objects created by 44,524
special syntactic treatment of 27

square bracket, right (I) operator
See also array(s)
as array constructor 32,524
special syntactic treatment of 27

square bracket ([J) operators
creating arrays with 54
literal array object created by 36

square root (sqrt) 692

srand operator 52, 692

stability
of user path, due to encapsulation 197

I INDEX
886

I _I

stack operator 87,692

stack(s) 45-46
call, execution stack use as 45
clipping path 45, 192
dictionary 42, 45, 56

accessing 46
associating keys with values in dictionaries on the

(def) 54,568
contents of 42
counting the number of dictionaries on

(countdictstack) 54,551
executable name handling use 50-51
locating values from (where) 54,718
popping dictionaries off (end) 54,577
pushing dictionaries onto (begin) 54, 536
removing all dictionaries except for permanent en-

tries (cleardictstack) 54,541
replacing values in dictionaries on (store) 54,698
retrieving all dictionaries from (dictstack) 54, 573
retrieving values from (load) 54,622

errors
stackoverflow 693
stackunderflow 693

execution 25, 45, 57
accessing 46
counting entries on (countexecstack) 551
executable file handling use 50
executable string handling use 50
executing top element of (exec) 582
reading (execstack) 583

as execution environment component 56-72
graphics state 181-182

as one of five execution state stacks 45
local VM management like 59
not restored by resourceforall 100
operand

See operand stack
PaintProc procedure prohibited from modifying 209
printing, objects to standard output (pstack) 635
removing, objects from the top of (pop) 633
unmodified by restore 61

stackoverflow error 693

stackunderflow error 693

standard(s)
CCITT 86, 143
CIE, color spaces based on 220-238
CIE 1976 L*u*v space, CIEBasedDEF and CIEBasedDEFG

use 232
CIEBasedA support of (examples) 230-231
CIEBasedABC support of 222

(examples) 225-228
dictionaries 65-67

global (table) 66
local (table) 65

standard(s) (continued)
encodings, StandardEncoding resource 94
error file, file handling 80
fax

CCITTFaxDecode 143-146
CCITTFaxEncode 143-146

filters 84-86
overview (table) 85

input file 44,57
as execution environment component 73-87
file handling 80
handling 74

ISO 10646 (Unicode), CMap use for encoding 366
JPEG

See DCTEncode filter
Latin character set (table) 779-783
output

printing stack objects to (pstack) 635
writing binary object sequences (printobject) 634

output file 44,57
as execution environment component 73-87
file handling 80
handling 74
writing characters to (print) 633
writing operand stack contents (stack) 692
writing text representation of an object to (=) 87
writing text representation of an object to (==) 87

PNG, predictor functions based on 139
procedure sets, LanguageLevel 3 (table) 96
TIFF

LZW method use 133
predictor functions based on 139

StandardEncoding array 94,693
(table) 773, 784

start operator 693

StartData operator 694

starting
execution (start) 693
job (startjob) 695

startjob operator 695
encapsulation overriding by 70
guidelines for use 70
operations 70-72
usage guidelines 809

StartJobPassword system parameter
value (table) 753

StartupMode system parameter
value (table) 753

state
execution, stacks used to manage 45
graphics

See graphics state
of local VM, snapshot of, as save operation 61

887

l

state (continued)
VM

restoring (restore) 648
saving (save) 653

%statementedit file
file handling 80
interactive executive use 81

statements
aborting, control characters for interactive executive use

(table) 21
syntax of 81

static
formats, dynamic vs. 14-15

status
files, retrieving (status) 696
resource, retrieving (resourcestatus) 89,647
retrieving

for a file (bytesavailable) 87
for a file (status) 87

user path cache, retrieving (ucachestatus) 707
VM, retrieving (vmstatus) 717

status operator 87,696
file system access by 77
operand formats 78

statusdict dictionary 696
as standard local dictionary (table) 65
usage guidelines 809

%stderr file
file handling 80

%stdin file
file handling 80

%stdout file
file handling 80

stencil
mask 301

images 302-303
monochrome (imagemask) 608

treating a tiling pattern as (table) 252

StepLimit entry
ColorantZoneDetails dictionary (table) 454
Trapping dictionary, entries (table) 447

stitching functions 107,113
type 3 function dictionary 113-114

entries specific to (table) 114

stop operator 56,697
default error handling use 116
encapsulating the effects of (stopped) 697

stopped operator 56,697
default error handling use 116

storage
See also performance; VM (virtual memory)
allocation in VM, by composite object constructors 58

