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FOREWORD

Parts IV, V and VI *) of this series of books deal with all those problems 
which relate to the application of the electronic valve in radio receivers and 
amplifiers. As explained in their prefaces, the material has been based 
mainly on Philips’ publications, but the articles have been arranged in a 
logical sequence and, where necessary, revised and supplemented so as to 
bring the subject matter up to date.

In this manner a work has been compiled which, as a guide and source 
of information, is indispensable to set-makers and at the same time is 
greatly valued as material for practical study in secondary and higher 
technical training institutions.

It was, therefore, not surprising that suggestions have been received from 
various quarters that a similar work on the problems encountered in the 
design and construction of television receivers should be published. Although 
the technique of television reception is still in its infancy and has by no 
means reached a stabilized state, it has been decided to publish such a work 
under the title of Television Receiver Design, but in a slightly different 
format. In the work on radio receivers, chapters dealing with the many 
different aspects of the subject are printed in three bound volumes, but 
Television Receiver Design will comprise a series of 6 to 8 parts, each 
dealing with a specific aspect of television receiver design, and the whole 
forming a complete and comprehensive treatise.

The first part, entitled F. Stages”, deals with the application of the 
pentode in the intermediate frequency section of a superheterodyne receiver 
and the high frequency stages of a T.R.F. receiver. The second part, now 
at press, treats of flywheel circuits and synchronization. Other parts will 
cover such subjects as deflection circuits, problems related to the high-frequency 
stages, etc.

It is hoped that this work will prove to be just as valuable in its particular 
sphere as are the series of books on the construction of radio receivers.

J. HAANTJES
PHILIPS ELECTRONIC TUBE DIVISION

* Part VI is now in course of preparation.



PREFACE

This monograph deals particularly with pentode amplifiers operating 
in a frequency range lying roughly between 10 Mc/s and over 100 Mc/s. 
The high-frequency amplifiers of T.R.F. receivers (40 Mc/s to 70 Mc/s) 
also come under this definition, and thus, while not strictly coming 
•within the scope of this book, have had to be included for the sake of 
completeness. On the other hand, the choice of the intermediate frequency 
has not been touched upon because this is so closely related to the 
problem of high-frequency amplification and frequency changing that 
it is considered better to deal with this subject in a separate book.

In order that the exposition may be quite clear to the reader, it has 
been necessary to use in some parts of the text formulae which do not 
directly follow from the preceding comments. The derivations of these 
formulae are to be found in the appendices at.the end of the book.

Finally, a word of recognition is to be added, not only for the use that 
has been made of the literature quoted, but also for the support given by 
many colleagues, among whom I am particularly indebted to Jhr. Ir. H. 
van Suchtelen for many discussions and valuable advice, to Mr. H. Kater 
for editing the manuscript and to Mr. Harley Carter A.M.I.E.E. of 
Mullard Ltd., London, who scrutinized the manuscript.

\\

The Author

Eindhoven, October 1952.
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1 GAIN AND BANDWIDTH WITH TWO-TERMINAL 
COUPLING NETWORKS

1.1 THE (GB) PRODUCT
An essential difference between H.F. or I.F. amplifiers in sound re

ceivers, whether for F.M. or A.M. signals, and the corresponding ampli
fiers in the video section of television receivers is that the latter have to 
pass a much wider frequency band. This means that amplifiers for the 
video section must include circuits in which the ratio of bandwidth to 
resonant frequency is comparatively high. Such circuits are said to have 
a low quality factor Q and, as is well known, they have a lower impedance 
than circuits with a high Q value.

Now the gain obtainable with a pentode is proportional to the anode 
impedance, so that the gain of an H.F. or I.F. stage in the video section 
may be expected to be lower than that of the corresponding stage in a 
sound receiver. It is therefore of prime importance so to design the cir
cuits that the maximum gain is obtained for a given Q, and to ensure 
this the circuit capacitances must be reduced to the lowest practicable 
values.

JM

Fig. 1. Block diagram of an amplifier each stage of which 
comprises a valve with a mutual conductance S and an 

anode load Z.

This becomes clear when the gain and bandwidth of an amplifying 
stage forming part of the amplifier depicted in fig. 1 are calculated. The 
valve of this stage may be regarded as a current source Vi • SCff shunted 
by an impedance Z, i.e. the internal resistance of the valve and the anode 
load connected in parallel. Hence:

Vo = ViSoaZ,

or, expressing Z in terms of admittance:
Vi Sett 

Y ’Vo =
giving for the gain of stage h:

(1)Gh

1



1

Gain and bandwidth with two-terminal coupling networks 1

where Seff is the dynamic mutual conductance of the valve, which may be 
taken to be equal to the static mutual conductance provided the cathode 
impedance is zero. At the frequencies considered, transit time effects do 
not influence the mutual conductance to any appreciable extent.

In investigating stage h more closely, the circuit of fig. 2, consisting 
of two amplifying valves and an interstage coupling formed by a parallel 
tuned circuit, will be considered. Here:

= anode conductance of valve h, 
ra = internal resistance of valve h,
C0 = output capacitance of valve h,
Ra = anode load of valve li,
Lc = self-inductance of the interstage circuit,
Rc = shunt resistance of the interstage circuit,
Cc = capacitance of the interstage circuit,
Rg = grid leak of valve h -f- 1,
gi = input conductance of valve h -j- 1,
Ci = input capacitance of valve h -j- 1,

ga

The anode-to-grid capacitances Cag will be disregarded.
If the two valves are coupled

/)+/ via an anode resistor and aX" tuned grid circuit, l/Rg = 0; 
if, on the other hand, the anode 
circuit is tuned and the follow
ing valve is coupled via a grid 
capacitor and a grid leak, l/Ra 
may be set equal to zero (see 
fig. 2).

In what follows ga + l/ra 
will be termed the output con

ductance go, while 1 /Ra -j- 1 jRc + l/Rg will be called the circuit conduc
tance gc1). The admittance Y of eq. (1) can now be expressed by:

fk^§ r==^a=rG>9a ' ~95r r
648<?3

Fig. 2. Interstage coupling in which the 
various symbols are indicated.

1
y?i = gi + go + gc + jcoCc + jcaC0 + jwCi +

At correct tuning eq. (2) becomes:

(2)jcoLe

(3)F* = gi + go + gc ,

x) The symbol gc has been introduced here as a logical corollary to the use of 
Lc, Cc, etc. in fig. 2, although it is recognized that this symbol is also used occasionally 
for the conversion conductance of frequency changers.

2



1.2 The gain reference frequency

while the gain G per stage is:
ScaG = (4)

Si 4“ So 4“ Sc

Considering an amplifier with n identical stages and disregarding dif
ferences caused by different input and output circuits of the amplifier, 
the total gain Gtot is:

Y\
Si + So + Sc)

Denoting by B the bandwidth within which the circuit impedance 
varies 3 db, the conductance of the intervalve circuit of valves h and 
h + 1 may be expressed by:

-
Sett

Gtot (5)

S — Si 4" So 4" Sc — 2r.BC — 2tzB (Ci 4" Co 4“ Cc).
(see Appendix la)

(6)

Substitution of this expression in eq. (4) gives:
Seff (?)G- B =

2tz (Ci + Co 4" Gc)

This equation shows that the quantities which determine the gain 
and bandwidth are so related that a high gain can be obtained 
only at the cost of the bandwidth. The product G-B reaches the 
maximum when the circuit capacitance Cc (including the stray capaci
tances) is zero and when the dynamic mutual conductance Seff is equal 
to the static mutual conductance S. In that case this product is entirely 
determined by the valve characteristics and will be denoted as:

S
(8){GB) =

2n (Ci + Co)

Eq. (8) shows that this (GB) product merely depends on the ratio 
of valve characteristics. If, for a given (GB) product, one of the quan
tities G or B is given, the maximum value of the other is fixed. It is, 
however, impossible to increase the gain G beyond a certain value by 
decreasing the bandwidth B. This is explained by eq. (3) in which the 
value of gi -f go + gc cannot be decreased indefinitely.

So long as gi -f- g0 is smaller than 2tcB(Ci + C0+ Cc) (cf. eq. (6)) the 
bandwidth can be adjusted to the desired value by suitable choice of gc 
until gc has reached the minimum value obtainable. Beyond this limit 
it is impossible to decrease B by decreasing gc. (For the present it will be 
assumed that it is possible to reduce gc to zero.)

1.2 THE GAIN REFERENCE FREQUENCY 
Another important difference between amplifiers for television and for 

broadcast receivers is that the television signal frequencies (for both

3



Gain and bandwidth with two-terminal coupling networks 1

picture and sound) are very much higher than for normal broadcasting, 
being about 40 Mc/s to 200 Mc/s, and that intermediate frequencies in the 
order of 20 Mc/s to 50 Mc/s are employed.

At these high frequencies damping due to the valve conductances con
tributes largely to the total circuit damping. Now the input and output 
conductances of a valve, g* and g0, depend on the frequency which is to be 
amplified. The higher the frequency, the greater will be the damping, 
and the lower will be the maximum gain, until, at a certain frequency, the 
gain becomes unitj^, in other words the valve no longer amplifies. At 
still higher frequencies, the signal is even attenuated1). The frequency at 
which the maximum gain is unity is called the gain reference frequency 
(symbol fj.

It will be shown in Section 6 that the relationship between the conduct
ances and frequency in the very-high frequency range (metric waves) 
is practically the same for all valves, and follows a square law, viz.:

gi + go = const, x /2.
The magnitude of the constant in this expression depends on the valve 
characteristics and differs for each type of valve.

This implies that the maximum gain which can be obtained with 
a given valve is determined by the frequency and by a valve con
stant, for if gc is put equal to zero to obtain the maximum gain, then, ac
cording to eqs (1) and (3), the gain is determined by the dynamic mutual 
conductance SCft and g* + g0. The maximum value of SCff is equal to the 
static mutual conductance 5. Since at the frequencies under consideration 
there is little difference between the dynamic and static mutual conduc
tances provided no additional impedances are included in the cathode 
lead, the maximum gain may be expressed by:

Gmax = const. X f~2.
At the gain reference frequency the maximum gain G 

that this expression may also be written as:

(9)

= 1, SOmax

-W (10)Gmax

The possibilities of an amplifier can now be investigated more closely. 
In practice the design of the amplifier is always based on the required 
bandwidth B0. It is obvious that this governs the gain obtainable, G0, 
and the required value of g; + g0 + gc- Considering the possibilities at in-

*) M. J. O. Strutt, Gain and Noise Figures at V.H.F. and U.H.F., Wireless Eng. 
XXV, p. 21, 1948 (No. 292).
4



1.2 The gain reference frequency

creasing frequency, gi + g0 will obviously increase, and this could be 
compensated up to a certain limit b}' decreasing gc. At a particular fre
quency the circuit conductance gc would have to be reduced to zero, 
and this frequency is denoted by /0. Beyond /0 the gain must necessarily

logG
E

n6=1
fo fl —+1ogf

6<895
Fig. 3. Diagram representing log G as a function of log / 
in the case of Rc being so adjusted that the minimum 
bandwith is B0. Three different values B0 are shown.

decrease and the bandwidth will then increase, provided the circuit 
capacitance remains unchanged. The conductance of the circuit will 
be equal to gi + g0, both of which vary according to eq. (9).

The variation of B and G has been plotted in figs 3 and 4, in which

logB

I
b=(gb)

fi —+logf
64896

Fig. 4. Diagram representing log B as a function of log /.

fo

Soft is considered constant and equal to S over the frequency range 
considered.

The graph in fig. 3 shows log G as a function of log / and consists of 
two linear parts — the horizontal part AE, the position of which depends 
on the chosen value of B, and the descending part ED, the position of

5



Gain and bandwidth with two-terminal coupling networks 1

which is determined by the characteristic quantity fv The slope of the 
latter part is determined by the square-law relation (9) existing between 
/ and G.

A similar graph showing log B as a function of log / has been plotted 
in fig. 4. The slope of the ascending part is also determined by a square- 
law relation and the characteristic goes through the point / = fv B =
(GB).

It is obvious that the graph shown in fig. 4 can be made to coincide with that in 
fig. 3 by using the same unit for plotting — log B as that for plotting log G and 
making the point B = (GB) coincide with G = 1.

The log 5/log / diagram can be made to be horizontal beyond f0 by 
reducing the product G • B at frequencies exceeding /0. As shown by 
eq. (7), this may be achieved by increasing the circuit capacitance Cc.

For this reason the design of amplifying stages for frequencies exceed
ing /0 must be based upon considerations differing from those governing 
the design of amplifying stages for lower frequencies. It is, therefore, of 
interest to know the position of point E in figs 3 and 4.

The position of point E depends on the choice of B0 (and therefore of 
G0) and on the value of fv Since the point E must be situated both on 
the line AE and on the line ED, it is possible to calculate f0 from eq. (10) 
by setting f — f0 and Gmax = G0. This gives:

(11)/o —

or

(12)/o — /1
Example

As indicated in Table 1 (see p. 168) the (GB) product of the EF 42 valve is 
100 Mc/s and its gain reference frequency fx is 325 Mc/s. According to eq. (12), for 
a bandwidth of 5 Mc/s:

1Y ioo 73 Mc/s./o — fi = 325

At 50 Mc/s, i.e. at a frequency below /„, eqs (7) and (8) apply, giving:
^-155 = 20.

At 100 Mc/s, i.e. at a frequency above /0, eq. (10) applies, giving:

G = G0 =
B0

hence
(GB) 100— = 10 Mc/s.B = G

6



1.3 Corrected equations 1.3.1

1.3 CORRECTED EQUATIONS
This simple method of calculation has been made possible only by a 

very idealized representation of the amplifier and it is now necessary to 
investigate what corrections are required to render the results more 
accurate and to extend their validity.

The two simplifications made in the preceding calculations were:
(1) It was assumed that the total circuit capacitance is equal to C* -f- C0 

and that the dynamic mutual conductance Seff is equal to the static 
mutual conductance S.

(2) The calculations were based on the assumption that the amplifying 
stage is preceded and followed by an identical stage.

1.3.1 Consequences of stray capacitances, etc.
The extent to which it is permissible to ignore the circuit capacitances 

Cc will first be investigated.
In broadcast receivers the choice of the circuit capacitance Cc is often 

determined by the desire to obtain a high value of Q\ but, as explained 
above, a high Q is not possible in T.V. receivers. In a receiver containing 
circuits with a high Q value tuning must be very accurate because a 
small relative detuning corresponds to a large proportion of the band
width. A small fractional shift of the resonant frequency of one of the 
circuits therefore results in quite a considerable modification of the res
ponse curve.

Now the valve capacitances are not entirely constant (for example 
the variation AC; in the case of gain control being applied, see also 
Section 6), and it is therefore desirable to minimize the effect of these 
variations by ensuring that the valve capacitances are small compared 
with the total circuit capacitance.

This argument does no apply in T.V. receivers in view of the very low 
quality factors of the circuits. It is nevertheless desirable to keep these 
variations within reasonable limits; the circuit capacitance can then be 
reduced to the minimum. This is advantageous because the gain at a given 
bandwidth can then be increased to its maximum value.

It is of course not practicable to reduce the total circuit capacitance to 
C; + C0, owing to the existence of unavoidable stray capacitances of the 
wiring, the coils, etc. and “electronic” capacitance of the valve. These 
stray capacitances are represented by an additional term Cx, which is 
added to the circuit capacitance.

It is, therefore, no longer permissible to replace G • B simply by the

7



Gain and bandwidth with two-terminal coupling networks 1

(GB) product, but it should be written:
G • B = Fx (GB), (13)

in which
Cj -j- Co 

Ci + Co + Cx
This becomes obvious when eq. (7), in which Cc is put equal to Cx, is 

compared with eq. (8). It is moreover seen that in eq. (8) the term S 
occurs instead of the term SCfi in eq. (7). To remove this discrepancy, 
eq. (13) will be rewritten as:

(14)Fx =

(13a)G • B = FSFX (GB),
in which

Seff (15)Fs = Ŝ '
If, for example, a non-bypassed cathode resistor Rk is used, then:

lFs = 1 + Sk Rk’

where Sk denotes the cathode transconductance <?/*/<? 7g.
Not only is it necessary to revise the calculation of G • B as shown 

above, but that of Gmax must also be corrected. Eq. (10) for this quantity 
includes only terms depending on the mutual conductance and no term 
related to the circuit capacitances. The corrected equation, therefore, 
contains no term Fx and becomes:

Gmax — F$ j • (10a)

The calculation of /0 can now easily be corrected, eqs (11) and (12) 
becoming:

(lla)/o — /i
and

/o - /l]/ *0
(12a)Fx• (GB)'

1.3.2 Input stage of the amplifier
The assumption that an identical stage precedes the stage of which the 

gain is to be calculated does not hold for the first stage of the amplifier, 
and the necessary correction for this stage will now be investigated 
for the case of a “straight” (T.R.F.) receiver.

The gain of the first valve, between control grid and anode, can be 
calculated as before. The valve is, however, preceded by a transformer 
for matching the input impedance of the amplifier to the aerial. Correct 
matching is particularly important in T.V. receivers in order to avoid

8



1.3 Corrected equations 1.3.2

reflections in the aerial cable, the effects of which are commonly termed 
“ghosts”.

The matching transformer contributes to the voltage gain of the receiv
er. This additional gain is partly determined by the characteristics of the 
first valve in very much the same way as are the stage gain and bandwidth. 
In this case, too, there is a frequency range over which the gain is deter
mined only by the bandwidth and a range over which the bandwidth and 
gain are determined by the frequency (see fig. 5).

logG'
E'!<%'
i

?/i
i

D•
—+logf

64898

Fig. 5. The logarithm of the aerial gain G' as a function 
of log f, Rc being so adjusted that the minimum band
width is Bq and the value of w being such as to give correct 

matching.

This will now be investigated quantitatively. It is obvious that the 
largest possible proportion of the available power in the aerial will be 
transferred to the grid circuit if the load resistance is equal to the internal 
resistance of the source, i.e. when:

l (16)w- Runt = gi + go

in which w is the transformer ratio and .Rant is the aerial resistance.
Under these conditions the output voltage Fant of the source is equal 

to half the no-load voltage Frad. For a normal dipole aerial and a given 
peak value of the field strength H:

H\
Fnui = —

7T

from which it can easily be calculated that:
T. V:rad (17)

For a normal dipole aerial the value of Rant depends not only on the charac
teristic aerial impedance

Zant = K* loge l/d — li",

but also on the ratio l\\ (see fig. 6).
9



Gain and bandwidth with two-terminal coupling networks 1

Since the reactive component .X’ant of the aerial impedance also depends on l/X, 
in practice this ratio must necessarily be made 0.5 or 1.0. The disadvantage of 
choosing l/X = 1.0 is that Rant then largely depends on Zant. It is true that the 
dependence of Rant on l/X is somewhat greater when the ratio lj\ is made 0.5 instead 
of 1.0, but the dependence on l/d is greatly diminished.

The aerial resistance .Rant is about 75 D for a normal dipole aerial and about 
300 Q for a folded dipole aerial. For correct matching of a normal dipole to an 
amplifier the condition:

1

Vl5(gi + gc)
must therefore be satisfied.

The total voltage gain will now be taken as the ratio of the output

logXani iogRasri

it

RIG Tj 1 
Sfc 57

J—J
l

uw

d 0.5 1.0
k3. 64857

Fig. 6. a Dipole aerial having a length l and a diameter d. 
b The aerial reactance Xant (broken line), which may be 
either capacitive or inductive, and the aerial resistance 
Rant (full lines) as functions of the ratio l/X for two diffe

rent values of Zant.

voltage V0 to the no-load voltage Vrad of the aerial. This gain is equal to 
the product of the gain of all stages multiplied by the gain of the aerial 
circuit. At correct matching the gain G' of the aerial circuit is: •

:
i

Vi w
G' ~ T/mcl 2 '

It should be realized that in this equation w must not be considered as a 
constant quantity. If gi is changed for choice of the bandwidth or fre
quency dependence, it is also necessary to change w to satisfy the 
condition given by eq. (13). Hence:

G' = -= .
2 V 4Rant {gi + gr)

At correct matching the transformed aerial resistance .Rant is just 
equal to l/(gi + gc), so that the bandwidth of the aerial circuit is doubled 
when the aerial is connected. The bandwidth is therefore given by:

l (18)

(19)2(sri "b gc) — (Ci + Cx).

10
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1.3 Corrected equations 1.3.2

It is now clear, for the input stage, that it is not the product G' • B but
the product G' • VB' which is constant. Eq. (13) of Section 1.3.1 now be
comes :

G'Vb' = Fx (GB)' l) (136)
in which

l 32.5(GBy = (7a)
V 7?ant C» V Cl

and
iV = ]/ C< (14a)Ci + Cx'

The maximum gain of the aerial circuit can be calculated by putting 
gc in eq. (18) equal to zero, which gives:

<V = 1
V' 4 7?ant gi

where gt is again const, x /2, so that:
c-fi Go - y

The position of the transitional point atis now given by:

(106)

fifo /• ^0
(116)

or
v'g.'

Fx'(GB)rfo = // (126)

Example
A normal dipole aerial is tuned to exactly 60 Mc/s and correctly matched to the 

input circuit preceding an EF 42 valve. The wiring capacitances are 3 pF. What is 
G' if B0' = 5 Mc/s?

According to Table 1 (p. 168), the gain reference frequency /1/ = 190 Mc/s and 
the figure of merit (GB)' = 10 (B in Mc/s).

Since Ci = 9.5 pF:

.1/«f; - y Cf = 0.87 .Ci -f- Cx 9.5 + 3
From eq. (126):

fx' VB0' 190 V5 
F/ (GB)' “ 0.87 x 10

Since / is higher than /0', eq. (106) applies:

~ fx 190 o «G = 7 = lo = 32>

« 50 Mc/s.fo =

x) Here it would in fact be more correct to write (G VB)' instead of (GB)'.

11



Gain and bandwidth with two-terminal coupling networks 1

giving, according to eq. (136):

0.87 X 10.5\2 = 5.8 Mc/s.D 3.8

According to whether the receiver operates at a frequency above or 
below /0 and /0', four cases arise:

(1) the frequency lies below both /0 and /</;
(2) the frequency lies below /0 but above /0';
(3) the frequency lies above both f0 and /0';
(4) the frequency lies above /0 but below /0\

It will be seen later (Section 7) that in order to decide upon the 
most favourable design of the amplifier and input transformer it is of 
interest to know which of these cases applies.

T.R.F. receivers will usually be so designed that case (1) applies, but 
at higher frequencies (about 70 Mc/s) case (2) may occur. In superhetero
dynes, at the high T.V. band (about 200 Mc/s) case (2) always applies.

In view of the low gain per stage obtainable in case (3) this case will 
be avoided wherever possible. Case (4) does not occur in practice,/0 hardly 
ever being lower than /0'. This becomes obvious when /0 and /</ are cal
culated at B0 = B0'. From eqs (12a) and (126):

VFx
/o A ' Fx (GB)' Fx' V2

It should be understood that the above considerations are based on 
the assumption that gc can always be made negligible with respect to 
gi + g0. In practice, however, the minimum value of gc may be quite 
considerable, especially in the aerial circuit. The implications of this in 
the above theory are dealt with in Section 7.

/o' A' VFz(GB) ■ yWr~co “•1/ 1gi + go vrgi

1.3.3 Output stage of the amplifier
In calculating the gain of the last valve of the amplifier it should be 

borne in mind that this stage is not followed by an identical amplifying 
stage but by a detector, so that a correction must be made also for this 
stage.

The two principal types of detector used in T.V. receivers are the anode- 
bend detector (pentode) and the diode detector.

For the anode-bend detector, which is not often employed, the valve is 
usually of the same type as that in the preceding amplifier. In this case 
the last I.F. stage can be considered as being followed by an “identical
12



1.3 Corrected equations 1.3.3

stage”, at any rate from the point of view of I.F. gain, so that the gain of 
the last stage is then equal to that of the preceding stages.

If, however, the valve used as an anode-bend detector is of a type 
suitable for use also as a video output valve, its input capacitance will 
usually be somewhat greater than that of a normal H.F. or I.F. pentode. 
As a result Fx will have a slightly lower value for the last stage, viz.:

Cj -}- Cp 
Cid + Co + CxFx = (146)

in which C,-rf is the input capacitance of the detector valve.
In principle, the same argument applies to the use of a diode detector. 

In that case, however, it is not permissible to put Cu equal to the diode 
capacitance, since the diode forms an additional load owing to the current 
flowing at the peaks of the signal voltage. This is equivalent to a resist
ance of approximately

7? i?l
Rd = o—-2-nD

in which is the load resistance of the detector valve and is the 
efficiency of the detector. Moreover, when the smoothing capacitor has a 
fairly low value, as is usually the case with video detectors, R(i is shunted 
by a capacitance Cd, which also depends on •r\D.

At first sight it might be supposed that the original circuit impedance 
could be restored by increasing the damping resistor across the last I.F. 
stage. This, however, is undesirable since, in a diode detector, r\D and 
therefore Rd depends on the signal amplitude. With very small signals 
(for example 0.1 V) r\D is very low, so that Rd may be high, but with 
large signals (for example > 5 V) tjd approaches its maximum limit, 
which is determined by the magnitude of RJt the smoothing capacitor 
and the internal resistance Rj. Since the value of Rd depends on the signal 
strength, a response curve would then be obtained which varies with the 
signal amplitude*).

These effects can be minimized by ensuring that Rp represents only a 
small proportion of the total circuit damping. Additional damping of the 
circuit by means of a fixed resistor may therefore be necesary, whilst — 
to ensure that the band width has the required value — some extra capac
itance may have to be added. This obviously results in a lower value of .F*.

With a carefully designed detector and I.F. amplifier, however, the 
value of Fx for the last stage need not differ appreciably from that of the 
other stages.

J) See also p. 129.

13



Gain and bandwidth with two-terminal coupling networks 1

Example
Assume the maximum efficiency of a crystal diode detector, of which Ri = 4 kQ, 

to be 7)D = 0.65. This gives:
RiRj 2^ 3 kQ.

When the last I.F. circuit is damped by a resistance of 2 kQ the theoretical varia
tion of the circuit impedance with signal amplitude will be between the limits of 
2 kQ and 1.2 kQ. In practice, however, these limits will not exceed 1.5 kQ and 
1.2 kQ, which may be considered acceptable.

It will further be assumed that Ca + C0 + Cz has a normal value of 20 pF, which 
gives for the bandwidth:

106B=________i_________=
2 (Cid + Co -f Cz) « 6.5 Mc/s.6.3 X 20 x 1.2

For television receivers this is quite a reasonable value, so that it is unlikely that 
much additional capacitance will have to be added.

14



2 RESPONSE CURVE OF THE COMPLETE AMPLIFIER

For calculating the gain it was assumed in Section 1 that the circuits 
were identical and that their bandwidths were known. It is true that the 
bandwidth of an amplifier is determined by the bandwidths of the cir
cuits of which it is composed, but it is by no means identical to the circuit 
bandwidth. It will therefore be necessary to investigate how the total 
gain Gtot and the total bandwidth Z?tot of the complete amplifier can be 
derived from the results calculated for one stage (G and B).

The total gain is obviously equal to the product of the gain of 
the separate stages, and the bandwidth of the complete amplifier will 
correspond approximately to the bandwidth of each of the tuned 
circuits.

The top of the response curve of single tuned circuits is, however, by 
no means flat, so that the attenuation of frequencies adjacent to the res
onance peak with respect to the resonant frequency increases with the 
number of synchronous circuits connected in cascade. In other words, the 
flanks of the overall response curve become steeper and steeper and the 
3 db points become closer to each other as the number of circuits is 
increased.

When a large number of amplifying stages is used, such as is required in 
T.V. receivers owing to the limited gain per stage, the total bandwidth may 
therefore become considerably smaller than that of the individual circuits.

Means of avoiding this without decreasing the gain are now discussed.

2.1 TOTAL GAIN AND TOTAL BANDWIDTH 
WITH SYNCHRONOUS CIRCUITS

The total bandwidth, Bt01, may be expressed as:

(20)Btot = Fb- B,

where Fb is called the bandwidth factor. The value of Fb for various 
kinds of amplifier circuits will be briefly investigated.

The additional stray capacitance Cx will again be assumed to be zero. 
If it is desired to take the stray capacitances, etc., into account it suffices 
to introduce a factor:

F — Cj Co
x C\ -J- Co T- Gx (14c)

15



Response curve of the complete amplifier 2

Using the following symbols:
2Aco— = P.

to0

= S.

QP = x (see Appendix la),
and

the function:
z 1 1 (21)1 + jx Vl + Xs

may be considered as the response curve of one circuit.
The response curve of an amplifier with t identical stages tuned to the 

same frequency may then be represented by:

z0 h ~ •
ti (22)

h =
Biot can now be calculated from the value of x corresponding to the 3 db 
points of this response curve. Denoting this value of x for an amplifier 
with t synchronous circuits by Xt, and taking into consideration that for 
x = xt the left-hand side of eq. (22) is 1/V2, it follows that:

1 + xt* = 2
The total bandwidth is now derived from xt on the basis that, for 

x = xt, 2A co = 27c£tot, so that:

2 7i Btot = pco0 =
Q ’

which gives:
Btot = ^

When the above equations are applied to an amplifier which contains 
only one tuned circuit, so that t = 1 and x% = xv it is obvious that xx — 
1 and B = f/Q. The formula for the bandwidth factor Fb of a receiver 
with t synchronous circuits is therefore:

FB = ^ = xt= v'2Vr=-1.

(23)
Q '

(24)
B

2.2 STAGGERED TUNING
At high values of t the bandwidth factor Fb becomes inconveniently 

small, but it can be increased by applying staggered tuning, i.e. by tuning 
the circuits to slightly different frequencies.

For this purpose certain rules must be adhered to in order to obtain a

16



2.2 Staggered tuning

favourable response curve and a high gain. If the circuits were arbitrarily 
detuned a peculiarly shaped response curve would be obtained and the 
gain would not be optimum.

A simple and logical method of obtaining staggered tuning consists in 
dividing the amplifier into identical groups, each group consisting of a 
number of mutually detuned circuits. A five-stage amplifier (containing
6 circuits) may, for example, be composed of three pairs [tv t2, tz in fig.
7 a), of two triplets (tlf t2 in fig. 7b) or of one sextuple.

*2 *3

A 64flW

Fig. 7. Five-stage amplifier (containing 6 circuits) con
sisting (a) of 3 mutually detuned pairs and (6) of 2 mutu
ally detuned triplets. /c denotes the central frequency and 

B tot the total bandwidth.

In order to obtain for each group an optimum (GB) product and a 
response curve which is as flat-topped as possible, a special method of de
tuning and damping is applied, termed “flat staggering”. (The damping 
of the individual circuits also differs in this scheme.)

Assume the amplifier to be subdivided into l/s groups, each having s 
mutually detuned circuits. In the case of flat staggering it can be shown 
that the response curve of one group may be expressed by:

Z t _________
n Zo VIT^’

l (25)
h = l
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Response curve of the complete amplifier 2

in which x is the of the ‘"reference circuit" to be defined later.
Such a "flat staggered s-tuple" can be realized as follows. From a semi

circle, subdivided into s equal parts, a perpendicular is dropped to the 
diameter from the centre of each part (see fig. 8). The length of the hth 
perpendicular then represents half the required bandwidth:

1 Bj - 1 - 
2 ' 2 2-0,

of circuit number h, and the distance of its foot to the centre C represents 
the detuning A /;, of this circuit with respect to the central frequency of 
the system *).

The scale of fig. 8 should be so chosen that the diameter represents the
required bandwidth of the group. 
The dash-dot line represents the 
so-called central or reference cir
cuit. Such a circuit need not 
actually be present in the ampli
fier; neither does it occur in the 
diagram of fig. la.

The gain of, for example, valve 
h—1, i.e. the valve preceding the 
tuned circuit h of the amplifier, 
can now be calculated as follows:

—T—^A
N

\
s \

\V/
\ \/

2Br
// \V/ \/ o/'JcI

»
Br

I

64900

Fig. 8. Diagram for designing a flat stag
gered 5-tuple, in which Br denotes the 
bandwidth of the reference circuit and A fh 
represents the detuning of the circuit con
cerned with respect to the central fre

quency /c of the system.

S
Gh-i —

gh V1 + Xli“‘

in which for the central frequen
cy/*:

XJ _ QhQf — <»*C . 2~ fh _ 2A fh _ Br cosa

where Br is the bandwidth of the reference circuit and a is the angle 
formed by the diameter and the line interconnecting C and point h of 
fig. 8. According to this figure:

gh co„

gh = gr sin a .
Since

gh = ChBh

and the damping of the reference circuit is:

gr = 2>TzCrBr,

q See i.a. George E. Valley Jr. and Henry Wallman, Vacuum Tube 
Amplifiers, MacGraw Hill (1948).
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2.2 Staggered tuning

the value of x/t may be written:
gr cos a _ cos a 

gh ~ sin a
assuming Cjt to be equal to Cr. Hence

= cot a,Xh =

Gr
Gh-i = —:—   ■■■-=

sin a V 1 -f cot2 a
The gain of each stage is therefore equal to that of a stage 

in which the reference circuit is connected to the anode of the valve 
(at least as far as the central frequency is concerned). The total gain can 
thus again be calculated from the expression:

Gtofc = Gr11.

= Gr. (26)

At frequencies differing by A'/from the central frequency:

2(A/ + A7)
Xh --- n ---

cos a + x 
sin a ’

where x = of the reference circuit. The response curve of circuit h is 
thus given by:

(27)Bh

l
z sin a 1

Vsin2 a + cos2 a + x2 + 2x cos aZ, cos a + xh 1 + j sin a
1 (28)

1 -j- x~ -j- 2iX cos a’

where Z0 — l/gr is the impedance of the reference circuit at zero detuning.
If, for each of the circuits, the values of cos a are chosen according to the 

construction in fig. 8, then 2):
h = 8

n (1 + *2 + 2* COS oca) = 1 + tf23 • 
h -2

The response curve thus assumes the form given by eq. (25).
These response curves can easily be plotted on a graph the two axes of 

which have a logarithmic scale (see fig. 9). The curve thus obtained, 
which represents only (part of) one half of the response curve tends 
asymptotically to two straight lines, one of which runs horizontally, the 
other making an angle with the abscissa the tangent of which is s. The 
point of intersection of the two lines lies at x = 1, while the trend in the 
transitional area is determined by the gaussian logarithm of x2S.

