
1;9;9 1;91/9-414Q e>11 a nee@ 4 •• • ••• • • • • • •••ir•wir • • • • • • • • • • • • • • •••••••• 11 • 011 4141411100
- 11-0-solao 11 0-11_1U-61110 lb • 41 • • 11 le -4 4 • 1111ile• 1

' • • 99 II 0 41.IIII••• • • • 1111•••••••••••••••••••••••••••••• • ••• ** • • mereemeimimiu.,...... .. . • • • • 0 • 11

11 • 11_9 • 9_9 • le • « • • • 11- 11 0 11 • • • •
• • • 5•'" •••••••••••••• 41444411141 ••••••••••••1111•1•11.11 . 1

•••••••••••111114441•1 4 •1 1 , lbee, .. ••••%11141.1 11••• • lb • lb 0 • • ••••••••••••••• 411•111.
• 1/1_11 • 9 111/IIL • 11 • •••••••••••••••••• 11 4 . 4
, 9 9 • • w • 0 A • II e ft. Ilea ell es •••••••••• 114•1•41
ileW •• 1101,11sealeol • ••••••••••••••••••••••

•••••••111•••••••••••••

"tree% vivevege•V•er e e • • . e 1111111.114.11101•• •
4 44 •••••••••••••• 1••••

• • • • • • 5. • • • II • IISC • • lb • • • • IL.* •4 •Et *044 4 4 •
11•••• OAP • • 01 411 II 01 • u • 0 • • • • • 4 ••••• 1111 •4.1111•11141414 4 lie

•••••••••••••••••1 11 •1

e • • • • qv • • • e • op • • • • • • • • • iip 641 let •
,••••• 11p• 41•1111111L••••••••••• ••••••••••••••• 11•••••• • 4
O 110••••011 110.154 •••• • • • • • • 111 ell• 1 4 • • 441 41•I• ••• 1111 44 4 4 0
11•, •••• • • OS« il • • • • • • ••••_•••• ••••••••••••••• • e • •

41 • 1111 • • • • • • • • • Ofrop Pie 9 41.111.1. 11 , 4 • 411,11 4 4
V lieleee tiMelele%
i hee legegeWle% SSSl an e°•••• ••••••••••1 del e s'esteeteloge.e.„AetetY.'
• tun • • e *Jo • a w 41_, • • w • • • U 11.• • e • • • • •A • 41 11.4.1. 14 11.11.11 à 1 /1.1.4 1.4 sisteetir eeete see

eiiti. .•••••.•••1•411\41114.14.4•11••_• ••••
111

leaMereili'Ves: ,eue e ae-imme..e.6.4.f.-.4.4.-e.-1 %: - 11 -9-$14-11 -04 11 -110'1 11_4 0 1 4 1 • • .1 117•11r1r1r411- %OM q llea llie lle•••••••••• 11,14 14 1.11,1 1.4 y e ll i1.4.4.4efill it.•••1 4.•••••44› ••••••••
• • 11 II ID • 11 >0 Illai a:11.1%:.

•••4111,11 • a • 4 • IL« 11
a ILO e • II 11 e • -.we •

••••••••• • &el 11 li • • •_• :ereee*
•0•110011111 •

e mpleaeleeelere• afiree, ualeaa.a.ave.e.0.0.11eleely.141.11.•,•.4860.t4144.01.4...1.4
mairecie e %Mee> ✓ ail aria« II eimeemeave.,,,ey ettlettilittitlaitee.y...1..6.4.t.
Alagoas le1717 1171 gekese..•• ••••••••••••/ O41••• 0 •

.1411ari le • 414I /Le 11 4 4 11 • 4 41 II 4 • tivir•••••• q 1
1 11 41r11 II Ile.040144.4e,e6 0,41 4 04 1I ttitt 4,41 4 44 , 11.9,0 e41.1 4ete,44.4y4.0

0 • 11 «111•111151111 II> 1111 «1• ir• 4 • •••••••• r. • II Ili • ••••• , y • Ile elimes 0.0.9.41.1 1 1114111 44 4 4.01,1110 4itleille get..4 0.6

•Mil• • • 14111.11LeetiO littl• • • •.
e e 11:9611::«efle ilm • 411 a • • • 4 • • 1.111_•• • 44 • o 11_4 • •.•
1 • • • 110% 01111%-lell le • • 11 • • • • 4 4 11 1L•1 4 4 ir_a_ • • 4,•.e.•. •

, 111 1P • • 0 • 11 •
o • 0 • a e • a_A0

e • 0511411100 • % Omp./Peseeee e::i iein elyi e ster ey eg.
tru -10 ••• 4 lee', • ise•e. • •
la• • • • of• •, 4 • 4 • • • • • • •

,•• . 004_16.1.-11 1J5dele
• • • • es„er• alluull e selielee°41 1 1 ete le4M110 111•1•8•1 •4•.oe .

•111146,111,•••••0 11• dee•

Se le 0• 11° 106 116 11-1%10-111 <

-• 11 11 0.41 0 0.40
M eer We • • 4 It•••••••••• • •• 4 •

••••• 41 I I 11 I 4 ••••• •••••
pea •••.• .11.• II asile ed.11,30.% % • :e •••••••••••• •••• •••••

al< ••••••••••••••••••••
0 -0-0-11 11-0- 119 ,11 11-11 11-0-114. • ••••••• 4, • • • • • • • • • •

V e111111.•>. 011.›. 81. 11k11:11:• II _•1 • • 41 44 11 le t • 0 • • • • • • • • ' e s
• UP • • 4 41 • 11 le•••• •••• •• • II

• •• • 41 4 •••••••••••

';¡:¡::01:::¡:11¡: ::¡:11111:11:kgileCle • • II ll 00,1444•••• • • • • • • •

• 11 11 11041411,•••• • • • • • 1. 6 0
• • 011ett4411•••• • • • • • • •

yo e ••••••• Ilt•e•••••••

V 111 le • ••••••••••••••• ••• ••
beele119 119 109 1091. 11 11 •••••••• 4•••••••••••
le 10 11 • 111 O • e %le "
••••••••••••
> • lb ir il 11
O le • • e •1/11a•I

11 110 0 IF

111:11:1:1MO:01

• • • • • I 4 4 e 0 • • • • • • 5 5 5
• e • Oeft•••••••••••

• up • 4 • • • • • • • • • • •
• 9 e 1S01 1 11 0 e • • • • • • • • •

• • ••••••••••••••••••

s esee ••••• ere II 4 • • II • • • • I • • Ill • • III IRO

115 0 • 1 • • IIII • 111 •
••••• • • • •

I • • • 1•1111•1111
111••• •••••

Il•

a 11•••• et • •

I • •
• • •

• • 811 •JI •
• • • • •

• à

II II 1 pawaodio3u ge • • • • • • • • • • • • . • .
• • • • • • • •

• 9,0,941 a e • • • • •• • • •

1 • a a 4••••••• 1**•••••••
• 0909 9 119 09 10 111 00 • 0 0 • • 11 a a • • . •,0 e • • • • • • 4, • • • • •

e 0 lb06•00I e1111•9 is 0 • •
41 • 0 II ID • t a II

ol il- • >tuajsiçs aqop V • • • a • . • • • ••• 0_11 • lb • •
0 0 1P • • 0 a a a

111lb 110 OP4 110 1Plb11 • 9_, • 11 le
•••••• 95.544.5.5.5.5.5.

• • I 11 • • • 0•11011 .• •. a • w

10111•0000 • •40•0011011 111I0II•OPei.•e i4.4.•••••.%'.'.' f _11 • • • • • • •
lb a • • • • 5

1 0 • • • • • 011•eillg Ir • • • ••••

1 • II 0 0 - 4 4 4 4f::::::::::: s. • • • • • • 11 • • 0 0 0 • 0 O 11 O OJI1 • • • • .•••• • •

e'V eilsile. • • 11.05•• •••• • ••
••• •••• O'

II • II • • • • • • •

> • • • ••••••

•••••••••• tyriunK a3uaiaja I • • • • • • • ellieele•ells :.....e. ". .. II .5 ,5
o • w • 4 • • • 4 •

• • •••••• • •••••••• '*7.200(7eld-•: : •e : e• • • • - • .• ••• • • •
I*011•• 0II•0t4•0000I04011 • eibille 1 4 • • • _ • •

/ • • • 11••••••••••• • • • • •• • • • • •• •
Ill• • ••••• • 1141, 0 lb 91111 n ile0,10 •••• •• • • • e• I • • • • • • • • • • 1....• 111_11_•_111

aÊunâueri (••• • • 4 • • • • • • 40 499 • 1 • • • • Ob . :.

10 le0 1•44 14 0f 00440II44 IO0I• 11 0 0 II • t 0 • • • • • • • e .. • • • •
• • • 14 • • • V -

I • 4 55 1 • • • • •• . . . • • . e • • • • • • V •

144leIt0 g •

e 4 du

P e• CI
0 é 1 d

11 •

• • ••

O 411411410. a'
. . . 1 1 SISO If ,•

.•
• •
• •1_41

fip e " m:W:.:•:e:e . ' e > m,

e v e • • • • e .

e. . 4 . M . 4 . ..• 4 . .11V ' .«.

••••• ...-

••
r

40 0 •

10I 1104• Or 114•411440i4441 t • V lele• 4 . . 11,

• 4 r le •
% e 4

P•••••••••• SI:4:4 :11. 119:01.1.111, y . ‘4 9
••• 5* • . e%

r •
• • • • .

a 110 • - •

• • 44111 • 04 441 • 11_,I_ 'nee' ore • • 0
IIIe040I410•I444 4I 4 •4I4 • % el"401• f1_1 #1•9 eee'eeetiefeell às a•
. • • • • • 4 4 11_1111V el _ 4 _ II 4 _ I II 1_1 • 4 • • • ••••••1•111•••• • _

11.411$11.• i 41,1 1141. 11 11Y19....0 Olega ie «*
11,11111 , t00-111111114111

e•Ma:ell:et4 0 1•441I19,111111161 t • 11 2 • 11 ••••••••-•
ses 0'4 4414 OII01111,11,111 4 4 11 lie e •

iiiieeeiesieetitYleet4evet°•',10' ‘liee4e144444•'•*. e amaspeeeee.yetelyeetaleyety lie414 er#4. • 4.,.•
• •••••••••••••••••••••• tee's . ..e t •

ea% 41:11.0.0. 090etet4e4 1414141 11•106,10 1 1:001 teet ste eee .• «ea 11,11 • 011 o 11,11,•

II • • .

bee • r.."
• • • V
-a . 111

e

•
• 0 .

•
• •

b • • •
•• • -

• ri• • •
•• • •

e •• •
• • II b •
• e'••
• ••••

• • • a •
• • O • • •

Obe.• • • •
a" •••••• .

4 • • • a • • • • e •
y • • • U•e• a

a V • • • • • • • • v . . •.,.....
• • •• • ii • e ,

C t • • • • e

XW ••••••••
l• • • • • v*
•• • • • • e •

WC a •• • . a ••
•••••• • •••••
Ih• • • . • • •

b ., ••• • r ••

e . % . b b b e leg % . 0% ' e e

2 ee:

1•1•V• • • • •
• • 11••••• •• ...• .

••••••
1. 11, 41e .•• a
••• ', cb • I

In •••• • ••
, (••••••• l . s 4

lim I •

•• •
•••••••• • 4 t

A 1 • • • • e•ele IIdoI
• • . o • De %le m i..

)II› . o . O. ' 0% .1..0 e • •
, m • • • % '. q•

d •

A 0

114
a
• •

•
V •

• e 41

*: v n

*Zo e w nww • v •
•••

• • it •
r •••

,..• • ••fo liçt(

.• •

•
• • • • • •

• ..4% .%we

a

• • • • • • •
t • • • . • •

• . . . • • •
• • • • • •

• • • • • • •
• • • • • •

14• • • . 555
• • • • • •

• • • • • • •
5 55. • • •
• • N. • • • •

• • •. • • • •

0 • • • • • • •
• • • • • i• •

• • • • • •

• • • • • • •
• • • • • • •
• • • • • • •

• • • • • • • •
• • • • • • •

• • • • lb lb • •
• • • • • • • •

lohm• • % beet,
•••• ••• •

41 • • • • 4 • • m •
• • • f • • • * •

• • • 4 4 • • • •
• • • • • 4 O

SS S

xuedwo.) u!ti-siiqnd ÁoIsM -uosgpp be AA

REFERENCE MANUAL

s of

4.1
$m. tne turn from the general programming language aspect
PosTSCRIPt to the language extensions that deal with describi

g4TRODUCTION

pages to be rendered on a rastet output device:These extenn
consist of some addttional data structures and a cons
nuntbet of special operators. The facilitliie sdescribed he

both display and printer appcations.

ltie POSTSCRIPT graphics operators (only

tended for sis ma

e4.40o

•Graphics state operawrs. This group

j e%'' 4 '..

e.7: ' 'eRr
..e• 4'fr that manipulate a data structure cal.

• e4 • .1, n• -Z. 'etv O,44 - •E

which defines the context at w

•x, e- r.i ro
14 e.,. e,Yer • 'bree.‘ operators execute.

, • Coordinate system and Itlair

s,

includes a current trade
cooc,:nasK. tse aspteicoinft.ed bY
put device coordinates

late the CTRA to
le

.le ;41.'•.;i....-.4k.;:i':: .'44)('4:..:).1544''e;o4i:4:7;41' °•(::/6:41'

r 'Or 'r .'"'n -'0,44er•-• t,
e- • ei,. 4

P0 -`4 . '4„ *be,:*•,*,._ 4-, °Pi
e.;..1

• Path ronstr

natesoonwto dev

current

ea., 44« *re4e(-4,4, 4'.‘4:7•445 4::,';''''',454,7,.(544.'.‘

(Pee?'
„e4te

e Vee e

14.,pee , yee

e

4,

8e, n.0',

k>e

r'b4:N

4Pe A ,i.,
e4 ; q'rr, 4e

4•',1,4 • 4*/ k
it y

.«.. 14444
ea

„
,./r;

*4 14,3 e

tfr

REFERENCE MANUAL

ADOBE SYSTEMS
INCORPORATED

VV
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Library of Congress Cataloging in Publication Data

Main entry under title:

Postscript language reference manual.

Includes index.
1. PostScript (Computer program language)

I. Adobe Systems.
QA76.73.P67P67 1985 005.13'3 85-15693
ISBN 0-201-10174-2
ISBN 0-201-10169-6

Nineteenth Printing, october 1990.

Copyright © 1986, 1985 by Adobe Systems Incorporated.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission
of the publisher.
Printed in the United States of America.
Published simultaneously in Canada.

PosTScRwr is a registered trademark of Adobe Systems Incorporated.

TRANSCRIPT is a trademark of Adobe Systems Incorporated.
Times and Helvetica are registered trademarks of Allied Corporation.
Linotronic 300 is a trademark of Allied Corporation.
Scribe and UNILOGIC are registered trademarks of UNILOGIC, Ltd.
xotox® and Interpress are trademarks of Xerox Corporation.
Apple is a registered trademark of Apple Computer, Inc.
LaserWriter is a trademark of Apple Computer, Inc.
UNIX is a trademark of AT&T Bell Laboratories.
ImagiTex is a trademark of ImagiTex Incorporated.

The information in this book is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this book. The software described in
this book is furnished under license and may only be used or copied in
accordance with the terms of such license.

Sr—W-943210

iv

PREFACE vii

CHAPTER 1 INTRODUCTION
1.1 About the POSTSCRIPT Language 1

1.2 About This Manual 3

CHAPTER 2 BASIC IDEAS
2.1 Introduction 7

2.2 Raster Output Devices 7

2.3 Scan Conversion 8

2.4 Page Description Languages 9

2.5 Using POSTSCRIPT 12

CHAPTER 3 LANGUAGE
3.1 Introduction 17

3.2 Interpreter 18

3.3 Syntax 19

3.4 Data Types and Objects 26

3.5 Stacks 36

3.6 Execution 37

3.7 Virtual Memory 45

3.8 Operator Overview 47

CHAPTER 4 GRAPHICS
4.1 Introduction 59

4.2 Imaging Model 60

4.3 Graphics State 62

4.4 Coordinate Systems and Transformations 64

4.5 Path Construction 71

4.6 Painting 74

4.7 Images 76

4.8 Colors and Halftones 82

4.9 Device Setup and Output 87

CHAPTER 5 FONTS
5.1 Introduction 89

5.2 Organization and Use of Fonts 90

5.3 Font Dictionaries 94

5.4 Character Encoding 97

5.5 Font Metric Information 99

5.6 Font Cache 101

5.7 User-defined Fonts 102

CHAPTER 6 OPERATORS
6.1 Introduction 109

6.2 Operator Summary 111

6.3 Operator Details 121

APPENDIX A STANDARD FONTS 259

APPENDIX B IMPLEMENTATION LIMITS 275

APPENDIX C STRUCTURING CONVENTIONS 279

APPENDIX D PRINTER SPECIFICS 287

INDEX 289

vi

The POSTSCRIPT language is designed to be a modern standard
for electronic printing. This design has benefitted from nearly a
decade's experience with several predecessor languages. I would
like to present a brief historical background as a preface to the

language specification contained in this manual.

The language had its beginnings in 1976 at the Evans &
Sutherland Computer Corporation, where it was known as the
'Design System'. It was the outcome of a research project that
explored the use of an interpretive language to build complex
three-dimensional graphics data bases. The project was success-

ful and the language was used in computer aided design applica-

tions.

The major ideas behind the original language are due to John
Gaffney, who worked for me at the time. Although the Design
System language and its successors bear a superficial
resemblance to the FORTH programming language, their concep-
tion and development were entirely independent of FORTH.

In 1978, I joined the Xerox Palo Alto Research Center. Martin
Newell and I reimplemented the language and called it `JaM'
(for 'John and Martin'). Again the language was used in ex-
perimental applications: Martin used it for VLSI design, while I

used it for exploring the world of printing and graphic arts. One
outcome of the work at PARC was the development of Interpress,
the Xerox printing protocol. Many of the ideas found in both
Interpress and POSTSCRIPT originated in the Design System and

JaM languages.

When Chuck Geschke and I formed Adobe Systems
Incorporated in 1982, we undertook a third design and im-
plementation of the language, to which Doug Brotz, Bill Paxton,
and Ed Taft made major contributions. This third incarnation,
called 'POSTSCRIPT', is again used as an interpretive graphics

VII

description language. But this time the language describes two-
dimensional printed pages, and the interpreter for the language
resides in controllers for raster printers.

I can say without hesitation that the quality of the language, both
in its design and in its implementation, has improved and ma-
tured greatly during the several stages of its evolution.

John Warnock
June 1985

Production note

Production of this book was an excellent demonstration of the
POSTSCRIPT language's capabilities, particularly its device in-
dependence and its total integration of text and graphics. The
entire production process took place at Adobe Systems, cul-
minating in delivery of camera-ready copy to Addison-Wesley.

A considerable amount of material for this book was derived
from earlier documents by Adobe Systems: the POSTSCRIPT Lan-
guage Manual and the Adobe Font Manual. The Adobe staff
members principally responsible for this material were John
Warnock, Doug Brotz, Andy Shore, Linda Gass, and Ed Taft.
The original material was reorganized, rewritten, and con-
siderably expanded by Ed Taft. The resulting draft was reviewed
and proofread by Doug Brotz and Glenn Reid.

The text for the manual was prepared and edited in the form of
an on-line manuscript for the Scribe Document Production Sys-
tem (a product of UNILOGIC, Ltd.) The book design was
specified by Robert Ishi and was implemented by Andy Shore
(with help from Brian Reid) as a Scribe document definition.

This manuscript consisted of commands and text for consump-
tion by Scribe, interspersed with references to POSTSCRIPT
programs for describing illustrations and other graphic material.
Among the illustrations are two photographs, which were con-
verted to digital form using an ImagiTex scanner and
incorporated as POSTSCRIPT sampled images.

Successive drafts of the manuscript were processed by Scribe,
each time generating a single POSTSCRIPT page description file
for the entire book. This file included all the text and all the

viii

illustrations except the frontispiece (opposite the title page). The
frontispiece was produced by extracting three pages from the
Scribe-generated POSTSCRIPT file, combining them into a single

page description, and applying POSTSCRIPT graphics operators to
place them in the desired position, size, and orientation.

Proof copy was produced when needed by sending the
POSTSCRIPT page description file to an Apple LaserWriter
printer. After editing was completed, camera-ready copy was
printed from the same file on a Linotype Linotronic 300 typeset-
ter. This final copy was used directly by Addison-Wesley to
make plates for publishing the book; no further cutting or paste-

up of any kind was required.

ix

fr'

REFERENCE MANUAL

CHAPTER 1

INTRODUCTION

1.1 ABOUT THE POSTSCRIPT LANGUAGE

The POSTSCRIPT language is a simple interpretive programming

language with powerful graphics capabilities. Its primary appli-
cation is to describe the appearance of text, graphical shapes, and
sampled images on printed pages. A program in this language
may be used to communicate a description of a printable docu-

ment from a composition system to a printing system. The
description is high-level and device-independent.

The POSTSCRIPT language's page description capabilities
include the following features, which may be used in any com-
bination:

• Arbitrary shapes constructed from straight lines, arcs, and
cubic curves; such shapes may self-intersect and contain
disconnected sections and holes.

• Painting primitives that permit a shape to be outlined with
lines of any thickness, filled with any color, or used as a
clipping path to crop any other graphics.

• Text fully integrated with graphics. In the POSTSCRIPT
graphics model, text characters (in both standard and
user-defined fonts) are treated as graphical shapes that may
be operated on by any of the POSTSCRIPT graphics
operators.

1

• Sampled images derived from natural sources (e.g.,
photographs) or generated synthetically. The POSTSCRIPT
graphics model allows sampled images at any resolution
and with a variety of dynamic ranges, and it provides a
number of facilities to control the rendering of images on
an output device.

• A general coordinate system facility that supports all com-
binations of linear transformations including translation,
scaling, rotation, reflection, and skewing. These transfor-
mations apply uniformly to all elements of a page descrip-
tion, including text, graphical shapes, and sampled images.

A POSTSCRIPT page description may be rendered on a particular
raster printer (or other output device) by presenting it to a
POSTSCRIPT interpreter controlling that printer. As the inter-

preter executes commands to paint characters, graphical shapes,
and sampled images, it converts from the high-level POSTSCRIPT
description to the low-level raster data format for the specific
output device.

Normally, POSTSCRIPT page descriptions are generated
automatically by composition programs such as word processors,
illustrators, computer aided design systems, and others. Program-
mers generally write POSTSCRIPT programs only when creating
new applications. However, in special situations a programmer
may write POSTSCRIPT programs to take advantage of
POSTSCRIPT capabilities that are not accessible through a par-
ticular application program.

POSTSCRIPT'S extensive page description capabilities are em-
bedded in a general-purpose programming language framework.
The language includes a conventional set of data types such as
numbers, arrays, and strings; control primitives such as con-
ditionals, loops, and procedures; and some unusual features such
as dictionaries (associative tables). This enables application pro-
grammers to define higher-level operations that are closely

matched to the needs of the application and then to generate page
descriptions that invoke those higher-level operations. Such a
page description is more compact and easier to generate than one
written entirely in terms of a fixed set of basic operations.

2 Chapter 1 INTRODUCTION

POSTSCRIPT programs are created, transmitted, and interpreted in
the form of source text as defined in this manual; there is no
'compiled' or `encoded' form of the language. The entire lan-
guage is defined in terms of printable characters (plus space and

newline). This representation is convenient for programmers to
create, manipulate, and understand. The limited character set
facilitates storage and transmission of POSTSCRIPT files among
diverse computers and operating systems; this enhances machine
independence.

In this unconventional use of a programming language,
POSTSCRIPT defines a standard, extensible, flexible print file for-
mat that is the interface between document composition applica-
tions and raster printing devices.

1.2 ABOUT THIS MANUAL

This is the programmer's reference manual for the POSTSCRIPT
language. It is the definitive documentation for the syntax and
semantics of the standard POSTSCRIPT language, the imaging
model, and the effects of the graphical operators.

What this manual doesn't provide are guidelines on how to use
POSTSCRIPT effectively. As with any programming language,
certain techniques yield the best solution to particular program-
ming problems, and there are issues of style that influence the

quality and consistency of the results. These matters are the main
topic of a companion book, the POSTSCRIPT Language Tutorial

and Cookbook.

This POSTSCRIPT Language Reference Manual begins (chapter
2) with an informal presentation of some basic ideas that under-

lie the more formal descriptions and definitions comprising the
remainder of the manual. We first discuss the properties and ca-

pabilities of raster output devices. This leads to a set of require-
ments for a page description language designed to make effec-
tive use of those capabilities. We briefly present the abstract
POSTSCRIPT graphical model and describe how that model is
realized on a raster output device. The chapter concludes with

some pragmatic information about the environments in which
POSTSCRIPT interpreters operate and about the sorts of
POSTSCRIPT programs that are typically executed.

1.2 ABOUT THIS MANUAL 3

In chapter 3 we introduce the fundamentals of the POSTSCRIPT
language: its syntax, semantics, data types, execution model, and

so forth. This chapter concentrates on its conventional program-
ming language aspects, entirely ignoring its graphical capabil-
ities and its use as a page description language.

Chapter 4 introduces the POSTSCRIPT graphical model and
describes how, using POSTSCRIPT operators, one may define and
manipulate graphical entities such as lines, curves, filled areas,
and sampled images. One may then transform these entities into
different coordinate systems and render them on a raster output
device.

In chapter 5 we describe how the POSTSCRIPT language deals
with text. In POSTSCRIPT, text characters are defined simply as
graphical shapes, and their behavior is in full accordance with
the graphical model presented in the previous chapter. However,

due to the importance of text in most printed documents,
POSTSCRIPT provides specialized capabilities for organizing sets
of characters as fonts and for selecting characters to be printed
by means of an efficient encoding.

All of the POSTSCRIPT built-in operators and procedures are fully
described in chapter 6. The chapter begins with a categorization

of operators into functional groups. Following that, the operators
appear in alphabetical order, with complete descriptions of their
operands, results, side-effects, and possible errors.

The manual concludes with several appendices containing useful
information that is not a formal part of the POSTSCRIPT language
standard. Appendix A describes the standard fonts that are
generally available in POSTSCRIPT printers. Appendix B
specifies certain limits typically imposed by Adobe Systems' im-
plementations of the POSTSCRIPT interpreter (e.g., maximum
array length, maximum stack depth, etc.) Appendix C describes a
convention for structuring POSTSCRIPT page descriptions to
facilitate their handling and processing by other programs.

Appendix D contains information about facilities not strictly part
of the POSTSCRIPT language definition. This appendix provides

an overview of the structure of POSTSCRIPT language extensions
that deal with printer and product specific configurations and
capabilites. Information about specific products is available
through the manufacturers.

4 Chapter 11 INTRODUCTION

If you intend to write applications that generate POSTSCRIPT
page descriptions (or to program in POSTSCRIPT directly), it is
essential that you have a copy of the POSTSCRIPT Language

Tutorial and Cookbook in addition to this reference manual. The
Tutorial and Cookbook is an introduction to effective use of
POSTSCRIPT both as a programming language and as a means of
achieving high-quality printed output. It includes a large number

of techniques and recipes for obtaining results both mundane and
exotic.

1.2 ABOUT THIS MANUAL 5

CHAPTER 2

BASIC IDEAS

2.1 INTRODUCTION

In this chapter we present some basic ideas that are essential to
understanding the problems that the POSTSCRIPT language is
designed to solve and the environments in which it is intended to
operate. We also establish some terminology that will be used
throughout the remainder of the manual.

There are two complementary approaches toward describing the
POSTSCRIPT language. On one hand, it is a general purpose pro-
gramming language with powerful built-in graphics primitives.

On the other, it is a page description language that includes pro-
gramming language features. Either of these views could serve
as a basis for describing the language, but either one taken alone
does not tell the entire story. Both views are equally valid and
they interact to provide a complete model for understanding
POSTSCRIPT.

2.2 RASTER OUTPUT DEVICES

The need for a page description language of POSTSCRIPT's capa-
bilities is motivated by the properties of the output devices that
the language must support. The POSTSCRIPT language is
designed to deal with the general class of raster output devices.

7

This class encompasses such technologies as laser, dot-matrix,
and ink-jet printers, as well as raster-scan displays.

The essential property of a raster output device is that a printed
or displayed image consists of a rectangular array of
individually-addressable dots or pixels (picture elements). On a
typical black-and-white output device, each pixel can be made
either black or white; on certain devices, each pixel can be set to
an intermediate shade of gray or to some color. By setting large
groups of pixels to appropriate colors in appropriate combina-

tions, one can produce an image that includes text, arbitrary
graphical shapes, and reproductions of natural or synthetically-
generated sampled images.

The resolution of a raster output device is a measure of the

number of pixels per unit of distance along the two linear dimen-
sions. Resolution is typically but not necessarily the same in the
horizontal and vertical directions.

Devices are classified according to their resolutions. Displays in
computer terminals have relatively low resolution, typically 50
to 100 pixels per inch. Dot-matrix printers generally range from
100 to 200 pixels per inch. Laser scanning coupled with
xerographic printing technology is capable of medium resolution
output at 300 to 600 pixels per inch. Photographic technology
permits high resolutions of 1000 pixels per inch or more. Higher
resolution yields better quality and fidelity of the resulting image
but is achieved at greater cost.

2.3 SCAN CONVERSION

An abstract graphical entity (e.g., a line, a circle, a text character,
or a sampled image) is rendered on a raster output device by a
process known as scan conversion. From a mathematical
description of the graphical entity, this process determines which
pixels to adjust and what values to set them to in order to achieve
the most faithful rendition possible at the device resolution.

The pixels of the page to be printed or displayed are represented
as a two-dimensional array of pixel values in computer memory.
For an output device in which each pixel is either black or white

8 Chapter 2 BASIC IDEAS

(the most common situation), each pixel is represented by a
single bit in memory. In this case, scan conversion consists of
laying down a pattern of ones and zeroes in memory. This
process is applied in turn to each graphical entity that is to ap-
pear on the page. The pixel values are then all read out in row or
column order, and by some sort of scanning process an image

corresponding to this data is produced on the output device.

Scan converting a graphical shape such as a rectangle or a circle
involves determining which device pixels lie ' inside' the shape
and setting their values appropriately (e.g., to black). Since in
general the edges of a shape do not fall precisely on the boun-
daries between pixels, some policy is required for deciding
which pixels along the edges are considered to be ' inside'. Scan
converting a text character is conceptually no different from scan
converting an arbitrary graphical shape; however, characters are
additionally required to be legible and to meet certain other ob-
jective and subjective measures of quality.

Rendering gray-scale images on a device whose pixels can be
only black or white is accomplished by a technique known as
halftoning. The array of pixels is divided into small clusters ac-
cording to some pattern (called the halftone screen). Within each
cluster, some pixels are set to black and some to white in propor-
tion to the level of gray desired at that point in the image. When
viewed from a sufficient distance, the individual dots become
unnoticeable and the resulting illusion is of a shade of gray.
Natural images such as photographs and synthetic images such
as gray-filled regions may thus be approximated on a black-and-
white raster output device. (The chapter headings in this manual
illustrate synthetic gray-scale images produced by halftoning.)

2.4 PAGE DESCRIPTION LANGUAGES

Levels of description

In principle, a page to be printed on a raster output device can be
described simply as an array of pixel values. An application
program can describe the desired output as a full-page pixel
array and transmit it to the printer. Pages containing arbitrary
combinations of text, graphics, and sampled images can be
described in this way.

2.4 PAGE DESCRIPTION LANGUAGES 9

Such an arrangement is unsatisfactory for many reasons. Chief
among them are:

• The description is bulky and is expensive to transmit and to
store.

• The pixel array is device-dependent: it is valid for output
devices of only one particular resolution and one choice of
possible data values per pixel.

• Scan conversion is a difficult and time-consuming process.
Requiring an application program to perform scan conver-
sion is not only burdensome but is a serious violation of
modularity principles. Furthermore, the processor or
memory requirements for performing scan conversion may
be beyond the means of many small machines such as per-
sonal computers.

In today's computer printing industry, raster output devices with
different properties are proliferating, as are applications that
need to generate output for those devices. Meanwhile, aspira-
tions are also rising. Typewriter emulation (text-only output in a
single typeface) is no longer adequate. Users desire to create and
print documents that combine sophisticated typography with ar-
bitrary graphics.

With low-level raster descriptions inadequate to satisfy these
aspirations, we are led into the realm of the higher-level page
description language. Ideally, such a language should be capable
of describing the appearance of pages containing arbitrary text
and graphics at a relatively high level, in terms of abstract graph-
ical entities rather than in terms of device pixels. Such a descrip-
tion is economical and device-independent.

Producing printed output from an application program then be-
comes a two-stage process. First, the application generates a
device-independent description of the desired output in the page
description language. Second, a program controlling a specific
raster output device interprets the description and renders it on
the device. The two stages may be executed in different places

and at different times; the page description language serves as an
interchange standard for transmission and storage of printable
documents.

10 Chapter 2: BASIC IDEAS

Static versus dynamic formats

Page description languages in use today may be considered both
on the basis of their intrinsic capabilities and on whether they are
static or dynamic. Intrinsic capabilities include the built-in
operations of the language, such as the ability to deal with
various sorts of text and graphics. Additionally, the degree to
which the built-in operations interact harmoniously is of con-
siderable importance. For example, a page description language
that offers uniform treatment of text, graphical shapes, and
sampled images greatly facilitiates applications that must com-
bine elements of all three on a single page.

A static format provides some fixed set of operations (sometimes
called 'control codes') together with a syntax for specifying the
operations and their arguments. Static formats have been in ex-
istence since computers first used printers; classic examples are
line printer format control codes (in which the first character of
each line is used to specify paper motion) and 'format effector'
codes in standard character sets such as ASCII. Historically, static
formats have been designed to capture the capabilities of a
specific class of printing device and have subsequently evolved
to include new features as they are added.

A dynamic format allows considerably more flexibility than a
static format. The operator set may be extensible, and the exact
meaning of an operator may not be known until it is actually
encountered. A page described in a dynamic format is more ap-
propriately thought of as a program to be executed than as data
to be consumed. Dynamic page description languages contain
elements of programming languages such as procedures, vari-
ables, control constructs, and so forth.

A print format that is primarily static but that purports to cover a
lot of graphic and text capabilities tends to have a proliferation
of special-purpose operators. A dynamic format that allows
primitive operations to be combined according to the needs of
the application will always be superior to a static format that
tries to anticipate all possible needs.

The POSTSCRIPT design goes all the way over to the dynamic
side of this classification. The language includes a set of primi-

tive graphic operators, and it allows them to be combined in any

2.4 PAGE DESCRIPTION LANGUAGES 11

possible manner. It not only has variables, but it allows arbitrary
computations in the process of interpreting the page description.
It has a rich set of programming language control structures for
combining its elementary elements.

As we shall see later in this manual, for very complicated page
layouts there may be situations in which a page description must
depend on information about the specific output device in use,
such as its page size or resolution. This information cannot be
known at the time the page description is composed, but only

when it is executed. Thus it is essential for a page description to
be able to read information from its execution environment and
to perform arbitrary computations based on that information in
the process of rendering the desired image.

These considerations lead us to the POSTSCRIPT language, a
dynamic print format whose page descriptions are actually
programs to be executed by an interpreter. POSTSCRIPT programs
can degenerate into a form that resembles a static format, i.e., an
uninterrupted sequence of basic commands to image text or
graphics. POSTSCRIPT programs generated by applications with
simple needs will often have this boring, repetitive nature.
However, when the need arises, the power is there to be ex-
ploited by the knowledgeable application designer.

2.5 USING POSTSCRIPT

Thus far we have concentrated primarily on the POSTSCRIPT

graphical model and descriptive capabilities. Now let us turn to
some more practical matters of how the POSTSCRIPT language is
actually used.

The interpreter

We have already touched upon the most common scenario of
using the POSTSCRIPT language. An application program
generates a POSTSCRIPT page description of a desired document
and transmits it to a POSTSCRIPT interpreter. The interpreter ex-

ecutes the page description and produces output on an attached
printer or other raster device. The POSTSCRIPT interpreter and
the output device are bundled together and treated essentially as

12 Chapter 2: BASIC IDEAS

a black box by the application; the interpreter has little or no
direct interaction with the end user.

To support this model of use, the POSTSCRIPT interpreter is typi-
cally implemented on a dedicated processor that has direct con-
trol over the raster output device. Its usual mode of operation is
to consume a stream of 'print jobs' and produce the requested
output.

A quite different scenario is one in which a programmer interacts
with the POSTSCRIPT interpreter directly, treating it as a general-
purpose programming language. Running POSTSCRIPT on a
time-sharing system or personal computer is quite similar to run-

ning other interactive programming languages such as BASIC or
FORTH. Some POSTSCRIPT printers also have an interactive
mode of operation that permits them to be used as if they were
personal computers.

Although POSTSCRIPT is a general-purpose programming
language, it is not a complete, self-contained programming
environment because it lacks an editor and other tools required
for program development. Interacting directly with the

POSTSCRIPT interpreter is useful mainly for experimenting with
its capabilities and for trying out POSTSCRIPT programs under
development.

Even when a POSTSCRIPT interpreter is being used non-
interactively to process documents prepared previously, there
may be some dynamic interactions between the process sending
the documents and the POSTSCRIPT interpreter. For example, the
sender may ask the POSTSCRIPT interpreter whether certain fonts
referenced by a document are already resident. This is ac-
complished by sending a program for the POSTSCRIPT interpreter
to execute; this program reads the required information from its
environment and sends it back. There is no formal distinction
between a POSTSCRIPT program that is a page description and
one that makes environmental queries or performs other, ar-
bitrary computations.

2.5 USING POSTSCRIPT 13

Program structure

Returning to the use of POSTSCRIPT as a page description lan-
guage, let us now consider how POSTSCRIPT programs are typi-
cally organized and how applications may be structured to use

POSTSCRIPT effectively.

A POSTSCRIPT document generally consists of two parts: a
prologue followed by a script. The prologue contains

application-specific definitions that are used in the script. It is
written manually by a programmer and is then included as the
first part of every document generated by the application. It con-
tains definitions that match the output functions of the applica-
tion to the capabilities that POSTSCRIPT supports.

The script is generated automatically by the application program
to describe the specific elements of the pages being produced. It
consists of references both to POSTSCRIPT primitives and to
definitions made in the prologue, interspersed with operands and
data required by those operations. The script, unlike the pro-
logue, is usually very stylized, repetitive, and simple.

An example may aid in understanding the purpose of having a
separate prologue and script. POSTSCRIPT does not have a primi-
tive to draw rectangles. To construct a rectangle, a POSTSCRIPT
program must first define a rectangular path by specifying four
invisible line segments, then paint the path by drawing a stroke
along it or by filling it with some color. If rectangles appear
commonly in output produced by an application, it may be ad-

vantageous for the prologue to define a procedure that draws a
rectangle. Then, for each rectangle that is to appear in the page
description, the script invokes the rectangle drawing procedure,
passing it any operands it requires.

The script portion of a printable document ordinarily consists of
a sequence of separate pages. The description of an individual
page can stand by itself, depending only on the definitions in the
prologue and not on anything in previous pages of the script. The

language includes facilities (described in section 3.7) that may be
used to guarantee page independence.

There is nothing in the POSTSCRIPT language that formally dis-
tinguishes the prologue from the script or that requires pages of

14 Chapter 2 BASIC IDEAS

the script to be independent of each other. Such structuring of
POSTSCRIPT programs is merely a convention, but one that is
quite useful and is recommended for most applications.

We have established a set of conventions by which document
structure may be made explicit. These structuring conventions
are documented in appendix C of this manual. The POSTSCRIPT
interpreter doesn't distinguish between a page description that
conforms to these conventions and one that does not. However,
the structural information is of considerable importance to utility
programs that operate on POSTSCRIPT page descriptions as data.

Such programs may change the order of pages, extract subsets of
pages, embed individual pages within other pages, and so on.

Another reason for adhering to the recommended document
structure is that it serves as a good basis for organizing appli-
cation programs that generate POSTSCRIPT page descriptions. An

application program has its own data structure that represents the
application's model of the appearance of a printable document.
Some parts of this model are fixed for the entire document (or
for all documents); the application should incorporate their
descriptions into the prologue. Other parts vary from one page
(or smaller division) to another; the application should emit the
necessary descriptions of these as they appear.

While generating a printable document, an application should
maintain an up-to-date version of its own model of the high-level
graphical state. After it crosses a structural boundary such as a
page break, it should generate descriptions that first restore the
standard state defined by the prologue and then explicitly rees-
tablish nonstandard portions of the graphical state for the next

page. This technique ensures that each page is independent of
any other.

The foregoing discussion has been concerned with application
programs that generate POSTSCRIPT page descriptions directly.

Many existing applications generate printable documents in
some other print file format or in some intermediate represen-
tation. It is possible to print such documents by translating them
into POSTSCRIPT page descriptions.'

IFor example, the TRANSCRIPT package translates UNIX documents from a
number of widely-used representations into POSTSCRIPT.

2.5 USING POSTSCRIPT 15

Implementing a translator is often the least expensive way to in-
terface an existing application to a POSTSCRIPT printer. Unfor-
tunately, while such translation is usually straightforward, a
translator may not be able to generate POSTSCRIPT programs that
make effective and efficient use of the POSTSCRIPT descriptive
capabilities. This is because the print file being translated often
describes the desired results at too low a level; any higher-level
information maintained by the original application has been lost
and is not available to the translator.

While direct POSTSCRIPT output from applications is most
desirable, translation from another print format may be the only
choice available for some applications. In any event, a translator
should do the best it can to produce output that conforms to the
POSTSCRIPT structuring conventions. This ensures that such out-
put is compatible with the tools for manipulating POSTSCRIPT
page descriptions.

Once again, these guidelines for program structure are not part of
the POSTSCRIPT language and are not enforced by the
POSTSCRIPT interpreter. In some cases, a POSTSCRIPT program
may require an organization that is incompatible with the struc-
turing conventions; this is especially true of very sophisticated
page descriptions composed directly by a programmer. However,
for page descriptions generated automatically by applications,
adherence to the structuring conventions is strongly recom-
mended.

16 Chapter 2: BASIC IDEAS

LANGUAGE

3.1 INTRODUCTION

We now shift our attention from POSTSCRIPT as a page descrip-
tion language to POSTSCRIPT as a general-purpose programming
language. This chapter describes elements of the POSTSCRIPT
language— syntax, data types, execution semantics, and so
forth—that are an essential aspect of any POSTSCRIPT program,
whether or not that program constitutes a page description. Later
chapters will document the graphics and font capabilities that
specialize POSTSCRIPT to the task of page description.

The POSTSCRIPT language borrows elements and ideas from
several other programming languages with which you may be
familiar. The syntax most closely resembles that of the program-
ming language FORTH. It incorporates a poseix notation in which

operators are preceded by their operands. The number of special
characters is small and there are no reserved words. (Though the
number of built-in operators is large, the names that represent
operators are not reserved by the language.)

The data model includes elements such as numbers, strings, and
arrays that are found in many modem programming languages. It
also includes the ability to treat programs as data and to monitor
and control many aspects of the language's execution state; these
notions are derived from programming languages such as LISP.

17

You may wonder why a page description language should re-
quire such general-purpose programming language underpin-
nings. Actually, POSTSCRIPT is a relatively simple language, and
the number of language features is not large. POSTSCRIPT's
power derives from the ability to combine these features in un-
limited ways without arbitrary restrictions. Though this power is
seldom exploited fully, its availability makes it feasible to design
sophisticated graphical applications that would otherwise be dif-
ficult or impossible.

Since this is a reference manual and not a tutorial, this chapter
describes each aspect of the language systematically and
thoroughly before moving on to the next. We begin with a brief
overview of the POSTSCRIPT interpreter. The following sections
cover in detail the syntax, data types, execution semantics, and
memory organization of the POSTSCRIPT language. The final
section is an overview of the general-purpose operators of the
language, excluding the ones that deal with graphics and fonts.

3.2 INTERPRETER

The POSTSCRIPT interpreter is the process that executes the
POSTSCRIPT language according to the rules given in this chap-
ter. These rules tell us the order in which operations are carried
out and how the pieces of a POSTSCRIPT program fit together to
produce the desired results.

The interpreter manipulates entities called POSTSCRIPT objects.
Some objects are ordinarily thought of as data, such as numbers,
booleans, strings, and arrays. Other objects are ordinarily
thought of as elements of programs to be executed, such as
names, operators, and procedures. But there is not actually any
formal distinction between data and programs: any POSTSCRIPT
object may be treated as data or be executed as part of a
program.

The interpreter operates by executing a sequence of objects. The
effect of executing a particular object depends on that object's
type, attributes, and value. For example, executing a number ob-
ject simply causes a copy of that object to be pushed on the
operand stack (to be described shortly). Executing a name object

18 Chapter 3: LANGUAGE

causes the name to be looked up in a dictionary and the associ-
ated value to be fetched and perhaps executed. Executing an
operator object causes a built-in action to be performed such as
adding two numbers together or painting characters in raster
memory.

The objects to be executed by the interpreter come from two
principal sources. First, objects previously stored in an array in
POSTSCRIPT memory may be executed in sequence. Such an
array is conventionally known as a procedure. Second, a char-
acter stream may be scanned according to the syntax rules of the
POSTSCRIPT language, producing a sequence of new objects. As
each object is scanned it is immediately executed. The character
stream may come from an external source such as a file or a
communication channel, or it may come from a string object
previously stored in POSTSCRIPT memory.

The interpreter can switch back and forth between executing an
array and scanning a character stream. For example, if it en-
counters a name in a character stream, it executes that name by
looking it up in a dictionary and retrieving the associated value.
If that value is an array (procedure) object, the interpreter
suspends scanning the character stream and begins executing the
objects contained in the array. When it reaches the end of the
array, it resumes scanning the character stream from where it left
off. The interpreter maintains an execution stack for remember-
ing all of its suspended execution contexts.

It is important to understand that the sole function of the inter-
preter is to execute a sequence of POSTSCRIPT objects. How
those objects come into existence, what their properties are, and
precisely what it means to execute a particular object are the
topics of the next few sections.

3.3 SYNTAX

A POSTSCRIPT program is represented externally (in a file or
sent through a communication channel) as a sequence of charac-
ters conforming to syntax rules described in this section.

3.3 SYNTAX 19

Interpretation of a POSTSCRIPT program creates various types of
POSTSCRIPT objects, such as numbers, strings, and procedures.

This section discusses only the syntactic representation of such
objects. Their internal representation and behavior are covered in

section 3.4.

Scanner

POSTSCRIPT differs from most other programming languages in
that it does not have any syntactic entity for a 'program'; nor is it
necessary for an entire 'program' to exist in one place at one
time. POSTSCRIPT has no notion of 'reading in' a program prior
to executing it. Instead, the POSTSCRIPT interpreter consumes a
program by reading and executing one syntactic entity at a time.
From POSTSCRIPT's point of view, the program itself has no per-
manent existence. Of course, execution of the program may have
side-effects (in POSTSCRIPT memory or elsewhere); these side-

effects may include the creation of procedure objects in memory
that are intended to be invoked later in the program.

It is not quite correct to think of the POSTSCRIPT interpreter
'executing' the character stream directly. What actually happens
is that a scanner groups characters into tokens according to the
POSTSCRIPT syntax rules. It then assembles one or more tokens
to create a POSTSCRIPT object, i.e., a data value in POSTSCRIPT
memory. Finally, the interpreter executes the object.

For example, when the scanner encounters a group of consecu-
tive digits surrounded by spaces or other separators, it assembles
the digits into a token and then converts the token into a number
object (represented internally as a binary integer). The interpreter
then executes this number object; in this case, it pushes a copy of
the number object on the operand stack.

The reason we stress the separation of scanning and execution is

that there are situations in which objects created by scanning are
not executed immediately; their execution is deferred to some
later time. This is explained below in the discussion of creating
procedure objects.

20 Chapter 3 LANGUAGE

Character set

The standard character set for POSTSCRIPT programs is the print-
able subset of the ASCII character set,' plus the characters space,
tab, and newline (return or line-feed). POSTSCRIPT does not

prohibit the use of characters outside this set; but such use is not
recommended since it impairs portability and may make trans-

mission and storage of POSTSCRIPT programs more difficult.

The characters space, tab, and newline are referred to as white
space characters and are treated equivalently (except in com-
ments and strings). White space characters serve to separate
other syntactic constructs such as names and numbers from each
other. Any number of consecutive white space characters are

treated as if there were just one.

The characters T, ') , < , > , [', '{', '}', 'I', and ` c/0' are
special: they serve to delimit syntactic entities such as strings,
procedure bodies, name literals, and comments. Any of these
characters terminates the entity preceding it and is not included
in it.

All characters besides the white space and special characters are
referred to as regular characters. These include non-printing
characters that are outside the recommended POSTSCRIPT char-
acter set.

Comments

Any occurrence of the character ' Yo' not inside a string (see
below) introduces a comment. The comment consists of all
characters between the '°/0' and the next newline, including
regular, special, space, and tab characters.

The scanner ignores comments, treating each one as if it were a
single white space character. That is, a comment separates the
token preceding it from the one following. Thus, the program
fragment

abc% comment {/c)/0) blah blah
123

is treated by the scanner as just two tokens, ' abc' and ' 123'.

I Ascii is the American Standard Code for Information Interchange, a widely-
used convention for encoding characters as binary numbers.

3.3 SYNTAX 21

Numbers

Numbers in POSTSCRIPT include signed integers, such as

123 -98 43445 0 + 17

reals, such as

-.002 34.5 -3.62 123.6e10 1E-5 -1. 0.0

and radix numbers, such as

8#1777 16#FFFE 2#1000

An integer consists of an optional sign followed by one or more
decimal digits. The number is interpreted as a signed decimal
integer and is converted to a POSTSCRIPT integer object. (If it

exceeds the range representable as an integer, it is instead con-
verted to a real object.)

A real consists of an optional sign and one or more decimal
digits, with an embedded period (decimal point), a trailing ex-
ponent, or both. The exponent, if present, consists of ` E' or `e'
followed by an optional sign and one or more decimal digits. The
number is interpreted as a real and is converted to a POSTSCRIPT
real (floating point) object.

A radix number takes the form base#number, where base is a

decimal integer in the range 2 through 36. The number is then

interpreted in this base; it must consist of digits ranging from 0
to base- 1. Digits greater than 9 are represented by the letters 'A'
through 'Z' (or 'a' through 'z'). The number is treated as an

unsigned integer and is converted to a POSTSCRIPT integer ob-

ject. This notation is intended for specifying integers in a non-
decimal radix such as binary, octal, or hexadecimal.

Strings

A string in POSTSCRIPT is delimited by balanced parentheses.
This notation is POSTSCRIPT'S way of 'quoting' a literal string to
make a string object. Within a string the only special characters
are parentheses and the '\' (back-slash) character. The following
are examples of valid strings:

22 Chapter 3: LANGUAGE

(This is a string)
(Strings may contain newlines
and such.)
(Strings may contain special characters *-&}^% ana
balanced parentheses O (and so on).)
(The following is an "empty" string.)

O
(It has 0 (zero) length.)

