REFERENCE DATA

fou
 RADIO EMGINEERS

82

\qquad

REFERENCE DATA

RADIO ENGINEERS

second edition

Federal Telephone and Radio Corporation
 an associate of

International Telephone and Telegraph Corporation 67 Broad Street • New York 4, N. Y.

Copyright 1946 by

Federal Telephone and Radio Corporation

Secend Edifion

First printing, August, 1946
Second printing, Fobruary, 1947
Printed In the U.S.A. by
J. J. Little \& lves Co., N. Y.

Foreword

Widespread acceptance of the four printings of the first edition of Reference Data for Radio Engineers prompted this larger and improved second edition. Like its predecessor, it is presented by the Federal Telephone and Radio Corporation as an aid in the fields of research, development, production, operation, and education. In it will be found all the material that proved so useful in the first edition along with much additional data-some the result of helpful suggestions from readers, others stemming from rapid advances in the art, and still others now made possible by declassification of many war developments.

While the general arrangement remains unchanged, the present edition has been greatly enlarged and a subject index included. Chapters on transformers and room acoustics have been added. The material on radio propagation and radio noise has been revised. Because of their importance in television, in radar, and in laboratory technique, the data on cathode-ray tubes have been considerably expanded.

The section on electrical circuit formulas has been greatly enlarged; additions include formulas on $\mathrm{T}-\Pi$ and Y - Δ transformations, amplitude modulation, transients, and curves and numerous formulas on selective circuits. The attenuator section contains comprehensive design formulas and tables for various types of attenuators. The number of mathematical formulas also has been considerably increased.

As revised, the wave-guide chapter includes equations for both rectangular and cylindrical guides plus illustrations of field distribution patterns. Several methods of coupling to the $\mathrm{TE}_{0,1}$ mode are illustrated. A table of standard rectangular wave guides and connectors, giving useful frequency range and attenuation, has been added. Design curves for the gain and beam width of rectangular electromagnetic horn radiators are included, and a simple formula for the gain of a paraboloid reflector is given.

Many very helpful suggestions were received from the Armed Services.
Acknowledgment is made to Edward J. Content, consulting engineer, for his contribution of the chapter on room acoustics; its inclusion was made possible largely through the courtesy of the Western Electric Company in permitting the use of their engineering data. Acknowledgment also is due to I. E. Lempert, Allen B. Dumont Laboratories, Inc., for the descriptive material on cathode-ray tubes; and to Professor L. Brillouin of Harvard University for advice and suggestions on the wave-guide chapter.

In the compilation of this reference book, the cooperation of the following I.T. \& T. associate companies was invaluable:

International Telecommunication Laboratories, Inc., New York, N. Y. E. M. Deloraine, president, and E. Labin, technical director

American Cable and Radio Corporation, New York, N. Y.

Haraden Pratt, vice president and chief engineer
Standard Telephones and Cables, Ltd., London, England.
C. E. Strong, chief engineer of radio division

International Telephone and Telegraph Corporation, New York, N. Y.
George Lewis, assistant vice president, and H. P. Westman, associate editor of Electrical Communication.

Recognition for contribution of specific material:
Federal Telecommunication Laboratories, Inc., New York, N. Y. H. Busignies, director, G. S. Burroughs, W. A. Cobb, S. Frankel, J. J. Glauber, D. D. Grieg, A. G. Kandoian, L. L. Libby, N. Marchand,* C. R. Muller, E. M. Ostlund, W. Sichak, L. D. Smullin, N. S. Tierney, A. R. Vallarrino, M. W. Wallace, A. J. Warner, and J. K. Whitteker

Federal Telephone and Radio Corporation, Newark, N. J.
E. G. Ports, technical director of radio division, H. Baker, W. F. Bonner, C. L. Howk, W. W. Macalpine, G. T. Royden, and A. K. Wing

Mackay Radio and Telegraph Company, New York, N. Y.

R. McSweeny, C. E. Scholz, and L. Spangenberg

International Standard Electric Corporation, New York, N. Y.
J. C. Frick, G. H. Gray, and E. S. Mclarn

H. H. Buttner, chairman \quad| Rodio Reference Book Commitree |
| ---: |

Contents

Chapter 1 - General information
Conversion factors 11
Fractions of an inch with metric equivalents 14
Miscellaneous data 14
Greek alphabet 15
Unit conversion table 16
Electromotive force-series of the elements 18
Pasition of metals in the galvanic series 18
Asomic weights 19
Centigrade table of relative humidity or percent of saturation 20
Atmospheric pressure chart 22
Weather dato 23
Temperature extremes 23
Precipitation extremes 23
World temperatures 23
World precipitation 24
Principal power supplies in foreign countries 25
World time chart 27
Electromagnetic frequency spectrum 28
Rodio frequency classifications 28
Wavelength vs frequency chart 29
Wavelength vs frequency formulas 29
Frequency folerances 30
Frequency band widths occupied by the emissions 32
Tolerances for the intensity of harmonics of fixed, land, and broadeasting stations 32
Classification of emissions 33
Relation between decibels and power, voltage, and current ratios 34
Chapter 2 -Engineering and material data
Copper wire table-standard annealed capper 35
Copper wire table-English and metric units 36
Solid copperweld wire-mechonical and electrical properties 37
Standard stranded copper conductors-American wire gauge 38
Machine screw head styles, method of length measurement 38
Standard mochine screw dato including hale sizes 39
Insulating materials 40
Plostics: trode nomes 41
Wind velocities and pressures 42
Temperature chart of heated metals 43
Physical constonts af various metals and alloys 44
Thermocouples and their choracteristics 46
Melting points of solder 47
Spark gop voltoges 48
Head of water in feet and approximate discharge rate 49
Materials and finishes for tropical and marine use 50
Torque and horsepower. 51
Chapier 3 - Audio and radio design
Resistors and capacitors-color code 52
Resistors, fixed composition 52
Standard color coding for resistors 53
Copocitors, fixed mica dielectric 55
Capacitors, fixed ceramic 57
Inductance of single-layer solenoids 58
Magnet wire data 60
Reactance charts 61
Impedance formulas 64
Skin effect 71
Network theorems 74
Electrical circult formulas. 74
Attenuators 100
Filter networks 115
Chapter 4 -Rectifiers and filters
Typical rectifler circuit connections and circuit data 118
Rectifier filter design-ripple voltoge vs LC for choke-input fliters_ 120
Rectifier filter design-ripple voltoge vs RC for copocitor-input filters 121

Chapter 5-Iron-core transformers and reactors

Major transformer types 122
Major reactor types 122
Temperature, humidity, and pressure effects 123
General limitations 123
Design of power-supply transformers 124
Round enameled copper wire data 126
Chapter 6 -Vacuum tubes
Nomenclature 127
Coefficients 127
Terminology 128
Formulas 129
Performance limitations 130
Electrode dissipation data 131
Filament characteristics 132
Ultra-high-frequency tubes 134
Cathode-ray tubes 136
Army-Navy preferred list of electron tubes 142
Chapter 7 -Vacuum tube amplifiers
Classifcation 143
General design 143
Graphicol design methods 146
Classification of amplifier circuits 155
Cathode follower data 157
Resistance-coupled oudio amplifier design 158
Negative feedback 159
Reduction in gain coused by feedback 160
Distortion 164
Chapter 8-Room acoustics
General considerations for good room acoustics 165
Good acoustics-governing factors 165
Room sizes and proportions for good ocousties 165
Optimum reverberation time 166
Computation of reverberation time 169
Electrical power levels required for public address requirements 171
Generol 177

REFERENCE DATA FOR RADIO ENGINEERS

Chapłer 9-Wire transmission

Telephone transmission line data 179
Frequency allocation chart for type J and K carrier syslems 185
Frequency allocation chart for carrier systems 186
Frequency allocation and modulation steps in the L carrier system (coaxial cable) 188
Noise and noise moasurement-wire tetephony 189
Tele graph faciltities 192
Telegraph printer systems 192
Frequency of printing telegraph systems in cycles per second 192
Comparison of telegraph codes 193
Chapter 10-Radio frequency transmission lines
Formulas for uniform transmission lines 194
Surge impedance of uniform lines 195
Transmission line data 196
Transmission line aftenuation due to load mismatch 198
lmpedance matching with shorted stub 199
Impedance matching with open stub 199
Impedance matching with coupled section 200
Army-Navy standard list of radio-frequency cables 201
Attanuation of standard r-f cables vs frequency 204
Length of transmission line 205
Attenuation and resistance of transmission lines at ultra-high frequencies 206
Chapter 11 -Wave guides and resonators
Propagation of electromagnetic waves in hollow wave guides 207
Rectangular wave guides 208
Circulor wave guides 213
Electromagnetic horns 217
Resonant covities 219
Some charocteristics of various types of resonators 222
Additional cavity formulas 223
Recommended rectangular wave guides 223
Chapter 12-Radio propagation and noise
Propagation of medium and long waves 224
Propagation of short waves 226
Propagation forecasts for short waves 231
Propagation of very short waves 237
U-H-F path length and optical line-of-sight distance range of radio waves 238
Great circle calculations. 240
Time interval between transmission and reception of refected signal 244
Radio noise and noise measurement 244
Chapter 13 - Antennas
Field intensity from an elementary dipole 250
Field of an elementary dipole at great distance 252
Field of an elementary dipale at short distance 252
field of an elementary dipole at intermediate distance 253
Field intensity from a vertically polarized antenna with base close to ground 253
Vertical radiators 254
Field intensity and radiated power from a half-wave dipole in free space. 258
Radiation from end-fed conductor of any length in space 260
Maxima and minima of radiation from a single-wire radiator 261
Phombic antennas 261
Antenna arrays 263
Chapier 14 - Non-sinusoidal and modulafed wave forms
Relaxation oscillators 272
Electronic integration methods 274
Electronic differentiation methods 276
Fourier analysis of recurrent wave forms 277
Analysis of commonly encountered wave forms 281
Modulated wave forms 288
Chapter 15 - Mathematical formulas
Mensuration formulas 291
Formulas for complex quantities 294
Algebraic and trigonometric formulas 294
Approximations for small angles 296
Quadralic equation 296
Arithmetical progression 296
Geometrical progression 297
Combinations and permutations 297
Binomial theorem 297
Maclaurin's theorem 297
Taylor's theorem 297
Trigonometric solution of triangles 298
Complex hyperbolic and other functions 299
Table of integrals 300
Chapter 16-Mathematical tables
Exponentials 303
Common logarithms of numbers and proportional parts 304
Natural trigonometric functions for decimal fractions of a degree 306
Logarithms of frigonometric functions for decimal fractions of a degree 310
Natural logarithms 314
Hyperbolic sines 316
Hyperbolic cosines 317
Hyperbolic tangents 318
Multiples of 0.4343 318
Multiples of 2.3026 318
Bessel functions 319

General information

Conversion factors

to convert	Into	multiply by	conversely multiply by
Acres	Square feel	4.356×10^{4}	2.296×10^{-6}
Acres	Square meters	4,047	2.471×10^{-4}
Ampere-hours	Coulomb	3,600	2.778×10^{-6}
Amperes per sq cm	Amperes per sq inch	6.452	0.1550
Ampere turns	Gilberts	1.257	0.7958
Ampere furns per cm	Ampere turns per inch	2.540	0.3937
Atmospheres	Mm of mercury @ $0^{\circ} \mathrm{C}$	760	1.316×10^{-8}
Atmospheres	Feet of water (a) $4^{\circ} \mathrm{C}$	33.90	2.950×10^{-8}
Atmospheres	Inches mercury @ $0^{\circ} \mathrm{C}$	29.92	3.342×10^{-2}
Atmospheres	Kg per sq meter	1.033×10^{4}	9.678×10^{-5}
Atmospheres	Pounds per sq inch	14.70	6.804×10^{-2}
Bfu	Foot-pounds	778.3	1.285×10^{-8}
Btu	Joules	1,054.8	9.480×10^{-4}
Bto	Kilogram-calories	0.2520	3.969
Btu	Horsepower-hours	3.929×10^{-6}	2,545
Bushels	Cubic feet	1.2445	0.8036
Contigrade	Fahrenheit	$\left(C^{0} \times 9 / 5\right)+32$	$\left(F^{\circ}-32\right) \times 5 / 9$
Circular mils	Square centimefers	5.067×10^{-6}	1.973×10^{5}
Circular mils	Square mils	0.7854	1.273
Cubic feet	Cords	7.8125×10^{-3}	128
Cubic feet	Gallons (liq US)	7.481	0.1337
Cubic foer	Litors	28.32	3.531×10^{-2}
Cubic inches	Cubic centimeters	16.39	6.102×10^{-2}
Cubic inches	Cublc feet	5.787×10^{-4}	1,728
Cubic inches	Cubic meters	1.639×10^{-8}	6.102×10^{4}
Cubic inches	Gallons (liq US)	4.329×10^{-8}	231
Cubic meters	Cubic fedr	35.31	2.832×10^{-9}
Cubic meters	Cubic yards	1.308	0.7646
Degrees (angle)	Radians	1.745×10^{-2}	57.30
Dynes	Pounds	2.248×10^{-6}	4.448×10^{5}
Ergs	Foot-pounds	7.367×10^{-8}	1.356×10^{7}
Fothoms	Feet	6	0.16666
Feet	Centimeters	30.48	3.281×10^{-7}
Feot of water @ $4^{\circ} \mathrm{C}$	Inches of mercury @ $0^{\circ} \mathrm{C}$	0.8826	1.133
Feat of water @ $4^{\circ} \mathrm{C}$	Kg per sq meter	304.8	3.281×10^{-8}

to convert	Into	multiply by	conversely multiply by
Feet of woter @ $4^{\circ} \mathrm{C}$	Pounds per sq foot	62.43	1.602×10^{-2}
Foot-pounds	Horsepower-hours	5.050×10^{-7}	1.98×10^{6}
Foot-pounds	Kilogram-meters	0.1383	7.233
Foot-pounds	Kilowatt-hours	3.766×10^{-7}	2.655×10^{6}
Gallons	Cubic meters	3.785×10^{-2}	264.2
Gallons lliq USI	Gallons (liq Br Impl	0.8327	1.201
Gauss	Lines per sq inch	6.452	0.1550
Grams	Dynes	980.7	1.020×10^{-3}
Grams	Grains	15.43	6.481×10^{-2}
Grams	Ounces lavoirdupois)	3.527×10^{-2}	28.35
Grams	Poundals	7.093×10^{-2}	14.10
Grams per cm	Pounds par inch	5.600×10^{-8}	178.6
Grams per cu cm	Pounds per cu inch	3.613×10^{-2}	27.68
Grams per sq cm	Pounds per sq foot	2.0481	0.4883
Hectores	Acres	2.471	0.4047
Horsepower (boiler)	Bru per hour	3.347×10^{4}	2.986×10^{-6}
Horsepower (metrial (542.5 ff -lb per sec)	Btu per minute	41.83	2.390×10^{-2}
Horsepower (metric) ($542.5 \mathrm{ft}-\mathrm{lb}$ per sed)	Foor-lb per minute	3.255×10^{4}	3.072×10^{-8}
Horsepower (metrial (542.5 ft -lb per sec)	Kg-calories per minute	10.54	9.485×10^{-2} 2357×10^{-2}
Horsepower (550 ft -lb per sec)	Bfu per minute	42.41	2.357×10^{2}
Horsepower (550 ft -lb per sed)	Foor-lb per minute	3.3×10^{4}	3.030×10^{-8}
Horsepower (metric) (542.5 ff -lb per sec)	Horsepower (550 ft -lb per sed)	0.9883	1.014
Horsepower (550 ff-lb per sed)	Kg -calories per minute	10.69	9.355×10^{-2}
Inches	Centimeters	2.540	0.3937
Inches	Feet	8.333×10^{-2}	12
Inches	Miles	1.578×10^{-1}	6.336×10^{4}
Inches	Mils	1,000	0.001
Inches	Yards	2.778×10^{-2}	36
Inches of mercury @ $0^{\circ} \mathrm{C}$	Lbs per sq inch	0.4912	2.036
Inches of water @ $4^{\circ} \mathrm{C}$	Kg per sq metor	25.40	3.937×10^{-2}
Inches of water	Ounces per sq inch	0.5781	1.729
Inches of water	Pounds per sq foot	5.204	0.1922
Joules	Foot-pounds	0.7376	1.356
Joules	Ergs	10^{7}	10^{-7}
Kilogram-calories	Kilogram-mefers	426.9	2.343×10^{-8}
Kilogram-calories	Kilojoules	4.186	0.2389
Kilograms	Tons, long lavdp 2240 fb)	9.842×10^{-4}	1,016
Kilograms	Tons, short lovdp 2000 lb)	1.102×10^{-8}	907.2
Kilograms	Pounds lavoirdupais)	2.205	0.4536
Kg per sq meter	Pounds per sq foot	0.2048	4.882
Kilometers	Feot	3,281	3.048×10^{-6}
Kilowatt-hours	Bru	3,413	2.930×10^{-6}
Kilowatt-hours	Foot-pounds	2.655×10^{8}	3.766×10^{-7}
Kilowatt-hours	Joules	3.6×10^{8}	2.778×10^{-7}
Kilowatt-hours	Kilogram-calories	860	1.163×10^{-3}
Kilowatt-hours	Kilogram-meters	3.671×10^{5}	2.724×10^{-6}
Kilowott-hours	Pounds carbon oxydized	0.235	4.26
Kilowatt-hours	Pounds woter evaporated from and of $212^{\circ} \mathrm{F}$	3.53	0.283

Greek alphabef

name	capital	small	commonly used to deslgnate
ALPHA	A	α	Angles, coefficients, attenuation constant, absorption factor, area
BETA	B	β	Angles, coefficients, phase constant
GAMMA	r	$\boldsymbol{\gamma}$	Complex propagation constant icapl, specific gravity, angles, electrical conductivity, propagation constant
Delta	Δ	δ	Increment or decrement icap or small, determinant (capl, permittivity (cap), density, angles
EPSILON	E	-	Dielectric constant, permittivity, base of natural logarithms, oloctric intensity
ZETA	Z	5	Coordinates, coefficionts
ETA	H	7	Intrinsic impedance, officiency, surface charge density, hysterosis, coordinatos
THETA	θ	$\vartheta \theta$	Angular phase displacement, time constant, reluctance, angles
IOTA	I	c	Unit vector
KAPPA	K	κ	Susceptibility, coupling coefficient
LAMBDA	-	$\boldsymbol{\lambda}$	Permeance (cap), wavelength, attenuation constans
MU	M	μ	Permeability, amplification factor, prefix micro
NU	\mathbf{N}	*	Reluctivity, frequency
XI	z	ξ	Coordinates
OMICRON	0	-	
P1	II	π	3.1416
RHO	P	p	Resistivity, volume charge density, coordinates
SIGMA	2	σ \%	Summation (capl, surface charge density, complex propagation constont, oloctrical conductivity, loakago coofficient
taU	T	τ	Time constant, volume resistivity, time-phase displacement, transmission foctor, density
UPSIION	T	v	
PHI	\$	$\phi \varphi$	Scalar potential (eap), magnetic flux, angles
CHI	\mathbf{X}	χ	Electric suscoptibility, angles
PS!	Ψ	ψ	Dielectric fux, phase diference, coordinates, angles
OMEGA	Ω	ω	Resistance in ohms (cap), solid angle (cap), angular velocity
Small lotter is used excopt where caplial is indicated.			

[^0]

18

Electromotive force series of the elements

eloment	volts	Ion	element		volts	$10 n$
Lithium	2.9595		Tin		0.136	
Rubidium	2.9259		Lead		0.122	Pb++
Potassium	2.9241		Iron	-	0.045	Fe^{+++}
Strontium	2.92		Hydrogen	-	0.000	
Barium	2.90		Antimony		-0.10	
Calcium	2.87		Bismuth		-0.226	
Sodium	- 2.7146		Arsenic		-0.30	
Magnesium	2.40		Copper		-0.344	Cu^{++}
Aluminum	1.70		Oxygen		-0.397	
Beryllium	1.69		Polonium		-0.40	
Uranium	1.40		Copper		-0.470	Cu^{+}
Manganese	1.10		lodine		-0.5345	
Tellurium	0.827		Tellurium		-0.558	Te ${ }^{++++}$
Zinc	0.7618		Silver		-0.7978	To
Chromium	0.557		Marcury		-0.7986	
Sulphur	0.51		Lead		-0.80	Pb++++
Gallium	0.50		Palladium		-0.820	
Iron	0.441	Fe^{++}	Platinum		-0.863	
Cadmium	0.401		Bromine		-1.0648	
Indium	0.336		Chlorine		-1.3583	
Thallium	0.330		Gold		-1.360	
Cobalt	0.278		Gold		-1.50	Au^{+}
Nickel	0.231		Fluorine		-1.90	

Position of metals in the galvanic series

Corroded and (anodic, or least noble)	Nickel \{active) Inconel (active)
Magnesium	Brasses
Magnesium alloys	Copper
Zinc	Bronzes
Aluminum 2S	Copper-nickel alloys Monel
Cadmium	
Aluminum I7ST	Silver solder
Aluminum ITST	Nickel (passive)
Steel or Iron	Inconel (passive)
Cast Iron	Chromium-iron (passivel
Chromium-iron (active)	18-8 Stainless (passive)
Ni-Resist	18-8-3 Stainless (passive)
18-8 Stainless (active)	Silver
18-8-3 Stainless (active)	Graphite
Lead-tin solders	Platinum
Lead Tin	Protected end (eathodic, or mast noble)

Nole: Groups of metals indicate they are closely stailor in properties.

Atomic weights

-lement	symbal	alomic number	atomic wolght	viement	symbol	efomic number	otomic wolght
Aluminum	Al	13	26.97	Molybdenum	Mo	42	95.95
Antimony	Sb	51	121.76	Neodymium	Nd	60	144.27
Argon	A	18	39.944	Neon	Ne	10	20.183
Arsenic	As	33	74.91	Nickel	Ni	28	58.69
Barium	Bo	56	137.36	Nitrogen	N	7	14.008
Beryllium	Be	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	\bigcirc	8	16.0000
Boron	B	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	30.98
Cadmium	Cd	48	112.41	Platinum	P4	78	195.23
Calcium	Co	20	40.08	Potassium	K	19	39.096
Corbon	C	6	12.010	Praseodymium	Pr	59	140.92
Cerium	Co	58	140.13	Prolactinium	Pa	91	231
Cesium	Cs	55	132.91	Rodium	Ra	88	226.05
Chlorine	Cl	17	35.457	Radon	Rn	86	222
Chromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Co	27	58.94	Rhodium	Rh	45	102.91
Columbium	Cb	41	92.91	Rubidium	Rb	37	85.48
Copper	Cu	29	63.57	Ruthenium	Ru	44	101.7
Dysprosium	Dy	66	162.46	Samarium	Sm	62	150.43
Erbium	Er	68	167.2	Scandium	Sc	21	45.10
Europium	Eu	63	152.0	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.06
Gadolinium	Gd	64	156.9	Silver	Ag	47	107.880
Gallium	Ga	31	69.72	Sodium	Na	11	22.997
Germanium	Ge	32	72.60	Strontium	Sr	38	87.63
Gold	Au	79	197.2	Sulfur	S	16	32.06
Hafnium	Hf	72	178.6	Tantalum	Ta	73	180.88
Helium	He	2	4.003	Tellurium	Te	52	127.61
Holmium	Ho	67	164.94	Terbium	Tb	65	159.2
Hydrogen	H	1	1.0080	Thallium	TI	81	204.39
Indium	In	49	114.76	Thorium	Th	90	232.12
lodine	1	53	126.92	Thulium	Tm	69	169.4
Iridium	Ir	77	193.1	Tin	Sn	50	118.70
Iron	Fo	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83.7	Tungsten	W	74	183.92
Lanthanum	Lo	57	138.92	Uranium	U	92	238.07
Lead	Pb	82	207.21	Vonodium	V	23	50.95
Lithium	1 l	3	6.940	Xenon	Xe	54	131.3
Lutecium	tu	71	174.99	Ytterbium	Yb	70	173.04
Magnesium	Mg	12	24.32	Ytrium	Y	39	88.92
Manganese	Mn	25	54.93	Zinc	Zn	30	65.38
Mercury	Hg	80	200.61	Zirconium	Zr	40	91.22

From the Journal of the American Chemical Society, 1943.

Exomple: Assume dry bulb reoding thermameter expased directly ta atmaspherel $1820^{\circ} \mathrm{C}$ and wet bulb reading $1 s 17^{\circ} \mathrm{C}$, or o difference of $3^{\circ} \mathrm{C}$. The relative humidity at $20^{\circ} \mathrm{C}$ ts then 74%.

Atmospheric pressure chart

altitude in feet obove sea-leve:

Weather data

Compiled fram Climate and Man, Yearbook of Agriculure, U. S. Dept. of Agriculture, U. S.
Govt. Printing Offico, Woshington, D. C, 1941.

Temperałure exfremes

United States

Lowest temperature Highest temperature	$\begin{aligned} & -66^{\circ} \mathrm{F} \\ & 134^{\circ} \mathrm{F} \end{aligned}$	Rivarside Range Station, Wyoming IFob. 9, 19331 Greenland Ranch, Death Valley, Colifornia Uuly 10, 1933
Alaske		
Lawest temperature Highest temperature	$\begin{array}{r} -78^{\circ} \mathrm{F} \\ 100^{\circ} \mathrm{F} \end{array}$	Fort Yukan Uan. 14, 1934 fort Yukan
Werld		
Lowest temperature Highest temperature Lowest mean temperature lannual) Highest mean temperature lannuall	$\begin{array}{r} -90^{\circ} \mathrm{F} \\ 136^{\circ} \mathrm{F} \\ -14^{\circ} \mathrm{F} \\ 86^{\circ} \mathrm{F} \end{array}$	Verkhayansk, Siberio Ifeb. 5 and 7, 1897 Azizio, Libya, Narth Africa ISopt. 13, 1922 Framhelm, Antarctica Massowo, Eritreo, Africa

Precipitation extremes

United States
Wettest state
Dryest state
Maximum recorded
Minlmum recorded

World

Maximum recorded

Minimum recorded

Lavisiana-average annual rainfall 55.11 inches
Novada-avarage annual rainfall 8.81 inches
Now Smyrno, Flo., Oct. 10, 1924-23.22 inches in 24 hours
Bagdod, Calif., 1909-1913-3.93 inches in 5 years
Greenlond Ranch, Calif.- 1.35 inches annual average
Cherropunf1, India, Aug. 1841-241 Inches In 1 manth
(Average annual roinfall of Cherrapunfl is 426 inches
Bagut, Luzon, Philippines, July 14-15, 1911-46 Inches in 24 hours
Wadi Halfa, Anglo-Egyptian Sudan and Awan, Egypt are in the "rainless" areo; average annual rainfall is too small to be measured

World temperatures

Ierrifory	$\underset{\substack{\text { of }}}{\substack{\text { maximum }}}$	$\underset{{ }_{F}}{\operatorname{minimum}}$	terifiory	$\mid \underset{o f}{\text { maxilmum }}$	$\underset{\circ}{\text { minnman }}$
NORTH AMERICA	100		ASIA continued		
Conada	100	-78	Indio	120	-19
Conal Zone	97	63	Jraq	123	19
Greenland	86	-46	Molay Siates	97	-66
Mexico	118	11	Philippine Islands	101	58
U. S. A.	134	-66	Slom	106	52
West Indies	102	45	Tibet	85	-20
			Turkey	111	-22
SOUTH AMERICA			U. S. S. R.	109	-90
Argentina	115	-27		102	-
Bolivio	82	25	AFRICA		
Brazil	108	21	Algeria	133	1
Chile	99	19	Anglo-Egyptian Sudan	126	28
Venezuala	102	45	Angolo	91	33
			Belgian Congo	97	34
EUROPE			Egypt	124	31
British Isies	100	4	Ethiopia	111	32
France	107	-14	French Equatorial Africa	118	46
Germany	100	-16	French West Africa	122	41
Icelond	71	-6	Italian Somalliand	93	61
Iraly	114	4	libyo	136	35
Norway.	95	-26	Moroceo	119	5
Spain	124	10	Rhodesio	103	25
Sweden	92	-49	Tunisia	122	28
Turkey	100	17	Union of South Africa	111	21
U. S. S. ${ }^{\text {a }}$	110	-61	AUSTRALASIA		
			Australia	127	19
Arabla	114	53	Hawali	91	51
China	111	-10	New Zealand	94	23
East Indies	101	60	Samoon Islands	96	61
French Indo-China	113	33	Solomon tsionds	97	70

iemitery	highed average				loweet everage				$\begin{aligned} & \text { yearly } \\ & \text { average } \\ & \text { inches } \end{aligned}$
	Jan inches	April Inches	duly Inches	Oct linches	Dan Inches	April inches	July Inches	Od inches	
NORTH AMERICA									
Alaska	13.71	10.79	8.51	22.94	. 15	. 13	. 93	. 37	43.40
Canada	8.40	4.97	4.07	6.18	. 48	. 31	1.04	. 73	26.85
Conal Zone	3.74	4.30	16.00	15.13	.91	2.72	7.28	10.31	97.54
Greenland	3.46	2.44	3.27	6.28	.35	. 47	. 91	. 94	24.70
Maxico	1.53	1.53	13.44	5.80	04	. 00	.43	. 35	29.82
U. S. A.									29.00
West Indios	4.45	6.65	5.80	6.89	.92	1.18	1.53	5.44	49.77
SOUTH AMERICA Argentina	6.50	4.72	2.16	3.35	. 16	28	. 04	. 20	16.05
Bolivia	6.34	1.77	. 16	1.42	3.86	1.46	. 16	1.30	24.18
Brazil	13.26	12.13	10.47	6.54	2.05	2.63	. 01	. 05	55.42
Chile	11.78	11.16	16.63	8.88	. 00	. 00	. 03	. 00	46.13
Venezuela	2.75	6.90	6.33	10.44	. 02	.61	1.87	3.46	40.01
EUROPE									
British lslos	5.49	3.67	3.78	5.57	1.86	1.54	2.38	2.63	36.16
France	3.27	2.64	2.95	4.02	1.46	1.65	. 55	2.32	27.48
Germany	1.88	2.79	5.02	2.97	1.16	1.34	2.92	1.82	26.64
Iceland	5.47	3.70	3.07	5.95	5.47	3.70	3.07	5.59	52.91
Italy	4.02	4.41	2.40	5.32	1.44	1.63	. 08	2.10	29.74
Norway	8.54	4.13	5.79	8.94	1.06	1.34	1.73	2.48	40.51
Spain	2.83	3.70	2.05	3.58	1.34	1.54	. 04	1.77	22.74
Swoden	1.52	1.07	2.67	2.20	. 98	. 78	1.80	1.60	18.12
Turkey	3.43	1.65	1.06	2.52	3.43	1.65	1.06	2.52	28.86
U. S. S. R.	1.46	1.61	3.50	2.07	. 49	. 63	20	. 47	18.25
ASIA									
Arabia	1.16	. 40	. 03	. 09	.32	.18	. 02	.09	3.05
China	1.97	5.80	13.83	6.92	. 15	. 61	5.78	. 67	50.63
Easi Indies	18.46	10.67	6.54	10.00	7.48	2.60	.20	. 79	78.02
French Indo-China	79	4.06	12.08	10.61	. 52	2.07	9.24	3.67	65.64
Indio	3.29	33.07	99.52	13.83	. 09	. 06	.47	.00	75.18
Iraq	1.37	. 93	. 0	. 08	1.17	. 48	.00	05	6.75
Japan	10.79	8.87	9.94	7.48	2.06	2.83	5.02	4.59	70.18
Malay Stotes	9.88	7.64	6.77	8.07	9.88	7.64	6.77	8.07	95.06
Philipplas tslands	2.23	1.44	17.28	10.72	82	1.28	14.98	6.71	83.31
Siom	. 33	1.65	6.24	8.32	. 33	1.65	6.24	8.32	52.36
Turkey	4.13	2.75	1.73	3.34	2.05	1.73	. 21	. 93	25.08
U. S. S. R.	1.79	2.05	3.61	4.91	. 08	.16	.10	. 06	11.85
AFrica									
Algeria	4.02	2.06	- $\quad 35$	3.41	. 52	. 11	.00	. 05	9.73
Anglo-Egyptlon Sudan	.08	4.17	- 7.87	4.29	. 00	00	. 00	. 00	18.27
Angole	8.71	5.85	. 00	3.80	. 09	. 63	. 00	. 09	23.46
Belgion Congo	9.01	6.51	.13	2.77	3.69	1.81	. 00	1.88	39.38
Egypt	2.09	. 16	00	. 28	. 00	. 00	.00	. 00	3.10
Ethiopla	. 59	3.42	10.98	3.39	. 28	3.11	8.23	79	49.17
Franch Equatorial Africa	9.84	13.42	6.33	13.58	. 00	. 34	. 18	. 86	57.55
French West Africe	.10	1.61	8.02	1.87	. 00	.00 360	. 18	.00 242	19.51
Italion Somalifand	. 00	3.66	1.67	2.42	. 00	3.60	1.67	2.42	17.28
libyo	3.24	. 48	. 02	1.53	2.74	. 18	. 00	. 67	13.17 1587
Moroceo	3.48	2.78	. 07	2.47	1.31	. 36	. 00	. 23	15.87
Rhodesio	8.40	. 95	. 04	1.20	5.81	. 65	. 00	. 88	29.65
Tunisio	2.36	1.30	. 08	1.54	2.36	1.30	. 08	1.54	15.80 26.07
Union of South Africa	6.19	3.79	3.83	5.79	. 06	23	27	. 12	26.07
AUSTRALASIA									
Australio	15.64	5.33	6.57 9.89	2.84 10.97	. 3.54	.85 2.06	1.04	. 1.90	82.31
Howall	11.77	13.06	9.89	10.97	3.54 2.67	2.06 278	1.04 2.99	1.97 3.13	82.43 43.20
Now Zealand	3.34 18.90	3.80 11.26	5.55 2.60	4.19 7.05	2.67	11.78	2.99 2.60	3.13 7.05	118.24
Samoan islands Solomon litands	18.90	11.26 8.24	2.60 6.26	7.01	13.94	11.26 8.24	6.26	7.91	115.37

Principal power supplies in foreign countries

merifiory	de volis	ace velts	frequen\%
NORTH AMERICA			
Alosho		110,220	60
British Honduras	110,220		
Conado	110	*110, 150, 115, 220	60, 25
Costa Rica	110	*110	
Cuba	110, 220	* 110,220	60
Dominicon Republic	110	-110, 220	60
Guatemala	220, 125	-110,220	60, 50
Haiti		110, 220	60, 50
Honduras	110, 220	* 110,220	
Mexico	110, 220	-110, 125, 115, 220, 230	60, 50
Newfoundiand		110,115	50, 60
Nicarogua	110	* 110	
Panama Republic)		110, 220	60, 50
Panama Conal Zonel		110	25
Puerto flico	110,220	- 110	60
Salvador	110,220	* 110	60
Virgin lalonds	110,200		
WEST MNDIES			
Bahamas is.		115	60
Barbados		110	50
Bermuda		110	60
Curacao		127	50
Jamalca		110	40, 60
Nortinique	110	*110	50
Trinidad		110,220	60
SOUTH AMERICA			
Argentina	- 220	220, 225	$50,60,43$
Bolivia	110	* 110,220 , 120	$50,60$
Brozil	110, 120, 220	110, 115, 120, 125, 20, 220	50, 60
Chile	220, 110	+220	50, 60
Colombla		*110, 220, 150	$\begin{aligned} & 60,50 \\ & 60,50 \end{aligned}$
Ecuodor	- 220	220.	50
Peru	220, 110	+220, 110	60,50
Uruguay	220	+220	
Venezuela	110,200	*110	50,60
EUROPE			
Albania	220 , 110,150	${ }^{*} 220,125,150$	50
Austrio	220, 110, 150	*220, 120, 127, 110	50
Azores	220	220	50
Beloium	$220,110,120$ 200,120	-220, 127, 110, 115, 135	50,40
Bulgario	220,120 +220	-220, 120, 150	50
Cyprus [Br]	+220 $220,120,150,110$	110 $+220,110,115,127$	$\begin{aligned} & 50 \\ & 50,42 \end{aligned}$
Czechosiovalio Denmark	220,1110 $220,150,110$	-220, 120, 127	50
Estonia	${ }^{-220,110}$	220, 127	50
Finlond	* 120, 220, 110	220, 120, 115, 110	50
France	110, 220, 120, 125	*110, 115, 120, 125, 220, 220	50, 25
Germony	$220,110,120,250$	*220, 127, 120, 110	50, 25
Gibraltor	440, 220	-110	76
Greece	- $2220,110,150$	(127, 110, 220	50
Hungary	220, 110, 120	* $100,105,110,220,120$	42, 50
Iceland		220	
Irish Free State	+220	-220, 200	50
Ifoly	110, 125, 150, 220, 250, 160	${ }^{*} 150,125,120,110,115,260,220$,	42, 50, 45
Lotvia	220, 110	-220, 120	50
Lithuanla	220, 110	+220	50
Malta		105	100
Monaco		110	42
Netherlands	220	220, 120, 127	50
Norway	220	*220, 230, 130, 127, 110, 120, 150	50
Poland	220, 110	-220, 120, 110	50
Portugal	220, 150, 125	+220, 110, 125	50,42
Rumonio	-220, 110, 105, 120	120, 220, 110, 115, 105	50,42
Russia	220, 110, 120, 115, 250	+120, 110, 220	50
Spain	- $110,120,115,105$	* 120, 125, 150, 110, 115, 220, 130	50
Swedon	220, 110, 120, 115, 250	*220, 127, 110, 125	$50,20,25$
Switzerlond	220, 120, 110, 150	+120, 220, 145, 150, 110, 120	50,40
Turkey	110, 220	-220, 110	50

Principal power supplies in foreign countries
continued

ferriliory	de volls	ae volis	frequency
EUROPE continuad United Kingdorn Jugoslavila	$\begin{aligned} & 230,220,240 \\ & 110,120 \end{aligned}$	-230, 240, others *120, 220, 150	$\begin{aligned} & 50,25,40 \\ & 50,42 \end{aligned}$
ASIA			
Arabia		230 ,	50
British Moloya			
Fed. Malay States		230	50, 60, 40
Non-Fed. Maloy States	230		
Strails Setflements	- 230	230	50
North Borneo		110	60
Ceylon	220	230	50, 60
China	$220,110$	* 110, 200, 220	$50,60,25$
Howall		110, 220	60, 25
India	220, 110, 225, 230, 250	230, 220, 110, others	50, 25
Fronch Indo-Ching	110, 120, 220, 240	*120, 220, 110, 115, 240	
Iran (Persia)	220, 110	220	50
Iraq	-220, 200	220, 230	
Japon	100	* 100,110	50,60
Manchurla		110	60,50, 25
Palestine		220	50
Phitlippine lslands		220 , 115	60
Syrio Slam		110, 115, 220	50 50
Turkey	220, 110	-220, 110	50
AFRICA			
Angola (Port.)		110	50
Algerio	220	* $115,110,127$	50
Belglon Congo		220	60
British West Africa	-220	230	50
British East Africa	- 220	-240, 230, 110, 100	50, 60, 100
Conary lslands	110	*127, 110	50
Egypt	220	200, 110, 220	50, 40
Italion Africo			
Cyrenalca	150	*110, 150	50
Eritrea		127	50
Libya (Tripolil		125, 110, 270	50, 42, 45
Somallland	120	- 230	
Morocco (Fr.)	110	115, 110	50
Morocco (Spanish)	200	* $127,110,115$	50
Madagascar (FrJ Senegal If.J	230	120	50 50
Tunisio	110	* $110,115,220$	50
Union of South Africo	220, 230, 240, 110	-220, 230, 240	60
OCEANIA			
Australia			
New South Woles	-240	-240	50
Queensland	220, 240	- 240	50
South Ausiralia	200, 230, 220	-200, 230, 240	60
West Australia	-220, 110, 250	250	40
Tosmonia	230	- 240	50
New Zealand	230 $240,110,250$	+230	60
Flif islands	240, 110, 250	120	
Somoo		110	60

Note: Where both ac and dc are avaliable, an asterisk mindicates the type of supoly and voltage predominating. Where approximately equal quantities of ac and dc are available, an asterisk precedes each of the principol voltages., Voltages and frequencies are listed in order of proference.
The electrical authorities of Great Britioin have adopied"a plan of unifying electrical distribotion systems. The standord potential for both ac and de supplies will be 230 volts. Systems ueving other voltages will be changed over. The standard ae frequency will be 50 cyelos

Caution: The listings in these tobles represent types of electrical supplies most generally used in perticular countries. For power supply charactoristics of particular citios of forsign countries, refer to the country section of World Electricat Markets, a pudlication of the U. S. Department of Commerce, Bureav of Foraign and Domestic Commarce, Washingion, D. C. In cases where definfe information relative to specific locations is nocessary, the Electrical Division of the above-named Bureau should be consulted.

Radio frequency classifications

frequency in kilocycies	designations*	abbrevialions	wavelength In mefors \dagger	wavelength in feet \dagger
10- 30	Very Low	VLF	30,000 -10,000	98,424 $-32,808$
30- 300	Low	LF	10,000-1,000	32,808 - 3,281
300- 3,000	Medium	MF	1,000 - 100	3,281-328
3,000- 30,000	High	HF	$100-10$	328 - 32.8
30,000-300,000	Vory High	VHF	10-1	32.8 - $\quad 3.28$
300,000-3,000,000	Ultra High	UHF	1- 0.1	3.28- 0.33
3,000,000-30,000,000	Super High	SHE	$0.1-0.01$	0.33-0.03

* Official FCC designation, March 2, 1943.
\dagger Based on the established practice of considering the velocity of propagation in air as 300,000 kilometers per second instead of the true velocity of propagation of 299,796 kilomelers per second.

Wavelength vs frequency charf

Conversion factors for wavelength vs frequency charf

for frequencies from	
$30-$	300 kilocycles
$300-$	3,000 kilocycles
$3,000-$	30,000 kilocycles
$30,000-$	300,000 kilocycles
$300,000-$	$3,000,000$ kilocycles
$3,000,000-30,000,000$ kilocycles	

multiply f by
0.1
1.0
10.0
100.0
$1,000.0$
$10,000.0$

multiply λ by
| multiply $\boldsymbol{\lambda}$ by

Wavelength vs frequency formulas

Wavelength in meters, $\boldsymbol{\lambda}_{\boldsymbol{m}}=\frac{300,000}{\text { frequency in kilocycles }}$
Wavelength in feet, $\lambda_{f t}=\frac{300,000 \times 3.28}{\text { frequency in kilocycles }}$

30

Frequency folerances

Cairo revision 1938

frequency bands (waveiengths)	column 1	column 2
A. From 10 to $550 \mathrm{kc}(30,000$ to 545 mefers):		
a. Fixed stations	0.1%	0.1\%
b. Land stations	0.1\%	0.1%
c. Mobile stations using frequencies other than those of bands indicoted under (d)	0.5\%	0.1%
d. Mobile stations using frequencies of the bands $110-160 \mathrm{kc}$ (2,727 to 1,875 mefers), $365-515 \mathrm{kc}(822$ to 583 mefers) \dagger e. Aircraff stations	$\begin{aligned} & 0.5 \% \%^{*} \\ & 0.5 \% \end{aligned}$	$\begin{aligned} & 0.3 \%{ }^{*} \\ & 0.3 \% \end{aligned}$
e. Broadcasting stations		20 cycles
B. From 550 to $1,500 \mathrm{kc}(545$ to 200 meters): a. Broodcasting stations	50 cycles	20 cycles

a. Broodcasting stations
b. Land stations
c. Mobile stations using the frequency of 1,364 kc 1220 meters)
0.1%
0.05%
C. From 1,500 to $6,000 \mathrm{kc}(200$ to 50 meters):
a. Fixed stations
b. Land stations
1
c. Mobile stations using frequencies other than those of bands indicated in (d):
1,560 to $4,000 \mathrm{kc}$ (192.3 to 75 meters) 4,000 to 6,000 kc 175 to 50 meters)
d. Mabile stations using frequencies within the bands: 4,115 to $4,165 \mathrm{kc}(72.90$ to 72.03 meters) $\}$ 5,500 to $5,550 \mathrm{kc}(54.55$ to 54.05 metersl $\}$
e. Aircraft stations
f. Broadcasting: between 1,500 and 1,600 kc (200 and 187.5 meters) between 1,600 and 6,000 kc (187.5 and 50 meters)
D. From 6,000 to $30,000 \mathrm{kc}$ (50 to 10 meters):
a. Fixed stations
b. Land stations
c. Mobile stations using frequencies other than those of bands indicated under (d)
d. Mobile stations using frequencies within the bands: 6,200 to $6,250 \mathrm{kc}$ (48,39 to 48 mefers) 8,230 to $8,330 \mathrm{kc}(36.45$ to 36.01 meters) 11,000 to $11,100 \mathrm{kc}$ [27.27 to 27.03 meters) 12,340 to $12,500 \mathrm{kc}(24.31$ to 24 meters) 16,460 to $16,660 \mathrm{kc}(18.23$ to 18.01 meters) 22,000 to $22,200 \mathrm{kc}$ (13.64 to 13.51 meters)
e. Aircraft stations
f. Broadcosting stations

Column 1: Transmlitters in service now and until January 1, 1944, after which date they will conform to the tolerances indicated in column 2.
Column 2: Now transmitters Installed beginning January 1, 1940.

* See preamble, under 3.
tit is recognized that a great number of spark tronsmitters and simple self-oscillator trans-
mitters exist in this service which are not oble to meet these requirements.

The frequency tolerance is the maximum permissible separation beween the actual frequency of an emission and the frequency which this emission should have (frequency notified or frequency chosen by the operator).
This separation results from the following errors:
a. Error made when the station was calibrated; this error presents a semipermanent character.
b. Error made during use of the station lerror variable from one transmission to another and resulting from actual operating conditions: ambient temperature, voltage of supply, antenna, skill of the operator, et ceteral. This error, which is usually small in other services, is particularly important in the case of mobile stations.
c. Error due to slow variations of the frequency of the transmitter during a transmission.

Note: In the case of transmissions without a carrier wave, the preceding definition applies to the frequency of the corrier wave before its suppression.
In the case of ship stations, the reference frequency is the frequency on which the transmission begins, and the figures appearing in the present table, marked by an asterisk, refer only to frequency separations observed during a ten-minute period of transmission.

In the frequency tolerance, modulation is not considered.
Note 1: The odministrations shall endeovor to profit by the progress of the art in order to reduce frequency tolerances progressively.
Note 2: It shall be understood that ship stations working in shared bands must observe the tolerances applicable to land stations and must conform to article 7, paragraph 21 (2) (a). [No. 186.]
Note 3: Radiotelephone stations with less than 25 watts power, employed by maritime beacons for communications with beacons isolated at sea, shall be comparable, with reference to frequency stability, to mobile stations indicated in C obove.
Note 4: Ships equipped with a transmitter, the power of which is under 100 watts, working in the band of $1560-4000 \mathrm{kc}$ (192.3-75 meters), shall not be subject to the stipulations of column I.

[^1]
Frequency-band widths occupied by the emissions Cairo rovision, 1938*

The frequency bands necessary for the various types of transmission, at the present state of technical development, are indicated below. This table is based solely upon amplitude modulafion. For frequency or phase modulation, the band widths necessary for the various transmissions are many times greater.

type of transmission	total width of the band in cycles for transmission with two sidebands
AO Continuous waves, no signaling	
A1 Telegraphy, pure, continuous wave Morse code 1 Baudol code Stop-start printer Scanning-type printer	Numerically equal to the telegraph speed in bauds for the fundamental frequency, 3 times this width for the 3d harmonic, ofc. [for a code of 8 time olements (dots or blanks) per letter and 48 time elements per word, the speod in bauds shall be equal to 0.8 times the speed in words per minute.] $300-1,000$, for speeds of 50 words per minute, according to the conditions of operation and the number of lines scanned lfor example, 7 or 121. IHarmonics are not considered in the above values.)
A2 Telegraphy modulated to musical frequency	Figures appearing under $\mathbf{A l}$, plus twice the highest modulation frequency.
A3 Commercial radiotelephony Broadcasting	```Twice the number indicated by the C.C.I.F. Opinions (about 6,000 to 8,000). 1 15,000 to 20,000 .```
A4 Facsimile	Approximately the ratio between the number of picture components ${ }^{2}$ to be transmitted and the number of seconds necessary for the transmission.
A5 Tolovision	Approximately the product of the number of picture components ${ }^{2}$ multiplied by the number of pictures transmittod per second.

It is recognized that the band width may be wider for multiple-channol radiotelephony and secref radiotelephony.
Two picture components, one black and one white, constitute a cycle: thus, the modulation
frequency equals one half the number of components transmithed per second.

- See Footnole under Frequency Tolerances, Treaty Serfos No. 948, Telecommunication:

Tolerances for the intensity of harmonics

of fixed, Iand, and broadcasting stations ${ }^{1}$
 Cairo revision, 1938*

frequency bands	telerences
Frequency under $3,000 \mathrm{kc}$ (wavelength above 100 meters)	The field intensity produced by any harmonic must be under $300 \mu \mathrm{v} / \mathrm{m}$ at 5 kilometers from the trans- mitting antenna.
Frequency above $3,000 \mathrm{kc}$ (wavelength under 100 meters)	The power of a harmonic in the antenna must be 40 db under the power of the fundamental, but in no case may it be above 200 milliwats. ${ }^{2}$

[^2]Classifieation of emissions Cairo revislon, 1938*

1. Emissions shall be classified below according to the purpose for which they are used, assuming their modulation or their possible keying to be only in amplitude.

a.' Continuous waves:

Type AO. Waves the successive oscillations of which are identical under fixed conditions. ${ }^{1}$
Type A1. Telegraphy on pure continuous waves. A continuous wave which is keyed according to a telegraph code.
Type A2. Modulated telegraphy. A carrier wave modulated at one or more audible frequencies, the audible frequency or frequencies or their combination with the carrier wave being keyed according to a telegraph code. Type A3. Telephony. Waves resulting from the modulation of a carrier wave by frequencies corresponding to the voice, to music, or to other sounds.
Type A4. Facsimile. Waves resulting from the modulation of a carrier wave by frequencies produced at the time of the scanning of a fixed image with a view to its reproduction in a permanent form.
Type A5. Television. Waves resulting from the modulation of a carrier wave by frequencies produced at the time of the scanning of fixed or moving objects. ${ }^{2}$

Note: The band widths to which these emissions correspond are indicated under Frequency-Band Widths Occupied by the Emissions.

b. Damped waves:

Type B. Waves composed of successive series of oscillations the amplitude of which, after attaining a maximum, decreases gradually, the wave trains being keyed according to a telegraph code.
2. In the above classification, the presence of a carrier wave is assumed in all cases. However, such carrier wave may or may not be transmitted.
This classification does not contemplate exclusion of the use, by the administrations concerned, under specified conditions, of types of waves not included in the foregoing definitions.
3. Waves shall be indicated first by their frequency in kilocycles per second (kc) or in megacycles per second (Mc). Following this indication, there shall be given, in parentheses, the approximate length in meters. In the present Regulations, the approximate value of the wavelength in meters is the quotient of the number 300,000 divided by the frequency expressed in kilocycles per second.

[^3]
Relation between decibels and power, voltage, and current ratios

The decibel, abbreviated db , is a unit used to express the ratio between two amounts of power, P_{1} and P_{2}, existing at two points.

By definition the number of $\mathrm{db}=10 \log _{10} \frac{P_{1}}{P_{2}}$
It is also used to express voltage and current ratios.
The number of $\mathrm{db}=20 \log _{10} \frac{V_{1}}{V_{2}}=20 \log _{10} \frac{I_{1}}{I_{2}}$
Strictly, it can be used to express voltage and current ratios only when the two points at which the voltages or currents in question have identical impedances.

pewer refle	voltage and current refto	decibels	power ratio	\qquad	declbeld
1.0233	1.0116	0.1	19.953	4.4688	13.0
1.0471	1.0233	0.2	25.119	5.0119	14.0
1.0715	1.0351	0.3	31.623	5.6234	15.0
1.0965	1.0471	0.4	39.811	6.3096	16.0
1.1220	1.0593	0.5	50.119	7.0795	17.0
1.1482	1.0715	0.6	63.096	7.9433	18.0
1.1749	1.0839	0.7	79.433	8.9125	19.0
1.2023	1.0965	0.8	100.00	10.0000	20.0
12303	1.1092	0.9	158.49	12.589	22.0
1.2589	1.1220	1.0	251.19	15.849	24.0
1.3183	1.1482	1.2	398.11	19.953	26.0
1.3804	1.1749	1.4	630.96	25.119	28.0
1.4454	1.2023	1.6	1000.0	31.623	30.0
1.5136	12303	1.8	1584.9	39.811	32.0
1.5849	1.2589	2.0	2511.9	50.119	34.0
1.6595	1.2882	22	3981.1	63.096	36.0
1.7378	1.3183	2.4	6309.6	79.433	38.0
1.8197	1.3490	2.6	104	100.000	40.0
1.9055	1.3804	2.8	104×1.5849	12589	42.0
1.9953	1.4125	3.0	104×2.5119	158.49	44.0
2.2387	1.4962	3.5	$10^{4} \times 3.9811$	199.53	46.0
2.5119	1.5849	4.0	$10^{4} \times 6.3096$	251.19	48.0
2.8184	1.6788	4.5	${ }^{10}{ }^{\circ}$	316.23	50.0
3.1623	1.7783	5.0	$10^{5} \times 1.5849$	398.11	52.0
3.5481	1.8836	5.5	$10^{5} \times 2.5119$	501.19	54.0
3.9811	1.9953	6.0	$10^{5} \times 3.9811$	630.96	56.0
5.0119	2.2387	7.0	$10^{6} \times 6.3096$	794.33	58.0
6.3096	2.5119	8.0	105	1,000.00	60.0
7.9433	2.8184	9.0	10^{7}		
10.0000	3.1623	10.0	10^{0}	10,000.0	80.0
12.589	3.5481 3.9811	11.0	100	31,623 100,000	900 1000
15.849	3.9811	120	10°	100,000	1000

To convert
Decibelh to nopors multiply by 0.1151
Nepers to decibels multiply by 8.686
Where the power ratio is loss than unity, It is usual to Invert the fraction
and express the answer as o decibel lasm

Engineering and material data

Copper-wire łable-standard annealed copper
American wire gauge (B \& S)*

$\begin{aligned} & \text { gauge } \\ & \text { no } \end{aligned}$	diam. chor, mils	cross section		ohmess per 1,000 fi of $20^{\circ} \mathrm{C}$ ($68^{\circ} \mathrm{F}$)	$\begin{aligned} & \mathrm{lb} \text { per } \\ & 1,000 \mathrm{ft} \end{aligned}$	${ }^{\text {f per lb }}$	$\left\lvert\, \begin{gathered} H_{\text {per ohm }}^{\text {of }} 20^{\circ} \mathrm{C} \\ \left(68^{\circ} \mathrm{F}\right) \end{gathered}\right.$	$\begin{aligned} & \text { ohms par bib } \\ & \text { of } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$
		eircular mils	square inches					
0000	460.0	211,600	0.1662	0.04901	640.5	1.561	20,400	0.00007652
000	409.6	167,800	0.1318	0.06180	507.9	1.968	16,180	0.0001217
∞	364.8	133,100	0.1045	0.07793	402.8	2.482	12,830	0.0001935
0	324.9	105,500	0.08289	0.09827	319.5	3.130	10,180	0.0003076
1	289.3	83,690	0.06573	0.1239	253.3	3.947	8,070	0.0004891
2	257.6	66,370	0.05213	0.1563	200.9	4.977	6,400	0.0007778
3	229.4	52,440	0.04134	0.1970	159.3	6.276	5,075	0.001237
4	204.3	41,740	0.03278	0.2485	126.4	7.914	4,025	0.001966
5	181.9	33,100	0.02600	0.3133	100.2	9.980	3,192	0.003127
6	162.0	26,250	0.02062	0.3951	79.46	12.58	2,531	0.004972
7	14.3	20,820	0.01635	0.4982	63.02	15.87	2,007	0.007905
8	128.5	16,510	0.01297	0.6282	49.98	20.01	1,592	0.01257
	114.4	13,090	0.01028	0.7921	39.63	25.23	1,262	0.01999
10	101.9	10,380	0.008155	0.9989	31.43	31.82	1,001	0.03178
11	90.74	8,234	0.006467	1.260	24.92	40.12	794	0.05053
12	80.81	6,530	0.005129	1.588	19.77	50.59	629.6	0.08035
13	71.96	5,178	0.004067	2.003	15.68	63.80	499.3	0.1278
14	64.08	4,107	0.003225	2.525	12.43	80.44	396.0	0.2032
15	57.07	3,257	0.002558	3.184	9.858	101.4	314.0	0.3230
16	50.82	2,583	0.002028	4.016	7.818	127.9	249.0	0.5136
17	45.26	2,048]	0.001609	5.064	6.200	161.3	197.5	0.8167
18	40.30	1,624	0.001276	6.385	4.917	203.4	156.6	1.299
19	35.89	1,288	0.001012	8.051	3.899	256.5	124.2	2.065
20	31.96	1,022	0.0008023	10.15	3.092	323.4	98.50	3.283
21	28.46	810.1	0.0006363	12.80	2.452	407.8	78.11	5.221
22	25.35	842.4	0.0005046	16.14	1.945	514.2	61.95	8.301
23	22.57	509.5	0.0004002	20.36	1.542	648.4	49.13	13.20
24	20.10	404.0	0.0003173	25.67	1.223	817.7	38.96	20.99
25	17.90	320.4	0.0002517	32.37	0.9699	1,031.0	30.90	33.37
26	15.94	254.1	0.0001996	40.81	0.7692	1,300	24.50	53.06
27	14.20	201.5	0.0001583	51.47	0.6100	1,639	19.43	84.37
28	12.64	159.8	0.0001255	64.90	0.4837	2,067	15.41	134.2
29	11.26	126.7	0.00009953	81.83	0.3836	2,607	12.22	213.3
30	10.03	100.5	0.00007894	103.2	0.3042	3,287	9.691	339.2
31	8.928	79.70	0.00006260	130.1	0.2413	4,145	7.685	539.3
32	7.950	63.21	0.00004964	164.1	0.1913	5,227	6.095	857.6
33	7.080	50.13	0.00003937	206.9	0.1517	6,591	4.833	1,364
34	6.305	39.75	0.00003122	260.9	0.1203	8,310	3.833	2,168
35	5.615	31.52	0.00002476	329.0	0.09542	10,480	3.040	3,448
36	5.000	25.00	0.00001964	414.8	0.07588	13,210	2.411	5,482
37	4.453	19.83	0.00001557	523.1	0.05001	16,660	1.912	8,717
38	3.965	15.72	0.00001235	659.6	0.04759	21,010	1.516	13,860
39	3.531	12.47	0.000009793	831.8	0.03774	26,500	1.202	22,040
40	3.145	9.888	0.00000776	1,049.0	0.02993	33,410	0.9534	35,040

Temperature coefficient of resistance:

The resistance of a conductor at temperature ${ }^{\circ} \mathrm{C}$ is given by
$R_{t}=R_{20}\left[1+0_{50}(t-201]\right.$
where R_{20} is the resistance of $20^{\circ} \mathrm{C}$ and on_{0} is the temperature coefficient of resistance of $20^{\circ} \mathrm{C}$.
For copper, $0_{0}=0.00393$. That is, the resistance of a copper conductor increases approxi-
matoly $4 / 10$ of 1 percent per degree contigrade rise in tomperature.

* For additional data on wire, seo poges 36, 37, 38, 60 , and 126 .

Copper-wire table-English and metric units \dagger

Anver wire AWG (BAS)	$\begin{aligned} & \text { Burn } \\ & \text { wire } \\ & \text { gouge } \\ & \text { BWG } \end{aligned}$	$\begin{aligned} & \text { Impertion } \\ & \text { or Britith } \\ & \text { std } \\ & \text { SWGG } \\ & \text { (NBS) } \end{aligned}$	English units			melric ovilis '		
			diam In inches	weight lbs per wire mile	restistance ohrms per wire mille $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \text { diam } \\ & \text { In } \\ & \text { mm } \end{aligned}$	$\begin{aligned} & \text { voloht } \\ & \text { kg per } \\ & \text { wire } \\ & \mathrm{km} \end{aligned}$	$\begin{aligned} & \text { resistance } \\ & \text { ohms per } \\ & \text { wire } \mathrm{km} \\ & 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$
	-	-	. 1968	618	1.415	5.0	174.0	. 879
	-	-	. 1940	600	1.458	4.928	169.1	. 905
		6	. 1920	589.2	1.485	4.875	168.2	. 922
-	-	-	. 1855	550	1.590	4.713	155.2	. 987
5			. 1819	528.9	1.654	4.620	149.1	1.028
5	7		. 1800	517.8	1.690	4.575	146.1	1.049
	-	-	. 1771	500	1.749	4.5	141.2	1.086
		7	. 1762	495.1	1.769	4.447	140.0	1.098
-	-	-	. 1679	450	1.945	4.260	127.1	1.208
	8		. 1650	435.1	2.011	4.190	123.0	1.249
6			. 1620	419.5	2086	4.115	118.3	1.296
		8	. 1600	409.2	2.139	4.062	115.3	1.328
	-	-	. 1582	400	2.187	4.018	113.0	1.358
-	-	-	. 1575	$\overline{395} .3$	2.213	4.0	111.7	1.373
	9		. 1480	350.1	2.500	3.760	98.85	1.552
7			. 1443	332.7	2.630	3.665	93.78	1.634
		9	. 1440	331.4	2641	3.658	93.40	1.641
	-	-	. 1378	302.5	2.892	3.5	85.30	1.795
-	-	-	. 1370	300	2916	3.480	84.55	1.812
	10		. 1341	. 287.0	3.050	3.405	80.95	1.893
8			. 1285	263.8	3.317	3.264	74.37	2.061
		10	. 1280	261.9	3.342	3.252	73.75	2.077
-	-	-	. 1251	250	3.500	3.180	70.50	2.173
	-	-	. 1181	27.8	3.930	3.0	62.85	2440
9			. 1144	209.2	4.182	2.906	58.98	2.599
-	-	-	. 1120	200	4.374	2845	56.45	2.718
	12		. 1090	189.9	4.609	2.768	53.50	2862
		12	. 1040	172.9	5.063	2.640	48.70	3.144
* 10			. 1019	165.9	5.274	2.588	46.77	3.277
-	-	-	. 0984	154.5	5.670	2.5	43.55	3.520
-	-	-	. 0970	150	5.832	2.460	42.30	3.620
	\$14		. 0830	110.1	7.949	2108	31.03	4.930
* 12			. 0808	104.4	8.388	2.053	29.42	5.211
		14	. 0801	102.3	8.556	2037	28.82	5.315
-	-	-	. 0788	99.10	8.830	2.0	27.93	5.480
*13			. 0720	82.74	10.58	1.828	23.33	6.571
+14			. 0641	65.63	13.33	1.628	18.50	8.285
			. 0508	41.28	21.20	1.291	11.63	13.17
*17			. 0453	32.74	26.74	1.150	9.23	16.61
*18			. 0403	25.98	33.71	1.024	7.32	20.95
*19			. 0359	20.58	42.51	. 912	5.802	26.42
-22			. 0253	10.27	85.24	. 644	2.894	52.96
- 24			. 0201	8.46	135.5	. 511	1.820	84.21
- 26			. 0159	4.06	215.5	. 405	1.145	133.9
- 27			. 0142	3.22	271.7	. 361	. 908	168.9
- 28			. 0126	2.56	342.7	. 321	. 720	212.9

. When used in cable, weight and resistance of wire should be increased about 3% to allow
for increase due to twist.

+ For additional dato on wire, see pages 35, 37, 38, 60, and 126.

Solid copperweld wire-mechanical and electrical properties

size	diem	cross section area		welght			$\begin{array}{r} \text { resis } \\ \text { ohms/i00 } \end{array}$	ne: fin $68^{\circ} \mathrm{F}$	breaking load, pounds		$\begin{aligned} & \text { attenuction-db } \\ & \text { per mille* } \end{aligned}$				characteristie impedance"	
		circula mils	square Inch	$\begin{aligned} & \text { Per } \\ & 1000 \\ & \text { foet } \\ & \hline \end{aligned}$	per mille	$\begin{aligned} & \text { peur } \\ & \text { peund } \end{aligned}$	40\%	30\%	$\begin{aligned} & 40 \% \\ & \text { conduct } \end{aligned}$	$\begin{gathered} 30 \% \\ \text { conduct } \end{gathered}$				cond	40\%	30%
4	. 2043	41,740	. 03278	115.8	611.6	8.63	0.6337	0.8447	3,541	3,934	-	-	-	-	-	
5	. 1819	33,100	. 02600	91.86	485.0	10.89	0.7990	1.065	2,938	3,250	-	-	-	-	-	
6	.1620	26,250	. 02062	72.85	384.6	13.73	1.008	1.343	2,433	2,680	. 078	. 086	. 103	. 109	650	686
7	.1443	20,820	. 01635	57.77	305.0	17.31	1.270	1.694	2,011	2,207	. 093	. 100	. 122	. 127	685	732
8	. 1285	16,510	. 01297	45.81	241.9	21.83	1,602	2.136	1,660	1,815	. 111	. 118	. 144	. 149	727	787
9	. 1144	13,090	. 01028	36.33	191.8	27.52	2.020	2.693	1,368	1,491	. 132	. 138	. 169	. 174	776	852
10	. 1019	10,380	. 008155	28.81	152.1	34.70	2.547	3.396	1,130	1,231	. 156	. 161	. 196	. 200	834	920
11	. 0907	8,234	. 006467	22.85	120.6	43.76	3.212	4.28	896	975	. 183	. 188	. 228	. 233	910	1,013
12	. 0808	6,530	. 005129	18.12	95.68	55.19	4.05	5.40	711	770	216	.220	. 262	. 266	1,000	1,120
13	. 0720	5,178	. 004067	14.37	75.88	69.59	5.11	6.81	490	530					,100	1,120
14	.0641	4,107	. 003225	11.40	60.17	87.75	6.44	8.59	400	440						
15	. 0571	3,257	. 002558	9.038	47.72	110.6	8.12	10.83	300	330						
16	. 0508	2,583	. 002028	7.167	37.84	139.5	10.24	13.65	250	270						
17	. 0453	2,048	. 001609	5.684	30.01	175.9.	- 12.91	17.22	185	205						
18	. 0403	1,624	. 001276	4.507	23.80	221.9	16.28	21.71	153	170						
19	. 0359	1,288	. 001012	3.575	18.87	279.8	20.53	27.37	122	135						
20	. 0320	1,022	. 0008023	2.835	14.97	352.8	25.89	34.52	100	110						
21	. 0285	810.1	. 0006363	2248	11.87	444.8	32.65	43.52	73.2	81.1						
22	. 0253	642.5	. 0005046	1.783	9.413	560.9	41.17	54.88	58.0	64.3						
23	. 0222	509.5	. 0004002	1.414	7.465	707.3	51.92	69.21	48.0	51.0						
24	. 0201	404.0	. 00003173	1.121	5.920	891.9	65.46	87.27	36.5	40.4						
25	. 0179	320.4	. 00002517	0.889	4.695	1,125	82.55	110.0	28.9	32.1						
26	. 0159	254.1	. 0001996	0.705	3.723	1,418	104.1	138.8	23.0	25.4						
27	. 0142	201.5	.0001583	0.559	2.953	1,788	131.3	175.0	18.2	20.1						
28	. 0126	159.8	. 0001255	0.443	2.342	2,255	165.5	220.6	14.4	15.9						
29	. 0113	126.7	. 0000995	0.352	1.857	2,843	208.7	278.2	11.4	12.6						
30	. 0100	100.5	. 0000769	0.279	1.473	3,586	263.2	350.8	9.08	10.0						
31	. 0089	79.70	. 0000626	0.221	1.168	4,521	331.9	442.4	7.20	7.95						
32	. 0080	63.21	. 0000496	0.175	0.926	5,701	418.5	557.8	5.71	6.30						
33	. 0071	50.13	. 00000394	0.139	0.734	7,189	527.7	703.4	4.53	5.00						
34	. 0063	39.75	. 00000312	0.110	0.582	9,065	665.4	1887.0	3.59	3.97						
35	. 0056	31.52	. 0000248	0.087	0.462	11,430	839.0	1,119	2.85	3.14						
36	. 0050	25.00	. 00000196	0.069	0.366	14,410	1,058	1,410	2.26	2.49						
37	. 0045	19.83	. 0000156	0.055	0.290	18,180	1,334	1,778	1.79	1.98						
38	. 0040	15.72	. 0000123	0.044	0.230	22,920	1,682	2,243	1.42	1.57						
39	. 0035	12.47	. 00000979	0.035	0.183	28,900	2,121	2,828	1.13	1.24						
40	. 0031	9.89	. 00000777	0.027	0.145	36,440	2,675	3,566	0.893	0.986						

due to a shortage of facilities for making these smaller sizes.

- DP Insulators, 12 -Inch Wire Spocing, 1000 eycles
for additional information on wire, see poges $35,36,38,60$, and 126.

Standard stranded copper conductors

American wire gauge

circular mits	$\begin{aligned} & \text { size } \\ & \text { AWG } \end{aligned}$	number of wires	Individual wire diam Inches	cable diom inches	area square inches	woight Ibs per 1000 ft	weight Ibs per mile	*maximum resistance ohms / 1000 f of $20^{\circ} \mathrm{C}$
211,600	4/0	19	. 1055	. 528	0.1662	653.3	3,450	0.05093
167,800	3/0	19	. 0940	. 470	0.1318	518.1	2,736	0.06422
133,100	2/0	19	. 0837	. 419	0.1045	410.9	2,170	0.08097
105,500	1/0	19	. 0745	. 373	0.08286	325.7	1.720	0.1022
83,690	1	19	. 0664	. 332	0.06573	258.4	1,364	0.1288
66,370	2	7	. 0974	. 292	0.05213	204.9	1,082	0.1624
52,640	3	7	. 0867	. 260	0.04134	162.5	858.0	0.2048
41,740	4	7	. 0772	. 232	0.03278	128.9	680.5	0.2582
33,100	5	7	. 0688	. 206	0.02600	102.2	539.6	0.3256
26,250	6	7	. 0612	. 184	0.02362	81.05	427.9	0.4105
20,820	7	7	. 0545	. 164	0.01635	64.28	339.4	0.5176
16,510	8	7	. 0486	. 146	0.01297	50.98	269.1	0.6528
13,090	9	7	. 0432	. 130	0.01028	40.42	213.4	0.8233
10,380	10	7	. 0385	. 116	0.008152	32.05	169.2	1.038
6,530	12	7	. 0305	. 0915	0.005129	20.16	106.5	1.650
4,107	14	7	. 0242	. 0726	0.003226	12.68	66.95	2.624
2,583	16	7	. 0192	. 0576	0.002029	7.975	42.11	4.172
1,624	18	7	. 0152	. 0456	0.001275	5.014	26.47	6.636
1,022	20	7	. 0121	. 0363	0.008027	3.155	18.66	10.54

* The resistance values in this table are trade maxima for saft ar annealed capper wire and are higher than the average values far cammercial cable. The fallawing values for the canductivity and resistivity of capper of 20° centigrade were used:
Canductivify in terms af International Annealed Capper Standard $\quad 98.16 \%$
Resistivity in pounds per mile-ahm
The resistance of hard drawn capper is slightly greater than the values given, being about 2% to 3% greater for sizes from 4/0 to 20 AWG.

