

REFERENCE DATA

for RADIO ENGINEERS
third edition

Federal Telephone and Radio Corporation an associate of International Telephone and Telegraph Corporation 67 Broad Street - New York 4, N. Y.

Copyright 1943, 1946, and 1949 by Federal Telephone and Radio Corporation

Third Edilion

All rights reserved. This book, or any part thereof, may not be reproduced in any form without permission of the publishers.
Printed In the U.S.A. by
Knickerbecker Printing Corp., N. Y.

Foreword

Reference Data for Radio Engineers in this third edition has grown to twice the size of the preceding edition and is three times as large as the first edition. Wartime restrictions in 1943 on technical dala, printing materials, and printing facilities limited sharply the contents of the initial edition. Nor was the second edition, published in 1946, free of these restraints. This third edition is, therefore, the first of these volumes to be prepared in large measure under the freedoms of peace.

Designed to fill a gap in our field of technical books between textbooks and handbooks, Reference Data for Radio Engineers is, as its title indicates, a comprehensive compilation of basic electrical, physical, and mathematical data frequently needed in the solution of engineering problems.

Its usefulness has not been restricted to the practicing radio and electronic engineers for whom it was originally prepared, but it has reached into the realm of the engineer-in-training and has been accepted for student use in many of the leading colleges in the United States. This broadened application has been recognized in the contents of the third edition.

Grateful acknowledgement is made to Professor A. G. Hill and I. D. Smullin of Massachusetts Instifute of Technology, Professor J. R. Ragazzini and L. A. Zadeh of Columbia University, and Professor H. R. Mimno of Harvard University for their many contributions and useful suggestions.

Federal Telephone and Radio Corporation, in the compilation of this reference book, wishes to acknowledge the valuable assistance and advice of the following members of associate companies.

International Telephone and Telegraph Corporation, New York, N. Y.

E. M. Deloraine Technical Director
H. P. Westman Editor, Electrical Communication
L. C. Edie

American Cable \& Radio Corporation, New York, N. Y. Haraden Prott Vice President, Chief Engineer

Federal Telecommunication Laboratories, Inc., New York, N. Y.
H. H. Buttner President
R. B. Colton Execulive Vice President
A. Abbot
M. Dishal
R. T. Adams
M. J. DiToro
F. J. Altman
L. Goldstein
C. R. Brown
R. E. Houston
M. S. Buyer
J. J. Caldwell, Jr.
H. P. Iskenderion
R. F. Lewis
B. Porzen
T. J. Marchesse
S. Moskowitz
W. P. Short
S. Maskowitz
W. Sichak
C. R. Muller
F. A. Muller
N. S. Tierney
S. Klein
J. J. Nail
A. E. Chettle
R. W. Kosley
G. C. Dewey
G. R. Leef
H. G. Nordlin
P. F. Ponter
A. R. Vallarino
M. W. Wallace
A. K. Wing
H. Busignies Technical Director
E. Labin Technical Director

International Standard Electric Corporation, New York, N. Y.

E. S. Mclarn Vice President
G. H. Groy

Mackay Radio and Telegraph Company, New York, N. Y.
 C. E. Scholz Vice President
 G. T. Royden
 R. McSweeney

Standard Telephones and Cables, Limited, London, England C. E. Strong, Chief Enginear, Radio Division

Editorial Board

A. G. Kandoian, chairman
W. W. Macalpine
A. G. Clovier
F. J. Mann
S. F. Frankel
George Lewis
E. M. Ostlund
A. M. Stevens

F. J. Mann, editor
Manager, Technical Publications Division.
International Telephone and Telegraph Corporation

J. E. Schlaikjer, assistant editor

Infernational Telephone and Telegraph Corporation
George Lewis, coordinator
Assistant Vice President,
International Telephone and Telegraph Corparation

Contents

Chapter 1 - Frequency data 7
Chapter $2 \ldots$ Units, constants, and conversion factors 22
Chapter $3 \rightarrow$ Properties of materials 31
Chapter 4 - Components 54
Chapter 5 - Fundamentals of networks 73
Chapter 6 - Selective circuits 114
Chapter 7 - Filter networks 130
Chapter 8 - Attenuators 153
Chapter 9 B Bridges and impedance measurements 169
Chapter 10 - Rectifiers and filters 177
Chapter 11 - Iron-core transformers and reactors 186
Chapter 12 - Electron tubes 209
Chapter 13 - Amplifiers and oscillators 240
Chapter 14 - Modulation 275
Chapter $15 \div$ Fourier waveform analysis 291
Chapter 16 - Transmission lines 304
Chapter $17 \perp$ Wave guides and resonators 339
Chapter 18 - Antennas 362
Chapter $19 \rightarrow$ Radio-wave propagation 397
Chapter 20 - Radio noise and interference. 441
Chapter 21 - Radar fundamentals 459
Chapter 22 - Broadcasting 473
Chapter 23 - Wire transmission 490
Chapter 24 - Electroacoustics 509
Chapter 25 - Servo mechanisms 533
Chapter 26 - Miscellaneous data 546
Chapter 27 - Maxwell's equations 570
Chapter 28 - Mathematical formulas 576
Chapter 29 - Mathematical tables 620

electromagnetic frequency spetrum

reference data for radio engineers third edition

| | 300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Frequency data

Wavelength-frequency conversion

The graph given below permits conversion between frequency and wavelength; by use of multiplying factors such as those at the bottom of the page, this graph will cover any portion of the electromagnetic-wave spectrum.

For frequencles from	multiply f by	multiply λ by
0.03 - 0.3 megacycles	0.01	100
0.3 - 3.0 megacycles	0.1	10
3.0 - 30 megacycles	1.0	1.0
$30-300$ megacycles	10	0.1
$300-3,000$ megacycles	100	0.01
$3000-30,000$ megacycles	1000	0.001

Conversion formulas

$$
\begin{aligned}
& \text { Propagation velocity } c=3 \times 10^{8} \text { meters } / \text { second } \\
& \text { Wavelength in meters } \lambda_{m}=\frac{300,000}{f \text { in kilocycles }}=\frac{300}{f \text { in megacycles }} \\
& \text { Wavelength in feet } \lambda_{f t}=\frac{300,000 \times 3.28}{f \text { in kilocycles }}=\frac{300 \times 3.28}{f \text { in megacycles }} \\
& 1 \text { Angstrom unit } \begin{aligned}
\mathrm{A} & =3.937 \times 10^{-9} \text { inch } \\
& =1 \times 10^{-10} \quad \text { meter } \\
& =1 \times 10^{-4} \quad \text { micron } \\
1 \text { micron } \mu & =3.937 \times 10^{-5} \text { inch } \\
& =1 \times 10^{-6} \quad \text { meter } \\
& =1 \times 10^{4} \quad \text { Angstrom units }
\end{aligned}
\end{aligned}
$$

Nomenclature of frequency bands

According to international agreement at the Atlantic City Conference, 1947, it was decided that frequencies shall be expressed in kilocycles/second $(\mathrm{kc} / \mathrm{s})$ at and below 30,000 kilocycles, and in megacycles/second (mc/s) above this frequency. The following are the band designations

frequency subdivision		frequency range	metric subdivision
VIF	Very low frequency	$<30 \mathrm{kc} / \mathrm{s}$	
IF	Low frequency	$30-300 \mathrm{kc} / \mathrm{s}$	Myriametric waves
MF	Medium frequency	$300-3,000 \mathrm{kc} / \mathrm{s}$	Hectometric waves
HF	High frequency	$3,000-30,000 \mathrm{kc} / \mathrm{s}$	Decametric waves
VHF	Very high frequency	$30,000 \mathrm{kc} / \mathrm{s}-300 \mathrm{mc} / \mathrm{s}$	Metric waves
UHF	Ultra high frequency	$300-3,000 \mathrm{mc} / \mathrm{s}$	Decimetric waves
SHF	Super high frequency	$3,000-30,000 \mathrm{mc} / \mathrm{s}$	Centimetric waves
EHF	Extremely high frequency	$30,000-300,000 \mathrm{mc} / \mathrm{s}$	Millimetric waves

Aflantic City Conference, 1947

It is the function of the International Telecommunications Conferences (Madrid, 1932; Cairo, 1938; Atlantic City, 1947) to promote international cooperation in the development and use of telecommunication services of all sorts. The following material has been extracted from the parts of the Acts of the conference specifically relating to radio. The official publication, "Final Acts of the International Telecommunication and Radio Conference, Atlantic City, 1947," is obtainable at nominal charge from the Secretary, International Telecommunication Union, Berne Bureau, Berne, Switzerland.

Frequency allocations Allantic City, 1947
The following table of frequency allocations pertains to the western hemisphere (region 2), and covers all frequencies between 10 kilocycles and 10,500 megacycles.

Regions defined in table of frequency allocations. Shaded area is the tropical zone.

Note: An asterisk (*) following a service designation indicates that the allocation has been made on a world-wide basis. All explanatory notes covering region 2 as well as other regions have been omitted. For these explanatory notes the original text of Acts of the Atlantic City Conference should be consulted.

kilocycles	service	kilocycles	service
10- 14	Radio navigation*	325-405	Aeronautical mobile,* Aero.
14-70	Fixed,* Maritime mobile*		nautical navigation*
70- 90	Fixed, Maritime mobile	405-415	Aeronautical mobile, Aero-
90- 110	Fixed,* Maritime mobile,* Radio navigation*		nautical navigation, Maritime navigation (radio direction
110-130	Fixed, Maritime mobile		finding)
130-150	Fixed, Maritime mobile	415-490	Maritime mobile*
150- 160	Fixed, Maritime mobile	490- 510	Mobile (distress and calling)*
160- 200	Fixed	510-525	Mobile
200-285	Aeronautical mobile, Aero-	525-535	Mobile
	nautical navigation	535-1605	Broadcasting*
285-325	Maritime radio navigation (radio beacons)	1605-1800	Aeronautical radio navigation, Fixed, Mobile

kilocycles	service	kilocycles	service
1800-2000	Amateur, Fixed, Mobile except aeronautical mobile, Radio navigation	$\begin{aligned} & 11275-11400 \\ & 11400-11700 \\ & 11700-11975 \end{aligned}$	Aeronautical mobile* Fixed* Broadeasting*
2000-2065	Fixed, Mobile	11975-12330	Fixed* ${ }^{\text {* }}$
2065-2105	Maritime mobile	12330-13200	Maritime mobile*
2105-2300	Fixed, Mobile	13200-13260	Aeronautical mobile*
2300-2495	Broadcasting, Fixed, Mobile	13260-13360	Aeronautical mobile*
2495-2505	Standard frequency	13360-14000	Fixed*
2505-2850	Fixed, Mobile	14000-14350	Amateur*
2850-3025	Aeronautical mobile*	14350-14990	Fixed*
3025-3155	Aeronoutical mobile*	14990-15010	Standard frequency*
3155-3200	Fixed,* Mobile except aeronautical mobile*	$\begin{aligned} & 15010-15100 \\ & 15100-15450 \end{aligned}$	Aeronautical mobile* Broadcasting*
3200-3230	Broadcasting,* Fixed,* Mobile except aeronautical mo. bile*	$\begin{aligned} & 15450-16460 \\ & 16460-17360 \\ & 17360-17700 \end{aligned}$	Fixed* Maritime mobile* Fixed*
3230-3400	Broodcasting,* Fixed,* Mobile except aeronautical mobile*	$\begin{aligned} & 17700-17900 \\ & 17900-17970 \end{aligned}$	Broadcasting* Aeronautical mobile*
3400-3500	Aeronoutical mobile*	17970-18030	Aeronautical mobile*
3500-4000	Amateur, Fixed, Mobile except aeronautical mobile	$18030-19990$ $19990-20010$	Fixed* Standard frequency*
4000-4063	Fixed*	20010-21000	Fixed* ${ }^{\text {* }}$
4063-4438	Maritime mobile*	21000-21450	Amoteur*
4438-4650	Fixed, Mobile except aeronautical mobile	$\begin{aligned} & 21450-21750 \\ & 21750-21850 \end{aligned}$	Broodcosting* Fixed*
4650-4700	Aeronautical mobile*	21850-22000	Aeronautical fixed, Aero-
4700-4750	Aeronautical mobile*		nautical mobile*
4750-4850	Broadcosting, Fixed	22000-22720	Marifime mobile*
4850-4995	Broadcasting,* Fixed,* Land mobile*	$\begin{aligned} & 22720-23200 \\ & 23200-23350 \end{aligned}$	Fixed ${ }^{*}$ Aeronautical fixed,* Aero-
4995-5005	Standard frequency*		nautical mobile*
5005-5060	Broadcasting,* Fixed*	23350-24990	Fixed,* land mobile*
5060-5250	Fixed*	24990-25010	Standard frequency*
5250-5450	Fixed, land mobile	25010-25600	Fixed,* Mobile except aero-
5450-5480	Aeronautical mobile		nautical mobile*
5480-5680	Aeronautical mobile*	25600-26100	Broad casting*
5680-5730	Aeronautical mobile*	26100-27500	Fixed,* Mobile except aero-
5730-5950	Fixed*		nautical mobile*
5950-6200	Broadcasting*	27500-28000	Fixed, Mobile
6200-6525	Maritime mobile*	28000-29700	Amateur*
6525-6685	Aeronautical mobile*		
6685-6765	Aeronautical mobile*	megacycles	service
6765-7000	Fixed*	29.7- 44	Fixed, Moblle
7000-7100	Amateur*	$44-50$	Broadcasting, Fixed, Mobile
7100-7300	Amateur	$50-54$	Amateur
7300-8195	Fixed*	¢4-72	Broadcosting, Fixed, Mobile
8195-8815	Maritime mobile*	$72-76$	Fixed, Mobile
8815-8965	Aeronautical mobile*	$76-88$	Broadcasting, Fixed, Mo-
8965-9040	Aeronautical mobile*		bile
9040-9500	Fixed*	$88-100$	Broadcasting*
9500-9775	Broadcasting*	100-103	Broadcasting
9775-9995	Fixed*	108-118	Aeronautical radio noviga-
9995-10005	Standard frequency*		tion*
10005-10100	Aoronautical mobile*	118-132	Aeronautical mobile*
10100-11175	Fixed*	132-144	Fixed, Mobile
11175-11275	Aeronautical mobile*	$144-146$	Amateur*

Frequency allocations
continued

megacycles	service	megacycles	service
$146-148$	Amatour	$1660-1700$	Meteorological aids tradio-
148-174	Fixed, Mobile		sonde)
174-216	Broadcasting, Fixed, Mo-	1700-2300	Fixed,* Mobile*
	bile	$2300-2450$	Amateur*
216-220	Fixed, Mobile	2450-2700	Fixed,* Mobile*
$220-225$	Amateur	$2700-2900$	Aeronautical radio naviga-
225 - 235	Fixed, Mobile		tion*
$235-328.6$	Fixed,* Mobile*	2900-3300	Radio navigation*
328.6- 335.4	Aeronautical radio naviga-	$3300-3500$	Amateur
	tion*	$3500-3900$	Fixed, Mobile
335.4-420	Fixed,* Mobile*	$3900-4200$	Fixed,* Mobile*
$420-450$	Aeronautical radio navigation,* Amateur*	$4200-4400$	Aeronautical radio navigation*
$450-460$	Aeronautical radio naviga-	$4400-5000$	Fixed,* Mobile*
$460-470$	tion, Fixed, Mobile Fixed,* Mobile*	$5000-5250$	Aeronautical radio naviga. tion*
$470-585$	Broadcasting*	$5250-5650$	Radio navigation*
$585-610$	Broadcasting	$5650-5850$	Amateur*
$610-940$	Broadcasting ${ }^{*}$	5850-5925	Amateur
$940-960$	Fixed	5925-8500	Fixed,* Mobile*
$960-1215$		$8500-9800$	Radio navigation*
	tion*	9800-10000	Fixed,* Radio navigation*
1215-1300	Amateur*	10000-10500	Amateur*
1300-1660	Aeronautical radio naviga.	Above 10500	Not allocated