The fact that x in eq. (29) is equal to the * of the reference circuit for 
the frequency concerned has an important consequence: Substitution

q The deduction of this formula is given in Appendix II, page 152.

(29)
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Response curve of the complete amplifier 2

103 x = 1 in eqs (21) and (25) 
shows that the 3 db band- 
widths (Br of the reference 
circuit and the total band

it width Btot of the flat stag- 
2 I gered s-tuple derived there

from) are identical. For a 
flat staggered group the 
bandwidth factor Fb is 
therefore equal to unity.

An amplifier consisting of 
many stages is usually com
posed of several flat staggered 
groups, the bandwidth fac
tor Fb' of each of which is 
equal to unit}'; the band
width factor Fb of the total 
amplifier is then less than 
unity. The s-tuplcs are not 
made excessively large, be
cause this would result in 
the outermost circuit re
quiring very little damping, 
which cannot very well be 
achieved (cf. fig. 10).

It has been shown above that all s-tuples derived from the same ref
erence circuit have the same 3 db bandwidth, the only difference being 
the slope of the sides of the resonance curves (see fig. 11a).

If identical groups are connected in cas
cade, such as is the case in amplifiers com
posed exclusively either of pairs or of triplets, 
etc., the value of Fb can be easily calculated.
If the amplifier contains for example 2/2 pairs:

Fb = r 2J/< — 1«

102

10

5

V 15 2 07
64901

Fig. 9. Representation of the response curves 
according to eq. (25).

5
X-----

K/

Hl (30) 64902

Fig. 10. Diagram showing that 
the outermost circuits (cor
responding to the outermost 

(30a) perpendiculars) would have 
to have very little damping 
if the 5-tuples were chosen 

very large.

1.1 ^t/2

and, if it consists of tjZt triplets:
1Fb = 23/< — l «

1.06l^//3‘
The total bandwidth thus decreases as the

20



2.2 Staggered tuning

number of groups l/s increases, see fig. 116. In Table 2 (p. 170) the band
width factors Fb are given for identical groups connected in cascade.

b 64904

Fig. 11. (a) Response curves of three different s-tuples 
(s = 1, 5 = 2, s = 3) derived from the same reference 
circuit. (b) Response curves showing the decrease in total 
bandwidth as t/s (i.e. the number of groups) increases.

With a view to avoiding undesirable low values of Fb as far as possible, 
the extent to which the valve characteristics restrict the possibility of 
obtaining flat staggered tuning will now be investigated.

The bandwidth of the most selective circuit is given by:

Rtot sin aB = Br sin a = (31)Fb ’

where a is the smallest of the angles of the semicircular staggering diagram 
(see fig. 8). According to eqs (10a) and (13a) the smallest bandwidth 
attainable at a given frequency is:

•Smin — Fx (GB)

To enable staggering to be carried out, the following condition must 
therefore be satisfied:

Btot sin a >FbFx(GB) (32)

21



Response curve of the complete amplifier 2

Example
For a five-stage amplifier with six tuned circuits (GB) = 100, Fx = 0.8, fx = 

300 Mc/s and / = 50 Mc/s.
What is the maximum gain at 2?tot = 5 Mc/s if the selectivity of the circuits may 

not be increased by adding extra capacitances?
According to eq. (32) the following condition must be satisfied:

&■(GB_1.sin a > Fx.Fjj = B tot
therefore:

sin a 100 / SO \*_>°.8 « 0.45.

In the case of one sextuple (see Table 3):
sin a 0.26̂1 = 0.26,Fs 1

which is insufficient. But in the case of two triplets:
sin a _ 0.5 
~Fb ~ 0TS6 = 0.58,

which is sufficient, so that two triplets may be chosen, of which:
5

F, Q-gg = 5.8 jVIc/s ,

while
(GB) Fx 80G = G0 = 5J = 138’Br

whence follows from eq. (20):

Gtot = G5 = (13.S)5 = 450 000.

I
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3 DISTORTION

3.1 DISTORTION IN DOUBLE SIDEBAND SYSTEMS

The method of flat staggering discussed in the previous section avoids 
decrease of the bandwidth as the number of circuits increases, as shown 
by fig. 11 b, and the response curve assumes a more rectangular form, 
as depicted in fig. 11a.

In one important respect this is an advantage, since not only does the 
amplitude characteristic of the frequency range passed become flatter, 
but the attenuation of undesired signals also increases. For this reason 
networks having a rectangular response curve are usually aimed at; but 
it should be recognized that such networks give rise to a fairly great 
distortion of certain signals.

This is not due to the amplitudes being incorrectly reproduced but to 
the phase being shifted. The response curve and phase characteristic of 
the customary networks are in fact so related that a rectangular form of 
the amplitude characteristic always gives rise to serious non-linearity 
of the phase characteristic x). If the phase characteristic of an H.F. or 
I.F. amplifier is linear (not necessarily constant) this merely results in the 
modulation being shifted over a constant time interval without the en
velope of the modulated signal being distorted thereby, but if the phase 
characteristic is not linear the various modulation frequencies are mutual
ly shifted in phase.

Therefore, although the distortion occurring in an amplifier is given in 
principle by its response curve, it is necessary in practice to know the 
phase characteristic in order to obtain a clear insight into the nature and 
seriousness of the phase distortion. The phase characteristic gives this 
information for sinusoidal signals of various frequencies in a form which 
does not show the distortion of non-harmonic waveforms and is therefore 
unsuitable for judging the quality of a video signal.

The common criteria for the reproduction of a video signal are ade
quate reproduction of the fine details present and the absence of false 
details. Since fine details are to be considered here as intensity variations 
of short duration, the reproduction of the high modulation frequencies 
is of particular importance.

For judging the fidelity with which high modulation frequencies are

x) Cf. Hendrik W. Bode, Network Analysis and Feedback Amplifier Design, 
Chapters XIV and XV, van Nostrand, New York.
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Distortion 3

reproduced it is necessary to understand how an impulse is reproduced; 
and in order to investigate the reproduction of false details, the envelope 
of the H.F. signal is given an easily recognizable form, which preferably 
contains many frequencies (i.e. the Fourier analysis of the envelope should 
supply an extensive spectrum). Distortion is then immediately noticed by 
the changed waveform of the envelope. A suitable form is the so-called unit 
or step function, see fig. 12, which is 
not only easily recognizable, but can 
also easily be dealt with mathemati
cally.

A further advantage of this method 
is that an impulse can easily be com
posed of two opposed steps in rapid 
succession. The response to high mod
ulation frequencies can thus easily 
be deduced from the envelope of the 
reproduced signal: the step function.
A typical form of step functions of H.F. and I.F. amplifiers is given in 
fig. 13.

In order to judge step function response curves quantitatively, two 
characteristic quantities indicated in fig. 13 must be considered: firstly 
the rise time t required by the curve to increase from 1/10 to 9/10 of

the ultimate value and, 
secondly, the overshoot 3, 
i.e. the amount by which 
the ultimate value is ex
ceeded.

These two figures are 
roughly related to the 
form of the response curve 
of the amplifier. In the 
first place, Btot • t = 0.7 to 
0.9; and, secondly, the 
overshoot is more serious 

as the response curve approaches a rectangular form (see Appendix III).
By applying flat staggered tuning, several stages can thus be connected 

in cascade without causing the rise time t to increase (which would be 
the case if the stages were synchronous), but this is at the expense of an 
increase of the overshoot 3. The values of 3 and of the product Btot • t 
depend on the connection of the circuits, and their tuning, etc., as indicat-

64905
Fig. 12. Example of an impulse for 
measuring the step function of an 

I.F. amplifier.

64906

Fig. 13. Example of a step function illustrating the 
rise time t and the overshoot 8.
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3.2 Distortion in vestigial sideband systems

ed in Table 3 (p. 172) where t, Btot ’t and Br • t are given for several 
identical groups of various composition connected in cascade.

It should be recognized, however, that the results quoted in this table 
apply only to double sideband systems; for single sideband reception the 
form of the step function response curve depends on other factors as well.

3.2 DISTORTION IN VESTIGIAL SIDEBAND SYSTEMS
In view of the considerable saving in bandwidth effected, the vestigial 

sideband system (a form of single sideband transmission) is now commonly 
used, and it will be useful to investigate the changes to which the step 
function is subject if, throughout the transmitter and receiver, one side
band is suppressed.

This may be done by considering a carrier with a sinusoidally modulated 
envelope corresponding to the expression

sin a sin b = 1 cos (a—b) — -i cos (a + b),

where a represents the carrier frequency and b the modulation frequency. 
If throughout the whole system one sideband, e.g. the lower one, is sup
pressed, only the carrier plus the term — -J- cos (a + b) representing the 
upper sideband remains.

The same result would have been obtained by adding:
— £ {£ cos (a — b) -f- £ cos (a + b)} (ml)

to the expression:
£ {1 cos (a — b) — £ cos (a + 6)} , (m2)

giving again:
— £ cos (a + b) .

As follows from the well-known trigonometrical equation, the added ex
pression (ml) is equal to:

£ cos a cos b.

This manipulation clearly shows that the suppression of one sideband 
is equivalent to the addition of a fully modulated second carrier 
which is in quadrature with respect to the original carrier, its 
modulation also being in quadrature with respect to the original 
modulation. It is thus obvious that the original signal:

A0 sin 2k f0t- + Am sin 2w fmt • sin 2kf0t, 

from which one sideband is suppressed, becomes:

A0 sin 2k/0/ -f £ A m sin 2nfmt • sin 2k/0< — £ A m cos 2nfmt • cos 2k/0/.
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Distortion 3

in which fm and f0 represent the frequency of the modulation and of the 
carrier, and Am and A0 represent the corresponding amplitudes.

The quadrature component (i.e. the cosine term) thus adds (in quadra
ture) to the original signal 
a modulation component 
which is out of phase and 
gives rise to distortion. It 

-2 should further be noted 
that the modulation depth 
is approximate^ halved.

In practice the suppres
sion of one sideband is 
achieved by means of a 
response curve of the form 
shown in fig. 14a, which 

A can be considered equiv
alent to the sum of the 
curves represented in figs 
146 and c. This corres
ponds to the mathematical 
analysis given above and, 
moreover, takes into ac- 

- count the limited fre
quency range. It should 
be noted that the signal 
passed by the response 
curve of fig. 14c and that 
passed by the curve of fig. 
146 are in quadrature.

The consequences of 
transmitting a modulated 
signal

A0 sin 2izf0t -f Am{ sin 2-xfmt • sin 2nf0t} =
= A0 sin 2tz/01 + IA m{ cos 2tz(/0 — fin)t — cos 2tz (/0 + /m)/ }

by a system having a response curve similar to fig. 14a will now be investi
gated more closely.

The image-symmetrical characteristic of fig. 146 gives rise to amplitude 
distortion onty of the sideband beyond the region from/4 to/3. The frequen
cies within this range correspond to modulation frequencies smaller than

i

j

i

fi fo 12 ft
i

I
i
i

f1 f0 *2
i i

ii
i

i I
I
i

i'
ii

ii
i
*a fti

i

64907

Fig. 14. a Asymmetrical characteristic of a vestigial 
sideband system which may be considered as being 
composed of the sum of an image-symmetrical 
characteristic (6) and a radial-symmetrical charac

teristic (c).
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3.2 Distortion in vestigial sideband systems

/3—f0 as shown by the above expression. The image-symmetrical res
ponse curve thus suppresses only modulation components with frequen
cies exceeding /3—/0. This is the normal phenomenon which also occurs 
in double sideband systems.

For all modulation components which are passed by the image-symmet
rical response curve in the manner described above, the radial-symmetri
cal characteristic of fig. 14c adds a modulated H.F. signal to the carrier. 
This H.F. signal has the same frequency as the carrier, but, since it is in 
quadrature, the square of this signal must be added to the square of the

74U
k T -0.5/1.75

= -0.7/4.55 
; =1/1.25—2x4..5 Me 1^

/100 1.25/1.0 ^unit step— // ///
f 2x2.625Mc/s60 i % /i // /4 0 1 /

1
20

*/o
-20\__ _______________________________________L_
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

69241

Fig. 15. Step functions of a single sideband system (full 
lines) with a modulation factor of 1 and an ideal filter. 
The total frequency band is 5.25 Mc/s. The broken lines 

are valid for double sideband systems.

t(fjsec)

signal originating from the image-symmetricalc haracteristic represented 
in fig. 14b.

The above considerations apply without restriction to the modulation 
frequencies between f2—f0 and/3—f0, but from fig. 14c, demonstrating the 
identical attenuation of the two sideband components (of the quadrature 
component), it is clear that the quadrature component is smaller for 
frequencies below f2—f0 and tends to zero for modulation frequencies also 
tending to zero. This is emphasized here because the low frequencies form 
the most important contribution towards the video signal, and this effect 
renders it possible to reduce the distortion by the quadrature component 
for these frequencies.

It is clear that this favourable effect increases as the range from/^ to/2
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becomes greater, because the frequency range which takes advantage of 
the attenuation of the quadrature component then also increases. The 
response curve should therefore not be made too steep in the cut-off area 
on both sides of the carrier frequency.

The effect of the width of the cut-off area on the total bandwidth is 
illustrated by fig. 151), which shows the distortion of a voltage step (mod
ulated on a carrier) whose components exceeding 4.25 Mc/s have been 
removed. The ratio (/0——fi) has been taken as parameter. The 
broken lines apply to double sideband systems.

The usual characteristics of the single sideband transmission are such 
that the range from f0 to fx can be given a maximum width of 1 Mc/s, 
the total bandwidth being approximately 5 Mc/s. The curve (/0 — /i)/ 
(/3 — /j) = 1/4.25 may thus be considered attainable in practice.

As a result of the square of the quadrature component having to be 
added to the square of the carrier, the importance of the quadrature 
component and therefore the distortion of the step function decreases 
with the modulation depth.

so

o

0.2 030 0.1-a;-02-03
—(p sec)

64909

Fig. 16. Step function as shown in fig. 15 for (/0 — /i)/(/3 — /0) = 1/4.25, 
with the modulation factor m as parameter.

In fig. 162) the variation of one envelope of fig. 15 has been plotted 
for four different modulation depths m.

3.3 DISTORTION IN PRACTICAL AMPLIFIERS 
If the conditions imposed at the beginning of the above comments,

x) See Kell and’Fredendall, Selective Side Band Transmission in Television, 
R.C.A. Review, April 1940.
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3.3 Distortion in practical amplifiers

assuming the single sideband system to be ideal, are not satisfied, various 
consequences will result, as will become clear from Section 3.4.

As to the flatness of the response curve between /2 and /3 it can be 
stated that local deviations will result in incorrect reproduction of the 
corresponding modulation components. This will generally result in a 
transient with a frequency corresponding to the incorrectly reproduced 
modulation frequency, being added to the unit function response curve. 
Furthermore, the magnitude of the components in quadrature will 
change, so that too small a response of certain frequencies may be expect
ed to give rise to relatively less distortion than too great a response.

The condition that the response curve of fig. 14a should be radial-sym
metrical between fx and /2 with respect to point 0 may be expressed in 
another way, as follows:
(1) the amplitude response at the frequency /0 should be half the value 

obtained at frequencies between /2 and /3;
(2) the sum of the responses of two frequencies between and /2 differing 

from f0 by an equal amount should be twice the response at /0.
If condition (1) is not satisfied this will give rise to an incorrect 

D.C. component, and the lowest frequencies of the envelope will not be 
faithfully reproduced. This will result in “inert” distortion of the step 
function as shown in figs 17a 
and b.

Such after-effects in the 
television image thus point 
to the fact that the carrier 
is incorrectly situated with 
respect to the cut-off point 
of the response curve.

If condition (2) is not 
satisfied for a given modu
lation frequency the fre
quency concerned will not Fig. 17. Step function response curves (full lines)

and corresponding amplitude and phase charac
teristics (dash-dot and broken lines respectively) 
of two detuned amplifiers. Owing to the carrier 
of frequency /0 being incorrectly situated with 
respect to the cut-off point, a positive after-effect is 

will this be the case with experienced in [a) and a negative after-effect in [b).
the quadrature component.
This case is similar to that in which deviations occur between /2 and/3, 
but the modulation frequencies now concerned are lower.

The condition that the phase shift should be a linear function of the

I

!
-----f

yA v' \ AA! V i
—-f—-f

Aa 64910

be faithfully reproduced 
by the image-symmetrical 
characteristic and neither

.

:
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Distortion 3

frequency is difficult to fulfil in practice. The conventional coupling net
works used in amplifiers have a given fixed relation between the response 
curve and phase characteristic, and this relation is such that no linear 
phase characteristic can be obtained with a response curve of the form 
shown in fig. 14. The deviations usually occurring in practice are sketched 
in figs 18a and b.

Complex theoretical investigations are required to improve the phase
characteristic by means of special 
correcting networks, and as a rule 
a loss of gain will be the result. 
For this reason every endeavour 
is made to give the response curve 
of the receiver the desired form 
in the simplest way; the resulting 
phase distortion is then definitely 
fixed and may be compensated at 
the transmitting end by suitable 
networks. This method is still in 
the development stage and will 
probably have the following con
sequences :
(1) care will have to be taken that 
the receivers have the prescribed 
response curve, particularly as far 
as the low frequencies are con
cerned ;

(2) experimental testing of the unit function response curve of trans
mitters will have to be carried out with a receiver having an accurately 
prescribed response curve, instead of with a special wide-band receiver.

xy//
9

/
—- i

a.

—t
KLQ \\

Fig. 18. Deviations occurring in conven
tional coupling networks. In (a) the am
plitude (dash-dot line) and phase shift 
(broken line) are again plotted as functions 
of the frequency /, while the step function 
is plotted in (6) as a function of time 

(full line).

b

3.4 GRAPHICAL DETERMINATION OF THE STEP FUNCTION
For the performance of an I.F. amplifier to be judged from its step func

tion it is useful to have available a simple and quick method for deriving 
this curve from the frequency response curve.

The method described below is based on the approximation of the 
frequency response curve by straight line segments. This method is 
therefore not exact, but the accuracy of the approximation may be im
proved ad libitum by increasing the number of segments.

The method offers the particular advantage of being not merely a
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3.4 Graphical determination of the step function

mathematical analysis but of giving also a clear insight into the relationship 
between the forms of the frequency response curve and the step function. 
From the graphical construction of the latter it can therefore be deduced 
how the frequency response curve should be changed to obtain a better 
step function. It is, for example, possible to investigate, by means of 
greatly simplified frequency response curves, how their various character
istic forms influence the step function 2).

In vestigial sideband systems the contribution of the quadrature com
ponents is determined separately, so that the influence of the modulation 
depth on the form of the step function can easily be investigated.

The effect of phase distortion is also determined separately, this being 
of importance for studying for example the value of phase correction in 
the transmitter. It is possible, therefore, to leave the phase distortion out 
of consideration for the time being, thus rendering the method more 
easily understood.

The purpose in view is to determine the envelope E0 of the output 
signal when the envelope E{ of the input signal consists of a constant 
component (the base) Eh and a voltage step Es at the instant t = 0. By 
means of the unit function H (t) this can be expressed by:

Ei = Eb + Es H(<).

To solve this problem the phase characteristic is for the time being 
assumed to be linear within the pass band, but with the phase angle 0 
differing from zero. This means that the output signal is delayed with 
respect to the input signal by an amount:

(33)

— 0 (34)D =
2 7T / '

where 0 is the phase shift in radians at the frequency /. The delay angle 
— 0 thus represents the delay D expressed in radians. (The modulation 
frequency at which the modulation at the output lags by 360° is therefore 
equal to 1 /D.) Assuming that

(35)tf = t — D,

the step of the output voltage is then given by:

E0 = G{Et> + EsHs {I') } .

The gain G is of no consequence here and will be assumed to be equal to

(36)

i) See, for example, W. M. Lloyd, Single Sideband Receiver Design, J. Telev. 
Soc. 6, p. 135, Oct./Dec. (No. 4).

31



Distortion 3

unit}', so that it suffices to calculate the function Ha(/'). For this purpose 
the modulation response curve M is derived from the I.F. response curve 
A (see fig. 19).

The frequency scale of this diagram corresponds to the difference in
frequency of the carrier and 
the sideband component. 
The positive or negative sign 
is of no significance; the con
tributions of the two side
bands are simply added.

The modulation res
ponse curve is now ap
proximated by a number 
of straight line segments. 
The extremities of each of 
these line segments corre- 

. spond to the frequencies 
mod /' and /" (/" < /'). The 

difference in height between 
the extremities will be de-

A

7
Z

fc fc+fm

M*
//

*m0
69242

Fig. 19. I.F. response curve A from which the 
modulation response curve M is derived.

noted by h, which is taken to be positive when the line segment descends 
towards higher frequencies, i.e. when it has a negative slope. Horizontal 
line segments can be dis
regarded in the calculation. M

To determine the approxi- | 
mating broken fine for a 
modulation response curve 
the following data are speci
fied for each line segment:
(1) the difference in height A,
(2) the highest frequency
(3) the ratio /"//'.

74531

Fig. 20. Approximation of a modulation 
response curve by a number of straight 

line segments.
Example

In fig. 20 a modulation response curve is approximated by two horizontal and 
three inclined line segments, the latter being numbered from 1 to 3. Since the slope 
of segment 1 is positive, assumes a negative value.

The contribution of each of the segments towards the step function is 
determined by the three characteristic quantities: h, /' and/"//'. These
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3.4 Graphical determination of the step function

curves are represented by the function S (/'/'), which has been plotted in 
fig. 21 with f/f' as parameter.

The curves of fig. 21 are radial-symmetrical with respect to the point 
ft' = 0, S(ft') = 0.5 and are all derived from the curve for f/f = 0, 
which can be calculated with great accuracy by means of a series develop
ment (see Appendix III).

S(f't')

1.0

0.9

I
0.8

0.7

0.6

0.5
0 1.5 2.0 2.5 3.0 3.50.5 1.0

-----------► f'f' 092-J4

Fig. 21. Graphical representation of the function S (/'/') with /"//' as parameter.

To determine the graphical representation of the step function 
corresponding to a given modulation response curve, it suffices 
to select the correct curves S (ft') from the family of curves of 
fig. 21 (and to interpolate where necessary), after which these 
are redrawn on the correct scale and simply added.

This can be done, for example, by plotting for each segment a horizontal line at a 
distance h above the zero axis and marking the f' t' scale on this line. This is easily
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done, since the time V — 1//' corresponds to the point /' V = 1 of fig. 21. 
At/' = 0 the curve passes through the point 0.5 h, with respect to which it is radial- 
symmetrical. For negative values of /' the zero axis may therefore be imagined to 
correspond with the line S (/'/') = 1 of fig. 21, etc. The graphical construction be
comes clearer when instead of the zero axis the line S (/'/') = 0.5 is taken as basis. 
See, by way of example, fig. 33.

In order to take the phase distortion into account it is necessary to
investigate the phase dif
ferences with respect to 
the originally assumed 
linear phase characteris-

A,Q

A

tic.
Now the modulation 

response can be considered 
as a complex quantity, 
the real part of which is 

f equal to the cosine of 
the phase angle, and the 
imaginary part is equal 
to the sine of the phase 
angle. Consequently a real 
and an imaginary modu
lation response curve can 
be plotted (see fig. 22).

These curves are de
rived in the following 
way from the amplitude 
and phase characteristics. 
Assume that at the fre-

A, ®2

1*2
fc

Af

M

i
7

quencies and /2, at 
equal distances A f from 
the carrier, the amplitude0

f and the phase angles are
Ax and A2 and and

Fig. 22. Construction of the real and imaginary @ respectively. (These 
modulation response curves from the amplitude 2 1

and phase characteristics.

7352?

are the remaining phase 
angles after the constant 

delay has been subtracted.) For a modulation frequency A / the real 
component of the modulation response is then:

(37)Mreal = Ax COS 0X - A% COS 02,
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3.4 Graphical determination of the step function

and the imaginary component is:

Mining = — Ax sin + A2 sin 02.

(The lower sideband should be taken for A1 and the higher sideband for 
A 2, the sign of the phase distortion being thereby given.)

Once the two modulation curves have been determined, these are again 
approximated by straight line segments as outlined above. Each inclined

(38)

02
C(f't')

0.1

//
\// /£0 T-t/ /7 / 7/ / /L / \/ /7. V \/ /V / /A /-0.1 -/■/

/ //,
/ /

/ /z
/-0.2 /

/t /0.1f'If'=1.0, /°--0.3
/ /

7 7
-O.A /

7 /-0.5
0.02 0.05 0.1 0.2 0.5 2

ft169246

Fig. 23. Graphical representation of the function C (/' t') with /"//' as parameter.

line segment of the real modulation response curve forms a contribution 
S (/'/') towards the- step function, whilst each inclined segment of the 
imaginary modulation curve forms a contribution C(f't').

The function C (ft') has been plotted in fig. 23, again with /7/' as para
meter. This diagram is image-symmetrical with respect to the line ft’ = 0. 
Since the curve logarithmically approaches — «> forf't' = 0, f't' has been 
plotted on a logarithmic scale.
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When no great accuracy is required, the C(f't') diagram can be approximated by 
a broken line, the descending part of which has a slope of 0.72 per decade. The 
transitional point is situated between 0.09 and 0.25, depending on the ratio /'//'. 
This procedure is followed in example 2 on p. 47.

If, in order to determine the phase distortion, the phase characteristic 
must be derived from the amplitude response curve (see footnote on

page 23), the latter should 
preferably be plotted on 
logarithmic amplitude and 
frequency scales (see fig. 
24), since the phase char
acteristic must be fairly 
accurate in the vicinity of 
the carrier frequency. This 
logarithmic
characteristic can be ap
proximated by a broken 
line, the shape of the phase 
characteristic then being 

determined by the location of the transitional points and the change 
in slope of the line.

Fig. 25 shows the phase characteristic corresponding to the amplitude 
characteristic of fig. 24. The 
ascending part of the latter 
characteristic has unit slope.

Characteristics with a different 
change in slope are dealt with 
as follows. A slope is said to 
be of +k units when the ampli
tude characteristic rises 2k db 
within a frequency interval of 
1.25, which corresponds to 20k db 
per decade. The phase character
istic corresponding to a transi
tional point at which the slope changes k units is thus obtained by multiplying the 
vertical scale of fig. 25 by the factor k.

The phase characteristic of an amplitude characteristic approximated 
by line segments is now found by linearly adding the phase characteristics 
corresponding to each of the transitional points.

For accurate construction of the phase characteristic, the part of 
fig. 25 of greatest importance in practice , has been redrawn on a linear

logA
\

amplitude

4 logf
Fig. 24. Amplitude response curve plotted on 
logarithmic amplitude and frequency scales (semi

infinite unit slope).

69247

69248 •

Fig. 25. Phase characteristic corresponding to 
the amplitude characteristic of fig. 24.
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3.4 Graphical determination of the step function

Fig. 26. Phase distortion with a semi-infinite unit slope plotted on a linear scale. 
The broken line shows the linear term.

scale in fig. 26. A linear term has been subtracted to give greater emphasis 
to the phase distortion. logA 

A practical difficulty in 
determining the phase 
characteristic graphically 
lies in the fact that fairly 
small phase deviations 
sometimes correspond to 
the difference of two large 

contributions

Jdb
i

opposed
originating from two ad
jacent opposed transition
al points in the ampli
tude characteristic (see 
fig. 27). This will be the case, for example, when the amplitude character
istic has been very roughly approxmiated and attempts are made to

fo/a fo ah logf
Fig. 27. Amplitude characteristic containing two 

adjacent opposed transitional points.

O9250
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the accuracy of the construction by rounding off the curve. 
^Forsuch purposes it will be advantageous to use the phase diagram of

Fig. 28. Phase diagram corresponding to the amplitude characteristic 
depicted in fig. 27. The parameter is the term a in fig. 27.

fig. 28, corresponding to the two opposed transitional points of the ampli
tude characteristic of fig. 27.

Example
What will be the shape of the phase characteristic of a single resonant circuit

according to the above method? 
For large values of x:logA

d log A
= 1.i \ 

/ l d log x
/ \ in which\/ \/

\w0 W/
\/ \/ \/ \ {See Appendix I)/ \/ \ Hence:/. \

d log A _ 
d log w Aw’

In the case of a very large de
tuning :

w0

0
►logf Aw69252 >± 1._a C00

Fig. 29a. Rough approximation of the response whence 
curve of a single tuned circuit (fully drawn 
line). The actual response curve is indicated 

by the dotted line.
d log A >± 1.d log w
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3.4 Graphical determination of the step function

Fig. 296. The fully drawn 
line represents the phase 
characteristic corresponding 
to the approximated response 
curve of fig. 29a. The actual 
phase characteristic is in
dicated by the dotted line.

logA

f

Fig. 29c. Representation of the 
corrections to be applied to the 
response curve shown in fig. 29a.0

logf

69254

0

0
logf

I
foFig. 29d. Phase characteristic 

corresponding to the corrections 
shown in fig. 29c.

69255£
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When, as a first approximation, the response curve of the circuit is now represent
ed by two straight lines, with slopes +1 and —1 (fully drawn lines, fig. 29a), the 
phase characteristic appears to conform to the diagram of fig. 25, provided its 
vertical scale is multiplied bij —2 (see fig. 296). In the case of very large detuning, 
this diagram agrees fairly well with the well-known arc tan function (see Appendix I) 
by which the actual phase characteristic (dotted line, fig. 296) is given.

The approximation of the amplitude characteristic can be improved by adding 
two corrections indicated in fig. 29c (cf. fig. 27). A phase correction as shown in 
fig. 29d must then be added to the phase characteristic, so that the actual phase 
characteristic (broken line in fig. 296) is very nearly approached.

The approximation can be further improved by increasing the number of these 
corrections.

Now that the contributions of the in-phase components have been dealt 
with, the determination of the so-called quadrature components of the 
step function will be investigated.

These components are derived from a modulation response curve Mq, 
which should also be considered as a complex quantity. The quadrature 
components can therefore be deduced from this modulation response curve, 
and are a real component Mqreal and an imaginary component Mq imag.

The derivation of these curves from the I.F. response curve is analogous 
to that of fig. 22, but now:

(39)•MqreaI = Ax COS 0X — Az COS 02,
and

(40)Mqimag = Ax sin 0j + A 2 sin 02.

The contributions of the real component of the quadrature modula
tion response towards the step function assume a form jC(/T), whilst 
those of the imaginary component assume a form jS(/Y).

These contributions are determined in exactly the same way as describ
ed for the in-phase component, after which they are also linearly added. 
The quadrature component of the step function thus obtained must, 
however, be added in quadrature to the in-phase component.

Example 1

What shape does the step function assume at a voltage step from 1 to 2, applied 
to the input of an amplifier the amplitude and phase characteristics of which are 
given in fig. 30?

First the modulation response curves are determined for the in-phase component, 
see fig. 31.
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3.4 Graphical determination of the step function

o 060
50°
4 0°
30°
20°
10°
0°

-10° 
-20° 
-30° 
-4 0° 
-500 
-60°

74 16 18 20 22 24 25 28
------- ► f(Mcls)

73523

Fig. 30. Amplitude and phase characteristics of an amplifier 
the step function of which is to be determined. A linear 
term corresponding to a delay of 5 psec has been sub

tracted from the phase response.

!

i

73524

Fig. 31. Real and imaginary modulation response curves 
corresponding to the amplitude response curve of fig. 30.
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In fig. 32 the real modulation response curve has been approximated by two 
inclined and two horizontal line segments. The inclined segments are characterised 
by the following data:

i

segment number h /' nr
i 0.2 5.5 0.55
2 0.8 6.5 0.85

The contributions S (/'/') x, and S(/'/')2 of the inclined line segments of fig. 32 have 
been plotted in fig. 33. The sum of these contributions is given by the dash-dot 
line 5tot-

^3525
Fig. 32. Approximation of the real modulation response curve 

by straight line segments.

7.7

10

0.8
07
0.6

0.5

Fig. 33. Contributions of the real 
modulation response curve (fully 
drawn, lines) derived from the 
approximated modulation res
ponse curve of fig. 32. The sum 
of these contributions is given 
by the dash-dot line Stot- The 

g j broken line Ctot. representing the 
imaginary component, is derived 

in fig. 35.

0.3

0.2
0.1

0
-o.l

-0.3 -02 -0.1 0 0.1 0.2 
----ttys)

73526
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3.4 Graphical determination of the step function

The approximated imaginary modulation response curve is given in fig. 34. This 
consists of three inclined line segments with the following data:

hsegment number /' nr
+ 0.3 
—0.55 
+ 0.25

1 1.25 0.80
2 4.5 0.33 I3 5.5 0.88

0.6
M „ . 0.4

Fig. 34. Approxi
mation of the ima
ginary modulation 
response curve by 
straight line seg

ments.

0.2

0

-0.2
-0.4

-0.6 2 6 a0
--------► f(Mcjs)

75527

The contributions to this imaginary component are plotted in fig. 35a, the sum 
of these contributions being given in fig. 356.

Fig. 35a. Contribu
tions of the imag
inary modulation 
response curve of 
fig. 34. The sum 
of the contributions 
C(/T)i to C(/Y)s is 

plotted in 6.
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lope of the quadrature component of the signal is determined. The 
response characteristics serving for this purpose have been plotted

Mqreal

\7

Mq imag
7s

4 5 6 82
--------► f(Mc/s)

75530

i. Modulation response characteristics Mq real and Mq imog 
of the quadrature component of the signal.

ves have been approximated in fig. 37. The inclined line segments 
by the following data:

/' ! nrsegment number h>nent

1 —0.8 
—0.2 
+ 1.0
—0.3 
+ 0.5 
—0.2

0.8 0
2 2.5 0.32
3 7.0 0.85
1 1.0 0
2 4.5 0.45■ry
3 6.0 0.83

Mq real~
2 \r %

i
A Mq imag ~

2 5 6 8
-------- ► i(Mcls)

75531
Approximation of the quadrature components of the 

characteristics given in fig. 36.