Within a string, the '\' (back-slash) character is used as an
'escape' for various purposes such as including unbalanced
parentheses, non-printing characters, and the '\' character itself.2

The character immediately following the \' determines the
precise interpretation, as follows:

\n linefeed (newline)
\r carriage return
\t horizontal tab
\ID backspace
\f form feed
\\ backslash
\(left parenthesis

right parenthesis
\ddd character code ddd (octal)
\newline no character— both are ignored

If the character following the '\' is not one of the above, the 'V is
ignored.

The \ddd form may be used to include any 8-bit character con-
stant in a string. One, two, or three octal digits may be specified
(with high-order overflow ignored). This notation is preferred for

specifying a character outside POSTSCRIPT'S recommended stan-
dard character set, since the notation itself stays within the stan-
dard set and thereby avoids possible difficulties in transmitting
or storing the text of the program.

The \newline form is used to break a string into a number of lines
but not have the newlines be part of the string.

2The scanner does not follow the 'V escape convention when the source of the
characters being scanned is itself a string. The assumption in this case is that
any 'V escapes were interpreted and removed at the time the source string was
originally scanned.

3.3 SYNTAX 23

(These\
two strings \
are the same.)
(These two strings are the same.)

(This string has a newline at the end of it.

(So does this one.\n)

A string may also be described in hexadecimal (base 16) notation
by bracketing a sequence of hex characters (the digits '0'
through '9' and the letters 'A' through 'F' or 'a' through T) with
'<' and '>'. Each pair of hex digits defines one character of the
string. (If the last digit is missing, it is taken to be zero.) Spaces,
tabs, and newlines are ignored. For example,

<901fa3>

is a 3-character string containing the characters whose hex codes
are 90, 1 f, and a3. Hexadecimal strings are useful for including
arbitrary binary data as literal text.

Names

Any token that consists entirely of regular characters and that
cannot be interpreted as a number is treated as a POSTSCRIPT
name object (more precisely, an executable name). All characters
except specials and white space can appear in names, including
characters ordinarily considered to be punctuation. The follow-
ing are examples of valid names:

abc Offset $$ 23A 13-456 a.b $MyDict @pattern

A '/' (slash) introduces a literal name. The slash is not part of the
name itself but is a prefix indicating that the following name is a
literal. The characters '//' (two slashes) introduce an immediately
evaluated name3.

The important properties and uses of names and the distinction
between executable and literal names are described in section
3.4. Immediately evaluated names are discussed in section 3.6.

3Immediately evaluated names are not present in Adobe POSTSCRIPT im-
plementations prior to version 25.0.

24 Chapter 3: LANGUAGE

Arrays

The characters ` E' and ' 1' are self-delimiting tokens that specify
the construction of an array. The program fragment

[123 /abc (xyz)]

results in the construction of an array object containing the in-
teger object ' 123', the literal name object 'abc', and the string
object `xyz'.

However, we are jumping ahead. The behavior just described
results from executing the program fragment and not just from
scanning it. '[' and ']' are actually just special syntax for names
which, when executed, invoke POSTSCRIPT operators that collect
objects together and construct an array containing them. Thus,
the above example really contains five tokens denoting the name
object '[', the integer object ' 123', the literal name object ' abc',

the string object `xyz', and the name object ']'; when the ex-
ample is executed, a sixth object (the array) results from execut-
ing the '[' and '1' name objects.

Procedures

The special characters '{' and '}' delimit an executable array,
otherwise known as a procedure. The syntax is superficially
similar to that for the array construction operators ` E' and ' 1';
however, the semantics are entirely different and arise as a result
of scanning the procedure, not of executing it.

Scanning the program fragment

{add 2 div}

results in the production of a single procedure object that con-
tains the name object 'add', the integer object '2', and the name
object ' cliv'. When the scanner encounters the initial '{', it con-
tinues scanning and creating objects, but the interpreter does not
execute them. When the scanner encounters the matching '}', it
collects all the objects created since the initial '{' into a new
executable array (procedure) object.

3.3 SYNTAX 25

Furthermore (jumping ahead again), the interpreter will not ex-
ecute the procedure immediately, but will just treat it as data
(i.e., push it on the operand stack). Only when the procedure is
explicitly invoked (by means yet to be described) will it be ex-
ecuted. We say that execution of the procedure (and of all ob-

jects within the procedure, including any embedded procedures)
has been deferred.

The matter of immediate versus deferred execution is discussed
further in section 3.6.

The procedure object created by `{' and `}' is either an array or a
packed array, according to the current setting of a mode switch.
The distinction between these types of arrays is discussed in the
next section.

3.4 DATA TYPES AND OBJECTS

All data accessible to POSTSCRIPT programs, including
procedures that are part of the programs themselves, exist in the
form of objects. Objects are produced, manipulated, and con-
sumed by the POSTSCRIPT operators. They are also created by
the scanner and executed by the interpreter.

Each object has a type, some attributes, and a value. Objects
contain their own dynamic types; that is, an object's type is a
property of the object itself, not of where it is stored or what it is
called.

The complete list of object types supported by POSTSCRIPT is:

integer dictionary
real operator
boolean file
array mark
packedarray4 null
string save
name fontID

In this section we introduce all of these types and describe many
of their important properties. For some types, however, we are

4Object type packedarray and operators relating to its use are not present in
Adobe POSTSCRIPT implementations prior to version 25.0.

26 Chapter 3 LANGUAGE

interested less in the intrinsic properties of objects than in what
you can do with them—execute them (section 3.6) or operate on
them (section 3.8). This section concludes with a brief descrip-
tion of the attributes of objects. Attributes are of interest
primarily when objects are executed; details of execution are
presented in section 3.6.

Simple and composite objects

Objects of most types are simple, atomic entities. There is no
visible substructure in the object; the type, attributes, and value
are irrevocably bound together and cannot be changed. (But it is
possible to derive a new object by copying an existing one, per-
haps with modifications.)

Objects of types array, packed array, dictionary, and string,
however, are composite, meaning that their values have internal
substructure that is visible and can sometimes be selectively
modified. The details of the substructure are presented below in
the descriptions of these individual types.

A most important distinction between simple and composite ob-
jects has to do with the behavior of operations that copy objects.
By 'copy' we refer to any operation that transfers the contents of
an object from one place to another in POSTSCRIPT% memory;
'fetching' and ' storing' objects are both copying operations.

When a simple object is copied, all of its parts (type, attributes,
and value) are copied together. But when a composite object is
copied, the value is not copied; instead, the original and copy
objects share the same value. Consequently, any changes made
to the substructure of one object's value also appear as part of
the other object's value.

The sharing of composite objects' values in POSTSCRIPT cor-
responds to the use of pointers in system programming lan-
guages such as C and Pascal. Indeed, the POSTSCRIPT interpreter
actually uses pointers to implement shared values: a composite
object contains a pointer to its value. However, the POSTSCRIPT
language does not have any explicit notion of a pointer. It is
better to think in terms of the copying and sharing notions
presented here.

3.4 DATA TYPES AND OBJECTS 27

Integer and real

POSTSCRIPT provides two types of numeric object: integer and

real. Integer objects represent mathematical integers within a
certain interval centered at zero. Real objects approximate math-
ematical real numbers within a much larger interval but with
limited precision; they are implemented as floating-point num-
bers.

Most POSTSCRIPT arithmetic and mathematical operators can be
applied freely to numbers of both types, and the interpreter per-
forms automatic type conversion when necessary. Some
operators expect only integers (or a subrange of the integers) as
operands. There exist operators to convert from one type to
another explicitly. Throughout this manual, when we refer to a
number we mean an object whose type is either integer or real.

The range and precision of numbers is limited by the internal
representations used in the machine on which the POSTSCRIPT
interpreter is running. Appendix B gives these limits for current
POSTSCRIPT implementations. The machine representation of in-
tegers is accessible to POSTSCRIPT programs through the bitwise
operators. The machine representation of reals is not accessible
to POSTSCRIPT programs.

Boolean

POSTSCRIPT provides boolean objects with values true and false
for use in conditional and logical expressions. Booleans are the
results of the relational (comparison) and logical operators, and
they are also returned as status from various other operators. The
main use of booleans is as operands for the control operators if
and ifelse. The names true and false are associated with the two
values of this type.

Array

An array is a one-dimensional collection of objects, accessed by
a numeric index. Unlike arrays in many other computer lan-

guages, POSTSCRIPT arrays may be heterogeneous; that is, an
array's elements may be any combination of numbers, strings,
dictionaries, other arrays, or any other POSTSCRIPT objects. A

28 Chapter 3: LANGUAGE

procedure is simply an array that may be executed by the

PosTSCRIPT interpreter.

All POSTSCRIPT arrays are indexed from zero, so an array of n
elements has indices from 0 through n-1. All accesses to
POSTSCRIPT arrays are bounds checked, and a reference with an
out-of-bounds index results in an error.

POSTSCRIPT directly provides only one-dimensional arrays. Ar-

rays of higher dimension may be constructed by using arrays as
elements of arrays, nested arbitrarily deeply.

As discussed earlier, an array is a composite object. When an
array object is copied, the value is not copied, but instead the old
and new objects share the same value. Additionally, there is an
operator that creates a new array object whose value is a sub-
interval of an existing array; the old and new objects share the
array elements in that subinterval.

Packed Array5

A packed array is a more compact representation of an ordinary
POSTSCRIPT array, intended primarily for use a as procedure. A
packed array object has a type distinct from an ordinary array
object; but in most respects it behaves the same as an ordinary

array.

Throughout this manual, any mention of a procedure may refer
to either an executable array or an executable packed array. The
two types of arrays are not distinguishable when they are ex-
ecuted, only when they are treated as data; see the introduction to
the array operators in section 3.8.

String

A string is similar to an array, but its elements must be integers
in the range 0 to 255. The string elements are not actually integer
objects but are stored in a more compact format; however, the
operators that access string elements accept or return ordinary

integer objects (with values in the range 0 to 255).

5The packed array type and related facilities are not present in Adobe
POSTSCRIPT implementations prior to version 25.0.

34 DATA TYPES AND OBJECTS 29

String objects are conventionally used to hold text, one character
per string element. However, POSTSCRIPT does not have a dis-
tinct 'character' syntax or data type and does not require that the
integer elements of a string encode any particular character set.
String objects may be used to hold arbitrary binary data.

To enhance program portability, strings appearing literally as
part of a POSTSCRIPT program should be limited to characters
from the POSTSCRIPT standard character set, with other charac-
ters inserted by means of the '\' octal character escape conven-
tion (see section 3.3).

Like an array, a string is a composite object. Copying a string
object or creating a subinterval (substring) results in sharing the
string's value.

Name

A name is an atomic symbol uniquely defined by a sequence of
characters. Names serve the same purpose as ' identifiers' in
other programming languages, i.e., as tags for variables,
procedures, and so forth. However, POSTSCRIPT names are not
just language artifacts but are first-class data objects, similar to
'atoms' in LISP.

A name object is ordinarily created when the scanner encounters
a POSTSCRIPT token consisting entirely of regular characters, as
was described in section 3.3. However, a name may also be
created by explicit conversion from a string; so there is no actual
restriction on the set of characters that can be included in names.

Unlike a string, a name is a simple object, not a composite one.
Although a name is defined by a sequence of characters, those
characters are in no sense 'elements' of the name.

The important property of a name is that it is unique. Any two
name objects defined by the same sequence of characters are in
fact identical copies of each other. Name equality is based on an
exact match between the corresponding characters defining each
name. This includes the case of letters, so the names 'A' and 'a'
are different.

30 Chapter 3 LANGUAGE

The interpreter can determine whether two existing name objects
are equal or unequal inexpensively by a means that does not in-

volve comparing the characters that define the names. This
makes names useful as keys in dictionaries (to be described
shortly).

Note that names do not have values in the same sense as do
variable or procedure names in other programming languages.
However, names can be associated with values in dictionaries,

which we shall describe next.

Dictionary

A dictionary is an associative table whose elements are pairs of
POSTSCRIPT objects. We call the first element of a pair the key

and the second element the value. The language includes
operators that insert a key-value pair into a dictionary, look up a
key and fetch the associated value, and perform various other
operations.

Keys are normally name objects; the POSTSCRIPT syntax and the
interpreter are optimized for this most common case. However, a

key may be any POSTSCRIPT object except null (defined below).
If you attempt to use a string as a key, the POSTSCRIPT inter-
preter will first convert the string to a name object; thus, strings
and names are interchangeable when used as keys in dictionaries.

Dictionaries ordinarily associate the names and values of a
program's components, such as variables and procedures. This
corresponds to the conventional use of identifiers in other pro-
gramming languages. However, there are many other uses for
dictionaries. For example, a POSTSCRIPT font is a dictionary that
associates the names of characters with the procedures for draw-
ing those characters' shapes (see chapter 5).

There are three main methods for accessing dictionaries. First,
operators exist to access a specific dictionary supplied as an
operand. Second, there is a current dictionary and a set of
operators to access it implicitly. Third, the interpreter generally

references the current dictionary when it encounters a name ob-
ject in the program being executed.

3.4 DATA TYPES AND OBJECTS 31

More precisely, the interpreter maintains a dictionary stack
defining the current dynamic name space. Dictionaries may be
pushed on and popped off the dictionary stack at will. The top-
most dictionary on the stack is the current dictionary.

When the interpreter looks up a key implicitly, e.g., when it ex-

ecutes a name object, it first searches for the key in the current
dictionary. If the key is not there, the interpreter searches the
next lower dictionary on the dictionary stack. This continues un-
til either it finds the key or it exhausts the dictionary stack.

There are two built-in dictionaries called systemdict and
userdict. systemdict associates the names of all the POSTSCRIPT
operators (the ones defined in this manual) with their values (the
built-in actions that implement them). userdict is the outermost
modifiable naming environment for use by POSTSCRIPT pro-
grammers. systemdict and userdict are always the bottommost
two dictionaries on the dictionary stack (with userdict above
systemdict); neither of them can be popped off.

A dictionary is a composite object. Copying a dictionary object
does not copy the dictionary's contents; instead, the contents are
shared.

Operator

An operator object represents one of the POSTSCRIPT built-in
actions; when the object is executed, its built-in action is in-
voked. Most of this manual is devoted to describing the seman-
tics of the various operators.

Operators have names. Most operators are associated with names
in systemdict: the names are the keys and the values are the

operators themselves. When the interpreter executes one of these
names, it looks up the name in the context of the dictionary
stack. Unless the name has been defined in some dictionary
higher on the dictionary stack, the interpreter finds its definition
in systemdict, fetches the associated value (the operator object
itself), and executes it, thus performing the built-in action.

When we speak of an operator such as add, it is important to

understand that there is nothing special about the name 'add' that
distinguishes it as an operator. Rather, the name 'add' is associ-

32 Chapter 3: LANGUAGE

ated in systemdict with the operator for performing addition;
and it is execution of the operator that causes the addition to
occur. Thus the name 'add' is not a ' reserved word', as it might
be in other programming languages; its meaning can be changed

by a POSTSCRIPT program.

Throughout this manual, the notation add means "the operator
object associated with the name 'add' in systemdict" (or, oc-
casionally, in some other dictionary).6

File

Afile is a readable or writable stream of characters, used to com-
municate data between POSTSCRIPT and its environment. For ex-
ample, a file object can represent data in a disk file (perhaps
accessed via operating system calls), transferred through a com-
munication channel, and so forth.

Operators exist to open a file (thereby creating a file object) and
to read and write characters and process them in various ways—
as strings, as POSTSCRIPT tokens, as binary data represented in
hexadecimal, and so on.

POSTSCRIPT always provides standard input and output files. The
standard input file is the usual source of POSTSCRIPT programs
to be interpreted; the standard output file is the usual destination
of such things as error and status messages.

A file object is not composite (it doesn't have components
visible at the POSTSCRIPT level); but it is similar to the com-
posite objects in that all copies of a file object share the same

value, namely the underlying file. If a file operator has a side-
effect on the underlying file, such as closing it or changing the

current position in the stream, all file objects sharing the file are
affected.

The properties of files and the operations on them are described
in more detail in the presentation of file operators in section 3.8.

6PosTScRIPT also has some internal operators, not documented in this manual
or named in systemdict, which may be encountered if a program reads the
execution stack.

3.4 DATA TYPES AND OBJECTS 33

Mark

A mark is a special object used to mark a position on the operand
stack. This use is described in the presentation of stack and array
operators in section 3.8. There is only one value of type mark,
created by invoking the operator mark or T. Mark objects are
not legal operands to most operators.

Null

The POSTSCRIPT interpreter uses null objects to fill empty or
uninitialized positions in composite objects when they are
created. There is only one value of type null; the name null is
associated with a null object in systemdict. Null objects are not
legal operands to most operators.

Save

Save objects represent snapshots of the state of POSTSCRIPT'S
memory. They are created and manipulated by the save and
restore operators, introduced in section 3.7.

Font ID

FondDs are special objects used in the construction of
POSTSCRIPT fonts; they are described in chapter 5.

Attributes of objects

In addition to type and value, each object has one or more
attributes. These attributes affect the behavior of the object when
it is executed or when certain operations are performed on it. But
they do not affect its behavior when it is treated strictly as data;
so, for example, two integers with the same value are considered
'equal' even if their attributes differ.

Every object is either literal or executable. This distinction
comes into play when the interpreter attempts to execute the ob-
ject. If the object is literal, the interpreter will treat it strictly as
data and will push it on the operand stack for use as an operand
of some subsequent operator. But if the object is executable, the

interpreter will execute it.

34 Chapter 3: LANGUAGE

What it means to execute an object depends on the object's type;
this is described in section 3.6. For some types of objects, e.g.,
integers, execution consists of pushing the object on the operand
stack; the distinction between literal and executable integers is

meaningless. But for other types, such as names, operators, and
arrays, execution consists of performing some quite different ac-
tion. Executing an executable name causes it to be looked up in
the current dictionary context and the associated value to be ex-
ecuted. Executing an executable operator causes some built-in
action to be performed. Executing an executable array (otherwise
known as a procedure) causes the elements of the array in turn to

be executed.

Referring back to the POSTSCRIPT syntax described in section
3.3, we see that some tokens produce literal objects and some
produce executable ones. Specifically, integer, real, and string
constants are always literal objects. Names are literal if they are
preceded by '/' and executable if not. The and 1' operators,
when executed, produce a literal array object with the enclosed
objects as elements. Finally, `{' and `}' enclose an executable

array or procedure.

The other attribute of an object is its access. Only objects of
certain types have access attributes, namely arrays, strings, dic-

tionaries, and files. Access attributes serve to restrict the set of
operations that can be performed on the value of an object.

There are four values of access: unlimited, read-only,

execute-only, and none, in increasing order of restriction. Nor-
mally, objects have unlimited access: all operations defined for
that object are allowed.7 An object with read-only access may
not have its value modified (or written to, in the case of files),
but may still be read or executed. An object with execute-only
access may not have its value either read or written, but may still
be executed as a program by the POSTSCRIPT interpreter. Finally,
an object with no access may not be operated on in any way by a
POSTSCRIPT program. (Such objects are not of any direct use to
POSTSCRIPT programs but serve certain internal purposes that
are not documented in this manual.)

7However, packed array objects always have read-only or more restricted
access.

3.4 DATA TYPES AND OBJECTS 35

The literal/executable distinction and the access attribute are en-
tirely independent, though obviously there are certain combina-
tions that aren't of any practical use (e.g., a literal array that is
execute-only).

With one exception, attributes are properties of an object itself
and not of its value. Thus, two composite objects can share the
same value but have different literal/executable or access at-
tributes. The exception is the dictionary type: a dictionary's ac-
cess attribute is a property of the value; so multiple dictionary
objects sharing the value have the same access attribute.

3.5 STACKS

The POSTSCRIPT interpreter manages four distinct stacks
representing the execution state of a POSTSCRIPT program. Three
of them (the operand, dictionary, and execution stacks) are
described here; the fourth (the graphics state stack) is presented
in chapter 4.

The operand stack holds arbitrary POSTSCRIPT objects that are
the operands and results of POSTSCRIPT operators being ex-
ecuted. When an operator requires one or more operands, it ob-
tains them by popping them off the top of the operand stack.
When an operator returns one or more results, it does so by push-
ing them on the operand stack. The interpreter itself pushes ob-
jects on the operand stack when it encounters them as literal data
in a program being executed.

The dictionary stack holds only dictionary objects. The current
set of dictionaries on the dictionary stack defines the context for
all implicit name searches, such as those that occur when the
interpreter encounters an executable name. The role of the dic-
tionary stack was introduced in section 3.4 and is elaborated fur-
ther in section 3.6.

The execution stack holds executable objects (mainly procedures
and files) that are in partial stages of execution. At any point in
the execution of a POSTSCRIPT program, this stack represents the
call stack of the program. Whenever the interpreter interrupts
execution of an object in order to execute some other object, it

36 Chapter 3 LANGUAGE

pushes the suspended object on the execution stack. When the
interpreter finishes executing an object, it pops that object off the
execution stack and resumes executing the suspended object

beneath it.

The three stacks are entirely independent and have different
means for accessing them. The operand stack is directly under
control of the POSTSCRIPT program being executed; objects may
be pushed and popped arbitrarily by use of any of a variety of
operators. The dictionary stack is also under control of the
POSTSCRIPT program being executed; but it can hold only dic-
tionaries, and the bottommost two dictionaries on this stack
(systemdict and userdict) cannot be popped off. The execution
stack is entirely under the control of the interpreter; it can be
read but not modified by a POSTSCRIPT program.

When an object is pushed on a stack, the object itself is copied
from wherever it was obtained; however, in the case of a com-
posite object (array, string, or dictionary), the object's value is
not copied on the stack but rather is shared with the original
object. Similarly, when a composite object is popped off a stack
and put somewhere, it is only the object itself and not its value
that is moved. Section 3.4 for an elaboration of this point.

Each of the stacks has a fixed limit on the number of objects it
can contain; the limits for one implementation of the
POSTSCRIPT interpreter are given in appendix B. Attempting to
push an object on a stack that is full or to pop from a stack that is
empty results in an error.

3.6 EXECUTION

Now that we have described POSTSCRIPT'S language syntax, ob-
jects, and stacks, it is time to present its execution semantics in
detail. In particular, we need to understand what it means to ex-
ecute objects of each of the various types, and we need to clarify

the issue of immediate versus deferred execution.

3.6 EXECUTION 37

Immediate execution

Our discussion of POSTSCRIPT execution will be facilitated by
several examples of POSTSCRIPT program fragments. The first
example illustrates immediate execution of a few operators and
operands to perform some simple arithmetic:

40 60 add 2 div

The interpreter first encounters the literal integer object '40' and
pushes it on the operand stack. Similarly, it then pushes the in-
teger object '60' on the operand stack.

Now it encounters the executable name object 'add', which it
looks up in the context of the current dictionary stack. Unless
'add' has been defined elsewhere, the interpreter finds it associ-
ated in systemdict with an operator object, which it executes.
This invokes a built-in add function that pops the two integer
objects off the operand stack, adds them together, and pushes the
result (a new integer object whose value is 100) on the operand
stack.

The rest of the program fragment is executed similarly. The in-
terpreter pushes the integer '2' on the operand stack; then it ex-
ecutes the name `div'. The div operator pops two operands off
the stack (the integers whose values are 2 and 100), divides the
second-to-top one by the top one, and pushes the integer result
50 on the stack.

We have been deliberately vague about the source of the objects
being executed by the POSTSCRIPT interpreter. Did they already
exist in POSTSCRIPT memory as a sequence of objects, perhaps
contained within an array? Or were they produced by scanning a
character stream (e.g., a file) and interpreting it as a sequence of
tokens according to the POSTSCRIPT syntax? In fact, it does not
matter. Executing a sequence of objects produces the same
results regardless of where the objects came from.

Operand order

Before proceeding further, we need to establish a bit of terminol-
ogy used throughout the remainder of this manual, namely how
to refer to the operands of an operator when there are more than
one of them.

38 Chapter 3 LANGUAGE

In the above example, we say that '40' and '60' are the first and

second operands of the add operator. That is, we refer to the
objects according to the order in which they are pushed on the
operand stack. Of course, this is the reverse of the order in which
they are popped off by the add operator itself. Similarly, the
result pushed by the add operator is the first operand of the div
operator, and the ' 2' is its second operand.

The same terminology applies to the results of an operator. If an
operator pushes more than one object on the operand stack, we
say that the first object pushed is the first result.

We have adopted this terminology because it corresponds to the
usual left-to-right order of appearance of operands in a
POSTSCRIPT program.

Deferred execution

Now we are ready for a more interesting program fragment:

/average {add 2 div} def
40 60 average

Before going into details, we should summarize what this
program does. The first line defines a procedure named
'average' that computes the average of two numbers. The
second line applies that procedure to the integers '40' and '60',
producing the same result as our previous example.

The interpreter first encounters the literal name 'average' (recall
from section 3.3 that '/' introduces a literal name). It pushes this
object on the operand stack, as it would do for any object having
the literal attribute.

Next it encounters the executable array '{add 2 divr. Recall from
section 3.3 that '{' and '}' enclose a procedure (an executable
array or packed array object) that is produced by the scanner.
This procedure contains three elements: the executable name
'add', the literal integer '2', and the executable name `div'.
These elements have not yet been encountered by the interpreter.

The interpreter's action upon encountering this procedure object
is to push it on the operand stack. This may seem surprising

3.6 EXECUTION 39

given that the object has the executable attribute; we shall ex-
plain this shortly.

The interpreter now encounters the executable name 'def. Look-
ing up this name in the current dictionary context, it finds 'der
to be associated in systemdict with an operator object, which it
invokes. The def operator pops two objects off the operand stack
(the procedure '(add 2 divr and the name 'average'). It then
enters this pair into the current dictionary (most likely userdict),
creating a new association having the name 'average' as its key
and the procedure '(add 2 divr as its value.

Stated less formally, we have defined a procedure named
'average', which in the second line of the example we proceed
to call. The interpreter pushes the integer objects '40' and '60'
on the operand stack as before, then encounters the executable
name 'average'. It looks up 'average' in the current dictionary
context, finds it to be associated with the procedure '{add 2 die,
and executes that procedure. In this case, execution of the array
object consist of executing the elements of the array in sequence,
namely the objects 'add', ' 2', and ` div'. This has the same effect
as executing those objects directly (as in the first example); it
produces the same result, namely the integer object 50.

Now, why did the interpreter treat the procedure as data in the
first line of the example but execute it in the second, despite the
procedure having the executable attribute in both cases? There is
a special rule that determines this behavior: an executable array
or packed array encountered directly by the interpreter is treated
as data (i.e., pushed on the operand stack); but an executable
array or packed array encountered indirectly (i.e., as a result of
executing some other object such as a name or an operator) is
invoked as a procedure.

This exception to the usual literal/executable semantics is made
for pragmatic reasons having to do with the ways in which
procedures are ordinarily used. Procedures appearing directly
(either as part of a program being read from a stream or as part
of some larger procedure in memory) are usually part of a defini-
tion or of a construct such as a conditional that operates on the
procedure explicitly. But procedures obtained indirectly, e.g., as
a result of looking up a name, are usually intended to be called.

40 Chapter 3 LANGUAGE

Of course, means exist to override these semantics when neces-
sary.

Control constructs

In POSTSCRIPT, control constructs such as conditionals and itera-
tions are specified by means of operators that take procedures as
operands. The program fragment

a b gt {a} {b} ifelse

computes the maximum of the values associated with the names
'a' and ` b', as follows. The interpreter encounters the executable
names ' a' and `b' in turn and looks them up. Let's assume both
names are both associated with numbers. Executing the numbers
causes them to be pushed on the operand stack. The gt operator
removes two operands from the stack and compares them. If the
first operand is greater than the second operand, it pushes the

boolean value true; otherwise it pushes false.

The interpreter now encounters the procedure objects IC and
`{b}', which it pushes on the operand stack. Then it encounters
the name ' ifelse', which it finds to be associated with a
POSTSCRIPT operator. The ifelse operator takes three operands: a
boolean and two procedures. If the boolean's value is true, ifelse
causes the first procedure to be executed; otherwise it causes the
second procedure to be executed. All three operands are removed
from the operand stack before the selected procedure is executed.

The procedure in this case consists of a single element which is
an executable name (either 'a' or ` 1)'). The interpreter looks up
this name and, since it is associated with a number, pushes that
number on the operand stack. So the result of executing the en-
tire program fragment is to push on the operand stack the max-
imum of the values associated with 'a' and ' b'.

Execution of specific types

This section describes the precise effects of executing objects of
each specific type. Remember that objects with the literal at-
tribute are always treated as data (i.e., pushed on the operand

stack by the interpreter), regardless of their type. Even

3.6 EXECUTION 41

POSTSCRIPT operator objects are treated this way if they have the
literal attribute. The following descriptions apply only to objects
having the executable attribute.

For many objects, executing them has the same effect as treating
them as data. This is true of integer, real, boolean, dictionary,
mark, save, and fontID objects. So the distinction between literal
and executable objects of these types is meaningless.

An executable array (procedure) object is pushed on the operand
stack if it is encountered directly by the interpreter. But if it is
invoked indirectly as a result of executing some other object (a
name or an operator), it is called instead. The interpreter calls a
procedure by pushing it on the execution stack and then begin-
ning to execute the array elements in turn. When it reaches the
end of the procedure, it pops the procedure object off the execu-
tion stack.8

An executable packed array object has the same execution
semantics as an ordinary executable array object. Note that the
object on the execution stack is of type packedarray.

An executable string object is pushed on the execution stack. The
interpreter then uses the string as a source of characters to be
converted to tokens and interpreted according to the POSTSCRIPT
syntax rules. This continues until the interpreter reaches the end
of the string, at which point it pops the string object from the
execution stack.

An executable file object is treated very much the same as a
string: the interpreter pushes it on the execution stack. It then
reads the characters of the file and interprets them as
POSTSCRIPT tokens until it encounters end-of-file. Then it closes
the file and pops the file object from the execution stack.

An executable name object is looked up in the context of the
current dictionary stack and its associated value is executed.
Precisely, the interpreter looks first in the topmost dictionary on
the dictionary stack and then in other dictionaries successively
lower on the stack. If it finds the name as a key in some diction-

8Actually, it pops the procedure object when there is one element remaining
and then pushes that element. This is to permit unlimited depth of 'tail
recursion' without overflowing the execution stack.

42 Chapter 3: LANGUAGE

ary, it executes the associated value. To do that, it examines the
value's type and executable attribute and performs the ap-
propriate action described in this section; note that if the value is
a procedure, the interpreter calls it (see above). If the interpreter
fails to find the name in any dictionary on the dictionary stack, it
executes an undefined error (see below).

An executable operator object causes the interpreter to perform
one of the built-in operations described in this manual.

An executable null object causes the interpreter to perform no
action (in particular, it does not push the object on the operand
stack).

Errors

Various sorts of errors can occur during execution of a
POSTSCRIPT program. Some errors are detected by the interpreter
itself, such as overflow of one of the POSTSCRIPT stacks. Others
are detected during execution of the built-in operators, such as an
operand of the wrong type.

Errors are handled in a uniform fashion that is under the control
of the POSTSCRIPT program itself. Each distinct error is associ-
ated with a name, such as stackoverflow or typecheck. Each
error name appears as a key in a special dictionary named
errordict and is associated with a value that is the handler for
that error. The complete set of error names appears in chapter 6.

When an error occurs, the interpreter first restores the operand
stack to the state it was in at the beginning of executing the cur-
rent object. Next, it pushes that object on the operand stack.
Finally, it looks up the error's name in errordict and executes
the associated value, which is the error handler for that error.

Those actions are everything that the interpreter itself does in
response to an error. All other actions are the responsibility of
the error handler that is found in errordict. The default error
handlers do something reasonable, such as print an error message
and terminate the POSTSCRIPT program being executed; this is
discussed in section 3.8. However, a POSTSCRIPT program can
modify error behavior by defining its own error handling
procedures and associating them with the names in errordict.

3 6 EXECUTION 43

Immedately Evaluated Names9

Recall from section 3.3 that the token !Marne' (a name preceded
by two slashes with no intervening spaces) introduces an
immediately evaluated name. When the scanner encounters such
a name, it immediately looks up the name in the context of the
current dictionary stack and substitutes the corresponding value
for the name. If the name is not found, an undefined error oc-
curs.

The substitution occurs immediately, regardless of whether or not
the token appears inside an executable array delimited by `{...}'.
Note that this process is a substitution and not an execution; that
is, the name's value is not executed but rather is substituted for
the name itself, just as if the load operator had been applied to
the name. Each occurrence of the 'Ilname' syntax is replaced by
the value associated with name regardless of the value's type.
The following examples illustrate this:

/a 3 def
/b ((test) print} def
//a = 3
//b {(test) print}
{//a //b a /b} {3 ((test) print) a /b}

The purpose of using immediately evaluated names is similar to
that of using the bind operator: to cause names in procedures to
become 'tightly bound' to their values (see the definition of the
bind operator in chapter 6 for a discussion of this).

However, two words of caution are in order: indiscriminate use
of immediately evaluated names may change the semantics of a
program. (See section 3.6.) Therefore, execution of the program
fragments:

{... b ...}
{... //b ...}

may have different effects if the value of the name ̀ 13' is a proce-

9The immediately evaluated name facility is present in all versions of the
POSTSCRIPT interpreter since version 25.0 (as reported by the version operator).
Earlier versions of the interpreter will scan 'Marne' as two distinct tokens: `r,
a literal name with no text at all, and 'Marne', a literal name whose text is
name.

44 Chapter 3 LANGUAGE

dure. Also, if an immediately evaluated name is part of a string
no evaluation or substitution takes place until (and if) that string
gets scanned as a source of POSTSCRIPT input tokens (e.g., with
cvx exec or token).

3.7 VIRTUAL MEMORY

We have made occasional reference to 'POSTSCRIPT memory'
without saying anything about what that really is. We now

describe the virtual memory, or `VM' for short, as it is viewed by
POSTSCRIPT programs. (The adjective 'virtual' emphasizes that
we are describing its abstract behavior at the POSTSCRIPT level
as opposed to its actual implementation in computer storage.)

For the most part, VM is the place in which the values of all
composite objects are stored. Recall from section 3.4 that the
value of a composite object (array, dictionary, or string) is
separate from the object itself and that several objects may share
the same value. Viewed slightly differently, composite objects
are ones whose values are collections of other objects; those col-
lections are stored in VM.

POSTSCRIPT'S operand, dictionary, and execution stacks are not

part of the VM. The stacks should be thought of as temporary
working storage for objects being manipulated by POSTSCRIPT
programs and by the interpreter itself. However, the VM con-
tains all the values and objects that can be reached, directly or
indirectly, from objects in any of the three stacks.

The reason for distinguishing between what is in VM and what is
not is that POSTSCRIPT provides several useful facilities that
operate on the VM as a whole.

In versions of POSTSCRIPT running on computers with an operat-
ing system and a file system, POSTSCRIPT can store its VM in a
file at the end of a session and recover it from the file at the
beginning of the next. This is convenient for using POSTSCRIPT
in an interactive environment, since user definitions can be
preserved from one session to another. This VM file contains
only definitions in systemdict and userdict (and in dictionaries
and other composite objects reachable from those dictionaries); it

3.7 VIRTUAL MEMORY 45

does not preserve the contents of the operand, dictionary, and

execution stacks.

All versions of POSTSCRIPT (with or without a file system) in-
clude save and restore operators that enable a running program
to save a snapshot of the state of the VM and to restore the VM
to that saved state. restore effectively undoes all changes that
have been made to the values of composite objects since the cor-
responding save. 1° It does not affect the contents of the stacks,
nor does it undo side-effects such as writing to files or to raster
memory. restore closes files that were opened after the cor-
responding save, but does not reopen files that were closed after
the corresponding save.

save/restore pairs can be nested to a limited depth; the limit is
given in appendix B. See the descriptions of the save and restore
operators in chapter 6 for complete information on their use.

The save/restore facility is of particular value in POSTSCRIPT
programs that are page descriptions, for several reasons. First, a
page description is ordinarily executed solely for its side-effect
of causing output to be produced on a raster device. It is un-
desirable for a page description to leave a permanent side-effect
in POSTSCRIPT memory, since that might influence the behavior

of the next page description to be executed. For this reason,
POSTSCRIPT processors that are dedicated to executing page
descriptions and driving printers usually save a VM snapshot be-
fore receiving each page description and restore it afterward.

Second, page descriptions typically have internal structure, such
as separate pages or separate major elements within a page.
Within each section, it may be desirable to make wholesale
changes to the contents of dictionaries and other data structures
for some special purpose that is local to that section. The
save/restore facility is used to encapsulate that section of the
page description, thereby restoring the correct initial conditions
for the next section. This is much simpler (and more efficient)
than reestablishing all the initial conditions explicitly.

10In Adobe Systems' current POSTSCRIPT implementations, restore actually
does not undo changes made to the elements of strings. This behavior,
however, is not part of the POSTSCRIPT language definition, and we do not
recommend that PosTScRivr programs take advantage of it.

46 Chapter 3: LANGUAGE

Third, the save/restore facility recovers the VM resources con-
sumed in the course of executing a POSTSCRIPT program. There
is a large but fixed limit on the size of the VM. As new com-
posite objects are created (either by reading POSTSCRIPT tokens
from a character stream or by executing operators that allocate
them explicitly), their values accumulate in VM. Even when the
objects are consumed or discarded, their values are not removed
but continue to occupy VM resources. The only way to destroy
those values and free the VM resources is to restore the VM to a
previous snapshot.

This point is sufficiently important that it is worth elaborating.
The POSTSCRIPT language has no operators that explicitly dis-
card individual objects and their values; nor does the interpreter
have a 'garbage collector' to discard values that are no longer
accessible from any object.' 1 Each string, array, or procedure

value encountered in a POSTSCRIPT program (bracketed by `(...)',
`<...>', `[...F, or 1...}') occupies VM resources, even if it is used
only temporarily (e.g., as text to be printed by show or as a sec-
tion of code to be executed conditionally by ifelse). The only
way to get rid of accumulated composite objects is to execute a
restore.

A common and recommended style for use of the save/restore
facility is to issue a save at the beginning of the description of
each page and a restore at the end. Each page thus stands by
itself, without interference from other pages. And when the
script of all the pages is preceded by the application-specific
prologue (as discussed in section 2.5), each page is executed
with the initial conditions established by the prologue; there are
no unwanted legacies from previous pages.

3.8 OPERATOR OVERVIEW

We now present an overview of the general-purpose POSTSCRIPT
operators, excluding all operators that deal with graphics and
fonts (which are described in later chapters). The organization of
this section roughly parallels that of the operator summary at the

"Some PosTScRwr implementations may include such facilities, but
POSTSCRIPT programs that are page descriptions should not depend on their
existence, since that would impair portability.

3.8 OPERATOR OVERVIEW 47

beginning of chapter 6. The information here is insufficient for
actual programming; it is intended only to acquaint you with the
available facilities. For complete information about any par-
ticular operator, you should refer to the operator's detailed

description in chapter 6.

Stack operators

The operand stack is the POSTSCRIPT interpreter's mechanism
for passing arguments to operators and for gathering results from

operators; it was introduced in section 3.5.

There exist various operators that rearrange or otherwise
manipulate the objects on the operand stack. Such rearrangement
is often required when the results of some operators are to be
used as arguments to other operators that require their operands

in a different order. Simple stack operations include ones to
duplicate (dup), exchange (exch), or discard (pop) the top ele-
ments of the stack. Other operators duplicate portions of the
operand stack (copy), treat a portion of the stack as a circular
queue (roll), and access the stack as if it were an indexable array

(index).

There is a facility to mark a position on the stack (mark) and to
count the elements above the highest mark (counttomark). This
is used primarily for array construction (described below), but

has other applications as well.

Arithmetic and mathematical operators

The POSTSCRIPT language includes a conventional complement
of arithmetic and mathematical operators. In general, these
operators accept either integer or real number objects as
operands; they produce either integer or real numbers as results
depending on the types of the operands and the magnitude of the
results. If the result of an operation is mathematically meaning-
less or cannot be represented as a real, the error operator

undefinedresult is executed.

Arithmetic operators of two arguments are add, sub, mul, div,

idiv, and mod; those of one argument are abs, neg, ceiling,
floor, round, and truncate. Mathematical and trigonometric

48 Chapter 3: LANGUAGE

functions include sqrt, exp. In, log, sin, cos, and atan. A
pseudo-random number generator is accessed by rand. srand.
and rrand.

Array, packed array, dictionary, and string operators

A number of operators are polymorphic, meaning that they may
be applied to operands of several different types and that their
precise functions depend on the types of the operands. In par-
ticular, there are various operators that perform similar opera-
tions on all types of composite objects— arrays, packed arrays,
dictionaries, and strings.

The get operator takes a composite object and an index (or key,
in the case of a dictionary) and returns a single element of the
object; put stores an element into a composite object
analogously.

copy copies the value of a composite object to another composite
object of the same type, replacing the second object's former
value. (This is different from merely copying the object; see the
discussion of simple versus composite objects in section 3.4.)

The length operator returns the number of elements in a com-
posite object. forall accesses all of the elements of a composite
object in sequence, calling a POSTSCRIPT procedure for each
one.

getinterval creates a new object that shares a subinterval of an
array, packed array, or string; putinterval overwrites a subinter-
val of one array or string with the contents of another. (These
operators do not apply to dictionaries; putinterval does not
apply to packed arrays.)

In addition to the polymorphic operators, there are operators that
apply to only one of the array, packed array, dictionary, and
string types. For each type, there is an operator (array,

packedarray, diet, string) that creates a new object of that type
and a specified length. These four operators explicitly create new
composite object values, thereby consuming VM resources (see
section 3.7). Most other operators read and write the values of
composite objects but do not create new ones. Operators that
return composite results usually require an operand that is the

3.8 OPERATOR OVERVIEW 49

composite object into which the result values are to be stored.
(The operators are organized this way so as to afford maximum
programmer control over consumption of VM.)

The special array operators abad and astore transfer all the ele-
ments of an array to or from the operand stack in a single opera-
tion. abad (but not astore) may also be applied to a packed
array.

As mentioned in section 3.3, the array construction operators T
and T combine to produce a new array object whose elements
are (more or less) the objects appearing between the brackets in a
POSTSCRIPT program. The T operator (which is a synonym for
mark) pushes a mark object on the operand stack. Execution of
the program fragment between the T and the T causes one or
more objects to be pushed on the operand stack. Finally, the T
operator counts the number of objects above the mark on the
stack, creates an array of that length, stores the elements from
the stack into the array, removes the mark from the stack, and
pushes the array.

Dictionary operators include ones to push new dictionaries on
the dictionary stack and pop them off (begin and end), to search
for keys in the context of the current dictionary stack (load and
where), to associate keys with values (del and store), and to
read the dictionary stack (countdictstack and dictstack). There
is no way to explicitly remove individual keys from a dictionary;
however, restore removes any definitions made since the cor-

responding save.

String operators exist to perform textual string searching and
matching (search, anchorsearch) and to scan the characters of a
string according to the POSTSCRIPT syntax rules (token).

Packed arrays come into existence in two ways. The first and
more common way is for the POSTSCRIPT input scanner to create

packed arrays automatically for all executable arrays that it
reads. That is, whenever the scanner encounters a `{' while read-
ing a file or string, it accumulates all tokens up to the matching
`}' and turns them into a packed array instead of an ordinary
array.

50 Chapter 3: LANGUAGE

The choice of array type is controlled by a mode setting, manipu-
lated by the operators setpacking and currentpacking. If the
array packing mode is true. POSTSCRIPT procedures encountered
subsequently by the scanner are created as packed arrays; if the
mode is false, procedures are created as ordinary arrays. The
default value is false (i.e., create ordinary arrays), for com-
patibility across all versions of POSTSCRIPT.

Packed array objects are always read-only, so the put,
putinterval, and astore operations are not allowed on them. Ac-
cessing arbitrary elements of a packed array object can be quite
slow; however, accessing the elements sequentially (as is done
by the POSTSCRIPT interpreter or by the forall operator) is ef-
ficient. The copy operator cannot copy into a packed array (since
it is read-only); however, it can copy the value of a packed array
into an ordinary array of at least the packed array's length.

Relational, boolean, and bitwise operators

The relational operators compare two operands and produce a
boolean result indicating whether the relation holds. Any two ob-
jects may be compared for equality (eq and ne); numbers and
strings may be compared by the inequality operators (gt, ge, le,
and It).

The boolean and bitwise operators (and, or, xor, and not) com-
pute logical combinations of boolean operands or bitwise com-
binations of integer operands. The bitwise shift operator bitshift
applies only to integers.

Control operators

The control operators modify the interpreter's usual sequential
execution of objects. Most of them take a procedure operand
which they execute conditionally or repeatedly.

if and ifelse execute a procedure conditionally depending on the
value of a boolean operand (ifelse was introduced in section 3.6).
exec executes an arbitrary object unconditionally. for, repeat,

loop, forall, and pathforall execute a procedure repeatedly; exit
transfers control out of the scope of any of these looping
operators.

3.8 OPERATOR OVERVIEW 51

A POSTSCRIPT program may terminate prematurely by executing
the stop operator. This occurs most commonly as a result of an
error; i.e., the default error handlers (in errordict) all execute

stop.

The stopped operator establishes an execution context that en-
capsulates the effect of a stop. That is, stopped executes a pro-
cedure given as an operand, just the same as exec. If the inter-
preter executes stop during that procedure, it terminates the pro-
cedure and resumes execution at the object immediately after the
stopped operator. (The interpreter itself invokes a user's

POSTSCRIPT program with the stopped operator so that it can
regain control and perform proper error recovery if the program
stops prematurely.)

When the POSTSCRIPT interpreter is first started up, it begins by
executing the procedure named start. The operator quit ter-
minates the interpreter. The precise actions of start and quit are
installation-dependent; ordinary POSTSCRIPT programs should
not concern themselves with them.

Type, attribute, and conversion operators

These operators deal with the details of POSTSCRIPT types, at-
tributes, and values, which were introduced in section 3.4. The
type operator returns the type of any operand as a name object
('integertype', ' realtype', etc.) The operators xcheck, rcheck,
and wcheck query the literal/executable and access attributes of
an object.

The operators cvlit and cvx change the literal/executable at-
tribute of an object. readonly, executeonly, and noaccess reduce
an object's access attribute (access can only be reduced by this
means, never increased).

Several operators convert from one type to another; that is, they
create a new object derived from the value of an existing one. cvi
and cvr convert between integer and real types and interpret a
numeric string as an integer or real number. cvn converts a string
to a name object defined by the characters of the string. cvs and
cvrs convert objects of several types to a printable string repre-
sentation.

52 Chapter 3: LANGUAGE

File operators

A file is a finite sequence of characters bounded by an end-of-
file indication. These characters may be stored permanently in
some place (e.g., a disk file) or they may be generated on the fly

and transmitted over some communication channel. Files are the
means by which the POSTSCRIPT interpreter receives executable
programs and exchanges data with the external environment.

There are two kinds of files: input and output. An input file is a
source from which a POSTSCRIPT program can read a sequence

of characters. An output file is a destination to which a
POSTSCRIPT program can write characters.

A POSTSCRIPT file object represents a file. The file operators
take a file object as an operand in order to read or write charac-
ters. Ignoring for a moment how a file object comes into exist-
ence, the most basic file operators are read, which reads the next
character from an input file, and write, which appends a char-
acter to an output file. Higher-level operations include ones that
transfer POSTSCRIPT strings to and from files (readstring,
readline, and writestring), that read and write binary data
represented in the file by hexadecimal notation (readhexstring
and writehexstring), and that scan the characters from an input
file according to the POSTSCRIPT syntax rules (token).

The operators that write to a file do not necessarily deliver the
characters to their destination immediately; they may leave some
characters in buffers for reasons of implementation or efficiency.

The flush and flushfile operators deliver these buffered charac-
ters immediately; they are useful in certain situations, such as
during two-way interactions with another computer or with a
human user, when it is important that such data be transmitted
immediately.

At the end of reading or writing a file, a program should close
the file so as to break the association between the POSTSCRIPT

file object and the actual file. The file operators close a file
automatically if end-of-file is encountered during reading (see
below). The closefile operator closes a file explicitly.

End-of-file and exception conditions are treated uniformly by all
operators that access files. During reading, if an end-of-file in-

3.8 OPERATOR OVERVIEW 53

dication is encountered before the requested item can be read,
the file is closed and the operation returns an explicit end-of-file
result. (This also occurs if the file has already been closed when
the operator is executed.) All other exceptions during reading
and any exceptions during writing result in execution of the error
ioerror.

File objects are created by the file operator. This operator takes
two strings: the first identifies the file and the second specifies
whether input or output is desired. file returns a new file object
associated with that file.

Details of file naming are dependent on the operating system and
runtime environment in which the POSTSCRIPT interpreter is em-
bedded. In general, POSTSCRIPT file names follow the standard
conventions for that environment; but it is inappropriate to
describe those conventions in this manual.

All POSTSCRIPT interpreters, however, define several special file
names that are built-in and are not dependent on the operating
system environment. These names all have to do with the
standard input and standard output files, which usually represent

a real-time communication channel to and from another com-
puter or user terminal.

The POSTSCRIPT interpreter ordinarily reads and interprets the
standard input file as POSTSCRIPT program text. It ordinarily

sends error and status messages to the standard output file. Ad-
ditionally, a POSTSCRIPT program may execute the print
operator to send arbitrary data to the standard output file. Note
that print is a file operator; it has nothing to do with placing text
on a page or causing pages to emerge from a printer.

It is not often necessary for a POSTSCRIPT program to deal ex-
plicitly with file objects for the standard files, since the
POSTSCRIPT interpreter reads the standard input file by default
and the print operator references the standard output file im-
plicitly. However, when necessary, a program may apply the file
operator to the identifying strings ' Yostdin' or "Yostdour in order
to obtain file objects for the standard input and output files.I2

I2Another file, the standard error file, is identified to the file operator by the
string "%stderr. This is intended for reporting low-level errors. In many con-
figurations, it is the same as the standard output file.

54 Chapter 3: LANGUAGE

In some product configurations, the POSTSCRIPT interpreter may
be used interactively. In this case, it treats the standard input and
output files somewhat differently. Instead of simply reading and
executing the standard input file, it obtains an entire statement

entered by the user, executes that statement, and prompts for
another statement. In this context, a ' statement' consists of one
or more lines (terminated by newline) that together constitute
one or more complete POSTSCRIPT tokens, with no `{' or `(' left
unmatched. The interpreter 'echoes' characters from the standard
input file to the standard output file. It provides some simple
control character functions for making corrections: backspace
character (BS), erase line (control-U), and retype line (control-
R).

An edited input statement, with all corrections processed, is
available to POSTSCRIPT programs via a special kind of file.I3
Applying the file operator to the identifying string
'Yostatementedit' causes an edited statement to be obtained from
the standard input file. The characters of that statement may then
be read from the file returned by the file operator. (Another spe-
cial file, identified by the string ` 13/01ineedit', consists of just one
line of edited input, without regard to whether it constitutes a
complete POSTSCRIPT statement.)

There are miscellaneous other file operators. status and
bytesavailable return status information about a file. currentfile
returns the file object from which the interpreter is currently
reading. run is a convenience operator that combines the func-
tions of file and exec. prompt and echo control details of the
interactive mode of operation.

Several built-in procedures print the values of objects on the
operand stack, sending a readable representation of those values
to the standard output file. The name `=' is associated with a
procedure that pops one object from the operand stack and writes
a text representation of its value to the standard output file, fol-
lowed by a newline. `==' is similar to `=' but produces results
closer to full POSTSCRIPT syntax and expands the values of ar-
rays. stack prints the entire contents of the operand stack with

13In fact, the interactive mode of operation is implemented entirely by a built-in
POSTSCRIPT procedure, named executive, that uses the file facilities described
here. executive may not be available on all POSTSCRIPT printers.