Frequency tolerances Atlantic Ciry, 1947

Prequency band	type of service and power	tolerance In percent*	
		column 1	column 2
10-535 kc/s	Fixed stations $10-50 \mathrm{kc} / \mathrm{s}$ $50 \mathrm{kc} / \mathrm{s}$-end of band	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.02 \end{aligned}$
	```Land stations Coast stations Power > 200 watts Power < 200 watts Aeronautical stations```	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.05 \\ & 0.02 \end{aligned}$
	Mobile stations   Ship stations   Aircraft stations   Emergency treservel ship transmitters, and lifeboat, lifecraft, and survival-craft pransmitters	$\begin{aligned} & 0.3(6) \\ & 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.1 \quad 11 \\ & 0.05 \\ & 0.5 \end{aligned}$
	Radionavigation stations	0.05	0.02
	Broadcasting stations	20 cycles	20 cycles
$535-1605 \mathrm{kc} / \mathrm{s}$	Broadcasting stations	20 cycles	20 cycles

[^0]Frequency folerances continued

		tolerance	percent
frequency band	Iype of service and power	column 1	column 2
$1605-4000 \mathrm{kc} / \mathrm{s}$	Fixed stations   Power $>200$ watts   Power < 200 watts	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.01 \end{aligned}$
	Land stations		
	Coast stations Power $>200$ watts	0.02	0.005
	Power < 200 watts	0.02	0.01
	Aeronautical stations	0.02	0.005
	Power < 200 watts	0.02	0.01
	Base stations		
	Power > 200 watts   Power < 200 watts	$\begin{aligned} & 0.02 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.01 \end{aligned}$
	Mobile stations 00.05 (6) 0.02 (3)		
	Ship stations	0.05 (6)	$0.02 \text { (3) }$
	Land mobile stations	0.05	0.02
	Radionavigation stations 0.02		
	Power > 200 watts   Power < 200 watts	0.02 0.02	$\begin{aligned} & 0.005 \\ & 0.01 \end{aligned}$
		0.02	
	Broadcasting stations	0.005	0.005
4000-30,000 kc/s	Fixed stations   Power $>500$ watts   Power < 500 watts	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.003 \\ & 0.01 \end{aligned}$
	Land stations	0.02	0.005
	Aeronautical stations		
	Power $>500$ watts	0.02	0.005
	Power < 500 watts	0.02	0.01
	Base stations		
	Power > 500 watts   Power < 500 watts	0.02 0.02	$0.01$
	Mobile stations		0.02 (3)
	Ship stations	0.05 (6)	0.02 (3)
	land mobile stations	0.05	0.02
	Transmitters in lifeboats, lifecraft, and survival craft	0.05	0.02
	Broadcasting stations	0.005	0.003
$30-100 \mathrm{mc} / \mathrm{s}$	Fixed stations   land stations   Mobile stations   Radionavigation stations   Broadcasting stations	0.03	0.02
		0.03	0.02
		0.02 (5)	0.02 (5)
		0.01	0.003

## Frequency folerances

continued

frequency band	type of service and power	tolerance in percent	
		column 1	column 2
$100-500 \mathrm{mc} / \mathrm{s}$.	Fixed starions	0.03	0.01
	land stations	0.03	0.01
	Mobile stations	0.03	0.01 (4)
	Radionavigation stations	$0.02(5)$	$0.02(5)$
	Broadcasting stations	0.01	
$500-10,500 \mathrm{mc} / \mathrm{s}$	$\square$	0.75	0.75 17)

## Notes:

Column 1: Applicable until January 1st, 1953, to transmitters now in use and those to be installed before January lst, 1950.
Column 2: Applicable to new transmitters installed after January 1st, 1950; and to all transmitters after January Ist, 1953.
For ship starions, in the absence of assigned frequency to a particular ship or ship transmitter, the substitute for the assigned frequency is that frequency on which an emission begins.

1. It is recognized that certain countries will encounter difficulties in fitting, prior to 1953, all their ships with equipment that will satisfy the indicated talerance; however, it is requested that these countries complete the necessary conversion as soon as possible.
2. The frequency tolerance of 0.02 percent is maintained temporarily for fixed-station transmitters now in operation using a power between 200 and 500 watts.
3. For this category, the final date of January 1 st, 1953, is extended until the date when the Radio Regulations of the next Conference are put into force.
4. In this band and for this category, it is recognized that certain countries are not sure that their equipment can satisfy a stricter frequency tolerance than that fixed tor the 30-100-megacycle band; however, these countries will endeavor to satisfy the tolerance for the band 100-500 megacycles.
5. It is recognized that there are in service, in this category, pulse transmitters that cannot meet tolerances closer than 0.5 percent.
6. Frequency deviations are to be measured over a period not exceeding ten minutes from the commencement of an emission. This provision, however, is applicable only to transmitters in service before January 1st, 1950, and until the replacement of these transmitters by modern equipment; and only in exclusive maritime mobile bands, and excepting such parts of these bands as are reserved for ship radiotelephony. Thereafter the frequency tolerance specified shall be adhered to during the whole period of an emission.
7. Until opinion is available from the Comité Consultatif International Radio, no closer tolerances can be specified for this band in this column.

Intensity of harmonics Atlantic City, 1947
In the band 10-30,000 kilocycles, the power of a harmonic or a parasitic emission supplied to the antenna must be at least 40 decibels below the power of the fundamental. In no case shall it exceed 200 milliwatts Imean powerl.
For mobile stations, endeavor will be made, as far as it is practicable, to reach the above figures.
Designation of emissions Atlantic City, 1947
Emissions are designated according to their classification and the width ofthe frequency band occupied by them. Classification is according to type ofmodulation, type of transmission, and supplementary characteristics.
Types of modulation
Amplitude
symbol
Frequency (or phase)A
Pulse Pulse ..... PF
Types of transmission
Absence of any modulation intended to carry information ..... 0
Telegraphy without the use of modulating audio frequency ..... 1
Telegraphy by keying of a modulating audio frequency or frequencies, or by keying of the modulated emission (Special case: An unkeyed modulated emission.) ..... 2
Telephony ..... 3
Facsimile ..... 4
Television ..... 5
Composite transmission and cases not cov- ered by the above ..... 9
Supplementary characteristics
Double sideband, full carrier ..... (none)
Single sideband, reduced carrier ..... a
Two independent sidebands, rèduced carrier ..... b
Other emissions, reduced carrier ..... c
Pulse, amplitude modulated ..... d
Pulse, width modulated ..... e
Pulse, phase (or position) modulated ..... f
Note: As an exception to the above principles, damped waves are desig. nated by B.

Designation of emissions continued

## Examples

The classification of emissions is

type of modulation	type of transmission	supplementary characteristics	symbol
Amplitude modulation	Absence of any modulation	$\square$	AO
	Telegraphy without the use of modulating audio frequency lon-of keying)	-	A1
	Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated emission ISpecial case: An unkeyed modulated emission.l	-	A2
	Telephony	Double sideband, full carrier	A3
		Single sideband, reduced carrier	A3a
		Two independent sidebonds, reduced carrier	A3b
	Facsimile	-	A4
	Television	-	A5
	Composite transmissions and cases not covered by the above	-	A9
	Composite transmissions	Reduced carrier	A9C
Frequency (or phasel modulation	Absence of any modulation	-	FO
	Telegraphy without the use of modulating oudio frequency (frequency-shift keying)	-	FI
	Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated emission ISpecial case: An unkeyed emission modulated by audio frequency.)	-	F2
	Telephony	-	F3
	Facsimile	-	F4
	Television	-	F5
	Composite iransmissions and cases not covered by the above	-	$F 9$

## Designation of emissions continued

type of modulation	type of transmission	supplementary characteristics	symbol
Pulse modulation	Absence of any modulation intended to carry information	-	PO
	Telegraphy without the use of modulating audio frequency	-	P1
	Telegraphy by the keying of a modulating audio frequency or audio frequencies, or by the keying of the modulated pulse (Special case: An unkeyed modulated pulse.)	Audio frequency or audio frequencies modulating the pulse in amplitude	P2d
		Audio frequency or audio frequencies modulating the width of the pulse	P2e
		Audio frequency or oudio frequencies modulating the phase lor positionl of the pulse	P2f
	Telephony	Amplitude modulated	P3d
		Width modulated	P3e
		Phase (or position) modu!ated	P3f
	Composite transmission and cases not cov. ered by the above	-	P9

## Bandwidth Atlantic City, 1947

Wherever the full designation of an emission is necessary, the symbol for that class of emission, as given above, is prefixed by a number indicating the width in kilocycles of the frequency band occupied by it. Bandwidths of 10 kilocycles or less shall be expressed to a maximum of two significant figures after the decimal.

The width of the frequency band that is necessary in the overall system, including both the transmitter and the receiver, for the proper reproduction at the receiver of the desired information, does not necessarily indicate the interfering characteristics of an emission.

Bandwidih continued

The following are examples of the designation of emissions.

description	designation
Telegraphy 25 words/minute, international Morse code, carrier modulated by keying only	0.1 Al
Telegraphy, 525 -cycle tone, 25 words/minute, international Morse code, carrier and tone keyed or tone keyed only	1.15 A 2
Amplitude-modulated telephony, 3000 -cycle maximum modulation, double sideband, full carrier	6 A3
Amplitude-modulated telephony, 3000 -cycle maximum modulation, single sideband, reduced carrier	3A3a
Amplitude-modulated telephony, 3000 -cycle maximum modulation, two independent sidebands, reduced carrier	6A3b
Vestigial-sideband television tone sideband partially suppressed), full carrier lincluding a frequency-modulated sound channell	6000A5, F3
Frequency-modulated telephony, 3000 -cycle modulation frequency, 20,000 -cycle deviation	46 F3
Frequency-modulated telephony, 15,000-cycle modylation frequency, 75,000-cycle deviation	180F3
One-microsecond pulses, unmodulated, assuming a value of $K=5$	10000PO

## Determination of bandwidth

For the determination of this necessary bandwidth, the following table may be considered as a guide. In the formulation of the table, the following working terms have been employed:
$B=$ telegraph speed in bauds (see p. 287)
$N / T=$ maximum possible number of black + white elements to be transmitted per second, in facsimile and television
$M=$ maximum modulation frequency expressed in cycles/second
$D=$ half the difference between the maximum and minimum values of the instantaneous frequencies; $D$ being greater than $2 M$, greater than $N / T$, or greater than $B$, as the case may be. Instantaneous frequency is the rate of change of phase
$t=$ pulse length expressed in seconds
$K=$ overall numerical factor that differs according to the emission and depends upon the allowable signal distortion and, in television, the time lost from the inclusion of a synchronizing signal

Bandwidth cantinued
amplitude modulation

description and class of emission	necessary bandwidth In cycles/second	examples	
		details	designation of emission
Continuouswave telegraphy Al	$\begin{aligned} & \text { Bandwidth }=B K \\ & \text { where } \\ & \begin{aligned} & K=5 \text { for fading circuits } \\ &=3 \text { for nonfading circuits } \end{aligned} \end{aligned}$	Morse code at 25 words/minute, $B=20$;   bandwidth $=100$ cycles	0.1 A1
		Four-channel multiplex, 7-unit code, 60 words/minute/channel, $B=170$, $K=5$;   bandwidth $=850$ cycles	0.85A]
Telegraphy modulated at audio frequency A2	$\text { Bondwidth }=B K+2 M$   where $\begin{aligned} K & =5 \text { for fading circuits } \\ & =3 \text { for nonfading circuits } \end{aligned}$	Morse code of 25 words/minute, 1000-cycle tone, $B=20$;   bandwidth $=2100$ cycles	2.1A2
Commercial telephony A3	$\begin{aligned} & \text { Bandwidth }=\begin{array}{l} M \text { for single } \\ \text { sideband } \end{array} \\ &=2 M \text { for dou- } \\ & \text { ble sideband } \end{aligned}$	For ordinary single-sideband telephony, $M=3000$	3A3a
		For high-quality single-sideband telephony, $M=4000$	4A3a
Broadcasting A3	Bandwidth $=2 \mathrm{M}$	$M$ may vary between 4000 and 10,000 depending upon the quality desired	843 to 20A3
Facsimile, carrier modulated by tone and by keying A4	$\text { Bandwidth }=\frac{K N}{T}+2 M$   where $k=1.5$	Total number of picture elements (black + whitel transmitted per second $=$ circumference of cylinder theight of picturel $X$ lines/unit length $X$ speed of cylinder rotation (revolutions/second). If diameter of cylinder $=70$ millimeters, lines/millimeter $=3.77$, speed of rotation $=1 /$ second, frequency of modulation $=1800$ cycles; $\begin{aligned} \text { bandwidth } & =3600+1242 \\ & =4842 \text { cycles } \end{aligned}$	4.84A4
$\begin{aligned} & \text { Television } \\ & \text { A5 } \end{aligned}$	Bandwidth $=K N / T$   where   $K=1.5$ This allows for synchronization and filter shaping.)   Nate: This band can be appropriately reduced when a symmetrical transmission is employed	Total picture elements (black + whitel transmitted per second $=$ number lines forming each image $X$ elements/line $X$ pictures transmitred $/ \mathrm{sec}$ ond. If lines $=500$, ele. ments $/$ line $=500$, pictures $/$ second $=25$;   bandwidth $\approx 9$ megacycles	9000 A 5

Bandwidth continued
frequency modulation

		examples	
and elass of emission	necessary bandwidth in cycles/second	details	designation of emission
Frequencyshift telegraphy Fl	$\begin{aligned} & \text { Bandwidth }=8 K+2 D \\ & \text { where } \\ & \begin{aligned} K=5 \text { for fading circuits } \\ =3 \text { for nonfading circuits } \end{aligned} \end{aligned}$	Four-channal multiplex with 7 -unit code, 60 words/minute/channel. Then, $B=170, K=5, D=425$;   bandwidth $=1700$ cycles	1.7 Fl
Commercial telephony and broodcasting F3	Bandwidth $=2 M+2 D K$   For commercial telephony, $K=1$. For high-fidelity transmission, higher volues of $K$ may be necessary	For an average cose of commercial telephony, with $D=15,000$ and $M=3000$;   bandwidth $=36,000$ cycles	36F3
Focsimile F4	Bandwidth $=\frac{K N}{T}+2 M+2 D$   where $K=1.5$	See facsimile, omplifude modulation.) Cylinder diameter $=70$ millimeters, lines/millimeter $=3.77$, cylinder rotation speed $=1 / \mathrm{sec}$ ond, modulation tone $=1800 \mathrm{cy}$ cles, $D=10,000$ cycles;   bandwidth $\approx 25,000$ cycles	$25 F 4$
Unmodulated pulse PO	Bandwidth $=2 K / 1$   where $K$ varies from 1 to 10 according to the permissible deviation in each particular case from a rectangular pulse shape. In many cases the value of $K$ need not exceed 6	$\begin{aligned} & t=3 \times 10^{-6} \text { and } K=6 \\ & \text { bandwidth }=4 \times 10^{6} \text { cycles } \end{aligned}$	4000P0
Modulated pulse P2 or P3	Bandwidth depends upon the particular types of modulation used, many of these still being in the develop. mentol stage	$\longrightarrow$ -	

## Station WWV transmissions*

The Central Radio Propagation Laboratory of the National Bureau of Standards operates radio station WWV, which transmits standard radio and audio frequencies, time announcements, time ticks, and warning notices of radio-propagation disturbances.

[^1]There are eight transmitters near Washington, D.C., operating on the frequencies listed below.

carrier frequency in   megacyeles/second	power in   kilowatts	audio modulation in   cycles/second
2.5	0.7	440
5	8.0	440
10	9.0	440 and 4000
15	9.0	440 and 4000
20	$8.5^{*}$	440 and 4000
25	0.1	440 and 4000
30	0.1	440
35	0.1	-

* On first four work days after first Sunday of each month, power is 0.1 kilowatt.

They broadcast continuously, day and night. Vertical nondirectional antennas are used. Time announcements, time ticks, and warning notices are broadcast simultaneously by all transmitters. Some details of the services are noted below.
Standard radio frequency: The carrier frequency of each transmitter is accurate, as transmitted, to better than one part in 50,000,000. Transmission effects in the medium, such as the Doppler effect, result in an instantaneous accuracy of the received signal somewhat poorer than the above figure.
Standard audio frequencies: The carrier is amplitude modulated with audio frequencies as listed in the above table. Accuracy of the audio frequencies, as transmitted, is better than one part in 50,000,000, but is subject to transmission effects as is the carrier frequency.
Standard musical pitch: The 440-cycle/second audio frequency is standard musical pitch, being $A$ above middle $C$.
Time ticks: On each carrier frequency, at intervals of one second, there is a pulse of 0.005 -second duration, which is audible as a faint tick. The pulse is omitted on the 59 th second of each minute. A time interval of one second as marked by two successive pulses is accurate, as transmitted, to one microsecond $11 \times 10^{-6}$ second), while intervals of one minute or longer are accurate to one part in $50,000,000$. Longer periods of 1, 4, or 5 minutes, etc., are marked by the beginning and ending of intervals during which no audio modulation is present. These are synchronized with the seconds ticks.
Time announcements: Precisely four minutes past the hour and every five minutes thereafter, the audio modulations are interrupted for exactly one minute. Thus, the last minute of each hour is free of audio modulation, which is resumed again precisely on the hour. The beginnings of the periods when

## Station WWV transmissions continued

the audio frequencies are resumed are in agreement with the basic time service of the U.S. Naval Observatory. Eastern Standard Time is announced in international Morse code, indicating the end of each period free of audio tones. Thus, 1525 EST ( $3: 25$ PM), which is 2025 GMT, is announced by the number 1525 in code.

Station announcements: At the hour and half-hour silent periods, the station announcement is made in voice following the time announcement.
Propagation warning notices: At 19 and 49 minutes past the hour, following the time announcement, a series of W's or a series of N's is sent in telegraphic code. If N's are sent, no warning is in effect. However, W's indicate that there is in progress, or anticipated within 12 hours, a radio-propagation disturbance of the ionospheric-storm type, with its most severe effects on the North-Atlantic transmission path.

Coverage: Reliable reception is generally possible at all times throughout the United States and the North-Atlantic area, and often over the world. Depending on the conditions over the propagation path between Washington, D.C., and the point of reception, choice of the most favorable frequency should be made.

## Units, constants, and conversion factors

Conversion factors

to convert	into	multiply by	conversely, multiply by
Acres	Square feet	$4.356 \times 10^{4}$	$2.296 \times 10^{-6}$
Acres	Square meters	4047	$2.471 \times 10^{-4}$
Ampere-hours	Coulomb	3600	$2.778 \times 10^{-4}$
Amperes per sq cm	Amperes per sq inch	6.452	0.1550
Ampere turns	Gilberts	1.257	0.7958
Ampere turns per cm	Ampere furns per inch	2.540	0.3937
Armospheres	Mm of mercury@ $0^{\circ} \mathrm{C}$	760	$1.316 \times 10^{-3}$
Atmospheres	Feet of water @ $4^{\circ} \mathrm{C}$	33.90	$2.950 \times 10^{-2}$
Atmospheres	Inches mercury@ $0^{\circ} \mathrm{C}$	29.92	$3.342 \times 10^{-2}$
Atmospheres	Kg per sq meter	$1.033 \times 10^{4}$	$9.678 \times 10^{-6}$
Atmospheres	Pounds per sq inch	14.70	$6.804 \times 10^{-2}$
Biu	Foot-pounds	778.3	$1.285 \times 10^{-3}$
Bru	Joules	1054.8	$9.480 \times 10^{-4}$
Bru	Kilogram-calories	0.2520	3.969
Btu per hour	Horsepower-hours	$3.929 \times 10^{-4}$	2545
Bushels	Cubic feel	1.2445	0.8036
Centigrade	Fahrenheit	$1 C^{0} \times 9 / 51+32$	$15^{\circ}-321 \times 5 / 9$
Circular mils	Square centimeters	$5.067 \times 10^{-6}$	$1.973 \times 10^{5}$
Circular mils	Square mils	0.7854	1.273
Cubic feet	Cords	$7.8125 \times 10^{-3}$	128
Cubic feet	Gallons (liq US)	7.481	0.1337
Cubic feet	Liters	28.32	$3.531 \times 10^{-2}$
Cubic inches	Cubic centimeters	16.39	$6.102 \times 10^{-2}$
Cubic inches	Cubic feet	$5.787 \times 10^{-4}$	1728
Cubic inches	Cubic meters	$1.639 \times 10^{-5}$	$6.102 \times 10^{4}$
Cubic inches	Gallons liq USI	$4.329 \times 10^{-3}$	231
Cubic meters	Cubic feet	35.31	$2.832 \times 10^{-2}$
Cubic meters	Cubic yards	1.308	0.7646
Degrees (angle)	Radians	$1.745 \times 10^{-2}$	57.30
Dynes	Pounds	$2.248 \times 10^{-6}$	$4.448 \times 10^{5}$
Ergs	Foot-pounds	$7.367 \times 10^{-8}$	$1.356 \times 10^{7}$
Fathoms	Feet	6	0.16666
Feet	Centimeters	30.48	$3.281 \times 10^{-2}$
Feet	Varas	0.3594	2.782
Feet of water @ $4^{\circ} \mathrm{C}$	Inches of mercury @ $0^{\circ} \mathrm{C}$	0.8326	1.133
Feet of water@ $4^{\circ} \mathrm{C}$	Kg per sq meter	304.8	$3.281 \times 10^{-3}$
Feet of water@4 ${ }^{\circ} \mathrm{C}$	Pounds per sq foot	62.43	$1.602 \times 10^{-2}$
Foot-pounds	Horsepower-hours	$5.050 \times 10^{-7}$	$1.98 \times 10^{6}$
Foot-pounds	Kilogram-meters	0.1383	7.233
Foot-pounds	Kilowatt-hours	$3.766 \times 10^{-7}$	$2.655 \times 10^{6}$
Gallons	Cubic meters	$3.785 \times 10^{-3}$	264.2
Gallons lliq US)	Gallons (liq Br Impl	0.8327	1.201
Gauss	Lines per sq inch	6.452	0.1550
Grains (for humidity calculations)	Pounds lavoirdupois)	$1.429 \times 10^{-4}$	7000
Grams	Dynes	980.7	$1.020 \times 10^{-7}$
Grams	Grains	15.43	$6.481 \times 10^{-2}$
Grams	Ounces lavoirdupois)	$3.527 \times 10^{-2}$	28.35
Grams	Poundals	$7.093 \times 10^{-2}$	14.10
Grams per cm	Pounds per inch	$5.600 \times 10^{-3}$	178.6
Grams per cu cm	Pounds per cu inch	$3.613 \times 10^{-2}$	27.68
Grams per sq cm	Pounds per sq foot	2.0481	0.4883

## Conversion factors

continued

lo convert	into	multiply by	conversely, mulfiply by
Hectarss	Acres	2.471	0.4047
Horsepower (boilar)	Biu per hour	$3.347 \times 10^{4}$	$2.986 \times 10^{-6}$
Horsepower (metricl $(542.5 \mathrm{ft}$ - lb per sec$)$	Bru per minute	41.83	$2.390 \times 10^{-2}$
Horsepower (metric) ( 542.5 ff -lb per sec)	Foot-lb per minute	$3.255 \times 10^{4}$	$3.072 \times 10^{-6}$
Horsepower (merric) ( 542.5 ff -lb per sec)	Kg-calories per minute	10.54	$9.485 \times 10^{-2}$
Horsepower (550 ft-lb per sec)	Biu par minute	42.41	$2.357 \times 10^{-2}$
Horsepower ( 550 ft -lb per sec)	Foot-lb per minute	$3.3 \times 10^{4}$	$3.030 \times 10^{-1}$
Horsepower I550 ft-lb per secl	Kilowatts	0.745	1.342
Horsopower (metric) ( 542.5 ff -lb per sed)	Horsepower ( 550 ft -lb per sec)	0.9863	1.014
Horsepower (550 ft-lb per see)	Kg -calories per minute	10.69	$9.355 \times 10^{-2}$
Inches	Centimeters	2.540	
Inches	Feet	$8.333 \times 10^{-2}$	
Inches	Miles	$1.578 \times 10^{-5}$	$6.336 \times 10^{4}$
Inches	Mils	1000	$0.001 \times 10$
Inches Inches of mercury@	Yards	$2.778 \times 10^{-2}$	36
Inches of mercury @ ${ }^{\text {a }} 0^{\circ} \mathrm{C}$	Lbs per sq inch	0.4912	2.036
Inches of water@.4. $4^{\circ} \mathrm{C}$	Kg per sq meter Ounces per sq inch	25.40 0.5782	$3.937 \times 10^{-2}$
Inches of water @ $4^{\circ} \mathrm{C}$	Pounds per sq foot	0.5782 5.202	1.729 0.1922
Inches of water @ $4^{\circ} \mathrm{C}$	In of mercury	$7.355 \times 10^{-2}$	13.60
Joules	Foot-pounds	0.7376	1.356
Joules	Ergs	$10^{7}$	$0^{-7}$
Kilogram-calories	Kilogram-meters	426.9	$2.343 \times 10^{-3}$
Kilogram-calories	Kilojoules	4.186	$0.2389$
Kilograms	Tons, long (avdp 2240 lb )	$9.842 \times 10^{-4}$	1016
Kilograms	Tons, short (avdp 2000 lb )	$1.102 \times 10^{-3}$	907.2
Kilograms	Pounds (avoirdupois)	2.205	0.4536
Kg per sq meter	Pounds per sq foot	0.2048	0.882
Kilometers	Feet	3281	$3.048 \times 10^{-4}$
Kilowatt-hours	Bru	3413	$2.930 \times 10^{-6}$
Kilowatt-hours	Foot-pounds	$2.655 \times 10^{8}$	$3.766 \times 10^{-7}$
Kilowatt-hours	Joules	$3.6 \times 10^{6}$	$2.778 \times 10^{-7}$
Kilowatt-hours	Kilogram-calories	860	$1.163 \times 10^{-3}$
Kilowatt-hours	Kilogram-meters	$3.671 \times 10^{5}$	$2.724 \times 10^{-6}$
Kilowatt-hours	Pounds carbon oxydized	0.235	4.26
Kilowatt-hours	Pounds water evaporated from and at $212^{\circ} \mathrm{F}$	3.53	0.283
Kilowatt-hours	Pounds water raised from $62^{\circ}$ to $212^{\circ} \mathrm{F}$	22.75	$4.395 \times 10^{-2}$
Leagues	Miles	2.635	0.3795
iters	Bushels (dry USI	$2.838 \times 10^{-2}$	35.24
iters	Cubic centimeters	1000	0.001
titers	Cubic meters	0.001	1000
iters	Cubic inches	61.02	$1.639 \times 10^{-2}$
iters	Gallons (liq US)	0.2642	3.785
iters	Pints (liq USI	2.113	0.4732
$\mathrm{og}_{e} N$ or $\ln N$	$\log _{10} N$	0.4343	0.4303

Conversion factors
continued

to convert	into m	multiply by	conversely, multiply by
	Foot-candies	1	1
lumens per sq roor	Foot-candles	0.0929	10.764
Meters	Yards	1.094	0.9144 0.848
Meters	Varas	$1.179 \times 10^{-2}$	0.848 30.88
Meters per min	Knots (naut mi per hour)	$3.281 \times 10$	0.3048
Meters per min	Feet per minute	0.06	16.67
Meters per min	Kilometers per hour	0.3937	2.540
Microhms per cm cube	Microhms per inch cube	6.015	0.1662
Microhms per cm cube	Ohms per mil foot	6080.27	$1.645 \times 10^{-4}$
Miles (nautical)		1.853	0.5396
Miles (nautical)	Kilometers	1.609	0.6214
Miles Istatute)	Kilometers	0.8684	1.1516
Miles (statute)	Miles (nautical)	5280	$1.894 \times 10^{-4}$
Miles (stafute)	Foet	$2.682 \times 10^{-2}$	37.28
Miles per hour	Kilometers per minute	88	$1.136 \times 10^{-2}$
Miles per hour	Feet per minute	0.8684	1.1516
Miles per hour	Knots (naut mi per hour)	1.609	0.6214
Miles per hour	K	8.686	0.1151
Nepers	Decibels	$1.603 \times 10^{-2}$	62.38
Pounds of water (dist)	Cubic feet	0.1198	8.347
Pounds of water (dist)	Gallons	16.02	$6.243 \times 10^{-2}$
Pounds per cu foot	Kg per cu meter	1728	$5.787 \times 10^{-4}$
Pounds per cu inch	Pounds per cu foor	$6.944 \times 10^{-3}$	144.
Pounds per sq foot	Pounds per sq inch	703.1	$1.422 \times 10^{-3}$
Pounds per sq inch	Kg per sq meter	$1.383 \times 10^{4}$	$7.233 \times 10^{-5}$
Poundals	Dynes	$3.108 \times 10^{-2}$	32.17
Poundals	Pounds lavoir	$32.174 \times 10$	$3.108 \times 10^{-2}$
Slugs	Pounds	$1.273 \times 10^{6}$	$7.854 \times 10^{-7}$
Sa inches	Circular mils	$6.452 \times 10$	0.1550
Sq inches	Sa centimeters	$9.290 \times 10^{-2}$	10.76
Sq feet	Sa meters	$3.098 \times 10^{6}$	$3.228 \times 10^{-7}$
Sq miles	Sq yards	640	$1.562 \times 10^{-3}$
Sa miles	Acres	2.590	0.3861
Sa miles	Sa kilometers	1973	$5.067 \times 10^{-4}$
Sq millimeters	Circular mils	0.9072	1.102
Tons, short (avoir 2000 lb	Tonnes (1000 ${ }^{\text {chg }}$ (1000	1.016	0.9842
Tons, long lavoir 2240 lb )	Tonnes (1050 kg) 2000 lb	1.120	0.8929
Tons, long (avoir 2240 lbl	Tons, short lavoir 2000 lb	40	0.025
Tons (US shipping)	Cubic feet	$5.689 \times 10^{-2}$	17.58
Watts	Erus per second	$10^{7}$	$10^{-7} \times 10^{-2}$
Watts	Ergs per second	44.26	$2.260 \times 10^{-2}$
Watts	Horsepower $1550 \mathrm{ft}-\mathrm{lb}$ pe	r $\quad 1.341 \times 10^{-3}$	745.7
Watts	$\mathrm{sec}$	$1.360 \times 10^{-3}$	735.5
Watts	Horsepower (metric)   ( 542.5 ff -lb per sec )   Kg -calories per minute	$1.433 \times 10^{-2}$	69.77

Principal afomic constants*

usual symbol	denomination	value and units
F	Faraday's constant	$9649.6 \pm 0.7 \mathrm{emu}^{\mathrm{m}} \mathrm{equiv}^{-1}$ (chemical scate)   $9652.2 * 0.7$ emu equiv $^{-1}$ (physical scalel
$N$	Avogadro's number	$\begin{aligned} & 16.0235 \pm 0.0004\} \times 10^{23} \text { ichemicall } \\ & 16.0251 \pm 0.0004) \times 10^{23} \text { (physicall } \end{aligned}$
h	Planck's constant	$16.6234 \pm 0.00113 \times 10^{-27} \mathrm{erg} \mathrm{sec}$
m	Electron mass	$19.1055 \pm 0.00121 \times 10^{-28} \mathrm{~g}$
e	Electronic charge	$\begin{aligned} & 14.8024 \pm 0.00051 \times 10^{-10} \mathrm{esu} \\ & 11.60197 \pm 0.000161 \times 10^{-20} \mathrm{emu} \end{aligned}$
$e / m$	Specific electronlc charge	$\begin{aligned} & 11.75936 \pm 0.000181 \times 10^{7} \mathrm{emu} \mathrm{~g}^{-1} \\ & 15.2741 \pm 0.00051 \times 10^{17} \mathrm{evv} \mathrm{~g}^{-1} \end{aligned}$