Machine screw head styles

Method of length measurement

Standard machine screw dafa including hole sizes

All dimensions in Inches
Clearance drill sizes ore practical values for use of the engineer or technician doing his own shop work.
t Tap drill sizes are for use in hand tapping matertal such as brass or soff stoel. For coppor
aluminum, or Norway iron, the drill should be a slze or two lorger diameter than shown. For cost íron and bakelite, or for very thin material, the top drill should be a size or two smaller diameter than shown.

meforlal	dielectric consfant			electrical properties* power facter			diolectic strength kv/mm \dagger	resistivity ohms- cm $25^{\circ} \mathrm{C}$	physical propertios	
	$60 \sim$	$10^{6} \sim$	109~	60~	10¢	$10^{8} \sim$			$\begin{aligned} & \text { expansion } \\ & \text { per }{ }^{\circ} \mathrm{C} \end{aligned}$	point
Aniline Formaldahyde Resin	3.6	3.5	3.4	. 003	. 007	. 004	16-25	>1012	5.4×10^{-6}	$260^{\circ} \mathrm{F}$
Cosein	3.6	6.2	3.4	. 0	. 052	. 04	16-28	Poor	5.4×10^{-6}	$200^{\circ} \mathrm{F}$
Cellulose Acetate (plostic)	4.6	3.9	3.4	. 007	. 039	. 039	10-14	10^{10}	$6-15 \times 10^{-8}$	100-190 ${ }^{\circ} \mathrm{F}$
Cellulose Acetobutyrate	3.6	3.2	3.0	. 004	. 017	. 019	10-16	10^{10}	$11-17 \times 10^{-6}$	110-1800 F
Ebonlte	3.0	2.8	2.8	. 008	. 006	. 004	18	2×10^{31}	7×10^{-6}	$140^{\circ} \mathrm{F}$
Ethyl Cellulose 707	4.0	3.4	3.2	. 005	. 028	. 024	16-28	$1{ }^{104}$	3.4×10^{-4}	$120^{\circ} \mathrm{F}$
Gloss, Coming 707	4.0	4.0	4.0	. 0006	. 0008	. 0012		1.5×10^{11} of $250^{\circ} \mathrm{C}$	31×10^{-7}	$1400^{\circ} \mathrm{F}$
Gloss, Corning 774	5.6	5.2	5.0	. 0136	. 0048	. 008		$1.4 \times 10^{\circ}$ of $250^{\circ} \mathrm{C}$	33×10^{-7}	$1500^{\circ} \mathrm{F}$
Glass, Corning 790	3.9 5	3.9	3.9	. 0006	. 0006	. 0008		$5.2 \times 10^{\circ}$ af $250^{\circ} \mathrm{C}$	8×10^{-7}	$2600^{\circ} \mathrm{F}$
Glass, Corning 7052 Halowax	5.2 3.8	5.1 3.7	5.1 3.4	.008 .002	. 0024	.0036		$1 \times 10^{\circ}$ af $250^{\circ} \mathrm{C}$	47×10^{-7}	$1300^{\circ} \mathrm{F}$
Halowax	3.8	3.7 6.0	3.4	. 002	.0014 .0018	. 105		$10^{12} 10^{46}$		$190^{\circ} \mathrm{F}$
Molomine Formaldehyde Resin	7.5	4.5	4.5	. 08	. 08	. 03	18		3.5×10^{-6}	$260^{\circ} \mathrm{F}$
Methyl Mothocrylato-a luclie HM119	3.3	2.6	2.6	. 068	. 015	. 007	16	10^{15}	$11-14 \times 10^{-6}$	$160^{\circ} \mathrm{F}$
Mica b Plexiglos	3.5	2.6	2.6	. 084	. 015	. 007	16	1045	8×10^{-6}	$160^{\circ} \mathrm{F}$
Mico Mycalex 364	5.45	5.4	5.4	. 005	. 0003	. 0003		5×1014		
Mycolax 364 Nylon	7.1 3.6	7.0 3.6	7.0 3.6	. 0064	.0021 .020	. 0022	14		$8.9 .9 \times 10^{-0}$	$6600^{\circ} \mathrm{F}$
Porallin Oil	2.2	2.2	2.2	. 0001	.0001	. 00004	15	$10 \times$	5.7×10^{-6}	${ }_{\text {liquid }} 160^{\circ} \mathrm{F}$
Patroleum Wax IParafin Wax	2.25	2.25	2.25	. 0002	. 0002	.0002	8-12	1018	7.1×10^{-1}	M.P. $132^{\circ} \mathrm{F}$
Phenot Formaldehyde Resins a general purpose										
it general purpose	5.5 4.6	4.5	4.0 4.3	. 018	.014 .006	.014 .012	14	104	$3-4 \times 10^{-6}$	$275{ }^{\circ} \mathrm{F}$
c. cost	8.0	8.0	8.0	. 05	. 05	. 08	10		$7.5-15 \times 10^{-6}$	$212^{\circ} \mathrm{F}$ $140^{\circ} \mathrm{F}$
Phenol Furfural Resins	7.0	5.0	4.0	. 20	. 04	. 05			7.015×10.	140
Polyethylene	2.25	2.25	225	. 0003	. 0003	. 0003	40	>1005	Varios	$220{ }^{\circ} \mathrm{F}$
Polyisobutylene MW 100,000	2.20	2.22	2.22	. 0003	. 0003	. 0004		10^{13}	Varles	$>0^{\circ} \mathrm{F}$
Polystyrone MW 80,000	2.55	2.53	2.52	. 0002	. 0002	. 0003	20-30	1017	7×10^{-6}	$175{ }^{\circ} \mathrm{F}$
Polyvinyl Carbazole	2.95	2.95	2.95	. 0017	. 0005	. 0006	31-40		$4.5-5.5 \times 10^{-6}$	$300^{\circ} \mathrm{F}$
Polywinyl Chlor-Acelate Polyvinyl Chloride	3.2	2.9	2.8	. 009	. 014	. 009				$180^{\circ} \mathrm{F}$
Polyvinyl Chioride Polyvinylidine Chloride-Saran	3.2 4.5	2.9 3.0	2.9 2.8	${ }^{.012}$.016 .046	. 0008		1015		$180^{\circ} \mathrm{F}$
Quartz tfused)	3.9	3.8	3.8	. 0009	. 0002	. 0002	60	10	1.58×10^{-7}	$175{ }^{\circ} \mathrm{F}$ $3000^{\circ} \mathrm{F}$
Shallac	3.9	3.5	3.1	. 006	. 031	. 030	ω	10^{18}	5.7×10^{-7}	3000%
Styroloy 22	2.4	2.4	2.4	. 0010	. 0012	. 0043	30	10^{14}	1.8×10^{-1}	$150^{\circ} \mathrm{F}$
Styromle	2.9	2.75	2.73	. 003	. 0002	.0002			7×10^{-6}	$175^{\circ} \mathrm{F}$
Styromic HT	2.64	2.64	2.62	. 0002	. 0002	.0002			8 $\times 10-1$	$250^{\circ} \mathrm{F}$
Urea formaldehyda Resins Wood-Áfrican Mahogany idryl	6.6 2.4	5.6 2.1	5.0 2.1	.032 .01	. 023	.05	15	104	2.6×10^{-8}	$260^{\circ} \mathrm{F}$
Wolse ldryt	1.4	2.4	1.3	. 048	. 012	. 013 .				

- Values given are average for the materials listed.
tTo convert Killovolis per millimeter to volis per mil, multiply by 25.4

Plastics: trade names

mrade n	composifion	trade name	composition
Acryloid	Methacrylate Resin	Indur	Phenot formaldehyde
Alvor	Polyvinyl Acetal	Kodapak	Callulose Acetate
Amerith	Cellulose Nirrate	Kodapak II	Cellulose Acetobutyrate
Ameripol	Butadiene Copolymer	Koroseal	Modified Polyvinyl Chloride
Ameroid	Casain	Lectrofilm	Polyvinyl Carbazole Icon-
Bakelite	Phenol Formaldehyde		denser material; mica sub-
Bakelite	Urea Formaldehyde		stitute)
Bakelite	Cellulose Acetate	Loalin	Polystyrene
Bakelite	Polystyrene	Lucite	Methyl Methacrylate Resin
Beckamine	Urea formaldehyde Resins	Lumarith	Cellulose Acetate
Beotle	Urea Formaldehyde	Lumarith X	Collulose Acetare
Butacite	Polyvinyl Butyral	Lustron	Polystyrene
Butvar	Polyvinyl Butyral	luvican	Polyvinyl Carbazole
Cardolite	Phenol-aldehyde (coshew nut derivative)	Makalot Marblette	Phenol formaldehyde Phenol formaldehyde (cas
Cerex	Styrene Copolymer	Marbon B	Cyclized Rubber
Catalin	Phenol formaldehyde (cast)	Marbon C	Rubber Hydrochloride
Collophane	Regenerated Cellulose film	Melmac	Melamine formaldehyde
Celluloid	Cellulose Nitrate	Methocel	Methyl Cellulose
Cibanite Crysialite	Aniline Formaldehyde Acrylate and Methacrylate	Micabond	Glycerol Phtholic Anhydride, Mica
Crystalite	Acrylate and Methacrylate Resin	Micarta	Phenol formaldehyde llami-
Cumar Dilectene 100	Cumarone-indene Resin Aniline Formaldehyde Syn-	Monsanto	nation) Cellulose Nitrate
Dilectene 100	thetic Resin	Monsanto	Polyvinyl Acetals
Dilecto	Ureo Formaldehyde (phenol formaldehyde)	Monsanto Monsanto	Collulose Acetate Phenol formaldehyde
Dilecto UF	Ureo Formaldehyde	Mycalex	Mica Bonded Class
Distrene	Polystyrene	Neoprene	Chloroprene Synthetic Rub-
Durez	Phenol formaldehyde		ber
Durito	Phenol formaldehyde	Nevidene	Cumarone-indene
Durite	Phenol Furfural	Nitron	Cellulose Nitrate
Erinofort	Cellulose Acetate	Nixonite	Cellulose Acetate
Erinoid	Cosein	Nixonoid	Cellulose Nirrate
Ethocel	Ethyl Cellulose	Nylon	Synthetic Polyamides and
Ethocel PG	Ethyl Collulose		Super Polyamides
Ethofoil	Ethyl Cellulose	Nypene	Polyterpene Resins
Ethomelt	Ethyl Cellulose thot pouring	Opolon	Phenol formaldehyde Phenol Formaldehyde llam
Ethomulsion	Ethyl Cellulose llacquer emulsion)	Panelyte	nate) Phenol formaldehyde
Fibestos	Cellulose Acetate	Parlon	Chlorinated Rubber
Flamenol	Vinyl Chloride (plasticized)	Perspex	Methyl Methacrylic Ester
formico	Phenol formaldehyde (lamination)	Ploskon Plastacole	Urea Formaldehyde Cellulose Acetate
Formvar	Polyvinyi formal	Plexiglas	Methyl Methacrylate
Galalith	Cosein	Plexiglas	Acrylate and Methacrylate
Gelva	Polyvinyl Acetate		Resin
Gemstone	Phenol formaldehyde	Ploskon	Urea formaldehyde
Geon	Polyvinyl Chloride	Plastacele	Cellulose Acetate
Glyptal	Glycerol-phthalic Anhydride	Pliofim	Rubber Hydrochloride
Haveg	Phenol Formaldehyde Asbes.	Plioform	Rubber Derivative
	tos	Pliolite	Rubber Derivative
Hercose AP	Cellulose Acetate Propionate	Polyfibre	Polystyrene
Heresite	Phenol Formaldehyde	Polythene	Polyethylene

Plastics: trade names continued

trade name	composition	frade name	composition
Protectoid	Cellulose Acetate	Styron	Polystyrene
Prystal	Phenol Formaldehyde	Super Styrex	Polystyrene
Pyralin	Cellulose Nitrote	Synthane	Phenol Formaldehyde
PVA	Polyvinyl Alctohol	Tenite	Cellulose Acetate
Pyralin	Cellulose Nirrore	Tenite II	Cellulose Acetobutyrate
Resinox	Phenol Formaldehyde	Textolite	Various
Resoglaz	Polystyrene	Textolite 1421	Cross-linked Polystyrene
Rhodolene M	Polystyrene	Tornesit	Rubber Derivative
Rhodoid	Cellulose Acetate	Trolitul	Polystyrene
Ronilla L	Polystyrene	Vec	Polyvinylidene Chloride
Ronilla M	Polystyrene	Victron	Polystyrene
Saflex	Polyvinyl Butyral	Vinylite A	Polyvinyl Acetate
Saron	Polyvinylidene Chloride	Vinylite Q	Polyvinyl Chloride
Styraflex	Polystyrene	Vinylite V	Vinyl Chloride-Acetate Co-
Styramic	Polystyrene-Chlorinated Diphenyl	Vinylite X	polymer Polyvinyl Butyral
Styramic HT	Polydichlorstyrene		

Wind velocities and pressures

Indicoted velocities miles per hour* \mathbf{V}_{i}	actual velociftes miles per hour V_{a}	cylindrical surfaces pressure lbs per sq fi projected areos $\mathbf{P}=0.0025 \mathbf{V}_{\boldsymbol{a}^{2}}$	flat surfaces pressure lbs per square foof $P=0.0042 V_{a^{2}}$
10	9.6	0.23	0.4
20	17.8	0.8	1.3
30	25.7	1.7	2.8
40	33.3	2.8	4.7
50	40.8	4.2	7.0
60	48.0	5.8	9.7
70	55.2	7.6	12.8
80	62.2	9.7	16.2
90	69.2	12.0	20.1
100	76.2	14.5	24.3
110	83.2	17.3	29.1
120	90.2	20.3	34.2
125	93.7	21.9	36.9
130	97.2	23.6	39.7
140	104.2	27.2	45.6
150	111.2	30.9	51.9
160	'118.2	34.9	58.6
170	125.2	39.2	65.7
175	128.7	41.4	69.5
180	132.2	43.7	73.5
190.	139.2	48.5	81.5
200	146.2	53.5	89.8

[^4]
Temperature chart of heated metals

Physical constants of various metals and alloys*

material	relative resisiance	temp coefficient of resistivity at $20^{\circ} \mathrm{C}$	speciffc gravity	coefficlent of thermal cond K wafts $/ \mathrm{cm}^{\circ} \mathrm{C}$	melting polnt ${ }^{\circ} \mathrm{C}$
Advance (55 Cu 45 Ni)	soo	Constantan			
Aluminum	1.64	. 004	2.7	2.03	660
Antimony	24.21	. 0036	6.6	0.187	630
Arsenic	19.33	. 0042	5.73	-	sublimes
Bismuth	69.8	. 004	9.8	0.0755	270
Brass (66 Cu 34 Zn)	3.9	. 002	8.47	1.2	920
Cadmium	4.4	. 0038	8.64	0.92	321
Chromax 115 Cr 35 Ni balance Fol	58.0	. 00031	7.95	0.130	1380
Cobalt	5.6	. 0033	8.71	-	1480
Constantan (55Cu45Ni)	28.45	$\pm .0002$	8.9	0.218	1210
Copper-annealed	1.00	. 00393	8.89	3.88	1083
hard drawn	1.03	. 00382	8.89	-	1083
Eureka (55 Cu 45 Ni)	soo	Constantan			
Gas carban	2900	-. 0005	-	-	3500
Gold	1.416	. 0034	19.32	0.296	1063
Ideal (55 Cu 45 Ni)					
Iron, pure	5.6	$.0052-.0062$	7.8	0.67	1535
Kovar A 129 Ni 17 Co 0.3 Mn balance Fol	28.4	-	8.2	0.193	1450
Lead	12.78	. 0042	11.37	0.344	327
Magnesium	2.67	. 004	1.74	1.58	651
Mongonin 184 Cu 12 Mn $4 \mathrm{Ni})$	26	$\pm .00002$	8.5	0.63	910
Mercury	55.6	. 00089	13.55	0.063	-38.87
Molybdonum, drawn	3.3	. 0045	10.2	1.46	2630
Monel metal 157 Ni 30 Cu 1.4 Fol Mn)	27.8	. 002	8.8	0.25	1300-1350
Nichromel 165 Ni 12 Cr 23 Fol	65.0	. 00017	8.25	0.132	1350
Nickel	5.05	. 0047	8.85	0.6	1452
Nickel silver 164 Cu $18 \mathrm{Zn} 18 \mathrm{Ni}$	16.0	. 00026	8.72	0.33	1110
Palladium	6.2	. 0038	12.16	0.7	1557
Phosphor-bronze 14 Sn 0.5 P balance Cu	5.45	-	8.9	0.82	1050
Platinum	6.16	. 0038	21.4	0.695	1771
Silver	0.95	. 004	10.5	4.19	960.5
Steol, manganese (13 Mn 1 C 85 Fol	41.1	-	7.81	0.113	1510
Stool, SAE 1045 10.4-0.5 C balance Fol	7.6-12.7	-	7.8	0.59	1480
Steol, 18-8 stainloss 10.1 C 18 Cr 8 Ni balance Fol	52.8	-	7.9	0.163	1410
Tontalum	9.0	. 0033	16.6	0.545	2850
Tin	6.7	. 0042	7.3	0.64	231.9
Tophot A 180 Ni 20 Cr$)$	62.5	. $02-.07$	8.4	0.136	1400
Tungsten	3.25	. 0045	19.2	1.6	3370
Zinc	3.4	. 0037	7.14	1.12	419
Zirconium	2.38	. 0044	6.4	-	1860

[^5]
Physical constants of various metals and alloys continued

Definitions of physical constants in preceding table

The preceding table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperature.

1. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectioned area.
$R=\frac{\rho L}{A^{\prime}}$ where $\rho=$ resistivity, the proportionality constant,
$L=$ length, $A=$ cross-sectional area, $R=$ resistance in ohms.
If L and A are measured in centimeters, ρ is in ohm-centimeters.
If L is measured in feet, and A in circular mils, ρ is in ohm-circular mils per foot. Relative resistance $=\rho$ divided by the resistivity of copper 1.7241×10^{-6} ohm-cm).
2. The temperature coefficient of resistivity gives the ratio of the change in resistivity due to a change in temperature of $1^{\circ} \mathrm{C}$ relative to the resistivity at $20^{\circ} \mathrm{C}$. The dimensions of this quantity are ohms per ${ }^{\circ} \mathrm{C}$ per ohm or $1 /{ }^{\circ} \mathrm{C}$.

The resistance at any temperature is:
$R=R_{0} \|+\alpha T, R_{0}=$ resistance at 0° in ohms, $T=$ temperature in degrees centigrade, $\alpha=$ temperature coefficient of resistivity $1 /{ }^{\circ} \mathrm{C}$.
3. The specific gravity of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water.

In the cgs system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance.
4. Coefficient of thermal conductivity is defined as the time rate of heat transfer through unit thickness, across unit area, for a unit difference in temperature. Expressing rate of heat transfer in watts, the coefficient of thermal conductivity
$K=\frac{W L}{A \Delta T}$
$W=$ watts, $L=$ thickness in $\mathrm{cm}, A=$ area in $3 q \mathrm{~cm}, \Delta T=$ temperature in ${ }^{\circ} \mathrm{C}$.
5. Specific heat is defined as the number of calories required to heat one gram of a substance one degree Centigrade.
$H=m s \Delta T$ or change in heat $m=$ mass in grams
$\Delta T=$ temperature change ${ }^{\circ} \mathrm{C} \quad s=$ specific heat in cal/gm $/{ }^{\circ} \mathrm{C}$

Thermocouples and their characteristics

type	copper/constantan	Iron/constanlan	chromel/constonfan	chromel/alumel	$\left\lvert\, \begin{gathered} \text { plafinum/platinum } \\ \text { rhodium (10) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered}\text { platinum/platinum } \\ \text { rhodium (13) }\end{gathered}\right.$	carbon/silicon carbid.
Composition, percent	100 Cu 54 Cu 46 Ni 99.9 Cu 55 Cu 60 Cu 40 Ni	100 fe55 Cu 44 Ni Si		$\|$$90 \mathrm{Ni} \mathrm{10Cr}$ 95 Ni 2 Al 2 Mn 1 Si 89.6 Ni 8.9 Cr $97 \mathrm{Ni} 3 \mathrm{Al}+\mathrm{Si}$ 89 Ni 10 Cr 94 Ni 2 Al 1 Si 89 Ni 9.8 Cr 2.5 Mn 0.5 Fa 1 Fa 0.2 Mn	Pt 90Pt 10Rh	Pt 87Pt 13Rh	C SIC
Range of application, ${ }^{\circ} \mathrm{C} \cdot$	$1-250$ 10 +600	$1-200$ 10 + 1050	10 to 1100	10 10 1100	10 to 1550		\|ro 2000
Resistivity, micro-ohm.C.M.\|	11.7549	11049	$170 \quad 49$	$170 \quad 29.4$	11021		
Temperature coefficient of resistivity, ${ }^{\circ} \mathrm{C}$	$\mid .0039$. 00001	1.005 . 00001	1.00035 . 0002	. 00035 . 000125	. 0030 . 0018		
Molting femperapure, ${ }^{\circ} \mathrm{C}$	\|1085 1190	115351190	$11400 \quad 1190$	11400	11755 . 1700		130002700
EMF in my reference junction at $0^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$ 4.24 mv 200 9.06 300 14.42	$\begin{array}{\|cc\|}100^{\circ} \mathrm{C} & 5.28 \mathrm{mv} \\ 200 & 10.78 \\ 400 & 21.82 \\ 600 & 33.16 \\ 800 & 45.48 \\ 1000 & 58.16\end{array}$	$100^{\circ} \mathrm{C}$ 6.3 mv 200 13.3 400 28.5 600 44.3	$\begin{array}{\|cc\|}100^{\circ} \mathrm{C} & 4.1 \mathrm{mv} \\ 200 & 8.13 \\ 400 & 16.39 \\ 600 & 24.90 \\ 800 & 33.31 \\ 1000 & 41.31 \\ 1200 & 48.85 \\ 1400 & 35.81\end{array}$	$\begin{array}{\|cc\|}100^{\circ} \mathrm{C} & 0.643 \pi \mathrm{~V} \\ 200 & 1.436 \\ 400 & 3.251 \\ 600 & 5.222 \\ 800 & 7.330 \\ 1000 & 9.569 \\ 1200 & 11.924 \\ 1400 & 14.312 \\ 1600 & 16.674\end{array}$	$100^{\circ} \mathrm{C}$ 0.646 mv 200 1.464 400 3.398 600 5.561 800 7.927 1000 10.470 1200 13.181 1400 15.940 1600 18.680	$\begin{array}{ll}1210^{\circ} \mathrm{C} & 353.6 \mathrm{mv} \\ 1300 & 385.2 \\ 1360 & 403.2 \\ 1450 & 424.9 \\ & \\ & \\ & \end{array}$
Inlluence of temperature and gas atmosphere	Subject to oxidation and alteration above $400^{\circ} \mathrm{C}$ due Cu , above 600° due constantan wire. Ni-plating of Cu fube gives profec. tion, in acid-containing gos. Contamina. tion of Cu affects calibration greatly. Resistance 10 oxid. atm. good. Reslstance to reducing atm. good. Requires prolection fumes. from acid	Oxidizing and reducing atmosphere hove little effect on accuracy. Bost used In dry afmosphero. Reslstance to oxida. tion good to $400^{\circ} \mathrm{C}$ Resistance to reduc. ing afmosphere good. Protact from oxygen, molsfure, sulphur.	Chromel attacked by sulphurous almosphere. Resistance to oxida. tlon good. Resistance to reducing atmos. phere poor.	Resistance to oxidizing atmosphare vary good. Resistance to reducing atmosphere poor. Afioctod by sulphur, reducing or sulphurous gas, SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$.	Resistance to oxidizIng atmosphere vary good. Resisiance to reducing atmosphere poor. Susceptible to chemical alteration by As, Si, P vapor in reducing gas $\mathrm{CO}_{2}, \mathrm{H}_{2}$, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO} 4$. Pt corrodes easily above 1000°. Used in gostight protecting tube.		Used as tube alement. Corbon sheoth chemically inert.
Particular applications	\|low temperature, industrial. Internal combustion angine. Used as a fube element for meosurements isfeam line.	Low temperafure, indusitial. Steal annealing, boiler flues, tube stills. Used in reducing or neutral atmosphere.		Used in oxidizing atmosphere. Industrial. Ceramic kilns, sube stills, electric furnaces.	ternational Standd 630 to $1065^{\circ} \mathrm{C}$.	Similar to Pt/PtRh 1101 but has higher omf.	Steel furnace and ladie temperafures. laboratory measurements.

Thermocouples and their characteristics

continued

Characteristics of typical thermocouples

Compiled from "Temperature Measurement and Control" by R. L. Weber, pages 68-71.

Melting points of solder

pure alloys		melifing points	
$\begin{gathered} \text { percent } \\ \text { tin } \\ \hline \end{gathered}$	$\begin{gathered} \text { percent } \\ \text { lead } \\ \hline \end{gathered}$	degrees centigrade	degroes fahranheif
100		232	450
90	10	213	415
80	20	196	385
70	30	186	367
65	35	181	358
60	40	188	370
50	50	212	414
40	60	238	460
30	70	257	496
20	80	290	554
10	90	302	576
	100	327	620

Spark-gap break down voliages

Data for a voltage which is continuous or at a frequency low enough to permit complete deionization between cycles, between needle points or clean, smooth spherical surfaces in dustfree dry air. The following multiplying factors apply for atmospheric conditions other than those stated above:

pressure		temperature ${ }^{\circ} \mathrm{C}$					
${ }^{\prime} \mathrm{Hg}$	mm Hg	-40	-20	0	20	40	60
5	127	0.26	0.24	0.23	0.21	0.20	0.19
10	254	0.47	0.44	0.42	0.39	0.37	0.34
15	381	0.68	0.64	0.60	0.56	0.53	0.50
20	508	0.87	0.82	0.77	0.72	0.68	0.64
25	635	1.07	0.99	0.93	0.87	0.82	0.77
30	762	1.25	1.17	1.10	1.03	0.97	0.91
35	889	1.43	1.34	1.26	1.19	1.12	1.05
40	1016	1.61	1.51	1.42	1.33	1.25	1.17
45	1143	1.79	1.68	1.58	1.49	1.40	1.31
50	1270	1.96	1.84	1.73	1.63	1.53	1.44
55	1397	2.13	2.01	1.89	1.78	1.67	1.57
60	1524	2.30	2.17	2.04	1.92	1.80	1.69

Table I

	discharge in US gallons per minute																					
in feet	$1 / 2 *$	1	8/4*	1	$1 *$	1	$11 /{ }^{*}$	1	11/2"	1	$2{ }^{\prime \prime}$	1	$21 / 2{ }^{\prime \prime}$	1	3 '		$31 / 2$	$4 *$	1	$8^{\prime \prime}$	1	6 *
1	. 19		. 54		1.11		1.96		3.09		6.34		11.07		17.41		25.58	35.79		- 62.57		98.72
2	. 28		. 77		1.59		2.76		4.36		8.96		15.61		24.62		36.15	50.56		88.39		139.31
4	. 40		1.09		2.25		3.92		6.17		12.73		22.10		34.95		51.28	71.58		124.90		198.54
6	. 48		1.33		2.75		4.78		7.55		15.49		27.02		42.63		62.69	- 87.67		152.52		241.39
9	. 59		1.63		3.36		5.86		9.26		19.09		33.27		52.36		76.98	107.48		187.35		295.43
12	. 68		1.89		3.90		6.77		10.69		21.98		38.43		60.53		88.87	123.70		216.17		342.27
16	. 79		2.17		4.48		7.82		12.37		25.34		44.31		69.77		102.56	142.91		249.80		395.11
20	. 89		2.44		5.02		8.74		13.81		28.34		49.48		77.94		114.57	159.73		279.82		440.74
25	. 98		2.73		5.61		9.78		15.50		31.70		55.36		87.19		127.30	178.94		312.24		493.59
30	1.08		2.98		6.14		10.71		16.93		34.59		60.65		95.47		139.31	195.75		342.27		540.42
40	1.25		3.46		7.10		12.37		19.58		40.23		70.01		110.49		162.13	225.78		395.11		624.49
50	1.39		3.86		7.94		13.81		21.86		44.92		78.30		122.50		180.14	252.20		441.95		697.75
75	1.71		4.72		9.73		16.93		26.78		54.88		95.96		150.12		220.97	309.84		541.62		855.07
100	1.98		5.46		11.23		19.58		30.81		63.41		110.72		174.14		235.80	357.88		625.69		987.17
150	2.44		6.71		13.81		23.90		37.83		77.94		139.19		213.77		314.65	439.54		765.00		1,214.15
200	2.80		7.71		15.85		27.62		43.59		89.59		156.12		248.19		361.48	505.60		883.89		1,394.29
250	3.13		8.65		17.77		30.81		48.88		100.52		175.34		276.22		404.72	565.64	1	- 989.57		1,564.82
500	4.43		12.25		25.10		43.71	,	69.05		141.71		247.39		390.31		571.65	801.03		1,397.89		2,209.73

Discharge in gallons per minute through 1000 ff . plpe line of $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$ bore with average number of bends and fittings. For other pipe lengths see Table II.

Table II

Length in feet	50	100	150	200	300	400	500	750	1,000	1,250	1,500
Factor	4.47	3.16	2.58	2.237	1.827	1.580	1.414	1.154	1.0	0.895	0.817
tength in feot	1,750	2,000	2,500	3,000	4,000	5,000	7,500	10,000	5 ml .	10 mi .	50 ml .
Factor	0.756	0.707	0.633	0.577	0.500	0.447	0.365	0.316	0.195	0.138	0.0616

Multiplication foctor to be applied to Table Ifor pipe lengths other than 1000 ft .
Exampler Required-approximate discharge of a line of piping 4^{*} bore, 5000 feel long,
under 30 foot head.
Approximate discharge for the 1000 foot line from Table $1=195.75$ gallons per minute. foctor from Table Il $=0.447$
\therefore Approximote discharge $=19575 \times 0.447=87.5$

50

Materials and finishes for tropical and marine use

Ordinary finishing of equipment fails in meeting satisfactorily conditions encountered in tropical and marine use. Under these conditions corrosive influences are greatly aggravated by prevailing higher relative humidities, and temperature cycling causes alternate condensation on, and evaporation of moisture from, finished surfaces. Useful equipment life under adverse atmospheric influences depends largely on proper choice of base materials and finishes applied. Especially important in tropical and marine applications is avoidance of electrical contact between dissimilar metals.

Dissimilar metals, widely separated in the galvanic series, should not be bolted, riveted, etc., without separation by insulating material at the faying surfaces. The only exception occurs when both surfaces have been coated with the same protective metal, e.g., electroplating, hot dipping, galvanizing, etc.
In addition to choice of deterioration-resistant materials, consideration must be given to weight, need for a conductive surface, availability of ovens, appearance, etc.

A-order of preference:

Base materials

1. Brass
2. Aluminum, anodized
3. Nickel silver
4. Steel, zinc phosphated
5. Phosphor-bronze
6. Steel, cadmium phosphated
7. Monel
8. Steel, phosphated
9. Stainless steel

Finishes

1. Baked paint
2. Force dried paint
3. Air dried paint (pigmentless paint, e.g., varnish)
B-order of preference: (if A is impracticable)

Base materials

1. Copper
2. Steel

Finishes

1. Copper—nickel-chromium 5. Cadmium, lacquered
2. Copper-nickel-oxide
3. Zinc, phosphated
4. Copper-nickel
5. Cadmium, phosphated
6. Zinc, lacquered

Materials and finishes for tropical and marine use continued

Aluminum should always be anodized. Aluminum, steel, zinc, and cadmium should never be used bare.

Electrical contact surfaces should be given above finish B-1 or 3, and, in addition, they should be silver plated.

Variable capacitor plates should be silver plated.
All electrical circuit elements and uncoated metallic surfaces lexcept electrical contact surfaces) inside of cabinets should receive a coat of fungicidal moisture repellant varnish or lacquer.

Wood parts should receive:

1. Dip coat of fungicidal water repellant sealer.
2. One coat of refinishing primer.
3. Suitable topcoat.

Torque and horsepower

Torque varies directly with power and inversely with rotating speed of the shaft, or
$T=\frac{K P}{N}$
where $T=$ torque in inch-pounds, $P=h p, N=r p m, K$ (constant) $=63,000$. Example 1:-For a two-horsepower motor rotating at 1800 rpm ,
$T=\frac{63,000 \times 2}{1800}=70$ inch-pounds. .
If the shaft is 1 inch in diameter, the force at its periphery
$F=\frac{T}{\text { radius }}=\frac{70 \text { inch-pounds }}{0.5}=140$ pounds
Example 2: If 150 inch-pounds torque are required at 1200 rpm ,
$150=\frac{63,000 \mathrm{hp}}{1200} \quad \mathrm{hp}=\frac{150 \times 1200}{63,000}=2.86$

Audio and radio design

Resistors and capacifors

* Letter used to indicate tolerance in type designations.
\dagger Applies to copacitors only.

Resistors, fixed composition

RMA Standard, American War Standard, and Joint Army-Navy Specifications for color coding of fixed composition resistors are identical in all respects.
The exterior body color of insulated axial-lead composition resistors is usually tan, but other colors, except black, are permitted. Non-insulated, axial-lead composition resistors have a black body color. Radial-lead composition resistors may have a body color representing the first significant figure of the resistance value.

Note: Low-power insulated wire-wound resistors hove axial leads and are color coded similar to the left-hond figure above except that band A is double width.

Capacitors, fixed mica dielectric

Fixed mica-dielectric capacitors of the American War Standards and Joint Army-Navy Specification are designated differently from the 1938 RMA Standard. AWS and JAN mica capacitors have a characteristic defined in Table I.

Table I

choracteristic	0	temperature coefficient parts/million $/{ }^{\circ} \mathrm{C}$	maximum capacitonce drift	verificotion of chorocteristics by praduction test
	*	Not specified	Not specified	
B	\dagger	Not specified	Not specified	Not required Nol required
C	\dagger	-200 to +200	0.5 percent	Not required
D		-100 to +100	0.2 percent	Not required
E	\dagger	0 to +100	0.05 percent	Nol required
F		0 to +50	0.025 percent	Required
G	\dagger	0 to -50	0.025 percent	Required

* Q must be greater than $1 / 8$ of minimum allowable Q for other characteristics (JAN].
\dagger Minimum acceptable Q at I MC is defined by a curve; value varies with copocitance.
Type designations of AWS or JAN fixed mica-dielectric capacitors are a comprehensive numbering system used to identify the component. The capacitor type designation is given in the following form:

Component designation: Fixed mica-dielectric capacitors are identified by the symbol CM.
Case designation: The case designation is a 2 -digit symbol which identifies a particular case size and shape.
Characteristic: The characteristic is indicated by a single letter in accordance with Table I.
Capacitance value: The nominal capacitance value in micromicrofarads is indicated by, a 3 -digit number. The first two digits are the first two digits of the capacitance value in micromicrofarads. The final digit specifies the number of zeros which follow the first two digits. If more than two significant figures are required, additional digits may be used, the last digit always indicating the number of zeros.
Capacitance tolerance: The symmetrical capacitance tolerance in percent is designated by a letter as shown on page 52 .

56

Capacitors, fixed mica dielectric continued

AWS and JAN fixed capacitors (1946 RMA proposal)

RMA fixed capacitors

The 1938 RMA Standard covers a simple 3-dot color code showing directly only the capacitance, and a more comprehensive 6 -dot color code showing 3 significant figures and tolerance of the capacitance value, and a voltage rating. Capacitance values are expressed in micromicrofarads up to 10,000 micromicrofarads.

RMA 6-dot

Examples

	top row			bottom row			description
type				left	:olerance center	multiplier right	
RMA 13 dot)	red	green	brown	none	none	none	$250 \mu \mu \mathrm{f}=20 \%, 500$ volts
RMA	brown	black	black	blue	green	brown	$1000 \mu \mu f=5 \%, 600$ volts
RMA	brown	red	green	gold	red	brown	$1250 \mu \mu \mathrm{f}=2 \%, 1000$ volts
CM308681J	black	blue	gray	brown	gold	brown	$680 \mu \mu \mathrm{f} \pm 5 \%$, characteristic 8
CM35E332G	black	orange	oronge	yellow		red	$3300 \mu \mu \mathrm{f} \pm 2 \%$, choracteristic E

Capacitors, fixed ceramic

Tubular ceramic dielectric capacitors are used for temperature compensation of tuned circuits and have many other applications as well. If the capacitance, tolerance, and temperature coefficient are not printed on the capacitor body, the following color code will be used. The change in capacitance per unit capacitance per degree centigrade is the temperature coefficient, usually stated in parts per million per centigrade (ppm/ ${ }^{\circ} \mathrm{C}$).

			capaelfan	tolerance	temperature
color	significant figure	multiplior	$\begin{gathered} \ln \% \\ \gg 10 \mu \mu \mathrm{l} \end{gathered}$	$e \sum_{10 \mu \mu i}^{\text {in } \mu \mu \mathrm{f}}$	$\begin{gathered} \text { coeffcient } \\ \text { ports } / \text { million } /{ }^{\circ} \mathrm{C} \end{gathered}$
black	0	1	± 20	2.0	0
brown	1	10	± 1		-30
red	2	100	± 2		-80
orange	3	1,000			-150
yellow	4	-			-220
green	5	-	± 5	0.5	-330
blue	6	-			-470
violot	7	-			-750
gray	8	0.01		0.25	+30
white	9	0.1	± 10	1.0	-330 ± 500

Examples

wide	narrow bands or dofs				descriptlon
band	A	B	C	D	
black blue violel	black red gray	red red red	black black brown	black green silver	$2.0 \mu \mu \mathrm{f} \pm 2 \mu \mu \mathrm{f}$, zero temp coeff $22 \mu \mu \mathrm{I} \pm 5 \%$. $-470 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temp cooff $820 \mu \mu \mathrm{f} \pm 10 \%,-750 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temp cosf

Inductance of single-layer solenoids

The approximate value of the low-frequency inductance of a single-layer solenoid is:
$L=F n^{2} d$ microhenries*
where $F=$ form factor, a function of the ratio d / l. The value of F may be read from the accompanying chart, Fig. 1.
$n=$ number of turns, $d=$ diameter of coil linches), between centers of conductors, $1=$ length of coil (inches) $=n$ times the distance between centers of adjacent turns.

The formula is based on the assumption of a uniform current sheet, but the correction due to the use of spaced round wires is usually negligible for practical purposes. For higher frequencies skin effect alters the inductance slightly. This effect is not readily calculated, but is often negligibly small. However, it must be borne in mind that the formula gives approximately the true value of inductance. In contrast, the apparent value is affected by the shunting effect of the distributed capacitance of the coil.

Example: Required a coil of 100 microhenries inductance, wound on a form 2 inches diameter by 2 inches winding length. Then $d / 1=1.00$, and $F=0.0173$ on the chart.
$n=\sqrt{\frac{L}{f d}}=\sqrt{\frac{100}{0.0173 \times 2}}=54$ turns
Reference to Magnet Wire Data, page 60, will assist in choosing a desirable size of wire, allowing for a suitable spacing between turns according to the application of the coil. A slight correction may then be made for the increased diameter (diameter of form plus two times radius of wire), if this small correction seems justified.

In the use of various charts, tables, and calculators for designing inductors, the following relationships are useful in extending the range of the devices. They apply to coils of any type or design.

1. If all dimensions are held constant, inductance is proportional to n^{2}.
2. If the proportions of the coil remain unchanged, then for a given number of turns the inductance is proportional to the dimensions of the coil. A coil with all dimensions m times those of a given coil thaving the same number of turns) has m times the inductance of the given coil. That is, inductance has the dimensions of length.
[^6]
Inductance of single-layer solenoids continued

Fig. 1-Inductance of a single-loyer solenoid, form foctor: F

60

Magnef wire data

size wire AWC	bore nom diam in inches	enam nom diam in Inches	scc ${ }^{*}$ diam In Inches	DCC diam in Inches	SC. diam in inches	ssc* diom In inches	DSC ${ }^{*}$ diam in inches	5s㡽 diom in inches	bare		enamaled	
									min diam inches	max diam Inches	min diam Inches	
10	. 1019	. 1039	. 1079	. 1129	. 1104				. 1009	. 1029	. 1024	. 1044
11	. 0907	. 0927	. 0957	. 1002	. 0982				. 0398	. 0917	. 0913	. 0932
12	. 0808	. 0827	. 0858	. 0903	. 0882				. 0800	. 0816	. 0814	. 0832
13	. 0720	. 0738	. 0770	. 0815	. 0793				. 0712	. 0727	. 0726	. 0743
14	. 0641	. 0659	. 0691	. 0736	. 0714				. 0634	. 0647	. 0648	. 0664
15	. 0571	. 0588	. 0621	. 0666	. 0643	. 0591	. 0611	. 0613	. 0565	. 0576	. 0578	. 0593
16	. 0508	. 0524	. 0558	. 0603	. 0579	. 0528	. 0548	. 0549	. 0503	. 0513	. 0515	. 0529
17	. 0453	. 0469	. 0503	. 0548	. 0523	. 0473	. 0493	. 0493	. 0448	. 0457	. 0460	. 0473
18	. 0403	. 0418	. 0453	. 0498	. 0472	. 0423	. 0443	. 0442	. 0399	. 0407	. 0410	. 0422
19	. 0359	. 0374	. 0409	. 0454	. 0428	. 0379	. 0399	. 0398	. 0355	. 0363	. 0366	. 0378
20	. 0320	. 0334	. 0370	. 0415	. 0388	. 0340	. 0360	. 0358	. 0316	. 0323	. 0326	. 0338
21	. 0285	. 0299	. 0335	. 0380	. 0353	. 0305	. 0325	. 0323	. 0282	. 0287	. 0292	. 0303
22	. 0253	. 0266	. 0303	. 0343	. 0320	. 0273	. 0293	. 0290	. 0251	. 0256	. 0261	. 0270
23	. 0226	. 0238	. 0276	. 0316	. 0292	. 0246	. 0266	. 0262	. 0223	. 0228	. 0232	. 0242
24	. 0201	. 0213	. 0251	. 0291	. 0266	.0221	. 0241	. 0236	. 0199	. 0203	. 0208	. 0216
25	. 0179	. 0190	. 0224	. 0264	. 0238	. 0199	. 0219	. 0213	. 0177	. 0181	. 0186	. 0193
26	. 0159	. 0169	. 0204	. 0244	. 0217	. 0179	. 0199	. 0192	. 0158	. 0161	. 0166	. 0172
27	. 0142	. 0152	. 0187	. 0227	. 0200	. 0162	. 0182	. 0175	. 0141	. 0144	. 0149	. 0155
28	. 0126	. 0135	. 0171	. 0211	. 0183	. 0146	. 0166	. 0158	. 0125	. 0128	. 0132	. 0138
29	. 0113	. 0122	. 0158	. 0198	. 0170	. 0133	. 0153	. 0145	. 0112	. 0114	. 0119	. 0125
30	. 0100	. 0108	. 0145	. 0185	. 0156	. 0120	. 0140	. 0131	. 0099	. 0101	. 0105	. 0111
31	. 0089	. 0097	. 0134	. 0174	. 0144	. 0109	. 0129	. 0119	. 0088	. 0090	. 0094	. 0099
32	. 0080	. 0088	. 0125	. 0165	. 0135	. 0100	. 0120	. 0110	. 0079	. 0081	.0085	. 0090
33	. 0071	. 0078	. 0116	. 0156	. 0125	. 0091	. 0111	. 0100	. 0070	. 0072	. 0075	. 0080
34	. 0063	. 0069	. 0108	. 0148	. 0116	. 0083	. 0103	. 0091	. 0062	. 0064	. 0067	. 0071
35	. 0056	. 0061	. 0101	. 0141	. 0103	. 0076	. 0096	. 0083	.005s	. 0057	. 0059	. 0063
36	. 0050	. 0055	.0090	. 0130	.0097	. 0070	.0090	. 0077	. 0049	. 0051	.0053	. 0057
37	. 0045	. 0049	. 0085	. 0125	. 0091	. 0065	. 0085	. 0071	. 0044	. 0046	. 0047	. 0051
38	. 0040	. 0044	. 0080	. 0120	. 0386	.0060	. 0080	. 0066	. 0039	. 0041	. 0042	. 0046
39	. 0035	. 0038	. 0075	. 0115	. 0080	. 0355	. 0075	. 0060	. 0034	. 0036	. 0036	. 0040
40	. 0031	. 0034	. 0071	. 0111	. 0076	. 0051	. 0071	.0056	. 0030	. 0032	. 0032	. 0036
41	. 0028	.0031							. 0227	. 0029	. 0029	. 0032
42	. 0025	. 0028							. 0024	. 0026	. 0026	. 0029
43	. 0022	. 0025							. 0021	. 0023	. 0023	. 0026
44	. 0020	. 0023							. 0019	.0021	. 0021	. 0024

[^7]
Reactance charits

Figs 2, 3, and 4 give the relationships of capacitance, inductance, reactance, and frequency. Any one value may consideration in terms of two others by use of a straight edge laid across the correct chart for the frequency under

Fig. 2-I cycle to 1000 cycles.

Reactance charts canlinued

Example: Given a capacitance of $0.001 \mu \mathrm{f}$, find the reactance at 50 kilocycles and inductance required to resonate. Place a straight edge through these values and read the intersections on the other scales, giving 3,180 ohms and 10.1 millihenries.

Fig. 3-1 killocycle to 1000 kilocycles.

Fig. 4-1 megacycle to 1000 megocycles.

$$
\begin{array}{ll}
\text { Impedance } Z=R+j X \text { ohms } & \text { phase angle } \phi=\tan ^{-1} \frac{X}{R} \\
\text { magnitude }|Z|=\left[R^{2}+X^{2}\right]^{\frac{1}{2}} \text { ohms } & \text { admittance } Y=\frac{1}{Z} \text { mhos }
\end{array}
$$

phase angle of the admittance
Is $-\tan ^{-1} \frac{X}{R}$
(

Impedance $\mathbf{Z}=\mathbf{R}$ magnitude $\|\mathbf{Z}\|=[$	X ohms $\left.+X^{2}\right]^{\frac{1}{2}}$ ohms	phase angle $\phi=\tan ^{-1} \frac{X}{R}$ admittance $\mathbf{Y}=\frac{1}{\mathbf{Z}}$ mhos phase angle of the admittance $\text { Is }-\tan ^{-1} \frac{X}{R}$	
	impedance	$\frac{R+j \omega\left[L\left(1-\omega^{2} L C\right)-C R^{2}\right]}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}$	
	magnitude	$\left[\frac{R^{2}+\omega^{2} L^{2}}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}\right]^{\frac{1}{2}}$	
	phase angle	$\tan ^{-1} \frac{\omega\left[L \\|-\omega^{2} L C l-C R^{2}\right]}{R}$	
	admittance	$\frac{R-j \omega\left[L\left(11-\omega^{2} L C\right)-C R^{2}\right]}{R^{2}+\omega^{2} L^{2}}$	
	impedance	$X_{1} \frac{X_{1} R_{2}+j\left[R_{2}{ }^{2}+X_{2}\left(X_{1}+X_{2}\right)\right]}{R_{2}{ }^{2}+\left(X_{1}+X_{2}\right)^{2}}$	
	magnitude	$x_{1}\left[\frac{R_{2}{ }^{2}+X_{2}{ }^{2}}{R_{2}{ }^{2}+\left(x_{1}+X_{2}\right)^{2}}\right]^{\frac{1}{2}}$	
	phase angle	$\tan ^{-1} \frac{R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)}{X_{1} R_{2}}$	
	admittance	$\frac{R_{2} X_{1}-j\left(R_{2}{ }^{2}+x_{2}{ }^{2}+x_{1} x_{2}\right)}{X_{1}\left(R_{2}{ }^{2}+X_{2}{ }^{2}\right)}$	

Parallel and series circuits and their equivalent relationships
Conductance $G=\frac{1}{R_{p}}$
$\omega=2 \pi f$

Admittance $Y=\frac{I}{E}=\frac{1}{Z}=G-j B$

$$
=\sqrt{G^{2}+B^{2}} \angle-\phi=|Y| \angle-\phi
$$

Impedance $Z=\frac{E}{I}=\frac{1}{Y}=\frac{R_{p} X_{p}}{R_{p}{ }^{2}+X_{p}{ }^{2}}\left(X_{p}+j R_{p}\right)$
$=\frac{R_{p} X_{p}}{\sqrt{R_{p}^{2}+X_{p}^{2}}} \angle \phi=|Z| \angle \phi$

parallel circuit

Phase anclo $-\phi=\tan ^{-1} \frac{-B}{O}=\cos ^{-1} \frac{G}{|Y|}=-\tan ^{-1} \frac{R_{p}}{X_{p}}$
Resistance $=R_{s}$
Reactance $X_{s}=\omega L_{s}-\frac{1}{\omega C_{s}}$
Impedance $Z=\frac{E}{I}=R_{s}+j X_{s}$
$=\sqrt{R_{s}{ }^{2}+X_{\delta}{ }^{2}} \angle \phi=|Z| \angle \phi$
Phase angle $\phi=\tan ^{-1} \frac{X_{s}}{R_{s}}=\cos ^{-1} \frac{R_{s}}{|Z|}$
Vectors E and I, phasc angle ϕ, and Z, Y are identical for the parallcl circtit and its equivalent scrics circuit

$Q=|\tan \phi|=\frac{\left|X_{s}\right|}{R_{s}}=\frac{R_{p}}{\left|X_{p}\right|}=\frac{|B|}{G}$
$P F=\cos \phi=\frac{R_{s}}{|Z|}=\frac{|Z|}{R_{p}}=\frac{C}{|Y|}=\sqrt{\frac{R_{s}}{R_{p}}}=\frac{1}{\sqrt{Q^{2}+1}}=\frac{\mathrm{kw}}{\mathrm{kva}}$
$Z^{2}=R_{s}{ }^{2}+X_{s}{ }^{2}=\frac{R_{p}{ }^{2} X_{p}{ }^{2}}{R_{p}{ }^{2}+X_{p}{ }^{2}}=R_{s} R_{p}=X_{s} X_{p}$

$$
\begin{aligned}
& Y^{2}=G^{2}+B^{2}=\frac{1}{R_{p}^{2}}+\frac{1}{X_{p}^{2}}=\frac{G}{R_{s}} \\
& R_{s}=\frac{Z^{2}}{R_{p}}=\frac{G}{Y^{2}}=R_{p} \frac{X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=R_{p} \frac{1}{Q^{2}+1} \\
& X_{s}=\frac{Z^{2}}{X_{p}}=\frac{B}{Y^{2}}=X_{p} \frac{R_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=X_{p} \frac{1}{1+\frac{1}{Q^{2}}} \\
& R_{p}=\frac{!}{G}=\frac{Z^{2}}{R_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{R_{s}}=R_{s}\left(Q^{2}+1\right) \\
& X_{p}=\frac{1}{B}=\frac{Z^{2}}{X_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{X_{s}}=X_{s}\left(1+\frac{1}{Q^{2}}\right)=\frac{R_{s} R_{p}}{X_{s}}= \pm R_{p} \sqrt{\frac{R_{s}}{R_{p}-R_{s}}}
\end{aligned}
$$

Approximate formulas
Reactor $R_{s}=\frac{X^{2}}{R_{p}}$ and $X=X_{s}=X_{p} \quad$ (See Note 1)
Resistor $R=R_{s}=R_{p}$ and $X_{s}=\frac{R^{2}}{X_{p}} \quad$ (See Note 2)

Simplified parallel and series circuifs

$$
X_{p}=\omega L_{p} \quad B=\frac{1}{\omega L_{p}} \quad X_{s}=\omega L_{s}
$$

$$
\tan \phi=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}} \quad Q=\frac{\omega L_{s}^{\prime}}{R_{s}}=\frac{R_{p}}{\omega L_{p}}
$$

$$
\begin{aligned}
& P F=\frac{R_{s}}{\sqrt{R_{s}^{2}+\omega^{2} L_{s}^{2}}}=\frac{\omega L_{p}}{\sqrt{R_{p}^{2}+\omega^{2} L_{p}^{2}}} \\
& P F=\frac{1}{Q} \text { approx (See Note 3) }
\end{aligned}
$$

$$
R_{s}=R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{s}\left(Q^{2}+1\right)
$$

$$
L_{s}=L_{p} \frac{1}{1+\frac{1}{Q^{2}}} \quad L_{p}=L_{s}\left(1+\frac{1}{\mathrm{Q}^{2}}\right)
$$

$$
\begin{aligned}
& X_{p}=\frac{-1}{\omega C_{p}} \quad \mathrm{~B}=-\omega \mathrm{C}_{p} \quad X_{s}=\frac{-1}{\omega C_{2}} \\
& \tan \phi=\frac{-1}{\omega C_{s} R_{s}}=-\omega C_{p} R_{p} \\
& Q=\frac{1}{\omega C_{s} R_{s}}=\omega C_{p} R_{p} \\
& P F=\frac{\omega C_{s} R_{s}}{\sqrt{1+\omega^{2} C_{s} R_{s}{ }^{2}}}=\frac{1}{\sqrt{1+\omega^{2} C_{p} R_{p}{ }^{2}}} \\
& P F=\frac{1}{Q} \text { approx } \quad(\operatorname{See} \operatorname{Note} 3) \\
& R_{s}=R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{s}\left(Q^{2}+1\right) \\
& C_{p}\left(1+\frac{1}{Q^{2}}\right) \quad C_{p}=C_{s} \frac{1}{1+\frac{1}{Q^{2}}}
\end{aligned}
$$

Approximate formulas

$$
\begin{aligned}
& \text { Inductor } R_{s}=\frac{\omega^{2} L^{2}}{R_{p}} \text { and } L=L_{p}=L_{s} \quad \text { (See Note 1) } \\
& \text { Resistor } R=R_{s}=R_{p} \text { and } L_{p}=\frac{R^{2}}{\omega^{2} L_{s}} \quad \text { (See Note 2) }
\end{aligned}
$$

Capacitor $R_{s}=\frac{1}{\omega^{2} C^{2} R_{p}}$ and $C=C_{p}=C_{s} \quad$ (See Note 1)
Resistor $R=R_{z}=R_{p}$ and $C_{s}=\frac{1}{\omega^{2} C_{p} R^{2}} \quad$ (See Note 2)
Note 1: (Small resistive component) Error in percent $=-\frac{100}{Q^{2}}$ (for $Q=10$,
error $=1$ percent low) error $=1$ percent lowl

Note 2: (Small reactive camponent) Error in percent $=-100 Q^{2}$ (for $Q=$ 0.1, error $=1$ percent low)

Note 3: Error in percent $=+\frac{50}{Q^{2}}$ approximately (for $Q=7$, error $=1,1$
percent high) percent high)

Skin effect

A $=$ correction coefficient
$D=$ diameter of conductor in inches
$f=$ frequency in cycles per second
$R_{a c}=$ resistance at frequency f
$R_{d c}=$ direct-current resistance
$T=$ thickness of tubular conductor in inches
$T_{1}=$ depth of penetration of current
$\mu=$ permeability of conductor material $/ \mu=1$ for copper and other nonmagnetic materials)
$\rho=$ resistivity of conductor material at any temperature
$\rho_{c}=$ resistivity of copper at $20^{\circ} \mathrm{C} \quad 11.724$ microhm-centimeter)
Fig. 5 shows the relationship of $R_{a c} / R_{d c}$ versus $D \sqrt{f}$ for copper, or versus $D \sqrt{f} \sqrt{\mu_{\rho}} \bar{\rho}_{\rho}$ for any conductor material, for an isolated straight solid conductor of circular cross section. Negligible error in the formulas for $R_{a c}$ results when the conductor is spaced at least 100 from adjacent conductors. When the spacing between axes of parallel conductors carrying the same current is 4D, the resistance $R_{a c}$ is increased about 3 percent. The formulas are accurate for concentric lines due to their circular symmetry.

For values of $D \sqrt{f} \sqrt{\mu_{\rho}} \frac{\rho_{\rho}}{\rho}$ greater than 40,
$\frac{R_{a c}}{R_{d e}}=0.0960 D \sqrt{f} \sqrt{\mu} \frac{\rho_{\rho}}{\rho}+0.26$
The high-frequency resistance of an isolated straight conductor: either solid; or tubular for $T<\frac{D}{8}$ or $T_{1}<\frac{D}{8}$; is given in equation (2). If the current flow is along the inside surface of a tubular conductor, D is the inside diameter.
$R_{a c}=A \frac{\sqrt{f}}{D} \sqrt{\mu} \frac{\rho}{\rho_{c}} \times 10^{-6}$ ohms per foot
The values of the correction coefficient A for solid conductors are shown in Table II and, for fubular conductors, in Table III.

The value of $T \sqrt{f} \sqrt{\mu} \frac{\rho_{\rho}}{\rho}$ that just makes $A=1$ indicates the penetration of

Skin effect continued

Fig. 5-Resistance ratio for isolated straight solid conductors of circular cross section.

AUDIO AND RADIO DESIGN

Skin effect
the currents below the surface of the conductor. Thus, approximately,
$T_{1}=\frac{3.5}{\sqrt{f}} \sqrt{\frac{\rho}{\mu \rho_{c}}}$ inches.
When $T_{1}<\frac{D}{8}$ the value of $R_{a c}$ as given by equation (2) (but not the value of $\frac{R_{a c}}{R_{d o}}$ in Table III) is correct for any value $T \geqq T_{1}$.
Under the limitation that the radius of curvature of all parts of the cross section is appreciably greater than T_{L}, equations (2) and (3) hold for isolated straight conductors of any shape. In this case the term $D=$ (perimeter of cross section) $\div \pi$.

Examples

1. At 100 megacycles, a copper conductor has a depth of penetration $T_{1}=0.00035$ inch.
2. A steel shield with 0.005 -inch copper plate, which is practically equivalent in $R_{a c}$ to an isolated copper conductor 0.005 -inch thick, has a value of $A=1.23$ at 200 kilocycles. This 23-percent increase in resistance over that of a thick copper sheet is satisfactorily low as regards its effect on the losses of the components within the shield. By comparison, a thick aluminum sheet has a resistance $\sqrt{\frac{\rho}{\rho_{c}}}=1.28$ times that of copper.

Table II-Solid conductors

$D \sqrt{f} \sqrt{\mu \frac{\rho_{e}}{\rho}}$	A
>370	1.000
220	1.005
160	1.010
98	1.02
48	1.05
26	1.10
13	1.20
9.6	1.30
<3.3	2.00
<3.0	$R_{a c} \approx R_{d o}$
$R_{d o}=\frac{10.37}{D^{2}} \frac{\rho}{\rho_{c}} \times 10^{-8}$ ohms per foot	

Table III-Tubular conductors

$T \sqrt{f} \sqrt{\mu \frac{\rho_{c}}{\rho}}$	A	$\mathbf{R a c}_{\text {ac }} / \mathbf{R}_{\text {dc }}$
$\left.\begin{array}{l} =B \text { where } \\ B>3.5 \end{array}\right\}$	1.00	0.384 B
3.5	1.00	1.35
3.15	1.01	1.23
2.85	1.05	1.15
2.60	1.10	1.10
2.29	1.20	1.06
2.08	1.30	1.04
1.77	1.50	1.02
1.31	2.00	1.00
$\left.\begin{array}{rl} = & B \text { where } \\ B<1.3 \end{array}\right\}$	$\frac{2.60}{B}$	1.00

Network theorems

Reciprocity theorem

If an emf of any character whatsoever located at one point in a linear network produces a current at any other point in the network, the same emf acting at the second point will produce the same current at the first point.

Thévenin's theorem

If an impedance Z is connected between two points of a linear network, the resulting steady-state current I through this impedance is the ratio of the potential difference V between the two points prior to the connection of Z, and the sum of the values of (1) the connected impedance Z, and (2) the impedance Z_{1} of the network measured between the two points, when all generators in the network are replaced by their internal impedances

$$
I=\frac{V}{Z+Z_{1}}
$$

Principle of superposition

The current which flows at any point in a network composed of constant resistances, inductances, and capacitances, or the potential difference which exists between any two points in such a network, due to the simultaneous action of a number of emf's distributed in any manner throughout the network, is the sum of the component currents at the first point, or the potential differences between the two points, which would be caused by the individual emf's acting alone. (Applicable to emf's of any character.)
In the application of this theorem, it is to be noted that: for any impedance element Z through which flows a current I, there may be substituted a virtual source of voltage of value $-Z I$.

Electrical circuit formulas

1. Self-inductance of circular ring of round wire af radio frequencies, for non-magnefic materials
$L=\frac{a}{100}\left[7.353 \log _{10} \frac{16 a}{d}-6.370\right]$
$L=$ inductance in microhenries
$a=$ mean radius of ring in inches
$d=$ diameter of wire in inches
$\frac{a}{d}>2.5$

Electrical circuit formulas

continued

2. Capacitance of a parallel-plate capacitor

$C=0.0885 K \frac{(N-1) A}{1}$ micromicrofarads
$A=$ area of one side of one plate in square centimeters
$N=$ number of plates
$t=$ thickness of dielectric in centimeters
$K=$ dielectric constant
This formula neglects "fringing" at the edges of the plates.

3. Reactance of an inductor

$X=2 \pi f L$ ohms
$f=$ frequency in cycles per second
$L=$ inductance in henries
or f in kilocycles and L in millihenries; or \dagger in megacycles and L in microhenries

4. Reactance of a capacitor

$X=\frac{-1}{2 \pi f C}$ ohms
$f=$ frequency in cycles per second
$C=$ capacitance in farads
This may be written $\quad X=\frac{-159.2}{f C}$ ohms
$f=$ frequency in kilocycles per second
$C=$ capacitance in microfarads
or f in megacycles and C in milli-microfarads $10.001 \mu f)$.

5. Resonant frequency of a series-funed circuit

$f=\frac{1}{2 \pi \sqrt{L C}}$ cycles per second
$L=$ inductance in henries
C = capacitance in farads
This may be written $L C=\frac{25,330}{f^{2}}$
$f=$ frequency in kilocycles
$L=$ inductance in millihenries
$\mathrm{C}=$ capacitance in milli-microfarads $(0.001 \mu \mathrm{f})$
or f in megacycles, L in microhenries, and C in micromicrofarads.

Electrical circuit formulas continued

6. Dynamic resistance of a parallel-funed circuit at resonance

$r=\frac{X^{2}}{R}=\frac{L}{C R}$ ohms
$X=\omega L=\frac{1}{\omega C}$
$R=r_{1}+r_{2}$
$L=$ inductance in henries
C = capacitance in farads
$R=$ resistance in ohms
The formula is accurate for engineering purposes provided $\frac{X}{R}>10$.

7. Parallel impedances

If Z_{1} and Z_{2} are the two impedances which are connected in parallel, then the resultant impedance is

$$
\begin{aligned}
Z & =\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{\left(R_{1}+j X_{1}\right)\left(R_{2}+j X_{2}\right)}{\left(R_{1}+R_{2}\right)+j\left(X_{1}+X_{2}\right)}=\frac{\left(R_{1} R_{2}-X_{1} X_{2}\right)+j\left(R_{1} X_{2}+R_{2} X_{1}\right)}{\left(R_{1}+R_{2}\right)+j\left(X_{1}+X_{2}\right)} \\
Z & =\frac{|Z|\left|Z_{2}\right|}{\left|Z_{1}+Z_{2}\right|} \angle \phi \\
\phi & =\angle Z_{1}+\angle Z_{2}-\angle\left(Z_{1}+Z_{2}\right) \\
& =\tan ^{-1} \frac{X_{1}}{R_{1}}+\tan ^{-1} \frac{X_{2}}{R_{2}}-\tan ^{-1} \frac{X_{1}+X_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Given one impedance Z_{1} and the desired resultant impedance Z, the other impedance is

$$
Z_{2}=\frac{z Z_{1}}{Z_{1}-Z}
$$

8. Impedence of a two-mesh network

$Z_{11}=R_{11}+j X_{11}$
is the impedance of the first circuit, measured at terminals $1-1$ with terminals $2-2$ open-circuited.
$Z_{22}=R_{22}+j \chi_{22}$

AUdIO and radio design

Electrical circuit formulas
is the impedance of the second circuit, measured at terminals $2-2$ with terminals 1-1 open-circuited.
$Z_{12}=R_{12}+j X_{12}$
is the mutual! impedance between the two meshes, i.e., the open-circuit voltage apparing in either mesh when unit current flows in the other mesh.

Then the impedance looking into terminals
 1-1 with terminals $2-2$ short-circuited is
$Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=Z_{11}-\frac{Z_{12}^{2}}{Z_{22}}=R_{11}+j X_{11}-\frac{R_{12}^{2}-X_{12}^{2}+2 j R_{12} X_{12}}{R_{22}+j X_{22}}$
When
$R_{12}=0$
$Z_{1}^{\prime}=R_{1}^{\prime}+j X_{1}^{\prime}=Z_{11}+\frac{X_{12}^{2}}{Z_{22}}=R_{11}+j X_{11}+\frac{X_{12}{ }^{2}}{R_{22}^{2}+X_{22}^{2}}\left(R_{22}-j X_{22}\right)$
Example 1: Two resistors in parallel.
$Z_{11}=R_{1} \quad Z_{22}=R_{1}+R_{2}$
$Z_{12}=R_{1}$
Hence $Z_{1}^{\prime}=R_{1}^{\prime}=R_{1}-\frac{R_{1}{ }^{2}}{R_{1}+R_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

Example 2: A transformer with tuned secondary and negligible primary resistance.
$Z_{11}=j \omega L_{1}$
$Z_{22}=R_{2} \quad$ since $X_{22}=0$
$Z_{12}=j \omega M$
Then $Z_{1}^{\prime}=j \omega L_{1}+\frac{\omega^{2} \mathrm{M}^{2}}{R_{2}}$

9. Currents in a two-mesh network

$$
\begin{aligned}
i_{1} & =\frac{e_{1}}{Z_{1}^{\prime}} \\
& =e_{1} \frac{Z_{22}}{Z_{11} Z_{22}-Z_{12}{ }^{2}} \\
& =e_{1} \frac{R_{22}+j X_{22}}{\left(R_{11} R_{22}-X_{11} X_{22}-R_{12}{ }^{2}+X_{12}{ }^{2}\right)+j\left(R_{11} X_{22}+R_{22} X_{11}-2 R_{12} X_{12}\right)} \\
i_{2} & =e_{1} \frac{Z_{12}}{Z_{11} Z_{22}-Z_{12}{ }^{2}}
\end{aligned}
$$

10. Power transfer between two impedances connected direcily

Let $Z_{1}=R_{1}+j X_{1}$ be the impedance of the source, and $Z_{2}=R_{2}+j X_{2}$ be the impedance of the load.

The maximum power transfer occurs when

$$
R_{2}=R_{1} \text { and } X_{2}=-X_{1}
$$

The reflection loss due to connecting any two impedances directly is

$$
\frac{I_{2}}{I}=\frac{\left|Z_{1}+Z_{2}\right|}{2 \sqrt{R_{1} R_{2}}}
$$

In decibels

$$
\mathrm{db}=20 \log _{10} \frac{\left|Z_{1}+Z_{2}\right|}{2 \sqrt{R_{1} R_{2}}}
$$

$I_{2}=$ current which would flow in Z_{2} were the two impedances connected through a perfect impedance matching network.
$I=$ current which flows when the impedances are connected directly.

11. Power transfer between two meshes coupled reactively

In the general case, X_{11} and X_{22} are not equal to zero and X_{12} may be any reactive coupling. When only one of the quantities X_{11}, X_{22}, and X_{12} can be varied, the best power transfer under the circumstances is given by

Electrical circuif formulas

 continuedFor X_{22} variable
$X_{22}=\frac{X_{12}{ }^{2} X_{11}}{R_{11}{ }^{2}+X_{11}{ }^{2}}$ (zero reactance looking into load circuit)
For X_{11} variable
$X_{11}=\frac{X_{12}{ }^{2} X_{22}}{R_{22}{ }^{2}+X_{22^{2}}}$ (zero reactance looking into source circuit)
For X_{12} variable
$X_{12}{ }^{2}=\sqrt{\left(\mathbb{R}_{11}{ }^{2}+X_{11}{ }^{2}\right)\left(R_{22}{ }^{2}+X_{22}{ }^{2}\right)}$
When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when
$X_{12}{ }^{2}=\sqrt{\left(R_{11}{ }^{2}+X_{11}{ }^{2}\right)\left(R_{22}{ }^{2}+X_{22}{ }^{2}\right)}$
and
$\frac{X_{11}}{R_{11}}=\frac{X_{22}}{R_{22}}$ (both circuits of same Q or phase angle)
For perfect impedance match the current is

$$
i_{2}=\frac{e_{1}}{2 \sqrt{R_{11} R_{22}}} \angle \tan ^{-1} \frac{R_{11}}{X_{11}}
$$

In the most common case, the circuits are funed to resonance $X_{11}=0$ and $X_{22}=0$. Then $X_{12}{ }^{2}=R_{11} R_{22}$ for perfect impedance match.

12. Optimum coupling between two circuits tuned to the same frequency

From the last result in the preceding section, maximum power transfer lor an impedance match) is obtained for $\omega^{2} M^{2}=R_{1} R_{2}$
where M is the mutual inductance between the circuits, R_{1} and R_{2} are the resistances of the two circuits.

13. Coefficient of coupling

By definition, coefficient of coupling k is

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}} \quad \text { where } M=\text { mutual inductance }
$$

L_{1} and L_{2} are the inductances of the two coupled circuits.

Coefficient of coupling is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby, objects which affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil.

14. Selective circuits

Formulas and curves are presented for the selectivity and phase shift
Of n single tuned circuits
Of m pairs of coupled tuned circuits
The conditions assumed are

1. All circuits are tuned to the same frequency fo.
2. All circuits have the same Q, or each pair of circuits includes one circuit having Q_{1}, and the other having Q_{2}.
3. Otherwise the circuits need not be identical.
4. Each successive circuit or pair of circuits is isolated from the preceding and following ones by tubes, with no regeneration around the system.
Certain approximations have been made in order to simplify the formulas. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that
5. The reactance around each circuit is equal to $2 X_{0} \frac{\Delta f}{1_{0}}$.
6. The resistance of each circuit is constant and equal to $\frac{X_{0}}{Q}$.
7. The coupling between two circuits of a pair is reactive and constant. When an untuned limk is used to couple the two circuits, this condition frequently is far from satisfied, resulting in a lopsided selectivity curve.)
8. The equivalent input voltage, taken as being in series with the tuned circuit (or the first of a pair), is assumed to bear a constant proportionality to the grid voltage of the input tube or other driving source, at all frequencies in the band.
9. Likewise, the output voltage across the circuit lor the final circuit of a pairl is assumed to be proportional only to the current in the circuit.

Electrical circuit formulas continued

The following symbols are used in the formulas.
$\frac{\Delta f}{f_{0}}=\frac{f-f_{0}}{f_{0}}=\frac{\text { deviation from resonance frequency }}{\text { resonance frequency }}$
$f=$ signal frequency
$f_{0}=$ frequency to which all circuits are independently tuned
$X_{0}=$ reactance at f_{0} of inductor in tuned circuit
$Q=$ quality factor of tuned circuit. For a pair of coupled circuits; there is used $Q=\sqrt{Q_{1} Q_{2}}$
Q_{1} and Q_{2} are the values for the two circuits of a coupled paip
$Q^{\prime}=\frac{2 Q_{1} Q_{2}}{Q_{1}+Q_{2}}$
$E=$ amplitude of output voltage at frequency f \} both for the same value
$E_{0}=$ amplitude of output voltage at frequency $f_{0} \int$ of input voltage
$n=$ number of single tuned circuits
$m=$ number of pairs of coupled circuits
$\phi=$ phase shift of signal at f relative to shift at f_{0}, as signal passes through cascade of circuits
$k=$ coefficient of coupling between two coupled circuits
$p=k^{2} Q^{2}$ or $p=k^{2} Q_{1} Q_{2}$, a parameter determining the form of the selec: tivity curve of coupled circuits
$B=p-\frac{1}{2}\left(\frac{Q_{1}}{Q_{2}}+\frac{Q_{2}}{Q_{1}}\right)$

Selectivity and phase shift of single funed circuits'

$$
\frac{E}{E_{0}}=\left[\frac{1}{\sqrt{1+\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}}\right]^{n}
$$

$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{\left(\frac{E_{0}}{E}\right)^{\frac{2}{n}}-1}$

Decibel response $=20 \log _{10}\left(\frac{E}{E_{0}}\right)$
(db response of n circuits) $=n$ times (db response of single circuit)
$\phi=n \tan ^{-1}\left(-2 Q \frac{\Delta f}{f_{0}}\right)$
These equations are plotted in Fig. 6 and Fig. 7, following:

$Q \frac{\Delta f}{f_{0}}=Q \frac{f-f_{0}}{f_{0}}$
db response of

- a single circuit $n=1$
- o pair of coupled circuits $m=1$

The selectivity curves ore symmetrical about the axis $Q \frac{\Delta f}{f_{0}}=0$ for practical purposes.

Extrapolation beyond lower limits of chart:

Δ response for doubling Δf	circuit	usoful Limit	
		at $\frac{\Delta f}{f_{0}}$	error becomes
- 6 db	\leftarrow single \rightarrow	± 0.3	1 to 2 db
$-12 \mathrm{db}$	\leftarrow pair	± 0.2	3 to 4 db

Fig. 6-Selectivity curves.