)ns of the real characteristic towards the quadrature component 
1 in fig. 38.
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0.8
Cq \

0.6 \
\
\0.4 N \

\ .Cg tot
0.2 V
0

0.05 0.1 02 0.50.01 0.02
-------^logt'(fis)

73552
Fig. 38. Total contribution Cqtot of the real characteristic 
towards the quadrature component. The unit of the scale 

of the ordinate is 4-j-

In fig. 39 the contributions of the imaginary characteristic have been plotted. 
Sq (/'/') x and Sq (f't')2 are the contributions corresponding to the line sections 1 
and 2 of the Mqimng characteristic of fig. 37. In fig. 39 the characteristic Cqtot of 
fig. 38 has been indicated by the broken line. The sum of this contribution and 
that of the two imaginary components is given by the dash-dot line Cq tot + Sq tot-

!
■

!
!

i

Fig. 39. Sqf/T)! and Sq(/Y)2 are the contributions of the 
imaginary characteristic, and Cq tot is that of the real charac
teristic of the quadrature component. The dash-dot line re

presents the sum of these contributions.
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Fig. 40. Total con
tribution of the in- 
phase component 
(broken line) and 
ultimate step func
tion (fully drawn 

line).

fo I
/ie\ +

L̂
-Cfot * ^tot7.6

7.4
t
L7.2: T

4-

Ji7.0

0.2 0.3 0.4
-------

73534

0.7-0.4. -0.2 -0.2 -0.7 0

Fig. 40, finally, gives the in-phase component, i.e. the sum of the curves Stot 
from fig. 33, Ctot from fig. 35 (which, for the sake of clarity, has been plotted also 
in fig. 33) andFb/Fs. By adding in quadrature the contribution Cqtot + Sqtot from 
fig. 39, the fully drawn curve representing the step function is obtained, viz.:

^ (Ctot + Stot)2 + (Cqtot + Sqtot)2-

73905

7.2,

7.0

0.0

0.6]

Fig. 41. In-phase 0.2 
component of the 
step function of 
example 1 such as o 
would have been 
obtained if the ir
regularity at lower -qj_________________
frequencies had not -0.4 -0.3 -0.2 -0.1

been ignored.
0.7 0.2 0.3 0.4

------ —t'(ps)
0
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3.4 Graphical determination of the step function

Example 2
In example 1 the small irregularity at lower frequencies of the modulation res

ponse curve of fig. 31 was disregarded in the approximations of figs. 32 and 34. 
If this irregularity had been taken into account, then the in-phase component of 
the step function would have assumed the form depicted in fig. 41.

In this curve a variation appears to be present already at the instant /' = —0.4 
psec, i.e. before the voltage step was applied to the amplifier. This is, of course, 
inconsistent, since a circuit cannot possibly predict future signals. This error is due 
to inaccuracies of the phase characteristic in the vicinity of the carrier.

0.25 Mc/S 0.25Mc/s

■:

\0.5db

73535

b
* Fig. 42. a Neglected irregularity of the modulation 

► f(Mcfs) response curve, b Corresponding I.F. response curve 
Q. 69268 in the vicinity of the carrier frequency.

It will now be shown how the data required for correcting this error can be deriv
ed from the modulation response curve.

Assume for the sake of simplicity that double sideband reception takes place 
and that the modulation response curve has the shape as plotted in fig. 42a. The 
I.F. response curve in the vicinity of the carrier frequency will then be as depicted 
in fig. 42b.

%

5/

t
10Fig. 43. Imaginary 

component of the 
correction in the 
modulation re

sponse. 0
q; 0.2 Q3 0.4 0.5 0.6 07 0.8

--------► f (Me Is)
0
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From fig. 42 it can be derived directly that the small irregularity results in a 
contribution according to the fully drawn line SCOrr in fig. 45 being added to the 
real component.

From fig. 42b it also follows that in the range near the carrier a phase distortion 
occurs as depicted in fig. 29rf, but of opposed sign, so that the imaginary component 
of the irregularity will assume the shape as drawn in fig. 43.

The contribution Cc0rr of the in-phase component of the imaginary modulation 
response curve has been plotted in fig. 44 on a logarithmic scale.

%
2

Ccorr

0 100.5 10.05 0.1 0.2
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Fig. 44. Contribution Cc0rr towards the step function.

Fig. 45, finally, gives the total contribution CCOrr + SCOrr of the in-phase compo
nent of the imaginary and the real modulation response curve towards the step 
function, caused by the irregularity investigated.

As was to be expected for V < 0, the curve runs horizontally. The part for V > 0
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Fig. 45. Contribution CCorr drawn on the same scale as the 
contribution SCorr of the real modulation response curve 
towards the step function. The dash-dot line represents the 

total contribution CCOrr + SCOrr towards the step function.

0 2
69272

can be derived from fig. 21 by doubling the vertical scale, so that this covers the 
range from 0 to 1 instead of from 0.5 to 1.
tice f"qUadra'ure comP°nent can be dealt with in an analogous way, but in prac-
step functioT so that th^ C°mp°nent wiU have less effect on the final form of the:
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AGAIN, BANDWIDTH AND DISTORTION WITH 
FOUR-TERMINAL COUPLING NETWORKS

In the previous Sections the interstage couplings were assumed to 
consist of normal parallel tuned circuits, where necessary shunted by 
resistors, and the assumption was always made that for two successive 
stages the output voltage of the first stage is equal to the input voltage 
of the following stage. This will as a rule no longer be the case, however, 
if the coupling between the stages consists of more complex four-terminal 
networks.

The previous comments can, however, be extended to such networks 
by introducing the concept of transfer admittance. Whereas the admit
tance of a two-terminal network is understood to be the current divided 
by the voltage at the same pair of terminals, the no-load transfer admit
tance of a four-terminal network is here taken to be the current at the 
input terminals divided by the voltage at the unloaded output terminals. 
(The concept of transfer impedance can be defined in a similar way.)

Assuming again that the feedback in the valve is negligible and con
sidering the input valve as a current source V{ • Sen, shunted by its 
internal resistance ra and its anode admittance g0 + jcoC0, then it is 
obvious that the gain of stage h can be written as:

. ' _ . _i_ =___
(Vi)h Yh,h+1 (Vi)h Yh,h+1

•Soff(IT)a+2 (41)Gh =

where Y/„/,+i represents the transfer admittance Ii/V0 of the coupling 
network between the stages h and h + 1, including at the input side the 
admittance:

1

l
— + go + j<oCp,
Ya

and at the output side the admittance:
gi + j <oC{.

For the interstage couplings now to be dealt with, it thus suffices to 
substitute Yhth+1 for Y. This having been done, the calculations can be 
worked out in an analogous way.

Two examples of a four-terminal coupling network, namely a so-called 
'V* network and a double-tuned band-pass filter, are discussed below.

The ‘ V' network (fig. 46) is equivalent to a normal single-tuned circuit 
the input and output of which are ‘Tapped”, as a result of which the total 
circuit capacitance is reduced, since the capacitances C0 and C* 
longer in parallel as in a single-tuned circuit. For a given frequency the

;i
ii

■

■i

••
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Gain, bandwidth and distortion with four-terminal coupling networks 4

required inductance of the circuit is therefore higher. This may be an 
advantage at very high frequencies, since with very small values of in
ductance it is not easy to obtain a satisfactory quality factor.

As the voltages across C0 and Ct are in anti-phase, there will be a point 
in the coil L which is at zero H.F. potential. This point may be used either 
as the point at which the supply voltage is fed to the valves, or for inter
connection by means of a screened lead with similar distant points in the 
receiver.

The double-tuned band-pass filter (fig. 47) differs essentially from the 
single-tuned circuit. It resembles a staggered pair. C0 and C; are now 
parts of separate circuits, and a higher product G- B is obtained. The res
ponse curve has steeper flanks and is flatter, whilst the unit function 
response curve has a higher slope and overshoot. When more stages are 
connected in cascade the decrease in bandwidth is less than with single 
tuned circuits. This decrease can also be compensated by staggering. In 
this case, however, the circuits are not detuned but merely unequally 
damped.

4.1 “tc” NETWORK
The transfer admittance of the ‘ V’ network in fig. 46, which is widely 

used where the layout of the amplifier makes long wiring inevitable and a 
small circuit capacitance is nevertheless desirable 1), may be determined 
as follows:

/)+/Il l
Io\\

Vh R0\ 'Qj Cj Vh+1\Ri

04912
Fig. 46. Interstage coupling con

sisting of a “tc” network.

= jL (42)

Furthermore:
7i = (-l+jcoCi) 

Io = (iT0 +j<oCo)

(43)VM
and

(44)Vh.

*) Cf. A. van Weel, An Experimental Transmitter for Ultra-Short-Wave Radio- 
Telephony with Frequency Modulation, Philips Techn. Review 8, p. 121, 1946 
(No. 4), in particular figs 4 and 5.
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4.1 "7c” Network

Moreover: :
.Vh= Vh+1 + IijuL. (45) .

From eqs (45) and (43):
(±' + ]<*L,Vh = V,l+1 -f- (46)

(and from eqs (46) and (44):

= (i- + juC„)| (i. + jt0Ci) Vj,+i jwZ. |.I, V/,+1 + (47)

i CSince //* = I{ + I0> eq. (42) finally becomes:

VhM = Tow2L + w) + jo)Co + j<oCi + WRi
i i
! fjco3LC0Ci. (48) '
• f
tAt resonance the imaginary part of eq. (48) is zero, which gives:

Co + Q + l^Ri

'■ :

!
= co2LC0C|,

:1 
■ 'Iwhence:
\= z(k + ii) 1 (49)co2 Co Ro Ci Ri

A simplification can be introduced b)' making the following approxi
mation :

ti

= i(r0 + i)- (50)Wo2

At or near resonance the real part of Yh,h+i is therefore approximately: ..
:(cr„+ zij (si + si) - _ (/§b + -mi}- (51)(y"'"+i)real ~ Tto + 1

Ri~

The negative sign, which is of no consequence here, will henceforth be 
omitted.

To determine the bandwidth the imaginary part at co ^ co0 must be 
calculated:

= to { (Ci + Co) + ^

or, if LjRiR0 is ignored and co(co + co0)/co02 is set equal to 2,

^(Ci + c.) {.^ Yh,h+1 j
imaginary

^ Yh,li+1 j = 2 A co (Ci -p Co), (52)
imaginary

provided Aw/co0 is small. (It should be noted that for very low frequencies 
the transfer admittance does not assume the very high value which might

i

i
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Gain, bandwidth and distortion with four-terminal coupling networks 4

be expected from this approximated formula.) To determine the frequency 
at which the attenuation is 3db, the. imaginary part must be set equal to 
the real part, that is to say:

Co Ci (53)2Aw (C» -f Co) — + RoCo

This expression may be adapted to the previous comments by writing:
l (54)Ri = gi + gci'

and
l (55)JjT = So + gco,

where g0 -j- gco is assumed to include l/ra of the valve. Hence:

27~B(Ci + Co) = (gi + gci) • Q + (go + gco) •

This equation thus replaces eq. (6). The gain per stage now follows from: 

G =

(56)

S 5 (57)
Yh,h+1

(gi + gci) ' 7=r + (go + gco) *Ci

Combining eqs (57) and (56) again gives:
S (8)(GB) =

27t (Ci -}- Co)

The further procedure is similar to that given in Sections 1 and 2, 
provided gi + g0 is replaced by:

CiCo
gi'cl + g"' C~„-

This means that /x and /0 must be replaced by:
fi" = Y2/1* (58)

and
(59)hu = Y2/0.

in which:
I / gi Co ' go Ci -| / Co ,Y2 “ V gi + go Ci~^ gi + go Co~\ Ci~ (60)

since g{> g0.

In practice may be set equal to fv The quantities Fs, Fb and Fx 
remain unchanged, so that the theory of the previous sections also applies 
to amplifiers where the interstage coupling is formed by the ‘V’ network 
of fig. 46.
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4.2 Double-tuned band-pass filters

4.2 DOUBLE-TUNED BAND-PASS FILTERS
The transadmittance of double-tuned band-pass filters (fig. 47) can be 

determined with sufficient accuracy by means of the existing theory on 
band-pass filters with a high quality factor *).

Ls\Lp

M | RsRp Q>=r

73537
Fig. 47. Interstage coupling consisting of a double-tuned 

band-pass filter. In a practical circuit:
1/I?P = go + gcp = 1/^a + ga 4" l/i?cp Cp = Co -}- Crp 
l/Rs = gi + gcs = gi -p 1/Rcs Cs = Ci -f- Cxs

A more accurate theory will not be required unless the resonances of 
the circuit, the coupling factor, etc., are to be calculated exactly. This 
theory (see Appendix I) leads to the following expression:

(1 + q2) + j./]/2 + r+± + (j*r-
(61)Yfi.h+1 =

jq V RpRs
where:

x = P VQpQ;
P = 2 Aw/wo,

Qp — <o Cp Rp, 
Qs = w Cs Rs,

and
q = k VQpQs.

M (k = (or *n case °* capacitive coupling

while
r — Qs/Qp-

It can be shown that under certain conditions the frequency response 
given by eq. (61) corresponds to the curve s = 2 of fig. 9.

At resonance (x = 0):

^FA,A+lj = 1 +-q~ * V (gi -+- gcs) {go + gcp), (62)
qimaginary

q See i.a. B. G. Dammers, J. Haantjes, J. Otte and H. van Suchtelen, 
Application of the Electronic Valve, Book IV, Philips Technical Library (1950) and 
C. B. Aiken, Two Mesh-Tuned Coupled Circuit Filters, Proc. I.R.E. 25, 1937 
(No. 2).
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Gain, bandwidth and distortion with four-terminal coupling networks 4

from which, by means of eq. (41), the gain per stage is:

G =------------- 5 —------1__ .
V (gi + gcs) (go + gcp) 1 + ?2' (63)

By setting:
dZh,h+i _ d-Zh,h+i d*Zh,/,+i

= 0,dx dx~ dx3i

at x = 0, the value of q can be found at which the top of the response 
curve is flattest. It can be proved that at this condition (see Appendix I):

(64)<7

If this condition is satisfied, so-called transitional coupling is obtained. 
In that case the frequency response corresponds to that shown in fig. 9, 
s = 2, and:

±nBVCoCi = 2VT + q*V(gi + gcs) (g0 + acp).
The maximum product of gain and bandwidth achievable by minimiz

ing the capacitances may now be expressed by:

(65)

5 2<7G • B = (66)
4tc VC0Ci Vl + q2

This expression will be so interpreted that the first factor is considered 
as the (GB) product in the case where the coupling consists of a band
pass filter, and the second factor as the bandwidth factor in that case. 
This (GB) product is thus:

S(GB)0 =----t=.
4tz V C0CJi

This (GB)" product is identical to that given in Section 1, provided 
Ci = C0. In practice these capacitances do not differ greatly, so that, in 
this case too, the theory of Section 1 remains valid to all intents and pur
poses. The stray capacitances can of course also be taken into account, 
giving:

(67)

SFx"(GB)" =
4izV (Ci + Cas) (Co + Cap)

where C« = the stray capacitance across the secondary and Cox — the 
stray capacitance across the primary.

Hence:

*v=y Ci Co (68)
Ci + Cars Co -J- Cxp
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4.2 Double-tuned band-pass filters

As indicated above, and in Section 2, the second factor of eq. (66):

2VT + y- 
1 + r

2 q (69)Vl +

represents the bandwidth factor Fb" for one stage.
If several stages in cascade are used, the bandwidth decreases as the 

number of stages increases, as is the case when the coupling consists of 
synchronous parallel tuned circuits. This is demonstrated by the following 
expression:

!

2vT + r2 • \y 2lli— 1.Fb" = (70)1 + v

The second term of eq. (70) can very well be approximated by 1.1 tl,i; 
the first factor Fb\ is represented by the curve of fig. 48.

There are obviously two ex
treme cases, viz.:
(1) r = 1, i.e. Qp=Qs] in that 

case q = 1, the coupling being 
critical. FB is then equal to 
V2. With valves of which 
Ci « C0 it is thus possible to 
improve the gain by 3 db by 
using a band-pass filter instead 
of a single tuned circuit. This 
obviously applies to one am
plifying stage only.

(2) r = 0, i.e. Qp= «>. In that case the bandpass filter is damped at one 
side only, and the gain, compared with a single tuned circuit, may be 
increased by a factor as high as 2.

2 Fb,'
15

05

0J 02 05 1 2 5 10 20 50 100

64914

Fig. 48. Graph representing the first term 
ofeq. (70).

The decrease of the bandwidth when synchronous band-pass filters are 
connected in cascade is similar to that of flat-staggered pairs connected in 
cascade, as is shown by a comparison of eqs (70) and (30). This decrease 
can be counteracted by applying so-called staggered damping, which 
has some resemblance to staggered tuning with single circuits.

This method is based on the change to which the response curve of 
a band-pass filter is subject when the dampings of the individual circuits 
are changed. Band-pass filters, one side of which is intentionally damped 
are used, and the well-known curves applying to symmetrical band-pass

; i
:
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Gain, bandwidth and distortion with four-terminal coupling networks 4

filters no longer apply unless the values of Q are correctedx). The results are 
shown in figs 49 and 50, fig. 49 applying when k is varied, Q being constant, 

|» while fig. 50 shows the result when
II Q is varied and k is kept constant.

—*f
6491664915

Fig. 49. Response curves of a band-pass filter Fig. 50. Response curves of a 
one side of which is damped, with k as parameter band-pass filter one side of which

(Q = constant). is damped, with Q as parameter 
(k = constant).

Fig. 51 shows how the flat response curve is obtained from the over
coupled and under-coupled response curves. This example applies to an 
unequally damped band-pass filter triplet.

As in the case of the staggered tuning system, there is also a method for 
ensuring that staggered band-pass filters have 
the flattest response curve attainable. It is 
beyond the scope of this book to show how this 
method is derived, but it is applied in the 
following way (see fig. 52).

The values of g for the secondaries are again 
\ deduced from the value of gr of the ref- 

erence circuit, having a capacitance Cr — 2 Cs, 
*— in a similar way as was done for staggered 

*"Cj9i7 tuning- A quarter arc of circle is subdivided 
Fig. 51. Diagram showing into s equal parts (s being

a fla.t response curve ^he number of different band- (full line) is obtained from
over-coupled and under- pass filters) and perpendic-
?°uPle,d r“Pon,f curves ula are dropped from the
(dotted and broken lines).

centre of these parts to one
p^-

of the limiting radii. The lengths of these perpendic
ulars represent the values of g of the various circuits
when the radius is equal to gr. These values correspond FlS-52• Diagram for i i ° . , . . n., staggering band-
to gi + gcs, the conductance of the band-pass niter paSs filters.

6491i)

J) Cf. p. 36 and p. 41 et seq. of the first reference quoted on p. 53.
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4.2 Double tuned band-pass filters

!
secondary being denoted by gC5 (the primary conductance g0 being as
sumed to be zero).

The resulting bandwidth is now equal to that of the reference circuit 
given by:

.

]
r

2tt BrCr = gr,

provided the coupling of each of the band-pass filters is adjusted to the 
correct value. This will be the case when:

£ _ _L _ &
Qr MoCr

Under these conditions the gain per stage follows from the value of 
| | at resonance, viz. (see Appendix 1^):

| Yh,h+i! = 2- fk VCsCP,

(71)

(72)

giving:

gr ' Cp
S

2nBrV CsCp

at A/ = 0, and since the bandwidth B is equal to Bx:
5 (73)G- B = Fx"Fb"(GB)" =

2k"\/ CsCp

Substitution of (GB)" from eq. (67) now shows that for an amplifier 
with double tuned coupling circuits the secondaries of which are stagger- 
damped, Fb" is always equal to 2.

The response curve of a set of flat staggered band-pass filters can again 
be derived from fig. 9, where s is the total number of tuned circuits. 
Since each band-pass filter comprises two tuned circuits, s is in general an 
even number. It is, however, possible to make a combination of stagger- 
damped band-pass filters with one single “fill-up” circuit, which is tuned 
to the central frequency. In this way overall response curves can be ob
tained which correspond to the odd values of s in fig. 9.

As in the case where single circuits are used, the number of elements 
of the staggered group should not be made too large; as a rule groups 
consisting of pairs or triplets are used. If such groups are connected in 
cascade, the total bandwidth decreases only very slightly (see Table 4, 
p. 172). This is due to the response curves of staggered band-pass filter 
groups having very sharp corners. As may be expected, the overshoot 
percentage is quite considerable (see Table 3, p. 172).

The possibilities of staggering are restricted also in the case of band-pass 
filters, owing to the limit imposed on the most selective secondary circuit

;
;

!
\ ■

i
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bandwidth and distortion with four-terminal coupling networks 4
Gain,

(only the secondaries of the band-pass filters are damped, Rt thus being 
much smaller than 2?p). The following condition must be satisfied:

Biot sin a 2> Fb’Fx'(GB)’ (jj ]/Co Cox 
Ci -f- Cix

(74)

With amplifiers having single tuned interstage circuits the quantity fx 
determined by the sum of gi -f go- When band-pass filters are used giwas

and go are separated by the band-pass filter, but since in practice gi is 
much larger than g0, so that gi + g0 is almost equal to gi, there is no need 
to introduce here a new quantity f{.

If a band-pass filter is used at the input of the amplifier the quality 
factors of the primary and secondary are made identical, which means 
that r — 1, so that this band-pass filter cannot very well be included in 
the staggering scheme. There are also other reasons for making the first 
band-pass filter less selective than the other circuits, especially in super
heterodynes intended for reception of several channels. Moreover, by not 
including the input circuit in the staggering scheme, this circuit can be 
chosen to meet specific requirements. For example, the input circuit must 
also satisfy special conditions as to reflection-free termination of the
aerial cable.

The selectivity of the input circuit is already reduced by the heavy 
damping caused by the valve and aerial. To ensure that the termination 
of the aerial cable is such that no reflections occur, the following condition 
must be satisfied:

ftant = = 2Zt', (75)
where Zi is the input impedance of the band-pass filter (at the resonant 
frequency) with the aerial disconnected and Zi is the input impedance 
when the aerial is connected.

Now
{

1 + q'2 ftp ftnnt’

where q'2 — k2QvQs in the case of a connected aerial.
Hence, the condition to be satisfied becomes:

■ftp — ftnnt
■ftp + ftant

In the important case in which Rp is very high, q' should be made ap
proximately equal to unity.

By means'of the formulae for band-pass filters it can be calculated that 
(for Cx = 0) the product G • VB of the aerial circuit is then approxi
mately 1.2 times that of a single-tuned aerial circuit.

A further advantage of this circuit compared to the single circuit is that 
less trouble is experienced from reflections at the sideband frequencies.

ftnntZi' =

<?'2 = (76)i

58



'n
11

5 NOISE

5.1 DEFINITIONS

The signal-to-noise ratio at the output of a receiver is of considerable 
importance. This ratio is determined by the signal-to-noise ratio of the 
signal source and by the inherent noise of the amplifier. Different effects 
must therefore be combined for calculating the final signal-to-noise ratio. 
Noise voltages cannot, however, be simply added and it is the mean 
squares of the noise voltages or the noise powers in one and the same re
sistance which are additive. It is therefore useful to express signal-to-noise 
ratios not as ratios of signal and noise voltages but as ratios of powers, 
the more so as the essential problem in most amplifiers for metric waves 
is power gain.

Basing the considerations on these lines it is logical to introduce the 
concept of available power, i.e. the power obtainable from the source 
concerned at optimum matching. For a signal source with a no-load 
signal voltage Es and an internal resistance Rs this power is:

i

Er
p* - ik.

Similarly, the available noise power of the signal source is:

p   pn .
n “ 4Rs’

the noise voltage En2 is defined with greater accuracy later. It is 
obvious that no purpose is served by considering noise outside the 
pass-band of the amplifier.

The signal-to-noise ratio at the input of an amplifier is now taken to be 
Psi/Pni, whether the amplifier is correctly matched to the signal source 
or not. This ratio obviously is a characteristic of the signal source.

The available powers of the signal and noise at the output of an ampli
fier are denoted by Pso and Pno respectively, and at a given matching 
between signal source and amplifier the signal-to-noise ratio is Pso/Puo. 
At this matching the noise factor N is by definition:

;;

I
■

..
I

,v - PsilPni
- PSo/Pno

(77)

The noise factor N thus indicates to what extent the signal-to-noise ratio
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deteriorates when the signal passes through the amplifier 1). N is not a 
characteristic of the amplifier considered but of the amplifier with the 
signal source to which it is to be connected. Eq. (77) gives a somewhat 
different impression if it is written:

P no PnoN = (77a)
p P$p Pni * (Gp)i
Fn'"p7i

In eq. (77a) the numerator represents the total available output noise,
1. e. the sum of the noises originating from the signal source and the ampli
fier under the given conditions. The denominator represents the available 
input noise Pni multiplied in the same ratio as the signal power Psi- In the 
third member of eq. (77a) this gain is denoted by (Gp)s, the “available 
power gain”. If no additional noise were introduced by the amplifier the 
denominator would obviously be identical to the available output noise. 
The noise factor N considered in this way thus represents the ratio, at the 
output, of the total noise from the signal source and amplifier to the noise 
originating from the signal source alone. This and the former definition 
are obviously concordant and each has its merit.

The last definition clearly shows that the signal strength has no influ
ence on the noise factor, a fact which might not be expected so readily from 
eq. (77). Eq. (77a) moreover shows that the noise from the signal source 
on the other hand largely’influences the noise factor — in other words, it 
again stresses the fact that the noise factor applies to the combination of 
amplifier, signal scource and their interconnection. Therefore, when 
quoting a value of N per se, this is obviously based on the conditions of 
source and matching identical to those under which the amplifier will be 
used.

As far as the signal source is concerned, only the noise power appears to 
affect N, so that this source could be characterized by its internal resist
ance Rs. It should be recognized that the same resistance Rs has a 
different noise power Pm- at different temperatures. In quoting a value 
for N it is often customary to assume Rs to be at room temperature, 
for which the value of 288 °K is preferably employed, round figures then 
being obtained when a diode is used as a source of noise. Under this condi
tion the noise factor N is considered as the standard noise factor.

Should the temperature of Rs differ from 288 °K or if the signal source 
were to contain another source of noise, owing to which the apparent

x) See, for example, H. T. Friis, Noise Figures of Radio Receivers, Proc. I.R.E.
2, p. 419, 1944.
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-

temperature Ts is higher than 288 °K, this can be taken into account by- 
introducing a so-called temperature ratio:

T8
(78)a = 288’

The actual noise factor Na of an amplifier preceded by such a signal 
source thus differs from the standard noise factor measured with Rs at 
288 °K.

It is now necessary to clarify the definition of Pm\ Since d£2 = 
4kTRs6f, the available noise power, considered within an element d/of the 
frequency spectrum, is:

d Pni = d

=

4 k TRsdf = kTdf.

This shows, remarkably enough, that the available noise power Pni is 
independent of the value of the internal resistance of the noise source.

As a rule only part of the entire spectrum is passed by the amplifier. 
If P„i at the input were taken over the frequency range from zero to 
infinity and the integration carried out over the entire frequency spectrum, 
while for P1l0 at the output only the band passed by the amplifier were 
considered, the value of N thus obtained would obviously give an erro
neous impression. Therefore, denoting the pass-band by B„, the noise 
power P„i at the input of the amplifier is taken to be:

Pni = k T Bn.
The gain will usually not be uniform over Bn, and this pass-band will then have 

to be defined more accurately.
In deriving eq. [11a), Pnf (Gp)s was assumed to be the avaible noise output 

originating exclusively from the signal source. Hence:

(79)4 Rs

(80)
I

; Ii

-00

. = J* T{Gp)jdf, . IPni{Gp), — k T Bn[GP)

or ni -j£p)/d/. (81)Bn [Gp)s

;where [Gp)f denotes the avaible power gain at the frequency /.

The measurement of the noise factor N of an amplifier, preceded by a 
standard frequency generator, is based on the third member of eq. (77a) 
and P1l0 is measured with a correctly matched output meter. (Correct 
matching at the output is, of course, not essential provided all measure
ments are carried out with the same matching.) (Gp)s is derived from 
measurements carried out with a signal which largely exceeds the noise

i

■
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level Pni as defined by eq. (80). Bn follows according to eq. (81) from a 
response curve, bearing in mind that Gp is proportional to the square of 
the voltage gain G. Since the noise temperature Ts of the standard signal 
generator usually differs from 288 °K, this measurement gives:

P no
k TsBn {Gp)s

Na = (82)

k being 1.37 * 10-23 joule /°K. If the noise temperature of the standard 
signal generator is Ts = 288 °K the actual noise factor iVa is equal to the 
standard noise factor Nst. As mentioned above, the noise temperature 
Ts of the standard signal generator usually differs from 288 °K, i.e. 
7's/2S8 = a, in which case Nst is calculated from the measured values 
as follows:

Pno — {Gp)s ft TsBn -f- (Gp)s ft 288Bn
Nst =

{Gp)s ft 288 B„
or

P no (83)Nst = -f- 1 — a.
{Gp)s ft 288 Bn

Denoting the first term in the second member of eq. (83), which strongly re
sembles eq. (82), by Nm, this gives:

(83a)Nst = Nm + 1 — a.
Thus Nm is a fictitious noise factor obtained when calculations are carried out 

according to eq. (82) and Ts is assumed to be 288 °K. To determine the actual 
noise factor the true value of Ts must be employed according to the definition of 
eq. (82), giving:

N mv \t 288 Na — N m•-s,— (82a)

In the above little attention was paid to the inherent noise of the 
amplifier itself. This is dealt with in detail in the following section, but it 
will be useful to discuss a few related conceptions here.

On page 60 eq. (77a) led to a definition of N as a ratio of noise powers at 
the output of the amplifier, but N can also be considered as the ratio of 
P,iol(Gp)s to Pni, i.e. of available powers at the signal source. P«0/(Gp)s 
then consists of a part Pni originating from the signal source and a part 
Pnr which represents the equivalent amplifier noise imagined to be located 
in the signal source. Eq. (77a) then becomes:

Pni 4“ Pnr _ , . Pnr
Pni ~ + Pni

In this expression Pnr is the equivalent available noise power of the 
amplifier reflected into the signal source. This again is a figure which 
depends on the matching between signal source and amplifier.

Ts a

1 1

.:

I
(775)N =
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5.2 Calculation of the noise factor 5.2.1

A different method of expressing the inherent noise (for frequencies at 
which no induced grid noise occurs) has long been employed for amplify
ing valves, where the concept of equivalent noise resistance Rcq is used, i.e. 
a fictitious resistance at room temperature connected in series with the 
grid. The actual noise causes are then imagined to be absent, but Rcq is 
assumed to have a value such that the noise voltage across it gives rise to 
the same noise as that normally present in the anode circuit.

Similarly, it is often useful to consider the inherent noise of a complete 
amplifier as originating from an equivalent resistance Rn at its input, 
but in this case it should be recognized that the value of Rn may depend 
both on the signal source and on the amplfier.

5.2 CALCULATION OF THE NOISE FACTOR

11 will now be shown how to calculate the noise factor N, for several cases, 
from the equivalent noise resistance Rn at the input grid of a given amplifier.

5.2.1. Noise factor of an amplifier without input damping

When an amplifier, the input damping g of which is assumed to be zero,
is connected direct to a _____  ______
signal source with an in
ternal resistance Rs (see 
fig. 53), the noise factor 
N can be calculated from 
the definition given by 
eq. (11a).

The available noise 
power at the output Pll0 
is directly proportional 
to Rs -f- Rn at the input.
If the inherent noise of the amplifier were absent (Rn = 0), the noise 
would be directly proportional to Rs. Hence:

Rs + Rn

VtkTBnRs VtkTBnRn<5>Rs—aruumr k
i

ESoAS)Esi Eno

f

65626
Fig. 53. Equivalent circuit of an amplifier having no 
input conductance and a definite, equivalent noise 
resistance Rn, connected to a signal generator with 

a noise resistance R$ and a noise temperature T. i

Rn (84)N = -1 + 3TRs

If the temperature ratio of the signal source is a, its noise power must 
be multiplied by a and the actual noise factor obviously becomes:

(84a)Na =

By rewriting eq. (84) as:
(845)Rs -p Rn — RRs,
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it becomes clear that the two noise generators of fig. 53 may be replaced 
by one equivalent noise generator the average voltage of which is 
VTkTNBnRs. The total noise of an amplifier preceded by a signal source 
may thus be imagined to be caused by Rs having a temperature NT, or 
it may be imagined that a noise-free signal generator is followed by an 

plifierwith an equivalent noise resistance NR8 having a temperature of 
288 °K.

The latter representation may be useful for determining the "equiva
lent noise voltage" at the input of the amplifier. Advantage can then be 
taken of the well-known characteristic of resistances at 288 °K, i.e. that 
the square of the noise voltage is:

(4 |j.V)2 per kQ and per Mc/s bandwidth.

am

5.2.2 Noise factor of an amplifier with input damping

The calculation of the noise factor of an amplifier, which has an input 
conductance g = l/R and is connected direct to a signal source with a

resistance Rs (see fig. 54), is 
based on the same lines.

P»o is determined by the 
combination of Rs and R 
connected in parallel and Rn 
connected in series, i.e. by

Wffim©
^y/AkTBnRs

A
%W4kTBnR'

R RsRn + R + R$
65629

Fig. 54. Equivalent circuit similar to that of 
fig. 53, but with the amplifier having an input 

conductance g = l/R.
The noise voltage of Rs is 

distributed over Rs and R, 
so that, if all inherent noise, 

i.e. that of Rn and R, is imagined to be zero, the available noise power at 
the output is determined by:

giving for the noise factor:

RRSRn + R -f- Rs R -f- RsN = (85)( R y - R 
\R + Rs)R•

.
3.* The limit of N for R oo obviously again gives eq. (84).
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5.2.35.2 Calculation of the noise factor

5.2.3 Noise factor of an amplifier with matching transformer

An amplifier connected to the signal source via a matching trans
former with a ratio 1 : n, is equivalent to an amplifier connected to a 
signal source having a resistance n2Rs. To calculate N it therefore suffices 
to replace Rs in eq. (85) by n2Rs, which gives:

l+~iT + n*R8 \l + ~~FT)

The noise factor is at a minimum when:

.

(86)N =

Rn* = (87)

^]A + #n
To avoid reflections in the aerial cable it is customary to match the 

H.F. amplifier of a television receiver to the aerial (having a resistance Rs) 
such that:

o R71- = — (8? a)
Rs'

but this is not the most favourable matching with regard to the noise 
factor. If, however, Rn is large compared with R, eq. (87) differs but little 
from eq. (87a).