3.8 OPERATOR OVERVIEW 55

but leaves the stack unchanged. pstack performs the
analogous operation using `—'.

Virtual memory operators

The POSTSCRIPT virtual memory (VM) was introduced in
section 3.7, as were the principal VM operators save and
restore. Additionally, the vmstatus operator returns information
about the current state of the VM.

Errors

As discussed in section 3.6, when the POSTSCRIPT interpreter
detects an error condition, it executes a name object that iden-
tifies the error. It looks up this name in the special dictionary
errordict rather than in systemdict, userdict, or other diction-
aries on the dictionary stack. The values associated with these
names are typically not operators but are procedures. For con-
venience of presentation, however, errors are grouped with the
operators in chapter 6.

The default error handler procedures all operate in a standard
way: they record information about the error in a special diction-
ary named $error and then execute stop. They do not print any-
thing.

Execution of stop exits the innermost enclosing context es-
tablished by stopped. Assuming the user program has not in-
voked stopped itself, interpretation continues in an outer control
program (which invoked the user program with stopped). This
program executes the name handleerror from errordict. The
default handleerror procedure accesses the error information in
the S'error dictionary and reports the error in an installation-
dependent fashion. In some environments, handleerror simply
writes a text message to the standard output file; in other en-
vironments, it invokes more elaborate error reporting
mechanisms.

56 Chapter 3: LANGUAGE

After an error occurs, $error will contain the following key-
value entries:

Name Type Value

newerror boolean

errorname name

command any

set to true to indicate that an error has occurred (handleerror sets it to false).

the name of the error that was invoked.

the operator or other object being executed by the interpreter at the time the

error occurred.

ostack array a snapshot of the entire operand stack immediately before the error, stored as if

by astore.

estack array a snapshot of the execution stack, stored as if by execstack.

dstack array a snapshot of the dictionary stack, stored as if by dictstack.

A program that wishes to modify the behavior of error handling
can do so in one of two ways. First, it can change the way in
which errors are reported simply by redefining handleerror in
errordict. For example, a revised error handler might report

more information about the context of the error, or it might
produce a printed page containing the error information instead

of reporting it to the standard output file.

Second, a program can change the way in which errors are

invoked by redefining the error names themselves. There is no
restriction on what an error handling procedure can do. For ex-
ample, in an interactive environment, an error handler might in-
voke a debugging facility that would enable the user to examine
or alter the execution environment and perhaps resume execu-
tion.

3 8 OPERATOR OVERVIEW 57

4.1 INTRODUCTION

Now we turn from the general programming language aspects of
POSTSCRIPT to the language extensions that deal with describing
pages to be rendered on a raster output device. These extensions
consist of some additional data structures and a considerable
number of special operators. The facilities described here are in-

tended for both display and printer applications.

The POSTSCRIPT graphics operators form six major groups:

• Graphics state operators. This group contains operators
that manipulate a data structure called the graphics state,
which defines the context in which the other graphics
operators execute.

• Coordinate system and matrix operators. The graphics state
includes a current transformation matrix (CTM) that maps
coordinates specified by the POSTSCRIPT program into out-
put device coordinates. The operators in this group manipu-
late the CTM to achieve any combination of translation,
scaling, rotation, reflection, and skewing of user coordi-
nates onto device coordinates.

• Path construction operators. The graphics state includes a
current path that defines shapes and line trajectories. The
operators in this group begin a new path, add straight and

59

curved line segments to the current path; and close the cur-
rent path. All of these operators implicitly reference CTM
parameter in the graphics state.

e Painting operators. These operators cause shapes and paths
to be scan converted and rendered in raster memory. After
a path is constructed and colors, images, character fonts,
line widths, and other parameters are set in the graphics
state, the painting operators 'push' images or color through
the shape defined by the current path or render line trajec-
tories along that path. POSTSCRIPT programs may use a
variety of color models to specify output color, halftone
screens, and sampled images.

• Character and font operators. These operators allow the
specification, selection, and modification of fonts
(descriptions of typefaces) and provide the means to render
characters from those fonts onto the page. POSTSCRIPT
treats characters as general graphical shapes, so strictly
speaking many of the font operators should be grouped
with the path construction or painting operators. However,
the data structures and mechanisms for dealing with char-
acter and font descriptions are sufficiently specialized that
we defer all discussion of fonts until chapter 5.

• Device setup and output operators. Device setup operators
establish the association between raster memory and a
physical output device. Once a page has been completely
described in raster memory, executing an output operator
causes the page to be transmitted to the device.

In this chapter, we present general information about graphics in
POSTSCRIPT: the imaging model, coordinate system, and data
structures. We then introduce the principal operators for path
construction, painting, and image rendering. Details of specific
graphics operators are presented in chapter 6.

4.2 IMAGING MODEL

The POSTSCRIPT imaging model is a simple and unified view of
two-dimensional graphics borrowed from the graphic arts in-
dustry. An image is built up by placing ' paint' on a page in
selected areas. The paint may be in the form of letter shapes,
general filled shapes, lines, or halftone representations of

60 Chapter 4: GRAPHICS

photographs. The paint itself may be in color or in black, white,
or any shade of gray. Any of these elements may be cropped to

within any shape as they are placed onto the page. Once a page
has been built up to the desired form, it may be printed on an

output device. 1

POSTSCRIPT maintains an implicit current page that accumulates
the marks made by the POSTSCRIPT painting operators. When a
program begins, the current page is completely white. As each

painting operator executes, it places marks on the current page.
Each new mark completely obscures any marks that it may over-
lay. This method is known as a painting model: no matter what

color a mark has— white, black, gray, or color— it is put onto
the current page as if it were applied with opaque paint. Once the
page has been completely composed, the showpage operator
may be invoked to render the accumulated marks on the output
media and then clear the current page to white again.

The principal painting operators are fill, stroke, image, and

show. fill marks an area, stroke marks lines, image paints a
sampled image, and show paints character shapes onto the cur-
rent page. Each of these operators requires several arguments,

some explicit and some implicit.

Chief among the implicit arguments is the current path (used by
fill, stroke, and show.) A path consists of an arbitrary sequence
of connected and disconnected points, lines, and curves that
together describe shapes and their positions. It is built up through
the sequential application of the path construction operators,
each of which modifies the current path in some way (usually by
appending one new element to the current path).

Path construction operators include newpath, moveto, lineto,
curveto, arc, closepath, and many others. None of these
operators places marks on the current page; that is left to the

painting operators.

IA detailed, technical description of a similar imaging model has appeared in a
paper by John Warnock and Douglas Wyatt, "A Device Independent Graphics
Imaging Model for Use with Raster Devices," Computer Graphics, Vol. 16,
No. 3, July 1982, pp. 313-320. The description given here is in terms that a
POSTSCRIPT programmer should understand before using POSTSCRIPT to
prepare printed pages.

4.2 IMAGING MODEL 61

Other implicit arguments to the painting operators include the
current color, current line thickness, current font (typeface-size-
rotation combination), etc. Operators exist to examine and set
each implicit argument. The values held in the implicit argu-
ments at the time a painting operator is executed will affect the
behavior of that operator.

POSTSCRIPT programs that make printed pages will contain
many instances of the following pattern: build a path using path

construction operators; set any implicit arguments (if their values
need to change); perform a painting operation.

There is one additional implicit element in the POSTSCRIPT im-
aging model that modifies the foregoing description: a current
clipping path that outlines the area of the current page upon
which paint may be placed. Initially, this clipping path outlines
the entire imageable area of the current page; parts of the page
description which lie off of the page (outside the clipping path)

are discarded. By using the clip operator, a POSTSCRIPT program
can shrink the current clipping path to any shape desired. It is
quite normal for a painting operator to attempt to place marks
outside of the current clipping path. Those marks falling within
the clipping area will affect the current page; those marks falling
outside will not.

4.3 GRAPHICS STATE

The POSTSCRIPT interpreter maintains a data structure called the
graphics state that holds current graphics control parameters.
These parameters define the context in which the graphics
operators execute. For example, the show operator implicitly

uses the current font parameter in the graphics state, and the fill
operator implicitly uses the current color parameter.

The graphics state is not itself an object and cannot be accessed
directly. However, it consists of many objects, nearly all of
which can be both read and altered by graphics state operators.

Graphics states are maintained in a stack. A POSTSCRIPT
program may preserve the current graphics state by pushing it on
the graphics state stack with the gsave operator. It may then

62 Chapter 4: GRAPHICS

modify the current graphics state to have many different charac-
teristics, such as a different font, transformation matrix, line

style, and so forth. After executing any desired graphics
operators in the new context, the program may restore the
original graphics state by popping the stack (with grestore). This
facility permits elements of a page description to be encap-

sulated: they may make local changes for their own purposes,

but such changes are not permanent.

The complete set of graphics state parameters is summarized
below. More details are given in the descriptions of the operators

for accessing these parameters (see chapter 6).

Parameter Type Value

CTM array The current transformation matrix: a matrix that maps positions from user
coordinates to device coordinates. This matrix is modified by each application
of the coordinate system operators. (Initial value: a straightforward matrix

transforming default user coordinates to device coordinates.)

color (internal) The color to use during painting operations. This may be specified and read
according to any of several different color models; the actual internal represen-

tation is not accessible. (Initial value: black.)

position 2 numbers Current position in user space, also known as the current point. (Initial value:

undefined.)

path (internal) The current path as built up by the path construction operators. The current
path is an implicit argument to the fill, stroke, and clip operators. (Initial value:

empty.)

clipping path (internal) A path defining the current boundary against which all output is cropped.

(Initial value: the entire imageable portion of the output device.)

font dictionary Set of graphic shapes (characters) that define the current typeface. (Initial

value: installation dependent.)

line width number The thickness (in user coordinate units) of lines to be drawn by the stroke

operator. (Initial value: 1.)

line cap integer A code that defines the shape of the endpoints of any open path that is stroked.
(Initial value: 0, for a square butt end.)

line join integer A code that defines the shape of joints between connected segments of a
stroked line. (Initial value: 0, for mitered joins.)

4.3 GRAPHICS STATE 63

halftone screen (several) A collection of PosTScRwr objects that define the current halftone screen

pattern for gray and color output. (Initial value: installation dependent.)

transfer array A procedure that maps user gray levels into device gray levels. (Initial value:

installation dependent.)

flatness number The accuracy (or smoothness) with which curves are to be rendered on the

output device. This number gives the maximum error tolerance (in output
device pixels) of a straight line segment approximation of any portion of a

curve. Smaller numbers give smoother curves at the expense of more computa-
tion. (Initial value: 1.0.)

miter limit number The maximum length of mitered line joins for the stroke operator. This limits

the length of ' spikes' produced when line segments join at sharp angles. (Initial
value: 10, for a miter cutoff below 11 degrees.)

dash pattern (several) A description of the dash pattern to be used when lines are rendered by the
stroke operator. (Initial value: a normal solid line.)

device (internal) An internal data structure representing the current output device, along with a

set of internal primitives for rendering graphical objects in the raster memory
associated with that device. (Initial value: installation dependent.)

4.4 COORDINATE SYSTEMS AND TRANSFORMATIONS

User space and device space

Paths and shapes are defined in terms of points on the current
page (or outside the page) specified as coordinates. A coordinate
is a pair of real numbers x and y that locate a point within a
Cartesian coordinate system superimposed on the current page.
The POSTSCRIPT language defines a standard, default coordinate
system that POSTSCRIPT programs may depend on for locating
any point on the page.

Output devices vary greatly in the built-in coordinate systems
they use to address actual pixels within their imageable area. We
refer to a particular device's coordinate system as device space.
Device space origins can be anywhere on the output page; the

paper moves through different printers in different directions;
different devices have different resolutions; and some devices
even have resolutions that are different in the x and y directions.

64 Chapter 4: GRAPHICS

Coordinates specified in a POSTSCRIPT program, however, refer
to locations within an ideal coordinate system that always bears
the same relationship to the current page regardless of the output
device on which printing will be done. We call this coordinate
system user space, as it is the coordinate system that programs

use to specify points.

The POSTSCRIPT interpreter automatically transforms points

specified in user space into the device space of the actual raster
device being used. For the most part, this transformation is hid-
den from the POSTSCRIPT program; a program needs to consider
device space only rarely for certain special effects. This indepen-
dence of user space from device space is a major contributor to

the device independent nature of POSTSCRIPT page descriptions.

To specify a coordinate system with respect to the current page,
we must know the location of the origin, the orientation of the x
and y axes, and the lengths of the units along each axis. Initially,

the user space origin is located at the lower left comer of the
output page, with the positive x axis extending horizontally to
the right and the positive y axis extending vertically upward (as

in standard mathematical practice.) The length of a unit along the
x axis and along the y axis is 1/72 of an inch. We call this coordi-

nate system default user space.

Note that the default user space origin coincides with the comer
of the physical page. Certain portions of the physical page may
not be imageable on certain output devices. For example, many
laser printers cannot place marks at the extreme edges of their
physical page areas. Thus, it may not be possible to place marks
at or near the default user space origin. The physical correspon-

dence of page comer to default origin, however, ensures that
marks within the imageable portion of the output page will be

positioned consistently.

These features of default user space are chosen for their math-
ematical simplicity and convenience. The location and orien-
tation of the axes follow common mathematical practice and

cause all points within the current page to have positive x and y
coordinate values. The unit size, 1/72 of an inch, is very close to
the size of a printer's point (1/72.27 inch), which is a standard

measuring unit used in the printing industry.

4.4 COORDINATE SYSTEMS AND TRANSFORMATIONS 65

It is important to understand that coordinates in user space are
specified as arbitrary POSTSCRIPT numbers, i.e., either integers
or reals. Therefore, the unit size in default user space does not
constrain points to any arbitrary grid; the resolution of coordi-
nates in user space is not related in any way to the resolution of
pixels in device space.

Although the choices made for default user space are arbitrary,
they provide a consistent, dependable starting place for
POSTSCRIPT programs regardless of the output device being
used. The POSTSCRIPT program may then modify its user space
into one more suitable for its needs (if necessary) by applying
coordinate transformation operators, such as translate, rotate,
and scale.

Thus, what may appear to be absolute coordinates in a
POSTSCRIPT program are actually quite changeable with respect
to the current page, since they are described in a coordinate sys-
tem that may slide around and shrink or expand. Coordinate sys-
tem transformation not only enhances device independence but is
a useful tool in its own right. For example, a page description
originally composed to occupy an entire page may be
incorporated without change into another page description that
uses it as just one element of a page.

Transformations

Transformation of coordinates from one space to another is
specified by means of a transformation matrix. Such a matrix
specifies how the x and y values of a point in one coordinate
space are transformed into the x and y values of the correspond-
ing point in another coordinate space. Included in the graphics

state is a current transformation matrix (CTM) describing the
transformation from user space to device space.

The elements of a matrix actually specify the coefficients of a

pair of linear equations in x and y that generate a transformed x
and y. However, in graphical applications, matrices are not often
thought of in this abstract mathematical way. Instead, a matrix is
considered to capture some sequence of geometric manipula-
tions: translation, rotation, scaling, reflection, etc. Most of the
POSTSCRIPT matrix operators are organized according to this
model.

66 Chapter 4: GRAPHICS

The matrix operators most commonly used are the ones that
modify the current transformation matrix (CTM) in the graphics
state. That is, they change the mapping between user space and
device space that will be used during subsequent graphical

operations. These operators do not create a new transformation
matrix from nothing; instead, they change the existing transfor-
mation matrix in some specific way. It is usually convenient to
visualize these operators as modifying user space itself, e.g.,
moving the origin (translation) or changing the length of a unit

(scaling).

translate moves the user space origin to a new position with

respect to the current page while leaving the orientation of the
axes and the unit sizes unchanged. rotate turns the user space
axes about the current user space origin by some angle, leaving
the unit lengths unchanged in their current directions. scale
modifies the unit lengths independently along the current x and y
axes, leaving the origin location and the orientation of the axes

unchanged.

Such modifications have a variety of uses. The simplest is
changing the user coordinate system conventions for an entire

page. For example, in some application it might be convenient
for user coordinates to be expressed in centimeters rather than
points; or it might be convenient to have the origin in the center

of the page rather than the lower left corner.

A more interesting and powerful use of coordinate system
modification is to define each graphical element of a page in its

own coordinate system, independent of any other element. Each
element may then be positioned, oriented, and scaled to the
desired location on the page by temporarily modifying the user
coordinate system. This permits the description of an element to
be decoupled from the description of how it is to be placed on

the page.

A simple example may aid in understanding this concept. This

example uses graphics operators that we haven't formally intro-
duced yet, but the comments in the example should make it clear

what they do.

4.4 COORDINATE SYSTEMS AND TRANSFORMATIONS 67

inches

/box {newpath

0 O moveto

0 1 lineto

1 1 lineto

1 0 lineto

closepath

} def

gsave

72 72 scale

box fill

2 2 translate

box fill

% Define a procedure to construct a unit square

"Yo path in the current user coordinate system,

% with its lower left corner at the origin.

'Y. Save the current graphics state and create a

`)/0 new one which we shall then modify.

% Modify the current transform matrix so that

% everything subsequently drawn will be 72 times

% larger; that is, each unit will represent an inch

% instead of a point.

% Draw a unit square with its lower left corner at

% the origin, and fill it with black. Since the unit size

% is now one inch, this box is one inch on a side.

% Change the transformation matrix again so that

% the origin is at 2", 2" (displaced two inches

% in from the left and bottom edges of the page).

% Draw the box again. This box has its lower

% left corner two inches up from and two inches

% to the right of the lower left corner of the page,

% and it is one inch square.

grestore % Restore the saved graphics state.

% Now we are back to default user space.

This example shows how coordinates such as the ones given to
the moveto and lineto graphics operators are transformed by the
current transformation matrix. By combining translation, scaling,
and rotation, one may use very simple prototype graphics

procedures, such as box in the example, to generate an infinite
variety of instances.

Matrix representation and manipulation

Understanding the descriptions of the coordinate system and
matrix operators in chapter 6 requires some knowledge of the

representation and manipulation of matrices. We now present a

68 Chapter 4: GRAPHICS

brief introduction to this topic.2 It is not essential that you under-

stand the details of matrix arithmetic on first reading, but only
that you obtain a clear geometrical model of the effects of the

various transformations.

-t->

translation

scaling

A two-dimensional transformation is described mathematically
by a 3 x 3 matrix:

a

d

t 1

In the POSTSCRIPT language, this matrix is represented as a six-
element array object:

[a bc d t t] x y

(omitting the matrix elements in the third column, which always

have constant values.)

This matrix transforms a coordinate (x, y) into another coordinate

(x', y') according to the linear equations:

= ax + cy + t A

y' = hx + dy + ty

The common transformations are easily described in this matrix
notation. Translation by a specified displacement (tx, t),) is

described by the matrix:

1 0 0

0 1 0

tx t 1 Y
Scaling by the factor sx in the x dimension and sy in the y dimen-

sion is accomplished by:

S): 0 0

0 s 0 Y
0 0 1

2For a complete mathematical explanation of matrix operations and their uses
in describing geometrical transformations, see the book by W. M. Newman and
R. F. Sproull, Principles of Interactive Computer Graphics, McGraw-Hill,
1979.

4.4 COORDINATE SYSTEMS AND TRANSFORMATIONS 69

Rotation counterclockwise about the origin by an angle 0 is
described by the matrix:

rotation

cos 0 sin 0 0

—sin 0 cos 0 0

0 0 1

Any desired transformation can be described as a sequence of
these and other operations performed in some order. An impor-
tant property of the matrix notation is that a sequence of opera-
tions can be concatenated to form a single matrix that embodies
all of those operations in combination.3 That is, transforming any
coordinate by the single concatenated matrix produces the same
result as transforming it by all of the original matrices in se-

quence. Consequently, any linear transformation from user space
to device space can be described by a single matrix, the CTM.

The POSTSCRIPT operators translate, scale, and rotate each con-
catenate the CTM with a matrix describing the desired transfor-
mation, producing a new matrix that describes the combination
of the original and additional transformations. This matrix is then
established as the new CTM.

It is sometimes necessary to perform the inverse of a transfor-
mation, e.g., to find the coordinate in user space that corresponds
to a specific device space coordinate. (This is only occasionally
done explicitly by POSTSCRIPT programs but occurs fairly com-
monly in the POSTSCRIPT graphics machinery.) Not all transfor-

mations are invertible in this way; for example, if a matrix con-
tains a, b, c, and d elements that are all zero, all user coordinates
map to the same device coordinate and there is no unique inverse
transformation. Occurrence of this state of affairs gives rise to
the error undefinedresult. Non-invertible transformations aren't

very useful and generally arise only from unintentional opera-
tions such as scaling by zero.

3Concatenation is performed by matrix multiplication. The requirement that
matrices conform during multiplication is what leads to the use of 3 x 3
matrices; otherwise, 2 x 3 matrices would suffice to describe transformations.

70 Chapter 4 GRAPHICS

4.5 PATH CONSTRUCTION

The POSTSCRIPT path is the means for defining shapes, trajec-

tories, and regions of all sorts. Paths are used to draw lines, to
specify boundaries of filled areas, and to define templates for

clipping other graphics.

A path is composed of straight and curved line segments. These
segments may connect to one another or they may be discon-
nected. The topology of a path is unrestricted: it may be concave
or convex, it may contain multiple closed subpaths, thus
representing several areas, and it may intersect itself in arbitrary

ways.

Paths are represented by data structures internal to the
POSTSCRIPT graphics machinery. Though a path is not directly
accessible as a POSTSCRIPT object, its construction and use are
entirely under the control of the POSTSCRIPT program. A path is
constructed by sequential application of one or more path con-
struction operators. At any time, the path may be read out or
(more commonly) used to control the application of one of the

painting operators described in section 4.6.

There is a current path which is part of the graphics state. The
path construction operators modify the current path (usually by
appending to it), and the painting operators refer to the current
path. Like all components of the graphics state, the current path

is saved and restored by gsave and grestore.

The order of segments defining a path is significant. A pair of
line segments is said to connect only if they are defined consecu-

tively, with the second segment starting where the first one ends.
Non-consecutive segments that meet or intersect fortuitously are
not considered to connect.

A subpath of a path is a sequence of connected segments; a path
is made up of one or more disconnected subpaths. An operator
exists to explicitly connect the end of a subpath back to its start-
ing point; such a subpath is said to be closed. A subpath that has

not been closed explicitly is said to be open.

A path is begun by executing the newpath operator, which in-
itializes the current path to be empty. (Some of the painting

4.5 PATH CONSTRUCTION 71

operators also initialize the path at the end of their execution.)
The path is then built up by executing one or more of the
operators for adding segments to the current path in any se-
quence (however, a moveto must usually come first).

All the points used to describe the path are coordinates in user

space. Each coordinate is transformed by the CTM into device
space at the time the point is entered into the current path; chang-
ing the CTM does not cause existing points to move in device
space.

The trailing endpoint of the segment most recently entered is

referred to as the current point. If the current path is empty, the
current point is undefined. Most operators that add a segment to
the current path start at the current point; if the current point is
undefined, they will execute the error nocurrentpoint.

• moveto establishes a new current point without adding a
segment to the path. This begins a new subpath of the cur-
rent path.

• lineto adds a straight line segment to the path, connecting
the previous current point to the new one.

• arc, aren, and arcto add an arc of a circle to the current
path.

• curvet° adds a section of a Bézier cubic curve to the cur-
rent path.

• rmoveto, rlineto, and rcurveto perform the moveto,
lineto, and curveto operations but specify new points as
displacements (in user space) relative to the current point.

• closepath adds a straight line segment connecting the cur-
rent point to the starting point of the current subpath
(usually the point most recently specified by moveto),
thereby closing the current subpath.

There are several other path construction operators; complete
details are presented in chapter 6.

The graphics state also contains a clipping path that defines the
regions of the page that may be affected by the painting
operators. Marks falling inside the area defined by the closed
subpaths of this path will be applied to the page; marks falling

72 Chapter 4 GRAPHICS

outside will not. (Precisely what is considered to be ' inside' a
path is discussed in section 4.6.) The clip operator computes a
new clipping path from the intersection of the current path with

the existing clipping path.

Remember that the path construction operators do not place any
marks on the page; that is done only by the painting operators.
The usual procedure for rendering a graphic element on the page
is to define that element as a path and then invoke one of the
painting operators. This is repeated for each element on the page.

A path that is to be used more than once in a page description
should be defined by a POSTSCRIPT procedure that invokes the

operators for constructing the path. Each instance of the path
may then be constructed and rendered on the page by a three-
step sequence. First, modify the CTM by invoking coordinate

transformation operators to properly locate, orient, and scale the
path to the desired place on the page. Second, call the procedure
to construct the path. Finally, execute a painting operator to

render the path on the page in the desired manner. The entire
sequence may be encapsulated by surrounding it with gsave and
grestore. A simple illustration of this style of use appeared in the
'box' example of section 4.4.

We stated previously that a POSTSCRIPT path is unrestricted in
its topology. However, since the entire set of points defining a
path must exist as data simultaneously, there is a limit to the
number of segments a path may have. Since several paths may

exist simultaneously (current path, clipping path, and paths saved
by gsave), this limit actually applies to the total amount of
storage occupied by all paths. The value of the limit is given in

appendix B.

As a practical matter, the limits on path storage are sufficiently
large that they do not impose an unreasonable restriction. It is

important, however, that separate elements of a page be con-
structed as separate paths that are each painted and then dis-
carded. An attempt to describe an entire page as a single path is
likely to exceed the path storage limit.

4.5 PATH CONSTRUCTION 73

4.6 PAINTING

The painting operators scan convert graphical shapes into raster
memory to represent marks on the current page. The principal
general-purpose painting operators are stroke and fill, described

below. More specialized operators are image, described in sec-
tion 4.7, and the character and font operators, described in chap-
ter 5.

The stroke operator draws a line of some thickness along the
current path. For each straight or curved segment in the path,
stroke draws a line that is centered on the segment and whose
sides are parallel to the segment.

The results produced by stroke are controlled by a number of
parameters in the graphics state: color, line width, line cap, line
join, flatness, miter limit, and dash. These were summarized in
section 4.3; details appear in chapter 6.

stroke treats each subpath of a path separately. Wherever two
consecutive segments are connected, the joint between them is
treated with the current line join, which may be mitered,
rounded, or beveled (see the description of the setlinejoin
operator). If the subpath is open, the unconnected ends are
treated with the current line cap, which may be butt, rounded, or
square (see setlinecap). Points at which unconnected segments
happen to meet or intersect receive no special treatment. (In par-
ticular, 'closing' a subpath with an explicit lineto rather than
with closepath may result in a messy corner, since line caps

rather than a line join are applied in that case.)

A stroke may be drawn either with a solid line or with a user-
specified dash pattern (see setdash). The color of the line is
determined by the current color in the graphics state (see

setgray, sethsbcolor, and setrgbcolor). The accuracy and
smoothness with which curves are rendered is controlled by the
'flatness' parameter (see setflat).

The fill operator paints the entire region enclosed by the current
path with the current color. If the path consists of several discon-
nected subpaths, fill paints the insides of all subpaths, considered
together. Any subpaths of the path that are open are implicitly
closed before being filled.

74 Chapter 4: GRAPHICS

Non-zero winding number rule

Even-odd rule

For a simple path, it is intuitively clear what region lies ' inside'.
However, for a more complex path (e.g., a path that intersects
itself or has one subpath that encloses another), the interpretation
of ' inside' is not so obvious. The POSTSCRIPT path machinery
uses one of two rules for determining which points lie inside a
path.

The non-zero winding number rule determines whether a given
point is inside a path by (conceptually) drawing a ray from that
point to infinity in any direction and then examining the places
where a segment of the path crosses the ray. Starting with a
count of zero, we add one each time a path segment crosses the
ray from left to right and subtract one each time a path segment
crosses the ray from right to left.4 After counting all the cross-
ings, if the result is zero then the point is outside the path, other-
wise it is inside.

With this rule, a simple convex path yields inside and outside as
we would expect. Now consider a five pointed star, drawn with
five connected straight line segments intersecting each other.
The entire area enclosed by the star, including the pentagon in
the center, is considered inside by the non-zero winding number
rule. For a path composed of two concentric circles, if they are

both drawn in the same direction, the areas enclosed by both
circles are inside according to the rule. If they are drawn in op-

posite directions, only the 'doughnut' shape between the two
circles is inside according to the rule; the 'hole' is outside.

An alternative to the non-zero winding number rule is the
even-odd rule. This rule determines the ` insideness' of a point by
drawing a ray from that point in any direction and counting the
number of path segments that the ray crosses. If this number is
odd, the point is inside; if even, the point is outside.

The even-odd rule yields the same results as the non-zero wind-
ing number rule for paths with simple shapes, but different

results for more complex ones. For the five pointed star drawn
with five intersecting lines, the even-odd rule considers the tri-
angular points to be inside but the pentagon in the center to be

4The rule does not specify what to do if a path segment coincides with or is
tangent to the ray. Since any ray will do, one may simply choose a different ray
that does not encounter such problem intersections.

4 6 PAINTING 75

outside. For the two concentric circles, only the 'doughnut'
shape between the two circles is inside according to the even-odd
rule, regardless of whether the circles are drawn in the same or
opposite directions.

The non-zero winding number rule is more versatile than the
even-odd rule and is the default rule used by the POSTSCRIPT fill
and clip operators. The even-odd rule is occasionally useful for
special effects or for compatibility with other graphics systems;
the eofill and eoclip operators invoke this rule.

4.7 IMAGES

The POSTSCRIPT painting operators include general facilities for
dealing with sampled images and rendering them on a page.
These facilities are sufficiently different from the other painting
operators that we deal with them separately.

A sampled image (or just ' image' for short) is a rectangular array
of sample values, each of which represents some color. This
image may approximate the appearance of some natural scene
(much the same as a television picture) or it may be generated
synthetically.

A POSTSCRIPT image is defined by a sequence of gray-level
values obtained by scanning the image rectangle in row or
column order. There are no constraints on the number of rows or
columns in the array. Each value consists of a 1, 2, 4, or 8 bit
integer, permitting the representation of 2, 4, 16, or 256 different
gray level values for each sample.5

The operators that render an image on a page are image and
imagemask. The details of these operators may be found in the
operator descriptions in chapter 6, along with an example of

using each one. However, some general information about the
rendering of images is presented here.

5At present, the POSTSCRIPT language does not provide a way to represent full
color in a single image. However, under suitable conditions, full color can be
represented as three color separations each defined by a gray-scale image. Such
image processing is beyond the scope of this manual.

76 Chapter 4 GRAPHICS

Image parameters

The properties of an image (resolution, orientation, scanning or-
der, etc.) are entirely independent of the properties of the raster
output device on which the image is to be rendered. The
POSTSCRIPT graphics machinery usually renders an image by a
sampling and halftoning technique that attempts to approximate
the gray values of the source as accurately as possible. The ac-
curacy depends on the resolution and other properties of the

raster output device.

In order to paint an image on a page, a POSTSCRIPT program
must specify four interrelated items:

• The format of the source image: number of columns
(width), number of rows (height), and number of bits per
sample.

• The image data itself, consisting of height x width x
bits/ sample bits of information.

• The correspondence between coordinates in user space and
coordinates in the source image space, defining the region
of user space that will receive the image.

• The mapping from gray-level values in the source image to
apparent gray values in the printed result.

These four aspects of image rendering are entirely under the con-
trol of the POSTSCRIPT program.

Sample data representation

The source format is specified straightforwardly as three in-

tegers: width, height, and bits/sample.

The image data is represented as a stream of characters, i.e., 8-bit
integers in the range 0 to 255. Each character contains one or
more sample values (depending on bits/sample); the first sample
value in a character consists of the most significant bits/sample
bits of the character.

The image operators obtain source data by repeatedly calling a
POSTSCRIPT procedure passed as an operand. This procedure

must return a POSTSCRIPT string object containing any number
of characters of sample data. (The number of characters is ar-

4.7 IMAGES 77

bitrary and need bear no relation to the dimensions of the source
image.)

This technique for supplying samples to the image operators
provides a flexible means of dealing with a variety of image for-
mats. There is no requirement that all the samples of the source

image reside in POSTSCRIPT memory at the same time. The pro-
cedure may obtain the data from some external file (perhaps the
primary input file), which it reads a piece at a time into a tem-
porary string using the readstring or readhexstring operator. It
may derive the data from some compressed representation,
decompressing it incrementally. It may even generate the data
itself according to some algorithm, producing a synthetic image.

h

h-1

1

o
o

(h 1)w (h- 1)w,1 hw-1

w w.1 2w-1

o w-1

2 w-1 w

Source coordinate system

The image operators impose a coordinate system on the source

image: it is considered to be a rectangle that is height units high
and width units wide; each sample occupies one square unit. The
origin (0, 0) is in the lower left corner; x values range from 0 to
width inclusive; and y values range from 0 to height inclusive.

Additionally, the image operators assume that they receive
sample data from their procedure operand in x-axis major index-
ing order. The coordinate of the lower left corner of the first
sample is (0, 0), of the second is (1, 0), and so on through the last
sample of the first row, whose lower left corner is at (width- 1, 0)
and whose lower right corner is at (width, 0). The next samples
after that are at coordinates (0, 1), (1, 1), etc., until the final

sample of the image, whose lower left corner is at
(width- 1, height- 1) and whose upper right corner is at
(width, height).6

The source coordinate system and scanning order imposed by the
POSTSCRIPT image operators do not preclude the use of different
conventions in the actual source image. Other conventions can
be mapped into the POSTSCRIPT convention by coordinate trans-
formation.

6If bits/sample is less than 8 and width is not a multiple of the number of
samples per character, there must be extra samples at the end of each row to fill
up the last character. The values of the extra samples are not used; they are
present only in order to align the data so that each row starts on a character
boundary.

78 Chapter 4: GRAPHICS

source
image
h

o

\image matrix

01 11

00 10
\CTM

current page

The correspondence between this source image coordinate sys-
tem (or image space) and user space is specified by a matrix
operand. For reasons that will become apparent in a moment, this
matrix defines a mapping from user space to image space; that is,
a user space coordinate transformed by the matrix yields an
image space coordinate. There exist four points in user space that
map to the coordinates of the four corners of the image in image
space. This is a fully general linear transformation that can in-
clude translation, rotation, reflection, and skewing (see section
4.4).

Though it is possible to map directly between current user space
and image space by appropriate definition of the image matrix,
the transformation is easier to think about if it is divided into two
steps. The first step maps the unit square of user space (bounded
by (0, 0) and (1, 1) in user space) to the boundary of the source
image in image space. The second step maps the unit square of
user space to the rectangle (or parallelogram) in current user

space that is to receive the image. This is just a convention, but a
useful one that is recommended.

With this convention, the image matrix is used solely to describe
the image itself, independent of how it is to be positioned,
oriented, and scaled on a particular page. That is, it serves to
map between the actual image space and an idealized one cor-
responding to the POSTSCRIPT standard coordinate system and
scanning order.

Thus, an image that happens to use POSTSCRIPT's conventions
(scanning left-to-right, bottom-to-top) can be described by the
image matrix

[width 0 0 height 0 0].

An image that is scanned left-to-right, top-to-bottom (a very
commonly used order) is described by the image matrix

[width 0 0 —height 0 height].

Images scanned in other common orders can be described by
other image matrices that are translated reflections or multiples
of 90-degree rotations from these.

4.7 IMAGES 79

An image that has been mapped into the unit square in this man-
ner may then be placed on the output page in the desired posi-

tion, orientation, and size by invoking the POSTSCRIPT operators
that transform user space, namely translate, rotate, and scale.
For example, to map such an image into a rectangle whose lower
left corner is at (100, 200), is rotated 45 degrees counterclock-
wise, and is 150 units wide and 80 high, one would execute

100 200 translate 45 rotate 150 80 scale

prior to invoking the image or imagemask operator. This works
for any image that has been mapped into the unit square by an
appropriate image matrix. Of course, if the aspect ratio (width to
height) of the source image in this example were different from

the ratio 150:80 then the result would be distorted.

Note that if only part of an image is desired, one should establish
a clipping path (using the clip operator) before invoking image
or imagemask. Only the portions of the image that fall within
the clipping path will actually produce marks on the page.

Gray-scale rendering

Sample values in the source image are integers in the range 0 to

2n-1 inclusive, where n is the number of bits per sample. The
default interpretation of these values is that the lowest value
represents black (minimum intensity), the highest value
represents white (maximum intensity), and intermediate values
represent intermediate shades of gray. However, this correspon-
dence can be modified by changing the output transfer function
using the settransfer operator.

Details of the halftoning process are also under program control.

The frequency, angle, and spot shape used for the halftone screen
may all be set by means of the setscreen operator. Both
settransfer and setscreen are described in section 4.8.

Device-resolution images

A special case of a sampled image is a binary image that uses
one bit per sample. Under certain circumstances, the
POSTSCRIPT image operators will transfer samples directly from

80 Chapter 4: GRAPHICS

a binary image to the raster output device rather than using the
more general sampling and halftoning technique. This produces
results that are precisely predictable down to the pixel level; it is
also a great deal faster than general imaging.

The conditions under which samples are transferred directly
from an image to a device are as follows:

• The image is one bit per sample.

• The combination of the image matrix and the current trans-
formation matrix is such that one unit in image space cor-
responds to one unit in device space. (In other words, the
image and device resolutions are the same.)

• The image coordinate system's x and y axes are parallel to
the corresponding axes of device space, and the x coordi-
nate values increase in the same direction.

Device-resolution binary images are used by applications that
wish to control printed results down to the pixel level. A situa-
tion in which this is useful is the printing of characters that are
represented as bitmaps (i.e., binary pixel arrays) rather than as
outlines. (Such bitmaps are usually printed using the mask
facility, described below.) While no standard POSTSCRIPT fonts
are represented as bitmaps, there are many bitmap fonts available
from other sources.

Use of device-resolution images might seem to violate the device
independence of a POSTSCRIPT page description. However, this
is not so. If such a page description is printed on an output

device different from the one for which it was intended (or the
page is transformed in some other way), the special conditions
will not apply and the bitmap will be treated as a general image;
that is, it will be rendered by the sampling and halftoning tech-
nique described earlier in this chapter. This may take longer than
expected, but the results will still be correct.

Masks

Normal images are consistent with the POSTSCRIPT imaging
model (section 4.2) in that all areas of a page affected by an

image are marked as if with opaque paint. Any portion of an
image, whether black, white, or halftone gray, completely

4.7 IMAGES 81

obscures any marks that previously existed in the same place on
the page.

There is a special variant of a binary image, called a mask,
whose properties are quite different: whereas an image is
opaque, a mask is partially transparent. The imagemask operator
applies masks.

The samples of a mask do not represent colors; instead, they
designate places on the page that should be marked (with some
separately specified color) or not marked at all. The places that
are not marked retain their former color values. One should think
of pouring paint 'through' a mask, where a ' 1' sample permits
the paint to reach the page but a ' 0' blocks it (or vice versa).

Masks are most often useful for painting characters represented

as bitmaps, as discussed in the previous section. Ordinarily when
printing such characters, one wants the 'black' bits of the char-
acter to be transferred to the page but the 'white' bits (which are
really just background) to be left alone. For reasons discussed in
section 5.6, imagemask rather than image should almost always
be used to paint bitmap characters.

4.8 COLORS AND HALFTONES

The POSTSCRIPT graphics machinery includes facilities for con-
trolling quite precisely how marks having a given abstract color
are actually rendered in raster memory. In this section, we intro-
duce the POSTSCRIPT color models and describe the aspects of
the halftoning process that are accessible to POSTSCRIPT

programs. Understanding this information is not essential to
basic use of POSTSCRIPT graphics; you may wish to skip this
section on first reading.

Though the number of operators for controlling color rendition
and halftoning is fairly small, their detailed behavior is complex.
Furthermore, some aspects of color rendition and halftoning
depend on physical properties of the raster output device. The
device setup procedure for each device establishes default set-
tings that are appropriate for that device. The defaults are
suitable for rendering most page descriptions; only in very un-

82 Chapter 4 GRAPHICS

usual situations is it appropriate for a POSTSCRIPT program to
change them.

Color models

As described in section 4.6, marks placed on the page have a
color that is determined by the current color parameter in the
graphics state. The POSTSCRIPT language allows specification of
any color; black, white, and gray shades are special cases of full
color. Due to the importance and predominance of black-and-
white binary and gray-scale output devices, however, we shall

mention full color only briefly and then concentrate on black-
and-white and gray-scale rendition.

Colors may be specified according to either of two POSTSCRIPT
color models, called the hue-saturation-brightness (HSB) and
red-green-blue (RGB) models. Each of these models can specify
any color by three numeric parameters, but the numbers mean
different things in the two models.7

In the RGB model, a color is described as a combination of the

three primary colors of light (red, green, and blue) in particular
concentrations. The intensity of each primary color is specified
by a number in the range 0 to 1, where 0 indicates no contribu-
tion at all and 1 indicates maximum intensity of that color. If all
three colors have equal intensity, the perceived result is a pure
gray on the scale from black to white. If the intensities are not all
equal, the result is some color that is a function of the relative
intensities of the primary colors. Note that this convention paral-
lels the mixing of colored light; the presence of all primary
colors in equal measure yields white light.

In the HSB model, a color is described as a combination of three
parameters called hue, saturation, and brightness. There exists a
convention for arranging colors around a 'color circle'. The hue

parameter specifies the position of a color on this circle: 0 cor-
responds to pure red, 1/3 to pure green, 2/3 to pure blue, and 1 to
red again; intermediate values correspond to mixtures of the ad-

7For a complete explanation of these color models and the conversions between
them, see the article by Alvy Ray Smith, "Color gamut transform pairs,"
Computer Graphics, Vol. 12, No. 3, August 1978. In that article, the HSB
model is referred to as the hue-saturation-lightness model.

4.6 COLORS AND HALFTONES 83

jacent colors. The saturation component refers to the concentra-
tion of the selected hue with respect to the overall intensity: 0
corresponds to no color (only a shade of gray), 1 corresponds to
maximum concentration (no white light mixed in). The bright-

ness component refers to the overall intensity of light: 0 is black
and 1 is maximum intensity.

Color may be specified according to either model by the
setrgbcolor and sethsbcolor operators. The current color may
be read according to either model (currentrgbcolor and
currenthsbcolor); these operators convert between color models
if necessary according to the NTSC video standard (a discussion

of which is beyond the scope of this manual).

Black, white, and intermediate shades of gray are special cases
of full color. A gray-scale value is described by a single number
in the range 0 to 1: 0 corresponds to black, 1 to white, and inter-

mediate values to different gray levels. The setgray operator sets
the current color in the graphics state to be a specified gray level.
When an arbitrary color is to be rendered on a black-and-white
or gray-scale device, the gray level used is the brightness com-
ponent according to the HSB model. This is also the result that is
returned by the currentgray operator.

Halftone screens

When an intermediate shade of gray is to be rendered on a raster
output device whose pixels can be only black or white, the
POSTSCRIPT graphics machinery employs a halftoning technique
to approximate the desired results.8 The halftone pattern (or
screen) is under the control of the POSTSCRIPT program, which
may execute the setscreen operator to establish a new screen.

All parameters of a screen are interpreted in device space, un-
affected by the current transformation matrix (CTM). For correct

results, a POSTSCRIPT program that defines a new screen must
know the resolution and orientation of device space. Further-
more, the best choice of screen parameters is often dependent on
specific physical properties of the output device itself (e.g., pixel
shape, overlap between pixels, and effects of electronic or
mechanical noise).

8A similar technique is used for rendering full color on a device whose pixels
consist of primary colors that are either completely on or completely off.

84 Chapter 4: GRAPHICS

A screen is defined by laying a uniform square grid of halftone
cells over the device pixel array. Each pixel belongs to one cell
of the grid; a cell may (and typically does) contain many device
pixels. The grid has a frequency (number of cells per inch) and

angle (orientation of the grid lines relative to the device coordi-
nate system). The setscreen operator may make slight adjust-
ments to the requested frequency and angle so as to ensure that
the patterns of enclosed pixels remain constant as the screen cells
are replicated over the entire page. The screen grid is defined
entirely in device space, unchanged by modifications to the
CTM; this property is essential for ensuring that adjacent areas
colored by halftones are properly stitched together without
'seams'.

Each cell of a screen can be made to approximate a shade of gray
by painting some of the cell's pixels black and some pixels
white. Numerically, the gray level produced within a cell is the
ratio of the cell's pixels that are white to the total number of
pixels in that cell. If a cell contains n pixels then it is capable of
rendering n+1 different gray levels: all pixels black, one pixel

white, two pixels white, ..., n-1 pixels white, all n pixels white.
A particular desired gray value g in the range 0 to 1 is produced
by making i pixels white, where i = floor(gxn).

As a cell's desired gray value varies from black to white, in-
dividual pixels in the cell change from black to white in a well-
defined sequence. If a particular gray includes certain white
pixels, lighter grays will include the same white pixels as well as

some additional ones. The order in which pixels change from
black to white for increasing gray levels is specified by a spot
function, which is defined as a POSTSCRIPT procedure.

The spot function describes the order of pixel whitening in an
indirect way that minimizes interactions with screen frequency
and angle. Consider a halftone cell to have its own coordinate
system: the center of the square is the origin and the corners are
at ±1 in x and y. In this system, each pixel in the cell is centered
at x and y coordinates that are both between —1 and 1. For each
pixel, setscreen pushes the pixel's coordinates on the operand
stack and calls the spot function procedure; the procedure must
return a single number between —1 and 1 that defines the pixel's
position in the ordering.

4.8 COLORS AND HALFTONES 85

The actual values returned by the spot function are not sig-
nificant; all that matters is the relative spot function values for
different pixels. As a cell's gray value varies from black to

white, the first pixel whitened is the one whose spot function has
the lowest value, the next pixel is the one with the next higher
spot function value, and so on. (If two pixels have the same spot
function value, setscreen chooses their relative order arbitrarily.)

There are relatively simple spot functions that define common
halftone patterns. A spot function whose value is inversely re-
lated to the distance from the center of the cell produces a 'dot
screen' in which the black pixels are clustered within a circle
whose area is inversely proportional to the gray level. An ex-
ample of such a spot function is:

{dup mul exch dup mul add 1 exch sub}

(This is not actually the inverse distance function but a simpler
one that produces values in the same order.) A spot function
whose value is the distance from a line through the center of the
cell produces a ' line screen' in which the white pixels grow
away from that line. More complex patterns are occasionally
useful, including those based on an externally-supplied mask
(see the POSTSCRIPT Language Tutorial and Cookbook for some
examples). Remember, though, that screens are defined in device
space; page descriptions that use screens for special purposes are

therefore tied to a particular device.

In principle, the POSTSCRIPT language permits defining screens
with arbitrarily large cells (i.e., arbitrarily low frequencies).
However, cells that are very large (relative to device resolution)
or are at unfavorable angles may exceed screen storage in some
POSTSCRIPT configurations; if this occurs, setscreen executes a
limitcheck error.

Transfer function

The POSTSCRIPT transfer function permits correction of gray
values to compensate for nonlinear gray-level response in an out-
put device and in the human eye. A halftone gray produced by
making n percent of the pixels white is typically not perceived as
n percent gray by the viewer. The transfer function enables ' user

86 Chapter 4: GRAPHICS

gray' values to be mapped to arbitrary 'device gray' values that
actually determine the percentage of whitened pixels per halftone
cell.

Gray levels supplied to the setgray operator by a POSTSCRIPT
program or appearing as data values in a sampled image are not
used directly but are mapped through the current transfer func-
tion. This is a POSTSCRIPT procedure that takes a numeric
operand in the range 0 to 1 and returns a result in the same range.
The settransfer operator may be used to establish a new transfer
function.

The transfer function may also be redefined to produce specific
effects. For example, the transfer function

{1 exch sub}

will invert the output image; this is useful for producing
photographic negatives. Other transfer functions may be used to
enhance or reduce contrast in a sampled image.

4.9 DEVICE SETUP AND OUTPUT

The POSTSCRIPT graphics machinery requires information about

the parameters and properties of the raster output device before it
can perform scan conversion for that device. This information
includes page dimensions, resolution, orientation, preferred
halftone screen, etc. This information is kept in the graphics state
and is established by the POSTSCRIPT device setup operators.

The setup for a particular device is usually defined as a single
POSTSCRIPT procedure that establishes all the parameters for that
device. It is unusual for a POSTSCRIPT program other than this
procedure to execute lower-level setup operators such as
framedevice, setmatrix, setscreen, settransfer, etc.

In an implementation of the POSTSCRIPT interpreter dedicated to
driving a single device, the necessary device setup is performed

automatically; in an implementation that supports several
devices, the desired device must be specified explicitly. Even in
the case of a single device, however, there are sometimes varia-
tions in device parameters (e.g., to print on different sizes of
paper).

4.9 DEVICE SETUP AND OUTPUT 87

The general strategy is that some appropriate default device is set
up automatically, but when a POSTSCRIPT program has special
needs, it can perform special device setup explicitly. Preferably,

composition programs should not embed such device setup in
page descriptions they produce, since doing so ties the page
description to a specific device. Instead, special device setup
should be added to a page description at the moment printing is
requested, at which time the identity of the specific device is

known.

A special 'null device', established by the nulldevice operator,
exists in all implementations to permit execution of a
POSTSCRIPT page description without generating any actual out-
put. This is useful for various purposes such as preloading the
font cache, determining character bounding boxes, or simply
verifying that a POSTSCRIPT program runs to completion without
error.

When a POSTSCRIPT program has completed painting all desired
marks on the current page, it must execute an output operator to
cause the contents of raster memory to be transmitted to the out-
put device. No output is ever produced unless an output operator
is executed. The usual output operator is showpage, which trans-
mits the page to the output device, resets the current page to all
white, and partially resets the graphics state in preparation for
the next page. Another operator, copypage, transmits the current
page but does not reset it, so any marks subsequently placed on
the page will be added to the ones that are already there.

88 Chapter 4 GRAPHICS

5.1 INTRODUCTION

In this chapter, we describe the special POSTSCRIPT facilities that
deal with text (more generally, with characters from fonts). As
mentioned previously, a character is defined as a general graph-
ical shape and is subject to all graphical manipulations such as
coordinate transformation. However, due to the importance of
text in most page descriptions, the POSTSCRIPT language

provides higher-level facilities that permit characters to be
described, selected, and rendered conveniently and efficiently.

We begin by giving a general description of how fonts are or-
ganized and accessed. This description covers all normal uses of
the standard fonts.

The information in subsequent sections is somewhat more com-
plex, but it is needed only by programs with sophisticated needs.
We discuss in detail the organization of font dictionaries, the
encoding scheme used to map characters to descriptions, the
metric information available for fonts, and the operation of the
font cache. Finally, we describe how user-defined fonts may be
constructed.

As usual, details of the individual POSTSCRIPT operators are not

presented here but are deferred to chapter 6.

89

5.2 ORGANIZATION AND USE OF FONTS

A font, in the POSTSCRIPT context, is a dictionary through which
the POSTSCRIPT interpreter obtains definitions that generate
character shapes. The interpreter uses a character's code to select
the definition that represents the character.

A character's definition is a procedure body that executes
graphics operations to produce the character's shape. To print a
character, the POSTSCRIPT interpreter executes this procedure.