As an example of the use of the curves, suppose there are three single-tuned circuits $\ln =3$). Each circuit has a $Q=200$ and is tuned to 1000 kilocycles. The results of this example are shown in the following table:

abscissa $\mathbf{Q} \frac{\Delta f}{\mathbf{f}_{0}}$	Δf $\mathbf{k c}$	ordinate db response for $\mathbf{n}=1$	db response for $\mathbf{n}=\mathbf{3}$	$\boldsymbol{\phi}^{*}$ for $\mathbf{n}=\mathbf{1}$	ϕ^{*} for $\mathbf{n}=\mathbf{3}$
0.5	± 2.5	-3.0	-9	$\mp 45^{\circ}$	$\mp 135^{\circ}$
1.5	± 7.5	-10.0	-30	$\mp 71 / 2^{\circ}$	$\mp 215^{\circ}$
5.0	± 25.0	-20.2	-61	$\mp 84^{\circ}$	$\mp 252^{\circ}$

[^8]
$$
Q \frac{\Delta f}{f_{0}}=Q \frac{f-f_{0}}{f_{0}}
$$
-relative phase angle ϕ in degrees
-a single circuit $n=1$

- a pair af coupled circuits $m=1$

The curves are symmetrical about the arigin. Far negative values af $Q \frac{\Delta f}{f_{0}}, \phi$ is positive and same numerical value as far corresponding negative value of $Q \frac{\Delta f}{f_{0}}$.

Fig. 7-Phase-shiff curves.

Selectivity and phase shift of pairs of coupled tuned circuits
Case 1: When $Q_{1}=Q_{2}=Q$
These formulas can be used with reasonable accuracy when Q_{1} and Q_{2} differ by ratios up to 1.5 or even 2 to 1 . In such cases use the value $Q=\sqrt{Q_{1} Q_{2}}$.

For very small values of $\frac{E}{E_{0}}$ the formulas reduce to
one of several types of coupling
$\frac{E}{E_{0}}=\left[\frac{\rho+1}{\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]^{m}$
Decibel response $=20 \log _{10}\left(\frac{E}{E_{0}}\right)$
(db response of m pairs of circuits) $=m$ times (db response of one pair)
$\phi=m \tan ^{-1}\left[\frac{-4 Q \frac{\Delta f}{f_{0}}}{(\rho+1)-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]$
As p approaches zero, the selectivity and phase shift approach the values for n single circuits, where $n=2 m$ (gain also approaches zero).

The above equations are plotted in Figs. 6 and 7.
For overcoupled circuits ($p>1$)
Location of peaks: $\left(\frac{\Delta f}{f_{0}}\right)_{\text {peak }}= \pm \frac{1}{2 Q} \sqrt{p-1}$
Amplitude of peaks: $\left(\frac{E}{E_{0}}\right)_{\text {peak }}=\left(\frac{\rho+1}{2 \sqrt{\rho}}\right)^{m}$
Phase shift at peaks: $\quad \phi_{\text {peak }}=m \tan ^{-1}(\mp \sqrt{p-1})$

Electrical circuit formulas

continued

Approximate pass band (where $\frac{E}{E_{0}}=1$):
$\left(\frac{\Delta f}{f_{0}}\right)_{\text {coneer }}=0$ and $\left(\frac{\Delta f}{f_{0}}\right)_{\text {unity }}=\sqrt{2}\left(\frac{\Delta f}{f_{0}}\right)_{\text {peak }}= \pm \frac{1}{Q} \sqrt{\frac{p-1}{2}}$
Case 2: General formula for any Q_{1} and Q_{2}

$$
\begin{aligned}
& \frac{E}{E_{0}}=\left[\frac{\rho+1}{\sqrt{\left[\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}-B\right]^{2}+(p+1)^{2}-B^{2}}}\right]^{m} \\
& \frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q \sqrt{B \pm\left[(p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-(p+1)^{2}+B^{2}\right]^{\frac{2}{2}}}} \\
& \phi=m \tan ^{-2}\left[-\frac{2 Q \frac{\Delta f}{f_{0}}\left(\sqrt{\frac{Q_{1}}{Q_{2}}}+\sqrt{\frac{Q_{2}}{Q_{1}}}\right)}{(p+1)-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]
\end{aligned}
$$

For overcoupled circuits
Location of peaks: $\left(\frac{\Delta f}{f_{0}}\right)_{\text {peak }}= \pm \frac{\sqrt{B}}{2 Q}= \pm \frac{1}{2} \sqrt{k^{2}-\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)}$
Amplitude of peaks: $\left(\frac{E}{E_{0}}\right)_{\text {peak }}=\left[\frac{p+1}{\sqrt{(p+1)^{2}-B^{2}}}\right]^{m}$
Case 3: Peaks just converged to a single peak
Here $B=0 \quad$ or $\quad k^{2}=\frac{1}{2}\left(\frac{1}{Q_{2}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)$
$\frac{E}{E_{0}}=\left[\frac{2}{\sqrt{\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{4}+4}}\right]^{m} ; \quad \frac{\Delta f}{f_{0}}= \pm \frac{\sqrt{2}}{4}\left(\frac{1}{Q_{1}}+\frac{1}{Q_{2}}\right) \sqrt[4]{\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-1}$
$\phi=m \tan ^{-1}\left[-\frac{4 Q^{\prime} \frac{\Delta f}{f_{0}}}{2-\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{2}}\right]$
The curves of Figs. 6 and 7 may be applied to this case, using the value $p=1$, and substituting Q^{\prime} for Q.

Electrical circuit formulas continued

15. $T-\pi$ or $Y-\Delta$ transformation

The two networks are equivalent, as far as conditions at the terminals are concerned, provided the following equations are satisfied. Either the impedance equations or the admittance equations may be used.

Impedance equations

$$
\begin{aligned}
& Z_{12}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}}{Z_{3}} \\
& Z_{13}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{8}}{Z_{2}} \\
& Z_{28}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{2}}{Z_{1}} \\
& Z_{1}=\frac{Z_{12} Z_{13}}{Z_{12}+Z_{13}+Z_{23}} \\
& Z_{2}=\frac{Z_{12} Z_{23}}{Z_{12}+Z_{18}+Z_{23}} \\
& Z_{3}=\frac{Z_{13} Z_{23}}{Z_{12}+Z_{13}+Z_{28}}
\end{aligned}
$$

Admittance equations
$Y_{12}=\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}+Y_{3}}$
$Y_{13}=\frac{Y_{1} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}$
$\gamma_{23}=\frac{Y_{2} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}$
$\gamma_{1}=\frac{\gamma_{12} Y_{18}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{23}}$
$\gamma_{2}=\frac{\gamma_{12} Y_{18}+Y_{12} Y_{23}+Y_{18} Y_{23}}{Y_{13}}$
$\gamma_{3}=\frac{\gamma_{12} \gamma_{13}+Y_{12} Y_{23}+\gamma_{18} Y_{23}}{\gamma_{12}}$

16. Amplitude modulation

In design work, usually the entire modulation is assumed to be in \mathcal{M}_{1}. Then \mathcal{M}_{2}, M_{3} etc, would be neglected in the formulas below.
When the expression $\left(1+M_{1}+M_{2}+\ldots.\right)$ is used, it is assumed that ω_{1}, ω_{2} etc, are incommensurate.
$i=I\left[1+M_{1} \cos \left(\omega_{1} \dagger+\phi_{1}\right)+M_{2} \cos \left(\omega_{2} t+\phi_{2}\right)+\ldots.\right] \sin \left(\omega_{0} t+\phi_{0}\right)$

Electrical circuit formulas continued

To determine the modulation percentage from an oscillogram of type lllustrated apply measurements A and B to scales A and B and read percentage from center scale. Example: $A=3$ inches, $B=0.7$ inches-Modulation 62%. Any units of measurement may be used.

Fig. 8-Modulation percentoge from oseillograms.

Electrical circuil formulas continued

$$
\begin{aligned}
& =l\left\{\sin \left(\omega_{0} t+\phi_{0}\right)+\frac{M_{1}}{2}\left[\sin \left(\overline{\omega_{0}+\omega_{1}} t+\phi_{0}+\phi_{1}\right)+\right.\right. \\
& \left.\left.\sin \overline{\left(\omega_{0}-\omega_{1}\right.} t+\phi_{0}-\phi_{1}\right)\right]+\frac{M_{2}}{2}\left[\sin \left(\overline{\omega_{0}+\omega_{2}} t+\phi_{0}+\phi_{2}\right)+\right. \\
& \left.\left.\left.\sin \overline{\left[\omega_{0}-\omega_{2}\right.} \mid+\phi_{0}-\phi_{2}\right)\right]+\ldots\right\} \\
& \text { Percent modulation }=\left(M_{1}+M_{2}+\ldots .\right) \times 100 \\
& =\frac{\text { crest ampl }- \text { trough ampl }}{\text { crest ampl }+ \text { trough ampl }} \times 100 \text {. }
\end{aligned}
$$

Percent modulation may be measured by means of an oscilloscope, the modulated carrier wave being applied to the vertical plates and the modulating voltage wave to the horizontal plates. The resulting trapezoidal pattern and a nomograph for computing percent modulation are shown in Fig. 8. The dimensions A
 and B in that figure are proportional to the crest amplitude and trough amplitude, respectively.
Peak voltage at crest: $V_{\text {creas }}=V_{\text {carrier, rms }} 11+M_{1}+M_{2}+\ldots .1 \sqrt{2}$
Kilovolt-amperes at crest: $\mathrm{kva}_{\text {cras }}=\mathrm{kva}_{\text {earrier }}\left(1+M_{1}+M_{2}+\ldots\right)^{2}$
Average kilovolt-amperes over a number of cycles of lowest modulation frequency:
k va $_{\text {averase }}=k v 0_{\text {carrier }}\left(1+\frac{M_{1}{ }^{2}}{2}+\frac{M_{2}{ }^{2}}{2}+\ldots\right)$
Effective current of the modulated wave:
$I_{a f f}=I_{\text {carrisr, } r_{m u}} \sqrt{1+\frac{M_{1}{ }^{2}}{2}+\frac{M_{2}{ }^{2}}{2}+\ldots}$

17. Elementary R-C, R-L, and L-C filters

Simple attentuating sections of broad frequency discriminating characteristics, as used in power supplies, grid-bias feed, etc. The output load impedance is assumed to be high compared to the impedance of the shunt element of the filter.

Electrical circuit formulas
continued

R in ohms
L in henries
C in farads
$11 \mu f=10^{-6}$ farad)
$T=$ time constant (seconds) $f_{0}=$ resonant frequency (cps) $\quad \omega=2 \pi f$
$2 \pi=6.28 \quad \frac{1}{2 \pi}=0.1592 \quad 4 \pi^{2}=39.5 \quad \frac{1}{4 \pi^{2}}=0.0253$

Electrical circuit formulas continued

The relationships for low-pass filters are plotted in Figs. 9 and 10.

Examples

1. Low-pass R-C filters
a. $\quad R=100,000$ ohms, $C=0.1 \times 10^{-6} 10.1 \mu \mathrm{f}$

Then $T=R C=0.01$ second

$$
\begin{aligned}
& \text { At } t=100 \mathrm{cps}, \frac{E_{\text {out }}}{E_{\text {in }}}=0.16- \\
& \text { At } t=30,000 \mathrm{cps}, \frac{E_{\text {out }}}{E_{\text {in }}}=0.00053
\end{aligned}
$$

N is any convenient factor, usually taken as an integral power of 10.

Fig. 9-Low-pass R-C and R-L filters.

Electrical circuit formulas continued

b. $\quad R=1,000$ ohms, $C=0.001 \times 10^{-6}$

$$
T=1 \times 10^{-6} \text { second }=0.1 \div \mathrm{N}, \text { where } \mathrm{N}=10^{5}
$$

$$
\text { At } f=10 \text { megacycles }=100 \times N, \frac{E_{\text {out }}}{E_{\text {in }}}=0.016-
$$

2. Low-pass $L-C$ filter

$$
\text { At } f=120 \mathrm{cps}, \text { required } \frac{E_{\text {ous }}}{E_{i \pi}}=0.03
$$

Then from curves: $L C=6 \times 10^{-5}$ approximately. Whence, for $C=4 \mu \mathrm{f}$, we require $L=15$ henries.

Fig. 10-Low-pass L-C filtors.

92

Electrical circuit formulas continued

18. Transients

The complete transient in a linear network is, by the principle of superposition, the sum of the individual transients due to the store of energy in each inductor and capacitor and to each external source of energy connected to the network. To this is added the steady state condition due to each external source of energy. The transient may be computed as starting from any arbitrary time $t=0$ when the initial conditions of the energy of the network are known.
Convention of signs: In the following formulas, one direction of current is assumed to be positive, and any emf on a capacitor or in an external source, tending to produce a current in the positive direction, is designated as positive. In the case of the charge of a capacitor, this results in the capacitor voltage being the negative of the value sometimes conventionally used, wherein the junction of the source and the capacitor is assumed to be grounded and potentials are computed with respect to ground.
Time constant (designated T): of the discharge of a capacitor through a resistor is the time $f_{2}-f_{1}$ required for the voltage or current to decay to $\frac{1}{6}$ of its value at time t_{1}. For the charge of a capacitor the same definition ϵ
applies, the voltage "decaying" toward its steady state value. The time constant of discharge or charge of the current in an inductor through a resistor follows an analogous definition.
Energy stored in a capacitor $=\frac{1}{2}$ CE 2 joules (watt-seconds).
Energy stored in an inductor $=\frac{1}{2} L I^{2}$ joules (watt-seconds).
$\epsilon=2.718 \quad \frac{1}{\epsilon}=0.3679 \quad \log _{10} \epsilon=0.4343 \quad T$ and f in seconds
R in ohms L in henries $\quad C$ in farads $\quad E$ in volts $\quad I$ in amperes

Capacitor charge and discharge

Closing of switch occurs at time $:=0$
Initial conditions lat $t=0$): Battery $=E_{b} ; \mathrm{e}_{\mathrm{c}}=\mathrm{E}_{a}$.
Steady state (at $t=\infty): i=0 ; \mathrm{e}_{c}=-E_{b}$.
Transient:

$$
\begin{aligned}
& i=\frac{E_{b}+E_{0}}{R} \epsilon^{-\frac{i}{R C}}=I_{0} \epsilon^{-\frac{i}{R C}} \\
& \log _{10}\left(\frac{i}{I_{0}}\right)=-\frac{0.4343}{R C}
\end{aligned}
$$

Electrical circuif formulas

 continued$e_{c}=E_{0}-\frac{1}{C} \int_{0}^{t} i d t=E_{0} \epsilon^{-\frac{t}{R C}}-E_{b}\left(1-\epsilon^{-\frac{t}{R C}}\right)$
Time constant: $T=R C$
Fig. 11 shows current $\quad \frac{i}{I_{0}}=\epsilon^{-\frac{i}{T}}$
Fig. 11 shows discharge (for $E_{b}=0$) $\frac{e_{c}}{E_{0}}=\epsilon^{-\frac{i}{T}}$
Fig. 12 shows charge (for $\left.E_{0}=0\right) \quad-\frac{e_{c}}{E_{b}}=\left(1-\epsilon^{-\frac{?}{T}}\right)$

Fig. 11.

Fig. 12.

These curves are plotted on a larger scale in Fig. 13.

Two capacitors

Closing of switch occurs at time $t=0$
Initial conditions (at $1=0$):
$e_{1}=E_{1 ;} e_{2}=E_{2}$.
Steady state lat $t=\infty$):
$e_{1}=E_{f ;} e_{2}=-E_{f ; i}=0$.
$E_{f}=\frac{E_{1} C_{1}-E_{2} C_{2}}{C_{1}+C_{2}} \quad C^{\prime}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
Transient:

$$
i=\frac{E_{1}+E_{2}}{R} \epsilon^{-\frac{t}{R C^{\prime}}}
$$

94

Electrical circuit formulas

 continued$e_{1}=E_{f}+\left(E_{1}-E_{f}\right) \epsilon^{-\frac{1}{R C^{\prime}}}=E_{1}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{1}}\left(1-\epsilon^{-\frac{8}{R C^{\prime}}}\right)$
$\left.e_{2}=-E_{f}+\left|E_{2}+E_{f} \epsilon^{-\frac{b}{R C^{\prime}}}=E_{2}-\right| E_{1}+E_{2}\right\rangle \frac{C^{\prime}}{C_{2}}\left(1-\epsilon^{-\frac{f}{R C^{\prime}}}\right)$
Original energy $=\frac{1}{2}\left(C_{1} E_{1}{ }^{2}+C_{2} E_{2}{ }^{2}\right)$ joules
final energy $=\frac{1}{2}\left(C_{1}+C_{2}\right) E_{f}{ }^{2}$ ioules
Loss of energy $=\int_{0}^{\infty} i^{2} R d t=\frac{1}{3} C^{\prime}\left(E_{1}+E_{2}\right)^{2}$ ioules
thoss is independent of the value of R.I

Use exponential $\epsilon^{-\frac{1}{T}}$ for charge or discharge of capacitor or discharge of inductor:

$$
\frac{\text { current at time } t}{\text { initial current }}
$$

discharge of capacitor:

$$
\frac{\text { voltage at time } t}{\text { initial voltage }}
$$

Use exponential $1-\epsilon^{-\frac{8}{T}}$ for charge of capacitor:
voltage at time t battery or final voltage charge of inductor: $\frac{\text { current at time } f}{\text { final current }}$

Fig. 13-Exponential functions $\epsilon^{-\frac{t}{T}}$ and $1-\epsilon^{-\frac{t}{T}}$ applied to transionts in R-C and L- \mathbf{R} circulfs.

Electrical circuit formulas continued

Inductor charge and discharge
Initial conditions lat $t=0$):
Battery $=E_{b} ; \mathbf{i}=I_{0}$
Steady state (at $t=\infty): i=I_{f}=\frac{E_{b}}{R}$
Transient, plus steady state:

$$
\begin{aligned}
i & =I_{f}\left(1-\epsilon^{-\frac{R t}{L}}\right)+\dot{I}_{0} \epsilon^{-\frac{R t}{L}} \\
e_{L} & =-L \frac{d i}{d t}=-\left(E_{b}-R I_{0}\right) \epsilon^{-\frac{R t}{L}}
\end{aligned}
$$

Time constant: $T=\frac{L}{R}$
Fig. 11 shows discharge (for $E_{b}=0$) $\frac{i}{I_{0}}=\epsilon^{-\frac{i}{T}}$
Fig. 12 shows charge (for $\left.I_{0}=0\right) \quad \frac{i}{I_{s}}=\left(1-\epsilon^{-\frac{1}{T}}\right)$
These curves are plotted on a larger scale in Fig. 13.
Series circuit of R, L, and C charge and discharge
Initial conditions lat $t=0$):
Battery $=E_{b} ; \mathrm{e}_{c}=E_{0} ; \mathbf{i}=I_{0}$
Steady state lat $t=\infty): i=0 ; e_{c}=-E_{b}$
Differential equation:
$E_{b}+E_{0}-\frac{1}{C} \int_{0}^{t} i d t-R i-L \frac{d i}{d t}=0$

whence $L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=0$
Solution of equation:

$$
i=\epsilon^{-\frac{R t}{2 L}}\left[\frac{2\left(E_{b}+E_{0}\right)-R I_{0}}{R \sqrt{D}} \sinh \frac{R t}{2 L} \sqrt{D}+I_{0} \cosh \frac{R t}{2 L} \sqrt{D}\right]
$$

where

$$
D=1-\frac{4 L}{R^{2} C}
$$

Case 1: When $\frac{L}{R^{2} C}$ is small

$$
\begin{aligned}
i & =\frac{1}{\left(1-2 A-2 A^{2}\right)}\left\{\left[\frac{E_{b}+E_{0}}{R}-I_{0}\left(A+A^{2}\right)\right] \epsilon^{-\frac{1}{R C}(1+A+2 A)}\right. \\
& \left.+\left[I_{0}\left(1-A-A^{2}\right)-\frac{E_{b}+E_{0}}{R}\right] \epsilon^{-\frac{R t}{L}\left(1-A-A^{R}\right)}\right\}
\end{aligned}
$$

where $A=\frac{L}{R^{2} C}$
For practical purposes, the terms A^{2} can be neglected when $A<0.1$. The terms A may be neglected when $A<0.01$.
Case 2: When $\frac{4 L}{R^{2} C}<1$ for which \sqrt{D} is real

$$
\begin{aligned}
i & =\frac{\epsilon^{-\frac{R t}{2 L}}}{\sqrt{D}}\left\{\left[\frac{E_{b}+E_{0}}{R}-\frac{I_{0}}{2}(1-\sqrt{D})\right] \epsilon^{\frac{R t}{2 L} \sqrt{D}}\right. \\
& \left.+\left[\frac{I_{0}}{2}(1+\sqrt{D})-\frac{E_{b}+E_{0}}{R}\right] \epsilon^{-\frac{R t}{2 L} \sqrt{D}}\right\}
\end{aligned}
$$

Case 3: When D is a small positive or negative quantity

$$
\begin{aligned}
i & =\epsilon^{-\frac{R t}{2 L}\left\{\frac{2\left(E_{b}+E_{0}\right)}{R}\left[\frac{R t}{2 L}+\frac{1}{6}\left(\frac{R t}{2 L}\right)^{8} D\right]\right.} \\
& \left.+I_{0}\left[1-\frac{R t}{2 L}+\frac{1}{2}\left(\frac{R t}{2 L}\right)^{2} D-\frac{1}{6}\left(\frac{R t}{2 L}\right)^{8} D\right]\right\}
\end{aligned}
$$

This formula may be used for values of D up to ± 0.25, at which values the error in the computed current i is approximately 1 percent of I_{0} or of $\frac{E_{b}+E_{0}}{R}$.
Case 3a: When $\frac{4 L}{R^{2} C}=1$ for which $D=0$, the formula reduces to
$i=\epsilon^{-\frac{R t}{2 L}\left[\frac{E_{b}+E_{0}}{R} \frac{R t}{L}+I_{0}\left(1-\frac{R t}{2 L}\right)\right]}$
or $i=i_{1}+i_{2}$, plotted in Fig. 14. For practical purposes, this formula may be used when $\frac{4 L}{R^{2} C}=1 \pm 0.05$ with errors of 1 percent or less.

Electrical circuit formulas cantinued

Case 4: When $\frac{4 L}{R^{2} C}>1$ for which \sqrt{D} is imaginary

$$
\begin{aligned}
i & =\epsilon^{-\frac{R t}{2 L}}\left\{\left[\frac{E_{b}+E_{0}}{\omega_{0} L}-\frac{R I_{0}}{2 \omega_{0} L}\right] \sin \omega_{0} t+I_{0} \cos \omega_{0} t\right\} \\
& =I_{m} \epsilon^{-\frac{R t}{2 L} \sin \left(\omega_{0} t+\psi\right)}
\end{aligned}
$$

where $\omega_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}$
$I_{m}=\frac{1}{\omega_{0} L} \sqrt{\left(E_{b}+E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}{ }^{2} L^{2} I_{0}{ }^{2}}$
$\psi=\tan ^{-1} \frac{\omega_{0} L I_{0}}{E_{b}+E_{0}-\frac{R I_{0}}{2}}$

Fig. 14-Transients for $\frac{4 L}{R^{2} C}=1$.

The envelope of the voltage wave across the inductor is:
$\pm \epsilon^{-\frac{R t}{2 L}} \frac{1}{\omega_{0} \sqrt{L C}} \sqrt{\left(E_{b}+E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}{ }^{2} L^{2} I_{0}{ }^{2}}$
Example: Relay with transient suppressing capacitor.
Switch closed till time $t=0$, then opened.
Let $L=0.10$ henries, $R_{1}=100$ ohms,

$$
E=10 \text { volts }
$$

Suppose we choose $C=10^{-6}$ farads, R_{2} $=100$ ohms.

Then $R=200$ ohms, $I_{0}=0.10$ amperes,

$$
E_{0}=10 \text { volts, } \omega_{0}=3 \times 10^{3}, f_{0}=480 \mathrm{cps}
$$

Maximum peak voltage across L (envelope at $t=0$) is approximately 30 volts. Time constant of decay of envelope is 0.001 second.

If it had been desired to make the circuit just non-oscillating, (Case 3a):

$$
\frac{4 L}{R^{2} C}=1 \text { or } R=630 \text { ohms for } C=10^{-6} \text { farads. }
$$

$$
R_{2}=530 \text { ohms. }
$$

Initial voltage at $t=0$, across L is $-E_{0}+R I_{0}=53$ volts.

98

Electrical circuit formulas continued

Series circuit of R, L, and C with sinusoidal applied voltage

By the principle of superposition, the transient and steady state conditions are the same for the actual circuit and the equivalent circuit shown in the accompanying illustrations, the closing of the switch occurring at time $t=0$. In the equivalent circuit, the steady state is due to the source e acting continuously from time $t=-\infty$, while the transient is due to short circuiting the source $-e$ at time $t=0$.

actual circuit

Source: $e=E \sin (\omega t+\alpha)$
Steady state: $i=\frac{e}{Z} \angle-\phi=\frac{E}{Z} \sin (\omega t+\alpha-\phi \mid$
where
$Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} ; \tan \phi=\frac{\omega^{2} L C-1}{\omega C R}$

equivalent circuit

The transient is found by determining current $i=I_{0}$ and capacitor voltage $e_{e}=E_{0}$ at time $t=0$, due to the source $-e$. These values of I_{0} and E_{0} are then substituted in the equations of Case $1,2,3$, or 4 , above, according to the values of R, L, and C.

At time $t=0$, due to the source -e:
$i=I_{0}=-\frac{E}{Z} \sin |\alpha-\phi|$
$e_{c}=E_{0}=\frac{-E}{\omega C Z} \cos (\alpha-\phi)$
This form of analysis may be used for any periodic applied voltage e. The steady-state current and the capacitor voltage for an applied voltage -e are determined, the periodic voltage being resolved into its harmonic components for this purpose, if necessary. Then the instantaneous values $i=I_{0}$ and $e_{c}=E_{0}$ at the time of closing the switch are easily found, from which the transient is determined. It is evident, from this method of analysis, that the wave form of the transient need bear no relationship to that of the applied voltage, depending only on the constants of the circuit and the hypothetical initial conditions I_{0} and E_{0}.

Electrical circuit formulas continued

19. Effective and average values of alternating current

(Similar equations apply to a-c voltages)
$i=I \sin \omega t$
Average value $I_{a_{0}}=\frac{2}{\pi} I$
which is the direct current which would be obtained were the original current fully rectified, or approximately proportional to the reading of a rectifiertype meter.

Effective or root-mean-square (rms) value $I_{\text {afs }}=\frac{i}{\sqrt{2}}$
which represents the heating or power effectiveness of the current, and is proportional to the reading of a dynamometer or thermal-type meter.
When

$$
\begin{aligned}
i & =I_{0}+I_{1} \sin \omega_{1} t+I_{2} \sin \omega_{2} t+\ldots \\
I_{e f f} & =\sqrt{I_{0}^{2}+\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}+\ldots\right)}
\end{aligned}
$$

Note: The average value of a complex current is not equal to the sum of the average values of the components.

20. Constants of Iong transmission lines

$\alpha=\sqrt{\frac{1}{2}\left\{\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}+G R-\omega^{2} L C\right\}}$
$\beta=\sqrt{\frac{1}{2}\left\{\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}-G R+\omega^{2} L C\right\}}$
where
$\alpha=$ attenuation constant in nepers
$\beta=$ phase constant in radians
$R=$ resistance constant in ohms
$G=$ conductance constant in mhos per unit length of line.
$L=$ inductance constant in henries
C $=$ capacitance constant in farads
$\omega=2 \pi X$ frequency in cycles per second
Using values per mile for R, G, L, and C, the db loss per mile will be 8.686α and the wavelength in miles will be $\frac{2 \pi}{\beta}$.

100

Electrical circuif formulas continued

If vector formulas are preferred, α and β may be determined from the following:
$\alpha+j \beta=\sqrt{Z Y}=\sqrt{(R+j \omega L)(G+j \omega C)}$
where all constants have the same meaning as above.
Characteristic impedance
$Z_{0}=\sqrt{\frac{\bar{Z}}{Y}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
Note: For radio frequency applications, see formulas under R-F Transmission Line Data.

Attenuators

An attenuator is a network designed to introduce a known loss when working between resistive impedances Z_{1} and Z_{2} to which the input and output impedances of the attenuator are matched. Either Z_{1} or Z_{2} may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working.
Three forms of resistance network which may be conveniently used to realize these conditions are shown on page 106. These are the T section, the π section, and the Bridged-T section. Equivalent balanced sections also are shown. Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions on pages 313 to 315 . Tables of the various types of attenuators are given on pages 108 to 114 .

In the formulas

Z_{1} and Z_{2} are the terminal impedances (resistivel to which the attenuator is matched.
N is the ratio of the power absorbed by the attenuator from the source to the power delivered to the load.
K is the ratio of the attenuator input current to the output current into the load. When $Z_{1}=Z_{2}, K=\sqrt{N}$.

Attenuation in decibels $=10 \log _{10} N$
Attenuation in nepers $=\theta=\frac{1}{2} \log _{e} N$
For a table of decibels versus power and voltage or current ratio, see page 34. Factors for converting decibels to nepers, and nepers to decibels, are given at the foot of that table.

Attenuators continued

General remarks

The formulas and figures for errors, given in Tables IV to VIII, are based on the assumption that the attenuator is terminated approximately by its proper terminal impedances Z_{1} and Z_{2}. They hold for deviations of the attenuator arms and load impedances up to ± 20 percent or somewhat more. The error due to each element is proportional to the deviation of the element, and the total error of the attenuator is the sum of the errors due to each of the several elements.

When any element or arm R has a reactive component ΔX in addition to a resistive error ΔR, the errors in input impedance and output current are
$\Delta Z=A(\Delta R+j \Delta X)$
$\frac{\Delta i}{i}=B\left(\frac{\Delta R+j \Delta X}{R}\right)$
where A and B are constants of proportionality for the elements in question. These constants can be determined in each case from the figures given for errors due to a resistive deviation ΔR.

The reactive component ΔX produces a quadrature component in the output current, resulting in a phase shift. However, for small values of ΔX, the error in insertion loss is negligibly small.
For the errors produced by mismatched terminal load impedance, refer to Case 1, page 105.

Ladder attenuafor

Fig. 15-Ladder aftenuator.

Ladder attenuator, Fig. 15 , input switch points $P_{0}, P_{1}, P_{2}, P_{3}$ at shunt arms. Also intermediate point P_{m} tapped on series arm. May be either unbalanced, as shown, or balanced.

Aftenuators continued

Ladder, for design purposes, Fig. 16, is resolved into a cascade of π sections by imagining each shunt arm split into two resistors. Last section matches $\mathbf{Z}_{\mathbf{2}}$ to $2 Z_{1}$. All other sections are symmetrical, matching impedances $2 Z_{1}$, with a

Fig. 16-Ladder attenuator resolved Into a coscade of π sections.
terminating resistor $2 Z_{1}$ on the first section. Each section is designed for the loss required between the switch points at the ends of that section.

Input to P_{0} : Loss, $d b=10 \log _{10} \frac{\left(2 Z_{1}+Z_{2}\right)^{2}}{4 Z_{1} Z_{2}}$
Input impedance $Z_{1}^{\prime}=\frac{Z_{2}}{2}$
Output impedance $=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$
Input to P_{1}, P_{2}, or P_{3} : Loss, $\mathrm{db}=3 \mathrm{db}+$ sum of losses of π sections between input and output. Input impedance $Z_{1}{ }^{\prime}=Z_{1}$

Input to P_{m} (on a symmetrical π section):
$\frac{e_{0}}{e_{m}}=\frac{1}{2} \frac{m(1-m)(K-1)^{2}+2 K}{K-m(K-1)}$
where
$\mathbf{e}_{0}=$ output voltage when $m=0$ (Switch on P_{1}).
$\mathbf{e}_{\boldsymbol{m}}=$ output voltage with switch on P_{m}.
and
$K=$ current ratio of the section (from P_{1} to P_{2}). $K>1$.
Input impedance $Z_{1}^{\prime}=Z_{1}\left[m(1-m) \frac{(K-1)^{2}}{K}+1\right]$
$\operatorname{Max} Z_{1}^{\prime}=Z_{1}\left[\frac{(K-1)^{2}}{4 K}+1\right]$ for $m=0.5$.

Attenuators continued

The unsymmetrical last section may be treated as a system of voltage dividing resistors. Solve for the resistance R from P_{0} to the tap, for each value of
output voltage with input on P_{0}
output voltage with input on tap
A useful case: $Z_{1}=Z_{2}=500$ ohms.
Then loss on P_{0} is 3.52 db .
Let the last section be designed for loss of 12.51 db .
Then
$R_{13}=2444$ ohms (shunted by 1000 ohms)
$R_{23}=654$ ohms (shunted by 500 ohms)
$R_{12}=1409$ ohms.
The table shows the location of the tap and the input and output impedances for several values of loss, relative to the loss on P_{0}.

rulative loss db	tap R ohms	inpuf impedance ohms	oufput impedance ohms
0	0		
2	170	250	250
4	375	368	304
6	615	378	353
8	882	562	394
10	1157	600	428
12	1409	577	454
			473

Fig. 17-A variation of the ladder attenvator, useful when $Z_{1}=Z_{2}=\mathbf{Z}$. Simpler in design, with improved impedance characteristics, but having minimum insertion loss 2.5 db higher then aftenvator of Fig. 16. All π sections are symmetrical.

Aftenuators continued

Input to P_{0} : Output impedance $=0.6 Z \quad$ (See Fig. 17.)
Input to $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$, or P_{3} : Loss $=6 \mathrm{db}+$ sum of losses of π sections between input and output. Input impedance $=Z$

Input to $P_{m}: \quad \frac{e_{0}}{e_{m}}=\frac{1}{4} \frac{m(1-m)(K-1)^{2}+4 K}{K-m(K-1)}$
Input impedance $Z^{\prime}=Z\left[\frac{m(1-m)(K-1)^{2}}{2 K}+1\right]$
$\operatorname{Max} Z^{\prime}=Z\left[\frac{(k-1)^{2}}{8 K}+1\right]$ for $m=0.5$.

Effect of incorrect load impedance on operation of an aftenuator

In the applications of attenuators the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks which, when operated between resistive impedances Z_{1} and Z_{2}, present matching terminal impedances Z_{1} and Z_{2}, respectively. The results may be derived in the general case by the application of the network theorems, and may be readily confirmed mathematically for simple specific cases such as the T section.

For the designed use of the network, let
$Z_{1}=$ input impedance of properly terminated network
$Z_{2}=$ load impedance which properly terminates the network
$N=$ power ratio from input to output
$K=$ current ratio from input to output
$K=\frac{i_{1}}{i_{2}}=\sqrt{\frac{N Z_{2}}{Z_{1}}}$ idifferent in the two directions of operation except when $Z_{2}=Z_{1}$.

For the actual conditions of operation, let
$\left(Z_{2}+\Delta Z_{2}\right)=Z_{2}\left(1+\frac{\Delta Z_{2}}{Z_{2}}\right)=$ actual load impedance
$\left(Z_{1}+\Delta Z_{1}\right)=Z_{1}\left(1+\frac{\Delta Z_{1}}{Z_{1}}\right)=$ resulting input impedance
$(K+\Delta K)=K\left(1+\frac{\Delta K}{K}\right)=$ resulting current ratio.

Altenuafors continued

While Z_{1}, Z_{2}, and K are restricted to real quantities by the assumed nature of the network, ΔZ_{2} is not so restricted, e.g.,
$\Delta Z_{2}=\Delta R_{2}+j \Delta X_{2}$
As a consequence ΔZ_{1} and ΔK can become imaginary or complex. Further-: more ΔZ_{2} is not restricted to small values.

The results for the actual conditions are
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2 \frac{\Delta Z_{2}}{Z_{2}}}{2 N+\left(N-11 \frac{\Delta Z_{2}}{Z_{2}}\right.}$ and $\frac{\Delta K}{K}=\left(\frac{N-1}{2 N}\right) \frac{\Delta Z_{2}}{Z_{2}}$

Certain special cases may be cited

Case 1: For small $\frac{\Delta Z_{2}}{Z_{2}}$
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{1}{N} \frac{\Delta Z_{2}}{Z_{2}} \quad$ or $\quad \Delta Z_{1}=\frac{1}{K^{2}} \Delta Z_{2} \quad \frac{\Delta i_{2}}{i_{2}}=-\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$
but the error in insertion power loss of the attenuator is neglibly small.
Case 2: Short-circuited output $\frac{\Delta Z_{1}}{Z_{1}}=\frac{-2}{N+1}$
or input impedance $=\left(\frac{N-1}{N+1}\right) Z_{1}=Z_{1} \tanh \theta$
where θ is the designed attenuation in nepers.
Case 3: Open-circuited output $\quad \frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}$
or input impedance $=\left(\frac{N+1}{N-1}\right) Z_{1}=Z_{1} \operatorname{coth} \theta$
Case 4: For $N=1$ (possible only when $Z_{1}=Z_{2}$ and directly connected)
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{\Delta Z_{2}}{Z_{2}}$ and $\frac{\Delta K}{K}=0$
Case 5: For large $N \quad \frac{\Delta K}{K}=\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$

nelwork design

design formulas		cheeking formulas
hyperbolic	arithmetical	
$R_{\mathrm{a}}=\frac{\sqrt{\bar{Z}_{1} \bar{Z}_{2}}}{\sinh \theta}$	$R_{8}=\frac{2 \sqrt{N Z_{1} Z_{2}}}{N-1}$	
$R_{1}=\frac{Z_{1}}{\tanh \theta}-R_{8}$	$R_{1}=Z_{1}\left(\frac{N+1}{N-1}\right)-R_{2}$	
$R_{2}=\frac{Z_{2}}{\tanh \theta}-R_{3}$	$R_{2}=Z_{2}\left(\frac{N+1}{N-1}\right)-R_{2}$	
$\begin{aligned} & R_{3}=\frac{Z}{\sinh \theta} \\ & R_{1}=Z \tanh \frac{\theta}{2} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{2 Z \sqrt{N}}{N-1}=\frac{2 Z K}{K^{2}-1} \\ & R_{1}=Z \frac{\sqrt{N}-1}{\sqrt{N}+1}=z \frac{K-1}{K+1} \end{aligned}$	$\begin{aligned} R_{1} R_{8} & =\frac{Z^{2}}{1+\cosh \theta}=Z^{2} \frac{2 K}{(K+1)^{2}} \\ \frac{R_{1}}{R_{3}} & =\cosh \theta-1=2 \sinh ^{2} \frac{\theta}{2} \\ & =\frac{(K-1)^{2}}{2 K} \\ Z & =R_{1} \sqrt{1+2 \frac{R_{3}}{R_{1}}} \end{aligned}$
$\begin{aligned} \cosh \theta & =\sqrt{\frac{Z_{1}}{Z_{2}}} \\ \cosh 2 \theta & =2 \frac{Z_{1}}{Z_{2}}-1 \end{aligned}$	$\begin{aligned} & R_{1}=Z_{1} \sqrt{1-\frac{Z_{2}}{Z_{1}}} \\ & R_{2}=\frac{Z_{2}}{\sqrt{1-\frac{Z_{3}}{Z_{1}}}} \end{aligned}$	$\begin{aligned} R_{1} R_{2} & =Z_{1} Z_{2} \\ \frac{R_{1}}{R_{3}} & =\frac{Z_{1}}{Z_{2}}-1 \\ N & =\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{1}}{Z_{2}}-1}\right)^{2} \end{aligned}$
$\begin{aligned} & R_{3}=\sqrt{Z_{1} Z_{2}} \sinh \theta \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1} \tanh \theta}-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2} \tanh \theta}-\frac{1}{R_{8}} \end{aligned}$	$\begin{aligned} & R_{i}=\frac{N-1}{2} \sqrt{\frac{Z_{1} Z_{2}}{N}} \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{2}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \end{aligned}$	
$\begin{aligned} & R_{8}=Z \sinh \theta \\ & R_{1}=\frac{Z}{\tanh \frac{\theta}{2}} \end{aligned}$	$\begin{aligned} & R_{3}=z \frac{N-1}{2 \sqrt{N}}=2 \frac{K^{2}-1}{2 K} \\ & R_{1}=Z \frac{\sqrt{N}+1}{\sqrt{N}-1}=z \frac{K+1}{K-1} \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =Z^{2}(1+\cosh \theta)=Z^{2} \frac{(K+1)^{2}}{2 K} \\ \frac{R_{8}}{R_{1}} & =\cosh \theta-1=\frac{(K-1)^{2}}{2 K} \\ Z & =\frac{R_{1}}{\sqrt{1+2 \frac{R_{1}}{R_{3}}}} \end{aligned}$
,	$\begin{aligned} & R_{1}=R_{2}=Z \\ & R_{4}=Z(K-1) \\ & R_{3}=\frac{Z}{K-1} \end{aligned}$	$\begin{aligned} & R_{2} R_{4}=Z^{2} \\ & \frac{R_{1}}{R_{2}}=\{K-1\}^{2} \end{aligned}$

four-terminal networks: The hyperbolic formulas above are valid for passive linear fourterminal networks in general, working between input and output impedances moiching the respective imege impedances. In this cases Z_{1} and Z_{2} are the image impedances; $R_{1} R_{2}$ and R_{2} become complex impedances, and θ is the image transfer constant, $\theta=\alpha+j B$, where α is the imoge attenuation constont and β is the image phase constant.

Attenuafors continued

Table IV-Symmetrical T or H attenuator
$Z=500$ ohms resistive (diagram page 106)

aftenuation db	series arm $\mathbf{R}_{\mathbf{l}}$ ohms	shunt arm \mathbf{R}_{3} ohms	$\frac{1000}{R_{3}}$	$\log _{10} \mathrm{R}_{\mathbf{1}}$
0.0	0.0	inf	0.0000	
0.2	5.8	21,700	0.0461	
0.4	11.5	10,850	0.0921	
0.6	17.3	7,230	0.1383	
0.8	23.0	5,420	0.1845	
1.0	28.8	4,330	0.2308	
2.0	57.3	2,152	0.465	
3.0	85.5	1,419	0.705	
4.0	113.1	1,048	0.954	
5.0	140.1	822	1.216	
6.0	166.1	669	1.494	2.826
7.0	191.2	558		2.747
8.0	215.3	473.1		2.675
9.0	238.1	405.9		2.608
10.0	259.7	351.4		2.546
12.0	299.2	268.1		2.428
14.0	333.7	207.8		2.318
16.0	363.2	162.6		2.211
18.0	388.2	127.9		2.107
20.0	409.1	101.0		2.004
22.0	426.4	79.94		1.903
24.0	440.7	63.35		1.802
26.0	452.3	50.24		1.701
28.0	461.8	39.87		1.601
30.0	469.3	31.65		1.500
35.0	482.5	17.79		1.250
40.0	490.1	10.00		1.000
50.0	496.8	3.162		0.500
60.0	499.0	1.000		0.000
80.0	499.9	0.1000		-1.000
100.0	500.0	0.01000		-2.000

Attenuafors continued

Interpolation of symmetrical Tor H attenuators

Column R_{1} may be interpolated linearly. Do not interpolate R_{3} column. For 0 to 6 db , interpolate the $\frac{1000}{R_{3}}$ column. Above 6 db , interpolate the column $\log _{10} R_{3}$ and determine R_{3} from the result.

Errors in symmetrical Tor H attenuators
Series arms $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ in error Error in input impedances:
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{K^{2}} \Delta R_{2}$
and
$\Delta Z_{2}=\Delta R_{2}+\frac{1}{K^{2}} \Delta R_{1}$

nominally $\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}$ and $\mathbf{Z}_{\mathbf{1}}=\mathbf{Z}_{\mathbf{2}}$

Error in insertion loss, $\mathrm{db}=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$, approximately.

Shunt arm R_{3} in error (10 percent high)

designed loss, $\mathbf{d b}$	error in insertion loss, $\mathbf{d b}$	error in input impedance $\mathbf{1 0 0} \frac{\Delta \mathbf{Z}}{\mathbf{Z}}$ percent
0.2	-0.01	0.2
$\mathbf{1}$	-0.05	1.0
6	-0.3	3.3
12	-0.5	3.0
20	-0.7	1.6
40	-0.8	0.2
100	-0.8	0.0

Error in input impedance: $\frac{\Delta Z}{Z}=2 \frac{K-1}{K(K+1)} \frac{\Delta R_{3}}{R_{3}}$
Error in output current: $\frac{\Delta i}{i}=\frac{K-1}{K+1} \frac{\Delta R_{3}}{R_{3}}$
See General Remarks on page 101.

110

Attenuators continued

Table V-Symmefrical π and \mathbf{O} attenuators

The values of the series and shunt arms of these attenuators may be determined from Table IV of symmetrical T attenuators by means of the following formulas.

Shunt ${ }_{\text {arms: }} R_{13}=R_{23}=R_{1}+2 R_{3}{ }^{\circ}=\frac{Z^{2}}{R_{1}}$
$\begin{aligned} & \text { Series } \\ & \text { arm: } \\ & R_{12}\end{aligned}=R_{1}\left(\frac{R_{1}}{R_{3}}+2\right)=\frac{Z^{2}}{R_{3}}$
Error in loss, $\mathrm{db}=-8 \frac{\Delta i_{2}}{i_{2}}$ (approximately)

$=4 \frac{K-1}{K+1}\left(-\frac{\Delta R_{13}}{R_{13}}-\frac{\Delta R_{23}}{R_{23}}+2 \frac{\Delta R_{12}}{R_{12}}\right)$
Error in input impedance:
$\frac{\Delta Z^{\prime}}{Z^{\prime}}=\frac{K-1}{K+1}\left(\frac{\Delta R_{13}}{R_{13}}+\frac{1}{K^{2}} \frac{\Delta R_{23}}{R_{28}}+\frac{2}{K} \frac{\Delta R_{12}}{R_{12}}\right)$
$\mathbf{R}_{18}=\mathbf{R}_{23}$ and $Z^{\prime}=\mathbf{Z}$

Table VI-Bridged T or H affenuafor

Attenuators cominued

Interpolation of bridged T or H attenuators

Bridge arm R_{4} : Use the formula $\log _{10}\left(R_{4}+500\right)=2.699+\frac{\mathrm{db}}{20}$ for $Z=500$ ohms. However, if preferred, the tabular values of R_{4} may be interpolated linearly, between 0 and 10 db only.

Shunt arm R_{3} : Do not interpolate R_{3} column. Compute R_{3} by the formula $R_{3}=\frac{10^{6}}{4 R_{3}} \quad$ for $Z=500$ ohms.

Note: For attenuators of 60 db and over, the bridge arm R_{4} may be omitted, provided a shunt arm is used having twice the resistance tabulated in the R_{3} column. (This makes the input impedance 0.1 of 1 percent high at 60 db .)

Errors in bridged T or H attenuators
For resistance of any ene arm 10 percent higher than the correct value

designed loss $\mathbf{d b}$	col 1* $\mathbf{d b}$	col 2* percent	col 3* percent
0.2	0.01	0.005	0.2
1	0.05	0.1	1.0
6	0.2	2.5	2.5
12	0.3	5.6	1.9
20	0.4	8.1	0.9
40	0.4	10	0.1
100	0.4	10	0.0

* Refer to following rabulation.

element in error (10 percent high)	error in loss	error in terminal impedance	remarks
Series orm R_{1} lanologous for arm R2)	Zero	Col 2, for adiacent terminals	Error in impedance al opposite lerminols is zero
Shunt arm R_{8}	- Coll	Col 3	Loss is lower than designed loss
Bridge orm $\mathbf{R}_{\mathbf{4}}$	+Col 1	Col 3	Loss is higher than designed loss

Error in input impedance: $\frac{\Delta Z_{1}}{Z_{1}}=\left(\frac{K-1}{K}\right)^{2} \frac{\Delta R_{1}}{R_{1}}+\frac{K-1}{K^{2}}\left(\frac{\Delta R_{3}}{R_{8}}+\frac{\Delta R_{4}}{R_{4}}\right)$ For $\frac{\Delta Z_{2}}{Z_{2}}$ use subscript 2 in formula in place of subscript 1.
Error in output current: $\frac{\Delta i}{i}=\frac{K-1}{2 K}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{3}}{R_{4}}\right)$
See General Remarks on page 101.

112

Attenuators
continued

Table VII-Minimum loss pads

Matching \mathbf{Z}_{1} and \mathbf{Z}_{2} - both resistive (diagram page 106)

$\begin{gathered} \mathbf{Z}_{1} \\ \text { ohms } \end{gathered}$	$\begin{gathered} \mathbf{Z}_{2} \\ \text { ohros } \end{gathered}$	$\frac{\mathbf{z}_{1}}{\mathbf{z}_{2}}$	$\begin{aligned} & \text { loss } \\ & \mathrm{db} \end{aligned}$	series arm R_{1} ohms	shunt arm $\mathbf{R}_{\mathbf{3}}$ ohms
10,000	500	20.00	18.92	9,747	513.0
8,000	500	16.00	17.92	7.746	516.4
6,000	500	12.00	16.63	5,745	522.2
5,000	500	10.00	15.79	4,743	527.0
4,000	500	8.00	14.77	3,742	534.5
3,000	500	6.00	13.42	2,739	547.7
2,500	500	5.00	12.54	2,236	559.0
2,000	500	4.00	11.44	1,732	577.4
1,500	500	3.00	9.96	1,224.7	612.4
1,200	500	2.40	8.73	916.5	654.7
1,000	500	2.00	7.66	707.1	707.1
800	500	1.60	6.19	489.9	816.5
600	500	1.20	3.77	244.9	1,224.7
500	400	1.25	4.18	223.6	894.4
500	300	1.667	6.48	316.2	474.3
500	250	2.00	7.66	353.6	353.6
500	200	2.50	8.96	387.3	258.2
500	160	3.125	10.17	412.3	194.0
500	125	4.00	11.44	433.0	144.3
500	100	5.00	12.54	447.2	111.80
500	80	6.25	13.61	458.3	87.29
500	65	7.692	14.58	466.4	69.69
500	50	10.00	15.79	474.3	52.70
500	40	12.50	16.81	479.6	41.70
500	30	16.67	18.11	484.8	30.94
500	25	20.00	18.92	487.3	25.65

Interpolation of minimum loss pads
This table may be interpolated linearly with respect to Z_{1}, Z_{2}, or $\frac{Z_{1}}{Z_{2}}$ except when $\frac{Z_{1}}{Z_{2}}$ is between 1.0 and 1.2. The accuracy of the interpolated value becomes poorer as $\frac{Z_{1}}{Z_{2}}$ passes below 2.0 toward 1.2 , especially for R_{3}.

Atfenuafors continued

For other terminations

If the terminating resistances are to be Z_{A} and Z_{B} instead of Z_{1} and Z_{2}, respectively, the procedure is as follows. Enter the table at $\frac{Z_{1}}{Z_{2}}=\frac{Z_{A}}{Z_{B}}$ and read the loss and the tabular values of R_{1} and R_{3}. Then the series and shunt arms are, respectively, $M R_{1}$ and $M R_{3}$, where $M=\frac{Z_{A}}{Z_{1}}=\frac{Z_{B}}{Z_{2}}$.

Errors in minimum loss pads

impedance ratio \mathbf{Z}_{1}	col 1* db	col 2* percenf	col 3** percent
1.2	0.2	+4.1	+1.7
2.0	0.3	7.1	1.2
4.0	0.35	8.6	0.6
10.0	0.4	9.5	0.25
20.0	0.4	9.7	0.12

* Notes

Series arm $R_{1} 10$ percent high: Loss is increased by col 1. Input impedance Z_{1} is increased by col 2. Input impedance Z_{2} is increased by col 3.
Shunt arm $R_{3} 10$ percent high: Loss is decreased by col 1 . Input impedance Z_{2} is increased by col 2. Input impedance Z_{1} is increased by col 3.

Errors in input impedance
$\frac{\Delta Z_{1}}{Z_{1}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{1}}{R_{1}}+\frac{1}{N} \frac{\Delta R_{3}}{R_{3}}\right)$
$\frac{\Delta Z_{2}}{Z_{2}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{1}{N} \frac{\Delta R_{1}}{R_{1}}\right)$

Error in output current, working either direction
$\frac{\Delta i}{i}=\frac{1}{2} \sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{1}}{R_{1}}\right)$
See General Remarks on page 101.

Attenuators continued

Table VIII-Miscellaneous \mathbf{T} and \mathbf{H} pads

(diagram page 106)

resistive terminotions		$\begin{gathered} \text { loss } \\ \mathrm{db} \end{gathered}$	aftenuator arms		
$\underset{\text { ohms }}{Z_{1}}$	$\begin{gathered} \mathbf{Z}_{2} \\ \text { ohms } \end{gathered}$		series \mathbf{R}_{1} ohm:	serles R_{2} ohms	shunt Rs -hms
5,000	2,000	10	3,889	222	2,222
5,000	2,000	15	4,165	969	1,161
5,000	2,000	20	4,462	1,402	639
5,000	500	20	4,782	190.7	319.4
2,000	500	. 15	1,763	165.4	367.3
2,000	500	20	1,838	308.1	202.0
2,000	200	20	1,913	76.3	127.8
500	200	10	388.9	22.2	222.2
500	200	15	416.5	96.9	116.1
500	200	20	446.2	140.2	63.9
500	50	20	478.2	19.07	31.94
200	50	15	176.3	16.54	36.73
200	50	20	183.8	30.81	20.20

Errors in T and H pads
Series arms R_{1} and R_{2} in error. Error in input impedances:
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{N} \frac{Z_{1}}{Z_{2}} \Delta R_{2} \quad$ and $\quad \Delta Z_{2}=\Delta R_{2}+\frac{1}{N} \frac{Z_{2}}{Z_{1}} \Delta R_{1}$
Error in insertion loss, $\mathrm{db}=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$, approximately.
Shunt afm R_{3} In error (10 percent high)

$\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}}$	designed loss db	arror in loss db	$\mathbf{1 0 0 \frac { \Delta \mathbf { Z } _ { 1 } } { \mathbf { Z } _ { 1 } }}$	$\mathbf{1 0 0 \frac { \Delta \mathbf { Z } _ { 2 } } { \mathbf { Z } _ { \mathbf { 2 } } }}$
2.5	10	-0.4	1.1%	7.1%
2.5	15	-0.6	1.2	4.6
2.5	20	-0.7	0.9	2.8
4.0	15	-0.5	0.8	6.0
4.0	20	-0.65	0.6	3.6
10	20	-0.6	0.3	6.1

$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}\left(\sqrt{\frac{N Z_{2}}{Z_{1}}}+\sqrt{\frac{Z_{1}}{N Z_{2}}}-2\right) \frac{\Delta R_{3}}{R_{3}}\left\{\right.$ for $\frac{\Delta Z_{2}}{Z_{2}}$ interchange subscripts
$\frac{\Delta i}{i}=\frac{N+1-\sqrt{N}\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{2}}{Z_{1}}}\right)}{N-1} \frac{\Delta R_{3}}{R_{3}}\{$ where i is the output current.

Filter networks

Explanation: Table 1 X shows, in the first column, the fundamental series impedance, Z_{1}, and the fundamental shunt impedance, Z_{2}, from which the various types of filter sections shown in subsequent columns are composed. For example, a T section (third column) is composed of two half-series arms, $\frac{Z_{1}}{2}$ in series, with a full shunt arm Z_{2} connected to their junction point. The subsequent tables (Tables X, XI, XII, and XIIII give formulas for computing the full series arm and the full shunt arm. These must then be modified according to the type of section used.

Example: Design a series M derived high-pass, T-section filter to terminate in 500 ohms, with cutoff frequency equal to 1000 cycles, and peak attenuation frequency equal to 800 cycles.

Using Table XIII:
$f_{c}=1000$
$f_{\infty}=800$
$R=500$
$m=\sqrt{1-\left(\frac{800}{1000}\right)^{2}}=0.6$

$C=\frac{1}{4 \pi f_{d} R}=\frac{1}{4 \pi \times 1000 \times 500}=0.159\left(10^{-6}\right)$ farad $=0.159 \mathrm{microfarad}$
$L=\frac{R}{4 \pi f_{c}}=\frac{500}{4 \pi \times 1000}=0.0398$ henry $=39.8$ millihenry
$C_{1}=\frac{C}{m}=\frac{0.159}{0.6}=0.265$ microfarad
$L_{2}=\frac{L}{m}=\frac{39.8}{0.6}=66.3$ millihenry
$C_{2}=\frac{4 m}{1-m^{2}} C=\frac{4 \times 0.6 \times 0.159}{0.64}=0.597$ microfarad
For a T-section, each series arm must be $\frac{Z_{1}}{2}$ while the full shunt arm is used.
Thus for the series arm use $2 \mathrm{C}_{1}$, or 0.53 microfarad. The accompanying figure shows the final result.

Filfer nełworks continued

Table IX-Combination of filfer elements

$\frac{\text { configurafion }}{\text { half-section }}$

Table X-Band-pass filters

ype	conflguration	serles arm	shunt arm	notations
Constant K		$\begin{aligned} L_{1} & =\frac{R}{\pi\left(f_{2}-f_{1}\right)} \\ C_{1} & =\frac{f_{2}-f_{1}}{4 \pi f_{2} f_{1} R} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2}} R \\ & C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) R} \end{aligned}$	$f_{2}=\begin{gathered} \text { upper cutoff } \\ \text { froquency } \end{gathered}$
Three element series type	$\mathrm{c}_{0}^{\mathrm{L}_{1}} \mathrm{c}_{1}$	$\begin{aligned} & L_{1}=\frac{R}{\pi\left(f_{2}-f_{1}\right)} \\ & C_{1}=\frac{f_{2}-f_{1}}{4 \pi f_{1}^{2} R} \end{aligned}$	$C_{8}=\frac{1}{\pi\left(f_{1}+f_{2}\right) R}$	$R=\begin{gathered} \text { nominal } \\ \\ \text { terminating } \\ \text { resistance } \end{gathered}$
Three element shunt type		$C_{1}=\frac{f_{1}+f_{2}}{4 \pi f_{1} f_{2} R}$	$\begin{aligned} & L_{3}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2}} R \\ & C_{2}=\frac{f_{1}}{\pi f_{2}\left(f_{2}-f_{1}\right) R} \end{aligned}$	

Table XI-Band-elimination filters

type	configuration	serles arm	shunt arm	notaflons
Constant K		$\begin{aligned} & L_{1}=\frac{f_{2}-f_{1}}{\pi f_{1} f_{2}} R \\ & C_{1}=\frac{1}{4 \pi\left(f_{2}-f_{1}\right) R} \end{aligned}$	$\begin{aligned} & L_{2}=\frac{R}{4 \pi\left(f_{2}-f_{1}\right)} \\ & C_{2}=\frac{f_{2}-f_{1}}{\pi f_{1} f_{2} R} \end{aligned}$	$f_{2}=$ upper cutoff frequency $f_{1}=$ lower cutoff frequency $R=$ nominal terminating resistance

Filfer nefworks continued
Table XII—Low-pass filiers

type	configuration	serles arm	shunt arm	notations
Constant K		$L=\frac{R}{\pi f_{c}}$	$C=\frac{1}{\pi f_{c} R}$	$\boldsymbol{i}_{c}=\underset{\text { frequency }}{\text { cuta }}$
Series M derived		$L_{1}=m L$	$\begin{gathered} L_{2}=\frac{1-m^{2}}{4 m} L \\ C_{2}=m C \end{gathered}$	$\begin{aligned} & f_{\infty}= \begin{array}{l} \text { frequency of } \\ \\ \\ \text { patt } \\ \text { attenuation } \end{array} \\ & m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}} \end{aligned}$
Shunt M derived		$\begin{gathered} L_{1}=m L \\ C_{1}=\frac{1-m^{2}}{4 m} C \end{gathered}$	$C_{2}=m C$	$R=\underset{\substack{\text { terminating } \\ \text { resistance }}}{\text { nominal }}$

Table XIII-High-pass filters

type	configuration	series arm	shunt arm	notations
Constant K		$C=\frac{1}{4 \pi f_{c} R}$	$L=\frac{R}{4 \pi f_{0}}$	$f_{c}=\underset{\text { cutoff }}{\text { frequency }}$
Series M derived		$C_{1}=\frac{C}{m}$	$\begin{aligned} L_{2} & =\frac{l}{m} \\ C_{2} & =\frac{4 m}{1-m^{2}} c \end{aligned}$	$f_{\infty}=$ frequency of peak attenuation $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$
Shunt M derived		$\begin{gathered} C_{1}=\frac{C}{m} \\ L_{1}=\frac{4 m}{1-m^{2}} L \end{gathered}$	$L_{2}=\frac{1}{m}$	$R=$ nominol terminating resistonce

Rectifiers and filters

Unless otherwise stated, factors shown express the ratlo of the RMS value of the circuit quantities designated to the average DC output values of the recilfier.
factors are based on a sine wave voliage input, infinite impedance choke and no transformer or rectifier losses.

RECTIFIERS AND FILTERS 119

connections and circuif dafa

6-phase half-wave delfa-star	6-phese half-wove delta-6-phase fork	(doubhose half-wave delta-double wye with bolence coll	3-phose full-wave delta-wre	3-phase full-wave delta-delia
3	3	3 6	3	$\begin{aligned} & 3 \\ & 6 \end{aligned}$
$\begin{aligned} & 0.042 \\ & 6 f \end{aligned}$	0.042 67	$\begin{aligned} & 0.042 \\ & 6 i \end{aligned}$	$\frac{0.042}{6 f}$	$\begin{aligned} & 0.042 \\ & 6 f \end{aligned}$
0.740 0.816 0.955	0.428 1.41 0.955	0.855 0.707 0.955	0.428 1.41 0.955	$\begin{aligned} & 0.740 \\ & 0.816 \\ & 0.955 \end{aligned}$
0.740	0.428	0.855	0.428	0.740
$\begin{aligned} & 0.577 \\ & 1.28 \end{aligned}$	0.816 1.05	$\begin{aligned} & 0.408 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.816 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.471 \\ & 1.05 \end{aligned}$
1.55	1.42	1.26	1.05	1.05
0.740 W	0.428 CN	0.855 ${ }^{\text {W }}$	0.428	0.740
0.408	$\left\{\begin{array}{c} 0.577(B) \\ 0.408 \mathrm{ic} \end{array}\right\}$	0.289	0.816	0.471
1.81	1.79	1.48	1.05	1.05
${ }_{1}^{2.09}$	${ }_{1}^{2.09}$	$\begin{aligned} & 2.42 \\ & 0.5 \end{aligned}$	1.05	1.05
0.167	0.167	0.167	0.333	0.333

* These circult factors are equally applicable to tube or dry plate rectifying elements.
t line PF $=D C$ output wotts/line yolt-amperes

Rectifier filter design

Ripple voltage vs LC for choke-input fliters

Minimum inductance for a choke-input filter is determined from

$$
L=\frac{K E}{I f}
$$

where
$L=$ minimum inductance in henries
$E=$ d-c output in volts
$I=$ output current in amperes
f = supply frequency in cps
$K=0.0527$ for full-wave, single-phase
$=0.0132$ for half-wove, three-phase
$=0.0053$ for full-wave, two-phase
$=0.0016$ for full-wave, three-phase

Rectifier filter design

continued

Ripple veltage vs RC for capaciter-input filters

The above chart applies to a capacitance filter with resistance load as shown at the right.
For each additional $R^{\prime} C^{\prime}$ section, oblain R by adding all resistances and add $\mathrm{db}=104-20 \log f R^{\prime} \mathrm{C}^{\prime}$.
For each additional $L C^{\prime}$ section, add $d b=88.2-40 \log f$ $-20 \log L C^{\prime}$.
The above assumes that the impedance of C^{\prime} is small with respect to that of $, R, R^{\prime}$, and L
$f=$ ripple frequency in cps
$R^{\prime}=$ series filter resistance in ohms
$C^{\prime}=$ shunt filter capacitance in microfarads
L = series filter inductance in henries.

- Iron-core transformers and reactors

Major ircinsformer types

1. Audio transformers: Carry audio communication frequencies or some single control frequency.
a. Input transformers: Couple a signal source, e.g., microphone or line, to the grid (s) of an amplifier.
b. Interstage transformers (usually step-up voltage): Couple the plate (s) of a vacuum tube (except a driver stagel to the grid (s) of a succeeding stage of amplification.
c. Output transformers: Couple the plate(s) of an amplifier to an output load.
d. Driver transformers lusuallystep-down voltage): Couple the plate (s) of a driver stage (pre-amplifier) to the grid (s) of an amplifier stage in which grid current is drawn.
e. Modulation transformers: Couple the plate(s) of an audio output stage to the grid or plate of a modulated amplifier.
2. Power supply transformers: Supply appropriate plate and/or filament voltage to vacuum fubes in a unit of equipment.
a. Plate transformers: Supply potential to the plate(s) of high-vacuum or gasfilled tube (s) in a rectifier circuit.
b. Filament transformers: Supply current to heat the filaments of vacuum or gas-filled tubes.
c. Plate-filament transformers: Combinations of $2 a$ and $2 b$.
d. Isolation transformers: Insulate or isolate two circuits, such as a grounded circuit from an ungrounded circuit.
e. Scott-transformers: Scott-connection utilizes two transformers to transmit power from two-phase to three-phase systems, or vice versa.
f. Auto-transformers: Provide increased or decreased voltange by means of a single winding suitably tapped for the primary and secondary circuits, part of the winding being common to both circuits.

Major reacłor types

1. Reactors: Single-winding units that smooth current flow, provide d-c feed, or act as frequency-selective units lin suitable arrangement with capacitors).
a. Audio reactors: Single-winding units that supply plate current to a vacuum tube in parallel with the output circuit.

Major reactor Iypes
 continued

b. Wave-filter reactors: Function as filter unit components which aid in the acceptance or rejection of certain frequencies.
c. Filter reactors: Smooth the d-c output current in rectifier circuits.
d. Saturable reactors: Regulate voltage, current, or phase in conjunction with glow-discharge tubes of the thyratron type. They are also used as voltage-regulating devices with dry-type rectifiers.

Temperafure, humidity, and pressure effects

A maximum ambient temperature of $40^{\circ} \mathrm{C}$ is usually assumed. Final operating temperatures with organic insulation (Class A), such as silk, cotton, or paper, are restricted to values less than $95^{\circ} \mathrm{C}$. When weight and space requirements dictate undersized iron cores and wire, with resultant higher temperature rise, inorganic insulation and cooling expedients may be used. Cooling expedients include: open-frame; semi-enclosed (coil-covered, core-exposed) design; and fully-enclosed design having compound or liquid-filled insulant and cooling by convection, or forced cooling by air blast.
Relative humidities from zero to 97 percent should be assumed so that coils and leads should be impregnated with moisture-resistant insulating coatings or, alternafively, cases should be sealed vacuum tight. Pressure variation, in addition to moisture and temperature changes, due to altitude from sealevel up to 7,000 feet lgreater for aircraftl may be encountered.

General limitations

Core maferial

a. For audio transformers and reactors: Core material should be such that core distortion is not greater than 0.75 percent at the lowest frequency. b. For power supply transformers: Core loss should be less than 0.82 watts per pound at 60 cps , for a fux density of 10,000 gauss. Filter reactors may have a core loss of 1.2 watts per pound at 60 cps , for 10,000 gauss.

Terminal facilifies

a. All leads or winding ends: Must remain inside the case for hermetically sealed units.
b. Leads may terminate: In studs in a Bakelite board or bushing when voltage is less than 1000 volts peak. For higher voltages, Isolantite or wet process porcelain may be used.

Profective gaps

Protective gaps are frequently used on.filter reactors or plate transformers in rectifier circuits delivering more than 1000 volis dc.

124

Design of power-supply transformers

The following may be used as a guide in the design of power supply transformers for receivers and small transmitters.

Nomenclature

$A_{c}=a b=$ cross section area of core in square inches
$a=$ stack width in inches
$b=$ stack height in inches
$B_{\text {max }}=$ maximum core flux density in gauss. Usually assumed to be 10,000 gauss (64.5 kilolines per square inch) at 60 cps , or 12,000 gauss at 25 cps
$E_{p}=$ primary terminal yoltage
$E_{s}=$ secondary terminal voltage
$f=$ frequency in cycles per second
$h=$ minimum height of a coil section above core in inches
$h^{\prime}=$ maximum height of a coil section above core in inches
$K=$ stacking factor lusually $K=0.9$)
MLT $=$ mean length of turn of a coil section in feet
$T_{p}=$ number of primary turns
$T_{s}=$ number of secondary turns
$V D_{p}=$ voltage drop due to primary resistance
$V D_{z}=$ voltage drop due to secondary resistance

Design procedure

1. Determine secondary output volt-ampere requirements.
2. Calculate primary current based on a wattage 10 percent greater than the volt-amperes determined in (1). Use the given primary voltage E_{p}.
3. The core area is determined roughly by the formula

Core area $=\frac{\sqrt{\text { wattage }}}{5.58} \sqrt{\frac{60}{f}}$
Select a lamination (from a transformer manufacturer's lamination data bookh that will fit the transformer space requirements and provide the proper core area when stacked to a sufficient height.
4. Compute the number of primary turns $T_{p}=\frac{E_{p} \times 10^{8}}{28.6 f B_{\max } A_{c} K}$
5. Compute the number of secondary turns $T_{s}=\frac{E_{s}}{E_{p}} T_{p}$
6. Determine the wire sizes needed for primary and secondary on the basis of on optimum current density of 1000 amperes per square inch, using Table I and the currents carried by the primary and secondary. Greater or smaller densities may be used as required. For very small transformers, densities up to 2500 amperes per square inch are sometimes used.

IRON-CORE TRANSFORMERS AND REACTORS

Design of power-supply fransformers cantinued
7. Calculate the number of turns per layer that can be placed in the lamination window space, deducting margin space from the window length.
8. From this value, calculate the total number of primary and secondary layers needed.
9. Calculate the total wire height, using the wire diameter and the number of layers.
10. Determine the total insulation thickness required between wire layers (from Table 1), and under and over coil sections.
11. Add the results of 19) and (10) and multiply the figure obtained by $10 / 9$ to allow for bulge in winding wire and wrapping insulation. Revise the design, as necessary, to make this over-all thickness figure (coil build) slightly less than the lamination window width.
12. Calculate the mean length of turns for the primary and for each secondary coil section

MLT $=\frac{2 a+2 b+2 \pi \frac{\left(h^{\prime}+h l\right.}{2}}{12}$
13. Calculate the total wire length in feet of each primary and secondary coil by multiplying the MLT value of the coil by the corresponding total number of turns in that coil.
14. The resistance of each coil is obtained by multiplying the total wire length obtained above by the resistance per foot.
15. Calculate the voltage drop in each primary and secondary from the calculated resistance and the current flow.
16. Compensate for the voltage drop in the primary and in each secondary by determining the corrected number of turns
(corrected T_{p}) $=\frac{E_{p}-V D_{p}}{E_{p}} \times$ (original T_{p})
$\left(\right.$ corrected $\left.T_{s}\right)=\frac{E_{s}+V D_{s}}{E_{s}} \times\left(\right.$ original $\left.T_{s}\right)$
17. Revise the number of layers of each winding according to the corrected number of turns.
18. Calculate the copper loss in both primary and secondary windings from the resistance of each coil times the square of the current flowing in it.