The practical noise factor obtained from eqs (86) and (87a) is:

\r o iApract — 2 -j----

This expression shows that even if an amplifier with no noise (Rn = 0) 
were used, i.e. if the inherent noise were exclusively determined by the 
input resistance, iVpract = 2. It is seen from eq. (86) that N could be re
duced by choosing n2 
smaller than R/Rs-

.

(86a)

.Pnrf

5.2.4 Noise factors of 
two amplifiers in cas- s 
cade

The noise factors of two 
amplifiers Ax and A2 (of 
equal bandwidth Bn), to 
be used in cascade behind 
a given signal source (see 
fig. 55), are assumed to be Nx and N2 respectively. As pointed out on page 60, 
Nx is valid for the combination of Ax with the signal source S, whereas

Poi
Aj A2

X.'4? & 65030nrj

Fig. 55. Equivalent circuit of a signal source 5 
followed by two amplifiers A x and A 2 in cascade.
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N2 is valid for A2 connected to a signal source having the same impe
dance as the output of Ax.

The value of the total noise factor N of two amplifiers connected in 
cascade, expressed in Nx and N2, will now be investigated. First the 
inherent noise of A2 is reflected into the input of the amplifier as an 
available noise power P„r2 originating from the output of Av (This ex
plains why No has been defined as above.)

If the noise factor behind a signal source with an available noise power 
P„i is No, then, according to eq. (77b):

\t — 1 .iv2 — i -t- ,
/u

whence:
Pm* — (No— 1) Pni-

(Since, in defining Nx and N2, the noise temperature of the signal source 
and the bandwidth were assumed to be identical, Pni at the input of A 
and Pt,i of the signal source are identical; see eq. (80).)

It is now possible to go a step further by imagining Pur2 to originate 
from the signal source, as an available noise power which now is l/[Gp)1 
times P„r2. The inherent noise power of A2, reflected into the signal 
source, is therefore:

2

(N2 — 1) Pni (88)
(Gp)i

Similarly, the inherent noise power of Ax can also be reflected into the 
signal source, its value then being:

(89)Pnr\ — (Ni — 1) Pni•

The inherent noise of the total circuit connected in cascade, reflected 
into the signal source Pnr, is obviously equal to the sum of eqs (88) and 
(89). Calculating the total noise factor N from eq. (77b), gives:

1 + —- = 1+ — * ^ + Pni + Pni <
(No—1) PniN =

(Gp) i
Hence:

N = N, 4- N°-~~ l.
1 + (Gph

If the noise factor of the second stage is of the same order as that of the 
first stage following the signal source (the aerial), the noise contribution 
of the second stage is obviously negligibly small compared with the total 
noise, provided the power gain (Gp)1 of the first stage is large.

In deducing eq. (90), the matching of Ax to the signal source need not be

(90)

66

:



I

f
5.3 Causes of noise in a valve 5.3.1

considered. It should be noted, however, that incorrect matching is 
necessarily accompanied by a decrease of (Gp)v In other words, incorrect 
matching to the aerial increases the noise contribution of A2.

5.3 CAUSES OF NOISE IN A VALVE

In the previous sections the inherent noise of an amplifier was represent
ed bj' an equivalent noise resistance Rn or by a reflected noise power Pnrt 
without specifying the actual causes of this noise.

The amplifying valves contribute largely towards this noise and this 
contribution consists, in turn, of various components, each having its own 
origin in the valve considered.

It is very important to note that the magnitude of some of these com
ponents depends on the frequency and it is therefore obvious that these 
cannot be imagined to originate from an equivalent noise resistance. In fact, 
if the inherent noise of a valve is expressed in the customary way by the 
equivalent noise resistance i?eq (see page 63), only the components which 
are independent of the frequency are inferred, and at frequencies below 
30 Mc/s these are indeed practically the only sources of noise.

The following are the principal causes of noise in a valve.

!

:

l!

i
5.3.1 Emission and partition noise

In the simplest type of valve, i.e. the diode, the shot effect of the emis
sion is the only source of noise. In the case of a saturated diode the mean 
square of the noise component in the emission current, measured within 
a frequency band Bn, is:

!'

(91)J«2 = 2 elk Bn,

in which Ik denotes the cathode current.
When the emission current is not at saturation value the space-charge 

effect reduces the noise by the factor Fk, called the space-charge attenua
tion factor, giving:

(91a)Ic- = 2 Fk2 e Ik Bn.

This emission noise is also present in all valves containing one or several 
grids and can be expressed1) in terms of the cathode temperature 7* and 
S', the so-called transconductance for the effective control voltage, so 
that eq. (91«) becomes: i

Ic2 = 0.64 {4k Tk S' Bn).
q C. J. Bakker, The Causes of Voltage and Current Fluctuations, Philips 

Techn. Review 6, p. 129, 1941 (No. 5).

(915)
■
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From eqs (91a) and (916):

0.64 • 4 kTk S'Fir = (92)2 e Ik

The transconductance S' is usually about 1 to 2 times the normal mutual 
conductance and Tk is approximately equal to 3.5 times the room temper
ature; hence Fk2 lies between 0.1 S/Ik and 0.2 S/I*. For most cases a good 
approximation is:

Fk2 « 0.125 • (92a)Tk
There is a striking resemblance between eq. (916) and the expression for the 

Johnson noise in a resistance, viz.:

-p_ En2_ 4& TR Bn 4& T Bn1 ~w ~ w (91c)R
Clearly 1/S' in eq. (916) plays the same part as R in eq. (91c).

In addition to the emission noise the irregularity of the “partition” of the 
current between anode and screen grid also comes into play in multigrid 
valves. The so-called partition noise thereby caused is given by the ex
pression :

2e • IfLllV = (93)1 * Bn — 2FpzeI(tBn,

from which the partition noise factor is:

hi (93 a)

The emission and partition noise currents are obviously manifest in the 
anode circuit. The emission noise has been shown to be proportional to the 
cathode current Ik, whereas the partition noise is proportional to the 
anode current Ia. If, to a first approximation, Ia is assumed to be equal to 
Ik in tetrodes and pentodes, and the two noise currents in the anode circuit 
are added, then:

(Ie+py-=2Fa*eIaBn,

in which, according to eqs (91a) and (93):

Fa* * Fk2 + FPZ.

(94)

(95)

The equivalent noise resistance Rcq is now considered as the cause of 
the noise current (Ie+P)2 according to eq. (94), and can therefore be cal
culated from:

4 kTB Rcq S2 = 2 Fa2 e Ia B,
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5.3 Causes of noise in a valve 5.3.2

which gives J):

Rcq can further be imagined to be composed of two resistances, one of 
which is responsible for the emission noise, and the other responsible for 
the partition noise. When the latter resistance is denoted by Rp, it is 
obvious that:

Fa2 la
Req “ 2kT S2 (96)

Rp FP2 1 (97)
-??eq Fp2 Fk2 Fk2 1 4- — ^ Fp2

This quotient will be denoted by K3.
A simple approximation for Req is obtained by substitution of eq. (95) 

in eq. (96) after eqs (92a) and (93«) have been substituted in eq. (95), viz.:

*.q *rt'(¥ + 20 ■ §5)(kn)-

From this formula it will be clear that:

(96a)

Ig2 la
IkS2’

(98)Rp fa 20 •

and
1 (99)K„fa3

1 + 8/Ja ;

The following sections will show the advantage gained by splitting Req 
into Rp and (RQq — Rp). As a rule, only Rcq is quoted in valve data. !

:
i

!5.3.2 Induced grid noise

Owing to the finite transit time of the electrons the following effects 
occur:
(a) In a direct connection between the control grid and cathode addi

tional fluctuations are induced, the values of which are given by:

(100)

:
■

■■

■

I
:

1

Ig2 = constant • TkS B*©*^*,

where denotes the transit time from cathode to control grid. 
(6) The input circuit is subject to an additional damping gT, viz.:

gx = constant • Sco2 Tkg2.

'

(101) t

*) The charge of the electron e = 1.6 x 10~18 coulomb and k = 1.37 X 10-23 
. joule/°K.
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As shown in the literature referred to above, the fluctuations Is2 may 
be interpreted as the noise of the resistance Rr = 1 /gx if the temperature 
is taken to be equal to about 1.43 7* = aT288, a- being about 5, and 
assuming that there is no coherence between emission noise and induced 
grid noise.

This assumption is permissible here because, although there is coheren
ce between these two kinds of noise and a possibility of noise compensa
tion is thereby offered, such a compensation is difficult to achieve in 
practice. This possibility may therefore be disregarded and the more 
simple formulae which neglect coherence are used in this book, the slight 
improvement of N which might be obtained within a limited frequency 
range not being considered. This improvement may be expected to be less 
than 3 db.

'

;

5.4 CALCULATION OF THE NOISE FACTOR AT METRIC WAVES

5.4.1 General equations

The signal-to-noise ratio may undergo considerable changes due to 
feedback. At very high frequencies the self-inductance of the cathode 
lead gives rise to an additional input damping which reduces the signal 
strength. The noise in the input circuit (including the valve damping) is, 
however, also decreased by this damping and the same applies to the 
emission noise, which is reduced in the same proportion as the signal by 
the feedback in the cathode lead. The partition noise current, on the other 
hand, does not flow through the feedback circuit and remains unchanged.

Emission and partition noise are combined in the concept of “equiva
lent noise resistance”, but since the feedback damping affects the emission 
noise and the partition noise differently^, it is desirable to make a distinc
tion between the two. For this reason, in addition to the equivalent noise 
resistance Rcq, the concept of “partition noise resistance” Rp has been 
introduced in Section 5.3.1, viz.:

r

;
'

i

Rp\pRp (102)

Since the fictitious resistance Rt across the input, representing the 
damping caused by the cathode lead inductance, can be proved to produce 
no additional noise *), the equivalent is as shown in fig. 56.

M. J. O. Strutt and A. van der Ziel, The Noise in Receiving Sets at Very 
High Frequencies, Philips Techn. Review 6, p. 178, 1941 (No. 6).
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5.4 Calculation of the noise factor at metric waves 5.4.1

The formula for expressing the noise factor of such a general circuit is 
very complex1) (see Appendix IV), and it is very much easier to calculate 
this factor for several sim
plified cases such as may 
occur or be approached in 
practice.

Four different cases are 
investigated below. These 
are all based on the as
sumption that the signal 
source is so matched to the

V4kT8n(Req-Rp) V4kTBnRp

!*s
\Rc \Rr

^MkTBnRi

'V/y)Es 'V
V4kTBnR:JV4kTBnaA

I65831
Fig. 56. Equivalent circuit demonstrating the 
effect of feedback (represented by the fictitious 

amplifier that no reflections resistance Rt across the input) on the signal-to-
noise ratio.occur, i.e. that:

1 1 l l !Rs Rc+ Rt+ Rt’
(103)or

gs = gc + gt + g* •
The input damping is not a component of gt and gx and is therefore 

included in the circuit damping gc.
(a) First the simplest case is considered, assuming the input damping gi 

to be negligibly small with respect to the circuit damping gc; (7?c Rt). 
This condition may occur at low frequencies and corresponds to 
the case dealt with in Section 5.2.3, but Rn and R should now 
be replaced by Rcq and Rc respectively: Eq. (86a) thus becomes:

2 + 4tr- (104)Npract —

(6) In the next case to be investigated the transit time damping gx = 
l/R- of the valve is assumed to predominate, while the circuit 
damping gc = 1 /Rc and the feedback damping gt = l/Rt are assum
ed to be zero.

Following the same line as in Sections 5.2.2 and 5.2.3, the ratio 
of the total noise output to the noise output without inherent noise 
is now determined, the noise powers being assumed to be propor
tional to the resistances from which they originate.

At correct matching the signal source has a resistance Rx, this 
being the assumed input resistance. The noise power originating 
from the signal source is now a constant multiplied by £ Rx> the

q L. A. Moxon, The Noise Characteristic of Radar Receivers, J.I.E.E. 93 IIIA, 
p. 1130, 1946 (No. 6).
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factor £ accounting for the signal source being loaded by a resistance 
of the same value as the internal resistance.

The noise contribution of the transit time resistance is equal to 
the product of the same constant and £ aZRX, in which the factor £ 
now accounts for the load of R- by the signal source and aT having 
the meaning given in Section 5.3.2.

Finally, the unloaded resistance Rcq contributes towards the 
noise, so that the total noise originates from a resistance:

i R-z + £ d" ^eq,
giving for the noise factor:

£ Rt + £ aT^T + -fteq R cq (105)Npract — = 1 + «t+4^.

(c) Whereas in the previous case only gT of the input conductance was 
taken into account, the case where only the feedback conductance 
gt is present will now be investigated. The circuit conductance gc = 
1/RC is again assumed to be zero, and the resistance of the signal 
source is Rt.

The noise from the signal source is now directly proportional to 
£ Rt. Of the total valve noise the partition noise must be taken fully 
into account, so that this noise contribution is proportional to Rp. 
The noise contribution from (Rcq — Rp), on the other hand, is dis
tributed over the resistance of the signal source and the resistance 
Rt. Since these two resistances are assumed to have the same value, 
only £ of the square of this noise voltage is operative in the amplifier.

The total noise power is therefore determined by:
Rt + Rp + £ (^cq — Rp)>

giving for the noise factor:

AW - * * + + * (*°q ~ Rp) = 1 + 3 g?

(d) Finally, the two preceding cases will be combined, but for the sake 
of simplicity Rx is assumed to be equal to Rt, while Rx and Rt con
nected in parallel will now be denoted by Ri. The circuit conductance 
gc = 1JRC is again assumed to be zero (cf. fig. 56).

The noise originating from the signal source is now determined by 
£ Ri, while the partition noise is determined by Rp. The source of the 
transit time noise, i.e. in first instance a^RXt is loaded by Ri connect
ed in parallel with 2Ri, that is to say by f Ri, and its internal

. ^£3 
^ Rt' (106)
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resistance is Rx = 2R{. The transit time noise power is thus given by:

iM- :«t Rr = £ aT Ri-«T#T * (107)

The equivalent voltage of the emission noise originating from 
(Req — Rp) is distributed over Rt and the parallel connection of Rt 
and Rlt i.e. over 2 R{ and f R{. This noise power is thus given by:

(i?cq--Rp) QiJ — (^cq — Rp)> (108)

giving for the noise factor:

Npract =
:}• Ri + Rp + 1 a-i?t -f- (-^cq — Rp)

YRi

In the four cases investigated the matching of the signal source to the 
amplifier was assumed to be such that no reflection occurs. As shown in 
Section 5.2.3, matching may, however, be such that N is a minimum. For 
the calculation of this matching and of the values of 2Vopt obtained in 
that case, reference is made to Appendix IV.

Apart from case (a), which applies to low frequencies only, there appear 
to be but three quantities on which the noise factor depends, viz.: 

a constant « 5,
Rcq/Ri, a quantity which depends only on the frequency and is a valve 

quantity J),
Rp/Ri, which can be expressed in terms of Rcq by means of the factor 

Kz = Rp/Rcq. For triodes I<3 is obviously zero, while for pen
todes I/A3 » 1 + S/Sig2, Kz tending towards unity when the 
partition noise predominates, and being about £ in the case of 
high-slope pentodes.

Because of the term Ri the quantity Rcq/Ri is proportional to the square 
of the frequency, viz.:

I
Rp Rcq

= l+i«T-Mfl7+ ^~Ri' (109)

aT

^cq _ ity 
Ri “ \fn) ' (110)

where fn is the noise reference frequency at which Rcq/Ri = Rcq • gi 
is unity.

Taking these considerations into account, the special cases mentioned

J) It is true that Ri depends on the amount of feedback by the cathode lead, but 
the limit to which this effect can be reduced in practice may also be regarded as a 
valve characteristic.
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above have been summarized in the following table in which, for the sake 
of simplicity, either the partition noise has been taken equal to zero (K3 =
0 in the case of triodes) or the emission noise has been ignored with regard 
to the partition noise (/C3 = 1, i.e. the extreme value for pentodes). In 
this table the values of iVopt (at matching for the minimum noise factor) 
are also indicated.

This table permits the noise factor to be determined at various fre
quencies and in the various ‘'amplification ranges” as discussed in Section
1 (cf. figs 3 and 5).

Npract at — 0 
(triode circuit)

Nprnct at K3 — 1
(partition noise predominating)Case

2 + 4^3
Hc

6 + 4 -£r

2 + 4^3
He

a

r-b 6 + 4-K-f>r fn-

r- *c 1 + 1 + 4fn2 hr

r- rd l + 4-fr3 + fn2 /«2

Nopt at Kz = 0 ■^'opt at /q — 1

1 + +

1 + '-fr'(1 + yi + *-r)
l + 2^-(a' 1 +R

1 + 2-&-(1 + ]A + 5f)b'

r-c’ 1 + 4 4^-1 hr

l + 2ir(1 + ]h + 'If)1 + Ji7'{l + ]h + loIf)d'

5.4.2 Range above f0'

The conductance of the input circuit of an amplifier which is correctty 
matched to the aerial (assuming for the time being the noise temperature 
to be identical to room temperature) and which operates in the range 
above f0' is due mainly to the signal source and the input conductance of 
the valve, and not to the circuit losses. With normal valves gt and gT may
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be of the same order of magnitude and for the conditions outlined here, 
case (d) gives a good idea of the characteristics of N.

The noise factor of a pentode with predominating partition noise is:

3 + fnV

while in the case of a triode the coefficient of /2//«2 is smaller, for in that 
case:

N =

r~N = l + '< fsUV

These two expressions have been plotted in fig. 57. In comparing the 
triode circuit with that of the pentode, it x
should, however, be realized that /„, too, has ^
a different value in each case. (As a result of i

:the different values of R,.n, the noise reference 
frequency fn of a pentode usually lies between j 
100 and 200 Mc/s, while in the case of a i ct 
triode f„ lies usually between 200 and 400 
Mc/s.) The resulting difference is shown in 
fig. 58.

7v
>

KT'
"-f/fn *

65832
Fig. 57. Noise factor N as a 
function of ///» for a valve

bigs 57 and 58 show that the noise factor line appliesto pentode circuits
rapidly increases above the noise reference with predominating partition 
. . .... noise and the broken line to
frequency fn. An additional factor contribu
ting towards this increase but not yet taken 
into account in these two graphs is that the 
more fn is increased, the nearer will the gain reference frequency fx be ap

proached and the greater will be the reduc
tion in gain. The noise of the second stage 
then becomes more and more important, so 
that the graphs must be corrected according 
to eq. (90). The magnitude of this correction 
depends on the ratio of NJN2 and of fn/fi of 
the first stage.

Since the 3 db bandwidth Bz increases 
with the frequency when /0' is exceeded, the 
noise bandwidth may also increase (provided 
the circuit capacitance is not increased). It 
is, however, by no means certain that Bn in
creases, because Bn depends on the response 
curve of the complete amplifier. Bn has no

triode circuits. Matching is 
assumed to be correct for 

each frequency.

30
ill <»N m
i !20 m10

65633
Fig. 58. Noise factor N as a 
function of the frequency for 
a valve operating above /„, 
with the noise reference fre
quency fn as parameter. The 
full lines again apply to pen
tode circuits with predomina
ting partition noise and the 
broken lines to triode circuits.

10
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effect on the noise factor, but it does influence the signal-to-noise ratio. 
It is therefore desirable that this bandwidth is not increased more than 
necessary for amplifying this signal.

It should finally be noted that the assumed correct matching implies 
that for each frequency the transformer ratio is readjusted to the optimum 
value.

5.4.3 Range below f0'

If in the range below /0' the bandwidth B is kept constant, while the 
circuit capacitance C is minimum, then:

2 (gi -f- gc) = constant = 2 tzBC.
At the upper limit of this range, i.e. at /0', the circuit damping gc = 0, 

so that 2gi = 27zBC, while at low frequencies the input damping gi = 0 
and 2 gc = 2 -BC.

Now in the extreme case of/ = /0', assuming the matching to be correct, 
the formulae given for case (d) still apply, viz.:

Npract =3 + ^ = i + ^ Rcq —BC

if the partition noise predominates, and:

Npract = i + % ’ — l + ? 7?Cq BC

i

if a triode is used.
At low frequencies, however, if matching is correct, case (a) applies, 

giving for the above two conditions:

Npract = 2 —f— 4 RcqjzBC. = 2 4

If a pentode is used it is seen that in the range between /0' and, for
m
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N NI
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fn fa = ( 7
fnlfti =1 “ ItAh/to’* 1
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ft ffo' =2fnlfo'm 2

=5LA o'— 
10-* *>" 1 2Uf/fn *

65635
Fig. 60. Noise factor N of 
triodes in the vicinity of fn as 
a function of ///» with the 

ratio fn/fo as parameter 
(Rx=Rt).

10-* w ^f/fn 103 
65634

Fig. 59. Noise factor N of 
pentodes with predominating 
partition noise in the vicinity 
of fn as a function of ///« 
with the ratio /«//„' as para

meter {Rr = Ri).
3
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5.4 Calculation of the noise factor at metric waves 5.4.3

example /0'/3, the noise factor thus changes by about 2 units (cf. fig. 59); 
with triodes this improvement at decreasing frequency is less, and in some 
cases there may even be a deterioration (cf. fig. 60). This is because at 
lower frequencies the feedback conductance, with produces no noise, is 
replaced by a resistance at room temperature so- 
in order to obtain the required bandwith. ^
The advantage gained from the absence of 20' 
inherent noise in the feedback damping is n 
less in the case of a pentode than in the case 
of a triode.

fyf0'= !
1

fn f0'f5
lo-1 -2-0br

65636
the attenuation of the noise, since the cathode Fig. 61. Noise factor N of
lead is not traversed by the partition noise, pentodes with predominating 

. err . . . partition noise in the vicinity >
As can be seen from figs 59 and 60, it is Qf /„' as a function of ///„'

desirable to keep L' a factor of at least 2 with the ratio /«//0'as para-
below /„. Phis means that for a satisfactory
noise factor the product of B' and Ct + Cx should be kept reasonably 
small, in other words that the gain of the aerial circuit should not be

The attenuation of the signal then exceeds

!

very low (cf. eq. 116).

Eq. (Ill) applies when below f0' the bandwidth is increased to the 
required value by shunting the input circuit by a resistance. A lower noise
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Fig. 63. Noise factor N of 
triodes in the vicinity of /„' as 
a function of ///„' with the 
ratio fn/fo as parameter, the 
circuit being damped by feed
back in the cathode lead only.

i
2-4* "*

65637
Fig. 62. Noise factor N of 
pentodes with predominating 
partition noise in the vicinity 
of as a function of ///„' with 
the ratio /„//„' as parameter, 
the circuit being damped by 
feedback in the cathode lead 

only.

factor may be obtained by adjusting the input damping by means of the 
cathode lead inductance. Here again, the results are less favourable in the 
case of a pentode (fig. 62) than in the case of a triode (fig. 63), as the partition 
noise is not fed back in the cathode lead. It is, however, difficult to apply

w3 nt4 r1
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Noise 5

this method in practice, and since /0' is usually lower than /,„ the high 
noise factors above /„ cannot be reduced in this way (see figs 64 and 65),

30r
i

H—1175fit1 i
kt* vFnr3 tr'

65640

Fig. 65. Noise factor iV of 
triodes in the vicinity of /„ as 
a function of ///» with the 
ratio /n//0' as parameter, the 
circuit being damped by feed

back in the cathode lead.

1°-f/fn 101
65639

Fig. 64. Noise factor N of 
pentodes with predominating 
partition noise in the vicinity 
of fn as a function of fffn with 
the ratio f„lf0' as parameter, 
the circuit being damped by 
feedback in the cathode lead.

C
|

nor can a considerable improvement of the noise factor be obtained by 
changing the aerial matching at the input (see fig. 66).

5.5 EFFECT OF REDUCING THE 
FEEDBACK CONDUCTANCE

30r
20

To investigate to what extent the noise 
factor of pentodes can be improved by re
ducing the impedance of the cathode lead, 
case (d), where the circuit conductance is 
negligible and half the input conductance is 
due to transit time conductance, is once

10-> J0-'

65641

Fig. 66. Noise factor N of 
pentodes with predominating 

again taken as a starting point. The noise partition noise as a function
factor derived for this case: Si

compared with /„'. The full 
(109) line applies when the input 

circuit is matched for maxi
mum gain and the broken 
line when the input circuit is 

tained when there is no feedback damping, matched for minimum noise.

Npract = 1 + 4a- + J ■— + ? -^7,

is now compared with the noise factor ob-

The noise factor for the latter case is found by
considering that case (b) then applies (gc and gt now being zero), while 
in this particular case the input resistance is twice the value of Ri when 
there is feedback, giving:

:

Npract = 1 + .®r + 2 -^7. (112)

78

j

'



5.5 Effect of reducing the conductance

As shown by fig. 67, this amounts to an increase of N below /„ but a 
decrease above /„ in the case of a pentode. The deterioration below fn is 
due to the ratio of the transit time noise in the input circuit to the signal 
energy increasing as a result of the changed matching. The improvement 
above /„, on the other hand, results from the signal voltage increasing, 
while the equivalent noise voltage at the grid remains constant (the parti
tion fluctuations being unaltered).

Since reduction of the cathode lead impedance, in addition to decreas
ing the noise factor above/„, also increases the gain (greater aerial gain), 
this method is very attractive.

Apart from reducing the feedback conductance, the reduction of the 
cathode lead impedance leads to other im
provements, limited, however, by the effects 
of stray capacitances, etc. and the required 
bandwidth. The improvement thus obtained 
can be determined to a first approximation by 
assuming that the expressions given for case 
(d) still apply, but that /„ is increased ap
proximately as much as fv This assumption 
is actually a little too optimistic, because 
the reduction of the feedback conductance 
results in an increased apparent noise tem
perature of the input resistance, while the 
emission noise increases roughly in propor
tion to the signal.

Owing to this latter effect the signal-to-noise 
ratio is independent of the feedback conduc
tance in the case of triodes, provided the aerial 
transformer remains unchanged. By changing the transformer ratio in 
such a way that Rsgi remains equal to unity, however, the noise factor 
can also be improved in this case by reduction of the cathode lead con
ductance. The inherent deterioration of the noise temperature of gt, how
ever, occasionally results in the increase of the noise factor being greater 
than the decrease brought about by the reduction of the conductance. 
At very high frequencies the reduced conductance nevertheless still im
proves the noise factor, owing to the increased gain reducing the noise 
contribution of the second stage (which may then no longer be disregard
ed in view of the small gain). It would lead too far to investigate the 
difficulties arising in practice, due among other things to the grid circuit 
conductance being reduced simultaneously via the anode circuit.

Ii t

J
£O'—----——

nr3 n-’ *
65642

Fig. 67. Noise factor N of 
pentodes with predominating 
partition noise as a function 
of f/fn with the feedback 
conductance as parameter, 
the circuit conductance gc 
being assumed to be zero. 
The full line applies when 
the feedback conductance is 
zero (case (6)) and the broken 
line when this conductance 
is equal to half the input 

conductance (case (rf)).
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Noise 5

Summarizing, it can be stated that the noise factor rapidly increases 
above /„ and, apart from improving gv, little can be done to counteract 
this effect.

5.6 CALCULATION OF THE SIGNAL-TO-NOISE RATIO 
FROM THE NOISE FACTOR

In order to derive the signal-to-noise ratio from the noise factor it 
should in the first place be taken into account that so far only the standard

noise factor has been considered, i.e. the 
noise factor of an amplifier following a 
signal source, the noise temperature of 
which is equal to room temperature.

At metric waves the noise temperature 
Ta of an aerial largely depends on the fre
quency and direction, owing to the con
tribution of the cosmic noise 2) to the noise 
level of the aerial. At, say, 40 Mc/s the 
noise temperature of the aerial may vary 
for example between 5000 °K and 25,000 °K.

At higher frequencies, however, the noise 
temperature decreases and at the highest 
frequencies tends towards the absolute 
zero point. A calculation of the effect of 

the cosmic noise by means of eq. (82a) shows that, at frequencies below 
100 Mc/s, Na lies considerably below N; see figs 58 and 68.

Owing to the influence of Ta, valve differences (differing /„ values) have 
a smaller effect on Na than on N. The noise output of a receiver is now 
given by:

30

fNa
t sS

5j

Jt'& F W
66022

Fig. 68. Minimum value of the 
aerial noise factor Na at correct 
matching as a function of the 
frequency, with fn as parameter* 
The full lines apply to pentodes 
with predominating partition 
noise and the broken lines to 

triodes, both in case (d).

10

Pno = Nak Ta Bn{Gp)s = {N — 1 + a) 288 k Bn{GP)s, 

while the signal output is:

H2 x2
• (GP)s,Pso = 4jz2 i?rad

where H is the field strength in V/m and X the wavelength in m. The signal- 
to-noise (power) ratio at the output is thus:

__________H2 x2_________
Pno 4:TZ2 (N—1 -{- a) (288 kBnPrad)
P*o (113)

J) See the paper by Bakker quoted in footnote on page 67.
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5.6 Calculation of the signal-to-noise ratio from the noise factor

The minimum field strength Hmin required for a signal-to-noise (power) 
ratio PsolPno is given by:

= l ■ • Vw — 1 + a • Vik 288 B„i?rod.Hmln

The last factor of this product is equal to the effective noise voltage of 
Rrad at standard room temperature over a bandwidth Bn. By putting 
•Rrad = 75 Q and Bn = 5 Mc/s, this quantity becomes 2.4 pV, giving:

0.05 / j/iV — 1 + a ]/|5 (|*V/m),
•ffiuin ~ (114)

/ being expressed in Mc/s.

—►f(Mc/s) —►f(Mc/s)
ba

65644
Fig. 69. The value of (iV — 1 + a) of eq. (113) as a function of the 
frequency, with /„ as parameter, (a) with minimum cosmic noise and 
(b) with maximum cosmic noise. The full lines again apply to pentodes 

with predominating partition noise and the broken lines to triodes.

It should be realized that this formula gives the lowest value of H at 
which the desired signal-to-noise ratio could be achieved. In practice a 
higher value will be necessary because the aerial will not necessarily 
have the most suitable dimensions and direction, etc.

In fig. 69 the quantity (N — 1 + a) of eq. (114) has been plotted as a

816



5Noise

function of the frequency, the cosmic noise having been assumed to be 
minimum in lig. 69« and maximum in fig. 696.

The required field strength for a signal-to-noise ratio of at least 14 db 
has been plotted as a function of the frequency in fig. 70.

In the foregoing the circuit impedances, the noise temperatures, the 
radiation resistance etc., have always been assumed to be constant over a

frequency band having a width 
Bn, with no noise passed by 
the amplifier beyond this band. 
In normal T.V. receivers Bn is 
about equal to the 3 db band
width of the I.F. amplifier and 
since this band is fairly narrow 
compared with the range within 
which the above quantities are 
fairly constant, this assump
tion is justified in practice.

It should, be recognized how
ever, that where the receiver 
has undesired responses, for 
example for the second channel, 
these frequency bands also 
contribute towards the noise. 
Moreover, where the input 
circuit is almost as selective 
as the other circuits (in some 
straight receivers for example), 

jq3 Bn is no longer a constant 
throughout the amplifier.

The general conclusion is, the
refore, that the weakest signal 
which can be received reason
ably will depend on the fre
quency, on the noise condition 
(aerial noise) and, last but not 

least, oh the noise reference frequency fn of the first valve. For the 
higher television band, conditions differ considerably from those for the 
lower television band, due to the frequency dependence of the cosmic 
noise and of the noise factor of the valves.

HffiV/m)

t
103

1°10 102
f(Mc/s)

65645
Fig. 70. Required field strength H for ob
taining a signal-to-noise ratio of 14 db, as a 
function of the frequency with /« as parameter, 
a single dipole aerial being used. The full lines 
apply to maxmum noise conditions and the 

broken lines to minimum noise conditions.
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6. FEEDBACK

6.1 GENERAL
One of the main difficulties in constructing H.F. and I.F. amplifiers for 

television is how to overcome the effects of feedback. These effects are 
only in part due to valve characteristics. The most important causes are 
listed below:
[a) Coupling between input and output leads. Provided the valve con

nections are so arranged that these leads can be well separated, this 
difficulty can always be avoided by a suitable layout.

X
T

Fig. 71. Circuit diagram (a) and corresponding functional 
diagrams showing the currents flowing through the 
chassis. Diagram (6) applies to a rectilinear layout, and 
diagram (c) to a layout which is not rectilinear, so that 

undesired coupling occurs at x.

(6) Coupling between the input and output circuits is often due also to 
the common earth lead. It should be recognized that the impedance 
of the chassis as earth lead is by no means negligible. The layout 
should preferably be such that the currents of the input and output 
circuits do not flow through the same part of the chassis (see fig. 71).
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Feedback 6

(c) Feedback of part of the output energy due to the chassis acting as a 
wave guide. Many different modes are possible, each of which has a 
definite attenuation per unit length. Long, narrow chassis are usually 
advisable. A narrow chassis, permitting a high gain per unit length, 
can be obtained by using valves of small dimensions. The feedback 
can, moreover, be minimized by providing the chassis with par
titions, thereby impeding the passage of guided waves.

(d) Coupling between the stages via the filament lead. This can be avoid
ed by by-passing these connections.

(e) Decoupling faults. Such faults are usually due to the self-inductance 
of the capacitors and of their connecting leads. Good results are 
nevertheless obtained when these leads happen to be in series 
resonance with the capacitor. (For example, when working at 65Mc/s, 
this will be the case when the inductance of a 200 pF capacitor and 
its leads is 0.03 (J.H.)

(/) Feedback via the anode-to-grid capacitance. This is the main cause 
of instability arising from the valves.

(g) Feedback from the cathode circuit to the grid circuit. This effect 
changes the input conductance and capacitance and, though trouble
some in most cases, can sometimes be used to advantage.

(h) Feedback via the anode-to-cathode capacitance. This effect is 
of particular importance when taking advantage of the effect 
mentioned under (g) to influence the input admittance of the valve, 
for which purpose a fairly large impedance is incorporated in the 
cathode lead.

Only the effects mentioned under (/), (g) and (h) will be discussed in 
detail. The formulae required are derived for an amplifying stage in which 
all these three effects are present. The detailed discussion of each form of 
feedback is confined to a system in which only one of these effects is 
present.