INDEX I

storage (continued)
as scarce resource

binary tokens suitable for 156
compression/decompression filters value in

managing 84
graphics state handling issues 182
Indexed color space advantages for 239-241
path size limits based on 190
Type 2 and Type 14 fonts handling of 343

store operator 54,698

storing
elements, of composite objects (put) 53, 635
objects into an array (astore) 54,535

stream(s)
byte, samples treated as 290
character

as executable object source 24
file as 43

of image samples, DCTDecode filter output 146
input, creating positionable (ReusableStreamDecode)

(table) 86
reusable, ReusableStreamDecode filter 153
sample data represented as 110

string operator 699
as composite object constructor 58
creating strings with 53

string(s)
access, for files (table) 79
arrays compared with 39
ASCII base-85, ASCII encoding 31
binary object sequence encoding 166
as binary tokens 160
as composite object (table) 34
converting

objects to (cvs) 568
radix numbers to (cvrs) 567
to a name object (cvn) 566
to integers (cvl) 566
to real numbers (cvr) 567

copying 40
copy 53,548

creating (string) 53,699
as data sources and targets 126
encoded number

as binary tokens 171-172
homogeneous number array use 162,171
operators that use 172

executable, execution handling 50
hexadecimal

ASCII encoding 30-31
reading (readhexstring) 73,639
writing (writehexstring) 73, 720

literal text, ASCII encoding 29-30
mapping a procedure over (forall) 53,597

I INDEX
888

string(s) (continued)

names and, interchangeable in an dictionary 41
objects 39-40
operators

(list) 511
overview 52-55

portability issues 40
reading (readstring) 73,641
retrieving

elements of (get) 53,598
the number of elements in (length) 53,621

reusable streams compared with 153
as sample data source 291
scanning, for PostScript tokens (token) 702
searching

for initial substring (anchorsearch) 529
for substrings in (search) 655

storing elements of (put) 53,635
subintervals of

creating objects that share (getinterval) 53
overwriting (putinterval) 53,636

syntax 29-31
writing (writestring) 73,721

stringwidth operator 699
accessing glyph width with 320

stroke adjustment
automatic 503-504
as graphics state parameter (table) 180
parameter

retrieving (currentstrokeadjust) 563
setting (setstrokeadjust) 683

stroke operator 177, 700
current line width use 178
operations 193

strokepath operator 700

strokes
See also drawing; line(s); painting
insideness testing (Instroke) 613
painting lines with 193-194

Stroke Width entry
as Type 0 CIDFont dictionary entry (table) 373
as Type 1 font dictionary entry (table) 326
as Type 2 CIDFont dictionary entry (table) 378
as Type 42 font dictionary entry (table) 347

structure
PostScript language (chapter) 23-174
program, PostScript page description 17-18

structured
output 172-174
programs

conventions, further information on, "PostScript
Language Document Structuring Conventions"
813

structured (continued)
programs (continued)

save and restore intended for 62

sub operator 52,701

subfile
applications for 151
filters, overview 85

SubFileDecode filter 86, 151-152
dictionary (table) 152

subintervals
of arrays

creating objects that share (getinterval) 53, 599
overwriting (putinterval) 53,636

of packed arrays, creating objects that share
(getinterval) 53, 599

of strings
creating objects that share (getinterval) 53,599
overwriting (putinterval) 53,636

subpaths 190
See also path(s)
closing (closepath) 191, 194
creating

moveto 627
rmoveto 650

SubrCount entry
as Private dictionary entry (table) 375

SubrMapOffset entry
as Private dictionary entry (table) 375

subsetting
fonts 352-356
glyphs, incrementally, general considerations 353-354

substitution
names, immediate evaluation 121-123
operator, bind use of 118-119

SubsVector entry
as font mapping algorithm 360-362
mapping control for Type 0 fonts with 360-362
as Type 0 font dictionary entry (table) 358

subtracting
numbers (sub) 701

subtractive
color models

CMYK 218
tints as, in Separation color spaces 242

supercells 500-501

Supplement entry
as CIDSystemInfo dictionary entry (table) 368

Symbol character set 778
(table) 792-793

Symbol encoding vector
(table) 774,794

889
INDEX I

syntax
arrays 32
dictionaries 33
errors (syntaxerror) 701
file names 77
immediately evaluated name syntax 121-123
literals 29-30,31
names 31
numbers 28
PostScript 25-34
procedures 32-33
of statements 81
strings 29-31