126

Design of power-supply fransformers continued

19. Calculate the core loss from the weight (in pounds) of the core used and the core loss per pound obtained from the core loss curve given by the manufacturer for the iron used.
20. The efficiency of the transformer is

Percent efficiency $=\frac{\text { wattage output } \times 100}{\text { wattage output }+ \text { core loss }+ \text { copper loss }}$

Table 1-Round enameled copper wire

$\begin{aligned} & \text { AWG } \\ & \text { (B\&S) } \end{aligned}$	diametor inches		current capacity amperes*	ohms per 1000 ft at $50^{\circ} \mathrm{C}$	coll margin inches	interlayer insulation \dagger inches
10	0.1039	9	8.2	1.12	0.25	0.010
11	0.0927	10	6.5	1.41	0.25	0.010
12	0.0827	11	5.1	1.78	0.25	0.010
13	0.0738	12	4.1	2.24	0.25	0.010
14	0.0659	13	3.2	2.82	. 0.25	0.010
15	0.0588	14	2.6	3.56	0.188	0.010
16	0.0524	16	2.0	4.49	0.188	0.010
17	0.0469	19	1.61	5.66	0.188	0.010
18	0.0418	21	1.28	7.14	0.125	0.005
19	0.0374	24	1.01	9.0	0.125	0.005
20	0.0334	26	0.80	11.4	0.125	0.005
21	0.0299	30	0.64	14.3	0.125	0.005
22	0.0266	34	0.50	18.1	0.125	0.003
23	0.0238	39	0.40	22.8	0.125	0.003
24	0.0213	43	0.32	28.7	0.125	0.003
25	0.0190	48	0.25	36.2	0.125	0.002
26	0.0169	54	0.20	45.6	0.125	0.002
27	0.0152	59	0.158	57.5	0.125	0.002
28	0.0135	68	0.126	72.6	0.125	0.002
29	0.0122	74	0.100	91	0.125	0.002
30	0.0108	84	0.079	115	0.125	0.0015
31	0.0097	94	0.063	146	0.125	0.0015
32	0.0088	104	0.050	183	0.094	0.0015
33	0.0078	117	0.039	231	0.094	0.0015
34	0.0069	131	0.031	292	0.094	0.001
35	0.0061	146	0.025	368	0.094	0.001
36	0.0055	162	0.0196	464	0.094	0.001
37	0.0049	183	0.0156	585	0.094	0.001
38	0.0044	204	0.0124	737	0.063	0.001
39	0.0038	227	0.0098	930	0.063	0.00075
40	0.0034	261	0.0078	1173	0.063	0.00075

[^9]
V Vacuum fubes

Nomenclafure:

$e_{c}=$ instantaneous total grid voltage
$e_{b}=$ instantaneous total plate voltage
$i_{c}=$ instantaneous total grid current
$i_{b}=$ instantaneous total plate current
$E_{c}=$ average value of grid voltage
$E_{b}=$ average or quiescent value of plate voltage
$I_{c}=$ average or quiescent value of grid current
$I_{b}=$ average or quiescent value of plate current
$e_{g}=$ instantaneous value of varying component of grid voltage
$e_{p}=$ instantaneous value of varying component of plate voltage
$i_{g}=$ instantaneous value of varying component of grid current
$i_{p}=$ instantaneous value of varying component of plate current
$E_{g}=$ effective or maximum value of varying component of grid voltage
$E_{p}=$ effective or maximum value of varying component of plate voltage
$I_{g}=$ effective or maximum value of varying component of grid current
$I_{p}=$ effective or maximum value of varying component of plate current
$I_{f}=$ filament or heater current
$I_{s}=$ total electron emission (from cathode)
$r_{2}=$ external plate load resistance
$\mathrm{C}_{a p}=$ grid-plate direct capacitance
$C_{0 k}=$ grid-cathode direct capacitance
$C_{p k}=$ plate-cathode direct capacitance
$\theta_{p}=$ plate current conduction angle
$r_{p}=$ variational (a-c) plate resistance
$R_{p b}=$ total (d-c) plate resistance
Note: In the following text, the superscript M indicates the use of the maximum or peak value of the varying component, i.e., ${ }^{M} E_{p}=$ maximum or peak value of the alternating component of the plate voltage.

* From IRE standard symbols IElectronics Slandards, 1938

Coefficients

Amplification factor μ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes.

$$
\left.\begin{array}{c}
\mu=\left[\frac{\delta e_{b}}{\delta e_{c 1}}\right]_{I_{b}} \\
E_{d 2} \ldots \ldots . \ldots . . . E_{c n}
\end{array}\right\} \text { constant }
$$

128

Coefftcients continued
Transconductance \boldsymbol{s}_{m} : Ratio of incremental plate current to control-electrode voltage change at constant voltage on other electrodes.

$$
\begin{gathered}
s_{m}=\left[\frac{\delta i_{b}}{\delta \mathrm{e}_{c 1}}\right] E_{b}, E_{c 2} \ldots \ldots . . . E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

When electrodes are plate and control grid, the ratio is the mutual conductance g_{m} of the tube.
$g_{m}=\frac{\mu}{r_{p}}$
Variational (a-c) plate resistance r_{p} : Ratio of incremental plate voltage to current change at constant voltage on other electrodes.

$$
\begin{gathered}
\boldsymbol{r}_{p}=\left[\frac{\delta \mathrm{e}_{b}}{\delta i_{b}}\right]_{E_{c 1-\ldots \ldots} \ldots \ldots-\ldots} E_{c n} \text { constant } \\
\boldsymbol{r}_{l}=0
\end{gathered}
$$

Total (d-c) plate resistance R_{p} : Ratio of total plate voltage to current for constant voltage on other electrodes.

$$
\begin{gathered}
R_{p}=\left[\frac{e_{b}}{i_{b}}\right]_{E_{c l} \ldots \ldots \ldots E_{c n} \text { constant }} \\
r_{t}=0
\end{gathered}
$$

Terminology

Control grid: Electrode to which plate-current-controlling signal voltage is applied.
Space-charge grid: Electrode, usually biased to constant positive voltage, placed adjacent to cathode to reduce current-limiting effect of space charge. Suppressor grid: Grid placed between two electrodes to suppress the effect of secondary electrons.
Screen grid: Grid placed between anode and control grid to reduce the capacitive coupling between them.
Primary emission: Thermionic emission of electrons from a surface.
Secondary emission: Usually of electrons, from a surface by direct impact not thermal action, of electronic or ionic bombardment.
Total emission I_{s} : Maximum (saturated, temperature-limited) value of electron current which may be drawn from a cathode. Available total emission is that peak value of current which may safely be drawn.

Terminology continued

Transfer characteristic: Relation, usually graphical, between voltage on one electrode and current to another, voltages on all other electrodes remaining constant.

Electrode characteristic: Relation, usually graphical, between the voltage on, and current to, a tube electrode, all other electrode voltages remaining constant.

Composite-diode lines: Relation, usually two curves, of the currents flowing to the control grid and the anode of a triode as a function of the equal voltage applied to them Igrid-plate tied).
Critical grid voltage: Instantaneous value of grid voltage (with respect to cathodel at which anode current conduction is initiated through a gas tube.
Constant current characteristics: Relation, usually graphical, between the voltages on two electrodes, for constant specified current to one of them and constant voltages on all other electrodes.

Formulas

For unipoiential cathode and negligible seturation of cethode emission

function	paroilel plane cothode and plate	cylindricol cothode ond plate
Diode plate current (amperes)	$\mathrm{G}_{1} \mathrm{e}^{\frac{3}{2}}$	$\mathrm{G}_{1}{ }^{\text {e }}{ }^{\frac{3}{2}}$
Triode plate current (amperes)	$\mathrm{G}_{2}\left(\frac{e_{b}+\mu e_{c}}{1+\mu}\right)^{\frac{3}{2}}$	$\mathrm{G}_{2}\left(\frac{e_{b}+\mu \mathrm{e}_{0}}{1+\mu}\right)^{\frac{8}{2}}$
Diode perveance G_{1}	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b}^{2}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r b^{2}}$
Triode perveance G_{2}	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b} d_{a}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r_{b} r_{c}}$
Amplification factor μ	$\frac{2.7 d_{c}\left(\frac{d_{b}}{d_{c}}-1\right)}{\rho \log \frac{\rho}{2 \pi r_{b}}}$	$\frac{2 \pi d_{o}}{\rho} \frac{\log \frac{d_{b}}{d_{c}}}{\log \frac{\rho}{2 \pi r_{\theta}}}$
Mutual conductance g_{m}	$\begin{aligned} & 1.5 \mathrm{G}_{2} \frac{\mu}{\mu+1} \sqrt{\mathrm{e}_{\theta}^{\prime}} \\ & \mathrm{e}_{\theta}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{G}_{2} \frac{\mu}{\mu+1} \sqrt{\mathrm{e}_{\theta}^{\prime}} \\ & \mathrm{e}_{\theta}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{aligned}$

130

Formulas continued
where
$A_{b}=$ effective anode area in square centimeters
$J_{b}=$ anode-cathode distance in centimeters
$d_{c}=$ grid-cathode distance in centimeters
$\beta=$ geometrical constant, a function of ratio of anode to cathode radius;

$$
\beta^{2} \cong 1 \text { for } \frac{r_{b}}{r_{k}}>10 \text { (see curve Fig. } 1 \text {) }
$$

$\rho=$ pitch of grid wires in centimeters
$r_{g}=$ grid wire radius in centimeters
$r_{b}=$ anode radius in centimeters
$r_{k}=$ cathode radius in centimeters
$r_{c}=$ grid radius in centimeters
Note: These formulas ore based on theoretical considarations and do nat provide accurate results; for practical structures, however, they give a fair ideo of the relationship between the tube geometry and the constonts of the tube.

Fig. 1-Values of β^{2} for values of $\frac{r_{b}}{r_{k}}<10$.

Performance limitations

Tube performance limitation factors include electrode dissipation, filament emission, and the transit time of electrons in the active part of the tube. For a given tube, the ultimate limitation may be any one or a combination of these factors.

Electrode dissipafion dafa

Tube performance is limited by electrode dissipation. In turn, tube dissipation is limited by the maximum safe operating temperatures of the glass-to-metal seals lapproximately $200^{\circ} \mathrm{Cl}$, glass envelope, and tube electrodes. Thus excessive dissipation may result in breakage, loss of vacuum, and destruction of the tube.

Typical operating data for common types of caoling are roughly

type	average cooling surface femperature ${ }^{\circ} \mathbf{c}$	specifte dissipation watts/em cooling surface	cooling medium
supply			

The operating temperature of radiation-cooled anodes for a given dissipation is determined by the relative total emissivity of the anode material. Thus, graphite electrodes which approach black-body radiation conditions operate at the lower temperature range indicated, while untreated tantalum and molybdenum work at relatively high temperatures. In computing coolingmedium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained. In the case of water and forced-air cooled tubes, the figures above apply to clean cooling surfaces, and may be reduced to a small fraction of these values by heat-insulating coatings such as mineral scale or dust. Cooling surfaces should, thus, be closely observed and cleaned periodically.

Dissipation and temperature rise of cooling water
$K W=0.264 Q\left(T_{2}-T_{1}\right)$
where $K W=$ power in kilowatts, $\mathrm{Q}=$ flow in gallons per minute, T_{2} and $T_{1}=$ outlet and inlet temperatures in degrees centrigrade. An alternate formula is
$K W=\frac{\text { liters per minute }\left(T_{2}-T_{1}\right)}{14.3}$
or $K W=$ liters per minute when the temperature rise is a reasonable figure, namely $14.3^{\circ} \mathrm{C}$.

Air flow and temperature rise
$Q=5.92\left(T_{1}+273\right) \frac{P}{T_{2}-T_{1}}$
where $Q=$ air flow in cubic feet per minute.

132

Filament characteristics

The sum of the instantaneous peak currents drawn by all of the electrodes must be within the available total emission of the filament. This emission is determined by the filament material, area, and temperature.

Typical data on the three types of floment most used ore

type	officiency mo/wat	speciffe emission I_{s} $\mathrm{amp} / \mathrm{cm}^{2}$	wath/cm ${ }^{2}$	operafing femperafure Kelvin	ratlo hat-fo-cold resistance
Pure tungsten (W)	5-10	0.25-0.7	70-84	2500-2600	14:1
Thoriated tungsten (ThW)	40-100	0.5-3	26-28	1950-2000	10:1
Oxide coated (BaCoSr)	50-150	0.5-2.5	5-10	1100-1250	2.5 to 5.5:1

In the cases of thoriated-tungsten and oxide-coated filament tubes, the emission data vary widely between tubes around the approximate range indicated in the table. The figures for specific emission refer to the peak or saturated value which is usually two or more times the total available value for these filaments. Instantaneous peak current values drawn during operation should never exceed the published available emission figure for the given tube.
Thoriated-tungsten and oxide-coated type filaments should be operated close to the specified published voltage. Deviation from these values will result in rapid destruction of the cathode surface.
In the case of pure tungsten, the filament may be operated over a considerable temperature range. It should be borne in mind, however, that the total filament-emission current available varies closely as the seventh power of the filament voltage. Likewise, the expected filament life is critically dependent on the operating temperature. The relationship between filament voltage and life is shown by Fig. 2. It will be seen that an increase of 5 percent above rated filament voltage reduces the life expectancy by 50 percent. Where the dull normal emission is not required, a corresponding increase in life may be secured by operating a pure tungsten filament below rated filament voltage.
From the above tabulated values of hot-to-cold resistance, it may be seen that a very high heating current may be drawn by a cold filament, particularly one of the tungsten type. In order to avoid destruction by mechanical stresses which are proportional to I^{2}, it is imperative to limit the current to a safe value, say, 150 percent of normal hot value for large tubes and 250 percent for medium types. This may be accomplished by resistance and time-delay relays, high-reactance transformers, or regulators.

Fig. 2-Effect of change in flament voltage on the life and emission of bright fungsten filament (based on $2575^{\circ} \mathrm{K}$ normal temperature).

Filament characteristics

 continuedIn the case where a severe overload has temporarily impaired the emission of a thoriated-tungsten filament, the activity can sometimes be restored by operating the tube with filament voltage only in accordance with one of the following schedules:

1. At normal filament voltage for several hours or overnight. Or, if the emission fails to respond.
2. At 30 percent above normal for 10 minutes, then at normal for 20 to 30 minutes. Or, in extreme cases when 1 and 2 have failed to give results and at the risk of burning out the filament.
3. At 75 percent above normal for 30 seconds followed by schedule 2 .

Ulira-high-frequency fubes

Tubes for u-h-f application differ widely in design among themselves and from those for lower frequency. The theory of their operation and the principles of their design have not been fully expounded, and great progress in this field still lies ahead.
Ultra-high-frequency tubes may be classified according to principle of operation as follows:

1. Negative-grid tubes
2. Positive-grid tubes
3. Velocity-modulated tubes
4. Magnetrons
1., Negative-grid tubes: Effectiveness of negative-grid tubes at ultra-highfrequencies is limited by two factors
a. difficulty of designing the circuit associated with the tube
b. effect of electron inertia.
a. Design of u-h-f circuit associated with negative-grid tubes: The circuit must be tunable at the operating frequency. This leads to the use of transmission lines as associated circuits of the parallel or coaxial type. The tubes themselves are constructed so as to be part of the associated transmission line.

Lines in some cases are tuned on harmonic modes, thus making possible the use of larger circuit elements.
Circuit impedance must match the optimum loading impedance of the tube, a requirement difficult to satisfy inasmuch as the capacitive reactances are very small and u-h-f losses are important in both conductors and insulators. Difficulty in obtaining the proper Q of the circuit is increased with frequency.

Ulira-high-frequency tubes

b. Effect of electron inertia: The theory of electron inertia effect in receiving tubes has been formulated by Llewelyn, but no comparable, complete theory is now available for transmitting tubes. In both cases the time of light of an electron from cathode to anode must be a small fraction of the oscillating period. When this period is so short as to be of the same order of magnitude as the transit time, receiving tubes cease to amplify and transmitting tubes cease to oscillate.
Small tubes with close spacing between electrodes have been built that can be operated up to about 3000 megacycles.
To compare results obtained with different tubes and circuits pertaining to a family ruled by the law of similitude, it is useful to know that dimensionless magnitudes, such as efficiency, or signal-noise ratio, are the same when the dimensionless parameter
$\phi=\frac{f \times d}{\sqrt{V}}$ remains constant
where
$f=$ frequency in megacycles
$d=$ cathode-to-anode distance in centimeters
$V=$ anode voltage in volts.
Transit-time effect appears when ϕ becomes greater than 1. Spacing between electrodes of u-h-f tubes then must be small, and operation at high voltage is necessary. In addition cathodes must be designed for high current density operation.
2. Positive-grid tubes: Utilize an oscillating space charge produced by acceleration of electrons through the positive grid toward a negative reflecting anode. This principle has been used for generating waves down to lengths of one centimeter. Low power output and low efficiency have hitherto limited their wide application.
3. Velocity-modulated fubes: Utilize the acceleration and retarding action of an alternating electron voltage on an electron beam to vary the velocity in the beam. After passage of the beam through a field-free drift space, the beam arrives with variations of space-charge density. In passing through the opening of a resonant cavity at this point, the variation of the beam density induces a current in the external circuit. Several types of amplifiers and oscillators employ this principle of operation; some, such as the reflex Klystron, have a single cavity. While a theoretical efficiency of about 50 percent may thereby be achieved, the actual efficiency in the frequency range around 10 centimeters is only a few percent.
4. Magnetrons: May be considered as another form of velocity-modulated tube in which the electron stream instead of being accelerated linearly is

136

Ulitra-high-frequency fubes continued

given a circular trajectory by means of a transverse magnetic field. Energy from this beam is not lost directly to an acceleration electrode at d-c potential as in the linear case and accordingly a higher operating efficiency may be obtained. Usually acceleration and retardation of the rotary beam is accomplished by one or more pairs of electrodes associated with one or more resonant circuits.

Wavelengths down to a centimeter are produced by the so-called first order ($n=1$) oscillations generated in a magnetron having a single pair of plates. Relatively low efficiency and power output are obtained in this mode of operation. Design formulas relating dimensions, d-c anode voltage, magnetic field strength, and output frequency for this case are obtained from the basic relation for electron angular velocity

$$
\begin{aligned}
\omega_{m} & =H \frac{e}{m} \\
\lambda & =\frac{10,700}{H} \\
E_{b} & =0.022 r_{b}^{2}\left[1-\left(\frac{r_{k}}{r_{b}}\right)^{2}\right]^{2} H^{2}
\end{aligned}
$$

where

$$
H=\text { field intensity in gauss }
$$

$E_{b}=\mathrm{d}-\mathrm{c}$ accelerating voltage in volts
$\lambda=$ generated wavelength in centimeters
$r_{b}=$ anode radius in centimeters
$r_{k}=$ cathode radius in centimeters
Higher order oscillations of the magnetron may be obtained at high outputs and efficiencies exceeding that of the linear velocity-modulated tubes.

Cathode-ray fubes

Electrodes*

Control electrode (modulating electrode, grid, or grid No. 1): Is operated at a negative potential with respect to the cathode in conventional cathoderay tubes. The negative potential controls the beam current and, therefore, the trace brightness.

[^10]
Cathode-ray fubes

continued
Screen grid (grid No. 2): Is not utilized in all cathode-ray tube designs. Its introduction makes the control characteristic independent of the accelerating potential when operated at fixed positive potential. In electrostaticfocus, it makes the screen current (beam current to fluorescent screen) substantially independent of the focusing electrode voltage over the focus region. In some tube designs, it is used to change the control characteristic dynamically by application of varying potential.

Fig. 3-fiectrede arrangement of iypical electrastatic foeus and deflection cathode-ray tube. A heater. B cathode. C centrol electrode. D screen grid or preaceelerator. E focusing electrode. F accelerating electrode. G defection plote peir. H defection plate poir. J conductive coating connected'to aceelerating electrode. K Intensifer electrode terminal. I Intenstifer electrode (conductive coating on glass). M fuorescent seraen.

Focusing electrode (anode No. 1): is used in electrostatic-focus cathode-ray tubes and operates at a positive potential," adjustable to focus the spot.
Accelerating electrode (anode No. 2 or anode): In usual usage, the second anode is the last electrode, prior to deflection, which produces acceleration. The second anode potential is the potential of the electron beam in the deflection region.
Intensifier electrode (post-accelerating electrode, anode No. 3): Provides acceleration after deflection.
Preaccelerating electrode: In common usage, is an electrode like a screen grid or second grid, but connected to the accelerating electrode internally. It makes the screen current (beam current to fluorescent screen) substantially independent of the focusing electrode voltage over the focus region.
Deflection plates (deflection electrodes): Conventional cathode-ray tubes have two pairs of deflection plates at right angles to each other. The electric field between the plates of a pair causes deflection of the beam and, therefore, displacement of spot, in a direction perpendicular to plates of a pair.

[^11]138

Cathode-ray fubes continued

Characteristics

Cutoff voltage ($E_{c o}$): Negative grid potential at which screen current becomes zero (as indicated by visual extinction of a focused undeflected spot), or some specified low value. It varies directly with the accelerating electrode potential except in tubes with independently connected screen grids where it varies approximately as the screen-grid potential, the accelerating electrode potential having a second order effect $\left(E_{\infty}\right.$ increases slightly with accelerating electrode potentiall. $E_{c o}$ is independent of intensifier electrode potential.

Control characteristic (modulation characteristic): is a curve of beam current versus grid potential. It is often expressed in terms of grid drive lgrid potential above cutoff) rather than actual grid potential. This method of expressing it has the advantage that the characteristic then varies less with accelerating potential and with individual tubes of a given design.

Focusing voltage: In electrostatic focus tubes, the focusing electrode voltage at which the spot comes to a focus varies directly with accelerating electrode voltage in most tube designs and is substantially independent of the intensifier electrode potential.

Focusing current or focusing ampere turns: Applies to magnetic-focus cathode-ray tubes and is usually expressed in terms of a definite focus coil in a definite location on the tube. While more than one value of current will focus, the best focus is obtained with the minimum value, i.e., the one ordinarily specified. The focusing current lor ampere turnsl increases with accelerating potential.

Deflection factor (for electrostatic-deflection tubes): Is defined as the voltage required between a pair of deflection plates to produce unit deflection of the spot, and is usually expressed in d-c volts per inch of displacement. It varies directly with the accelerating potential in intensifier-type tubes so long as the ratio of the intensifier potential to accelerating-electrode potential lall potentials with respect to cathodel is constant. The application of twice the accelerating electrode potential to the intensifier electrode increases the deflection factor 15 percent to 30 percent above the value with the accelerating electrode and intensifier electrode at the same potential, depending on the tube design.

Deflection factor (for magnetic deflection tubes): Usually expressed in terms of a definite deflection yoke in a definite location on the tube, in amperes or milliamperes per inch of spot deflection, it varies as the square root of the accelerating electrode potential.

Cathode-ray fubes continued

Deflection sensitivity: Is the reciprocal of the deflection factor. Usually, however, it is expressed in millimeters per volt for electrostatic deflection tubes.

Spot size: Must be expressed in terms of a defined method of measurement since spot edges are not usually sharp. When the accelerating potential is varied and the screen current maintained constant, the spot size usually decreases with increasing accelerating potential. If the brightness is held constant while varying the accelerating potential, the spot size decreases even more with increasing accelerating potential.
Brightness: Increases with beam current and with accelerating potential. At constant screen current, it usually increases with accelerating potential at a rate between the first and second power of the accelerating potential, approaching a maximum depending upon the screen material.

Application notes

Grid voltage: To permit variation of brightness over the entire range, the grid voltage, should be variable from the maximum specified cutoff bias of a cathode-ray tube to zero. Allowance should be made for a-c grid voltages if they are applied, and for potential drops which may occur in d-c gridreturn circuits due to allowable grid leakage.

Focusing electrode voltage source (electrostatic-focus tubes): Bleeder design should be such as to cover the range of focus voltage over which tubes are permitted to vary by specifications, both at the value of focusing-electrode current that may be encountered in operation, and at cutoff (zero focusing-electrode currentl.

Deflection-plate potentials (electrostatic-deflection tubes): To avoid defocusing of the spot, the instantaneous average potential of the plates of each deflection-plate pair should always be the same as that of the accelerating electrode.

Magnetic shielding: Magnetic shielding is necessary if it is desired to eliminate magnetic effects on the beam. The earth's and other magnetic fields may shift the beam considerably.

Approximate formulas

Electrostatic deflection: Is proportional to deflection voltage, inversely proportional to accelerating voltage, and at right angles to the plane of the plates and toward the more positive plate. For deflection electrode structures using straight parallel deflection plates

Cathode-ray tubes continued

$D=\frac{E_{d} L l}{2 E_{a} A}$
$D=$ deflection
$E_{d}=$ deflection voltage
$E_{a}=$ accelerating voltage
$A=$ separation of plates
$I=$ length of plates
$L=$ length from center of plates to screen
D, A, l, L are all in the same units
Electromagnetic deflection: Is proportional to flux or current in coil, inversely proportional to the square root of the accelerating voltage, and at right angles to the direction of the field

$$
\begin{aligned}
D= & \frac{0.3 L I H}{\sqrt{E_{a}}} \\
D= & \text { deflection in centimeters } \\
L= & \text { length in centimeters between screen } \\
& \text { and point where beam enters deflect- } \\
& \text { ing field } \\
I= & \text { length of deflection field in centimeters } \\
H= & \text { flux density in gauss } \\
E_{a}= & \text { accelerating voltage } \\
N I= & \text { deflecting coil ampere turns }
\end{aligned}
$$

Deflection sensitivity: Is linear up to frequency where phase of deflecting voltage begins to reverse before electron has reached end of deflecting field. Beyond this frequency, sensitivity drops off reaching zero and then passing through a series of maxima and minima as $n=1,2,3 \ldots$ Each succeeding maximum is of smaller magnitude

$$
\begin{aligned}
D_{z e r o} & =n \lambda\binom{v}{c} . \\
D_{m a x} & =12 n-11\left(\frac{\lambda}{2}\right)\left(\frac{v}{c}\right) \\
D & =\text { deflection } \\
v & =\text { electron velocity } \\
c & \left.=\text { speed of light } 13 \times 10^{10} \mathrm{~cm} / \mathrm{sec}\right)
\end{aligned}
$$

Electron velocity: For accelerating voltages up to 10,000 $v\left(\mathrm{~km}\right.$ per sec) $=593 \sqrt{E_{a}}$

Cathode-ray fubes continued

Beyond 10,000 volts, apply Einstein's correction for the increase in mass of the electron.

Earth's magnetic field:

Maximum 0.4 gauss horizontal (Philippine Islands)
0.6 gauss vertical (Canada)

City of New York 0.17 gauss horizontal; 0.59 gauss vertical
Magnetic focusing: There is more than one value of current that will focus. Best focus is at minimum value.
For an everage coil
$I N=220 \sqrt{\frac{V_{o d}}{f}}$
IN = ampere turns
$V_{0}=k v$ accelerating voltage
$d=$ mean diameter of coil
$f=$ focal length
d and f are in the same units
A well-designed, shielded coil will require fewer ampere turns.
Example of good shield design

$$
x=\frac{d_{1}}{20}
$$

I November 1945

Transmilting

trlades		tefrodes	twin tefrodes	penfodes	puise medulation	magnetrons		vocuum	$\begin{aligned} & \text { rectiflers } \\ & \text { gas } \end{aligned}$		grid control	elipper	ges switching ATR \| TR	
2C26A	811	807	815	2 E 22	3021A	2130-34	4J31-35	122	3828		2021	$3 \mathrm{B26}$	1835	1823
2C39	826	813	8298	2 E 25	3 C 45	2141	4J36-42	2×2A	4826		C5B	4831	1837	1824
2 C 43	862A	814	832A	4 E 27	3 E 29	2 J 42	4143-44	3824 W	4835		6D4	719A	1844	1827
3 C 28	880	$8278 \dagger$		803	4C35	2148	4150	5R4GY	5821		393A		1851	1832
CV92 $\langle\mathrm{Br}\rangle \dagger$	889R-A	1625		837	5 C 22	2149	4151	371 B	6 C		394A		18.52	1850
100TH	1626				6 C 21	2150	4152	836	83		884		1853	1855
250TH	8025A				715C \dagger	2151	5126	1616	$857 B$		2050		1856	IB58
304TH						2153	5129	8016	866 A				1857	
450 TH						2155-56	5130	8020	8698					
527						2158	5131		872A				pre-TR	medulator:
						2160	5132		1c06				1838	1822
						2161 A-62A							1854	1841
														1842

Specification hos been issued a counterport of the prototype indicated by suffix lefter(i) GT, GT/G, Y, W, A, B, etc. moy be used.

[^12]
- Vacuum fube amplifiers

Classification

It is common practice to differentiate between types of vacuum tube circuits, particularly amplifiers, on the basis of the operating regime of the tube.

Class A: Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle $1 \theta_{p}=360$ degrees).

Class $A B$: Grid bias and alternating grid voltages such that plate current flows appreciably more than half but less than entire electrical cycle $\left(360^{\circ}>\theta_{p}>180^{\circ}\right.$).

Class B: Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle $\left(\theta_{p} \cong 180^{\circ}\right)$.

Class C: Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle $\left(\theta_{p}<180^{\circ}\right)$.

A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1 , respectively. Thus a class $A B_{2}$ amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted, and accordingly in-phqse power is required to drive the tube.

General design

For quickly estimating the performance of a tube from catalog data, or for predicting the characteristics needed for a given application, the ratios given in Table I may be used.

Table 1-Typical amplifer operating data

Maximum signal conditions-per fube

function	class A	$\begin{gathered} \text { class B } \\ a-f(p-p) \end{gathered}$	$\begin{gathered} \text { class B } \\ \text { rof } \end{gathered}$	$\underset{r-f}{c}$
Plote efficiency η \%	20-30	35-65	60-70	65-85
Peak instantaneous to d-c plate current ratio $\mathrm{Mib}_{\text {ib }} / \mathrm{I}_{b}$	1.5-2	3.1	3.1	3.1-4.5
RMS alternating to d-c plate current ratio I_{p} / I_{b}	0.5-0.7	1.1	1.1	1.1-1.2
RMS olternating to d-c plate voltoge ratio E_{p} / E_{b}	0.3-0.5	0.5-0.6	0.5-0.6	0.5-0.6
D-C to peak instantaneous grid current $I_{c} / M_{i_{e}}$		0.25-0.1	0.25-0.1	0.15-0.1

General design continued

Table I gives correlating data for typical operation of tubes in the various amplifier classifications. From this table, knowing the maximum ratings of a tube, the maximum power output, currents, voltages, and corresponding load impedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class C radio-frequency power amplifier and oscillator-the constant-current characteristics of which are shown in Fig. 1-published maximum ratings are as follows:
D.C plate voltage $E_{b}=20,000$ volts
D.C grid voltage $E_{c}=3,000$ volts

D-C plate current $I_{b}=7$ amperes
R-F grid current $\quad I_{o}=50$ amperes
Plate input $\quad P_{i}=135,000$ watts
Plate dissipation $P_{p}=40,000$ watts
Maximum conditions may be estimated as follows:
For $\eta=75 \% \quad P_{i}=135,000$ watts $\quad E_{b}=20,000$ volts
Power output $P_{0}=\eta P_{i}=100,000$ watts
Average d-c plate current $I_{b}=P_{i} / E_{b}=6.7$ amperes
From tabulated typical ratio ${ }^{\mathrm{M}} \mathrm{i}_{\mathrm{b}} / I_{b}=4$, instantaneous peak plate current ${ }^{M_{i b}}=4 l_{b}=27$ amperes
The rms alternating plate current component, taking ratio $I_{p} / I_{b}=1.2, I_{p}=$ $1.2 I_{b}=8$ amperes

The rms value of the alternating plate voltage component from the ratio $E_{p} / E_{b}=0.6$ is $E_{p}=0.6 E_{b}=12,000$ volts.

The approximate operating load resistance r_{l} is now found from
$r_{l}=\frac{E_{p}}{I_{p}}=1500$ ohms.
An estimate of the grid drive power required may be obtained by reference to the constant current characteristics of the tube and determination of the peak instantaneous positive grid current ${ }^{M_{i}}$ and the corresponding instantaneous total grid voltage ${ }^{\mathrm{M}} \mathrm{e}_{c}$. Taking the value of grid bias E_{c} for the given operating condition, the peak a-c grid drive voltage is

$$
\left.{ }^{M} E_{0}=l^{M} e_{c}-E_{d}\right)
$$

from which the peak instantaneous grid drive power
${ }^{M} P_{c}={ }^{M} E_{g}{ }^{M} i_{c}$.

General design continued

An approximation to the average grid drive power P_{g}, necessarily rough due to neglect of negative grid current, is obtained from the typical ratio
$\frac{I_{c}}{\mathrm{M}_{i_{c}}}=0.2$
of d-c to peak value of grid current, giving
$P_{g}=I_{c} E_{g}=0.2{ }^{\mathrm{M}_{c} E_{g}}$ watts.
Plate dissipation P_{p} may be checked with published values since

$$
P_{p}=P_{i}-P_{0}
$$

grid amperes I_{c}

Fig. I-Constant-eurrent characteristics with typical load lines $A B$-elass $C, C D-$ class B, EFG-class A, and HJK-class AB.

General design continued

It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum d-c plate operating voltage of 20,000 volts does not permit operation at the maximum d-c plate current of 7 amperes since this exceeds the maximum plate input rating of 135,000 watts.
Plate load resistance r_{l} may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance-matching elements as in audio-frequency transformer coupling, or effectively represented by a loaded parallel resonant circuit as in most radio-frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio-frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult.
The physical load resistance present in any given set-up may be measured by audio-frequency or radio-frequency bridge methods. In many cases, the proper value of r_{l} is ascertained experimentally as in radio-frequency amplifiers which are tuned to the proper minimum d-c plate current. Conversely, if the circuit is to be matched to the tube, r_{l} is determined directly as in a resistance-coupled amplifier or as
$r_{l}=N^{2} r_{s}$
in the case of a transformer-coupled stage, where N is the primary-to-secondary voltage transformation ratio. In a parallel-resonant circuit in which the output resistance r_{s} is connected directly in one of the resistance legs,
$r_{l}=\frac{X^{2}}{r_{i}}=\frac{L}{C r_{g}}=Q X$,
where X is the leg reactance at resonance (ohms).
L and C are leg inductance (henries) and capacitance (farads), respectively,
$Q=\frac{X}{r_{s}}$.

Graphical design methods

When accurate operating data are required, more precise methods must be used. Because of the non-linear nature of tube characteristics, graphical methods usually are most convenient and rapid. Examples of such methods are given below.
A comparison of the operating regimes of class $A, A B, B$, and C amplifiers is given in the constant-current current characteristics graph of Fig. 1. The

Graphical design methods continued

lines corresponding to the different classes of operation are each the locus of instantaneous grid e_{c} and plate e_{b} voltages, corresponding to their respective load impedances.

For radio-frequency amplifiers and oscillators having tuned circuits giving an effective resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit time), and the loci become straight lines.

For amplifiers having non-resonant resistive loads, the loci are in general non-linear except in the distortionless case of linear tube characteristios (constant r_{p}) for which they are again straight lines.

Thus, for determination of radio-frequency performance, the constantcurrent chart is convenient. For solution of audio-frequency problems, however, it is more convenient to use the ($i_{b}-e_{c}$) transfer characteristics of Fig. 2 on which a dynamic load line may be constructed.
Methods for calculation of the most important cases are given below.

Class C r-f ampliffer or oscillator

Draw straight line from A to B (Fig. II corresponding to chosen d-c operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of $A B$ on the horizontal axis thus corresponds to ${ }^{M} E_{p}$. Using Chaffee's 11 -point method of harmonic analysis, lay out on $A B$ points:

$$
e_{p}^{\prime}={ }^{M} E_{p} \quad e_{p}^{\prime \prime}=0.866^{M} E_{p} \quad e^{\prime \prime \prime}{ }_{p}=0.5^{M} E_{p}
$$

to each of which correspond instantaneous plate currents $i^{\prime}{ }_{b}, i^{\prime \prime}{ }_{b}$ and $i^{\prime \prime \prime}{ }_{b}$ and instantaneous grid currents $i_{c}{ }_{c} i^{\prime \prime}{ }_{c}$ and $i^{\prime \prime \prime}{ }_{c}$. The operating currents are obtained from the following expressions:

$$
\begin{aligned}
I_{b} & =\frac{1}{12}\left[i_{b}^{\prime}+2 i_{b}^{\prime \prime}+2 i^{\prime \prime \prime}{ }_{b}\right] & I_{c} & =\frac{1}{12}\left[i_{c}+2 i_{c}^{\prime \prime}+2 i^{\prime \prime \prime}\right] \\
{ }^{\mathrm{M}} I_{p} & =\frac{1}{6}\left[i^{\prime}{ }_{b}+1.73 i_{b}^{\prime \prime}+i^{\prime \prime \prime}{ }_{b}\right] & { }^{\mathrm{M}} I_{q} & =\frac{1}{6}\left[i_{c}^{\prime}+1.73 i_{c}^{\prime \prime}+i^{\prime \prime \prime}{ }_{c}\right]
\end{aligned}
$$

Substitution of the above in the following give the desired operating data.
Power output $P_{0}=\frac{{ }^{M} E_{p}{ }^{M} I_{p}}{2}$
Power input $P_{i}=E_{b} I_{b}$
Average grid excitation power $=\frac{{ }^{M} E_{g}{ }^{M} I_{g}}{2}$

Graphical design methods continued

Peak grid excitation power $={ }^{\mathrm{M}} E_{g} i_{c}$
Plate load resistance $r_{l}=\frac{{ }^{\mathrm{M}} E_{p}}{{ }^{\mathrm{M}} I_{p}}$
Grid bias resistance $R_{c}=\frac{E_{c}}{I_{c}}$
Plate efficiency $\eta=\frac{P_{0}}{P_{i}}$
Plate dissipation $P_{p}=P_{i}-P_{0}$
The above procedure may also be applied to plate-modulated class C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for ${ }^{\text {crest }} E_{b}=2 E_{b}$ and ${ }^{\text {crest }} P_{0}=4 P_{0}$ keeping r_{l} constant. After a cut-and-try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation.

To illustrate the preceding exposition, a typical amplifier calculation is given below:

Operating requirements (carrier condition)
$E_{b}=12,000$ volts
$P_{0}=25,000$ watts
$\eta=75 \%$

Preliminary calculation (refer to Table 11)

Table II-Class C r-f amplifier data $\mathbf{1 0 0} \%$ plate modulation

symbol	preliminary carrier	detailed	
		carrier	crest
E_{b} lvolts)	12,000	12,000	24,000
$\mathrm{M} E_{p}$ (volts)	10,000	10,000	20,000
E_{c} (valis)		-1,000	-700
${ }^{M} E_{0}$ (volts)		1.740	1,740
14 lampl	2.9	2.8	6.4
M_{p} (amp)	4.9	5.1	10.2
I_{c} (ampl		0.125	0.083
${ }^{\mathrm{M}} \mathrm{I}_{\mathrm{p}}$ (amp)		0.255	0.183
P_{i} (watts)	35,000	33,600	154,000
P_{0} (watts)	25,000	25,500	102,000
P_{0} (wotts)		220	160
η (percent)	75	76	66
r_{l} (ohms)	2,065	1,960	1,960
R_{c} (0hms)		7,100	7,100
$E_{\text {ce }}$ (volts)		- 110	-110

$$
\begin{aligned}
\frac{E_{p}}{E_{b}} & =0.6 \\
E_{p} & =0.6 \times 12,000=7200 \text { volts } \\
{ }^{{ }^{M}} E_{p} & =1.41 \times 7200=10,000 \text { volts } \\
I_{p} & =\frac{P_{0}}{E_{p}} \\
I_{p} & =\frac{25,000}{7200}=3.48 \text { amperes } \\
{ }^{{ }_{M} I_{p}} & =4.9 \text { amperes } \\
\frac{I_{p}}{I_{b}} & =1.2 \\
I_{b} & =\frac{3.48}{1.2}=2.9 \text { amperes } \\
P_{i} & =12,000 \times 2.9=35,000 \text { watts } \\
\frac{\mathrm{M}_{i_{b}}}{I_{b}} & =4.5 \\
{ }_{\mathrm{M}_{i_{b}}} & =4.5 \times 2.9=13.0 \text { amperes } \\
\mathrm{r}_{l} & =\frac{E_{p}}{I_{p}}=\frac{7200}{3.48}=2060 \text { ohms }
\end{aligned}
$$

Complete calculation

Layout carrier operating line, $A B$ on constant current graph, Fig. I, using values of $E_{b},{ }^{M} E_{p}$, and ${ }^{M} i_{b}$ from preliminary calculated data. Operating carrier bias voltage, E_{c}, is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point A.

The following data are taken along $A B$:

$$
\begin{aligned}
& i_{b}{ }^{\prime}=13 \mathrm{amp} \\
& i_{c}^{\prime}=1.7 \mathrm{amp} \\
& i_{6}{ }^{\prime \prime}=10 \mathrm{amp} \\
& i_{b}{ }^{\prime \prime \prime}=0.3 \mathrm{amp} \\
& \begin{aligned}
i_{c} & =1.7 \mathrm{amp} \\
i_{c}{ }^{\prime \prime} & =-0.1 \mathrm{amp} \\
i_{c}{ }^{\prime \prime \prime} & =0 \mathrm{amp}
\end{aligned} \\
& E_{c}=-1000 \text { volts } \\
& e_{e}^{\prime}=740 \text { volts } \\
& { }^{\mathrm{M}} E_{p}=10,000 \text { volts }
\end{aligned}
$$

From the formulas, complete carrier data as follows are calculated:

$$
\begin{aligned}
{ }^{M} I_{p} & =\frac{1}{6}[13+1.73 \times 10+0.3]=5.1 \mathrm{amp} \\
P_{0} & =\frac{10,000 \times 5.1}{2}=25,500 \mathrm{watts} \\
I_{b} & =\frac{1}{12}[13+2 \times 10+2 \times 0.3]=2.8 \mathrm{amp} \\
P_{i} & =12,000 \times 2.8=33,600 \mathrm{watts}
\end{aligned}
$$

Graphical design methods continued

$$
\begin{aligned}
\eta & =\frac{25,500}{33,600} \times 100=76 \text { percent } \\
r_{l} & =\frac{10,000}{5.1}=1960 \mathrm{ohms} \\
I_{c} & =\frac{1}{12}[1.7+2(-0.11]=0.125 \mathrm{amp} \\
\mathrm{M}_{I_{g}} & =\frac{1}{6}[1.7+1.7(-0.11]+0.255 \mathrm{amp} \\
P_{g} & =\frac{1740 \times 0.255}{2}=220 \mathrm{watts}
\end{aligned}
$$

Operating data at 100 percent positive modulation crests are now calculated knowing that here
$E_{b}=24,000$ volts $\quad r_{b}=1960$ ohms
and for undistorted operation

$$
P_{0}=4 \times 25,500=102,000 \text { watts } \quad{ }^{M} E_{p}=20,000 \text { volts }
$$

The crest operating line $A^{\prime} B^{\prime}$ is now located by trial so as to satisfy the above conditions, using the same formulas and method as for the carrier condition.
It is seen that in order to obtain full-crest power output, in addition to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period, but lower plate efficiency.
The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid-resistance voltage drop required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by

$$
R_{c}=\frac{-\left[E_{c}-{ }^{c r s e t} E_{c}\right]}{I_{c}-\operatorname{crest}^{2} t_{c}}
$$

and the value of fixed bias by
$E_{c c}=E_{c}-\left(U_{c} \cdot R_{c}\right)$
Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of audio-frequency harmonic distortion is necessary the above method may be applied to the additional points required.

152

Graphical design methods

Class B r-f amplifiers

A rapid approximate method is to determine by inspection from the tube i_{b} - e_{b} l characteristics the instantaneous current, i_{b}^{\prime} and voltage $e^{\prime}{ }_{b}$ corresponding to peak alternating voltage swing from operating voltage E_{b}.
A.C plate current ${ }^{M} I_{p}=\frac{i^{\prime}}{2}$
D.C plate current $I_{b}=\frac{i_{b}}{\pi}$
A.C plate voltage ${ }^{\mathrm{M}} E_{p}=E_{b}-\mathrm{e}^{\prime}{ }_{b}$

Power output $P_{0}=\frac{\left(E_{b}-e^{\prime} b\right) i_{b}^{\prime}}{4}$
Power input $P_{i}=\frac{E_{b} i_{b}}{\pi}$
Plate efficiency $\eta=\frac{\pi}{4}\left(1-\frac{e^{\prime} b}{E_{b}}\right)$
Thus $\eta \cong 0.6$ for the usual crest value of ${ }^{\mathrm{M}} E_{p} \cong 0.8 E_{b}$.
The same method of analysis used for the class C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same E_{b}, the carrier condition corresponding to an alter-nating-voltage amplitude of $\frac{{ }^{M} E_{p}}{2}$ such as to give the desired carrier power output.

For greater accuracy than the simple check of carrier and crest conditions, the radio-frequency plate currents ${ }^{\mathrm{M}} I^{\prime}{ }_{p 1}{ }^{\mathrm{M}} I^{\prime \prime}{ }_{p 0}{ }^{\mathrm{M}} I^{\prime \prime \prime}{ }_{p,}{ }^{\mathrm{M}} I^{\circ}{ }_{p},-{ }^{\mathrm{M}} I^{\prime \prime \prime}{ }^{\prime}{ }_{p,}$ $-{ }^{\mathrm{M}} I^{\prime \prime}{ }_{p}$, and $-{ }^{\mathrm{M}} I^{\prime}{ }_{p}$ may be calculated for seven corresponding selected points of the audio-frequency modulation envelope $+{ }^{\mathrm{M}} E_{0}+0.707{ }^{\mathrm{M}} E_{0}$ $+0.5^{{ }^{\mathrm{M}}} E_{g}, 0,-0.5^{\mathrm{M}} E_{g},-0.707^{\mathrm{M}} E_{g}$, and $-{ }^{\mathrm{M}} E_{g}$, where the negative signs denote values in the negative half of the modulation cycle. Designating
$S^{\prime}={ }^{\mathrm{M}} I^{\prime}{ }_{p}+\left(-{ }^{\mathrm{M}} I^{\prime}{ }_{p}\right)$
$D^{\prime}={ }^{M} I_{p}^{\prime}-\left(-{ }^{M} I_{p}^{\prime}{ }_{p}\right)$, etc.,
the fundamental and harmonic components of the output audio-frequency current are obtained as
${ }^{\mathrm{M}} I_{p 1}=\frac{S^{\prime}}{4}+\frac{S^{\prime \prime}}{2 \sqrt{2}}$ (fundamental) $\quad{ }^{\mathrm{M}} I_{p 2}=\frac{5 D^{\prime}}{24}+\frac{D^{\prime \prime}}{4}-\frac{D^{\prime \prime \prime}}{3}$
${ }^{M} I_{p 3}=\frac{S^{\prime}}{6}-\frac{S^{\prime \prime \prime}}{3}$
${ }^{M} I_{p 6}=\frac{S^{\prime}}{12}-\frac{S^{\prime \prime}}{2 \sqrt{2}}+\frac{S^{\prime \prime \prime}}{3}$
${ }^{\mathrm{M}} l_{p 60}=\frac{D^{\prime}}{8}-\frac{D^{\prime \prime}}{4}$
${ }^{M} I_{p 6}=\frac{D^{\prime}}{24}-\frac{D^{\prime \prime}}{4}+\frac{D^{\prime \prime \prime}}{3}$
This detailed method of calculation of audio-frequency harmonic distortion may, of course, also be applied to calculation of the class C modulated amplifier, as well as to the class A modulated amplifier.

Class A and $A B$ a-f amplifers

Approximate formulas assuming linear tube characteristics:
Maximum undistorted power output ${ }^{M} P_{0}=\frac{{ }^{M} E_{p}{ }^{M} I_{p}}{2}$
when plate load resistance $r_{l}=r_{p}\left[\frac{E_{c}}{\frac{{ }^{M} E_{p}}{\mu}-E_{c}}-1\right]$
and
Negative grid bias $E_{c}=\frac{{ }^{M} E_{p}}{\mu}\left(\frac{r_{b}+r_{p}}{r_{b}+2 r_{p}}\right)$
giving
Maximum plate efficiency $\eta=\frac{{ }^{M} E_{p}{ }^{M} I_{p}}{8 E_{b} I_{b}}$
Maximum maximum undistorted power output ${ }^{\mathrm{MM}} \mathrm{P}_{0}=\frac{{ }^{\mathrm{M}} E^{2}{ }_{p}}{16 r_{p}}$
when
$r_{i}=2 r_{p} \quad E_{c}=\frac{3}{4} \frac{{ }^{M} E_{p}}{\mu}$
An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Suct: a line is CKF of Fig. 2 which is constructed about operating point K for a given load resistance r_{3} from the following relation:
$i_{b}^{\mathrm{A}}=\frac{e_{b}^{\mathrm{R}}-\mathrm{e}_{b}^{\mathrm{g}}}{n_{l}}+i_{b}^{\mathrm{R}}$
where
R, S, etc., are successive conveniently spaced construction points.

Using the seven-point method of harmonic analysis, plot instantaneous plate currents $i^{\prime}{ }_{b} i^{\prime \prime}{ }_{b,} i^{\prime \prime \prime}{ }_{b,} i_{b,}-i^{\prime \prime \prime}{ }_{b,}-i^{\prime \prime}{ }_{b,}$ and $-i^{\prime}{ }_{b}$ corresponding to $+{ }^{\mathrm{M}} E_{q}+0.707^{\mathrm{M}} E_{0},+0.5^{\mathrm{M}} E_{0}, 0,-0.5^{\mathrm{M}} E_{q},-0.707^{\mathrm{M}} E_{q}$, and $-{ }^{\mathrm{M}} E_{q}$, where 0 corresponds to the operating point K. In addition to the formulas given under class B radio-frequency amplifiers:
I_{b} average $=I_{b}+\frac{D^{\prime}}{8}+\frac{D^{\prime \prime}}{4}$
from which complete data may be calculated.

Class AB and Ba-f amplifiers

Approximate formulas assuming linear tube characteristics give (referring to Fig. I, line CDI for a class B audio-frequency amplifier:

$$
\begin{aligned}
{ }^{M} I_{p} & =i^{\prime}{ }_{b} \\
P_{0} & =\frac{{ }^{M} E_{p}{ }^{M} I_{p}}{2} \\
P_{i} & =\frac{2}{\pi} E_{b}{ }^{M} I_{p} \\
\eta & =\frac{\pi}{4} \frac{{ }^{M} E_{p}}{E_{b}} \\
R_{p p} & =4 \frac{{ }^{M} E_{p}}{i^{\prime}{ }_{b}}=4 r_{i}
\end{aligned}
$$

Again an exact solution may be derived by use of the dynamic load line JKL on the $\left(i_{b}-e_{c}\right)$ characteristic of Fig. 2. This line is calculated about the operating point K for the given r_{l} (in the same way as for the class A case) However, since two tubes operate in phase opposition in this case, an identical dynamic load line MNO represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see Fig. 2).
Algebraic addition of instantaneous current values of the two tubes at each value of e_{c} gives the composite dynamic characteristic for the two tubes OPL. Inasmuch as this curve is symmetrical about point P it may be analyzed for harmonics along a single half curve PL by the Mouromtseff 5 -point method. A straight line is drawn from P to L and ordinate plate current differences a, b, c, d, f between this line and curve, corresponding to $e^{\prime \prime}{ }_{9,} e^{\prime \prime \prime}{ }_{9,}$ $\mathrm{e}^{\mathrm{IV}}{ }_{g}, \mathrm{e}^{\mathbf{V}}{ }_{0}$, and $\mathrm{e}^{\mathrm{vI}^{\mathrm{I}}}{ }_{9}$, are measured. Ordinate distances measured upward from curve PL are taken positive.

Graphical design methods

Fundamental and harmonic current amplitudes and power are found from the following formulas:

$$
\begin{aligned}
& { }^{\mathrm{M}} I_{p 1}=i^{\prime}{ }_{b}-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5}-{ }^{\mathrm{M}} I_{p 7}+{ }^{\mathrm{M}} I_{p 9}-{ }^{\mathrm{M}} I_{p 11} \\
& { }^{\mathrm{M}} I_{p 3}=0.4475 \mathrm{lb}+n+\frac{\mathrm{d}}{3}-0.578 \mathrm{~d}-\frac{1}{2}{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 5}=0.4 \mathrm{la}-n \\
& { }^{\mathrm{M}} I_{I_{7}}=0.4475 \mathrm{lb}+n-{ }^{\mathrm{M}} I_{p 3}+0 .{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 9}={ }^{\mathrm{M}} I_{p 3}-\frac{2}{3} \mathrm{~d} \\
& { }^{\mathrm{M}} I_{p 11}=0.707 \mathrm{c}-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p b} .
\end{aligned}
$$

Even harmonics are not present due to dynamic characteristic symmetry. The direct current and power input values are found by the 7 -point analysis from curve PL and doubled for two tubes.

Classification of amplifier circuits

The classification of amplifiers in classes A, B, and C is based on the operating conditions of the tube.
Another classification can be used, based on the type of circuits associated with the tube.
A tube can be considered as a four-terminal network with two input terminals and two output terminals. One of the input terminals and one of the output terminals are usually common; this common junction or point is usually called "ground".
When the common point is connected to the filament or cathode of the tube, we can speak of a grounded-cathode circuit. It is the most conventional type of vacuum tube circuit. When the common point is the grid, we can speak of a grounded-grid circuit, and when the common point is the plate or anode, we can speak of the grounded-anode circuit.
This last type of circuit is most commonly known by the name of cathode follower.
A fourth and most general class of circuit is obtained when the common point or ground is not directly connected to any of the three electrodes of the tube. This is the condition encountered at u-h-f where the series impedances of the internal tube leads make it impossible to ground any of them. It is also encountered in such special types of circuits as the phase-splitter, in which the impedance from plate to ground and the impedance from cathode to ground are made equal in order to obtain an output between plate and cathode balanced with respect to ground.

156

Table III-Classification of triode amplifier circuits

circuit classiffation	groundedcathode	groundedgrid	grounded-plate or cathode follower
Circuit schematic			
Equivalent circuit, o-c component, class A operation			
Voltage gain, γ for output load impedance $=Z_{2}$ $\gamma=\frac{E_{2}}{E_{1}}$	neglecting $\mathrm{C}_{g p}$ $\begin{aligned} \gamma & =\frac{-\mu Z_{2}}{r_{p}+z_{2}} \\ & =-g_{m} \frac{r_{p} z_{2}}{r_{p}+z_{2}} \end{aligned}$ (Z_{2} includes $C_{p k}$)	neglecting $C_{p k}$ $\gamma=(1+\mu) \frac{z_{2}}{r_{p}+z_{2}}$ $\left(Z_{2} \text { includes } C_{o p}\right)$	neglecting $C_{u k}$ $\gamma=\frac{\mu Z_{2}}{r_{p}+(1+\mu) Z_{2}}$ $\left(Z_{2}\right.$ includes $\left.C_{p k}\right)$
Input admittonce $Y_{1}=\frac{I_{1}}{E_{1}}$	$Y_{1}=j \omega\left[C_{0 k}+(11-\gamma) C_{g p}\right]$	$\begin{aligned} & Y_{1}=j \omega\left[C_{p k}+\right. \\ & \left.\quad(1-\gamma) C_{p k}\right]+\frac{1+\mu}{r_{p}+Z_{2}} \end{aligned}$	$Y_{1}=j \omega\left[C_{a p}+(1-\gamma) C_{g k}\right]$
	neglecting $\mathrm{C}_{o p}$	neglecting $\mathrm{C}_{\text {pk }}$	neglecting $\mathrm{C}_{0 k}$
Equivalent generator seen by load at output terminals			

Classification of amplifler circuits continued

Design information for the first three classifications is given in Table III, where
$Z_{2}=$ load impedance to which output terminals of amplifier are connected
$E_{1}=\mathrm{rms}$ driving voltage across input terminals of amplifier
$E_{2}=$ rms output voltage across load impedance Z_{2}
$I_{1}=$ rms current at input terminals of amplifier
$\boldsymbol{\gamma}=$ voltage gain of amplifier $=\frac{E_{2}}{E_{1}}$
$Y_{1}=$ input admittance to input terminals of amplifier $=\frac{I_{1}}{E_{1}}$
$\omega=2 \pi \times$ frequency of excitation voltage E_{1}
$j=\sqrt{-1}$
and the remaining notation is in accordance with the nomenclature of pages 127 and 128.

Cathode follower data

General characterisfics

1. High impedance input, low impedance output.
2. Input and output have one side grounded.
3. Good wide-band frequency and phase response.
4. Output is in phase with input.
5. Voltage gain or transfer is always less than one.
6. A power gain can be obtained.
7. Input capacitance is reduced.

General case

Transfer $=\frac{g_{m} R_{L}}{g_{m} R_{L}+1}$ or $g_{m} Z_{r}$
$Z_{r}=$ resultant cathode to ground impedance $=R_{\text {out }}$ in parallel with R_{e}
$R_{\text {out }}=$ output resistance
$=\frac{R_{p}}{\mu+1}$ or approximately $\frac{1}{g_{m}}$
$R_{L}=$ total load resistance
Input capacitance $=C_{o p}+\frac{C_{p k}}{1+g_{m} R_{L}}$
$g_{m}=$ transconductance in mhos 11000
micromhos $=0.001$ mhosl

Cathode follower data continued

Specific cases

1. To match the characteristic impedance of the transmission line, $R_{\text {oue }}$ must equal Z_{0}. The transfer is approximately 0.5 .
2. If $R_{\text {out }}$ is less than Z_{0}, add resistor $R_{c}{ }^{\prime}$ in series so that $R_{c}{ }^{\prime}=Z_{0}-R_{\text {outo }}$ The transfer is approximately 0.5.

3. If $R_{o u}$ is greater than Z_{0} add resistor R_{c} in parallel so that
$R_{c}=\frac{Z_{0} R_{\text {out }}}{R_{\text {out }}-Z_{0}}$
Transfer $=\frac{g_{m} Z_{0}}{2}$
Note: Normal operating blas must be provided.

For coupling a high impedance into a low impedance transmission line, for maximum transfer choose a tube with a high 9 m .

Resistance-coupled audio amplifier design

Stage gain at
Medium frequencies $=A_{m}=\frac{\mu R}{R+R_{p}}$
High frequencies $=A_{h}=\frac{A_{m}}{\sqrt{1+\omega^{2} C_{1}^{2} r^{2}}}$
Low frequencies* $=A_{1}=\frac{A_{m}}{\sqrt{1+\frac{1}{\omega^{2} C_{2}^{2} \rho^{2}}}}$

* The low-frequency stage gain also is offected by the volues of the cathode by-poss capacitor and the screen ty-pass copocitor.

Resisfance coupled audio amplifler design

cantinued
where

$$
R=\frac{r_{l} R_{2}}{r_{l}+R_{2}}
$$

$$
r=\frac{R r_{p}}{R+r_{p}}
$$

$\rho=R_{2}+\frac{r_{l} r_{p}}{r_{l}+r_{p}}$

A-plate.
B-grid.
C-ground or cathode.
. $\mu=$ amplification factor of tube
$\omega=2 \pi \times$ frequency
$r_{l}=$ plate load resistance in ohms
$\mathbf{R}_{\mathbf{2}}=$ grid leak resistance in ohms
$r_{p}=a-c$ plate resistance in ohms
$\mathrm{C}_{1}=$ total shunt capacitance in farads
$C_{2}=$ coupling capacitance in farads
Given C_{1}, C_{2}, R_{2} and $X=$ fractional response required
At highest frequency

$$
r=\frac{\sqrt{1-X^{2}}}{\omega C_{1} X} \quad R=\frac{r r_{p}}{r_{p}-r} \quad r_{l}=\frac{R R_{2}}{R_{2}-R}
$$

At lowest frequency*
$C_{2}=\frac{X}{\omega \rho \sqrt{1-X^{2}}}$

* The low-frequency stage gain also is affected by the values of the cathode by-pass capocitor and the screen by-pass capacitor.

Negafive feedback

The following quantities are functions of frequency with respect to magnitude and phase:
E, N, and $D=$ signal, noise, and distortion output voltage with feedback e, n, and $d=$ signal, noise, and distortion output voltage without feedback
$A=$ voltage amplification of amplifier at a given frequency
$\beta=$ fraction of output voltage fed back; for usual negative feedback, $\boldsymbol{\beta}$ is negative
$\phi=$ phase shift of amplifier and feedback circuit at a given frequency

160

Reduction in gain caused by feedback

Fig. 3-In negative-feedback amplifer consideralions β, expressed as a percentage, hos a negative value. A line across the β and A scales intersects the center scale to indicate change in gain. It also indicates the amount, In decibels, the inpul must be increased to maintaln original output.

Negative feedback cantinued

The total output voltage with feedback is
$E+N+D=e+\frac{n}{1-A \beta}+\frac{d}{1-A \beta}$
It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping $E=\mathrm{e}$.
$(1-A \beta)$ is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is
$20 \log _{10}|1-A \beta|$
Voltage gain with feedback $=\frac{A}{1-A \beta}$
and change of gain $=\frac{1}{1-A \beta}$
If the amount of feedback is large, i.e., $-A \beta>1$, the voltage gain becomes $-\frac{1}{\beta}$ and so is independent of A.

In the general case when ϕ is not restricted to 0 or π
the voltage gain $=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
and change of gain $=\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
Hence if $|A \beta| \gg 1$, the expression is substantially independent of ϕ.
On the polar diagram relating $(\mathbb{A} \beta)$ and ϕ (Nyquist diagram), the system is unstable if the point (1,0) is enclosed by the curve.

Feedback amplifier with single beam power fube

The use of the foregoing negative feedback formulas is illustrated by the amplifier circuit shown in Fig. 4.

The amplifier consists of an output stage using a 6V6-G beam power tetrode with feedback driven by a resistance-coupled stage using a 6J7-G in a pentode connection. Except for resistors R_{1} and R_{2} which supply the feedback voltage, the circuit constants and tube characteristics are taken from published data.

Negative feedback

The fraction of the output voltage to be fed back is determined by specifying that the total harmonic distortion is not to exceed 4 percent. The plate supply voltage is taken as 250 volts. At this voltage, the $6 \mathrm{~V} 6-\mathrm{G}$ has 8 percent

Fig. 4-Feedback amplifier with single beam power tube.
total harmonic distortion. From equation (1), it is seen that the distortion output voltage with feedback is
$D=\frac{d}{1-A \beta}$
This may be written as
$1-A \beta=\frac{d}{D}$
where
$\frac{d}{D}=\frac{8}{4}=2 \quad 1-A \beta=2 \quad \beta=-\frac{1}{A}$
and where $A=$ the voltage amplification of the amplifier without feedback.
The peak a-f voltage output of the 6V6-G under the assumed conditions is
$E_{o}=\sqrt{4.5 \times 5000 \times 2}=212$ volts
This voltage is obtained with a peak a_{-}f grid voltage of 125 volts so that the voltage gain of this stage without feedback is
$A=\frac{212}{12.5}=17$

Negative feedback

Hence $\quad \beta=-\frac{1}{A}=-\frac{1}{17}=-0.0589$ or 5.9% approximately
The voltage gain of the output stage with feedback is computed from equation (3) as follows
$A^{\prime}=\frac{A}{1-A \beta}=\frac{17}{2}=8.5$
and the change of gain due to feedback by equation (4) thus
$\frac{1}{1-A \beta}=0.5$
The required amount of feedback voltage is obtained by choosing suitable values for R_{1} and R_{2}. The feedback voltage on the grid of the 6V6-G is reduced by the effect of R_{g}, R_{L} and the plate resistance of the $6 \mathrm{~J} 7 . \mathrm{G}$. The effective grid resistance is
$R_{g}{ }^{\prime}=\frac{R_{g} r_{p}}{R_{g}+r_{p}}$
where $\quad R_{g}=0.5$ megohm.
This is the maximum allowable resistance in the grid circuit of the 6V6-G with cathode bias.
$r_{p}=4$ megohms, the plate resistance of the 6J7-G tube
$R_{g}{ }^{\prime}=\frac{4 \times 0.5}{4+0.5}=0.445$ megohm
The fraction of the feedback voltage across R_{2} which appears at the grid of the $6 \mathrm{~V} 6-\mathrm{G}$ is
$\frac{R_{g}^{\prime}}{R_{g}^{\prime}+R_{L}}=\frac{0.445}{0.445+0.25}=0.64$
where $\quad R_{L}=0.25$ megohm.
Thus the voltage across R_{2} to give the required feedback must be .
$\frac{5.9}{0.64}=9.2 \%$ of the output voltage.
This voltage will be obtained if $R_{1}=50,000$ ohms and $R_{2}=5000$ ohms.
This resistance combination gives a feedback voltage ratio of
$\frac{5000 \times 100}{50,000+5000}=9.1 \%$ of the output voltage.

Negative feedback

In a transformer-coupled output stage, the effect of phase shift on the gain with feedback does not become appreciable until a noticeable decrease in gain without feedback also occurs. In the high-frequency range, a phase shift of 25 degrees lagging is accompanied by a 10 percent decrease in gain. For this frequency, the gain with feedback is computed from equation (6).

$$
A^{\prime}=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}
$$

where $A=15.3, \phi=180^{\circ}, \cos \phi=0.906, \beta=0.059$.

$$
A^{\prime}=\frac{15.3}{\sqrt{1+|0.9|^{2}+2|0.9| 0.906}}=\frac{15.3}{\sqrt{3.44}}=\frac{15.3}{1.85}=8.27
$$

The change of gain with feedback is computed from equation (7).
$\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}=\frac{1}{1.85}=0.541$
If this gain with feedback is compared with the value of 8.5 for the case of no phase shift, it is seen that the effect of frequency on the gain is only 2.7 percent with feedback compared to 10 percent without feedback.

The change of gain with feedback is 0.541 times the gain without feedback whereas in the frequency range, where there is no phase shift, the corresponding value is 0.5 . This quantity is 0.511 when there is phase shift but no decrease of gain without feedback.

Distortion

A rapid indication of the harmonic content of an alternating source is given by the distortion factor which is expressed as a percentage.

If this factor is reasonably small, say less than 10 percent, the error involved in measuring it

```
sum of squares of amplitudes of harmonics
sum of squares of amplitudes of fundamental and harmonics}\times100
```

is also small. This latter is measured by the distortion factor meter.

■ Room acoustics*

General considerations for good room acoustics

The following information is intended primarily to aid field engineers in appraising acoustical properties of existing structures and not as a complete treatise on the subject.

Good acoustics-governing factors

a. Reverberation time or amount of reverberation: Varies with frequency and is measured by the time required for a sound, when suddenly interrupted, to die away or decay to a level 60 decibels (db) below the original sound.

The reverberation time and the shape of the reverberation-time/frequency curve can be controlled by selecting the proper amounts and varieties of sound-absorbent materials and by the methods of application. Room occupants must be considered inasmuch as each person present contributes a fairly definite amount of sound absorption.
b. Standing sound waves: Resonant conditions in sound studios cause standing waves by reflections from opposing parallel surfaces, such as ceilingfloor and parallel walls, resulting in serious peaks in the reverberation-time/ frequency curve. Standing sound waves in a room can be considered comparable to standing electrical waves in an improperly terminated transmission line where the transmitted power is not fully absorbed by the load.

Room sizes and proportions for good acoustics

The frequency of standing waves is dependent on room sizes: frequency decreases with increase of distances between walls and between floor and ceiling. In rooms with two equal dimensions, the two sets of standing waves occur at the same frequency with resultant increase of reverberation time at resonant frequency. In a room with walls and ceilings of cubical contour this effect is tripled and elimination of standing waves is practically impossible.

The most advantageous ratio for height: width: length is in the proportion of $1: 2^{1 / 5}: 2^{3 / 3}$ or separated by $1 / 3$ or $2 / 3$ of an octave.

In properly proportioned rooms, resonant conditions can be effectively reduced and standing waves practically eliminated by introducing numerous surfaces disposed obliquely. Thus, large-order reflections can be avoided by breaking them up into numerous smaller reflections، The object is to pre-

[^13]
Room sizes and proportions for good acoustics continued

vent sound reflection back to the point of origin until after several rereflections.

Most desirable ratios of dimensions for broadcast studios are given in Fig. 1.

 percent.

Optimum reverberation time

Optimum, or most desirable reverberation time, varies with (1) room size, and (2) use, such as music, speech, etc. (see Figs. 2 and 3).

Optimum reverberation time continued

Fig. 2-Oplimum reverberation time in seconds for various reom valumes at 512 cyeles per second.

Fig. 3-Desirable relative reverberation time versus frequency for various structures ond auditoriums.

[^14]A small radio studio for speech broadcasts represents a special case. The acoustic studio design should be such that the studio neither adds nor detracts from the speaker's voice, which on reproduction in the home should sound as though he were actually present.

FIg. 4.

For optimum characteristics of a speech studio, the reverberation time should be about one-half a second throughout the middle and lower audio-frequency range. At high frequencies, the reverberation time may be 20 percent to 25 percent greater than at 512 cycles. This rise at the higher frequencies enhances intelligibility and allows for the presence in the studio of one or two extra persons without materially affecting the reverberation-time/ frequency curve.

Optimum reverberation time

 continuedSpeech sounds above about 1000 cycles promote intelligibility. Apparent intensity of speech sounds is provided by frequencies below this value.
Preponderance of low bass reverberation and standing waves tends to make the voice sound "boomy" and impairs speech intelligibility.

Fig. 5-Value of aftenuation constont m different frequencies and relative humidthles.*

Computation of reverberation time

Reverberation time at different audio frequencies may be computed from room dimensions and average absorption. Each portion of the surface of a room has a certain absorption coefficient a dependent on the material of the surface, its method of application, etc. This absorption coefficient is equal to the ratio of the energy absorbed by the surface to the total energy impinging thereon at various audio frequencies. Total absorption for a given surface area in square feet S is expressed in terms of absorption units, the number of units being equal to $a_{a v} S$.
$a_{a v}=\frac{\text { total number of absorption units }}{\text { total surface in square feet }}$
One absorption unit provides the same amount of sound absorption as one square foot of open window. Absorption units are sometimes referred to as "open window" or "OW" units.
$T=\frac{0.05 \mathrm{~V}}{-S \log _{e}\left(1-a_{a v}\right)}$
where $T=$ reverberation time in seconds, $V=$ room volume in cubic feet, $S=$ total surface of room in square feet, $a_{a v}=$ average absorption coeffi. cient of room at frequency under consideration.

* Reprinted by permission from Architectural Acoustics by V. O. Knudsen, publishod by John Wiley and Sons, Inc.

Computation of reverberation time continued
For absorption coefficients a of some typical building materials, see Table I. As an aid in using the formula for reverberation time, Fig. 4 (page 1681 may be used for obtaining $\left[-\log _{\varepsilon}\left(1-a_{a v}\right)\right]$ from known values of $a_{a v}$.

Table Il shows absorption coefficients for some of the more commonly used materials for acoustical correction.

Table I-Acoustical coefficients of materials and persons*

description	sound obsorption coefficients cycles per second						authority
	128	256	512	1024	2048	4096	
Brick wall unpaintod	0.024	0.025	0.031	0.042	0.049	0.07	W. C. Sabine
Brick wall pointed	0.012	0.013	0.017	0.02	0.023	0.025	W. C. Sobine
Ploster + finish coot Wood lath-wood studs	0.020	0.022	0.032	0.039	0.039	0.028	
Plaster + finish coot on metal lath	0.038	0.049	0.060	0.085	0.043	0.056	V. E. Sabine
Poured concrete unpainted	0.010	0.012	0.016	0.019	0.023	0.035	V. O. Knudsen
Poured concrete painted and varnished	0.009	0.011	0.014	0.016	0.017	0.018	V. O. Knudsen
Carpet, pile on cancrete	0.09	0.08	0.21	0.26	0.27	0.37	Building Research Stotion
Carpet, plle on $36{ }^{\prime \prime}$ felt	0.11	0.14	0.37	0.43	0.27	0.25	Building Research Station
Draperies, volour, 18 oz per sq yd in contact with wall	0.05	0.12	0.35	0.45	0.38	0.36	P. E. Sabine
Ozite 36"	0.051	0.12	0.17	0.33	0.45	0.47	P. E. Sabine
Rug, oxminstar	0.11	0.14	0.20	0.33	0.52	0.82	Wento and Bodell
Audience, seated per sq it of area	0.72	0.89	0.95	0.99	1.00	1.00	W. C. Sabine
Eoch person, seated	1.4	2.25	3.8	5.4	6.6	-	Bureau of Standards, averages of 4 tests
Each parson, seated Glass surfoces	0.05	$0 . \overline{04}$	0.03	0.025	0.02	7.0 0.02	Estimated

* Reprinted by permission from Architectural Acoustics by V. O. Knudsen, published by John

Wiley and Sons, Inc.
Table II-Acoustical coefficients of materials used for acoustical correction

material	cycles per second						nolsered coef ${ }^{*}$	manufactured by
	128	236	512		2048	1096		
Corkoustic-B4	0.08	0.13	0.51	0.75	0.47	0.46	0.45	Armstrong Cork Co.
Corkoustic-86	0.15	0.28	0.82	0.60	0.58	0.38	0.55	Armstrong Cork Co.
Cushiontone A-3	0.17	0.58	0.70	0.90	0.76	0.71	0.75	Armstrang Cork Co.
Koustex	0.10	0.24	0.64	0.92	0.77	0.75	0.65	David E. Kannedy, Inc.
Sanocousitc tmetoll piles	0.25	0.56	0.99	0.99	0.91	0.82	0.85	Johns-Manville Sales Corp.
Pormacoustic tiles $4^{\prime \prime}$	0.19	0.34	0.74	0.76	0.75	0.74	0.65	Johns-Manville Soles Corp.
Low-frequency element	0.66	0.60	0.50	0.50	0.35	0.20	0.50	Johns-Manville Solos Corpa
Triplo-funed element	0.66	0.61	0.80	0.74	0.79	0.75	0.75	Johns-Manvillo Salos Corp.
High -frequency element	0.20	0.46	0.55	0.66	- 0.79	0.75	0.60	Johns-Manvilla Salas Corp.
Absorbotone A	0.15	0.28	0.82	0.99	0.87	0.98	0.75	Luse Stevenson Co.
Accusfex 60\%	0.14	0.28	0.81	0.94	0.83	0.80	0.70	Notional Gypsum Co.
Econacoustic 1"	0.25	0.40	0.78	0.76	0.79	0.68	0.70	National Gypsum Co.
Fiberglos acoustical tiletype TWPF 9D	0.22	0.46	0.97	0.90	0.68	0.52	0.75	Owens-Corning Fiberglas Corp.
Acousione D ${ }^{11} 10$	0.13	0.26	0.79	0.88	0.76	0.74	0.65	U. S. Gypsum Company
Acoustona $\mathrm{F}^{18} \mathrm{IH}^{2}$	0.16	0.33	0.85	0.89	0.80	0.75	0.70	U. S. Gypsum Company
Acousti-celotex type $\mathrm{C}-611 / 4{ }^{\text {a }}$	0.30	0.56	0.94	0.96	0.69	0.56	0.80	The Colotox Corp.
Absorbex type A ${ }^{\text {Acousteal B matal }}$	0.41	0.71	0.96	0.88	0.85	0.96	0.85	The Colotex Corp.
Acousteal B matal facing 1\%\%	0.29	0.57	0.98	0.99	0.85	0.57	0.85	The Colotex Corp.