c	Velocity of light in vacuum	$12.99776=0.000041 \times 10^{1010} \mathrm{~cm} \mathrm{sec}^{-1}$
$\mathrm{h} / \mathrm{mc}$	Compton wavelength	$12.42650 \pm 0.000251 \times 10^{-10} \mathrm{~cm}$
$\left.\sigma_{0}=h^{2} / 14 \pi^{2} m e^{2}\right)$	First Bohr electron-orbit radius	$10.529161 \pm 0.0000281 \times 10^{-8} \mathrm{~cm}$
$\sigma$	Stefan-Boltzmann constont	$15.6724 \pm 0.00231 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}$
$\lambda_{\text {max }}{ }^{\text {T }}$	Wien displacement-law constont	$10.289715 \pm 0.0000391 \mathrm{~cm} \mathrm{deg}$
$\mu_{1}=h_{\text {c }} / 4 \mathrm{~mm}$	Bohr magneton	$10.92731 \pm 0.000171 \times 10^{-39} \mathrm{erg}$ gauss ${ }^{-1}$
${ }_{m} \mathrm{~N}$	Atomic weight of the electron	$\begin{aligned} & 15.4847 \pm 0.00061 \times 10^{-4} \text { ichemicall } \\ & 15.4862 \pm 0.00061 \times 10^{-4} \text { \|physicall } \end{aligned}$
$\mathrm{H}^{+} / \mathrm{mN}$	Ratio, proton mass to electron mass	$1836.57 * 0.20$
$\mathrm{v}_{0}=\left[2 \cdot 10^{8} \mathrm{le} / \mathrm{ml}\right]^{1 / 2}$	Speed of 1 ev electron	$15.93188 \pm 0.000301 \times 10^{7} \mathrm{~cm} \mathrm{sec}^{-1}$
$E_{0}=\mathrm{e} \cdot 10^{8} / \mathrm{c}$	Energy associated with 1 ev	$11.60199 \pm 0.000161 \times 10^{-12} \mathrm{erg}$
$\lambda_{0}$	DeBroglie wavelength associated with 1 ev	$112394.2 \pm 0.91 \times 10^{-8} \mathrm{~cm}$
$m c^{2}$	Energy equivalent of electron moss	$10.51079 \pm 0.000061 \mathrm{Mev}$
k	Boltzmann's constant	$11.38032 \pm 0.000111 \times 10^{-16} \mathrm{erg} \mathrm{deg}^{-1}$
$R_{00}$	Rydberg constant for "infinite" mass	$109737.30 \pm 0.05 \mathrm{~cm}^{-1}$
H	Hydrogen atomic mass Iphysical scalel	$1.008131 \pm 0.000003$
Ro	Gas constant per mol	$18.31436 \pm 0.000381 \times 10^{7} \mathrm{erg} \mathrm{mol}^{-1} \mathrm{deg}^{-1}$
Vo	Standard volume of perfect gas	$122.4146 \pm 0.0061 \times 10^{3} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$

* Extracted from: J. W. M. DuMond and E. R. Cohen, "Our Knowledge of the Atomic Constants F, N, m, and h in 1947, and of Other Constonts Derivoble Therefrom," Reviews of Modern Physics, vol. 20, pp. 82-108; January, 1948.


## Unit conversion table

quantity	yym bol	```equation In mks(r) unlts```	$\begin{gathered} \text { miks }(\mathrm{r}) \\ \text { (rationallzed) } \\ \text { unit } \end{gathered}$	equivaleni number of				mks(nr) (nonratior (zed) un
				mks(nr) units	pract units	-su units	-mu Units	
length	$l$		meter (m)	1	$10^{2}$	$10^{2}$	$10^{2}$	meter (m)
mass	m		kilogram	1	$10^{3}$	$10^{3}$	$10^{3}$	kilogram
time	$t$		second	1	1	1	1	second
Force	$F$	$F=m a$	newton	1	$10^{5}$	$10^{5}$	$10^{5}$	newton
work, energy	W	$W=\boldsymbol{F l}$	joule	1	1	$10^{7}$	$10^{7}$	joule
power	$P$	$P=W / t$	watt	1	1	$10^{7}$	$10^{7}$	watt
-lectric charge	9		coulomb	1	1	$3 \times 10^{9}$	$10^{-1}$	coulomb
volume charge density	-	$\rho=q / v$	coulomb/m $\mathrm{m}^{3}$	1	$10^{-3}$	$3 \times 10^{3}$	$10^{-7}$	coulomb/r
surfoce charge densify	$\sigma$	$\sigma=q / A$	coulomb/m ${ }^{2}$	1	$10^{-4}$	$3 \times 10^{3}$	$10^{-5}$	coulomb/rim
electric dipole moment	P	$p=q l$	coulomb-meter	1	$10^{2}$	$3 \times 10^{41}$	10	coulomb-m
polarization	$P$	$P=p / r$	coulomb/ma	1	$10^{-4}$	$3 \times 10^{6}$	$10^{-3}$	coulomb/m
electric field intensity	E	$E=F / Q$	volt/m	1	$10^{-2}$	$10^{-4 / 3}$	10	volt/m
permittivity	$\epsilon$	$F=q^{2} / 4 \pi e l^{2}$	farad/m	$4 \pi$	$4 \pi \times 10^{-9}$	$36 \times \times 10^{\circ}$	$4{ }^{-1} \times 10^{-11}$	
displacement	D	$D=E$	coulomb/m ${ }^{2}$	$4 \pi$	$4 \pi \times 10^{-6}$	$12 \pi \times 10^{4}$	$4 \pi \times 10^{-6}$	
displacement fux	$\Psi$	$\Psi=D A$	coulomb	4\%	4\%	$12 \pi \times 10^{9}$	$4 \pi \times 10^{-1}$	
emf, electric potenfial	$V$	$V=E l$	volt	1	1	$10^{-2} / 3$	$10^{8}$	volt
current	I	$l=\pi / 1$	ampere	1	1	$3 \times 10^{9}$	$10^{-1}$	ampere
volume current density	J	$J=I / A$	ampere/m ${ }^{\text {a }}$	1	$10^{-4}$	$3 \times 10^{3}$	$10^{-6}$	ampere/m ${ }^{8}$
surface current densily	$K$	$\boldsymbol{K}=I / l$	ampere/m	1	$10^{-2}$	$3 \times 10^{7}$	$10^{-3}$	ampere/m
resistance	$R$	$R=V / l$	ohm	1	1	$10^{-11 / 9}$	$10^{\circ}$	ohm
conductance	$G$	$Q=1 / R$	mho	1	1	$9 \times 1014$	$10^{-7}$	mho
-esistivity	$p$	$p=R A / l$	ohm-meter	1	$10^{2}$	107/9	$10^{41}$	ohm-meter
conductivity	$\gamma$	$\gamma=1 / \rho$	mho/meter	1	$10^{-7}$	$9 \times 10^{9}$	$10^{-11}$	mho/meter
copacitance	C	$C=\eta / V$	farad	1	1	$9 \times 10^{11}$	$10^{-}$	farad
elastance	S	$S=1 / C$	daral	1	1	$10^{-11 / 9}$	$10^{9}$	daraf
magnetic charge	m		weber	$1 / 4 \pi$	108/4 ${ }^{1}$	10-3/12	103/4\%	
magnetic dipale moment	m	$m=m l$	weber-meter	1/4 ${ }^{1 / 4}$	10:0/4주	$1 / 12 \pi$	$10^{10} / 4$ \%	
magnelization	M	$\boldsymbol{M}=\mathrm{m} / \mathrm{o}$	weber/m ${ }^{3}$	1/4\%	104/4\%	$10^{-8 / 12 \pi}$	104/4x	
magnotic fold intonsity	H	$\boldsymbol{H}=\mathrm{n} / 1 / \mathrm{l}$	ampere-turn/m	$4 \pi$	$4 \pi \times 10^{-3}$	$12 \pi \times 10^{7}$	$4 \pi \times 10^{-3}$	
permcabllity	$\mu$	$F=m^{2} / 4 \pi \mu l^{2}$	henry/m	1/4 ${ }^{1}$	$10^{7} / 4 \pi$	10-13/36x	107/4x	
Induction	B	$\boldsymbol{B}=\mu \boldsymbol{H}$	weber/m $\mathrm{m}^{2}$	1	$10^{4}$	$10^{-1 / 3}$	104	weber/m ${ }^{2}$
Induction fux	$\dagger$	$\pm=\mathbf{B A}$	weber	1	$10^{8}$	$10^{-2 / 3}$	$10^{8}$	weber
mmf, magnetic potential	M	$M=H l$	umpere-turn	4.	$4 \times \times 10^{-1}$	$12 \pi \times 10^{9}$	$4 \pi \times 10^{-1}$	
reluctance	R	$R=M / \Phi$	amp-turn/weber	47	$4 \pi \times 10^{-7}$	$36 \pi \times 10^{11}$	$4 \pi \times 10^{-9}$	
permeance	$\pm$	$t=1 / R$	weber/amp-turn	$1 / 4 \pi$	$10^{9} / 4 \pi$	$10^{-11 / 36}$	109/4m	
inductance	$L$	$L=\$ / l$	henry	1	1	$10^{-11 / 9}$	$10^{9}$	henry

Compiled by J. R. Ragazzini and I. A. Zadeh, Columbia University, New York.
The velocity of light was taken as $3 \times 10^{10}$ centimeters/second in computing the conversion factors.
Equations in the second column are for dimensional purposes only.

UNITS, CONSTANTS, AND CONVERSION FACTORS

uivalent number of			practical (cgs) unif	equlvalont number of		unit	equivalent number of -mu units	-mu   unil	
$5$	$\begin{gathered} \text { essu } \\ \text { units } \end{gathered}$	$\begin{aligned} & \text { emu } \\ & \text { units } \end{aligned}$		esu Units	emu units				
	$10^{2}$	$10^{2}$	centimeter (cm)	1	1	sentimeter (cm) (G)	1	centimeter (em)	
	$10^{3}$	$10^{3}$	gram	1	1	gram (G)	1	gram	
	1	1	second	1	1	second _- (G)	1	second	
	$10^{5}$	$10^{5}$	dyne	1	1	dyne (G)	1	dyne	
	$10^{7}$	$10^{7}$	joule	$10^{3}$	$10^{7}$	erg (G)	1	crg	
	$10^{7}$	$10^{7}$	watt	$10^{7}$	$10^{7}$	erg/second (G)	1	erg/second	
${ }^{3}$	$3 \times 10^{9}$	$10^{-1}$	coulomb	$3 \times 10^{9}$	$10^{-1}$	statcoulomb (G)	$10^{-10 / 3}$	a beoulomb	
	$3 \times 10^{3}$	$10^{-7}$	coulomb/cm ${ }^{2}$	$3 \times 10^{9}$	$10^{-1}$	8tatcoulomb/ $\mathrm{cm}^{2}$ ( C )	$10^{-10} / 3$	abcoulomb/cm ${ }^{\text {a }}$	
	$3 \times 10^{5}$	$10^{-5}$	coulomb/cm ${ }^{2}$	$3 \times 10^{9}$	$10^{-1}$	statcoulomb/ $/ \mathrm{cm}^{2}(\mathrm{C})$	$10^{-10 / 3}$	abcoulomb/ $\mathrm{cm}^{2}$	
	$3 \times 10^{11}$	10	coulomb-cm	$3 \times 10^{9}$	$10^{-1}$	statcoulomb-cm (G)	$10^{-10 / 3}$	abeoulomb-cm	
4	$3 \times 10^{5}$	$10^{-6}$	coulomb/ $\mathrm{cm}^{2}$	$3 \times 10^{9}$	$10^{-1}$	statcoulomb/cm² (0)	$10^{-10 / 3}$	abcoulomb/cm ${ }^{2}$	
2	$10^{-6 / 3}$	$10^{6}$	volt/cm	$10^{-2 / 3}$	$10^{8}$	statrolt/cm (C)	$3 \times 10^{10}$	abvolt/cm	
-	$9 \times 10^{9}$	$10^{-11}$		$9 \times 10^{18}$	$10^{-2}$	(G)	10-20/9		
1	$3 \times 10^{3}$	$10^{-6}$		$3 \times 10^{9}$	$1^{-1}$	(G)	10-10/3		
	$3 \times 10^{9}$	$10^{-1}$		$3 \times 10^{9}$	$10^{-1}$	(C)	$10^{-20 / 3}$		
	$10^{-1 / 3}$	$10^{8}$	volt	$10^{-2 / 3}$	$10^{9}$	statvolt (C)	$3 \times 10^{10}$	abvolt	
	$3 \times 10^{8}$	$10^{-1}$	ampere	$3 \times 10^{0}$	$10^{-1}$	8tatampere ( ${ }^{\text {a }}$	10 $0^{-10} / 3$	a bampere	
4	$3 \times 10^{3}$	$10^{-5}$	ampere/cm ${ }^{\text {2 }}$	$3 \times 10^{9}$	$10^{-1}$	statamperc/ $\mathrm{cm}^{\mathbf{2}}$ (G)	$10^{-10 / 3}$	abampere/cra ${ }^{2}$	
	$3 \times 10^{7}$	$10^{-3}$	ampere/cra	$3 \times 10^{9}$	$10^{-1}$	statampere/em (G)	$10^{-10} / 3$	absmpere/crn	
	$10^{-11 / 9}$	$10^{9}$	ohm	$10^{-11 / 9}$	$10^{9}$	statohm (G)	$9 \times 10^{30}$	abohm	
ـ	$9 \times 10^{11}$	$10^{-9}$	mho	$9 \times 10^{11}$	10-*	statmho (G)	$10^{-8 / 9}$	abmho	
	10-1/9	$10^{11}$	ohin-em	$10^{-11 / 9}$	$10^{\circ}$	statohm-em (G)	$9 \times 10^{-0}$	abohm-am	
2	$9 \times 10^{9}$	$10^{-11}$	mho/cm	$9 \times 10^{21}$	$10^{-9}$	Btatmho/cm (G)	$10^{-30 / 9}$	abmho/cm	
	$9 \times 1011$	$10^{-}$	farad	$9 \times 10^{11}$	$10^{-7}$	statfarad (cm) (G)	$10^{-20,9}$	abfarad	
	$10^{-11 / 9}$	$10^{9}$	daraf	$10^{-11 / 9}$	109	statdaraf (G)	$9 \times 10^{20}$	abdaraf	
	$10^{-2 / 3}$	$10^{3}$		$10^{-10 / 3}$	1		$3 \times 10^{10}$	unit pole	(G)
,	1/3	$10^{10}$		$10^{-10 / 3}$	1		$3 \times 10^{10}$	pole-cm	(G)
	10-1/3	$10^{4}$		$10^{-10 / 3}$	1		$3 \times 10^{10}$	pole/cm ${ }^{2}$	(G)
3	$3 \times 10^{7}$	$10^{-3}$	oersted	$3 \times 10^{10}$	1		$10^{-10} / 3$	oersted	(G)
	10-12/9	$10^{7}$	gauss/ocrsted	$10^{-20 / 9}$	1		$9 \times 10^{30}$	gauss/ocrsted	(G)
	10-1/3	$10^{4}$	gauss	$10^{-10 / 3}$	1		$3 \times 10^{10}$	gauss	(G)
	$10^{-2 / 3}$	$10^{9}$	maxwell (line)	10-10/3	1		$3 \times 10^{10}$	maxwel! (line)	(G)
I	$3 \times 10^{9}$	$10^{-1}$	gilbert	$3 \times 10^{10}$	1		$10^{-10 / 3}$	gilbert	(G)
	$9 \times 10^{11}$	$10^{-8}$	gilbert/max well	$9 \times 10 \% 0$	1		$10^{-20 / 9}$	gilbert/maxwell	(G)
	$10^{-11 / 9}$	$10^{3}$	maxwell/gilbert	10-20/9	1		$9 \times 10^{20}$	maxwell/gilbert	(G)
	$10^{-11 / 9}$	$10^{9}$	heary	$10^{-11 / 9}$	$10^{\circ}$	statheary (G)	$9 \times 10^{20}$	abheary (cm)	(G)

Fractions of an inch with metric equivalents

fractions of an Inch		decimals of on inch	millimeters	fractions of an inch		decimals of an inch	millimeters
1/32	$1 / 64$	0.0156	0.397		33/64	0.5156	13.097
		0.0313	0.794	17/2		0.5313	13.494
	364	0.0469	1.191		3564	0.5469	13.891
316		0.0625	1.588	916		0.5625	14.288
	564	0.0781	1.984		3764	0.5781	14.684
332		0.0938	2.381	1932		0.5938	15.081
	764	0.1094	2.778 3.175		3964	0.6094	15.478
1/8		0.1250	3.175	5/8		0.6250	15.875
	964	0.1406	3.572		${ }^{4164}$	0.6406	16.272
5/32		0.1563 0.1719	3.969	21/32		0.6563	16.669
316	1164	0.1719 0.1875	4.366 4.763		4364	0.6719 0.6875	17.066
	13\%4	0.2031	4.763 5.159	1.16	4564	0.6875 0.7031	17.463 17.859
732		0.2188	5.556	23/32		0.7188	18.256
	1564	0.2344	5.953		4764	0.7344	18.653
$1 / 4$		0.2500	6.350	$3 / 4$		0.7500	19.050
	1764	0.2656	6.747	,	4964	0.7656	19.447
9/32	19/64	0.2813	7.144	25/32		0.7813	19.844
		0.2969	7.541		5164	0.7969	20.241
$5 / 16$		0.3125	7.938	13/16		0.8125	20.638
	21/64	0.3281	8.334		5364	0.8281	21.034
11/32	23/64	0.3438 0.3594	8.731 9.128	2732		0.8438	21.431
$3 / 8$		0.3750	9.525	7/8	-64	0.8594 0.8750	21.828 22.225
	2564	0.3906	9.922	8	57/64	0.8906	22.622
13/32		0.4063	10.319	2932		0.9063	23.019
	27/64	0.4219	10.716		59/64	0.9219	23.416
7/16		0.4375	11.113	15/66		0.9375	23.813
	29/64	0.4531	11.509		6164	0.9531	24.209
15/32		0.4688	11.906	31/32		0.9688	24.606
	31/64	0.4844	12.303		${ }^{63} 64$	0.9844	25.003
1/2		0.5000	12.700	-		1.0000	25.400

## Useful numerical data

1 cubic foot of water at $4^{\circ} \mathrm{C}$ (weight) $\qquad$ 62.43 lb 1 foot of water at $4^{\circ} \mathrm{C}$ (pressure) $\qquad$ $0.4335 \mathrm{lb} / \mathrm{in}^{2}$ Velocity of light in vacuum $c$ $\qquad$ $186,280 \mathrm{mi} / \mathrm{sec}=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$ Velocity of sound in dry air at $20^{\circ} \mathrm{C}, 76 \mathrm{~cm} \mathrm{Hg} \ldots 1127 \mathrm{ft} / \mathrm{sec}$ Degree of longitude at equator $\qquad$ 69.173 miles

Acceleration due to gravity at sea-level, $40^{\circ}$ latifude, $g$ $\qquad$ $32.1578 \mathrm{ft} / \mathrm{sec}^{2}$
$\sqrt{2 g}$ $\qquad$ 8.020
$I$ inch of mercury of $4^{\circ} \mathrm{C}$ — 1.132 f water $=0.4908 \mathrm{lb} / \mathrm{in}^{2}$
Ease of natural logs $\epsilon$ 2.718

1 radion $\qquad$ $180^{\circ} \div \pi=57.3^{\circ}$
360 degrees $\qquad$ $2 \pi$ radians
$\pi$ $\qquad$ 3.1416

Sine $1^{\prime}$ $\qquad$ 0.00029089

Arc $1^{\circ}$ $\qquad$ 0.01745 radian

Side of square $\qquad$ $0.707 \times$ (diagonal of square)

Greek alphabet

name	capital	small	commonly used to designate
AlPHA	A	a	Angles, coefficients, aftenuation constant, absorption factor, area
BETA	B	$\beta$	Angles, coefficients, phase constant
GAMMA	I'	$\gamma$	Complex propagation constant (cap), specific gravity, angles, electrical conductivity, propagation constant
DEITA	$\Delta$	$\delta$	Increment or decrement leap or small), determinant (cap), permistivity (cap), density, angles
EPSILON	E	$\epsilon$	Dielectric constant, permittivity, base of natural logarithms. electric intensity
ZETA	Z	$\zeta$	Coordinates, coefficients
ETA	H	$\eta$	Intrinsic impedance, efficiency, surface charge density, hysteresis, coordinates
THETA	$\theta$	$\theta \theta$	Angular phase displacement, time constant, reluctance, angles
IOTA	I	$\checkmark$	Unip vector
KAPPA	K	$\kappa$	Susceptibility, coupling coefficient
LAMBDA	A	$\lambda$	Permeance (capl, wavelength, atrenuation constant
MU	M	$\mu$	Permeability, amplification factor, prefix micıo
NU	N	$\nu$	Reluctivity, frequency
XI	$\Xi$	$\xi$	Coordinates
OMICRON	0	-	
PI	II	$\pi$	3.1416
RHO	P	$\rho$	Resistivity, volume charge density, coordinates
SIGMA	$\Sigma$	$\sigma$ s	Summation (cap), surface charge density, complex propagation constant, electrical conductivity, leakage coefficient
TAU	T	$\tau$	Time constant, volume resistivity, time-phase displacement, transmission factor, density
UPSILON	$\uparrow$	$v$	
PHI	$\Phi$	$\phi \varphi$	Scalar potential (cap), magnetic nux, angles
CHI	X	$\boldsymbol{\chi}$	Electric susceptibility, angles
PSI	$\Psi$	$\psi$	Dielectric flux, phase difference, coordinates, angles
OMEGA	$\Omega$	$\omega$	Resistance in ohms (capl, solid angle (cap), angular velocity
Small letter is used except where capital is indicated.			

## 30

## Decibels and power, voltage, and current ratios

The decibel, abbreviated db , is a unit used to express the ratio between two amounts of power, $P_{1}$ and $P_{2}$, existing at two points. By definition,
number of $\mathrm{db}=10 \log _{10} \frac{P_{1}}{P_{2}}$
It is also used to express voltage and current ratios;
number of $\mathrm{db}=20 \log _{10} \frac{V_{1}}{V_{2}}=20 \log _{10} \frac{I_{1}}{I_{2}}$
Strictly, it can be used to express voltage and current ratios only when the two points at which the voltages or currents in question have identical impedances.

power ratio	voltage and current ratio	decibels	power ratio	vollage and current ratio	decibels
1.0233	1.0116	0.1	19.953	4.4668	13.0
1.0471	1.0233	0.2	25.119	5.0119	14.0
1.0715	1.0351	0.3	31.623	5.6234	15.0
1.0965	1.0471	0.4	39.81 !	6.3096	16.0
1.1220	1.0593	0.5	50.119	7.0795	17.0
1.1482	1.0715	0.6	63.096	7.9433	18.0
1.1749	1.0839	0.7	79.433	8.9125	19.0
1.2023	1.0965	0.8	100.00	10.0000	20.0
1.2303	1.1092	0.9	158.49	12.589	22.0
1.2589	1.1220	1.0	251.19	15.849	24.0
1.3183	1.1482	1.2	398.11	19.953	26.0
1.3804	1.1749	1.4	630.96	25.119	28.0
1.4454	1.2023	1.6	1000.0	31.623	30.0
1.5136	1.2303	1.8	1584.9	39.811	32.0
1.5849	1.2589	2.0	2511.9	50.119	34.0
1.6595	1.2882	2.2	3981.1	63.096	36.0
1.7378	1.3183	2.4	6309.6	79.433	38.0
1.8197	1.3490	2.6	$10^{1}$	100.000	40.0
1.9055	1.3804	2.8	$10^{4} \times 1.5849$	125.89	42.0
1.9953	1.4125	3.0	$10^{4} \times 2.5119$	158.49	44.0
2.2387	1.4962	3.5	$10^{4} \times 3.9811$	199.53	46.0
2.5119	1.5849	4.0	$10^{4} \times 6.3096$	251.19	48.0
2.8184	1.6788	4.5	${ }_{10}{ }^{105}$	316.23	50.0
3.1623	1.7783	5.0	$10^{3} \times 1.5849$	398.11	52.0
3.5481	1.8836	5.5	$10^{5} \times 2.5119$	501.19	54.0
3.9811	1.9953	6.0	$10^{5} \times 3.9811$	630.96 794.33	58.0 58.0
5.0119	2.2387	7.0	$10^{5} \times 6.3096$	794.33 $1,000.00$	58.0 60.0
6.3096	2.5119	8.0	$10^{6}$	1,000.00	60.0
7.9433	2.8184	9.0	$10^{7}$	3,162.3	70.0
10.0000	3.1623	10.0	$10^{8}$	10,000,0	80.0
12.589	3.5481	11.0	$10^{9}$	31,623	90.0
15.849	3.9811	12.0	$10^{10}$	100,000	100.0

To convert
Decibels to nepers multiply by 0.1151
Nepers to decibels multiply by 8.686
Where the power ratio is less than unity, it is usual to invert the fraction and express the answer as a decibel loss.

## Properties of materials

## Atomic weights

element	symbol	atomic number	olomic weight	element	symbal	atomic number	otomic weight
Aluminum	Al	13	26.97	Molybdenum	Mo	42	95.95
Antimony	Sb	51	121.76	Neodymium	Nd	60	144.27
Argon	A	18	39.944	Neon	Ne	10	20.183
Arsenic	As	33	74.91	Nickel	Ni	28	58.69
Barium	Ba	56	137.36	Nitrogen	N	7	14.008
Beryllium	Be	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	$\bigcirc$	8	16.0000
Boron	B	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	30.98
Cadmium	Cd	48	112.41	Platinum	Pr	78	195.23
Calcium	Co	20	40.08	Potassium	K	19	39.096
Carbon	C	6	12.010	Praseodymium	Pr	59	140.92
Cerium	Cer	58	140.13	Protactinium	Pa	91	231
Cesium	Cs	55	132.91	Radium	Ro	88	226.05
Chlorine	Cl	17	35.457	Radon	Rn	86	222
Chromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Co	27	58.94	Rhodium	Rh	45	102.91
Columbium	Cb	41	92.91	Rubidium	Rb	37	85.48
Copper	Cu	29	63.57	Ruthenium	Ru	44	101.7
Dysprosium	Dy	66	162.46	Samarium	Sm	62	150.43
Erbium	Er	68	167.2	Scandium	Sc	21	45.10
Europium	Eu	63	152.0	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.06
Godolinium	Gd	64	156.9	Silver	Ag	47	107.880
Gallium	Go	31	69.72	Sodium	No	11	22.997
Germanium	Ge	32	72.60	Strontium	Sp	38	87.63
Gold	Au	79	197.2	Sulfur	S	16	32.06
Hafnium	Hf	72	178.6	Tantalum	To	73	180.88
Helium	He	2	4.003	Tellurium	Te	52	127.61
Holmium	Ho	67	164.94	Terbium	Tb	65	159.2
Hydrogen	H	1	1.0080	Thallium	II	81	204.39
Indium	In	49	114.76	Thorium	Th	90	232.12
lodine	I	53	126.92	Thulium	Tm	69	169.4
Iridium	Ir	77	193.1	Tin	Sn	50	118.70
lron	Fe	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83.7	Tungsten	W	74	183.92
Lanthanum	la	57	138.92	Uranium	U	92	238.07
Lead	Pb	82	207.21	Vanadium	$\checkmark$	23	50.95
Lithium	Li	3	6.940	Xenon	Xe	54	131.3
Lutecium	Lu	71	174.99	Ytterbium	Yb	70	173.04
Magneşium	Mg	12	24.32	Ytrium	Y	39	88.92
Manganese	Mn	25	54.93	Zinc	Zn	30	65.38
Mercury	Hg	80	200.61	Zirconium	Zr	40	91.22

From Jaurnal of American Chemical Society, v. 70, n. 11, p. 3532; December 8, 1948.

## Electromotive force

## Series of the elements

element	volls	ion	eloment	volis	Ion
Lithium	2.9595		Tin	0.136	
Rubidium	2.9259		Lead	0.122	$\mathrm{Pb}^{++}$
Potassium	2.9241		Iron	0.045	$\mathrm{Fe}^{+++}$
Strontium	2.92		Hydrogen	0.000	
Barium	2.90		Antimony	-0.10	
Calcium	2.87		Bismuth	-0.226	
Sodium	2.7146		Arsenic	-0.30	
Magnesium	2.40		Copper	-0.344	$\mathrm{Cu}^{++}$
Aluminum	1.70		Oxygen	-0.397	
Beryllium	1.69		Polonium	-0.40	
Uranium	1.40		Copper	-0.470	$\mathrm{Cu}^{+}$
Manganese	1.10		lodine	-0.5345	
Tellurium	0.827		Tellurium	-0.558	$\mathrm{Te}^{+++}$
Zinc	0.7618		Silver	-0.7978	
Chromium	0.557		Mercury	-0.7986	
Sulphur	0.51		Lead	-0.80	$\mathrm{Pb}^{++++}$
Gallium	0.50		Palladium	-0.820	
Iron	0.441	$\mathrm{Fe}^{++}$	Platinum	-0.863	
Cadmium	0.401		Bromine	-1.0648	
Indium	0.336		Chlorine	$-1.3583$	
Thallium	0.330		Gold	$-1.360$	$\mathrm{Au}^{++++}$
Cobalt	0.278		Gold	$-1.50$	$\mathrm{Au}^{+}$
Nickel	0.231		Fluorine	$-1.90$	

## Position of metals in the galvanic series

Corroded end (anodic, or least noble)	Nickel lactivel Inconel (active)
Magnesium	Brasses
Magnesium alloys	Copper
Zinc	Bronzes
Aluminum 2S	Copper-nickel alloys
Cadmium	Monel
Aluminum 17ST	Silver solder
Steel or Iron	Nickel (passive)
Cast Iron	Inconel (passive)
Chromium-iron (active)	Chromium-iron (passive)
Ni-Resist	18-8 Stainless (passive)
18-8 Stainless lactive)	18-8-3 Stainless (passive)
	Silver
18-8-3 Stainless lactive)	Graphite
Lead-tin solders	Gold
lead	Platinum
Tin	Profected end (cathodic, or most noble)

Note: Groups of metals indicate they are closely similar in properties.
conlinued Electromotive force

## Thermocouples and their characteristics



## Temperature-emf characteristics of thermocouples



Compiled from R. L. Weber, "Temperature Measurement and Control," Blakiston Co., Philadelphia, Pennsylvania; 1941: see pp. 68-71.

## Physical constants of various metals and alloys

## Definitions of physical constants in table

Relative resistance: The table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperature. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectional area.
$R=\frac{\rho L}{A}$
where
$\rho=$ resistivity, the proportionality constant
$L=$ length
$A=$ cross-sectional area
$R=$ resistance in ohms

Physical constants of various metals and alloys continued

material	relative resistance	temp coefficient of resistivity at $20^{\circ} \mathrm{C}$	specific gravity	coefficient of thermal cond K wafts $\mathrm{cm}^{\circ} \mathrm{C}$	melting point C
Advance $155 \mathrm{Cu}, 45 \mathrm{Ni}$	see	Constantan			
Aluminum	1.64	0.004	2.7	2.03	660
Antimony	24.21	0.0036	6.6	0.187	630
Arsenic	19.33	0.0042	5.73	-	sublimes
Bismuth	69.8	0.004	9.8	0.0755	270
Brass (66 Cu, 34 Zn )	3.9	0.002	8.47	1.2	920
Cadmium 15 Cr 35 Ni	4.4	0.0038	8.64	0.92	321
Chromax $115 \mathrm{Cr}, 35 \mathrm{Ni}$, balance Fel	58.0	0.00031	7.95	0.130	1380
Cobalt	5.6	0.0033	8.71	0.150	1480
Constantan (55Cu, 45 Ni )	28.45	$\pm 0.0002$	8.9	0.218	1210
Copper-annealed	1.00	0.00373	8.89	3.88	1083
hard drawn	1.03	0.00382	8.89	-	1083
Eureka ( $55 \mathrm{Cu}, 45 \mathrm{Ni}$ )	see	Constantan			
Gas carbon	2900	-0.0005	,	-	3500
Gold	1.416	0.0034	19.32	0.296	1063
German silver	$16.9$	0.00027	8.7	0.32	1110
Ideal ( $55 \mathrm{Cu}, 45 \mathrm{Ni}$ )	see	Constantan			
Iron, pure	5.6	0.0052-0.0062	7.8	0.67	1535
Kovar A $29 \mathrm{Ni}, 17 \mathrm{Co}$, 0.3 Mn , balance Fe )	28.4	,	8.2	0.193	1450
lead	12.78	0.0042	11.35	0.344	327
Magnesium	2.67	0.004	1.74	1.58	651
Manganin $184 \mathrm{Cu}, 12 \mathrm{Mn}$, 4 Nil	26	$\pm 0.00002$	8.5	0.63	910
Mercury	55.6	0.00089	13.55	0.063	-38.87
Molybdenum, drawn	3.3	0.0045	10.2	1.46	2630
Monel metal $167 \mathrm{Ni}, 30$ Cu, $1.4 \mathrm{Fe}, 1 \mathrm{Mn}$ )	27.8	0.002	8.8	0.25	1300-1350
Nichrome $1165 \mathrm{Ni}_{\mathrm{N}} 12$ Cr, 23 Fe	65.0	0.00017	8.25	0.132	1350
Nickel	5.05	0.0047	8.85	0.6	1452
Nickel silver 164 Cu , $18 \mathrm{Zn}, 18 \mathrm{Ni}$	16.0	0.00026	8.85 8.72	0.6 0.33	
Palladium	6.2	0.0038	12.16	0.7	$\begin{array}{r} 1110 \\ 1557 \end{array}$
Phosphor-bronze (4 Sn, 0.5 P , balance Cu )	5.45	0.003	8.9	0.82	1050
Platinum	6.16	0.0038	21.4	0.695	1771
Silver	0.95	0.004	10.5	4.19	960.5
Steel, manganese ( 13 Mn , $1 \mathrm{C}, 86 \mathrm{Fe})$	41.1	.	7.81	0.113	1510
Steel, SAE 1045 10.4-0.5   C, bolance Fel	7.6-12.7	-	7.8	0.59	1480
Steel, 18-8 stainless $10.1 \mathrm{C}, 18 \mathrm{Cr}, 8 \mathrm{Ni}$, balance Fe )	52.8	-	7.8 7.9	0.163	1480 1410
Tantalum	9.0	0.0033	16.6	0.163 0.545	1410
Tin	6.7	0.0042	7.3	0.64	231.9
Tophet A $180 \mathrm{Ni}, 20 \mathrm{Cf})$	62.5	0.02-0.07	8.4	0.136	1400
Tungsten	3.25	0.0045	19.2	1.6	3370
Zinc	3.4	0.0037	7.14	1.12	419
Zirconium	2.38	0.0044	6.4	-	1860

[^2]
## Physical constants of various metals and alloys continued

If $L$ and $A$ are measured in centimeters, $\rho$ is in ohm-centimeters. If $L$ is measured in feet, and $A$ in circular mils, $\rho$ is in ohm-circular-mils/foot.
$\begin{aligned} \text { Relative resistance }= & \rho \text { divided by the resistivity of copper } 11.7241 \times 10^{-6} \\ & \text { ohm-centimeters) }\end{aligned}$
Temperature coefficient: Of resistivity gives the ratio of the change in resistivity due to a change in temperature of 1 degree centigrade relative to the resistivity at 20 degrees centigrade. The dimensions of this quantity are ohms/degree centigrade/ohm, or $1 /$ degree centigrade.

The resistance at any temperature is
$R=R_{0}(1+\alpha T)$
where
$R_{0}=$ resistance at $0^{\circ}$ in ohms
$T=$ temperature in degrees centigrade
$\alpha=$ temperature coefficient of resistivity/degree centigrade
Specific gravity: Of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water. In the cgs system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance.

Coefficient of thermal conductivity: Is defined as the time rate of heat transfer through unit thickness, across unit area, for a unit difference in temperature. Expressing rate of heat transfer in watts, the coefficient of thermal conductivity
$K=\frac{W L}{A \Delta T}$
where

$$
\begin{aligned}
W & =\text { watts } \\
L & =\text { thickness in centimeters } \\
A & =\text { area in centimeters } \\
\Delta T & =\text { temperature difference in degrees centigrade }
\end{aligned}
$$

Specific heat: Is defined as the number of calories required to heat one gram of a substance one degree centigrade. If H is the number of calories,

## Physical constants of various mefals and alloys continued

$H=m s \Delta T$ or change in heat
where
$\Delta T=$ temperature change in degrees centigrade
$\mathrm{m}=$ mass in grams
$s=$ specific heat in calories/gram/degree centigrade

## Temperature charts of metals

On the following two pages are given centigrade and Fahrenheit temperafures relating to the processing of metals and alloys.

Soldering, brazing, and welding: This chart has been prepared to provide, in a convenient form, the melting points and components of various common soldering and brazing alloys. The temperature limits of various joining processes are indicated with the type and composition of the flux best suited for the process. Two pairs of identical Fahrenheit and centigrade temperafure scales are shown with the low values at the bottom of the chart. The chart is a compilation of present good practice and does not indicate that the processes and materials cannot be used in other ways under special conditions.

Melting points: The melting-point chart is a thermometer-type graph upon which are placed the melting points of metals, alloys, and ceramics most commonly used in electron tubes and other components in the radio industry. Centigrade and the equivalent Fahrenheit scales are given; above 2000 degrees centigrade the scale is condensed. Pure metals are shown opposite their respective melting points on the right side of the thermometer. Ceramic materials and metal alloys are similarly shown on the left. The melting temperature shown for ceramic bodies is that temperature above which no crystalline phase normally exists. No attempt has been made to indicate their progressive softening characteristic.

When a specific material is being considered for use because of desirable electrical, chemical, or other properties, the melting point is easily obtained. Conversely, where the temperature range within which materials must work is known, suitable ones can be quickly selected.

Fabrication techniques may employ soldering, brazing, or welding, and the most suitable method for a particular material may be determined from the two charts. Similarly, where sequential heating operations are planned, they are useful.

## Soldering, brazing, and welding processes*



* By R. C. Hitchcock, Research Laboratories, Westinghouse Electric Corp., East Pittsburgh, Pa. Reprinted by permission from Product Engineering, val. 18, p. 171; October, 1947.

Temperature charts of metals
Melting points of metals, alloys, and ceramics*


[^3]
## Wire tables*

Solid copper-comparison of gauges

American ( $\mathrm{B} \& \mathrm{~S}$ ) wire gauge	Birming ham (Slubs:) iron wire gauge	British slandord (NBS) wire gauge	diameter		circular mils	area		weight	
			mils	milli -   meters		square millimeters	square inches	$\begin{aligned} & \text { per } \\ & 1000 \text { feet } \\ & \text { in } \\ & \text { pounds } \end{aligned}$	per kilometer in kilograms
-	0	-	340.0	8.636	115600	58.58	0.09079	350	521
0	0	-	324.9	8.251	105500	53.48	0.08289	319	475
0	-	0	324.0	8.230	105000	53.19	0.08245	318	472
-	1	1	300.0	7.620	90000	45.60	0.07069	273	405
1	1	-	289.3	7.348	83690	42.41	0.06573	253	377
1	2	-	284.0	7.214	80660	40.87	0.06335	244	363
_	-	-	283.0	7.188	80090	40.58	0.06290	242 231	343