If you have experience with scan conversion of general shapes,
you may be concerned over the amount of computation the
above description seems to imply. However, we have described
only the abstract behavior of character shapes and fonts, not how
they are actually implemented. In fact, the POSTSCRIPT font
machinery works very efficiently in normal situations.

A simple example should help to illustrate the most straightfor-
ward uses of fonts. Suppose we wish to print the text `ABC' 10
inches from the bottom of the page and 4 inches from the left
edge, using the Helvetica typeface in a 12 point size. This may
be accomplished by the following program:

/Helvetica findfont
12 scalefont setfont
288 720 moveto
(ABC) show

The first step selects the font to be used. Each POSTSCRIPT im-
plementation includes a collection of built-in standard fonts; ad-
ditional fonts may be downloaded or defined by the POSTSCRIPT
program itself. There is a dictionary that associates the names of
fonts (POSTSCRIPT name objects) with their definitions (font
dictionaries).

The findfont operator takes the font name and returns (on the
operand stack) a dictionary containing all the information that
the POSTSCRIPT interpreter needs to generate any of that font's
characters.

A font specifies the shape of its characters for one standard size.
This standard is arranged so that the height of a singly spaced

90 Chapter 51 FONTS

line of text is 1 unit. In the default user coordinate system, this
means that the standard font size is one point. Since nobody can
read one point type, the font must be scaled to be usable. (We
could scale the user coordinate system with the coordinate sys-

tem operators, but it is usually more convenient to encapsulate
the desired size in the definition of the font itself.)

The scalefont operator scales fonts without affecting the user co-
ordinate system. scalefont takes two operands: the nominal font
dictionary and the desired scale factor. It returns a new font dic-
tionary that renders character shapes in the desired size. (Another
operator, makefont, applies more complicated general transfor-
mations to a font.)

In the above example, the scalefont operator scales the Helvetica
font (obtained previously) to a 12 point size and returns it on the
operand stack. Then the setfont operator establishes that font as
the current font in the graphics state.

What we have produced is not actually a 12 point font but a 12
unit font, where the unit size is that of the user space at the time
the characters are rendered on the page. If the user space is later
scaled to make the unit size be one centimeter, printing charac-
ters from the same 12 unit font will generate results that are 12

centimeters high.

Now that we have selected a font, we may print characters from
it. The moveto operator (already mentioned in chapter 4) sets the
current position to the specified x and y coordinates; these are in
points (1/72 inch units) since we are using the default user coor-

dinate system. This determines the position on the page at which
to begin printing characters.

The show operator takes a POSTSCRIPT string from the operand
stack and prints it using the current font. More precisely, it treats

each element of the string (an integer in the range 0 to 255) as a
character code. Each code selects a character description in the
font dictionary, which is executed to render the desired character

on the page.

The above example uses POSTSCRIPT operators in a direct way.
However, it is usually desirable to define procedures to help the
application generating the text. To illustrate this point, assume

5.2 ORGANIZATION AND USE OF FONTS 91

that an application is printing many independently-positioned
text strings and requires switching frequently between three
fonts: Helvetica, Helvetica-Oblique, and Helvetica-Bold, all in a
10 point size.

% Start the prologue section.
% First make some font definitions.

% define "fnr" to be 10 pt Helvetica.
/fnr / Helvetica findfont 10 scalefont def

% define "fni" to be 10 pt Helvetica-Oblique.
/fni ' Helvetica-Oblique findfont 10 scalefont def

% define "fnb" to be 10 pt Helvetica-Bold.
/fnb /Helvetica-Bold findfont 10 scalefont def

% Define some procedures to move to a given position,
`)/0 switch fonts, and show the given character string.

,shwr { moveto fnr setfont show} def
Shwi { moveto fni setfont show} def
Shwb {moveto fnb setfont show} def

% Start the script section.

This is in Helvetica.
This is in Helvetica-Oblique.
This is in Helvetica-Bold.
And more in Helvetica.

(This is in Helvetica.) 45 292 shwr

(This is in Helvetica-Oblique.) 45 280 shwi
(This is in Helvetica-Bold.) 45 268 shwb
(And more in Helvetica.) 45 256 shwr

This example shows several things. First, it scales the required
fonts and associates them with the names `fnr, `fni', and `fnb'.
Next, it defines three procedures, each of which moves the cur-
rent point to a given position, switches to a particular font, and
shows the given string. Finally, it sets text using the procedures
defined earlier.

There are some extra facts to know about fonts. Associated with
each character is its width, the amount of space it occupies when
it appears in a line of text. In some fonts this spacing is constant,
i.e., it does not vary from character to character. These fonts are
called fixed pitch or monospaced fonts; they are used mainly for

92 Chapter 5: FONTS

typewriter-style printing. Most fonts used for high quality typog-
raphy, however, associate a different width with each character.

Such fonts are called variable pitch fonts. In either case,
POSTSCRIPT's show operator positions consecutive characters of
a string according to their widths.

The width information for each character is stored in the
POSTSCRIPT dictionary that represents the font. A POSTSCRIPT
program may access this information to obtain a character's
width, and the program may use any of several character printing
operators (show, widthshow, ashow, awidthshow, and kshow)

to obtain a variety of width modification effects. These facilities

are sufficiently powerful that a POSTSCRIPT program should
rarely need to resort to positioning each character individually.

Normal use of show and other character printing operators
causes black filled characters to be placed on the page. By com-
bining font operators with general graphics operators, one may

obtain other effects.

The color used for painting characters is actually determined by
the current color in the graphics state. The default color is black;
but other colors may be obtained by executing setgray (or some
other color setting operator) prior to printing characters. Thus,

ABC newpath 60 280 moveto
.5 setgray (ABC) show

will print characters in 50 percent gray rather than in black. (This
example and the ones below assume that an appropriate se-

quence of findfont, scalefont, and setfont has been executed
previously.)

More general graphical manipulations can be performed by treat-
ing the character outline as a path instead of immediately print-
ing it. charpath is a path construction operator that appends the
outlines of one or more characters to the current path in the

graphics state. 1

'This works only for characters that are defined as outlines. Obtaining a path
for characters defined as strokes (e.g., the Courier font) is more difficult; and
obtaining a path for characters defined as images (or bitmaps) is not possible.
Also, a path consisting of the outlines of more than a few characters is likely to
exceed the limit on number of path elements (see appendix B); if possible, it is
best to deal with only one character's path at a time.

5.2 ORGANIZATION AND USE OF FONTS 93

A,,,, ,.. ___„______-, g_ —
e- -,-- := — -_,-- — —

For example,

newpath 60 566 moveto (ABC) false charpath
2 setlinewidth stroke

obtains the outlines for the string of characters 'ABC' in the cur-
rent font and makes them be the current path in the graphics

state. (The false argument to charpath is explained in the
description of charpath in chapter 6.) It then strokes this path
with a line 2 points thick, thereby rendering the characters' out-
lines on the page.

Finally.

newpath 60 420 moveto (ABC) false charpath clip

obtains the characters' path as before, then establishes it as the
current clipping path. All subsequent painting operations will ac-

tually mark the page only within this path. This state persists
until some other clipping path is established (e.g., by grestore).

5.3 FONT DICTIONARIES

The remainder of this chapter presents more detailed information

about font definitions. You may wish to skip this material on
first reading.

Font dictionaries are ordinary POSTSCRIPT dictionary objects,
but with certain special key-value pairs. POSTSCRIPT has several
operators that deal with font dictionaries (see chapter 6). Some
of the contents of a font dictionary are optional and user-
definable, while other key-value pairs must be present and have
the correct semantics for the POSTSCRIPT font machinery to
operate properly.

94 Chapter 5: FONTS

POSTSCRIPT requires that the following key-value pairs exist in

each font dictionary:

Key Type Semantics

FontMatrix array transforms character coordinates system into the user coordinate system. The

fonts returned by findfont are assumed to be one unit high. The actual charac-
ters may be defined in some other coordinate system (the character coordinate

system) and the FontMatrix maps that system into one unit in the user coordi-

nate system. For example, built-in POSTSCRIPT fonts are usually defined in

terms of a 1000 unit character coordinate system, and their initial FontMatrix

is [0.001 0 0 0.001 0 0]. When a font is modified by the scalefont or makefont

operator, the new matrix is concatenated with the FontMatrix to yield a
transformed font.

FontType integer indicates where the information for the character descriptions is to be found
and how it is represented. User-defined fonts should have a FontType whose
value is the integer 3. See section 5.7 on user-defined fonts.

FontBBox array an array of four numbers in the character coordinate system giving lower left x,

lower left y, upper right x, and upper right y of the font bounding box. The font

bounding box is the smallest rectangle enclosing the shape that would result if

all of the characters of the font were placed with their origins coincident and
painted. This information is used in making decisions about character caching

and clipping. If all four values are zero, the POSTSCRIPT font machinery makes

no assumptions based on the font bounding box. If any value is non-zero, it is
essential that the font bounding box be accurate; if any character's marks fall

outside this bounding box, incorrect behavior may result.

Encoding array an array of 256 names that maps character codes (the array indices in the range

0 to 255) to character names (the values in the array). This is described in

section 5.4.

A font dictionary is created as a POSTSCRIPT object by ordinary
means and then is made known to the font machinery by execu-
tion of the definefont operator. definefont takes a name and a

dictionary, checks that the dictionary is a well-formed font dic-
tionary, makes the dictionary's access read-only, and associates
the font name with the dictionary in the global dictionary
FontDirectory. (It also inserts an additional entry whose name is
FID and whose value is an object of type fontID; this entry
serves internal purposes in the font machinery. For this reason, a
font dictionary presented to definefont must have room for at
least one additional key-value pair.)

5.3 FONT DICTIONARIES 95

POSTSCRIPT'S built-in fonts contain the following additional
entries:

Key Type Semantics

FontName name the font's name. This entry is for information only; it is not actually used by the
font machinery.

PaintType integer a code indicating how the characters of the font are to be painted:

0 The character descriptions are filled.

1 The character descriptions are stroked.

2 The character descriptions (designed to be filled) are outlined.

3 The character descriptions are responsible for filling or stroking (or

some combination of those operations) themselves.

Arbitrarily changing a font's PaintType will most likely have disastrous ef-
fects. The only reasonable change is from 0 (filled) to 2 (outlined).

Metrics dictionary width and side bearing information. This entry is not normally present in
built-in fonts. Adding a Metrics entry to a font overrides the widths and side
bearings encoded in the character descriptions themselves (see sections 5.5 and
5.7).

Stroke Width number stroke width (in units of the character coordinate system) for outline fonts
(PaintType 2). This field is not initially present in filled font descriptions; it

must be added when creating an outline font from an existing filled font.

FontInfo dictionary (see below)

UniquelD integer an integer in the range 0 to 16777215 (224-1) that uniquely identifies this font.

That is, every different font (or different version of the same font, regardless of
how small the difference is) should have a different value of the UniqueID

entry. This entry is not necessarily present in all fonts; but if present, it may
enable the font cache to operate more efficiently. Each FontType has its own

independent space of UniqueID values.

C h a rStri ng s dictionary associates character names (keys) with shape descriptions (values, stored in a
protected, proprietary format).

Private dictionary contains other protected information about the font.

96 Chapter 5: FONTS

The FontInfo dictionary may contain the following information.
This information is entirely for the benefit of POSTSCRIPT
programs making use of the font; it is not accessed by the

POSTSCRIPT font machinery.

Key Type Semantics

Notice string trademark or copyright notice (if applicable).

FullName string full text name of the font. (This and the next three entries are primarily for
documentation purposes. Font names are not organized in any systematic way,

nor do they have anything to do with the font keys specified to definefont and

findfont.)

FamilyName string name of the ' font family' to which it belongs.

Weight string 'weight' of the font (e.g., Bold, Medium, Light, Ultra, Heavy).

version string font version number.

ItalicAngle number angle in degrees counter-clockwise from the vertical of the dominant vertical

strokes of the font.

isFixedPitch boolean if true, indicates that the font is a fixed pitch (monospaced) font.

UnderlinePosition
number distance from the baseline for positioning underlining strokes. This number is

in units of the character coordinate system.

UnderlineThickness
number stroke width for underlining. This number is in units of the character coordinate

system.

5.4 CHARACTER ENCODING

The standard POSTSCRIPT fonts use a flexible encoding scheme
by which character codes select character descriptions. The as-
sociation between character codes and descriptions is not directly
part of the font itself but instead is described by a separate

encoding vector. User-defined fonts must provide an encoding
vector consisting of distinct names for distinct characters, but
need not actually employ it to implement character code map-

5.4 CHARACTER ENCODING 97

pings. A POSTSCRIPT page description may change a font's en-
coding vector to match the requirements of the application
generating the description.

In a font dictionary, the descriptions of the individual characters
(in the CharStrings dictionary) are keyed by character names,

not by character codes. Character names are ordinary
POSTSCRIPT name objects. Alphabetic characters are normally
associated with names consisting of single letters such as 'A' or
'a'. Other characters are associated with names composed of
words such as 'three', 'ampersand', or `parenleff.

The encoding vector is defined by a 256-element POSTSCRIPT
array object. The array is indexed by character code (an integer
in the range 0 to 255). The elements of the array are character
names.

The operand to the show operator is a POSTSCRIPT string object.
Each element of the string is treated as a character code. When
show prints a character, it first uses the character code as an
index into the current font's encoding vector to obtain a char-
acter name. Then it looks up the name in the font's CharStrings
dictionary to obtain a character description, which it proceeds to
execute.

For example, in the standard encoding vector (used by built-in
text fonts such as Helvetica), the element at index 97 is the
POSTSCRIPT name object 'a'. When show encounters the value
97 (the ASCII character code for 'a') as an element of a string it is
printing, it fetches the encoding vector entry at index 97, obtain-
ing the name object 'a'. It then uses 'a' as a key in the current
font's CharStrings dictionary and executes the associated
description, which produces a rendition of the 'a' letterform.

Changing an existing font's encoding simply involves creating a
new font dictionary which is a copy of the existing one except
for its Encoding entry. (The embedded dictionaries, such as
CharStrings and FontInfo, continue to be shared with the
original font.) Of course, a new user-defined font may be created
with any desired encoding vector.

This flexibility in character encoding is valuable for two reasons.
First, it permits printing text encoded in character sets other than

98 Chapter 5: FONTS

ASCII (e.g., EBCDIC). Second, it allows applications to specify
how characters outside a standard character set are to be en-
coded. Some fonts contain more than 256 characters: they in-

clude ligatures, accented characters, and other symbols required
for high-quality typesetting or foreign languages. There is no ex-
isting standard that specifies how to encode such characters; the
POSTSCRIPT language leaves this choice to be made by the

programmer.2

The encoding vector used by most standard text fonts is associ-
ated with the name StandardEncoding in systemdict. Complete
details of the standard encoding and of the characters present in

standard fonts appear in appendix A.

All unused positions in an encoding vector are filled with the

name `.notder. Printing one of these unused characters produces
no marks on the page, but has a small character width.

5.5 FONT METRIC INFORMATION

 bounding
box

character
origin

->1 N-
U side
bearing

Li- character width

The character coordinate system is the system in which an
individual character shape is defined. The origin (or reference

point) of the character is the point (0, 0) in the character coordi-
nate system. show and other character printing operators position

the origin of the first character shown at the current point in user
space. For example, in the POSTSCRIPT sequence

next 40 50 moveto (ABC) show
character

origin the origin of the 'A' is placed at coordinate (40, 50) in the user

coordinate system.

The width of a character is the distance from the character's
origin at which the origin of the next character should normally
be placed when printing consecutive characters of a word. This

distance is a vector in the character coordinate system: it has x
and y components. (Most Indo-European alphabets, including

21n Adobe-provided POSTSCRIPT font descriptions, the accented characters are
composite, meaning that they are composed of two or more other characters
(e.g., a letter and an accent) defined in the same font. If an encoding vector
includes the name of a composite character, it must also include the names of
the components of that character.

5.5 FONT METRIC INFORMATION 99

Roman, have a positive x width and a zero y width; Semitic al-
phabets have a negative x width; some Oriental alphabets have a
non-zero y width.)

The hounding box of a character is the smallest rectangle
(oriented with the coordinate system axes) that will just enclose

the entire character's shape. The bounding box is expressed in
terms of its lower left comer and upper right comer relative to
the character origin in the character coordinate system.

The left side bearing of a character is the distance from the

character's origin to the left edge of the character bounding box.
Note that this distance may be negative for characters that extend
to the left of their origin. Built-in fonts are defined in such a way
that a character's left side bearing can be adjusted; that is, the
character bounding box can be shifted around relative to the
origin (see section 5.7).

Character metric information for built-in fonts may be accessed
procedurally by a POSTSCRIPT program. The stringwidth
operator may be used to obtain character widths. The sequence

charpath flattenpath pathbbox

may be used to determine character bounding boxes and side
bearings. The font bounding box appears in the font dictionary as
an array of four numbers associated with the key FontBBox.

Character width information is also available separately in the

form of font metrics files. These files are for use by application
programs that generate POSTSCRIPT page descriptions and that
must make formatting decisions based on the widths (and other
metrics) of characters. Kerning information is also available
separately.

A POSTSCRIPT program may change the metrics of the fonts it
uses by means that are described in section 5.7.

1 00 Chapter 5: FONTS

5.6 FONT CACHE

The POSTSCRIPT font machinery includes a data structure called
the font cache whose purpose is to make the process of printing
characters very efficient. For the most part, operation of the font
cache is automatic. However, there exist several operators that
control the behavior of the font cache. Additionally, user-defined
fonts must adhere to certain conventions in order to take advan-
tage of the font cache.

As mentioned in section 5.2, rendering a character from an out-
line (or other high-level description) is a relatively costly opera-
tion, since it involves performing scan conversion of arbitrary
shapes. This presents special problems for printing text, since it
is common for several thousand characters to appear on a single
page.

However, a page description that includes large amounts of text
normally has many repetitions of the same character in a given
font, size, and orientation. The number of distinct characters is
very much smaller than the total number of characters.

The font cache operates by saving the results of character scan
:onversions (including metric information and device pixel
arrays) in temporary storage and using those saved results when
the same character is requested again. The font cache is large
enough to accomodate all the distinct characters in most page
descriptions. Printing a character that is already in the font cache
is typically a thousand times faster than scan converting it from
the character description in the font.

The font cache does not retain color information; it remembers
only which pixels were painted and which pixels were left un-
changed within the character's bounding box. For this reason,
there are a few restrictions on the set of graphical operators that

may be executed as part of character descriptions that are to be
cached. In particular, the image operator is not permitted;
however, imagemask may be used to define a character accord-
ing to a bitmap representation (see section 4.7).

The principal manifestation of font caching visible to the
POSTSCRIPT programmer is that printing a character does not

5.6 FONT CACHE 101

necessarily result in the character's description being executed.
This means that user-defined fonts must interact with the font
cache machinery so that the results of their execution are
properly saved. This is described in the next section.

Cache parameters

Two thresholds, a lower and an upper one, effect the character

cache by specifying the number of bytes which may be occupied
by a character in the cache. If a character is larger than the upper
threshold (as determined by the bounding box specified to
setcachedevice), it will not be cached; otherwise it will be. If it
is cached and is larger than the lower threshold, it will be
compressed3); otherwise it will be stored as a full pixel array.

The two thresholds are manipulated by the operators
setcacheparams and currentcacheparams. The operators
cachestatus and setcachelimit can manipulate the threshold for
uncompressed characters. It is a rare POSTSCRIPT program that
needs to deal with these operators.

Compressed characters consume much less space in the font
cache than full pixel arrays (by factors of up to 40), but require
more computation to reconstitute when they are needed.
Reconstituting a compressed character is still substantially faster
than re-executing the original character description. In systems

printing at 300 pixels per inch or less, the default lower threshold
is set so that characters up to about 20 points are stored as full
pixel arrays while larger ones are stored in compressed form.

This causes ordinary body text to be cached using the time-
efficient full pixel array representation but large characters to be
cached using the space-efficient compressed representation.

5.7 USER-DEFINED FONTS

User-defined fonts are created in two ways: by copying an exist-
ing font and modifying certain things in it or by defining a new
font from scratch.

3Compressed characters and the setcacheparams and currentcacheparams
operators are not present in Adobe POSTSCRIPT implementations prior to
version 25.0.

102 Chapter 5: FONTS

Changing things

The most common modification to an existing font consists of
installing a different encoding vector, as discussed in section 5.4.
The way to make this change is as follows.4

First, make a copy of the font dictionary including all entries
except the one whose name is FID. In this example, we copy the
Helvetica font dictionary and temporarily associate it with the
name' newdict':

/Helvetica findfont
dup length dict inewdict exch def

{1 index / FID ne
{newdict 3 1 roll put}
{pop pop}

ifelse
1 forall

Second, install the the desired changes. Suppose we wish to in-

stall an entirely new encoding vector for the EBCDIC character
set. Assuming that the name ` EbcdicEncoding' is already associ-
ated with such an encoding vector (a 256-element array), we
simply say:

newdict /Encoding EbcdicEncoding put

Finally, register this modified font under some new name, for
example, ' E-Helvetica':

/E-Helvetica newdict definefont pop

It is possible to change a built-in font's metric information
(character widths and side bearings) on a per-character basis.
However, some words of caution are in order. Determining
pleasing and correct character spacing is a difficult and laborious
art that requires considerable skill. A font's character shapes
have been designed with certain metrics in mind; changing those
metrics haphazardly will almost certainly produce poor results.

The procedure for changing a built-in font's metrics is to add a
Metrics entry to the font dictionary; the value of this entry
should be another dictionary containing new metric information.

4See the POSTSCRIPT Language Tutorial and Cookbook for some fully worked
out examples.

5.7 USER DEFINED FONTS 103

The Metrics dictionary consists of entries in which the keys are
character names (as they appear in the CharStrings dictionary

and Encoding array); the values of these entries take various
forms. Entries in the Metrics dictionary override the normal
metrics for the corresponding characters. An entry's value may

be one of the following:

• a single number, indicating a new x width only (the y value
is zero);

• an array of two numbers, indicating new left side bearing
and new x width (the y values are zero);

• an array of four numbers, indicating true vectors (both x
and y components) for left side bearing and width.

All of these values are in the character coordinate system of the

font.

In the following example, we make a copy of the Helvetica font

and then change the widths of the digits ' 0' through '9'. First, we
copy the existing font dictionary except for the FID entry, just as
in the preceding example; however, we must also leave room in
the new dictionary for the Metrics entry that we are adding:

/Helvetica findfont
dup length 1 add dict /newdict exch def

{1 index /FID ne
{newdict 3 1 roll put}
{pop pop}

if else
} forall

Next, we create the Metrics dictionary, insert the desired values
into it, and insert it into the font dictionary. Here, we set the x
width of all digits to 700 (remember we are in the character coor-
dinate system, which for built-in fonts is usually on a 1000-unit

scale).

10 dict begin
[/zero /one /two /three /four
/five /six /seven /eight /nine]
{700 def} forall

newdict /Metrics currentdict put
end

104 Chapter 5: FONTS

Finally, we register the modified font under some new name, for
example, My-He Ivetica":

/My-Helvetica newdict definefont pop

Building a new font

User-defined fonts must be carefully constructed; POSTSCRIPT
assumes that such fonts will be reasonably well-behaved. As
mentioned above, a user-defined font must contain the man-
datory entries described in section 5.3 and must have a
FontType value of 3. Additionally, it must contain a procedure
named BuildChar.

When a POSTSCRIPT program tries to print a character of a user-
defined font and the character is not already present in the font

cache, the font machinery pushes the current font dictionary and
the character's code (an integer) on the operand stack and ex-
ecutes the font's BuildChar procedure. BuildChar must use the
information at hand to construct the requested character. This
typically involves determining the character definition needed,
supplying character metric information, constructing the charac-
ter shape, and painting it.

BuildChar is called within the confines of a gsave and a
grestore, so any changes BuildChar makes to the graphics state
do not persist after it finishes. Each call to BuildChar is inde-
pendent of any other call. Because of the effects of font caching,
no assumptions may be made about the order in which character
descriptions will be executed.

When BuildChar gets control, the current transformation matrix
(CTM) is the concatenation of the font matrix (FontMatrix in
the current font dictionary) and the CTM that was in effect at the
time the font machinery was invoked (the user coordinate

system). This means that shapes described in the character coor-
dinate system will be transformed into the user coordinate sys-
tem and will appear in the appropriate size and orientation on the
page. BuildChar should describe the character in terms of ab-
solute coordinates in the character coordinate system, placing the
character origin at (0, 0) in this space; in particular, it should
make no assumptions about the initial value of the current point
parameter.

5.7 USER- DEFINED FONTS 105

Before executing the graphics operators that describe the char-
acter, BuildChar must execute either the setcachedevice or the
setcharwidth operator. These operators pass width and bound-
ing box information to POSTSCRIPT's font machinery, and
setcachedevice additionally requests POSTSCRIPT to save the
result in the font cache if possible. (See the descriptions of
setcachedevice and setcharwidth in chapter 6 for more
information.)

After executing one of these operators, BuildChar should ex-
ecute a sequence of graphics operators, ordinarily path construc-
tion and painting operators. The POSTSCRIPT font machinery
transfers the results both into the font cache (if appropriate) and
onto the page at the correct position. It also uses the width infor-

mation to control the spacing between this character and the
next. (Note that the final position of the current point in the char-
acter coordinate system has no bearing on character spacing.)

Here is a small example of a user-defined font with only two
characters, a filled square and a filled triangle, selected by the
characters 'a' and '1)'. The character coordinate system is on a
1000 unit scale. This is not a realistic example, but it does il-
lustrate all the elements of a user-defined font, including a
BuildChar procedure, an encoding vector, and a subsidiary dic-
tionary for the individual character definitions.

/newfont 10 dict def

newfont begin

/FontType 3 def % Required elements of font

/FontMatrix [. 001 0 0 . 001 0 0] def

/FontBBox [0 0 1000 1000] def

/Encoding 256 array def cY,:, Trivial encoding vector

0 1 255 { Encoding exch /. notdef put} for

Encoding 97 /square put % ASCII a' = 97

Encoding 98 /triangle put % ASCII b' = 98

106 Chapter 5: FONTS

MAZAZA

/CharProcs 3 dict def

CharProcs begin

/.notdef {} def

/square

(0 0 moveto 750 0 lineto 750 750 lineto
0 750 lineto closepath fill) def

/triangle

{0 0 moveto 375 750 lineto 750 0 lineto
closepath fill} def

end

/BuildChar

{1000 0

0 0 750 750

setcachedevice

exch begin

Encoding exch get

CharProcs exch get

end

exec

}clef

end

/ExampleFont newfont definefont

% Subsidiary dictionary for

% individual character definitions

% of CharProcs

% Stack contains: font char

°A Width

% Bounding box

% i.e., font begin

% Index by char in Encoding

% Look up name in CharProcs

% Execute character procedure

% of newfont

pop

% Now show some characters in a 12 point size

/ExampleFont findfont 12 scalefont setfont

74 240 moveto (ababab) show

5.7 USER-DEFINED FONTS 107

CHAPTER 6

OPERATORS

6.1 INTRODUCTION

This chapter contains detailed information about all the standard
operators in the POSTSCRIPT language. It is divided into two
parts.

First, there is a summary of the operators, organized into groups
of related functions. The summary is intended to assist in locat-
ing the operators needed to perform specific tasks.

Second, there are detailed descriptions of all the operators, or-
ganized alphabetically by operator name. Each operator descrip-
tion is presented in the following format:

operator operandi operand2 operando operator result, ... resultm

Detailed explanation of the operator

EXAMPLE:

An example of the use of this operator. The symbol '

designates values left on the operand stack by the example.

ERRORS:

A list of the errors that this operator might execute

SEE ALSO:

A list of related operator names

109

At the head of an operator description, operand' through
operando are the operands that the operator requires, with

operando being the topmost element on the operand stack. The
operator pops these objects from the operand stack and con-
sumes them. After executing, the operator leaves the objects
result, through resuitm on the stack, with resem being the top-
most element.

Normally the operand and result names suggest their types. For
example, num indicates that the operand or result is a number, int
indicates an integer number, any indicates a value of any type,
and proc indicates a POSTSCRIPT procedure (i.e., an executable
array or executable packed array). The notation'boo/lint' in-
dicates a value that is either a boolean or an integer. Names
representing numbers sometimes suggest their purpose, e.g., x, y,
or angle. A matrix is an array of six numbers describing a trans-
formation matrix (see section 4.4). A font is a dictionary con-
structed according to the rules for font dictionaries (see section
5.3).

The notation indicates the bottom of the stack. The notation
`—' in the operand position indicates that the operator expects no
operands, and a `---' in the result position indicates that the
operator returns no results.

The documented effects on the operand stack and the possible
errors are those produced directly by the operator itself. Many
operators cause arbitrary POSTSCRIPT procedures to be invoked.
Obviously, such procedures can have arbitrary effects that are
not mentioned in the operator descriptions.

1 1 0 Chapter 6 OPERATORS

6.2 OPERATOR SUMMARY

Operand stack manipulation operators

any

anyi any2

any

any,..anyn n

anyn..any, n

an-r•ao n
anyi..anyn

anyi..anyn

mark obji..objn

mark obji..objn

pop

exch

dup

copy

index anyn..anyo anyn

roll a(-1) mod n"a0 an-1 „al mod n
clear H

count H anyi..anyn n

mark mark

cleartomark —

counttomark mark obji..objn n

any2 anyi

any any

any,..anyn anyi..anyn

Arithmetic and math operators

num num2 add sum

numi num2 div quotient

inti int2 idiv quotient

inti int2 mod remainder

num num2 MUI product

num num2 sub difference

num 1 abs num2

num1 neg num2

numi ceiling num2

num1 floor num2

numi round num2

numi truncate num2

num sqrt real

num den atan angle

angle cos real

angle sin real

base exponent exp real

num In real

num log real

- rand int

int srand

- rrand int

discard top element 205

exchange top two elements 161

duplicate top element 158

duplicate top n elements 139

duplicate arbitrary element 183

roll n elements up / times 217

discard all elements 135

count elements on stack 141

push mark on stack 195

discard elements down through mark 135

count elements down to mark 142

num, plus num2 123

num, aivided by num2 158

integer divide 178

int mod int2 196

numi times num2 197

num minus num2 245

absolute value of num, 123

negative of num, 198

ceiling of num, 134

floor of num, 167

round num, to nearest integer 218

remove fractional part of num, 250

square root of num 239

arctangent of num/den in degrees 129

cosine of angle (degrees) 140

sine of angle (degrees) 238

raise base to exponent power 164

natural logarithm (base e) 191

logarithm (base 10) 192

generate pseudo-random integer 209

set random number seed 239

return random number seed 219

6.2 OPERATOR SUMMARY 111

Array operators

int

mark objc..obj„ .1

array

array index

array index any

array index count

array array

[mark

] array

length int

get any

put —

getinterval subarray

arrayi index array, putinterval —

array

anyo..any,_, array

arrayi array,

abad a0 an-1 array
"

astore array

copy subarray2

array proc forall —

Packed Array operators

anyo..anyn_i n packedarray packedarray

— currentpacking bool

bool setpacking —

packedarray length int

packedarray index get any

packedarray index count getinterval subarray

packedarray abad ao..an_i packedarray

packedarray, array, copy subarray,

packedarray proc forall —

create array of length int 128

start array construction 121

end array construction 121

number of elements in array 190

get array element indexed by index 174

put any into array at index 207

subarray of array starting at index for count

elements 175

replace subarray of array, starting at index

by array2 208

push all elements of array on stack 123

pop elements from stack into array 129

copy elements of array, to initial subarray

of array2 139

execute proc for each element of

array 171

create packed array consisting of the

specified n elements 202

return array packing mode 148

set current array packing mode for '(y

syntax (true = packedarray) 235

number of elements in packedarray 190

get packedarray element indexed by

index 174

subarray of packedarray starting at index

for count elements 175

push all elements of packedarray on

stack 123

copy elements of packedarray, to initial

subarray of array, 139

execute proc for each element of

packedarray 171

112 Chapter 6: OPERATORS

Dictionary operators

int dict dict

dict

dict

dict
—

length int

maxlength int

begin —

end —

key value def —

key load value

key value

dict key

dict key value

dict key

key

dicti dict2

dict proc

—

—

—

—

—

array

store —

get any

put —

known bool

where dict true

or false

copy dict2

forall —

errordict dict

systemdict dict

userdict dict

currentdict dict

countdictstack int

dictstack subarray

String operators

int

string

string index

string index int

string index count

stringi index string2

stringi string2

string proc

string string

length int

get int

put —

getinterval substring

putinterval —

copy substring2

torah l —

string seek anchorsearch post match true

or string false

string seek search post match pre true

or string false

string token post token true

or false

create dictionary with capacity for int

elements 156

number of key-value pairs in did 190

capacity of dict 196

push dict on dict stack 132

pop dict stack 159

associate key and value in current

dict 155

search dict stack for key and return associ-

ated value 192

replace topmost definition of key 242

get value associated with key in dict 174

associate key with value in dict 207

test whether key is in dict 188

find dict in which key is defined 255

copy contents of dict, to dict2 139

execute proc for each element of dict 171

push errordict on operand stack 161

push systemdict on operand stack 246

push userdict on operand stack 253

push current dict on operand stack 143

count elements on dict stack 141

copy dict stack into array 157

create string of length int 243

number of elements in string 190

get string element indexed by index 174

put int into string at index 207

substring of string starting at index for

count elements 175

replace substring of string, starting at index

by string2 208

copy elements of string, to initial substring

of string2 139

execute proc for each element of

string 171

determine if seek is initial substring of

string 124

search for seek in string 223

read token from start of string 248

6.2 OPERATOR SUMMARY 113

Relational, boolean, and bitwise operators

any, any2 eq bool test equal 160

any, any2 ne bool test not equal 197

numilstr, num2Istr2 ge bool test greater or equal 173

numllstr1 num2Istr2 gt bool test greater than 177

num1lstr1 num2 Istr2 le bool test less or equal 190

numilstr, num2istr2 It bool test less than 193

booyint, bool2lint2 and booyint3 logical I bitwise and 124

booyint, not bool2lint2 logical I bitwise not 200

boot, lint, bool2lint2 or bool3lint3 logical l bitwise inclusive or 202

booyint, bool2lint2 xor bool3lint3 logical I bitwise exclusive or 258

— true true push boolean value true 250

— false false push boolean value false 165

int, shift bitshift int2 bitwise shift of inti (positive is left) 133

Control operators

any exec — execute arbitrary object 162

bool proc if — execute proc if bool is true 179

bool proc, proc2 ifelse — execute proci if bool is true, proc2 if boot is

false 180

mit incr limit proc for — execute proc with values from hit by steps

of incr to limit 170

int proc repeat — execute proc int times 214

proc loop — execute proc an indefinite number of

times 193

— exit — exit innermost active loop 164

- stop — terminate stopped context 241

any stopped bool establish context for catching stop 242

— countexecstack int count elements on exec stack 141

array execstack subarray copy exec stack into array 162

— quit — terminate interpreter 209

— start — executed at interpreter startup 240

114 Chapter 6: OPERATORS

Type, attribute, and conversion operators

any

any

any

any

arraylpackedarrayifilelstring

arraylpackedarrayldictifilelstring

arraylpackedarrayldictifilelstring

arraylpackedarrayldictifilelstring

arraylpackedarrayldictifilelstring

numlstring

string

type name return name identifying anys type 251

cvlit any make object be literal 151

cvx any make object be executable 154

xcheck bool test executable attribute 257

executeonly arraylpackedarraylfileistring

reduce access to execute-only 163

noaccess arraylpackedarrayldictlfilelstring

disallow any access 199

readonly arraylpackedarrayldictlfilelstring

reduce access to read-only 212

test read access 210

test write access 255

convert to integer 151

convert to name 152

convert to real 152

convert to string with radix 153

convert to string 154

rcheck bool

wcheck bool

cvi int

cvn name

numlstring cvr real

num radix string cvrs substring

any string cvs substring

File operators

string, string2 file file

file

file

file int

file string

file string

file string

file string

file string

file

file

file

file

file

string

string

any

closefile —

read int true

or false

write —

readhexstring substring bool

writehexstring —

readstring substring bool

writestring —

readline substring bool

token token true

or false

bytesavailable int

flush —

flushfile —

resetfile —

status bool

run —

currentfile file

print —

= —

any, any, stack H any, any,

any == —

open file identified by stringi with access

string2 165

close file 137

read one character from file 210

write one character to file 256

read hex from file into string 211

write string to file as hex 257

read string from file 213

write string to file 257

read line from file into string 212

read token from file 248

number of bytes available to read 133

send buffered data to standard output

file 168

send buffered data or read to EOF 168

discard buffered characters 214

return status of file 241

execute contents of named file 219

return file currently being executed 144

write string to standard output file 205

write text representation of any to standard

output file 122

print stack nondestructively using = 239

write syntactic representation of any to

standard output file 122

6.2 OPERATOR SUMMARY 115

anyi anyn pstack anyi anyn

— prompt —

bool echo -

Virtual memory operators

— save save

save restore —

— vmstatus level used maximum

Miscellaneous operators

proc bind proc

— null null

— usertime int

- version string

Graphics state operators

num

int

int

num

array offset

num

num

gsave —

grestore —

grestoreall —

initgraphics —

setlinewidth —

currentlinewidth num

setlinecap —

currentlinecap int

setlinejoin —

currentlinejoin int

setmiterlimit —

currentmiterlimit num

setdash —

currentdash array offset

setflat —

currentflat num

setgray —

— currentgray num

hue sat brt sethsbcolor —

— currenthsbcolor hue sat brt

red green blue setrgbcolor

- currentrgbcolor red green blue

freq angle proc setscreen

- currentscreen freq angle proc

print stack nondestructively using == 206

executed when ready for interactive

input 206

turn on/off echoing 159

create VM snapshot 220

restore VM snapshot 215

report VM status 254

replace operator names in proc by

operators 132

push null on operand stack 200

return time in milliseconds 253

interpreter version 253

save graphics state 177

restore graphics state 176

restore to bottommost graphics state 176

reset graphics state parameters 184

set line width 233

return current line width 147

set shape of line ends for stroke (0=butt,

1=round, 2=square) 231

return current line cap 146

set shape of corners for stroke (0=miter,

1=round, 2=bevel) 232

return current line join 146

set miter length limit 234

return current miter limit 147

set dash pattern for stroking 228

return current dash pattern 143

set flatness tolerance 229

return current flatness 145

set color to gray value from 0 (black) to 1

(white) 230

return current gray 145

set color given hue, saturation,

brightness 230

return current color hue, saturation,

brightness 146

set color given red, green, blue 236

return current color red, green, blue 149

set halftone screen 236

return current halftone screen 149

116 Chapter 6: OPERATORS

proc settransfer — set gray transfer function 237

— currenttransfer proc return current transfer function 149

Coordinate system and matrix operators

matrix matrix create identity matrix 195

— initmatrix — set CTM to device default 185

matrix identmatrix matrix fill matrix with identity transform 178

matrix defaultmatrix matrix fill matrix with device default matrix 155

matrix currentmatrix matrix fill matrix with CTM 147

matrix setmatrix — replace CTM by matrix 233

tx ty translate — translate user space by (tx, y 249

tx ty matrix translate matrix define translation by (tx, ty) 249

Sx Sy scale — scale user space by sx and sy 221

sx sy matrix scale matrix define scaling by sx and sy 221

angle rotate rotate user space by angle degrees 218

angle matrix rotate matrix define rotation by angle degrees 218

matrix concat — replace CTM by matrix x CTM 138

matrix, matrix, matrix, concatmatrix matrix, fill matrix3 with matrixi x matrix2 138

x y transform x' y' transform (x, y) by CTM 249

x y matrix transform x' y' transform (x, y) by matrix 249

dx dy dtransform dx' dy' transform distance (dx, dy) by CTM 158

dx dy matrix dtransform dx' dy' transform distance (dx, dy) by matrix 158

x' y' itransform x y inverse transform (x', y') by CTM 187

x' y' matrix itransform x y inverse transform (x', y') by matrix 187

dx' dy' idtransform dx dy inverse transform distance (dx', dy) by
CTM 179

dx' dy' matrix idtransform dx dy inverse transform distance (dx', dy) by
matrix 179

matrix, matrix, invertmatrix matrix, fill matrix2 with inverse of matrixi 186

6.2 OPERATOR SUMMARY 117

Path construction operators

-
-
x y

dx dy

x y

dx dy

x y r ang, ang2

x y r angi ang2

xi y, x2 y2 r

xi yi x2 y2 x3 y3

dxi dyi dx2 dy2 dx3 dy3

—

newpath —

currentpoint x y

moveto —

rmoveto —

lineto —

rlineto —

arc —

arcn —

arcto xti yti xt2 yt2

curveto —

rcurveto —

closepath —

— flattenpath —

— reversepath —

strokepath —

string bool charpath —

— clippath —

— pathbbox 11› Ily urx ury

move line curve close pathforall —

— initclip —

clip —

eoclip —

Painting operators

— erasepage

— fill —

— eofill —

— stroke —

width height bits/sample matrix proc image —

-

width height invert matrix proc imagemask —

Device setup and output operators

—

—

matrix width height proc

matrix width height proc

—

proc

showpage —

copypage —

banddevice

framedevice

nulldevice —

renderbands —

-
-

initialize current path to be empty 198

return current point coordinate 148

set current point to (x, y) 197

relative moveto 216

append straight line to (x, y) 191

relative lmeto 216

append counterclockwise arc 125

append clockwise arc 126

append tangent arc 127

append Bezier cubic section 150

relative curveto 210

connect subpath back to its starting

point 138

convert curves to sequences of straight

lines 167

reverse direction of current path 215

compute outline of stroked path 245

append character outline to current

path 135

set current path to clipping path 137

return bounding box of current path 203

enumerate current path 204

set clip path to device default 183

establish new clipping path 136

clip using even-odd inside rule 159

paint current page white 161

fill current path with current color 166

fill using even-odd rule 160

draw line along current path 244

render sampled image onto current

page 181

render mask onto current page 182

output and reset current page 238

output current page 140

install band buffer device 131

install frame buffer device 172

install no-output device 201

enumerate bands for output to device 213

118 Chapter 6: OPERATORS

Character and font operators

key font

key

font scale

definefont font

findfont font

scalefont font'

font matrix makefont font'

font

—

string

ax ay string

setfont —

currentfont font

show —

ashow —

c. cy char string widthshow —

cx cy char a. ay string awidthshow —

proc string kshow —

string

—

—

stringwidth wx wy

FontDirectory dict

StandardEncoding

Font cache operators

— cachestatus

w wy IIx II ur ur x y x y

W x W Y

rIUM

mark lower upper

—

setcachedevice

setcharwidth

setcachelimit

setcacheparams —

currentcacheparams

register font as a font dictionary 156

return font dict identified by key 166

scale font by scale to produce new

font' 222

transform font by matrix to produce new
font' 194

set font dictionary 229

return current font dictionary 145

print characters of string on page 237

add (ax, ay) to width of each char while

showing string 128

add (c., cy) to width of char while showing

string 256

combine effects of ashow and

widthshow 130

execute proc between characters shown

from string 189

width of string in current font 243

dictionary of font dictionaries 169

array standard font encoding vector 240

bsize bmax msize mmax csize cmax blimit

return cache status and parameters 134

— declare cached character metrics 224

— declare urcached character metrics 227

— set max bytes in cached character 225

set character cache parameters 226

mark lower upper

return current font cache parameters 142

6.2 OPERATOR SUMMARY 119

Errors

dictfull no more room in dictionary 156

dictstackoverflow too many begins 157

dictstackunderflow too many ends 157

execstackoverflow exec nesting too deep 163

handleerror called to report error information 178

interrupt external interrupt request (e.g., ^C) 185

invalidaccess attempt to violate access attribute 185

invalidexit exit not in loop 186

invalidfileaccess unacceptable access string 186

invalidfont invalid font name or dict 186

invalidrestore improper restore 186

ioerror input/output error occurred 187

limitcheck implementation limit exceeded 191

nocurrentpoint current point is undefined 199

rangecheck operand out of bounds 209

stackoverflow operand stack overflow 239

stackunderflow operand stack underflow 240

syntaxerror syntax error in POSTSCRIPT program 246

timeout time limit exceeded 247

typecheck operand of wrong type 251
undefined name not known 252

undefinedfilename file not found 252

undefinedresult over/underflow or meaningless result 252

unmatchedmark expected mark not on stack 252

unregistered internal error 253

VMerror VM exhausted 254

120 Chapter 6: OPERATORS

6.3 OPERATOR DETAILS

— [mark

pushes a mark object on the operand stack (see mark). The customary

use of the f operator is to mark the beginning of an indefinitely long
sequence of objects that will eventually be formed into a new array

object by the T operator. (See the discussion of the syntax in sec-

tion 3.3 and of array construction in section 3.8.)

ERRORS:

stackoverflow

SEE ALSO:

h mark, array, astore

mark objo obj n.i] array

creates a new array of n elements, where n is the number of elements

above the topmost mark on the operand stack, stores those elements

into the array, and returns the array on the operand stack. The T

operator stores the topmost object from the stack into element n-1 of
array and the bottommost one (the one immediately above the mark)

into element 0 of array. It removes all the array elements from the

stack, as well as the mark object.

EXAMPLE:
[5 4 3] % a 3-element array, with elements 5, 4, 3
mark 5 4 3 counttomark array astore exch pop = [5 4 3]
[1 2 add] % a 1-element array, with element 3

The second line of the example has precisely the same effect as the first

but uses lower-level array and stack manipulation primitives instead of

`E' and T.

In the last line of the example, note that the POSTSCRIPT interpreter acts
on all the array elements as it encounters them (unlike its behavior with

the syntax for executable array construction), so the add operator

is executed before the array is constructed.

ERRORS:

unmatchedmark, VMerror

SEE ALSO:

[, mark, array, astore

] 121

= any = —

pops an object from the operand stack, produces a text representation of
that object's value, and writes the result to the standard output file. The

text is that produced by the cvs operator; thus, `=' prints the value of a

number. boolean, string, name, or operator object and prints
`—nostringval--' for an object of any other type.

The name `=' is in no way special; thus, in PosTScRivr programs it
must be delimited by white space or special characters just the same as

names composed of alphabetics. The value of `=' is not actually an
operator but a built-in POSTSCRIPT procedure.

ERRORS:

stackundernow

SEE ALSO:

==, stack, cvs, print

== any == —

pops an object from the operand stack, produces a text representation of

that object, and writes the result to the standard output file. `==' at-
tempts to produce a result that resembles the POSTSCRIPT syntax for
creating the object. Thus, it precedes literal names by 'I', brackets
strings with `(...)', and expands the values of arrays and packed arrays
and brackets them with `[...]' or `{...}'. For an object with no printable

representation, ==' produces the name of its type in the form

`-marktype-' or `-dicttype-'. For an operator object, it produces the
operator's name in the form ̀ --add—'.

The name `==' is in no way special; thus, in POSTSCRIPT programs it

must be delimited by white space or special characters just the same as
names composed of alphabetics. The value of `==' is not actually an
operator but a built-in POSTSCRIPT procedure.

ERRORS:

stackundernow

SEE ALSO:

=, print, pstack

122 -= l ==

abs num abs num2

returns the absolute value of num i. The type of the result is the same as

the type of num (unless nun, is the most negative integer, in which

case the result is a real).

EXAMPLE:
4.5 abs 4.5
—3 abs = 3
O abs

ERRORS:

stackunderflow, typecheck

SEE ALSO:

neg

add num num2 add sum

returns the sum of num i and num2. If both operands are integers and the

result is within integer range, the result is an integer; otherwise, the

result is a real.

EXAMPLE:
3 4 add 7
9.9 1.1 add 11.0

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:

div, mul, sub, idiv, mod

abad array abad array° arrayn_i array
packedarray abad packedarrayo packedarrayn_i packedarray

successively pushes all n elements of array or packedarray on the

operand stack (where n is the length of the argument), and finally

pushes the argument itself.

EXAMPLE:
[23 (ab) -6] atoad = 23 (ab) -6 [23 (ab) -6]

ERRORS:

invalidaccess, stackoverflow, stackunderflow, typecheck

SEE ALSO:

astore, get, getinterval

abs I abad 123

anchorsearch string seek anchorsearch if found: post match true
if not found: string false

determines whether the string seek matches the initial substring of
string (that is, string is at least as long as seek and the corresponding
characters are equal). If so, anchorsearch splits string into two seg-

ments: match, the portion of string that matches seek, and post, the
remainder of string; it then pushes the string objects post and match

and the boolean true. If not, it pushes the original string and the
boolean false. anchorsearch is a special case of the search operator.

EXAMPLE:
(abbc) (ab) anchorsearch (bc) (ab) true
(abbc) (bb) anchorsearch (abbc) false
(abbc) (bc) anchorsearch (abbc) false
(abbc) (B) anchorsearch (abbc) false

ERRORS:

invalidaccess, stackoverflow, stackunderflow, typecheck

SEE ALSO:
search, token

and booli bool2 and bool3
inti int2 and int3

If the operands are booleans, and returns their logical conjunction. If
the operands are integers, and returns the bitwise 'and' of their binary
representations.

EXAMPLE:
true true and true
true false and false
false true and false
false false and false

99 1 and 1
52 7 and 4

ERRORS:

stackunderflow, typecheck

SEE ALSO:
or, xor, not, true, false

% a complete truth table

124 anchorsearch and

second
endpoint

ang2,

;(4,'y

0,0

current
point

first
endpoint

1.0

arc x y r angi ang2 arc —

appends a counterclockwise arc of a circle to the current path, possibly
preceded by a straight line segment. The arc has (x, y) as center, r as
radius, ang the angle of a vector from (x, y) of length r to the first

endpoint of the arc, and ang2 the angle of a vector from (X, y) of length
r to the second endpoint of the arc.

If there is a current point, the arc operator includes a straight line
segment from the current point to the first endpoint of this arc and then
adds the arc itself into the current path. If the current path is empty, the
arc operator does not produce the initial straight line segment. In any
event, the second endpoint of the arc becomes the new current point.

Angles are measured in degrees counterclockwise from the positive

x-axis of the current user coordinate system. The curve produced is
circular in user space. If user space is scaled non-uniformly (i.e., dif-
ferently in x and y), arc will produce elliptical curves on the output

device.

The operators that produce arcs (arc, arcn, and arcto) represent them
internally as one or more Bézier cubic curves (see curveto) that ap-
proximate the required shape. This is done with sufficient accuracy that
a faithful rendition of an arc is produced. However, a program that
reads the constructed path (using pathforall) will encounter curveto

segments where arcs were specified originally.

EXAMPLE:

newpath O O moveto 0 0 1 0 45 arc closepath

This constructs a unit radius 45 degree pie slice'.

ERRORS:

limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO:

aren, arcto, curN eto

arc I arc 125

arcn x y r angi ang2 arcn —

(arc negative) behaves like arc, but arcn builds its arc segment in a

clockwise direction (in user space).

90°

EXAMPLE:
newpath 0 0 2 0 90 arc 0 0 1 90 0 arcn closepath

This constructs a 2 unit radius, 1 unit wide, 90 degree windshield
wiper swath'.