[^15]
Computation of reverberation time continued

Considerable variation of sound-absorption in air at frequencies above 1000 cycles occurs at high relative humidities (see Fig. 5). Calculation of reverberation time, therefore, should be checked at average relative humidities applicable to the particular location involved. For such check calculations the following formula may be used:

$$
T=\frac{0.05 V}{-S \log _{e}\left(1-a_{a \nu}\right)+4 m V}
$$

where m is the coefficient in feet ${ }^{-1}$ as indicated in Fig. 5, page 169.

Elecirical power levels for public address requirements

a. Indoor: See Fig. 7, page 172.
b. Outdoor: See Fig. 8, page 173.

Note: Curves are for an exponential trumpet-type horn. Spoech levels above referenco-average 70 ob , peak 80 db . For a loudspeaker of 25 percent eificlency, 4 times the power output would be required or an equivalent of 6 decibels. For one of 10 percent efficiency, 10 times tho power output would be required or 10 decibels.

Fig. 6-Wire sizes for loudspeaker circuits assuming maximum loss of 0.5 decibel.

Electrical power levels for public address requirements continued

Fig. 7-Room volume and relative amplifer power capacity. To the indicated power level depending on loudspeaker efficiency, there must be added a correction factor which may vary from 4 decibels for the most efficient horn-type reproducers to 20 decibels for less efficient cone loudspeakers.

Electrical power levels for public address requirements continued

relative ampliffer power capacity-moximum single-frequency output rating in decibels above 0.001 watt

Courtesy Western Electric Compony

Fig. 8-Distance from loudspeaker and relative amplifier power capacity required for speech, average for 30° angle of coveragè. For angles over 30°, more loudspeakers and proportional output power are required. Depending on loudspeaker efficiency, a correction factor must be added to the indicated power level, varying approximately from 4 to 7 decibels for the more-efficient type of horn loudspeakers.

Acoustical music ranges and levels

Fig. 9-Frequency ranges of musical instruments. Intensity levels of music. Zero level equals 10^{-10} watt per square centimeter.

Acoustical speech levels and ranges of other sounds

Fig. 10-Frequency ranges of male and female speech ond other sounds. Intensity levels of conversational speech. Zere level equals $10^{-16} \mathrm{waft}$ per square centimeter.

Acoustical sound level and pressure

sound level in decibels obove 10^{-16} wott per squore centimeter
Courtesy Western Electric Company
Fig. 11-One dyne per square centimatar is equivalent to an acoustieal feval of piys. 74 decibels.

Table III-Noise levels

Zero lavel $=10^{-16}$ woll per squore centimeter
Courtesy Western Electric Company

General

a. Loudspeaker wire sizes: See Fig. 6, page 171.
b. Acoustical musical ranges and levels: See. Fig. 9, page 174.
c. Acoustical speech levels and ranges of other sounds: See Fig. 10, page 175.
d. Acoustical sound levels: See Fig. 11, page 176.
e. Noise levels: See Table III.
f. Equal loudness contours: Fig. 12 gives average hearing characteristics of the human ear at audible frequencies and at loudness levels of zero to 120 db versus intensity levels expressed in decibels above 10^{-16} watt per square centimeter. Ear sensitivity varies considerably over the audible range of sound frequencies at various levels. A loudness level of 120 db is heard fairly uniformly throughout the entire audio range but, as indicated in Fig. 12,

Fig. 12-Equal loudness contours.
a frequency of 1000 cycles at a 20 db level will be heard at very nearly the same intensity as a frequency of 60 cycles at a 60 db level. These curves explain why a loudspeaker operating at lower than normal level sounds as though the higher frequencies were accentuated and the lower tones seriously attenuated or entirely lacking; also, why music, speech, and other sounds, when reproduced, should have very nearly the same intensity as the original rendition. To avoid perceptible deficiency of lower tones, a symphony orchestra, for example, should be reproduced at an acoustical level during the loud passages of 90 to 100 db (see Fig. 91.

Wire transmission

Telephone fransmission line dała

line constants of copper open-wire pairs

40 pairs DP (deuble petticoat) insulotors per mile 12-inch spacing temperature $68^{\circ} \mathrm{F}$

frequency cycles per second	resistance ohms per loop mile			inductance millihenries per loop mile			leakance micromhos per loop mile: 165, 128, or 104 mil	
	165 mil	128 mil	104 mil	165 mil	128 mil	104 mil	diy	well
0	4.02	6.68	10.12	3.37	3.53	3.66	0.01	
500	4.04	6.70	10.13	3.37	3.53	3.68 3.66	0.015	2.5 3.0
1000	4.11	6.74	10.15	3.37	3.53	3.66	0.29	3.5
2000	4.35	6.89	10.26	3.36	3.53	3.66	0.57	4.5
3000	4.71	7.13	10.43	3.35	3.52	3.66	0.85	5.5
5000	5.56	7.83	10.94	3.34	3.52	3.66	1.4	7.5
10000	7.51 10.16	9.98	12.86	3.31	3.49	3.64	2.8	12.1
20000 30000	10.16	13.54	17.08	3.28	3.46	3.61	5.6	20.5
30000 40000	12.19 13.90	16.15	20.42	3.26	3.44	3.59	8.4	28.0
40000 50000	13.90 15.41	18.34	23.14	3.28	3.43	3.58	11.2	35.0
50000 infin	15.41	20.29	25.51	3.25	3.43 3.37	3.57	14.0	41.1
infin				3.21	3.37	3.50		

Capacifance on 40-wire Ilnes
microforod per loop mile

In spece
On 40-wire line, dry
On 40-wire line, wet lopprox)

165 mil	128 mil	104 mil
0.00898	0.00855	0.00822
0.00915	0.00871	0.00837
0.00928	0.0088 s	0.00850

Line constants of copper open-wire pairs

53 pairs CS (speciol glass with steel pin) insulators per mile
8-inch spacing
temperature $68^{\circ} \mathrm{F}$

frequency trilocycles per second	resistance ohms per loop mile			Inductance millihenries per loop mile			leakance micromhos per loop mile: 165, 128, or 104 mil	
	165 mil	128 mil	104 mil	165 mil	128 mil	104 mil	dry	wof
0.0	4.02	6.68	10.12	3.11	3.27	3.40		
1.0	4.11	6.74	10.15	3.10	3.26	3.40	0.052	1.75
2.0	4.35	6.89	10.28	3.10	3.26	3.40	0.052	1.75
3.0	4.71	7.13	10.43	3.09	3.26	3.40		
5.0	5.56	7.83	10.94	3.08	3.25	3.40	0.220	3.40
10.0	7.51	9.98	12.86	3.04	3.23	3.38	0.408	5.14
20.0	10.16	13.54	17.08	3.02	3.20	3.35	0.748	8.06
50,0	15.41	20.29	25.51	2.99	3.16	3.31	1.69	15.9
100.0 200.0	21.30	27.90	34.90	2.98	3.15	3.29	3.12	27.6
200.0 500.0	29.77	38.77	48.25	2.97	3.14	3.28	3.2	27.6
500.0	46.45	60.30	74.65	2.96	3.13	3.27		
1000.0	65.30	84.50	104.5	2.96	3.12	3.26		
infin				2.95	3.11	3.24		

Capacifance on 40-wire lines
microforad per loop mile

In spoce Ino insulotorsi	$165 \mathrm{ml\mid}$	126 mil	104 mil
On 40-wire Ine, dry	0.00978	0.00928	0.00888
	0.01003	0.00951	0.00912

Characterisfics of standard types of aerial copper wire telephone circuifs af 1000 cycles per second

type of circuil	gaugeofwiros(mils)	$\left\|\begin{array}{c\|} \text { spac- } \\ \text { Ing } \\ \text { of } \\ \text { wires } \\ \text { (inches) } \end{array}\right\|$	primary constants				propagation constant				Ine Impedance				wavelength miles	velocity miles par second	aftenuation -db por mile
							pola		ctangular		polar		etangular				
			$\stackrel{R}{\mathrm{ohms}^{2}}$	L henries	$\underset{\mu}{C}$	$\underset{\mu \mathrm{mho}}{\mathbf{G}}$	mag. nitude	angle dag		β	mag-mitude	ongle dog \qquad	$\underset{\text { ohms }}{R}$	$\begin{gathered} \text { X } \\ \text { ohms } \\ \hline \end{gathered}$			
Non-Pole Pair Phys	165	8	4.11	.00311	. 00996	. 14	. 0353	83.99	. 00370	. 0351	565	5.88	562	58	179.0	179,000	. 0321
Non-Pole Pair Side	165	12	4.11	. 00337	. 00915	. 29	. 0352	84.36	. 00346	. 0350	612	5.35	610	57	179.5	179,500	. 0300
Pole Pair Side	165	18	4.11	. 00364	. 00863	. 29	. 0355	84.75	. 00325	. 0353	653	5.00	651	57	178.0	178,000	. 0282
Non-Pole Pair Phan	165	12	2.06	. 00208	. 01514	. 58	. 0355	85.34	. 00288	. 0354	373	4.30	372	28	177.5	177,500	. 0250
Non-Pole Pair Phys	128	8	6.74	. 00327	. 00944	. 14	. 0358	80.85	. 00569	. 0353	603	8.97	596	94	178.0	178,000	. 0494
Non.Polo Pair Sido	128	12	6.74	. 00353	. 00871	. 29	. 0356	81.39	. 00533	. 0352	650	8.32	843	94	178.5	178,500	. 0462
Pole Pair Side	128	18	6.74	. 00380	. 00825	. 29	. 0358	81.95	. 00502	. 0355	693	7.72	686	93	177.0	177,000	. 0436
Non-Polo Pair Phan	128	12	3.37	. 00216	. 01454	. 58	. 0357	82.84	. 00445	. 0355	401	6.73	398	47	177.0	177,000	. 0386
Non-Pole Pair Phys	104	8	10.15	. 00340	. 00905	. 14	. 0367	77.22	. 00811	. 0358	644	12.63	629	141	175.5	175,500	. 0704
Non-Pole Pair Sido	104	12	10.15	. 00366	. 00837	. 29	. 0363	77.93	. 00760	. 0355	692	11.75	677	141	177.0	177,000	.0660
Pole Pair Side	104	18	10.15	. 00393	. 00797	. 29	. 0365	78.66	. 00718	. 0358	730	10.97	717	139	175.5	175,500	. 0624
Non-Pole Pair Pha	104	12	5.08	. 00223	. 01409	. 58	. 0363	79,84	. 00640	. 0357	421	9.70	415	71	176.0	178,000	. 0556

Notes: 1. All values are for dry weather condifions.
2. All capacitonce values assume a line carrying 40 wires.
3. Resistance values are for temperature of $20^{\circ} \mathrm{C} 168^{\circ} \mathrm{f}$.
4. DP IDouble Patticoat) Insulators assumed for all 12-inch and 18 -inch spaced wiros-CS (Special Glass with Sieal Pin) Insulators assumed for all 8 -inch spaced wiros.

Telephone fransmission line data continued

Aftenuation of 12-inch spaced open-wire pairs

Tall and DP (double petticoat) insulators

size wire wealher	aftenuation in $\mathrm{db}^{\text {per mill }}$						
	165 mil			128 mil		104 mll	
	dry		wet	dry	wet	dry	wel
frequency							
	. 0127		. 0279	. 0163	. 0361	. 0198	. 0444
100	. 0231		. 0320	. 0318	. 0427	. 0402	. 0535
500	. 0288		. 0367	. 0445	. 0530	. 0620	. 0715
1000	. 0300		. 0387	. 0464	. 0557	. 0661	. 0760
2000	. 0326		. 0431	. 0486	. 0598	. 0686	. 0804
3000			. 0485	. 0511	. 0642	. 0707	. 0845
5000	. 0439		. 0598	. 0573	. 0748	. 0757	. 0938
7000	. 051		. 070	. 084	. 085	. 082	. 103
10000	. 081		. 085	. 076	. 102	. 093	. 120
15000	. 076		. 108	. 094	. 127	. 111	. 147
20000	. 088		. 127	. 108	. 150	. 129	. 173
30000	.110		. 161	. 135	. 188	. 159	. 216
40000	. 130		. 192	. 158	. 223	. 185	. 254
50000	. 148		. 220	. 179	. 253	.209	287

CS (special gloss with steel pln) insulotors

| 20 | .0126 | .0252 | .0162 | .0326 | .0197 | .0402 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 100 | .0230 | .0303 | .0317 | .0406 | .0401 | .0509 |
| 500 | .0286 | .0348 | .0441 | .0510 | .0618 | .069 |
| 1000 | .0296 | .0364 | .0458 | .0532 | .0655 | .0735 |
| 2000 | .0318 | .0399 | .0475 | .0561 | .0676 | .0767 |
| 3000 | .0346 | .0437 | .0495 | .0593 | .0694 | .0797 |
| 5000 | .0412 | .0531 | .0547 | .0668 | .0731 | .0856 |
| 7000 | .048 | .061 | .062 | .075 | .078 | .093 |
| 10000 | .057 | .072 | .071 | .087 | .088 | .104 |
| 15000 | .068 | .087 | .086 | .105 | .104 | .123 |
| 20000 | .078 | .099 | .099 | .121 | .119 | .141 |
| 30000 | .111 | .121 | .120 | .146 | .145 | .171 |
| 40000 | .125 | .153 | .138 | .166 | .166 | .195 |
| 50000 | | .154 | .184 | .185 | .215 | |

Attenuation of 8-inch spaced open-wire pairs
CS Insulators

Line and propagation constants of 16- and 19-AWG toll cable loop mile basis non-loaded temperature $55^{\circ} \mathrm{F}$

$\begin{gathered} \text { frequeney } \\ \text { ke } \\ \text { per sec } \end{gathered}$	resistance ohms per mille	Inductance millihenries per mile	conductance umhe per mile	\qquad	$\begin{aligned} & \text { aftenuation } \\ & \text { db } \\ & \text { per mile } \end{aligned}$	phase shift radians per mille	characteristic impedence ohms
16-gauge							
1	40.1	1.097	1	0.0588	0.69	0.09	251-/215
2	40.3	1.095	2	0.0588	0.94	0.14	190-j141
3	40.4	1.094	4	0.0587	1.05	0.19	170-1108
5	40.7	1.092	8	0.0588	1.15	0.28	154-171
10	42.5	1.085	19	0.0587	1.30	0.54	142-j42
20	47.5	1.086	49	0.0585	1.54	1.01	137- 123
30	53.5	1.046	83	0.0584	1.77	1.49	$135-117$
50	66.5	1.013	164	0.0582	2.25	2.43	133-j13
100	91.6	0.963	410	0.0580	3.30	4.71	129- $/ 9$
150	111.0	0.934	690	0.0578	4.17	6.94	$127-17$
19 -gaue							
1	83.6	1.108	1	0.0609	1.05	0.132	345-/319
2	83.7	1.108	3	0.0609	1.44	0.190	254-/215
3	83.8	1.107	4	0.0609	1.73	0.249	215- 1170
5	84.0	1.106	9	0.0609	2.02	0.347	181- 1121
10	85.0	1.103	22	0.0608	2.43	0.584	153-j72
20	88.5	1.094	56	0.0607	2.77	1.07	$141-141$
30	93.5	1.083	98	0.0506	3.02	1.56	137-129
50	105.4	1.062	193	0.0304	3.53	2.55	134- $/ 20$
100	136.0	1.016	484	0.0601	4.79	4.94	131-j13
150	164.4	0.985	830	0.0599	6.01	7.27	129-j10

Approximate characteristics of standard types of paper-insulated

			ioad coll per loe	nstants ection	constants ostumed to be distributed per loop mile				propagation polor	
eauge AWG	$\begin{gathered} \text { type } \\ \text { of } \\ \text { locding } \end{gathered}$	colls milles	ohms	henries	$\begin{gathered} \text { R } \\ \text { ohms } \end{gathered}$	$\stackrel{\mathrm{L}}{\text { henries }}$	$\underset{\mu f}{\mathbf{C}}$	G mbhe	magnitude	$\begin{aligned} & \text { angle } \\ & \text { deg }+ \end{aligned}$

side circulf										
19	N.L.S.		-	-	85.8	. 001	. 062	1.5	. 183	47.0
19	H-31.S	1.135	2.7	. 031	88.2	. 028	. 052	1.5	. 277	76.6
19	H-44-S	1.135	4.1	. 043	89.4	. 039	. 062	1.5	. 319	79.9
19	H-88-S	1.135	7.3	. 088	92.2	. 078	. 062	1.5	. 441	84.6
19	H.172-S	1.135	13.0	. 170	97.3	. 151	. 062	1.5	. 810	87.0
19	B.88-S	0.568	7.3	. 088	98.7	. 156	. 052	1.5	. 620	87.0
16	N.L.S.	-	-	-	42.1	. 001	. 052	1.5	. 129	49.1
16	H.31.S	1.135	2.7	. 031	44.5	. 028	. 052	1.5	. 266	82.8
16	H-44.S	1.135	4.1	. 043	45.7	. 039	. 052	1.5	. 315	84.6
16	H-88-S	1.135	7.3	. 088	48.5	. 078	. 062	1.5	. 438	87.6
16	H.172-S	1.135	13.0	. 170	53.6	. 151	. 062	1.5	. 608	88.3
16	B-88.5	0.568	7.3	. 088	54.9	. 156	. 062	1.5	. 618	88.3
13	N.L.S.			.	21.9	. 001	. 062	1.5	. 094	52.9
phanfom circuil										
19	N.L.P.	-	-	-	42.9	. 0007	. 100	2.4	. 165	47.8
19	H-18.P	1.135	1.4	. 018	44.1	. 017	.100	2.4	. 270	78.7
19	H-25.P	1.135	2.1	. 025	44.7	. 023	.100	2.4	. 308	81.3
19	H. $50 . \mathrm{P}$	1.135	3.7	. 050	46.2	. 045	.100	2.4	. 424	85.3
19	H.63.P	1.135	6.1	. 063	48.3	. 056	. 100	2.4	. 472	86.0
19	8-50.P	0.568	3.7	. 050	49.4	. 089	.100	2.4	. 594	- 87.4
16	N.L.P.	-	-	-18	21.0	. 0007	. 100	2.4	. 116	50.0
16	H.18.P	1.135	1.4	. 018	22.2	. 017	.100	2.4	. 262	84.0
16	H.25-P	1.135	2.1	. 025	22.8	. 023	.100	2.4	. 303	85.4
16	H.50-P	1.135	3.7	. 050	24.3	. 045	. 100	2.4	. 422	87.4 87.7
16	H-63-P	1.135	6.1	. 063	26.4	. 056	. 100	2.4	. 471	87.7 88.5
16	B-50-P	0.568	3.7	. 050	27.5 10.9	. 089	. 100	2.4 2.4	. 593	88.5 55.1
13	N.L.P.				10.9	. 0007	. 100	2.4	. 086	55.1
physical circuif										
16	B-22	0.568	1.25	. 022	143.1	. 040	. 062	11.5	. 315	85.0
- The	ers H and	indicate	ding	spacing	of 6000	d 3000	1, respe	ctivoly.		

Telephone transmission line dafa continued

Line constants of shielded 16 -gauge spiral-four toll-entrance cable

loop mile basis non-loaded temperature $70^{\circ} \mathrm{F}$

frequency ke por sec	nesistance ohms per mile	inductonce mh per mile	sonductance umho per mile	copocitance $\mu^{\text {ti }}$ per mile	aftenwalion db per mile
tide clrcuit					
0.4	43.5	1.913	0.02	0.0247	0.92
0.6	43.5	1.907	0.04	0.0247	0.93
0.8	43.6	1.901	0.06	0.0247	0.93
1.0	43.9	1.891	0.08	0.0247	0.94
2	44.2	1.857	0.20	0.0247	0.95
3	45.2	1.821	0.32	0.0247	0.96
5	49.0	1.753	0.53	0.0247	0.97
10	55.1	1.626	1.11	0.0247	1.00
20	61.6	1.539	2.49	0.0247	1.06
30	66.1	1.507	3.77	0.0247	1.15
40	71.0	1.490	5.50	0.0247	1.26
60	81.5	1.467	8.80	0.6247	1.44
80	90.1	1.450	12.2	0.0247	1.60
100	97.8	1.438	15.81	0.0247	1.77
120	104.9	1.429	19.6	0.0247	1.90
140	111.0	1.421	23.3	0.0247	2.03
200	127.3	1.411	35.1	0.0246	2.35
250	137.0	1.408	46.0	0.0246	-
300	149.5	1.406	56.5	0.0246	-
350	159.9	1.405	67.8	0.0246	-

Chorocteristic lmpedance of this cable at 140 kiloeyclas approximately 240 ohms.
For a description and illustration of this type coble see Kendall and Afel, "A Twelve-Channal Caprier Telephone System for Open-Wire Lines," B.S.T」., Janvary 1939, pp. 129-131.

foll telephone cable circuits at 1000 cycles per second

Approximate characteristics of standard types of paper-insulated exchange felephone cable circuits

wire gauge AWG	code no	$\begin{gathered} \text { type } \\ \text { of } \\ \text { looding } \\ \hline \end{gathered}$	loop mille constonts		propagotion constant				mid-section characteristic impedonce				wave length mifes	```volocity miles per second```	$\begin{aligned} & \text { cut- } \\ & \text { off } \\ & \text { frea } \end{aligned}$	$\begin{aligned} & \text { difen } \\ & \text { db } \\ & \text { per } \\ & \text { mill } \\ & \hline \end{aligned}$
			$\mathrm{C}_{\mu} \mathrm{F}$	in	mag	angle (deg)	$\boldsymbol{\alpha}$	β	mog	angle (deg)	Z_{01}	\mathbf{Z}_{02}				
26	BST	NL	.083 .069	1.6 1.6	. 439	45.30	. 307	. 310	$\begin{array}{r} 910 \\ 1007 \end{array}$	44.5	719	706	20.4	20,400	-	$\begin{aligned} & 2.9 \\ & 2.67 \end{aligned}$
24	DSM	NL	. 085	1.9 1.9					725						-	2.3 2.15
	ASM	NL	. 075	1.9	. 355	45.53	247 .151	. 251	778 987	44.2 23.7	558 904	543 396	25.0 14.9	25,000 14,900	-	2.15
		M88	. 075	1.9	. 448	70.25	. 151	. 421	987	23.7	904	396	14.9	$14,900$	3100	1.31
		H88	. 075	1.9	. 512	75.28	. 130	. 495	1160	14.6	1122	292	12.7	12,700	3700	1.13
		B88	. 075	1.9	. 684	81.70	. 099	. 677	1532	8.1	1515	215	9.3	9,270	5300	0.86
22	CSA	NL	. 083	2.1	. 297	45.92	. 207	. 213	576	43.8	416	399	29.4	29,400	-	1.80
		M88	. 083	2.1	. 447	76.27	. 106	. 434	905	13.7	880	214	14.5	14,500	2900	0.92
		H88	. 083	2.1	. 526	80.11	. 0904	. 519	1051	9.7	1040	177	12.1	12,100	3500	0.79
		H135	. 083	2.1	. 644	83.50	. 0729	. 640	1306	6.3	1300	144	9.8 •	9,800	2800	0.63
		B88	. 083	2.1	. 718	84.50	. 0689	. 718	1420	5.3	1410	130	8.75	8,750	5000	0.60
		B135	. 083	2.1	. 890	86.50	. 0549	. 890	1765	3.3	1770	102	7.05	7,050	4000	0.48
19	CNB	NL	. 085	1.6	-	-	-	-	400	-	-	-	-	-	-	1.23
	DNB	NL	. 066	1.6	. 188	47.00	. 128	. 138	453	42.8	333	308	45.7	45,700	-	1.12
		M88	. 066	1.6	. 383	82.42	. 0505	. 380	950	8.9	939	146	16.6	16,600	3200	0.44
		H88	. 066	1.6	. 459	84.60	. 0432	. 459	1137	5.2	1130	103	13.7	13,700	3900	0.38
		H135	. 066	1.6	. 569	86.53	. 0345	. 570	1413	4.0	1410	99	11.0	11,000	3200	0.30
		H175	. 066	1.6	. 651	87.23	. 0315	. 651	1643	3.3	1640	95	9.7	9,700	2800	0.27
		B88	. 066	1.6	. 641	86.94	. 0342	. 641	1565	2.8	1560	77	9.8	9,800	5500	0.30
16	NH	NL	. 064	1.5	. 133	49.10	. 0868	. 1004	320	40.6	243	208	62.6	62,600	-	0.76
		M88	. 064	1.5	. 377	85.88	. 0271	. 377	937	4.3	934	76	16.7	16,700	3200	0.24
		H88	. 064	1.5	. 458	87.14	. 0238	. 458	1130	2.8	1130	55	13.7	13,700	3900	0.21

In the third column of the above table the letters M, H, and B indicate loading coll apacings of 9000 feet, 6000 feet, and 3000 feet, respectivaly, and the figures show the inductance of the loading colls used.

Frequency allocation chart for type J and \mathbf{K} carrier systems
Type J

Frequency allocation chant for carrier systems
Carrier telephone

frequency in kilocycles per second

Noise and noise measurement

Definitions

The following definitions are based upon those given in the Proceedings of the tenth Plenary Meeting (1934) of the Comite Consultatif International Tèléphonique (C.C.I.F.).

Note: The unit in which noise is expressed in many of the European countries differs from the two American standards, the noise unit and the db above reference noise. The European unit is referred to as the psophometric electromotive force.

Noise: Is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heard in the course of a telephone conversation.

It is customary to distinguish between:

1. Room noise: Present in that part of the room where the telephone apparatus is used.
2. Frying noise (transmitter noise): Produced by the microphone, manifest even when conversation is not taking place.
3. Line noise: All noise electrically transmitted by the circuit, other than room noise and frying noise.

Psophomełric electromotive force

In the case of a complete telephone connection the interference with a telephone conversation produced by extraneous currents may be compared with the interference which would be caused by a parasitic sinusoidal current of 800 cycles per second. The strength of the latter current, when the interference is the same in both cases, can be determined.

If the receiver used has a resistance of 600 ohms and o negligible reactance lif necessary it should be connected through a suitable transformerl, the psophometric electromotive force at the end of a circuit is defined as twice the voltage at 800 cycles per second, measured at the terminals of the receiver under the conditions described.

The psophometric electromotive force is therefore the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance which, when connected directly to a standard receiver of 600 ohms resistance and zero reactance, produces the same sinusoidal current at 800 cycles per second as in the case with the arrangements indicated above.

190

Noise and noise measurement continued

An instrument known as the psophometer has been designed. When connected directly across the terminals of the 600 -ohm receiver, it gives a reading of half of the psophometric electromotive force for the particular case considered.

In a general way, the term psophometric voltage between any two points refers to the reading on the instrument when connected to these two points.
If, instead of a complete connection, only a section thereof is under consideration, the psophometric electromotive force with respect to the end of that section is defined as twice the psophometric voltage measured at the terminals of a pure resistance of 600 ohms, connected at the end of the section, if necessary through a suitable transformer.
The C. C. I. F. has published a Specification for a psophometer which is included in Volume II of the Proceedings of the Tenth Plenary Meeting in 1934. An important part of this psophometer is a filter network associated with the measuring circuit whose function is to weight each frequency in accordance with its interference value relative to a frequency of 800 cycles.

Noise levels

The amount of noise found on different circuits, and even on the same circuit at different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a quiet circuit, a noisy circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels which may be encountered under the different conditions:

Open-wire circuit	db above ref noise
Quiet	20
Average	35
Noisy	50
Cable ciraif	
Quiet	15
Average	25
Noisy	40

Relationship of European and American noise units

The psophometric emf can be related to the American units: the noise unit and the decibel above reference noise.

The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 ohms.

Relationship of European and American units

Teıegraph facilifies

	spese of usual types frequency cycles	
Grounded wire	75	bauds
Simplex (telephone)	50	150
Composite	15	100
Metallic telegraph	85	30
Carrier channel		170
Narrow band	40	80
Wide band	75	150

Telegraph prinfer systems

Speed depends on two factors: 1. Code used, and 2. frequency handling capacity of transmission facilities. One (1) word $=5$ letters and 1 space.

Frequency of printing telegraph systems in cycles per second

Let
$S=$ number of units in code (plus allowance for synchronizing)
$N=$ number of channels
$W=$ revolutions per second
$=\frac{\text { words per minute } X \text { characters per transmitted word }}{60}$
(1 word is assumed to consist of 5 letters and 1 space, or 6 characters.)
$f=$ frequency in cycles per second $f=\frac{1}{3}$ SNW

Examples

1. Three-channel multiplex operating at 60 words per minute, 5 -unit code.
$f=\frac{1}{2} \times 5 \times 3 \times \frac{60 \times 6}{60}=45$ cycles or 90 bauds
2. Single-printer circuit operating at 60 words per minute, 5 -unit code + $2 \frac{1}{2}$ units for synchronizing.
$f=\frac{1}{2} \times 7 \frac{1}{2} \times 1 \times \frac{60 \times 6}{60}=22 \frac{1}{2}$ cycles or 45 bauds
3. Two-channel Baudot operating at 50 words per minute, 5 -unit code + 2 units for synchronizing.
$f=\frac{1}{2}(5+2) \times 2 \times \frac{50 \times 6}{60}=35$ cycles or 70 bauds

Comparison of telegraph codes

Hughes

Murray Autamatic		
Baudot		Add 2 units to each chonnel for 2 -channel and 1 unit ta each character far 4 -channel operation. These conditions allaw for synchronization and refardation.

Cook $\stackrel{P}{\text { P }}$

Multiple
P A R $\quad \mathrm{B}$ upace

	P	A	R	1	S	spoee
RCA						cr

Radio frequency transmission lines

Formulas for uniform transmission lines losses neglected

$$
\begin{aligned}
& Z_{0}=\sqrt{\frac{L}{C}} \\
& L=1016 \sqrt{\epsilon} Z_{0} \\
& C=1016 \frac{\sqrt{\epsilon}}{Z_{0}} \\
& \frac{V}{c}=\frac{1}{\sqrt{\epsilon}} \\
& Z_{s}=Z_{0} \frac{Z_{r}+j Z_{0} \tan l^{\circ}}{Z_{0}+j Z_{r} \tan l^{\circ}} \\
& Z_{s}=\frac{Z_{0}^{2}}{Z_{r} \quad \text { for } l^{\circ}=90^{\circ} \text { (quarter wave) }} \\
& Z_{s s}=+j Z_{0} \tan l^{\circ} \\
& Z_{s 0}=-\frac{j Z_{0}}{\tan l^{\circ}} \\
& l^{\circ}=360 \frac{l}{\lambda} \\
& \lambda=\lambda_{0}\left(\frac{V}{c}\right)
\end{aligned}
$$

where
$L=$ inductance of transmission line in micromicrohenries per foot
$C=$ capacitance of transmission line in micromicrofarads per foot
$V=$ velocity of propagation in transmission line
$c=$ velocity of propagation in free space $\}$ same units
$Z_{s}=$ sending end impedance of transmission line in ohms
$Z_{e}=$ surge impedance of transmission line in ohms
$Z_{r}=$ terminating impedance of transmission line in ohms
$I^{\circ}=$ length of line in electrical degrees
$1=$ length of line
$\lambda=$ wavelength in transmission line same units
$\lambda_{0}=$ wavelength in free space
$\boldsymbol{\epsilon}=$ dielectric constant of transmission line medium
$=1$ for air
$Z_{s t}=$ sending end impedance (ohms) of transmission line shorted at far end
$Z_{* 0}=$ sending end impedance (ohmsl of transmission line open at far end

Surge impedance of uniform lines- $\mathbf{0}$ to 210 ohms

Surge impedance of uniform lines- $\mathbf{0}$ to 700 ohms

Transmission line data

Pype of line	characteristic Impodance
A single coaxial line	$\begin{aligned} Z_{0} & =\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{D}{d} \\ \epsilon & =\text { dielectric constant } \\ & =1 \text { in air } \end{aligned}$
B balanced shielded line	$\begin{aligned} & \text { for } D \gg d, h \gg d \\ Z_{o} & \cong \frac{276}{\sqrt{\epsilon}} \log _{10}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ \sigma & =\frac{h}{D} \\ v & =\frac{h}{d} \end{aligned}$
C beads-dielectric ϵ_{1}	for cases (A) and (B) if ceramic beads are used at frequent intervals-call new surge impedance $Z_{0}{ }^{\prime}$ $Z_{0}^{\prime}=\frac{Z_{0}}{\sqrt{1+\left(\frac{\epsilon_{1}}{\epsilon}-1\right) \frac{W}{S}}}$
D open twa-wire line	$\begin{aligned} Z_{0} & =120 \cosh ^{-1} \frac{D}{d} \\ & \cong 276 \log _{10} \frac{2 D}{d} \end{aligned}$

type of line	characteristic impedance
	$Z_{0}=69 \log _{10}\left[\frac{4 h}{d} \sqrt{1+\left(\frac{2 h}{D}\right)^{2}}\right]$
	$Z_{0}=276 \log _{10}\left[\frac{4 h}{d \sqrt{1+\left(\frac{2 h}{D}\right)^{2}}}\right]$
	$Z_{0}=138 \log _{10} \frac{4 h}{d}$
	$Z_{0}=138 \log _{10} \frac{D}{d}\left[1.078-0.078\left(\frac{d}{D}\right)^{2}\right]$
	$Z_{0}=138 \log _{10} \frac{2 D_{2}}{d \sqrt{1+\left(\frac{D_{2}}{D_{1}}\right)^{2}}}$
	$l \ggg_{w}$ $\mathrm{Z}_{0} \cong 377 \frac{\mathrm{w}}{\mathrm{l}}$

Transmission line aftenuation due to load mismatch

Ao normol line offenuotion in decibels

- A $-A_{0}$ oftenuotion in decibels due to load mismotch

Impedance matching with shorted słub

Impedance matching with open stub

Impedance matching with coupled section

Defuning from resonance for a particular type of section

$A=$ coupled section-two 0.75 -inch diameter copper tubes, coplanar with line
B = transmission line-two 0.162-inch diameter wires
C = alternative positions of shorting bar for impedance matching

D = position of shorting bar for maximum current in section conductors

class of cables		ArmyNavy type number	inner conductor	dielec maferial (1)	nominal diam of dialectric (in)	shiolding braid	protective covering	nominal overall diam (in)	woight $16 / 4$	nominal impedance	nominal caparitance $\mu \mu \mathrm{f} / \mathrm{h}$	moximum operating voliage FMIT	remarks
$\begin{aligned} & 50-55 \\ & \text { ohms } \end{aligned}$	Single braid	RG-58/U	20 AWG copper	\wedge	0.116	Tinned Copper	Vinyl	0.195	0.025	53.5	28.5	1,900	General purpose small size floxible cable
		RG-8/U	$\begin{aligned} & 7 / 21 \text { AWG } \\ & \text { copper } \end{aligned}$	\wedge	0.285	Copper	Vinyl	0.405	0,106	52.0	29.5	4,200	General purpose medium size flexible cable
		RG-10/U	7/21 AWG copper	\wedge	0.285	Copper	Vinyl Inoncontaminatingl armor	$\begin{aligned} & \text { lmax } \\ & 0.475 \end{aligned}$	0.146	52.0	29.5	4,000	Same as RG-8/U armored for noval equipment
		RG-17/U	$\begin{aligned} & 0.188 \\ & \text { copper } \end{aligned}$	A	0.680	Copper	Vinyl Inon-contaminating!	0.870	0.460	52.0	29.5	11,000	large high power low aftenuation transmission cable
		RG-18/U	0.188 copper	A	0.680	Copper	Vinyl inon. contaminating) armor	$\begin{aligned} & (\max) \\ & 0.945 \end{aligned}$	0.585	52.0	29.5	11,000	Same as RG-17/U armored for noval equip. ment
		RG-19/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	Vinyl Inon contaminotingl	0.120	0.740	52.0	29.5	14,000	Very lorge high power low aftenuation fransmission cab'e
		RG-20/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	Vinyl Inoncontaminatingl armor	$\begin{aligned} & \text { Imax) } \\ & 1.19 .5 \end{aligned}$	0.925	52.0	29.5	14,000	Same ar RG-19/U armored for naval equipment
	Double braid	RG-55/U	20AWG copper	\wedge	0.116	Tinned copper	Polyothylene	$\begin{aligned} & \text { Imax) } \\ & 0.206 \end{aligned}$	0.034	53.5	28.5	1,900	Small size flexible cable
		RG-5/U	16 AWG copper	\wedge	0.185	Copper	Vinyl	0.332	0.087	53.5	28.5	2,000	Smoll microwove cable
		RG-9/U	7/21 AWG silvered copper	\wedge	0.280	Inner-silver coated copper. Outer-copper	Vinyl Inon-contami natingl	0.420	0.150	51.0	30.0	4,000	Medium size, low levol circult cable

Noses:

1. Diolectric materiols

A Stabilized polyothylene
C Synthetic rubber compound
D layer of synthetic rubber dielectric berween thin layers of conducting rubber

class of cables		ArmyNavy type number	Inner conducter	dieles material (1)	nominal diam of dielectric (in)	$\begin{aligned} & \text { shielding } \\ & \text { bralid } \end{aligned}$	protective covering	$\begin{aligned} & \text { nominal } \\ & \text { overoll } \\ & \text { diam } \\ & \text { (in) } \end{aligned}$	weight /b/f	$\begin{aligned} & \text { nominul } \\ & \text { imped- } \\ & \text { ance } \\ & \text { ohms } \end{aligned}$	$\begin{aligned} & \text { nominal } \\ & \text { capaci- } \\ & \text { fance } \\ & \mu \mu / / h \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \text { maximum } \\ \text { operafing } \\ \text { voltage } \\ \text { rms } \end{array}\right\|$	remarks
		RG-14/U	10 AWG coppor	A	0.370	Coppar	Vinyl Inon-contaml. natingl	0.545	0.216	52.0	29.5	5,500	General purpose samiflexible power transmission cable
		RG-74/U	10 AWG copper	A	0.370	Copper	Vinyl Inoncontaminatingl armor	0.615	0.310	52.0	29.5	5,500	Same os RG-14/U ar. mored for noval equip. ment
$\begin{aligned} & 70-80 \\ & \text { ohms } \end{aligned}$	Single braid	RG-59/U	22 AWG copperweld	A	0.146	Copper	Vinyl	0.242	0.032	73.0	21.0	2,300	General purpose small size video coble
		RG-11/U	$\begin{aligned} & 7 / 26 \text { AWG } \\ & \text { tinned } \\ & \text { copper } \end{aligned}$	A	0.285	Copper	Vinyl	0.405	0.096	75.0	20.5	4,000	Medium sizo, fexible video and communication sable
		RG-12/U	$\begin{aligned} & 7 / 26 \text { AWG } \\ & \text { tinned } \\ & \text { coppor } \end{aligned}$	A	0.285	Copper	Vinyl inoncontaminatingl armor	0.475	0.141	75.0	20.5	4,000	Some as RG.11/U armored for noval equip. ment
	Double braid	RG-6/U	21 AWG copperweld	A	0.185	Inner-silvar coated copper. Outor-copper	Vinyl Inon-contaminatingl	0.332	0.682	76.0	20.0	2,700	Small size video and I.F cable
		RG-13/U	7/26 AWG finned copper	A	0.280	Copper	Vinyl	0.420	0.126	74.0	20.5	4,000	I.F coble
Cables of special charac. toristics	Twin conductor	RG-22/U	$\begin{aligned} & 2 \text { Cond. } \\ & 7 / 18 \text { AWG } \\ & \text { copper } \end{aligned}$	A	0.285	$\begin{aligned} & \text { Single-finned } \\ & \text { copper } \end{aligned}$	Vinyl	0.405	0.107	95.0	16.0	1,000	Smail size twin conductor cable
		RG-57/U	2 Cond. 7/21 AWG copper	A	0.472	Single-finned coppor	Vinyl	0.625	0.225	95.0	16.0	3,000	Large size twin conductor cable
	High attonuation	RG-21/U	16 AWG resistance wire	A	0.185	Inner-silvar coated copper. Outer-copper	Vinyl inon-contami. nating)	0.332	0.087	53.0	29.0	2,700	Special attenuating cable with small temperature cosfficient of aftonuation
	High imped. ance	RG-65/U	No. 32 Formex F helix diam 0.128 in .	A	0.285	$\begin{aligned} & \text { Single-cop. } \\ & \text { por } \end{aligned}$	Vinyl	0.405	0.0%	950	44.0	1,000	High Impedance video cable. High delay

class of cables		ArmyNovy type number	Inner conductor	dielec maferial (1)	nominal diam of dielectric (in)	shielding braid	protective covering	$\begin{aligned} & \text { nominal } \\ & \text { overall } \\ & \text { dlam } \\ & \text { (ln) } \end{aligned}$	weight lb/ 1	nominal imped. ance ohms	nominal capacitance $\mu \mu \boldsymbol{f} / \mathrm{h}$	$\begin{gathered} \text { maximum } \\ \text { operating } \\ \text { veltoge } \\ \text { rms } \end{gathered}$	remorlas
Low copocitance	Single braid	RG-62/U	22 AWG copperweld	A	0.146	Copper	Vixyl	0.242	0.0382	93.0	$\begin{gathered} 13.5 \\ \max 14.5 \end{gathered}$	750	Smoll size low copocitance alr-spoced coble
		RG-63/U	22 AWG copperweld	A	0.285	Copper	Vinyl	0.405	0.0832	125	$\begin{gathered} 10.0 \\ \max 11.0 \end{gathered}$	1,000	Medium size low copacltance air-spoced coble
	Double brald	RG-71/U	22 AWG copperweld	A	0.146	Inner-plain copper. Outer -linnedcopper	Polyethy ene	0.250	0.0457	93.0	$\begin{gathered} 13.5 \\ \max 14.5 \end{gathered}$	750	Smoll size low capocitance air-spoced cable for I.f purposes
Pulse appli. cations	Single brald	RG-26/U	$19 / \mathrm{C} .0117$ tinned copper	D	${ }_{0.308}^{20}$	Tinned copper	Synthetic rubber and armor	$\begin{aligned} & \text { (mox) } \\ & 0.525 \end{aligned}$	0.189	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peok) } \end{array}$	Medium slze pulse cable armored for noval equip. ment
		RG-27/U'	19/0.0185 tinned copper	D	${ }_{0.455}^{(2)}$	Single-linned copper	Vinyl and armor	$\begin{aligned} & \text { (max }) \\ & 0.675 \end{aligned}$	0.304	48.0	50.0	$\begin{aligned} & \text { 15,000 } \\ & \text { 〔peak] } \end{aligned}$	Large slize pulse cable armored for noval equip. ment
	Double brald	RG-64/U.	$19 / 0.0117$ Hinned copper	D	$\stackrel{(2)}{0.308}$	Tinned copper	Neoprene	0.495	0.205	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { (peok) } \end{array}$	Medium size puise cable
		RG-25/U	$19 / 0.0117$ tinned copper	D	$\begin{gathered} { }^{122} \\ 0.308 \end{gathered}$	Tinned copper	Neoprene	0.565	0.205	48.0	50.0	$\begin{array}{r} 8,000 \\ \text { tpeakJ } \end{array}$	Special twisting pulse cable for noval equipment
		RG-28/U	19/0.0185 finned copper	D	$\begin{gathered} 127 \\ 0.455 \end{gathered}$	Inner-Hnned copper. Outer -golvanized steel	Synthetic rubber	0.805	0.370	48.0	50.0	$\begin{aligned} & 15,000 \\ & \text { [peok] } \end{aligned}$	Large size pulso coble
Twisting applicafion	Single braid	RG-41/U	16/30 AWG tinned copper	C	0.250	Tinned copper	Neoprene	0.425	0.150	67.5	27.0	3,000	Special twist cable

Notes:

1. Dielectric materiols

A Siabilized polyethylene
C Synthetic rubber compound
C Synthetic rubber compound
2. This value is the diamater over the outer loyer of conducting rubber.

204

Attenuation of standard r-f cables vs frequency

frequency in megacycles

The above chart refers to cables listed in the Army-Navy standard list of radio-frequency cables on pages 201, 202, and 203. For an explanation of the letters accompanying the curves, see the table below. Each letter refers to one or more A-N standard cables. The number following the letter in the table is the numerical part of the RG- U number as listed under "Army-Navy type number" in the third column of the preceding list.

RC-number

A $55 / U$	D	$5 / U$	F $10 / U$	$I 63 / U$	M $17 / U$	$O 26 / U$
A $58 / U$	D	$6 / U$	G $11 / U$	$J 65 / U$	M $18 / U$	$O 64 / U$
B $59 / U$	E $21 / U$	G $12 / U$	K $14 / U$	N $19 / U$	P $27 / U$	
C $62 / U$	F $8 / U$	G $13 / U$	K $74 / U$	N $20 / U$	P $28 / U$	
C $71 / U$	F $9 / U$	H $22 / U$	L $57 / U$	O $25 / U$	Q $4 / U$	

RADIO FREQUENCY TRANSMISSION LINES
 205

Length of transmission line

This chart gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency provided the velocity of propagation on the transmission line is equal to that in free space. The length is given on the L scale intersection by a line between $\boldsymbol{\lambda}$ and I° where $I^{\circ}=\frac{360 \mathrm{l} \text { in centimeters }}{\lambda \text { in centimeters }}$

Exomple: $f=600$ megacycles $I^{0}=30$ Length $\mathrm{l}=1.64$ inches or 4.2 centimetors

206

Aftenuation and resistance of fransmission

lines af ultra-high frequencies

$A=4.35 \frac{R_{t}}{Z_{0}}+2.78 \sqrt{\epsilon \rho F}$
where
$A=$ attenuation in decibels per 100 feet
$R_{t}=$ total line resistance in ohms per 100 feet
$p=$ power factor of dielectric medium
$F=$ frequency in megacycles

$$
\begin{aligned}
R_{t} & =0.1\left(\frac{1}{d}+\frac{1}{D}\right) \sqrt{F} \quad \text { for coaxial copper line } \\
& =\frac{0.2}{d} \sqrt{F} \quad \text { for open two-wire copper line }
\end{aligned}
$$

where
$d=$ diameter of conductors (center conductor for the coaxial line) in inches
$D=$ diameter of inner surface of outer coaxial conductor in inches

Wave guides and resonators

Propagation of electromagnetic waves in hollow wave guides

For propagation of energy at ultra-high frequencies through a hollow metal tube under fixed conditions, a number of different types of waves are available, namely:

1. TE waves: Transverse electric waves, sometimes called H waves, characterized by the fact that the electric vector (E vector) is always perpendicular to the direction of propagation. This means that
$E_{x} \equiv 0$
where x is the direction of propagation.
2. TM waves: Transverse magnetic waves, also called E waves, characterized by the fact that the magnetic vector (H vector) is always perpendicular to the direction of propagation.

This means that
$H_{x} \equiv 0$
where x is the direction of propagation.
Note: TEM waves: Transverse electromagnetic waves. These waves are characterized by the fact that both the electric vector (E vector) and the magnetic vector (H vector) are perpendicular to the direction of propagation. This means that
$E_{x}=H_{x}=0$
where x is the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a wave guide.

The solutions for the field configurations in wave guides are characterized by the presence of the integers n and m which can take on separate values from 0 or 1 to infinity. Only a limited number of these different n, m modes can be propagated, depending on the dimensions of the guide and the frequency of excitation. For each mode there is a definite lower limit or cutoff frequency below which the wave is incapable of being propagated. Thus, a wave guide is seen to exhibit definite properties of a high-pass filter.

The propagation constant $\gamma_{n, m}$ determines the amplitude and phase of each component of the wave as it is propagated along the length of the guide. With x the direction of propagation and ω equal to 2π times the frequency, the factor for each component is
$e^{j \omega R-\gamma_{m, ~}^{m}}{ }^{x}$

Propagation of electromagnefic waves in hollow wave guides continued

Thus, if $\gamma_{n, m}$ is real, the phase of each component is constant, but the amplitude decreases exponentially with x. When $\gamma_{n, m}$ is real, it is said that no propagation takes place. The frequency is considered below cutoff. Actually, propagation with high attenuation does take place for a small distance, and a short length of guide below cutoff is often used as a calibrated attenuator.

When $\boldsymbol{\gamma}_{n, m}$ is imaginary, the amplitude of each component remains constant, but the phase varies with x. Hence, propagation takes place. $\gamma_{n, m}$ is a pure imaginary only in a lossless guide. In the practical case, $\gamma_{n, m}$ usually comprises both a real part, which is the attenuation constant, and an imaginary part, which is the phase propagation constant.

Rectangular wave guides

Fig. I shows a rectangular wave guide and a rectangular system of coordinates, disposed so that the origin falls on one of the corners of the wave guide; x is the direction of propagation along the guide, and the crosssectional dimensions are y_{0} and z_{0}.
For the case of perfect conductivity of the guide walls with a non-conducting interior dielectric (usually airl, the equations for the $\mathrm{TM}_{n, m}$ or $\mathrm{E}_{n, m}$ waves in the dielectric are:
$E_{x}=A \sin \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$E_{y}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{\rho \omega t-\gamma_{n, m} x}$
$E_{z}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{o}}\right) \sin \left(\frac{n \pi}{\gamma_{0}} y\right) \cos \left(\frac{m \pi}{z_{o}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$H_{x}=0$
$H_{\nu}=A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}$
$H_{z}=-A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{2}}}$
where ϵ_{k} is the dielectric constant and μ_{k} the permeability of the dielectric material in MKS (rationalized) units.

Rectangular wave guides continued

Constant A is determined solely by the exciting voltage. It has both amplitude and phase. Integers n and m may individually take on values from 1 to infinity. No TM waves of the 0,0 type or 0,1 type are possible in a rectangular guide so that neither n nor m may be 0 .
Equations for the $T E_{n, m}$ waves or $H_{n, m}$ waves in a dielectric are:

$$
\begin{aligned}
& H_{x}=B \cos \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{f \omega t-\gamma_{n, m^{x}}} \\
& H_{y}=B \frac{\gamma_{n, m}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega l-\gamma_{n, m} m^{x}} \\
& H_{z}=B \frac{\gamma_{n, m}}{\gamma_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{m}}} \\
& E_{x} \equiv 0 \\
& E_{y}=B \frac{j \omega \mu_{k}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m}} \\
& E_{z}=-B \frac{j \omega \mu_{k}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega \omega-\gamma_{a, m}}
\end{aligned}
$$

where ϵ_{k} is the dielectric constant and μ_{k} the permeability of the dielectric material in MKS (rationalized) units.

Constant B again depends only on the original exciting voltage and has both magnitude and phase; n and m individually may assume any integer value from 0 to infinity. The 0,0 type of wave where both n and m are 0 is not possible, but all other combinations are.

As stated previously, propagation only takes place when $\gamma_{n, m}$ the propagation constant is imaginary;
$\gamma_{n, m}=\sqrt{\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}-\omega^{2} \mu_{k \epsilon_{k}}}$
This means, for any n, m mode, propagation takes place when
$\omega^{2} \mu_{k} \epsilon_{k}>\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}$
or, in terms of frequency f and velocity of light c, when

$$
f>\frac{c}{2 \pi \sqrt{\mu_{1} \epsilon_{1}}} \sqrt{\left(\frac{n \pi}{\gamma_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}}
$$

where μ_{1} and ϵ_{1} are the relative permeability and relative dielectric constant, respectively, of the dielectric material with respect to free space.

Rectangular wave guides continued

Fig. 2-Field conflguration for $\mathrm{TE}_{0,1}$ wave.

Fig. 3-Field conflguration for a TE 1,2 wave.

Fig. 4-Characteristic E lines for TE waves.

wave guldes and resonators 211

Rectangular wave guides continued

The wavelength in the wave guide is always greater than the wavelength in an unbounded medium. If λ is the wavelength in free space, the wavelength in the guide with air as a dielectric for the n, m mode is
$\lambda_{\theta(n, m)}=\frac{\lambda}{\sqrt{1-\left(\frac{n \lambda}{2 y_{0}}\right)^{2}-\left(\frac{m \lambda}{2 z_{0}}\right)^{2}}}$
The phase velocity within the guide is also always greater than in an unbounded medium. The phase velocity v and group velocity u are related by the following equation:
$u=\frac{c^{2}}{v}$
where the phase velocity is given by $v=c \frac{\lambda_{0}}{\lambda}$ and the group velocity is the velocity of propagation of the energy.

To couple energy into wave guides, it is necessary to understand the configuration of the characteristic electric and magnetic lines. Fig. 2 illustrates the field configuration for a $\mathrm{TE}_{0,1}$ wave. Fig. 3 shows the instantaneous field configuration for a higher mode, a $\mathrm{TE}_{1,2}$ wave.

In Fig. 4 are shown only the characteristic E lines for the $T E_{0,1}, T E_{0,2}, T E_{1,1}$ and $\mathrm{TE}_{1,2}$ waves. The arrows on the lines indicate their instantaneous relative directions. In order to excite a TE wave, it is necessary to insert a probe to coincide with the direction of the E lines. Thus, for a $T E_{0,1}$ wave, a single probe projecting from the side of the guide parallel to the E lines would be sufficient to couple into it. Several means of coupling from a coaxial line to a rectangular wave guide to excite the $\mathrm{TE}_{0,1}$ mode are shown in Fig. 5. With structures such as these, it is possible to make the standing wave ratio due to the junction less than 1.15 over a 10 to 15 percent frequency band.

Fig. 6 shows the instantaneous configuration of a TM1.1 wave; Fig. 7, an instantaneous field configuration for a $\mathrm{TM}_{1,2}$ wave. Coupling to this type of wave is accomplished by inserting a probe, which is again parallel to the E lines. Since the E lines in this case extend along the length of the tube, it is necessary to position a probe along its length at the center of the E configuration. Fig. 8 illustrates a method of coupling to an $E_{1,1}$ wave and an $E_{1,2}$ wave.

Rectangular wave guides continued

Fig. 5—Methods of coupling to $\mathrm{TE}_{0,1}$ mode $(a \approx \lambda \mathrm{~g} / 4$).

electric intensity
magnetic intensity
Fig. 6-Instantaneous fieid configuration for a TM1.1 wave.

Fig. 7-Instantaneous field configuration for a $T M_{1,2}$ wave.

Rectangular wave guides continued

Fig. 8-Methods of coupling to rectangular wave guides for TM(E) modes.

Circular wave guides

The usual co-ordinate system is ρ, θ, z, where ρ is in radial direction; θ is the angle; z is in the longitudinal direction.
TM waves (E waves): $H_{z} \equiv 0$
$E_{z}=A J_{n}\left(k_{n, m} \rho\right) \cos n \theta \epsilon^{j \omega t-\gamma_{n, m^{z}}}$
By the boundary conditions, $E_{2}=0$ when $\rho=a$, the radius. Thus, the only permissible values of k are those for which $J_{n}\left(k_{n, m} a\right)=0$ because E_{z} must be zero at the boundary.
The numbers n, m take on all integral values from zero to infinity. The waves are seen to be characterized by the numbers, n and m, where n gives.the order of the bessel functions, and m gives the order of the root of J_{n} $\left(k_{n, m} a\right)$. The bessel function has an infinite number of roots, so that there are an infinite number of k 's which make $J_{n}\left(k_{n, m} a\right)=0$.
The other components of the electric vector E_{θ} and E_{ρ} are related to E_{z} as are H_{θ} and H_{p}.

TE waves (H waves): $E_{z} \equiv 0$
$H_{z}=B J_{n}\left(k_{n, m} \rho\right) \cos n \theta e^{j \omega t-\gamma_{n, m^{2}}}$
$H \rho, H_{\theta}, E_{\rho}, E_{\theta,}$ are all related to H_{z}.

Circular wave guides

Again n takes on integral values from zero to infinity. The boundary condition $E_{z}=0$ when $\rho=a$ still applies. To satisfy this condition k must be such as to make $J_{n}^{\prime} \mathbb{k}_{n, m}$ al equal to zero where the superscript indicates the derivative of $J_{n}\left(k_{n, m} a\right)$. It is seen that m takes on values from 1 to infinity since there are an infinite number of roots of $J^{\prime}{ }_{n}\left(k_{n, m} a\right)$.
For circular wave guides, the cut-off frequency for the n, m mode is $f_{c_{n, m}}=\frac{c k_{n, m}}{2 \pi}$ where $c=$ velocity of light and $k_{n, m}$ is evaluated from the roots of the bessel functions
and
$k_{n, m}=\frac{U_{n, m}}{a}$ or $\frac{U_{n, m}^{\prime}}{a}$ where $a=$ radius of guide or pipe and $U_{n, m}$ is the root of the particular bessel function of interest lor its derivativel. The wavelength in the guide is

$$
\lambda_{\theta}=\frac{2 \pi}{\sqrt{\left(\frac{2 \pi}{\lambda_{0}}\right)^{2}-{k^{2}{ }_{n, m}}}}
$$

where λ_{o} is the wavelength in an unbounded medium.

The following tables are useful in determining the values of k. For H waves the roots $U^{\prime}{ }_{n, m}$ of $J^{\prime}{ }_{n}(U)=0$ are given in the following table, and the corresponding $k_{n, m}$ values are $\frac{U_{n, m}^{\prime}}{a}$

Values of $U^{\prime}{ }_{n, m}$

$m{ }^{n}$	0	1	2
1	3.832	1.841	3.054
2	7.016	5.332	6.705
3	10.173	8.536	9.965

For E waves the roots $U_{n, m}$ of $J_{n}|U|=0$ are given in the following table, and the corresponding $k_{n, m}$ values are $\frac{U_{n, m}}{a}$

Values of $U_{n, m}$

$m \mathbf{n}^{\mathbf{n}}$	0	1	2
1	2.405	3.832	5.135
2	5.520	7.016	8.417
3	8.654	10.173	11.620

where n is the order of the bessel function and m is the order of the root.

wave cuidfs and resonatori 215

Circular wave guides continued

Fig. 9
Patterns of mognetic force of TM waves in circular wave guides.

Fig. 10
Method of coupling to circular wave guide for $T M_{0,1}$ wave.

Fig. 11
Patterns of electric force of TE waves in circular wave guides.

Fig. 12
Method of coupling to circuiar wave guide for $T E_{1,1}$ wave.

Table I-Cut-off wavelengths and attenuation factors

	$\begin{gathered} \text { eouxial } \\ \text { cable }(a, b) \end{gathered}$	rectangular plpe a, b TE $0_{0} m$ or $H_{0, m}$	TM $\mathrm{M}_{0,1}$ or E_{0}	cireular pipe of radius a $T E_{1,1}$ or H_{1}	TE E_{1} or H_{0}
Cut-off wavelength	0	$\frac{2 b}{m}$	2.6130	3.412a	1.640a
Attenuation constant $=\alpha$	$\alpha_{0} \sqrt{\frac{c}{\lambda}} \frac{\left(\frac{1}{a}+\frac{1}{b}\right)}{\log \frac{b}{a}}$	$\frac{4 \alpha_{0}}{b} A\left(\frac{b}{2 a}+\frac{\lambda^{2}}{\lambda_{c}^{2}}\right)$	$\frac{2 \alpha_{0}}{a} A$	$\frac{2 \alpha_{0}}{a} A\left(0.415+\frac{\lambda^{2}}{\lambda_{c}^{2}}\right)$	$\frac{2 \alpha_{0}}{a} A\left(\frac{\lambda}{\lambda_{c}}\right)^{2}$

where
$\lambda_{c}=$ cut-off wavelength

$$
A=\frac{\sqrt{c / \lambda}}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}, \quad \alpha_{0}=\frac{1}{4} \sqrt{\frac{\mu_{2} \epsilon_{1}}{\sigma_{2} \mu_{1}}} \text { (emu) }
$$

Circular wave guides cantinued

The pattern of magnetic force of TM waves in a circular wave guide is shown in Fig. 9. Only the maximum lines are indicated. In order to excite this type of pattern, it is necessary to insert a probe along the length of the wave guide concentric with the H lines. For instance, in the $\mathrm{TM}_{0,1}$ type of wave, a probe extending down the length of the wave guide at the very center of the guide would provide the proper excitation. This method of excitation is shown in Fig. 10. Corresponding methods of excitation may be used for the other types of TM waves shown in Fig. 9.

Fig. 11 shows the patterns of electric force for TE waves. Again only the maximum lines are indicated. This type of wave may be excited by an antenna which is parallel to the electric lines of force. For instance, the $\mathrm{TE}_{0,1}$ wave would be excited by a small circular loop placed where the maximum E line is indicated in the diagram. The $T E_{1,1}$ wave may be excited by means of an antenna extending across the wave guide. This is illustrated in Fig. 12.

Attenuation constants

All the attenuation constants consain a common coefficient
$\alpha_{0}=\frac{1}{4} \sqrt{\frac{\mu_{2} \epsilon_{1}}{\sigma_{2} \mu_{1}}}$
ϵ_{1}, μ_{1} dielectric constant and magnetic permeability for the insulator
σ_{2}, μ_{2} electric conductivity and magnetic permeability for the metal
For air and copper $\alpha_{0}=0.35 \times 10^{-9}$ nepers per centimeter or $0.3 \times 10^{-3} \mathrm{db}$ per kilometer

Table I summarizes some of the most important formulas. The dimensions a, b are measured in centimefers.

Electromagnetic horns

Radiation from the wave guide may be obtained by placing an electromagnetic horn of a particular size at the end of the wave guide.

Fig. 13 gives data for designing a horn to have a specified gain with the shortest length possible. The length L_{1} is given by $L_{1}=L\left(1-\frac{a}{2 A}-\frac{b}{2 B}\right)$ where $a=$ wide dimension of wave guide in the H plane, and $b=$ narrow dimension of wave guide in E plane.

Electromagnetic horns continued

$\mathrm{L}=\mathrm{axial}$ length to apex
$\mathrm{A}=$ width of aperture in \mathbf{H} plane
$B=$ width of aperture in E plane
Fig. 13.

Electromagnetic horns

continued

Fig. 14-10-decibel widths of horns.
If $L \geqq \frac{a^{2}}{\lambda}$ la $=$ longer dimension of aperfurel the gain is given by $G=$ $\frac{10 a b}{\lambda^{2}}$, the half power width in the E plane is given by $51^{\circ} \frac{\lambda}{b^{\prime}}$ and the half power width in the H plane is given by $70^{\circ} \frac{\lambda}{a^{\prime}}$, where E is the electric vector and H is the magnetic vector,
Fig. 14 shows how the angle between 10-decibel points varies with aperture.

Parabolas

If the intensity across the aperture of the parabola is of constant phase and tapers smoothly from the center to the edges so that the intensity at the edges is 10 decibels down from that at the center, the gain is given by $G=\frac{8 A}{\lambda^{2}} L A=$ area of aperture $)$. The half power width is given by $70^{\circ} \frac{\lambda}{D}$ ($D=$ diameter of parabola).

Resonant cavities

A cavity enclosed by metal walls will have an infinite number of natural frequencies at which resonance will occur. The lowest frequency or mode of oscillation is determined by the geometry of the cavity. One of the

220

Resonant cavities continued

more common types of cavity resonators is a length of transmission line (coaxial, or waveguidel short circuited at both ends.

Resonance occurs when

$2 h=l \frac{\lambda g}{2}$ where l is an integer
$2 h=$ length of the resonator
$\lambda_{\theta}=$ guide wavelength in resonator

$$
\lambda_{0}=\frac{\lambda}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}
$$

$\lambda=$ free space wavelength $\lambda_{c}=$ guide cut-off wavelength
For $T E_{n, m}$ or $T M_{n, m}$ waves in a rectangular cavity with cross section a, b.
$\lambda_{c}=\frac{2}{\sqrt{\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}}$ where n and m are integers
For $\mathrm{TE}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi a}{U_{n, m}^{\prime}}$
where a is the guide radius and $U_{n, m}^{\prime}$ is the m th root of the equation $J_{n}(U)=0$
For $\mathrm{TM}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi \mathrm{a}}{U_{n, m}}$
where a is the guide radius and $U_{n, m}$ is the m th root of the equation $J_{n}(U)=0$.

For TM waves $l=0,1,2 \ldots$
For TE waves $1=1,2 \ldots$ but not 0

Rectangular cavity of dimensions $a \mathbf{b} \mathbf{2 h}$

$$
\lambda=\frac{2}{\sqrt{\left(\frac{l}{2 h}\right)^{2}+\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}} \text { where only one of } l, n, m \text { may be zero. }
$$

Resonant cavilies continued

Cylindrical cavities of radius a and length $\mathbf{2 h}$

$$
\lambda=\frac{1}{\sqrt{\left(\frac{1}{4 h}\right)^{2}+\left(\frac{1}{\lambda_{c}}\right)^{2}}}
$$

where λ_{c} is the guide cut-of wavelength.

Spherical resonators of radius a

$\lambda=\frac{2 \pi a}{U_{n, m}}$ for a TE wave
$\lambda=\frac{2 \pi a}{U_{n, m}^{\prime}}$ for a TM wave.
Values of $U_{n, m}$:
$U_{1,1}=4.5, U_{2,1}=5.8, U_{1,2}=7.64$
Values of $U^{\prime}{ }_{n, m}$:
$U_{1,1}^{\prime}=2.75=$ lowest order root

Additional cavity formulas

type of cavity	mode	λ_{0} resonant wavelength	0
Right circular cylind or		4	$\lambda_{0} \circ 1$
		$\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{2.35}{a^{2}}}$	$\bar{\delta} \overline{\lambda_{0}} \overline{1+\frac{a}{2 h}}$
	TE $\mathrm{E}_{0,1,2}\left(\mathrm{H}_{0}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{5.93}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{o}{\lambda_{0}}\left[\frac{1+0.168\left(\frac{o}{h}\right)^{2}}{1+0.168 \cdot\left(\frac{o}{h}\right)^{3}}\right]$
	$\mathrm{TE}_{1,1,1}\left(\mathrm{H}_{1}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{1.37}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{h}{\lambda_{0}}\left[\frac{2.39 h^{2}+1.73 a^{2}}{3.39 \frac{h^{3}}{a}+0.73 a h+1.73 \sigma^{2}}\right]$

Some characteristics of various types of resonators
δ is the skin depth

	typeresonator	wavalength, λ	0
Square prism $T E_{0,1,1}$		$2 \sqrt{2} a$	$\frac{0.353 \lambda}{\delta} \frac{1}{1+\frac{0.177 \lambda}{h}}$
Circular cylinder TM $M_{0.1,0}$		2.61a	$\frac{0.383 \lambda}{\delta} \frac{1}{1+\frac{0.192 \lambda}{h}}$
Sphere		2.28a	$0.318 \frac{\lambda}{\delta}$
Sphere with cones		40	Optimum Q for $\theta=34^{\circ}$ $0.1095 \frac{\lambda}{\delta}$
$\begin{aligned} & \text { Coaxlal } \\ & \text { TEM } \end{aligned}$		4h	Optimum Q $\text { for } \frac{b}{a}=3.6$ $\left(Z_{0}=77\right. \text { ohms) }$ $\frac{\lambda}{4 \delta+7.2 \frac{h \delta}{b}}$

$\delta=\sqrt{\frac{\rho}{2 \pi \omega \mu}}$ where $\rho=$ resistivity of wall in abohm-cm, $\mu=$ permeability of volume lunity for free space), $\delta=$ skin depth in centimeters.

Recommended rectangular wave guides

- Radio propagation and noise

Propagation of medium and long waves*

For a theoretical short vertical antenna over perfect ground:
$E=186 \sqrt{P_{r}}$ millivolts per meter at 1 mile
or,
$E=300 \sqrt{P_{r}}$ millivalts per meter at 1 kilometer
where $P_{r}=$ radiated power in kilowatts.
Actual inverse-distance fields at one mile for a given transmitter output power depend on the height and efficiency of the antenna and the efficiency of coupling devices.

Typical values found in practice for well-designed stations are: Small L or T antennas as on ships; $25 \sqrt{P_{t}}$ millivolts per meter at 1 mile Vertical radiators 0.15 to 0.25λ high; $150 \sqrt{P_{t}}$ millivolts per meter at 1 mile Vertical radiators 0.25 to 0.40λ high; $175 \sqrt{P_{t}}$ millivolts per meter at 1 mile Vertical radiators 0.40 to 0.60λ high or top-loaded vertical radiators; $220 \sqrt{P_{t}}$ millivalts per meter at 1 mile, where $P_{\ell}=$ transmitter output power in kilowatts.
These values can be increased by directive arrangements.
The surface-wave field (commonly called ground wave) at greater distances can be found from Figs. 1, 2, and 3. These are based on a field strength of 186 millivolts per meter at one mile. The ordinates should be multiplied by the ratio of the actual field at 1 mile to 186 millivolts per meter.

Table 1-Ground conductivities and dielectric constants

ferroin	conductivity emu	dielectric constant esu
Sea water	4×10^{-11}	80
Fresh water	5×10^{-11}	80
Dry, sandy fiat coastal land	2×10^{-14}	10
Marshy, forested flap land	8×10^{-14}	12
Rich agricultural land, low hills	1×10^{-13}	15
Pastoral land, medium hills and forestation	5×10^{-14}	13
Rocky land, steep hills	2×10^{-14}	10
Mountainous thils up to 3000 feet)	1×10^{-14}	5
Cities, residential areas	2×10^{-14}	5
Cities, industrial areas	1×10^{-15}	3

[^16]

Propagation of medium and long waves continued

Figs. 1, 2, and 3 do not include the effect of sky waves reflected from the ionosphere. Sky waves cause fading at medium distances and produce higher field intensities than the surface wave at longer distances, particularly at night and on the lower frequencies during the day. Sky-wave field intensity, in addition to the usual diurnal, seasonal, and irregular variations due to changing properties of the ionosphere, depends on frequency and the vertical radiation pattern of the antenna. Fig. 4 shows the average of nighttime measurements on a number of broadcast stations for about l-kilowatt output.

Fig. 3-Sirength of surface waves as a function of distance with a vertical anfonna for sea woter ($\sigma=4 \times 10^{-11} \mathrm{emu}$ and $\epsilon=80$ esu).

Propagation of short waves

At frequencies be tween about 3 and 25 megacycles and distances greater than about 100 miles, transmission depends entirely on sky waves reflected from the ionosphere. The ionosphere la region high above the earth's surface where the rarefied air is sufficiently ionized to reflect or absorb radio waves) is usually considered as consisting of the following layers.