ASCII base-85 31
hexadecimal 30-31
hexadecimal, reading from an input file

(readhexstring) 73
hexadecimal, writing to an output file

(writehexstring) 73

syntaxerror error 701
binary object sequence 167-168
binary token types 159
hexadecimal strings 30

system
coordinate

operator overview 175
source image 293-296
transformations and 182-189

encoded names 168-169
as binary tokens 160

name
index 168
table 168

parameters
See system parameters

system parameters
BuildTime 751
ByteOrder 170,751
CurDisplayList 751
CurFontCache 382,751
CurFormCache 751
CurOutlineCache 751
CurPatternCache 751
CurScreenStorage 751
CurSourceList 751
CurStoredScreenCache 751
CurUPathCache 751
FactoryDefaults 751
FontResourceDir 752
GenericResourceDir 752
GenericResourcePathSep 752
LicenselD 752
MaxDisplayAndSourceList 752
MaxDisplayList 752
MaxFontCache 752
MaxFormCache 752

system parameters (continued)
MaxImageBuffer 752
MaxOutlineCache 752
MaxPatternCache 752
MaxScreenStorage 752
MaxSourceList 752
MaxStoredScreenCache 752
MaxUPathCache 752
PageCount 752
PrinterName 753
properties of 746-749
RealFormat 170,753
retrieving (currentsystemparams) 563
Revision 753
setting (setsystemparams) 684
StartJobPassword 753
StartupMode 753
SystemParamsPassword 753

systemdict dictionary 42,65,702
as dictionary stack component 46
LanguageLevel 3 operators defined in (list) 726
null objects as components of 44
operator names as keys in 43
as standard global dictionary (table) 66
user path operators 199

SystemParamsPassword system parameter
value (table) 753

tab (tab) character
numeric values (table) 27
\t as ASCII encoding (list) 29

Table array
as CIEBasedDEF dictionary entry (table) 234
as CIEBasedDEFG dictionary entry (table) 235

tail recursion
interpreter facilitation of 50

targets
arbitrary, treating as output file, NullEncode filter 156
data 123-127

templates
forms use as 207
resource category, Generic use as 102-103

tensor-product patch meshes
as type 7 shading 261,283-287

terminating
execution

quit 637
stop 697

files, with EOF 126-129
filters, with EOD 126-129
iteration execution (exit) 585
VM alterations 71

I INDEX
890

I i
testing

See also insideness testing
access attributes

rcheck 638
wcheck 718

equality
See also comparing
names 40
user path values 203

executable attribute (xcheck) 721
insideness

ineofill 610
infill 610
instroke 613
inueofill 614
inufill 615
inustroke 616
of a point 196-197
operators 197
operators (list) 520

objects for global VM eligibility (gcheck) 598
text

explicitly positioned, encoded number string use 171
Latin

ISOLatinl Encoding 618
ISOLatin1Encoding resource 95

literal text strings, ASCII encoding 29-30
representation

of an object, writing to standard output (=) 87
of an object, writing to standard output (==) 87

showing, basics of 314-316
spacing

ashow 320, 534-535
awidthshow 320,536
cshow 321, 551
kshow 321, 619
show 320
widthshow 320,718
xshow 320,722
xyshow 722
yshow 320,723

string objects use for holding 39
textures
See patterns

thickness
stroked line, consistency (setstrokeadjust) 194

three-dimensional objects
radial shading patterns used for 267

threshold arrays 489-497
type 3 halftone dictionaries 490
type 6 halftone dictionaries 491-492
type 10 halftone dictionaries 492-495
type 16 halftone dictionaries 495-497