-	-	2	276.0	7.010	76180	38.60 33.98	0.05963 0.05269	231	302
-	3	-	259.0	6.579	67080	33.99 33.63	0.05269	201	299
2	-	$\overline{3}$	257.6	6.544 6.401	66370 63500	3.63 32.18	0.04988	193	286
-	$\overline{4}$	3	252.0 233.0	6.401 6.045	535640	28.70	0.04449	173	255
-	4	4	232.0	5.893	53820	27.27	0.04227	163	242
3	-	4	229.4	5.827	52630	26.67	0.04134	159	237
-	5	-	220.0	5.588	48400	24.52	0.03801	147	217
-	5	5	212.0	5.385	44940	22.77	0.03530	136	202
4	-	-	204.3	5.189	41740	21.18	0.03278	126	188
$-$	6	-	233.0	5.156	41210	20.88	0.03237	125	86
$\square$	-	6	192.0	$4.87 \%$	36860	18.68	0.0	112	158
5	-	-	181.9	4.621	33100	16.77	0.02600	100	146
-	7	-	180.0	4.572	32430	16.42	0.02545	92.0	139
-	-	7	176.0	4.470	33980	15.70	0.02433 0.02138	93.6 86.2	123
-	8	-	165.0	4.191	27220	13.86 13.30	0.02138	79.5	118
6	-	-	162.0	4.116	26250	13.30	0.02011	77.5	115
$-$	-	8	160.0	4.064	25600	12.97	0.01720	66.3	98.6
7	9	-	148.0	3.759	20320	10.55	0.01635	63.0	93.7
7	-	9	144.3	3.665	20740	10.51	0.01629	62.8	93.4
-	10	9	134.0	3.404	17960	9.098	0.01410	54.3	80.8
8		-	128.8	3.264	15510	8.366	0.01297	50.0	74.4
8	-	10	128.0	3.251	16380	8.302	0.01267	49.6	73.8
-	11	,	120.0	3.048	14400	7.297	0.01131	43.6	64.8
-	-	11	116.0	2.946	13460	6.818	0.01057	42.8	60.5
9	-	-	114.4	2.906	13090	6.634	0.01028	39.6	58.9
-	12	-	109.0	2.769	11880	6.020	0.009331	35.9	53.5 48.7
-	-	12	104.0	2.642	10820	5.481	0.008495	32.7 31.4	48.7
10	-	-	101.9	2.588	10380	5.261	0.008155	31.4 27.3	46.6
-	13	$\bar{\square}$	95.00	2.413	9025	4.573 4.289	0.007088 0.006648	27.3 25.6	38.1
-	-	13	92.00	2.337	8464 8234	4.289 4.172	0.006648 0.006467	25.6 24.9	37.1
11	-	-	90.74	2.305 2.108	8234 6889	4.172 3.491	0.006467	20.8	31.0
-	14	-	83.00 80.81	2.108 2.053	6889 6530	3.491 3.309	0.005129	19.8	29.4
12	-	14	80.81 80.00	2.053 $2.03:$	6530 6400	3.243	0.005027	19.4	28.8
-	15	14	80.00	1.829	5184	2.627	0.004072	16.1	23.4
13	15	1	71.96	1.828	5178	2.624	0.004067	15.7	23.3
1	16	-	65.00	1.651	4225	2141	0.003318	12.8	19.0
14	-	-	64.08	1.628	4107	2.081	0.003225	12.4	18.5
1	-	16	64.00	1.626	4096	2.075	0.003217	12.3	18.4
-	17	-	58.00	1.473	3364	1.705	0.002042	10.2	15.1
15	-	-	57.07	1.450	3257	1.650	0.002558	9.86 9.52	14.7 14.1
-	-	17	58.00	1.422	3136	1. 589	0.002463	9.52 782	14.1 11.6
16	$\checkmark$	-	50.82	1.291	2583	1.309	0.002028 0.001886	7.82 7.27	11.6 10.8
-	18	-	49.00	1.245	2401	1:217	0.001886 0.001810	6.98	10.4
-	-	18	48.00	1.219	2304	1.187 1.038	0.001810 0.001609	6.9 6.20	9.23
17	$\overline{7}$	-	45.26	1.150 1.067	2048	1.038 0.8938	0.001609 0.001385	6.20 5.34	7.94
-	19	-	42.00 40.30	1.067 1.024	1764 1624	08231	0.001276	4.92	7.32
18	-	19	40.30 40.00	1.024 1.016	1624 1600	0.8107	0.001257	4.84	7.21
-	-	19	40.00 36.00	0.9144	1296	0.6567	0.001018	3.93	5.84
19	-	-	35.89	0.9116	1288	0.6527	0.001012	3.90	5.80
19	20	-	35.00	0.8890	1225	0.6207	0.0009621	3.71	5.52
-	21	21	32.00	0.8128	1024	0.5189	0.0008042	3 3.11	4.62
20	21	21	31.96	0.8118	1022	0.5176	0.0008023	3.09	4.60

[^4]Wire tables

Standard annealed copper (B \& S)

AWG B\& gauge	diam. oter in mils	cross section		$\begin{aligned} & \text { ohms per } \\ & 1000 \mathrm{ft} \\ & \text { of } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$	lbe per 1000 fl	It per lb	$\begin{aligned} & \text { fl per ohm } \\ & \text { at } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & \text { ohms per lb } \\ & \text { at } 20^{\circ} \mathrm{C} \\ & \left(68^{\circ} \mathrm{F}\right) \end{aligned}$
		circular mils	square inches					
0000	460.0	211,600	0.1662	0.04901	640.5	1.561	20,400	0.00007652
000	409.6	167,800	0.1318	0.06180	507.9	1.968	16,180	0.0001217
$\infty$	364.8	133,100	0.1045	0.07793	402.8	2.482	12,830	0.0001935
0	324.9	105,500	0.08289	0.09827	319.5	3.130	10,180	0.0003976
1	289.3	83,690	0.06573	0.1239	253.3	3.947	8,070	0.0004891
2	257.6	66,370	0.05213	0.1563	200.9	4.977	6,400	0.0007778
3	229.4	52,640	0.04134	0.1970	159.3	6.276	5,075	0.001237
4	$2 \mathrm{C4}$.	41,740	0.03278	0.2485	126.4	7.914	4,025	0.001966
5	181.9	33,100	0.02600	0.3133	100.2	9.980	3,192	0.003127
6	162.0	26,250	0.02062	0.3951	79.46	12.58	2,531	0.004972
7	144.3	20,820	0.01635	0.4982	63.02	15.87	2,007	0.007905
8	128.5	16,510	0.01297	0.6282	49.98	20.01	1,592	0.01257
9	114.4	13,090	0.01028	0.7921	39.63	25.23	1,262	0.01999
10	101.9	10,380	0.008155	0.9989	31.43	31.82	1,001	0.03178
11	90.74	8,234	0.006467	1.260	24.92	40.12	794	0.05053
12	80.81	6,530	0.005129	1.588	19.77	50.59	629.	0.08035
13	71.96	5,178	0.004067	$2 . \mathrm{CO} 3$	15.68	63.80	499.3	0.1278
14	64.08	4,107	0.003225	2.525	12.43	80.44	396.0	0.2032
15	57.07	3,257	0.002558	3.184	9.858	101.4	314.0	0.3230
16	50.82	2,583	0.002028	4.016	7.818	127.9	249.0	0.5136
17	45.26	2,048	0.001609	5.064	6.200	161.3	197.5	0.8167
18	40.30	1,624	0.001276	6.385	4.917	203.4	156.6	1.299
19	35.89	1,288	0.001012	8.051	3.899	256.5	124.2	2.065
20	31.96	1,022	0.0008023	10.15	3.092	323.4	98.50	3.283
21	28.46	810.1	0.0006363	12.80	2.452	407.8	78.11	5.221
22	25.35	642.4	0.0005046	16.14	1.945	514.2	61.95	8.301
23	22.57	509.5	0.0004002	20.36	1.542	648.4	49.13	13.20
24	20.10	404.0	0.0003173	25.67	1.223	817.7	38.96	20.99
25	17.90	320.4	0.0002517	32.37	0.9699	1,031.0	30.90	33.37
26	15.94	254.1	0.0001996	40.81	0.7692	1,300	24.50	53.06
27	14.20	201.5	0.0001583	51.47	0.61 co	1,639	19.43	84.37
28	12.64	159.8	0.0001255	64.90	0.4837	2,067	15.41	134.2
29	11.26	126.7	0.00009953	81.83	0.3836	2,607	12.22	213.3
30	10.03	100.5	C.00007894	103.2	0.3042	3,287	9.691	339.2
31	8.928	79.70	0.00006260	130.1	0.2413	4,145	7.685	539.3
32	7.950	63.21	0.00004964	164.1	0.1913	5,227	6.095	857.6
33	7.680	50.13	0.00003937	206.9	0.1517	6,591	4.833	1,364
34	6.305	39.75	0.00003122	260.9	0.1203	8,310	3.833	2,168
35	5.615	31.52	0.00002476	329.0	0.09542	10,480	3.040	3,448
36	5.000	25.00	0.00001964	414.8	0.07568	13,210	2.411	$5,482$
37	4.453	19.83	0.00001557	523.1	0.06001	16,660	1.912	8,717
38	3.965	15.72	0.00001235	859.6	0.04759	21,010	1.516	13,860
39	3.531	12.47	0.000009793	831.8	0.03774	26,500	1.202	22,040
40	3.145	9.888	0.000007766	1049.0	0.02993	33,410	0.9534	35,040

Temperature coefficient of resistance: The resistance of a conductor at temperature $t$ in de. grees centigrade is given by
$R_{i}=R_{20}\left[1+a_{20}(t-201]\right.$
where $R_{20}$ is the resistance at 20 degrees centigrade and $a_{20}$ is the temperature coefficient of resistance at 20 degrees centigrade. For copper, $0_{0}=0.00393$. That is, the resistance of $a$ copper conductor increases approximately $4 / 10$ of 1 percent per degree centigrade rise in temperature.

Bare solid copper-hard-drawn (B \& S)*

AWG B \& 5 gauge	wire diameter in inches	breaking laod in pounds	tensile strength in lbs/in?	weight		maximum resistance (ohms per 1000 feet at $68^{\circ} \mathrm{F}$ )	cross-sectional apea	
				$\begin{aligned} & \text { nounds } \\ & \text { per } \\ & 1000 \text { feat } \end{aligned}$	$\begin{aligned} & \text { pounds } \\ & \text { per } \\ & \text { mile } \end{aligned}$		$\begin{gathered} \text { circular } \\ \mathrm{m} \mathrm{H}_{\mathrm{s}} \end{gathered}$	square inches
4/0	0.4600	8143	49,000	640.5	3382	0.05045	211,600	0.1662
$3 / 0$	0.4096	6722	51,000	507.9	2682	0.06361	167,800	0.1318
$2 / 0$	0.3648	5519	52,800	402.8	2127	0.05021	133,100	0.1045
1/0	0.3249	4517	54,500	319.5	1687	0.1011	105,500	0.08289
1	0.2893	3688	56,100	253.3	1338	0.1287	83,670	0.05573
2	0.2576	3003	57,600	200.9	1061	0.1625	66,370	0.05213
3	0.2294	2.39	59,000	159.3	841.2	0.2049	52,630	0.04134
4	0.2043	1970	60,100	126.4	667.1	0.2584	41,740	0.03278
5	0.1819	1591	61,200	100.2	529.1	0.3258	33,100	0.02600
-	0.1650	1326	62,000	82.41	435.1	0.3961		0.02138
6	0.1620	1280	62,100	79.46	419.6	0.4108	26,250	0.02062
7	0.1443	1030	63,000	63.02	332.7	0.5181	20,820	0.01635
-	0.1340	894.0	33,400	54.35	237.0	0.6006		0.01410
8	0.1285	826.0	63,700	49.97	253.9	0.6533	16,510	0.01297
9	0.1144	681.2	64,300	39.63	209.3	0.8238	13,090	0.01023
-	0.1040	550.4	64,800	32.74	172.9	0.9971	10,816	0.008495
10	0.1019	529.2	64,900	31.43	165.9	1.039	10,330	0.008155
11	0.09074	422.9	65,400	24.92	131.6	1.310	8,234	0.006467
12	0.08081	337.0	65,700	19.77	104.4	1.652	6,530	0.005129
13	0.07196	268.0	65,900	15.68	82.77	2.083	5,178	0.004067
14	0.06408	213.5	66,200	12.43	65.64	2.626	4,107	0.003225
15	0.05707	169.8	66,400	9.858	52.05	3.312	3,257	0.002558
16	0.05782	135.1	66,600	7.818	41.28	4.176	2,583	0.002028
17	0.04526	107.5	66,800	6.200	32.74	5.256	2,048	0.001639
18	0.04030	85.47	67,000	4.917	25.96	6.640	1,624	0.001276

*Courtesy of Copperweld Steel Co., Glassport, Pa. Based on ASA Specification H-4.2 and ASTM Specification B-I.

Modulus of elasticity is $17,000,000 \mathrm{lbs} /$ Inch2. Coefficient of linear expansion is $0.0000094 /$ degree fahrenheit.
Weights are based on a density of 8.89 grams $/ \mathrm{cm}^{3}$ of 20 degrees centigrade lequivalen! 100.00302699 !bs/circular $\mathrm{mil} / 1000$ feell.
The resistances are maximum valves for hard-drawn copper and are based on a resistivity of 10.674 ohms/circular-mil fool at 23 degrees centigrade ( 77.16 percent conductivity) for sizes 0.325 inch and larger, and 10.785 ohms/circular. mif loot at 20 degrees centigrade 196.16 percent conductivify) for sizes 0.324 inch and smaller.

## Tensile strength of copper wire ( $\mathrm{B} \&$ S *

		hard drawn		medium-hard drawn		soff or annealed	
AWG B \& 5 gange	wire diometer in inches	minimum lensile strength lbs/in ${ }^{n}$	breaking load in pounds	minimum tensile strengih lbs/in"	breaking load in pounds	maximum tensile strength lbs/in ${ }^{2}$	breaking load in pounds
1	0.2893	56,100	3688	46,000	3024	37,000	2432
2	0.2576	57,600	3003	47.000	2450	37,000	1929
3	0.2294	59,000	2439	48,030	1984	37,000	1530
4	0.2043	60,100	1970	48,330	1584	37,000	1213
5	0.1819	61,200	1591	48,660	1265	37,000	961.9
	0.1650	62,000	1326	, 6		,000	
6	0.1620	62,100	1280	49,000	1010	37,000	762.9
7	0.1443	63,000	1030	49,330	806.6	37,000	$605.0$
-	0.1340	63,400	894.0	,	-	,	
8	0.1285	63,700	826.0	49,660	643.9	37,000	479.8
9	0.1144	64,300	661.2	50,000	514.2	37,000	380.5
-	0.1040	64,800	550.4	,	-	,	
10	0.1019	64,900	529.2	50,330	410.4	38,500	314.0
11	0.09074	65,400	422.9	50,650	327.6	38,500	249.0
12	0.08081	65,700	337.0	51,000	281.6	38,500	197.5

[^5]|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  | －${ }_{\text {¢ }}$ |  |
|  | ¢ |  |
|  | ¢ ${ }_{\text {¢ }}^{\text {¢ }}$ | 118880 Box |
|  | $\square_{8}^{8}$ | 1180 |


 M゙NNシージニ


¢ ¢ ¢ ¢ ${ }_{\text {¢ }}^{\text {¢ }}$	 
\％	 
E	 

Wire tables continued

Physical properties of various wires*

properiy		copper		aluminum 99 percent pure
		annealod	hard-drawn	
Conductivity, Mathlessen's standard in percent Ohms/mil.foot of $68^{\circ} \mathrm{F}=20^{\circ} \mathrm{C}$   Circular-mil-ohms/mile of $68^{\circ} \mathrm{F}=20^{\circ} \mathrm{C}$		$\begin{gathered} 9910102 \\ 10.36 \\ 54,600 \end{gathered}$	$\begin{gathered} 961099 \\ 10.57 \\ 55,700 \end{gathered}$	$\begin{gathered} 611063 \\ 16.7 \\ 88,200 \end{gathered}$
Pcunds/mile. O Mean temp co Mean temp co	$\begin{aligned} & 68^{\circ} \mathrm{F}=20^{\circ} \mathrm{C} \\ & \text { of resistivity } /{ }^{\circ} \mathrm{F} \\ & \text { of resistivity } /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \quad 875 \\ & 0.00233 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & \quad 896 \\ & 0.00233 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & \quad 424 \\ & 0.0022^{4} \\ & 0.0040 \end{aligned}$
Mean speelfic Pounds/1000 fe Weight In pou	cular mll $h^{3}$	$\begin{aligned} & 8.89 \\ & 0.003027 \\ & 0.320 \end{aligned}$	$\begin{aligned} & 8.94 \\ & 0.003049 \\ & 0.322 \end{aligned}$	$\begin{aligned} & 2.88 \\ & 0.000909 \\ & 0.0967 \end{aligned}$
Mean specific Mean melting Mean melring		$\begin{aligned} & 0.093 \\ & 2,012 \\ & 1,100 \end{aligned}$	$\begin{aligned} & 0.093 \\ & 2,012 \\ & 1,100 \end{aligned}$	$\begin{array}{r} 0.214 \\ 1,157 \\ 625 \end{array}$
Mean coefficie Mean coefficie	inear expansion $/{ }^{\circ} \mathrm{F}$   inear expanslon $/{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.00000950 \\ & 0.0000171 \end{aligned}$	$\begin{aligned} & 0.00000950 \\ & 0.0000171 \end{aligned}$	$\begin{aligned} & 0.00001285 \\ & 0.0000231 \end{aligned}$
Solid wire $\binom{\text { Values in }}{\text { pounds } / \mathrm{in}^{2}}$	Ulimate tensile strength Average tensile strength Elastic Ilmit Average elastic limit Modulus of elasticity   Average modulus o! elasticity	$\begin{gathered} 30,000,1042,000 \\ 32,000 \\ 6,0001016,000 \\ 15,000 \\ 7,000,000 \text { 10 } \\ 17,000,000 \\ 12,000,000 \end{gathered}$	$\begin{gathered} 45,000 \text { 10 } 68,000 \\ 60,000 \\ 25,000 \text { 10 } 45,000 \\ 30,000 \\ 13,000,000 ~ 10 \\ 18,000,000 \\ 16,000,000 \end{gathered}$	20,000 10 35,000 24,000 14,000 14,000 $8,500,000$ 10 $11,500,000$ $9,000,000$
Concentric strand $\binom{\text { Values in }}{\text { pounds } / \mathrm{in}^{2}}$	Tenslle strength   Average tensilo strongth   Elastic !imir   Averoge elastic limit   Modulus of elasillcity	$\begin{gathered} 29,000 \text { to } 37,000 \\ 35,000 \\ 5,800 \text { to } 14,800 \\ \text { - } \\ 5,000,000 \text { 10 } \\ 12,000,000 \end{gathered}$	$\begin{gathered} 43,000 \text { 10 65,000 } 54,000 \\ 23,000 \text { to } 42,000 \\ 27,000 \\ 12,000,000 \end{gathered}$	25,800 13,800 Approx $10,000,000$

- Reprinted by permission from "Transmission Towers," American Bridge Company, Pitisburgh, Pa.; 1925: p. 169.

Stranded copper conductors (B \& S)*

circular mils	AWG Ba 5 gauge	number of wires	individual wire diam in inches	cable   diam   inches	squar inches	welght  	weight lbs per mile	```*maximum resistance ohms/1000 f1 af 20```
$\begin{aligned} & 211,600 \\ & 167,800 \\ & 133,100 \end{aligned}$	$\begin{aligned} & 4 / 0 \\ & 3 / 0 \\ & 2 / 0 \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 0.1055 \\ & 0.0940 \\ & 0.0837 \end{aligned}$	$\begin{aligned} & 0.528 \\ & 0.470 \\ & 0.419 \end{aligned}$	$\begin{aligned} & 0.1662 \\ & 0.1318 \\ & 0.1045 \end{aligned}$	$\begin{aligned} & 653.3 \\ & 518.1 \\ & 410.9 \end{aligned}$	$\begin{aligned} & 3,450 \\ & 2,736 \\ & 2,170 \end{aligned}$	0.05093   0.06422   0.08097
$\begin{array}{r} 105,500 \\ 83,690 \\ 66,370 \end{array}$	$\begin{gathered} 1 / 0 \\ 1 \\ 2 \end{gathered}$	$\begin{array}{r} 19 \\ 19 \\ 7 \end{array}$	0.0745   0.0664   0.0974	$\begin{aligned} & 0.373 \\ & 0.332 \\ & 0.292 \end{aligned}$	$\begin{aligned} & 0.08286 \\ & 0.06573 \\ & 0.05213 \end{aligned}$	$\begin{aligned} & 325.7 \\ & 258.4 \\ & 204.9 \end{aligned}$	$\begin{aligned} & 1,720 \\ & 1,364 \\ & 1,082 \end{aligned}$	$\begin{aligned} & 0.1022 \\ & 0.1288 \\ & 0.1624 \end{aligned}$
52,640   41,740   33,100	3 4 5	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.0867 \\ & 0.0772 \\ & 0.0688 \end{aligned}$	$\begin{aligned} & 0.260 \\ & 0.232 \\ & 0.206 \end{aligned}$	$\begin{aligned} & 0.04134 \\ & 0.03278 \\ & 0.02600 \end{aligned}$	$\begin{aligned} & 162.5 \\ & 128.9 \\ & 102.2 \end{aligned}$	$\begin{aligned} & 858.0 \\ & 880.5 \\ & 539.6 \end{aligned}$	$\begin{aligned} & 0.2048 \\ & 0.2582 \\ & 0.3256 \end{aligned}$
$\begin{aligned} & 26,250 \\ & 20,820 \\ & 16,510 \end{aligned}$	6 7 8	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$	0.0612 0.0545 0.0486	$\begin{aligned} & 0.184 \\ & 0.164 \\ & 0.146 \end{aligned}$	0.02062 0.01635 0.01297	$\begin{aligned} & 81.05 \\ & 64.28 \\ & 50.98 \end{aligned}$	$\begin{aligned} & 427.9 \\ & 339.4 \\ & 209.1 \end{aligned}$	$\begin{aligned} & 0.4105 \\ & 0.5176 \\ & 0.6528 \end{aligned}$
$\begin{aligned} & 13,090 \\ & 10,380 \end{aligned}$	9 10	7	$\begin{aligned} & 0.0432 \\ & 0.0385 \end{aligned}$	$\begin{aligned} & 0.130 \\ & 0.116 \end{aligned}$	$\begin{aligned} & 0.01028 \\ & 0.008152 \end{aligned}$	$\begin{aligned} & 40.42 \\ & 32.05 \end{aligned}$	$\begin{aligned} & 2134 \\ & 169.2 \end{aligned}$	$\begin{aligned} & 0.8233 \\ & 1.038 \end{aligned}$
$\begin{aligned} & 6,530 \\ & 4,107 \\ & 2,583 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.0305 \\ & 0.0242 \\ & C .0192 \end{aligned}$	0.0915 0.0726 0.0576	$\begin{aligned} & 0.005129 \\ & 0.003226 \\ & 0.002029 \end{aligned}$	$\begin{aligned} & 20.16 \\ & 12.68 \\ & 7.975 \end{aligned}$	$\begin{gathered} 106.5 \\ 66.95 \\ 42.11 \end{gathered}$	$\begin{aligned} & 1.650 \\ & 2.624 \\ & 4.172 \end{aligned}$
$\begin{aligned} & 1,624 \\ & 1,022 \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.0152 \\ & 0.0121 \end{aligned}$	$\begin{aligned} & 0.0456 \\ & 0.0363 \end{aligned}$	$\begin{aligned} & 0.001275 \\ & 0.008027 \end{aligned}$	$\begin{aligned} & 5.014 \\ & 3.155 \end{aligned}$	$\begin{aligned} & 26.47 \\ & 16.66 \end{aligned}$	$\begin{gathered} 6.636 \\ 10.54 \end{gathered}$

* The resistance values in this table are trade maxima for soft or annealed copper wire and are higher than the average values for commerclal cable. The following values for the conductivity and resistivlly of copper al 20 degrees centigrade were used:

Conductivity in terms of International Annealed Copper Standard: 98.16 percent
Resistivily in pounds per mile-ohm: 891.58
The resistance of hard-drawn copper is slightly greater thon the values given, being about 2 percent to 3 percent greater for sizes from 4/0 to 20 AWG.

$\begin{aligned} & \text { iron } \\ & \text { (Ex BB) } \end{aligned}$	sfoel (SiemensMartin)	crucible   steel, high strengih	plow steel, extro-high strength	copper-clad	
				30\% cond	40\% cond
$\begin{gathered} 16.8 \\ 62.9 \\ 332,000 \end{gathered}$	$\begin{gathered} 8.7 \\ 119.7 \\ 632,000 \end{gathered}$	$\begin{gathered} 1 \overline{22.5} \\ 647,000 \end{gathered}$	$\begin{aligned} & 125.0 \\ & 660,000 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 35.5 \\ & 187,000 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 26.6 \\ & 140,000 \end{aligned}$
$\begin{aligned} & \quad 4,700 \\ & 0.0028 \\ & 0.0050 \end{aligned}$	$\begin{aligned} & 8,900 \\ & 0.00278 \\ & 0.00501 \end{aligned}$	$\begin{array}{r} 9,100 \\ 0.00278 \\ 0.00501 \end{array}$	$\begin{array}{r} 9,300 \\ 0.00278 \\ 0.00501 \end{array}$	$\begin{array}{r} 2.775 \\ 0.0024 \\ 0.0044 \end{array}$	2.075 0.0041
$\begin{aligned} & 7.77 \\ & 0.002652 \\ & 0.282 \end{aligned}$	$\begin{aligned} & 7.85 \\ & 0.002671 \\ & 0.283 \end{aligned}$	$\begin{aligned} & 7.85 \\ & 0.283 \end{aligned}$	$\frac{7.85}{0.283}$	8.17   0.00281   0.298	$\begin{aligned} & 8.25 \\ & 0.00281 \\ & 0.298 \end{aligned}$
0.113 2,975 1,635	0.117   2,480   1,360	-	二	-	-
$\begin{aligned} & 0.00000673 \\ & 0.0000120 \end{aligned}$	$\begin{aligned} & 0.00000662 \\ & 0.0000118 \end{aligned}$	-	-	$\begin{aligned} & 0.0000072 \\ & 0.0000129 \end{aligned}$	$\begin{aligned} & 0.0000072 \\ & 0.0000129 \end{aligned}$
$\begin{gathered} 50,000 \text { 10 } 55,000 \\ 55,000 \\ 25,000 \text { 10 } 30,000 \\ 30,000 \\ 22,000,000 \text { 10 } \\ 27,000,000 \\ 26,000,000 \end{gathered}$	$\begin{gathered} 70,000 \text { 10 } 80,000 \\ 75,000 \\ 35,0001050,000 \\ 38,000 \\ 22,000,000 \text { 10 } \\ 29,000,000 \\ 29,000,000 \end{gathered}$	$\begin{array}{r} \overline{125,000} \\ \overline{69}, 000 \\ 30,000,000 \end{array}$	$\begin{aligned} & \overline{187,000} \\ & \overline{130,000} \\ & - \\ & 30,000,000 \end{aligned}$	$\begin{aligned} & \overline{60,000} \\ & \overline{30,000} \\ & - \\ & 19,000,000 \end{aligned}$	$\begin{array}{r} \overline{100,000} \\ \overline{50,000} \\ 21,000,000 \end{array}$
-	$\begin{gathered} 74,0001098,000 \\ 80,000 \\ 37,000 \text { 10 } 49,000 \\ 40,000 \\ 12,000,000 \end{gathered}$	$\begin{gathered} 85,000 \text { to } 165,000 \\ 125,000 \\ 70,000 \\ 15,000,000 \end{gathered}$	$\begin{gathered} 140,000 \text { to } 245,000 \\ 180,000 \\ 110,000 \\ 15,000,000 \end{gathered}$	$\begin{gathered} 70,0001097,000 \\ 80,000 \\ = \\ = \end{gathered}$	-

## Machine screws

Head styles-method of length measurement
Standard
Machine screws

screw		threads per inch		clearance drill*		lop drill $\dagger$			head					Dimensions hex nut			and other data washer		
	dia	coarse	fine	no	dia	no	diameler		round		fatmaxOD	filister		$\begin{gathered} \text { across } \\ \text { flas } \\ \hline \end{gathered}$	across corner	thickness	OD	ID	thickness
no							inches	mm	$\max$	max height		$\begin{gathered} \max \\ O D \end{gathered}$	max height						
0	0.060	-	80	52	0.053	56	0.046	1.1	0.113	0.053	0.119	0.096	0.059	-	-	-	-	-	-
1	0.073	64	72	47	0.078	53	0.059	1.5	0.138	0.061	0.146	0.118	0.070	-	-	-	-	-	-
2	0.086	56	64	42	0.093	50	0.070	1.8	0.162	0.070	0.172	0.140	0.083	$0.18 i$	0.217	0.062	1/4	0.105	0.020
3	0.099	48	-	37	0.104	47	0.079	2.0	0.187	0.078	0.199	0.161	0.095	0.187	0.217	0.062	1/4	0.105	0.020
		-	56			45	0.082	2.1											
4	0.112	40	-	31	0.120	43	0.088	2.2	0.211	0.086	C. 225	0.183	C. 107	0.250	0.289	0.078	9/32	0.123	0.025
		-	48			42	0.092	2.3											
5	0.125	40	-	29	0.136	38	0.101	2.5	0.236	0.095	0.252	0.205	0.120	0.250	0.289	0.078	3/8	0.140	0.032
5		-	44			37	0.103	2.6											
	0.138	32	-	27	0.144	36	0.108	2.7	0.290	0.103	0.279	0.226	0.132	0.250	0.289	0.078	5/16	0.150	0.026
6		-	40			33	0.114	2.9						0.312	0.361	0.109	3/8		0.032
	0.164	32	-	18	0.169	29	0.134	3.4	0.309	0.119	0.332	0.270	0.156	0.250	0.289	0.078	3/8	0.170	0.032
8		-	36			29	0.137	3.5						0.375	0.433	0.125	7/16		0.036
10	0.190	24	-	9	0.196	25	0.149	3.8	0.359	0.136	0.385	0.313	0.180	0.312	0.361	0.109	7/16	0.195	0.036
		-	32			21	0.160	4.0						0.375	0.433	0.125	1/2		0.040
	0.216	24	-	1	0.228	16	0.175	4.4	0.408	0.152	0.438	0.357	0.205	0.375	0.433	0.125	1/2	0.228	0.060
12		-	28			14	0.181	4.6						0.437	0.505	0.125	9/16		
	0.250	20	-	-	17/64	7	0.201	5.1	0.472	0.174	0.507	0.414	0.237	0.437	0.505	0.125	9/16	0.260	0.040
V/		-	28			3	0.213	5.4						0.500	0.577	0.156	11/16		0.051

* Clearance-drill sizes are practical values for use of the engineer or technician doing his own shop work.

two larger diameter than shown. For cast iron and bakelite, or for very thin material, the tap drill shouid be a size or two smaller diameter than shown


## Commercial insulating materials*

The tables on the following pages give a few of the important electrical and physical properties of insulating or dielectric materials. The dielectric constant and dissipation factor of most materials depend on the frequency and temperature of measurement. For this reason, these properties are given at a number of frequencies, but because of limited space, only the values at room temperature are given. The dissipation factor is defined as the ratio of the energy dissipated to the energy stored in the dielectric per cycle, or as the tangent of the loss angle. For dissipation factors less than 0.1, the dissipation factor may be considered equal to the power factor of the dielectric, which is the cosine of the phase angle by which the current leads the voltage.
Many of the materials listed are characterized by a peak dissipation factor occurring somewhere in the frequency range, this peak being accompanied by a rapid change in the dielectric constant. These effects are the result of a resonance phenomenon occurring in polar materials. The position of the dissipation-factor peak in the frequency spectrum is very sensitive to temperature. An increase in the temperature increases the frequency at which the peak occurs, as illustrated qualitatively in the sketch at the right. Nonpolar materials have very low losses without a noticeable peak, and the dielectric constant remains essenfially unchanged over the Frequency range.

logarithmic frequency

Another effect that contributes to dielectric losses is that of ionic or electronic conduction. This loss, if present, is important usually at the lower end of the frequency range only, and is distinguished by the fact that the dissipation factor varies inversely with frequency. An increase in temperature increases the loss due to ionic conduction because of the increased mobility of the ions.

The data given on dielectric strength are accompanied by the thickness of the specimen tested because the dielectric strength, expressed in volts/mil, varies inversely with the square root of thickness, approximately.
The direct-current volume resistivity of many materials is influenced by changes in temperature or humidity. The values given in the table may be reduced several decades by raising the temperature toward the higher end of the working range of the material, or by raising the relative humidity of the air surrounding the material to above 90 percent.

[^6]Commercial insulating materials continued


* Dielectric constant and dissipation factor are dependent on electrical field strength.

dissipation factor at					dielectric strength in volts／mil at $25^{\circ} \mathrm{C}$	d－e volume resistivity in ohm－cm of $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { thermal ex- } \\ & \text { pansion } \\ & \text { (linear) in } \\ & \text { parts } /{ }^{\circ} \mathrm{C} \end{aligned}$	soffening point in C	moistupe absorp－ tion in percent
（frequency in cycies／second）									
$10^{3}$	108	$10^{8}$	$\begin{array}{r} 3 \\ \times 10^{9} \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \\ \hline \end{array}$					
0.0100	0.0038	0.0937	0.0011	0.0058	225 （1／）	$>104$	$8.7 \times 10^{-8}$	1450	$<0.1$
0.0059	0.0031	0.0016	0.0018	0.0038	240 （1，	$>1014$	$8.9 \times 10^{-8}$	1150	$<0.1$
0.0034	0.0005	0.0004	0.0012	－	（	$>104$	$9.2 \times 10^{-6}$	1300	0．1－1
0.0020	0.0012	0.0010	0.0013	0.0042	－	－	$6-8 \times 10^{-4}$	1450	＜0．0．）
0.00045	0.00037	0.0003	0.0006	0.0012	200 （1）	$>10^{16}$	$10.5 \times 10^{-6}$	1450	$<0.1$
0.0140	0.0075	0.0078	－	－		－		－	．
0.0180	0.0090	0.0135	900	－	－	－	－	－	－
0.0030	0.0007	0.0006	0.00089	－	－	－	－	－	－
0.0130	0.0105	－	0.30	0.30	75	$10^{12} 10^{13}$	－	1400－1430	0.1
0.0168	－	$\overline{0}$	－	－	75	$10^{12}-1033$	－	1430	＜0．1
0.00045	0.00032	0.008	－	－	100	$10^{12}-10^{14}$	－	1510	$<0.1$
0.00108	0.0007	0.0004	－	－	100	$1{ }^{132}-10^{14}$	－	1430	＜0．1
0.0070	0.0006	0.0020	－	－	100	$10^{12}-1014$	－	1510	0.1
0.0002	0.0001	0.0007	－	－	－	－	－	1510	0.
0.00535	$0.0016{ }^{5}$	0.0023	0.0000	0.0110	－．	$10^{\circ}$ at $250^{\circ}$	$90 \times 10^{-7}$	626	－
0.0030	0.0012	0.0018	0.0041	0.0127	－	$10^{10}$ at $250^{\circ}$	$87 \times 10^{-7}$	630	－
0.0009	0.0005	0.0012	0.0038	－	－	$4 \times 10^{\circ}$ at $250^{\circ}$	$128 \times 10^{-7}$	527	－
0.0034	0.0019	0.0027	0.0044	0.0073	－	$5 \times 10^{\circ}$ at $259^{\circ}$	$49 \times 10^{-8}$	697	－
0.0056	0.0327	0.0035	0.0052	0.0083	－	$10^{8}$ at $250^{\circ}$	$46 \times 10^{-7}$	703	－
0.0005	0.0006	0.0012	0.0012	0.0031	－	$10^{4}$ at $250^{\circ}$	$31 \times 10^{-7}$	716	－
0.0042	0.0020	0.0032	0.0051	－	－	$6 \times 10^{38}$ at $250^{\circ}$	$36 \times 10^{-7}$	756	－
0.0006	0.0006	0.0006	0.0068	0.0013	－	$5 \times 10^{\circ}$ at $2500^{\circ}$	$8 \times 10^{-7}$	1450	－
0.0004	0.0005	0.0009	0.00199	0.0112	－	$10^{100}$ at $250^{\circ}$	$132 \times 10^{-9}$	484	Poor
0.00075	0.0002	0.0002	0.00006	0.00025	15，000（1＂）	$>10^{19}$	$5.7 \times 10^{-7}$	1667	－


$\begin{aligned} & 0.0220 \\ & 0.0082 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0.0280 \\ & 0.0055 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 0.0380 \\ & 0.0057 \\ & 0.077 \end{aligned}$	$\begin{aligned} & 0.0438 \\ & \overline{0.052} \end{aligned}$	$\begin{gathered} 0.0390 \\ 0.0389 \end{gathered}$	$\begin{gathered} 300\left(t^{7}\right) \\ 325-370\left(k^{\prime}\right) \\ 277\left(k^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 10^{11} \\ 2 \times 10^{14} \end{gathered}$	$\begin{aligned} & 30-40 \times 10^{-8} \\ & 10-20 \times 10^{-6} \\ & 8.3-13 \times 10^{-5} \end{aligned}$	$\left\|\begin{array}{c} <135 \text { (distortion) } \\ 100-115 \text { (distortion) } \\ 50 \text { (distortion) } \end{array}\right\|$	$\begin{gathered} <0.6 \\ 0.3 \\ 0.42 \end{gathered}$
$\begin{aligned} & 0.024 \\ & 0.029 \\ & 0.0141 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.050 \\ & 0.0078 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.0034 \end{aligned}$	$\begin{aligned} & 0.0355 \\ & 0.108 \\ & 0.0029 \end{aligned}$	二	$\begin{gathered} 373\left(0.085^{\prime \prime}\right) \\ 200\left(t^{\prime \prime}\right) \\ 600\left(\mathbf{t}^{\prime}\right) \\ \hline \end{gathered}$	二	$\begin{gathered} 2.6 \times 10^{-8} \\ 7.15 \times 100^{-3} \\ 6.49 \times 10^{-6} \\ \hline \end{gathered}$	1.52 （distortion） $40-60$（distortion） 126	$\frac{2}{0.05-0.08}$