D layer: At heights from about 50 to 90 kilometers, it exists only during daylight hours and ionization density corresponds with the altitude of the sun.

Propagation of short waves continued

This layer reflects low- and medium-frequency waves and weakens highfrequency waves through partial absorption.

Elayer: At height of about 110 kilometers, this layer is of importance for shortwave daytime propagation at distances less than 1000 miles and for medium wave nighttime propagation at distances in excess of about 100 miles. lonization density corresponds closely with the altitude of the sun. Irregular cloud-like areas of unusually high ionization, called sporadic E may occur up to more than 50 percent of the time on certain days or nights. Sporadic E occasionally prevents frequencies that normally penetrate the E layer reaching higher layers and also causes occasional longdistance transmission at very high frequencies.

Fig. 4-Average sky-wave field intensity (corresponding to the second hour after sunset at the recording station).
\mathbf{F}_{1} layer: At heights of about 175 to 250 kilometers, it exists only during daylight. This layer occasionally is the reflecting region for shortwave transmission, but usually oblique incidence waves that penetrate the Elayer also penetrate the F_{1} layer to be reflected by the F_{2} layer. The F_{1} layer introduces additional absorption of such waves.

228

Propagation of short waves

conlinued
F_{2} layer: At heights of about 250 to 400 kilometers, F_{2} is the principal reflecting region for long-distance shortwave communication. Height and ionization density vary diurnally, seasonally, and over the sunspot cycle. Ionization does not correspond closely to the altitude of the sun. At night, the F_{1} layer merges with the F_{2} layer at a height of about 300 kilometers. The absence of the F_{1} layer, and reduction in absorption of the E layer, causes nighttime field intensities and noise to be generally higher than during daylight hours.
As indicated to the right on Fig. 6, these layers are contained in a thick region throughout which ionization generally increases with height. The layers are said to exist where the ionization gradient is capable of refracting waves back to earth. Obliquely incident waves follow a curved path through the ionosphere due to gradual refraction or bending of the wave front.
Depending on the ionization density at each layer, there is a critical or highest frequency f_{c} at which the layer reflects a vertically incident wave. Frequencies higher than f_{c} pass through the layer af vertical incidence. At oblique incidence the layer reflects frequencies higher than f_{c} as given by the approximate relation:
muf $=f_{c} \sec \phi$
where muf $=$ maximum usable frequency for the particular layer and distance, $\phi=$ angle of incidence at reflecting layer.
f_{c} and height, and hence ϕ for a given distance, for each layer vary with local time of day, season, latitude, and throughout the eleven-year sunspot cycle. The various layers change in different ways with these parameters. In addition, ionization is subject to frequent abnormal variations.
The loss at reflection for each layer is a minimum at the maximum usable frequency and increases rapidly for frequencies lower than maximum usable frequency.
Short waves travel from the transmitter to the receiver by reflections from the ionosphere and earth in one or more hops as indicated in Figs. 5 and 6. Additional reflections may occur along the path between the bottom edge of a higher layer and the top edge of a lower layer, the wave finally returning to earth near the receiver.
Fig. 5 illustrates single-hop transmission, Washington to Chicago, via the E layer $\left(\phi_{1}\right)$. At higher frequencies over the same distance, single-hop transmission would be obtained via the F_{2} layer $\left(\phi_{2}\right)$. Fig. 5 also shows two-hop transmission, Washington to San Francisco, via the F_{2} layer $\left(\phi_{3}\right)$. Fig. 6 indicates transmission on a common frequency, (1.) single-hop via E layer, Denver to Chicago, and, (2.) single-hop via F_{2}, Denver to Washington, with, (3.) the wave failing to reflect at higher angles, thus producing a skip region of no signal between Denver and Chicago.

Actual transmission over long distances is more complex than indicated by Figs. 5 and 6, because the layer heights and critical frequencies differ with time (and hence longitudel and with latitude. Further, scattered reflections occur at the various surfaces.

Fig. 5.

Fig. 6.

Maximum usable frequencies (muf) for single-hop transmission at various distances throughout the day are given in Fig. 7. These approximate values apply to latitude $39^{\circ} \mathrm{N}$ for the approximate minimum years 11944 and 1955) and approximate maximum years (1949 and 1960) of the sunspot cycle. Since the maximum usable frequency and layer heights change from month to month, the latest predictions should be obtained whenever available. This information is published by the National Bureau of Standards in the U. S. A. and by similar organizations in other countries.

Operating frequencies should be selected from 50 to 85 percent of the maximum usable frequency, preferably nearer the higher limit in order to reduce absorption loss. The 85 percent limit provides some margin for day-to-day deviation of the ionospheric characteristics from the predicted monthly average value. Maximum usable frequency changes continuously throughout the day, whereas it is ordinarily impractical to change operating frequencies correspondingly. Each operating frequency, therefore, should be selected to fall within the above limits for a substantial portion of the daily operating period.
For single-hop transmission, frequencies should be selected on the basis of local time and other conditions existing at the mid-point of the path. In view of the layer heights and the fact that practical antennas do not operate effectively below angles of about three degrees, single-hop trans-

Propagation of short waves continued

mission cannot be achieved for distances in excess of about 2200 miles $(3500$ kilometers) via F layers or in excess of about 1050 miles (1700 kilometersl via the E layer. Multiple-hop transmission must occur for longer distances and, even at distances of less than 2200 miles, the major part of the received signal frequently arrives over a two- or more-hop path. In analyzing two-hop paths, each hop is treated separately and the lowest frequency required on either hop becomes the maximum usable frequency for the circuit. It is usually impossible to predict accurately the course of radio waves on circuits involving more than two hops because of the large number of possible paths and the scattering that occurs at each reflection. For such longdistance circuits, it is customary to consider the conditions existing at points 1250 miles along the path from each end as the points at which the maximum usable frequencies should be calculated.

Pig. 7.

Propagation forecasts for short waves

In addition to forecasts for ionospheric disturbances, the Central Radio Propagation Laboratories of the National Bureau of Standards issues monthly Basic Radio Propagation Predictions 3 months in advance used to determine the optimum working frequencies for shortwave communication. Indication of the general nature of the CRPL data and a much abbreviated example of their use follows:

Example

To determine working frequencies for use between San Francisco and Wellington, N. Z.

Method

1. Place a transparent sheet over Fig. 8 and mark thereon the equator, a line across the equator showing the meridian of time desired (viz., GCT or PST), and locations of San Francisco and Wellington.
2. Transfer sheet to Fig. 9, keeping equator lines of chart and transparency aligned. Slide from left to right until terminal points marked fall along a Great Circle line. Sketch in this Great Circle between terminals and mark "control points" 2000 kilometers along this line from each end.
3. Transfer sheet to Fig. 10, showing muf for transmission via the F_{2} layer. Align equator as before. Slide sheet from left to right placing meridian line on time desired and record frequency contours at control points. This illustration assumes that radio waves are propagated over this path via the F_{2} layer. Eliminating all other considerations, 2 sets of frequencies, corresponding to the control points, are found as listed in Table II, the lower of which is the muf. The muf, decreased by 15 percent, gives the optimum working frequency.
Transmission may also take place via other layers. For the purpose of illustration only and without reference to the problem above, Figs. 11 and 12 have been reproduced to show characteristics of the E and sporadic E layers. The complete detailed step-by-step procedure, including special considerations in the use of this method, are contained in the complete CRPL forecasts.

Table II-Maximum usuable frequency

| at San Francisco |
| :---: | :---: | :---: | :---: |
| control point |
| (2000 km from |
| San Francisco) |\quad| Wellington, N. Z. |
| :---: |
| control point |
| (2000 km from |
| Wellington) |\quad| optimum working |
| :---: |
| frequency |
| (lower of |
| muf $\times \mathbf{0 . 8 5)}$ |

Fig. 8-World map showing zones covered by predicied charts and auroral zones.

Flg. 9-Great circle chart centered on equator. Solid lines reprosent great clrcles. Dot-dosh lines indicate dislances in thousands of kllometers.

Fig. 11-E layer 2000 .
kllometer maximum
usable frequency in megacycles predicted for July, 1946.

Fig. 12-Median $\mathbf{f E}$ in megacycles (sporadic E layer) predicted for July, 1946

Propagation of very short waves

For propagation over distance within the radio path horizon, the field intensity is given approximately by

$$
\begin{equation*}
E=\frac{14.0 \sqrt{W}}{d} \sin \left(\frac{2 \pi h_{i} h_{r}}{\lambda d}\right) \text { volts per meter } \tag{1}
\end{equation*}
$$

where

$W=$ watts radiated, $h_{t}=$ height of transmitting antenna in meters, $h_{r}=$ height of receiving antenna in meters, $\boldsymbol{\lambda}=$ wavelength in meters, $d=$ distance in meters.

The following approximate formula is useful for transmission below 100 megacycles within the radio path horizon.

$$
\begin{equation*}
E=\frac{0.33 \sqrt{P} H_{t} H_{r} f_{m c}}{D^{2}} \text { microvolts per meter } \tag{2}
\end{equation*}
$$

where
$P=$ kilowatts radiated, $H_{t}=$ height of transmitting antenna in feet, $H_{r}=$ height of receiving antenna in feet, $f_{m c}=$ frequency in megacycles, $D=$ distance in statute miles.

Equations (1) and (2) apply to both vertical and horizontal polarization. It is assumed that the antennas are small dipoles. The equations hold only when the transmission distance is large compared to antenna heights, i.e.,
for equation (1) $d>10 \mathrm{hr}_{r}$
for equation (2) $D>4 \mathrm{H}_{t} \mathrm{H}_{\mathrm{r}} f_{m c} \times 10^{-6}$
Multiplying the true radius of the earth by correction factor 1.33 to provide for average atmospheric refraction gives the radio path horizon as
$D_{l}=\sqrt{2 H_{t}}+\sqrt{2 H_{r}}$ statute miles
If the refractive effect of the atmosphere is ignored, line-of-sight horizon is reduced to the geometric range
$D_{b}=1.23\left(\sqrt{H_{t}}+\sqrt{H_{r}}\right)$
These distances may be obtained from the nomograph, Fig. 13.
When the transmission distance is not large compared with antenna height, the field strength oscillates with distance and height as indicated by the sine term of equation (1).
The number of oscillations for a given distance increases with frequency as illustrated in Fig. 14. This is due to interference between the space wave and the ground-reflected wave as these two components fall in or out of phase at various distances and heights.

U-H-F path İength and optical line-of-sight

disfance range of radio waves

The theoretical maximum poth of a radio wave, the sum of the "optical" horizon distances of each antenna, is found on "iine-of-sight" scale by a line connecting points representing the two antenna heights. Atmospheric diffraction increases this path an amount generally considered as $2 / \sqrt{3}$ times optical line of sight, given on the radio path scale.
Example shown: Height of receiving antenna 60 feet, height of transmitting antenna 500 feet, and maximum radio path length $\mathbf{4 1 . 5}$ miles.

Fig. 13.

Propagation of very short waves cantinued

Fig. 14-Effect of frequency on ground-wave fleld intensity.
To compute the field accurately under these conditions, it is necessary to calculate the two components separately and to add them in correct phase relationship as determined by the geometry of the path and the change in magnitude and phase at ground reflection. For horizontally-polarized waves, the reflection coefficient can be taken as approximately one, and the phase
shift at reflection as 180 degrees, for nearly all types of ground and angles of incidence. For vertically-polarized waves, the reflection coefficient and phase shift vary with the ground constants and angle of incidence.*
For methods of computing field intensities when equations (1) and (2) do not hold beyond the radio path horizon, or when the antenna height is not negligible compared to distance, see reference below. \dagger
At points beyond the radio path horizon, field intensity decreases more rapidly than the square of the distance; and, if the antennas are raised, the field intensity increases more rapidly than the product of antenna heights.
Measured field intensities usually show large deviations from point to point due to reflections from irregularities in the ground, buildings, trees, etc. In addition, fields at the longer distances are subject to fading and day-to-day variations due to changes in the refractive index of the atmosphere and tropospheric reflections.

[^17]
Great circle calculations

Referring to Figs. 15,16 , and $17, A$ and B are two places on the earth's surface the latitudes and longitudes of which are known. The angles X and Y at A and B of the great circle passing through the two places and the distance Z between A and B along the great circle can be calculated as follows:
B is the place of greater latitude, i.e., nearer the pole
L_{A} is the latitude of A
L_{B} is the latitude of B
C is the difference of longitude between A and B
Then, $\tan \frac{Y-X}{2}=\cot \frac{C}{2} \frac{\sin \frac{L_{B}-L_{A}}{2}}{\cos \frac{L_{B}+L_{A}}{2}}$
and, $\tan \frac{Y+X}{2}=\cot \frac{C \cdot \cos \frac{L_{B}-L_{A}}{2}}{\sin \frac{L_{B}+L_{A}}{2}}$
give the values of $\frac{Y-X}{2}$ and $\frac{Y+X}{2}$

Great circle calculations

continued

from which
$\frac{Y+X}{2}+\frac{Y-X}{2}=Y$
and
$\frac{Y+X}{2}-\frac{Y-X}{2}=X$
In the above formulas, north latitudes are taken as positive and south latitudes as negative. For example, if B is latitude $60^{\circ} \mathrm{N}$ and A is latitude $20^{\circ} \mathrm{S}$
$\frac{L_{B}+L_{A}}{2}=\frac{60+(-20)}{2}=\frac{60-20}{2}=\frac{40}{2}=20^{\circ}$
and
$\frac{L_{B}-L_{A}}{2}=\frac{60-(-20)}{2}=\frac{60+20}{2}=\frac{80}{2}=40^{\circ}$
If both places are in the southern hemisphere and $L_{B}+L_{A}$ is negative, it is simpler to call the place of greater south latitude B and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north.

The distance Z (in degrees) along the great circle between A and B is given by the following:
$\tan \frac{Z}{2}=\tan \frac{L_{B}-L_{A}}{2} \frac{\sin \frac{Y+X}{2}}{\sin \frac{Y-X}{2}}$
The angular distance Z lin degrees) between A and B may be converted to linear distance as follows:
Z lin degrees) $\times 111.195=$ kilometers
Z lin degrees) $\times 69.093=$ statute miles
Z lin degrees) $\times 60.000=$ nautical miles
In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example, $Z=37^{\circ} 45^{\prime} 36^{\prime \prime}$ becomes 37.755°.

Example:-Find the great circle bearings at Brentwood, Long Island, Longitude $73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W}$, Latitude $40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$, and at Rio de Janeiro, Brazil, Longitude $43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W}$, Latitude $22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S}$, and the great circle distance in statute miles between the two points.

Fig. 16
$L_{A}=$ latitude of A
$\mathrm{L}_{\mathrm{B}}=$ latitude of B
$\mathbf{C}=$ difference of longitude

Fig. 17
$L_{A}=$ latitude of A
$L_{B}=$ latitude of B
$\mathbf{C}=$ difference of longitude

RADIO PROPAGATION AND NOISE 243

Great circle calculations continued

	longitude	latifude	
Brentwood Rio de Janeiro	$\begin{aligned} & 73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W} \\ & 43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W} \end{aligned}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N} \\ \left(-122^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S}\right. \end{array}$	$\begin{aligned} & L_{B} \\ & L_{A} \end{aligned}$
C	$29^{\circ} 53^{\prime} 03^{\prime \prime}$	$17^{\circ} 51^{\prime} 31^{\prime \prime}$ $63^{\circ} 45^{\prime} 49^{\prime \prime}$	$\begin{aligned} & L_{n}+L_{A} \\ & L_{n}-L_{A_{n}} \end{aligned}$
$\frac{C}{2}=14^{\circ} 56^{\prime} 31^{\prime \prime}$	$\frac{L_{B}+L_{A}}{2}=8^{\circ} 55^{\prime} 45^{\prime \prime}$	$\frac{L_{8}-L_{A}}{2}=31^{\circ} 52^{\prime} 54^{\prime \prime}$	

$\log \cot 14^{\circ} 56^{\prime} 31^{\prime \prime}=10.57371$
plus log $\cos 31^{\circ} 52^{\prime} 54^{\prime \prime}=\frac{9.92898}{0.50269}$
minus $\log \sin 8^{\circ} 55^{\prime} 45^{\prime \prime}=9.19093$
$\log \tan \frac{Y+X}{2}=\overline{1.31176}$

$$
\frac{Y+X}{2}=87^{\circ} 12^{\prime} 26^{\prime \prime}
$$

$\log \cot 14^{\circ} 56^{\prime} 31^{\prime \prime}=10.57371$
plus $\log \sin 31^{\circ} 52^{\prime} 54^{\prime \prime}=\frac{9.72277}{0.29648}$
minus log $\cos 8^{\circ} 55^{\prime} 45^{\prime \prime}=9.99471$
$\log \tan \frac{Y-X}{2}=0.30177$

$$
\frac{Y-X}{2}=63^{\circ} 28^{\prime} 26^{\prime \prime}
$$

$\frac{Y+X}{2}+\frac{Y-X}{2}=Y=150^{\circ} 40^{\prime} 52^{\prime \prime}$ East of North-bearing at Brentwood
$\frac{Y+X}{2}-\frac{Y-X}{2}=X=23^{\circ} 44^{\prime} 00^{\prime \prime}$ West of North-bearing at Rio de Janeiro

$$
\left.\begin{array}{rl}
\frac{L_{B}-L_{A}}{2}=31^{\circ} 52^{\prime} 54^{\prime \prime} \\
\frac{Y+X}{2}=87^{\circ} 12^{\prime} 26^{\prime \prime} \\
\frac{Y-X}{2}=63^{\circ} 28^{\prime} 26^{\prime \prime} & \log \tan 31^{\circ} 52^{\prime} 54^{\prime \prime}
\end{array}=9.79379, \begin{array}{r}
9.79327 \\
\text { plus } \log \sin 87^{\circ} 12^{\prime} 26^{\prime \prime}
\end{array}\right) \quad \begin{aligned}
& 9.99948 \\
& \text { minus } \log \sin 63^{\circ} 28^{\prime} 26^{\prime \prime}=9.95170 \\
& \log \tan \frac{Z}{2}=9.84157 \\
& \frac{Z}{2}=34^{\circ} 46^{\prime} 24^{\prime \prime} \\
& Z=69^{\circ} 32^{\prime} 48^{\prime \prime}
\end{aligned}
$$

$69^{\circ} 32^{\prime} 48^{\prime \prime}=69.547^{\circ}$
linear distance $=69.547 \times 69.093=4805.21$ statute miles

Time inferval between transmission and reception of reflected signal

Fig. 18 gives the time interval between transmission and reception of a reflected signal based on a velocity of propagation in free space of 985 feet per microsecond or 300 meters per microsecond. A statute mile of 5280 feetor 1760 yards or 1.609 kilometers is used.

Note: Ordinates show distance to point of reflection
Fig. 18.

Radio noise and noise measurement*

Radio noise may be divided into four classifications, depending on origin:

1. Atmospheric noise (static)
2. Cosmic noise
3. Man-made noise
4. Receiver and antenna noise
[^18]
RADIO PROPAGATION AND NOISE 24

Radio noise and noise measurement continued

Radio noise, as in Fig. 19, is usually expressed in terms of peak values. Atmospheric noise is shown in the figure as the average peaks would be read on the indicating instrument of an ordinary field intensity meter. This is lower than the true peaks of atmospheric noise. Man-made noise is shown as the peak values that would be read on the EEI-NEMA-RMA standard noise meter. Receiver and antenna noise is shown with the peak values 13 decibels higher than the values obtained with an energy averaging device such as a thermoammeter.

1. Atmospheric noise: is produced mostly by lightning discharges in thunderstorms. The noise level is thus dependent on frequency, time of day, weather, season of the year, and geographical location.
Subject to variations due to local stormy areas, noise generally decreases with increasing latitude on the surface of the globe. Noise is particularly severe during the rainy seasons in certain areas such as Caribbean, East Indies, equatorial Africa, northern India, etc. Fig. 19 shows median values of atmospheric noise for the U.S. A. and these values may be assumed to apply approximately to other regions lying between 30 and 50 degrees latitude north or south.

Rough approximations for atmospheric noise in other regions may be obtained by multiplying the values of Fig. 19 by the factors in Table III.

Table III-Multiplying factors for atmospheric noise in regions not shown on Fig. 19

latitude	nightime		daytime	
	100 kc	$\mathbf{1 0} \mathbf{~ m e}$	$\mathbf{1 0 0} \mathbf{k c}$	$\mathbf{1 0} \mathbf{m e}$
$90^{\circ}-50^{\circ}$	0.1	0.3	0.05	0.1
$50^{\circ}-30^{\circ}$	1	1	1	1
$35^{\circ}-10^{\circ}$	2	2	3	2
$10^{\circ}-0^{\circ}$	5	4	6	3

Atmospheric noise is the principal limitation of radio service on the lower frequencies. At frequencies above about 30 megacycles, the noise falls to levels generally lower than receiver noise.
The peak amplitude of atmospheric noise usually may be assumed to be proportional to the square root of receiver bandwidth.
2. Cosmic noise: originates outside the earth's atmosphere and appears as a random noise like thermal agitation. Cosmic noise has been observed and measured at frequencies from 10 to 20 megacycles and at frequencies of about 160 megacycles. It is reasonable to assume that it exists at all frequencies between 10 and 1000 megacycles and higher.

The intensity of cosmic noise is generally lower than interference produced by other sources. In the absence of atmospheric and man-made noise, it may be the principal limiting factor in reception between 10 and 30 megacycles.

Notes:

1. All noise curves ossume a bondwith of 10 kilocycles.
2. Receiver noise is bosed on the use of o holf-wove dipole ontenno ond is worse thon on ideal receiver by 10 decibels of 50 megocycles ond 15 decibels of 1000 megocycles.
3. Refer to Fig. 20 for converting mon-mode noise curves to bondwiths greoter thon 10 kilocycles.
4. For oll other curves, noise vories os the squore root of bondwith.

Fig. 19.

Radio noise and noise measurement continued

3. Man-made noise: includes interference produced by sources such as motorcar ignition, electric motors, electric switching gear, high-tension line leakage, diathermy, industrial heating generators. The field intensity from these sources is greatest in densely populated and industrial areas.

The nature of man-made noise is so variable that it is difficult to formulate a simple rule for converting 10 kilocycle bandwidth receiver measurements to other bandwidth values. For instance, the amplitude of the field strength radiated by a diathermy device will be the same in a 100 - as in a 10 -kilocycle bandwidth receiver. Conversely, peak noise field strength due to automobile ignition will be considerably greater with a 100 - than with a 10 -kilocycle bandwidth. According to the best available information, the peak field strengths of man-made noise lexcept diathermy and other narrow-band noise) increases as the receiver bandwidth is increased, substantially as shown in Fig. 20.

receiver bandwidth in kilocycles
Fig. 20-Bandwidth factor. Multiply value of man-made noise from Fig. 19 by the factor above for receiver bandwidths higher than 10 kilocycles.

The man-made noise curves in Fig. 19 show typical median values for the U.S.A. In accordance with statistical practice, median values are interpreted to mean that 50 percent of all sites will have lower noise levels than the values of Fig. 19; 70 percent of all sites will have noise levels less than 1.9 times these values; and 90 percent of all sites, less than seven times these values.
4. Receiver and antenna noise: is caused by thermal agitation in resistance components of the antenna and receiver circuits and by electronic current flow in the tubes.

The basic equation for thermal agitation noise is
$E^{2}=4 k T R \Delta f$
where
$E=$ rms volts
$k=$ Boltzmann's constant $=1.374 \times 10^{-23}$
$T=$ absolute temperature in degrees Kelvin
$R=$ resistance in ohms
$\Delta f=$ bandwidth in cycles per second
For application of this formula to receiver input circuits see Herold, E. W., An Analysis of the Signal-to-Noise Ratio of Ulira-High-Frequency Receivers; and North, D. O., The Absolute Sensitivity of Radio Receivers. RCA Review, vol. 6 (January, 1942).
The ideal receiver is one in which the only noise is that generated by thermal agitation in the radiation resistance of the antenna and in the input coupling resistance. The calculated values shown in Fig. 19 are based on the assumption that an actual receiver has a noise level greater than the ideal receiver by a factor varying from 10 decibels at 50 megacycles to 15 decibels at 1000 megacycles.

The peak value of this type of noise is approximately 13 decibels greater than its rms value. The amplitude is proportional to the square root of receiver bandwidth. Fig. 19 shows the field intensities required to equal the peak receiver noise values calculated on the above basis. These equivalent field intensities assume the use of a half-wave dipole receiving antenna. Transmission-line loss is omitted in the calculations. For antennas delivering more power to the receiver than a half-wave dipole, equivalent noise field intensities are less than indicated in Fig. 19 in proportion to the net gain of the antenna plus transmission line.
5. Signal-to-noise ratio: for satisfactory reception varies over, wide limits dependent on the type of communication, bandwidth, type of modulation, directivity of receiving antenna, character of noise, etc. A rough general relationship applicable to many services is that the average value of field intensity should be at least 10 decibels higher than the peak noise intensity, both measured on nondirective antennas with the noise peaks as observed on the usual type of measuring devices. Due to the relationship between peak and average values for noise, this means that the average field intensity should exceed the average noise intensity by at least 20 to 25 decibels.

RADIO PROPAGATION AND NOISE 249

Radio noise and noise measurement continued

Considerably higher ratios of signal-to-noise fields are required for many uses such as AM program transmission, television, loop direction finding, etc.
6. Measurement of radio noise: External noise fields, such as atmospheric, cosmic, and man-made, are measured in the same way as radio wave field strengths* with the exception that peak rather than average values of noise are usually of interest and that the overall bandpass action. of the measuring apparatus must be accurately known in measuring noise. When measuring noise varying over wide limits with time, such as atmospheric noise, it is generally best to employ automatic recorders.
Internal receiver and antenna noise may be measured by a standard signal generator connected to the receiver through a resistance equal to the calculated antenna radiation resistance. The amplitude of a single-frequency signal at the center of the pass band, when receiver output is $\sqrt{2}$ times the noise output with no signal, may be taken as equal to the noise amplitude.

* For methods of measuring field strengths and, hence, noise. see I.R.E. Siandards on Radio Wova Prooogation. Meas* uring Methods (1942). For information on sultable circuits to obtoin peak values, partieularly with resoect to man emade noise, see Agger, C. V., Foster, D. E., ond Young, C. S. Instruments and Methods of Measuring Radio Naise. Trans. Ad.E.E. Elec. Eng., Morch, 1940, vol. 59.

Antennas

Field intensity from an elementary dipole:

The elementary dipole forms the basis for many antenna computations. Since dipole theory assumes an antenna with current of constant magnitude and phase throughout its length, approximations to the elementary dipole are realized in practice only for antennas shorter than one-tenth wavelength. The theory can be applied directly to a loop whose circumference is less than one-tenth wavelength, thus forming a magnetic dipole. For larger antennas, the theory is applied by assuming the antenna to consist of a large number of infinitesimal dipoles with differences between individual dipoles of space position, polarization, current magnitude, and phase corresponding to the distribution of these parameters in the actual antenna. Field intensity equations for large antennas are then developed by integrating or otherwise summing the field vectors of the many elementary dipoles.

The outline below concerns electric dipoles. It also can be applied to magnetic dipoles by installing the loop perpendicular to the PO line at the center of the sphere in Fig. I. In this case, vector h becomes ϵ, the electric field; ϵ_{t} becomes the magnetic tangential field; and ϵ_{r} the radial magnetic field.

Fig. 1
Electric and magnetic components in spherical coordinatos for electric dipoles.

In the case of a magnetic dipole, Table I, showing variations of the field in the vicinity of the dipole, can also be used. A_{r} is then the coefficient for the radial magnetic field; A_{t} is the coefficient for the tangential magnetic field; A_{h} is the coefficient for the electric field; $\phi_{r} ; \phi_{t ;}$ and ϕ_{h} being the phase angles corresponding to the coefficients.

[^19]Field infensily from an elementary dipole continued
For electric dipoles, Fig. 1 indicates the electric and magnetic field components in spherical coordinates with positive values shown by the arrows.
$r=$ distance $O M$

$$
\begin{aligned}
& \omega=2 \pi f \\
& \alpha=\frac{2 \pi}{\lambda}
\end{aligned}
$$

$\theta=$ angle POM measured
from P toward M
$I=$ current in dipole
$c=$ velocity of light (see page 28)
$\lambda=$ wavelength
$v=\omega t-\alpha r$
$f=$ frequency
$1=$ length of dipole

The following equations expressed in electromagnetic units* (in vacuum) result:
$\epsilon_{r}=-\frac{c / \lambda I}{\pi} \frac{\cos \theta}{r^{3}}(\cos v-\alpha r \sin v)$ $\epsilon_{\ell}=+\frac{c \Lambda I}{2 \pi} \frac{\sin \theta}{r^{3}}\left(\cos v-\alpha r \sin v-\alpha^{2} r^{2} \cos v\right)$
$h=-I I \frac{\sin \theta}{r^{2}}(\sin v-\alpha r \cos v)$

- See pages 16 and 17.

Table I-Variations of the fleld in the vicinity of a dipole

$\mathbf{r} / \boldsymbol{\lambda}$	$\mathbf{I} / \boldsymbol{\alpha} \mathbf{r}$	$\mathbf{A}_{\mathbf{r}}$	$\boldsymbol{\phi}$	$\mathbf{A}_{\mathbf{1}}$	$\phi_{\mathbf{l}}$	$\mathbf{A}_{\mathbf{h}}$	$\boldsymbol{\phi}_{\mathbf{h}}$
0.01	15.9	4,028	$3^{\circ} .6$	4,012	$3^{\circ} .6$	253	$93^{\circ} .6$
0.02	7.96	508	$7^{\circ} .2$	500	$7^{\circ} .3$	64.2	$97^{\circ} .2$
0.04	3.98	65	$14^{\circ} .1$	61	$15^{\circ} .0$	16.4	$104^{\circ} .1$
0.06	2.65	19.9	$20^{\circ} .7$	17.5	$23^{\circ} .8$	7.67	$110^{\circ} .7$
0.08	1.99	8.86	$26^{\circ} .7$	7.12	$33^{\circ} .9$	4.45	$116^{\circ} .7$
0.10	1.59	4.76	$32^{\circ} .1$	3.52	$45^{\circ} .1$	2.99	$122^{\circ} .1$
0.15	1.06	1.66	$42^{\circ} .3$	1.14	$83^{\circ} .1$	1.56	$132^{\circ} .3$
0.20	0.80	0.81	$51^{\circ} .5$	0.70	$114^{\circ} .0$	1.02	$141^{\circ} .5$
0.25	0.64	0.47	$57^{\circ} .5$	0.55	$133^{\circ} .1$	0.75	$147^{\circ} .5$
0.30	0.56	0.32	$62^{\circ} .0$	0.48	$143^{\circ} .0$	0.60	$152^{\circ} .0$
0.35	0.45	0.23	$65^{\circ} .3$	0.42	$150^{\circ} .1$	0.50	$155^{\circ} .3$
0.40	0.40	0.17	$68^{\circ} .3$	0.37	$154^{\circ} .7$	0.43	$158^{\circ} .3$
0.45	0.35	0.134	$70^{\circ} .5$	0.34	$158^{\circ} .0$	0.38	$160^{\circ} .5$
0.50	0.33	0.106	$72^{\circ} .3$	0.30	$160^{\circ} .4$	0.334	$162^{\circ} .3$
0.60	0.265	0.073	$75^{\circ} .1$	0.26	$164^{\circ} .1$	0.275	$165^{\circ} .1$
0.70	0.228	0.053	$77^{\circ} .1$	0.22	$166^{\circ} .5$	0.234	$167^{\circ} .1$
0.80	0.199	0.041	$78^{\circ} .7$	0.196	$168^{\circ} .3$	0.203	$168^{\circ} .7$
0.90	0.177	0.032	$80^{\circ} .0$	0.175	$169^{\circ} .7$	0.180	$170^{\circ} .0$
1.00	0.159	0.026	$80^{\circ} .9$	0.157	$170^{\circ} .7$	0.161	$170^{\circ} .9$
1.20	0.133	0.018	$82^{\circ} .4$	0.132	$172^{\circ} .3$	0.134	$172^{\circ} .4$
1.40	0.114	0.013	$83^{\circ} .5$	0.114	$173^{\circ} .5$	0.114	$173^{\circ} .5$
1.60	0.100	0.010	$84^{\circ} .3$	0.100	$174^{\circ} .3$	0.100	$174^{\circ} .3$
1.80	0.088	0.008	$84^{\circ} .9$	0.088	$174^{\circ} .9$	0.088	$174^{\circ} .9$
2.00	0.080	0.006	$85^{\circ} .4$	0.080	$175^{\circ} .4$	0.080	$175^{\circ} .4$
2.50	0.064	0.004	$86^{\circ} .4$	0.064	$176^{\circ} .4$	0.064	$176^{\circ} .4$
5.00	0.032	0.001	$88^{\circ} .2$	0.032	$178^{\circ} .2$	0.032	$178^{\circ} .2$

252

Field intensity from an elementary dipole cantinued

These formulas are valid for the elementary dipole at distances which are large compared with the dimensions of the dipole. Length of the dipole must be small with respect to the wavelength, say $\frac{l}{\lambda}<0.1$. The formulas are for a dipole in free space. If the dipole is placed vertically on a plane of infinite conductivity, its image should be taken into account, thus doubling the above values.

Field of an elementary dipole at great distance

When distance r exceeds five wavelengths, as is generally the case in radio applications, the product $\alpha r=2 \pi \frac{r}{\lambda}$ is large and lower powers in αr can be neglected. The radial electric field ϵ_{r} then becomes negligible with respect to the tangential field and

$$
\left.\begin{array}{l}
\epsilon_{r}=0 \tag{2}\\
\epsilon_{\ell}=-\frac{2 \pi c l I}{\lambda_{r}} \sin \theta \cos (\omega f-\alpha r) \\
h=-\frac{\epsilon_{\ell}}{c}
\end{array}\right\}
$$

Field of an elementary dipole at short disfance

In the vicinity of the dipole $\left(\frac{r}{\lambda}<0.01\right)$, αr is very small and only the first terms between parantheses in equations (1) remain. The ratio of the radial and tangential field is then
$\frac{\epsilon_{r}}{\epsilon_{i}}=-2 \cot \theta$
Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further, the ratio of the magnetic and electric tangential field is
$\frac{h}{\epsilon_{\ell}}=-\frac{\alpha r}{c} \frac{\sin v}{\cos v}$
The magnitude of the magnetic field at short distances is, therefore, extremely small with respect to that of the tangential electric field, relative to their relationship at great distances. The two fields are in quadrature. Thus, at short distances, the effect of the dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points.

Field of an elementary dipole at intermediate distance

At intermediate distance, say between 0.01 and 5.0 wavelengths, one should take into account all the terms of the equations (1). This case occurs, for instance, when studying reactions between adjacent antennas. To calculate the fields, it is convenient to transform the equations as follows:
$\left.\begin{array}{l}\epsilon_{r}=-2 \alpha^{2} c l I \cos \theta A_{r} \cos \left(v+\phi_{r}\right) \\ \epsilon_{\ell}=\alpha^{2} c l I \sin \theta A_{l} \cos \left(v+\phi_{l}\right) \\ h=\alpha^{2} I I \sin \theta A_{h} \cos \left(v+\phi_{h}\right)\end{array}\right\}$
where
$\left.\begin{array}{ll}A_{r}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{3}} & \tan \phi_{r}=\alpha r \\ A_{t}=\frac{\sqrt{1-(\alpha r)^{2}+(\alpha r)^{4}}}{(\alpha r)^{3}} \cot \phi_{r}=\frac{1}{\alpha r}-\alpha r \\ A_{h}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{2}} \quad \cot \phi_{h}=-\alpha r\end{array}\right\}$
Values of A's and ϕ 's are given in Table I as a function of the ratio between the distance r and the wavelength λ. The second column contains values of $\frac{1}{\alpha r}$ which would apply if the fields $\epsilon_{\boldsymbol{t}}$ and h behaved as at great distances. αr

Field intensity from a vertically polarized

antenna with base close to ground

The following formula is obtained from elementary dipole theory. and is applicable to low frequency antennas. It assumes that the earth is a parfect reflector, the antenna dimensions are small compared with λ, and the actual height does not exceed $\frac{\lambda}{4}$.
The vertical component of electric field radiated in the ground plane, at distances so short that ground attenuation may be neglected lusually when $D<10 \lambda 1$, is given by
$E=\frac{377 I H^{\prime}}{\lambda D}$
where
$E=$ field intensity in millivolts per meter
$I=$ current at base of antenna in amperes
$H_{s}=$ effective height of antenna
$\lambda=$ wavelength in same units as H
$D=$ distance in kilometers

Field infensity from a vertically polarized

anfenna with base close to ground
continued
The effective height of a grounded vertical antenna is equivalent to the height of a vertical wire producing the same field along the horizontal as the actual antenna, provided the vertical wire carries a current that is constant along its entire length and of the same value as at the base of the actual antenna. Effective height depends upon the geometry of the antenna and varies slowly with $\boldsymbol{\lambda}$. For types of antennas normally used at low and medium frequencies, it is roughly one-half to two-thirds the actual height of the antenna.

For certain antenna configurations effective height can be calculated by the following formulas

1. Straight vertical antenna $\left(h ₹ \frac{\lambda}{4}\right)$
$H_{e}=\frac{\lambda}{\pi \sin \frac{2 \pi h}{\lambda}} \sin ^{2}\left(\frac{\pi h}{\lambda}\right)$
where $h=$ actual height
2. Loop antenna $\left(A<0.001 \lambda^{2}\right)$
$H_{e}=\frac{2 \pi n A}{\lambda}$
where $A=$ mean area per turn of loop
$n=$ number of turns
3. Adcock antenna
$H_{a}=\frac{2 \pi a b}{\lambda}$
where
$a_{0}=$ height of antenna
$b=$ spacing between antennas
In the above formulas, if H_{c} is desired in meters or feet, all dimensions h, A, a, b, and λ must be in meters or feet respectively.

Vertical radiafors

The field intensity from a single vertical tower insulated from ground and either of self-supporting or guyed construction, such as is commonly used for medium-frequency broadcasting, may be calculated by the following

Vertical radiafors continued

formula. This is more accurate than the formula given on page 253. Near ground level the formula is valid within the range $2 \lambda<D<10 \lambda$.
$E=\frac{60 I}{D \sin 2 \pi \frac{h}{\lambda}}\left[\frac{\cos \left(2 \pi \frac{h}{\lambda} \cos \theta\right)-\cos 2 \pi \frac{h}{\lambda}}{\sin \theta}\right]$
where
$E=$ field intensity in millivolts per meter
$I=$ current at base of antenna in amperes
$h=$ height of antenna
$\lambda=$ wavelengths in same units as h
$D=$ distance in kilometers
$\theta=$ angle from the vertical
Radiation patterns in the vertical plane for antennas of various heights are shown in Fig. 2. Field intensity along the horizontal as a function of antenna height for one kilowatt radiated is shown in Fig. 3.

Fig. 2-Field strength as a function of ongle of elevation for vertical rodiafors of different heights.

Vertical radiators continued

Both Figs. 2 and 3 assume sinusoidal distribution of current along the antenna and perfect ground conductivity. Current magnitudes for one-kilowatt power used in calculating Fig. 3 are also based on the assumption that the only resistance is the theoretical radiation resistance of a vertical wire with sinusoidal current.

Since inductance and capacitance are not uniformly distributed along the tower and since current is attenuated in traversing the tower, it is impossible to obtain sinusoidal current distribution in practice. Consequently actual radiation patterns and field intensities differ from Figs. 2 and 3.* The closest approximation to sinusoidal current is found on constant cross-section towers.

Fig. 3-Fieid strength alang the horizontol os a function of antenna height for a vertical grounded rodiatior with one kilowatt rodiated power.

In addition, antenna efficiencies vary from about 70 percent for 0.15 wavelength physical height to over 95 percent for 0.6 wavelength height. The input power must be multiplied by the efficiency to obtain the power radiated.

Average results of measurements of impedance at the base of several actual

[^20]
Vertical radiafors continued

vertical radiators, as given by Chamberlain and Lodge, are shown in Fig. 4. For design purposes when actual resistance and current of the projected radiator are unknown, resistance values may be selected from Fig. 4 and

Fig. 4-Resistance and reactonce components of impedance between tower base and ground of vertical radiators as given by Chamberialn and Lodge. Solid lines show average results for 5 guyed towers; dotted lines show average results for 3 selfsupporting towers.

258

Vertical radiafors continued

the resulting effective current obtained from the following equation

$$
\begin{equation*}
I_{\theta}=\sqrt{\frac{W \eta}{R}} \tag{6}
\end{equation*}
$$

where

$$
I_{\theta}=\text { current effective in producing radiation in amperes }
$$

W = watts input

$$
\begin{aligned}
& \eta=\text { antenna efficiency, varying from } 0.70 \text { at } \frac{h}{\lambda}=0.15 \\
& \text { to } 0.95 \text { at } \frac{h}{\lambda}=0.6
\end{aligned}
$$

$R=$ resistance at base of antenna in ohms
If I_{e} from (6) is substituted in (5), reasonable approximations to the field intensity at unit distances, such as one kilometer or one mile, will be obtained.

The practical equivalent of a higher tower may be secured by adding a capacitance "hat" with or without tuning inductance at the top of a lower tower.*

A good ground system is important with vertical-radiator antennas. It should consist of at least 120 radial wires, each one-half wavelength or longer, buried 6 to 12 inches below the surface of the soil. A ground screen of highconductivity metal mesh, bonded to the ground system, should be used on or abcve the surface of the ground adjacent to the tower.

For additional infomation see Brown, G. H., Proc. I.R.E., vol. 24, p. 48 Uanuary, 1936) and Brown, G. H. and leitch J. G., vol. 25, p. 533 imay, 1937.

Field infensity and radiafed power from

a half-wave dipole in free space

Fig. 5 on page 259 shows the field intensity and radiated power from a half-wave dipole in free space. The following formulas apply:
input power $W=I^{2} R=I^{2}$ (73.12) watts
Radiated power $P=\frac{30 I^{2}}{\pi d^{2}}=\frac{0.1306 \mathrm{~W}}{d^{2}}$ watts per square meter
Electric field intensity $E=\frac{60 I}{d}=\frac{7.02 \sqrt{ } \bar{W}}{d}$ volts per meter
$I=$ maximum current on dipole in rms amperes
$R=$ radiation resistance $=73.12$ ohms
$d=$ distance from antenna in meters

[^21]
260

Table II-Radiation from an end-fed conductor of any length in space

configuration (length of radiator)	$\begin{gathered} \text { expression for intensity } \\ F(\theta) \\ \hline \end{gathered}$
Half wave resonant	$\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
Any odd number of half waves resonant	$\frac{\cos \left(\frac{l^{\circ}}{2} \sin \theta\right)}{\cos \theta}$
Any even number of half waves resonant	$\frac{\sin \left(\frac{l^{\circ}}{2} \sin \theta\right)}{\cos \theta}$
Any length resonant	$\begin{aligned} \frac{1}{\cos \theta}[& 1+\cos ^{2} l^{\circ}+\sin ^{2} \theta \sin ^{2} l^{\circ} \\ & -2 \cos \left(l^{\circ} \sin \theta\right) \cos l^{\circ} \\ & \left.-2 \sin \theta \sin \left(l^{\circ} \sin \theta\right) \sin l^{\circ}\right]^{\frac{1}{2}} \end{aligned}$
Any length non-resonant	$\tan \frac{\theta}{2} \sin \frac{l^{\circ}}{2}(1-\sin \theta)$

$1^{\circ}=$ Length of radiator in electrical degrees, energy to flow from left-hand end of radiator.
$\theta=$ angle from the vertical
$\lambda=$ wavelength

Maxima and minima of radiation from a single-wire radiator

Fig. 6.

Rhombic antennas

Linear radiators may be combined in various ways to form antennas such as the horizontal vee, inverted vee, etc. The type most commonly used at high frequencies is the horizontal terminated rhombic shown in Fig. 7.

Fig. 7.
In designing rhombic antennas* for high-frequency radio circuits, the desired vertical angle Δ of radiation above the horizon must be known or assumed. When the antenna is to operate over a wide range of radiation angles or is to operate on several frequencies, compromise values of H, L, and ϕ must

[^22]262

Rhombic antennas continued
be selected. Gain of the antenna increases as the length of L of each side is increased; however, to avoid too-sharp directivity in the vertical plane, it is usual to limit L to less than six wavelengths.

Fig. 8-Rhombic antenna design chart.
Knowing the side length and radiation angle desired, the height H above ground and the tilt angle ϕ can be obtained from Fig. 8 as in the following example:
Problem: Find H and ϕ if $\Delta=20^{\circ}$ and $L=4 \lambda$.
Solution: On Fig. 8 draw a vertical line from $\Delta=20^{\circ}$ to meet $\frac{L}{\lambda}=4$ curve and $\frac{H}{\lambda}$ curves. From intersection at $\frac{L}{\lambda}=4$, read on the right-hand

Rhombic antennas

cantinued
scale $\phi=71.5^{\circ}$. From intersection on $\frac{H}{\lambda}$ curves, there are two possible values on the left-hand scale

1. $\frac{H}{\lambda}=0.74$ or $H=0.74 \lambda$
2. $\frac{H}{\lambda}=219$ or $H=219 \lambda$

Similarly, with an antenna 4λ on the side and a tilt angle $\phi=71.5^{\circ}$, working backwards, it is found that the angle of maximum radiation Δ is 20°, if the antenna is 0.74λ or 2.19λ above ground.

Antenna arrays

The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed' amount of power greatly to reinforce radiation in a desired direction by suppressing the radiation in undesired directions. The individual sources may be any type of antenna.
Expressions for the radiation pattern of several common types of individual elements are shown in Table III but the array expressions are not limited to them. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A, the radiation pattern of the individual antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A, the result of combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A^{\prime} for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups or, for instance, of placing the group above ground, is obtained by multiplying A^{\prime} by another of the array factors given.
The expressions given here assume negligible mutual coupling between individual antennas. When coupling is not negligible, the expressions apply only if the feeding is adjusted to overcome the coupling and thus produce resultant currents which are equal or binomial in amplitude and of the relative phases indicated.

One of the most important arrays is the linear multi-element array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Table IV gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.

In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the Binomial array, may be used. Here again all the radiators are fed in phase

Table III-Radiation patterns of several common types of antennas

type of radiat or	$\begin{aligned} & \text { current } \\ & \text { distribution } \end{aligned}$	directivity horizontal $F(\theta)$	vertical
Half-wave dipole		$\begin{aligned} F(9) & = \\ K & \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \\ & \cong K \cos \theta \end{aligned}$	$F(\beta)=K(1)$
Shortened dipole		$F(\theta) \cong K \cos \theta$	$F(\beta)=K(1)$
Lengthened dipole		$\begin{aligned} & F(\theta)= \\ & K\left[\frac{\cos \left(\frac{\pi l}{\lambda} \sin \theta\right)-\cos \frac{\pi l}{\lambda}}{\cos \theta}\right] \end{aligned}$	$F(\beta)=K(1)$
Horizontal loop		$F(\theta) \cong K(1)$	$F(\beta)=K \cos \beta$
Horizontal turnstile	i_{1} and i_{2} phased 90°	$F(\theta) \cong K^{\prime}(1)$	$F(\beta) \cong K^{\prime}(1)$

$\theta=$ horizontal angle measured from perpendicular bisecting plane
$\beta=$ vertical angle measured from horizon
K and K^{\prime} are constants and $K^{\prime} \cong 0.7 K$

Antenna arrays

 continuedbut the current is not distributed equally among the array elements, the center radiators in the array being fed more current than the outer ones. Table V shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop attennas

Table IV—Linear multi-element array broadside directivity
expression for intensity $F(\theta)$
$A=1$ for horizontal loop, vertical dipole
$A=\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$ for horizontal dipole
$s^{\circ}=$ spacing of successive elements in degrees

266

Antenna arrays continued

in order to obtain single-lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be
$F(\theta)=2^{n-1}\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos ^{n-1}\left(\frac{1}{2} S^{\circ} \sin \theta\right)$
The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the binomial expansion $11+1)^{n-1}$, where n is the number of elements.

Examples af use af Tables III, IV, V, and VI

Problem 1: Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively $\frac{\lambda}{2}\left(180^{\circ}\right)$.
Solution: From Table IV radiation from four radiators spaced 180° is given by $F(\theta)=4 A \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$.

From Table III the horizontal radiation of a half-wave dipole is given by
$A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} ;$
therefore, the total radiation
$F(\theta)=K\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$
Problem 2: Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180° successively.

Solution: From Table IV we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terms of vertical angle β.
$F(\beta)=4 A \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$.
From Table Ill we find that the vertical radiation from a horizontal dipole lin the perpendicular bisecting planel is non-directional. Therefore the vertical pattern is
$F(\beta)=K(1) \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$

Table V-Development of binomial array

configuration of array
and in general:

$$
2^{n-1} \cos \beta\left[\cos ^{n-1}\left(\frac{5^{\circ}}{2} \sin \beta\right)\right]
$$

where n is the number of loops in the array

268

Anfenna arrays continued

Problem 3: Find horizontal radiation pattern of group of dipoles in problem 2.

Solution: From Table III.
$F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \cong K \cos \theta$
Problem 4: Find the vertical radiation pattern of stack of five loops spaced $2 / 3 \lambda\left(240^{\circ}\right)$ one above the other, all currents equal in phase and amplitude.

Solution: From Table IV, using vertical angle because of vertical stacking,
$F(\beta)=A \frac{\left.\sin \left(51120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
From Table III, we find A for a horizontal loop in the vertical plane
$A=F(\beta)=K \cos \beta$
Total radiation pattern
$F(\beta)=K \cos \beta \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
Problem 5: Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops.

Solution: From Table V
$F(\beta)=K \cos \beta\left[\cos ^{4}\left(120^{\circ} \sin \beta\right)\right]$
(all terms not functions of vertical angle β combined in constant K)
Current distribution $(1+1)^{4}=1+4+6+4+1$, which represent the current intensities of successive loops in the array.

Problem 6: Find horizontal radiation pattern from two vertical dipoles spaced one-quarter wavelength apart when their currents differ in phase by 90°.

Solution: From Table VI
$s^{\circ}=\frac{\lambda}{4}=90^{\circ}=$ spacing
$\phi=90^{\circ}=$ phase difference
$F(\theta)=2 A \cos \left(45 \sin \theta+45^{\circ}\right)$

Anfenna arrays continued

Table VI-Supplementary problems

A—two radiators any phase ϕ expression for intenstity

B-radiator above ground thorizontal polarizationl

C-radiator parallel to screen

$$
\begin{aligned}
& F(\beta)=2 A \sin \left(d^{\circ} \cos \beta\right) \\
& \text { or } \\
& F(\theta)=2 A \sin \left(d^{\circ} \cos \theta\right)
\end{aligned}
$$

$s^{0}=$ spacing in electrical degrees
$h_{1}{ }^{\circ}=$ height of radiator in electrical degrees
$d^{\circ}=$ spacing of radiator from.screen in electrical degrees

Anfenna arrays cantinued
Problem 7: Find the vertical radiation pattern and the number of nulls in the vertical pattern $(0 \leq \beta \leq 90$) from a horizontal loop olaced three wavelengths above ground.

Solution:

$h_{1}{ }^{\circ}=3(360)=1080^{\circ}$
From Table VI
$F(\beta)=2 A \sin (1080 \sin \beta)$
From Table III for loop antennas
$A=K \cos \beta$
Total vertical radiation pattern
$F(\beta)=K \cos \beta \sin (1080 \sin \beta)$
A null occurs wherever $F(\beta)=0$.
The first term, $\cos \beta$, becomes 0 when $\beta-90^{\circ}$.
The second term, $\sin (1080 \sin \beta)$, becomes 0 whenever the value inside the parenthesis becomes a multiple of 180°. Therefore, number of nulls equal
$1+\frac{h_{1}{ }^{\circ}}{180}=1+\frac{1080}{180}=7$.
Problem 8: Find the vertical and horizontal patterns from a horizontal half-wave dipole spaced $\frac{\lambda}{8}$ in front of a vertical screen.

Solution:

$d^{\circ}=\frac{\lambda}{8}=45^{\circ}$
From Table VI
$F(\beta)=2 A \sin \left(45^{\circ} \cos \beta\right)$
$F(\theta)=2 A \sin \left(45^{\circ} \cos \theta\right)$
From Table III for horizontal half-wave dipole
Vertical pattern $A=K(l)$
Horizontal pattern $A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
Total radiation patterns are
Vertical: $\mathrm{F}(\beta)=K \sin \left(45^{\circ} \cos \beta\right)$
Horizontal: $F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \sin \left(45^{\circ} \cos \theta\right)$.

Anfenna arrays continued

spacing s° (electrical degrees)
$F(\beta)=\frac{\sin \left(\frac{n s^{\circ}}{2} \sin \beta\right)}{\sin \left(\frac{s^{\circ}}{2} \sin \beta\right)} \cos \beta$
$\mathrm{n}=$ number of loops

Gain $(d b)=10 \log _{10}\left[\frac{1}{\frac{1}{n}+\frac{3}{n^{2}} \sum_{k=1}^{n-1}(n-k)\left[-\frac{2 \cos k s^{\circ}}{\left(k s^{\circ}\right)^{2}}+\frac{2 \sin k s^{\circ}}{\left(k s^{\circ}\right)^{3}}\right]}\right]$
Fig. 9-Gain of linear array of loops vertically stacked.

\square Non-sinusoidal and modulated wave forms

Relaxation oscillators

Gas tube oscillator

$A=$ pulse output
$B=$ sawtonth output
Typical circuit
$V_{1}=884$
$C_{1}=0.05 \mu \mathrm{f}$
$C_{2}=0.05 \mu \mathrm{f}$
$R_{1}=100,000$ ohms
$R_{2}=500$ ohms
$R_{3}=100,000$ ohms
Frequency controlling elements C_{2}, R_{3}

Feedback relaxation oscillator

Typical circuit
$V_{1}=6 F 6$
$T_{1}=3: 1$ audio transformer
0.3 henry primary
$R_{1}=100,000$ ohms
$R_{2}=5000$ ohms
$C_{1}=1 \mu \mathrm{f}$
$C_{2}=0.1 \mu \mathrm{f}$
Frequency controlling elements C_{2}, R_{2}

Blocking oscillator

Typical circuit
$V_{1}=6 \mathrm{~J} 5$
$C_{1}=0.01 \mu \mathrm{f}$
$C_{2}=0.25 \mu \mathrm{f}$
$R_{1}=1$ megohm
$R_{2}=1$ megohm
$R_{3}=1000$ ohms
Frequency controlling elements
R_{1}, C_{2}, R_{2}

Relaxation oscillators continued

Squegging oscillator

Typical circuit
$V_{1}=615$
$\left.\begin{array}{l}L_{1} \\ L_{2}\end{array}\right\}$ tightly coupled
$R_{1}=500,000$ ohms
$\mathrm{C}_{1}=0.01 \mu \mathrm{f}$
Frequency controlling elements $R_{L} C_{1}$

Multivibrator

Typical circuit
$V_{1}=658$
$R_{1}=100,000$ ohms
$R_{2}=1000$ ohms
$R_{3}=25,000$ ohms
$R_{4}=250,000$ ohms
$R_{5}=25,000$ ohms
$\mathrm{C}_{1}=0.01 \mu \mathrm{f}$
$\mathrm{C}_{2}=250 \mu \mu \mathrm{f}$
Frequency controlling elements
$R_{1} R_{2}, R_{1}, C_{2}$
van der Pol oscillator

Typical circuit
$V_{1}=6 \mathrm{SJ7}$
$R_{1}=100,000$ ohms
$R_{2}=5000 \mathrm{hms}$
$R_{3}=1000 \mathrm{hms}$
$R_{4}=3,000$ ohms
$R_{5}=10,000$ ohms
$R_{6}=25,000$ ohms
$R_{7}=25,000$ ohms
Frequency controlling elements
R_{1}, R_{G}, C_{1} lalso $B+1$

Electronic infegration methods

Electronic infegration methods

Mathods I and II

a. Voltage V must be obtained from a low-impedance source.
b. $\frac{L}{R} \gg T$ or $\frac{M}{R} \gg T$
c. The output E should not react back on the input voltage V.
d. The impedance into which the integrator circuit works should be large compared with R. If this impedance is resistive, it should be included as part of R (this also applies to the input source impedance).

Method III

a. Voltage V must be obtained from a low-impedance source.
b. $R C \gg T$
c. The output E should not react back on the input voltage V.
d. The impedance into which the integrator circuit works should be as large as possible. If this impedance is resistive r then

$$
r C \gg R C
$$

The source impedance should be included in R.

Method IV

a. Current I should be a replica of the input voltage wave-form V.
b. The discharge device allows for integration between limits. If discharge device is not used, the circuit will integrate until E equals the $B+$ voltage.
c. The impedance into which the integrator circuit works should be as large as possible. If this impedance is resistive r then $r C \gg T$.

Electronic differentiation methods

I or V is the change of current or voltage in time T

NON-SINUSOIDAL AND MODULATED WAVE FORMS

Electronic differentiation methods

 continued
Methods I and II

a. Current I should be a replica of the input voltage wave-form V.
b. The voltage V must be substantially independent of the back emf developed by the inductance L.
c. The output shunt impedance placed across E should be high compared to the network impedance.
d. The resonant period associated with the inductance caused by shunting circuit capacitances should be at least one-third the build-up time T.

Method III

a. Voltage V must be obtained from a low-impedance source.
b. The $R C$ product should be one-fiftieth of the build-up time T or smaller.
c. The output voltage E should not react back on the input voltage V.
d. The impedance into which the differentiator circuit works should be large compared with R. If this impedance is resistive, it should be included as part of R. (This also applies to the input source impedance.)

Fourier analysis of recurrent wave forms

General formulas

$$
\begin{align*}
F(\theta)= & \frac{B_{0}}{2}+A_{1} \sin \theta+A_{2} \sin 2 \theta+\ldots+A_{n} \sin n \theta \\
& +B_{1} \cos \theta+B_{2} \cos 2 \theta+\ldots B_{n} \cos n \theta \tag{I}
\end{align*}
$$

Formula (1) may be written

$$
\begin{align*}
F(\theta)= & \frac{B_{0}}{2}+C_{1} \cos \left(\theta-\phi_{1}\right)+C_{2} \cos \left(2 \theta_{2}^{*}-\phi_{2}\right)+\ldots \\
& +C_{n} \cos \left(n \theta-\phi_{n}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
C_{n} & =\sqrt{A_{n}^{2}+B_{n}^{2}} \tag{3}\\
\phi_{n} & =\arctan \frac{A_{n}}{B_{n}} \tag{4}
\end{align*}
$$

278

Fourier analysis of recurrent wave forms continued

The coefficients A_{n} and B_{n} are determined by the following formulas:

$$
\begin{align*}
& A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \sin n \theta d \theta \tag{5}\\
& B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \cos n \theta d \theta \tag{6}
\end{align*}
$$

By a change of limits equations (5) and (6) may also be written

$$
\begin{align*}
& A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\theta) \sin n \theta d \theta \tag{7}\\
& B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} F(\theta) \cos n \theta d \theta \tag{8}
\end{align*}
$$

If the function $F(\theta)$ is an odd function, that is
$F(\theta)=-F(-\theta)$
the coefficients of all the cosine terms $\left(B_{n}\right)$ of equation (6) become equal to zero.

Similarly if the function $F(\theta)$ is an even function, that is
$F(\theta)=F(-\theta)$
the coefficients of all the sine terms $\left(A_{n}\right)$ of equation (5) become equal to zero.

If the function to be analyzed is thus a symmetrical function defined by either equation (9) or (10) the function should be disposed about the zero axis and an analysis obtained by means of equations (5) or (6) for the simplest solution.

Fourier analysis of recurrent wave forms continued

Graphical solution

If the function to be analyzed is not known analytically, a solution of the Fourier integral may be approximated by graphical means.

The period of the function is divided into a number of ordinates as indicated by the graph.

The values of these ordinates are recorded and the following computations made:

	Y_{0}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
		Y_{11}	Y_{10}	Y_{9}	Y_{8}	Y_{7}	
	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
Sum ifference	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}		

The sum terms are arranged as follows:

Sum

S_{0}	S_{1}	S_{2}	S_{3}	(12)	$\overline{S_{0}}$	$\overline{S_{1}}$
S_{6}	S_{5}	S_{4}			$\overline{S_{2}}$	$\overline{S_{3}}$
$\overline{S_{0}}$	$\overline{S_{1}}$	$\overline{S_{2}}$	$\overline{S_{3}}$		$\overline{S_{7}}$	$\overline{S_{3}}$
$\overline{D_{0}}$	$\overline{D_{1}}$	D_{2}				

Difference $\begin{array}{lll}\overline{D_{0}} & \overline{D_{1}} & D_{2}\end{array}$

The difference terms are as follows:

280

Fourier analysis of recurrent wave forms continued

The coefficients of the Fourier series are now obtained as follows, where A_{0} equals the average value, the $B_{1} \ldots n$ expressions represent the coefficients of the cosine terms, and the $A_{1} \ldots n_{n}$ expressions represent the coefficients of the sine terms:

$$
\begin{align*}
& B_{0}=\frac{\overline{S_{7}}+\overline{S_{8}}}{12} \tag{16}\\
& B_{1}=\frac{\overline{D_{0}}+0.866 \overline{D_{1}}+0.5 \overline{D_{2}}}{6} \tag{17}\\
& B_{2}=\frac{\overline{S_{0}}+0.5 \overline{S_{1}}-0.5 \overline{S_{2}}-\overline{S_{3}}}{6} \tag{18}\\
& B_{3}=\frac{\overline{D_{6}}}{6} \tag{19}
\end{align*}
$$

$B_{4}=\frac{\overline{S_{0}}-0.5 \overline{S_{1}}-0.5 \overline{S_{2}}+\overline{S_{8}}}{6}$
$B_{5}=\frac{\overrightarrow{D_{0}}-0.866 \overline{D_{1}}+0.5 \overline{D_{2}}}{6}$
$B_{6}=\frac{\overline{S_{7}}-\overline{S_{8}}}{12}$
also
$A_{1}=\frac{0.5 \overline{S_{4}}+0.866 \overline{S_{5}}+\overrightarrow{S_{6}}}{6}$
$A_{2}=\frac{0.866\left(\overline{D_{3}}+\overline{\left.D_{4}\right)}\right.}{6}$
$A_{8}=\frac{\overrightarrow{D_{5}}}{6}$
$A_{1}=\frac{0.866\left(D_{3}-D_{4}\right)}{6}$
$A_{5}=\frac{0.5 \overline{S_{4}}-0.866 \overrightarrow{S_{5}}+\overline{S_{6}}}{6}$

Analyses of commonly encounfered wave forms

The following analyses include the coefficients of the Fourier series for all harmonics $\mathrm{In}^{\text {th }}$ orderl. By the use of the graph for the $\left(\frac{\sin x}{x}\right)$ function, where $f(x)$ is even, the amplitude coefficients may be evaluated in a simple manner.

The symbols used are defined as follows:

$A=$ pulse amplitude	$r=$ pulse decay time
$T=$ periodicity	$n=$ order of harmonic
$d=$ pulse width	$C_{n}=$ amplitude of $n^{t h}$ harmonic
$f=$ pulse build-up time	$\theta_{n}=$ phase angle of $n^{\text {n }}$ harmonic

$A_{a v}=$ average value of function $=\frac{1}{T} \int_{0}^{T} F(t) d t$
$A_{r m s}=$ root-mean square value of function $=\sqrt{\frac{1}{T}} \int_{0}^{T}[F(t)]^{2} d t$

282

Analyses of commonly encounfered wave forms continued

1. Rectangular wave

$$
A_{a v}=\frac{A d}{T}
$$

$$
A_{\mathrm{omo}}=A \sqrt{\frac{d}{T}}
$$

$$
C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi d}{T}}{\frac{n \pi d}{T}}\right]
$$

2. Symmetrical trapezoid wave

$$
\begin{array}{ll}
A_{a v}=A \frac{(f+d)}{T} & A_{r m s}=A \sqrt{\frac{2 f+3 d}{3 T}} \\
C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]\left[\frac{\sin \frac{n \pi(f+d)}{T}}{\frac{n \pi(f+d)}{T}}\right] &
\end{array}
$$

Analyses of commonly encountered wave forms continued

3. Unsymmetrical trapezoid wave

$$
A_{a v}=\frac{A}{T}\left[\frac{f}{2}+\frac{r}{2}+d\right] \quad A_{r m s}=A \sqrt{\frac{f+r+3 d}{3 T}}
$$

If $f \cong r$

$$
C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]\left[\frac{\sin \frac{n \pi(f+d)}{T}}{\frac{n \pi(f+d)}{T}}\right]\left[\frac{\sin \frac{n \pi(r-f}{T}}{\frac{n \pi(r-f)}{T}}\right]
$$

4. Isosceles triangle wave

$$
A_{a v}=\frac{A f}{T} \quad A_{r m s}=A \sqrt{\frac{2 f}{3 T}}
$$

$$
C_{n}=2 A_{a v}\left[\frac{\sin \frac{n \pi f}{T}}{\frac{n \pi f}{T}}\right]^{2}
$$

284

Analyses of commonly encountered wave forms continued

5. Clipped sawtooth wave

$$
\begin{aligned}
& A_{a v}=\frac{A d}{2 T} \quad A_{r m s}=A \sqrt{\frac{d}{3 T}} \\
& C_{n}=\frac{A T}{2 \pi^{2} n^{2 d}}\left[2\left(1-\cos \frac{2 \pi n d}{T}\right)+\frac{4 \pi n d}{T}\left(\frac{\pi n d}{T}-\sin \frac{2 \pi n d}{T}\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

If d is small

$$
C_{n}=\frac{2 A_{a \pi}}{\frac{\pi n d}{T}}\left[\frac{\sin \frac{\pi n d}{T}}{\frac{\pi n d}{T}}-1\right]
$$

6. Sawtooth wave

$A_{a v}=\frac{A}{2}$
$A_{r m 0}=\frac{A}{\sqrt{3}}$
$C_{n}=-\frac{2 A_{a v}}{n \pi} \cos (n \pi)$

7. Sawtooth wave

$$
A_{a v}=\frac{A}{2} \quad A_{r m s}=\frac{A}{\sqrt{3}}
$$

$$
C_{n}=\frac{2 A_{a v} T}{\pi^{2} n^{2 f}\left(1-\frac{f}{T}\right)} \sin \frac{\pi f}{T}
$$

8. Fractional sine-wave

$$
A_{a v}=\frac{A\left(\sin \frac{\pi d}{T}-\frac{\pi d}{T} \cos \frac{\pi d}{T}\right)}{\pi\left(1-\cos \frac{\pi d}{T}\right)}
$$

$$
A_{r m s}=
$$

$$
\frac{A}{\left(1-\cos \frac{\pi d}{T}\right)}\left[\frac{1}{2 \pi}\left(\frac{\pi d}{T}+\frac{1}{2} \sin \frac{2 \pi d}{T}-4 \cos \frac{\pi d}{T} \sin \frac{\pi d}{T}+\frac{2 \pi d}{T} \cos ^{2} \frac{\pi d}{T}\right)\right]^{\frac{2}{2}}
$$

$$
C_{n}=\frac{A_{a v} \frac{\pi d}{T}}{n\left(\sin \frac{\pi d}{T}-\frac{\pi d}{T} \cos \frac{\pi d}{T}\right)}\left[\frac{\sin \ln -11 \frac{\pi d}{T}}{\ln -11 \frac{\pi d}{T}}-\frac{\sin \ln +11 \frac{\pi d}{T}}{\ln +11 \frac{\pi d}{T}}\right]
$$

Analyses of commonly encounfered wave forms contioued

9. Half sine-wave

10. Full sine-wave

$C_{n}=A_{a v}\left[2 \frac{\sin \left(n \pi \frac{d}{T}\right)}{n \pi \frac{d}{T}}+\frac{\sin \pi\left(1-n \frac{d}{T}\right)}{\pi\left(1-n \frac{d}{T}\right)}+\frac{\sin \pi\left(1+n \frac{d}{T}\right)}{\pi\left(1+n \frac{d}{T}\right)}\right]$

Analyses of commonly encountered wave forms

continued

11. Critically damped exponential wave

$f(t)=\frac{A_{\epsilon}}{f} t_{\epsilon}^{-\frac{1}{f}}$ where $\epsilon=2.718$ for $T>10 f \quad A_{\text {rme }}=\frac{A_{\epsilon}}{2} \sqrt{\frac{f}{T}}$ $A_{a v}=\frac{A \epsilon f}{T}$
$C_{n}=2 A_{a,}\left[\frac{1}{1+\left(\frac{2 \pi n f}{T}\right)^{2}}\right]=2 A_{a v} \cos ^{2} \frac{\theta_{n}}{2}$
$\frac{\theta_{n}}{2}=\tan ^{-1}\left(\frac{2 \pi n f}{T}\right)$
12. Full-wave rectifled sine-wave

$A_{a,}=\frac{2 A}{\pi}$
$A_{r m e}=\frac{A}{\sqrt{2}}$
$C_{n}=\frac{\pi}{2} A_{a n}\left[\frac{\sin \frac{\pi}{2}(1-n)}{\frac{\pi}{2}(1-n)}+\frac{\sin \frac{\pi}{2}(1+n)}{\frac{\pi}{2}(1+n)}\right]$

Modulated wave forms

Starting from a carrier $i=A \sin \theta$ modulated waveforms are obtained when either or both A and θ are functions of time.

1. Amplitude modulation

$\theta=\omega t+\phi \quad$ where ω and ϕ are constants
$A=A_{0}\left[1+m_{a} f(t)\right]$
$i=A_{0}\left[1+m_{a} f(t)\right] \sin (\omega t+\phi)$
where $f(t)$ is a continuous function of time representing the signal and $|f(t)| \leq 1$. Then m_{a} is the degree of amplitude modulation; $0 \leq m_{a} \leq 1$. Generally the frequency spectrum of $f(t)$ will be limited up to a value α $\ll \omega$ and the total frequency spectrum will comprise:
the carrier ω
the lower side band from ω to $\omega-\alpha$
the upper side band from ω to $\omega+\alpha$
For correct transmission of intelligence it is sufficient to transmit one of the side bands only.

For a sinusoidal signal $f(t)=\cos p t$ where $p=$ angular frequency of the signal; $i=A_{0}\left\{\sin \omega t+\frac{m_{a}}{2}[\sin (\omega+\rho) t+\sin (\omega-p) t]\right\}$

2. Frequency modulation

wherein A is constant
$\omega_{t}=\frac{d \theta}{d t}=\omega[1+m f(t)]$
$\omega=2 \pi \times$ mean carrier frequency (a constant), $\omega_{i}=2 \pi \times$ instantaneous frequency, $m=$ degree of frequency modulation, $\Delta \omega=m \omega=2 \pi \times$ frequency wing, $f(t)$ is the signal to be transmitted; $|f(t)| \leq 1$.
Even when the frequency spectrum of $f(t)$ extends only up to $\alpha \ll \omega$ the resulting frequency spectrum of the modulated wave is complex, depending on the relative values of α and m. Generally $\Delta \omega \geq \alpha$ and the spectrum is composed of groups of upper and lower side bands even when $f(f)$ is a sinusoidal function of time.

For a sinusoidal signal $f(t)=\cos p t$
$\omega_{t}=\omega[1+m \cos p t]$
$\theta=\omega t+\frac{\Delta \omega}{\rho} \sin p t$
$m_{f}=\frac{\Delta \omega}{\rho}=$ frequency modulation index (radians)

Modulated wave forms

continued

In this case the carrier and side bands include a number of components at frequencies $(\omega \pm n p) / 2 \pi$ where $n=0$ or a positive integer.

$$
\begin{aligned}
\frac{i}{A_{0}}= & \sin (\omega t+m f \sin p t) \\
= & J_{0}\left(m_{f}\right) \sin \omega t \\
& +J_{1}\left(m_{f}\right)[\sin (\omega+p) t-\sin (\omega-p) t] \\
& +J_{2}\left(m_{f}\right)[\sin (\omega+2 p) t+\sin (\omega-2 p) t] \\
& +\ldots \\
& +J_{m}\left(m_{f}\right)\left[\sin (\omega+n p) t+(-1)^{n} \sin (\omega-n p) t\right] \\
= & J_{0}\left(m_{f}\right) \sin \omega t+2 J_{1}\left(m_{f}\right) \sin p t \cos \omega t \\
& +2 J_{2}(m f) \cos 2 p t \sin \omega t+\ldots \\
& +(-1)^{n} 2 J_{n}\left(m_{f}\right) \cos \left(n p t+n^{\frac{\pi}{2}}\right) \sin \left(\omega t+n \frac{\pi}{2}\right)
\end{aligned}
$$

Where $J_{n}\left(m_{f}\right)$ is the Bessel function of the first kind and $n^{2 m}$ order. An expansion of $J_{n}\left(m_{f}\right)$ in a series is given on page 299 and tables of Bessel functions on pages 319 to 322.