Thresholds entry
as type 3 halftone dictionary entry (table) 490

Thresholds file
as type 6 halftone dictionary entry (table) 491
as type 10 halftone dictionary entry (table) 495
as type 16 halftone dictionary entry (table) 496

TIFF (tag image file format) standard
Data Compression scheme #32773, RunLengthEncode

filter similar to 142
LZW method use 133
predictor functions based on 139

tilde angle bracket (—>)
as EOD indication

ASCII8SDecode 131
ASCI185Encode 131

tilde angle brackets (<—>)
as ASCII base-85 strings delimiter 31

tiling
of device space, in a type 16 halftone dictionary (figure)

497
with different colors, uncolored tiling pattern use 257
patterns 248,250-259

colored 254-257
uncolored 257-259
uncolored, restrictions on PaintProc 215
with gradient fill, creating 261

TilingType entry
as type 1 pattern dictionary entry (table) 252

time
errors (timeout) 115, 702
retrieving (usertime) 714
transmission, compression/decompression filters use to

improve 84

timeout error 702
special handling 115

Times font family 775

tints
as subtractive colors, in Separation color spaces 242

token operator 55, 702
binary object sequence impact by 163
scanner invoked by 157
scanning, input files for PostScript tokens 73

tokens 26
ASCII, binary tokens compared with 158
binary 156,158-162

ASCII tokens compared with 158
encoded number strings as 171-172
encoded system names in 168-169
interpretation (table) 158-159
object sequence 163
object sequence, binary tokens compared with 158,

169
double angle brackets as 33

891
INDEX I

tokens (continued)
scanning

input files for (token) 73
strings for (token) 702

type 157
binary object sequences 163
number representation specified in 169

topology
path 190

trademarks 9

transfer functions 478-480
as graphics state parameter (table) 180
retrieving

currentcolortransfer 555
currenttransfer 563

setting
setcolortransfer 479,666
settransfer 479,685

use, as rendering step 457

TransferFunction procedure
as type 1 halftone dictionary entry (table) 488
as type 3 halftone dictionary entry (table) 490
as type 6 halftone dictionary entry (table) 491
as type 10 halftone dictionary entry (table) 495
as type 16 halftone dictionary entry (table) 496

transform operator 703

transformation
component, in CIEBasedA color space (figure) 229
coordinate

effects (figure) 188
rotate 651
scale 654
systems and 182-189
transformation operators, modifying user space

with 184
translate 704

of data, filters use for 82
of distance vector (dtransform) 574-575
identity (matrix) 626
image space, matrix source and use 294-296
inverse of 189

itransform 619
matrix 184-186

applying (transform) 703
CTM

See CTM (current transformation matrix)
inverting (idtransform) 606
(table) 208
of sample color values, DCTEncode dictionary entry

(table) 149
two-dimensional, mathematical description 187

TransformPQR array
as type 1 CIE-based CRD entry (table) 465,465-467

translate operator 184,704
CTM manipulation by 189
user space modification by 185

translation
matrix notation 187
object (translate) 704
from other print formats 19-20
of resource names into file names, by ResourceFileName

key 103-104
translate 704
user path caching value (translate) 203

translucency
overprint control of 247-248

transparency
of data transmission

binary encoding requirement 157
NullEncode (table) 86
subfile filters use for, overview 85
SubFileDecode (table) 86

TrapColorScaling entry
ColorantZoneDetails dictionary (table) 454
Trapping dictionary, entries (table) 448

TrapParams resource category 97
(table) 91

trapping
application-level compared with in-RIP 440
detail dictionary 441-445
dictionary

retrieving (currenttrapparams) 564
setting (settrapparams) 685

image 453-454
in-RIP 439-454
InkParams resource category 97
parameters 446-454
rules

black 451-452
normal 449-451

sliding traps 452-453
zones 445-446

setting (settrapzone) 686

Trapping page device parameter
color support (table) 422
dictionary (table) 447-449

Trapping procedure set
LanguageLevel 3 operators defined in (table) 726
as standard procedure set in LanguageLevel 3 (table) 96