$\begin{aligned} & 0.0056 \\ & 0.0032 \\ & 0.021 \end{aligned}$	0.0045   0.0061   0.00 S 0	$\begin{aligned} & 0.0015 \\ & 0.0033 \\ & 0.0064 \end{aligned}$	$\begin{aligned} & 0 . \overline{0026} \\ & 0.0062 \end{aligned}$	$0 . \overline{005}$	810 （0．068）	$>10^{16}$	$5.4 \times 10^{-8}$	$\begin{aligned} & >250 \\ & 125 \end{aligned}$	$\stackrel{\mathrm{Nil}}{0.0 \mathrm{i}-0.08}$
0.010	0.0052	0.0052	0.0069	－	450 （t＂）	$4 \times 10^{13}$	$1.9 \times 10^{-8}$	110 （distortion）	0.03
$\begin{aligned} & 0.0104 \\ & 0.0109 \end{aligned}$	$\begin{aligned} & 0.0082 \\ & 0.0109 \end{aligned}$	$\begin{aligned} & 0.0115 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0126 \\ & 0.0169 \end{aligned}$	二	二	二	二	71 （distortion）	1.4
0.0119   0.0165   0.0100	$\begin{aligned} & 0.0115 \\ & 0.034 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.057 \\ & 0.013 \end{aligned}$	$\begin{aligned} & 0.060 \\ & 0.0113 \end{aligned}$	$\overline{-}$	$\frac{\bar{\square}}{860\left(0.03 \cdot 4^{\prime \prime}\right)}$	$\frac{-}{>5 \times 10^{18}}$	$\begin{aligned} & 1.7 \times 10^{-5} \\ & 7.7 \times 10^{-5} \end{aligned}$	$\overline{\overline{100}}$	$\frac{0.6}{1.3}$
$\begin{aligned} & 0.110 \\ & 0.0 \div 70 \end{aligned}$	$\begin{aligned} & 0.089 \\ & 0.0082 \end{aligned}$	0.030	$\begin{aligned} & 0.0116 \\ & 0.028 \end{aligned}$	$0 . \overline{00553}$	$400\left(0.075^{\prime \prime}\right)$	$\underset{10^{13}}{8 \times 10^{14}}$	－	60 （stable）	0.5
0.100	0.093	0.030	0.0112	－	－	－	－	－	－
$\begin{aligned} & 0.0110 \\ & 0.041 \\ & 0.0048 \end{aligned}$	$\begin{aligned} & 0.0086 \\ & 0.0145 \\ & 0.0115 \end{aligned}$	$\begin{aligned} & 0.0043 \\ & 0.0067 \\ & 0.0180 \end{aligned}$	$\begin{aligned} & 0.0023 \\ & 0.0051 \\ & 0.0196 \end{aligned}$	$0 . \overline{0} 32$ $0 . c 30$	$\begin{gathered} 990\left(0.030^{7}\right) \\ \left.522(1)^{1}\right) \\ \hline \end{gathered}$	$\begin{gathered} >5 \times 10^{16} \\ 5 \times 10^{16} \end{gathered}$	$11-14 \times 10^{-5}$	72 （distortion）   5！（distortion）	$\overline{0.4}$

## 50

Commercial insulating materials continued

moteriat	composition	$\stackrel{\top}{\circ} \mathrm{C}$	dielectric constant at						60
				frea	6	c	/ 5		
			60	$10^{3}$	$10^{4}$	$10^{2}$	$\begin{array}{r} 3 \\ \times 10^{3} \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \\ \hline \end{array}$	
Melmac resin 592   Micarta 254	Melamineformaldelyde, mineral filler Cresylic acid-formaldehyde, $50 \%$ r-cellulose Polyhexamethylenc-adipamide	$\begin{aligned} & 27 \\ & 95 \\ & 25 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.4 .5 \\ & 3.7 \end{aligned}$	6.25	5.20	4.70	4.67	-	0.08
				4.95	4.51	3.85	3.43	3.21	0.098
Nylon 610				3.50	3.14	3.0	2.81	2.73	0.018
Piccolastic D-125   Plexiglass   Polycthylene DE-3101	Methylstryene-styrene copolymer Polymethylmethacrylate 170 antioxidant	25	2.58	2.58	2.58	2.58	2.55	-	0.0002
		27	3.45	3.12	2.76	2.70	2.60	-	0.064
		25	2.96	2.26	2.26	2.26	2.26	2.26	<0.0002
Polyisobutylene Polystyrene	-	25	2.23	2.23	2.23	2.23	2.23		0.0004
	$58.1 \%$ poly $-2,5$ dichlorostyrenc, $41.9 \%$ $\mathrm{TiO}_{2}$	25	2.56	2.56	2.56	2.55	2.55	2.54	<0.00005
		23	5.30	5.30	5.30	5.30	5.30	5.30	0.0032
-	34.7 r 0 poly-2.5 cichlorostyrene, 65.3\% $\mathrm{TiO}_{2}$   $18.6^{\circ} \%$ poly-2,5 dichlorostyrene, $81.4 \%$ $\mathrm{TiO}_{2}$   Cellulose-nitrate, $\mathbf{2 5 C o}_{0}$ cantphor	$\begin{aligned} & 24 \\ & 23 \\ & 27 \end{aligned}$	10.2	10.2	10.2	10.2	10.2	10.2	0.0018
			23.7	23.4	23,0	23.0	23.0	23.0	0.006
Pyraliu			11.4	8.4	6.6	5.2	3.74		2.0
Resinox 1.8241   Resinox 7013	Phenol-formallehyde, $71 \%$ rima   Plienol-aniline-formaldehyde, $58 \%$ mica, $2 \%$ misc   Dihydronaphthalene tetramer	24	4.66	4.64	4.61	4.62	4.60	-	0.006
		25	4.72	4.55	4.37	4.30	4.27	-	0.017
RII-35 resin		24	2.7	2.7	2.7	2.7	2.63	-	0.0009
Saran B-115   Styrofoam 103.7 Teflon	Vinylidene-vinyl chloride copolymer Foamed polystyrene, $0.25 \%$ filler Polytetrafluorocthylene	$\begin{aligned} & 23 \\ & 25 \\ & 22 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 1.03 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 1.03 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 3.18 \\ & 1.03 \\ & 2.1 \end{aligned}$	$\frac{2.82}{2.1}$	$\begin{aligned} & 2.71 \\ & 1.03 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \overline{1.03} \\ & 2.08 \end{aligned}$	$\begin{gathered} 0.042 \\ <0.0002 \\ <0.0005 \end{gathered}$
Tenite I ( $608 \mathrm{~A}, \mathrm{H}_{\mathrm{s}}$ )   Teuite II (205., $\mathrm{H}_{6}$ )   Textolite $1+22$	Cellulose acetate, plasticized Cellulose acetobutyrate, phasticized Cruss-linkerd polystyrene	262625	$\begin{aligned} & 4.59 \\ & 3.60 \\ & - \end{aligned}$	$\begin{aligned} & 4.48 \\ & 3.48 \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 3.08 \end{aligned}$	3.25	3.11	0.00750.0045
							2.91	-	
					-	-	2.53	-	-
Vibron 110	Cross-linked polystyrene $100 \%$ polyvinyl-chloride   $62.5 \%$ polyvinyl-chloride-acetate, $24 \%$ plasticizer, $8.5 \%$ nise	$\begin{aligned} & 25 \\ & 20 \\ & 25 \end{aligned}$	$\begin{gathered} 2.59 \\ 3.20 \\ - \end{gathered}$		2.58	2.58	$\begin{aligned} & 2.58 \\ & 2.84 \end{aligned}$	二	$\begin{aligned} & 0.0004 \\ & 0.0115 \end{aligned}$
Vinylite QYNA				$3.10$	2.88	2.85			
Vinylite VGigol				5.5	3.4	3.0	2.88	-	-
Vinylite VG5904	$34 \%$ polywinyl-chloride-acetate, $41 \%$ plasticizer, 50 mise   Polymer of $95 \%$ vinyl-chloride. $5 \%$ vimyl-acetate	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$1-$	$\begin{aligned} & 7.5 \\ & 3.15 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.74 \end{aligned}$	$-$	-
Vinylite VYNW									-
organic liquidsAroclor 120.Bayol-1)Benzeue	Chlorinated diphenyls   $77.6 \%$ paralins, $22.4 \%$ naphthenes Cheuncally pure, dried	$\begin{aligned} & 25 \\ & 21 \\ & 25 \end{aligned}$	$\begin{aligned} & 5.05 \\ & 2.00 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 5.05 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 4.30 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 2.06 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.70 \\ & 2.06 \\ & 2.28 \end{aligned}$	-	$\left\lvert\, \begin{array}{r}0.0002 \\ 0.0001 \\ <0.0001\end{array}\right.$
Cable oil 5314   Carbon tetracnloride   Ethyl alcohol	Aliphatic, aromatic hydrocarbons Alsolute	252525	$\begin{aligned} & 2.25 \\ & 2.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 2.15 \end{aligned}$	$\begin{array}{r} 2.25 \\ 2.17 \\ 24.5 \end{array}$	$\begin{array}{r} 2.25 \\ 2.17 \\ 23.7 \end{array}$	$\begin{aligned} & 2.22 \\ & 2.17 \\ & 6.5 \end{aligned}$	-	$\begin{aligned} & 0.0006 \\ & 0.007 \end{aligned}$
				-					
	Polychlortrilluorethylene (low mol. wt.) $57.4 \%$ purathins, $31.1 \%$ naphtheres $60 \%$ motn-, $40 \%$ di-, trichloronaplat halenes	25   26   25	$\begin{aligned} & 2.8 .1 \\ & 2.17 \\ & 4.80 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 2.17 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 2.17 \\ & 4.77 \end{aligned}$	$\begin{aligned} & 2.57 \\ & 2.17 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 2.17 \\ & 3.44 \end{aligned}$	2.12	$\begin{gathered} 0.0002 \\ <0.0001 \\ 0.30 \end{gathered}$
Fractol A									
Halowax oil 1000									
	Organo-siloxane polymer   Chlorinated Indan   $72.4 \%$ parafins, $27.6 \%$ napht hence	232.424	2.755.72.14	2.755.712.14	2.75	$\frac{2.14}{2.14}$	$\frac{2.65}{2.14}$	二	$\begin{gathered} 0.002 \\ 0.00004 \\ <0.002 \end{gathered}$
Indion-scatiog compound ${ }^{\text {IN }}$									
Marcol									
Methyl alcohol	Absolute amalytical grade $49.4 \%$ paraflins, $27.6 \%$ maphthenes Chlorinated benzenes, diphenyls	252425	$\begin{aligned} & 2.15 \\ & 4.40 \end{aligned}$	$\begin{aligned} & - \\ & 2.17 \\ & 4.40 \end{aligned}$	31. 4.17	$\left\lvert\, \begin{gathered} 31.0 \\ 2.17 \\ 4.07 \end{gathered}\right.$	$\begin{gathered} 23.9 \\ 2.17 \\ 2.84 \end{gathered}$	-	$<0 . \overline{-}$
Primol-D									
P'yranol 1467									
	Isomeric pentachlorodiphenyls Isomeric trichlorobenzenes Methyl or ethyl siloxane poljmer (1000 css)	262622	5.01   4.55   2.78	$\begin{aligned} & 5.04 \\ & 4.53 \\ & 2.78 \end{aligned}$	$\begin{aligned} & 3.85 \\ & 4.53 \\ & 2.78 \end{aligned}$	(1.5	2.703.802.74	-	$\begin{aligned} & 0.02 \\ & 0.0001 \end{aligned}$
Pyranol 1478									


dissipation factor af					dielectric strength in volts／mil of $25^{\circ} \mathrm{C}$	d－c volume resistivity in ohm－cm af $25^{\circ} \mathrm{C}$	thermal ex－ pansion （iinear）in parts ${ }^{\circ} \mathrm{C}$	softening point in C	moisture absorp－ tion in percent
（frequency in cycles／second）									
$10^{2}$	$10^{\circ}$	$10^{\text {s }}$	$\begin{array}{r} 3 \\ \times 10^{3} \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \\ \hline \end{array}$					
0．04：0	0.0347	0.0360	0.0410	－	$450\left(3^{\prime \prime}\right)$	$3 \times 10^{13}$	$3.5 \times 10^{-6}$	125 （distortion）	0.1
$\begin{aligned} & 0.033 \\ & 0.0186 \end{aligned}$	0.036 0.0218	0.055 0.0200	0.051 0.0117	0.038 0.0105	$1020\left(0.033^{\prime \prime}\right)$ $400\left(1^{\prime \prime}\right)$	$3 \times 10^{13}$	$\begin{gathered} 3 \times 10^{-5} \\ 10.3 \times 10^{-5} \end{gathered}$	$\underset{65}{\text {（distortion）}}$	1.9 1.5
0.00015	50.0001	0.0003	0.0005	－	－	－	－		
0.0165	0.0140	0.007	0.0057	$\square$	990 （0．030 ${ }^{\prime \prime}$ ）	$>5 \times 1{ }^{108}$	$8-9 \times 10^{-8}$		0．3－0．6
$<0.0002$	$<0.0002$	0.0002 1	0.00081	0.0006	1200 （0．033 ${ }^{\prime \prime}$ ）	${ }_{1017}$	$\begin{gathered} 19 \times 10^{-5} \\ \text { (varys) } \end{gathered}$	85－105（distortion）	$\begin{array}{r} 0.3-0.6 \\ 0.03 \end{array}$
0.0001	0.0001	0.0003	0.00017	－	$600\left(0.010^{\prime \prime}\right)$	－	－		
$<0.00005$	5． 0.00007	$<0.0001$	0.00033	0.0012	500－700（17）	$10^{18}$	$6-8 \times 10^{-5}$	82（distortion）	$\begin{aligned} & 1,0 w \\ & 0.05 \end{aligned}$
0．0021	0.0003	0.0003	0.00016	0.0015	－	－	$5.6 \times 10^{-6}$	－	－
0.0008	0.0003	0.0003	0.00075	0.002	－	－	$3.3 \times 10^{-5}$	－	－
$\begin{aligned} & 0.0041 \\ & 0.100 \end{aligned}$	0.0012 0.064	0.0008 0.103	$0.0012$ $0.165$	0.002	－	－	$1.4 \times 10^{-5}$	－	－
				－	－	－	$0.8 \times 10^{-6}$	－	2.0
0.0040	0.0019	－	0.0042	－	400 （1／）	－	－	135 （distortion）	0.03
0.0137	0.0062	0.0077	0.0123	－ 000	400 （17）	－	－	$>100$（distortion）	0．07－0．10
$<0.0003$	$<0.0002$	$<0.0003$	0.0004	0.0006	（8）	－	－	100	$0.07-0.10$
0.063	0.057	0.0180	0.0072	－	$300\left(1^{5}\right)$	$10^{14}-10^{16}$	$15.8 \times 10^{-6}$	150	
$<0.0001$	$<0.0002$	－ 0.0	0.0001	－		10	10．8×10	85	Low
$<0.0003$	＜0．0002	＜0．0002	0.00015	0.0006	$\begin{gathered} 1000-2000 \\ \left(0.005^{\prime \prime}-0.012^{\prime \prime}\right) \end{gathered}$	$10^{17}$	$9.0 \times 10^{-5}$	66 （distertion， stable to 300）	0.00
0.0175	0.039	0.038	0.031	0.030		－	$8-16 \times 10^{-6}$		
0.0097	0.018	0.017	0.028	－	$250-400$（1）	－	$11-17 \times 10^{-5}$	60－121	2.3
－	－	－	0.0005	－	－	－	－	－	
0.0005	0.0016	0.0020	0.0019	－		－	－	－	－
0.0185	0.0160	0.0081	0.0035	－	400 （1）	10：4	$6.9 \times 10^{-5}$	54 （distortion）	0．05－0．15
0.118	0.074	0.020	0.0106	－	－	－	－	－	－
0.071	0.140	0.067	0.034	－	－	－	－	－	－
0.0105	0.0150	0.0080	0.0059	－	－	－	－	－	－
$\begin{array}{r}0.00035 \\ \hline\end{array}$	0．20	0.0170	0.0032	－		－	－		$\cdots$
$<0.0001$ $<0.0001$	＜0．0003	0.0005	0.00133	－	$300\left(0.100^{\prime \prime}\right)$	－	$1 \times 10^{-3}$	－26（pour point）	Slight
$<0.0001$	＜0．0001	＜0．0001	$<0.0001$	$<0.0001$		－		－	Sught
＜0．00004	0.0008	－		－	300 （0．100＂）	－	－		
0.0008	＜0．00004	$<0.0002$	0.01004	－	300 （0．100）	二	二	－40（pour point）	－
－	0.090	0.062	0.250	－	－	－	－		
－0．0001	0.0092	0.060		－	－	－	－		
－0．0001	$<0.0003$	0.0004	0.00072	0.0019	300 （0．100\％）	－	$7.06 \times 10^{-4}$	$<-15$（pour point）	Slight
0.0050	$<0.0002$	－	0.25	0．0．10	300 （0．100）	－	$2.1 \times 10^{-4}$	－38（melts）	Slight
0.0006	0.0004	0.0015	0.0092	－	$5000\left(0.010^{7}\right)$	$1 \times 10^{12}$			－
－0．0010	－0．00	0.0015	－	－		$10^{14}$		$10 \text { (pour point) }$	－
－0．0001	$<0.0002$	－	0.00097	－	$300\left(0.100^{7}\right)$	－	$7.5 \times 10^{-4}$	-12 （pour point）	Slight
－	0.20	0.038	0.64	－	－	－	－	－	
：0．0001	＜0．0002	－ 13	0.0007.	－		－	$6.91 \times 10^{-6}$	$<-15$（pour point）	Slight
0.0003	0.0190	0.13	0.0116	－	300 （0．100\％）	－		－ 15 （pour join）	Whgh
0.0006	0.25	－		－	－	－	－		
0.0014	0.0003	0.014	0.23	－	－	二	－	10 （pour point）	二
0.00008	0.0003	－	0.0096	－	－	－	－	－	－

## 52

## Commercial insulating materials continued

material	composition	T0	dielectric constant of						60
			(frequency in cycles/second)						
			60	$10^{3}$	$10^{6}$	$10^{8}$	$\begin{array}{r} 3 \\ \times 10^{9} \end{array}$	$\begin{array}{r} 2.5 \\ \times 10^{10} \end{array}$	
Silicone fluid 500	Methyl or ethyl siloxane polymer ( 0.65 cs )	22	2.20	2.20	2.20	2.20	2.20	2.13	
Styreae dimer	-	25	- 2.	2.20	2.7	2.7	2.5	2.13	<0.001
Styrene N-100	Monomeric styrene	22	2.40	2.40	2.40	2.40	2.40	-	0.01
Transil oil 10C	Aliphatic, aromatic hydrocarbons	26	2.22	2.22	2.22	2.20	2.18		
Vaseline	Aliphatic, aromalie hydrocarbons	25	2.16	2.16	2.16	2.20 2.16	2.18 2.16	二	$\begin{aligned} & 0.001 \\ & 0.0004 \end{aligned}$
waxes									
Acrowas C	Cetylacetamide	21	2.60	2.58	2.54	2.52	2.48	2.44	
Becswax, yellow	-	23	2.76	2.73	2.53	2.45	2.39		0.025
Ceresin, white	Vegetable and mineral waxes	25	2.3	2.3	2.3	2.3	2.25	-	0.0009
Hilowax 11-314	Dichloronaphthalenes	23	3.14	3.04	2.98	2.93			
Hislowax 1001, cold-molded	Tri- and tetrachloronaphthalenes	26	8.45	5.45	5.40	4.2	2.92	2.84	$\begin{aligned} & 0.10 \\ & 0.002 \end{aligned}$
Opalwax	Mainly 12-hydroxystearit	24	14.2	10.3	3.2	2.7	2.55	2.5	$\begin{aligned} & 0.002 \\ & 0.12 \end{aligned}$
Parafin wax, $132^{\circ}$ ASTM	Mainly $\mathrm{C}_{22}$ to $\mathrm{C}_{29}$ aliphatic, saturated								
	hydrocarbons	25	2.25	2.25	2.25	2.25	2.25	-	<0.0002
Vistamax	Polybutene	25	2.34	2.34	2.34	2.30	$2.2 \%$	-	0.0002

rubbers
GR-I (butyl rubber)
GR-I compound
GR-S (Buma S) cured

GR-S (Buna S), uncured Gutta-percha Hevea rubber	Copolymer of $75 \%$ butadienc, $25 \%$ styrene   Pale crepe
Hevea rubber, vulcanized Marbon B   Neoprene compound	100 pts pale crepe, 6 pts sulfur Cyclized pale crepe $38 \%$ GIR-M
Silastic 120   Styraloy 22	$50 \%$ siloxane elastonier, $50 \% \mathrm{TiO}_{2}$ Copolymer of butadiene, at yreue


Copolymer of $98-99 \%$ isobutylene, $1-2 \%$ isoprene   100 pts polymer, 5 pts zinc oxide, 1 jt tuads, 1.5 pts sulfur   Styrene-butadiene copolymer, fillers, lubricants, etc.	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 2.39 \\ & 2.43 \\ & 2.96 \end{aligned}$	$\begin{aligned} & 2.38 \\ & 2.42 \\ & 2.96 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.40 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.39 \\ & 2.82 \end{aligned}$	2.35 2.38 2.75	-	$\begin{aligned} & 0.0034 \\ & 0.005 \\ & 0.0008 \end{aligned}$
Copolymer of $75 \%$ butadienc, $25 \%$ styrene   Palc crepe	$\begin{aligned} & 26 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.61 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.60 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.53 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.47 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.40 \\ & 2.15 \end{aligned}$	二	$\begin{gathered} 0.0005 \\ 0.0005 \\ 0.0030 \end{gathered}$
100 pts pale crepe, 6 pts sulfur Cycized pale crepe 38\% GIR-M	$\begin{aligned} & 27 \\ & 27 \\ & 24 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.48 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.48 \\ & 6.60 \end{aligned}$	$\begin{aligned} & 2.74 \\ & 2.46 \\ & 6.26 \end{aligned}$	$\begin{aligned} & 2.42 \\ & 2.44 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.36 \\ & 2.37 \\ & 4.00 \end{aligned}$	$\overline{4.0}$	$\begin{aligned} & 0.005 \\ & 0.0021 \\ & 0.010 \end{aligned}$ $0.018$
$50 \%$ siloxane elastonier, $50 \% \mathrm{TiO}_{2}$ Copolymer of butadiene, styreue	25 23	$\begin{aligned} & 5.78 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.76 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 2.4 \end{aligned}$	$\overline{2.35}$	$\begin{aligned} & 0.056 \\ & 0.001 \end{aligned}$

woods*

Balsawood	-	26	1.4	1.4	1.37	1.30	1.22	-	0.058
Douglas Fir		25	2.05	2.00	1.93	1.88	1.82	1,78	0.004
Douglas Fir, plywood	-	25	2.1	2.1	1.90	-	-	1.6	0.012
Mahogany		25	2.42	2.40	2.25	2.07	1.88		
Yellow Bireh		25	2.9	2.88	2.70	2.47	2.13	1.87	0.007
Yellow Poplar		25.	1.85	1.79	1.75	-	1.50	1.4	0.004


miscellaneous									
Amber   Cenco Sealstix   Plicene cement	Fossil resin   Dekhotinsky cement	25	2.7	2.7	2.65	-	2.6	-	
		23	3.95	3.75	3.23	-	2.96	-	0.049
		25	2.48	2.48	2.48	2.47	2.40	-	0.005
Gilsonite   Shellac (natural XL)	$90.9 \%$ natural bitumen Contains $\sim 3.5 \%$ wax	20	2.69	2.66	2.58	2.56	2.56	-	0.006
		28	3.87	3.81	3.47	3.10	2.86	-	0.006
Mycalex 2821	Glass-bonded inica	25	7.50	7.50	7.50	7.45	-	-	-
Ruby mica   Paper, Royalgrey   Sodium chloride	Muscovite   Fresh erystals	26	5.4	5.4	5.4			-	0.005
		25	3.30	3.29	2.99	2.77	2.70	-	0.010
		25		5.90	5.90				
Ice Snow Water	From pure distilled water   Hard-packed snow followed by light rain Distilled	-12	-	-	4.15	3.45	3.20	--	-
			-	-	1.55	3.45	1.5	-	-
		25	-	-	78.2	78	76.7		

* Field perpendicular to grain.

dissipation factor of					dialectric strength in volts／mil at $25^{\circ} \mathrm{C}$	dec volume resistivity in ohmmerm at $25^{\circ} \mathrm{C}$	thermal ex－ pansion （linear）in parts／${ }^{\circ} \mathrm{C}$	softening point in ${ }^{\circ} \mathrm{C}$	moisture absorp－ tion in percent
（frequency in cycles／second）									
$10^{4}$	$10^{6}$	$10^{8}$	$\begin{aligned} & 3 \\ & \times 10^{9} \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ \times 10^{10} \\ \hline \end{array}$					
＜0．00004	$<0.0003$	0.00014	0.00145	0.0060	250－300（0．100＂）	－	$1.508 \times 10^{-3}$	－68（melts）	Nil
$0 . \overline{005}$	0.0003 0.0003	0.0018	0.011 0.0020	－	$300\left(0.100^{\prime \prime}\right)$	$3 \times 10^{12}$	－	－	$\stackrel{.0}{0.08}$
		－			300 （0．100＂）	$3 \times 10^{12}$	－	－	0.06
$<0.0001$	$<0.0005$	0.0048	0.0028	－	300 （0．100 ${ }^{\prime \prime}$ ）			－40（pour point）	－
0.0002	＜0．0001	＜0．0004	0.00066	－	－	－	－	－	－
0.0068	0.0020	0.0012	0.0015	0.0021	－	－	－		
0.0140	0.0092	0.0090	0.0075	－	－	－	－	45－64（melts）	－
0.0006	0.0004	0.0004	0.00046	－	－	－	－	57	－
0.0110	0.0003	0.0017	0.0037	$\bar{\square}$	－	－	－	35－63（melts）	Ni］
0.0917	0.0045	0.27	0.058	0.020	－	－	－	91－94	Low
0.21	0.145	0.027	0.0167	0.0160	－	－	－	86－88（melts）	
$<0.0002$	＜0．0002	＜0．0002	0.0002	－	1060 （0．027 ${ }^{\prime \prime}$	$>5 \times 10^{16}$	$13.0 \times 10^{-8}$	36	Very low
0.0403	0.00133	0.00133	0.0009	－	－	－	－	－	－


0.0035	0.0010	0.0010	0.0009	－	－	－	－	－	－
0.0060	0.0022	0.0010	0.00093	－	－	－	－	－	－
0.0024	0.0120	0.0080	0.0057	－	$870\left(0.040^{\prime \prime}\right)$	$2 \times 10^{15}$	－	－	－
0.0009	0.0038	0.0071	0.0044	－	－	－	－	－	－
0.0004	0.0042	0.0120	0.0060	－	－	$10^{15}$	－	－	－
0.0018	0.0018	0.0050	0.0030	－	－	－	－	－	－
0.0024	0.0446	0.0180	0.0047	－	－	－	－	－	－
0.0014	0.0009	0.0014	0.0029	－	620 （1）	$5 \times 10^{18}$	－	40－90	$<0.1$
0.011	0.038	0.090	0.034	0.025	300 （1）	$8 \times 102$	－		Nil
0.0030	0．0018	0.0027	0.0254	－	－	－	－	－	－
0.00055	0.0012	0.0052	0.0032	0.0018	1070 （0．030 ${ }^{\prime \prime}$ ）	$6 \times 10^{14}$	$5.9 \times 10^{-5}$	125	0．2－0．4



0.0018 0.0335   0.00355	$\begin{aligned} & 0.0056 \\ & 0.024 \\ & 0.00255 \end{aligned}$	$0 . \overline{0015}$	$\begin{aligned} & 0.0090 \\ & 0.021 \\ & 0.00078 \end{aligned}$	二	2300 （1）	Very high －	$9.8 \times 10^{-5}$	$\begin{array}{r} 200 \\ 80-85 \\ 60-65 \end{array}$	二
$\begin{aligned} & 0.0035 \\ & 0.0074 \end{aligned}$	0.0016 0.031	0.0011 0.030	$\begin{aligned} & 0.0010 \\ & 0.0254 \end{aligned}$	－	二	$10^{16}$	－	$155 \text { (melts) }$	Low after
0.0028	0.0010	0.0009	－	－	－	－	－	－	baking
0.0006 0.0077	0.0003 $0.0: 38$	0.0002 0.066	0.0003 0.056	－	118－276（0．040 ${ }^{\circ}$ ）	$5 \times 10{ }^{18}$	－	－	－
＜0．0001	＜0．0002	0.060	0.050	二	202 （1）	－	－	－	二
－	0.12	0.035	0.0009	－	－	－	－	－	－
－	0.29	－	0.0099	－	－	－	－	－	－
－	0.040	0.050	0.157	－	－	$10^{6}$	－	－	－

## Standards in general

Standardization in the field of components for radio equipment is organized and governed mainly by three cooperating agencies, the Armed Services Electro Standards Agency (ASESA), which issues Joint Army-Navy (JAN) specifications; the American Standards Association (ASA); and the Radio Manufacturers Association (RMA). Part of the function of these bodies is to set the standards for radio components land equipments, in many cases) with the purpose of providing for interchangeability among different manufacturers' products as to size, performance, and identification; minimum number of sizes and designs; uniform testing of products for acceptance; and minimum manufacturing costs. In this chapter is presented a brief outline of the requirements, characteristics, and designations for the major types of radio components.

## Color coding

The color code of Fig. 1 is used as a basis for marking radio components.

Fig. 1-Standard radio-industry color code.

color	significant figure	decimal multiplier	tolerance in percent*	voltage rating	characteristic
Black	0	1	$\pm 20$ (M)	-	A
Brown	1	10	-	100	B
Red	2	100	$\pm 2 \mid \mathrm{G}$	200	C
Orange	3	1,000	--	300	D
Yellow	4	10,000	-	403	E
Green	5	100,000	-	500	F
Blue	6	1,000,000	-	600	G
Violet	7	10,050,000	-	700	-
Grey	8	100,000,000	-	800	1
White	9	1,000,000,000		900	」
Gold	-	0.1	$\pm 5$ (J)	1000	-
Silver	-	0.01	$\pm 10$ (K)	2000	-
No color	-		$\pm 20$	500	-

* Letter symbol is used at end of type designations in RMA standards and JAN specifications to indicate tolerance


## Tolerance

The maximum deviation allowed from the specified nominal value is known as the tolerance. It is usually given as a percentage of the nominal value, though for very small capacitors, the tolerance may be specified in micromicrofarads ( $\mu \mu \mathrm{f})$. For critical applications it is important to specify the permissible tolerance; where no tolerance is specified, components are likely to vary by $\pm 20$ percent from the nominal value.

## Preferred values

To maintain an orderly progression of sizes, preferred numbers are frequently used for the nominal values. A further advantage is that all components manufactured are salable as one or another of the preferred values. Each preferred value differs from its predecessor by a constant multiplier, and the final result is conveniently rounded to two significant figures.

The ASA has adopted as an "American Standard" a series of preferred numbers based on $\sqrt[5]{10}$ and $\sqrt[10]{10}$ as listed in Fig. 2. This series has been widely used for fixed wirewound power-type resistors and for time-delay fuses.

Because of the established practice of $\pm 20-, \pm 10-$, and $\pm 5$-percent tolerances in the radio-component industry, a series of values based on $\sqrt[6]{10}, \sqrt[12]{10}$, and $\sqrt[24]{10}$ has been adopted by the RMA and is widely used for small radio components, as fixed composition resistors and fixed ceramic, mica, and molded paper capacitors. These values are listed in Fig. 2.

## Voliage rating

Distinction must be made between the breakdown-voltage rating (test volts) and the working-voltage rating. The maximum voltage that may be applied (usually continuously) over a long period of time without causing failure of the component determines the working-voltage rating. Application of the test voltage for more than a very few minutes, or even repeated applications of short duration, may result in permanent damage or failure of the component.

## Characteristic

This term is frequently used to include various qualities of a component such as temperature coefficient of capacitance or resistance, $Q$ value, maximum permissible operating termperature, stability when subjected to repeated cycles of high and low temperature, and deterioration experienced when the component is subjected to moisture either as humidity or water immersion. One or two letters are assigned in RMA or JAN type designations, and the characteristic may be indicated by color coding on the conponent. An explanation of the characteristics applicable to a component will be found in the following sections covering that component.

56

Standards in general continued

Fig. 2-ASA and RMA preferred values. RMA series is standard in the radio industry.

	ASA standard		RMA standard*		
Name of series	"5"	"10"	$\pm 20 \%$	$\pm 10 \%$	$\pm 5 \%$
Percent step size	60	25	$\approx 40$	20	10
Step multiplier	$\sqrt[5]{10}=1.59$	$\sqrt{10} 10=1.26$	$\sqrt[6]{10}=1.45$	$\sqrt[12]{10}=1.21$	$\sqrt[24]{10}=1.10$
Values in the series	10	10	10	10	10
	-	12.5	-	-	11
	-	(12)	-	12	12
	-	112	-	-	13
	-	-	15	15	15
	15	16	-	-	16
	-	-	-	18	18
	-	23	-	-	20
	-	-	22	22	22
	-	-	-	-	24
	25	25	-	-	-
	-	-	-	27	27
	-	$31.5\}$	-	-	30
	-	$\text { [321 }\}$	-	-	-
	-	,	33	33	33
	-	-	-	-	36
	-	-	-	39	39
	40	40	-	-	-
	-	-	-	$\rightarrow$	43
	-	-	47	47	47
	-	50	-	-	-
	-	-	-	-	51
	-	-	-	56	56
	-	-	-	-	62
	63	63	-	-	-
	-	-	68	68	68
	-	-	-	-	75
	-	80	-	-	-
	-	-	-	82	82
	-	-	-	-	91
	100	100	100	100	100

* Use decimal multipliers for smaller and larger values. Associate the rolerance $\pm 20 \%, \pm 10 \%$, or $\pm 5 \%$ only with the values listed in the corresponding column: Thus, 1200 ohms may be either $\pm 10$ or $\pm 5$, but not $\pm 20$ percent; 750 ohms may be $\pm 5$, but neither $\pm 20$ nor $\pm 10$ percent.


## Resistors--fixed composition

## Color code

RMA.-standard and JAN-specification requirements for color coding of fixed composition resistors are identical (Fig. 3). The exterior body color of insulated axial-lead composition resistors is usually tan, but other colors, except black, are permitted. Noninsulated, axial-lead composition resistors
have a black body color. Radial-lead composition resistors may have a body color representing the first significant figure of the resistance value.

|  |
| :--- | :--- | :--- |
| axial |
| leads |$\quad$| Band A | Indicates first significant figure of resistance value in ohms | Body A |
| :--- | :--- | :--- |
| Band B | Indicates second significant figure | End B |
| Band C | Indicates decimal multiplier | Band C or dot |
| Band D | If any, indicates tolerance in percent about nominal resistance <br> value. If no color appears in this position, tolerance is $20 \%$ | Band D |

Fig. 3-Resistor color coding. Colors of Fig. I determine values.
Examples: Code of Fig. 1 determines resistor values. Examples are

resistance in ohms   and tolerance	band designation			
	A	B	C	D
	Orange	Orange	Red	Black or no band
1.8 megohms $\pm 10 \%$	Green	Brown	Brown	Gold

## Tolerance

Standard resistors are furnished in $\pm 20- \pm 10$-, and $\pm 5$-percent tolerances, and in the preferred-value series previously tabulated. "Even" values, such as 50,000 ohms, may be found in old equipment, but they are seldom used in new designs.

## Temperature and voltage coefficients

Resistors are rated for maximum wattage for an ambient temperature of 40 degrees centigrade; above this figure it is necessary to operate at reduced wattage ratings. Resistance values are found to be a function of voltage as well as temperature; current JAN specifications allow a maximum

[^7]voltage coefficient of 0.035 percent/volt for $\frac{1}{4}$ - and $\frac{1}{2}$-watt ratings, and 0.02 percent/volt for larger ratings. Specification JAN-R-11 permits a resistance-temperature characteristic as in Fig. 4.

Fig. 4-Temperalure coefficient of resistance.

	characteristic	percent maximum allowable change from resistance at 25 degrees centigrade					
Nominal resistance in ohms		$\begin{gathered} 0 \\ 10 \\ 1000 \end{gathered}$	$\begin{gathered} >1000 \\ 10 \\ 10,000 \end{gathered}$	$\begin{gathered} >10,000 \\ 10 \\ 0.1 \text { meg } \end{gathered}$	$\begin{gathered} >0.1 \mathrm{meg} \\ \text { to } \\ 1.0 \mathrm{meg} \end{gathered}$	$\begin{gathered} >1 \text { meg } \\ \text { to } \\ 10 \mathrm{meg} \end{gathered}$	$\begin{gathered} >10 \mathrm{meg} \\ \text { to } \\ 100^{\mathrm{meg}} \end{gathered}$