ERRORS:

limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO: L -----
0,0 1,0 2,0

arc, arcto, curveto

126 arcn l arcn

0,4 1,4

0,3

0,0

arcto x1 y1 x2 y2 r arcto xti ytt xt2 yt2

appends an arc of a circle to the current path, possibly preceded by a
straight line segment. The arc is defined by a radius r and two tangent
lines. The tangent lines are those drawn from the current point, here

called (x0, y0), to (x, y1) and from (x1, y 1) to (x2, y2). (If the current
point is undefined, arcto executes the error nocurrentpoint.)

The center of the arc is located within the inner angle between the
tangent lines; it is the only point located at distance r in a direction

perpendicular to both lines. The arc begins at the first tangent point
(xi 1, yt1) on the first tangent line, passes between its center and the
point (x1, y1), and ends at the second tangent point (xt2, yt2) on the

second tangent line.

Before constructing the arc, arcto adds a straight line segment from the
current point (x0, y0) to (xi 1, y11), unless those points are the same. In

any event, (xt2, yt2) becomes the new current point.

The curve produced is circular in user space. If user space is scaled

non-uniformly (i.e., differently in x and y), arcto will produce elliptical
curves on the output device.

If the two tangent lines are collinear, arcto merely appends a straight

line segment from (x0, y0) to (xl, y1), considering the arc to be part of a
degenerate circle (with radius 0) at that point.

The values returned by arcto are for information only; they are the two

tangent points in user space.

4,4

- - - -•

 •

EXAMPLE:
newpath O O moveto
0 4 4 4 1 arcto
4 {pop} repeat
4 4 lineto

This constructs a 4 unit wide, 4 unit high right angle with a I unit

radius rounded corner.'

ERRORS:
limitcheck, nocurrentpoint, stackundertlow, typecheck,

undefinedresult

SEE ALSO:
arc, arcn, curveto

arcto I arcto 127

array int array array

creates an array of length int, each of whose elements is initialized with

a null object, and pushes this array on the operand stack. The int

operand must be a non-negative integer not greater than the maximum
allowable array length (see appendix B).

EXAMPLE:

3 array [null null null]

ERRORS:

rangecheck, stacku nderfloNs , ty pecheck, V Merror

SEE ALSO:

E, E, abad, astore, packedarray

ashow ; ay string ashow -

prints the characters of string in a manner similar to show. But while
doing so, ashow adjusts the width of each character shown by adding
ax to its x width and ay to its y width, thus modifying the spacing

between characters, ax and ay are x and y displacements in the user
coordinate system (not in the character coordinate system).

This operator enables fitting a string of text to a specific width by
adjusting all the spaces between characters by a uniform amount. For a
discussion about character widths, see section 5.5.

EXAMPLE:

Normal spacing
Wide spacing

/Helvetica findfont 12 scalefont setfont
45 270 moveto (Normal spacing) show
45 256 moveto 4 0 (Wide spacing) ashow

ERRORS:

invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck

SEE ALSO:

show, awidthshow, widthshow, kshow

1 28 array I ashow

astore anyo anyo_i array astore array

stores the objects anyo through anyn_i from the operand stack into
array, where n is the length of array. The astore operator first removes
the array operand from the stack and determines its length. It then

removes that number of objects from the stack, storing the topmost one
into element n-1 of array and the bottommost one into element 0 of
array. Finally, it pushes array back on the stack. Note that astore
cannot be performed on packed arrays.

EXAMPLE:
(a) (bed) (et) 3 array astore [(a) (bcd) (ef)]

This creates a three element array, stores the strings ' a', ` bcd', and ' et'

into it as elements 0, 1, and 2, and leaves the array object on the

operand stack.

ERRORS:
imalidaccess, stackunderflow, typecheck

SEE ALSO:
abad, put, putintenal

atan num den atan angle

returns the angle (in degrees between 0 and 360) whose tangent is
num/den. Either num or den may be zero, but not both. The signs of
num and den determine the quadrant in which the result will lie: a
positive num yields a result in the positive y plane; a positive den yields

a result in the positive x plane. The result is a real.

EXAMPLE:
0 1 atan 0.0
1 0 atan 90.0
-100 0 atan 270.0
4 4 atan 45.0

ERRORS:
stackunderflow, typecheck, undefined result

SEE ALSO:

cos, sin

astore I atan 129

awidthshow cx cy char ax ay string awidthshow —

prints the characters of string in a manner similar to show, but com-

bines the special effects of ashow and widthshow. awidthshow adjusts
the width of each character shown by adding ax to its x width and ay to

its y width, thus modifying the spacing between characters. Further-
more, awidthshow modifies the width of each occurrence of the char-
acter char by an additional amount (cx, Cy). char is an integer in the
range 0 to 255 used as a character code.

This operator enables fitting a string of text to a specific width by
adjusting all the spaces between characters by a uniform amount, while
independently controlling the width of some specific character (such as
the space character). For a discussion about character widths, see sec-
tion 5.5.

EXAMPLE:

Normal spacing
Wide spacing

/Helvetica findfont 12 scalefont setfont
45 402 moveto (Normal spacing) show
45 388 moveto 6 0 8#040 .5 0 (Wide spacing) awidthshow

ERRORS:

invalidaccess, invalidfont, nocurrentpoint, stackunderflom,
typecheck

SEE ALSO:
show, ashow, widthshow, kshow

130 awidthshow I awidthshow

banddevice matrix width height proc banddevice —

installs a band buffer as the raster memory for an output device and
establishes some of the properties of that device. When a band device is

being used, the current page is not represented as a full array of pixels.

Instead, operations that place marks on the page accumulate informa-
tion in a display list. When it comes time to render the page on the
output device (during showpage), the display list is read and used to
construct a sequence of rectangular bands of pixels, each of which is
immediately transmitted to the device.

The banddevice operator defines a full page to be 8 x width pixels
wide by height pixels high; the width and height should be consistent
with the physical properties of the raster output device. banddevice
derives a clipping path from the width, height, and matrix information

and establishes it as the current clip path in the graphics state.

The matrix operand is used as the default transformation matrix for the
device. It should map default user coordinates into the device coordi-
nate system. banddevice establishes this matrix as the current transfor-

mation matrix (CTM) in the graphics state.

The proc operand is a procedure that will be executed as part of the

execution of the showpage and copypage operators. This procedure's
task is to cause the contents of the display list to be converted to bands
and transmitted to the physical output device. As part of this process,

the procedure must invoke the renderbands operator (see the descrip-
tion of renderbands for details). For most devices, proc is also respon-
sible for implementing the #copies convention described under

showpage.

banddevice is ordinarily invoked by higher-level procedures for setting
up specific raster output devices; it is not usually executed directly by
user programs (see section 4.9). Only certain devices use band buffers,

so the banddevice operator may not be defined in some POSTSCRIPT
implementations.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

framedevice, nulldevice, renderbands, showpage

banddevice banddevice 131

begin dict begin —

pushes did on the dictionary stack, making it the current dictionary and

installing it as the first of the dictionaries defining the current naming
context.

ERRORS:

dictstackoverflow, invalidaccess, stackunderflow, typecheck

SEE ALSO:

end, countdictstack, dictstack

bind proc bind proc

replaces executable operator names in proc by their values. For each
element of proc that is an executable name, bind looks up the name in

the context of the current dictionary stack (as if by load). If the name is
found and its value is an operator object, bind replaces the name by the
operator in proc. If the name is not found or its value is not an operator,
bind makes no change.

Additionally, for each procedure object in proc whose access is un-
restricted (that is, each element that is itself an executable array that is
not read-only or execute-only), bind applies itself recursively to that

procedure, makes the procedure read-only, and stores it back into proc.

The effect of bind is that all operator names in proc (and in procedures

nested in proc to any depth) become 'tightly bound' to the operators
themselves. Thus, during subsequent execution of proc, the interpreter

encounters the operators themselves rather than the names of operators.

There are two main benefits of using bind. First, a procedure that has

been bound will execute the sequence of operators that were intended
when the procedure was defined, even if one or more of the operator
names have been redefined in the meantime. Second, a bound proce-

dure executes somewhat faster than one that has not been bound, since
the interpreter need not look up the operator names each time but can
just execute the operators directly. These benefits are of interest
primarily in procedures that are part of the POSTSCRIPT system itself,

such as findfont and `=', which are expected to behave correctly

regardless of how a user program has altered its name environment.

ERRORS:

typecheck

SEE ALSO:

load

132 begin I bind

bitshift Intl shift bitshift int2

shifts the binary representation of int I left by shift bits and returns the
result. Bits shifted out are lost; bits shifted in are zero. If shift is nega-
tive then a right shift by —shift bits is performed (this produces an
arithmetically correct result only for positive values of inti). Both inti
and shift must be integers.

EXAMPLE:
7 3 bitshift = 56
142 —3 bitshift 17

ERRORS:
stackunderflow, typecheck

SEE ALSO:
and, or, xor, not

bytesavailable file bytesavailable int

returns the number of bytes that are immediately available for reading
from file without waiting. The result is —1 if end-of-file has been en-
countered or if the number of bytes available cannot be determined for
other reasons.

ERRORS:
ioerror, stackunderflow, typecheck

SEE ALSO:
read, readhexstring, readline, readstring

bitshlft I bytesavallable 133

cachestatus — cachestatus bsize bmax msize mmax csize cmax blimit

returns measurements of several aspects of the font cache (see section

5.6). cachestatus reports the current consumption and limit for each of

three font cache resources: bytes of bitmap storage (bsize and bmax),
font/matrix combinations (msize and mmax), and total number of
cached characters (csize and cmax). It also reports the limit on the
number of bytes occupied by a single cached character (blimit)—
characters whose bitmaps are larger than this are not cached. All

cachestatus results except blimit are for information only; a
POSTSCRIPT program can change blimit (see setcachelimit).

ERRORS:

stackoverflow

SEE ALSO:
setcachelimit

ceiling numi ceiling num2

returns the least integer value greater than or equal to nom The type of

the result is the same as the type of the operand.

EXAMPLE:
3.2 ceiling = 4.0
-4.8 ceiling = -4.0
99 ceiling 99

ERRORS:

stackunderflow, typecheck

SEE ALSO:
floor, round, truncate, cvi

134 cachestatus I ceiling

charpath string bool charpath —

obtains the character path outlines that would result if string were
shown (at the current point) using show. Instead of painting the path,
however, charpath appends the path to the current path. This yields a
result suitable for general filling, stroking, or clipping (see sections 4.5,

4.6, and 5.2).

The bool operand determines what happens if the character path is
designed to be stroked (PaintType 1) rather than filled or outlined

(PaintType 0 or 2). If boo! is false, charpath adds the path to the

current path unchanged; the result is suitable only for stroking. If bool
is true, charpath applies the strokepath operator to the path; the result

is suitable for filling or clipping, but not for stroking.

charpath produces no results for portions of a character defined as

images or masks rather than as paths.

Note: as long as output from the charpath operator remains in the

current path, the pathforall operator is disabled.

ERRORS:
limitcheck, nocurrentpoint, stackunderflow, typecheck

SEE ALSO:
show, flattenpath, pathbbox, clip

clear H anyi anyn clear

pops all objects from the operand stack and discards them.

ERRORS: (none)

SEE ALSO:
count, cleartomark, pop

cleartomark mark obji °bin cleartomark —

pops the operand stack repeatedly until it encounters a mark, which it
also pops from the stack (obji through obi,, are any objects other than

marks).

ERRORS:

unmatched mark

SEE ALSO:

clear, mark, counttomark, pop

charpath cleartomark 135

clip - clip —

intersects the inside of the current clipping path with the inside of the

current path to produce a new (smaller) current clipping path. The

inside of the current path is determined by the normal POSTSCRIPT
non-zero winding number rule (see section 4.6), while the inside of the

current clipping path is determined by whatever rule was used at the
time that path was created. Before computing the intersection, the clip
operator implicitly closes any open subpaths of the current path.

In general, clip produces a new path whose inside (according to the
non-zero winding number rule) consists of all areas that are inside both
of the original paths. The manner in which this new path is constructed

(order of its segments, whether or not it self-intersects, etc.) is not
specified.

There is no way to enlarge the current clipping path (other than by
initclip or initgraphics) or to set a new path without reference to the
current one. The recommended way of using clip is to bracket the clip

and the sequence of graphics to be clipped with gsave and grestore.
The grestore will restore the clipping path that was in effect before the
gsave.

Unlike fill and stroke, clip does not implicitly perform a newpath after
it has finished using the current path. Any subsequent path construction
operators will append to the current path unless newpath is executed
explicitly. This can be a source of unexpected behavior.

ERRORS:

limitcheck

SEE ALSO:

eoclip, clippath, initclip

136 clip I clip

clippath - clippath -

sets the current path to one that describes the current clipping path.
This operator is useful for determining the exact extent of the imaging

area on the current output device.

If the current clipping path is the result of application of the clip or
eoclip operator, the path set by clippath is generally suitable only for

filling or clipping. It is not suitable for stroking because it may contain
interior segments or disconnected subpaths produced by the clipping

process.

EXAMPLE:

clippath 1 setgray fill

This erases (fills with white) the interior of the current clipping path.

ERRORS: (none)

SEE ALSO:

clip. eoclip, initclip

closefile file closefile -

closes file, i.e., breaks the association between the file object and the
underlying file. For an output file, closefile first performs a flushfile; it

may also take device-dependent actions such as truncating a disk file to
the current position or transmitting an end-of-file indication. (See sec-

tion 3.8.)

ERRORS:

ioerror, stackunderflow, typecheck

SEE ALSO:

file, status, read

clippath closefile 137

closepath — closepath —

closes the current subpath by appending a straight line segment con-

necting the current point to the subpath's starting point (generally the
point most recently specified by moveto). If the current subpath is
already closed or the current path is empty, closepath does nothing.
(See section 4.5.)

closepath terminates the current subpath. Appending another segment
to the current path will begin a new subpath, even if it is drawn from

the endpoint reached by the closepath.

ERRORS:

limitcheck

SEE ALSO:

fill, stroke

concat matrix concat —

concatenates matrix with the current transformation matrix (CTM).
Precisely, concat replaces the CTM by matrix x CTM (see section 4.4).

The effect of this is to define a new user space whose coordinates are
transformed into the former user space according to matrix.

EXAMPLE:

[72 0 0 72 0 0] concat
72 72 scale

The two examples have the same effect on the current transformation.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

concatmatrix, matrix, rotate, scale, setmatrix, translate

concatmatrix matrixi matrix2 matrix3 concatmatrix matrix3

replaces the value of matrix3 by the result of multiplying

matrix, x matrix2 and pushes the modified matrix3 back on the operand

stack. This operator does not affect the CTM.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

concat, matrix, rotate, scale, setmatrix, translate

1 38 closepath I concatmatrix

copy anyi ... any, n copy anyi ... any, anyi ... any,

arrayi array2 copy subarray2
dicti dict2 copy dict2

stringi string2 copy substring2
packedarrayi array2 copy subarray2

In the first instance, where the top element on the operand stack is a

non-negative integer n, copy pops n from the stack and then duplicates

the top n elements on the operand stack as shown above.

In the other instances, copy copies all the elements of the first com-
posite object into the second. The composite object operands must be

of the same type (except for packed arrays). In the case of arrays or
strings, the length of the second object must be at least as great as the

first; copy returns the initial subarray or substring of the second
operand into which the elements were copied. (Any remaining elements
of array2 or string2 are unaffected by the copy.) In the case of diction-
aries, dict2 must have a length of zero and a maxlength at least as

great as the length of dial. copy cannot copy into packed arrays (since
they are read-only), but will copy packed arrays into ordinary arrays.

The attributes (literal/executable and access) of the result are the same
as those of the second operand except in the case of dictionaries, where
the access attribute of the result is the same as that of the first operand.

copy copies the value of a composite object. In this respect, it is quite
different from dup and other operators that copy only the objects them-

selves (see the discussion of simple versus composite objects in section
3.4). However, copy performs only one level of copying: it does not
apply recursively to elements that are themselves composite objects;

instead, the values of those elements become shared.

EXAMPLE:

1 2 3 2 copy = 1 2 3 2 3

1 2 3 0 copy = 1 2 3

/al [1 2 3] def

al dup length array copy = [1 2 3]

ERRORS:

invalidaccess, rangecheck, stackunderflow, stackoverflow,

typecheck

SEE ALSO:

dup, get, put, putinterval

copy I copy 139

copypage - copypage -

outputs one copy of the current page on the current output device,
without erasing the current page or changing the graphics state. This is
in contrast to showpage, which performs an erasepage and an
initgraphics.

copypage is intended primarily as a debugging aid or as a means for

printing successive pages with incrementally accumulated contents.
Routine use of copypage as a substitute for showpage may severely

degrade the page throughtput of some POSTSCRIPT printers. To print

multiple copies of the same page, use the #copies implicit parameter of
showpage. To print and erase the current page without disturbing the
graphics state, execute gsave showpage grestore.

ERRORS: (none)

SEE ALSO:

showpage, erasepage

COs angle cos real

returns the cosine of angle, which is interpreted as an angle in degrees.
The result is a real.

EXAMPLE:

0 cos r 1.0

90 cos = 0.0

ERRORS:

stackunderflow, typecheck

SEE ALSO:

atan, sin

140 copypage I cos

count I— anyi anyn count I— anyi anyn n

counts the number of items on the operand stack and pushes this count

on the operand stack.

EXAMPLE:
clear count
clear 1 2 3 count

ERRORS:

stackoverflow

SEE ALSO:

counttomark

countdictstack — countdictstack int

1 2 3 3

counts the number of dictionaries currently on the dictionary stack and

pushes this count on the operand stack.

ERRORS:

stackoverflow

SEE ALSO:

dictstack, begin, end

countexecstack — countexecstack int

counts the number of objects on the execution stack and pushes this

count on the operand stack.

ERRORS:

stackoverflow

SEE ALSO:

execstack

count I countexecstack 141

counttomark mark obji objn counttomark mark obji objn n

counts the number of objects on the operand stack starting with the top

element and continuing down to but not including the first mark en-

countered (obji through obj fl are any objects other than marks).

EXAMPLE:
1 mark 2 3 counttomark 1 mark 2 3 2
1 mark counttomark 1 mark 0

ERRORS:

stackoverflow, unmatchedmark

SEE ALSO:
mark, count

currentcacheparams — currentcacheparams mark lower upper

pushes a mark object followed by the current cache parameters on the
operand stack. The number of cache parameters returned is variable
(see setcacheparams),I

ERRORS:
stackoverflow

SEE ALSO:
setcacheparams

'The currentcacheparams operator is not present in Adobe POSTSCRIPT im-
plementations prior to version 25.0.

142 counttomark I currentcacheparams

currentdash — currentdash array offset

returns the current dash array and offset in the graphics state (see

setdash).

ERRORS:

stackoverflow

SEE ALSO:

setdash, stroke

currentdict — currentdict dict

pushes the current dictionary (the dictionary on top of the dictionary

stack) on the operand stack. currentdict does not pop the dictionary
stack; it just pushes a duplicate of its top element on the operand stack.

ERRORS:

stackoverflow

SEE ALSO:

begin, dictstack

currentdash l currentdict 143

currentfile — currentfile file

returns the file object from which the POSTSCRIPT interpreter is cur-
rently or was most recently reading program input. Precisely,

currentfile returns the topmost file object on the execution stack. If
there isn't one, it returns an invalid file object not corresponding to any
file (this never occurs during execution of ordinary user programs).

The file returned by currentfile is usually but not always the standard
input file. An important exception occurs during interactive mode
operation (see section 3.8). In this case, the interpreter does not read

directly from the standard input file; instead, it reads from a file
representing an edited statement (each statement is represented by a
different file).

The currentfile operator is useful for obtaining images or other data
residing in the program file itself (see the example below). At any
given time, this file is positioned at the end of the last POSTSCRIPT

token read from the file by the interpreter. If that token was a number

or a name immediately followed by a white space character, the file is
positioned after the white space character (the first, if there are several);
otherwise it is positioned after the last character of the token.

EXAMPLE:
/str 100 string clef
currentfile str readline
here is a line of text
pop /textline exch def

After execution of this example, the name lextline' is associated with
the string ' here is a line of text'.

ERRORS:

stackoverflow

SEE ALSO:
exec, run

1 44 currentfile currentfile

currentflat - currentflat num

returns the current value of the flatness parameter in the graphics state

(see setflat).

ERRORS:

stackoverflow

SEE ALSO:

setflat, flattenpath, stroke, fill

currentfont — currentfont font

returns the current font dictionary in the graphics state (see setfont).

ERRORS:

stackoserflow

SEE ALSO:

setfont

currentgray — currentgray num

returns the gray value of the current color parameter in the graphics
state (see setgray). If the current color is not a pure gray but has some

color hue, currentgray returns the brightness component of the current

color.

ERRORS:

stackoverflow

SEE ALSO:

setgray, currenthsbcolor, currentrbgcolor

currentflat currentgray 145

currenthsbcolor — currenthsbcolor hue saturation brightness

returns the three components of the current color parameter in the

graphics state according to the hue-saturation-brightness model (see

sethsbcolor).

ERRORS:

stackoverflow

SEE ALSO:

sethsbcolor, currentgray, currentrgbcolor

currentlinecap — currentlinecap int

returns the current value of the line cap parameter in the graphics state

(see setlinecap).

ERRORS:

stackoverflow

SEE ALSO:

setlinecap, stroke, currentlinejoin

currentlinejoin — currentlinejoin int

returns the current value of the line join parameter in the graphics state

(see setlinejoin).

ERRORS:

stackoverflow

SEE ALSO:

setlinejoin, stroke, currentlinecap

146 currenthsbcolor I currentlinejoin

currentlinewidth — currentlinewidth num

returns the current value of the line width parameter in the graphics

state (see setlinewidth).

ERRORS:

stackoverflow

SEE ALSO:

setlinewidth, stroke

currentmatrix matrix currentmatrix matrix

replaces the value of matrix with the value of the current transfor-

mation matrix (CTM) in the graphics state, and pushes the modified

matrix back on the operand stack (see section 4.4).

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:

setmatrix, defaultmatrix, initmatrix, rotate, scale, translate

currentmiterlimit — currentmiterlimit num

returns the current value of the miter limit parameter in the graphics

state (see setmiterlimit).

ERRORS:

stackoverflow

SEE ALSO:

setmiterlimit, stroke

currentlinewidth I currentmiterlimit 147

currentpacking — currentpacking bool

returns the array packing mode currently in effect (see setpacking).2

ERRORS:

stackoverflow

SEE ALSO:

setpacking, packedarray

currentpoint — currentpoint x y

returns the x and y coordinates of the current point in the graphics state

(i.e., the trailing endpoint of the current path). If the current point is

undefined (because the current path is empty), currentpoint executes
the nocurrentpoint error.

The current point is reported in the user coordinate system. As dis-

cussed in section 4.5, points entered into a path are immediately con-

verted to device coordinates by the current transformation matrix

(CTM); existing points are not changed by subsequent modifications to

the CTM. currentpoint computes the user space coordinate that cor-

responds to the current point according to the current value of the
CTM. If a current point is set and then the CTM is changed,

currentpoint will report a different position in user space than it did
before.

ERRORS:

nocurrentpoint, stackoverflow, undefinedresult

SEE ALSO:

moveto, lineto, curveto, arc

2The currentpacking operator is not present in Adobe POSTSCRIPT implemen-
tations prior to version 25.0.

148 currentpacking I currentpoint

currentrgbcolor — currentrgbcolor red green blue

returns the three components of the current color in the graphics state
according to the red-green-blue color model.

ERRORS:

stackoverflow

SEE ALSO:
setrgbcolor, currentgray, currenthsbcolor

currentscreen — currentscreen frequency angle proc

returns all the current halftone screen parameters in the graphics state

(see setscreen).

ERRORS:
stackoverflow

SEE ALSO:

setscreen, currenttransfer

currenttransfer — currenttransfer proc

returns the current transfer function in the graphics state (see

settransfer).

ERRORS:

stackoverflow

SEE ALSO:
settransfer, currentscreen

currentrgbcolor I currenttransfer 149

x y o

xl'y1

x y o' o
xy2

curveto x1 y1 x2 y2 x3 y3 curveto —

adds a Bézier cubic section to the current path between the current
point, referred to here as (x0, yo), and the point (x3, y3), using (x1, y1)
and (x2, y2) as the Bézier cubic control points. After constructing the

curve, curveto makes (x3, y3) become the new current point. If the
current point is undefined (because the current path is empty), curveto

executes the error nocurrentpoint.

The four points define the shape of the curve geometrically. The curve

starts at (x0, y0), it is tangent to the line from (x0, y0) to (x1, y1) at that
point, and it leaves the point in that direction. The curve ends at
(x3, y3), it is tangent to the line from (x2, y2) to (x3, y3) at that point, and

it approaches the point from that direction. The lengths of the lines
(x0, y0) to (x1, y1) and (x2, y2) to (x3, y3) represent in some sense the
'velocity' of the path at the endpoints. The curve is always entirely
enclosed by the convex quadrilateral defined by the four points.

x2,Y2
ft

x3,Y3

x1'y1
2'y2

The mathematical formulation of a Bézier cubic curve is derived from a

pair of parametric cubic equations:

x(t)=axt3+ bxt2+ cxt+xo

y(1)=ayt3+byt2+cyt+ yo

The cubic section produced by curveto is the path traced by x(t) and

y(t) as 1 ranges from 0 to 1. The Bézier control points corresponding to
this curve are:3

X1 = x0 + cx/3

x2 = xi + (cx + bx)/3
x3 = x0 + cx + bx + ax

Y1 = YO cy/3

Y2 = Y1 + fry + by)/3
y3 = y0 + cy + by+ ay

ERRORS:

limitcheck, nocurrentpoint, stackunderflow, typecheck

SEE ALSO:
lineto, muy eta, arc, arcn, arcto

3For a more thorough treatment of the mathematics of Bézier cubics, see
J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, 1982.

1 50 curveto I curveto

CVi num cvi integer

string cvi integer

(convert to integer) takes an integer, real, or string object from the stack
and produces an integer result. If the operand is an integer, cvi simply

returns it. If the operand is a real, it truncates any fractional part (i.e.,
rounds it toward 0) and converts it to an integer. If the operand is a

string, it interprets the characters of the string as a number according to
the POSTSCRIPT syntax rules; if that number is a real, cvi converts it to

an integer.

cvi executes a rangecheck error if a real is too large to convert to an

integer. (See the round, truncate, floor, and ceiling operators, which
remove fractional parts without performing type conversion.)

EXAMPLE:

(3.3E1) cvi 33

—47.8 cvi = - 47

520.9 cvi = 520

ERRORS:

imalidaccess, rangecheck, stackunderflow, syntaxerror, typecheck,

undefinedresult

SEE ALSO:

cvr, ceiling, floor, round, truncate

cvlit any cvlit any

(convert to literal) makes the object on the top of the operand stack
have the literal attribute (instead of executable).

ERRORS:

stackunderflovv

SEE ALSO:

cvx, xcheck

cvi I cvlit 151

cvn string cvn name

(convert to name) converts the string operand to a name object that is

lexically the same as the string. The name object is executable if the
string was.

EXAMPLE:

(abc) cvn = ¡abc
(abc) cvx cvn = abc

ERRORS:

invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:

cvs, type

cvr num cvr real
string cvr real

(convert to real) takes an integer, real, or string object and produces a

real result. If the operand is an integer, cvr converts it to a real. If the
operand is a real, cvr simply returns it. If the operand is a string, it

interprets the characters of the string as a number according to the
POSTSCRIPT syntax rules; if that number is an integer, cvr converts it to
a real.

ERRORS:

invalidaccess, rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult

SEE ALSO:

cvi

152 cvn I cvr

cvrs num radix string cm substring

(convert to string with radix) produces a text representation of the

number num in the specified radix, stores the text into the supplied

string (overwriting some initial portion of its value), and returns a

string object designating the substring actually used. If string is too

small to hold the result of the conversion, cvrs executes the error

rangecheck.

If num is a real, cvrs first converts it to an integer by application of cvi.
radix is expected to be a positive decimal integer in the range 2 to 36.

Digits greater than 9 in the resulting string are represented by the letters

'A' through 'Z'.

EXAMPLE:
istr 10 string clef
100 8 str cvrs = (144)
200 16 str cvrs = (08)

% 100 10 is 1448

ERRORS:
invalidacess, rangecheck, stackunderflow, typecheck

SEE ALSO:

cvs

cvrs I cvrs 153

CVS any string cvs substring

(convert to string) produces a text representation of an arbitrary object

any, stores the text into the supplied string (overwriting some initial

portion of its value), and returns a string object designating the

substring actually used. If the string is too small to hold the result of

conversion, cvs executes the error rangecheck.

If any is a number, cvs produces a string representation of that number.

If any is a boolean, cvs produces either the string 'true' or the string

'false'. If any is a string, cvs copies its contents into string. If any is a

name or an operator, cvs produces the text representation of that name

(or the operator's name). If any is any other type, cvs produces the text
`--nostringval--'.

EXAMPLE:
/str 20 string clef
123 456 add str cvs (579)
mark str cvs (--nostringval--)

ERRORS:

invalidaccess, rangecheck, stack undertlow pecheck

SEE ALSO:

cvi, cvr, string, type

CvX any cvx any

(convert to executable) makes the object on top of the operand stack
have the executable attribute (instead of literal).

ERRORS:
stackunderflow

SEE ALSO:

cvlit, xcheck

154 cvs I cvx

def key value def —

associates key with value in the current dictionary (the one on the top of
the dictionary stack; see section 3.5). If key is already present in the
current dictionary, def simply replaces its value. Otherwise, def creates

a new entry for key and stores value with it.

EXAMPLE:

/ncnt 1 def

/ncnt ncnt 1 add def

% define ncnt to be 1 in current dict

% ncnt now has value 2

ERRORS:

dictfull, invalidaccess, limitcheck, stackunderflow, typecheck

SEE ALSO:

store, put

defaultmatrix matrix defaultmatrix matrix

replaces the value of matrix with the default transformation matrix for
the current output device and pushes this modified matrix back on the
operand stack.

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:

currentmatrix, initmatrix, setmatrix

def I defaultmatrix 155

definefont key font definefont font

registers font as a font dictionary associated with key (usually a name),

as discussed in section 5.3. definefont first checks that font is a well-

formed font dictionary (i.e., contains all required key-value pairs). It
inserts an additional entry whose key is FID and whose value is an

object of type fontID; the dictionary must be large enough to accom-
modate this additional entry. It makes the dictionary's access read-only.
Finally, it associates key with font in the global font dictionary
FontDirectory.

Subsequent invocation of findfont with key will return font. Note that
since a font dictionary is an ordinary POSTSCRIPT object, a font regis-

tered by definefont between a save and a matching restore will be
unregistered by the restore.

ERRORS:

dictfull, in al idfont, stackunderflow, typecheck

SEE ALSO:
makefont, scalefont, setfont. FontDirectory

dict int dict dict

creates an empty dictionary with a maximum capacity of int elements
and pushes the created dictionary object on the operand stack. int is
expected to be a non-negative integer.

ERRORS:

rangecheck, stackunderflom, typecheck, VMerror

SEE ALSO:

begin, end, length, maxlength

dictfull (error)

occurs when a def, put, or store operator attempts to define a new
entry in a dictionary that is already full (i.e., whose length and
maxlength are already equal). A dictionary has a fixed limit on the

number of entries (with distinct keys) that it can hold; this limit is
established by the operand to the dict operator that creates the diction-
ary.

SEE ALSO:
def, put, store

156 definefont I dictfull

dictstack array dictstack subarray

stores all elements of the dictionary stack into array and returns an
object describing the initial n-element subarray of array, where n is the
current depth of the dictionary stack. dictstack copies the topmost dic-
tionary into element n-1 of array and the bottommost one into element
0 of array. The dictionary stack itself is unchanged. If the length of
array is less than the depth of the dictionary stack, dictstack executes a

rangecheck error.

ERRORS:

in% alidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:

countdictstack

dictstackoverflow (error)

The dictionary stack has grown too large. Too many begins (without

corresponding ends) have pushed too many dictionaries on the diction-
ary stack. See appendix B for the limit on the size of the dictionary

stack.

Before invoking this error, the interpreter creates an array containing all
elements of the dictionary stack (stored as if by dictstack), pushes this

array on the operand stack, and resets the dictionary stack to contain

only systemdict and userdict.

SEE ALSO:

begin

dictstackunderflow (error)

An attempt has been made to remove (end) the bottommost instance of
userdict from the dictionary stack. This occurs if an end is executed

for which there was no corresponding begin.

SEE ALSO:

end

dictstack I dictstackunderflow 1 57

div numi num2 div quotient

divides nun?, by num2, producing a result that is always a real (even if
both operands are integers; use idiv if an integer result is desired).

EXAMPLE:
32 div 1.5
42 div 2.0

ERRORS:

stackundertlow, typecheck, undefinedresult

SEE ALSO:

idiv, add, mul, sub, mod

dtransform dx dy dtransform dx' dy'
dx dy matrix dtransform dx' dy'

With no matrix operand, dtransform (delta transform) transforms the
distance vector (dx, dy) by the CTM to produce the corresponding

distance vector (dx', dy') in device space. If the matrix operand is
supplied, dtransform transforms the distance vector by matrix rather
than by CTM.

A delta transformation is similar to a normal transformation (see sec-

tion 4.4), but the translation components (tx and ty) of the transfor-
mation matrix are not used, thus making the distance vectors position-

less in both user space and device space. This is useful for determining
how distances map from user space to device space.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

idtransform, transform, itransform

dup any dup any any

duplicates the top element on the operand stack. Note that dup copies
only the object itself; the value of a composite object is not copied but
is shared (see section 3.4).

ERRORS:

stackoverflow, stackunderflow

SEE ALSO:

copy, index

158 div I dup

echo boolean echo —

specifies whether characters from the standard input file are to be
echoed to the standard output file during interactive mode operation.
The applicability of this setting is somewhat environment-dependent.

By default, the POSTSCRIPT interpreter echoes the input to the output
while opening the special files named `%statementedir and `'Yolineedie.
One situation in which turning off echoing is appropriate is password
input. See the introduction to the file operators in section 3.8.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

file

end - end —

pops the current dictionary off the dictionary stack, making the diction-
ary below it the current dictionary. If end tries to pop the bottommost

instance of userdict, it executes the error operator dictstackunderflow.

ERRORS:

dictstackunderflow

SEE ALSO:

begin, dictstack, countdictstack

eoclip - eoclip —

intersects the inside of the current clipping path with the inside of the
current path to produce a new (smaller) current clipping path. The

inside of the current path is determined by the even-odd rule (see sec-

tion 4.6), while the inside of the current clipping path is determined by
whatever rule was used at the time that path was created. Before com-
puting the intersection, the eoclip operator implicitly closes any open

subpaths of the current path.

Except for the choice of insideness rule, the behavior of eoclip is iden-

tical to that of clip.

ERRORS:

limitcheck

SEE ALSO:

clip, clippath, initclip

echo I (mono 159

eofill - eofill —

paints the inside of the current path with the current color, using the

even-odd rule to determine what points are inside. Except for the
choice of insideness rule, the behavior of eofill is identical to that of
fill.

ERRORS:

limitcheck

SEE ALSO:

ri u

eq anyi any2 eq bool

pops two objects from the operand stack and pushes the boolean value

true if they are equal, false if not. The definition of equality depends on

the types of the objects being compared. Simple objects are equal if
their types and values are the same. Strings are equal if their lengths
and individual elements are equal. Other composite objects (arrays and
dictionaries) are equal only if they share the same value; separate
values are considered unequal, even if all the components of those
values are the same.

Some type conversions are performed by eq. Integers and seals can be
compared freely: an integer and a real representing the same math-

ematical value are considered equal by eq. Strings and names can
likewise be compared freely: a name defined by some sequence of
characters is equal to a string whose elements are the same sequence of
characters.

The literal/executable and access attributes of objects are not con-
sidered in comparisons between objects.

EXAMPLE:
4.0 4 eq = true
(abc) (abc) eq true
(abc) /abc eq = true
[1 2 3] dup eq true
[1 2 3] [1 2 3] eq = false

ERRORS:

invalidaccess, stackunderflom

SEE ALSO:

ne, le, It, ge, gt

% a real and an integer may be equal

% strings with equal elements are equal
% a string and a name may be equal

% an array is equal to itself

`"/. distinct array objects not equal

160 eofill I eq

erasepage — erasepage —

erases the entire current page by painting it with gray level 1, which is
ordinarily white (but may be some other color if an atypical transfer

function has been defined). The entire page is erased, regardless of the
clip path currently in force. erasepage affects only the contents of
raster memory; it does not modify the graphics state, nor does it cause a

page to be transmitted to the output device.

erasepage is executed automatically by showpage. There are few

situations in which a POSTSCRIPT page description should execute
erasepage explicitly, since the operator affects portions of the current

page outside the current clip path. It is usually more appropriate to
erase just the inside of the current clip path (see clippath); then the
page description can be embedded within another, composite page

without undesirable effects.

ERRORS: (none)

SEE ALSO:
showpage, clippath, fill

errordict — errordict dict

pushes the dictionary object errordict on the operand stack (see section

3.6). errordict is not actually an operator; it is a name in systemdict

associated with the dictionary object itself.

ERRORS:
stackoverflow

SEE ALSO:
systemdict, userdict

exch anyi any2 exch any2 anyi

exchanges the top two elements on the operand stack.

EXAMPLE:

1 2 exch r 2 1

ERRORS:

stackunderflow

SEE ALSO:

dup, roll, index, pop

erasepage I exch 161

exec any exec —

pushes the operand on the execution stack, thereby executing it im-
mediately. The effect of executing an object depends on the object's
type and literal/executable attribute; this is discussed in detail in section
3.6. In particular, executing a literal object will cause it just to be

pushed back on the operand stack. Executing a procedure, however,
will cause the procedure to be called.

EXAMPLE:
(3 2 add) cvx exec 5
3 2 /add exec 3 2 /add
3 2 /add cvx exec = 5

In the first line, the string '3 2 add' is made executable and then

executed. Executing a string causes its characters to be scanned and
interpreted according to the POSTSCRIPT syntax rules.

In the second line, the literal objects '3', '2', and 'add' are pushed on
the operand stack, then exec is applied to the 'add'. Since the ' add' is a
literal name, executing it simply causes it to be pushed back on the
operand stack; the exec in this case has no useful effect.

In the third line, the literal name 'add' on the top of the operand stack
is made executable by cvx. Applying exec to this executable name
causes it to be looked up and the add operation to be performed.

ERRORS:
stackunderflow

SEE ALSO:
xcheck, cvx, run

execstack array execstack subarray

stores all elements of the execution stack into array and returns an
object describing the initial n-element subarray of array, where n is the

current depth of the execution stack. execstack copies the topmost
object into element n-1 of array and the bottommost one into element
0 of array. The execution stack itself is unchanged. If the length of

array is less than the depth of the execution stack, execstack executes a
rangecheck error.

ERRORS:

invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:

countexecstack, exec

162 exec I execstack

execstackoverfiow (error)

The execution stack has grown too large; procedure invocation is
nested deeper than the POSTSCRIPT interpreter permits. See appendix B

for the limit on the size of the execution stack.

SEE ALSO:

exec

executeonly array executeonly array

packedarray executeonly packedarray

file executeonly file

string executeonly string

reduces the access attribute of an array, packed array, file, or string,

object to execute-only (see the description of attributes in section 3.4).

Access can only be reduced by this means, never increased. When an
object is execute-only, its value cannot be read or modified explicitly
by POSTSCRIPT operators (an invalidaccess error will result), but it can

still be executed by the POSTSCRIPT interpreter, e.g., by invoking it

with exec.

executeonly affects the access attribute only of the object that it
returns; if there exist other objects that share the same value, their

access attributes are unaffected.

ERRORS:

in validaccess, stackunderflow, typecheck

SEE ALSO:

rcheck, wcheck, xcheck, readonly, noaccess

execstackoverflow I executeonly 1 63

exit - exit -

terminates execution of the innermost dynamically enclosing instance
of a looping context, without regard to lexical relationship. A looping

context is a procedure invoked repeatedly by one of the control
operators for, loop, repeat, forall, pathforall, or renderbands. exit
pops the execution stack down to the level of that operator. The inter-

preter then resumes execution at the next object in normal sequence
after that operator.

exit does not affect the operand or dictionary stacks. Any objects

pushed on those stacks during execution of the looping context remain
after the context is exited.

If exit would escape from the context of a run or stopped operator, it
executes the invalidexit error (still in the context of the run or

stopped). If there is no enclosing looping context, the interpreter prints
an error message and executes the built-in operator quit (this never
occurs during execution of ordinary user programs, since they are
enclosed by a stopped context).

ERRORS:
invalidexit

SEE ALSO:

for, forall, loop, repeat, pathforall, renderbands, stop

exp base exponent exp real

raises base to the exponent power. The operands may be either integers
or reals (if the exponent has a fractional part, the result is meaningful

only if the base is non-negative). The result is always a real.

EXAMPLE:

9 0.5 exp = 3.0
-9 -1 exp -0.111111

ERRORS:

stackunderflim, typecheek, undefinedresult

SEE ALSO:

scut, In, log, mul

164 exit I exp

false — false false

pushes a boolean object whose value is false on the operand stack.

(false is not actually an operator; it is a name in systemdict associated
with the boolean value false.)

ERRORS:

stackoverflow

SEE ALSO:

true, and, or, not, xor

file string i string2 file file

creates a file object for the file identified by strings, accessing it as

specified by string2. Conventions for both file names and access
specifications depend on the operating system environment in which
the POSTSCRIPT interpreter is running. However, all POSTSCRIPT inter-
preters provide several standard files with names such as `%stdin' and
`°/estdout' (see the introduction to the file operators in section 3.8), as
well as the following standard access modes specified by string2:

'r' input file (read-only). In a POSTSCRIPT environment with per-
manent file storage, the file identified by strings must already
exist; otherwise, an undefinedfilename error is executed.

'w' output file (write-only). In a POSTSCRIPT environment with per-

manent file storage, the file identified by strings is overwritten if

it already exists or is created if it doesn't.

Once created, the file object remains valid until the file is closed either

explicitly (by executing closefile) or implicitly (by encountering end-
of-file while reading or executing the file). A file is also closed by
restore if the file object was created more recently than the save snap-

shot being restored. There is a limit on the number of files that can be
open simultaneously; see appendix B.

EXAMPLE:

(%stdin) (r) file % standard input file object

ERRORS:

invalidfileaccess, limitcheck, stackunderflow, typecheck,
undefinedfilename

SEE ALSO:

closefile, currentfile, read, write, status

false I file 165

fill — fill —

paints the area enclosed by the current path with the current color. Any
previous contents of that area on the current page are obscured, so areas
may be erased by filling with color set to white.

Before painting, fill implicitly closes any open subpaths of the current
path. The inside of the current path is determined by the normal
POSTSCRIPT non-zero winding number rule (see section 4.6).

fill implicitly performs a newpath after it has finished filling the cur-
rent path. To preserve the current path across a fill operation, use the
sequence: gsave fill grestore.

ERRORS:

limitcheck

SEE ALSO:

eofill, stroke, clip

findfont key findfont font

obtains a font dictionary identified by the specified key and pushes it on
the operand stack (see section 5.2). key may be a key previously passed
to definefont, in which case the font dictionary associated with key (in
FontDirectory) is returned.

If key is not found, findfont takes an action that varies according to the

environment in which the POSTSCRIPT interpreter is operating. In some
environments, findfont may attempt to read a font definition from a file
and to execute a definefont for that font. In other environments,
findfont substitutes a default font or executes the error invalidfont.

findfont is not actually a POSTSCRIPT operator but a built-in procedure.
It may be redefined by a POSTSCRIPT program that requires different
strategies for finding fonts.

ERRORS:

invalidfont, stackunderflow, typecheck

SEE ALSO:

scalefont, makefont, setfont, definefont, FontDirectory

166 fill findfont

flattenpath - flattenpath -

replaces the current path with an equivalent path that preserves all

straight line segments but has all curveto segments replaced by se-
quences of lineto (straight line) segments that approximate the curves.
If the current path does not contain any curveto segments, flattenpath

leaves it unchanged.

This ' flattening' of curves to straight line segments is done automati-
cally when a path is used to control painting (e.g., by stroke or fill).
Only rarely does a program need to flatten a path explicitly (see

pathbbox). The accuracy of the approximation to the curve is con-
trolled by the current flatness parameter in the graphics state (see

setflat).

ERRORS:

limitcheck

SEE ALSO:

setflat, curveto, lineto, pathbbox

floor num floor num2

returns the greatest integer value less than or equal to num 1. The type of

the result is the same as the type of the operand.

EXAMPLE:
3.2 floor =o 3.0
-4.8 floor = -5.0
99 floor = 99

ERRORS:
stackunderflow, typecheck

SEE ALSO:
ceiling, round, truncate, cvi

flattenpath I floor 167

flush — flush —

causes any buffered characters for the standard output file to be
delivered immediately. In general, a program requiring output to be
sent immediately (such as during real-time two-way interactions)
should call flush after generating that output.

ERRORS:

ioerror

SEE ALSO:

flushfile, print

flushfile file flushflle —

If file is an output file, flushfile causes any buffered characters for that

file to be delivered immediately. In general, a program requiring output
to be sent immediately (such as during real-time two-way interactions)
should call flushfile after generating that output.

If file is an input file, flushfile reads and discards data from file until
the end-of-file indication is encountered. This is useful during error
recovery, and is used for that purpose by the POSTSCRIPT control
program.

ERRORS:

ioerror, stackunderflow, typecheck

SEE ALSO:

flush, read, write

168 flush I flushfile

FontDirectory — FontDirectory dict

pushes the global dictionary of fonts on the operand stack. This diction-
ary associates font names with font dictionaries. Entries are placed in
FontDirectory by definefont and are looked up by findfont. This dic-

tionary may be read explicitly by POSTSCRIPT dictionary operators but
may not be changed (because it is read-only). FontDirectory is not

actually an operator; it is a name in systemdict associated with the
dictionary object itself.

While FontDirectory contains all fonts present in POSTSCRIPT's VM,

it does not necessarily describe all the fonts available to a POSTSCRIPT
program. In some environments, findfont may be able to locate a font
that is not defined in FontDirectory, e.g., by reading it from a file.

ERRORS:
stackoverflow

SEE ALSO:

definefont, findfont

FontDirectory I FontDirectory 169

for initial increment limit proc for —

executes proc repeatedly, passing it a sequence of values from initial

by steps of increment to limit. The for operator expects initial,
increment and limit to be numbers. It maintains a temporary internal

variable, known as the control variable, which it first sets to initial.

Then, before each repetition, it compares the control variable with the
termination value limit; if limit has not been exceeded, it pushes the

control variable on the operand stack, executes proc, and adds
increment to the control variable.

The termination condition depends on whether increment is positive or

negative. If increment is positive, for terminates when the control vari-
able becomes greater than limit. If increment is negative, for terminates

when the control variable becomes less than limit. If initial itself meets
the termination condition, for does not execute proc at all. If proc
executes the exit operator, for terminates prematurely.

Usually, proc will use the value on the operand stack for some purpose.

However, if proc does not remove the value, it will remain there; suc-

cessive executions of proc will cause successive values of the control
variable to accumulate on the operand stack.

EXAMPLE:
0 1 1 4 {add} for = 10
1 2 6 0 for 1 3 5
3 —.5 1 0 for 3.0 2.5 2.0 1.5 1.0

In the first example, the value of the control variable is added to
whatever is on the stack, so 1, 2, 3, and 4 are added in turn to a running
sum whose initial value is O. The second example has an empty proce-
dure, so the successive values of the loop counter are left on the stack.
The last example counts backwards from 3 to 1 by halves, leaving the
successive values on the stack.

ERRORS:

stackoverflow, stackunderflow, typecheck

SEE ALSO:
repeat, loop, forall, pathforall, exit

170 for I for

forall array proc forall —
packedarray proc forall —

dict proc forall —
string proc forall —

enumerates the elements of the first operand, executing the procedure
proc for each element. If the first operand is an array, string, or packed
array, forall pushes an element on the operand stack and executes proc
for each element in the array, string, or packed array, beginning with
the element whose index is 0 and continuing sequentially. The objects
pushed on the operand stack are the array, packed array, or string
elements themselves; in the case of a string, these elements are integers

in the range 0 to 255, not one-character strings.

If the first operand is a dictionary, forall pushes both a key and a value
on the operand stack and executes proc for each key-value pair in the

dictionary. The order in which forall enumerates the entries in the
dictionary is arbitrary. New entries put in the dictionary during execu-

tion of proc may or may not be included in the enumeration.

If the first operand is empty (i.e., has length 0), forall does not execute

proc at all. If proc executes the exit operator, forall terminates prema-

turely.

Although forall does not leave any results on the operand stack when it
is finished, the execution of proc may leave arbitrary results there. In
particular, if proc does not remove each enumerated element from the

operand stack, the elements will accumulate there.

EXAMPLE:
0 [13 29 3-8 21] {add} torah = 58
/d 2 dict def
d /abc 123 put
d /xyz (test) put
d {} forall /xyz (test) /abc 123

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:
for, repeat, loop, pathforall, exit

forall I forall 171

framedevice matrix width height proc framedevice —

installs a frame buffer as the raster memory for an output device and

establishes some of the properties of that device. This operator sets up a
full page frame buffer 8 x width pixels wide by height pixels high; the
width and height should be consistent with the physical properties of
the raster output device. framedevice derives a clipping path from the
width, height, and matrix information and establishes it as the current
clip path in the graphics state.

The matrix operand is used as the default transformation matrix for the
device. It should map default user coordinates into the device coordi-
nate system. framedevice establishes this matrix as the current trans-

formation matrix (CTM) in the graphics state.

The proc operand is a procedure that will be executed as part of the
execution of the showpage and copypage operators. This procedure's

task is to cause the contents of the frame buffer to be transmitted to the
physical output device. This generally involves executing one or more

special device-dependent operators. Such operators are different for
each physical device and are not documented in this manual. For most

devices, proc is also responsible for implementing the #copies conven-
tion described under showpage.

framedevice is ordinarily invoked by higher-level procedures for set-
ting up specific raster output devices; it is not usually executed directly

by user programs (see section 4.9). Not all devices use frame buffers,
so the framedevice operator may not be defined in some POSTSCRIPT
implementations.

ERRORS:
stackunderflow, typecheck

SEE ALSO:

banddevice, nulldevice, showpage

1 72 framedevice I framedevice

ge numi num2 ge bool
stringi string2 ge bool

pops two objects from the operand stack and pushes the boolean value

true if the first operand is greater than or equal to the second, false

otherwise. If both operands are numbers, ge compares their mathemati-

cal values. If both operands are strings, ge compares them element by

element (treating the elements as integers in the range 0 to 255) to

determine whether the first string is lexically greater than or equal to

the second. If the operands are of other types (or one is a string and the

other is a number), ge executes the typecheck error.

EXAMPLE:
4.2 4 ge true
(abc)(d) ge = false
(aba)(ab) ge true
(aba)(aba) ge true

ERRORS:

invalidaccess, stackunderflow, typecheck

SEE ALSO:

gt, eq, ne, le, It

ge I ge 173

get array index get any
packedarray index get any

dict key get any
string index get int

gets a single element from the value of an array, packed array, diction-

ary, or string.

If the first operand is an array, packed array, or string, get treats the

second operand as an index and returns the element identified by the
index (counting from zero), index must be in the range 0 to n-1, where

n is the length of the array, packed array, or string; if it is outside this
range, get will execute a rangecheck error.