Amplitude of carrier and side bands far $\mathrm{mp}_{\mathrm{f}}=10$. The carrier amplifude is $0.246 \mathrm{~A}_{0}$ and is represented by the heavy line in the center. The separation between each twa adjacent campanents $=$ signal frequency f.
a. For small values of m_{f} up to about 0.2

$$
\begin{aligned}
i & =A_{0}\left\{\sin \omega t+\frac{m_{f}}{2}[\sin (\omega+\rho) t-\sin (\omega-p) t]\right\} \\
& =A_{0}\left(\sin \omega t+m_{f} \sin \rho t \cos \omega t\right)
\end{aligned}
$$

Compare with amplitude modulation above.
b. The carrier amplitude varies with m_{f} as does also that of each pair of side bands.
$\begin{array}{llllll}\text { Carrier vanishes for } m_{f}=2.40 & 5.52 & 8.65 & 11.79 & 14.93 \text { etc. }\end{array}$
$\begin{array}{lllll}\text { First side band vanishes for } m_{f}=3.83 & 7.02 & 10.17 & 13.32 \text { etc. }\end{array}$
This property of vanishing components is used frequently in the measurement of m.
c. The approximate number of important side bands and the corresponding band width necessary for transmission are as follows (where $f=p / 2 \pi$ and $\Delta F=\Delta \omega / 2 \pi l:$

mp	5	10	20
signal frequency f	$0.2 \Delta F$	$0.1 \Delta F$	$0.05 \Delta F$
number of pairs of side bands	7	13	23
band width	$\begin{gathered} 14 f \\ 2.8 \Delta F \end{gathered}$	$\begin{gathered} 26 f \\ 2.6 \Delta f \end{gathered}$	$\begin{gathered} 46 f \\ 2.3 \Delta F \end{gathered}$

This table is based on neglecting side bands in the outer regions where all amplitudes are less than $0.02 \mathrm{~A}_{0}$. The amplitude below which the side bands are neglected, and the resultant band width, will depend on the particular application and the quality of transmission desired.

3. Pulse modulation

Pulse modulation is obtained when A or $\frac{d \theta}{d t}$ are keyed periodically. Then $f(t)$ is generally a pulsing waveform of the type previously described. See 4, page 283 (with $f \ll T$).

In pulse modulation generally $f(t)$ has no simple relation to the signal to be transmitted. Various forms of pulse modulation have been described:
a. Pulse-time modulation: The timing of the pulse $f(t)$ relative to a reference pulse is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.
b. Pulse-width modulation: The duration of the pulse $f(t)$ is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.
c. Pulse-frequency modulation: The repetition rate of the pulse $f(t)$ is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.

- Mathematical formulas

Mensuration formulas

Areas of plane figures

Ararallelogram $=$ bh

292

Mensuration formulas continued

Areas of plane figures
Circle formula

Area of irregular plane surface

Trapezoidal rule:
Area $=\Delta\left(\frac{y_{1}}{2}+y_{2}+y_{3}+\ldots+y_{n-2}+y_{n-1}+\frac{y_{n}}{2}\right)$
Simpson's rule:
n must be odd
Area $=\frac{\Delta}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+2 y_{5}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$ $y_{1}, y_{2}, y_{3} \ldots y_{n}$ are measured lengths of a series of equidistant parallel chords

Volumes and surface areas

$$
\text { Sphere: } \begin{aligned}
& \text { Surface }=4 \pi r^{2} \\
& \text { Volume }=\frac{4 \pi r^{3}}{3} \\
& r=\text { radius of sphere }
\end{aligned}
$$

Cylinder: Cylindrical portion of surface $=2 \pi$ rh

$$
\text { Volume }=\pi r^{2} h
$$

$r=$ radius of cylinder
$h=$ height of cylinder
Pyramid or cone: Volume $=$ Area of base $\times \frac{1}{3}$ of height

Formulas for complex quantities

$(A+j B)(C+j D)=(A C-B D)+j(B C+A D)$

$$
\frac{A+j B}{C+j D}=\frac{A C+B D}{C^{2}+D^{2}}+j \frac{B C-A D}{C^{2}+D^{2}}
$$

$\frac{1}{A+j B}=\frac{A}{A^{2}+B^{2}}-j \frac{B}{A^{2}+B^{2}}$
$\mathrm{A}+j \mathrm{~B}=\rho(\cos \theta+j \sin \theta)$
$\sqrt{A+j B}= \pm \sqrt{p}\left(\cos \frac{\theta}{2}+j \sin \frac{\theta}{2}\right)$
where $\rho=\sqrt{A^{2}+B^{2}} ; \cos \theta=\frac{A}{\rho}$

$$
\begin{aligned}
\sin \theta & =\frac{B}{\rho} \\
\mathrm{e}^{j \theta} & =\cos \theta+j \sin \theta \\
\mathrm{e}^{-j \theta} & =\cos \theta-j \sin \theta
\end{aligned}
$$

Algebraic and frigonometric formulas

$1=\sin ^{2} A+\cos ^{2} A=\sin A \operatorname{cosec} A=\tan A \cot A=\cos A \sec A$
$\sin A=\frac{\cos A}{\cot A}=\frac{1}{\operatorname{cosec} A}=\cos A \tan A=\sqrt{1-\cos ^{2} A}$
$\cos A=\frac{\sin A}{\tan A}=\frac{1}{\sec A}=\sin A \cot A=\sqrt{1-\sin ^{2} A}$
$\tan A=\frac{\sin A}{\cos A}=\frac{1}{\cot A}=\sin A \sec A$
$\cot A=\frac{1}{\tan A} \quad \sec A=\frac{1}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Algebraic and frigonometric formulas continued

$$
\begin{aligned}
& \cos |A \neq B|=\cos A \cos B \mp \sin A \sin B \\
& \cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A} \\
& \sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B) \\
& \tan A \pm \tan B=\frac{\sin (A \pm B)}{\cos A \cos B} \\
& \sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \cos A+\cos B=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \cot A \pm \cot B=\frac{\sin (B \pm A)}{\sin A \sin B} \\
& \cos B-\cos A=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \sin 2 A=2 \sin A \cos A \quad \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& \cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B) \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \\
& \sin \frac{1}{2} A= \pm \sqrt{\frac{1-\cos A}{2}} \\
& \cos \frac{1}{2} A= \pm \sqrt{\frac{1+\cos A}{2}} \\
& \tan \frac{1}{2} A=\frac{\sin A}{1+\cos A} \quad \sin ^{2} A=\frac{1-\cos 2 A}{2} \\
& \cos ^{2} A=\frac{1+\cos 2 A}{2} \quad \tan ^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A} \\
& \frac{\sin A \pm \sin B}{\cos A+\cos B}=\tan \frac{1}{2}(A \pm B) \\
& \frac{\sin A \pm \sin B}{\cos B-\cos A}=\cot \frac{1}{2}(A \mp B) \\
& \sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
& \cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
& \sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
\end{aligned}
$$

206

Algebraic and trigonometric formulas continued

$\sin x+\sin 2 x+\sin 3 x+\ldots+\sin m x=\frac{\sin \frac{1}{2} m x \sin \frac{1}{2}(m+1) x}{\sin \frac{1}{2} x}$
$\cos x+\cos 2 x+\cos 3 x+\ldots+\cos m x=\frac{\sin \frac{1}{2} m x \cos \frac{1}{2}(m+1) x}{\sin \frac{1}{2} x}$
$\sin x+\sin 3 x+\sin 5 x+\ldots+\sin (2 m-1) x=\frac{\sin ^{2} m x}{\sin x}$
$\cos x+\cos 3 x+\cos 5 x+\ldots+\cos (2 m-1) x=\frac{\sin 2 m x}{2 \sin x}$
$\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos m x=\frac{\sin \left(m+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}$

angle	0	0	30°	45°	60°	90°	180°	270°
	360°							
\sin	0	$1 / 2$	$1 / 2 \sqrt{2}$	$1 / 2 \sqrt{3}$	1	0	-1	0
\cos	1	$1 / 2 \sqrt{3}$	$1 / 2 \sqrt{2}$	$1 / 2$	0	-1	0	1
\tan	0	$1 / 3 \sqrt{3}$	1	$\sqrt{3}$	$\pm \infty$	0	$\pm \infty$	0

versine $\theta=1-\cos \theta$
$\sin 14 \frac{1}{2}^{\circ}=\frac{1}{4}$ approximately
$\sin 20^{\circ}=11 / 32$ approximately

Approximations for small angles

| $\sin \theta$ | $=\left(\theta-\theta^{3} / 6 \ldots \ldots\right)$ | θ in radians |
| ---: | :--- | ---: | :--- |
| $\tan \theta$ | $=\left(\theta+\theta^{3} / 3 \ldots \ldots\right)$ | θ in radians |
| $\cos \theta$ | $=\left(1-\theta^{2} / 2 \ldots \ldots\right)$ | θ in radians |

Quadratic equation

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Arithmetical progression

$S=n l a+n / 2=n[2 a+l n-1) d] / 2$
where $S=$ sum, $a=$ first term, $l=$ last term, $n=$ number of terms, $d=$ common difference $=$ the value of any term minus the value of the preceding term.

Geometrical progression

$S=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{a\left(1-r^{n}\right)}{1-r}$
where $S=$ sum, $a=$ first term, $n=$ number of terms, $r=$ common ratio $=$ the value of any term divided by the preceding term.

Combinations and permutations

The number of combinations of n things, all different, taken r at a time is
${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$
The number of permutations of n things r at a time $={ }_{n} P_{r}$
${ }_{n} P_{r}=n(n-1)(n-2) \ldots \ldots(n-r+1)=\frac{n!}{(n-r)!}$
${ }_{n} P_{n}=n!$

Binomial theorem

$(a \pm b)^{n}=a^{n} \pm n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2} \pm \frac{n(n-1)(n-2)}{3!} a^{n-8} b^{8}+\ldots$.
If n is a positive integer, the series is finite and contains $n+1$ terms; otherwise it is infinite, converging for $\left|\frac{b}{a}\right|<1$ and diverging ior $\left|\frac{b}{a}\right|>1$.

Maclaurin's theorem

$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{1 \cdot 2} f^{n}(0)+\ldots+\frac{x^{n}}{n!} f^{n}(0)+\ldots$.

Taylor's theorem

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \\
f(x+h) & =f(x)+f^{\prime}(x) \cdot h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\ldots+\frac{f^{n}(x)}{n!} h^{n}+\ldots .
\end{aligned}
$$

Trigonometric solution of triangles

Right-angled friangles (right angle at C)

$$
\begin{aligned}
\sin A & =\cos B=\frac{a}{c} \\
\tan A & =\frac{a}{b} \quad B=90^{\circ}-A \\
\text { vers } A & =1-\cos A=\frac{c-b}{c} \\
c & =\sqrt{a^{2}+b^{2}} \\
b & =\sqrt{c^{2}-a^{2}}=\sqrt{(c+a)(c-a)} \\
\text { Area } & =\frac{a b}{2}=\frac{a}{2} \sqrt{c^{2}-a^{2}}=\frac{a^{2} \cot A}{2}=\frac{b^{2} \operatorname{ton} A}{2}=\frac{c^{2} \sin A \cos A}{2}
\end{aligned}
$$

Oblique-angled friangles

$$
\begin{aligned}
\sin \frac{1}{2} A & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{2}{2} A & =\sqrt{\frac{s(s-a)}{b c}} \\
\text { where } s & =\frac{a+b+c}{2}
\end{aligned}
$$

$A+B+C=180^{\circ}$
$\tan \frac{\frac{1}{2}}{} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$, similar values for angles B and C

$$
\begin{aligned}
\text { Area } & =\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{2} a b \sin C=\frac{a^{2} \sin B \sin C}{2 \sin A} \\
c & =\frac{a \sin C}{\sin A}=\frac{a \sin (A+B)}{\sin A}=\sqrt{a^{2}+b^{2}-2 a b \cos C}
\end{aligned}
$$

$$
\tan A=\frac{a \sin C}{b-a \cos C}, \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C
$$

$a^{2}=b^{2}+c^{2}-2 b c \cos A$, similar expressions for other sides.

mathematical formulas

Complex hyperbolic and other functions

Properties of "e"

$$
\begin{aligned}
e= & 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots .=2.71828 \\
& \frac{1}{e}=0.3679 \\
e^{x}= & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .
\end{aligned}
$$

$\log _{10} \mathrm{e}=0.43429 ; \log _{0} 10=2.30259$
$\log _{6} N=\log _{6} 10 \times \log _{10} N ; \log _{10} N=\log _{10} e \times \log _{0} N$.
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
x is in radians. The series are con-
$\left.\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots.\right\}$ vergent for all finite values of x.
$\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots$.
For $n=0$ or a positive integer, the expansion of the Bessel function of the first kind, $n^{\text {th }}$ order, is given by the convergent series

$$
\begin{aligned}
& J_{n}(x)=\frac{x^{n}}{2^{n} n!}\left[1-\frac{x^{2}}{2(2 n+2)}+\frac{x^{4}}{2 \cdot 4(2 n+2)(2 n+4)}\right. \\
& \left.\left.-\frac{x^{6}}{2 \cdot 4 \cdot 6(2 n+2)\{2 n+4)\{2 n+6)}+\ldots\right]\right] \\
& \text { and } J_{-n}(x)=(-1)^{n} J_{n}(x) \quad \text { Note: } 0!=1 \\
& \sin x=\frac{e^{f x}-e^{-f x}}{2 j} \\
& \begin{aligned}
e^{j x} & =\cos x+j \sin x \\
e^{-j x} & =\cos x-j \sin x
\end{aligned} \\
& j=\sqrt{-1} \\
& \cos x=\frac{\mathrm{e}^{j x}+\mathrm{e}^{-j x}}{2} \\
& \sinh x=\frac{e^{x}-e^{-x}}{2} \\
& \sinh (-x)=-\sinh x_{i} \cosh (-x)=\cosh x \\
& \sinh j x=j \sin x ; \cosh j x=\cos x \\
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \sinh 2 x=2 \sinh x \cosh x \\
& \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x \\
& \sinh (x \pm j y)=\sinh x \cos y \pm j \cosh x \sin y \\
& \cosh (x \pm j y)=\cosh x \cos y \pm i \sinh x \sin y
\end{aligned}
$$

300

Table of integrals

Indefinite integrals

In the following formulas, a, b, and m are constants. The constant of integration is not shown, but is added to each result.
$\int d x=x$
$\int a f(x) d x=a \int f(x) d x$
$\int(u+v-s) d x=\int u d x+\int v d x-\int s d x$
$\int x^{m} d x=\frac{x^{m+1}}{m+1} \quad m \neq-1$
$\int \frac{d x}{x}=\log _{e} x$
$\int(a x+b)^{m} d x=\frac{(a x+b)^{m+1}}{a(m+1)} \quad m \neq-1$
$\int \frac{d x}{a x+b}=\frac{1}{a} \log _{e}(a x+b)$
$\int \frac{x d x}{a x+b}=\frac{1}{a^{2}}\left[a x+b-b \log _{e}(a x+b)\right]$
$\int \frac{x d x}{(a x+b)^{2}}=\frac{1}{a^{2}}\left[\frac{b}{a x+b}+\log _{e}(a x+b)\right]$
$\int \frac{x^{2} d x}{a x+b}=\frac{1}{a^{3}}\left[\frac{(a x+b)^{2}}{2}-2 b(a x+b)+b^{2} \log _{e}(a x+b)\right]$
$\int \frac{d x}{x^{2}+\sigma^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}$
$\int \log _{a} x d x=x \log _{a} \frac{x}{e}$ where $e=2.718$
$\int a^{x} d x=\frac{a^{x}}{\log _{e} a}$

Table of infegrals

continued

$$
\begin{aligned}
& \int x e^{x} d x=e^{x}(x-1) \\
& \int x^{m} e^{x} d x=x^{m} e^{x}-m \int x^{m-1} e^{x} d x \\
& \int \sin x d x=-\cos x \\
& \int \sin ^{2} x d x=\frac{1}{2}(x-\sin x \cos x) \\
& \int \cos x d x=\sin x \\
& \int \cos ^{2} x d x=\frac{1}{2}(x+\sin x \cos x) \\
& \int \tan ^{x} x d x=-\log _{e} \cos x \\
& \int \cot ^{x} x d x=\log _{e} \sin x \\
& \int \sec ^{x} x d x=\log _{e} \cdot(\sec x+\tan x) \\
& \int \sec ^{2} x d x=\tan x \\
& \int \operatorname{cosec}^{2} x d x=-\cot x \\
& \int \operatorname{cosec}^{x} x d x=\log _{e}(\operatorname{cosec} x-\cot x) \\
& \int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{2}} \\
& \int \cos { }^{-1} x d x=x \cos { }^{-1} x-\sqrt{1-x^{2}} \\
& \int \tan ^{-1} x d x=x \tan ^{-1} x-\log e \sqrt{1+x^{2}}
\end{aligned}
$$

302

Table of infegrals continued

Definite integrals

$\int_{0}^{\infty} x^{n-1} e^{-x} d x=\Gamma(n)^{*}$
$\int_{0}^{1} x^{m-1}(1-x)^{m-1} d x=\frac{\Gamma(m) \Gamma(n) *}{\Gamma(m+n)}$
$\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)^{*}}{\Gamma\left(\frac{n}{2}+1\right)^{n}}, n>-1$
$\int_{0}^{\infty} \frac{\sin m x d x}{x}=\frac{\pi}{2}$ if $m>0 ; 0$ if $m=0 ;-\frac{\pi}{2}$ if $m<0$
$\int_{0}^{\infty} \frac{\cos m x d x}{1+x^{2}}=\frac{\pi}{2} e^{-|m|}$
$\int_{0}^{\infty} \frac{\cos x d x}{\sqrt{x}}=\int_{0}^{\infty} \frac{\sin x d x}{\sqrt{x}}=\sqrt{\frac{\pi}{2}}$
$\int_{0}^{\infty} e^{-\sigma^{2} x^{2}} d x=\frac{1}{2 a} \sqrt{\pi}$
$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{2}\left(\frac{\pi}{2} \sin x\right) d x}{\cos x}=1.22$

- Volves of Γ inf are tobulated in Jahnko \& Emdo, Tables of functioash

n	10* dif	n	-n diff	n	*	n	-* diff	n	- ${ }^{-3}$	n	${ }^{-7}$
0.00	1.000	0.50	1.649	1.0	$2.718^{\text {\# }}$	0.00	1.000	0.50	. 607	1.0	348**
. 01	1.01010	. 51	1.66517	. 1	3.004	. 01	0.990	. 51	. 600	. 1	333
02	1.02010	. 52	1.682	2	3.320	. 02	$.980=10$ 10	. 52	. 595	2	301
. 03	1.03011	. 53	1.69917	3	3.669	. 03	. $970=9$. 53	. 589	3	273
04	1.04110	. 54	1.71617	4	4.055	. 04	. $961-10$. 54	. 583	4	. 247
0.05	1.05111	0.55	1.73318	1.3	4.482	0.03	. 951	0.35	. 577	1.5	. 223
06	1.06211	. 56	1.75117	6	4.953	. 06	.942-9	. 56	. 571	6	. 202
. 07	1.07310	. 58	1.76818	7	5.474	. 07	. $932=9$. 57	${ }^{5} 568$	7	. 183
. 08	1.08311	. 59	1.786 1.804	. 8	6.050 6.686	. 08	.923-9	. 58	. 560 .544	8	. 165
								. 5	. 554	. 9	. 150
0.10	1.105	0.60	1.822	2.0	7.389	0.10	. 905	0.60	. 54	2.0	. 135
. 11	1.116	. 61	1.840	. 1	8.166	. 11	.896	. 61	. 543	. 1	. 122
. 12	1.12712	. 62	1.85919	2	9.025	. 12	.887	. 62	. 536	2	. 111
. 13	1.13911	. 63	1.878	3	9.974	. 13	.878	. 63	. 533	3	. 100
. 14	1.150	. 64	1.89620	. 4	11.02	. 14	${ }^{869}$ - 8	S4	. 527	4	0907
0.15	$1.162 \quad 12$	0.65	1.916	2.5	12.18	0.15	. 861	0.65	. 522	2.5	. 0221
. 16	1.17411	. 66	1.93519	8	13.46	. 16	.852-8	. 66	. 517	6	. 0743
.17	1.18512	. 67	1.95420	7	14.88	. 17	.840 ${ }^{8}$. 6	. 512	7	. 0672
.18		68 69	1.97420	8	16.44	. 18	${ }_{827} 88$. 68	. 507	8	. 0508
. 19	1.20912	. 69	1.99420	9	18.17	. 19	. $827=8$. 69	. 502	. 9	. 0550
0.20	1.201	0.70	2014	3.0	20.09	0.20	819	0.70	. 497	3.0	. 0498
21	1.23413	71	2.03420	. 1	22.20	. 21	$811=$. 71	. 492	1	. 0450
22	1.24612	72	2.05420	2	24.53	. 22	${ }^{803}=$. 72	. 487	2	. 0408
23	1.259	. 73	2075	. 3	27.11	. 23	.795-8	. 73	. 482	3	. 0369
24	1.27113	74	200621	4	27.96	24	.787-8	. 74	. 477	4	1034
0.23	1.28413	0.75	211721	3.5	33.12	0.25	.779-8	0.75	. 472	3.3	. 0302
26	1.29713					26		. 77	. 468	6	. 0273
- 27	1.31013 1.323	. 77	2160 2181 21	3	40.45 44.70	.27	.763 756 58	. 77	. 463	7	0247
-29	1.33613	78	220322	8	49.40 49.40	. 28	.746-8	. 79	. 4.54	.	. 0224
0.30	1.350	0.00	2226	4.0	54.60	0.30	.741-	0.80	. 449	4.0	. 0183
. 31	1.36314	. 81	224822	. 1	60.34	. 31	733-8	. 81	. 445	. 1	. 0166
. 32	1.37714	. 82	2.27022	2	68.69	. 32	.725-7	. 82	. 440	2	. 0150
. 33	1.39114	. 83	$2.293{ }_{23}^{23}$	3	73.70	. 33	.719-7	. 83	. 436	3	. 0136
34	1.40514	84	$2.316{ }_{24}^{23}$. 4	81.45	. 34	$.712=7$. 84	. 432	4	. 0123
0.35	1.41914	0.85	2.34023	4.3	90.02	0.35	.705-9	0.05	427	4.3	. 0111
. 36			23,363 23			. 36	.698-7	. 86	423		
.37 .38	1.44814 1.462	87	238724 2411 24				. 691 - 7	. 87		5.0	. 00674
. 38	1.462 1.477	. 88	2.41124 2.435	6.0 7.0	1093.4	.38 .39	. 6894^{-7}	. 88	. 415	6.0	. 00248
\cdots	1.4715	89	2.43525	7.0	1097.	. 39	${ }^{.677}$ - 7	. 29	. 111	7.0	. 000912
0.40	1.40215	0.90	${ }_{2} 2.460$	8.0	2981.	0.40	. 670 - 6	0.90	. 407	2.0	. 000335
. 41	1.50715		$2.484{ }^{24}$		8103.		. 664 - 7	. 91	. 403	9.0	. 000123
. 42	1.52215	.92	2.50926	10.0	22086.	. 42	. 657^{-7}	. 92	399	10.0	. 000045
. 44	1.537 1.553	9	${ }_{2}^{2.5350} 25$. 43	. 651 - 7	. 93	385		
	1.0515	. 9	2.56026	$\pi / 2$	4.810	4	. 644 - 6	. 94	391	T/2	. 208
0.45		0.95		$2 \pi / 2$	23.14					2x/2	. 0432
. 46	1.58416	. 96	$2.612{ }^{26}$	$3 \pi / 2$	${ }_{5355}$	0.45	.638-7	0.93	388	3x/2	. 00878
. 47	1.600	. 97	2.638	5m/2	2576.	. 47	. $625-6$. 97	. 379	4x/2	. 00187
. 48	1.616	. 98	2.664	6m/2	12392.	. 48	.6219	. 98	. 375	6 $\pi / 2$.000081
. 49	1.63217	. 99	2.69127	7 $7 / 2$	59610.	. 49	. $613=$. 99	. 372	7x/2	. 000017
				$8 \pi / 2$	286751.					$8 \pi / 2$. 000003
0.50	1.649	1.00	2.718			0.50	0.607	1.00	. 368		

[^23]Common logarithms of numbers and proportional parts

	0	1	2	3	4	5	6	7	3	9	proportional ports						
											12	31			6		9
10	0000	0043	0088	0128	0170	0212	0253	0294	0334	0374	481		172	12	5		337
11	0414	0453	0492	0531	0569	0607	. 0645	0682	0719	0755	48	11	1519	92	3		3034
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	37	10	14	72	1		2831
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	36	10	13	6	9	23	2629
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	36	9	12	5	8	21	2427
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	36	8	11	4	7	20	2225
16	2041	2068	2095	2122	2148	2175	2201	2727	2253	2279	35	8		3	16	18	2124
17.	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	25	7		2	15	17	2022
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	25	7	9	2	14	16	1921
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	24	7	9	1	13	16	1820
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	24	6	8	1	13	15	1719
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	24	6	8	10	12	14	1618
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	24	6	81	10	12	14	1517
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	24	6	7	9	11	13	1517
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	24	5	7	91	11	12	1416
25	3979	3997	4014	4031	4048	4065	4062	4099	4116	4133	23	5	7	91	10	12	1415
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	23	5	7	81	10		1315
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	23	5	6	8	9	11	1314
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	23	5	6	8	9	11	1214
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	13	4	6	7	9	10	1213
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	13	4	6	7	9	10	1113
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	13	4	5	7	8		1112
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	13	4	5	7	8	9	1112
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	13	4	5	6	8	9	1012
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	13	4	5	6	8	9	1011
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	12	4	5	6	7	9	
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	12	4	5	6	7	8	1011
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	12	3	5	6	7	8	910
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	12	3	5	6	7	8	910
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	12	3	4	5	7	8	910
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	3	4	5	6	7	910
41	6128	6138	8149	6160	6170	6180	6191	6201	6212	6222	12	3	4	5	6	7	89
42	6232	6243	6253	8263	6274	6294	6294	6304	6314	6325	12	3	4	5	6	7	89
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	12	3	4	5	6	7	89
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	12	3	4	5	6	7	89
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	12	3	4	5	6	7	89
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	12	3	4	5	6	7	78
47	6721	6730	6739	6749	6758	8787	6776	6785	6794	6803	12	3		5	5	6	78
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	12	3	4	4	5	6	78
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	12	3	4	4	5	6	8
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	12	3	3	4	5	6	78
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	12	3	3	4	5	6	78
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	12	2	3	4	5	6	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	12	2	3	4	5	6	67
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	12	2	3	4	5	6	67

Common logarithms of numbers and proportional parts continued

	0										propertional peris							
	0										12	3	4	5		7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	12	2	3	4		5	6	67
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	12	2	,			5		67
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	12	2	3	4	5	5		87
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	11	2	3	4		5	6	67
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	11	2	3	4	4	5	6	67
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	11	2	3	4		5	6	66
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	11	2	3	4		5		6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	11	2	3	,		5	6	6
63	7993	8900	8007	8014	8021	8028	8035	8041	8048	8055	11	2	3			5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	11	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	11	2	3	3		5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	11	2	3	3	4	5	5	6
67	8261	8267	8274	8250	8287	8293	8299	8306	8312	8319	11	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382 .	11	2	3	,		4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	11	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	11	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	11	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	11	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	11	2	2	,	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	11	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8331	8837	8842	8848	8854	8859	11	2	2	3	3	4	5	5
77	8855	8871	8876	8882	8887	8893	8899	8904	8910	8915	11	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	11	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	. 9015	9020	9025	11	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	11	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	11	2	2	3	3	4	4	5
83	9191	9198	9201	9206	9212	9217	9222	9227	9232	9238	11	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	8284	9289	11	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	11	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	11	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	01	1	2	2	3	3		4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	01	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	01	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	01	1	2	2	3	3	4	4
91	9590	9595	9600	9805	9609	9614	9619	9624	9628	9633	01	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9875	9680	01	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	01	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	01	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	01	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	01	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	01	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	01	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	01	,	2	2	3		,	4

306
Natural trigonometric functions
for decimal fractions of a degree

dag	\sin	cos	Ian	cel		deg	sin	cos	Pan	cot	
				∞	90.0	6.0	. 10453	0.9945	. 10510	9.514	84.0
0.0	. 00000	1.0000	. 00000	573.0	\% 0.9	. 1	. 10628	. 9943	. 10687	9.357°	. 9
. 1	. 00175	1.0000	. 00175	573.0	8	.	. 10800	. 9942		9.205	
. 2	. 00349	1.0000	. 00349	286.5	8	.2	.10800 .10973	. 9942	. 10863	9.205	. 8
3	.00524	1.0000	.00524 .00698	191.0 143.24	. 6	. 4	. 10973	.9940	. 11217	8.050	
. 4	. 00698	1.0000	. 00698	143.24	. 6	. 5	. 11147	. 9938	. .11217	8.915 8.777	. 6
. 5	. 00873	1.0000	. 00873	114.59 95.49	. 4	. 5	. 11320	. 9936	. .11394	8.777	. 4
8	. 01347	0.9999 .9999	.01047 .01222	95.49 81.85	. 3	. 7	. 11494	.9934	. 11747	8.513	3
. 8	. 01222	. 9999	. 01222	81.85 71.62	. 2	. 8	. 11840	. 9930	. 11924	8.386	. 2
. 9	. 01571	. 9999	. 01571	63.66	. 1	. 9	.12014	. 9928	.12101	8.264	. 1
1.0	. 01745	0.9998	. 01746	57.29	89.0	7.0	. 12187	0.9925	. 12278	8.144	3.0
. 1	. 01920	. 9998	. 01920	52.08	. 9	. 1	. 12360	. 9923	. 12456	8.028	. 9
. 2	. 02094	. 9978	. 02095	47.74	. 8	. 2	. 12533	. 9921	. 12633	7.916	8
. 3	. 02269	. 9997	. 02269	44.07	7	. 3	. 1270%	. 9919	. 12810	7.806	7
. 4	. 02443	. 9997	. 02444	40.92	. 6	.4	. 12880	. 9917	. 12988	7.700	. 6
. 5	. 02618	. 9997	. 02619	38.19	. 5	. 5	. 13053	. 9914	. 13165	7.596	. 5
. 6	. 02792	. 9996	. 02793	35.80	. 4	. 6	. 13226	. 9912	. 13343	7.495	. 4
. 7	. 02967	. 9996	. 02968	33.69	. 3	. 7	. 13399	. 9910	. 13521	7.396	3
. 8	. 03141	. 9995	. 03143	31.82	. 2	8	. 13572	. 9907	. 13698	7.300	. 2
. 9	. 03316	. 9995	. 03317	30.14	. 1	. 9	. 13744	. 9905	. 13876	7.207	.1
2.0	. 03490	0.9994	. 03492	28.64	88.0	8.0	. 13917	0.9903	. 14054	7.115	82.0
. 1	. 03664	. 9993	. 03667	27.27	. 9	. 1	. 14990	. 9900	. 14232	7.026	. 9
.2	. 03839	. 9993	. 03842	26.03	8	.2	. 14263	. 9898	. 14410	6.940	8
. 3	. 04013	. 9992	. 04016	24.90	. 7	. 3	. 14436	. 9895	. 14588	6.855	. 7
. 4	. 04188	. 9991	. 04191	23.86	. 6	. 4	. 14608	. 9893	. 14767	6.772	. 6
. 5	. 04362	. 9990	. 04366	22.90	. 5	. 5	. 14781	. 9890	. 14945	6.691	. 5
. 6	. 04536	. 9990	. 04541	22.02	. 4	. 6	. 14954	. 9888	. 15124	6.612	. 4
7	. 04711	. 9989	. 04716	21.20	. 3	. 7	. 15126	. 9885	. 15302	6.535	. 3
8	. 04885	. 9988	. 04891	20.45	. 2	8	. 15299	. 9882	. 15481	6.460	.$^{\circ}$
. 9	. 05059	. 9987	. 05066	19.74	. 1	. 9	. 15471	. 9880	.15660	6.386	. 1
3.0	. 05234	0.9986	. 05241	19.081	87.0	9.0	. 15643	0.9877	. 15838	6.314	81.0
. 1	. 05408	. 9985	. 05416	18.464	. 9	. 1	. 15816	. 9874	. 16017	6.243	. 9
.2	. 05582	. 9984	. 05591	17.886	8	. 2	. 15988	. 9871	. 16196	6.174	. 8
3	. 05756	. 9983	. 05768	17.343	. 7	3	. 16160	. 9869	. 16376	6.107	7
. 4	. 05931	. 9982	. 05941	16.832	. 6	. 4	. 16333	. 9868	. 16555	6.041	. 6
. 5	. 08105	. 9981	. 06116	16.350	. 5	. 5	. 16505	. 9863	. 16734	5.976	. 5
. 6	. 06279	. 9980	. 08291	15.895	. 4	6	. 16677	. 9860	. 16914	5.912	4
.7	. 04453	. 9979	. 08467	15.464	.3	7	. 16849	. 9857	. 17093	5.850 5	3
. 8	. 06627	. 9978	. 06842	15.056	. 2	8	. 17021	. 9854	. 17273	5.789	. 2
. 9	. 06802	. 9977	. 08817	14.669	. 1	. 9	. 17193	. 9851	. 17453	5.730	. 1
4.0	. 06976	0.9976	. 06993	14.301	18.0	10.0	. 1736	0.9848	. 1763	5.671	80.0
. 1	. 07150	. 9974	. 07168	13.951	. 9	. 1	. 1754	. 9845	. 1781	5.614	9
. 2	. 07324	. 9973	. 07344	13.617	8	. 2	. 1771	. 9842	. 1799	5.558	8
. 3	. 07498	. 9972	. 07519	13.300	. 7	. 3	. 1788	. 9839	. 1817	5.503	. 7
. 4	. 07672	. 9971	. 07695	12.996	. 6	4	. 1805	. 9836	. 1835	5.449	. 6
. 5	. 07846	. 9969	. 07870	12.706	. 5	. 5	. 1822	. 9833	. 1853	5.396	. 5
. 6	. 08020	. 9968	. 08046	12.429	. 4	6	. 1840	. 9829	. 1871	5.343	. 4
. 7	. 08194	. 9966	. 08221	12.163	. 3	. 7	. 1857	. 9826	. 1890	5.292	. 3
8	. 08368	. 9965	. 08397	11.909	. 2	8	. 1874	.9823	. 1908	5.242 5.193	. 1
. 9	. 08542	. 9963	. 08573	11.664	. 1	. 9	.1891	. 9820	. 1926	5.193	.
3.0	. 08716	0.9962	. 08749	11.430	85.0	11.0	. 1908	0.9816	. 1944	5.145	79.0
. 1	'08889	. 9960	. 08925	11.205	. 9	. 1	. 1925	. 9813	. 1962	5.097	. 9
. 2	. 09063	. 9959	. 09101	10.988	8	. 2	. 1942	. 9810	. 1980	5.050	8
. 3	. 09237	. 9957	. 09277	10.780	. 7	. 3	. 1959	. 9806	. 1998	5.005	7
. 4	. 09411	. 9956	. 09453	10.579	. 6	. 4	. 1977	. 9803	. 2016	4.959	. 6
. 5	. 08585	. 9954	. 09629	10.385	. 5	. 5	. 1994	. 9799	. 2035	4.915	. 5
. 6	. 09758	. 9952	. 09805	10.199	. 4	. 6	. 2011	. 9796	. 2053	4.872	. 4
. 7	. 09932	. 9951	. 09981	10.019	.3	7	. 2028	. 9792	. 2071	4.829	3
. 8	. 10108	. 9949	. 10158	9.845	. 2	8	. 2045	. 9789	. 2089	4.787	. 1
. 9	.10279	. 9947	. 10334	9.677	. 1	. 9	. 2062	. 9785	. 2107	4.745	1
6.0	. 10453	0.9945	.10510	9.514	84.0	12.0	. 2079	0.9781	2126	4.705	78.0
	cos	\sin	cot	Sn	deg		cos	\sin	cot	\%n	deg

Nafural trigonomefric tunctions
for decimal fractions of a degree conlinued

deg	\sin	cos	Pan	cof		dog	\sin	cos	fan	cof	
12.0	0.2079	0.9781	0.2126	4.705	78.0	18.0	0.3090	0.9511	0.3249	3.078	72.0
. 1	. 2096	. 9778	. 2144	4.665	. 9	.	. 3107	. 9505	. 3269	3.060	. 9
. 2	. 2113	. 9774	. 2162	4.625	. 8	. 2	. 3123	. 9500	. 3288	3.042	. 8
. 3	. 2130	. 9770	. 2180	4.586	. 7	. 3	. 3140	. 9494	. 3307	3.024	. 7
.4	. 2147	. 9767	. 2199	4.546	. 6	. 4	. 3156	. 9489	. 3327	3.006	. 6
. 5	2164	. 9763	. 2217	4.511	. 5	. 5	. 3173	. 9483	. 3346	2.989	. 5
. 6	. 2181	. 9759	. 2235	4.474	. 4	. 6	. 3190	. 9478	. 3365	2.971	. 4
7	. 2198	. 9755	. 2254	4.437	. 3	. 7	. 3205	. 9472	. 3385	2.954	. 3
. 8	. 2215	. 9751	.2272	4.402	. 2	. 8	. 3223	. 9466	. 3404	2.937	. 2
. 9	.2233	. 9748	. 2290	4.366	. 1	. 9	. 3239	. 9461	. 3424	2.921	.1
13.0	0.2250	0.9744	0.2309	4.331	77.0	19.0	0.3256	0.9455	0.3443	2.904	71.0
.1	. 2267	. 9740	. 2327	4.297	. 9	. 1	. 3272	. 9449	. 3463	2.888	. 9
. 2	. 2284	. 9736	. 2345	4.264	. 8	.2	. 3289	. 9444	. 3482	2.872	. 8
.3	. 2300	. 9732	. 2364	4.230	. 7	. 3	.3305	. 9438	. 3502	2.856	. 7
. 4	. 2317	. 9728	. 2382	4.198	. 6	. 4	. 3322	. 9432	. 3522	2.840	. 6
. 5	. 2334	. 9724	. 2401	4.165	. 5	. 5	. 3338	. 9426	. 3541	2.824	. 5
. 6	. 2351	. 9720	. 2419	4.134	. 4	. 6	. 3355	. 9421	. 3561	2.808	. 4
. 7	. 2368	. 9715	. 2438	4.102	.3	.7	. 3371	. 9415	. 3581	2.793	. 3
. 8	2385	. 9711	2456	4.078	. 2	. 8	. 3387	. 9409	. 3600	2.778	2
. 9	. 2402	. 9707	. 2475	4.041	. 1	. 9	. 3404	. 9403	. 3620	2.762	. 1
14.0	0.2419	0.9703	0.2493	4.011	76.0	20.0	0.3420	0.9397	0.3640	2.747	70.0
. 1	2436	. 9699	. 2512	3.981	. 9	. 1	. 3437	. 9391	. 3859	2.733	. 9
2	. 2453	. 9694	.2530	3.952	8	. 2	. 3453	. 9385	. 3679	2.718	. 8
3	. 2470	. 9690	. 2549	3.923	. 7	. 3	. 3469	. 9379	. 3699	2.703	. 7
. 4	. 2487	. 9686	. 2568	3.895	. 6	. 4	. 3486	. 9373	. 3719	2.689	. 6
. 5	2504	. 9681	. 2588	3.867	. 5	. 5	. 3502	. 9367	. 3739	2.675	. 5
. 6	2521	. 9677	.2605	3.839	. 4	. 6	. 3518	. 9361	. 3759	2.660	4
. 7	2538	. 9673	2623	3.812	.3	.7	. 3535	. 9354	. 3779	2.646	. 3
8	. 2554	. 9668	. 2642	3.785	. 2	. 8	. 3551	. 9348	. 3799	2.633	. 2
. 9	.2571	. 9864	. 2661	3.758	. 1	. 9	3567	. 9342	. 3819	2.619	. 1
13.0	0.2588	0.9659	0.2679	3.732	75.0	21.0	0.3584	0.9338	0.3839	2.805	69.0
. 1	. 2605	. 9655	. 2698	3.706	. 9	. 1	. 3600	. 9330	. 3859	2.592	. 9
. 2	. 2622	. 9650	. 2717	3.681	. 8	. 2	. 3616	. 9323	. 3879	2.578	. 8
. 3	. 2639	. 9646	. 2736	3.655	. 7	. 3	. 3633	. 9317	. 3899	2.565	. 7
. 4	. 2656	. 9641	. 2754	3.630	. 6	. 4	. 3649	. 9311	. 3919	2.552	. 6
. 5	.2672	. 9636	. 2773	3.606	. 5	.5	. 3665	. 9304	. 3939	2.539	. 5
. 6	. 2689	. 9632	2792	3.582	. 4	. 6	. 3681	. 9298	. 3959	2.526	4
7	. 2706	. 9627	. 2811	3.558	. 3	. 7	3697	. 9291	. 3979	2.513	. 3
. 8	.2723	. 9622	. 2830	3.534	. 2	. 8	. 3714	. 9228	. 4000	2.500	. 2
. 9	2740	. 9817	. 2849	3.511	.1	. 9	. 3730	. 9278	. 4020	2.488	. 1
16.0	0.2756	0.9813	0.2867	3.487	74.0	22.0	0.3746	0.9272	0.4040	2.475	68.0
. 1	. 2773	. 9608	. 2886	3.465	. 9	. 1	. 3762	. 9265	. 4061	2.463	. 9
. 2	. 2790	. 9603	. 2905	3.442	. 8	. 2	. 3778	. 9259	. 4081	2.450	. 8
. 3	.2807	. 9598	. 2924	3.420	. 7	. 3	. 3795	. 9252	.4101	2.438	. 7
. 4	. 2823	. 9593	.2943	3.398	. 6	. 4	. 3811	. 9245	. 4122	2.426	. 6
. 5	. 2840	. 9588	. 2962	3.376	. 5	. 5	.3827	. 9239	. 4142	2.414	. 5
. 6	. 2857	. 9583	. 2981	3.354	. 4	. 6	. 3843	. 9232	.4163	2.402	. 4
. 7	. 2874	. 9578	. 3000	3.333	.3	. 7	. 3859	. 9225	. 4183	2.391	. 3
. 8	. 2890	. 9573	. 3019	3.312	. 2	. 8	. 3875	. 9219	. 4204	2.379	2
. 9	. 2907	. 9568	. 3038	3.291	. 1	. 9	. 3891	. 9212	. 4224	2.367	. 1
17.0	0.2924	0.9563	0.3057	3.271	73.0	23.0	0.3907	0.9205	0.4245	2.356	87.0
. 1	. 2940	. 9558	. 3076	3.251	. 9	. 1	. 3923	. 9198	. 4265	2.344	. 9
.2	2957	. 9553	. 3096	3.230	. 8	. 2	. 3939	. 9191	. 4286	2.333	. 8
.3	. 2974	. 9548	. 3115	3.211	7	. 3	. 3955	. 9184	. 4307	2.322	7
. 4	. 2990	. 9542	. 3134	3.191	. 6	. 4	. 3971	. 9178	. 4327	2.311	. 6
. 5	. 3007	. 9537	. 3153	3.172	. 5	. 5	. 3987	. 9171	. 4348	2.300	. 5
.6	. 3024	. 9532	. 3172	3.152	.4	.6	. 4003	. 9164	. 4369	2.289	. 4
. 7	. 3040	. 9527	. 3191	3.133	.3	. 7	. 4019	. 9157	.4390	2.278	. 3
. 8	3057	. 9521	. 3211	3.115	. 2	. 8	. 4035	. 9150	. 4411	2.267	. 2
. 9	3074	. 9516	.3230	3.096	. 1	. 9	. 4051	. 9143	. 4431	2.257	. 1
18.0	0.3090	0.9511	0.3249	3.078	72.0	24.0	0.4067	0.9135	0.4452	2.246	66.0
	ces	\sin	col	tan	dog		cos	\sin	cot	tan	deg

for decimal fractions of a degree continued

deg	\sin	ces	ton	col		deg	\sin	cot	Tan	cot	
24.0	0.4067	0.9135	0.4452	2.246	66.0	30.0	0.5000	0.8660	0.5774	1.7321	60.0
. 1	. 4083	. 9128	. 4473	2.236	. 9	. 1	. 5015	. 8052	. 5797	1.7251	. 9
. 2	. 4099	. 9121	. 4494	2.225	8	. 2	. 5030	8043	. 5820	1.7182	. 8
. 3	. 4115	. 9114	. 4515	2.215	. 7	.3	. 5045	. 8034	. 5844	1.7113	. 7
. 4	. 4131	. 9107	. 4536	2.204	. 6	. 4	. 5060	. 8025	. 5887	1.7045	. 6
. 5	. 4147	. 9100	. 4557	2.194	. 5	. 5	. 5075	. 8816	. 5890	1.6977	. 5
. 6	. 4163	. 9092	. 4578	2.184	. 4	.6	. 5090	. 8007	. 5914	1.6909	. 4
. 7	. 4179	.9785	. 4599	2.174	. 3	. 7	. 5105	8599	. 5938	1.6842	3
8	. 4195	. 9078	. 4621	2.164	. 2	8	. 5120	8590	. 5961	1.6775	2
. 9	. 4210	. 9070	. 4642	2.154	. 1	. 9	. 5135	. 8581	. 5985	1.6709	. 1
25.0	0.4226	0.9063	0.4663	2.145	85.0	31.0	0.5150	0.8572	0.6009	1.6643	59.0
. 1	. 4242	. 9056	. 4684	2.135	. 9	. 1	. 5165	. 8563	. 6032	1.6577	. 9
2	. 4258	. 9048	. 4706	2.125	. 8	. 2	. 5180	. 8554	. 6056	1.6512	8
3	. 4274	. 9041	. 4727	2.116	. 7	. 3	. 5195	. 8545	. 6080	1.6447	. 7
. 4	. 4289	. 9033	. 4748	2.106	. 6	. 4	. 5210	. 8536	. 6104	1.6383	6
. 5	. 4305	. 9026	. 4770	2.097	. 5	. 5	. 5225	. 8526	. 6128	1.6319	. 5
. 6	.4321	. 9018	. 4791	2.087	. 4	. 6	. 5240	. 8517	. 6152	1.6255	. 4
. 7	. 4337	. 9011	. 4813	2.078	.3	. 7	. 5255	.8508	. 6176	1.6191	. 3
. 8	. 4352	. 9003	. 4834	2.069	2	. 8	. 5270	. 8499	. 6200	1.6128	2
. 9	. 4368	. 8996	. 4856	2.059	. 1	. 9	. 5284	. 8490	. 6224	1.6066	. 1
26.0	0.4384	0.8988	0.4877	2.050	64.0	32.0	0.5299	0.8480	0.6249	1.6003	58.0
.1	. 4399	. 8988	. 4899	2.041	. 9	. 1	. 5314	. 8471	. 6273	1.5941	. 9
2	.4415	. 8973	.4921	2.032	8	.2	. 5329	. 8462	. 6297	1.5880	8
3	. 4431	. 8965	. 4942	2.023	7	. 3	. 5344	8453	. 6322	1.5818	. 7
. 4	. 4446	. 8957	. 4964	2.014	. 6	. 4	. 5358	8443	. 6346	1.5757	. 6
. 5	. 4462	. 8949	. 4986	2.006	. 5	. 5	. 5373	. 8434	. 6371	1.5697	. 5
6	. 4478	. 8942	. 5008	1.997	4	. 6	. 5388	. 8425	. 6395	1.5637	. 4
. 7	. 4493	. 8934	. 5029	1.988	. 3	. 7	. 5402	. 8415	. 6420	1.5577	. 3
. 8	. 4509	. 8926	. 5051	1.980	. 2	. 8	. 5417	. 8406	. 6445	1.5517	. 2
. 9	. 4524	. 8918	. 5073	1.971	. 1	. 9	. 5432	. 8396	. 6469	1.5458	.1
27.0	0.4540	0.8910	0.5095	1.963	63.0	33.0	0.5446	0.8387	0.6494	1.5399	57.0
. 1	. 4555	. 8902	. 5117	1.954	. 9	. 1	. 5461	. 8377	. 6519	1.5340	. 9
2	. 4571	. 8894	. 5139	1.946	. 8	. 2	. 5476	. 8368	. 6544	1.5282	. 8
. 3	. 4586	. 8888	. 5161	1.937	. 7	. 3	. 5490	. 8358	. 6569	1.5224	. 7
. 4	. 4602	. 8878	. 5184	1.929	. 6	. 4	. 5505	-. 8348	. 6594	1.5166	. 6
. 5	. 4617	. 8870	. 5206	1.921	. 5	. 5	. 5519	. 8339	. 6619	1.5108	. 5
. 6	.4633	. 8882	. 5228	1.913	. 4	. 6	. 5534	. 8329	. 6644	1.5051	. 4
. 7	. 4648	. 8854	. 5250	1.905	.3	. 7	. 5548	. 8320	. 6869	1.4994	3
. 8	. 4664	. 8846	. 5272	1.897	. 2	. 8	. 5563	. 8310	. 6694	1.4938	2
. 9	. 4679	. 8838	. 5295	1.869	. 1	. 9	. 5577	8300	. 6720	1.4882	. 1
28.0	0.4695	0.8829	0.5317	1.881	62.0	34.0	0.5592	0.8290	0.6745	1.4826	56.0
. 1	. 4710	. 8821	. 5340	1.873	. 9	. 1	. 5606	. 8281	. 6771	1.4770	. 9
. 2	. 4726	. 8813	. 5362	1.865	. 8	. 2	. 5621	. 8271	.6796	1.4715	. 8
. 3	. 4741	. 8805	. 5384	1.857	. 7	. 3	. 5635	. 8261	. 6822	1.4659	. 7
4	. 4756	. 8796	. 5407	1.849	. 6	. 4	. 5650	. 8251	. 6847	1.4605	. 6
. 5	. 4772	. 8788	. 5430	1.842	. 5	. 5	. 5664	. 8241	. 6873	1.4550	. 5
. 6	. 4787	. 8780	. 5452	1.834	.4	. 6	. 5678	. 8231	. 6899	1.4496	. 4
. 7	. 4802	. 8771	. 5475	1.827	. 3	. 7	. 5693	. 8221	. 6924	1.4442	. 3
. 8	. 4818	. 8763	. 5498	1.819	. 2	. 8	. 5707	. 8211	. 6950	1.4388	. 2
. 9	. 4833	. 8755	. 5520	1.811	. 1	. 9	. 5721	. 8202	. 6976	1.4335	. 1
29.0	0.4848	0.8746	0.5543	1.804	61.0	35.0	0.5736	0.8192	0.7002	1.4281	55.0
. 1	. 4863	. 8738	. 5566	1.797	. 9	. 1	. 5750	. 8181	. 7028	1.4229	. 9
. 2	. 4879	. 8729	. 55889	1.789	. 8	. 2	. 5764	. 8171	. 7054	1.4176	8
. 3	. 4894	. 8721	. 5612	1.782	. 7	3	. 5779	. 8161	. 7080	1.4124	. 7
. 4	. 4909	. 8712	. 5635	1.775	. 6	. 4	. 5793	. 8151	. 7107	1.4071	. 6
. 5	. 4924	. 8704	. 5658	1.767	. 5	. 5	. 5807	. 8141	. 7133	1.4019	. 5
. 6	. 4939	. 8695	. 5881	1.760	4	. 6	. 5821	. 8131	. 7159	1.3968	. 4
. 7	. 4955	. 8686	. 5704	1.753	. 3	. 7	. 5835	. 8121	. 7186	1.3916	. 3
. 8	. 4970	. 8678	. 57727	1.746	. 2	. 8	. 5850	8111	. 7212	1.3865	. 2
. 9	. 4985	. 8669	. 5750	1.739	. 1	. 9	. 5864	8100	. 7239	1.3814	. 1
30.0	0.5000	0.8660	0.5774	1.732	60.0	36.0	0.5878	0.8090	0.7265	1.3764	54.0
	cos	\sin	cot	Ian	deg		cos	\sin	cot	fon	deg

Natural trigonometric functions
for decimal fractions of a degree continued

deg	sin	cos	Ian	cot		dea	\sin	cos	ton	cot	
36.0	0.5878	0.8090	0.7265	1.3764	34.0	40.3	0.6494	0.7604	0.8541	1.1708	49.5
. 1	. 5892	. 8080	7292	1.3713	. 9	. 6	. 6508	7593	. 8571	1.1667	. 4
. 2	. 5906	. 8070	. 7319	1.3663	. 8	. 7	. 6521	. 7581	. 8601	1.1626	3
3	. 5920	. 8059	. 7346	1.3613	. 7	. 8	. 6534	7570	8632	1.1585	. 2
. 4	. 5934	. 8049	. 7373	1.3564	. 6	. 9	. 6547	. 7559	. 8662	1.1544	. 1
. 5	. 5948	. 8039	. 7400	1.3514	. 5	41.0	0.6561	0.7547	0.8693	1.1504	49.0
. 6	. 5962	. 8028	. 7427	1.3465	.4	. 1	. 6574	. 7536	. 8724	1.1463	. 9
7	. 5976	. 8018	. 7454	1.3416	. 3	. 2	. 6587	. 7524	. 8754	1.1423	8
8	. 5990	. 8007	.7481	1.3367	. 2	. 3	. 6600	7513	8785	1.1383	7
.9	. 6004	. 7997	.7508	1.3319	. 1	. 4	. 6613	. 7501	8816	1.1343	. 6
37.0	0.6018	0.7986	0.7536	1.3270	53.0	. 5	. 6626	. 7490	8847	1.1303	. 5
.1	. 6032	. 7976	. 7563	1.3222	. 9	. 6	. 6639	. 7478	. 8878	1.1263	4
2	. 6046	. 7965	. 7590	1.3175	. 8	. 7	. 6652	. 7466	8910	1.1224	. 3
3	. 6060	. 7955	. 7618	1.3127	. 7	8	. 6665	7455	8941	1.1184	2
. 4	. 6074	. 7944	7646	1.3079	. 6	. 9	. 6678	. 7443	8972	1.1145	. 1
. 5	. 6088	. 7934	. 7673	1.3032	. 5	42.0	0.6691	0.7431	0.9004	1.1108	48.0
6	. 6101	.7923	7701	1.2985	. 4	.1	. 6704	. 7420	. 9036	1.1057	. 9
. 7	. 6115	7912	. 7729	1.2938	. 3	. 2	. 6717	. 7408	. 9067	1.1028	8
8	. 6129	. 7902	.7757	1.2892	. 2	. 3	. 6730	. 7396	. 9099	1.0990	. 7
.9	. 6143	. 7891	. 7785	1.2846	.1	. 4	. 6743	. 7385	. 9131	1.0951	. 6
38.0	0.8157	0.7880	0.7813	1.2799	32.0	. 5	. 6756	7373	. 9163	1.0913	. 5
. 1	. 6170	. 7869	. 7841	1.2753	. 9	. 6	. 6769	. 7361	. 9195	1.0875	4
. 2	. 6184	. 7859	. 7869	1.2708	8	. 7	. 6782	. 7349	. 9228	1.0837	3
. 3	. 6198	. 7848	. 7898	1.2662	. 7	. 8	. 6794	. 7337	. 9260	1.0799	2
. 4	.8211	. 7837	. 7926	1.2617	. 6	. 9	. 6807	. 7325	. 9293	1.0761	. 1
. 5	. 6225	. 7826	. 7954	1.2572	. 5	43.0	0.6820	0.7314	0.9325	1.0724	47.0
6	. 6239	. 7815	. 7983	1.2527	. 4	.1	. 6833	. 7302	. 9358	1.0686	. 9
. 7	. 6252	. 7804	. 8012	1.2482	3	2	. 6845	. 7290	. 9391	1.0649	. 8
8	. 6268	. 7793	. 8040	1.2437	. 2	3	. 6858	. 7278	. 9424	1.0612	7
. 9	. 6280	. 7782	. 8069	1.2393	. 1	. 4	. 6871	. 7268	. 9457	1.0575	. 6
39.0	0.6293	0.7771	0.8098	1.2349	51.0	. 5	. 6884	. 7254	. 9490	1.0538	5
. 1	. 8307	. 7760	. 8127	1.2305	. 9	. 6	. 6896	. 7242	. 9523	1.0501	. 4
.2	. 6320	. 7749	.8156	1.2281	8	. 7	. 6909	7230	. 9556	1.0464	3
.3	. 6334	. 7738	. 8185	1.2218	. 7	. 8	. 6921	. 7218	. 9590	1.0428	2
.4	. 6347	7727	. 8214	1.2174	.6	. 9	. 6934	. 7206	. 9623	1.0392	. 1
. 5	. 6361	. 7716	. 8243	1.2131	. 5	44.0	0.6947	0.7193	0.9657	1.0355	46.0
. 6	. 6374	. 7705	. 8273	1.2688	4	. 1	. 6959	. 7181	. 9691	1.0319	. 9
. 7	. 6388	. 7694	. 8302	1.2045	. 3	. 2	. 6972	. 7169	. 9725	1.0283	8
8	. 6401	. 7683	. 8332	1.2002	. 2	. 3	. 6984	. 7157	. 9759	1.0247	. 7
. 9	. 6414	. 7672	. 8361	1.1960	. 1	. 4	. 6997	. 7145	. 9793	1.0212	. 6
40.0	0.6428	0.7880	0.8391	1.1918	50.0	. 5	. 7009	. 7133	. 9827	1.0176	5
. 1	. 6441	. 7649	. 8421	1.1875	. 9	. 6	. 7022	. 7120	.9861	1.0141	. 4
. 2	. 6455	.7638	. 8451	1.1833	. 8	. 7	. 7034	.7108	. 9896	1.0105	3
3	. 6468	. 7627	. 8481	1.1792	. 7	. 8	. 7046	. 7096	. 9930	1.0070	2
. 4	. 6481	. 7615	8.811	1.1750	. 6	. 9	. 7059	. 7083	. 9965	1.0035	. 1
40.3	0.6494	0.7604	0.8541	1.1708	49.5	45.0	0.7071	0.7071	1.0000	1.0000	45.0
	cos	\sin	cof	fan	deg		cos	sta	col	tan	deg

Logarithms of trigonometric functions
for decimal fractions of a degree

doy	$L \sin$	1 cos	1 tan	1 col		deg	4 sin	L cos	1 Ion	1 col	
0.0	- -	0.0000	- -	∞	90.0	6.0	9.0192	9.9976	9.0216	0.9784	4.0
. 1	7.2419	0.0000	7.2419	2.7581	. 9	. 1	9.0264	9.9975	9.0289	0.9711	. 9
. 2	7.5429	0.0000	7.5429	2.4571	. 8	. 2	9.0334	9.9975	9.0360	0.9640	. 8
. 3	7.7190	0.0000	7.7190	2.2810	. 7	3	9.0403	9.9974	9.0430	0.9570	7
. 4	7.8439	0.0000	7.8439	2.1561	. 6	. 4	9.0472	9.9973	9.0499	0.9501	. 6
5	7.9408	0.0000	7.9409	2.0591	. 5	. 5	9.0539	9.9972	9.0567	0.9433	. 5
. 6	8.0200	0.0000	8.0200	1.9800	. 4	. 6	9.0605	9.9971	9.0633	0.9367	. 4
. 7	8.0870	0.0000	8.0870	1.9130	3	7	9.0670	9.9970	9.0699	0.9301	3
. 8	8.1450	0.0000	8.1450	1.8550	. 2	. 8	9.0734	9.9969	9.0764	0.9236	2
. 9	8.1961	9.9999	8.1962	1.8038	. 1	. 9	9.0797	9.9968	9.0828	0.9172	. 1
1.0	8.2419	9.9999	8.2419	1.7581	89.0	7.0	9.0859	9.9968	9.0891	0.9109	83.0
. 1	8.2832	9.9999	8.2833	1.7167	. 9	. 1	9.0920	9.9967	9.0954	0.9046	. 9
2	8.3210	9.9999	8.3211	1.6769	. 8	. 2	9.0981	9.9966	9.1015	0.8985	. 8
. 3	8.3558	9.9999	8.3559	1.6441	7	. 3	9.1040	9.9965	9.1076	0.8924	. 7
. 4	8.3880	9.9999	8.3881	1.6119	. 6	. 4	9.1099	9.9964	9.1135	0.8885	. 6
. 5	8.4179	9.9999	8.4181	1.5819	. 5	. 5	9.1157	9.9963	9.1194	0.8806	. 5
. 6	8.4459	9.9998	8.4461	1.5539	. 4	. 6	9.1214	9.9962	9.1252	0.8748	. 4
. 7	8.4723	9.9998	8.4725	1.5275	3	. 7	9.1271	9.9961	9.1310	0.8690	. 3
. 8	8.4971	9.9998	8.4973	1.5027	. 2	. 8	9.1326	9.9960	9.1367	0.8833	2
. 9	8.5206	9.9998	8.5208	1.4792	. 1	. 9	9.1381	9.9959	9.1423	0.8577	. 1
2.0	8.5428	9.9997	8.5431	1.4569	88.0	8.0	9.1436	9.9958	9.1478	0.8522	82.0
. 1	8.5640	9.9997	8.5643	1.4357	. 9	. 1	9.1489	9.9956	9.1533	0.8467	. 9
. 2	8.5842	9.9997	8.5845	1.4155	. 8	. 2	9.1542	9.9955	9.1587	0.8413	. 8
. 3	8.6035	9.9996	8.6038	1.3962	. 7	. 3	9.1594	9.9954	9.1640	0.8360	. 7
. 4	8.6220	9.9996	8.6223	1.3777	. 6	. 4	9.1646	9.9953	9.1693	0.8307	. 6
. 5	8.6397	9.9996	8.6401	1.3599	. 5	. 5	9.1697	9.9952	9.1745	0.8255	. 5
. 6	8.6567	9.9996	8.6571	1.3429	. 4	. 6	9.1747	9.9951	9.1797	0.8203	. 4
. 7	8.6731	9.9995	8.6736	1.3264	. 3	. 7	9.1797	9.9950	9.1848	0.8152	. 3
. 8	8.6889	9.9995	8.6894	1.3106	. 2	. 8	9.1847	9.9949	9.1898	0.8102	. 2
. 9	8.7041	9.9994	8.7046	1.2954	. 1	. 9	9.1895	9.9947	9.1948	0.8052	. 1
3.0	8.7188	9.9994	8.7194	1.2806	87.0	9.0	9.1943	9.9946	9.1997	0.8003	81.0
. 1	8.7330	9.9994	8.7337	1.2663	. 9	. 1	9.1991	9.9945	9.2046	0.7954	. 9
. 2	8.7468	9.9993	8.7475	1.2525	8	. 2	9.2038	9.9944	9.2094	0.7906	. 8
. 3	8.7802	9.9993	8.7609	1.2391	. 7	. 3	9.2085	9.9943	9.2142	0.7858	.7
. 4	8.7731	9.9992	8.7739	1.2261	. 6	. 4	9.2131	9.9941	9.2189	0.7811	. 6
. 5	8.7857	9.9992	8.7865	1.2135	. 5	. 5	9.2176	9.9940	9.2236	0.7764	. 5
. 6	8.7979	9.9991	8.7988	1.2012	. 4	. 6	9.2221	9.9939	9.2282	0.7718	. 4
. 7	8.8098	9.9991	8.8107	1.1893	. 3	. 7	9.2266	9.9937	9.2328	0.7672	. 3
. 8	8.8213	9.9990	8.8223	1.1777	. 2	. 8	9.2310	9.9936	9.2374	0.7626	. 2
. 9	8.8326	9.9990	8.8336	1.1664	. 1	. 9	9.2353	9.9935	9.2419	0.7581	. 1
4.0	8.8436	9.9989	8.8446	1.1554	86.0	10.0	9.2397	9.9934	9.2463	0.7537	30.0
. 1	8.8543	9.9989	8.8554	1.1446	. 9	. 1	9.2439	9.9932	9.2507	0.7493	. 9
. 2	8.8647	9.9988	8.8659	1.1341	. 8	. 2	9.2482	9.9931	9.2551	0.7449	. 8
. 3	8.8749	9.9988	8.8762	1.1238	. 7	. 3	9.2524	9.9929	9.2594	0.7406	.7
. 4	8.8849	9.9987	8.8862	1.1138	. 6	. 4	9.2565	9.9928	9.2637	0.7363	. 6
. 5	8.8946	9.9987	8.8960	1.1040	. 5	. 5	9.2606	9.9927	9.2680	0.7320	. 5
. 6	8.9042	9.9986	8.9056	1.0944	4	. 6	9.2647	9.9925	9.2722	0.7278	. 4
. 7	8.9135	9.9985	8.9150	1.0850	. 3	. 7	9.2687	9.9924	9.2764	0.7236	.3
. 8	8.9226	9.9985	8.9241	1.0759	. 2	. 8	9.2727	9.9922	9.2805	0.7195	. 2
. 9	8.9315	9.9984	8.9331	1.0669	. 1	. 9	9.2767	9.9921	9.2846	0.7154	. 1
5.0	8.9403	9.9983	8.9420	1.0580	05.0	11.0	9.2806	9.9919	9.2887	0.7113	79.0
. 1	8.9489	9.9983	8.9506	1.0494	. 9	. 1	9.2845	9.9918	9.2927	0.7073	. 9
. 2	8.9573	9.9982	8.9591	1.0409	. 8	. 2	9.2883	9.9916	9.2967	0.7033	. 8
. 3	8.9655	9.9981	8.9674	1.0326	. 7	. 3	9.2921	9.9915	9.3006	0.6994	. 7
. 4	8.9736	9.9981	8.9756	1.0244	. 6	. 4	9.2959	9.9913	9.3046	0.6954	. 6
. 5	8.9816	9.9980	8.9836	1.0164	. 5	. 5	9.2997	9.9912	9.3085	0.6915	. 5
. 6	8.9894	9.9979	8.9915	1.0085	. 4	. 6	9.3034	9.9910	9.3123	0.6877	. 4
. 7	8.9970	9.9978	8.9992	1.0008	. 3	. 7	9.3070	9.9909	9.3162	0.6838	. 3
. 8	9.0046	9.9978	9.0068	0.9932	. 2	. 8	9.3107	9.9907	9.3200	0.6800	. 2
. 9	9.0120	9.9977	9.0143	0.9857	. 1	. 9	9.3143	9.9906	9.3237	0.6763	.1
6.0	9.0192	9.9976	9.0216	0.9784	84.0	12.0	9.3179	9.9904	9.3275	0.6725	78.0
	L cos	Lsin	L col	Lton	dea		L cos	$L \sin$	L cot	Ltan	dea

Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	4 sin	L cos \|	4 Itan	4 cot		deg	1 sin	$L \cos$	1 ton	L col	
12.0	9.3179	9.9904	0.3275	0.6725	7	180	0.4000	0.9782			
. 1			9.32		78.0	.	9.49	9.978		0.4882	72.0
.		9.9902	9.3312	0.8688	. 9	. 1	9.4923	9.9780	9.5143	0.4857	. 9
	9.3250	9.9901	9.3349	0.6651	. 8	. 2	9.4946	9.9777	9.5169	0.4831	. 8
. 3	9.3284	9.9899	9.3385	0.6615	. 7	. 3	9.4969	9.9775	9.5195	0.4805	. 7
. 4	9.3319	9.9897	9.3422	0.6578	. 6	. 4	9.4992	9.9772	9.5220	0.4780	. 6
. 5	9.3353	9.9896	9.3458	0.6542	. 5	. 5	9.5015	9.9770	9.5245	0.4755	. 5
. 6	9.3387	9.9894	- 9.3493	0.6507	. 4	. 6	9.5037	9.9767	9.5270	0.4730	. 4
. 7	9.3421	9.9892	9.3529	0.6471	.3	. 7	9.5060	9.9764	9.5295	0.4705	3
. 8	9.3455	9.9891	9.3564	0.6436	. 2	. 8	9.5082	9.9762	9.5320	0.4680	. 2
. 9	9.3488	9.9889	9.3599	0.6401	. 1	. 9	9.5104	9.9759	9.5345	0.4655	. 1
13.0	9.3521	9.9887	9.3634	0.6366	77.0	19.0	9.5126	9.9757	9.5370	0.4630	71.0
. 1	9.3554	9.9885	9.3668	0.6332	. 9	. 1	9.5148	9.9754	9.5394	0.4606	. 9
. 2	9.3586	9.9884	9.3702	0.6298	8	. 2	9.5170	9.9751	9.5419	0.4581	. 8
3	9.3618	9.9882	9.3736	0.6264	. 7	. 3	9.5192	9.9749	9.5443	0.4557	7
. 4	93650	9.9880	9.3770	0.6230	. 6	. 4	9.5213	9.9746	9.5467	0.4533	6
. 5	9.3682	9.9878	9.3804	0.6196	. 5	. 5	9.5235	9.9743	9.5491	0.4509	. 5
6	9.3713	9.9876	9.3837	0.6163	. 4	. 6	9.5256	9.9741	9.5516	0.4484	. 4
. 7	9.3745	9.9875	9.3870	0.6130	. 3	. 7	9.5278	9.9738	9.5539	0.4461	.3
8	9.3775	9.9873	9.3903	0.6097	2	. 8	9.5299	9.9735	9.5563	0.4437	. 2
. 9	9.3806	9.9871	9.3935	0.6065	.1	. 9	9.5320	9.9733	9.5587	0.4413	. 1
14.0	9.3037	9.9669	9.3968	0.0032	76.0	20.0	9.5341	9.9730	9.5611	0.4389	70.0
. 1	9.3667	9.9867	9.4000	0.6000	. 9	. 1	9.5361	9.9727	95634	0.4366	. 9
. 2	9.3897	9.9865	9.4032	0.5968	. 8	. 2	9.5382	9.9724	9.5658	0.4342	. 8
3	9.3927	9.9863	9.4064	0.5936	. 7	. 3	9.5402	9.9722	9.5481	0.4319	.7
. 4	9.3957	9.9861	9.4095	0.5905	. 6	. 4	9.5423	9.9719	9.5704	0.4296	. 6
. 5	9.3986	9.9859	9.4127	0.5873	. 5	. 5	9.5443	9.9716	9.5727	0.4273	. 5
. 6	9.4015	9.9857	9.4158	0.5842	. 4	. 6	9.5463	9.9713	9.5750	0.4250	. 4
. 7	9.4044	9.9855	9.4189	0.5811	. 3	. 7	9.5484	9.9710	9.5773	0.4227	. 3
. 8	9.4073	9.9853	9.4220	0.5780	. 2	. 8	9.5504	9.9707	9.5796	0.4204	. 2
. 9	9.4102	9.9851	9.4250	0.5750	. 1	. 9	9.5523	9.9704	9.5819	0.4181	. 1
13.0	9.4130	9.9849	9.4281	0.5719	75.0	21.0	9.5543	9.9702	9.5842	0.4158	69.0
. 1	9.4158	9.9847	9.4311	0.5689	. 9	. 1	9.5563	9.9699	9.5864	0.4136	. 9
.2	9.4186	9.9845	9.4341	0.5659	. 8	. 2	9.5583	9.9696	9.5897	0.4113	. 8
. 3	9.4214	9.9843	9.4371	0.5629	. 7	.3	9.5602	9.9693	9.5909	0.4091	. 7
. 4	9.4242	9.9841	9.4400	0.5600	.6	. 4	9.5621	9.9690	9.5932	0.4068	. 6
. 5	9.4269	9.9839	9.4430	0.5570	. 5	. 5	9.5641	9.9687	9.5954	0.4046	. 5
. 6	9.4296	9.9837	9.4459	0.5541	4	. 6	9.5660	9.9604	9.5976	0.4024	. 4
7	9.4323	9.9835	9.4488	0.5512	. 3	7	9.5679	9.9681	9.5998	0.4002	.3
8	9.4350	9.9833	9.4517	0.5483	.2	. 8	9.5698	9.9678	9.6020	0.3980	2
. 9	9.4377	9.9831	9.4546	0.5454	. 1	. 9	9.5717	9.9675	9.6042	0.3958	.1
16.0	9.4403	9.9828	9.4575	0.5425	74.0	22.0	9.5736	9.9672	9.6064	0.3936	68.0
. 1	9.4430	9.9826	9.4603	0.5397	. 9	. 1	9.5754	9.9669	9.6086	0.3914	. 9
.2	9.4456	9.9824	9.4632	0.5368	. 8	. 2	9.5773	9.9666	9.6108	0.3892	. 8
. 3	9.4482	9.9822	9.4660	0.5340	. 7	. 3	9.5792	9.9662	9.6129	0.3871	7
.4	9.4508	9.9820	9.4688	0.5312	. 6	. 4	9.5810	9.9659	9.6151	0.3849	. 6
. 5	$9.4 \leqslant 33$	9.9817	9.4718	0.5284	. 5	. 5	9.5828	9.9656	9.6172	0.3828	. 5
. 6	9.4559	9.9815	9.4744	0.5256	.4	. 6	9.5847	9.9653	9.6194	0.3806	. 4
. 7	9.4584	9.9813	9.4771	0.5229	. 3	. 7	9.5865	9.9650	9.6215	0.3785	. 3
. 8	9.4609	9.9811	9.4799	0.5201	. 2	. 8	9.5883	9.9647	9.6236	0.3764	. 2
. 9	9.4634	9.9808	9.4826	0.5174	. 1	. 9	9.5901	9.9643	9.6257	0.3743	. 1
17.0	9.4659	9.9806	9.4853	0.5147	73.0	23.0	9.5919	9.9640	9.6279	0.3721	67.0
. 1	9.4684	9.9804	9.4880	0.5120	. 9	. 1	9.5937	9.9637	9.6300	0.3700	. 9
. 2	9.4709	9.9801	9.4907	0.5093	. 8	. 2	9.5954	9.9634	9.6321	0.3679	8
. 3	9.4733	9.9799	9.4934	0.5066	. 7	. 3	9.5972	9.9631	9.6341	0.3659	. 7
4	9.4757	9.9797	9.4961	0.5039	. 6	. 4	9.5990	9.9627	9.6362	0.3638	6
. 5	9.4781	9.9794	9.4987	0.5013	.5	. 5	9.6007	9.9624	9.6383	0.3617	. 5
.6	9.4805	9.9792	9.5014	0.4986	.4	. 6	9.6024	9.9621	9.6404	0.3596	. 4
. 7	9.4829	9.9789	9.5040	0.4960	3	7	9.6042	9.9617	9.6424	0.3576	. 3
. 8	9.4853	9.9787	9.5066	0.4934	. 2	. 8	9.6059	9.9614	9.8445	0.3555	. 2
. 9	9.4876	9.9785	9.5092	0.4908	. 1	. 9	9.6076	9.9611	9.6465	0.3535	. 1
18.0	9.4900	9.9782	9.5118	0.4882	72.0	24.0	9.6093	9.9607	9.6486	0.3514	66.0
	L cos	L sin	L cot	Lion	deg		L cos	L sin	L cot	L fon	deg