6.2 BASIC FORMULAE :
When considering the gain and bandwidth (see Section 1), use was made 

of an idealized amplifying stage in which the valve (with an input voltage 
Vt across the admittance Yt) functions as a constant-current generator 
supplying a current I0 = SVi to the output admittance Y0. In order to 
use this simplified representation when negative or positive feedback is 
present in the amplifying stage, it is first necessary to determine the values 
of the quantities S', Y{ and Y0' which are substituted for S, Yt- and Y0 in

I
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6.2 Basic formulae

circuits where anode-to-grid, cathode-to-grid or anode-to-cathode feed
back are presentx).

The investigations are based on the following notations (see fig. 72):

la = SaVg,
Ik = SkVg,
Ig = 0,

—1\ — la + /3 + 15,
12 = y*Vi.
13 = YtVag, 
h = Y*Vg, 
h = y5Va,

To simplify the formulae, the following abbreviations have been intro
duced :

h — I\ 4- 15 + Ik, 
Ii = I2 + I\ — 73,
Vo--------IJYV
Vk = IJYo,
Va = Vo — Vk,
Vug — Vo— Vi,
Vg = Vi— Vk,

y*
y, + y, + n Pi

and
(Yi + Ya) y5
yx + y3 + V,(i - p) y5 = = y7.

If only Y,-, V0, U and Ia are considered, the complicated circuit of fig. 72
can be regarded as a special case 
of the simpler circuit shown inh_

(=] oli^aft la
la— Vat 9
k. v? k a-4

, Yl

h IiIi \r» TT%
n

T T0! Y6 VoViYi y2 Ii Vo
\JI i

66395
Fig. 72. Schematic representation of an am
plifying stage for investigating the effect of 
anode-to-grid, cathode-to-grid or anode-to- 

cathode feedback.

66396
Fig. 73.' Equivalent circuit of 
fig. 72, in which only Vi, V0, 
Ii and Ia are assumed to be 

present.

fig. 73, in which Y/, S' and Yd have been so chosen that the relations 
between these four quantities remain the same. The calculations of Ii, Ia 
and V0 can then be based on the expressions:

Ii = ViYY,
Ia = ViS', 
Vo = Ia/Yo

Control by and feedback from the screen grid and the effect of mutual induc
tances in the electrode connections will be disregarded.
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Feedback 6

In order to make use of these simplified expressions, Y/, Yd and S' 
must be expressed in terms of Ylt... Y1 and of the anode transconduc
tance Sa and the cathode transconductance S*.

As shown in Appendix V, the factor Fs = S'/Sa1) is then:

Y0+ Y7 — pY~3 
Y6+ Y4 + Y7 + Sk — pSa’

S' + Y, + FsYs 
Y1 + Y3 + Yd’

:
Fs = (115)

while
fYt' = Y2 + Y*Fs + Y3 • (116)

and
Yx + Y3 + YsYo = (117)

i  Y? Ys /, p \1 s, s, . (1 i«)

The effect of the various types of feedback will now be investigated by 
means of eqs (115), (116) and (117). It is assumed that in each case only 
one form of feedback is present.

6.3 FEEDBACK FROM ANODE TO GRID 

6.3.1 Negative feedback by a resistance
To investigate the consequences of feedback by a (high) resistance Rag 

between the anode and grid, the admittances Y4 and Y5 are assumed to 
be zero. Hence, both p and Y7 are also zero, which gives:

S„ (118)5' =
Sk’

1 +y- 
1 6

and
Yx + ^-

(119)Y0' =
1 S'Rag ■

In practice G > 1, hence YJS' < 1. Moreover, Y3 = 1 /Raa will usually 
be made smaller than Yv so that also l/S'Rag is likely to be much smaller 
than unity. Hence:

;

1Yo' « Y, +

It may be concluded from eqs (118) and (119a) that the gain G of the

» y0. (119a)

J) In this case Fs is a complex quantity, but for the sake of simplicity this symbol 
was also used for the modulus in Section 1, instead of the rather unmanageable 
symbol |F*|.
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6.3 Feedback from anode to grid 6.3.1

stage with negative feedback is substantially independent of the amount 
of feedback. This, however, is by no means the case with the gain of the 
preceding stage, since the input impedance of the stage in which feedback 
occurs is influenced by the amount of feedback. This can be shown as 
follows:

S'> Yx and Yl > Y3>

so that, according to eq. (116):
Y3S' (120)Yi' = Y, -f

since
Yt + S' « S'.

Substituting 1—Y3/Y1 for 1/(1 + YJYJ gives:

Yi' « Ya + Yl2Rag2-
S' (120a)

When the third term of eq. (120a) is negligible, this equation may be

y. + ^.
Kag

written:
(1206)Yi'

Introduction of a new quantity
S' i,z2

*■--sag

in which Zx and Z2 represent Z1 and Z2 at the resonant frequency, gives:
P*Zi

This expression shows that Y{ has the form of the input admittance 
of a band-pass filter (see Ap
pendix If). The response curve 
of the two stages is equal 
to that which would be ob
tained if they were coupled by 
the primary of a band-pass 
filter with k2 QpQs = p2 (so- 
called Zi coupling, see fig. 74).

By means of this circuit the 
response curve can be given a 
flat top, as obtained by means of a band-pass filter coupling, but the 
sideband selectivity is inferior.

(120c)Yi' = Ya +

to
"Vo o o o o o 
_r S_

71028

Fig. 74. Principle of the Zi coupling.
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With a feedback amplifier it is difficult to keep the response under con
trol owing to the fact that the response of the grid circuit of a feedback 
stage depends both on the tuning of the anode circuit and on the gain, 
whilst detuning of the circuits results in an asymmetrical response curve. 
In I.F. amplifiers for television it is therefore not customary to apply 
this type of negative feedback.

6.3.2 Feedback by the anode-to-grid capacitance

In order to investigate the effect of feedback by the anode-to-grid
capacitance Cag in a multi-stage ampli
fier it will first be assumed that feed-

Joyj back occurs only in stage number h of 
the amplifier. The calculation is based 
on the circuit of fig. 75.

Zk denotes the impedance of the input 
circuit of stage h, and Zh+1 the im
pedance of the output circuit, while 
Zk denotes the input impedance of 
stage h (including the effect of the feed-

—i-C0p §ii yo
8*w -r

I* =r
t

71029

Fig. 75. Practical circuit with tuned 
anode and control-grid circuits. As 
shown by eq. (116), for calculating back via Cflg), and (Zh+j)' the output 
y i' the cathode impedance may be 
omitted, provided the correct value 

is substituted for S'.
impedance of this stage.

It has already been shown that 
CZh+LY =zh+i (cf- eq. (119a)) when 

there is no feedback in stage h 1. Assuming that G 1 or | Vs\ | Va\, 
it can be shown that:

lag ^ ~Vg S' Zh +1 jwC«y . 

Substitution of this expression in:

Vg = Zh (Ii + lag)

^ = Yh (1 + jcaCag S' ZhZh + i),
gives:

Vg

which can also be written as:

(120 d)Yh' — Yh + j caCag S' Zk +1.
This result could of course also be derived from eq. (120) by putting: 

Yx = (Zh+l)-\ Y2 = Zh’1 and Y3 = j <*Cag.

Eq. (120^) shows that both the real and the imaginaty components of
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6.3 Feedback from anode to grid 6.3.2

Yh are affected by the feedback and that this effect depends on the 
frequency. This is mainly due to the frequency dependence of Zh+1 and 
but little to the fact that co occurs in this expression.

If Zh+1 were a pure ohmic resistance at all frequencies, this would merely 
be equivalent to an additional 
capacitance shunted across the 
input circuit (Miller effect), but 
since this is not the case, the 
frequency dependence of Y/,' is 
of a more complex nature than 
in the case of an ordinary'parallel- 
tuned circuit. This is clearly 
demonstrated by the admittance 
and impedance curves (see Ap
pendix I a) given in figs 76 and 
77, which show the polar dia
grams of the input circuit, the 
bandwidth and tuning of the 
anode and grid circuits being as
sumed to be equal. The con
struction of these curves is shown 
later.

The admittance of the circuit, 
affected by the feedback, is re
presented by a vector with 0 as a f/iB= 2.5^, 
its origin, and with its extremity 
lying on the admittance curve at 
the point where this is intercepted 
by the broken line indicating the 
detuning A fl*B. The horizontal 
projection of the vector represents 
the real component of the ad
mittance, while its vertical pro
jection represents the imaginary 
component. For an ordinary 
parallel-tuned circuit the ad
mittance line is a vertical straight 
line (see Appendix I), and since 
in a zone near resonance the imaginary component is proportional to co, 
this line can be provided with a linear frequency scale. If feedback is

jY
2.0

0.4 \2 ,2408W\v>25, \ \>r +0.5pa= 0
! .+2.0

+15

/ k/
A/-05

\ K

\
\

/

-1.0\
-Yo\ \

\\
\\N

\\

l\
-2.0^ \'v

X
X

\

12.0\-2

2.4 1.6 0.8 
66398

Fig. 76. Admittance curves of a grid 
circuit undamped by the anode-to-grid 
capacitance, with p2 (a measure for 
the feedback) as parameter. Y at the 
abscissa stands for the real part of Y, 
and j Y at the ordinate for the imaginary 
part of Y. The broken lines correspond 
to a constant detuning Af/hB. The line 
for Af/$B = 0 coincides with that for 
p2 = 0.“ This diagram is derived from 

the construction of fig. 78.
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present, the extremity of the IV vector no longer lies on this straight 
line but on one of the curves of fig. 76.

Each of these curves shows the variation of eq. (120d) at a variable 
detuning, i.e. for various signal frequencies and at a fixed value of a para-

jz

7W
/-1.5 /\

Pa= 2D ,X / 1.2
\ /

\
0.8/

/ --------/ .0.4
1-1-5

flsB= \-2.0 \\0 •z
1° \+0.5

\ /.\

/
/\

S'+/.0 //p2= 2.0 1.6 66399/
-Q£7

Fig. 77. Impedance curves derived from the admittance curves of 
fig. 76 by inversion, i.e. a simple geometric transformation by which 
straight lines are usually transformed into circles. Z at the abscissa 
stands for the real part of Z and jZ at the ordinate for the imaginary

part of Z.

meter pj?, which is a measure for the amount of feedback in stage h. To 
find this parameter, eq. (12(W) is written:

Yj = 1 ay S'ZhZh +1, (120e)

which shows that the shape of the Yh/Yh curve depends only on:

ph~ = OiCug S' ZhZh + 1, (121)

and on:
Qk (121a)Yh = TP—.Qh+1

In fig. 76 the real component of Y becomes negative over a certain 
frequency range if ph2 > 2; this occurs first at the frequency at which the
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6.3 Feedback from anode to grid 6.3.1

circuits are detuned towards lower frequencies, so that an attenuation of 
i/2 is obtained. At this frequency the circuit may become unstable if the 
critical value pi? = 2 is exceeded.

The same result is obtained when theNyquist criterion for the stability of feedback 
circuits is applied. According to this criterion the circuit may oscillate when 
in the feedback loop (grid circuit - valve - anode circuit - anode-to-grid capaci
tance) the gain is equal to unity at a phase shift of 0° or n- 360°, n being a whole 
number. This will be the case when:

5' Zh + ioCagZh — 1
at a frecuency such that the sum of the phase angles of the two circuit impedances 
is 90°, so that the phase shift due to jwCai7 is compensated. When the two circuits 
are identical this condition is satisfied at a detuning of 45°, so that:

Z

The oscillatory condition is therefore:

toCag S' Zh Zh +i = 2.

The Y and Z curves of figs 76 and 77 apply to circuits which are affected 
by the Cag of a valve loaded by a parallel-tuned circuit, the resonance 
frequency of which is the same as that of the grid circuit but which is not 
affected by feedback. In that case (Z/t+i)' = Zjl+1 = Z*. In practice, 
however, several stages in cascade are used, intercoupled by circuits which 
are sometimes detuned and all of which are undamped by the Cag of the 
following valve. For these conditions, eq. (120e) may be written:

Y// 1 (120/)/ »(Yh+i) 
Y/t + i

Yh

in which
jZr2 (122)= prZhZh+i’ 

pr2 = ttCagr S' Zr\

where Zr is the impedance of the "reference circuit” of the staggered 
tuning system (see Section 2.2).

By expressing (Yh+jY/Yh+i again in terms of and (Yj,+2y/Y/t+2, 
and so on, the expression for(Y/t-f jY/Yj,+: assumes the form of a continued 
fraction. When these continued fractions are worked out, Zr, the quan
tities pi? and the circuit impedances Z/* will appear in the final result. 
Once the tuning frequencies, the amount of damping and the bandwidths

where
(123)

:
1
!
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Feedback 6

of all stages (without feedback) are known, the admittance curve 
of each of the undamped circuits is given for given values of pn2. Con
versely, a requirement imposed on the admittance diagram determines 
the maximum permissible value of pr2 if Zr, S' and Cag have the same 
values for all stages, as will often be the case.

6.3.3 Maximum permissible values of p2

The methods for calculating maximum permissible values of p2 will now 
be discussed in detail.

First, feedback will be assumed to be present only in one stage, the

¥ /
/15 ~P%=0\ fo V\

t\ 0,5

fI2

i
h
i
j5

A fa =0-7
70 u

66400

Fig. 78a. Response curves of an ampli
fying stage, the anode and grid circuits 
of which are tuned to the same fre

quency, for different values of p2.

AAJOi

Fig. 786. Response curves of an ampli
fying stage of which p2 = 1, for different 
values of the detuning A fa of the 

anode circuit.

anode and grid circuits of which are synchronous and have the same band
width. The admittance curve of the grid circuit of such a stage has already 
been given in fig. 76. The permissible deviation of this curve from the
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6.3 Feedback from anode to grid 6.3.3

straight line (at p2 = 0) depends on various conditions, but it is clear that 
p2 must in any case remain sufficiently far below the limit 
value of 2.

In the case of p2 > 2, the circuit will oscillate at the frequency at which 
the imaginary part of Y/,' is zero. This frequency is lower than the res
onant frequency of the anode and grid circuits, as can be seen from 
fig. 76.

At p2 = 2 the circuit is just bordering on instability, and it is clear that 
it is necessary to observe a certain margin of safety to avoid spontaneous 
oscillation and ensure a good response curve.

Fig. 78 shows the response curves for several values of p2. It appears 
from this figure that at p2 = 0.5 the irregularities in the frequency re
sponse curve are not very pronounced and a safety factor of about 4 will 
therefore suffice in many cases. When, however, the gain of the stage is 
varied by controlling the mutual conductance of the valve, the detuning 
and variation of bandwidth may become excessive at p2 = 0.5, so that a 
higher safety factor will be required. The detuning A fag by the anode-to- 
grid capacitance may be roughly determined by taking the Miller capaci
tance as:

Cjj = Cag • G = CagSZh +1, 

wCJI
hence

= />=.
Yh

At a detuning of l-B the value of Y/t is equal to coAC (cf. Appendix 1, 
fig. 107), and since

ACj AA
AC., * ’ A/o ’

the detuning caused by the Miller capacitance is:

A/ag = }B-p'-.

The limit of stability can also be calculated from fig. 79#, i.e. the vector 
diagram from which fig. 76 was derived. The construction, of fig. 79# 
follows from eq. (120rf). A vector of length coCagS'Z/t+j, which is perpen
dicular to the Zn+j vector, must be added to the Y/, vector. Now Yh+j is 
identical to Y/t — the locus of which is a straight line — so that Zn+j 
(derived from Yh+j by inversion) is represented by a circle. The construc
tion of Zu+j is based on the fact that its phase angle is numerically equal 
but of opposite sign to the phase angle of Y/,+j. The locus of the vector 
jtoCasS'Zjl+1 is also a circle, but with the point of origin shifted over 90°.
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As this vector must be added to the Y/, vector, the origin of this circle 
(the dotted circle of fig. 79a) lies on the Yjt line. The maximum length 
of the vector to be added is <nCanSZjl+lt so that the diameter of the dotted 
circle must be:

CiCagS'Zh + i = pzYh-

It is obvious that the real part of Y;/ cannot become zero or negative 
unless \p~Yh ^ Y/„ i.e. unless p2 ^ 2.

The changes to which the admittance curves of the input circuit (with 
feedback) are subject when the anode and grid circuits are staggered, can 
be investigated from the construction of this diagram.

£t
I r \i \ /r A j* \

vj0/ * °> ^0

* la
a1a

!
Yh Yh

I
Yh

AA tMH

Fig. 79. Vector diagram for determining the maximum permissible value of p-, (a) in 
the case where the anode and grid circuits have the same bandwidth and are 
tuned to the same frequency, (b) in the case where the anode and grid circuits have 
the same bandwidth but are tuned to different frequencies, and (c) in the case where 
the anode and grid circuits have different bandwidths and are tuned to different

frequencies.

If the anode circuit is detuned by an amount Afa with respect to the 
grid circuit, the origin 0Z of fig. 79a is shifted vertically with respect to 
0y over a distance A fa (see fig. 796). The only change in fig. 76 then con
sists of an equally large displacement of 0 in the opposite direction, but 
the changes of fig. 78a are somewhat more complicated (see fig. 786). In 
general it may be said that the detuning makes the response curve slightly 
more regular. The permissible value of p2 does not, however, increase 
noticeably until Afa exceeds the value of B. When the anode circuit is 
tuned to a higher frequency the detuning of the grid circuit caused by the 
Miller capacitance decreases, whereas, when the anode circuit is tuned to a 
lower frequency, the damping of the grid circuit increases, and the risk 
of instability is reduced, though at the expense of a greater detuning.
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6.3 Feedback from anode to grid 6.3.1

A second change to which fig. 79a is subject in the case of staggered 
tuning is manifest in the change of bandwidth of the anode circuit com
pared with that of the grid circuit. This results in a change of the Afa 
scale of Zh+1 (see fig. 79c). The curves of fig. 76 are now expanded or 
contracted in the vertical direction, but it is clear that in this case, too, 
instability is likely to occur when pi? ^ 2.

It is therefore advisable also in the case of staggered tuning to choose 
a value of pi? which has a safety factor of, say, 4 with respect to the limit 
value of 2.

It is true that there are cases which are stable although p2 > 2, but it 
is then necessary to avoid a particular value of the anode circuit detuning 
Afa. These frequencies then form the unstable region of the grid and anode 
circuits. This region increases with the value of p2 and disappears at p2 < 2.

If in a circuit p2 > 2 it may occur that the unstable region is encoun
tered when the set is being trimmed. During the trimming of a particular 
circuit the other circuits should then be damped to avoid this trouble
some phenomenon.

6.3.4 Staggered tuning

In practice the staggered circuits are given different bandwidths by 
varying the values of Zh, the circuit capacitances remaining practically 
unchanged, i.e.:

Zr
Zh = sin ah

hence:
uCagS'Zr* Pr2p/r = sin ah sin a/4+1 sin ah sin oca +1 ’

in which a/* is the staggering angle of circuit h. It follows from this expres
sion that the entire amplifier will not have the desired stability unless n 
conditions of the form:

(124)pr2 p/r sin a* sin cth + i

are satisfied in which p}? « 0.5. In these formulae the staggering angles 
of two successive stages will always be found, and to avoid the necessity 
of an extremely low value of pr2, it is advisable to arrange the amplifier 
such that slightly and heavily detuned circuits follow each other alter
nately. Should this be impossible, then provision should at least be made 
for the successive stages to be alternately detuned, as far as possible, 
to either side of Zr> the permissible value of pi? being thereby slightly
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increased. The fact is that if the limit of stability must necessarily be 
approached, more is to be feared from the reduction of damping than 
from the detuning caused by the feedback. In that case the grid circuit 
should be tuned to a higher frequency rather than the anode circuit 
(cf. fig. 78b).

It will now be investigated how the vector diagram of fig. 79 has to be 
constructed if the circuit Ji+1 is also the input circuit of an amplifier stage 
and is undamped via the anode-to-grid capacitance Cag. The locus of the 
vector {Zh+iY is then no longer a circle, but one of the curves of fig. 77, 
corresponding to the value of (p/l+1)2. Since it is desirable that not only the 
response curve of circuit h but also that of circuit li-\-l has a regular form, 
the value of {ph+j)2 must be chosen fairly low. According to fig. 77, this 
will result in the locus of the (Zj^j)' vector differing but little from that 
of a circuit without feedback and having a maximum impedance of

Zh + i
1 -Upn+i)2'

This expression will become clear when the minimum value of (Y/,+ 2)' is 
calculated from eq. (120e) (see also fig. 76). In the construction the (Z/t+2)' 
diagram is approached by the circular diagram of the vector of the above- 
mentioned expression.

If it is desired to give circuit h a feedback parameter pi?, the stage in 
which this circuit li is connected to the grid of the valve must be designed 
for a smaller value of p2, viz.:

p2 = OiCagS'Z/iZh +1 •

Since the actual amount of feedback is determined by:

Zh + lph2 = (oCaffS'Z/^Zh + l)' = coCagS'Zh •

the condition
P2 = pn2 {1 — £(/>/*+j)2 }

i

must be satisfied. Since \(ph+i)2 is usually kept well below unity, p2 need 
not differ appreciably from the chosen value of pi?. An exact calculation 
of the required value of pi? according to the rather complicated method 
indicated at the end of Section 6.3.2 is therefore not necessary, and in prac
tice it will suffice to determine pi? as if there were no feedback in the 
other stages and to use the value thus found in all further calculations. It 
should, however, be taken into account that the product toCagS,ZilZjl+1 is 
lower than the value of pi? that determines the amount of feedback in 
stage h, by a factor 1 — \(ph+i,)2-
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6.3 Feedback from anode to grid 6.3.5

It should be realized that this method becomes less accurate when 
heavy feedback is present. As a result of this feedback the difference 
between (Za+J)' and Zjt+1 will then be considerable, so that the response 
curve of this circuit will deviate greatly from the desired shape. As a rule 
measures will then be taken to compensate these deviations, at least par
tially, by detuning and additionally damping circuit h-\-l, thus rendering 
(.Zj,+)i near its resonance again almost equal to the value prescribed by 
the staggering scheme. In this case also pj? can therefore be calculated 
as if feedback were present in stage li only. It will then, necessary be 
however, to fill in the corrected value for (Z/j+j), which is almost equal 
to the value required by the staggering scheme.

6.3.5 Maximum permissible gain

It will now be assumed that the maximum permissible value of p2 has 
been determined in accordance with the preceding formulae. The maxi
mum permissible gain Gmax of each stage will then obviously be deter
mined by the characteristics of the valve. For a staggered amplifier it 
follows from eq. (123) that:

<s'^2 = ■ =§; max (125)
2rzfiCag

This expression can be further simplified by introducing the concept of 
stability reference frequency/8:

max (126)
2lzCag ’

which finally gives:

ft- (127)Gr max = pr max

This expression shows that f& is the frequency at which Gmax would be equal to 
pmax, assuming the above formulae to be valid even at the high frequencies con
cerned. This assumption, however, is by no means permissible, since at these 
frequencies the "dynamic value” of Cag, which determines the feedback, is no 
longer equal to the "static value”, valid at low frequencies. /s is, therefore, only 
an extrapolated value by means of which the permissible gain, in the range for 
which eq. (125) is valid, can be determined.

In Section 2.2.2 it was shown that, at the mid frequency, Gh, i.e. the gain 
of stage li, is equal to Gr, the gain of a stage with the reference circuit
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connected to the anode of the valve. Substitution of the value of pr from 
eq. (124) therefore gives:

Gh <; ph V sin a/, sin a/, + i • j ftl.

As already shown, a reasonable value for pi? is, say, 0.5. In practice 
ph Vsin ah sin a;,+ J can be about 0.5. This roughly amounts to:

(128a)

ft-Ghmax ^ 0.5 (1285)

or (at the mid frequency!), for an amplifier with n stages:

(G tot max 0.5 (128c)

Example
What will be the maximum permissible gain per stage of an I.F. amplifier for 

35 Mc/s with a flat staggered quintuple if valves EF 80 are used and the circuit is 
also to remain stable (with a safety factor 4) during trimming?

According to Table 3 (p. XX) the smallest value of sina/, is 0.31. Combining this 
value with sin a/t +1 = 1 gives:

V sin a/t sin a/4 + 2 = 0.56.
Table 1 (p. 168) shows that, for the EF 80, /« = 17 • 10‘ Mc/s, so that:

V-s17 • 104Ghmnx —■ 0.7 • O.o6 = 27.

If the sequence of the circuits were chosen less favourable so that the two values 
sina/t = 0.31 and sin ah + i =0.31 are combined, the maximum permissible gain would 
be considerably less, viz.:

V .5
17 • 104Ghmax — 0./ • 0.31 = 15.

A slightly higher value of G/,mnx could be afforded in this case, since the limit of 
instability cannot be approached unless both circuits are considerably mistuned.

6.3.6 Coupling by means of band-pass filters (I.F. transformers)

It would as a rule result in a reduction of the maximum permissible 
gain if the same stringent requirements were imposed on circuits coupled 
by band-pass filters as on those coupled by single-tuned circuits.

This may be illustrated by the following example. The transimpedance of a band
pass filter with q = 0 is also zero, and so is the gain of an amplifier containing such 
stages. The input and output impedances of the band-pass filters, however, differ 
from zero, so that the circuit may become unstable even at zero gain.

If the circuit is required to remain stable during trimming (without 
special precautions being taken) the maximum permissible gain per stage 
is smaller by a factor of at least 2 than in single tuned circuits.
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6.3 Feedback from anode to grid 6.3.6

In the most unfavourable case the mutual detuning of the grid and 
anode circuits of one particular valve is such that the risk of spurious 
oscillations is greatest, whilst the other circuits are detuned to such an 
extent that their influence can be disregarded. The condition for stability 
is then:

p~ = OiCag SRp Rs < 2.

If all band-pass filters are identical and symmetrical (Rv = Ra = R), 
as is often the case with I.F. transformers in the sound channel of T.V. 
receivers, the maximum gain per stage is:

Wfi<1 (127a)Gmax = SR • l + g2

The fraction q/( 1 -f q2) is at the utmost 0.5, so that the maximum per
missible gain is indeed smaller by a factor 2.

To avoid instability during trimming special measures are often taken,
such as heavily damping all 

\yj0 (<*CagS'ZhZ2p=2) circuits except that which is 
being trimmed, or avoiding the 
unstable region. In that case 
higher values of p2 are per
missible and either the risk of 
instability at correct tuning or 
the irregularities in the response 
of the amplifying stage caused 
by the feedback are then taken 
as the criterion for the maxi
mum permissible value of p2. 
In order to be able to judge 
the latter irregularities, it is 
necessary to calculate the out
put admittance curve at the 
input band-pass filter, the-in
fluence of the feedback being 
taken into account. It will as 
a rule suffice to determine the 
output admittance of this band
pass filter, which can be done 

76 according to fig. 79.
An example of such a polar diagram, with and without feedback, is 

given in fig. 80.

Ijy yi5-\ y/io
/

/
i
\

✓
JwCagS'Z#/

(/
0 %

71030
Fig. 80. Polar diagram of the output 
admittance of a band-pass filter at the 
input of an I.F. stage, with and without 
feedback, in which qx = q« = 1; i\=r2 = 

y — 1 and cOj/j = co^s = Wop = Wos.

similarly to the construction of fig.
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This procedure has the drawback of being rather cumbersome. A less 
accurate method that saves much time consists in roughly determining 
the magnitude of the maximum relative change to which the Yh vector 
is subject when the feedback admittance is taken into account. In the 
case of a single circuit, the relation

\Yh'—Yh\ : \Y/,\ = 0.5

(at p2 = 0.5) was taken to be permissible.
It may now be assumed that the permissible ratio is of the same order 

when the coupling consists of a band-pass filter, Y/t then representing 
the output admittance of this filter at the grid side.

In order to apply this procedure to stagger-damped band-pass filters of which 
Qp = oo, the admittances Yi and Y0 of such a band-pass filter must first be ex
pressed in terms of the quantities x8 and qs, which are related to the secondary only, 
namely:

Ys — SC„a1'Yi = (129)
and

= Ys(l + +Y0 (130)
in which

Ys = I?s, *s = ps0s and qs = kQs.

From these formulae it follows that the output admittance is the minimum when 
Xs = db ?s. For the frequencies at which this is the case, at a variation of xs, the 
phase of Y0 changes much more quickly than that of Yi. Y0' passes through its 
minimum value in close proximity to \xs\ = qs, which — as far as stability is 
concerned — is the most critical area.

From the staggering scheme it can easily be derived that, for the reference circuit 
in this region, xr & 1. Hence, from eqs (129) and (130):

17 1 17 I 7 2 VT -f- sin2 cth +1
\Zh\ • \Zh + l\ ^ Yr2 • ----------- :---------- .11 1 sin a* • sm a/(+j

(131)

It is clear that the maximum permissible gain largely depends on the 
staggering scheme in this case also. It is possible to choose this scheme 
so that eq. (131) assumes its minimum value for the critical stages. A 
rough calculation in which the mean value of sin a is taken to be approxi
mately 0.7 gives:

fr (128^)Gmax ^ 0.8

which appears to be slightly higher than the value of Gmax found for the 
case where single circuits are used. It should, be realized however, that 
in the deduction of the formula for single circuits the exact point of the
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response curve was considered at which the effect of the feedback was 
most detrimental, whereas in this case some point of the response curve 
“in the proximity of” this point is considered. An additional safety factor 
must therefore be observed, so that the maximum permissible gain is 
actually slightly lower than that of single circuits.

The disadvantage attached to the above procedure for quickly esti
mating the maximum permissible gain is that the results are rather vague 
and no insight is obtained into the difficulties which may be experienced 
at a slightly larger gain. It is therefore desirable to have a simple method 
for ascertaining at what gain the circuit becomes unstable when all 
circuits are correctly tuned. This 
can be done by means of the follow
ing data:
(a) The polar diagram of Z0 of the 

band-pass filter at the grid side;
(b) the polar diagram of Z\ of the 

band-pass filter at the anode 
side.

Both diagrams must be provided 
with a frequency scale. The two 
diagrams are then placed on top of 
each other so that the poles 0 
coincide, whilst the real axis of the 
anode impedance leads over 90°.
When doing this, the reflected image 
of the grid impedance diagram must 
be taken, i.e. the direction of the 
real axis remains unchanged, but 
-f-j and—j are interchanged, so that 
the frequency scale of this diagram 
now runs in the opposite direction 
(see fig. 81).

A line is then drawn through the origin, so as to intersect the two 
diagrams at the same frequency. This is the frequency at which the circuit 
starts to oscillate provided the gain is sufficiently high. Denoting the 
absolute magnitude of the two impedances for this frequency by \Za'\ and 
\Zg \ respectively, then tlie condition for stability becomes:

wCflj 5 \Za \ IZg \ < 1.

This method can be applied also when the coupling network between

____ Zu

----- 0-7 q2-l5
71031

Fig. 81. Polar diagrams of Z0 and Zi 
from which the maximum permissible 
gain can be ascertained. r=Qs\Qj> = 0.5. 
The circuit becomes unstable when:

<x>Cag S' 0.3 Zjj 0.56 Zop — 1,

1(iiCag S'Z-ys Z2p- — 0.3 • 0.56 '

(132)
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the stages is of a more complex nature and consists, for example, of a 
circuit with wave traps for suppressing undesired signals.

The above method can easily be derived from the Nyquist criterion, in which case 
the polar diagrams of the complex gain y = Ea/Eg and of the complex feedback 
factor p are determined. For the circuit to become unstable it is necessary that the 
sum of the phase angles of these two diagrams bezero, whilst the product |y|*|P| 
must moreover be equal to or exceed unty at the frequency at which this condi
tion is satisfied.

These conditions can be expressed by:
yp = OiCay S \Za'\ \Zg\ 1.

6.3.7 Deviations at higher frequencies

The above comments apply to I.F. amplifiers operating at fre
quencies below 30 Mc/s. At higher frequencies however, it is neces
sary to take into account the fact that the dynamic feedback capaci
tance Cag may differ considerably from the static value Cag (see Other 
Forms of Feedback, Section 6.6).

In the first instance C„g' decreases with the frequency and finally 
assumes a negative value. In this range:

c. = c^-(g},
where // is the frequency at which Cag is zero.

The calculation of the maximum permissible gain could be corrected 
by introducing a quantity fs which depends on the signal frequency. It is, 
however, simpler to determine fs from the static value of Cag and to 
correct the equation for the maximum permissible gain as follows:

(133)

K'{-W (128(f)Gmnx — pmtix

The values of fs' are not valve constants, but also depend to a certain 
extent on the wiring, the valve holders, etc. For an EF 80 tube// « 70 Mc/s 
in normal circuits.

At frequencies exceeding // the maximum permissible gain G 
rapidly decreases. Since the sign of the feedback admittance is now 
reversed, damping occurs at those detunings at which originally re
generation occurred, and vice versa.

When the signal frequency is further increased the transit time t 
usually also starts to play a part in the stability condition. Although the 
magnitude of S' remains practically unchanged, the phase shift may 
become quite considerable at frequencies from 100 Mc/s to 200 Mc/s. It is

max
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6.4 Feedback by the cathode-to-grid admittance

due to this phase shift that the distortion of the response curve caused 
by the feedback is of a more symmetrical nature. When /t = £ this 
distortion is purely symmetrical.