At -55 deg cent ambient	E	13	20	25	40	52	70
	F	6.5	10	13	20	26	35
At +105 deg cent ambient	¢	$\pm 10$	$\pm 12$	$\pm 15$	$\pm 20$	$\pm 36$	$\pm 44$
	F	$\pm 5$	$\pm 6$	$\pm 7.5$	$\pm 10$	$\pm 18$	$\pm 22$

The separate effects of exposure to high humidity, salt-water immersion (applied to immersion-proof resistors only), and a 1003 -hour rated-load life test should not exceed a 10 -percent change in the resistance value. Soldering the resistor in place may cause a maximum resistance change of $\pm 3$ percent. Simple temperature cyeling between -55 and +85 degrees centigrade for 5 cycles should not change the resistance value as measured at 25 degrees centigrade by more than 2 percent. The above summary of composition-resistor performance indicates that tolerances closer than $\pm 5$ percent may not be satisfactorily maintained in service; for a critical application, other types of small resistors should be employed.

## Resistors-fixed-wirewound low-power types

## Color coding

Small wirewound resistors in $\frac{1}{2}$-, 1-, or 2-watt ratings may be color coded as described in Fig. 3 for insulated composition resistors, but band $A$ will be twice the width of the other bands.

## Maximum resistance

For reliable continuous operation, it is recommended that the resistance wire used in the manufacture of these resistors be not less than 0.0015 inch in diameter. This limits the maximum resistance available in a given physical size or wattage rating as follows: $\frac{1}{2}$-watt: 470 ohms $\quad$-watt: 2200 ohms 2-watt: 3300 ohms

## Wattage

Wattage ratings are determined for a temperature rise of 70 degrees in free air at a 40-degree-centigrade ambient. If the resistor is mounted in a confined area, or may be required to operate in higher ambient temperatures, the allowable dissipation must be reduced.

## Temperature coefficient

The temperature coefficient of resistance over the range -55 to +110 degrees, referred to 25 degrees centigrade, may have maximums as follows:

Above 10 ohms: $\pm 0.025$ percent/degree centigrade
10 ohms or less: 0.050 percent/degree centigrade
Stability of these resistors is somewhat better than that of composition resistors, and they may be preferred except where a noninductive resistor is required.

## Capacitors-fixed ceramic

Ceramic-dielectric capacitors of one grade are used for temperature compensation of tuned circuits and have many other applications. In certain styles, if the temperature coefficient is unimportant li.e., general-purpose applications), they are competitive with mica capacitors. Another grade of ceramic capacitors offers the advantage of very high capacitance in a small physical volume; unfortunately this grade has other properties that limit its use to noncritical applications such as bypassing.

## Color code

If the capacitance tolerance and temperature coefficient are not printed on the capacitor body (Fig. 5), the color code of Fig. 6 may be used.


Fig. 5-Type designation for ceramic capacitors. RMA class is omitted on JANspecification capacitors.

## Capacitors-fixed ceramic continued



Fig. 6-Color code for fixed ceramic capacitors.

## Capacitance and capacitance tolerance

Preferred-number values on RMA and JAN specifications are standard for capacitors above 10 micromicrofarads ( $\mu \mu \mathrm{f}$ ). The physical size of a capacitor is determined by its capacitance, its temperature coefficient, and its class. Note that the capacitance tolerance is expressed in $\mu \mu \mathrm{f}$ for nominal capacitance values below $10 \mu \mu \mathrm{f}$ and in percent for nominal capacitance values of $10 \mu \mu \mathrm{f}$ and larger.

## Temperature coefficient

The change in capacitance per unit capacitance per degree centigrade is the temperature coefficient, usually expressed in parts per million parts per degree centigrade ( $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ). Preferred temperature coefficients are those listed in Fig. 6.

Capacitors-fixed ceramic continued
Temperature-coefficient tolerance: Because of the nonlinear nature of the temperature coefficient, specification of the tolerance requires a statement of the temperature range over which it is to be measured lusually - 55 to +85 degrees centigrade, or +25 to +85 degrees centigradel, and a

Fig. 7-Quality of fixed ceramic capacitors. Summary of test requirements.

		specificationJAN-C-20	RMA class				
			1	2	3	4	5
Minimum initial insulation resistonce in megohms		$>7500$	7500	7500	7500	1000	1000
Minimum $Q$ for $C>30 \mu \mu f$ (See Fig. 8 for smaller Cl		$>1000$	1000	650	335	100	40
Maximum allowable capacitance drift with temperature cyeling lpercent or $\mu \mu \mathrm{f}$, whichover is greater)		$\begin{gathered} 0.2 \% \\ \text { or } \\ 0.25 \mu \mu 1 \end{gathered}$	$\begin{gathered} 0.3 \% \\ \text { or } \\ 0.25 \mu \mu \mathrm{l} \end{gathered}$	$\begin{gathered} 0.3 \% \\ \text { or } \\ 0.25 \mu \mu \end{gathered}$	$\begin{gathered} 0.3 \% \\ \text { or } \\ 0.25 \mu \mu \mathrm{l} \end{gathered}$	-	-
Maximum capacitance change in percent over range - 55 to to +85 C		-	-	-	-	$\pm 25$	$\begin{aligned} & -50 \\ & +25 \end{aligned}$
Working voltage $=$ sum of dc and peak ac		-	500	500	500	350	350
Humidity test		100 hours exposure at $40^{\circ} \mathrm{C}, 95 \%$ relative humidity					
Life test at $85^{\circ} \mathrm{C}$		1000 hours, 750 vde plus 250 vac of 100 cycles or less	1000 hours, 1000 volts			1000 hours, 750 volts	
After humidity test or lifo test	Minimum Q $(C)>30 \mu \mu)$	$>\frac{1}{2}$ initial limits	350	350	170	50	20
	Minimum insulation resistance in megohms	$>1000$	1000	1000	1000	100	100
After life test	Maximum capacitance change	. $1 \%$		$\begin{gathered} 1 \% \\ \text { or } \\ 0.5 \mu \mu \mathrm{f} \end{gathered}$	$\begin{gathered} 5 \% \\ \text { or } \\ 0.5 \mu \mu \mathrm{f} \end{gathered}$	10\%	Not yel determined
Application		Temperature compensation; stable, generalpurpose uses		Intermediate quality		High-capacitance general-purpose, noncritical uses only	
Volume elficiency ( $\mu \mu \mathrm{f} / \mathrm{inch}^{3}$ )		Low		Low		High	

## Capacitors-fixed ceramic conlinued

statement of the measuring procedure to be employed. Standard tolerances based on +25 to +85 degrees centigrade are symmetrical:

tolerance in ppm $/{ }^{\circ} \mathrm{C}$	$\pm 15$	$\pm 30$	$\pm 60$	$\pm 120$	$\pm 250$	$\pm 500$
code	(F)	(G)	(H)	(J)	$(\mathrm{K})$	$(\mathrm{L})$

The smaller tolerances can be supplied only for capacitors of $10 \mu \mu \mathrm{f}$ or larger, and only for the smaller temperature coefficients.

## Quality

Insulation resistance, internal loss iconveniently expressed in terms of Ql, capacitance drift with temperature cycling, together with the permissible effects of humidity and accelerated life tests, are summarized in Fig. 7. This data will be a guide to the probable performance under favorable or moderately severe ambient conditions.


Fig. 8-Minimum $Q$ requirements for ceramic capacitors where capacitance $<\mathbf{3 0} \mu \mu$.

## Capacitors-molded mica-dielectric

## Type designation

Small fixed mica capacitors in molded plastic cases are manufactured to performance standards established by the RMA or in accordance with a JAN specification. A comprehensive numbering system, the fype designation, is used to identify the component. The mica-capacitor type designations are of the form


## Capacitors－molded mica－dielectric

Component designation：Fixed mica－dielectric capacitors are identified by the symbol CM for JAN specification，or RCM for RMA standard．
Case designation：The case designation is a two－digit symbol that identifies a particular case size and shape．
Characteristic：The JAN characteristic or RMA class is indicated by a single letter in accordance with Fig． 9.

Fig．9－Fixed－mica－capacitor requirements by JAN characteristic and RMA class．

	JAN－specification requirements			RMA－standard requirements				
JAN char or RMA class	maximum capocitance drift in percent	maximum range of temperature coeffleient （ppm／${ }^{\circ} \mathrm{C}$ ）	$\underset{0}{\text { minimum }}$	maximum capacitance drifi	maximum range of lemperature soefficient （ppm／${ }^{\circ}$ C）	minimum insulation resistance in megohms	$\underset{Q}{\operatorname{minimum}}$	
A	－	－	$33 \%$ of JAN value in Fig． 10.	$\pm \begin{gathered} 15 \% \\ 1 \mu \mu n \end{gathered}$	$\pm 1000$	3000	$30 \%$ of RMA value in Fig．1C．	
B	－	－		$\pm \begin{gathered} 13 \%+ \\ \left.1 \mu_{\mu} f\right) \end{gathered}$	$\pm 500$	6000		
C	0.5	$\pm 200$		$\begin{array}{r} =10.5 \%+ \\ 0.5 \mu \mu 7 \end{array}$	$\pm 200$	6000		
1	－	－		$\begin{aligned} & =10.3 \%+ \\ & 0.2 \mu \mu \mathrm{f} \end{aligned}$	$\begin{aligned} & -5010 \\ & +150 \end{aligned}$	6000		
D	0.2	$\pm 100$		$\begin{array}{r}  \pm 10.3 \% \pm \\ 0.1 \quad \mu \mu(1) \end{array}$	$\pm 100$	6000		
J	－	－		$\begin{array}{r}  \pm 10.2 \%+ \\ 0.2 \mu \mu \mathrm{n} \\ \hline \end{array}$	$\begin{array}{r} -5010 \\ +100 \\ \hline \end{array}$	8000		
E	0.05	$010+100$		$\begin{aligned} & =10.1 \%+ \\ & 0.1 \mu \mu \\| \end{aligned}$	$\begin{aligned} & -2010 \\ & +100 \end{aligned}$	6000		
F	0.025	$010+50$		－	－	－	－	
G	0.025	010－50		－	－	－	－	

Insulation resistance of all JAN capacitors must exceed 7500 megohms． $\mathrm{ppm} /{ }^{\circ} \mathrm{C}=$ parts $/$ million／degree centigrade．
Where no data are given，such characteristics are not included in that particular standard．

Fig．10－Minimum $Q$ versus capac－ itance for JAN mica capacitors（ $Q$ measured at 1.0 megacycle），and for RMA mica capacitors（ $Q$ measured at 0.5 to 1.5 megacyales）．


Capacitance value: The nominal capacitance value in micromicrofarads is indicated by a 3-digit number. The first two digits are the first two digits of the capacitance value in micromicrofarads. The final digit specifies the number of zeros that follow the first two digits. If more than two significant figures are required, additional digits may be used, the last digit always indi. cating the number of zeros.

Capacitance tolerance: The symmetrical capacitance tolerance in percent is designated by a letter as shown in Fig. 1.

## Color coding

The significance of the various colored dots is explained by Figs. 11-13. The meaning of each color may be interpreted from Fig. 1.

JAN specifications and 1948 RMA standard: Are shown in Fig. 11.


Fig. II-New standard code for flxed mica capacitors. See color code, Fig. 1.

Older RMA standards-not in current use: The 1938 RMA standard covered a simple 3-dot color code (Fig. 12) showing directly only the capacitance, and a more comprehensive 6 -dot color code (Fig. 13) showing 3 significant figures and tolerance of the capacitance value, and a voltage rating. Capacitance values are expressed in micromicrofarads up to 10,000 micromicrofarads.


Fig. 12-RMA 3-dot code (obsolete) for mica capacitors; 500-volt, $\pm 20 \%$ tolerance only. See Fig. 1.

## Capacitors-molded mica-dielectric

continued


Fig. 13-RMA 6-dot color code (obsolete) for mica capacitors. See Fig. 1.

## Examples

	top row			bottom row			description
type	left	center	right	left	tolerance center	multiplier right	
RMA 13 dal   RMA   RMA   CM30B691J   CM35E332G   RCM20A221M	red   brown brown block black white	green   block   red   blue   orange   red	brown   black   green   gray   orange   red	none   blue   gold brown yellow block	none green red gold red black	none brown brown brown red brown	$250 \mu_{\mu} f=20 \%, 500$ volts $1000 \mu \mu i \neq 5 \%, 600$ volts $1250 \mu \mu ई \pm 2 \%, 1000$ volts $680 \mu \mu \mathrm{f}=5 \%$, chorocteristic B $3300 \mu \mu 5 \pm 2 \%$, characteristic E $220 \mu \mu \mathrm{f}=20 \%$, RMA class A

## Capacitance

Measured at 500 kilocycles for capacitors of $1000 \mu \mu \mathrm{f}$ or smaller; larger capacitors are measured at 1 kilocycle.

## Temperature coefficient

Measurements to determine the temperature coefficient of capacitance and the capacitance drift are based on one cycle over the following temperature values lall in degrees centigradel.

$$
\begin{aligned}
& \text { JAN: }+25,-40,-10,+25,+35,+45,+55,+65,+85,+25 \\
& \text { RMA: }+25,-20,+25,+85,+25
\end{aligned}
$$

## Dielectric strength

Molded-mica capacitors are subjected to a test potential of twice their direct-current voltage rating.

## Humidity and thermal-shock resistance

RMA-standard capacitors must withstand a 120 -hour humidity test: Five cycles of 16 hours at 40 degrees centigrade, 90 -percent relative humidity, and 8 hours at standard ambient. Units must pass capacitance and dielectricstrength tests, but insulation resistance may be as low as 1000 megohms for class-A, and 2000 megohms for other classes.

## 66

## Capacitors-molded mica-dielectric continued

JAN-specification capacitors must withstand 5 cycles of $+25,-55,+25$, $+85,+25$ degree-centigrade thermal shock followed by water immersion at +65 and +25 degrees centigrade. Units must pass capacitance and dielectric-strength tests, but insulation resistance may be as low as 3000 meg ohms.

## Life

Capacitors are given accelerated life tests at 85 degrees centigrade with 150 percent of rated voltage applied. No failures are permitted before: 1000 hours for JAN specification; or 500 hours for RMA standard.

## Capacitors-button-style fixed mica-dielectric

## Color code

"Button" mica capacitors are color coded in several different ways, of which the two most widely used methods are shown in Fig. 14.


Fig. 14-Color coding of button-mica capacitors. See Fig. 1 for color code.

## Characteristic

characteristic	max range of temp coeff   (ppm/ $\mathbf{C}$ )	maximum capacitance   drifi
$C$	$\pm 200$	$\pm 0.5 \%$
$D$	$\pm 100$	$\pm 0.3 \%$
E	$-20+0+100$	$\pm 10.1 \%+0.1 \mu \mu \mathrm{f}$

## Capacitors-button-style fixed mica-dielectric continued

Initial Q values shall exceed 500 for capacitors 5 to $50 \mu \mu$ f; 700 for capacitors 51 to $100 \mu \mu \mathrm{f}$; and 1000 for capacitors 101 to $5000 \mu \mu$ f. Initial insulation resistance should exceed 10,000 megohms. Dielectric-strength tests should be made at twice rated voltage.

## Thermal-shock and humidity tests

These are commercial requirements. After 5 cycles of $+25,-55,+85$, +25 degrees centigrade, followed by 96 hours at 40 degrees centigrade and 95 -percent relative humidity, capacitors should have an insulation resistance of at least 500 megohms; a Q of at least 70 percent of initial minimum requirements; a capacitance change of not more than 2 percent of initial value; and should pass the dielectric-strength test.

## Capacitors-paper-dielectric

The proper application of paper capacitors is a complex problem requiring consideration of the equipment duty cycle, desired capacitor life, ambient temperature, applied voltage and waveform, and the capacitor-impregnant characteristics. From the data below, a suitable capacitor rating may be determined for a specified life under normal use.

## Life-voltage and ambient temperature

Normal paper-dielectric-capacitor voltage ratings are for an ambient temperature of 40 degrees centigrade, and provide a life expectancy of approximately I year continuous service. For ambient temperatures outside the range 0 to +40 degrees centigrade, the applied voltage must be reduced in accordance with Fig. 15.

The energy content of a capacitor may be found from
$W=C E^{2} / 2$ watt-seconds
where
$\mathrm{C}=$ capacitance in microfarads $(\mu \mathrm{f})$
$E=$ applied voltage in kilovolts
In multiple-section capacitors, the sum of the watt-second ratings should be used to determine the proper derating of the unit.

Longer life in continuous service may be secured by operating at voltages lower than those determined from Fig. 15. Experiment has shown that


JAN specification

JAN char	watt-second rating	voltage rating	curve
${ }^{\prime} \mathrm{H}$	0.5-5	All, plus those excluded from group of eurve 2	1
	0-0.5	1500 v and belowsmall cased tubular styles; 1000 v and belowother styles	2
$D$$E$$F$	$>50$	All	3
	$5-50$	All	4
	0.5-5	All, plus those excluded from group of curve 6	5 -
	0-0.5	1500 v and belowsmall cased tubular styles; 1000 v and belowother styles	6

RMA standard

watt-second   rating	voltage   rating	curve
550	1500 and   over	7
$5-50$	2000 and   below	2500 and   obove
$0-5$	8	All

Fig. 15-Life-expectancy rating for paper capacifors as a function of ambient temperafure.
capacitor life is approximately inversely proportional to the 5th power of the applied voltage:

desired life in years (at ambient $\approx 45^{\circ} \mathrm{C}$ )	1	1	2	5	10
applied voltage in percent of rated voltage	1	100	85	70	60

The above life derating is to be applied together with the ambient-temperature derating to determine the adjusted-voltage rating of the paper capacitor for a specific application.

## Waveform

Normal filter capacitors are rated for use with direct current. Where alternating voltages are present, the adjusted-voltage rating of the capacitor should be calculated as the sum of the direct voltage and the peak value of the alternating voltage. The alternating component must not exceed 20 percent of the rating at 60 cycles, 15 percent at 120 cycles, 6 percent at 1000 cycles, or 1 percent at 10,000 cycles.

Where alternating-current rather than direct-current conditions govern, this fact must be included in the capacitor specification, and capacitors specially designed for alternating-current service should be procured.

Where heavy transient or pulse currents are present, standard capacitors may not give satisfactory service unless an allowance is made for the unusual conditions.

## Capacitor impregnants

Fig. 16 lists the various impregnating materials in common use together with their distinguishing properties. At the bottom will be found recommendations for application of capacitors according to their impregnating material.

## Insulation resistance

For ordinary electronic circuits, the exact value of capacitor insulation resistance is unimportant. In many circuits little difference in performance is observed when the capacitor is shunted by a resistance as low as 5 megohms. In the very few applications where insulation resistance is important le.g., some RC-coupled amplifiers), the capacitor value is usually small and megohm $\times$ microfarad products of 10 to 20 are adequate.
The insulation resistance of a capacitor is a function of the impregnant; its departure from maximum value is an indication of the care taken in

## Capacitors - paper-dielectric continued

Fig. 16 -Characteristics of impregnants for paper capacitors.

praperty			castor oil		mineral oil		askarels*   (chlorinated   synthotic)		Halowax (chlorinated naph. thalene synthetic)	mineral wax
Characteristic		From Specificotion JAN-C-5	D	-	Et	-	F†	-	H	-
		From RMA stondard		C	7000	${ }^{\text {A }}$	6000	B	3000	$15,000$
		Nominal	1500		7000		6000		3000	15,000
$$	Megohms $\times$ microlarads $\ddagger$	Specification minimum	500	500	2000	3000	1500	1000	2000	-
$\begin{aligned} & \stackrel{Q}{E} 0 \\ & \text { E. } \end{aligned}$	Minimum insulation resistance in megohms		1500	1500	6000	6000	4500	1500	6000	
令			$<0.2$		0.3		$<0.3$		0.5 to 3	0.5101 .5
之	Power factor in percent	$1000 \mathrm{c} / \mathrm{s}$			$\approx 1$		-		$\approx 2$	-
	High.ambient test temperature In degrees centigrade		85	85	85	85	85	85	55	85
		Nominal	10		40		30		100	50
	Megohms $\times$ microforods	Specification minimum	5	5	20	30	15	10	100	-
	Minimum insulation resistance in megohms		150	150	600	600	450	150	1000	5
	Power foctor in percent		2106		0.3 to 1.6		1 to 5		1103	0.2 to 1.5
	Percent capacitance change from value af 25 degrees centigrade		-4 10 +1		$-110+1.5$		-6 10-2		-4.5 100	-10 to -6
\%	Low-ambient test temperature in degrees centlgrade		-55	-40	-55	-40	-55	-40	$-20$	-55
-	Power foctor in percent		1.5104		0.5103		0.8103		0.5104	
	Percent   capacitance Nominal		$\begin{gathered} -2010 \\ +4 \end{gathered}$		$\begin{gathered} -1010 \\ +2 \end{gathered}$		$\begin{gathered} -30 \text { to } \\ -20 \end{gathered}$		$-10{ }^{10}$	$\begin{gathered} -6 i 0 \\ -2 \end{gathered}$
	change from value at 25 degrees centigrode	Specification maximum	$-30$	+5   10   -30	-15	$\pm 5$	-30	+5 10 -30	$-10$	-
$\circ$   0	Recommended ambient lem. perature range in degrees centigrade		-55	+ +85	-55	+85	-55	+85	$\begin{gathered} -20 \text { to } \\ +55 \end{gathered}$	$10+85$
	Relative capacitor volume flor units of equal capacltancel		100		135		$\frac{100}{}$		$\frac{100}{\text { General }}$	135
	Recommended uses		General. purpose dc. Also ac if temperature ronge is limited		Generalpurpose dc and ac; high temp opplica. tions. High. stability re. quirements		General. purpose de and ac. Non. inflommoble		General. purpose dc over limited temperafure range	Generalpurpose dc over wider temp range than Halo. wax units allow

Notes:
Bold figures in tabulation are Specification JAN-C-25 or RMA-standard limits for that property.

* Trade names Arocior, Pyranol, Dykanol A, Inerteen, etc.
$\dagger$ JAN-C-25 characteristics $A$ and $B$ Inot tabulated above) are essentially long-life versions of JAN characteristics $E$ and $F$, respectively.
$\ddagger$ At 25 degrees centigrade, applies to capacitors of approximately $\frac{1}{3}$ microfarad or larger. At any test temperature, capacitors are not expected to show megohm $X$ microfarad products in excess of the insulation-resistance requirements.


## Capaciłors-paper-dielectric

 continuedmanufacture to avoid undesirable contamination of the impregnant. For example, if an askarel-impregnated capacitor has the same insulation resistance as a good castor-oil-impregnated capacitor of equal rating, the askarel impregnant is strongly contaminated, and the capacitor life will be considerably reduced.

Measurements are made with potentials between 100 and 500 volts, and a maximum charging time of 2 minutes.

## Power factor

This is a function of the capacitor impregnant. In most filter applications where a specified maximum capacitor impedance at a known frequency may not be exceeded, the determining factor is the capacitor reactance and not the power factor. A power factor of 14 percent will increase the impedance only 1 percent, a negligible amount.

For alternating-current applications, however, the power factor determines the capacitor internal heating. Consideration must be given to the alternating voltage and the operating temperature. Power factor is a function of the voltage applied to the capacitor; any specification should include actual capacitor operating conditions, rather than arbitrary bridge-measurement conditions.

For manufacturing purposes, power factor is measured at room temperature $(\approx 25$ degrees centigrade), with 1000 cycles applied to capacitors of $1 \mu \mathrm{f}$ or less, rated 3000 volts or less; and with 60 cycles applied to capacitors larger than $1 \mu f$, or rated higher than 3000 volts. Under these conditions the power factor should not exceed 1 percent.

## Temperature coefficient of capacitance

Depending upon the impregnant characteristics, low temperature may cause an appreciable drop in capacitance. Due allowance for this must be made if low-temperature operation of the equipment is to be satisfactory. This temperature effect is nonlinear.

## Life tests

Accelerated life tests run on paper capacitors are based on 250 -hour operation at the high-ambient-temperature limit shown in Fig. 16 with an applied direct voltage determined by the watt-second and 40 -degreecentigrade voltage ratings.

## 1-F fransformer frequencies

Recognized standard frequencies for receiver intermediate-frequency
transformers are
Standard broadcast $(540$ to 1600 kilocycles) _ 45s, 175 kilocycles
Very-high-frequency broadcast $\quad 10.7$ megacycles
Very, ultra, and super-high-frequency equipment _ 30, 60,100 megacycles

## Color codes for transformer leads

## Radio power transformers ${ }^{1}$

Primary   If tapped:	Black	Amplifier	
Common		Filament No. 1	Green
Tap	Black Cl - ${ }^{\text {ellow }}$	Center tap	Green-Yellow
Finish	Black-Red	Filament No. 2	Brown
		Center top	Brown-Yellow
Rectifier		Filament No. 3	Slate
Plate	Red	Center tap	Slate-Yellow
Center tap	Red-Yellow		
Filament	Yellow		
Center tap	Yellow-Blue		

## Audio-frequency fransformers ${ }^{2}$

Primary Plate	single   Blue	push-pull	Secondary	single	
B+	Blue   Red	Blue   Red	Grid lor high side	single	push-pull
Plate	-	Blue or	of moving coill   Return lor low side	Green	Green
		Brown ${ }^{3}$	of moving coill	Black	Black
			Grid		Green or
					Yellow ${ }^{3}$

## Intermediate-frequency transformers ${ }^{4}$

Primary

Plate	Blue	For full-wave transiormer:	
B+	Red	Second diode	Viole
Secondary		Old standard ${ }^{5}$ is same as above, except:	
Grid or diode	Green	Grid return	Black
Grid refurn	White	Second diode	Green-Black

[^8]
## Inductance of single-layer solenoids

The approximate value of the low-frequency inductance of a single-layer solenoid is*
$L=F n^{2}{ }^{2}$ microhenries
where $F=$ form factor, a function of the ratio $d / 1$. Nalue of $F$ may be read from the accompanying chart, Fig. I. Also, $n=$ number of turns, $d=$ diameter of coil (inches), between centers of conductors, $1=$ length of coil linches) $=n$ times the distance between centers of adjacent turns.
The formula is based on the assumption of a uniform current sheet, but the correction due to the use of spaced round wires is usually negligible for practical purposes. For higher frequencies, skin effect alters the inductance slightly. This effect is not readily calculated, but is often negligibly small. However, it must be borne in mind that the formula gives approximately the true value of inductance. In contrast, the apparent value is affected by the shunting effect of the distributed capacitance of the coil.
Example: Required a coil of 100 microhenries inductance, wound on a form 2 inches diameter by 2 inches winding length. Then $d / 1=1.00$, and $F=0.0173$ on Fig. 1.
$n=\sqrt{\frac{L}{F d}}=\sqrt{\frac{100}{0.0173 \times 2}}=54$ turns
Reference to Magnet-wire data, page 74, will assist in choosing a desirable size of wire, allowing for a suitable spacing between turns according to the application of the coil. A slight correction may then be made for the increased diameter (diameter of form plus two times radius of wire), if this small correction seems justified.

## Approximate formula

For single-layer solenoids of the proportions normally used in radio work, the inductance is given to an accuracy of about 1 percent by
$L=n^{2} \frac{r^{2}}{9 r+101}$ microhenries
where $r=d / 2$.

## General remarks

In the use of various charts, tables, and calculators for designing inductors, the following relationships are useful in extending the range of the devices.

[^9]
## Inductance of single-layer solenoids cantinued

They apply to coils of any type or design.
a. If all dimensions are held constant, inductance is proportional to $n^{2}$.
b. If the proportions of the coil remain unchanged, then for a given number of turns the inductance is proportional to the dimensions of the coil. A coil with all dimensions $m$ times those of a given coil thaving the same number of turns) has $m$ times the inductance of the given coil. That is, inductance has the dimensions of length.

Magnet-wire data

									bare		enameled	
AWG B\& 5 gauge	nom diam in inches	nom diam in inches	SCC* diam in inches	DCC* diam in inches	SCE*   diam in inches	$\begin{gathered} \text { SSC* } \\ \text { diam } \\ \text { in } \\ \text { inches } \end{gathered}$	DSC*   diam in inches	$\begin{aligned} & \text { SSE* } \\ & \text { diom } \\ & \text { in } \\ & \text { inches } \end{aligned}$	min diam inches	max diam inches	min diam inches	$\begin{aligned} & \text { diam* } \\ & \text { in } \\ & \text { inches } \end{aligned}$