TrappingDetails page device parameter
color support (table) 422
dictionary 441-445

entries (table) 442

TrappingDetailsType array

as OutputDevice dictionary entry (table) 456

892
I INDEX

TrappingOrder ,u id>
as TrappingDetails dictionary entry (table) 442

TrappingType resource category 98
(table) 92

TrapSetName entry
Trapping dictionary, entries (table) 447

TrapWidth entry
Trapping dictionary, entries (table) 448

trays 398

TraySwitch page device parameter 403

triangle meshes
free-form Gouraud-shaded triangle meshes, as type 4

shading 261,270-274
lattice-form Gouraud-shaded triangle meshes, as type 5

shading 261,274-276

trigonometric
functions

atan 535-536
cos 550
sin 692

true 704
bind not usable with 119
as boolean value 38

(overview) 55

TrueType
See Type 42 (TrueType) fonts

truncate operator 52,705

truncating
numbers (truncate) 705

Tumble page device parameter 416

turning
user space axes around current origin (translate) 185,

704

Type entry
TrappingDetalls dictionary (table) 442

type operator 56,705
InstanceType key use by, category implementation dic-

tionary (table) 101

type(s)
conversion, between integer and real objects 38
errors (typecheck) 706
font (table) 322
object 34-45,34

retrieving as a name object (type) 705
(table) 34

operators
individual

See type
(list) 512
overview 56

procedure object, as either array or packed array 33
of shading patterns 265-290

type(s) (continued)
token

binary object sequences 163
number representation specified in 169
typecheck error 706

image
dictionary 298
masking interleaving 303

user path
malformation 204
rule violation 201
structuring 199

uappend operator 204,706
clipping user paths with 205
encoded number string use 172

ucache operator 198, 707
operation code for encoded user paths (table) 201
user path

caching with 202-203
structuring 199

ucachestatus operator 707

ueofill operator 204, 708

ufill operator 177, 204, 708
encoded user path handling 200
garbage collection benefits for management of 63
treating a user object as a user path (example) 68
user path construction and painting 197

UlDBase entry
as CIDFont dictionary entry (table) 371

UIDOffset entry
as CMap dictionary entry (table) 384

Uncompressed entry
as CCITTFaxEncode/CCITTFaxDecode dictionary entry

(table) 144

undef operator 54,708

undefined
characters, handling

undefined error 709
image dictionary 298
immediate evaluation of names 122
immediately evaluated names 167
LanguageLevel 2, Separation or DeviceN use with In-

dexed color space 239
name search failure cause 51
operators that cause, due to graphics state restrictions

215
resource file loading 105
system name index 168
tiling pattern colors (table) 252

893
INDEX I

undefinedfilename error 709
invalid EOL cause 82

undefinedresource error 709

undefinedresult error 709
function-based shading pattern 266
mathematical operation cause 52
noninvertable CTM 189

undefinefont operator 93,710
usage guidelines 809

undefineresource operator 88,710
deleting resources with 89
IdiomSet use 121
implementation dictionary 100
implicit resource handling 98-99
UndefineResource key use by, category implementation

dictionary (table) 101
usage guidelines 809

UndefineResource procedure
as category implementation dictionary entry (table)

101

undefineuserobject operator 67, 711

undefining
fonts (undefinefont) 710
resources (undefineresource) 710
user objects (undefineuserobject) 67,711

undercolor removal 476-477
See also black generation; color; overprinting
function

retrieving (currentundercolorremoval) 564
setting (setundercolorremoval) 476, 687

as graphics state parameter (table) 180

UnderlinePosition entry
as entry in FontInfo dictionary (table) 327

UnderlineThickness entry
as entry in FontInfo dictionary (table) 327

Unicode
CMap use for encoding 366

unique ID 335
extended, as LanguageLevel 2 feature (XUID) 336
font modification implications 348
generation of 335-337
numbers 336

extended 337

UniquelD entry
as base font dictionary entry (table) 326
supported by all language levels 336