6.4 FEEDBACK BY THE CATHODE-TO-GRID ADMITTANCE
The investigation of the effect of feedback by the cathode-to-grid 

admittance is again based on equations (115) and (117). The admittances 
Y3 and Y5 (see fig. 72) are assumed to be zero, so that p and Y7 also 
become zero. This gives:

Yo = Yx = Yo,
_ Y,

y0 + y4 + S/c ~
i (134)Fsand i +StZt (i + ^)'

The input admittance is thus:
Yx = y2 +

Eq. (135) is now applied to a few practical circuits, where the input 
admittance of the valve is governed by:

the capacitance Cgl of the control grid to earth (Y2), 
the capacitance Cglk of the control grid to the cathode (Y4), 
the capacitance Cglg2 of the control grid to the screen grid (Y2), 
the conductance g^ of the control grid to earth (Y2), 
the conductance of the control grid to the cathode (Y4), i.e. mainly 

the transit time damping gr, and
the impedance in the cathode lead, consisting of a real component and 

an imaginary component connected in parallel, i.e.:

i- = Y0 = g0 4- A •

Y0y.t (135)yo 4- y4 + Si,-

^0

Eq. (135) can be developed to:
Yx = ggi 4- jo>(Cyi 4- Cgm) 4- go4-gx4- Sk 4- j60

a>Qi*go 4- frog?4-j go 4- gx 4“ *Sk 4- 4- j50
By eliminating the imaginary components from the denominator the 

third term becomes:
(gxgo — <oCglA-50) { (go 4- £t4- Sic) — j(coCglt 4- &o) }

(go 4“ g"z 4” Sic)“ 4“ (coQjt 4- &o)2

and the fourth term becomes:
(oiCg^gg 4~ & pgr) { (go 4~ gT 4~ Sk) ---j(coC;/ifc 4- bp) }

(go 4- gx 4- 5a)2 4- <*Cgxic 4- b{j)2j
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The input damping is thus 2) 

gi' = gg i + 

which may also be written as:

(&t^c <oCyift66) (g6 + gr 4- (oC^Ago + frogr)
(§6 + + Si)2 + (toCyji + &6)2

vCgikg* — V^-gi' — goi + <*>Qi* * 2 “h(go + g-z + Si)2 -\- (coCj/ji + bG)

g62 +A2 + gG (Si +jrT)___ 
(go + gr + Si)2 + (wCj/ii + 6e)2+ St* (136)

The magnitude of the imaginar}^ component of Y/ is now:
(Yi') imaginary = 4~

(ojCgjj 4~ b0) ((oCgljfc0 — gcgr) 4~ (<oCyiig0 -f- ^c&t) (go ~f~ gr + Sj)
(go + g'r + Si)2 + (coQrji + 50)2

which corresponds to an input capacitance of:

go(go + Si) 4- b61 &6 -f- oiCfflk + (gv + Si) • ^^7 -1
Ci' — Cgl 4- CgxJ72 4" Cgxk • .(137)

(go + gr + Si)2 4- (wC^i 4- 6C)2

By means of eqs (136) and (137) it will now be shown how the various 
cathode impedances influence the input circuit. Once the input conductance 
gi has been calculated from eq. (136) for a particular case, the simplified 
expression thus obtained will be used to calculate the input conductance 
when other effects are considered. The following effects are of importance:
(1) the damping caused by the self-inductance of the cathode lead,
(2) the compensation of this damping when using an additional cathode 

capacitor,
(3) the variation of the input capacitance by incorporating a small 

resistance in the cathode lead,
(4) the variation of gi and C{ if a resistor shunted by a fairly small 

capacitor is included in the cathode lead.

6.4.1 Self-inductance in the cathode lead
It is assumed that a very small self-inductance L* is present in the 

cathode lead, so that:
St

toLkSk <1 or — 1,
°owhile

£ < P<1b 6 bo
*) It is only in this section that, in analogy witfl the convention of p. 85, the 

input damping is denoted by gi'.
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6.4 Feedback by the cathode-to-grid admittance 6.4.1
I

If the frequencies for which

w 2L kSkCgik < 1 or

are considered, i.e. only the frequency range below the resonance fre
quency of Lk~Cslk, then, since g6 is zero, according to eq. (136) the input 
conductance is:

gi' = g'Ji + gx^o3 — <jiC9lkb0Sk

v(f? + <*zCgik2 , 2taCgl* \ '
V + K + J

The fractions with the square of b6 in the denominator are very small 
compared with unity and may therefore be ignored, which gives:

OiC/jikSk

Sk2+ +v- b o2

gi' * gn + (gT- 

or by putting bG = —1/coZ,*:

gi' = g'Jl + (g~ +

■)(*

■

2<oCf/ji

be be

(H~LkCfji/;Slc) ^ 1 -f* 2 » (136a)

1
fm* =where 27- VLkCgik

In eq. (136a) co^C^S* represents the "feedback damping” caused by

g/fyA/V)

t
1000

500

7
7

7_
____“Z

/
Fig. 82. Example of the frequency- 
dependence of giIf the relation were 
truly quadratic this dependence would 

be represented by the broken line.

5 7~r
2L

10 20 30 40 50 100 200

72556
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Feedback 6
’

the self-inductance in the cathode lead. To a first approximation the 
input conductance gi is a second-power function of the frequency, 
but the term ggl and the second factor between brackets give rise to 
deviations at both low and high frequencies. Both these deviations result 
in an increase of g,-; cf. fig. 82.

Provided the frequency differs sufficiently from ftJlk (i.e. the resonant frequency 
of Li~Cgik) without, however, being too low, then:

gi' sv oj2Sa (t2Ft + CgiicLi),
where t represents the transit time of the electrons from the cathode to the control 

grid and the factor i?T depends on the ratio of the distances 
between gy^i an<i S\~^ and on the ratio of the effective 
potential in the plane of g2 to that in the plane of gv

Another cause of the increase of gi at high 
frequencies is the capacitance Ck' from cathode to 
earth (e.g. the cathode-to-filament capacitance). A 
calculation of b6 for the circuit of fig. 83 gives:

l l
66403

Fig. S3. Cathode 
lead having a self
inductance L*and 
a stray capacitance

OlLl;
1 — oi2LkCk

The deduction of eq. (136a) is obviously still valid, 
provided coLk is replaced by:

coLk

Ck.

1-4’
A2

where
1fk =

2t:V LkCk
which gives:

(
OiiCgikLkSk (1366)Si' — S'Ji + 'i o T *r

i fk2

This shows that both the "feedback damping” and the deviation due 
to the factor (1 + 2/2//gl*2) increase as the frequency (i.e. the resonant 
frequency of Lk-Ck) is approached.

6.4.2 Reducing the conductance by means of a cathode capacitor

An undamped grid circuit can be obtained by incorporating an addi
tional capacitor CA/ in the cathode lead (see fig. 84) and can be investigated 
similar to the procedure in Section 6.4.1.

I
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6.4 Feedback by the cathode-to-grid admittance 6.4.2

It is clear that in this case:

= — i»Lk ^ ll 1
*"o g>2L*C*7 '

Disregarding the small deviations and putting

l
/*' = 2 WLtCic’' 66404

Fig. 84.
Cathode lead the 
self-inductance Lk 
of which is com
pensated by an ad
ditional capacitor 

C*'.

Complete compensation of the damping due to the input conductance
at a frequency / is obtained 
by tuning the cathode lead to 
a frequency slightly above /, 
namely to:

from eq. (136«) the input conductance is found to
be:

§i' — gm +ott <»2CgikLkSk 11 (136c)

9j(yA/V)
5000

X

/

\l When this limit is approached 
the amplifier will obviously 
show a tendency to oscillate; 
cf. fig. 85.

In this circuit also the capac- 
200 300 400500 itance Ck of the cathode to earth
----- -- ftfMc/s)

72557

0

too30 4050

has an ad-
Fig. So. Example of the influence of fk' ongi verse effect.

This may
be explained, by means of fig. 86, from which follows:

at / = 200 Mc/s.

r~i
b6 = 6iCk :)l =T=^ tc*'oiLk 1

<*-LkCk' !

so that, in analogy with eq. (136c):

l _(/*T

66405

Fig. 86. Circuit 
similar to that of fig. 

(138) 84, in which the
stray capacitance 
Ck is also indicated.

r-gi' = goi + g* + Oi-CijikLkSk •

A2
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6Feedback

Hence
xy

gi' = go 1 + g* — gt • (136rf)
1 + T • A

/*2
in which

xV (hT-
~ r-

—r-

For frequencies higher than /* it becomes difficult to render Y suffi
ciently large to ensure satisfactory compensation. The required high value 
of the cathode impedance then increases the difficulties caused by the 
anode-to-cathode capacitance Cak (see Section 6.5).

I
6.4.3 Small resistance in the cathode lead

From eq. (137) the input capacitance of a valve with very small 
self-inductance in the cathode lead is:

V {1 +
■

i<*Cyik (g~ -f- Sk)gr }6c<oCgi/;&6
Cl = Cgx + Cgxg2 + CgjJc • 2 oiCgxkSir , o>2Cgiir

I t. o "I
b 2 /fl! 2grSb-6 IV + V + 1 ;Vbe2

As in the calculation of gi in Section 6.4.1, the denominator of the 
third term may be taken to equal

2<x>Cgxk1 +
*0 '

so that replacement of &6 by —1/wL^ gives:
Cgik (1--- (i^LkCgik)__ LlcgT (gT -j- Sic)Cl = Cgx + Cgxg2 + 1 — 2ca2LkCgxk1   2c0-LkCgxk

whence:
g^Sk ^1 + • jz j

+ Com + Ctit ^1 + J~j^j -Lk-Cif = Cgx r-1 ---2 J—Hfolk2
where I<2= gT/(gT-f &)•

For frequencies which are not too high, this expression can be simplified

(137a)
to:

Cl = Cgx + Cgxg2 + Cjjxk Lkg^Sk-I

It should be noted that Cglk depends on the space charge between 
cathode and grid and therefore varies when the gain is controlled by
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6.4 Feedback by the cathode-to-grid admittance 6.4.3

changing the grid bias. This effect can be compensated by the following 
means.

If only a small resistance Rk is incorporated in the cathode lead, then, 
according to eq. (137), the input capacitance is:

m' (-k +s*)Ci — Cgx + Cgmo + Cgxk '

[k + ^ + 4 + <*}ZCgxkZ

or
1 + SkRkCl — Cgx + Cgxg2 + Cgxk ' 1 + 2(gx + Sk)Rk + (gx + S*)W + u-Cgik2 Rk2 ’

Since (S + gT)/2~Cglfc is approximately equal to (GB):

_________________ Qi*_________________
{ 1 + 2y(gx + Sk)Rk}{ 1 — SkRk + Sk2Rk2}'Ci' = Cgx + Cgxg2 + (1376)

in which
9 = 1 + Rk{gx + Sk) ^1 + (139)

When the frequency is not too high it is clear that:
(140)

Disregarding the second and 
higher powers of SkRk, the 
denominator of the third term 
of eq. (1376) becomes 1 +
SkRk, so that the expression 
for Ci can be simplified to:

Cg\k

1 + SkRk
(137c)

9 *=» 1 + SkRk -
A C,(pt) 3

1
2

Ci' — Cgx + Cgxgz +

provided SkRk is small com
pared with unity. By giving 
SkRk a suitable value, the third

0
0 5 10 IS

la(mA)
72553term of eq. (137c) may be

made far less sensitive to grid Fig- 87- Example of the reduction of A Ci
° due to the use of a small cathode resistance 

(at / = 50 Mc/s).bias variations than Cgl*; cf. 
fig. 87.

The input conductance of a valve when the cathode lead con-
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tains only a small resistor can again be determined from eq. (136):

caaCg i<a
RT + + Rk ' (S* + ?t)

Si' = #01 + (^ + ^ + s*)
B}^ multiplying the numerator and denominator by Rk2, the latter 

becomes:
1 + 2<?(gT + Sk)Rk «! + 2? SkRk z/l + 2SkRk,

so that, putting gT + S* w S*:

1 -f- SkRk
<ji-C(Jlk2Rk

Si' = &/1 + + S'- • 1 -f- 2SkRk1 + 2S*rt*

It is clear, therefore, that if / is sufficiently small compared with (GB) 
and flt and if also SkRk is sufficiently small compared with unity, this 
expression for g/ can be simplified to:

to“C{jjk“Rk 
1 -f- 2SkRk

St (136e)Si' = Sn + 1 + SkRk ’

6.4.4 Stabilization of the input admittance
Finally, consideration will be given to a valve in the cathode lead of 

which there is a self-inductance Lk, and a capacitor 
Ck shunted by a resistor Rk (see fig. 88). It is 
assumed that both uLk/Rk and uCk'Rk are very 
small compared with unity, as is often the case 
in practice.

In these circumstances:
l

jwLjfc + /?*(! — ivCk'Rt).=<v Z0 = j<aLk + • v—% 1
S + j"C*'

and
66406

Fig. 88. Cathode lead 
having a self-induct
ance Lk, and a com
pensate g capacitor Ck' 
shunted by a small 

resistor Rk.

When gi and C{ are again determined by means of eqs (136) and (137),

11
Yg W Rk — ]o>Ck'Rk- + j toZ-A; Rk

whence
<oLk1 15* + «cv . (141)*“35 and 60 =

110
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6.4 Feedback by the cathode-to-grid admittance 6.4.4

and the numerators and denominators are divided by g62 = l/Rk2, the 
denominators become:

1 + 2(gT + Sk)Rk + (gx + Sic)2jR/r + ----- -f coCfc'j Rt9,

which may be written as:
GiLk j S*7?jt j ss

( <aCgik Rk oiCk'1 + SkRk SkRk ~f-
Sk SkRk Sk

GiLk \2~j~j

(t1 + K-J?)^ 1 4" SkRk 12 ^ 1 -f- Kn j 4" SkRk oiCk'Rk Rk
SkRk SkRk/

Provided / is sufficiently small compared with f1 and (GB), this expres
sion becomes:

|^2 + SA-/?A-j + ^ )oLkV1 + SkRk OiCk'Rk ** 1 + 2SkRk.Rk

Hence the input conductance is:
<j)zCgik~Rk _j_ (j2CgikLkSk — <*-CgikCk'SkRk2 

1 + 2 SkRkSi' Sol + 1 -f- 2SkRk

hm{1 + Rk- ( oiLkV)H--------— + RkSkoiCk'
Rk21 + 2 SkRk

The expression between braces is to a good approximation equal to 
(1 -f SkRk), which gives:

co2Cgik2Rk <o*CnkLkSk <*2CgikCk'SkRk2
1 + 2 SkRk + 1 + 2 SkRk

By ignoring a few terms the input capacitance is again:
1 + 2SkRk 1 + SkRk

. (136/)Si' = Sox +

Ci = Cgi + Cgig2 T (137c)
1 + SkRk '

This expression shows that the input capacitance can be influenced 
by means of a cathode resistor, and advantage may be taken of this 
effect to compensate, for example, the capacitance variation occuring 
when applying automatic gain control. When the cathode resistor is given 
such a value that optimum compensation of the capacitance variations is 
obtained, the relation between g/ and S can be determined by substituting 
this value for Rk in eq. (136/).

The value of the input conductance g/ is then not yet entirely fixed, 
since Ck can still be chosen arbitrarily. Ck can be given a value such that 
the effect of variations of S on g/ is the minimum. A rough approxima
tion of the value required for this purpose can be found by assuming the
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denominators in eq. (136/) to be constant and disregarding^. In that case 
gi appears to be independent of S when:

0i~C9lkUSk — €A*CgikCk'SkRk* = 0,
Ck' = Lk (142)or:

W
In eq. (142) no longer appears, i.e. the compensation is to a first 

approximation independent of the frequency.
Alternatively, gt' could be rendered independent of S by tuning the 

cathode lead by means of a series capacitor, but the compensation is then 
highly dependent on the frequency, so that the circuit is apt to become 
unstable. There is no such risk in the case discussed above, where the 
cathode capacitance is usually smaller than in the case of series tuning of 
the cathode lead.

In some cases the capacitance of the cathode pin (and the connected 
screens) to earth is large enough for the purpose in view. The capacitance 
Ck of the cathode itself to earth should not be taken into account here, 
since this is not shunted across C*'. This is demonstrated by the expression:

—toL;- (1 — v>-LkCk) (141a)«C*',K —

which shows that Ck has not the same effect on b6 as Ck-

6.4.5 Valves with double cathode connection
The input conductance gi of some valves is given a low value by pro

viding two cathode connections which should be connected in parallel; 
by this artifice Lk is approximately halved.

When it is desired to undamp the grid circuit by tuning the cathode 
circuit it is not advisable to tune only one of the cathode leads and to use 
the other as a supply lead for the direct current, nor should the two leads 
be tuned to different frequencies. This might lead to instability due to 
the combination of the two cathode leads being in parallel resonance for 
one or several particular frequencies.

Furthermore, if AC,: compensation is not applied in the cathode circuit, 
advantage can be taken of the double cathode connection to reduce 
appreciably the active cathode lead impedance Lk by connecting the 
lower end of the grid circuit to the one cathode pin and the return lead 
of the anode circuit to the other pin J). To avoid instability the lower end

Rk-

i) Cf. M. J. O. Strutt and A. van der Ziel, A Variable Amplifier with Double 
Cathode Connection suitable for Metre Waves, Philips Techn. Review 5, p. 357, 
1940 (No. 12).

112



6.5 Feedback by the anode-to-cathode capacitance

of the grid circuit must also in this case be screened from the anode 
Since the screening can of the anode circuit has to be connected to the 
lower end of this circuit, the anode return lead must be connected to 
earth, and the grid circuit thus remains floating. The capacitance to 
earth of this floating circuit and the inductance of both cathode leads 
give rise to another form of feedback, which may lead to instability at 
frequencies well above 100 Mc/s.

6.5 FEEDBACK BY THE ANODE-TO-CATHODE CAPACITANCE
The inclusion of an impedance Z6 in the cathode lead will result in 

feedback to the cathode by the anode-to-cathode capacitance Cak, after 
which feedback to the control grid occurs via the grid-to-cathode capac
itance Cglk. The anode-to-cathode capacitance Cak, therefore, has a similar 
effect in these circumstances to that of the anode-to-grid capacitance 
Cagi- As can be deduced from eqs (115) and (116):

V« + VtVi' = Y, + Y4 • Yc + Y7 + St — pSa ’

which, to a fair approximation, may be written:

y»yc + ^4 'Yt' = Y., 4- Y4 • Y0 + Y4 + Y7 + 5*Y0 + Y4 + Y- + Sk
P Sq+ y4 • Y6 + Y4 + Y, + Sk'

provided Y6 > Sk. By substituting

Yt + Yj ^ YxP =
and

Y7 = (l —P)Y, « Y§,

and disregarding Y7 in the denominator,
Y*Y*YgYi' = Yo + Y4 • Yfl + Y4 + SkYc + Y4 + Sk

Provided the gain is not too small, this expression may be approximated
as:

SaY,Y, ____________
Yj Y0 + Y4 + St *

YeYi' = Yo + Y4 • Y6 + Y4 + 5a-

The “feedback term" (containing Y5) is now compared with the effect 
of the direct feedback from the anode to the control grid. This effect is 
expressed by (see eq. (120)):!

y3 «
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or, from eq. (115), by setting p = 0 and Y7 = 0:
Y. SqYc
IT yfl + y4 + sk •

The feedback via the cathode circuit is therefore equivalent to a direct 
feedback produced by an admittance Y3' equal to:

Vo *
(143)Y* =

Substituting jofor Y5, jcoCgl* for Y4 and jo>Cagi for Y3', eq. (143) 
becomes:

(144)CaiJi — Cak • j toCj/jfrZg.

This means that if a capacitor CV is included in the cathode lead, the 
capacitance Cagl' should not exceed the maximum permissible value.

The value of Cagl' can be calculated from eqs (126), (127) and (144), 
which give:

£max2 
px max2

Smax (145)= <*>C0lkZJ •
2n Cak

provided SkZ6< 1.

6.6 OTHER FORMS OF FEEDBACK

At frequencies exceeding 50 Mc/s the self-inductances and mutual in
ductances of various connecting leads of the valves will give rise to other 
forms of feedback.

Space does not permit full investigation of these effects, but it may be 
stated that their influence can be considered as a variation of Cagl'.

Due to the effects summarized below, Cagl contains other terms in addi
tion to C(jgj and

Mutual inductance Magl between the anode and the control-grid leads 
gives rise to an additional term:

-j- <*2CaCgiMag1 •

Self-inductance Lg2 of the screen-grid lead gives rise to an additional 
term:

—ca2CagzCgigJLg2.

Mutual inductance Mglg2 between the control-grid and screen-grid leads 
gives rise to an additional term:

—(j)^Cg-yCagoMgig2 •
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6.6 Other forms of feedback

Self-inductance Ls of the earth lead of the screening cage (s) gives rise 
to an additional term:

Mutual inductance between the cathode lead and the earth lead of 
the screening cage gives rise to an additional term:

Oi"'{CasC(/1k -f- CakCgi$}Mks •

It is difficult to determine accurately the effects of all these terms, but 
it will be clear that the deviation of Crtgl' from the static value of Cagl 
increases with the frequency.

In practice the negative terms appear to predominate, so that Cagl' 
first decreases with 
increasing frequency.
At the self-neutraliz
ing frequency,/s', Cagl'
= 0. From this fre
quency onwards Cagi 
becomes negative. In 
the vicinity of fs\ Cflgl' 
assumes a parabolical 
form as a function of 
the frequency (see fig.
89), viz.:

+
t fs'

Cagi' 0

t

Cag'

At rmirh higher fre- Fig- 89. Variation of the effective anode-to-grid 
J* ... capacitance Cagi as a function of the frequency /. 

quencies, m the vicim- At // the effective anode-to-grid capacitance is
ty of /s", deviations
occur and Cagl' again becomes positive beyond f" due to the influence of
terms containing higher powers of/. It is clear that the performance at
these high frequencies and the magnitude of // depend not only on the
construction of the valve, but also on the wiring of the circuit.

zero.
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7. PRACTICAL CONSIDERATIONS FOLLOWING ON
THE THEORY

It will now be shown how the preceding calculations can be used when 
designing circuits for I.F. amplification in television receivers.

7.1 SENSITIVITY

The sensitivity required for a given amplifier will first be investigated. 
The minimum field strength for various frequencies at which a signal-to- 
noise ratio of 5 (= 14 db) can be attained is shown in fig. 70. From this 
cum it is possible to ascertain the smallest field strength Hmin that 
can be amplified to give full output. Once this choice has been made, 
the voltage across the input circuit of the amplifier is given by eq. (17):

Ha

The transformer ratio w need not be known if the required sensitivity 
at the aerial terminals only is to be calculated, since the voltage at these 
terminals is smaller than the voltage across the input circuit by a factor w. 
For a normal dipole aerial this voltage is given by:

50 Hm\nH miiA
Fmin — /2~

Example
A television receiver for 50 Mc/s with a bandwidth of 5 Mc/s must be capable of 

giving maximum output signal even when the signal-to-noise ratio at the output 
drops to 2 or even less. What should the sensitivity be at the aerial terminals?

From fig. 70 (broken lines, corresponding to conditions of minimum cosmic noise) 
the maximum output signal may be obtained at field strengths of approximately:

§ • 60 = 24 |xV/m .

Hence, according to the above formula:
j. 50 //min OA tt Vmin = ---- -------  = 24 |ZV .

7.2 GAIN

In the case of a T.R.F. receiver the total gain Gtot, calculated from the 
aerial terminals to the anode circuit of the last I.F. tube, is given by the 
expression:

Gtot = w • .

116



7.2 Gain 7.2.1

In a superheterodyne receiver with a tuner, the gain GtUncr °* which is 
given, the total gain can be calculated from:

Gtot = Gtuner • Gn .

7.2.1 Gain of the input circuit

The gain of the input circuit of a receiver can be determined by means 
of eq. (136) in the frequency range below /0', or by means of eq. (106) for 
frequencies exceeding /</. The voltage gain G' thus found is the ratio of 
the voltage across the input circuit to the voltage at the aerial at zero 
load. (If the gain is understood to be the ratio w of the voltage across the 
input circuit to the voltage at the aerial terminals, twice this value must 
be taken, since w/2 = G'.)

In practice the admittance of the aerial circuit is not always negligibly 
small compared with the input admittance of the valve and the additional 
damping resistance. Since it is not possible to reduce gc below the extreme 
value gcmin, it is clear that:
(а) Gq cannot exceed l/V47?ant gcmin, and
(б) /0' cannot be lower than /V4i?ant gcmin.

Maximum gain is obtained when the circuit is not additionally damped, 
see fig. 90.

Apart from the transitional jogG* 
point at /o' being somewhat 
more rounded off, this diagram 
has the same form as fig. 3. As 
Gq (and thus also/,') approaches 
the above-mentioned boundary 
value, the effect of this curv
ature on the log G' = f(log /) 
curve steadily increases; by 
keeping a factor of aboVit 2 below the boundary value the rounding-off 
will be less than 10 %.

/
V^Rant’Sc min

I
------ — log /

72560
Fig. 90. Diagram showing the variation of 
log G' as a function of log /. In contrast to 
fig. 3 the circuit conductance is constant, 

viz. gcmin.

7.2.2 Gain of the I.F. amplifier

In the calculation of Gtot the term Gn is always the main factor. To 
evaluate Gn it must first be investigated whether the valves operate above 
or below fQ (cf. eq. (12a)). As a rule the latter will be the case, so that G 
can be calculated from eq. (13a):

B • G = F,FX(GB).
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Practical considerations following on the theory 7

If the valves operate above /„, then G = Gmax, which can be calculated from 
eq. (10a):

r _ p- (fi\2 'J'max — yj-J ■

The bandwidth B is calculated in the following way. For television 
receivers with a normal response curve the total bandwidth jBtot between 
the 3 db points is approximately 10 % smaller than the distance between

10 (3($*~2 c,i 0.5 0 0.5 1? 2
1"N

Q5 0.5

S=5
0.2

1(T1 JO''

5 5

2 2

10~2nr2
5 5

2 2

JO'3
^6738

Fig. 91. Simplified response curve of a T.V.receiver. It 
should be noted that the scale of the abscissa consists of 
a linear and two logarithmic parts. The position of the 

carrier is indicated by C.

the 6 db points (see fig. 91), which, to a first approximation, may be taken 
to be equal to the distance between the image and sound carriers. When 
jBtot has thus been determined, B can be calculated from eq. (20):

Btot
fT-

If a band-pass filter is used for the coupling, Fb may be taken to be 
from 1.5 to 2, but when single-tuned circuits are used Fb is at the most 
equal to unity. The chosen value of Fb must be verified after the stag
gering scheme has been selected.

Once the bandwidth B has thus been determined, the values of Fs, Fx 
and (GB) must be chosen. It is most convenient first to ascertain how

B =
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7.3 Selection of the valves

many amplifying stages should be used. For this purpose Fs, Fx and w (or 
Gtuner are roughly estimated, assuming, for example, that:

Gtot = Gtuner ^FnFsFxfGB^n
Btot

7.3 SELECTION OF THE VALVES

From the foregoing considerations a relation has been established be
tween the values of (GB) and n and the required value of Gtot. From eq. 
(32) the required value of fx can be evaluated for a given staggering 
scheme, whilst a condition can also be imposed on the value of Fs. The 
valves can now be chosen according to their (GB) product and gain 
reference frequency fv

It may be useful to draw a diagram showing these two quantities, from 
which the performance obtainable with these valves can be ascertained. 
For this purpose the required values of (GB) and fx are calculated from 
eqs (13a) and (20) and from eq. (32) after the values valid for the design 
have been filled in for the other data.

Example
In fig. 92 a number of areas are shown which correspond to the various applica

tions.
Each application covers a certain area in the graph due to the fact that some 

freedom of choice is permissible in designing a receiver. From this it will be seen 
that the (GB) product and the gain reference frequency fx may assume different 
values.

A given application with the desired number of valves of a given type is now 
possible if their (GB) product and gain reference frequency fx are equal to or larger 
than the values of (GB) and fx in any part of the (GB)-fx area of the application 
concerned.

The receivers taken as an example in fig. 92 have almost the same sensitivity, and 
have other comparable properties. The factor Fr (see eq. (147), p. 124), for example, 
is assumed to be unity in all cases, which means that the valves are not controlled. 
No band-pass filter coupling is employed in any of the circuits, although it would 
be possible to reduce the required (GB) product in this way.

When a large gain per stage is required, valves with a high (GB) product 
will obviously be chosen. The performance of valves with an identical 
(GB) product may, however, differ appreciably: one type of valve may 
have a much higher mutual conductance and a much larger input capaci
tance than another type of valve having the same (GB) product. 
In that case the valve having the highest product Fx • (GB), i.e. the 
largest valve with the highest mutual conductance, is often preferred.
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7.3 Selections of the valves

Very large valves, however, are less suitable for these applications, due 
to the ollowing facts.
(a) The gain reference frequency of a large valve is as a rule compara

tively low. Particularly at high frequencies there is then a risk that the 
maximum gain per stage will no longer be limited by the (GB) pro
duct but by the gain reference frequency fv The influence of the input 
capacitance of the valve on fx may be explained by as follows.

Assume for the sake of simplicity that

gi PH CO2 LkCgykSk ,
and

W 4
Since the cathode connection is substantially independent of the 

choice of Cgu. and Sk, Lk may be taken to be constant. Hence:

constant • Cfflk~ll>.1, PH

(b) Beyond a given limit the value of Fx increases but little with the 
mutual conductance of the valve, whereas the increase in physical 
dimensions, price and current drain becomes quite considerable.

(c) Fx has an optimum value above which the total gain begins to 
decrease with increasing value of Fx. This optimum value of Fx of a 
particular amplifier depends on various factors: in the first place on 
the question whether the amplifier operates on a frequency above or 
below /0 and /„', in other words whether the maximum gain of each 
stage is limited by or by (GB).

As shown on p. 12, one of the two following conditions usually applies:
(1) the signal frequency is lower than /„ and /0', or
(2) the signal frequency is lower than /„ but higher than /0' (in this case the 

receiver is usually provided with a tuner with additional H.F. amplifying 
valves).
In the first case Fx can be evaluated in the following way: Assume that

CxbCi and x =a = Ci+Co’Ci + Co’ Cx

where Cx denotes the stray capacitance of each I.F. stage and Cy is the stray 
capacitance of the input circuit. The gain is then proportional to

r-crtfc+. -1/.(Ci + Cy)-'U • (l + Cx (1 + x)-n = X.
Ci 4" Co
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Practical considerations following on the theory 7

When x is varied at constant values of a, b and Cx, X will be the maxi
mum at

dA'-z— = 0, or d x
UX nX

= 0,ax -}- bx2 1+x
whence

± . (i _ M , 1X+JL
2b \ 2n) ^ \ 462 \ 2n) ^ 2bn '*opt —

If a is given a value between 0.5 and 0.7 and b is from 0.5 to 1, whilst the 
number of stages n may vary between 3 and 8, the value of A'0pt will be from 
0.095 to 0.04, which gives for Fx = 1/(1 + x), a value of 0.92 to 0.96.

When the circuits are coupled by band-pass filters the results are very 
similar.

It can be shown in an analogous way that, when a tuner is used, the 
larger I.F. gain due to a further increase of the dimensions of the 
I.F. amplifying valves is outweighed by the smaller gain of the 
tuner. The optimum value depends on the design of the tuner and 
the valves with which it is equipped. As a rule little is gained by 
choosing larger valves than correspond to Fx = 0.8.

7.4 STAGGERED TUNING SYSTEM
The (GB) product and the value of n having been determined, a detailed 

staggered tuning system can now be worked out, from which the values 
of Fb, Fs and Fx and the performance of the amplifier can be determined 
with greater accuracy.

In designing this tuning system it should be taken into account that it 
will usually be necessary to incorporate a number of traps to eliminate 
certain undesired signals originating from adjacent channels and the sound 
channel of the wanted transmission.

As can be seen from the response curve shown in fig. 91, the attenuation 
of these signals by the H.F. and I.F. circuits is inadequate: the required 
additional attenuation is given by the difference between this curve and 
the desired response curve.

The incorporation of a trap also affects the response curve on either 
side of the frequency which has to be suppressed; the greater the attenu
ation, the more serious is the influence on the response curve. To evaluate 
the influence of the traps1), the following two quantities must be calculated:
(1) The relative quality factor r, i.e. the ratio Qt/Q of the quality factor 

of the trap to that of the circuit to which it is connected.
(2) The separation s, i.e. the relative detuning of the trap with respect

x) J. Avins, Electronics, Jan. 1950.
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7.4 Staggered tuning system

to the circuit, multiplied by the quality factor Qt of the trap, viz.:

,_(««_ 2s) fll_
Wo «</ (146)

where cand co0 are the resonant frequencies of the trap and of the circuit 
respectively.

The values of r and s having been determined, the changes to which the 
response curve is subject at a given attenuation can be derived from one 
of the graphs given in figs 113a to l of Appendix I.

These graphs are based on the theory of detuned band-pass filters with two 
resonant circuits and can be derived from the response curves of four single circuits 
whose quality factors and resonant frequencies are related to the properties of the 
circuit and the trap and their mutual coupling.

The changes to which the response curve is subject as a result of the 
presence of traps must be corrected when these lie within the pass band 
range of the video signal. This is achieved by sligthly changing the tuning 
and damping of the I.F. circuits. The effects of these modifications can be 
determined by means of figs 113m and n of Appendix I.

The influence of the traps cannot be neutralized completely over the 
entire pass band. This is not objectionable, since the purpose in view is 
only to obtain an acceptable response curve which gives a satisfactory 
step function.

It is further of interest to investigate to what extent the corrected 
response curve is situated above or below the original curve. As a rule 
the differences will be small, so that the total gain is hardly affected by 
the incorporation of traps.

It is now possible to design a corrected staggered tuning system. In 
the corresponding diagram the top extremities of the perpendiculars no 
longer coincide with the points dividing the semi-circle into equal parts, 
as is the case in fig. 8. The tunings and dampings of the various circuits 
are now exactly known and so are the tunings of the traps and the tight
ness with which they are coupled to the circuits. It is therefore possible 
to determine the total capacitance Cx of the circuit and consequently the 
value of Fx with greater accuracy.

It is now necessary to ascertain whether the staggered tuning system 
chosen can indeed be achieved without any of the stages operating at a 
frequency exceeding /0. If this is not possible, additional capacitance will 
have to be added to the stage concerned in order to reduce the bandwidth 
of that stage sufficiently. In this case, however, the gain of this stage 
will also be reduced owing to the low'er value of Fx.

■

i

;
i

II
ii

i

ii.
•'!
I

: i

iiii. !
!

II

:.

iH

It!