10	. 1019	. 1039	. 1079	. 1129	. 1104	-	-	--	. 1009	. 1029	. 1024	. 1044
11	. 0907	. 0927	. 0957	. 1002	. 0982	-	-	-	. 0898	. 0917	. 0913	. 0932
12	. 0808	. 0827	. 0858	. 0903	. 0882	-	-	-	. 0800	. 0816	. 0814	. 0832
13	. 0720	. 0738	. 0770	. 0815	. 0793	-	-	-	. 0712	. 0727	. 0726	. 0743
14	. 0641	. 0659	. 0681	. 0736	. 0714	-	-	-	. 0634	. 0647	. 0648	. 0664
15	. 0571	. 0588	. 0621	. 0866	. 0643	. 0591	. 0611	. 0613	. 0566	. 0576	. 0578	. 0593
16	. 0508	. 0524	. 0558	. 0603	. 0579	. 0528	. 0548	. 0549	. 0503	. 0513	. 0515	. 0529
17	. 0453	. 0469	. 0503	. 0548	. 0523	. 0473	. 0493	. 0493	. 0448	. 0457	. 0460	. 0473
18	. 0403	. 0418	. 0453	. 0498	. 0472	. 0423	. 0443	. 0442	. 0399	. 0407	. 0410	. 0422
19	. 0359	.0374	. 0409	. 0454	. 0428	. 0379	. 0397	. 0398	. 0355	. 0363	. 0366	. 0378
20	. 0320	. 0334	. 0370	. 0415	. 0388	. 0340	. 0360	. 0353	. 0316	. 0323	. 0326	. 0338
21	. 0285	. 0299	. 0335	. 0380	. 0353	. 0305	. 0325	. 0323	. 0282	. 0287	. 0292	. 0303
22	. 0253	. 0266	. 0303	. 0343	. 0320	. 0273	. 0293	. 0290	. 0251	. 0256	. 0261	. 0270
23	. 0222	. 0238	. 0276	. 0316	. 0292	. 0246	. 0266	. 0262	. 0223	. 0228	. 0232	. 0242
24	. 0201	. 0213	. 0251	. 0291	. 0266	. 0221	. 0241	. 0236	. 0199	. 0203	. 0208	. 0216
25	. 0179	. 0190	. 0224	. 0264	. 0238	. 0199	. 0219	. 0213	. 0177	. 0181	. 0186	. 0193
26	. 0159	. 0169	. 0204	. 0244	. 0217	. 0179	. 0199	. 0192	. 0158	. 0161	. 0166	. 0172
27	. 0142	. 0152	. 0187	. 0227	. 0200	. 0162	. 0182	. 0175	. 0141	. 0144	. 0149	. 0155
28	. 0126	. 0135	. 0171	. 0211	. 0183	. 0146	. 0166	. 0158	. 0125	. 0128	. 0132	. 0138
29	. 0113	. 0122	. 0158	. 0178	. 0170	. 0133	. 0153	. 0145	. 0112	. 0114	. 0119	. 0125
30	. 0100	. 0108	. 0145	. 0185	. 0156	. 0120	. 0140	. 0131	. 0099	. 0101	. 0105	. 0111
31	. 0089	. 0097	. 0134	. 0174	. 0144	. 0109	. 0129	. 0119	. 0083	. 0090	. 0094	. 0099
32	. 0080	. 0088	. 0125	. 0165	. 0135	. 0100	. 0120	. 0110	. 0079	. 0081	. 0085	. 0090
33	. 0071	. 0078	. 0116	. 0156	. 0125	. 0091	. 0111	. 0100	. 0070	. 0072	. 0075	. 0080
34	. 0063	. 0059	. 0108	. 0148	. 0116	. 0083	. 0103	. 0091	. 0062	. 0064	. 0067	. 0071
35	. 0056	. 0061	. 0101	. 0141	. 0108	. 0076	. 0096	. 0083	. 0055	. 0057	. 0059	. 0063
36	. 0050	. 0055	. 0070	. 0130	. 0097	. 0070	. 0090	. 0077	. 0049	. 0051	. 0053	. 0057
37	. 0045	. 0049	. 0085	. 0125	. 0091	. 0065	. 0085	. 0071	. 0044	. 0046	. 0047	. 005
38	. 0040	. 0044	. 0080	. 0120	. 0086	. 0060	. 0080	. 0066	. 0039	. 0041	. 0042	. 0046
39	. 0035	. 0038	. 0075	. 0115	. 0080	. 0055	. 0075	. 0060	. 0034	. 0036	. 0036	. 0040
40	. 0031	. 0034	. 0071	. 0111	. 0076	. 0051	. 0071	. 0056	. 0030	. 0032	. 0032	. 0036
41	. 0028	. CO 31	-	-	-	-	-	-	. 0027	. 0029	. 0029	. 0022
42	. 0025	. C 028	-	-	-	-	-	-	. 0024	. 0026	. 0026	. 0029
			-	-	-	-	-	-				
43	. 0022	. 0025	-	-	-	-	-	-	. 0021	. 0223	. 0023	. 0026
44	. 0020	. 0023	-	-	-	-	-	-	. 0019	. 0021	. 0021	. 0024

[^10]Inductance of single-layer solenoids
continued


Fig. 1-Inductance of a single-layer solenoid, form factor $=F$.

## Reactance charts



Figs. 2, 3, and 4 give the relationships of capacitance, inductance, reactance, and frequency. Any one value may be determined in terms of two others by use of a straight edge laid across the correct chart for the frequency under consideration.

Fig. 2-Chart covering 1 cycle to 1000 cycles.

Reactance charts continued


Example: Given a capacitance of $0.001 \mu \mathrm{f}$, find the reactance at 50 kilocycles and inductance required to resonate. Place a straight edge through these values and road the intersections on the other scales, giving 3,180 ohms and 10.1 millihenries.

Fig. 3-Chart covering I kilocycle to 1000 kilocycles.

Reactance charts continued

inductance 1	reactance XI or XC	copacisonce C	frequency ${ }^{\text {f }}$
-	$\left.E^{10}\right]$	[0.00002	$\left.E^{1000}\right]$
$E^{1000}$	$E-5$	$E_{0.00005}$	
	-		-
- 500	- 2	E-0.0001	
		-0.0002	
-200	E-1	$E 0.0005$	- 500
	E 0.5	0.0005	- 400
-	E	-0.001	
$E{ }^{100}$	-0.2	.	- 300
	- 0.1	-0.005	
	E 0.1 ס	-0.01	- 200
$E^{50}$	$E-0.05{ }^{\text {E }}$	- 0.02	E
	- 4	$-0.02$	$E 150$
-	-0.02	-0.05	-
- 20	0.02	-0.1	E
- 10	-0.01	-0.2	E-100
	E 0.005	-0.2 i	-
$E^{10}$	-0.005	- 0.5	-
	-	-1	
	-0.002		
	$[0.001]$		- 50 y
		E 5	E-40
	- 500	- 10	- $40 \frac{6}{5}$
	- 200	E 20	- 30 -
$E^{1}$	- 200		
	- -100	- 50	
	E	- 100	- 20
$=0.5$	E-50	- 200	
-0.5	-	E 200	$E_{-15}$
$-0.2$	- 20	- 500	
		$\left[\begin{array}{c}1000 \\ -0.001\end{array}\right.$	
-0.2	- 10	$\pm 0.002$	- 10
-0.1	$E_{5}$	- 0.005	
E	- $\quad$ E	-0.005	- -
$-0.05$	-2	-0.01	
	2	F 0.02	
	- 1	-	-5
$\text { - } 0.02$	E	$=0.05$	-4
	- 0.5		
	$\stackrel{4}{4}$	Fo.2	-3
$E^{-0.01}$	$-0.2$	E0.5	
	- 0.1	-0.5	
E 0.005	=	-1	$E^{2}$
	$=0.05$	-2	
			$-1.5$
	$-0.02$	- 5	
-0.002	-0.01]	- ${ }^{10}$	

Fig. 4-Chart covering 1 megacycle to 1000 megacycles.

## Impedance formulas

## Parallel and series circuits and their equivalent relationships

Conductance $G=\frac{1}{R_{p}} \quad \omega=2 \pi f$
Susceptance $B=-\frac{1}{X_{p}}=\omega C_{p}-\frac{1}{\omega L_{p}}$
Reactance $X_{p}=\frac{\omega L_{p}}{1-\omega^{2} L_{p} C_{p}}$


Admittance $Y=\frac{l}{E}=\frac{1}{Z}=G+j B$

$$
=\sqrt{G^{2}+B^{2} \angle-\phi}=|Y| \angle-\phi
$$

Impedance $Z=\frac{E}{I}=\frac{1}{Y}=\frac{R_{p} X_{p}}{R_{p}{ }^{2}+X_{p}{ }^{2}}\left(X_{p}+j R_{p}\right)$

$$
=\frac{R_{p} X_{p}}{\sqrt{R_{p}^{2}+X_{p}^{2}}} \angle \phi=|Z| \angle \phi
$$


parallel circuit

Phase angle $-\phi=\tan ^{-1} \frac{B}{G}=\cos ^{-1} \frac{G}{|Y|}=-\tan ^{-1} R_{p}$
Resistance $=R_{s}$
Reactance $X_{s}=\omega L_{s}-\frac{1}{\omega C_{s}}$
Impedance $Z=\frac{E}{I}=R_{s}+j X_{s}$

$$
=\sqrt{R_{s}^{2}+X_{s}^{2}} \angle \phi=|Z| \angle \phi
$$

Phase angle $\phi=\tan ^{-1} \frac{X_{s}}{R_{s}}=\cos ^{-1} \frac{R_{s}}{|Z|}$
Vectors $E$ and $I$, phase angle $\phi$, and $Z, Y$ are identical for the parallel circuit and its equivalent series circuit


$$
\begin{aligned}
Q & =|\tan \phi|=\frac{\left|X_{B}\right|}{R_{s}}=\frac{R_{p}}{\left|X_{p}\right|}=\frac{|B|}{G} \\
(\mathrm{pf}) & =\cos \phi=\frac{R_{s}}{|Z|}=\frac{|Z|}{R_{p}}=\frac{G}{|Y|}=\sqrt{\frac{R_{s}}{R_{p}}}=\frac{1}{\sqrt{Q^{2}+1}}=\frac{(\mathrm{kw})}{(\mathrm{kval}} \\
Z^{2} & =R_{s}{ }^{2}+X_{s}{ }^{2}=\frac{R_{p}{ }^{2} X_{p}{ }^{2}}{R_{p}{ }^{2}+X_{p}{ }^{2}}=R_{s} R_{p}=X
\end{aligned}
$$

$$
\begin{aligned}
& Y^{2}=G^{2}+B^{2}=\frac{1}{R_{p}^{2}}+\frac{1}{X_{p}^{2}}=\frac{G}{R_{s}} \\
& R_{s}=\frac{Z^{2}}{R_{p}}=\frac{G}{Y^{2}}=R_{p} \frac{X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=R_{p} \frac{1}{Q^{2}+1} \\
& X_{s}=\frac{Z^{2}}{X_{p}}=-\frac{B}{Y^{2}}=X_{p} \frac{R_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}=X_{p} \frac{1}{1+1 / Q^{2}} \\
& R_{p}=\frac{1}{G}=\frac{Z^{2}}{R_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{R_{s}}=R_{s}\left(Q^{2}+11\right. \\
& X_{p}=-\frac{1}{B}=\frac{Z^{2}}{X_{s}}=\frac{R_{s}^{2}+X_{s}^{2}}{X_{s}}=X_{s}\left(1+\frac{1}{Q^{2}}\right)=\frac{R_{s} R_{p}}{X_{s}}==R_{p} \sqrt{\frac{R_{s}}{R_{p}-R_{s}}}
\end{aligned}
$$

Approximate formulas

$$
\begin{aligned}
& \text { Reactor } R_{s}=\frac{X^{2}}{R_{p}} \text { and } X=X_{s}=X_{p} \quad \text { (See Note 1, p. 81) } \\
& \text { Resistor } R=R_{s}=R_{p} \text { and } X_{s}=\frac{R^{2}}{X_{p}} \quad \text { (See Note 2, p. 81) }
\end{aligned}
$$

Simplified parallel and series circuits

$$
X_{p}=\omega L_{p} \quad \mathrm{~B}=-\frac{1}{\omega L_{p}} \quad X_{s}=\omega L_{s} L_{0}^{\infty}
$$

$$
\tan \phi=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}} \quad Q=\frac{\omega L_{s}}{R_{s}}=\frac{R_{p}}{\omega L_{p}}
$$

$$
\begin{aligned}
& \text { (pf) }=\frac{R_{s}}{\sqrt{R_{s}{ }^{2}+\omega^{2} L_{s}^{2}}}=\left.\frac{\omega L_{p}}{\sqrt{R_{p}{ }^{2}+\omega^{2} L_{p}^{2}}}\right|_{E} ^{\rightarrow-\infty}{ }_{\text {(pf) }}^{\infty}=\frac{1}{Q} \text { approx } \quad \text { (See Note 3, p. 81) }
\end{aligned}
$$

$$
\begin{array}{ll}
R_{s}=R_{p} \frac{1}{Q^{2}+1} & R_{p}=R_{s}\left(Q^{2}+1\right)
\end{array} \begin{aligned}
& Z=R_{p} \frac{1+j Q}{1+Q^{2}} \\
& L_{s}=L_{p} \frac{1}{1+1 / Q^{2}}
\end{aligned} L_{p}=L_{s}\left(1+\frac{1}{Q^{2}}\right) \quad Y=\frac{1}{R_{s}} \frac{1-j Q}{1+Q^{2}}
$$

$$
\begin{aligned}
& X_{p}=\frac{-1}{\omega C_{p}} \quad B=\omega C_{p} \quad X_{s}=\frac{-i}{\omega C_{v}} \\
& \tan \phi=\frac{-1}{\omega C_{s} R_{s}}=-\omega C_{p} R_{p} \\
& Q=\frac{1}{\omega C_{s} R_{s}}=\omega C_{p} R_{p} \\
& (p f)=\frac{\omega C_{s} R_{s}}{\sqrt{1+\omega^{2} C_{s}{ }^{2} R_{s}{ }^{2}}}=\frac{1}{\sqrt{1+\omega^{2} C_{D}{ }^{2} R_{D}{ }^{2}}} \\
& \text { (pf) }=\frac{1}{Q} \text { (See Note 3) } \\
& R_{s}=R_{p} \frac{1}{Q^{2}+1} \quad R_{p}=R_{s}\left(Q^{2}+1\right) \\
& C_{s}=C_{p}\left(1+\frac{1}{Q^{2}}\right) \quad C_{p}=C_{s} \frac{1}{1+1 / Q^{2}} \\
& Z=R_{p} \frac{1-j Q}{1+Q^{2}} \quad Y=\frac{1}{R_{s}} \frac{1+j Q}{1+Q^{2}}
\end{aligned}
$$

## Approximate formulas

Inductor $R_{s}=\omega^{2} L^{2} / R_{p}$ and $L=L_{p}=L_{s} \quad$ (See Note 1)
Resistor $R=R_{s}=R_{p}$ and $L_{p}=R^{2} / \omega^{2} L_{s} \quad$ (See Note 2)
Capacitor $R_{s}=1 / \omega^{2} C^{2} R_{p}$ and $C=C_{p}=C_{s} \quad$ (See Note 1)
Resistor $R=R_{s}=R_{p}$ and $C_{\delta}=1 / \omega^{2} C_{p} R^{2} \quad$ (See Note 2)
Note 1: (Small resistive component) Error in percent $=-100 / Q^{2}$ (for $Q=10$, error $=1$ percent low)

Note 2: (Small reactive camponent) Error in percent $=-100 Q^{2}$
(for $Q=0.1$, error $=1$ percent low)
Note 3: Error in percent $=+50 / Q^{2}$ approximately (for $Q=7$, error $=1$ percent high)
$82$


	$\frac{R_{1} R_{2}}{R_{1}+R_{2}}$	$\frac{R_{1} R_{2}}{R_{1}+R_{2}}$	0	$\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
	$j \omega\left[\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2} \mp 2 M}\right]$	$\omega\left[\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2} \mp 2 M}\right]$	$+\frac{\pi}{2}$	$-j \frac{1}{\omega}\left[\frac{L_{1}+L_{2} \mp 2 M}{L_{1} L_{2}-M^{2}}\right]$
	$-j \frac{1}{\omega\left(C_{1}+C_{2}\right)}$	$\frac{1}{\omega\left(C_{1}+C_{2}\right)}$	$-\frac{\pi}{2}$	$j \omega\left(C_{1}+C_{2}\right)$
	$\omega L R\left[\frac{\omega L+j R}{R^{2}+\omega^{2} L^{2}}\right]$	$\frac{\omega L R}{\left[R^{2}+\omega^{2} L^{2}\right]^{1}}$	$\tan ^{-1} \frac{R}{\omega L}$	$\frac{1}{R}-j \frac{1}{\omega L}$
	$\frac{R(1-j \omega C R)}{1+\omega^{2} C^{2} R^{2}}$	$\frac{R}{\left[1+\omega^{2} C^{2} R^{2}\right]^{2}}$	$-\tan ^{-1} \omega C R$	$\frac{1}{R}+j \omega C$
	$j \frac{\omega L}{1-\omega^{2} L C}$	$\frac{\omega L}{1-\omega^{2} L C}$	$\pm \frac{\pi}{2}$	$j\left(\omega C-\frac{1}{\omega L}\right)$
	$\frac{\frac{1}{R}-f\left(\omega C-\frac{1}{\omega L}\right)}{\left(\frac{1}{R}\right)^{2}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}$	$\frac{1}{\left[\left(\frac{1}{R}\right)^{2}+\left(\omega C-\frac{1}{\omega L}\right)^{2}\right]^{\frac{1}{2}}}$	$\tan ^{-1} R\left(\frac{1}{\omega L}-\omega C\right)$	$\frac{1}{R}+j\left(\omega C-\frac{1}{\omega L}\right)$
	$R_{2} \frac{R_{1}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2}+j \omega L R_{2}}{\left(R_{1}+R_{2}\right)^{2}+\omega^{2} L^{2}}$	$R_{2}\left[\frac{R_{1}^{2}+\omega^{2} L^{2}}{\left(R_{1}+R_{2}\right)^{2}+\omega^{2} L^{2}}\right]^{1}$	$\tan ^{-1} \frac{\omega L R_{2}}{R_{1}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2}}$	$\frac{R_{1}\left(R_{1}+R_{2}\right)+\omega^{2} L^{2}-j \omega L R_{2}}{R_{2}\left(R_{1}^{2}+\omega^{2} L^{2}\right)}$


admittance $Y=\frac{1}{Z}$ mhos

	impedance $Z$	$\frac{\left.R+j \omega\left[L 11-\omega^{2} L C\right)-C R^{2}\right]}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}$
	magnitude $\|\mathbf{Z}\|$	$\left[\frac{R^{2}+\omega^{2} L^{2}}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}}\right]^{\frac{1}{2}}$
	phase angle ${ }^{\text {d }}$	$\tan ^{-1} \frac{\left.\omega\left[L(1)-\omega^{2} L C\right]-C R^{2}\right]}{R}$
	admittance $Y$	$\frac{\left.R-j \omega\left[L I I-\omega^{2} L C\right)-C R^{2}\right]}{R^{2}+\omega^{2} L^{2}}$
	impedance $Z$	$x_{1} \frac{X_{1} R_{2}+j\left[R_{2}{ }^{2}+X_{2}\left(X_{1}+X_{2}\right)\right]}{R_{2}{ }^{2}+\left(X_{1}+X_{2}\right)^{2}}$
	magnitude $\|\mathbf{z}\|$	$x_{1}\left[\frac{R_{2}^{2}+X_{2}^{2}}{R_{2}^{2}+\left(X_{1}+X_{2}\right)^{2}}\right]^{\frac{1}{2}}$
	phase angle $\phi$	$\tan ^{-1} \frac{R_{2}^{2}+X_{2}\left(X_{1}+X_{2}\right)}{X_{1} R_{2}}$
	admittance $Y$	$\frac{R_{2} X_{1}-j\left(R_{2}^{2}+x_{2}^{2}+x_{1} x_{2}\right)}{X_{1}\left(R_{2}^{2}+X_{2}^{2}\right)}$

Note: When $R_{1}=R_{2}$
$=\sqrt{L / C}$, then $Z=R_{1}$
$=R_{2}$ a pure resistance
at any frequency. Com-
pare Case 3a, $p$. 106 .


## Skin effect

$$
\begin{aligned}
A & =\text { correction coefficient } \\
D & =\text { diameter of conductor in inches } \\
f & =\text { frequency in cycles/second } \\
R_{\mathrm{ac}} & =\text { resistance at frequency } f \\
R_{d c} & =\text { direct-current resistance } \\
T & =\text { thickness of tubular conductor in inches } \\
T_{1} & =\text { depth of penetration of current } \\
\mu & =\text { permeability of conductor material }(\mu=1 \text { for copper and other } \\
& \text { nonmagnetic materials) } \\
\rho= & \text { resistivity of conductor material at any temperature } \\
\rho_{c} & =\text { resistivity of copper at } 20 \text { degrees centigrade } \\
& =1.724 \text { microhm-centimeter }
\end{aligned}
$$

Fig. 5 shows the relationship of $R_{a c} / R_{d c}$ versus $D \sqrt{f}$ for copper, or versus $D \sqrt{f} \sqrt{\mu \rho_{c} / \rho}$ for any conductor material, for an isolated straight solid conductor of circular cross section. Negligible error in the formulas for $R_{a e}$ results when the conductor is spaced at least 10D from adjacent conductors. When the spacing between axes of parallel conductors carrying the same current is 4D, the resistance $R_{a c}$ is increased about 3 percent, when the depth of penetration is small. The formulas are accurate for concentric lines due to their circular symmetry.

For values of $D \sqrt{f} \sqrt{\mu \rho_{c} / \rho}$ greater than 40,
$\frac{R_{a c}}{R_{d c}}=0.0960 \mathrm{D} \sqrt{f} \sqrt{\mu \rho_{c} / \rho}+0.26$
The high-frequency resistance of an isolated straight conductor: either solid; or tubular for $T<D / 8$ or $T_{1}<D / 8$; is given in equation (2). If the current flow is along the inside surface of a tubular conductor, $D$ is the inside diameter.
$R_{a c}=A \frac{\sqrt{f}}{D} \sqrt{\mu} \frac{\rho}{\rho_{c}} \times 10^{-6}$ ohms/foot
The values of the correction coefficient $A$ for solid conductors and for rubular conductors are shown in Fig. 6.
The value of $T \sqrt{f} \sqrt{\mu \rho_{c} / \rho}$ that just makes $A=1$ indicates the penetration of

Skin effect continued


Fig. 5-Resistance ratio for isalated straight solid conductors of circular cross section.
the currents below the surface of the conductor. Thus, approximately,
$T_{1}=\frac{3.5}{\sqrt{f}} \sqrt{\frac{\rho}{\mu \rho_{c}}}$ inches.
When $T_{1}<D / 8$ the value of $R_{a c}$ as given by equation (2) (but not the value of $R_{a c} / R_{d c}$ in Fig. 6, "Tubular conductors") is correct for any value $T \geqslant T_{1}$.
Under the limitation that the radius of curvature of all parts of the cross section is appreciably greater than $T_{1}$, equations (2) and (3) hold for isolated straight conductors of any shape. In this case the term $D=$ (perimeter of cross section) $/ \pi$.

## Examples

a. At 100 megacycles, a copper conductor has a depth of penetration $T_{1}=0.00035$ inch.
b. A steel shield with 0.005 -inch copper plate, which is practically equivalent in $R_{a c}$ to an isolated copper conductor 0.005 -inch thick, has a value of $A=1.23$ at 200 kilocycles. This 23 -percent increase in resistance over that of a thick copper sheet is satisfactorily low as regards its effect on the losses of the components within the shield. By comparison, a thick aluminum sheet has a resistance $\sqrt{\rho / \rho_{c}}=1.28$ times that of copper.

Fig. 6-Skin-effect correction coefficient $\mathbf{A}$ for solid and tubular conductors.

solid conductors		Pubular conductors		
D $\sqrt{i} \sqrt{\mu \frac{\rho_{c}}{\rho}}$	A	$\boldsymbol{T} \sqrt{f} \sqrt{\mu \frac{\rho_{c}}{\rho}}$	A	$\mathbf{R}_{\text {ac }} / \mathbf{R}_{\text {de }}$
$>370$	1.000	$=\mathrm{B}$ where $\}$	1.00	0.3848
220	1.005	B $>3.5$		
160	1.010	3.5	1.00	1.35
		3.15	1.01	1.23
98	1.02	2.85	1.05	1.15
48	1.05			
26	1.10	2.60	1.10	1.10
		2.29	1.20	1.06
13	1.20	2.08	1.30	1.04
9.6	1.30			
5.3	2.00	1.77	1.50	1.02
$<3.0$	$R_{a c} \approx R_{d c}$	1.31	2.00	1.00
$R_{d c}=\frac{10.37}{D^{2}} \frac{\rho}{\rho_{c}} \times$	ohms/foot	$\left.\begin{array}{r}=8 \text { where } \\ B<1.3\end{array}\right\}$	$\frac{2.60}{8}$	1.00

## Network theorems

## Reciprocity theorem

If an emf of any character whatsoever located at one foint in a linear net. work produces a current at any other point in the network, the same emf acting at the second point will produce the same current at the first point.

Corollary: If a given current flowing at one point of a linear network produces a certain open-circuit voltage at a second point of the network, the same current flowing at the second point will produce a like opencircuit voltage at the first point.

## Thévenin's theorem

If an impedance $Z$ is cannected between two points of a linear network, the resulting steady-state current $I$ through this impedance is the ratio of the potential difference $V$ between the two points prior to the connection of $Z$, and the sum of the values of (1) the connected impedance $Z$, and (2) the impedance $Z_{1}$ of the network measured between the two points, when all generators in the network are replaced by their internal impedances:
$I=\frac{V}{Z+Z_{1}}$
Corollary: When the admittance of a linear network is $Y_{12}$ measured between two points with all generators in the network replaced by their internal impedances, and the current which would flow between the points if they were short-circuited is $I_{s c}$, the voltage between the points is $V_{12}=I_{s c} / Y_{12}$.

## Principle of superposition

The current that flows at any point in a network composed of constant resistances, inductances, and capacitances, or the potential difference which exists between any two points in such a network, due to the simultaneous action of a number of emf's distributed in any manner throughout the network, is the sum of the component currents at the first point, or the potential differences between the two points, that would be caused by the individual emf's acting alone. (Applicable to emf's of any character.)

In the application of this theorem, it is to be noted that for any impedance element $Z$ through which flows a current $I$, there may be substituted a virtual source of voltage of value $-Z I$.

## 90

## Formulas for simple R, L, and C networks*

1. Self-inductance of circular ring of round wire af radio frequencies, for nonmagnetic materials
$L=\frac{a}{100}\left[7.353 \log _{10} \frac{16 a}{d}-6.386\right]$ microhenries
$a=$ mean radius of ring in inches
$d=$ diameter of wire in inches
$\frac{a}{d}>2.5$

## 2. Capacitance of a parallel-plate capacitor

$C=0.0885 \kappa \frac{\mathbb{N}-11 \mathrm{~A}}{1}$ micromicrofarads
A = area of one side of one plate in square centimeters
$N=$ number of plates
$t=$ thickness of dielectric in centimeters
$K=$ dielectric constant
This formula neglects "fringing" at the edges of the plates.

## 3. Reactance of an inductor

$X=2 \pi f \mathrm{~L}$ ohms
$f=$ frequency in cycles per second
$L=$ inductance in henries
or $f$ in kilocycles and $L$ in millihenries; or $f$ in megacycles and $L$ in microhenries.

## 4. Reactance of a capacitor

$x=\frac{-1}{2 \pi f C}$ ohms
$f=$ frequency in cycles/second
$C=$ capacitance in farads
This may be written $X=\frac{-159.2}{f C}$ ohms
$f=$ frequency in kilocycles/second
$C=$ capacitance in microfarads
or $f$ in megacycles and $C$ in millimicrofarads $(0.001 \mu \mathrm{f})$.

[^11]
## Formulas for simple R, $\mathbf{L}$, and $\mathbf{C}$ networks

## 5. Resonant frequency of a series-funed circuit

$f=\frac{1}{2 \pi \sqrt{L C}}$ cycles/second
$L=$ inductance in henries
C = capacitance in farads
This may be written $L C=\frac{25,330}{f^{2}}$
$f=$ frequency in kilocycles
$L=$ inductance in millihenries
$\mathrm{C}=$ capacitance in millimicrofarads $(0.001 \mu \mathrm{f})$
or $f$ in megacycles, $L$ in microhenries, and $C$ in micromicrofarads.

## 6. Dynamic resistance of a parallel-funed circuit at resonance

$r=\frac{X^{2}}{R}=\frac{L}{C R}$ ohms
$X=\omega L=1 / \omega C$
$R=r_{1}+r_{2}$
$L=$ inductance in henries
$\mathrm{C}=$ capacitance in farads
$R=$ resistance in ohms
The formula is accurate for engineering purposes provided $X / R>10$.


## 7. Parallel impedances

If $Z_{1}$ and $Z_{2}$ are the two impedances that are connected in parallel, then the resultant impedance is

$$
Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Refer also to page 85.
Given one impedance $Z_{1}$ and the desired resultant impedance $Z$, the other impedance is
$Z_{2}=\frac{Z Z_{1}}{Z_{1}-Z}$

92

Formulas for simple R, L, and C networks continued

## 8. Input impedance of a 4-terminal network*

$Z_{11}=R_{11}+j X_{11}$
is the impedance of the first circuit, measured at terminals $1-1$ with terminals $2-2$ open-circuited.
$Z_{22}=R_{22}+j \chi_{22}$
is the impedance of the second circuit, measured at terminals $2-2$ with load $Z_{2}$ removed and terminals $1-1$ open-circuited.
$Z_{12}=R_{12}+j X_{12}$
is the transfer impedance between the two pairs of terminals, i.e., the open-circuit voltage appearing at either pair when unit current flows at the other pair.

Then the impedance looking into terminals $1-1$ with load $Z_{2}$ across terminals $2-2$ is

$Z_{1}{ }^{\prime}=R_{1}{ }^{\prime}+j X_{1}{ }^{\prime}=Z_{11}-\frac{Z^{2}{ }_{12}}{Z_{22}+Z_{2}}=R_{11}+j X_{11}-\frac{R^{2}{ }_{12}-X_{12}{ }_{12}+2 j R_{12} X_{12}}{R_{22}+R_{2}+j\left(X_{22}+X_{2}\right)}$
When
$R_{12}=0$
$Z_{1}^{\prime}=R_{1}{ }^{\prime}+j X_{1}{ }^{\prime}=Z_{11}+\frac{X^{2}{ }_{12}}{Z_{22}+Z_{2}}$
Example: A transformer with tuned secondary and negligible primary resistance.
$Z_{11}=j \omega L_{1}$
$Z_{22}+Z_{2}=R_{2} \quad$ since $X_{22}+X_{2}=0$
$Z_{12}=\jmath \omega M$
Then $Z_{1}{ }^{\prime}=j \omega L_{1}+\frac{\omega^{2} M^{2}}{R_{2}}$


[^12]
## 9. Input admittance of a 4-terminal network*

$Y_{11}=$ admittance measured at terminals $1-1$ with terminals $2-2$ shortcircuited.
$Y_{22}=$ admittance measured at terminals $2-2$ with load $Y_{2}$ disconnected, and terminals 1-1 shortcircuited.

equivalent circuit
$Y_{12}=$ transfer admittance, i.e., the short-circuit current that would flow at one pair of terminals when unit voltage is impressed across the other pair.
Then the admittance looking into terminals $1-1$ with load $Y_{2}$ connected across $2-2$ is
$Y_{1}{ }^{\prime}=G_{1}{ }^{\prime}+j B_{1}{ }^{\prime}=Y_{11}-\frac{Y_{12}^{2}}{Y_{22}+Y_{2}}$

## 10. 4-terminal network with loads equal to image impedances*

When $Z_{1}$ and $Z_{2}$ are such that $Z^{\prime}=Z_{1}$ and $Z^{\prime \prime}=Z_{2}$ they are called the image impedances. Let the input impedance measured at terminals $1-1$ with ter. minals $2-2$ open-circuited be $Z^{\prime}{ }_{o c}$ and with $2-2$ short-circuted be $Z^{\prime}$ ac. Similarly $Z^{\prime \prime}$ oc and $Z^{\prime \prime}{ }_{s c}$ measured at terminals $2-2$. Then


$$
\begin{aligned}
& Z^{\prime}=\left[Z^{\prime}{ }_{o c} Z^{\prime}{ }_{s c}\right]^{1 / 2}=\left[Z_{11}\left(Z_{11}-\frac{Z^{2}{ }_{12}}{Z_{22}}\right)\right]^{1 / 2}=\left[Y_{11}\left(Y_{11}-\frac{Y_{12}^{2}}{Y_{22}}\right)\right]^{-1 / 2} \\
& Z^{\prime \prime}=\left[Z^{\prime \prime}{ }_{o c} Z^{\prime \prime}{ }^{\prime \prime}\right]^{1 / 2}=\left[Z_{22}\left(Z_{22}-\frac{Z^{2}{ }_{12}}{Z_{11}}\right)\right]^{1 / 2}=\left[Y_{22}\left(Y_{22}-\frac{Y_{12}^{2}}{Y_{11}}\right)\right]^{-1 / 2}
\end{aligned}
$$

$$
\tanh (\alpha+j \beta)= \pm\left[\frac{Z^{\prime}{ }_{s c}}{Z_{{ }_{o c}}}\right]^{1 / 2}= \pm\left[\frac{Z^{\prime \prime}{ }_{s c}}{Z_{o c}^{\prime{ }_{o c}}}\right]^{1 / 2}= \pm\left[1-\frac{Z^{2}{ }_{12}}{Z_{11} Z_{22}}\right]^{1 / 2}
$$

$$
= \pm\left[1-\frac{Y_{12}^{2}}{Y_{11} Y_{22}}\right]^{3 / 2}
$$

[^13]94

## Formulas for simple R, L, and C networks

 continuedThe quantities $Z_{11}, Z_{22}$, and $Z_{12}$ are defined in paragraph 8, above, while $Y_{11}, Y_{22}$, and $Y_{12}$ are defined in paragraph 9.
$(\alpha+j \beta)$ is called the image transfer constant, defined by

$$
\begin{aligned}
\left(\frac{\text { complex volt-amperes into load from 2-2 }}{\text { complex volt-amperes into network at } 1-1}\right) & =\frac{v_{2} i_{2}}{v_{1} i_{1}}=\frac{v_{2}^{2} Z_{1}}{v_{1}^{2} Z_{2}}=\frac{i_{2}^{2} Z_{2}}{i_{1}^{2} Z_{1}} \\
& =\epsilon^{-2(a+j \beta)}=\epsilon^{-2 a} /-2 \beta
\end{aligned}
$$

when the load is equal to the image impedance. The quantities $\alpha$ and $\beta$ are the same irrespective of the direction in which the network is working.
When $Z_{1}$ and $Z_{2}$ have the same phase angle, $\alpha$ is the attenuation in nepers and $\beta$ is the angle of lag of $i_{2}$ behind $i_{1}$.

## 11. Currents in a 4 -terminal network*

$$
\begin{aligned}
i_{1} & =\frac{e_{1}}{Z_{1}^{\prime}} \\
& =e_{1} \frac{Z_{22}}{Z_{11} Z_{22}-Z^{2}{ }_{12}}
\end{aligned}
$$



$$
\begin{aligned}
& =e_{1} \frac{R_{22}+j X_{22}}{\left(R_{11} R_{22}-X_{11} X_{22}-R_{12}^{2}+X_{12}^{2}\right)+j\left(R_{11} X_{22}+R_{22} X_{11}-2 R_{12} X_{12}\right)} \\
i_{2} & =e_{1} \frac{Z_{12}}{Z_{11} Z_{22}-Z^{2}{ }_{12}}
\end{aligned}
$$

## 12. Voltages in a 4-terminal network*

Let
$i_{1 s c}=$ current that would flow between terminals $1-1$ when they are short-circuited.
$Y_{11}=$ admittance measured across terminals 1 - 1 with generator replaced by its internal impedance, and with terminals $2-2$ shortcircuited.


[^14]
## Formulas for simple R, L, and C networks continued

$Y_{22}=$ admittance measured across terminals $2-2$ with load connected and terminals 1 - 1 short-circuited.
$Y_{12}=$ transfer admittance between terminals $1-1$ and $2-2$ defined in paragraph 9 abovel.

Then the voltage across terminals $1-1$, which are on the end of the network nearest the generator, is
$v_{1}=\frac{i_{1 s c} Y_{22}}{Y_{11} Y_{22}-Y^{2}{ }_{12}}$
The voltage across terminals $2-2$, which are on the load end of the network is
$v_{2}=\frac{i_{1 s c} Y_{12}}{Y_{11} Y_{22}-Y^{2}{ }_{12}}$

## 13. Power transfer between iwo impedances connected directly

Let $Z_{1}=R_{1}+j X_{1}$ be the impedance of the source, and $Z_{2}=R_{2}+j X_{2}$ be the impedance of the load.

The maximum power transfer occurs when

$$
\begin{aligned}
R_{2} & =R_{1} \text { and } X_{2}=-X_{1} \\
\frac{P}{P_{m}} & =\frac{4 R_{1} R_{2}}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}} \\
P & =\begin{array}{l}
\text { power delivered to the load when the impedances are connected } \\
\text { directly. }
\end{array}
\end{aligned}
$$

$P_{m}=$ power that would be delivered to the locd were the two impedances connected through a perfect impedance-matching network.

## 14. Power transfer between two meshes coupled reactively

In the general case, $X_{11}$ and $X_{22}$ are not equal to zero and $X_{12}$ may be any reactive coupling. When only one of the quantities $X_{11}, X_{22}$, and $X_{12}$ can be varied, the best power transfer under the circumstances is given by:


## 96

## Formulas for simple R, $L$, and $C$ networks

For $X_{22}$ variable
$X_{22}=\frac{X^{2}{ }_{12} X_{11}}{R^{2}{ }_{11}+X^{2}{ }_{11}}$ (zero reactance looking into load circuit)
For $X_{11}$ variable

$$
X_{11}=\frac{X_{11}^{2} X_{22}}{R_{22}^{2}+X_{22}^{2}} \text { (zero reactance looking into source circuit) }
$$

For $X_{12}$ variable
$X^{2}{ }_{12}=\sqrt{\left(\mathbb{R}^{2}{ }_{11}+X^{2}{ }_{11}\right)\left(R_{22}^{2}+X^{2}{ }_{22}\right)}$
When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when

$$