UnitLength entry
as LZW dictionary entry (table) 134
LZWEncode use 136-137

unlimited access
as object attribute 37

unmatched mark error 711

unregistered error 712

upath operator 204, 712

UseCIEColor page device parameter 422
remapping device colors to CIE-based color space

specification 237

usecmap operator 384,712

usefont operator 384,713

user
defined, dictionaries 65-67
interactive executive prompting of (prompt) 635
objects 67-68

defining (defineuserobject) 67,571
defining (defineuserobject) (example) 68
executing (execuserobject) 67, 584
executing (execuserobject) (example) 68
manipulating (example) 68
undefining (undefineuserobject) 67, 711
UserObjects 713

parameters
See user parameters

paths
See user paths

space 182
coordinates in 184
default 183
device space and 182-184
image space relationship to 294
modifying 185-187
origin, physical page relationship 183
transformation to device space 184

user parameters
AccurateScreens 482, 487, 749, 757
HalftoneMode 482,749
IdiomRecognition 119-121, 749
JobName 750
MaxDictStack 750
MaxExecStack 750
MaxFontltem 750
MaxFormItem 750
MaxLocalVM 750
Max0pStack 750
MaxPatternItem 750
MaxScreenItem 750
MaxSuperScreen 482, 750
MaxUPathltem 750
MinFontCompress 750
properties of 746-749
retrieving (currentuserparams) 564
setting (setuserparams) 687
VMReclaim 750
VMThreshold 750

user paths 197-206
appending (uappend) 706

894
I INDEX

user paths (continued)
cache 202-204

output placed in 198
setting (setucacheparams) 686
setting (ucache) 707
status retrieving (ucachestatus) 707

constructing 198-200
ustroke 197

creating
(example) 68
upath 712

encapsulation
gsave and grestore use for 205
predictability advantage 197

encoded 200-202
(example) 202

encoded number string use 171
filling

ufill 197
ufill (example) 68

operators 204-204
(list) 198

painting
ueofill 708
ufill 708
ustroke 714
ustrokepath 715

structuring of 199

userdict dictionary 42,65,713
as dictionary stack component 46
as standard local dictionary (table) 65
usage guidelines 810

UserObjects array 713
defineuserobject management of (example) 68
user objects held in 67

usertime operator 714

ustroke operator 177,197,204,714

ustrokepath operator 204,715

V
values

associating keys with, in dictionaries on the dictionary
stack (def) 54,568

associating with names 41
color 210

in CIEBasedABC color spaces 222
operators 214-216
semantics of 211-248

of composite objects, not copied by stack operators 51
composite objects

sharing between copies 35
VM as pool for 57

values (continued)
dictionary 41
dictionary object, access attributes apply to 37
locating, on the dictionary stack (where) 54, 718
of objects, pushing/popping effects 46
replacing, in a dictionary on the dictionary stack

(store) 54,698
retrieving, from the dictionary stack (load) 54,622
sharing, among composite objects 58
simple objects 35
user paths, as equality testing basis 203

variable-pitch fonts 320

variables
dictionaries used to manage 41

vector(s)
distance, transforming (dtransform) 574-575
encoding

changing the 349-350
character code and glyph mapping 328-330
retrieving (findencoding) 591
StandardEncoding 693
(table) 773-774,784-794

version
PostScript, retrieving (version) 716

version entry
as entry in FontInfo dictionary (table) 327

version operator 716

vertex
specification, in type 4 shading 271-274

vertical
sampling, DCTEncode dictionary entry (table) 148

vertical writing
font metrics for 332

VerticesPerRow entry
as type 5 shading dictionary entry (table) 275

virtual memory
See VM (virtual memory)

VM (virtual memory) 57-59
See also garbage collection
allocation

policies, resource loading issues 105
retrieving (currentglobal) 557
setglobal control of 60
setting (setvmthreshold) 688

alterations, termination of 71
composite object

creation impact on 58
values contained in 35

consumption of, by composite object creation opera-
tors 53

creating objects in (example) 60
encapsulation of 68-72
encoded number string use in 171

895
INDEX I

VM (virtual memory) (continued)
errordict dictionary located in 115
errors (VMerror) 62,716
font introduction into 88
font resource use of 93
forms 206
global 59-61

category implementation dictionary located in 101
guidelines for use 66
setting mode for (setglobal) 670
testing objects for eligibility (gcheck) 598

Idioneet use of 121
initial, altering 70-72
local 59-61

reference by global VM object prohibited 60
reference by global VM object prohibited,

systemdict exceptions 66
save and restore operations 61-62
snapshot of state, as save operation 61

name values occupy space in 40
operators (list) 514
resources use of 89
save and restore impact on 72
state

restoring (restore) 648
saving (save) 653

status, retrieving (vmstatus) 717
storage allocation in, by composite object constructors