If the first operand is a dictionary, get looks up the second operand as a
key in the dictionary and returns the associated value. If the key is not
present in the dictionary, get executes the undefined error.

EXAMPLE:
[31 41 59] 0 get = 31
[0 (a mixed-type array) {add 2 divl]

2 get [] % an empty array

/mykey (myvalue) def
currentdict /mykey get = (myvalue)

(abc) 1 get = 98 % character code for b
(a) 0 get = 97

ERRORS:

invalidaccess, rangecheck, stackunderflow, typecheck, undefined

SEE ALSO:

put, getinterval

174 get I get

getinterval array index count getinterval subarray
packedarray index count getinterval subarray

string index count getinterval substring

creates a new array, packed array, or string object whose value consists
of some subsequence of the original array, packed array, or string. The
subsequence consists of count elements starting at the specified index
in the original object. The elements in the subsequence are shared be-
tween the original and new objects (see the discussion of simple versus

composite objects in section 3.4).

The returned subarray or substring is an ordinary array, packed array,

or string object whose length is count and whose elements are indexed
starting at O. Thus, the element at index 0 in subarray is the same as the

element at index index in the original array.

getinterval requires index to be a valid index in the original object and
count to be a non-negative integer such that index+count is not greater

than the length of the original object.

EXAMPLE:
[9 8 7 6 5] 1 3 getinterval = [8 7 6]
(abcde) 1 3 getinterval (bcd)
(abcde) 0 0 getinterval = O % an empty string

ERRORS:
invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:
get, putinterval

getinterval I getinterval 1 75

grestore — grestore —

resets the current graphics state from the one on the top of the graphics

state stack and pops the graphics state stack, thereby restoring the
graphics state in effect at the time of the matching gsave. This operator
provides a simple way to undo complicated transformations and con-

text modification without having to reestablish all graphics state
parameters individually (see section 4.3).

If there is no matching gsave or if the most recent gsave preceded the
most recent unmatched save, grestore does not pop the graphics state

stack, although it does restore the graphics state from the top of the
graphics state stack.

ERRORS: (none)

SEE ALSO:
gsave, grestoreall

grestoreall — grestoreall —

repeatedly pops the graphics state stack until it encounters either the
bottommost graphics state or one that was saved by save as opposed to
gsave, leaving that state on top of the graphics state stack. It then resets
the current graphics state from that saved one.

ERRORS: (none)

SEE ALSO:

gsave, grestore

176 grestore I grestoreall

gsave - gsave —

pushes a copy of the current graphics state on the graphics state stack.
All elements of the graphics state are saved, including the CTM, cur-
rent path, clip path, and identity of the raster output device (but not the

contents of raster memory). The saved state may later be restored by a
matching grestore (see section 4.3).

The save operator implicitly performs a gsave, but restoring a context

saved by save is slightly different from restoring one saved by gsave
(see the descriptions of grestore and grestoreall).

Note that unlike save, gsave does not return a save object on the
operand stack to represent the saved state. gsave and grestore work in
a strictly stack-like fashion (except for the wholesale restoration per-

formed by restore and grestoreall).

ERRORS:
limitcheck

SEE ALSO:

grestore, grestoreall, restore, save

gt num i num2 gt bool
stringi string2 gt bool

pops two objects from the operand stack and pushes the boolean value

true if the first operand is greater than the second, false otherwise. If
both operands are numbers, gt compares their mathematical values. If
both operands are strings, gt compares them element by element
(treating the elements as integers in the range 0 to 255) to determine
whether the first string is lexically greater than the second. If the

operands are of other types (or one is a string and the other is a
number), gt executes the typecheck error.

ERRORS:
invalidaccess, stackundernow, typecheck

SEE ALSO:
ge, eq, ne, le, It

gsave I gt 177

handleerror (error)

is looked up in errordict and executed to report error information

saved by the default error handlers (see section 3.8). There is also a

procedure named handleerror in systemdict; it merely calls the one in
errordict.

identmatrix matrix identmatrix matrix

replaces the value of matrix with the value of the identity matrix, i.e.,

[1.0 0.0 0.0 1.0 0.0 0.0], and pushes this modified matrix back on the

operand stack. The identity matrix transforms any coordinate to itself.

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:

matrix, currentmatrix, defaultmatrix, initmatrix

idly inti int2 idiv quotient

divides inti by int2 and returns the integer part of the quotient, with any
fractional part discarded. Both operands of idiv must be integers and
the result is an integer.

EXAMPLE:
3 2 idiv 1
4 2 idiv 2
-5 2 idiv -2

ERRORS:

rangecheck, stackunderflow, typecheck, undefinedresult

SEE ALSO:

div, add, mul, sub, mod, cvi

178 handleerror I idly

idtransform dx' dy' idtransform dx dy
dx' dy' matrix idtransform dx dy

With no matrix operand, idtransform (inverse delta transform) trans-
forms the device space distance vector (dx', dy') by the inverse of CTM
to produce the corresponding distance vector (dx, dy) in user space. If
the matrix operand is supplied, idtransform transforms the distance
vector by the inverse of matrix rather than by the inverse of CTM.

A delta transformation is similar to a normal transformation (see sec-
tion 4.4), but the translation components (tx and ty) of the transfor-
mation matrix are not used, thus making the distance vectors be posi-

tionless in both user space and device space. idtransform is the inverse

of dtransform; it is useful for determining how distances map from
device space to user space.

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:

dtransform, transform, itransform

if bool proc if —

removes both operands from the stack, then executes proc if bool is
true. The if operator pushes no results of its own on the operand stack,

but the proc may do so (see section 3.6).

EXAMPLE:
3 4 It ((3 is less than 4)) if = (3 is less than 4)

ERRORS:

stackunderflow, typecheck

SEE ALSO:

ifelse

idtransform I if 179

ifelse bool proci proc2 ifelse —

removes all three operands from the stack, then executes proc 1 if boo(
is true or proc2 if boo! is false. The ifelse operator pushes no results of

its own on the operand stack, but the procedure it executes may do so
(see section 3.6).

EXAMPLE:

4 3 It {(TruePart)} ((FalsePart» ifelse
(FalsePart) % since 4 is not less than 3

ERRORS:

stackunderflow, typecheck

SEE ALSO:
if

180 ifelse 1 Heise

image width height bits/sample matrix prod image -

renders a sampled image onto the current page. The description here
only summarizes the image operator; see section 4.7 for full details.

The sampled image is a rectangular array of width x height sample

values, each of which consists of bits' sample bits of data (1, 2, 4, or 8).
The data is received as a sequence of characters, i.e., 8-bit integers in
the range 0 to 255. If bits/sample is less than 8, sample values are
packed left to right within a character (but see the note in section 4.7).

The image is considered to exist in its own coordinate system. The
rectangular boundary of the image has its lower left corner at (0, 0) and

its upper right corner at (width, height). The matrix operand specifies a
transformation from user space to the image coordinate system.

image executes proc repeatedly to obtain the actual image data. proc

must return (on the operand stack) a string containing any number of
additional characters of sample data. (If proc returns a string of length
zero, image will terminate execution prematurely.) The sample values
are assumed to be received in a fixed order: (0, 0) through (width- 1, 0),
then (0, 1) through (width- 1, 1), etc.

Use of the image operator after a setcachedevice within the context of

a BuildChar procedure is not permitted (an undefined error results);
however, use of imagemask in that context is permitted (see the
setcachedevice operator and section 5.7).

EXAMPLE:
/picstr 256 string def
45 140 translate
132 132 scale

256 256 8
[256 0 0 -256 0 256]
{currentfile
picstr readhexstring pop)
image

% string to hold image data
% locate lower left corner of image
% map image to 132 point square

`)/0 dimensions of source image
map unit square to source

% read image data from program file

4c47494b4d4c524c4d50535051554c5152
5959565c5 ... (131072 hex digits of image data)

ERRORS:
stackunderflow, typecheck, undefinedresult, undefined

SEE ALSO:
imagemask

image I image 181

imagemask width height invert matrix proc imagemask —

is similar to the image operator; however, it treats the source image as

a mask of 1 bit samples that are used to control where to apply paint

(with the current color) and where not to. See the description of the

image operator and the presentation of sampled images in section 4.7.

imagemask uses the width, height, matrix, and p.oc operands in

precisely the same way as image. The invert operand is a boolean that

determines the polarity of the mask. If invert is false, portions of the

image corresponding to source sample values of 0 are painted, while

those corresponding to sample values of 1 are left unchanged. If invert

is true, sample values of 1 are painted and sample values of 0 are left

unchanged.

imagemask is most useful for printing characters represented as bit-

maps. Such bitmaps represent masks through which a color is to be

transferred; the bitmaps themselves do not have a color (see section

4.7).

EXAMPLE:
45 228 translate
132 132 scale

% locate lower left corner of square
% scale 1 unit to 132 points

0 o moveto 0 1 lineto % fill square with gray background
1 1 lineto 1 0 lineto closepath
.9 setgray fill

O setgray % paint mask black
24 23 % dimensions of source mask
true % paint the 1 bits
[24 0 0 —23 0 23] % map unit square to mask
{<003B00 002700 002480 0E4940 114920
146220 3C6650 75FE88 17FF8C 175F14
1C07E2 3803C4 703182 F8EDFC B2BBC2
BB6F84 31BFC2 18EA3C 0E3E00 07FC00
03F800 1E1800 1FF800>} % mask data

imagemask

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:

image

182 imagemask I imagemask

Index any n ... anyo n index anyn ... anyo anyn

removes the non-negative integer n from the operand stack, counts
down to the nth element from the top of the stack, and pushes a copy of

that element on the stack.

EXAMPLE:
(a)(b)(c)(d) 0 index (a)(b)(c)(d)(d)
(a)(b)(c)(d) 3 index (a)(b)(c)(d)(a)

ERRORS:
rangecheck, stackunderflow, typecheck

SEE ALSO:
copy, dup, roll

initclip — initclip —

replaces the current clip path parameter in the graphics state by the

default clip path for the current output device. This path usually cor-
responds to the boundary of the maximum image area for the current
output device (its dimensions are the ones established by the
framedevice or banddevice device setup operator).

There are few situations in which a POSTSCRIPT page description
should execute initclip explicitly. A page description that executes
initclip usually produces incorrect results if it is embedded within
another, composite page.

ERRORS: (none)

SEE ALSO:
clip, eoclip, clippath, initgraphics

index I initclip 183

initgraphics — initgraphics —

resets several values in the current graphics state to their default values:

• current transformation matrix (default for current device)
• current path (empty)
• current point (undefined)

• current clipping path (default for current device)
• current color (black)
• current line width (one user space unit)

• current line cap style (butt end caps)
• current line join style (miter joins)
• current dash description (undashed, i.e., solid lines)
• current miter limit (10)

The initgraphics operator leaves the other graphics state parameters

unchanged; these include the current output device, font, transfer func-
tion, halftone screen, and flatness. This operator affects only the
graphics state, not the contents of raster memory or the output device.

initgraphics is equivalent to the POSTSCRIPT sequence:

initmatrix newpath initclip

1 setlinewidth O setlinecap O setlinejoin
0 setdash O setgray 10 setmiterlimit

There are few situations in which a POSTSCRIPT page description
should execute initgraphics explicitly. A page description that ex-

ecutes initgraphics usually produces incorrect results if it is embedded
within another, composite page. A program requiring information about

its initial graphics state should read and save that state at the beginning
of the program rather than assume that the default state prevailed in-
itially.

ERRORS: (none)

SEE ALSO:

grestoreall

184 initgraphics I initgraphics

initmatrix — initmatrix —

sets the current transformation matrix (CTM) to the default matrix for
the current output device. This matrix transforms the default user coor-

dinate system to device space (see section 4.4). A device's default

matrix is initially established by the framedevice or banddevice
operator.

There are few situations in which a POSTSCRIPT page description
should execute initmatrix explicitly. A page description that executes
initmatrix usually produces incorrect results if it is embedded within
another, composite page.

ERRORS: (none)

SEE ALSO:
defaultmatrix, currentmatrix, setmatrix

interrupt (error)

processes an external request to interrupt execution of a POSTSCRIPT

program. When the interpreter receives an interrupt request, it executes
interrupt as if it were an error (i.e., it looks up the name 'interrupt' in
errordict). Execution of interrupt is sandwiched between execution of

two objects being interpreted in normal sequence.

The precise nature of an external interrupt request depends on the en-
vironment in which the POSTSCRIPT interpreter is running. In typical

environments, receipt of a control-C character from a serial communi-
cation channel gives rise to the interrupt error. This permits a user to

explicitly abort a POSTSCRIPT computation. The default definition of

interrupt executes a stop.

invalidaccess (error)

An attempt has been made to reference an array, packed array, diction-
ary, file, or string object in a way that violates its access attribute (e.g.,
store into a read-only array). This error also occurs if pathforall is
executed when the current path includes the result of a charpa! h.

SEE ALSO:
rcheck, wcheck, readonly, executeonly, noaccess

initmatrix I invalidaccess 1 85

inva I id exit (error)

An exit has been executed for which there is no dynamically enclosing

looping context (for, loop, repeat, pathforall, or renderbands), or it

has attempted to leave the context of a run or stopped operator.

invalidfileaccess (error)

The access string specification to the file operator is unacceptable (see
the file operator description).

invalidfont (error)

Either the operand to findfont is not a valid font name or the operand
to makefont or setfont is not a well-formed font dictionary. (The

invalidfont error may also be executed by other font operators upon
discovering a font dictionary to be malformed in some way.)

invalidrestore (error)

An improper restore has been attempted. One or more of the operand,

dictionary, or execution stacks contains composite objects whose
values were created more recently than the save whose context is being
restored. Since restore would destroy those values but the stacks are

unaffected by restore, the outcome would be undefined and cannot be
allowed.

SEE ALSO:
restore, save

invertmatrix matrixi matrix2 Invertmatrix matrix2

replaces the value of matrix2 with the result of inverting matrix, and

pushes the modified matrix2 back on the operand stack. The result of

inverting a matrix is that if matrix, transforms a coordinate (x, y) to

(x', y') then matrix2 transforms (x', y') to (x, y) (see section 4.4).

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:

itransform, idtransform

1 86 invalidexit I invertmatrix

ioerror (error)

An exception (other than end-of-file) has occurred during execution of
one of the file operators. The nature of the exception is environment-
dependent, but may include such events as parity or checksum errors,
broken network connections, etc. Attempting to write to an input file or
to a file that has been closed will also cause an ioerror. Occurrence of
an ioerror does not cause the file to become closed unless it was

already closed or the error occurs during closefile.

itransform x' y' itransform x y
x' y' matrix itransform x y

With no matrix operand, itransform (inverse transform) transforms the
device space coordinate (x', y') by the inverse of CTM to produce the
corresponding user space coordinate (x, y). If the matrix operand is

supplied, itransform transforms (x', y') by the inverse of matrix rather

than by the inverse of CTM.

EXAMPLE:
To achieve consistent line weights among parallel lines appearing on a

page, it is necessary for the lines to be positioned uniformly relative to
output device pixels; otherwise, some lines may be rendered one pixel
thicker than others. It is a simple matter to specify positions in device-

independent user space, yet achieve device-dependent positioning, by
adjusting user space coordinates according to the following method:

transform round exch round exch itransform

Given x and y values on the operand stack representing a position in

user space, this sequence of operations transforms that position to
device space, rounds it to the nearest output pixel boundary, and in-

verse transforms it back to user space.

ERRORS:
stackunderflow, typecheck, undefined result

SEE ALSO:
transform, dtransform, idtransform, invertmatrix

ioerror I itransform 187

known dict key known bool

returns the boolean value true if there is an entry in the dictionary dict

whose key is key; otherwise it returns false. dict does not have to be on
the dictionary stack.

EXAMPLE:
/mydict 5 dict def
mydict /total 0 put
mydict /total known true
mydict /badname known false

ERRORS:

invalidaccess, stackunderflow, typecheck

SEE ALSO:

where, load, get

188 known I known

kshow proc string kshow —

prints the characters of string in a manner similar to show, but allowing
user intervention between characters. If the character codes in string are

co, c 1, ... cn, kshow proceeds as follows. First it shows co at the current

point, updating the current point by co's width. Then it pushes the
character codes co and e1 on the operand stack (as integers) and ex-

ecutes proc. The proc may perform any actions it wishes; typically it
will modify the current point to affect the subsequent placement of c 1 .
kshow continues by showing c1, pushing c1 and c2 on the stack, ex-
ecuting proc, and so on. It finishes by pushing cn_1 and c n on the stack,

executing proc, and finally showing c,,.

When proc is called for the first time, the graphics state (in particular,
the user coordinate system) is the same as it was at the time kshow was

invoked except that the current point has been updated by the width of
co. Execution of proc is permitted to have any side-effects, including

changes to the graphics state. Such changes persist from one call of
proc to the next and may affect graphical output for the remainder of

kshow's execution and afterward.

The name kshow is derived from 'kern-show'. To kern characters is to

adjust the spacing between adjacent pairs of characters in order to
achieve a visually pleasing result. The kshow operator enables user-
defined kerning as well as other manipulations, since arbitrary com-

putations can be performed between each pair of characters.

ERRORS:
invalidaccess, invalidfont, nocurrentpoint, stackunderflow,

typecheck

SEE ALSO:
show, ashow, awidthshow, widthshow

kshow I kshow 189

le num i num2 le bool
string i string2 le bool

pops two objects from the operand stack and pushes the boolean value
true if the first operand is less than or equal to the second, false other-
wise. If both operands are numbers, le compares their mathematical

values. If both operands are strings, le compares them element by ele-

ment (treating the elements as integers in the range 0 to 255) to deter-

mine whether the first string is lexically less than or equal to the
second. If the operands are of other types (or one is a string and the
other is a number), le executes the typecheck error.

ERRORS:

invalidaccess, stackunderflow, typecheck

SEE ALSO:

It. eq, ne, ge, gt

length array length int
packedarray length int

did t length int
string length int

depends on the type of its operand. If the operand is an array, packed
array, or string, length returns the number of elements in its value. If
the operand is a dictionary, length returns the current number of key-

value pairs it contains (as opposed to its maximum capacity, which is
returned by maxlength).

EXAMPLE:
[1 2 4] length 3

length O % an array of zero length
lar 20 array def ar length = 20

/mydict 5 dict def
mydict length
mydict /firstkey (firstvalue) put
mydict length 1

(abc\n) length = 4 % the '\n is one character
O length

ERRORS:
invalidaccess, stackunderflow, typecheck

SEE ALSO:

maxlength, array, diet, string

190 le l length

limitcheck (error)

A POSTSCRIPT implementation limit has been exceeded (e.g., too many

files have been opened simultaneously, or a path has become too
complex). Appendix B gives the actual values for all such limits.

lineto x y lineto —

appends a straight line segment to the current path (see section 4.5).
The line extends from the current point to the point (x, y) in user space;
(x, y) then becomes the current point. If the current point is undefined

(because the current path is empty), lineto executes the error

nocurrentpoint.

ERRORS:

limitcheck, nocurrentpoint, stackunderflow, typecheck

SEE ALSO:

rlineto, moveto, arc, curveto, closepath

In num In real

returns the natural logarithm (base e) of num. The result is a real.

EXAMPLE:

10 In = 2.30259

100 in = 4.60517

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:

log, exp

limitcheck I In 191

load key load value

searches for key in each dictionary on the dictionary stack, starting with

the topmost (current) dictionary. If key is found in some dictionary,
load pushes the associated value on the operand stack. If key is not

found in any dictionary on the dictionary stack, load executes the error
undefined.

load looks up key in precisely the same way as the interpreter looks up
executable names that it encounters during execution. However, load

always pushes the associated value on the operand stack; it never ex-
ecutes that value.

EXAMPLE:
/avg {add 2 div} def
/avg load {add 2 div)

ERRORS:

invalidaccess, stackunderflow, typecheck, undefined

SEE ALSO:

where, get

log num log real

returns the common logarithm (base 10) of num. The result is a real.

EXAMPLE:
10 log 1.0
100 log 2.0

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:
In, exp

192 load I log

loop proc loop —

repeatedly executes proc until proc executes the exit operator, at which
point interpretation resumes at the object next in sequence after the

loop. Control also leaves proc if the stop operator is executed.

If proc never executes exit or stop, an infinite loop results, which can

be broken only via an external interrupt (see interrupt).

ERRORS:

stackunderflow, typecheck

SEE ALSO:

for, repeat, forall, pathforall, exit

It numi num2 It bool
stringi string2 It bool

pops two objects from the operand stack and pushes the boolean value
true if the first operand is less than the second, false otherwise. If both
operands are numbers, It compares their mathematical values. If both

operands are strings, It compares them element by element (treating the

elements as integers in the range 0 to 255) to determine whether the
first string is lexically less than the second. If the operands are of other
types (or one is a string and the other is a number), It executes the

typecheck error.

ERRORS:

invalidaccess, stackunderflow, typecheck

SEE ALSO:

le, eq, ne, ge, gt

loop I It 193

makefont font matrix makefont font'

applies matrix to font, producing a new font' whose characters are

transformed by matrix when they are printed. makefont first creates a
copy of font, then it replaces the new font's FontMatrix entry with the

result of concatenating the existing FontMatrix with matrix, and
finally it returns the result as font'.

Printing characters from the transformed font produces the same results
as printing from the original font after having transformed user space
by the same matrix. makefont is essentially a convenience operator

that permits the desired transformation to be encapsulated in the font
description itself.

The most common transformation is to scale a font by a uniform factor
in both x and y. Another operator, scalefont, is a special case of the
more general makefont and should be used for such uniform scaling.

The POSTSCRIPT font machinery keeps track of font dictionaries
recently created by makefont. Calling makefont multiple times with

the same font and matrix will usually return the same font' rather than
create a new one each time. However, it is usually more efficient for a
POSTSCRIPT program to apply makefont only once for each font that it
needs and to keep track of the resulting font dictionaries on its own.

See chapter 5 for general information about fonts and section 4.4 for a
discussion of transformations.

EXAMPLE:

/Helvetica findfont [10 0 0 12 0 0] makefont setfont

This obtains the standard Helvetica font, which is defined with a one

unit line height, and scales it by a factor of 10 in the x dimension and

12 in they dimension. This produces a 12 unit high font (i.e., a 12 point
font in default user space) whose characters are 'condensed' in the x
dimension.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

scalefont, setfont, findfont

194 makefont I makefont

mark - mark mark

pushes a mark (an object whose type is mark, not the mark operator
itself) on the operand stack. All marks are identical, and the operand
stack may contain any number of them at once.

The primary use of marks is to indicate the stack position of the begin-
ning of an indefinitely long list of operands being passed to an operator
or procedure. The T operator (array construction) is the most common
operator that works this way; it treats as operands all elements of the

stack down to a mark that was pushed by the `[' operator (1' is a
synonym for mark). It is possible to define procedures that work

similarly; operators such as counttomark and cleartomark are useful

within such procedures.

ERRORS:

stackovertlow

SEE ALSO:

counttomark, cleartomark, pop

matrix — matrix matrix

creates a 6-element POSTSCRIPT array object, fills it in with the values
of an identity matrix, i.e., [1.0 0.0 0.0 1.0 0.0 0.0], and pushes this array

on the operand stack.

EXAMPLE:

matrix [1.0 0.0 0.0 1.0 0.0 0.0]

6 array identmatrix = [1.0 0.0 0.0 1.0 0.0 0.0]

The two lines in the example yield identical results.

ERRORS:
stackoverflow

SEE ALSO:

currentmatrix, defaultmatrix, initmatrix, setmatrix, array

mark I matrix 195

maxlength dict maxlength int

returns the maximum number of key-value pairs that dict can hold, as
defined by the operand of the dict operator that created dict. (See also
the length operator, which returns the number of entries a dictionary
presently contains.)

EXAMPLE:
/mydict 5 dict clef
mydict length
mydict maxlength 5

ERRORS:
invalidaccess, stackunderflow , typecheck

SEE ALSO:
length, dict

mod inti int2 mod remainder

returns the remainder that results from dividing inti by int2. The sign of
the result is the same as the sign of the dividend intl. Both operands
must be integers; the result is an integer.

EXAMPLE:
5 3 mod 2
5 2 mod 1
—5 3 mod —2

The last line of the example demonstrates that mod is a remainder
operation rather than a true modulo operation.

ERRORS:

stackunderflow, typecheck, undefinedresult

SEE ALSO:
idiv, div

196 maxlength I mod

moveto x y moveto —

starts a new subpath of the current path. moveto sets the current point
in the graphics state to the user space coordinate (x, y) without adding

any line segments to the current path.

If the previous path operation in the current path was also a moveto (or
rmoveto), that point is deleted from the current path and the new

moveto point replaces it.

ERRORS:

limitcheck, stackunderflow, typecheck

SEE ALSO:

rmoveto, lineto, curveto, arc, closepath

Mul num, num2 mul product

returns the product of numi and num2. If both operands are integers and
the result is within integer range, the result is an integer; otherwise, the

result is a real.

ERRORS:

stackunderflow, typecheck, undefined result

SEE ALSO:

div, idiv, add, sub, mod

ne anyi any2 ne bool

pops two object from the operand stack and pushes the boolean value
false if they are equal, true if not. What it means for objects to be equal

is presented in the description of the eq operator.

ERRORS:

inN alidaccess, stackunderflow

SEE ALSO:

eq, ge, gt, le, It

moveto I ne 197

neg numi neg num2

returns the negative of num i. The type of the result is the same as the

type of num i (unless nun!, is the most negative integer, in which case
the result is a real).

EXAMPLE:

4.5 neg = -4.5
-3 neg = 3

ERRORS:

stackunderflow, typecheck

SEE ALSO:

abs

newpath — newpath —

initializes the current path to be empty, causing the current point to

become undefined.

ERRORS: (none)

SEE ALSO:

closepath, stroke, fill, clip, gsave

198 neg I newpath

noaccess array noaccess array
packedarray noaccess packedarray

dict noaccess dict
file noaccess file

string noaccess string

reduces the access attribute of an array, packed array, dictionary, file,
or string object to none (see the description of attributes in section 3.4).
The value of a no-access object cannot be executed or accessed directly
by POSTSCRIPT operators. No-access objects are of no use to
POSTSCRIPT programs but serve certain internal purposes that are not

documented in this manual.

For an array, packed array, file, or string, noaccess affects the access
attribute only of the object that it returns; if there exist other objects
that share the same value, their access attributes are unaffected.

However, in the case of a dictionary, noaccess affects the value of the
object, so all dictionary objects sharing the same dictionary are af-

fected.

ERRORS:

invalidaccess, stackunderflow, typecheck

SEE ALSO:

rcheck, wcheck, xcheck, readonly, executeonly

nocurrentpoint (error)

The current path is empty, and thus there is no current point, but an
operator requiring a current point has been executed (e.g., lineto,
curveto, currentpoint, show). The most common cause of this error is
neglecting to perform an initial moveto.

SEE ALSO:

mmeto

noaccess nocurrentpoint 1 99

not booli not bool2

inti not int2

If the operand is a boolean, not returns its logical negation. If the

operand is an integer, not returns the bitwise complement (one's
complement) of its binary representation.

EXAMPLE:

true not false
false not true

52 not = —53

ERRORS:

stackunderflow, typecheck

SEE ALSO:

and, or, xor, if

null — null null

% a complete truth table

pushes a literal null object (not the null operator itself) on the operand
stack.

ERRORS:

stackoverflow

SEE ALSO:

array, type

200 not l null

nulldevice — nulldevice —

installs the ' null device' as the current output device. The null device
corresponds to no physical output device and has no raster memory

associated with it. Marks placed on the current page by painting
operators (e.g., show or stroke) are discarded; output operators

(showpage and copypage) do nothing. However, in all other respects
the null device behaves like a real raster output device: the graphics
operators have their normal side-effects on the graphics state, the char-

acter operators invoke the font machinery (including the font cache),

and so on.

nulldevice sets the default transformation matrix to be the identity
transform [1.0 0.0 0.0 1.0 0.0 0.0]. A POSTSCRIPT program may change
this to any other matrix (using setmatrix) if it desires to simulate the

device coordinate system of some real device. nulldevice also es-
tablishes the clipping path as a degenerate path consisting of a single

point at the origin.

The null device is useful for exercising the POSTSCRIPT graphics and

font machinery for such purposes as accumulating characters in the font
cache, operating on paths, computing bounding boxes for graphical

shapes, and performing coordinate transformations using CTM without
generating output. Such manipulations should be bracketed by gsave

and grestore so that the former device can be reinstated and the other

side-effects of nulldevice undone.

ERRORS: (none)

SEE ALSO:

banddevice, framedevice

nulldevice I nulldevice 201

or bool 1 bool2 or bool3
Intl nt2 or int3

If the operands are booleans, or returns their logical disjunction. If the
operands are integers, or returns the bitwise ' inclusive or' of their
binary representations.

EXAMPLE:
true true or true
true false or true
false true or = true
false false or = false

175 or s› 21

ERRORS:

stackunderflow, typecheck

SEE ALSO:
and, not, xor

1% a complete truth table

packedarray anyo anyn_i n packedarray packedarray

creates a packed array object of length n containing the objects anyo
through anyn_i as elements. packedarray first removes the non-
negative integer n from the operand stack. It then removes that number
of objects from the operand stack, creates a packed array containing

those objects as elements, and finally pushes the resulting packed array
object on the operand stack.4

The resulting object has a type of ` packedarraytype', a literal attribute,

and read-only access. In all other respects, its behavior is identical to
that of an ordinary array object.

ERRORS:

rangecheck, stackunderflow, typecheck, VMerror

SEE ALSO:
currentpacking, setpacking, abad

4The packedarray operator is not present in Adobe POSTSCRIPT implemen-
tations prior to version 25.0.

202 or I packedarray

pathbbox - pathbbox II, lly urx ury

returns the bounding box of the current path in the current user coordi-
nate system. The results are four real numbers: lower left x, lower left
y, upper right x, and upper right y. These coordinates describe a rec-

tangle, oriented with its sides parallel to the x and y axes in user space,
that completely encloses all elements of the path. If the current path is

empty, pathbbox executes the error nocurrentpoint.

pathbbox first computes the bounding box of the current path in device
space. It then transforms these coordinates to user space (by the inverse

of CTM) and computes the bounding box of the resulting figure in user
space. If the user coordinate system is rotated (other than by multiples

of 90 degrees) or skewed, pathbbox may return a bounding box that is

larger than expected.

If the path includes curve segments, the bounding box encloses the
control points of the curves as well as the curves themselves. To obtain

a bounding box that fits the path more tightly, one should first 'flatten'
the curve segments by executing flattenpath.

ERRORS:

nocurrentpoint, stackoverflow

SEE ALSO:

flattenpath, clippath, charpath

pathbbox I pathbbox 203

pathforall move line curve close pathforall —

removes four operands from the stack, all of which must be procedures.
pathforall then enumerates the current path in order, executing one of
the four procedures for each element in the path. The four basic kinds

of elements in a path are moveto, lineto, curveto, and closepath. (The
relative variants rmoveto, rlineto, and rcurveto are converted to the
corresponding absolute forms; arc, arcn, and arcto are converted to
sequences of curveto.) For each element in the path, pathforall pushes

the element's coordinates on the operand stack and executes one of the
four procedures, as follows:

moveto push x y; execute move

lineto push x y; execute line

curveto push x1 y1 x2 y2 x3 y3; execute curve
closepath execute close

The operands passed to the procedures are coordinates in user space;
pathforall transforms them from device space to user space using the
inverse of the CTM. Ordinarily, these coordinates will be the same as

the ones originally entered by moveto, lineto, etc. However, if the
CTM has been changed since the path was constructed, the coordinates
reported by pathforall will be different from the ones originally en-
tered.

Among other uses, pathforall enables a path constructed in one user
coordinate system to be read out in another user coordinate system.

If charpath was used to construct any portion of the current path,
pathforall is not allowed; its execution will produce an invalidaccess
error.

ERRORS:

stackoverflow, stackunderflow, typecheck

SEE ALSO:

moveto, lineto, curveto, closepath

204 pathforall I pathforall

Pop any pop —

removes the top element from the operand stack and discards it.

EXAMPLE:

1 2 3 pop = 1 2
1 2 3 pop pop = 1

ERRORS:

stackunderflow

SEE ALSO:

clear, dup

print string print —

writes the characters of string to the standard output file (see section

3.8). The print operator provides the simplest means to send text to a
host computer or an interactive user. Note that print is a file operator
that has nothing to do with painting character shapes on the current

page (see show) or with sending the current page to a raster output
device (see showpage).

ERRORS:

stackunderflow, typecheck

SEE ALSO:

write, flush, =, ==

pop I print 205

prompt — prompt —

is a procedure executed by the POSTSCRIPT interpreter whenever it is

ready for a new statement to be entered by the user during interactive

operation (see section 3.8). The initial definition of prompt is
l(PS>) print flush}'.

SEE ALSO:

echo

pstack I— anyi ... anyn pstack H anyi ... anyn

writes text representations of every object on the stack to the standard
output file, but leaves the stack unchanged. pstack applies the '=='

operator to each element of the stack, starting with the topmost ele-

ment. See the '=:::' operator for a description of its effects.

ERRORS:

stackoverflow

SEE ALSO:
stack, =, ==

206 prompt I pstack

put array index any put —
dict key any put —

string index int put —

replaces a single element of the value of an array, dictionary, or string.

If the first operand is an array or string, put treats the second operand
as an index and stores the third operand at the position identified by the

index (counting from zero), index must be in the range 0 to n-1, where
n is the length of the array or string; if it is outside this range, put will

execute a rangecheck error.

If the first operand is a dictionary, put uses the second operand as a key
and the third operand as a value, and it stores this key-value pair into
dict. If key is already present as a key in dict, put simply replaces its
value by any. Otherwise, put creates a new entry for key and associates
any with it; if dict is already full, put executes the error dictfull.

EXAMPLE:

lar [5 17 3 8] def

ai 2 (abcd) put

ar s [5 17 (abcd) 8]

/d 5 dict def

d ¡abc 123 put

d {1 forall = 'abc 123

/st (abc) def
st 0 65 put
st = (Abc)

% 65 is ASCII code for character ' A'

ERRORS:

dictfull, invalidaccess, rangecheck, stackundertlow, typecheck

SEE ALSO:

get, putinter%al

put I put 207

putinterval arrayi index array2 putinterval —
string., index string2 putinterval —

replaces a subsequence of the elements of the first array or string by the
entire contents of the second array or string. The subsequence that is

replaced begins at the specified index in the first array or string; its
length is the same as the length of the second array or string.

The objects are actually copied from the second array or string to the
first, as if by a sequence of individual gets and puts. In the case of
arrays, if the copied elements are themselves composite objects, the
values of those objects become shared between array2 and array, (see
the discussion of simple versus composite objects in section 3.4).

putinterval requires index to be a valid index in array, or string, such

that index plus the length of array2 or string2 is not greater than the
length of arrayi or string,

EXAMPLE:

/ar [5 8 2 7 3] def
ar 1 [(a) (b) (c)] putinterval
ar [5 (a) (b) (c) 3]

/st (abc) def
st 1 (de) putinterval
st (ade)

ERRORS:

invalidaccess, rangecheck, stackunderflow, typecheck

SEE ALSO:
getinterval, put

208 putinterval r putinterval

quit - quit -

terminates operation of the interpreter. The precise action of quit
depends on the environment in which the POSTSCRIPT interpreter is

running; it may give control to an operating system command inter-

preter, halt or restart the machine, etc.

The definition of the quit operator in systemdict is ordinarily masked
by another definition of quit in userdict, which is usually searched

before systemdict. The default definition of quit in userdict is the
same as stop, which terminates the current POSTSCRIPT program but

not the interpreter as a whole.

In POSTSCRIPT implementations running on computers with an operat-

ing system and a file system, quit saves a snapshot of the VM in a file

before terminating the interpreter. The next time the interpreter is
started, it automatically reloads the VM from the file (see section 3.7).

ERRORS: (none)

SEE ALSO:

stop, start

rand — rand int

returns a random integer in the range 0 to 231-1, produced by a pseudo-
random number generator. The random number generator's state can be
reset by srand and interrogated by rrand.

ERRORS:

stackoverflow

SEE ALSO:

srand, rrand

rangecheck (error)

A numeric operand's value is outside the range expected by an operator
(e.g., an array or string index is out of bounds, a negative number
appears where a non-negative number is required, etc.)

quit I rangecheck 209

rcheck array rcheck bool
packedarray rcheck bool

dict rcheck bool
file rcheck bool

string rcheck bool

tests whether the operand's access permits its value to be read ex-
plicitly by POSTSCRIPT operators. rcheck returns true if the operand's
access is unlimited or read-only, false otherwise.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

executeonly, noaccess, readonly, wcheck

rcurveto dxi dyi dx2 dy2 dx3 dy3 rcurveto —

(relative curveto) adds a Bézier cubic section to the current path in the
same manner as curveto; however, the three number pairs are inter-
preted as displacements relative to the current point (x0, yo) rather than
as absolute coordinates. That is, rcurveto constructs a curve from
(x0, yo) to (xo+dx3, yo+dy3), using (x0-1-dxi, yo+dyi) and
(xo+dx2, yo+dy2) as Bézier control points. See the description of
curveto for complete information.

ERRORS:

limitcheck, nocurrentpoint, stackunderflow, typecheck,
undefinedresu It

SEE ALSO:
curveto, rlineto, rmoveto

read file read if not end-of-file: byte true
if end-of-file: false

reads the next character from the input file file, pushes it on the stack as
an integer, and pushes true as an indication of success. If an end-of-file
indication is encountered before a character has been read, read closes
the file and returns false. If some other error indication is encountered

(e.g., parity or checksum error), read executes ioerror.

ERRORS:

invalidaccess, ioerror, stackoverflow, stackunderflow, typecheck

SEE ALSO:

readhexstring, readline, readstring, bytesavailable

210 rcheck I read

read hexstring file string readhexstring substnng bool

reads characters from file, expecting to encounter a sequence of
hexadecimal digits '0' through ' 9' and 'A' through ' F' (or ' a' through
'f'). readhexstring interprets each successive pair of digits as a two-
digit hexadecimal number representing an integer value in the range 0
to 255. It then stores these values into successive elements of string
(starting at index 0) until either the entire string has been filled or an
end-of-file indication is encountered in file. Finally, readhexstring
returns the substring of string that was actually filled and a boolean
indicating the outcome (true normally, false if end-of-file was encoun-
tered before the string was filled).

readhexstring ignores any characters that are not valid hexadecimal
digits, so the data in file may be interspersed with spaces, newlines,
etc., without changing the interpretation of the data itself.

Hexadecimal is the preferred external representation for arbitrary bi-

nary data such as sampled images, since the hexadecimal representation
can be stored in files and transmitted over communication channels
without concern over preempted control characters, maximum line
lengths, and similar restrictions imposed by operating systems and

other software.

ERRORS:
invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

SEE ALSO:
read, readline, readstring

readhexstring I readhexstring 211

readline file string readllne substring bool

reads a line of characters (terminated by a newline character) from file

and stores them into successive elements of string. readline then
returns the substring of string that was actually filled and a boolean
indicating the outcome (true normally, false if end-of-file was encoun-
tered before a newline character was read).

The terminating newline character is not stored into string or included
at the end of the returned substring. If readline completely fills string

before encountering a newline character, it executes the error
rangecheck.

ERRORS:

inv alidaccess, ioerror, rangecheck, stackunderflow, typecheck

SEE ALSO:

read, readhexstring, readline

readonly array readonly array

packedarray readonly packedarray

dict readonly dict

file readonly file
string readonly string

reduces the access attribute of an array, packed array, dictionary, file,
or string object to read-only (see the description of attributes in section

3.4). Access can only be reduced by this means, never increased. When
an object is read-only, its value cannot be modified by POSTSCRIPT
operators (an invalidaccess error will result), but it can still be read by

operators or executed by the POSTSCRIPT interpreter.

For an array, packed array, file, or string, readonly affects the access
attribute only of the object that it returns; if there exist other objects
that share the same value, their access attributes are unaffected.
However, in the case of a dictionary, readonly affects the value of the

object, so all dictionary objects sharing the same dictionary are af-
fected.

ERRORS:

invalidaccess, stackunderflow, typecheck

SEE ALSO:

executeonly, noaccess, rcheck, wcheck

212 readline I readonly

readstring tile string readstring substring bool

reads characters from file and stores them into successive elements of
string until either the entire string has been filled or an end-of-file
indication is encountered in file. readstring then returns the substring

of string that was actually filled and a boolean indicating the outcome
(true normally, false if end-of-file was encountered before the string
was filled). All character codes are treated the same, namely as integers
in the range 0 to 255; there are no special characters (in particular, the
newline character is not treated specially).

ERRORS:
invalidaccess, ioerror, rangeeheek, stackunderflow, typeeheck

SEE ALSO:
read, readhexstring, readline

renderbands proc renderbands —

enumerates the bands of raster data for the current output device, which

must have been installed by the banddevice operator. renderbands
may be called only from the output procedure given as an operand to
banddevice. This operator is not defined in implementations of the
POSTSCRIPT interpreter that do not include a banddevice operator.

renderbands divides the current page into a sequence of rectangular
bands of pixels (the size of a band is implementation-dependent). Then,
for each band, renderbands interprets the display list representing the
current page, paints the band buffer with whatever marks fall into the
current band, and executes proc. This procedure's task is to cause the
contents of the band buffer to be transmitted to the physical output
device. This generally involves executing one or more special device-
dependent operators. Such operators are different for each physical

device and are not documented in this manual.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
banddevice

readstring I renderbands 213

repeat int proc repeat —

executes proc int times, where int is a non-negative integer. The repeat

operator removes both operands from the stack before executing proc
for the first time. If proc executes the exit operator, repeat terminates
prematurely. repeat leaves no results of its own on the stack, but proc
may do so.

EXAMPLE:

4 {(abc)} repeat = (abc)(abc)(abc)(abc)

1 2 3 4 3 { pop} repeat = 1 % pops 3 values (down to the 1)

4 0 repeat = % does nothing four times

mark 0 {(won't happen)} repeat mark

In the last example, a zero repeat count meant that the procedure is not
executed at all, hence the mark is still topmost on the stack.

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:

for, loop, forall, pathforall, exit

resetfile file resetfile —

discards buffered characters belonging to a file object. For an input file,
resetfile discards any characters that have been received from the

source but not yet consumed; for an output file, it discards any charac-
ters that have been written to the file but not yet delivered to their
destination.

resetfile may have other side-effects that depend on the properties of
the underlying file. For example, it may restart communication over a

channel that was blocked waiting for buffer space to become available.
resetfile never waits for characters to be received or transmitted.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

file, closefile, flushfile

214 repeat I resetfile

restore save restore —

resets the virtual memory (VM) to the state represented by the supplied
save object, i.e., the state at the time the corresponding save was ex-

ecuted. See section 3.7 for a description of the VM and of the effects of

save and restore.

restore can reset the VM to the state represented by any save object
that is still valid, not necessarily the one produced by the most recent

save. After restoring the VM, restore invalidates its save operand,
along with any other save objects created more recently than that one.
That is, a VM snapshot can be used only once; to make it possible to
restore the same environment repeatedly, it is necessary to do a new

save each time.

restore does not alter the contents of the operand, dictionary, or execu-
tion stack (except to pop its save operand). If any of these stacks con-
tain array, dictionary, file, name, save, or string objects that are newer
than the snapshot being restored, restore executes the invalidrestore

error.

restore does alter the graphics state stack: it performs the equivalent of

a grestoreall and then removes the graphics state created by save from

the graphics state stack.

ERRORS:
invalidrestore, rangecheck, stackunderflow, typecheck

SEE ALSO:
save, grestoreall, vmstatus

reversepath — reversepath —

replaces the current path with an equivalent one whose segments are

defined in the reverse order. Precisely, reversepath reverses the direc-
tions and order of segments within each subpath of the current path;

however, it does not alter the order of the subpaths in the path with
respect to each other.

ERRORS: (none)

SEE ALSO:
fill, eofill, clip, eoclip

restore I reversepath 215

rlineto dx dy rlineto —

(relative lineto) appends a straight line segment to the current path in
the same manner as lineto; however, the number pair is interpreted as a
displacement relative to the current point (x, y) rather than as an ab-
solute coordinate. That is, rlineto constructs a line from (x, y) to
(x+dx, y+dy) and makes (x-i-dx, y+dy) be the new current point.

ERRORS:

limitcheck, nocurrentpoint, stackunderflow, typecheck

SEE ALSO:
lineto, rmoveto, rcurveto

rmoveto dx dy rmoveto —

(relative moveto) starts a new subpath of the current path in the same
manner as moveto; however, the number pair is interpreted as a dis-
placement relative to the current point (x, y) rather than as an absolute
coordinate. That is, rmoveto makes (x+dx, y+dy) be the new current
point, without connecting it to the previous point. If the current point is
undefined (because the current path is empty), rmoveto executes the
error operator noeurrentpoint.

ERRORS:
limitcheck, nocurrent point, stackunderflow, typecheck

SEE ALSO:
nun eto. rlineto, ruin eto

216 dineto rmoveto

roll anyn_i anyo n j roll any(0) mod anyo anyn4 anyj mod o

performs a circular shift of the objects anyn_i through anyo on the

operand stack by the amount j. Positive j indicates upward motion on

the stack whereas negative j indicates downward motion.

n must be a non-negative integer and j must be an integer, roll first

removes these operands from the stack; there must be at least n addi-
tional elements. roll then performs a circular shift of these n elements
by j positions.

If j is positive, each shift consists of removing an element from the top

of the stack and inserting it between element n-1 and element n of the
stack, moving all intervening elements one level higher on the stack. If
j is negative, each shift consists of removing element n-1 of the stack
and pushing it on the top of the stack, moving all intervening elements

one level lower on the stack.

EXAMPLE:

(a)(b)(c) 3 —1 roll (b)(c)(a)
(a)(b)(c) 3 1 roll (c)(a)(b)
(a)(b)(c) 3 0 roll (a)(b)(c)

ERRORS:

rangecheck, stackoverflow, stackunderflow, typecheck

SEE ALSO:

exch, index, copy, pop

roll I roll 217

rotate angle rotate -
angle matrix rotate matrix

With no matrix operand, rotate builds a temporary matrix R:

cos 0 sin 0

-sin 0 cos 0

0 0 1

where 0 is the operand angle in degrees, and concatenates this matrix
with the current transformation matrix (CTM). Precisely, rotate

replaces the CTM by R X CTM. The effect of this is to rotate the user
coordinate system axes about their origin by angle degrees (positive is

counterclockwise) with respect to their former orientation. The position
of the user coordinate origin and the sizes of the x and y units are
unchanged.

If the matrix operand is supplied, rotate replaces the value of matrix by

R and pushes the modified matrix back on the operand stack (see sec-
tion 4.4 for a discussion of how matrices are represented as

POSTSCRIPT arrays). In this case, rotate does not affect the CTM.

ERRORS:
stackunderflow, ty pecheck

SEE ALSO:
scale, translate, concat

round num round num2

returns the integer value nearest to num i. If num is equally close to its
two nearest integers, round returns the greater of the two. The type of
the result is the same as the type of the operand.

EXAMPLE:
3.2 round 3.0
6.5 round 7.0
-4.8 round -5.0
-6.5 round -6.0
99 round 99

ERRORS:

stackunderflow, typecheck

SEE ALSO:

ceiling, floor, truncate, cvi

218 rotate I round

rrand — rrand int

returns an integer representing the current state of the random number
generator used by rand. This may later be presented as an operand to

srand to reset the random number generater to the current position in

the sequence of numbers produced.

ERRORS:

stackoverflow

SEE ALSO:

rand, srand

run string run —

executes the contents of the file identified by string; i.e., interprets the
characters in that file as a POSTSCRIPT program. When run encounters

end-of-file or terminates for some other reason (e.g., stop), it closes the

file.

run is essentially a convenience operator for the sequence

(r) file cvx exec

except for its behavior upon abnormal termination. Additionally, the
context of a run may not be left by executing exit; an attempt to do so

produces the error invalidexit.

The run operator leaves no results on the operand stack, but the

program executed by run may alter the stacks arbitrarily.

ERRORS:
ioerror, limitcheck, stackunderflom, typecheck, undefinedfilename

SEE ALSO:

exec, file

rrand I run 219

save - save save

creates a snapshot of the current state of the virtual memory (VM) and
returns a save object representing that snapshot. Subsequently, this save
object may be presented to restore in order to reset the VM to this
snapshot. See section 3.7 for a description of the VM and of the effects
of save and restore.

save also saves the current graphics state by pushing a copy of it on the
graphics state stack in a manner similar to gsave. This saved graphics

state is restored by restore and grestoreall.

EXAMPLE:
/saveobj save def
% ... (arbitrary computation) ...
saveobj restore % restore saved VM state

ERRORS:
limitcheck, stackoverflow

SEE ALSO:
restore, gsave, grestoreall, vmstatus

220 save j save

scale sy scale —
sx sy matrix scale matrix

With no matrix operand, scale builds a temporary matrix S:

sx

O SY

1

and concatenates this matrix with the current transformation matrix

(CTM). Precisely, scale replaces the CTM by S x CTM. The effect of
this is to make the x and y units in the user coordinate system be the

size of sex and s units in the former user coordinate system. The posi-
tion of the user coordinate origin and the orientation of the axes are

unchanged.

If the matrix operand is supplied, scale replaces the value of matrix by
S and pushes the modified matrix back on the operand stack (see sec-

tion 4.4 for a discussion of how matrices are represented as
POSTSCRIPT arrays). In this case, scale does not affect the CTM.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

rotate, translate, concat

scale I scale 221

scalefont font scale scalefont font'

applies the scale factor scale to font, producing a new font' whose

characters are scaled by scale (in both x and y) when they are printed.
scalefont first creates a copy of font, then it replaces the new font's

FontMatrix entry with the result of scaling the existing FontMatrix
by scale, and finally it returns the result as font'.

Printing characters from the transformed font produces the same results
as printing from the original font after having scaled user space by the
factor scale in both x and y by means of the scale operator. scalefont is

essentially a convenience operator that permits the desired scale factor
to be encapsulated in the font description itself. Another operator,
makefont, performs more general transformations than simple scaling.

The POSTSCRIPT font machinery keeps track of font dictionaries
recently created by scalefont. Calling scalefont multiple times with the
same font and scale will usually return the same font' rather than create

a new one each time. However, it is usually more efficient for a
POSTSCRIPT program to apply scalefont only once for each font that it
needs and to keep track of the resulting font dictionaries on its own.

See chapter 5 for general information about fonts and section 4.4 for a
discussion of transformations.

EXAMPLE:

/Helvetica findfont 12 scalefont setfont

This obtains the standard Helvetica font, which is defined with a one
unit line height, and scales it by a factor of 12 in both x and y dimen-
sions. This produces a 12 unit high font (i.e., a 12 point font in default
user space) whose characters have the same proportions as those in the
original font.

ERRORS:

invalidfont, stackunderflow, typecheck, undefined

SEE ALSO:

makefont, setfont, findfont

222 scalefont I scalefont

search string seek search if found: post match pre true
if not found: string false

looks for the first occurrence of the string seek within string and returns
results of this search on the operand stack. The topmost result is a
boolean that indicates whether the search succeeded or not.

If search finds a subsequence of string whose elements are equal to the

elements of seek, it splits string into three segments: pre, the portion of
string preceding the match; match, the portion of string that matches
seek; post, the remainder of string. It then pushes the string objects
post, match, and pre on the operand stack, followed by the boolean

true. All three of these strings are substrings sharing intervals of the
value of the original string.