123

• •'



Practical considerations following on the theory 7

If the gain of the receiver is controlled by varying the mutual conduc
tances of the valves the inherent 
variation of the input conduct
ance Agi may result in a vari
ation of the bandwidth.This effect 
is most marked when a valve, 
operating around the value /0, 
is controlled without corn-

top#

i

pensating A gi (see fig. 99); the 
damping of the grid circuit is 
then almost entirely controlled 
by gi. If now the valve is cut 
off, gi decreases approximately

f0 log f
66739

Fig. 93. Graph showing the variation of log . . „ .
£ as a function of log / in the vinicity of in proportion to ocff (see bection
/0. The full line applies to non-controlled 6.4), thereby also reducing the 
valves and the broken line to a cut-off ' 

valve. bandwidth.
If the bandwidth with the 

valve cut off is denoted by BCo, it can be deduced from eqs (6) and (9) 
that

Bco /2Sc
=1-/>B0 gi + go+gc

or

b«'/7-
In order to reduce A B0[B0 it will therefore be necessary to remain 

below the frequency /0 by a factor FT. It is obvious that where the vari
ations A gi are not compensated:

A B0 — B0 — B co —

-($P- (147)Ft

In practice Fr may be from 1 (when there is no gain control) to 5; higher 
values will not be required.

Eq. (32) now becomes:

Ptotsina ^ FbFxFt(GB) (LJ. (148)

In order to satisfy this condition a valve with a given minimum value 
of fx is required. This value of fx can be found by solving fx from eq. (148) 
after the staggered system has been chosen.

In the case of superheterodynes with intermediate frequencies of about 
20 Mc/s the values thus required are usually not excessively high, but in
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7.4 Staggered tuning system

the case of T.R.F. receivers it may be found that no valves are available 
which have the required value of fv In that case the design may be adapted 
to the requirements thus imposed by one of the following means:

(1) Reduction of Fr. This may be achieved by improving the compensa
tion of Agi or by not controlling those valves the grid circuits (and 
possibly the anode circuits) of which have a narrow bandwidth.

As a rule not only Ag; but also AC; will be compensated. For this 
purpose a resistor Rk shunted by a capacitor C*' must be incorporated 
in the cathode lead (see Section 6.4.4.).

It follows from eq. (137c) that for compensating ACglk the following 
condition must be satisfied:

ACjjik

~C^"Skmnx Rk m

denotes the maximum cathode transconductance. Thewhere S/.•max
required value of Rk is therefore determined within certain limits. 
The most favourable value can best be ascertained experimentally.

The required value of Ck' can be calculated from eq. (136/). First 
the relatively small correction due to SkRk in the denominators is
disregarded, which gives:

gi & gfj 1 + Oi2Cgik2Rk + <*2CgikLkSk — ^CgikCk'SkRk- + gT .

gi no longer varies with Sk when

g-z + <t}~CgikLkSkm&x *** <A2CgikCk'SkmAxRk“ ,

which may be written as:

CgikSkmax
g- + gt &

or
CgikSkmax{gt 4~ gz)

Ck' « co2ACgik2

The most suitable value of Ck is again determined experimentally. 
The resulting input conductance will now be approximately:

gi ** ggi + o>-Cgik2Rk,

or, after substitution of the optimum value of Rk:

<AzCgik&Cgik _
Skmax gn + gi*gi « gn +
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Practical considerations following on the theory 7

The second term of this expression may be estimated from:

The loss of gain due to the compensation is approximately:

_________^____
1 ■+■ Skm&xRk Cgi k ~b A Cgxk

except in those cases where Rk has such a high value that the mutual
conductance is reduced by the resulting grid bias. On the other hand,
Fx is slightly improved because the input capacitance of the valve
will now be about equal to the cut-off value of Ct- throughout the
control range.

(2) Choice of a more suitable staggered tuning system, with larger values 
of sina. In such a system Fb will usually be smaller, so that the 
bandwidth Br of the reference circuit may have to be increased 
considerably. The extreme values between which the gain reference 
frequency fx thus required may be varied are given on the one hand 
by (n -j- 1) synchronous circuits and, on the other hand, by a flat 
staggered (n -f- I)tuple.

When these changes have been made it will be obvious that, due 
to the increase of Br, a higher (GB) product is required in order to 
obtain the same total gain Gtot.

(3) Rendering the most critical circuit less sensitive to Ag, variations. 
This may be achieved by increasing the damping across the circuit 
and adding extra capacitance. The advantage of this method is that 
the circuit also becomes less sensitive to variations of the input 
capacitance of the controlled valve, but on the other hand the gain 
decreases so, that valves with a higher (GB) product are required to 
obtain the same gain. As a rule, however, there is no need to apply 
this method to all stages, so that the required increase of the (GB) 
product is less than the required decrease of the gain reference 
frequency fv

When the staggered tuning system has been chosen and the gain per 
stage has been calculated according to Section 7.2, it still remains to be 
investigated whether the gain is permissible with a view to stability. 
For each stage eq. (128a) applies, namely:

. (Jj_Y ( Cgik V
\(GB)J \Ci + Co)gt'agi-

1Fs > 0.75,

^ ph Vsina/jsina/1+i j/^ .Ghmux

It has been shown in Section 6.3.2 that, in order to avoid irregular-
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7.4 Staggered tuning system

ities of the response curve, the value of p]i2 must in any case remain 
below 0.5.
Example

It is required to design an I.F. amplifier for 23.75 Mc/s (picture carrier) preceded 
by a given tuner having a gain of 15. The overall sensitivity at 23.75 Mc/s should 
be approximately 20 jx V for a direct voltage of 1 V at the detector. Contrast control 
should be provided.

The F.M. audio signal should also be amplified in two of the I.F. video stages, after 
which it is separated. At the video detector the audio signal should be weaker by a 
factor of at least 20 than the image carrier; the ratio of the image to the sound 
carrier at the aerial terminals is assumed to be 2 : 1. The interval between the sound 
and image carriers is 5.5Mc/s.

Signals originating from 
adjacent channels should be 
suppressed to such an extent 
that they are weaker by a 
factor of at least 50 than the 
image carrier, but suppression 
should not deteriorate appre
ciably when the allocation of 
the adjacent channels differs 
slightly from the standards.

The supply is 220VAC/DC 
(without mains transformer).

Fig. 94 gives the required 
overall response curve of the 
receiver, whilst fig. 95 gives 
the response curve of the 
tuner.

The response curve of the 
I.F. part of the receiver 
should therefore be approxi
mately as shown in fig. 96 Fig. 94. Required overall responsecurve of the 
with a width of about 5 Mc/s 
between the 3 db points.

The design will be based on the use cf a flat-staggered tuning system with Fn = I, 
so that Br of each circuit is 5 Mc/s.

It is obvious that traps will have to be added to most of the circuits. In this 
connection, and in view of the available coils and other components, Cx of each of 
the stages may be taken to be approx. 10 pF. Fx is therefore likely to assume a 
fairly low value, for example FSFX fa 0.5. The product FsFx• (GB) may, therefore, 
amount to approx. 50 Mc/s and the gain per stage to about 10.

The total gain in the centre of the response curve should be approximately 
2xl V/20 pV = 105. Taking the gain of the tuner to be 15 and the detector efficien- 
cy to be 50%, the required gain of the I.F. amplifier is therefore 10S/15X 0.5 V2 104.

Four stages of I.F. amplification may therefore suffice, provided the valves have 
a relatively high (GB) product and are not too small, i.e. their high (GB) product

!

► f(Mc/s)
72561

receiver.
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Practical considerations following on the theory 7

may not be due to their low input capacitance, their mutual conductance being 
relatively small.

A high-slope valve such as the EF 42 or EF 91 pentode is unsuitable for a receiver

73762

Fig. 95. Response curve of the tuner preceding the I.F. amplifier 
to be designed.

without mains transformer, whilst the UF 42 pentode for AC/DC mains is less 
suitable because of its somewhat smaller (GB) product and smaller value of the 
gain reference frequency fv

The EF 80 pentode is more convenient, although the value of Fx is slightly smal
ler. In the case of the EF 80 valve, G = 100 X 0.5/5 = 10. The required sensitivity 
may thus be reached with four EF 80 valves.

db

-10

-20

-30

-40

-50
16 18 20 22 24 26 28

-----------*if(Mc/s)

74605'

Fig. 96. Required response curve of the I.F. part of the receiver (fully drawn line) 
and the response curve according to the staggering system of fig. 97 (broken line);
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7.4 Staggered tuning system

A staggered tuning system will now be designed for five I.F. circuits, the detunings 
of which are respectively —2.5 Mc/s, —1.5 Mc/s, 0 Mc/s, +1.5 Mc/s and +2.5 Mc/s.

The last I.F. circuit should be tuned to a frequency near the image carrier, and 
its damping should not be too small in view of the damping caused by the following 
diode detector. The latter imposes a fairly heavy damping, which, moreover, depends 
to some extent on the signal amplitude. For crystal diodes the calculation given on 
p. 14 is applicable, but if a vacuum diode is used the calculation given on pp. 13 and 
14 holds for large signals only. At small signals Rd assumes a lower value, depending 
on the shape of the diode current characteristic in the vicinity of Vd = 0. To 
avoid any marked dependency of the response curve upon the signal amplitude, it 
is undesirable to damp the circuit exclusively by Rd.

The first three circuits should be tuned to frequencies close to the sound carrier, 
since the I.F. audio signal is also amplified in these stages (the audio and video 
signals are separated after the third stage). Gain control is applied only to the 
first two stages, so that it has no effect on the ratio of the video signal to the audio 
signal. It would, in fact, be inadvisable to control the other two stages in view of 
the sensitivity of the two weakly damped grid circuits to variations of the input 
conductance and capacitance. Another objection against controlling the last I.F. 
stages is the serious distortion resulting when controlling valves which are fully 
driven by a large signal.

The sequence of the circuits is therefore chosen as indicated in fig. 97.
The impedance of the reference circuit can be evaluated from Cr rv 18 pF, 

Br = 5 Mc/s, gr = 2 7r 5 X 18 = 550 (zA/V, which gives Rr = 1.8 kfl according to 
eq. (6). The damping resistances for the various circuits then become respectively 
5.5kH, 2.2 kn, 1.8 kfl, 2.2 k£l and 5.5 kH.

In order to determine the tuning and required suppression of the traps, the desired 
I.F. response curve is compared with that obtained with the above-mentioned

■s.
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Fig. 97. Provisional design of the staggered tuning system.

staggered tuning system; cf. fig. 96. It is seen that at 25.25 Mc/s and at 18.25 Mc/s 
some
adjust two traps near these frequencies. In order to render these traps as effective 
as possible, the separation s should preferably be small, whilst the relative quality 
factor r should be high. For this purpose the traps should be coupled to circuits V 
and III respectively (see fig. 97).

It is true that if the 25.25 Mc/s trap were connected to circuit IV an even smaller

j:j:

20 db of additional attenuation is required. It is therefore necessary to

1299
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Practical considerations following on the theory 7

separation could be obtained, but the relative quality factor of the trap would then be 
smaller. When connected to circuit V, this trap, which should suppress the adjacent 
sound, gives rise to a sharp dip in the response curve, i.e. a strong absorption of 
the interfering signal in the close proximity of the pass band.

The purpose of the 18.25 Mc/s trap connected to circuit III is to suppress the 
sound carrier to such an extent that the audio signal does not noticeably interfere 
with the video signal. This trap is so adjusted that the overall response curve is 
substantially flat in the vicinity of the sound carrier. In this way the frequency 
modulation of the sound carrier is not converted into amplitude modulation, which 
would result in the audio signal becoming visible in the picture.

db 20
In addition to the audio

signal of the transmission 
being received and the 
audio signal on the ad
jacent channel, the video 
carrier of an adjacent 
transmitter must be suffi
ciently attenuated. As a 
rule this is easier to achieve 
than the suppression of 
the two signals mentioned 
above. The I.F. frequency 
originating from this sig
nal is usually 16.75 Mc/s, 
and since circuit III is 
already trapped, this trap 
can best be connected to 
circuit I.

Two circuits have not 
yet been provided with 
traps, namely circuits II 
and IV. These may be 
provided with traps for 
further attenuating the 
adjacent image and ad
jacent sound. Attenuation 

will be the maximum when these traps are tuned to the same frequencies as the 
traps connected to circuits V and I. For the case of an experimental system where 
it is uncertain how the interfering signals are distributed over the adjacent channels, 
it is preferable, however, to tune these traps so that they eliminate the peaks of the 
response curve caused by the traps connected to circuits V and I and keep the 
entire response curve beyond the pass band as low as possible. These peaks are 
situated close to the attenuated frequencies, viz. at about 26.5 and 15.75 Mc/s 
respectively. By tuning the traps of circuits IV and II to these frequencies the 
overall response curve of all traps will be as shown in fig. 98. This diagram is 
constructed by adding the responses of all traps. These responses can be determined 
from figs 113 a to /. For the calculation of s and r the values of Q8 were taken to be 
about 75.

-10

-20

-30

-40
16 18 20 22 2U 26 28

-----------► f(Mc/s)
72565

Fig. 98. Overall response curve of all traps.
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7.4 Staggered tuning system

It is seen that the traps give rise to a distortion Of the response curve within the 
pass band, which must be corrected by slightly altering the original staggered tuning 

. system.
Fig. 99 shows the final staggered tuning system thus obtained, whilst fig. 100 

gives the corresponding overall response curve.

72567
Fig. 99. Final staggered tuning system.

By means of this response curve the amplitude and phase characteristics can be 
constructed (fig. 101), from which the real and imaginary modulation response

----------- ► f(Mc/s)
72568

Fig. 100. Overall response curve of the staggered tuning system of fig. 99.
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Practical considerations following on the theory

curves are derived (fig. 102). These are approximated by the series of straight lines, 
the inclined line segments of which are given by the following data:

7

Segment No. h nrr

{2 0.6 0.G3.3
Mreal —0.35 4.3 0.9

0.75 0.95.25

1 —0.85 
-f 0.85

3.0 0.5{mag 2 0.755.5

0

--------- ► f(Mc/s)

72569

Fig. 101. Amplitude and phase characteristics A and 0 corresponding to the
response curve of fig. 101.

72570

Fig. 102. Real and imaginary components of the modulation response curves Mreal 
and Mimag derived from the phase characteristic of fig. 101.
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17.4 Staggered tuning system

Fig. 103 gives the step function Stot + Ctot which has been graphically derived 
from fig. 102.

stot
1.0

sfot+ctot

0.8 /
A
/A0.6 '\

0.4 ~n \ ^L
/

J-0.2
/ \

V

\li
0 v7

0 0.2 0.4 06
------- ~t(jjse c)

72571

Fig. 103. Step function Stot + Ctot constructed from the modulation response
curves plotted in fig. 102.

-0.6 -04 -02
■

The main data of the design have thus been determined. If required, the changes 
which must be made in the staggered tuning system when the valves are controlled, 
and what the consequences of controlling the valves will be on the response curve 
and step function, can be investigated. The change of the step function with 
increasing modulation depth can be investigated by adding the quadrature com
ponent.

The ensure that the frequence response and the step function are not affected by 
feedback via Cag, a check of this affect should be made by means of eq. (128a). 
Setting

!Gh = 10. ph2 = 0.5 and / = 21 Mc/s, 
this equation gives for/s = 17 X 104 Mc/s:

sin oca sin cca+2 ^ • 10-4« 0.02.

The actual value of this product is tabulated below:

productsin oca+2Stage h sin oca

0.80.8 1.01
0.15 0.152 1.0
0.3 0.053 0.16
0.80.3 0.244
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APPENDIX I

TUNED CIRCUITS AND BAND-PASS FILTERS

In this Section several well-known formulae, used without further 
explanation in the preceding sections, will be briefly commented upon. 
This may also be useful in clarifying the meaning of several symbols.

(a) By generalizing and introducing a few approximations the stationary 
oscillations of single-tuned circuits under various conditions can be 
expressed by one single formula.

0—rs 
ok7

E \9

J
74604

Fig. 104. Diagram of a tuned circuit for expressing E and I.

Assume that a tuned circuit consisting of a capacitance C and 
an inductance L with a series resistance r and parallel damping g 
is excited by a current i fed to the top of the circuit, and that a 
voltage e is induced in the inductance (see fig. 104). Both signals 
have an angular frequency co (radians per second). The current I 
flowing through L and the voltage E across C can now be expressed 
in simple formulae by setting:

Assuming now that co differs relatively little from co0, then the 
factor &>0/co can be disregarded in all formulae. A further simplifi
cation is obtained by assuming, moreover, that Sc K 1 and SlK 1, 
so that Sc and Sc no longer occur separately in the formulae 
(Sc + does, however, occur and will henceforth be denoted by 8).

For the further calculation it is therefore immaterial whether the 
circuit losses are caused by a series resistance or a parallel damping. 
It will be shown that for the losses thus generalized 1/8 = Q, where 
Q is a measure for the selectivity of the circuit.

Setting furthermore:

s
w0 w

andw02LC = 1, -2^ = Sc,w0G

P/S = x and 1 + j x = a,
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Appendix I

it may be written:
E = (<o0Lz — je) Q/a,

I = {<*)0Ce — ji) Q/a.

In these expressions only a depends on the angular frequency <o 
of the signal. The frequency response curve of the tuned circuit is 
therefore determined by a = 1 + ]x.

lol 1(fi

and

;
:

I I
i;

t

n

io~] i io ioz io3 iou 
------- -- I*M*3Q|

72573
Fig. 105. Absolute value of a as a function of the absolute value of x.

I
The absolute value of a, given by

| a i = vr+~A*
has been plotted in fig. 105, whilst the phase angle c?a, given by 

tan (pa = x or <pa = arc tan x,

:
i
i

I
has been plotted in fig. 106.

:
:

]
ii

j-i:

Fig. 106. Phase angle as a function of x.
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The relation between amplitude and phase is shown by the polar 
diagram. Fig. 107 gives, by way of example, the admittance 
diagram of a parallel tuned circuit: +/■

»y=2 = ya.

where Y denotes the admittance at resonance. fo

\
The curves for a=Y/Y are called the relative

admittance curves. When the frequency is
changed the locus of the vector representing the
complex quantity a is a straight line, which -/
may be provided with a frequency scale. This
scale is to all intents and purposes linear, as FiS- 107- Relative , . . r r admittance diagram
shown by the expression: y — Ya

72575

Wo <*>/
(<o — 0>o) (fa) + Op)

w0COpCO

The absolute value of a is at a minimum when o> = co0 = l/VLC. 
A second point of the frequency scale is found by determining one 
of the frequencies at which the real part of a is equal to its imaginary 
part. This is the case at:

dbl, M = V2 (= 3 db), 9« = ± 45°.

Denoting the difference in frequency (in c/s\) by B, then it is
clear that for these points:

X =

!dB+j

W-IMI-1 °r 20ii^- =
CUp

1.✓

i/Y
1U— SO that BQ =/0 or Q =f0/B.

For a circuit with exclusively parallel 
damping g (hence r = 0), it then follows 
from 8 =■8c = g/<*0C = l/Q that:

-y <o0 CB 
g~~

72576
Fig. 108. Relative impedance 
diagram of a single-tuned cir

cuit of which Z =Zfa.

= 2tt BC,

in accordance with eq. (6) in Section 1.1. 
Fig. 108 shows the impedance diagram of a parallel tuned circuit

of which Z — l/Y=u)0LQ=Q/<i)0C.
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(b) Now the properties of band-pass filters (I. F. transformers) consisting 

of two inductively coupled circuits tuned to the angular frequencies 
cop and ws will be investigated. It will again be assumed that the 
factors cop/w and cos/co are about unity, and moreover that Sp i 
and $s ^ i.

From the formula for single-tuned circuits it follows that:
7p = (<opCp5p — j i) Qp cLp,

i

;

.

and
Is — OisCsSsQs/ds ,

where
ap = l + j Pp Qp,

and
«s = 1 4“ j Ps Qs ■

(see fig. 109)

es

Oi

Cp >U ;

o-
72577

Fig. 109. Band-pass filter (I.F. trans
former) consisting of two inductively 

coupled circuits.

The mutually induced voltages in the circuits are given by: 

ep = j coM/s and es = joMIp, 

from which it can be derived that:

[p _

M

; :
—j Qp/gp

T 1 -j- <*hop<*sCpCsM*QpQs/apas
and

___________<0p<0sCs.MQpQs________
i ctpds + co2cop(OsCpCsM^p0s/«p«s

To simplify these expressions, M will be replaced by k VlpLs, 
whilst k VQpQs = q, which gives for cop/o) « o)s/co « 1:

Ip __ —j(3pgs
i dpCis -j- <7s

Is

■ ■

and

T = apas + q2:
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From
= /p 

ycoCp£P — /pjwLp

and

£s = = /si“Ls

it is now possible to derive the well-known formulae:

•7. _ -Ep _ wLpgpffs
' ~ T ~ ap«3 + q* ~ Zp

^ _ Es _ j<y v'fa>p£pQp<os£sQs _ jff ViP Zs
* «p«3 + #2

In analogy with the formula for Zi,

7   7"o — ----------- ; 7 ,«P«s + q-

as
aPas + q2

and

flpfls + <?2 '

whilst, moreover
Es
£p

(c) The response curves of a band-pass filter consisting of two coupled 
tuned circuits are given by the denominator of the formula for Zt, 
viz.:

N = apas -}- q2.

This expression may be written as a product of two factors, both 
containing an imaginary term j* = jp/S, whilst the real term is 
independent of the frequency. These factors may, therefore, be 
regarded as the admittances of two single-tuned circuits which are 
not coupled1). Hence:

(g + iPO (8* + inN = a a'a" =

Provided the four characteristic quantities S', p', 8" and p" can be 
determined, the response curve of the band-pass filter can therefore 
be derived from the so-called ^-diagram of a single-tuned circuit. 
For this purpose it is assumed that:

P = £ (Pp + Ps). & = \ (8p + 8S), i (Pp — Ps). I — £ (8p — 8s), andm =

w = y*2 — /2 +
B. D. H. Tellegen, Coupled Circuits, Philips Research Reports 2, p. 1, 1947
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It is possible to carry out the following calculations:

V'+Y i + «
^ w* ’

y — w
and

s = w j/— 1 + j/ i + 5?.w*

Now:
= p + = 0 — y, 8' = 8 T e and 8" = 8 ± s ,

in which the upper sign applies when Im is positive.
For the further calculation of N the product of the standardized 

admittance curves of both fictitious circuits is determined. This 
product then has to be multiplied by the factor

8'8"
8p$s

When the primary and secondary circuits are tuned to the same 
frequency, s becomes zero, so that 8' = 8" = £ (Sp + Ss). Both 
fictitious circuits then have the same value of Q, which results in 
the response curve becoming symmetrical. This curve is then identical 
to that of two circuits connected in cascade having the same value 
of Q and an equally large but opposed detuning Af— ± \Wk-—l2 
with respect to the resonant frequency. From the above formulae 
it follows that this detuning is determined by Sp, Ss and k. It is 
clear that at Sp = 0, Ss and k can be so chosen that the detunings 
and dampings of the fictitious circuits correspond to the values 
required for fiat staggering. It is on this principle that the stagger 
damping system is based by making 8'= |8S= (sin ah)/Qr and k = 1 /Q, 
which gives:

!

.

;

f_ . V1—sin2 <y.h = ± £ Br cos a/t *±2Qr

(d) The case where the primary and secondary circuits are tuned to the 
same frequency will now be investigated. Assuming that

Qs/Qv = r and x = (3 V0p0s,

ap = 1 + and as = 1 + )x Vr .
Vr

|

i
5

then:

ISThis gives:
jyVipis I J

= ; II
+ ^ + jWVr +1

I j
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(The expression Vr + may also be written: j/2 + -y + r.)

Eq. (61) can now be deduced directly by setting:

Zp = Rp and Zs — Rs •

It is moreover seen that

Zi =
l+-t + q°-

Vr 1+ \x V'and
ZsZo =

1 4- j X Vr -\------ ^ .

Vr
At resonance

i8 and it = Vipi3 = q VZiZZi = z0 = 0 •1 + ?2

The above considerations yield no practical results when, for 
example, Qp is infinitely large. In that case:

_ 3 kQpQsV<oaLpLs _ 
dp a& 4- kzQpQs

j /i/<0 VCpCs 
*2+jP/0s + (j P)2 '

so that
1

Yt - ^ = — ]oik \/CpCs ,

whilst

is Csthat i <V
where qs = kQs. Moreover:

z0 = so that Z0 = 0.

(e) The following comments will again be confined to band-pass filters 
the primary and secondary of which are tuned to the same frequency 
(tuned I. F. transformers).

The polar diagram of

qVZpZ— = j (1 + <72) ^y = it^t

140



!Appendix I

then passes through the point j(l + q2), i.e. the top of a parabola 
which can be constructed by plotting on the abscissa the real corn- 
ponent of N and on the ordinate its imaginary component (fig. 110). 
From eq. (61) it may then be 
written: :

y = 1 + q* — *2
i

• (a)x =*]/2 + r + j
>

The response curve is flattest 
when the length of the vector 
having the parabola as locus is 
as constant as possible at small 
values of #. The calculation of 
the values of the parameters q 
and r at which this will be the case will be based on the equation 
of a circle given by X2 + Y2 = R2 with centre 0 and coinciding 
with the parabola for small values of X.

Since the circle must run through the top of the parabola, R = 
1 -f- q2, so that

Fig. 110. Polar diagram of y for a 
band-pass filter.

A'2 + Y2 = (1 + ?2)a. (b)

To determine the point of intersection of this circle with the 
parabola, the values of X and Y which satisfy eq. (a) are substituted 
in eq. (b), thus giving:

(*y2 + 7 + 'r-(1 + f2 —**)* + (i + q2)\
■

or

x* — 2 (l + q*) xz + ^ 2 + r + ij *2 = 0.
I?

This equation is satisfied by two points x = 0. After having divided 
the equation by x2, so that these points are eliminated, two points 
of intersection remain, which are determined by

A'2 — 2(1 + ?2) + 2 + * + \ = 0.

In order to ensure that the parabola approximates as near as 
possible to the circle at x = 0, these two points of intersection will
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also be made to lie at x — 0. The condition to be satisfied for this 
purpose is

<7

This is the condition for transitional coupling given by eq. (64).

(/) To determine the feedback via the anode-to-grid capacitance Cag in 
amplifiers with band-pass filters, it is important to know the polar 
diagrams of Zi and Z0 (or Y; and Y0) of a band-pass filter. Now

Yi=-i(a-+C)'
or

Y- 2TS
Y< = *

From these formulae it is seen that the construction of the polar 
diagram of Y» is analogous to that of the admittance of a grid 
circuit in the case of feedback from anode to grid. In fact, it is 
necessary to add to the Yp vector a ZjR vector the extremity of 
which is situated on a circle' moving along the Yp line and having 
a diameter q2/Rp. This construction is given in fig. 111.

92/RP

Rs '

\

AXp \
\
\\\

0
1/Rp VrRp

72579

Fig. 111. Construction of the polar diagram of Yt\ When the scale of this diagram 
is multiplied by rRp, the shape of the curves depends only on kQs and the location

of the origin only on r.

The Yi diagrams obtained at various values of q and r are given 
in figs 112a and b.
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When the Zi diagram is derived from the Y; diagram a curve is 
obtained which resembles a cardioid at normal values of q.

If QP is made infinitely large, Y* and Y0 can be expressed in 
= P& and <7S = kQs, viz.:

+

y0 = ys(l + j,8 + g).
The latter locus coincides with the polar diagram of Ys, but when 

xs is varied from —c© to +« this line is traversed twice. The 
minimum values of Y0 are then situated at xs = ± qs.

?s2 ■)

Yi = 1 + j*3
and

(g) An interstage circuit provided with a trap may be considered as a 
double tuned band-pass filter.

When both circuits are tuned to the same frequency (Z* coupling) 
the response curve can be determined from the Zi diagrams for 
band-pass filters, but when the tunings are different it is preferable 
to use the following method, particularly when several circuits of 
a staggered system are provided with a trap.

First the response curve of the primary circuit without trap is 
determined. The effect of adding the trap can then be expressed by 
the attenuation factor at of the trap, that is:

ai = m ■ + ?-.
Setting

Q*ps0p = Xi, and p'Qp = s,= r
Qv

where p' = wp/“8 — "s/«

PpGp = xt — 5 and ps0s = Xt r, >

then, to a good approximation:p >

so that n rq2rx t2

+ xt — s 1 + r-x t2l + y3 xt*l\at\ = 1 + (xt — s)2

The absorption curve of the trap can be graphically determined 
from the response curves of four circuits by means of the expression

a'a" 
tfpfls

in agreement with the method outlined in Appendix Ic.

at = a
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The diagrams for \at\, at various values of r and s, have been 
plotted in figs 113a—l. In each of these diagrams the variation of 
the coupling is such that given, fixed values of the maximum 
suppression |at | are obtained. The xt scale is related to the xp scale 
by the following rule: xt = $ at the resonant frequency of the 
primary circuit; the 3 db points of this circuit are located at 
xt = s ±1.

Figs 113 m and n have been graphically derived from the response 
curves of two circuits according to the expression an = a'ja, where 
a' applies to the corrected circuit and a to the original circuit. These 
curves are used for determining the small corrections of the stagger
ing system.

Fig. 113a. \at\ as a function of xt at r = 10 and s = 0.

14510
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Fig. 1136. |a<| as a function of xt at r = 10
and 5 = V-

72583

Fig. 113c. \at\ as a function of xt at 
r = 10 and 5 = 1.
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Fig. 113d. |at| as a function of xt
at r = 10 and 5 = 2.

Fig. 113c. at as a function of xt at
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I atfdb)
Fig. 113/. |at| as a function of xt at 

r = 20 and 5 = 1/a

0

-10

-20

-30

0 12 3 4 5-3 -2 -1

72587

Fig. 113g. \at\ as a function of xt 
at r = 20 and 5=1.
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\at\(db)
Fig. 113/j. |at| as a function of xt 

at r = 20 and 5 = 2.

0

-10

-20

3-2-1 0 1 2 3 b

72569

Fig. 113*. M as a function of Xx. at 
r — 40 and s = 0.
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pt\(db)
Fig. 113/. |at| as a function of xt at 

r = 40 and s = l/t.

0

-10

-20

-30

-3 -2 -1 0 1 2 3 4 5

72591

Fig. 113A. |at| as a function of xt at 
r = 40 and s = 1,
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Fig. 113/. |at| as a function of .rt
at r — 40 and 5 = 2.

Fig. 113m. Modification a" of the res
ponse curve due to the detuning of one 

of the circuits.
n. Modification a” of the response curve 
due to a change of the quality factor of 

one of the circuits.
72566
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APPENDIX II

To prove the validity of eq. (29):

n (1 + *a + 2# cos oca) = 1 + x2*, 
A= l

the term between brackets will be transformed by writing cos2 a/, + 
sin2 a/, for 1, which gives:

xz + 2# cos a* + 1 = x2 + 2x cos a a + cos2 oca + sin2 oca = (x + cos oca) 2 + sin2 oca, 

which may factorised as follows:

(x + cos oca + j sin cca) (x + cos oca — j sin oca).

For the sake of simplicity the quantities cos a/t -{- j sin ah and 
cos a/, — j sin a a will be denoted x/t and %h* respectively. %h and Xjt* can 
be represented as complex quantities on a circle with radius r = 1, 
see fig. 114. If the flat staggered tuning system is adhered to (see 
p. 18), all points xjt and xjt* are evenly distributed over the whole circle.

Fig. 114. Diagram representing the quantities xh and xh*.

I •As shown by fig. 114,
A=s
n (* + Xh) (x + Xh*)

A-l

may also be written as:
A-2sn (* + .

1
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This product can be worked out, giving:
7i=2s
n (* + xk) = h Eh %2g~h,

28

A-0h*=n.

where E0 — 1,
Ex — + x2 -f- • • • x28, and
E2 = Xj%2 + xxx3 + ... x2s_1 x25, etc.

Summarizing, En always contains all possible products of n terms xjt.
All coefficients of the power series from Ex to are now obviously 

zero, since each product, say xp-xq-.. .xr, has a “twin” with opposite 
sign.

The last term x1 • x2 • ... x2Sl on the other hand, is equal to unity, 
since for each factor of this product there is again a “twin”, which is 
now conjugate complex, and as the product of each pair of conjugate 
complexes is unity, this is also the case with the entire term.

Concluding, only the first and last terms of the whole power series

2s
2 Ehx'-*-i'

/i*=0

remain, which gives:
A = 2s
II {x + *h) = *2S + 1.

A=1

ijj
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(«) A general method for determining the step function from the ampli
tude response curve is based on the Fourier analysis of the signal. 
According to the integral theorem of Fourier, a function y(/) may, 
under certain conditions, be described by:

+ 0°
y(0 = J Y(«) dw , (c)

— oo

where eico< stand for cos tot + j sin Y(co) is termed the spectral 
amplitude of the function y(/), and is given by:

J
-OO

Applied to the function B.(t) of eq. (33), this gives:

+ oo

(d)e-j<o* y(/) d/.

oo
i + i J 

0

1 (e)dco .
:

The spectral amplitude of this function is, therefore, l/2~j«.
For the function H(/-r), representing a unit step at t = t, the 

spectral amplitude is given by e_jWT/27rjco.
The Fourier components of the input signal applied thus having 

been determined, it is possible to derive from the amplitude response 
curve the corresponding Fourier components of the output signal, 
after which the step function can be determined from the latter 
components.

This principle will now be applied to the envelope of the H. F. 
signal. The step-like variation of the signal amplitude is analysed 
into sinusoidal modulation components:

oo

£(=£b+£s(l+I j ^d-). 
0

(<)
i

After the amplitude and phase of these components have been 
changed in the amplifier, the following equation applies:

CO

l l r A(«)
2tk J ~

o
{ * — D (to) |Eo (g)dcosin <o^r = Eh + E3

A(co) and D(o) are determined by the complex modulation 
response curve M(co). Once M(co) is known, E0/G, i.e. the step
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function, can be determined, and, conversely, M(co) can be derived 
from the step function.

The value of M(co) corresponding to the frequency co can be found 
by considering that the gain and the modulation response curve 
M(co) convert the Fourier component with angular frequency co of 
the input signal into a component of E0 of the same frequency. 
Hence:

Ei (co) • M(co) • G = -Eo(co) •

(6) The step function without overshoot depicted in fig. 115 will be 
taken as a starting point.

(h)

Econst +ES

Econst

I
I
I

0 125T
72594

Fig. 115. Idealized step function without overshoot.