Logarithms of trigonometric functions
for decimal fractions of a degree continued

deg	$L \sin$	L cos	L Ian	L cot		dog	$L \sin$	L cos	Ltan	1 col	
24.0	9.6093	9.9607	9.6486	0.3514	66.0	30.0	9.6990	9.9375	9.7614	0.2386	60.0
. 1	9.6110	9.9604	9.6506	0.3494	. 9	.	9.7003	9.9371	9.7632	0.2368	. 9
. 2	9.6127	9.9601	9.6527	0.3473	. 8	2	9.7016	9.9367	9.7649	0.2351	8
. 3	9.6144	9.9597	9.6547	0.3453	. 7	. 3	9.7029	9.9362	9.7667	0.2333	. 7
. 4	9.6161	9.9594	9.6567	0.3433	. 6	. 4	9.7042	9.9358	9.7684	0.2316	. 6
. 5	9.6177	9.9590	9.6587	0.3413	. 5	. 5	9.7055	9.9353	9.7701	0.2299	. 5
. 6	9.6194	9.9587	9.6607	0.3393	. 4	. 6	9.7068	9.9349	9.7719	0.2281	. 4
. 7	9.6210	9.9583	9.6627	0.3373	3	7	9.7080	9.9344	9.7736	0.2264	3
. 8	9.6227	9.9580	9.6647	0.3353	. 2	. 8	9.7093	9.9340	9.7753	0.2247	. 2
. 9	9.6243	9.9576	9.6667	0.3333	. 1	. 9	9.7106	9.9335	9.7771	0.2229	. 1
25.0	9.6259	9.9573	9.6687	0.3313	65.0	31.0	9.7118	9.9331	9.7788	0.2212	59.0
. 1	9.6276	9.9569	9.6706	0.3294	. 9	. 1	9.7131	9.9326	9.7805	0.2195	. 9
. 2	9.6292	9.9566	9.6726	0.3274	. 8	. 2	9.7144	9.9322	9.7822	0.2178	. 8
. 3	9.6338	9.9562	9.6746	0.3254	. 7	. 3	9.7156	9.9317	9.7839	0.2161	. 7
4	9.6324	9.9558	9.6765	0.3235	. 6	. 4	9.7168	9.9312	9.7856	0.2144	. 6
. 5	9.6340	9.9555	9.6785	0.3215	. 5	. 5	9.7181	9.9308	9.7873	0.2127	. 5
. 6	9.6356	9.9551	9.6804	0.3196	. 4	. 6	9.7193	9.9303	9.789	0.2110	4
7	9.6371	9.9548	9.6824	0.3176	. 3	. 7	9.7205	9.9298	9.7907	0.2093	. 3
8	9.6387	9.9544	9.8843	0.3157	. 2	. 8	9.7218	9.9294	9.7924	0.2076	2
. 9	9.6403	9.9540	9.6863	0.3137	. 1	. 9	9.7230	9.9289	9.7941	0.2059	. 1
26.0	9.6418	9.9537	9.6882	0.3118	64.0	32.0	9.7242	9.9284	9.7958	0.2042	58.0
. 1	9.6434	9.9533	9.8901	0.3099	. 9	. 1	9.7254	9.9279	9.7975	0.2025	
2	9.6449	9.9529	9.6920	0.3080	. 8	. 2	9.7266	9.9275	9.7992	0.2008	8
. 3	9.6465	9.9525	9.6939	0.3061	. 7	. 3	9.7278	9.9270	9.8008	0.1992	. 7
. 4	9.6480	9.9522	9.6958	0.3042	. 6	4	9.7290	9.9265	9.8025	0.1975	. 6
. 5	9.6495	9.9518	9.6977	0.3023	. 5	. 5	9.7302	9.9260	9.8042	0.1958	. 5
. 6	9.6510	9.9514	9.6996	0.3004	4	. 6	9.7314	9.9255	9.8059	0.1941	4
7	9.6526	9.9510	9.7015	0.2985	. 3	. 7	9.7326	9.9251	9.8075	0.1925	. 3
. 8	9.6541	9.9506	9.7034	0.2966	. 2	. 8	9.7338	9.9246	9.8092	0.1908	. 2
. 9	9.6556	9.9503	9.7053	0.2947	. 1	. 9	9.7349	9.9241	9.8109	0.1891	. 1
27.0	9.6570	9.9499	9.7072	0.2928	63.0	33.0	9.7361	9.9236	9.8125	0.1875	57.0
. 1	9.6585	9.9495	9.7090	0.2910	. 9	. 1	9.7373	9.9231	9.8142	0.1858	. 9
2	9.6600	9.9491	9.7109	0.2891	. 8	. 2	9.7384	9.9228	9.8158	0.1842	8
. 3	9.6615	9.9487	9.7128	0.2872	. 7	. 3	9.7396	9.9221	9.8175	0.1825	. 7
. 4	9.6629	9.9483	9.7146	0.2854	. 6	. 4	9.7407	9.9216	9.8191	0.1809	. 6
. 5	9.8644	9.9479	9.7165	0.2835	. 5	. 5	9.7419	9.9211	98208	0.1792	. 5
. 6	9.6559	9.9475	9.7183	0.2817	.4	. 6	9.7430	9.9206	9.8224	0.1776	. 4
. 7	9.6673	9.9471	9.7202	0.2798	3	. 7	9.7442	9.9201	9.8241	0.1759	. 3
8	9.6687	9.9467	9.7220	0.2780	. 2	. 8	9.7453	9.9196	9.8257	0.1743	. 2
. 9	9.6702	9.9463	9.7238	0.2762	,	. 9	9.7464	9.9191	9.8274	0.1726	,
28.0	9.6716	9.9459	9.7257	0.2743	62.0	34.0	9.7478	9.9186	9.8290	0.1710	56.0
. 1	9.6730	9.9455	9.7275	0.2725	. 9	. 1	9.7487	9.9181	9.8306	0.1694	. 9
. 2	9.6744	9.9451	9.7293	0.2707	8	. 2	9.7498	9.9175	9.8323	0.1677	. 8
.3	9.6759	9.9447	9.7311	0.2689	. 7	. 3	9.7509	9.9170	9.8339	0.1661	. 7
. 4	9.6773	9.9443	9.7330	0.2670	. 6	. 4	9.7520	9.9165	9.8355	0.1645	6
. 5	9.6787	9.9439	9.7348	0.2652	.5	. 5	9.7531	9.9160	9.8371	0.1629	. 5
. 6	9.6801	9.9435	9.7366	0.2634	4	. 6	9.7542	9.9155	9.8388	0.1612	. 4
. 7	9.6814	9.9431	9.7384	0.2616	. 3	. 7	9.7553	9.9149	9.8404	0.159	. 3
8	9.6828	9.9427	9.7402	0.2598	. 2	. 8	9.7564	9.9144	9.8420	0.1580	. 2
. 9	9.6842	9.9422	9.7420	0.2580	. 1	. 9	9.7575	9.9139	9.8436	0.1564	. 1
29.0	9.6856	9.9418	9.7438	0.2562	61.0	35.0	9.7586	9.9134	9.8452	0.1548	55.0
. 1	9.6869	9.9414	9.7455	0.2545	. 9	. 1	9.7597	9.9128	9.8468	0.1532	. 9
. 2	9.6883	9.9410	9.7473	0.2527	8	. 2	9.7807	9.9123	9.8484	0.1516	. 8
3	9.6896	9.9406	9.7491	0.2509	. 7	. 3	9.7618	9.9118	9.8501	0.1499	. 7
. 4	9.6910	9.9401	9.7509	0.2491	. 6	. 4	9.7629	9.9112	9.8517	0.1483	. 6
. 5	9.6923	9.9397	9.7526	0.2474	. 5	. 5	9.7640	9.9107	9.8533	0.1467	. 5
. 6	9.6937	9.9393	9.7544	0.2456	4	. 6	9.7650	9.901	9.8549	0.1451	4
7	9.6950	9.9388	9.7562	0.2438	.3	. 7	9.7661	9.9006	9.8555	0.1435	. 3
. 8	9.6963	9.9384	9.7579	0.2421	${ }^{2}$	8	9.7671	9.9091 9.9085	9.8581 9.8597	0.1419	. 2
. 9	9.6977	9.9380	9.7597	0.2403	. 1	. 9	9.7682	9.9085	9.8597	0.1403	. 1
30.0	9.6990	9.9375	9.7614	0.2386	60.0	36.0	9.7692	9.9080	9.8613	0.1387	54.0
	Leos	L sin	Leot	Lton	dog		Leos	L sin	L cot	Lian	do

Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	$L \sin$	1 cos	L tan	1 cot		deg	$L \sin$	1 cos	LIan	1 col	
36.0	9.7692	9.9080	9.8613	0.1387	54.0	40.3	9.8125	9.8810	9.9315	0.0685	49.3
. 1	9.7703	9.9074	9.8629	0.1371	. 9	. 6	9.8134	9.8804	9.9330	0.6670	. 4
. 2	9.7713	9.9069	9.8644	0.1356	. 8	. 7	9.8143	9.8797	9.9346	. 0.0654	. 3
. 3	9.7723	9.9063	9.8860	0.1340	7	. 8	9.8152	9.8791	9.9361	0.0639	. 2
. 4	9.7734	9.9057	9.8676	0.1324	. 6	. 9	9.8161	9.8784	9.9376	0.0624	. 1
. 5	9.7744	9.9052	9.8692	0.1308	. 5	41.0	9.8169	9.8778	9.9392	0.0608	49.0
6	9.7754	9.9046	9.8708	0.1292	. 4	. 1	9.8178	9.8771	9.9407	0.0593	. 9
. 7	9.7764	9.9041	9.8724	0.1276	. 3	. 2	9.8187	9.8765	9.9422	0.0578	. 8
. 8	9.7774	9.9035	9.8740	0.1260	. 2	. 3	9.8195	9.8758	9.9438	0.0562	7
. 9	9.7785	9.9029	9.8755	0.1245	. 1	. 4	9.8204	9.8751	9.9453	0.0547	. 6
37.0	9.7795	9.9023	9.8771	0.1229	53.0	. 5	9.8213	9.8745	9.9468	0.0532	. 5
. 1	9.7805	9.9018	9.8787	0.1213	. 9	. 6	9.8221	9.8738	9.9483	0.0517	. 4
2	9.7815	9.9012	9.6303	0.1197	. 8	7	9.8230	9.8731	9.9499	0.0501	3
. 3	9.7825	9.9006	9.8818	0.1182	. 7	. 8	9.8238	9.8724	9.9514	0.0486	2
.4	9.7835	9.9000	9.8834	0.1166	. 6	. 9	9.8247	9.8718	9.9529	0.0471	. 1
. 5	9.7844	9.8995	9.8850	0.1150	. 5	42.0	9.8255	9.8711	9.9544	0.0456	48.0
. 6	9.7854	9.8989	9.8865	0.1135	. 4	. 1	9.8264	9.8704	9.9560	0.0440	. 9
. 7	9.7864	9.8983	9.8881	0.1119	. 3	. 2	9.8272	9.8697	9.9575	0.0425	. 8
8	9.7874	9.8977	9.8897	0.1103	. 2	3	9.8280	9.8690	9.9590	0.0410	7
. 9	9.7884	9.8971	9.8912	0.1088	. 1	. 4	9.8289	9.8683	9.9605	0.0395	6
38.0	9.7893	9.8965	9.8928	0.1072	52.0	. 5	9.8297	9.8676	9.9621	0.0379	. 5
. 1	9.7903	9.8959	9.8944	0.1056	. 9	. 6	9.8305	9.8669	9.9636	0.0354	. 4
. 2	9.7913	9.8753	9.8959	0.1041	. 8	. 7	9.8313	9.8662	9.9651	0.0349	. 3
.3	9.7922	9.8947	9.8975	0.1025	7	8	9.8322	9.8655	9.9688	0.0334	. 2
. 4	9.7932	9.8941	9.8990	0.1010	. 6	. 9	9.8330	9.8648	9.9681	0.0319	. 1
. 5	9.7941	9.8935	9.9006	0.0994	. 5	43.0	9.8338	9.8641	9.9697	0.0303	47.0
. 6	9.7951	9.8929	9.9022	0.0978	. 4	. 1	9.8346	9.8634	9.9712	0.0288	. 9
. 7	9.7960	9.8923	9.9037	0.0963	3	. 2	9.8354	9.8627	9.9727	0.0273	. 8
. 8	9.7970	9.8917	9.9053	0.0947	2	. 3	9.8362	9.8620	9.9742	0.0258	. 7
. 9	9.7979	9.8911	9.9068	0.0932	. 1	. 4	9.8370	9.8613	9.9757	0.0243	. 6
39.0	9.7989	9.8905	9.9084	0.0916	51.0	. 5	9.8378	9.8606	9.9772	0.0228	. 5
. 1	9.7998	9.8899	9.9099	0.0901	. 9	. 6	9.8386	9.8598	9.9788	0.0212	. 4
2	9.8007	9.8893	9.9115	0.0885	. 8	. 7	9.8394	9.8591	9.9803	0.0197	. 3
. 3	9.8017	9.8887	9.9130	0.0870	. 7	. 8	9.8402	9.8584	9.9818	0.0182	2
. 4	9.8026	9.8880	9.9146	0.0854	. 6	. 9	9.8410	9.8577	9.9833	0.0167	. 1
. 5	9.8035	9.8874	9.9161	0.0839	. 5	44.0	9.8418	9.8569	9.9848	0.0152	
.6	9.8044	9.8868	9.9176	0.0824	.4	. 1	9.8426	9.8562	9.9864	0.0136	. 9
2	9.8053	9.8362	9.9192	0.0808	. 3	. 2	9.8433	9.8555	9.9879	0.0121	. 8
. 8	9.8063	9.8855	9.9207	0.0793	. 2	3	9.8441	9.8547	9.9894	0.0106	7
.9	9.8072	9.8849	9.9223	0.0777	. 1	. 4	9.8449	9.8540	9.9909	0.0091	. 6
40.0	9.8081	9.8843	9.9238	0.0762	50.0	. 5	9.8457	9.8532	9.9924	0.0076	. 5
. 1	9.8090	9.8836	9.9254	0.0746	. 9	. 6	9.8464	9.8525	9.9939	0.0061	. 4
. 2	9.8099	9.8830	9.9269	0.0731	8	7	9.8472	9.8517	9.9955	0.0045	. 3
. 3	9.8108	9.8823	9.9284	0.0716	7	. 8	9.8480	9.8510	9.9970	0.0030	2
. 4	9.8117	9.8817	9.9300	0.0700	. 6	. 9	9.8487	9.8502	9.9985	0.0015	.1
40.5	9.8125	9.8810	9.9315	0.0685	49.5	45.0	9.8495	9.8495	0.0000	0.0000	48.0
	$1 . \cos$	L sin	L cot	Lian	deg		L ces	$1 . \sin$	L col	6 tan	des

Nafural logarithms

Nafural logarithms of 10^{+n}

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{7}$
$\log _{0} 10^{n}$	2.3026	4.6052	6.9078	9.2103	11.5129	13.8155	16.1181	18.4207	$\mathbf{2 0 . 7 2 3 3}$

MATHEMATICAL TABLES
 315

Nafural logarithms continued

											mean differences							
			2								1	2	3	4	5	6	7	89
5.5	1.7047	7068	7084	7102	7120	7138	7156	7174	7192	7210	2	4	5	7	9	11	13	1416
5.6	1.7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	2	4	5	7	9	11	12	1416
5.7	1.7405	7422	7440	7457	7475	7492	7509	7527	7544	7561	2	3	5	7	9	10	12	1416
5.8	1.7579	7596	7613	7630	7647	7664	7681	7699	7716	7733	2		5	7	9	10	12	1415
5.9	1.7750	7766	7783	7800	7817	7834	7851	7867	7884	7901	2	3	5	7	8	10	12	1315
6.0	1.7918	7934	7951	7967	7984	8001	8017	8034	8050	8066	2	,	5	7	8	10	12	1315
6.1	1.8083	8099	8116	8132	8148	8165	8181	8197	8213	8229	2	3	5	6	8	10	11	1315
6.2	1.8245	8262	8278	8294	8310	8326	8342	8358	8374	8390	2	3	5	6	8	10	11	1314
6.3	1.8405	8421	8437	8453	8469	8485	8500	8516	8532	8547	2	3	5	6	8	9	11	1314
6.4	1.8563	8579	8594	8610	8625	8641	8656	8672	8687	8703	2	3	5	6	8	9	11	1214
6.5	1.8718	8733	8749	8764	8779	8795	8810	8825	8840	8856	2	3	5	6	8	9	11	1214
6.6	1.8871	8886	8901	8916	8931	8946	8961	8976	8991	9006	2	3	5	6	8	9		1214
6.7	1.9021	9036	9051	9066	-9081	9095	9110	9125	9140	9155	1	3	4	6	7	9	10	1213
6.8	1.9169	9184	9199	9213	9228	9242	9257	9272	9286	9301	1	3	4	6	7	9	10	$12 \quad 13$
6.9	1.9315	9330	934	9359	9373	9387	9402	9416	9430	9445	i	3	4	6	7	9	10	$12 \quad 13$
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587		,	4	6	7	9	10	1113
7.1	1.9801	9615	9629	9643	9657	9671	9685	9699	9713	9727		3	4	6	7	8		1113
7.2	1.9741	9755	9769	9782	9796	9810	9824	9838	9851	9865		3	4	6	7	8	10	If 12
7.3	1.9879	9892	9906	9920	9933	9947	9961	9974	9988	2.0001	1	3	4	5	7	8	10	1112
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	1	3	4	5	7	8	9	1112
7.5	2.0149	0162	0176	0189	0202	0215	0229	0242	0255	0268		3	4	S	7	8	91	1112
7.6	2.0281	0285	0308	0321	0334	0347	0360	0373	0386	0399	1	3	4	5	7	8	91	$10 \quad 12$
7.7	2.0412	0425	0438	0451	0464	0477	0490	0503	0516	0.528	1	3	4	5	6	8	,	1012
7.8	2.0541	0554	0567	0580	0592	0605	0818	0631	0643	0656	1	3	4	5	6	8	9	1011
7.9	2.0669	0681	0694	0707	0719	0732	0744	0757	0769	0782	1	3	4	5	6	8	9	1011
8.0	2.0794	0807	0819	0832	0844	0857	0869	0882	0894	0906		3	4	5	6	7	910	1011
8.1	2.0919	0931	0943	0956	0968	0980	0892	1005	1017	1029	1	2	4	5	6	7		1011
8.2	2.1041	1054	1066	1078	1090	1102	1114	1126	1138	1150	1	2	4	5	6	7	9	1011
8.3	2.1163	1175	1187	1199	1211	1223	1235	1247	1258	1270	1	2	4	5	6	7	8	1011
8.4	2.1282	1294	1306	1318	1330	1342	1353	1365	1377	1389	1	2	4	5	6	7	8	911
E. ${ }^{\text {e }}$	2.1401	1412	1424	1436	1448	1459	1471	1483	1494	1506		2	4	S	6	7		
8.6	2.1518	1529	1541	1552	1564	1576	1587	1599	1610	1622	1	2	3	5	6	7	8	910
8.7	2.1633	1645	1656	1688	1679	1691	1702	1713	1725	1736	1	2	3	5	6	7	8	910
8.8	2.1748	1759	1770	1782	1793	1804	1815	1827	1838	1849	1	2	3	5	6	7	8	910
8.9	2.1861	1872	1883	1894	1905	1917	1928	1939	1950	1961	1	2	3	4	6	7	8	910
9.0	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	1	2	3	4	6	7	8	910
9.1	2.2083	2094	2105	2116	2127	2138	2148	2159	2170	2181	1	2	3	4	5	7	8	910
9.2	2.2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	1	2	3	4	5	6	8	910
9.3	2.2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	1	2	3	4	5	6	7	910
9.4	2.2407	2418	2428	2439	2450	2460	2471	2481	2492	2502	1	2	3	4	5	6	7	810
9.5	2.2513	2523	2534	2544	2555	2565	2576	2586	2597	2607	1	2	3	4	5	6	7	89
9.6	2.2618	2628	2638	2649	2659	2670	2680	2690	2701	2711	1	2	3	4	5	6	7	89
9.7	2.2721	2732	2742	2752	2762	2773	2783	2793	2803	2814	1	2	3	4	5	6	7	89
9.8	2.2824	2834	2844	2854	2865	2875	2885	2895	2905	2915	,	2	3	4	5	6	7	89
9.9	2.2925	2935	2946	2956	2966	2976	2986	2996	3006	3016	1	2	3	4	5	6	7	89
10.0	2.3026																	

Nafural logarithms of 10^{-n}

Hyperbolic sines [sinh $\left.x=1 / 2\left(e^{x}-e^{-x}\right)\right]$

X	0	1	2	3	4	5	6	7	*	9	$\begin{aligned} & \text { dvef } \\ & \text { diff } \end{aligned}$
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901	100
. 1	0.1002	0.1102	0.1203	0.1304	0.1405	0.1506	0.1607	0.1708	0.1810	0.1911	101
. 2	0.2013	0.2115	0.2218	0.2320	0.2423	0.2526	0.2629	0.2733	0.2837	0.2941	103
. 3	0.3045	0.3150	0.3255	0.3360	0.3466	0.3572	0.3678	0.3785	0.3892	0.4000	106
.4	0.4108	0.4216	0.4325	0.4434	0.4543	0.4653	0.4764	0.4875	0.4986	0.5098	110
0.5	0.5211	0.5324	0.5438	0.5552	0.5666	0.5782	0.5897	0.6014	0.6131	0.6248	116
. 6	0.6367	0.6485	0.6605	0.6725	0.6846	0.6967	0.7090	0.7213	0.7336	0.7461	122
. 7	0.7586	0.7712	0.7838	0.7966	0.8094	0.8223	0.8353	0.8484	0.8615	0.8748	130
8	0.8881	0.9015	0.9150	0.9286	0.9423	0.9561	0.9700	0.9840	0.9981	1.012	138
. 9	1.027	1.041	1.055	1.070	1.085	1.099	1.114	1.129	1.145	1.160	15
1.0	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
. 1	1.336	1.352	1.369	1.388	1.403	1.421	1.438	1.456	1.474	1.491	17
. 2	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
. 3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	21
. 4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
. 6	2.376	2.401	2428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
. 7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
. 8	2.942	2.973	3.005	3.037	3.069	3.101	3.134	3.167	3.200	3.234	33
. 9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
. 1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
.2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	53
. 4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
2.5	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
. 6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
. 7	7.408	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
. 8	8.192	8.275	8.359	8.443	8.529	8.615	8.702	8.790	8.879	8.969	87
. 9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
3.0	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	11
. 1	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
. 2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
. 3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
3.3	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
.6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	21
. 8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
. 9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
4.0	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29
. 1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
.2	33.34	33.67	34,01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35
.3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
.4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43
4.5	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
. 6	49.74	50.24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
. 7	54.97	55.52	56.08	56.64	57.21	57.79	58.37	58.96	59.55	60.15	58
. 8	60.75	61.36	61.98	62.60	63.23	63.87	64.51	65.16	65.81	66.47	64
. 9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
3.0	74.20										

$H x>5, \sinh x=1 / 2 \operatorname{lof}$ and $\log _{n} \sinh x=10.43431 x+0.690-1$, correct to four signifizant figures.

Hyperbolic cosines [cosh $x=1 / 2\left(e^{x}+e^{-x}\right)$]

\mathbf{x}	0	1	2	3	4	5	6	7	8	9	$\begin{aligned} & \text { dro } \\ & \text { diff } \end{aligned}$
0.0	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1
. 1	1.005	1.006	1.007	1.008	1.010	1.011	1.013	1.014	1.016	1.018	2
. 2	1.020	1.022	1.024	1.027	1.029	1.031	1.034	1.037	1.039	1.042	3
. 3	1.045	1.048	1.052	1.055	1.058	1.062	1.066	1.069	1.073	1.077	4
4	- 1.081	1.085	1.090	1.094	1.098	1.103	1.108	1.112	1.117	1.122	5
0.5	1.128	1.133	1.138	1.144	1.149	1.155	1.161	1.167	1.173	1.179	6
. 6	1.185	1.192	1.198	1.205	1.212	1.219	1.226	1.233	1.240	1.248	7
. 7	1.255	1.263	1.271	1.278	1.287	1.295	1.303	1.311	1.320	1.329	8
. 8	1.337	1.346	1.355	1.365	1.374	1.384	1.393	1.403	1.413	1.423	10
. 9	1.433	1.443	1.454	1.465	1.475	1.486	1.497	1.509	1.520	1.531	11
2.0	1.543	1.555	1.567	1.579	1.591	1.604	1.616	1.629	1,642	1.655	13
.1	1.669	1.682	1.696	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
. 2	1.811	1.826	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
.3	1.971	1.988	2.005	2.023	2040	2.058	2.076	2.095	2.113	2.132	18
. 4	2.151	2.170	2.189	2.209	2.229	2.249	2.269	2290	2.310	2.331	20
8.5	2352	2.374	2395	2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
. 6	2.577	2.601	2.625	2.650	2.675	2.700	2.725	2.750	-2.776	2.802	25
. 7	2.828	2.855	2882	2.909	2.936	2.964°	2.992	3.021	3.049	3.078	28
. 8	3.107	3.137	3.167	3.197	3.228	3.259	3.290	3.321	3.353	3.385	31
. 9	3.418	3.451	3.484	3.517	3.551	3.585	3.620	3.655	3.690	3.726	34
2.0	3.762	3.799	3.835	3.873	3.910	3.948	3.987	4.026	4.065	4.104	38
. 1	4.144	4.185	4.226	4.267	4.309	4.351	4.393	4.436	4.480	4.524	42
. 2	4.568	4.613	4.658	4.704	4.750	4.797	4.844	4.891	4.939	4.988	47
. 3	5.037	5.087	5.137	5.188	5.239	5.290	5.343	5.395	5.449	5.503	52
. 4	5.557	5.612	5.667	5.723	5.780	5.837	5.895	5.954	6.013	6.072	58
2.5	6.132	8.193	6.255	6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
. 6	6.769	6.836	6.904	6.973	7.042	7.112	7.183	7.255	7.327	7.400	70
. 7	7.473	7.548	7.623	7.699	7.776	7.853	7.932	8.011	8.091	8.171	78
. 8	8.253	8.335	8.418	8.502	8.587	8.673	8.759	8.847	8.935	9.024	86
. 9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95
3.0	10.07 .	10.17	10.27	10.37	10.48	10.58	10.69	10.79	10.90	11.01	11
. 1	11.12	11.23	11.35	11.46	11.57	11.69	11.81	11.92	12.04	12.16	12
. 2	12.29	12.41	12.53	12.66	12.79	12.91	13.04	13.17	13.31	13.44	13
3	13.57	13.71	13.85	13.99	14.13	14.27	14.41	14.56	14.70	14.85	14
. 4	15.00	15.15	15.30	15.45	15.61	15.77	15.92	16.08	16.25	16.41	16
3.5	16.57	16.74	16.91	17.08	17.25	17.42	17.60	17.77	17.95	18.13	17
6	18.31	18.50	18.68	18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
. 7	20.24	20.44	20.64	20.85	21.06	21.27	21.49	21.70	21.92	22.14	21
. 8	22.36	22.59	22.81	23.04	23.27	23.51	23.74	23.98	24.22	24.47	23
. 9	24.71	24.96	25.21	25.46	25.72	25.98	28.24	26.50	26.77	27.04	26
4.0	27.31	27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
. 1	30.18	30.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32
. 2	33.35	33.69	34.02	34.37	34.71	35.06	35.41	35.77	36.13	36.49	35
.3	36.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93	40.33	39
. 4	40.73	41.14	41.55	41.97	42.39	42.82	43.25	43.68	44.12	44.57	43
4.5	45.01	45.47	45.92	46.38	46.85	47.32	47.80	48.28	48.76	49.25	47
6	49.75	50.25	50,75	51.26	51.78	52.30	52.82	53.35	53.89	54.43	52
7	54.98	55.53	56.09	56.65	57.22	57.80	58.38	58.96	59.56	60.15	58
. 8	60.76	61.37	61.99	62.61	63.24	63.87	64.52	65.16	65.82	66.48	64
. 9	67.15	67.82	68.50	69.19	69.89	70.59	71.30	72.02	72.74	73.47	71
5.0	74.21										

If $x>5, \cosh x=1 / 2$ lasi, ond logio cosh $x=10.43431 x+0.6990-1$, correct to four significant figures.

Hyperbolic tangents [tanh $\left.x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)=\sinh x / \cosh x\right]$

X	0	1	2	3	4	5	6	7	8	9	diff
0.0	. 0000	. 0100	. 0200	. 0300	. 0400	. 0500	. 0599	. 0699	. 0798	. 0898	100
. 1	. 0997	. 1096	. 1194	. 1293	. 1391	. 1489	. 1587	. 1684	. 1781	. 1878	98
. 2	. 1974	. 2070	. 2165	. 2260	. 2355	. 2449	. 2543	. 2636	2729	2821	94
. 3	. 2913	. 3004	. 3095	. 3185	. 3275	. 3364	3452	3540	. 3627	. 3714	89
. 4	3800	. 3885	. 3969	. 4053	. 4136	. 4219	. 4301	. 4382	. 4462	. 4542	82
0.5	. 4621	. 4700	. 4777	. 4854	. 4930	. 5005	. 5080	. 5154	. 5227	. 5299	75
. 6	. 5370	. 5441	. 5511	. 5581	. 5649	. 5717	. 5784	. 5850	. 5915	. 5980	67
. 7	. 6044	. 6107	. 6169	. 8231	. 6291	. 6352	. 6411	. 6469	. 6527	. 6584	60
. 8	. 6640	. 6896	. 6751	. 6805	. 6858	. 6911	. 6963	. 7014	. 7064	. 7114	52
. 9	. 7163	. 7211	. 7259	. 7306	. 7352	. 7398	. 7443	. 7487	. 7531	. 7574	45
1.0	. 7616	. 7858	. 7699	. 7739	. 7779	. 7818	. 7857	. 7895	. 7932	. 7969	39
. 1	. 8005	. 8041	. 8076	. 8110	. 8144	. 8178	. 8210	. 8243	. 8275	. 8306	33
2	. 8337	. 8367	. 8397	. 8426	. 8455	. 8483	. 8511	. 8538	. 8565	. 8591	28
. 3	. 8617	. 8643	. 8668	. 8693	. 8717	. 8741	. 8764	. 8787	. 8810	. 8832	24
. 4	. 8854	. 8875	. 8898	8917	. 8937	. 8957	. 8977	. 8996	. 9015	. 9033	20
1.5	. 9052	. 9069	. 9087	. 9104	. 9121	. 9138	. 9154	. 9170	. 9186	. 9202	17
. 6	. 9217	. 9232	. 9246	. 9261	. 9275	. 9289	. 9302	. 9316	. 9329	. 9342	14
. 7	. 9354	. 9367	. 9379	. 9391	. 9402	. 9414	. 9425	. 9436	. 9447	. 9458	11
. 8	. 9468	. 9478	. 9488	. 9498	. 9508	. 9518	. 9527	. 9536	. 9545	. 9554	9
. 9	. 9562	. 9571	. 9579	. 9587	. 9595	. 9603	. 9611	. 9619	. 9626	. 9633	8
2.0	. 9640	. 9647	. 9654	. 9661	. 9868	. 9674	. 9880	. 9687	. 9693	. 9699	6
. 1	. 9705	. 9710	. 9716	. 9722	. 9727	. 9732	. 9738	. 9743	. 9748	. 9753	5
. 2	. 9757	. 9762	. 9767	. 9771	. 9776	. 9780	. 9785	. 9789	. 9793	. 9797	4
. 3	. 9801	. 9805	. 9809	. 9812	. 9816	. 9820	. 9823	. 9827	. 9830	. 9834	4
. 4	. 9837	. 9840	. 9843	. 9846	. 9849	. 9852	. 9855	. 9858	. 9861	. 9863	3
2.5	. 9886	. 9869	. 9871	. 9874	. 9876	. 9879	. 9881	. 9884	. 9888	. 9888	2
. 6	. 9890	. 9892	. 9895	. 9897	. 9899	. 9901	. 9903	. 9905	. 9906	. 9908	2
. 7	. 9910	. 9912	. 9914	. 9915	. 9917	. 9919	. 9920	. 9922	. 9923	. 9925	2
. 8	. 9926	. 9928	. 9929	. 9931	. 9932	. 9933	. 9935	. 9936	. 9937	. 9938	1
. 9	. 9940	. 9941	. 9942	. 9943	. 9944	. 9945	. 9946	. 9947	. 9949	. 9950	1
3.0	. 9951	. 9959	. 9967	. 9973	. 9978	. 9982	. 9985	. 9988	. 9990	. 9992	4
4.0	. 99993	. 9995	. 9996	. 9996	. 9997	. 9998	. 9998	. 9998	. 9999	. 9999	1

If $x>5$, tanh $x=1.0000$ to four decimal ploces.
Multiples of 0.4343 [$\left.0.43429448=\log _{10} \mathrm{e}\right]$

X	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0434	0.0869	0.1303	0.1737	0.2171	0.2606	0.3040	0.3474	0.3909
1.0	0.4343	0.4777	0.5212	0.5646	0.6080	0.6514	0.6949	0.7383	0.7817	0.8252
2.0	0.8686	0.9120	0.9554	0.9989	1.0423	1.0857	1.1292	1.1726	1.2160	1.2595
3.0	1.3029	1.3463	1.3897	1.4332	1.4768	1.5200	1.5635	1.6069	1.6503	1.6937
4.0	1.7372	1.7806	1.8240	1.8675	1.9109	1.9543	1.9978	2.0412	2.0846	2.1280
3.0	2.1715	2.2149	2.2583	2.3018	2.3452	23886	2.4320	2.4755	2.5189	2.5623
6.0	2.6058	2.6492	2.6926	2.7361	2.7795	2.8229	2.8663	2.9098	2.9532	2.9960
7.0	3.0401	3.0835	3.1269	3.1703	3.2138	3.2572	3.3006	3.3441	3.3875	3.4309
8.0	3.4744	3.5178	3.5612	3.6046	3.6481	3.6915	3.7349	3.7784	3.8218	3.8652
9.0	3.9087	3.9521	3.9955	4.0389	4.0824	4.1258	4.1692	4.2127	4.2561	4.2995

Multiples of $2.3026\left[2.3025851=1 / 0.4343=\log _{e} 10\right]$

X	0	1	2	3	4	5	6	7	8	-
0.0	0.0000	0.2303	0.4605	0.6908	0.9210	1.1513	1.3816	1.6118	1.8421	2.0723
1.0	2.3026	2.5328	2.7631	2.9934	3.2236	3.4539	3.6841	3.9144	4.1447	4.3749
2.0	4.6052	4.8354	5.0657	5.2959	5.5262	5.7565	5.9867	6.2170	6.4472	6.6775
3.0	6.9078	7.1380	7.3683	7.5985	7.8288	8.0590	8.2893	8.5196	8.7498	8.9801
4.0	9.2103	9.4406	9.6709	9.9011	10.131	10.362	10.592	10.822	11.052	11.283
3.0	11.513	11.743	11.973	12.204	12.434	12.664	12.894	13.125	13.355	13.585
6.0	13.816	14.046	14.276	14.506	14.737	14.967	15.197	15.427	15.658	15.888
7.0	16.118	16.348	16.579	16.809	17.039	17.269	17.500	17.730	17.980	18.190
8.0	18.421	18.651	18.881	19.111	19.342	19.572	19.802	20.032	20.263	20.493
9.0	20.723	20.954	21.184	21.414	21.644	21.875	22.105	22.335	22.565	22.796

Table 1- $J_{0}(z)$
Bessel functions

2	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	1.0000	0.9975	0.9900	0.9776	0.9604	0.9385	0.9120	0.8812	0.8463	0.8075
1	0.7652	0.7196	0.6711	0.6201	0.5669	0.5118	0.4554	0.3980	0.3400	0.2818
2	0.2239	0.1666	0.1104	0.0555	0.0025	-0.0484	-0.0968	-0.1424	-0.1850	-0.2243
3	-0.2601	-0.2921	-0.3202	-0.344	-0.3643	-0.3801	-0.3918	-0.3992	-0.4026	-0.4018
4	-0.3971	-0.3887	-0.3766	-0.3610	-0.3423	-0.3205	-0.2961	-0.2693	-0.2404	-0.2097
5	-0.1776	-0.1443	-0.1103	-0.0758	-0.0412	-0.0068	+0.0270	0.0599	0.0917	0.1220
6	0.1506	0.1773	0.2017	0.2238	0.2433	0.2601	0.2740	0.2851	0.2931	0.2981
7	0.3001	0.2991	0.2951	0.2882	0.2786	0.2663	0.2516	0.2346	0.2154	0.1944
8	0.1717	0.1475	0.1222	0.0960	0.0692	0.0419	0.0146	-0.0125	-0.0392	-0.0653
9	-0.0903	-0.1142	-0.1367	-0.1577	-0.1768	-0.1939	-0.2090	-0.2218	-0.2323	-0.2403
10	-0.2459	-0.2490	-0.2496	-0.2477	-0.2434	-0.2366	-0.2276	-0.2164	-0.2032	-0.1881
11	-0.1712	-0.1528	-0.1330	-0.1121	-0.0902	-0.0677	-0.0446	-0.0213	+0.0020	0.0250
12	0.0477	0.0697	0.0908	0.1108	0.1296	0.1469	0.1626	0.1766	0.1887	0.1988
13	0.2069	0.2129	0.2167	0.2183	0.2177	0.2150	0.2101	0.2032	0.1943	0.1836
14	0.1711	0.1570	0.1414	0.1245	0.1065	0.0875	0.0679	0.0476	0.0271	0.0064
15	-0.0142	-0.0346	-0.0544	-0.0736	-0.0919	-0.1092	-0.1253	-0.1401	-0.1533	-0.1650

Table II- $\mathrm{J}_{1}(\mathrm{z})$ continued Bessel functions

2	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0499	0.0995	0.1483	0.1960	0.2423	0.2867	0.3290	0.3688	0.4059
1	0.4401	0.4709	0.4983	0.5220	0.5419	0.5579	0.5699	0.5778	0.5815	0.5812
2	0.5767	0.5683	0.5560	0.5399	0.5202	0.4971	0.4708	0.4416	0.4097	0.3754
3	0.3391	0.3009	0.2613	0.2207	0.1792	0.1374	0.0955	0.0538	0.0128	-0.0272
4	-0.0660	-0.1033	-0.1386	-0.1719	-0.2028	-0.2311	-0.2566	-0.2791	-0.2985	-0.3147
5	-0.3276	-0.3371	-0.3432	-0.3460	-0.3453	-0.3414	-0.3343	-0.3241	-0.3110	-0.2951
6	-0.2767	-0.2559	-0.2329	-0.2081	-0.1816	-0.1538	-0.1250	-0.0953	-0.0652	-0.0349
7	-0.0047	+0.0252	0.0543	0.0826	0.1096	0.1352	0.1592	0.1813	0.2014	0.2192
8	0.2346	0.2476	0.2580	0.2657	0.2708	0.2731	0.2728	0.2697	0.2641	0.2559
9	0.2453	0.2324	0.2174	0.2004	0.1816	0.1613	0.1395	0.1166	0.0928	0.0684
10	0.0435	0.0184	-0.0066	-0.0313	-0.0555	-0.0789	-0.1012	-0.1224	-0.1422	-0.1603
11	-0.1768	-0.1913	-0.2039	-0.2143	-0.2225	-0.2284	-0.2320	-0.2333	-0.2323	-0.2290
12	-0.2234	-0.2157	-0.2060	-0.1943	-0.1807	-0.1655	-0.1487	-0.1307	-0.1114	-0.0912
13	-0.0703	-0.0489	-0.0271	-0.0052	+0.0166	0.0380	0.0590	0.0791	0.0984	0.1165
14	0.1334	0.1488	0.1626	0.1747	0.1850	0.1934	0.1999	0.2043	0.2066	0.2069
15	0.2051	0.2013	0.1955	0.1879	0.1784	0.1672	0.1544	0.1402	0.1247	0.1080

Table III- $\mathrm{J}_{2}(\mathrm{z})$

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0012	0.0050	0.0112	0.0197	0.0306	0.0437	0.0588	0.0758	0.0946
1	0.1149	0.1366	0.1593	0.1830	0.2074	0.2321	0.2570	0.2817	0.3061	0.3299
2	0.3528	0.3746	0.3951	0.4139	0.4310	0.4461	0.4590	0.4696	0.4777	0.4832
3	0.4861	0.4862	0.4835	0.4780	0.4697	0.4586	0.4448	0.4283	0.4093	0.3879
4	0.3641	0.3383	0.3105	0.2811	0.2501	0.2178	0.1846	0.1506	0.1161	0.0813

Table IV- $\mathrm{J}_{3}(\mathrm{z})$

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0002	0.0006	0.0013	0.0026	0.0044	0.0069	0.0102	0.0144
1	0.0196	0.0257	0.0329	0.0411	0.0505	0.0610	0.0725	0.0851	0.0988	0.1134
2	0.1289	0.1453	0.1623	0.1800	0.1981	0.2166	0.2353	0.2540	0.2727	0.2911
3	0.3091	0.3264	0.3431	0.3588	0.3734	0.3868	0.3988	0.4092	0.4180	0.4250
4	0.4302	0.4333	0.4344	0.4333	0.4301	0.4247	0.4171	0.4072	0.3952	0.3811

Table V - $\mathrm{d}_{4}(\mathrm{z})$

$\underline{2}$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0006	0.0010	0.0016
1	0.0025	0.0036	0.0050	0.0068	0.0091	0.0118	0.0150	0.0188	0.0232	0.0283
2	0.0340	0.0405	0.0476	0.0556	0.0643	0.0738	0.0840	0.0950	0.1067	0.1190
3	0.1320	0.1456	0.1597	0.1743	0.1891	0.2044	0.2198	0.2353	0.2507	0.2661
4	0.2811	0.2958	0.3100	0.3236	0.3365	0.3484	0.3594	0.3693	0.3780	0.3853

p	Jp(1)	Jp(2)	dp(3)	Jp(4)	Jp(5)	Jp(6)	Jp(7)	Jp(8)	Jp(9)	Jp(10)	dp(11)	Jp(12)	Jp(13)	Jp(14)
$\begin{aligned} & 0 \\ & 0.5 \end{aligned}$	+.7652 +.6714	+.2239 +.5130	-.2601 +.06501	-.3971 -.3019	$\begin{aligned} & -.1776 \\ & -.3422 \end{aligned}$	$\begin{aligned} & +.1506 \\ & -.09102 \end{aligned}$	+.3001 +.1981	+.1717 +.2791	$\begin{aligned} & -.09033 \\ & +.1096 \end{aligned}$	$\begin{aligned} & -.2459 \\ & -.1373 \end{aligned}$	$\begin{aligned} & -.1712 \\ & -.2406 \end{aligned}$	$\begin{aligned} & +.04769 \\ & -.1236 \end{aligned}$	$\begin{aligned} & +.2069 \\ & +.09298 \end{aligned}$	$\begin{aligned} & +.1711 \\ & +.2112 \end{aligned}$
$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	+.4401 +.2403	+.5767 +.4913	+.3391 +.4777	-.06604 +.1853	-.3276 -.1697	-.2767 -.3279	-.024683 -.1991	+.2346 +.07593	+2453 +.2545	+.04347 +.1980	$\begin{aligned} & -.1768 \\ & -.02293 \end{aligned}$	-.2234 -.2047	$\begin{aligned} & -.07032 \\ & -.1937 \end{aligned}$	$\begin{aligned} & +.1334 \\ & -.01407 \end{aligned}$
2.0 2.5	+.1149 +.04950	+.3528 +.2239	+.4861 +.4127	+ 3641 +.4409	+.04657 +.2404	-.2429 -.07295	-.3014 -.2834	-.1130 -.2506	+.1448 -.02477	+.2546 +.1967	$\begin{aligned} & +.1390 \\ & +.2343 \end{aligned}$	$\begin{array}{r} -.08493 \\ +.07242 \end{array}$	-.2177 -.1377	$\begin{array}{r} -.1520 \\ -.2143 \end{array}$
$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	+.01956 +.07186	+.1289 +.06852	+.3091 +.2101	+.4302 +.3658	+.3648 +.4100	+.1148 +.2671	-.1676 -.023403	-.2911	-.1809 -.2683	$+.05838$ $-.09965$	+.2273 +.1294	$\begin{aligned} & +.1951 \\ & +.2348 \end{aligned}$	$\begin{aligned} & +.023320 \\ & +.1407 \end{aligned}$	$\begin{aligned} & -.1768 \\ & -.06245 \end{aligned}$
$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	+.022477 +.03807	$\begin{array}{r} +.03400 \\ +.01589 \end{array}$	+.1320 .+ .07760	+.2811 +.1993	+.3912 +.3337	+3576 +.3846	$\begin{aligned} & +.1578 \\ & +.2800 \end{aligned}$	-.1054 +.04712	-.2655 -.1839	-.2196 -.2664	$\begin{aligned} & -.01504 \\ & -.1519 \end{aligned}$	$\begin{aligned} & +.1825 \\ & +.06457 \end{aligned}$	+.2193 +.2134	$\begin{aligned} & +.07624 \\ & +.1830 \end{aligned}$
$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & +.032498 \\ & +.0474 \end{aligned}$	+.097040 +.02973	+.04303 +.02266	+.1321 +.08261	+.2611 +.1906	+.3621 +.3098	+.3479 +.3634	+.1858 +.2856	-.05504 +.08439	-.2341 -.1401	$\begin{aligned} & -.2383 \\ & -.2538 \end{aligned}$	$\begin{aligned} & -.07347 \\ & -.1864 \end{aligned}$	$\begin{aligned} & +.1316 \\ & +.087055 \end{aligned}$	$\begin{aligned} & +.2204 \\ & +.1801 \end{aligned}$
$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & +.042094 \\ & +.056 \end{aligned}$	$\begin{aligned} & +.0^{2} 1202 \\ & +.0^{3} 467 \end{aligned}$	$\begin{aligned} & +.01139 \\ & +.035493 \end{aligned}$	$\begin{aligned} & +.04909 \\ & +.02787 \end{aligned}$	$\begin{aligned} & +.1310 \\ & +.08558 \end{aligned}$	+.2458 +.1833	+.3392 +.2911	+3376 +.3456	+.2043 +.2870	-.01446 +.1123	-.2016 -.1018	-.2437 -.2354	$\begin{aligned} & -.1180 \\ & -.2075 \end{aligned}$	$\begin{array}{r} +.08117 \\ -.04151 \end{array}$
$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$+.051502$	$\underline{+.031749}$	$+.022547$	$+.01518$	$+.05338$	$\begin{aligned} & +.1296 \\ & +.08741 \end{aligned}$	+.2336 +.1772	+.3206 +.2759	+3275 +.3302	$\begin{aligned} & +.2167 \\ & +.2861 \end{aligned}$	$\begin{aligned} & +.01838 \\ & +.1334 \end{aligned}$	$\begin{aligned} & -.1703 \\ & -.06865 \end{aligned}$	-.2406 -.2145	$\begin{aligned} & -.1508 \\ & -.2187 \end{aligned}$
$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\underline{+.079422}$	+.042218	$+.0^{2} 4934$	$+.024029$	+. 01841	$\begin{aligned} & +.05653 \\ & +.03520 \end{aligned}$	$\begin{aligned} & +.1280 \\ & +.08854 \end{aligned}$	+.2235 +.1718	+.3051 +.2633	+.3179 +.3169	+.2250 +.2838	$\begin{aligned} & +.04510 \\ & +.1496 \end{aligned}$	$\begin{aligned} & -.1410 \\ & -.04006 \end{aligned}$	$\begin{aligned} & -.2320 \\ & -.1928 \end{aligned}$
$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$+.085249$	+.02492	+.048440	$+.029386$	$+.023520$	$\begin{aligned} & +.02117 \\ & +.01232 \end{aligned}$	$\begin{aligned} & +.05892 \\ & +.03785 \end{aligned}$	$\begin{aligned} & +.1263 \\ & +.08921 \end{aligned}$	$\begin{aligned} & +.2149 \\ & +.1672 \end{aligned}$	$\begin{aligned} & +.2919 \\ & +.2526 \end{aligned}$	$\begin{aligned} & +.3089 \\ & +.3051 \end{aligned}$	+.2304 +.2806	$\begin{aligned} & +.06698 \\ & +.1621 \end{aligned}$	$\begin{aligned} & -.1143 \\ & -.01541 \end{aligned}$
10.0	+.02631	+.002515	+.041293	$+.011950$	+.021468	$+0^{2} 6964$	+.02354	+. 06077	$+.1247$	+. 2075	+. 2804	$+.3005$	+. 2338	+.08501

A

Absorption coefficients	170
Absorption units	169
Accelerating electrode, cathode ray	137
Acoustics	$165-178$
absorption coefficients	170
absorption units	169
amplifier power capacity	172,173
aftenuation constant	169
coefficients	170
equal-loudness contours	178
music levels	174
music ranges	174
music, requirements	172
noise	177
noise reduction coefficients	170
open-window units	169
optimum reverberation	$166-169$
pressure	176
public-address requirements	$171-173$
reverberation	165
computation	$169-171$
room sizes	165,166
sound level	176
sound pressure	176
speech frequency	175
speech intensity	175
speech requirements	172,173
standing woves	165
Admittonce	$64-70$
Admittonce equations	86
Advance wire	44
Aerial-see Antenno	131
Air cooling, tube	58,59
Air-cored coils	$294-296$
Algebraic formulas	44
Alloys	44
melting point	44
physical constonts	44

Alternating current	
overage	99
effective	99
supplies	25
Altifude, atmospheric pressure	22
American	
noise units	190, 191
war standards, capacitors	55
war standards, resistors	52
wire gauge	35,36
Ampere turns, cathode-ray focus	sing 138
Amplification, Amplifiers	
audio	143
beam power fube	161, 162, 163
cathode follower	156, 157, 158
circuits	155
class A	143, 153, 154
closs $A B$	143, 153, 154
class B	143, 154, 155
class B r-f	152, 153
closs C	143
classos	155, 156, 157
constant-current characteristics	ics 145
design	143
class A and $A B$	153
class $A B$ and B	154
class B	152
class C	147
distortion	164
efficiency	143
factor	127, 129
feedback	159
general design	143-146
graphical design	146-155
grid current	143
grounded cathode	156
grounded grid	156
grounded plate	156
harmonic distortion	153, 164
negative feedback	159, 164
operating data	143

Amplification, Amplifiers continued	
push-pull	143
radio-frequency	143
resistance coupled	158, 159
sizes, public address	171
fransfer characteristics	148
fube	143-164
Amplitude modulation 86, 87,	86, 87, 88, 288
Anglos, approximations for	296
Angle of radiation	261
Anode current--see Current, plate	
Antennas -see also Radiators	rs 250-271
angle, field intensity	255
array, radiation	265
arrays	263-271
binomial arroy	267
broodside directivity	265
dipole 258,	258, 259, 265
field intensity 250-253,	250-253, 253, 259
radiated power	258, 259
electric, magnetic components	nents 250
end-fed conductor radiation	tion 260
field near dipole	251
height	
fiold Intensity	256
impedance	257
reactance	257
resistance	257
horn	217
L and T	224
loop $\cdot 254$,	-254, 265, 270
vertically stacked, goin	n 270
maximum radiation	261
minimum radiation	261
noise 244,	244, 246, 248
parallal to sereen, radiation	tion 269
radiation	
angle	261
dipole	264
horizontal	269
loop	264
pattern	263, 264
turnstile	264
two wires	269
resistance, reactance components	mponents 257
rhombic	261-263
single-lobe directivity	266
tangental magnetic fiold	250, 251
top-loaded	224
vertical 224,	224, 254-258
field strength	255-258
polarized	253, 254
Areas of plane figures	291-293
Arithmetical progression	296
Army-Navy, preferred tubes	es 142
Army-Novy radio-frequency cables	cy cables 201-203
Arrays, antenna	263-271
Atmospheric noise	244, 245
pressure	22
Atomic number	19

Atomic weights	19
Attenuation, Attenuator	100-114
balanced O	106
balanced H	106
bridged H	106, 110
bridged T	106, 110
circular wove guides	213-217
H	114
ladder	101, 102
load impedance	104
minimum loss	106, 112
mismatch	198
open-wire pairs	181
symmetrical H	106, 108
symmetrical O	110
symmetrical π	110
symmefrical T	106, 108
T	114
telephone cable	183, 184
telephone lines 180,	180, 181, 182, 186
u-h-f lines	206
unbalanced π	106
unbolanced T	106
wove guide	216, 217
Audible spectrum	175, 176
Audio reactors	122
Audio Pransformer	122
Auto transformer	122
B	
Balanced	
H aftenuotor	106
line, impedance	196
shielded, impedance	196
O attenuator	106
Band-elimination filters	116
Band-pass filters	116
Bandwidth	32
noise	247
Barometer, atmospheric pressure	essure $\quad 22$
Bauds	192
Beaded line, impedance	196
Bell System corrier frequencios	cios 185
Bessel functions	318-321
Binomial array	267
theorem	297
Birmingham wire gauge	36
Blocking oscillator	272
Bridged	
H atlenuator T attenuator	$\begin{array}{r} 106,110 \\ i 00,106,110 \end{array}$
Brightness, cathode ray	139
British wire gauge	36
Broadside directivity	265
B \& S wire gauge	35,36
C	
Coble, radio frequency	201
attenuation	204

Condenser-see Capacitor
Conductance, Conductor
ground 224
mutual 129
solid, skin effect 73
telephone line 182, 183
fubulor, skin effect 73
Cone-sphere resonator 222
Cone, volume 292
Constanfan, thermocuples 46,47
Continuous waves 33
Control
characteristic, cathode ray 138
electrode, cathode ray 136
grid 128
Conversion factors 11
Cooling water . 131
temperature rise 131
Copper
resistance 45
stranded, AWG 38
stranded conductors 38
stranded, resistance 38
stranded, weight 38
thermocouples 46, 47
wire
37, 60, 126
American gauge (AWG) 36, 123
attenuation per mile 37
Birmingham gauge (BWG) 36
British standard 36
Brown and Sharpe 36, 123
characteristic impedance 37
current capacity 126
enameled 126
English-metric units 36
Imperial sfandard (SWG) 36
resistance $\quad 35,36,37,126$
size AWG 37
strength 37
tables $\quad 35,36,38,60,126$
woight
35, 36, 37
Core, reactor 123
Core, transformer 123
Cosh, table of 317
Cosmic noise 244-246
Cosmic rays 28
Coupled section, impedance matching 200
Coupling
coefficient 79
optimum -79
phose shift 84
two circuits 79
Crystal defectors 142
Current
average 99
characteristic 129
effective 99
ratio, decibels 34
two-mesh network 78
Cut-off frequency, telephone cable 183, 184
Cut-off voltage, cathode ray 138

Cylinder, area-Filters

E
 E

Ear sensitivity 178
Earth-see also Ground distances 240
magnetic field 141
Echo, radio, time 244
EEI-NEMA-RMA noise meter 245
E layer 227
sporadic 227
Electric circuit formulas 74-100
Electric dipole250
Electrode characteristic 129
Electromagnetic frequency spectrum

293
293
213-217

33, 287
34

14
137, 139
138
139. 140

261-263
40
224
40
238
11
129
129
129
118, 119

250-252
258
250
264
25
283
129

240
238
244
164
1으, 184
226, 227
122

Elromagnic frequency spactron

Electromagnetic units $16,17,251$
Electromotive force, psophometric 189
Electromotive force, series of elements 18
Electron, Electronics -see also Tubes differentiation

276, 277
inertia 135
integration 274, 275
velocity, cothode ray 140
Elementary dipole 250
Elements
atomic number 19
atomic weight 19
emf series 18
symbols 19
Ellipse, areo 292
Emission 33
frequency bands 32
tube 128, 133
EMU units 16, 17
End-fed conductor radiation 260
Equations, admittance 86
Equations, impedance 86
Equivalents 11
ESU units 16, 17
European noise units 190
E waves 207
Exponentials 317
Exponential wave 287

F
Factors, conversion 11
Feedback 159, 164
Feedback, relaxation ascillator 272
Feeder-see Transmission line
Feeling, acaustic threshold 178
Field Intensity --see also Radiation
antenna angle 255
antenna height 255
dipole 250
end-fed conductor 260
meter 245
surface-wave 224, 225
vertical antenna 253
Field strength-see field infensity, Radiation
Filaments
oxide coated 132
reactivation - 134
thoriated tungsten 132
transformer 122
fungsten 132
Filters
band elimination 116
band pass 116
constant K 116, 117
high pass 88-91, 117
low pass 88-91, 117
networks
$115,116,117$
power supply $\quad 88,118-121$
RC, RL, LC
88-91

Filters cantinued	
reactors	123
rectifier	120
series M	117
shunt M	117
3-element series	116
3-element shunt	116
Finishes, tropical, marine	50
Flow of water	49
Focusing, cothode ray	
current	138
electrode	137, 139
voltage	138
Forced-air cooling, fube	131
Forecasts, propagation	231-236
Foreign countries, power supplies	24
Form factor	58, 59
Formulas	
- impedance	64-70
mathematical	291-302
mensuration	291, 292
Fourier analysis	277-287
graphical solution	279, 280
Froctional sine wove	285
Fractions, inch-metric equivalents	14
Frequency	
abbreviations allocation	28
carrier telegraph	187
carrier telephone	186
1 corrier	185
K carrier	185
L type	188
program	187
telephony, high frequency	187
bands	30, 32
capacitance, inductance	61, 62, 63
classifications, radio	28
cut-off, telephone cable	183, 184
designations	28
modulation	288
power supplies	25
prinfer telegraph	192
range, music	174
range, speech	174
reactance	61
spectrum, electromagnetic	28
tolerances	30
wovelength	29
Frying noise	189
F_{1} layer	227
F_{2} loyer	227, 228
G	
Galvanic series, metals	18
Gamma rays	28
Gaps, protective	123
Gas tube oscillator	272
Gaussian unit	16

Geometrical progression 297
Giorgi unit 16
Great-circle calculations 240-243
Greek alphabel 15
Grid voltage, critical 129
Ground
conductivity 224
dielectric constont 224
reflection 240
types 224
wave 224
field intensity, frequency 239
Guides, wove 207
H
Harmonics-see also Distortion intensity 32
Hearing, equal loudness 178
High frequency-see also Radio frequencymaximum usable229
propagation 226
resistonce 71
High-pass filters 117
Horns, wave guide 217
Horsepower vs torque 51
H pad 114
Humidity
effect on reactor 123
offect on transformer 123
relative 20
temperature 20
H woves 207
Hyperbolic
cosines 317
functions 299
sines 316
tangents 318
IImpedance
antenna height 257
balanced line 196
beoded line 196
cooxial line 196
formula 64-70, 86
matching, coupled section 200
matching, shorted, open stub 199
open 2-wire line 196
parallel 76
wires 197
power transfer 78
shielded balanced line 196
telephone cable 183, 184
telephone line 180, 182
transmission line 194
wire and ground 197
wire and shield 197
2-mesh network 76, 77
2 paralled wire and ground 197
2 wires and ground 197
4-wire. line 197

Reactance, Reactor cantinued	
major types	122, 123
pressure	123
protective gaps	123
saturable	123
temperature	123
wave-filter	123
Receiver noise	244, 246, 248
Reciprocity theorem	74
Rectangular wave	282
Rectangular wave guides	208
Rectification, Rectifier	
circuits	118, 119
full-wave	118, 119
half-wove	118, 119
power supply	118-121
wave analysis	287
Recurrent wave forms, fourier anolysis	
	277-280
Reflected signal, time interval	al 244
Reflection coefficiont	240
Reflector, antenna	269
Refractive index	240
Relative humidity	20
Relaxation oscillators	272, 273
Resistance, Resistor	52
antenna height	257
copper wire	35, 36
coupled amplifier	158
high frequency	71
insulating materials	40
parallel circuit	76
radio frequency	71
skin effect	71
standard color code	53
telephone line 179	179, 180, 182, 183
Resonance, Resonator	
cavitios	219
circular	222
coaxial	222
cylinder	222
frequency, filters	89
frequency, series circuit	75
prism	222
rectangular	221, 222
selectivity	80
sphere-cone	222
spherical	221, 222
square prism	222
woves in	207
Reverberation time	165
R-F cables, Army-Navy	201-203
attenuation	204
R-F transmission lines-see also	
Transmission lines	194-206
RG-/U cable	201-204
Rhodium, thermocouples	46, 47
Rhombic antennas	261-263
Right-angle triangle, solution	On 298
Ripple frequency	118-121
Ripple voltage	118-121

RL filters 88-91
RMA standords, copacitors 55
RMA standards, resistors 52
Room acoustics 165-178
Room noise 189
5
Saturable reactors 123
Saturation, percent 20
Sawtooth wave 284, 285
Scott transformer 122
Sereen grid 128
cathode ray 137
Screws, machine
head styles 38
hole sizes 39
length 38
special 38
standard 38
Sea water, propagation 226
Secondary emission 128
Sector circle area 292
Segment circle area 292
Selective circuits 80-86
Self inductance-see Inductance
Series circuit
charge 95
discharge 95
impedance formulas 68, 69, 70
sinusoidal voltage 98
Series M filter 117
Series 3-element filtor 116
Shielded balanced line impedance 196
Shorted stub, impedance matching 199
Short woves, maximum usable fre- quencies 229
Short waves, propagation 226
Shunt M filter 117
Shunt 3-element filter 116
Signal strength - see Attenuation, Fieldintensity, Propagation
Signal-to-noise ratio 248, 249
Silicon carbide, thermocouples 46, 47
Simpson's rule 293
Sines, hyperbolic 316
Sine wave, fractional 285
Sine wove, full 286
Sine wove, half 286
Single-hop transmission 228, 229
Sinh, table of 316
Sinusoidal voltage 98
Skin effect 71, 72, 73
Sky reflection 228, 229
Sky-wave-see Attenuation, Field in-tensity, Propagation
Solder, melting point 47
Solenoids, inductance 58, 59
Sound level, acoustic 176
Sound, noise levels 177
Space-charge grid 28
Spacing, telephone lines 180

Transmission cantinued
4-wire line

4-wire line	197
205	

miscellaneous 197
mismatch 198
noise . 189
parallel, impedance 197
resistance 206
shielded balanced, impedance 196
shielded, impedonce 197
stub 199
surge impedance 195
u-h-f attenuation 204
2 open wire, impedance 196
modulation types 32
speed, telegraph . 192
tolerances, frequency $\quad 30$
wave guides 207
Transverse electromagnetic woves 207
Trapezoidal rule 293
Trapezoid, areo 291
Trapezoid wave 282, 283
Triangle, area 291
Triangles, trigonometric solution 298
Trigonometry
formulas 294-296
functions, logarithmic $\quad 206,310-313$
functions, natural 306-309
solution, triangles 298
spherical 240
Triode perveance 129
Triode plate current 129
Tropical, finishes and materials 50
T-section attenuators 100
Tubes, gaseous and vacuum 127-141
amplification factor 127, 129
amplifiers 143-164
cathode ray 136-141
accelerating electrode 137
anode 137
application 139
brightness 139
characteristics 138, 139
control 138
electrode 136
cut-0:5 voltage 138
deflection factor 138
deflection plates 137
deflection potential 139
deflection sensitivity 139
electrodes 136, 137
arrangement 137
electron velocity 140,141
electrostatic deflection 138, 139, 140
focusing 138, 139
electrode 137
formulas $\quad 139,140,141$
grid voltage 139
intensifier electrode 137
magnetic deflection 138, 140, 141
$\begin{array}{ll}\text { modulating electrode } & 136 \\ \text { modulation } & 138\end{array}$

Tubes continued
triodes 142
plate current 129
fungsten filament 132
twin tetrodes 142
twin triodes 142
uhf 134
variational plate resistance 128
velocity-modulated 134, 135
voltage regulators 142
water cooling 131
Tuned circuits
optimum coupling 79
parallel, dynamic resistance 76
selectivity 80
series, resonant frequency 75
Tungsten filament 132
Turnstile antenna, radiation pattern 264
Two-hop transmission 228, 229
Two-wire, open, copper line 206
impedance 196
UUltra high frequency
electron inertio 135
lines, attenuation 204
pransmission lines-see Transmissionlines
Pubes 134-135
Unbalanced Pi attenuator 106
Unbalanced T attenuator 106
Units, conversion 11, 16, 17
Unsymmetrical tropezoid 283
VVacuum tubes-see Tubes
van der Pol oscillator 273
Variational plate resistance 128
Velocity
light 28
modulated tubes 135
telephone cable 183, 184
telephone lines 180
transmission line 194
variation-see Velocity modulation wind 42
Vertically polorized waves 240
Vertical radiators 254-258
Very-short-waves, propagotion 231-234
V-H-F propagation 231-234
poth length 232
Voice-frequency carrier 187
Voltage, gap breakdown 48
Voltage, ratio to decibels 34
Voltage regulators 142
Volume
cone 293
cylinder 293
music 174
pyramid 293

[^0]: From "Rodlo," Moy, 1944 (compliled by John M. Borsi)
 The table gives the name and defining equalion for each unit in six systems and shows factors for the conversion of all units from one systom into any other.
 Column 3, "equation," of the table lists the relationships of the physical quantities Involved. Consider, as an example, column 5,
 1 esu $=N$ omu. The conversion factor in this column can be opplied in any of the following ways:

[^1]: Seproduced from "Treaty Serles No. 948, Telecommunication-General Radio Regulations ICairo Rovision, 1933) and final Radio Protocal (Cairo Revision, 1938) annexed to the Telecommunication Convention Madrid, 1932 Between the United States of America and Other Powers," Appendix I, pp. 234, 235 and 236, United States Government Printing Offics, Washington, D. C. References rofor to this publicotion.

[^2]: 1 With regord to tolerances for mobile stations, an attempt shall be mode to achieve, so far as
 possible, the figures specified for fixed stations.
 I A transmitter, the hamonic intensity of which is not above the figures specified but which
 nevertheless couses interference, must be subjected to speciol measures intended to eliminate
 such interforence.

 * See footnote under Frequency Tolerances, Treaty Series No. 948, Telecommunication

[^3]: ${ }^{1}$ These waves are used only in special cases, such as standard frequency omissions.
 : Objects is used here in the optical sense of the word.
 *See Footnote under Frequency Tolerances, Treaty Series No. 948, Telecommunication.

[^4]: * As measured with a cup anemometer, these being the average maximum for a period of five minutes.

[^5]: * See following page.

[^6]: * Formulas and chart (Fig. I) derived from aquations and tables in Bureau of Siandards Circular No. 74.

[^7]: - Nominal bare diometer plus moximum additions.

 For additional data on copper wire, see poges 35, 36, and 126.

[^8]: - ϕ is negative for Δf positive, and vice versa.

[^9]: * Carrent copacity af 1000 amperes per square inch. For other current densilies, multiply by lcurrent donsind/1000.
 \dagger hierloyer insulation is usually Kroft poper.
 See olso poge 60.

[^10]: * Sections on Electrodes, Characteristics, and Application Notes prepared by I. E. Lempert, Allon B. Dumont Laboratories, lnc.

[^11]: - All potentials are with respect to the cathode except when otherwise indicated.

[^12]: Consultation with applicable service laboratory's electron tube group is recommended before application In equipment.
 $\$$ Diode Pentode.

[^13]: - Compiled by Edward J. Content, consulting engineer.

[^14]: Noie: These curves show the desirable ratio of the reverberation time for varlous frequencles to the reverberation fime for 512 gycles. The desirable reverberation time far ony frequency between 60 and 8000 cycles moy be found by multiplying the reverberation time at 512 cycles (from Rg. 21 by the number in the vertical scale which correspands to the frequency chosen.

[^15]: - The noise-reduction coelficient is the overage of the coefficients of frequencles from 256
 to 2048 cycles inclusive, given to the nearest 5 percent. This average coelficient is recommended for use in comparing materials for noise-quieting purposas as in offices, hospitals, banks, corridors, atc.

[^16]: Note: Thls table for use for medium and long-wave propagation with Norton's, van der Pol's, Eckersley's, or other developments of Sommerfeld propagation formulos.

 * For more exact methods of computation see Terman, F. E., Radia Engineers' Handbook. Sec. 10; or Norton, K. A., The Colculotion of Ground wave Field Intensities Over o Finitely Conducting Spherical Eorth. Proc. I.R.E., vol. 29, p. 623 (December, 19411.

[^17]: * See Burrows, C. R., Radio Propagation over Plone Eorth-Field Strength Curves. Bell System Tech. Jour, val. 16 Ulanuary 1937.
 \$937. Norton, K. A., The Effect of Frequency on the Signal Ronge of on Ulira-High Frequency Rodio Station. FCC Mimeo Repart 48466 (March 20, 19411.

[^18]: * See olso section on Wire Telephony-Noise and Noise Meosuroment.

[^19]: - Bosed on Mesny, R., Radio-Electricité Gënérale.

[^20]: * for information on the eflect of some practical current distributions on fiold intonsitios see Gihring, H. E. and Brown, G. H, General Considerations of Tower Antennas for Broadcast Use. Proc. IR.E., vol. 23, p. 311 Upril, 19354.

[^21]:

[^22]: * For more complete information see Harper, A. E. Rhombic Antenna Design. D. Van Nostrand Co. (1941).

[^23]: * Noter Do not interpolato in thls column.