If search does not find a match, it pushes the original string and the

boolean false.

EXAMPLE:
(abbc) (ab) search = (bc) (ab) O true
(abbc) (bb) search = (c) (bb) (a) true
(abbc) (bc) search = () (bc) (ab) true
(abbc) (B) search (abbc) false

ERRORS:
invalidaccess, stackoverflow, stack under flov‘, ty pec heck

SEE ALSO:
anchorsearch, token

search I search 223

setcachedevice w. W Y Ilx Ily Urx Ury setcachedevice —

passes width and bounding box information to the POSTSCRIPT font
machinery. setcachedevice may be executed only within the context of

the BuildChar procedure for a user-defined font (see section 5.7).
BuildChar must invoke setcachedevice (or setcharwidth) before ex-

ecuting graphics operators to define and paint the character.

setcachedevice requests the POSTSCRIPT font machinery to transfer the
results of those operators both into the font cache (if possible) and onto
the current page.

The operands to setcachedevice are all numbers interpreted in the

character coordinate system (see the FontMatrix entry in section 5.3).
wx and wY comprise the basic width vector for this character, i.e., the
normal position of the origin of the next character relative to origin of
this one (see section 5.5).

11x and //Y are the coordinates of the lower left comer and urx and ur
Y

are the coordinates of the upper right corner of the character bounding
box. The character bounding box is the smallest rectangle, oriented
with the character coordinate system axes, that completely encloses all
marks placed on the page as a result of executing the character's
description. (For a character defined as a path, this may be determined
by means of the pathbbox operator.) This information is required by
the font machinery in order to make decisions about clipping and cach-
ing. It is essential that the declared bounding box be correct, i.e., suf-

ficiently large to enclose the entire character. If any marks fall outside

this bounding box, they will be clipped off and not moved to the cur-
rent page.

After execution of a setcachedevice and until the termination of the
BuildChar procedure, use of the operators setgray, sethsbcolor,

setrgbcolor, settransfer, and image will result in an error
(undefined). Use of the imagemask operator, however, is permitted.

ERRORS:

stackunderflow, typecheck, undefined

SEE ALSO:

setcharwidth, setcachelimit, cachestatus

224 setcachedevice I setcachedevice

setcachelimit num setcachelimit —

establishes the maximum number of bytes that may be occupied by the
pixel array of a single cached character. Any character larger than this
(according to the character bounding box information passed to

setcachedevice) is not saved in the font cache; instead, its description

is executed every time the character is encountered.

setcachelimit affects the decision whether to place new characters in

the font cache; it does not disturb any characters already in the cache.
Making the limit larger allows larger characters to be cached but may
decrease the total number of different characters that can be held in the
cache simultaneously. Changing this parameter is appropriate only in

very unusual situations.

The maximum limit for num is implementation dependent, representing

the total available size of the font cache (see cachestatus). As a prac-
tide matter, num should not be larger than a small fraction of the total

font cache size.

ERRORS:

limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO:

cachestatus

setcachelimit 1 setcachelimit 225

setcacheparams mark lower upper setcacheparams —

sets cache parameters as specified by the integer objects above the
topmost mark on the stack, then removes all operands and the mark
object as if by cleartomark.5

The number of cache parameters is variable.6 If more operands are
supplied to setcacheparams than are needed, the topmost ones are

used and the remainder ignored; if fewer are supplied than are needed,
setcacheparams implicitly inserts default values between the mark and
the first supplied operand.

The upper operand specifies the maximum number of bytes that may

be occupied by the pixel array of a single cached character, as deter-
mined from the information presented by the setcachedevice operator.
This is the same parameter as is set by setcachelimit.

The lower operand specifies the threshold at which characters are
stored in compressed form rather than as full pixel arrays. If a
character's pixel array requires more than lower bytes to represent, it

will be compressed in the cache and reconstituted from the compressed
representation each time it is needed.

Setting lower to zero forces all characters to be compressed, permitting
more characters to be stored in the cache but increasing the work re-

quired to print them. Setting lower to a value greater than or equal to
upper disables compression altogether.

ERRORS:

rangecheck, unmatchedmark

SEE ALSO:

currentcacheparams, setcac h el i in it

5The setcacheparams operator is not present in Adobe POSTSCRIPT implemen-
tations prior to version 25.0.
61n future versions of the POSTSCRIPT interpreter there may be more than two
cache parameters defined.

226 setcacheparams I setcacheparams

setcharwidth w wy setcharwidth — x

is similar to setcachedevice, but it passes only width information to the
POSTSCRIPT font machinery and it declares that the character being

defined is not to be placed in the font cache. This is necessary if the
character description needs to execute any of the operators setgray,
sethsbcolor, setrgbcolor, settransfer, or image, since the font cache is
incapable of retaining the color information from those operators.

setcharwidth is useful, for example, in defining characters that incor-
porate two or more specific opaque colors (e.g., opaque black and

opaque white). This is unusual; most characters have no inherent color
but are painted with the current color within the character's outline,

leaving the area outside unpainted (transparent).

ERRORS:

stackunderflow, typecheck, undefined

SEE ALSO:

setcachedevice

setcharwidth I setcharwidth 227

setdash array offset setdash —

sets the dash pattern parameter in the graphics state, controlling the

dash pattern used during subsequent executions of the stroke operator.
If array is empty (i.e., its length is zero), stroke produces a normal,
unbroken line. If array is not empty, stroke produces dashed lines

whose pattern is given by the elements of array, which must all be
non-negative numbers and not all zero.

stroke interprets the elements of array in sequence as distances along
the path, measured in user space. These distances alternately specify

the length of a dash and the length of a gap between dashes. stroke
uses the contents of array cyclically; when it reaches the end of the
array, it starts over at the beginning.

Dashed lines wrap around curves and corners just as normal strokes do.

The ends of each dash are treated with the current line cap; corners
within a dash are treated with the current line join, stroke does not take

any measures to coordinate the dash pattern with features of the path; it
simply dispenses dashes along the path as specified by array.

The offset operand may be thought of as the 'phase' of the dash pattern
relative to the start of the path. It is interpreted as a distance into the
dash pattern (measured in user space) at which the pattern should be
started. Before beginning to stroke a path, stroke cycles through the
elements of array, adding up distances and alternating dashes and gaps
as usual, but without generating any output. When it has travelled the
offset distance into the dash pattern, it starts stroking the path (from its

beginning) using the dash pattern from the point that has been reached.

Each subpath of a path is treated independently; i.e., the dash pattern is
restarted (and offset applied to it) at the beginning of each subpath.

1111

MI

MI fflt

MIM

EXAMPLE:

[] O setdash

[3] 0 setdash

[2] 1 setdash

[2 1] 0 setdash

[3 5] 6 setdash

[2 3] 11 setdash

c1/0 turn dashing off: solid lines
% 3-unit on, 3-unit off, ...
% 1 on, 2 off, 2 on, 2 off, ...
% 2 on, 1 off, 2 on, 1 off, ...
% 2 off, 3 on, 5 off, 3 on, 5 off, ...
% 1 on, 3 off, 2 on, 3 off, 2 on, ...

ERRORS:

limitcheck, stackunderflow, typecheck

SEE ALSO:

currentdash, stroke

228 setdash I setdash

setflat num setflat —

'flatness' error
tolerance

sets the flatness parameter in the current graphics state to num, which

must be a positive number. This controls the accuracy with which
curved path segments are to be rendered on the raster output device by

the stroke, fill, and clip operators. Those operators render curves by
approximating them with a series of straight line segments. ' Flatness' is
an informal term for the error tolerance of this approximation; it is the

maximum distance of any point of the approximation from the cor-
responding point on the true curve, measured in output device pixels.

The choice of flatness value is a tradeoff between accuracy and execu-

tion efficiency. Very small values (less than 1 device pixel) produce
very accurate curves at high cost, since enormous numbers of tiny line

segments must be produced. Larger values produce cruder approxima-
tions with substantially less computation. A default value of the flat-
ness parameter is established by the device setup routine for each raster

output device; this value is based on characteristics of that device and is
the one suitable for most applications.

The acceptable range of values for num is 0.2 to 100. Values outside
this range are forced into range without error indication.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
currentflat, flattenpath, stroke, fill

setfont font setfont —

establishes the font dictionary to be used by subsequent character
operators, such as show, stringwidth, etc. font must be a valid font

dictionary previously returned by findfont, scalefont, or makefont

(see section 5.2).

EXAMPLE:
/Helvetica findfont % obtain prototype Helvetica font
10 scalefont % scale it to 10- unit size
setfont % establish it as current font

ERRORS:
stackunderflow, typecheck

SEE ALSO:
cur rentfont, scalefont, makefont, fi ndfont

setflat setfont 229

setgray num setgray —

sets the current color parameter in the graphics state to a gray shade
corresponding to num. num must be a number between 0 and 1, with 0
corresponding to black, 1 corresponding to white, and intermediate

values corresponding to intermediate shades of gray. This establishes
the color used subsequently to paint shapes such as lines, areas, and
characters on the current page. See section 4.8 for more information on
gray-scale rendition.

The use of setgray after a setcachedevice operation within the scope of
a BuildChar procedure is not permitted (an undefined error results).

ERRORS:

stackunderflow, typecheck, undefined

SEE ALSO:

currentgray, sethsbcolor, setrgbcolor

sethsbcolor hue saturation brightness sethsbcolor —

sets the current color parameter in the graphics state to a color
described by the parameters hue, saturation, and brightness, each of
which must be a number in the range 0 to 1. This establishes the color
used subsequently to paint shapes such as lines, areas, and characters

on the current page. See section 4.8 for an explanation of these color
parameters.

The use of sethsbcolor after a setcachedevice operation within the

scope of a BuildChar procedure is not permitted (an undefined error
results).

ERRORS:

stackunderflow, typecheck, undefined

SEE ALSO:

currenthsbcolor, setgray, setrbgcolor

230 setgray I sethsbcolor

setlinecap int setlinecap —

sets the current line cap parameter in the graphics state to int, which
must be one of the integers 0, 1, or 2. This establishes the shape to be

put at the ends of open subpaths painted by the stroke operator (see

section 4.6). The integers select the following shapes:

0 butt cap: the stroke is squared off at the endpoint of the path;

there is no projection beyond the end of the path.

1 round cap: a semicircular arc with diameter equal to the line
width is drawn around the endpoint and filled in.

2 projecting square cap: the stroke continues beyond the endpoint
of the path for a distance equal to half the line width and is

squared off.

ERRORS:

rangeeheck, stackunderflow, t.peeheck

SEE ALSO:

eurrentlinecap, setlinejoin, stroke

setlinecap I setlInecap 231

setlinejoin int setlinejoin —

sets the current line join parameter in the graphics state to int, which
must be one of the integers 0, 1, or 2. This establishes the shape to be

put at comers in paths painted by the stroke operator (see section 4.6).
The integers select the following shapes:

0 miter join: the outer edges of the strokes for the two segments are
extended until they meet at an angle, as in a picture frame. (If the

segments meet at too sharp an angle, a bevel join is used instead;

this is controlled by the miter limit parameter established by
setmiterlimit.)

1 round join: a circular arc with diameter equal to the line width is
drawn around the point where the segments meet and is filled in,

producing a rounded corner. (stroke actually draws a full circle

at this point. If path segments shorter than one-half the line width
meet at sharp angles, an unintentional ' wrong side' of this circle
may appear.)

2 bevel join: the meeting path segments are finished with butt end

caps (see setlinecap); then the resulting notch beyond the ends of
the segments is filled with a triangle.

Join styles are significant only at points where consecutive segments of

a path connect at an angle; segments that meet or intersect fortuitously
receive no special treatment. Curved lines are actually rendered as se-
quences of straight line segments, and the current line join is applied to
the 'corners' between those segments. However, for typical values of
the flatness parameter (see setflat), the comers are so shallow that the
difference between join styles is not visible.

ERRORS:

rangec heck, stackunderflow, typecheck

SEE ALSO:

currentlinejoin, setlinecap, stroke, setmiterlimit

232 setlinejoin setlinejoin

setlinewidth num setlinewidth —

sets the current line width parameter in the graphics state to num. This
controls the thickness of lines rendered by subsequent execution of the

stroke operator. Precisely, stroke paints all points whose perpendicular

distance from the current path, in user space, is less than or equal to
one-half the absolute value of num. The effect actually produced in
device space depends on the current transformation matrix (CTM) in
effect at the time of the stroke. If the CTM specifies scaling by dif-
ferent factors in the x and y dimensions, the thickness of stroked lines
in device space will vary according to their orientation.

A line width of zero is acceptable: it is interpreted as the thinnest line
that can be rendered at device resolution (i.e., one device pixel wide).
Some devices are incapable of reproducing one-pixel lines, and on
high-resolution devices such lines are nearly invisible. Since the results

of rendering such ' zero-width' lines are device dependent, their use is

not recommended.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

currentlinem idth, stroke

setmatrix matrix setmatrix —

replaces the current transformation matrix (CTM) in the graphics state

by the value of matrix. This establishes an arbitrary transformation

from user space to device space, without reference to the former CTM.

Except in device setup procedures, use of setmatrix should be very
rare. POSTSCRIPT programs should ordinarily modify the CTM (by use
of the translate, scale, rotate, and concat operators) rather than

replace it altogether.

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:

currentmatrix, defaultmatrix, initmatrix, rotate, scale, translate,

concat

setlinewidth I setmatrix 233

setmiterlimit num setmiterlimit —

I
miter
length

sets the current miter limit parameter in the graphics state to num,

which must be a number greater than or equal to 1. The miter limit
controls the stroke operator's treatment of comers when miter joins
have been specified (see setlinejoin). When path segments connect at a

sharp angle, a miter join results in a spike that extends well beyond the

connection point. The purpose of the miter limit is to cut off such
spikes when they become objectionably long.

At any given comer, the miter length is the distance from the point at

which the inner edges of the stroke intersect to the point at which the

outside edges of the strokes intersect (i.e., the diagonal length of the
line width miter). This distance increases as the angle between the segments

decreases. If the ratio of the miter length to the line width exceeds the

miter limit parameter, stroke treats the comer with a bevel join instead
of a miter join.

The ratio of miter length to line width is directly related to the angle cp
between the segments in user space by the formula:

miter length I line width = 1 I sin(cp/2)

Examples of miter limit values are: 1.415 cuts off miters (converts

them to bevels) at angles less than 90 degrees, 2.0 cuts off miters at
angles less than 60 degrees, and 10.0 cuts off miters at angles less than
11 degrees. The default value of the miter limit is 10. Setting the miter

limit to 1 cuts off miters at all angles so that bevels are always
produced even when miters are specified.

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:

currentmiterlimit, stroke, setlinejoin

234 setmiterUmit I setmiterlimit

setpacking bool setpacking —

sets the array packing mode to the specified boolean value. This deter-
mines the type of executable arrays subsequently created by the
POSTSCRIPT scanner. The value true selects packed arrays; false selects

ordinary arrays.7

The packing mode affects only the creation of procedures by the scan-
ner when it encounters program text bracketed by '{' and '}' during
interpretation of an executable file or string object or during execution
of the token operator. It does not affect the creation of literal arrays by
the T and T operators or by the array operator.

The array packing mode setting persists until overridden by another

execution of setpacking or until undone by a restore.

EXAMPLE:
systemdict /setpacking known

{/savepacking currentpacking def

true setpacking

} if

... arbitrary procedure definitions

systemdict /setpacking known {savepacking setpacking} if

If the packed array facility is available, the procedures represented by
'arbitrary procedure definitions' are defined as packed arrays; other-
wise they are defined as ordinary arrays. This example is careful to
preserve the array packing mode in effect before its execution.

ERRORS:

stackunderflow, typecheck

SEE ALSO:

currentpacking, packedarray

7The setpacking operator is not present in Adobe POSTSCRIPT implementations
prior to version 25.0.

setpacking I setpacking 235

setrgbcolor red green blue setrgbcolor —

sets the current color parameter in the graphics state to a color

described by the parameters red, green, and blue, each of which must

be a number in the range 0 to 1. This establishes the color used sub-
sequently to paint shapes such as lines, areas, and characters on the
current page. See section 4.8 for an explanation of these color
parameters.

The use of setrgbcolor after a setcachedevice operation within the
scope of a BuildChar procedure is not permitted (an undefined error
results).

ERRORS:
stackunderflow, typecheck

SEE ALSO:

currentrgbcolor, setgray, sethsbcolor

setscreen frequency angle proc setscreen —

sets the current halftone screen definition in the graphics state. The

frequency operand is a number that specifies the screen frequency,
measured in halftone cells per inch in device space. The angle operand
specifies the number of degrees by which the halftone screen is to be
rotated with respect to the device coordinate system. The proc operand
is a POSTSCRIPT procedure defining the spot function, which deter-
mines the order in which pixels within a halftone cell are whitened to

produce any desired shade of gray. See section 4.8 for complete infor-
mation about halftone screens.

Each device setup procedure establishes a default screen that is known
to work well for that device. It is a rare POSTSCRIPT program that needs
to specify its own screen definition.

ERRORS:

limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO:

currentscreen, settransfer

236 setrgbcolor setscreen

settransfer proc settransfer —

sets the current transfer function parameter in the graphics state. The
proc operand must be a POSTSCRIPT procedure that may be called with
a number in the range 0 to 1 (inclusive) on the operand stack and will

return a number in the same range. This procedure maps user gray
values (e.g., those specified to setgray) to device gray values (fraction

of all pixels that are to be whitened). See section 4.8 for a complete

explanation.

The use of settransfer after a setcachedevice operation within the

scope of a BuildChar procedure is not permitted (an undefined error

results).

ERRORS:
stackunderflow, ts pecheck

SEE ALSO:

currenttransfer, setscreen

show string show —

prints the characters identified by the elements of string on the current
page starting at the current point, using the font face, size, and orien-
tation specified by the most recent setfont. The spacing from each

character of the string to the next is determined by the character's
width, which is an (x, y) displacement that is part of the character's
definition. When it is finished, show adjusts the current point in the
graphics state by the sum of the widths of all the characters printed.

show requires that the current point initially be defined (e.g., by a

moveto); otherwise it executes the error nocurrentpoint.

See chapter 5 for complete information about the definition, manipula-

tion, and rendition of fonts.

ERRORS:

invalidaccess, invalidfont, nocurrentpoint, stackundertlovv,
typecheck

SEE ALSO:

ashow, awidthshow, widthshow, kshow, charpath, moveto, setfont

settransfer I show 237

showpage — showpage —

transmits the current page to the current output device, causing any
marks painted on the page actually to appear. showpage then performs

the equivalent of erasepage and initgraphics in preparation for the
next page. (A related operator, copypage, does not perform these reset-
ting actions.)

For a device that produces physical output (e.g., printed paper),

showpage looks up the name #copies in the context of the current
dictionary stack. The associated value, which must be a non-negative

integer, determines the number of copies of the output to be produced.
The default value of #copies is 1, defined in userdict; this may be

overridden either by redefining #copies in userdict or by defining
#copies in some dictionary higher on the dictionary stack.

The precise manner in which the current page is transmitted to the
output device is device-dependent; it is specified by the proc operand

of the framedevice or banddevice operator originally used to install
the device in the current graphics state.

EXAMPLE:

/#copies 5 def

showpage

This prints 5 copies of the current page and then erases the current
page.

ERRORS: (none)

SEE ALSO:

copy page, erasepage

sin angle sin real

returns the sine of angle, which is interpreted as an angle in degrees.
The result is a real.

ERRORS:
stackunderflow, typecheck

SEE ALSO:

cos, atan

238 showpage I sin

sqrt num &pi real

returns the square root of num, which must be a non-negative number.

The result is a real.

ERRORS:
rangecheck, stackunderflovs pecheck

SEE ALSO:
exp

srand int srand —

initializes the random number generator with the seed int, which may
be any integer value. Executing srand with a particular value causes
subsequent invocations of rand to generate a reproducible sequence of

results.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
rand, rrand

stack anyi ... any, stack I— anyi ... any,

writes text representations of every object on the stack to the standard
output file, but leaves the stack unchanged. stack applies the `='
operator to each element of the stack, starting with the topmost ele-

ment. See the operator for a description of its effects.

ERRORS:
stackoverflow

SEE ALSO:
pstack, =, ==, count

stackoverflow (error)

The operand stack has grown too large. Too many objects have been

pushed on the stack and not popped off. See appendix B for the limit on

the size of the operand stack.

Before invoking this error, the interpreter creates an array containing all
elements of the operand stack (stored as if by astore), resets the

operand stack to empty, and pushes the array on the operand stack.

sqrt I stackoverflow 239

stackunderflow (error)

An attempt has been made to remove an object from the operand stack
when it is empty. This usually occurs because some operator did not
have all of its required operands on the stack.

StandardEncoding — StandardEncoding array

pushes the standard encoding vector on the operand stack. This is a
256-element array, indexed by character codes, whose values are the

character names for those codes. See section 5.4 for an explanation of

encoding vectors. StandardEncoding is not actually an operator; it is a
name in systemdict associated with the array object itself.

StandardEncoding is the encoding vector used by most standard text

fonts but not by special fonts such as Symbol. A new text font having
no unusual encoding requirements should specify its Encoding entry to
be the value of StandardEncoding rather than define its own private
array. The contents of the standard encoding vector are tabulated in
appendix A.

ERRORS:

stackoverflow

start — start —

is executed by the POSTSCRIPT interpreter when it starts up. After set-

ting up the VM (restoring it from a file if appropriate), the interpreter

executes the name start in the context of the default dictionary stack

(userdict and systemdict). The procedure associated with the name
start is expected to provide whatever top-level control is required, e.g.,
for receiving page descriptions, interacting with a user, recovering from

errors, etc. The precise definition of start depends on the environment
in which the POSTSCRIPT interpreter is operating; it is not of any inter-
est to ordinary POSTSCRIPT programs.

SEE ALSO:
quit

240 stackunderflow I start

status file status bool

returns true if file is still valid (i.e., is associated with an open file),

false otherwise.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
file, closefile

stop - stop —

terminates execution of the innermost dynamically enclosing instance
of a stopped context, without regard to lexical relationship. A stopped
context is a procedure (or other executable object) invoked by the
stopped operator. stop pops the execution stack down to the level of

the stopped operator. The interpreter then pushes the boolean true on
the operand stack and resumes execution at the next object in normal
sequence after the stopped. (It thus appears that stopped returned the

value true, whereas it normally returns false.)

stop does not affect the operand or dictionary stacks. Any objects
pushed on those stacks during the execution of the stopped context

remain after the context is terminated.

If stop is executed when there is no enclosing stopped context, the
interpreter prints an error message and executes the built-in operator

quit (this never occurs during execution of ordinary user programs).

ERRORS: (none)

SEE ALSO:

stopped, exit

status I stop 241

stopped any stopped bool

executes any, which is typically but not necessarily a procedure, ex-
ecutable file, or executable string object. If any runs to completion

normally, stopped returns false on the operand stack. If any terminates
prematurely as a result of executing stop, stopped returns true on the
operand stack. Regardless of the outcome, the interpreter resumes ex-

ecution at the next object in normal sequence after stopped.

This mechanism provides an effective way for a POSTSCRIPT program
to 'catch' errors or other premature terminations, retain control, and
perhaps perform its own error recovery. See the discussions about er-
rors in sections 3.6 and 3.8.

EXAMPLE:
} stopped {handleerror} if

If execution of the procedure causes an error, the default error-

reporting procedure is invoked (by handleerror). In any event, normal
execution continues at the token following the if.

ERRORS:
stackunderflow

SEE ALSO:
stop

store key value store —

searches for key in each dictionary on the dictionary stack, starting with
the topmost (current) dictionary. If key is found in some dictionary,
store replaces its value by the value operand. If key is not found in any

dictionary on the dictionary stack, store creates a new entry with key
and value in the current dictionary (the one on the top of the dictionary
stack).

EXAMPLE:
¡abc 123 store
¡abc where {currentdict} ifelse ¡abc 123 put

The two lines of the example have the same effect.

ERRORS:

dictfull, imalidaccess, limitcheck, stackunderflow

SEE ALSO:
clef, put, where

242 stopped I store

string int string string

creates a string of length int, each of whose elements is initialized with

the integer 0, and pushes this string on the operand stack. The int
operand must be a non-negative integer not greater than the maximum

allowable string length (see appendix B).

ERRORS:

li mitcheck, rangecheck, stackunderflow, typecheck, V Merror

SEE ALSO:

length, array, dict, type

stringwidth string stringwidth W wy

calculates the change in the current point that would occur if string

were given as the operand to show with the current font. wx and wy are
computed by adding together the widths of all the individual characters

in string and converting the result to user space. Thus, they form a
distance vector in x and y describing the width of the entire string in
user space. See section 5.5 for a discussion about character widths.

In order to obtain the character widths, stringwidth may actually ex-

ecute the descriptions of one or more of the characters in the current
font and may cause the results to be placed in the font cache. However,
stringwidth prevents the graphics operators that are executed from

actually painting anything into the current page.

ERRORS:
invalidaccess, invalidfont, stackunderflow, typecheck

SEE ALSO:

show, setfont

string 1 stringwidth 243

stroke - stroke -

paints a line following the current path and using the current color. This

line is centered on the path, has sides parallel to the path segments, and
has a width (thickness) given by the current line width parameter in the

graphics state (see setlinewidth). stroke paints the joints between con-

nected path segments with the current line join (see setlinejoin) and the
ends of open subpaths with the current line cap (see setlinecap). The
line is either solid or broken according to the dash pattern established
by setdash.

The parameters in the graphics state controlling line rendition (line
width, line join, and so forth) are consulted at the time stroke is ex-
ecuted; their values during the time the path is being constructed are
irrelevant.

A degenerate subpath is a subpath consisting of a single point closed
path, or two or more points at the same coorindates. If a subpath is
degenerate, stroke paints it only if round line caps have been specified,
producing a filled circle centered at that point. If butt or projecting

square line caps have been specified, stroke produces no output, since
the orientation of the caps would be indeterminate. If a subpath consists
of a single point non-closed path, no output is produced.

stroke implicitly performs a newpath after it has finished painting the

current path. To preserve the current path across a stroke operation, use
the sequence: gsave stroke grestore.

ERRORS:

limitcheck

SEE ALSO:

setlinewidth, setlinejoin, setmiterI i m it, setlinecap, setdash

244 stroke I stroke

strokepath — strokepath —

replaces the current path with one enclosing the shape that would result
if the stroke operator were applied to the current path. The path result-
ing from strokepath is suitable as the implicit operand to fill, clip, or

pathbbox. In general, this path is not suitable for stroke, as it may
contain interior segments or disconnected subpaths produced by
strokepath's stroke to outline conversion process.

ERRORS:
limitcheck

SEE ALSO:
nil, clip, stroke, pathbbox, charpath

sub num num2 sub difference

returns the result of subtracting num2 from numi. If both operands are

integers and the result is within integer range, the result is an integer;

otherwise, the result is a real.

ERRORS:
stackunderflow, typecheek, undefinedresult

SEE ALSO:
add, div, mut, idiv, mod

strokepath sub 245

syntaxerror (error)

The scanner has encountered program text that does not conform to the

POSTSCRIPT syntax rules (see section 3.3). This can occur either during
interpretation of an executable file or string object or during explicit
invocation of the token operator.

Since the POSTSCRIPT' syntax is simple, the set of possible causes for a
syntaxerror is very small:

• an opening string or procedure bracket, T, `<', or T, is not

matched by a corresponding closing bracket before the end of the
file or string being interpreted;

• a closing string or procedure bracket, T, `>', or T, appears for
which there is no previous matching opening bracket;

• a character other than a hexadecimal digit or white space char-

acter appears within a hexadecimal string literal bracketed by
`<...>'.

Erroneous tokens such as malformed numbers do not produce a
syntaxerror; such tokens are instead treated as name objects (often
producing an undefined error when executed). Tokens that exceed im-

plementation limits, such as names that are too long or numbers whose
values are too large, produce a limitcheck (see appendix B).

systemdict — systemdict dict

pushes the dictionary object systemdict on the operand stack (see sec-
tion 3.4). systemdict is not actually an operator; it is a name in

systemdict associated with the dictionary object itself.

ERRORS:

stackoverflow

SEE ALSO:

errordict, userdict

246 syntaxerror I systemdict

timeout (error)

A time limit has been exceeded; i.e., a POSTSCRIPT program has ex-
ecuted for too long or has waited an excessive amount of time for some
external event to occur.

The POSTSCRIPT language does not define any standard causes for
timeout errors. However, a POSTSCRIPT interpreter running in a par-
ticular environment may provide a set of timeout facilities appropriate

for that environment.

timeout I timeout 247

token file token if found: any true
if not found: false

string token if found: post any true
if not found: false

reads characters from file or string, interpreting them according to the

POSTSCRIPT syntax rules (see section 3.3), until it has scanned and
constructed an entire object.

In the file case, token normally pushes the scanned object followed by
true. However, if token reaches end-of-file before encountering any
characters besides white space, it closes file and returns false.

In the string case, token normally pushes post (the substring of string

beyond the portion consumed by token), the scanned object, and true.
However, if token reaches the end of string before encountering any
characters besides white space, it simply returns false.

In either case, the any result is an ordinary POSTSCRIPT object. It may

be simple (an integer, real, or name) or composite (a string bracketed
by `(...)' or an executable (possibly packed) array bracketed by 1.4').

The object returned by token is the same as the object that would be
encountered by the interpreter if the file or string were executed

directly. The only differences are that token scans just a single object

and it always pushes that object on the operand stack rather than ex-
ecuting it.

token consumes all characters of the token and sometimes consumes
the terminating character as well. If the token is a name or a number

followed by a white space character, token consumes the white space
character (only the first one if there are several). If the token is ter-
minated by a special character that is part of the token (i.e., T, `>', T,
or `}'), token consumes that character but no following ones. If the

token is terminated by a special character that is part of the next token
(i.e., 'I', T, `<', T, or T), token does not consume that character but
leaves it in the input sequence.

EXAMPLE:
(15(St1) (1 2 add)) token ((St1) (1 2 add)) 15 true
((St1) (1 2 add)) token ((1 2 add)) (St1) true
((1 2 add)) token () {1 2 add} true
O token false

ERRORS:

invalidaccess, ioerror, rangecheck, stackoverflow, stackunderflom,
syntaxerror, typecheck, undefinedresult

SEE ALSO:

search, anchorsearch, read

248 token I token

transform

translate

x y transform x' y'
x y matrix transform x' y'

With no matrix operand, transform transforms the user space coordi-
nate (x, y) by CTM to produce the corresponding device space coordi-
nate (x', y'). If the matrix operand is supplied, transform transforms
(x, y) by matrix rather than by CTM.

ERRORS:
stackunderflow, typecheck

SEE ALSO:
itransform, dtransform, idtransform

tx ty translate —
tx ty matrix translate matrix

With no matrix operand, translate builds a temporary matrix T:

1 0 0

o 1

tx 1 Y
and concatenates this matrix with the current transformation matrix

(CTM). Precisely, translate replaces the CTM by T X CTM. The effect
of this is to move the origin of the user coordinate system by tA. units in
the x direction and tv units in the y direction relative to the former user
coordinate system. the sizes of the x and y units and the orientation of
the axes are unchanged.

If the matrix operand is supplied, translate replaces the value of matrix
by T and pushes the modified matrix back on the operand stack (see
section 4.4 for a discussion of how matrices are represented as
POSTSCRIPT arrays). In this case, translate does not affect the CTM.

ERRORS:

rangecheck, stackunderflow, typecheck

SEE ALSO:
rotate, scale, concat, setmatrix

transform I translate 249

true - true true

pushes a boolean object whose value is true on the operand stack. (true

is not actually an operator; it is a name in systemdict associated with
the boolean value true.)

ERRORS:

stackoverflow

SEE ALSO:

false, and, or, not, xor

truncate num1 truncate num2

truncates num toward zero by removing its fractional part. The type of
the result is the same as the type of the operand.

EXAMPLE:

3.2 truncate 3.0

-4.8 truncate -4.0

99 truncate 99

ERRORS:

stackunderflow, typecheck

SEE ALSO:

ceiling, floor, round, cvi

250 true I truncate

type any type name

returns a POSTSCRIPT name object that identifies the type of the object
any. The result is one of the following names:8

arraytype nametype
booleantype nulltype
dicttype operatortype
tiletype packedarraytype
fonttype realtype
integertype savetype
marktype stringtype

(The name lonttype' identifies an object of type fontID; it has nothing

to do with a font dictionary, which is identified by 'clicttype' just the

same as any other dictionary.)

The returned name has the executable attribute. This makes it con-
venient to perform type-dependent processing of an object simply by

executing the name returned by type in the context of a dictionary that
defines all the type names to have procedure values (this is how `=='

works).

ERRORS:
stackunderflom

typecheck (error)

Some operand's type is different from what an operator expects. This is
probably the most frequent error encountered. It is often the result of

faulty stack manipulation, such as operands supplied in the wrong order

or procedures leaving results on the stack when they aren't supposed to.

8The set of POSTSCRIPT types is subject to enlargement in future revisions of
the language. A program that examines the types of arbitrary objects should be
prepaired to behave reasonably if type returns a name that is not in this list.

type I typecheck 251

undefined (error)

A name used as a dictionary key in some context cannot be found. This
occurs if a name is looked up explicitly in a specified dictionary (get)

or in the current dictionary stack (load) and is not found. It also occurs
if an executable name is encountered by the interpreter and is not found
in any dictionary on the dictionary stack.

A few POSTSCRIPT operators are disabled in certain contexts (e.g.,
setgray after a setcachedevice in a BuildChar procedure); attempting
to execute such a disabled operator results in an undefined error.

SEE ALSO:

known, where, load, exec, get

undefinedfilename (error)

A file identified by a name string operand of file or run cannot be
found or cannot be opened. The undefinedfilename error also occurs if
the special file `')/estatementedir or `%Iineedit' is opened when the stan-
dard input file has reached end-of-file.

SEE ALSO:

file, run

undefinedresult (error)

A numeric computation would produce a meaningless result or one that

cannot be represented as a POSTSCRIPT number. Possible causes in-
clude numeric overflow or underflow, division by zero, or inverse
transformation of a non-invertible matrix. See appendix B for the limits
of the values representable as integers and reals.

unmatchedmark (error)

A mark object is sought on the operand stack by the T, cleartomark,
or counttomark operator, but none is present.

SEE ALSO:

counttomark, cleartomark, I

252 undefined I unmatchedmark

unregistered (error)

An operator object has been executed for which the interpreter has no

built-in action. This represents an internal malfunction in the

POSTSCRIPT interpreter and should never occur.

userdict — userdict dict

pushes the dictionary object userdict on the operand stack (see section
3.4). userdict is not actually an operator; it is a name in systemdict

associated with the dictionary object itself.

ERRORS:

stackoverflow

SEE ALSO:

systemdict, errordict

usertime — usertime int

returns the value of a clock that increments by 1 for every millisecond
of execution by the POSTSCRIPT interpreter. The value has no defined

meaning in terms of calendar time or time-of-day; its only use is inter-
val timing. The accuracy and stability of the clock depends on the
environment in which the POSTSCRIPT interpreter is running.

ERRORS:

stackovernow

version - version string

returns a string that identifies the version of the POSTSCRIPT language
and interpreter being used. This identification includes no information

about the hardware or operating system environment in which the

PosTScurr interpreter is running.

ERRORS:

stackoverflow

unregistered I version 253

VMerror (error)

An error has occurred in the virtual memory (VM) machinery. The
most likely problems are:

• An attempt to create a new composite object (string, array, dic-

tionary, or packed array) would exhaust VM resources. Either the

program's requirements exceed available capacity or (more
likely) the program has failed to use the save/restore facility
appropriately (see section 3.7).

• The interpreter has attempted to perform an operation that should
be impossible due to access restrictions (e.g., store into

systemdict, which is read-only). This represents an internal error
in the interpreter.

vmstatus — vmstatus level used maximum

returns three integers describing the state of the POSTSCRIPT virtual
memory (VM). level is the current depth of save nesting, i.e., the num-

ber of saves that haven't been matched by a restore. used and
maximum measure VM resources in units of 8-bit bytes; used is the

number of bytes currently in use and maximum is the maximum avail-

able capacity. (However, in certain environments, the interpreter may
be able to increase maximum dynamically by obtaining more storage
from the operating system).

ERRORS:

stackoverflow

SEE ALSO:

save, restore

254 VMerror 1 vmstatus

wcheck array wcheck bool

packedarray wcheck false

dict wcheck bool

file wcheck bool

string wcheck bool

tests whether the operand's access permits its value to be written ex-
plicitly by POSTSCRIPT operators. wcheck returns true if the operand's
access is unlimited, false otherwise.

ERRORS:

stack u nderflow, typecheck

SEE ALSO:

rcheck, readonly, executeonly, noaccess

where key where if found: dict true
if not found: false

determines which dictionary on the dictionary stack (if any) contains an
entry whose key is key. where searches for key in each dictionary on
the dictionary stack, starting with the topmost (current) dictionary. If

key is found in some dictionary, where returns that dictionary object
and the boolean true. If key is not found in any dictionary on the

dictionary stack, where simply returns false.

ERRORS:

in%alidaccess, stackoverflow, stackunderflow

SEE ALSO:

known, load, get

wcheck I where 255

widthshow cx c char string widthshow — y

prints the characters of string in a manner similar to show. But while
doing so, widthshow adjusts the width of each occurrence of the char-

acter char by adding cx to its x width and cy to its y width, thus
modifying the spacing between it and the next character, char is an
integer in the range 0 to 255 used as a character code. This operator

enables fitting a string of text to a specific width by adjusting the width
of all occurrences of some specific character (such as the space
character). For example, this is useful for setting justified text.

EXAMPLE:

Normal spacing
Wide word spacing

/Helvetica findfont 12 scalefont setfont
45 458 moveto (Normal spacing) show
45 444 moveto 6 0 8#040 (Wide word spacing) widthshow

ERRORS:

nocurrentpoint, stackunderflow, typecheck

SEE ALSO:

show, ashow, awidthshow, kshow, stringwidth

write file int write —

appends a single character to the output file file. The int operand should
be an integer in the range 0 to 255 representing a character code (values

outside this range are reduced modulo 256). If file is not a valid output
file or some error is encountered, write executes ioerror.

ERRORS:

invalidaccess, ioerror, stackunderflovv, typecheck

SEE ALSO:

read, writehexstring, writestring, file

256 widthshow p write

writehexstring file string writehexstring —

writes all the characters of string to file as hexadecimal digits. For each
element of string (an integer in the range 0 to 255), writehexstring

appends a two-digit hexadecimal number composed of the characters

'0' through ' 9' and 'a' through T.

EXAMPLE:
(iostdout)(w) file (abz) writehexstring

writes the six characters '61627a' to the standard output file.

ERRORS:
invalidaccess, ioerror, stackunderflow, typecheck

SEE ALSO:
readhexstring, write, writestring, file

writestring file string writestring —

writes the characters of string to the output file file. writestring does
not append a newline character or otherwise interpret the value of

string.

ERRORS:
invalidaccess, ioerror, stackunderflovv, typecheck

SEE ALSO:
readstring, write, writehexstring, tile

xcheck any xcheck bool

tests whether the operand has the executable or literal attribute, return-

ing true if it is executable or false if it is literal. (This has nothing to do

with the object's access attribute, e.g., execute-only; see section 3.4.)

ERRORS:
stackunderflow

SEE ALSO:

cvx, cvlit

writehexstring I xcheck 257

xor booli bool2 xor bool3
Intl int2 xor int3

If the operands are booleans, xor pushes their logical ' exclusive or'. If
the operands are integers, xor pushes the bitwise 'exclusive or' of their
binary representations.

EXAMPLE:

true true xor false

true false xor true
false true xor true

false false xor false

7 3 xor 4

123 xor 15

ERRORS:

stackunderflow, typecheck

SEE ALSO:

or, and, not

% a complete truth table

258 xor I xor

APPENDIX A

STANDARD FONTS

The Adobe Type Library includes a wide variety of fonts that
may be used by POSTSCRIPT programs. Among them are 13 stan-

dard fonts that are resident in most POSTSCRIPT printers.

This appendix describes the standard font set. The set consists of

four faces each of Times and Helvetica, derived from the
Mergenthaler Type Library under license from Allied
Corporation. Also included are a Symbol font containing math-
ematical and special characters and a fixed-pitch Courier font.

For each standard font, this appendix provides some sample text

and a detailed description of the available character set. It then
documents the standard encoding used for the text fonts and the

separate encoding used for the Symbol font. (For more infor-
mation on encoding, see section 5.4.)

A considerable amount of information concerning fonts is avail-
able to POSTSCRIPT programs, including character widths, side
bearings, and bounding boxes. A program can obtain information

about a font by executing POSTSCRIPT operators such as
stringwidth (see section 5.5) or by accessing the font dictionary
directly (section 5.3). Font metric information is also available in

an independent form from Adobe Systems and from POSTSCRIPT
printer manufacturers.

259

11 point text on 13 point linespacing

Times-Roman (with Italic, The graphic signs called letters are so completely blended with

Bold, and BoldItalic) the stream of written thought that their presence therein is as

unperceived as the ticking of a clock in the measurement of time. To

try to learn and repeat their excellence is to put oneself under
training in a simple and severe school of design.
—William Addison Dwiggins

Times-Italic Architecture began like all scripts. First there was the alphabet. A
stone was laid and that was a letter, and each letter was a

hieroglyph, and on each hieroglyph there rested a group of ideas.
—Victor Hugo

Times-Bold Decisive, too, for the quality of a letter is that its various parts,
though of limited expressiveness in themselves should combine
into a harmonious unity charged with imagination and feeling.
—Albert Windisch

Times-BoldItalic It can be considered a special merit of our time that creative

forces are again concerned with the problem of type design — a
problem which has been faced by the best artists of every age.
—Walter Tiemann

8 point The graphic signs called letters are so completely blended with the stream of written thought that their presence ther

9 point The graphic signs called letters are so completely blended with the stream of written thought that their p

10 point The graphic signs called letters are so completely blended with the stream of written thought

11 point The graphic signs called letters are so completely blended with the stream of written

12 point

14 point

18 point

24 point

The graphic signs called letters are so completely blended with the stream of w

The graphic signs called letters are so completely blended with th

The graphic signs called letters are so completely b

The graphic signs called letters are so c

260

Times Family

18 point

18 point

18 point

18 point

abcdefghijklmnopqrstuvwxyz àeiriègli
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ÀÇÉÎÑsfAÚ — 11013L0œoefifliECE(_@&-r)
1234567890-0$0£f<•1*/±1=\^#>%—%o

abcdefghijklmnopqrstuvwxyz iktifiós'W
4BCDEFGHIJKLMNOPQRSTUVWXYZ
AeiN- (),./(1 — ildiececefiftEŒ(@& t-t§)
1234567890--n$OWf<.1*/+1=\^#>%-%0
«?!»•<„

abcdefghijklmnopqrstuvwxyz açatiiiSti
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ÀçÉiSlifÈ'ú—itommœcefifuEcE(@sztt§ii)
1234567890--ti$enf<•/*A-1=\"#>%%c

‘c,, « 9t >>.< 49 ..
• • 99 9 ' 9°9

abcdefghijklmnopqrstuvwxyz dçaiiàsYi
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ÁÇIELSYTÉÚ — tiOfiLOcecefilliECE(@&te§fi
1234567890--ci$enf<•1*/+1=\e#>%~%c
e 2.f „ e, CO, .. PP / '^^—•-••••031
-• " 'ee •e • I

261

11 point text on 13 point linespacing

Helvetica (with Oblique, I am Type! I bring into the light of day the precious stores of
Bold, and BoldOblique) knowledge and wisdom long hidden in the grave of

ignorance. I coin for you the enchanting tale the
philosopher's moralizing, and the poet's phantasies. Through
me, Socrates and Plato become your faithful friends who
ever surround you.
— Frederic Goudy

Helvetica-Oblique The typographer who can serve his art modestly and with a
sensitive understanding of the special demands made by
each type face sill be the one to achieve the finest results.
— Paul Renner

Helvetica-Bold Of all the arts, architecture is nearest akin to
typography. Both are equally related to their function. In
both, that which wholly fulfills its purpose is beautiful.
— Helmut Presser

Helvetica-BoldOblique No other art is more justified than typography in looking
ahead to future centuries;for the creations of
typography benefit coming generations as much as
present ones.
— Giambattista Bodoni

8 point The graphic signs called letters are so completely blended with the stream of written thought that their pr

9 point The graphic signs called letters are so completely blended with the stream of written thought t

-10 point The graphic signs called letters are so completely blended with the stream of written

11 point The graphic signs called letters are so completely blended with the stream o

12 point

14 point

18 point

24 point

The graphic signs called letters are so completely blended with the str

The graphic signs called letters are so completely blended w

The graphic signs called letters are so complet

The graphic signs called letters ar

262

Helvetica Family

18 point

18 point

18 point

18 point

abcdefghijklmnopqrstuvwxyz aeiñOSú
ABCDE,FG,HIJKLMNOPQRSTUVWXYZ
ÁÇÉrISIOU — Ito f3LOœcefifIfECE(@&tte
1234567890--40¥£f

e:,ª1

abcdefghijklmnopqrstuvwxyz âçéîtiOS'ú
ABCDEFGHIJKLMNOPQRSTUVWXYZ
AtçÉîÑosu — Ito BLOœcefifbECE(@& 14§10
1234567890--a$0¥£f<V*41=1 #̂>%-%0
«?!» .<„""y".;:,'">r e; -°]

abcdefghijklmnopqrstuvwxyz àçéîñàâú
ABÇDgFp,HIJKLMNOPQRSTUVWXYZ
ÀÇÉNOSU — itoBLOœcefifVECE(_@&-ttg)
1234567890--n$0Y£frl*/+1=\^#>°/0-%0
«?!»•<„"","•;:r){ -}•••["] ›L

abcdefghijklmnopqrstuvwxyz àçértiOSú
ABCDEfÇtfIJKLMNOPQRSTUVWXYZ
ÀÇÉIÑOSU — 110131.0œcefifbECE(P&#§10
1234567890--u$0nf<•/*/+1=1A#>%'40
« ?!».<555 " •; :5m)('

263

Mpointtextontipointlinespacing

Courier
(with Oblique,

Bold, and

BoldOblique)

Courier-Oblique

Each single letter is a small, well-balanced
figure in itself. There are bad types, too;

however, in a good type- face each letter rests
complete in itself. To us, who are used to

reading, a letter has become an abstract idea, a
mere means of understanding.
- Romano Guardini

The contemporary typographer regards his work

from the design point of view and concentrates on

the true essence of his task, to create graphic
design.

- Emerich Kner

Courier-Bold Machines exist; let us then exploit them to

create beauty - a modern beauty, while we are

about it. For we live in the twentieth century.
- Aldous Huxley

Courier-BoldOblique Neither may the clarity of the single letter be

given up for the sake of rhythm, nor may formal

beauty be sacrificed to mere clarity or
misconceived utility.

- Jan Tschichold

8 point The graphic signs called letters are so completely blended with the stream

9point The graphic signs called letters are so completely blended with the

MpoiM The graphic signs called letters are so completely blended

npoim The graphic signs called letters are so completely

12 point

14 point

18 point

24 point

The graphic signs called letters are so completely

The graphic signs called letters are so

The graphic signs called letters

The graphic signs called

264

Courier Family

18 point abcdefghijklmnopqrstuvwxyz àçéîhóâú
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ACiS-Mú - ii081,0(@ o-t§91)-[iCº]
1234567890--n$f<-/*+1=\ ^#>% -

18po,d abcdefghijklmnopqrstuvwxyz ciçéIfJOU
ABCDEFGHIJKLMNOPQRSTUVWXYZ

AÇÉIsSióÊù — 1101310(
1234567890--e$0Y£f< -/* -1-1=VM -

18point

18 point

«? !» • < „ "",
If • • rr r > _ • • • o

• • -]

abcdefghijklmnopqrstuvwxyz àçéîhóâlà
ABCDEFGHIJKLMNOPQRSTUVWXYZ

AÇËÎÑÔâti — i/OBL0(@& tt§91)-Ji¿ eQ]
1234567890--n$Y£fZ• /*+ I
«? » • < " ff ..

• • >f
y • • • o -}

abcdefghijklmnopqrstuvwxyz àçéîhóÉti

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Áeírló.Crj - J.1013110(@igt#§91)...fie:".1
1234567890 - 0$01r£R•/ * /=\ A #>% —

«?!»*<,. ""/ • ; " > I s —‘ —I

265

Sample Symbol uses

ae(b0c)=(aGb)0(a$c)

ypDr*P

e = min (x1(1 + x)# 1)

w - C, n{'} I • 1 C, n { I if L ancg'#"

ô Z (t) ç M i = 1

Z; (t) n = (i j)

proposition true if and only if

(Vu) s (p) S n Tr: = 0
(3u) s (p) SnTr,*0

(Vu) s (- p) S n =

(3u)s(-p) Sn l';*0

-((Vu) s (p)) S n 0

S n Tp=

kp i kn II, (at) <=>
s + s2- 4X,µ 1-'

2X,

266

Symbol

12 point

ar3x8centKXµvonOpatuwig(ptueç I C{ 1}[1-1, (n)
ABXADVFHIKAMN0110PETYQEYZY 1 1 1 1 1

.•.—+±x÷-1 oc J Li LJ
V33nupcpceee 00800

<--><-1s—>l<=>n11°'"-11•Z 39i so
...(00©TmioeTmErl)LIV 4 • V*

16 point

aPx8ecirynuckp.vonOpcmcoig(pmeç II Hi-11 (n)
ABXAEEDUHIKAMNOTIOPETYQEYZT I III

J)
v33nupcpc(ze«ooe00

...(o®ei-m®©TmIE)ziv.t.. gip*

267

Standard Text Encoding

octal 0 1 ._' 7 4 5 6 7

\00x

\O 1 x

\02..v

\03x

! .,
S (/,'.

5

=

&

6

>

\04x

\05x () * + , / _

7

?

\06x 0 1 2 3 4

\07x 8 9 . , <

VOx @ A B C D E F G
\11x H I J K L M N 0
\12x P Q R S T U V W
\13x X Y Z f \] A -
\14x ' a b T e d e f g
V5x h I j k 1 m n o
\16x p 9 r s

i

t u y w
\I 7x

\20x

x y z I -

\21x

\22x

\23x

ti

\24x • i /

\25x 0 " << < > fi
\26x 1 • 1

\27x , » ... %o
\30x - - -

\3 1 x " ,
- _

\32x —

\33x

\34x 1E e

\35x L 0 Œ g

\36X œ l

\3 7x 1 0 ce a

268 Appendix A: STANDARD FONTS

Encoding Vectors

Symbol Encoding

ri ASCII control character

not assigned

octal
,

1 3 4 5 () 0 1 -

\00x

\01x

\02x

\03x

(

I

1

I

9 i

2

3

+

3 4 5

- ,

& 3 \04x

\05x

6

/

\06x 0 7

\07x 8 : , < > ?