The step function can be analysed in the following way:
t

E0{t) = Fconst + O.S Es-{ 1- H(/-1.25t)} + 0.8ES H(/-t).
T

The corresponding amplitude response curve will now be derived 
without considering whether this can indeed be realized physically. 
The gain is assumed to be unity and the delay D(co) is taken to be 
zero and A(co) is then calculated. Disregarding the frequency zero, 
the spectral amplitude of Ei is given by:

Fi(co) = Es
27wjcO

Moreover, from eq. (d):
1.25T4-co

e -jWT/o.80.8-Es — d/ + 0.8.EsEoW = ~ J E„(i) e-i“< dl = 2ij J ,
0

2”jco
eo

Hence:
l__ e—jCOT/0.80.8 EsF0(w) =

27t(jtt)2 T

From eq. (h):
1 _e-jti)T/0-8 

1.25 jcoT
sin 1.25 7: /t 

1.25 7zfxand A(co) = |M(co)| =M(co) =

155



Appendix III

For to = 0, A(co) = 1 (see fig. 116). The 3 db point is situated 
at 1.25 tc/t = 1.39. Assuming that the H. F. amplitude response 
curve is symmetrical, the distance between the 3 db points is 
1.25 7z jBt = 2.78, from which it follows that:

2.7823t = = 0.7.1.25 tc

A((0)

0.71

1.39
--------125 xir

72595

Fig. 116. Amplitude response curve corresponding to the step 
function depicted in fig. 115.

(c) It will now be shown what form the step function will assume 
when the (symmetrical) amplitude response curve is as shown in 
fig. 117, all modulation components up to the frequency Bj2 being 
passed unattenuated and the phase angle being proportional to the 
frequency.

2JtB
A(co)A(o))

0(0)1
/

/ -D(to)/

Aarc tan D
I

/ JtB —► w
72597

Fig. 118. Modulation response 
curve corresponding to the 
amplitude response curve 

depicted in fig. 117.

0(i)
72596

Fig. 117. Symmetrical amplitude response 
curve with a constant delay D.

Fig. 118 shows the corresponding modulation response curve. 
E0 can now be calculated from E{ by means of eq. (g). It then 

follows from fig. 118 that:
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— B
sin o>(l — D) dw}-*,+*(*+!E0 = Eb + Es | 2 +

By means of a table for Si(#)x) it is now possible to plot the enve
lope of the output signal (fig. 119).

j )■

Si 7T Bt'
Oi

o

D0
72596

Fig. 119. Envelope of the output signal corresponding 
to the modulation response curve of fig. 118.

One point situated on the practically straight part of the flank is:

SinBt* = ± £ at | -Bt' \ = 1.925.

Linear interpolation then gives:

0.8 X 2 X 1.925 = 0.97.Bt = —

The maximum of Si(x) is 1.85. Hence:

S =-— — 0.5 = 9%.
7T

!(d) The modulation response curve of fig. 120a will now be considered. 
This curve descends linearly between / = 0 and flt whilst its phase 
shift is zero.

This response curve may be considered as a superposition of the 
flat response curve discussed in the previous section (fig. 1206) 
upon a response curve which ascends linearly (fig. 120c), i.e.:

A = Ai — A 2.
See Jahnke-Emde, Tables of Higher Functions, 4th edition 1948, B. G. 

Teubner, Leipzig.
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A(<o)

t

0 f
2

72599

A(co)
\

0 f
b

72600

Atto)

0 f
f£

72601

Fig. 120. [a] Linearly descending response curve which may be considered 
as the superposition of a flat reponse curve (6) upon a linearly ascending

response curve (e).
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As shown in Appendix IIIc, the contribution of A1 towards E0 is:

£0l = £b + £s{i + isi(2«

whilst the contribution of A2 towards E0 is:
27T/|

£-=l J sin to t' , Es 1 — cos 2 - fit'dw = —2txfx —
o

yielding:

i + i{si(2,/1/') 1 — cos 2tz fxf}•E0 = Eoi + E0z = Eb + Es
2*/i *'

The term between braces will be denoted by S(/T)0. The term 
S(*)0 can be developed into the following series:

(2tc*)3 , (2 TZX)*Si (2nx) = 2tt* — +3 !3 5!5

(2tc*)3 (2tt*)6
4! + 6!

1 — cos 2nx 2tzx
2!2nx

(2tt*)s(2kx)2kx 3

f (*) +4! 3 6!52! 1 i

Hence:
(2kx)z [2tzx)* 

413 + 6!51 + /W-i + i/
2 ^ it 2 \

From the known property that for large values of x, the sine 
7c/2 — i cos x, it follows that in this range:

2nx }•s {x)o = 2! 1

integral Si(*)

1S {x)0 « 1 2tz2x

i
(e) The modulation response curves dealt with in the preceding examples 

are very rough approximations of practical response curves. A 
further approximation is obtained by a modulation response curve 
which is partly flat and descends linearly beyond a given frequency
(fig. 121).

f159



n

Appendix III

s\\\\\A(co) \
\

\\\

0 /f" V
f//

72602/////////
Fig. 121. Modulation response curve consisting of a flat and a linearly 

descending part (fully-drawn lines).

This response may be considered as being composed of one 
response with a linearly descending part and one with a linearly 
ascending part, as dealt with in the preceding section (broken 
lines in fig. 121).

It is clear that now:

V rS (/V) = s (/T)o s (/'0 0 ,

by which S (ft') is determined for any value of fi/fi-
In this way it is possible for any modulation response curve 

approximated by straight line segments (cf. fig. 122) to be analysed

f—r
%

Ai t
i

f
72603

Fig. 122. Modulation response curve approximated by straight line segments 
and subdivided into trapezoidal parts.

i
:
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into trapezoidal parts similar to the full-line modulation 
curve in fig. 121.

It is on this principle that the method of 
Section 3.4 is based.

response

analysis outlined in

(/) The modulation response curve will again be taken to be flat as 
far as/i and then suddenly dropping to zero, as was the case in 
Appendix IIIc, but it will now be assumed that all sinusoidal 
modulation compents are shifted 90° in phase (imaginary response). 

The output step function is then:

27T/i

1

COS CO t'E-z\ Ci (2*/,<').
7w

dco =co

By giving the response curve a linearly descending and a linearly 
ascending part according to fig. 120a, an output step function is 
obtained which can be calculated to be:

-ti sin (2tc/T) j
Ci (2tc/T)Es C( /T)* 2 iz/'t

The form C(x)0 can again be transformed into a series:

, 0 (2t:*)2 , (2tt*P (2-x)°Ci (2tt*) = const. + logc 2tzx----- ------- h

(2 izx)* , {2ux)* (2tt*)«

6!6

sin 27xx +l 7!5!3!x

(2-*)*(2tzx)2 (2t:x)*
312 + 5!4f (x) = const. + logo x 7!6

Hence:
(27t*)2 , (2n*)* (2nJf)«const. + logc x — +C(*)o 7 !65!43 !2

Since, according to the cosine integral tables, Ci(*) « sin x/x at 
large values of *, in this range C(a;)0 « 0. At very small values of 
x, C(x)0 and loge approach —<».

When C(ft') diagrams are plotted with a logarithmic time scale 
they approximate to parallel straight lines at small values of x. 
In fact, for a trapezoidal component (see fig. 122) of the imaginary 
response curve:
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Appendix III

/' rC (/'/') = C (/r) o c (ro<> =r—r r—r
r= C (/r)o + {c(/y)o—c(rno}.r—r

For small values of the second term must assume a finite value, 
because for small values of ft' the lines C(/Y)0 and C(/Y)0 run 
parallel. The proof that the output step function has a finite value 
when the (imaginary) response is zero for /= 0 and /= «*, is based 
on this property.

For this purpose a step function of the form:

hiC^T) + h2C(/2Y) +h3C(/3T) .......

will be investigated. This step function may be written as:

fix C (AT) +

+ h2 c urn + h2 {c urn - c urn} + 

+ h, c urn + {c urn—c urn} •
The sum of the left-hand terms of each line is zero because 
+ h2 -f h3 = 0. Since the fines C(/jY), C(f2't')t C(/3T), etc. 

run parallel for small values of f't', the forms between the large 
brackets must assume a finite value for small values of t'. The 
resultant thus also has a finite value.
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Appendix IV

R^fp
O

Rp i

—'UUli

© ft

y'= / 2 3 4
72604

Fig. 123. Diagram in which the circuit of fig. 31 is split up into four 
elementary four-terminal networks. Rx = l/gx and Rt = 1/gt.

From the last column of the above table it can be seen that

N = 1 + a1JRsg1 + ^ (1 + RsgiV- — ^ (1 + RsSiy- + ^(1+ nsSl + jRsgo*.R
R

By putting gx = g — gt, this gives:

1 + 2 2?Cq (g — gt) + 2 Rpgt + + Rs {g — gt) F,N =

where

RvS2 = 
g — gtF = <*1 + Rcq {g — gt) — Rp (g — gt) +

Rpgt2= «i + -fteq (g — gt) +2 i^pgt + g—gt'

in which

a — gc + argr 
1 gc + gr

and g = gt + gT + gc •

In order to expres these formulae as far as possible in the product Reqgi 
the following substitutions are made:

gt = (l-Kz)gi, 

Rp = K3Rcq ,

gc = K1gi, 

gr = Kogi,

which gives:

RsN = 1 + 2i?cqgi (Kx + Kz) + 2RCqgiK3 (l — K2) + ^ + Rcqgi (Kx + KJF-j^.
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and

F = 1<K^+TkJ‘ + R«& V{' + + 2R^i I<, (1 - IQ + fleqfi • '

Minimum noise is experienced when:

RsSi ~ \K2 + «rif, + (if, + if,)2 Rcqgi + (i — if,) (2if, + if, + 1) if,ffcq?i'
^cq gi

giving a minimum noise figure:

Ar0pt = 1 + 2Rcqgi(Kl + Ko) 4- S^cqg'iATg (1 — Ko) 4-

4-2 j/^cq^i(A14-A2)| 2Rcqgi K,(l-K2) (2^+^+1)
■

Kx+axKt 4" Rcqgi (K1+K2) 4- Kx+K2Ki+Kt

At correct matching Rgt (Kx -f- 1) = 1, giving a practical noise factor:

■Vpract =14~ Rcqgi [Ki 4* K*) ^2 4“ *b

+ RcqgiK, (1 —if,) (2 + ^ + K* + 1

* +K\ 4- K
Kx 4-1

) Kx 4- ar.ga
*i+l 'K i4- 1

It should be noted that in these equations Kx is much smaller than 
unity for frequencies above/0, while, according to eq. (99), 0 < K2 < 1 
and 1 /K3 « 1 + S/8/g2-

The various special cases dealt with in Section 5.4 and many others 
can be calculated from the above expressions by substituting the required 
values of Kv I<2 and Kz and putting Rcqgi = (///„)2.

;

i
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APPENDIX V

Eqs (115), (116) and (117) may be derived as follows. The output 
voltage V0 is first expressed in V{ and Vk to eliminate V0 from Vag 
and Vt:

Vo = —Zj (SoVff + Y3V„9 + YsVa) = Z.SoVt + ZxY%Vk +
+ ZlY3Vi — ZlSoVi — ZlY3Vo — Z1Y6Vo,

or
5a+ ys

*1 + ^ + Y*
(j)Vo= Vk- Vi-

yx + y3 + y6

Vg can then be expressed in V{:

= Fi|y4 + St Yt(Sa-Y3)
-' /, = Y4V9 + Y6Va + SkVg Y* + y3 + Y,

Y5(Sa + y5) \
yx + y3 + YJ ’

Fi|y4 + y6 + Sk

and since

Ft=7,z, = FiZG jy4+St—p(5„— y,)J—FtZt|y4+y,+Sf 

this gives:

y1+y3+yj’(k)ys(5«+y5)

yc + y7—Py3 __
y.+ y4 + Y, + Sk—psa’

Putting Ia — SaVs = S'Vit the factor Fs= S'/Sa becomes:

y3 + y7 — Py3
Vi y6 + y4 + y7 + Sk—pSa'

(i)Vg = Vi-

v9 (115)i

1 by which the solution of S' is given. 
Eq. (k) can be simplified to:

YA + Sk — p(Sa— y3)_____
y« + y4 + y5—?{Sa + Ys) + Sk

By substituting eq. (m) in eq. (j), V0 can be expressed in Vit viz.:

T, r 5a + y5 y4 + s*—P(s«—y3)
- \yx + y3 + y6 y6 + y4 + Y6-9(sa + y5) + s*

(m)Vk = Vi -

Yx + y3 + ’
Sa— y

Vo
■■

Hence
(Sa + Y5){Ya + Sk-p(Sa-Y3)}
y6+y4+y 6—?(sa+y,)+s*.'

F< • y1 + y5 + 5fl—F«* = F0— Fi = y^Y. + Y,
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Appendix V

The form between square brackets may be written:

{Ye+ Y4+ Y5—p(S« + Y5) + St} — {Y4+St—p(5fl—Y,)} 
Yft + Y4 + Ys—p(5a + Y5) + St

Y6+Ys(l-p)-pY3 
Y0 + Y< + Y5(l—p) —PSa + St

« Yi + (Sa+Y,)-

Y.-KSa+YJ

= Yl + (5a+Y#)-

ye+Vt—py»
Yfl+ Y4 + Y7 + Si—pSa

From eq. (115) it can then be written:

Y. + FsiSa+Y,) 
Yx+Y3+Ye

S'+Y^FsYs 
Y1+Y3+Y8 *— Vi (n)Vag = — Vi

Substitution of eq. (n) in the expression:

Vi
Yi' = -=-‘

Ii '

where I{ = 72 + h — ^3 and = YzKg, gives:

gl+ Y1+F5Y5
yx+y,+y5 *

while substitution of eq. (n) in the expression:

Vag = Vo— Vi

(110)Yi' = Y2 + YAFs+Y3

gives:

Vo S'—Yz—(l—Fs)Y6
yi+y»+y«

(o)Vi

Substitution of eq. (o) in the expression:

ViY0' = —S'-V̂o

finally gives:
Yi + y3 + Y8 (117)Yo' =
y3
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Summary of the characteristic figuresTABLE 1

EF 80UF 42 I EF 91EF 42

1.91.92.1 2.1Wf
170250

250
250 170Va

170250 170TV-
101010 10la

2.52.52.4 2.8•V
—2—2—2 —2TV
7.47.6 !9 8S

< 0.008*) | <0.007< 0.006< 0.006Cag i
C» (cold capacitance) 7.57.08.69.4

3.32.04.3 4.3Co
400550850 1000gi (at 100 Mc/s) 

Ri (= 10>/gi) 2.51.81.2 1.0
1.01.21.10.84Rcq

! Is no100 130100(G2?) =
2jr(Ci -f- Co)

I
S 7065 8075F* (GB) = II2yr(Ci -j- Co ~h 6) 

(for Cxi = Cxo — 3 pF)
■

5 120100 160110(GB)" =
47t\/CiCo

5 7070 9075FX"(GB)" =
4nV(Ci+3) (C+3)

(for Cxi = Cxo = 3 pF)

32.5 ! 121210 11(GB)' = vS;
I32.5 1010109FX'(GBY =

VCi+ 3 
(for Cxi — Cxo — 3 pF)

430320 280 370fi{SRi=l)

U (300 gi = 10VA/V)

5
^ = > 

fn (Rcqgi = 103)

290240190 180

17152124

160120100120

*) with screening.168



various valves

EFP 60 6AK5 6AU6EF 50 6CB6

Ii : ' w2.3 1.91.9 1.1 1.9 ;
V250 250 i 180 200 250i :V150/250 250 150 150120
mA9.5 10.820 10 7.7
mA4.31.51 2.4 2.83
V—2.0 —2.2 —1.0 

. 5.2
—2.0 —2.0

I mA/V6.225 6.5 5.1

pF0.00350.004 0.02 *) < 0.020< 0.007 ■

pF6.3 5.58.3 4.09.2
pF1.9 55.2 2.86
^A/V580125 460650 1000
kQ1.78.0 2.21.5 1.0
kfl1.6 2.71.91.45.7

I
Mc/s80120120260 75i

Mc/s507065190 55|
■ I

!I
Mc/s80140120270 80

I j
Mc/s507065190 55

(Mc/s)1/.14131610 11

(Mc/s)1/*1111129 10

Mc/s

Mc/s

300350640620 250

240270510220 180)

104 Mc/s2474100 15 :

Mc/s8012020050 85
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TABLE 2 Bandwidth factor FB for several identica

Type of staggered 
group Diagram of staggered group

one single
circuit

i

flat staggered 
pair

i!
flat staggered 

triplet I

i
i
i flat- staggered

quadruple
;

!
.
!

flat staggered
quintuple

flat staggered 
sextuple

flat staggered 
septuple
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groups in cascade at staggered tuning

Number of identical groups
sin a

1 2 63 4 5 7 8 9 I
i :

i • •1.00 0.39 0.35 0.32 0.30 1 0.281.00 0.64 0.51 0.44
■ 'l .

I

'
0.71 | 0.650.71 0.591.00 0.80 0.62

i
II |

;
1.00 0.86 0.80 0.730.60 0.76 |

! I

1'

t0.90 0.84 1 0.810.38 1.00 I •■

■

1.00 0.92 0.870.31 I

l

I

. i1.00 0.93 0.900.26

0.195 0.951.00
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TABLE 3
Unit function for several identical groups connected in cascade (double 
side-band systems).

t/s ! <$ in % I Br•Type of coupling network r B tot * t

Synchronous circuits 0.1/Fb0 0.7n

1 4.3 0.69 0.69Flat staggered pairs 2 6.25 0.90 0.72

3 1.05 0.757.7Synchronous band-pass filters

0.768.4 1.154
Fed-back pairs 0.796 10.0 1.34

I
8.15 | 0.73 0.73
11.2 0.93 0.80
14.2 1.14 0.78

1
Flat staggered triplets 2

4

>Staggered quadruple 
Staggered band-pass filter pair 0.78 i 0.7810.91

1
Staggered quintuple 0.82 ; 0.8212.81

Staggered sextuple
Staggered band-pass filter triplet i ! 14.3 0.850.851

Staggered septuple 0.89 1 0.891 | 15.4

Br = bandwidth of the reference circuit1 = number of indentical stages 
5 = number of mutually detuned circuits £tot= total bandwidth 
<5 = overshoot r = rise time

TABLE U
Bandwidth factor FB" for several identical groups in cascade at staggered 
damping, the bandpass filters being damped at one side only.

6 7Number of identical groups 51 2 3 4

0.59 0.56Identical band-pass filters 
Staggered band-filter pairs 
Staggered band-pass filter triplets

0.621 0.80 0.71 0.65
0.750.770.90 0.81 0.781 0.84

0.851 0.93 0.90 0.87

In order to find Fb", the above numbers must be multiplied by a factor Fni" 
according to fig. 48.
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LIST OF SYMBOLS
I C(/'*')A amplitude response of an I.F. 

amplifier (fig. 19); amplitude 
of a signal 

carrier amplitude 
amplitude of envelope modula
tion

relative admittance of a parallel 
tuned circuit

bandwidth (between 3 db points) 
bandwidth of the aerial circuit 

(P- 10)
bandwidth of circuit number h

step function corresponding to 
a given modulation response 
curve (p. 161)

delay of a signal in an amplifier 
diameter of dipole (fig. 6)
initial magnitude of a carrier 
modulated by a unit step 

noise voltage
square of the r.m.s. value of En
change in magnitude of a carrier 
modulated by a unit step

signal voltage
base of natural logarithm 
(2.71828...)

induced voltage; charge of the 
electron

factor expressing the anode cur
rent fluctuations due to emis
sion and partition noise (p. 68)

factor expressing the loss of 
bandwidth due to selective 
stages being connected in cas
cade (p. 15)

factor expressing the loss of 
bandwidth in the case of band
pass filter coupling (p. 55). 

factor of Fb" depending on r 
(P- 55)

space charge attenuation factor 
of emission noise (p. 67) 

partition noise factor in analogy 
with Fk (p. 68)

factor expressing the loss of 
bandwidth due to a valve being 
controlled (p. 124) 

factor expressing the loss of gain 
due to .Serf being smaller than 
5 (p. 8)

factor expressing the loss of 
bandwidth due to stray capac
itance (p. 8)

factor expressing the loss of 
bandwidth of the aerial circuit 
due to stray capacitance (p. 11)

A0 D
A m d

Eba

EnB
En*B'
Es

Bh
Bn noise bandwidth (p. 61) 

bandwidth of the reference cir
cuit (p. 18)

maximum bandwidth obtain
able with a given valve at a 
gain G0 (fig. 4) 

imaginary part of Y0

Es
Br e

B0 e

EaK ‘

Cc capacitance of a tuned circuit
(P- 2)

FbC0 capacitance of control grid to 
earth

i

Ef/ik capacitance of control grid to 
cathode

capacitance of control grid to 
screen grid

total capacitance of tuned cir
cuit number li

input capacitance of a valve
input capacitance of a valve 
with feedback

Fb"EgloZ

Ch
En

C,
Fk

C/

EPC. output capacitance of a valve
(P- 2) FrCp capacitance of a band-pass filter 
primary (fig. 47) 

capacitance of the reference cir
cuit

:

Cr Ft

capacitance of a band-pass filter 
secondary (fig. 47)

stray capacitance (p. 7)

C8 ■

Fx
Cx

X
FxjSSLi.dtCi(,r) integral cosine of x:

o
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List of Symbols

Fx" factor expressing the loss of 
bandwidth due to stray capac
itance in the case of band-pass 
filter coupling (p. 54) 

frequency
characteristic frequencies in the 
linear approximations of a 
response curve (fig. 20) 

gain reference frequency (fig. 3) 
gain reference frequency for the 
aerial circuit (p. 11) 

frequency at which Lk is in 
resonance with Cglk 

frequency at which Lk is in 
resonance with the cathode-to- 
earth capacitance 

frequency at which Lk is in 
resonance with the cathode 
capacitor

frequency of the modulation 
noise reference frequency of a 
valve (p. 73)

stability reference frequency of 
a valve (p. 97)

self-neutralising frequency of a 
valve (fig. 89)

maximum frequency at which a 
given gain G0 can be obtained 
with a given valve (fig. 3); fre
quency of carrier 

maximum frequency for the 
aerial circuit at which a given 
gain G0' can be obtained with 
a given valve (fig. 5)

(= VJVt) voltage gain (p. 1) 
gain of the aerial circuit (p. 10) 
voltage gain of stage number h 
maximum obtainable or per
missible voltage gain 

maximum gain obtainable with 
a given valve at a bandwidth 
B0 (fig. 3)

available power gain (p. 60) 
power gain at the frequency / 
power gain at the signal fre
quency

total voltage gain of an amplifier

(= G'y/W) gain bandwidth fig
ure of an aerial circuit follow
ed by a given valve (p. 11) 

gain bandwidth figure of a valve 
(p. 54)

(= l/R) conductance or damping 
anode conductance of a valve, 
excluding l/ra (p. 2) 

total conductance of a tuned 
circuit, excluding the valve 
damping

conductance of control grid 
to earth, excluding feedback 
damping and transit time 
damping

total damping of tuned circuit 
number h

input conductance of a valve 
input conductance of a valve 
with feedback

(= ga + l/ra) output conduct
ance of a valve (p. 2) 

conductance of the reference 
circuit (p. 18)

feedback damping in a valve 
real part of Y0
transit time input damping of 
a valve
electric field strength 
unit step at the instant t 
step function
magnitude of a component in 
linear approximations of a 
response curve (p. 32) 

current or current variation 
anode current of a valve 
anode current fluctuation due 
to emission noise (p. 67) 

control grid current 
screen grid current 
cathode current
current fluctuation due to par
tition noise (p. 68) 
square root of minus one 
ratio of circuit damping to valve 
input damping

fraction of total input damping 
due to transit time effects

(GBy

[GBY
fr.r s

Sa

fl!
Sc

fl

folk' So 1:
fk

Sh
fk

Si
Si'f m

fn
So

fs
Sr

fs
St

fo s«
s~

H
fo m

Hs(0
h

G
G' I
Gh
Gmax h
Go Io

*02

Ik
G p I*
(Gp)/
(Gp), j

Ki
Gtot
(GB) gain bandwidth figure of a valve K 2

(P- 3)
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List of Symbols

*3 P.i signal power at the input of an 
amplifier
signal power at the output of 
an amplifier

feedback parameter (pp. 87, 90) 
value of p2 for stage number h 
value of p2 for a stage the anode 
and grid circuits of which are 
identical to the reference cir
cuit (p. 91)

quality factor of a tuned circuit 
(p. 134); in a bandpass filter
Q = ^QpQs

quality factor of tuned circuit 
number li

Q of a band-pass filter primary 
Q of a band-pass filter secondary 
(= kQ) relative coupling coeffi
cient of a band-pass filter 

resistance

fraction of total noise due to 
partition noise (p. 69)

( = M/VLpLa) coupling coeffi
cient of two coils; Boltz
mann’s constant (= 1.37 X
10-23 J/OK)

inductance
inductance of an interstage cir
cuit (p. 2)

inductance of the cathode lead
inductance of a band-pass filter 
primary, including M

inductance of a band-pass filter 
secondary, including M 

length of dipole (fig. 6)
mutual inductance of a band

pass filter (fig. 47); modu
lation response of an I.F. 
amplifier (fig. 19) 

real component of the modula
tion response (p. 34)

Mimag imaginary component of the
modulation response (p. 35)

Mq reai real component of the modula
tion response for the quadrature 
component of the carrier (p. 40)

■Mq imag imaginary component of the 
modulation response for the 
quadrature component of the 
carrier (p. 40)

noise factor (p. 59) 
actual noise factor with a signal 
source of which Ts 5^ 288 °K 

noise factor at correct matching 
noise factor with a signal source 
of which Ta = 288 °K 

number of stages of an amplifier 
available power of a signal 
source 

noise power
noise power at the input of an 
amplifier
noise power.at the output of an 
amplifier
noise power originating from a 
"noise resistance” (p. 62) 
signal power

P,ok

p°-
PhT

L Pr2
Lc

Lk
QLv

Ls
Qh

l
QvM
Q*
<1

R-^real
anode load resistance of a valve, 
excluding Rc (p. 2) 

feedback resistance between 
anode and grid

radiation resistance of an aerial

*«

Poo

R&n\.
(P- 9)

parallel resistance of a tuned 
circuit (p. 2)

resistance equivalent to loading 
by a detector 

grid leak resistance 
cathode resistance

Pc

Pj

PoN
PkNa

load resistance of a diode detec
tor (p. 13)

noise resistance (p. 63) 
total parallel resistance of a 
band-pass filter primary, in
cluding valve damping (fig. 47) 

total secondary resistance of a 
band-pass filter secondary, in
cluding valve damping (fig. 47) 

internal resistance of a signal 
source

input resistance of a valve due 
to feedback damping 

(= l/gT) input resistance of a 
valve due to transit time 
damping

P<

Npract
Arst Pn

Pp

n
P iPs

Pn
Pni Ps

p x no Pt

Pnr

Ps
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List of Symbols

( = QsfQp) ratio of the secondary 
to the primary quality factor 
of a band-pass filter (p. 53)

(= |J./S) internal resistance of a 
valve (p. 2)

mutual conductance of a valve 
(static value)
(JlJJVg) anode transconduct
ance

effective transconductance of a 
stage having feedback (p. 85); 
transconductance for the effec
tive control voltage (p. 67) 

mutual conductance of a valve 
(dynamic value)

{')Ik/ )Va) cathode transconduct
ance

V0 output voltage 
e.m.f. in the aerial (p. 9) 
ratio of transformation of aerial 
circuit (fig. 6)

( = pQ = Aco/7tB) relative detun
ing expressed in half the band
width

value of x for circuit number h 
admittance
value of y at the resonant fre
quency

admittance of circuit number h 
apparent value of Yh due to 
feedback effects 

input admittance 
input admittance of a stage 
with feedback (p. 85) 

output admittance 
output admittance of a stage 

with feedback (p. 85) 
transfer admittance 

Yh, h +1 transfer admittance of the inter
stage circuit between stages h 
and h + 1

admittance between anode and 
earth (fig. 72)

admittance between grid and 
earth (fig. 72)

admittance between anode and 
grid (fig. 72)

admittance between grid and 
cathode (fig. 72)

admittance between anode and 
cathode (fig. 72)

admittance between cathode 
and earth (fig. 72) 

auxiliary quantity (p. 85) 
impedance
value of Z at the resonant fre
quency

characteristic impedance of an 
aerial (p. 9)

grid circuit impedance of stage 
number ti 

cathode impedance 
input impedance 
output impedance

r
Vraa
w

ra
xS

Sa
YS'

V*
Yk'Sett

YtSk
Y/

integral sine of x: j . d t YoSi(*)
y '
■* o

s(/r) step function corresponding to 
a given modulation response 
curve (p. 33)

maximum mutual conductance 
of a valve

number of staggered circuits in 
a flat staggered group (p. 17); 

( = (S'0p) relative detuning of a 
trap with respect to the prim
ary circuit expressed in half 
the bandwidth of the primary 
(p. 144)

absolute temperature; standard 
value 288 °K (p. 60) 

noise temperature of signal 
source (p. 60)

time; number of tuned circuits 
in an amplifier

(= t + D) time corrected for 
delay in an amplifier 

anode voltage
voltage between anode and 
control grid

output voltage of an aerial (p. 9) 
control grid voltage 
cathode voltage 
input voltage

Yt

S max

S

^3

Y4

T
Y&

TB
Ye

t
Y,
ZV z

V a
•ZantVv ag

Zh
Fant

vg Zk
Vk Zi
Vi Z0
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List of Symbols

with respect to the reference 
circuit (fig. 8)

detuning of a signal with respect 
to the resonant frequency of a 
circuit (radn./sec) 

overshoot of a step function 
(fig. 13); loss angle (p. 134) 

detector efficiency 
delay angle (p. 31) 
wavelength
ratio of circumference to dia
meter of circle (3.14159...) 

auxiliary quantity (p. 85) 
rise time of a step function 
electron transit time from cath
ode to grid

angular frequency (radn./sec) 
resonant frequency of a tuned 
circuit (radn./sec)

impedance of the reference cir
cuit of a staggering system 

transfer impedance 
Z\, Zr,... inverse values of Yv Y„ . . . 

(fig. 72)
characteristic angle in stagger
ing system (p. 18); ratio of 
noise temperature to standard 
temperature of 288 °K (p. 61)

value of a for circuit number h
noise temperature attributed to 
Rx (p. 70)

(= co/co0 — co0/<0 ^ 2Aco/co) rela
tive detuning

value of (3 for circuit number h
increase of input capacitance due 
to space charge

detuning of circuit number h

Z t Aco

a

0 D
0
Xa h
7C<*T

P
T

~kg

■AC,- :CO

COq

A/, .
;

i 1
1

;i
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PHILIPS' TECHNICAL LIBRARY comprises 4 series of books:
a. Electronic Valves
b. Light and Lighting
c. Miscellaneous
d. Popular series

The series a, b and c published in 6" x 9" are cloth bound, guilt. The dimensions of 
the popular series are 31" X bound in coloured "integral” binding.
These books are mostly published in 4 languages: English, French, German and 
Dutch.

a. Series on ELECTRONIC VALVES:
Book I 
Book II 
Book III
Book IIIA "Data and Circuits of Receiver and Amplifier Valves”, 2nd Suppl. 

by N. Markus and J. Otte
Book IIIB "Data and Circuits of Receiver and Amplifier Valves”, 3rd Suppl. 

by N. Markus
"Data and Circuits of Television Valves” by J. Jager 
"Application of the Electronic Valve in Radio Receivers and 
Amplifiers”, Volume I, by B. G. Dammers, J. Haantjes, J. Otte 
and H. van Suchtelen 
Idem, Volume 2 
Idem, Volume 3
"Transmitting Valves” by P. J. Heyboer and P. Zijlstra 

Book VIIIA "Television Receiver Design” 1, by A. G. W. Uitjens 
Book VIIIB "Television Receiver Design” 2, by P. A. Neeteson 

Books IIIB, IIIC and VI are in preparation.

b. Series "LIGHT AND LIGHTING”
1. "Physical Aspects of Colour” bij P. J. Bouma
2. "Gas Discharge Lamps” by J. Funke and P. J. Oranje
3. "Fluorescent Lighting” by Prof. C. Zwikker c.s.
4. "Artificial Light and Architecture” by L. C. Kalff
5. "Artificial Light and Photography” by G. D. Rieck and L. H. Verbeek
6. "Manual for the Illuminating Engineer on Large-Size Perfect Diffusors” 

by H. Zijl
7. "Calculation and Measuring of Light” by H. A. E. Keitz

Books 4 and 7 exist in German only. An English edition of book 7 is 
in preparation

c. Series "MISCELLANEOUS”
a. "Television” by Fr. Kerkhof and W. Werner
b. "Low Frequency Amplification” by N. A. J. Voorhoeve
c. "Metallurgy and Construction” by E. M. H. Lips

"Fundamentals of Radio-Valve Technique” by J. Deketh 
"Data and Circuits of Receiver and Amplifier Valves”
"Data and Circuits of Reiceiver and Amplifier Valves”, 1st Suppl.

Book IIIC 
Book IV

Book V 
Book VI 
Book VII



;

d. "Strain Gauges” by Prof. J. J. Koch
e. "Introduction to the study of Mechanical Vibrations” by G. W. v. Santen
f. "Data for X-Ray Analysis” I by W. Parrish and B. W. Invin
g. "Data for X-Ray Analysis” II by W. Parrish, M. G. Ekstein and B. W. Irwin
h. "X-Rays in Dental Practice” by G. H. Hepple 

Industrial Electronics” by R. Kretzmann

Books b, c, e, f, g and i are in preparation.

i.

POPULAR SERIES”
The books of Philips’ Technical Library are on a rather high level. Again and again 
we received requests for technical books on a somewhat lower level. It was decided 
to comply with these requests and to bring such books in a "popular” series. 
Popular does not mean here superficial, but intelligible to a larger group of readers.

1. "Remote Control by Radio” by A. H. Bruinsma
2. "Electronic Valves for L.F. Amplification” by E. Rodenhuis
3. "The Odes and Trons Family” by J. Haantjes
4. "Application of small Transmitting Valves for High Frequency and Trans

mission” by H. H. Mulder, D. Zaayer and P. J. Zijlstra
5. "Photo Valves” by E. Rodenhuis.

Books 2, 3, 4 and o are in preparation.
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