58
Type 4 CIDFont advantages 380
unique ID benefits 335
use 742-743
user path caching 203

VMerror error 716
memory exhaustion 62

vmreclaim operator 716

VMReclaim user parameter
value (table) 750

vmstatus operator 717

VMThreshold user parameter
value (table) 750

%/Samples entry
as OCTEncode dictionary entry (table) 148

W3C (WVVW Consortium)
PNG standard 139

wcheck operator 56,718

weight
media (MediaWeight) 401

Weight entry
as entry in FontInfo dictionary (table) 327

WeightVector array
as Type 1 font dictionary entry (table) 327

where operator 43,54,718

white-space
characters 26

numeric values (table) 27

VVhitePoint array
calculation of 226
as CIEBasedA dictionary entry (table) 230
as CIEBasedABC dictionary entry (table) 224
as type 1 CIE-based CRD entry (table) 464

width
See also length; size
glyph 320,331

adjusting (widthshow) 718
retrieving (stringwidth) 699
setting (setcharwidth) 661

line
retrieving (currentlinewidth) 559
setting (setlinewidth) 193,674

Width entry
as image data dictionary entry (table) 305
as image mask dictionary entry (table) 306
as type 1 image dictionary entry (table) 298
as type 3 halftone dictionary entry (table) 490
as type 4 image dictionary entry (table) 307
as type 6 halftone dictionary entry (table) 491
as type 16 halftone dictionary entry (table) 496

width2 entry
as type 16 halftone dictionary entry (table) 496

widthshow operator 320,718

wildcards
filenameforall use 78
resourceforall use 646

winding number
nonzero, rule 195

WMode entry
as CIDFont dictionary entry (table) 371
as CMap dictionary entry (table) 384
as font dictionary entry (table) 325
as Type 0 font dictionary entry 362

write access attribute
testing (wcheck) 718

write operator 720
EOL transparent to 75
writing, characters to an output file 73

writehexstring operator 720
writing, hexadecimal strings to an output file 73

writeobject operator 721
binary object sequence writing 173

I INDEX
896

writestring operator 721
EOL transparent to 75
writing, strings to an output file 73

writing
binary object sequences

to standard output (printobject) 634
writeobject 721

characters
to an output file (write) 73
to standard output (print) 633
write 720

files
access convention 79
in arbitrary order (setfileposition) 80

hexadecimal strings, to an output file (writehexstring)
73,720

operand stack contents
to standard output (stack) 692
using == (pstack) 87
using = (stack) 87

strings
to an output file (writestrIng) 73
writestring 721

text representation of an object
to standard output (==) 87
to standard output (=) 87

vertical, font metrics for 332

xcheck operator 56, 721

xor (exclusive or) operator 55, 722

xshow operator 320, 321, 722
encoded number string use 172

Xsquare entry
as type 10 halftone dictionary entry (table) 495

XStep entry
as type 1 pattern dictionary entry (table) 251

XUID array
as base font dictionary entry (table) 326
as CIDFont dictionary entry (table) 371
as CMap dictionary entry (table) 383
components of 337
as form dictionary entry (table) 208
as LanguageLevel 2 font feature 336
as type 1 pattern dictionary entry (table) 251
as type 2 pattern dictionary entry (table) 260

XUID entry
as form dictionary entry (table) 208

nishow operator 321, 722

yshow operator 320, 321,723
encoded number string use 172

Ysquare entry
as type 10 halftone dictionary entry (table) 495

YStep entry
as type 1 pattern dictionary entry (table) 251

zlib/deflate compressed format
Flate encoding of 137-142
FlateDecode filter use, overview (overview table) 86
FlateEncode filter use, overview (overview table) 85

zone theory
of color vision, CIEBasedABC as model of 221

zones
-specific colorant details 454
trapping 445-446

setting (settrapzone) 68

897

i I 1

Colophon

THIS BOOK WAS PRODUCED using Adobe FrameMaker®, Adobe Illustrator®,

Adobe Photoshop®, and other application software packages that support the
PostScript language and Type 1 fonts. The type used is from the Minion® and
Myriad® families. Heads are set in Myriad MM 565 Semibold, 600 Normal, and

the body text is set in 10.5-on- 13-point Minion.