\/ Ox :2-: A B X e E cb r

\//x H I e K A M N 0

\12x 11 e P E T Y ç a
\13x E 41 Z [... I 1 _

\14x
_

a R X 8 £ 4) y

\15X 11 1, (P K X., il V 0

\16x it 0 p a ty ti3 co

\I7x ‘11 I -

i \20x

\21x ,
\22x

\23x

\24x I' ' <

>

<— I

x ..‹

---) \25x • V A

\26x ° + „

=

•

\27x 4- * = ... I- «-I

\.30X Iii 3 9t do 0 0 0 (-)

\31x u D D a c c E e

\32x L V 10 © 134 n NI
\33x -1 A v <=> li= II

\34x 0 (8 © TM
E (1

\35x r I L f l I
\36x) j r I j) i
\37x) 1 I J 1 J

269

Codes and Names

The following tables list the character names and character codes in Adobe's standard text fonts
and in the Symbol font. For each character, the character itself is shown along with its
POSTSCRIPT character name and octal character code. Unencoded characters are also shown; their
character code is noted with `—'.

Standard Text Characters

char name octal char name octal

space 040 \ backslash 134

! exclam 041 1 bracketright 135

quotedbl 042 A asciicircum 136

numbersign 043 _ underscore 137

$ dollar 044 ' quoteleft 140 ,
% percent 045 a-z a-z 141-172

& ampersand 046 1 braceleft 173

, quoteright 047 I bar 174

(parenleft 050 1 braceright 175

) parenright 051 asciitilde 176

* asterisk 052 I exclamdown 241

+ plus 053 0 cent 242

, comma 054 £ sterling 243

- hyphen 055 / fraction 244

period 056 If yen 245

/ slash 057 f florin 246

0-9 zero-nine 060-071 § section 247

: colon 072 a currency 250

; semicolon 073 quotesingle 251

< less 074 tt quotedblleft 252

= equal 075 « guillemotleft 253

> greater 076 < guilsinglleft 254

? question 077 > guilsinglright 255

@ at 100 fi fi 256

A-Z A-Z 101-132 fl fl 257

1 bracketleft 133 — endash 261

name octal

dagger 262

daggerdbl 263

periodcentered 264

paragraph 266

bullet 267

quotesinglbase 270

quotedblbase 271

quotedblright 272

guillemotright 273

ellipsis 274

perthousand 275

questiondown 277

grave 301

acute 302

circumflex 303

tilde 304

macron 305

breve 306

dotaccent 307

dieresis 310

ring 312

cedilla 313

hungarumlaut 315

ogonek 316

caron 317

emdash 320

270 Appendix A: STANDARD FONTS

Unencoded Text Characters I

char name

1E

ª

L

0
CE

(2

œ

1

I

0

ce

B

AE

ordfeminine

Lslash

Oslash

OE

ordmasculine

ae

dotlessi

lslash

oslash

oe

germandbls

octal char name

341

343

350

351

352

353

361

365

370

371

372

373

Aacute

Acircumflex

Adieresis

Agrave

Aring

Atilde

Ccedilla

Eacute

Ecircumflex

Edieresis

Egrave

Iacute

Icircumflex

Idieresis

Igrave

Ntilde

Oacute

°circumflex

Odieresis

Ograve

Otilde

Scaron

Uacute

Ucircumflex

Udieresis

Ugrave

Ydieresis

Zcaron

copyright

registered

trademark

octal

-
-
-
-
-
-
_
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-
-
_

char name

-

aacute

acircumflex

adieresis

agrave

aring

atilde

ccedilla

eacute

ecircumflex

edieresis

egrave

iacute

icircumflex

idieresis

igrave

ntilde

°acute

ocircumflex

odieresis

ograve

otilde

scaron

uacute

ucircumflex

udieresis

ugrave

ydieresis

zcaron

logicalnot

minus

octal

-
-
-
_
-
-
-
-
-
-
-
-
-
-
-
_
-
-
_
-
-
_
-
-
_
-
-
-
-
-

'Characters copyright, registered, trademark, logicalnot, and minus are not present in Adobe POSTSCRIPT text fonts
prior to version 25.0. These characters are also present in the Symbol font.

271

Symbol Set

char name octal char name octal char name octal

space 40 A Lambda 114 o omicron 157

! exclam 41 M Mu 115 it pi 160
V universal 42 N Nu I 16 0 theta 161

numbersign 43 0 Omicron 117 p rho 162

3 existential 44 Fl Pi 120 a sigma 163

% percent 45 0 Theta 121 t tau 164

& ampersand 46 P Rho 122 u upsilon 165

3 suchthat 47 E Sigma 123 ti 5 omega! 166

(parenleft 50 T Tau 124 co omega I 67

) parenright 51 Y Upsilon 125 xi I 70

* asteriskmath 52 ç sigma! 126 tit psi I 71

+ plus 53 S2 Omega 127 zeta 172

, comma 54 E Xi 130 { braceleft 173

— minus 55 'll Psi 131 I bar I 74

• period 56 Z Zeta 132 } braceright I 75
/ slash 57 [bracketleft 133 — similar 176

0-9 zero-nine 60-71 ... therefore 134 Y Upsilon! 241
: colon 72 1 bracketright 135 , minute 242

; semicolon 73 1 perpendicular 136 < lessequal 243

< less 74 _ underscore 137 / fraction 244

= equal 75 radicalex 140 ce infinity 245

> greater 76 a alpha 141 f florin 246
? question 77 pi beta 142 4 club 247

a congruent 100 x chi 143 • diamond 250

A Alpha 101 ô delta 144 Y heart 251

B Beta 102 e epsilon 145 4 spade 252

X Chi 103 0:1) phi 146 <—> arrowboth 253

à Delta I 04 y gamma 147 <— arrowleft 254

E Epsilon 105 i eta 150 is arrowup 255

11) Phi I 06 t iota 151 —> arrowright 256

F' Gamma 107 (1) phil 152 1 arrowdown 257

H Eta 110 lc kappa 153 ° degree 260

I Iota I II X. lambda 154 + plusminus 261
û thetal I 12 1-1. MU 155 „ second 262
K Kappa I 13 y nu 156 > greaterequal 263

272 Appendix A: STANDARD FONTS

char name octal

1

—1

bt

3

9t

60
0

e
0

r)

u

D

D

(Z

C

C

E

e

Z

V

®

©
TM

ri

multiply

proportional

partialdiff

bullet

divide

notequal

equivalence

approxequal

ellipsis

arrowvertex

arrowhorizex

264

265

266

267

270

271

272

273

274

275

276

carriagereturn 277

aleph 300

Ifralctur 301

Rfraktur 302

weierstrass 303

circlemultiply 304

circleplus 305

emptyset 306

intersection 307

union 310

propersuperset 311

reflexsuperset 312

notsubset 313

propersubset 314

reflexsubset 315

element 316

notelement 317

angle 320

gradient 321

registerserif 322

copyrightserif 323

trademarkserif 324

product 325

radical 326

dotmath 327

char name

- 1

A

V

TM

octal char name octal

logicalnot 330

logicaland 331

logicalor 332

arrowdblboth 333

arrowdblleft 334

arrowdblup 335

arrowdblright 336

arrowdbldown 337

lozenge 340

angleleft 341

registersans 342

copyrightsans 343

trademarksans 344

summation 345

parenlefttp 346

parenleftex 347

parenleftbt 350

bracketlefttp 351

bracketleftex 352

bracketleftbt 353

bracelefttp 354

braceleftmid 355

braceleftbt 356

braceex 357

angleright 361

integral 362

integraltp 363

integralex 364

integralbt 365

parenrighttp 366

parenrightex 367

parenrightbt 370

bracketrighttp 371

bracketrightex 372

bracketrightbt 373

bracerighttp 374

bracerightmid 375

bracerightbt 376

273

APPENDIX B

IMPLEMENTATION LIMITS

The POSTSCRIPT language itself imposes no restrictions on the
sizes or quantities of things described in the language, such as
numbers, arrays, stacks, paths, etc. However, a POSTSCRIPT in-
terpreter running on a particular computer in a particular operat-
ing environment does have such limits. The interpreter cannot
execute POSTSCRIPT programs that exceed these limits; if it at-
tempts to perform some operation that would exceed one of the

limits, it executes the error limitcheck (or VMerror if it ex-

hausts virtual memory resources).

All the limits are sufficiently large that a POSTSCRIPT page
description should never come close to exceeding any of them,

since the POSTSCRIPT interpreter has been designed to handle
very complex page descriptions. On the other hand, a program

that is not a page description might encounter some of these
limits, since the interpreter has not been designed with unlimited
general programming in mind. There is no formal distinction in
POSTSCRIPT between a page description and a general program.
However, a POSTSCRIPT interpreter residing in a printer is
deliberately optimized for its intended use: to produce raster out-
put according to a fully-specified graphical description generated

by some external application program.

Encountering a limitcheck during execution of a page descrip-

tion is almost always an indication of an error in the POSTSCRIPT

275

program, such as unbounded recursion on one of the stacks. En-
countering a VMerror is usually an indication that the program
is not using the save/restore facility appropriately.

Typical Limits

The following table gives the general minimum limits for an im-
plementation of the POSTSCRIPT interpreter These limits are
typical of most current POSTSCRIPT implementations, but some
variations should be expected. For specific details on the im-

plementation limits for a particular POSTSCRIPT printer, see the
manufacturer's documentation for that printer.

Quantity Limit Explanation

integer

real

2147483647 largest integer value; this value is 231 -1 and its representation is

16#7141-11-1,FP. (However, in most contexts, an integer that would exceed this
limit is converted to a real automatically.)

-2147483648 smallest integer value; this is -231 and its representation is 16#80000000.

±1038 largest and smallest real values (approximately).

±10-38 nonzero real values closest to zero (approximately); values closer than these are
converted to zero automatically.

8 significant decimal digits of precision (approximately).

array 65535 maximum length of an array.

dictionary 65535 maximum capacity of a dictionary (key-value pairs).

string 65535 maximum length of a string.

name 128 maximum number of characters in a name.

file 6 maximum number of open files, including the standard input and output files.
(A POSTSCRIPT implementation operating in an environment with permanent

file storage would have a substantially larger limit.)

userdict 200 capacity of userdict. Note that userdict starts out with several things defined in
it already.

276 Appendix B IMPLEMENTATION LIMITS

operand stack 500 maximum depth of the operand stack (i.e., the maximum number of elements

that may be pushed on and not yet popped off).Also, when the POSTSCRIPT
scanner is reading a procedure definition, this defines the limit on the number

of elements contained in all unfinished procedure definitions.

dict stack 20 maximum depth of the dictionary stack.

exec stack 250 maximum depth of the execution stack. Each procedure, file, or string whose
execution has been suspended occupies one element of this stack. Additionally,
control operators such as for, repeat, and stopped push a few additional

elements on the stack to control their execution.

interpreter level 10 maximum number of recursive invocations of the POSTSCRIPT interpreter.
Graphics operators that call POSTSCRIPT procedures, such as pathforall, show,

image, etc., invoke the interpreter recursively.

save level I 5 maximum number of active saves, i.e., ones that haven't been matched by a

restore.

gsave level 31 maximum number of active gsaves. Note that each save also performs a gsave
implicitly.

path 1500 maximum number of points specified in all active path descriptions, including

the current path, clip path, and paths saved by save and gsave.

dash 11 maximum number of elements in a dash pattern; i.e., the maximum length of

the array operand of setdash.

VM 240000 maximum size of the virtual memory in bytes. The current and maximum size

of the VM are reported by the vmstatus operator.

FontDirectory 100 maximum number of entries in the FontDirectory dictionary, determining the

maximum number of fonts that may be defined simultaneously. This limit is

considerably larger in some POSTSCRIPT implementations.

Virtual Memory Usage

It is impossible to predict accurately how much VM a program
will consume; but it is possible to make a rough estimate. Recall
from section 3.7 that VM is occupied primarily by the values of
composite objects. Simple objects do not consume VM, nor do
composite objects that share the values of other objects. The
storage occupied by values given below are typical for
POSTSCRIPT implementations from Adobe Systems.

277

• Array values are created and VM consumed when a program
executes the array, l', and matrix operators. An array value
occupies 8 bytes per element.

• When the POSTSCRIPT scanner encounters procedure values
delimited by 1...}', it creates either array or packed array
values according to the current packing mode (see
setpacking). An array value occupies 8 bytes per element. A
packed array value occupies 1 to 9 bytes per element depend-
ing on the element's type and value; a typical average is 2.5
bytes per element.

• String values are created and VM consumed when a program
executes the string operator and when the POSTSCRIPT scan-
ner encounters string literals delimited by `(...)' and `<...>'. A
string value occupies 1 byte per element.

• Dictionary values are created only by the diet operator. VM
consumption is based on the dictionary's maximum capacity
(its maxlength), regardless of how full it currently is. A dic-
tionary value occupies approximately 20 bytes per key-value
pair.

• Name objects consume VM at the time the name is first en-
countered by the POSTSCRIPT scanner. Computed names (e.g.,
with cvn) consume VM on their first use as names. Repeated
occurrences of a particular name require no additional storage.
Each distinct name occupies approximately 40 bytes plus the
length of the name in characters.

• The save/restore machinery consumes VM in proportion to
the magnitude of the changes that must be undone by restore
(but independent of the total size of VM). restore reclaims all
VM resources consumed since the corresponding save.

• Loading an Adobe-supplied POSTSCRIPT font definition typi-
cally consumes 20000 to 30000 bytes of VM, depending on
the size of the character set and the complexity of the charac-
ters. (VM consumption for a font remains essentially constant,
regardless of the number of ways in which its characters are
scaled, rotated, or otherwise transformed.) Thus, there is a
practical limit on the number of different fonts (other than
built-in fonts) that may be referenced in a single page descrip-
tion. A spooler program that manages font down-loading for a
POSTSCRIPT printer may find it helpful to execute vmstatus
and to enumerate FontDirectory in order to obtain informa-
tion about VM consumed by fonts.

278 Appendix B: IMPLEMENTATION LIMITS

APPENDIX C

STRUCTURING CONVENTIONS

Introduction

As discussed in section 3.3, the POSTSCRIPT language standard
does not specify the overall structure of a POSTSCRIPT program.
Any sequence of tokens conforming to the syntax and semantics

of the POSTSCRIPT language is a valid program that may be
presented to a POSTSCRIPT interpreter for execution.

For a POSTSCRIPT program that is a page description (i.e., a
description of a printable document), it is often advantageous to
impose an overall program structure. Two conventions for struc-
turing programs are mentioned in the body of this manual.

First, a page description may be organized as a prologue and a
script, as discussed in section 2.5. The prologue contains
application-dependent definitions; the script describes the par-
ticular desired results in terms of those definitions. The prologue

is written by a programmer, stored in a place accessible to an
application program, and incorporated as a standard preface to
each page description created by the application. The script is

usually generated automatically by an application program.

Second, the script of a multiple-page document may be or-
ganized as a sequence of independent single-page descriptions
that depend only on the prologue and not on each other. Each
page's execution is bracketed by save and restore, isolating it

279

from side-effects of other pages (and also ensuring that VM
resources are reclaimed). This is discussed in section 3.7.

If a POSTSCRIPT program conforms to both of these conventions,
other programs may operate on its text in various useful ways:
reorder the pages of the script, extract subsets of the pages for
printing or for inclusion in other documents, and so on. One can
imagine applications that treat POSTSCRIPT programs simply as
files of text data: they accept one or more POSTSCRIPT programs
as input, transform them in some way, and produce a
POSTSCRIPT program as output.

Beyond these simple conventions, programs that manage

previously generated POSTSCRIPT page descriptions, such as
'printer spooler' utilities, may require additional information
about those page descriptions. For example, if a page description
references special fonts, a spooler may need to transmit those
fonts' definitions to the POSTSCRIPT printer ahead of the page
description itself.

To facilitate these and other operations, this appendix defines a
standard set of structuring conventions for POSTSCRIPT

programs. A POSTSCRIPT program that obeys the structuring
conventions is called conforming; a POSTSCRIPT program that
does not obey the structuring conventions is called
nonconforming. The structuring conventions have no effect on
the execution of a program by a POSTSCRIPT interpreter;
however, many applications that operate on POSTSCRIPT page
descriptions (including some printer spoolers) accept only con-
forming programs as input.

Compliance with these conventions is not an all-or-nothing
proposition. Applications that generate POSTSCRIPT page
descriptions need not supply all of the information described
below. Simple applications (particularly ones running on very
small computers) may only be able to specify basic information;

larger applications are able to implement the complete specifica-
tion. A POSTSCRIPT page description is called minimally
conforming if it obeys the conventions flagged below with T. A

minimally conforming page description must supply information
about program structure and font requirements but may omit any
other information.

280 Appendix C STRUCTURING CONVENTIONS

Comment convention

An essential requirement of the structuring conventions is that
one should be able to obtain the structural information from a
page description without having to interpret or execute the
POSTSCRIPT program itself. That is, the structure must be distin-
guishable by static analysis of the text of the page description,
and it must be straightforward to extract and interpret the struc-

tural information.

The structuring conventions make use of POSTSCRIPT comments
to represent this information. The syntax for comments is

described in section 3.3: a comment consists of a `°/0' followed
by any text at all and terminated by a newline character. Com-
ments are totally ignored by the POSTSCRIPT interpreter.
However, comments conforming to the file structuring conven-
tions can convey structural information to other programs that
operate on page descriptions.

A conforming program includes structural information in the
form of complete lines that start with 'Ye or 'c'/Ocro' and end at
the next newline. Such comments should contain structural infor-
mation as detailed below. Comments that do not start with °/0!'

or ' YocY0' or that do not start at the beginning of a line are not
interpreted as structural information; they may contain arbitrary

text, which is ignored.

The very first line of every POSTSCRIPT program (whether it is

conforming or nonconforming) should be a comment that begins
with the characters ` cYor. This enables a file containing a
POSTSCRIPT program to be easily identified as such. 1 It is impor-
tant that every POSTSCRIPT program start with a `°/0!' comment,
even if it is nonconforming; otherwise, it may not be given the
appropriate handling in some operating system environments.

If the POSTSCRIPT program is conforming, the remainder of the
first line (after the "Yor) should be the version identifier for the
structuring conventions that the file obeys. The version described

'For example, the UNIX operating system has a scheme whereby the first 16
bits of a file's contents are a 'magic number' that identifies the file's type to
programs that operate on files of several different types. The ' Ye!' serves as a
16-bit 'magic number' that identifies POSTSCRIPT files. This enables such a file
to be treated as a POSTSCRIPT program meant to be executed as opposed to a
text file meant to be printed as text.

281

in this appendix is version TS-Adobe-1.0'. A POSTSCRIPT
program is taken to be minimally conforming to the file struc-
turing conventions if the version identifier begins with the
characters ` PS-Adobe-' (i.e., the first 11 characters of the
program are `%!PS-Adobe-'). A program is taken to be fully
conforming to the current version of the file structuring conven-

tions if the version identifier consists of ' PS-Adobe-1.0'.

Following the version identifier comment line in a conforming or
minimally conforming POSTSCRIPT program is the text of the
program itself, interspersed with comment lines containing struc-
tural information and other information about the page descrip-
tion. Each comment begins with `°/0°/0', followed by a keyword.
In comments that require values, the keyword is followed by `:'
and one or more values whose interpretation depends on the
keyword. (Comments that begin with `°/0!' are ignored if they
appear other than on the first line of the program.)

These comments fall into three classes: header comments, body
comments, and trailer comments. Header comments precede any
non-comment POSTSCRIPT program text and provide information
about the program as a whole. Body comments are interspersed
with the program text and serve mainly to delimit the various
parts of the page description (the prologue and the individual
pages of the script). Trailer comments follow all the non-
comment POSTSCRIPT program text and provide additional infor-
mation about the program as a whole.

Comments must appear exactly in the form shown in the descrip-
tions below: no space characters between the `°/0°/0' and the
keyword or between the keyword and the `:', one space between
the `:' and the first value, one space between values, and newline

immediately after the last value. The case of letters in keywords
is significant.

Header comments

The header comments begin immediately after the version

identifier comment and end at the first occurrence of a line that
does not start with ' Ye/0' or `«Yor. (They may also end at an ex-
plicit ' EndComments' comment.)

282 Appendix C: STRUCTURING CONVENTIONS

The order in which header comments appear is not significant
unless there is more than one comment with the same keyword.
The first occurrence of a comment with a particular keyword is
the one whose value prevails; any later comments with the same
keyword are ignored. This enables utility programs to override
header comments in an existing page description simply by in-
serting new header comments at the beginning; there is no need
to delete the existing comments.

Certain of these header comments can be deferred to the end of
the program (i.e., to the trailer comments section). This is for the
benefit of application programs that generate page descriptions
on-the-fly; such applications might not have the necessary infor-

mation about fonts, page count, etc., at the beginning of generat-
ing a page description, but only at the end. If a particular header
comment is to be deferred, a comment with the same keyword
and the value `(atencl)' must appear in the header comments sec-

tion.

°/0°/0DocumentFonts. font font t 1 2 •••
where font 1, font2, etc. are the POSTSCRIPT font names of fonts used by

the document. This comment can be deferred to the end of the program
by specifying the value `(atencl)' as described above. The font infor-
mation is useful to utility programs that may need to down-load special

fonts to a POSTSCRIPT printer before sending the document.

%%Title: title
The title of the document. The title value consists of arbitrary text
terminated by newline. This is intended for use in identifying or locat-

ing page descriptions; the title might be derived from an application-
level document name or from a file name.

%%Creator: text
The person or program (or both) that created this POSTSCRIPT docu-
ment. This may be different from the person printing the document (see
the ' For' comment below). The text value consists of arbitrary text

terminated by newline.

%c/oCreationDate: text
The date and time at which this POSTSCRIPT document was created.
The text value consists of arbitrary text terminated by newline; it

should be interpretable as a date and time by humans.

283

%%For text

The intended recipient of the printed output produced by executing this

document (usually the person who requests printing). The text value
consists of arbitrary text terminated by newline. If no ' For' comment is

present, the intended recipient is assumed to be the same as the value of
'Creator'.

%%Pages: pages

The number of pages present in this document, i.e., the number of
distinct pages that will be produced (by showpage or copypage) when

the document is executed as a POSTSCRIPT program. pages should be a
non-negative decimal integer. If execution of the document produces
no pages (for example, the program is meant to be an included

illustration), the number should be O. The specification (atencl)' is
permitted.

°/01YoBoundingBox: IIx urx ury

The bounding box that encloses all the marks painted as a result of
executing this program. All four values must be integers; (//x, //y) and

(urx, ury) are the coordinates of the lower left and upper right corners of
the bounding box in the default user coordinate system. This infor-
mation is of use to composition programs that incorporate this docu-

ment into a larger one as an included illustration.2 The specification
(atend)' is permitted.

°/e/oEndComments

This comment explicitly ends the header comments section of a

POSTSCRIPT program (as does any line that does not start with `"/.2%' or

Body comments

Body comments serve primarily to mark the boundaries between

the various parts of a POSTSCRIPT page description (the prologue

and the individual pages of the script). An application that

operates on the structure of a POSTSCRIPT page description (to

extract page subsets, reverse the order of pages, etc.) must pay

attention to these boundaries. In particular, whatever it does to

2The bounding box information is not especially useful for a multiple-page
document. In that case, the values given should enclose the marks painted on
all the pages combined; or the 'BoundingBox' comment should be omitted
altogether.

284 Appendix C STRUCTURING CONVENTIONS

individual pages, it must preserve the prologue at the beginning

and the trailer (described below) at the end.

`)/e/oEndPrologt
marks the end of the prologue section and the beginning of the script

section of the document.

%%Page: label ordinalf
marks the beginning of the description of an individual page, thereby
terminating the previous page (if any). The label and ordinal
parameters identify the page according to either or both of two

schemes. The label is a text string not containing white space charac-
ters; it identifies the page according to the document's internal number-

ing scheme (e.g., ' vil', ' 10-34', etc.) The ordinal is a positive integer
that specifies the page's position in the document's page sequence

(from 1 through n for an n-page document). If the number in either
scheme is not known, a '?' may be substituted. This information is
useful to utility programs that extract selected pages from a document;

it permits pages to be identified by specifications of the form 'pages vii

and ix' or ' the last 10 pages'.

°/.°/0PageFonts: fonti font2
specifies the fonts required by the current page. If this comment is

present, it must immediately follow a ' Page' comment. The fonts in a

'PageFonts' comment must be a subset of the fonts in the
`DocumentFonts' header comment. The purpose of ' PageFonts' is to

provide a finer degree of detail for utility programs to use, e.g., when
extracting page subsets or managing font down-loading for extremely

complex documents. Pages without a ' PageFonts' comment are as-
sumed to need all of the fonts listed in ` DocumentFonts'.

°/e/oTrailert
marks the end of the last page of the document and the beginning of the

trailer section (see below). Any non-comment POSTSCRIPT program

text that follows this comment is considered to be part of the document
as a whole rather than part of the last page; such text might include

global cleanup (e.g., by restore) of state established by the prologue.

285

Trailer comments

Following the ' Trailer' body comment and any additional non-

comment POSTSCRIPT program text may appear one or more
trailer comments. The trailer comments section is composed of
one or more of the header comments ' DocumentFonts', 'Pages',
and ' BoundingBox'. These contain information that is deferred
from the header comments section by the value specification
'(atend)', as described earlier.

As with header comments, the order of trailer comments is not
significant unless there is more than one comment with the same
keyword. In this situation, the last trailer comment with a par-
ticular keyword is the one that prevails. Note, however, that a

trailer comment applies only if there exists a header comment
that has the same keyword and whose value is '(atend)'.

Example

The following is a skeletal example of a POSTSCRIPT program
that conforms to the structuring conventions. The actual
POSTSCRIPT program text is not shown, only the structuring
comments.

%!PS-Adobe- 1.0
%%Creator: Anthony Abstract
%%Title: Tropic of Calculus
°/0`)/oCreationDate: Fri Aug 9 11:33:03 1974
%% Pages: Pages: (atend)
°/0%DocumentFonts: (atend)
°/0%BoundingBox: 0 0 612 792
%%EndComments
... document prologue goes here ...
°/0°/0EndProlog
%% Page: 0 1
... this might be the title page ...
%% Page: Page: 1 2
... the first text page of the document ...
%% Page: Page: 2 3
... the last page of the document ...
%%Trailer
... document trailer (if any) goes here ...
%°/0DocumentFonts: Times-Roman Times- Italic Times- Bold
%%Pages: 3

286 Appendix C STRUCTURING CONVENTIONS

The detailed operation of specific POSTSCRIPT printers is

described in documentation provided by the printer manufac-
turers. Particular POSTSCRIPT implementations may provide
added facilities for dealing with their operating environment.
Such facilities cover the general areas of communications, spe-
cial modes of operation, printer administration, print engine con-
trol, paper handling, and default font handling.

POSTSCRIPT language support for these facilites is contained in a
separate dictionary named statusdict, which is distinct from
systemdict where the standard operators are defined. To access
these facilities, a POSTSCRIPT program must mention statusdict
explicitly, e.g., by executing statusdict begin to push statusdict

onto the dictionary stack.

The exact contents of statusdict and the semantics of the
operators and values found there may be quite printer-specific.
The details of statusdict for a particular printer are present in the

printer documentation.

In general, the operators and other information defined in
statusdict are intended for use by human users or by host

software carrying out user requests. Applications that produce
POSTSCRIPT page descriptions should not refer to statusdict

facilities, since doing so would impair portability of those

descriptions.

287

It is possible for a POSTSCRIPT program to test whether a par-
ticular facility is available in the environment in which it is run-

ning. This may be done by invoking the known operator to test
whether an operator name (or other dictionary entry) is present in
statusdict, and then to access that entry only if the result is true.
Many facilities defined in statusdict are common to some or all
types of POSTSCRIPT printers. In general, a statusdict operator
having a particular name will have the same semantics in all
printers in which it is defined at all.

The following facilities of statusdict are common to all
POSTSCRIPT implementations from Adobe Systems.

product - product string

is a string object which is the name of the printer product. The rare

program that needs to know what type of printer it is running on should
check this string.

revision - revision int

is an integer designating the current revision level of the machine-

dependent portion of the POSTSCRIPT interpreter. This is distinct from

the value of version in systemdict, which identifies the version of the
interpreter without regard to the machine on which it is running.

POSTSCRIPT Versions

Occasionally, the POSTSCRIPT language definition is enhanced to

supply added functionality. The only such enhancement to date
occurred with the introduction of POSTSCRIPT version 25.0. The

packed array data type and setpacking, currentpacking, and
packedarray operators were introduced. Immediately evaluated
names were introduced, as were the setcacheparams and
currentcacheparams operators. These additions are upward-

compatible and should not affect the function of existing
POSTSCRIPT programs. In general, POSTSCRIPT programs that
are intended to be compatible with all POSTSCRIPT printers
should not make use of the new features. However, it is possible

for a program to determine whether or not the new features are
present and to invoke them conditionally.

288 Appendix D: PRINTER SPECIFICS

radix syntax 22

#copies 131, 140, 238

Serror 57

% comment syntax 21

%! magic number 281

%% structuring comments 281

%lineedit 55, 159

%statementedit 55, 159

%stderr 54

%stdin 54, 165

%stdout 54, 165

O string syntax 22

l l procedure syntax 25

/ literal name syntax 24

// immediately evaluated name syntax 24, 44

<> hexadecimal string syntax 24

= 55,115,122

== 55,115,122

[25, 34, 112, 121, 195

\ escape syntax 23, 30

1 25, 112, 121, 195

abs 48, 111, 123

Accented character 99

Access 35, 132, 163, 185, 199, 210, 212, 255, 257

values 35

add 32, 38, 39, 48, 111, 123

abad 50, 112, 123

anchorsearch 50, 113, 124

and 51, 114, 124

arc 61,72,118,125

arcn 72, 118, 126

arcto 72, 118, 127

Arithmetic operators 48, 111

array 49, 112, 121, 128, 234, 278

Array 25, 27, 234, 251, 276, 277

executable 25, 39, 42

execution of 34

limits 276

objects 27, 28, 42, 121

operators 49, 112

syntax 25

type 251
See also Packed array

arraytype 251

ASCII 21, 98

ashow 93, 119, 128

astore 50, 112, 129

atan 48, 111, 129

Attribute operators 52, 115

awidthshow 93, 119, 130

banddevice 118, 131

BASIC 13

begin 50, 113, 132, 159

Bézier cubics 72, 125, 150, 210

Binary image 80, 182

mask 82

bind 44, 116, 132

Bitmap image 182, 211

bitshift 51, 114, 133

Bitwise operators 51, 114

Body comments 284

Boolean 28, 42, 51, 251

executable 42

literal 42

objects 28, 42

operators 51, 114

type 251

values 28, 165, 250

booleantype 251
Bounding box 100, 203, 224, 225, 284

289

Buffered input 168

Buffered output 168

BuildChar 105, 106, 181, 224, 227, 230, 236, 237

bytesavailable 55, 115, 133

C 27

Cache

See Font cache

cachestatus 102, 119, 134, 224

Call stack 36

ceiling 48, 111, 134

Character cache

See Font, cache

Character coordinate system 99, 224, 227

Character encoding 97

Character operators 60, 119, 229
Character set 21

charpath 93, 94, 118, 135

CharStrings 96, 98, 104

clear 111, 135

cleartomark 111, 135, 225

clip 62, 63, 73, 76, 80, 118, 136
clippath 118, 137

Clipping path 62, 63, 72, 80, 136, 137, 159, 183, 184
closefile 53, 115, 137

closepath 61, 72, 74, 118, 138

Color 63, 83

in graphics state 62, 63, 145, 146, 149, 184, 230,

236

in masks 82

models 83

NTSC video standard 84

sampled image 76

separations 76

specification of 83

See also Gray, Hue-saturation-brightness, Red-

green-blue

command 57

Comments 21, 281

Composite character 99

Composite objects 27, 49, 139, 175, 208
Compressed character 102, 142, 226

concat 117, 138

concatmatrix 117, 138

Control constructs 41

Control operators 51, 114

Conversion operators 52, 115

Coordinate 64

Coordinate system 64, 66, 78

and images 78

character 99, 224, 227

operators 59, 66, 117

output device 64

transformation 66

copy 48,49,51,111,112,113,139

copypage 88, 118, 140
cos 48, 111, 140

count 111, 141

countdictstack 50, 113, 141

countexecstack 114, 141

counttomark 48, 111, 142
CTM

See Transformation matrix, current

Cubic curves

See Bézier cubics

Current dictionary

See Dictionary, current

Current graphics state

See Graphics state

See also specific parameter
Current page 61

Current point 63, 72, 148, 184, 199

Current transformation matrix

See Transformation matrix, current

currentcacheparams 102, 119, 142, 288
currentdash 116, 143

currentdict 113, 143

currentfile 55, 115, 144

currentflat 116, 145

currentfont 119, 145

currentgray 84, 116, 145

currenthsbcolor 84, 116, 146
currentlinecap 116, 146

currentlinejoin 116, 146

currentlinewidth 116, 147

currentmatrix 117, 147

currentmiterlimit 116, 147

currentpacking 51, 112, 148, 288

currentpoint 118, 148

currentrgbcolor 84, 116, 149

currentscreen 116, 149

currenttransfer 117, 149

Curves

See Bézier cubics

curveto 61, 72, 118, 124, 150

cvi 52, 115, 151

290 INDEX

cvlit 52,115,151

cvn 52,115,152,278

cvr 52,115,152
cvrs 52,115,153

cvs 52,115,154
cvx 52,115,154,162

Dash pattern 64, 143, 184, 228

limits 277

Data types
See POSTSCRIPT objects, types

def 40, 50, 113, 155
Default transformation matrix

See Transformation matrix, default

defaultmatrix 117, 155
definefont 95, 119, 156, 166, 169
Delta transformation 158, 179

Device 64
Device independence 1, 10, 65, 66, 81

Device setup operators 60, 118

Device space 64, 66, 34, 158, 179, 187
Device-dependent positioning 187

Device-resolution images 80
diet 49, 113, 156, 278

dictfull 120, 156

Dictionary 27, 42, 251, 276, 278

current 31, 143

executable 42

limits 276
literal 42

objects 27, 31, 42
operators 49, 113

type 251
Dictionary stack 32, 36, 57, 132, 141, 143, 157, 159,

277
limits 277

dictstack 50, 57, 113, 157

dictstackoverflow 120, 157
dictstackunderflow 120, 157

dicttype 251
Display list 131
div 38, 39, 48, 111, 158

dstack 57
dtransform 117, 158

dup 48, Ill, 158

EBCDIC 98, 103
echo 55, 116, 159

Elliptical curves 125, 127
Encoding 94, 98, 104, 240
Encoding vector 97, 240, 268, 270

end 50, 113, 132, 159

Enumeration 171, 204
eoclip 76, 118, 159

eofill 76, 118, 160
eq 51, 114, 160

erasepage 118, 161, 238
Error handler 43, 56, 178

Error recovery 242
errordict 43, 52, 56, 113, 161

errorname 57
Errors 43, 56, 120

estack 57
Even-odd rule 75, 159, 160

exch 48, 111, 161

exec 51, 55, 114, 162
execstack 57, 114, 162
execstackoverflow 120, 163
Executable 34, 52, 154, 162, 257

conversion to 154

executeonly 52, 115, 163
Execution stack 19, 36, 57, 141, 162, 163, 277

limits 277

exit 51, 114, 164

exp 48, 111, 164

false 28, 114, 165
FamilyName 96

FID 95, 156

file 54, 55, 115, 165

File 33, 251, 276
current 144

executable 42
identifying strings 55

input 53, 165
limits 276

objects 33,42

operators 53, 54, 115
output 53, 165

standard input 54, 144, 159, 165
standard output 54, 165, 168, 205

type 251

filetype 251
fill 61, 62, 63, 74, 76, 118, 166

findfont 90, 94, 119, 166, 169

Fixed pitch fonts 92

291

Flatness 64, 145, 167, 184, 229

flattenpath 118, 167, 203

floor 48, 111, 167

flush 53, 115, 168

flushfile 53, 115, 168

Font 62, 63, 184, 194, 229

cache 89, 101, 119, 134, 142, 224, 225, 226, 227

character descriptions 98

current 62, 63, 91, 145, 229

dictionaries 89, 94, 98

encoding vector 97, 268, 270

fixed pitch 92

metrics 99, 100

monospaced 92

operators 60, 119

organization and use 90

standard set 259

user-defined 102

variable pitch 93

FontBBox 94, 100

FontDirectory 95, 119, 166, 169, 277, 278

FontID 34, 42, 156, 251

executable 42

literal 42

objects 42

type 251

FontInfo 96, 98

FontMatrix 94, 105, 194, 222

FontName 96

FontType 94, 105

fonttype 251

for 51, 114, 170

forall 49, 51, 112, 113, 171
FORTH 13, 17

Frame buffer 172

framedevice 87, 118, 172

FullName 96

ge 51, 114, 173

get 49, 112, 113, 174

getinterval 49, 112, 113, 175

Graphical shape

scan converting 9

Graphics control parameters 62

Graphics state 59, 62, 63, 176, 177, 184
operators 59, 116

stack 36, 62, 63, 176, 177, 215

See also specific parameter

Gray 76, 83, 84, 86, 145, 230

device 87

user 86

See also Color

Gray-scale rendering 80

grestore 63, 71, 73, 94, 105, 116, 176

grestoreall 116, 176, 184

gsave 62, 71, 73, 105, 116, 177, 277

gt 41, 51, 114, 177

Halftone screen 9, 64, 84, 149, 184, 236

Halftoning 9, 84

handleerror 56, 120, 178, 242

Header comments 282

Hexadecimal 22, 24, 33, 53, 211, 246, 257

HSB

See Hue-saturation-brightness

Hue-saturation-brightness 83, 146, 230

See also Color

identmatrix 117, 178
idiv 48, 111, 178

idtransform 117, 179

if 28, 51, 114, 179

ifelse 28, 41, 47, 51, 114, 180

image 61, 74, 76, 80, 101, 118, 181

Image 76, 181, 182

binary 80, 81

coordinate system 78

device resolution 80, 81

gray-scale 80

obtaining data for 144, 211

operators 78

parameters 77

sampled 76

imagemask 76, 80, 82, 101, 118. 182

Imaging model 60

Immediately evaluated name 24, 44

index 48, 111, 183

initclip 118, 183

initgraphics 116, 184, 238

initmatrix 117, 185

Input file

See File

Integer 28, 42, 251, 276

conversion to 151

executable 42

execution of 34

292 INDEX

limits 276

literal 42

objects 28, 42
syntax 22

type 251

integertype 52, 251
interrupt 120, 185
invalidaccess 120, 185

invalidexit 120, 186
invalidfileaccess 120, 186
invalidfont 120, 186

invalidrestore 120, 186

invertmatrix 117, 186
ioerror 54, 120, 187

isFixedPitch 96

ItalicAngle 96

itransform 117, 187

Justified text 256

Kerning 100, 128, 130, 189, 256
Key 31, 155, 156, 171, 174, 188, 192, 196, 207, 242,

252, 255

known 113, 188, 288
kshow 93, 119, 189

le 51, 114, 190

Left side bearing 100

length 49, 112, 113, 190
limitcheck 86, 120, 191, 275

Line cap 63, 74, 146, 184, 231

Line join 63, 74, 146, 184, 232

Line width 63, 147, 184, 233
lineto 61, 68, 72, 74, 118, 191

LISP 17
Literal 34, 52, 151, 162, 257

conversion to 151
In 48, Ill, 191

load 44, 50, 113, 192
log 48, 111, 192

loop 51, 114, 193

It 51, 114, 193

makefont 91, 94, 119, 166, 194, 222
mark 34, 48, 50, 111, 121, 142, 195

Mark 34, 42, 48, 142, 195, 251

executable 42
literal 42

objects 34, 42, 195

type 251

marktype 251

Masks 81

Mathematical operators 48, 111

matrix 117, 195, 278
Matrix

concatenation 70, 138
operators 59, 67, 70, 117
representation and manipulation 68
See also Transformation matrix

maxlength 113, 196, 278
Metrics 96, 104

Miter limit 64, 147, 184, 234

mod 48, Ill, 196

Monospaced fonts 92

moveto 61, 68, 72, 91, 118, 197

mul 48, 111, 197

Name 24, 152, 251, 276, 278

conversion to 152
executable 24, 42
execution of 34

immediately evaluated 24
limits 276
literal 24

objects 30, 42

syntax 24

type 251

nametype 251

ne 51, 114, 197
neg 48, 111, 198

newerror 57

newpath 61, 71, 118, 198

noaccess 52, 115, 199
nocurrentpoint 72, 120, 199

Non-zero winding number rule 75, 136, 166

not 51, 114, 200
Notice 96
NTSC video standard 84

See also Color

null 31, 116, 200

Null 34, 200, 251

executable 43

literal 200

objects 34, 43, 128, 200
type 251

nulldevice 88, 118, 201

293

nulltype 251 Pascal 27

Number syntax 22 Path 59, 61, 63, 71, 135, 138

construction 59, 71

Objects current 59, 135, 136, 137, 184, 198, 203, 204
See POSTSCRIPT objects limits 277

See also specific type operators 59, 61, 71, 118

Operand stack 36, 48, 57, 109, 141, 239, 240,277 See also Clipping path

limits 276 pathbbox 118, 203

manipulation operators 48, Ill pathforall 51, 118, 125, 204

Operands 38 Pixel 8

Operator 32, 251 boundary 187

executable 43 Pointers 27

execution of 34 pop 48, 111, 205

objects 32,43 Position 63

type 251 See also Current point

operatortype 251 Postfix notation 17

or 51, 114, 202 POSTSCRIPT document 14

°stack 57 prologue 14, 279

Output device 184 script 14, 279

coordinate system 64 structuring conventions 280

Output file POSTSCRIPT graphics 1
See File operators 59

Output operators 60, 118 See also specific operator

POSTSCRIPT imaging model 60
Packed array 25, 27, 29, 202, 234, 251, 278 POSTSCRIPT interpreter 2, 12, 18, 65

executable 25, 39, 42 deferred execution 39

objects 27, 42 interactive use 55

operators 49, 112 machine representation of integers 28

type 251 recursive invocation 277

See also Array source of object executed by 38
packedarray 49, 112, 202, 288 stacks 36

packedarraytype 251 termination 209

Page description version 253

as data 15 POSTSCRIPT language 1

composition 16 higer-level operations 2

device independent 10 page description capability 1

dynamic 11 primitive graphics operators 11
generation 15 See also Version 25.0

languages 9, 10 POSTSCRIPT Objects 18, 26

static 11 access 34, 52

structure 279 attributes 34, 52, 139

translation 15 composite 139
virtual memory 46 deferred execution 20, 39

Page independence 14, 279 executable 34, 52

Painting 74 execution of 41

model 61 immediate execution 38

operators 60, 61, 118 literal 34, 52

PaintType 96, 135 types 26, 52, 251

294 INDEX

See also specific type

POSTSCRIPT operators 47

See also specific operator

POSTSCRIPT programs

machine independence 3

structuring conventions 280
POSTSCRIPT syntax 19

print 54, 115, 205

Private 96

Procedure 19, 25, 28, 29, 110, 234

deferred execution 26

executable 39

syntax 25

See also Array, executable

product 288

Prologue 14, 279

prompt 55, 116, 206

pstack 55, 116, 206

put 49, 112, 113, 207

putinterval 49, 112, 113, 208

quit 52, 114, 209

Radix numbers

conversion to 153

syntax 22

rand 49, 111, 209, 219, 239

Random number generator 49, 209, 219, 239

rangecheck 120, 209

Raster output device 7

resolution 8

setup operators 87

rcheck 52, 115, 210

rcurveto 72, 118, 210

read 53, 115, 210

readhexstring 53, 78, 115, 211

readline 53, 115, 212

readonly 52, 115, 212

readstring 53, 78, 115, 213

Real 28, 42, 251, 276

conversion to 152

executable 42

limits 276

literal 42

objects 28, 42

syntax 22

type 251

realtype 52, 251

Red-green-blue 83, 149, 236

See also Color

Relational operators 51, 114

renderbands 118, 131, 213

repeat 51, 114, 214

resetfile 115, 214

restore 34, 46, 47, 50, 56, 116, 215, 276, 277, 278,

279

reversepath 118, 215

revision 288

ROB

See Red-green-blue

rlineto 72, 118, 216

rmoveto 72, 118, 216

roll 48, 111, 217

rotate 66, 67, 70, 80, 117, 218

round 48, 111, 218

rrand 49, 111, 219
run 55, 115, 219

Sample data representation 77

Sampled image 76, 181, 182, 211

save 34, 46, 47, 50, 56, 116, 220, 276, 277, 278, 279

Save 34, 42, 215, 220, 251, 277

executable 42

limits 277

literal 42

objects 34, 42, 220

type 251

savetype 251

scale 66, 67, 70, 80, 117, 221
scalefont 91, 94, 119, 166, 194,222

Scan conversion 8

limitations 10

Scanner 20

Script 14, 279

search 50, 113, 124, 223

setcachedevice 102, 106, 119, 224, 225

setcachelimit 102, 119, 225, 225

setcacheparams 102, 119, 226, 288

setcharwidth 106, 119, 227

setdash 74, 116, 228, 277

setflat 74, 116, 229

setfont 91, 119, 166, 229
setgray 74, 84, 87, 93, 116, 230

sethsbcolor 74, 84, 116, 230

setlinecap 74, 116, 231
setlinejoin 74, 116, 232

295

setlinewidth 116, 233

setmatrix 87, 117, 233

setmiterlimit 116, 234

setpacking 51, 112, 235, 278, 288

setrgbcolor 74, 84, 116, 236

setscreen 80, 84, 87, 116, 236

settransfer 80, 87, 117, 237

show 47, 61, 62, 91, 93, 98, 119, 237

showpage 61, 88, 118, 238

Simple objects 27

sin 48, 111, 238

Spacing 128, 130, 189, 243, 256

Spot function 85, 236

sqrt 48, 111, 239

srand 49, 111, 239

stack 55, 115, 239

Stack operators

See Operand stack

stackoverflow 43, 120, 239

Stacks 36

See also specified type

stackunderflow 120, 240
Standard files

See File

StandardEncoding 99, 119, 240

start 52, 114, 240

status 55, 115, 241

statusdict 287

stop 52, 56, 114, 241

stopped 52, 56, 114, 242

store 50, 113, 242

string 49, 113, 243, 278

String 27, 251, 276, 278

conversion to 154

executable 42

limits 276

objects 27, 29, 42

operators 49, 113

syntax 22

type 251

stringtype 251

stringwidth 100, 119, 243

stroke 61, 63, 64, 74, 118, 228, 231, 232, 233, 234,
244

strokepath 118, 245

Stroke Width 96

Structuring conventions 15, 280
sub 48, 111, 245

Subpath 71, 135, 136, 137, 138, 159, 166

Syntax 19

See also POSTSCRIPT syntax

syntaxerror 120, 246

System dictionary 246

systemdict 32, 37, 38, 40, 45, 56, 99, 113, 246, 287,

288

Text character

scan converting 9

timeout 120, 247

token 50, 53, 113, 115, 234, 248

Tokens 20

Trailer comments 286

Transfer function 64, 86, 87, 149, 184, 237

transform 117, 249

Transformation matrix 66, 194

current 59, 63, 66, 84, 105, 138, 147, 158, 179,

184, 185, 187, 233

default 130, 172, 185, 201

See also Matrix

Transformations 64

translate 66, 67, 70, 80, 117, 249

true 28, 114, 250

truncate 48, 111, 250

type 52, 115, 251

Type conversion 52, 160

Type operators 52, 115

typecheck 43, 120, 251

Typeface

See Font

undefined 43, 44, 120, 252

undefinedrdename 120, 252

undefinedresult 48, 70, 120, 252

UnderlinePosition 96

UnderlineThickness 96

UniqueID 96

unmatchedmark 120, 252

unregistered 120, 253

User dictionary 253, 276

User space 65, 66, 158, : 79, 187

coordinates 65

default 65

transformations 67

userdict 32, 37, 40, 45, 56, 113, 2S3, 276

usertime 116, 253

296 INDEX

Variable pitch fonts 93

version 44, 96, 116, 253, 288
Version 25.0 24, 26, 29, 44, 102, 142, 148, 202, 226,

235, 270,288

Virtual memory 45, 49, 56, 215, 220, 254

limits 275, 277

operators 56, 116

VMerror 120, 254, 275

vmstatus 56, 116, 254, 277,278

wcheck 52, 115, 255

Weight 96

where 50, 113, 255

While

See loop

White space characters 21

widthshow 93, 119, 256

write 53, 115, 256

writehexstring 53, 115, 257

writestring 53, 115, 257

xcheck 52,115,257

xor 51,114,258

297

The colophon of a book is traditionally an embellishment placed
on the last page of a book or manuscript. There is usually some
inscription of the scribe or printer listing the date, place, and
details of publication.

The word colophon is from the Greek word "Kolophon"
(icokocpow), meaning summit or final touch. Or perhaps,
colophon is from the Greek word "Kolophos" (camixoç),
which was the name of the very last island in the Greek chain of

islands; hence the last page was called the colophon.

Because of the special nature of this book, detailed production
notes are given in the preface. The typefaces used in this book
were digitized by Adobe Systems Incorporated. The body type is

Times Roman with Italic and Bold. The titles, examples, and
operator definitions are in Helvetica with Bold and Oblique.

Cover Design— Marshall Henrichs
Book Design— Bob Ishi
Illustrations —John Warnock
Scribe Wizardry— Brian K. Reid
Index— Steven Sorensen

299

-

D3 Ma
SYSTEMS INCORPORATED

> $22.95 FPT USA

POSTSCRIPT
Language

Reference Manual

POSTSCRIPT: the device-independent page description language, has become the indus-
try standard for printing high-quality integrated text and graphics. It is a powerful, flexible
language that has the ability to describe efficiently the appearance of text. images, and
graphic material on the printed page. POSTSCRIPT language interpreters have been incor-
porated into some of today's mcst innovative printers, typesetters, and film recorders.

The POSTSCRIPT LANGUAGE REFERENCE MANUAL is an essential, compre-
hensive handbook for programmers who are interested in enabling application programs
to drive output devices containing POSTSCRIPT interpreters. Written by Adobe Systems
Incorporated, this book is the definitiw reference to the PosTScuirr language.

The POSTSCRIPT LANGUAGE REFERENCE MANUAL begins with a discus-
sion of the basic ideas that underlie the POSTSCRIPT imaging model, followed by compre-
hensive presentations of the language, i:s graphics, and its font fac.lities. An additional
chapter contains the semantics of every POSTSCRIPT operator, organized in a convenient
dictionary format. Here is the most thorough and well-organized guide to the POSTSCRIPT
language, fully cross-referenced and indexed for the professional programmer and more
sophisticated user.

Companion volumes by Adobe Systems Incorporated are also available. The PostScript
Language Tutorial and Cookbook is a practical and accessible introduction to the language
and its capabilities, with program examples. PostScript Language Frograrn Design, com-
plete with examples, is the prown guide to designing efficient POSTSCRIPT programs.

Adobe Systems Incorporated, located in Mountain View, California, was formed in
1982 by Dr. John E. Warnock and Dr. Charles M. Geschke to meet the growing needs of
business and industry for high-quality printing of text and graphics. The ?osTScuiPT lan-
guage interpreter from Adobe Systems has been incorporated into products from over thirty
manufacturers, including Apple Computer; Digital Equipment Corporation; Hewlett-
Packard Company; IBM Corporation; Linotype AG; NEC Information Systems; NeXT,
Inc.; QMS, Inc.; Wang Laboratories; and many others.

Cover design by Marshall Henrichs

5 2 2 9 5

9 780201 101744
Addison-Wesley Publishing Company, Inc. ISBN 0-201-10174-2