Authors—Ed Taft, Steve Chernicoff, Caroline Rose

Key Contributors—Steven Kelley Amerige, Rob Babcock, Doug Brotz, Jo Davies,

Richard Dermer, Matt Foley, Linda Gass, Ron Gentile, Peter Hibbard, Jim King,
Ken Lent, Deborah MacKay, Jim Meehan, Carl Orthlieb, Paul Rovner, Mike

Schuster, Scott Seltz, Andy Shore, John Warnock

Reviewers—Ken Anderson, Rob Babcock, Ned Batchelder, Perry Caro, Holly

Cochran, L. Peter Deutsch, David Gelphman, Deborah MacKay, Henry Mc-
Gilton, John Nash, Jim Sandman, Norin Saxe, Lydia Stang, and numerous others
at Adobe Systems and elsewhere.

Editing and Book Production—Steve Chernicoff, Caroline Rose

Index—Rosemary Simpson

Illustrations—Carl Yoshihara, Wendy Bell, Dayna Porterfield, Lisa Ferdinandsen,
Carol Keller

Book Design—Sharon Anderson

Publication Management—Robin Sterling, Richard Compeau, Sholom Surges,
Joan Delfino

Project Management—Caroline Rose, Ed Taft

11. 3 .
=

..‘01: fig' ;5'1' 3-

,

notrigálci)

"-. •1111 •

•
•

. . .

-eiviivi à Limn, e . • ''.' -,-"eig-': i -0,.'eS . l.
.: e it:à.. 4 :toed e. k- • ') ,

,"'
•

".141.)11111V

- - j,.?"

:Lief - • -

grileng.‘

1

'Fr joirdak%

h _ ye,414,111?_"

- • '14' I étrill:lais olge:

T.d:IR'ali'M fa>
‘‘ •

MN eft} 11-.14)1.'2U Ile P

ri. ler hors . 1.) 9 : 1 r 1414.1e-e4

• Ira e
e,

••'`; .
I' I

if'. .1. .1- 1; •

r. ' ;Fit

r:' • • I'm I - .. Tvide-pe-rut
s • _ Étiedb r • ? ii,i•er "eh, • Pr,

glacm.r •/ b. '- 11,1'W .1. • .;"ti;‘,1

.1•./••e i.! - al 4. wirel% Yri

f•P) •Or-ftle-• K.& leguiChil

• 7-01 41. ' h Is r; 3 .11i Ii-UPie I

• af• ' "t.r • '0`

saqd;•_•• •Zietit7

..e - t or•e •-••

'le -Ake leeii•

PostScript/Programming

PostScrip OP
ANGUAG EFERENCE

thin e ion
The PostScript language is widely recognized as the industry standard for page

description. Incorporated into a broad range of printers, imagesetters, and computer
displays, PostScript describes exactly how text, sampled images, and graphics will appear
on a printed page or on a computer screen.

The PostScript Language Reference—known as the ed Book— is the complete and
authoritative reference manual for the PostScript language. Prepared by Adobe Systems
Incorporated, the creators and stewards of the PostScript standard, it documents the

syntax and semantics of the language, the Adobe imaging model, and the effects of the
graphics operators.This Third Edition has been updated to include LanguageLevel 3

extensions, which unify a number of previous extensions and introduce many new
features, such as high-fidelity color, support for masked images, and smooth shading
capabilities.

Book Highlights:

• Explains fundamentals of the PostScript language, graphics, fonts, device control,
and rendering

• Organizes all PostScript operators through LanguageLevel 3, both by function
and alphabetically

• Describes operands, results, side effects, and possible errors for each operator

• Appendices include numerous useful tables and other valuable information

p The enclosed CD-ROM contains the entire text of this bo
ft• Document Format (PDF).

The Red Book is the definitive resource for all PostScript pro,

http://www.awl.com/cseng/

°Text printed on recycled paper

e• ADDISON-WESLEY
Addison-Wesley is an imprint of
Addison Wesley Longman, Inc.

II 1111 11111
9 780201 379228

ISBN 0-201-37922-8

54995

II I I II

e

$49.95 US $74.95 CANADA