X^{2}{ }_{12}=\sqrt{\left(\mathbb{R}^{2}{ }_{11}+X^{2}{ }_{11}\right)\left(R_{22}{ }_{22}+X_{22}^{2}\right)}
$$

and
$\frac{X_{11}}{R_{11}}=\frac{X_{22}}{R_{22}}$ (both circuits of same $Q$ or phase angle)
For perfect impedance match the current is

$$
i_{2}=\frac{e_{1}}{2 \sqrt{R_{11} R_{22}}} \angle \tan ^{-1} \frac{R_{11}}{X_{11}}
$$

In the most common case, the circuits are tuned to resonance $X_{11}=0$ and $X_{22}=0$. Then $X^{2}{ }_{12}=R_{11} R_{22}$ for perfect impedance match.

## 15. Optimum coupling between two circuits tuned to the same frequency

From the last result in paragraph 14, maximum power transfer lor an impedance match) is obtained for $\omega^{2} M^{2}=R_{1} R_{2}$ where $M$ is the mutual inductance between the circuits, and $R_{1}$ and $R_{2}$ are the resistances of the two circuits.

## 16. Coefficient of coupling-geometrical consideration

By definition, coefficient of coupling $k$ is

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

where $M=$ mutual inductance, and $L_{1}$ and $L_{2}$ are the inductances of the two coupled circuits.

## Formulas for simple R, L, and C networks continued

Coefficient of coupling of two coils is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby objects that affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil.

## 17. $\mathrm{T}-\pi$ or $\mathrm{Y}-\Delta$ transformation

The two networks are equivalent, as far as conditions at the terminals are concerned, provided the following equations are satisfied. Either the impedance equations or the admittance equations may be used:
$Y_{1}=1 / Z_{12}, Y_{12}=1 / Z_{12}$, etc.


T or $Y$ network

## Impedance equations

$z_{12}=\frac{z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}}{z_{3}}$
$Z_{13}=\frac{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}}{Z_{2}}$
$Z_{23}=\frac{z_{1} Z_{2}+z_{1} z_{3}+z_{2} z_{3}}{Z_{1}}$
$Z_{1}=\frac{Z_{12} Z_{13}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{2}=\frac{Z_{12} Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{3}=\frac{Z_{13} Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$

or 1 neiwork

## Admittance equations

$$
\begin{aligned}
Y_{12} & =\frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}+Y_{3}} \\
Y_{13} & =\frac{Y_{1} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
\end{aligned}
$$

$$
Y_{23}=\frac{Y_{2} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
Y_{1}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{23}}
$$

$$
Y_{2}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{13}}
$$

$$
Y_{3}=\frac{Y_{12} Y_{13}+Y_{12} Y_{23}+Y_{13} Y_{23}}{Y_{12}}
$$

## 98

## Formulas for simple $R, L$, and $C$ networks continued

Fig. 7-Simple flter sections containing R, L, and C. See also Fig. 8.

diagram	type	time constant or resonant freq	formula and approximation
	$\begin{gathered} \text { A } \\ \text { low-pass } \\ \text { R-C } \end{gathered}$	$T=R C$	$\begin{aligned} \frac{E_{o u t}}{E_{i n}} & =\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \approx \frac{1}{\omega T} \\ \phi_{A} & =-\tan ^{-1}(\mathrm{R} \omega \mathrm{C}) \end{aligned}$
	B   high-pass R-C	$T=R C$	$\begin{aligned} \frac{E_{\text {out }}}{E_{i n}} & =\frac{1}{\sqrt{1+\frac{1}{\omega^{2} T^{2}}}} \approx \omega T \\ \phi_{B} & =\tan ^{-1}(1 / R \omega C) \end{aligned}$
	$\begin{gathered} C \\ \text { low-pass } \\ R-L \end{gathered}$	$T=\frac{L}{R}$	$\begin{aligned} \frac{E_{o u t}}{E_{i n}} & =\frac{1}{\sqrt{1+\omega^{2} T^{2}}} \approx \frac{1}{\omega T} \\ \phi C & =-\tan ^{-1}(\omega L / R) \end{aligned}$
	$\begin{gathered} D \\ \text { high-pass } \\ \text { R-L } \end{gathered}$	S $T=\frac{L}{R}$	$\begin{aligned} \frac{E_{\text {out }}}{E_{\text {in }}} & =\frac{1}{\sqrt{1+\frac{1}{\omega^{2} T^{2}}}} \approx \omega T \\ \phi D & =\operatorname{ton}^{-1}(R / \omega L) \end{aligned}$
	$\begin{gathered} \text { E } \\ \text { low-pass } \\ \text { L-C } \end{gathered}$	$f_{0}=\frac{0.1592}{\sqrt{L C}}$	$\begin{aligned} & \frac{E_{\text {out }}}{E_{i n}}=\frac{1}{1-\omega^{2} L C}=\frac{1}{1-f^{2} / f_{0}^{2}} \\ & \approx-\frac{1}{\omega^{2} L C}=-\frac{\beta_{0}^{2}}{f^{2}} \\ & \phi=0 \text { for } f<f_{0} ; \quad \phi=\pi \text { for } f>f_{0} \end{aligned}$
	$\begin{gathered} \text { F } \\ \text { high-pass } \\ \text { L-C } \end{gathered}$	$f_{0}=\frac{0.1592}{\sqrt{L C}}$	$\begin{aligned} & \frac{E_{\text {out }}}{E_{i n}}=\frac{1}{1-1 / \omega^{2} L C}=\frac{1}{1-f_{0}^{2} / f^{2}} \\ & \approx-\omega^{2} L C=-\frac{f^{2}}{f_{0}^{2}} \\ & \phi=0 \text { for } f>f_{0 i} \quad \phi=\pi \text { for } f<f_{0} \end{aligned}$

$R$ in ohms; $L$ in henries; $C$ in farads $11 \mu f=10^{-6}$ farad $)$.
$T=$ time constant (seconds), $f_{0}=$ resonant frequency (cps),$\omega=2 \pi$ f,
$2 \pi=6.28, \quad 1 / 2 \pi=0.1592, \quad 4 \pi^{2}=39.5, \quad 1 / 4 \pi^{2}=0.0253$.
The relationships for low-pass filters are plotted in Figs. 9 and 10.

## Formulas for simple R, L, and C networks continued

## 18. Elementary R-C, R-L, and L-C filters and equalizers

Simple attenuating sections of broad frequency discriminating characteristics, as used in power supplies, grid-bias feed, etc. are shown in Figs. 7 and 8. The output load impedance is assumed to be high compared to the impedance of the shunt element of the filter. The phase angle $\phi$ is that of $E_{\text {out }}$ with respect to $E_{\text {in }}$.


Fig. 8-Cirele diagrams for R-L and R-C filter sections.


Fig. 9-Low-pass $R-C$ and $R-L$ filfers. $N$ is any convenient factor, usually taken as an infegral power of 10.


Fig. 10-Low-pass L-C filters. $N$ is any convenient factor, usually taken as an infegral power of 10.

## Examples of low-pass R-C filters

a. $R=100,000$ ohms

$$
C=0.1 \times 10^{-6}(0.1 \mu f)
$$

Then $T=R C=0.01$ second

$$
\begin{array}{ll}
\text { At } f=100 \mathrm{cps}: & E_{\text {out }} / E_{\text {in }}=0.16- \\
\text { At } f=30,000 \mathrm{cps}: & E_{\text {out }} / E_{\text {in }}=0.00053
\end{array}
$$

b. $\quad R=1,000$ ohms

$$
\begin{aligned}
C & =0.001 \times 10^{-6} \text { farad } \\
T & =1 \times 10^{-6} \text { second }=0.1 / \mathrm{N}, \text { where } \mathrm{N}=10^{5} \\
\text { At } f & =10 \text { megacycles }=100 \times \mathrm{N}: \quad E_{\text {out }} / E_{\text {in }}=0.016-
\end{aligned}
$$

## Formulas for simple R, L, and C networks continued

## Example of low-pass L-C filter

At $f=120 \mathrm{cps}$, required $E_{\text {out }} / E_{\text {in }}=0.03$
Then from curves: $L C=6 \times 10^{-5}$ approximately.
Whence, for $C=4 \mu f$, we require $L=15$ henries.

## Effective and average values of alternating current

(Similar equations apply to a-c voltages)
$i=I \sin \omega t$
Average value $I_{a v}=\frac{2}{\pi} I$
which is the direct current that would be obtained were the original current fully rectified, or approximately proportional to the reading of a rectifiertype meter.

Effective or root-mean-square (rms) value $I_{\text {eff }}=\frac{1}{\sqrt{2}}$
which represents the heating or power effectiveness of the current, and is proportional to the reading of a dynamometer or thermal-type meter.
When

$$
\begin{aligned}
i & =I_{0}+I_{1} \sin \omega_{1} t+I_{2} \sin \omega_{2} t+\ldots \\
I_{\text {eff }} & =\sqrt{I_{0}^{2}+\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}+\ldots\right)}
\end{aligned}
$$

Note: The average value of a complex current is not equal to the sum of the average values of the components.

## Transients-elementary cases

The complete transient in a linear network is, by the principle of superposition, the sum of the individual transients due to the store of energy in each inductor and capacitor and to each external source of energy connected to the network. To this is added the steady-state condition due to each external source of energy. The transient may be computed as starting from any arbitrary time $t=0$ when the initial conditions of the energy of the network are known.

Time constant (designated T ): Of the discharge of a capacitor through a resistor is the time $t_{2}-t_{1}$ required for the voltage or current to decay to $1 / \epsilon$ of its value at time $t_{1}$. For the charge of a capacitor the same definition applies, the voltage "decaying" toward its steady-state value. The time constant of discharge or charge of the current in an inductor through a resistor follows an analogous definition.
Energy stored in a capacitor $=\frac{1}{2} C E^{2}$ ioules (watt-seconds)
Energy stored in an inductor $=\frac{1}{2} L I^{2}$ joules (watt-seconds)
$\epsilon=2.718 \quad l / \epsilon=0.3679 \quad \log _{10} \epsilon=0.4343 \quad T$ and $t$ in seconds $R$ in ohms $L$ in henries $C$ in farads $E$ in volts $I$ in amperes

## Capacitor charge and discharge

Closing of switch occurs at time $t=0$
Initial conditions (at $t=0$ ): Battery $=E_{b ;} \quad e_{c}=E_{o}$.
Steady state (at $t=\infty): \quad i=0 ; \quad e_{c}=E_{b}$.
Transient:


$$
\begin{aligned}
i & =\frac{E_{b}-E_{0}}{R} \epsilon^{-t / R C}=I_{0} \epsilon^{-t / R C} \quad \quad \log _{10}\left(\frac{i}{I_{0}}\right)=-\frac{0.4343}{R C} t \\
e_{c} & =E_{0}+\frac{1}{C} \int_{0}^{t} i d t=E_{0} \epsilon^{-t / R C}+E_{b}\left(1-\epsilon^{-t / R C}\right)
\end{aligned}
$$

Time constant: $T=R C$
Fig. 11 shows current: $\quad i / I_{0}=\epsilon^{-t / T}$
Fig. 11 shows discharge (for $E_{b}=0$ ): $\quad e_{c} / E_{0}=\epsilon^{-t / T}$
Fig. 12 shows charge (for $E_{0}=0$ ): $\quad e_{c} / E_{b}=1-\epsilon^{-1 / T}$
These curves are plotted on a larger scale in Fig. 13.


Fig. II-Capacitor discharge.


Fig. 12-Capacitor charge.

## Two capacitors

Closing of switch occurs at time $t=0$
Initial conditions (at $t=0$ ):
$\mathrm{e}_{1}=E_{1 ;} \mathrm{e}_{2}=E_{2}$.
Steady state (at $t=\infty$ ):
$\mathrm{e}_{1}=E_{f ;} \mathrm{e}_{2}=-E_{f ; i}=0$.
$E_{f}=\frac{E_{1} C_{1}-E_{2} C_{2}}{C_{1}+C_{2}} \quad C^{\prime}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
Transient:

$$
i=\frac{E_{1}+E_{2}}{R} \epsilon^{-t / R C^{\prime}}
$$




Use exponential $\epsilon^{-t / T}$ for charge or discharge of capacitor or discharge of inductor:
(current at time t)
(initia! current)
Discharge of capacitor:
(voltage at time i)
(initial voltage)

Use exponential $1-\epsilon^{-t / T}$ for charge of capacitor:
(voltage at time i)
(battery or final voltage)
Charge of inductor:

$$
\frac{\text { (current at time t) }}{\text { (final current) }}
$$

Fig. 13-Exponential functions $\epsilon^{-t / T}$ and $1-\epsilon^{-t / T}$ applied to transients in $R-C$ and $L-R$ circuits.
$e_{1}=E_{f}+\left(E_{1}-E_{f}\right) \epsilon^{-t / R C^{\prime}}=E_{1}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{1}}\left(1-\epsilon^{-t / R C^{\prime}}\right)$
$e_{2}=-E_{f}+\left(E_{2}+E_{f}\right) \epsilon^{-t / R C^{\prime}}=E_{2}-\left(E_{1}+E_{2}\right) \frac{C^{\prime}}{C_{2}}\left(1-\epsilon^{-t / R C^{\prime}}\right)$
Original energy $=\frac{1}{2}\left(C_{1} E_{1}{ }^{2}+C_{2} E_{2}{ }^{2}\right)$ joules
Final energy $=\frac{1}{2}\left(C_{1}+C_{2}\right) E_{f}{ }^{2}$ ioules
Loss of energy $=\int_{0}^{\infty} i^{2} R d t=\frac{1}{2} C^{\prime}\left(E_{1}+E_{2}\right)^{2}$ ioules
(Loss is independent of the value of R.)

## Inductor charge and discharge

Initial conditions (at $t=0$ ):
Battery $=E_{b} ; i=I_{0}$
Steady state (ar $t=\infty): i=I_{f}=E_{b} / R$
Transient, plus steady state:

$$
i=I_{j}\left(1-\epsilon^{-R t / L}\right)+I_{0} \epsilon^{-R t / L}
$$


$e_{L}=-L d i / d t=-\left(E_{b}-R I_{0}\right) \epsilon^{-R t / L}$
Time constant: $T=L / R$
Fig. 11 shows discharge (for $E_{b}=0$ ) $\quad i / I_{0}=\epsilon^{-t / T}$
Fig. 12 shows charge (for $\left.\iota_{0}=0\right) \quad i / l_{f}=\left(1-\epsilon^{-\ell / T}\right)$
These curves are plotted on a larger scale in Fig. 13.

## Series R-L-C circuit charge and discharge

Initial conditions (at $t=0$ );
Battery $=E_{\iota ;} e_{c}=E_{0} ; i=I_{0}$
Steady state lat $t=\infty): i=0 ; \boldsymbol{e}_{c}=E_{b}$
Differential equation:

$$
E_{b}-E_{0}-\frac{1}{C} \int_{0}^{t} i d t-R i-L \frac{d i}{d t}=0
$$


when $L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=0$
Solution of equation:
$i=\epsilon^{-R t / 2 L}\left[\frac{2\left(E_{b}-E_{0}\right)-R I_{0}}{R \sqrt{D}} \sinh \frac{R t}{2 L} \sqrt{D}+I_{0} \cosh \frac{R t}{2 L} \sqrt{D}\right]$
where $\quad D=1-\frac{4 L}{R^{2} C}$
Case 1: When $\frac{L}{R^{2} C}$ is small

$$
\begin{aligned}
i=\frac{1}{\left(1-2 A-2 A^{2}\right)}\{ & {\left[\frac{E_{b}-E_{0}}{R}-I_{0}\left(A+A^{2}\right)\right] \epsilon^{-\frac{t}{R C}\left(1+A+2 A^{2}\right)} } \\
& \left.+\left[I_{0}\left(1-A-A^{2}\right)-\frac{E_{b}-E_{0}}{R}\right] \epsilon^{-\frac{R t}{L}\left(1-A-A^{2}\right)}\right\}
\end{aligned}
$$

where $\quad A=\frac{L}{R^{2} C}$
For practical purposes, the terms $A^{2}$ can be neglected when $A<0.1$. The terms $A$ may be neglected when $A<0.01$.

Case 2: When $\frac{4 L}{R^{2} C}<1$ for which $\sqrt{D}$ is real

$$
\begin{aligned}
& i=\frac{\epsilon^{-R t / 2 t}}{\sqrt{D}}\left\{\left[\frac{E_{b}-E_{0}}{R}-\frac{I_{0}}{2}(1-\sqrt{D})\right] \epsilon^{\frac{R t}{2 \bar{L}} \sqrt{D}}\right. \\
&\left.+\left[\frac{I_{0}}{2}(1+\sqrt{D})-\frac{E_{b}-E_{0}}{R}\right] \epsilon^{-\frac{R t}{2 L} \sqrt{D}}\right\}
\end{aligned}
$$

Case 3: When $D$ is a small positive or negative quantity

$$
\begin{aligned}
i=\epsilon^{-R t / 2 L}\left\{\frac { 2 ( E _ { b } - E _ { 0 } ) } { R } \left[\frac{R t}{2 L}\right.\right. & \left.+\frac{1}{6}\left(\frac{R t}{2 L}\right)^{3} D\right] \\
& \left.+I_{o}\left[1-\frac{R t}{2 L}+\frac{1}{2}\left(\frac{R t}{2 L}\right)^{2} D-\frac{1}{6}\left(\frac{R t}{2 L}\right)^{3} D\right]\right\}
\end{aligned}
$$

This formula may be used for values of $D$ up to $\pm 0.25$, at which values the error in the computed current $i$ is approximately 1 percent of $I_{0}$ or of
$\frac{E_{b}-E_{0}}{R}$

## 106

## Transients-elementary cases continued

Case 3a: When $4 L / R^{2} C=1$ for which $D=0$, the formula reduces to
$i=\epsilon^{-R t / 2 L}\left[\frac{E_{b}-E_{0}}{R} \frac{R t}{L}+I_{0}\left(1-\frac{R t}{2 L}\right)\right]$
or $i=i_{1}+i_{2}$, plotted in Fig. 14. For practical purposes, this formula may be used when $4 L / R^{2} C=1 \pm 0.05$ with errors of 1 percent or less.


Fig. 14 -Transients for $4 L / R^{2} C=1$.

Case 4: When $\frac{4 L}{R^{2} C}>1$ for which $\sqrt{D}$ is imaginary

$$
\begin{aligned}
i & =\epsilon^{-R t / L 2}\left\{\left[\frac{E_{b}-E_{0}}{\omega_{0} L}-\frac{R I_{0}}{2 \omega_{0} L}\right] \sin \omega_{0} t+I_{0} \cos \omega_{0} t\right\} \\
& =I_{m} \epsilon^{-R t / 2 L} \sin \left(\omega_{0} t+\psi \mid\right.
\end{aligned}
$$

where $\quad \omega_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}$
$I_{m}=\frac{1}{\omega_{0} L} \sqrt{\left(E_{b}-E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}^{2} L^{2} I_{0}^{2}} \quad \psi=\tan ^{-1} \frac{\omega_{0} L I_{0}}{E_{b}-E_{0}-\frac{R I_{0}}{2}}$
The envelope of the voltage wave across the inductor is:

$$
\pm \epsilon^{-R t / 2 L} \frac{1}{\omega_{0} \sqrt{L C}} \sqrt{\left(E_{b}-E_{0}-\frac{R I_{0}}{2}\right)^{2}+\omega_{0}^{2} L^{2} I_{0}^{2}}
$$

Example: Relay with transient-suppressing capacitor.
Switch closed till time $t=0$, then opened.

Let $L=0.10$ henries, $R_{1}=100$ ohms,

$$
E=10 \text { volts }
$$

Suppose we choose
$C=10^{-6}$ farads
$R_{2}=100$ ohms


## Transients-elementary cases continued

Then

$$
\begin{aligned}
R & =200 \text { ohms } \\
I_{0} & =0.10 \text { amperes } \\
E_{0} & =10 \text { volts } \\
\omega_{0} & =3 \times 10^{3} \\
f_{0} & =480 \mathrm{cps}
\end{aligned}
$$

Maximum peak voltage across $L$ (envelope at $t=0)$ is approximately 30 volts. Time constant of decay of envelope is 0.001 second.
It is preferable that the circuit be just nonoscillating (Case 3a) and that it present a pure resistance at the switch terminals for any frequency (see note on p. 851.

$$
R_{2}=R_{1}=R / 2=100 \text { ohms }
$$

$4 L^{\prime} R^{2} C=1$

$$
C=10^{-5} \text { farad }=10 \text { microfarads }
$$

At the instant of opening the switch, the voltage across the parallel circuit is $E_{0}-R_{2} I_{0}=0$.

## Series R-L-C circuit with sinusoidal applied voltage

By the principle of superposition, the transient and steady-state conditions are the same for the actual circuit and the equivalent circuit shown in the accompanying illustrations, the closing of the switch occurring at time $t=0$. In the equivalent circuit, the steady state is due to the source e acting continuously from time $t=-\infty$, while the transient is due to short-circuiting the source

actual circuit - e at time $1=0$.

Source: $\quad e=E \sin (\omega)+\alpha \mid$
Steady state: $\left.i=\frac{e}{Z} \angle-\phi=\frac{E}{Z} \sin (\omega\rangle+\alpha-\phi\right)$
where

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \\
\tan \phi & =\frac{\omega^{2} L C-1}{\omega C R}
\end{aligned}
$$


equivalent circuit

The transient is found by determining current $i=I_{0}$

## 108

## Transients-elementary cases

and capacitor voltage $e_{c}=E_{0}$ at time $t=0$, due to the source $-e$. These values of $I_{0}$ and $E_{0}$ are then substituted in the equations of Case $1,2,3$, or 4 , above, according to the values of $R, L$, and $C$.

At time $t=0$, due to the source -e :

$$
\begin{aligned}
i & =I_{0}=-\frac{E}{Z} \sin (\alpha-\phi) \\
e_{c} & =E_{0}=\frac{E}{\omega C Z} \cos (\alpha-\phi)
\end{aligned}
$$

This form of analysis may be used for any periodic applied voltage e. The steady-state current and the capacitor voltage for an applied voltage -e are determined, the periodic voltage being resolved into its harmonic components for this purpose, if necessary. Then the instantaneous values $i=I_{0}$ and $e_{c}=E_{0}$ at the time of closing the switch are easily found, from which the transient is determined. It is evident, from this method of analysis, that the waveform of the transient need bear no relationship to that of the applied voltage, depending only on the constants of the circuit and the hypothetical initial conditions $I_{0}$ and $E_{0}$.

## Transients-operational calculus and Laplace fransforms

Among the various methods of operational calculus used to solve transient problems, one of the most efficient makes use of the Laplace transform.
If we have a function $v=f(t)$, then by definition the Laplace transform is $T(v)=F(p)$, where
$F(p)=\int_{0}^{\infty} \epsilon^{-p t} f(t) d t$
The inverse transform of $F(p)$ or $T(v)$ is $v=f(t)$. Most of the mathematical functions encountered in practical work fall in the class for which Laplace transforms exist. The transforms of a number of functions are given in the table of pages 611 to 613 .

The electrical for other) system for which a solution of the differential equation is required, is considered only in the time domain $t \geqslant 0$. Any currents or voltages existing at $t=0$, before the driving force is applied, constifute the initial conditions. The driving force is assumed to be zero when $t<0$.

## Transients-operational calculus and Laplace transforms continued

## Example

Take the circuit of Fig. 15, in which the switch is closed at time $t=0$. Prior to the closing of the switch, suppose the capacitor is charged; then at $t=0$, we have $v=V_{0}$. It is required to find the voltage $v$ across capacitor $C$ as a function of time.

Writing the differential equation of the circuit in terms of voltage, and since $i=d q / d t=C(d v / d t)$, the equation is
$e(t)=v+R i=v+R C(d v / d t)$


Fig. 15.
where $e(t)=E_{b}$
Referring to the table of transforms, the applied voltage is $E_{b}$ multiplied by unit step, or $E_{b} S_{-1}(t)$; the transform for this is $E_{b} / p$. The transform of $v$ is $T(v)$. That of $R C(d v / d f)$ is $R C[p T(v)-v(0)]$, where $v(0)=V_{0}=$ value of $v$ at $t=0$. Then the transform of (5) is
$\frac{E_{b}}{p}=T(v)+R C\left[p T(v)-v_{0}\right]$
Rearranging, and resolving into partial fractions,
$T(v)=\frac{E_{b}}{p\left(1+R C_{p}\right)}+\frac{R C V_{0}}{1+R C p}=E_{b}\left(\frac{1}{p}-\frac{1}{p+1 / R C}\right)+\frac{V_{0}}{p+1 / R C}$
Now we must determine the equation that would transform into (6). The inverse transform of $T(v)$ is $v$, and those of the terms on the right-hand side are found in the table of transforms. Then, in the time domain $t \geqslant 0$,
$v=E_{b}\left(1-\epsilon^{-t / R C}\right)+V_{0} \epsilon_{z}^{-t / R C}$
This solution is also well known by classical methods. However, the advantages of the laplace-transform method become more and more apparent in reducing the labor of solution as the equations become more involved.

## Circuit response related to unit impulse

Unit impulse is defined on page 611. It has the dimensions of time ${ }^{-1}$. For example, suppose a capacitor of one microfarad is suddenly connected to a battery of 100 volts, with the circuit inductance and resistance negligibly small. Then the current flow is $10^{-4}$ coulombs multiplied by unit impulse.
The general transformed equation of a circuit or system may be written
$T(i)=\phi(p) T(e)+\psi(p)$
Here $T(i)$ is the transform of the required current (or other quantity), $T(e)$ is

## Transients-operational calculus and Laplace transforms continued

the transform of the applied voltage or driving force $e(t)$. The transform of the initial conditions, at $t=0$, is included in $\psi(\mathrm{p})$.
First considering the case when the system is initially at rest, $\psi(\mathrm{p})=0$. Writing $i_{a}$ for the current in this case,
$T\left(i_{a}\right)=\phi(p) T(e)$
Now apply unit impulse $S_{0}(t)$ Imultiplied by one volt-second), and designate the circuit current in this case by $B(t)$ and its transform by $T(B)$. By pair 13, page 613, the transform of $S_{0}(t)$ is 1 , so

$$
\begin{equation*}
T(B)=\phi(p) \tag{10}
\end{equation*}
$$

Equation (9) becomes, for any driving force

$$
\begin{equation*}
T\left(i_{a}\right)=T(B) T(e) \tag{1}
\end{equation*}
$$

Applying pair 4, page 612,
$i_{a}=\int_{0}^{t} B(f-\lambda) e(\lambda) d \lambda=\int_{0}^{t} B(\lambda) e(f-\lambda) d \lambda$
To this there must be added the current io due to any initial conditions that exist. From (8),
$T\left(i_{0}\right)=\psi(p)$
Then $i_{0}$ is the inverse transform of $\psi(\mathrm{p})$.

## Circuit response related to unit step

Unit step is defined and designated $S_{-1}(t)=0$ for $1<0$ and equals unity for $t>0$. It has no dimensions. Its transform is $1 / p$ as given in pair 12 , page 613. Let the circuit current be designated $A(t)$ when the applied voltage is $\mathrm{e}=\mathrm{S}_{-1}(t) \times(1$ volt $)$. Then, the current $i_{a}$ for the case when the system is initially at rest, and for any applied voltage $e(t)$, is given by any of the following formulas:

$$
\left.\begin{array}{rl}
i_{a} & =A(t) e(0)+\int_{0}^{t} A(t-\lambda) e^{\prime}(\lambda) d \lambda \\
& =A(t) e(0)+\int_{0}^{t} A(\lambda) e^{\prime}(t-\lambda) d \lambda \\
& =A(0) \mathrm{e}(t)+\int_{0}^{t} A^{\prime}(t-\lambda) \mathrm{e}(\lambda) d \lambda  \tag{14}\\
& =A(0) \mathrm{e}(t)+\int_{0}^{t} A^{\prime}(\lambda) \mathrm{e}(t-\lambda) d \lambda
\end{array}\right\}
$$

where $A^{\prime}$ is the first derivative of $A$ and similarly for $e^{\prime}$ of $e$.

As an example, consider the problem of Fig. 15 and (5) to (7) above. Suppose $V_{0}=0$, and that the battery is replaced by a linear source
$e(t)=E t / T_{1}$
where $T_{1}$ is the duration of the voltage rise in seconds. By (7), setting $E_{b}=1$, $\mathrm{A}(\mathrm{t})=1-\epsilon^{-t / R C}$
Then using the first equation in (14) and noting that e(0) $=0$, and $e^{\prime}(t)$ $=E / T_{1}$ when $0 \leqslant t \leqslant T_{1}$, the solution is
$v=\frac{E t}{T_{1}}-\frac{E R C}{T_{1}}\left(1-\epsilon^{-t / R C}\right)$
This result can, of course, be found readily by direct application of the Laplace transform to (5) with e(t) $=\mathrm{Et} / \mathrm{T}_{1}$.

## Heaviside expansion theorem

When the system is initially at rest, the transformed equation is given by (9) and may be written
$T\left(i_{a}\right)=\frac{M(p)}{G(p)} T(e)$
$M(p)$ and $G(p)$ are rational functions of $p$. In the following, $M(p)$ must be of lower degree than $G(p)$, as is usually the case. The roots of $G(p)=0$ are $p_{r}$, where $r=1,2, \ldots n$, and there must be no repeated roots. The response may be found by application of the Heaviside expansion theorem.
For a force $e=E_{\max } \epsilon^{j \omega t}$ applied at time $t=0$,

$$
\begin{align*}
\frac{i_{a}(t)}{E_{\text {nax }}} & =\frac{M(j \omega)}{G(j \omega)} \epsilon^{j \omega \ell}+\sum_{r=1}^{n} \frac{M\left(p_{r}\right) \epsilon^{p_{r} \ell}}{\left(p_{r}-j \omega\right) G^{\prime}\left(p_{r}\right)}  \tag{16a}\\
& =\frac{\epsilon^{j \omega t}}{Z(j \omega)}+\sum_{r=1}^{n} \frac{\epsilon^{p_{r} \ell}}{\left(p_{r}-j \omega\right) Z^{\prime}\left(p_{r}\right)} \tag{16b}
\end{align*}
$$

The first term on the righthand side of either form of (16) gives the steady-state response, and the second term gives the transient. When $e=E_{\max } \cos \omega t$, take the real part of (16), and similarly for $\sin \omega t$ and the imaginary part. $Z(p)$ is defined in (19) below. If the applied force is the unit step, set $\omega=0$ in (16).

## Application to linear networks

The equation for a single mesh is of the form

$$
\begin{equation*}
A_{n} \frac{d^{n} i}{d t^{n}}+\ldots .+A_{1} \frac{d i}{d t}+A_{0} i+B \int i d t=e(t) \tag{17}
\end{equation*}
$$

## Transients-operational calculus and Laplace transforms

System initially at rest: Then, (17) transforms into

$$
\begin{equation*}
\left(A_{n} p^{n}+\ldots+A_{1} p+A_{0}+B p^{-1}\right) T(i)=T(e) \tag{18}
\end{equation*}
$$

where the expression in parenthesis is the operational impedance, equal to the alternating-current impedance when we set $p=j \omega$.
If there are $m$ meshes in the system, we get $m$ simultaneous equations like (17) with $m$ unknowns $i_{1}, i_{2}, \ldots, i_{m}$. The $m$ algebraic equations like 118 are solved for $T\left(i_{1}\right)$, etc., by means of determinants, yielding an equation of the form of (15) for each unknown, with a term on the right-hand side for each mesh in which there is a driving force. Each such driving force may of course be treated separately and the responses added.
Designating any two meshes by the letters $h$ and $k$, the driving force eft being in either mesh and the mesh current $i(t)$ in the other, then the fraction $M(p) / G(p)$ in $(15)$ becomes
$\frac{M_{h k}(p)}{G(p)}=\frac{1}{Z_{h k}(p)}=Y_{h k}(p)$
where $Y_{h k}(p)$ is the operational transfer admittance between the two meshes. The determinant of the system is $G(p)$, and $M_{k k}(p)$ is the cofactor of the row and column that represent $e(t)$ and $i(t)$.
System not initially at rest: The transient due to the initial conditions is solved separately and added to the above solution. The driving force is set equal to zero in (17), e(t) $=0$, and each term is transformed according to

$$
\begin{align*}
T\left(\frac{d^{n} i}{d t^{n}}\right) & =p^{n} T(i)-\sum_{r=1}^{n} p^{n-r}\left[\frac{d^{r-1} i}{d t^{r-1}}\right]_{t=0}  \tag{20a}\\
T\left[\int_{0}^{t} i d t\right] & =\frac{1}{\rho} T(i)+\frac{1}{p}\left[\int i d t\right]_{t=0} \tag{20b}
\end{align*}
$$

where the last term in each equation represents the initial conditions. For example, in (20b) the last term would represent, in an electrical circuit, the quantity of electricity existing on a capacitor at time $t=0$, the instant when the driving force $e^{(t)}$ commences to act.
Resolution into partial fractions: The solution of the operational form of the equations of a system involves rational fractions that must be simplified before finding the inverse transform. Let the fraction be $h(p) / g(p)$ where $h(p)$ is of lower degree than $g(p)$, for example $(3 p+2) /\left(p^{2}+5 p+8\right)$. If $h(p)$ is of equal or higher degree than $g(p)$, it can be reduced by division. The reduced fraction can be expanded into partial fractions. Let the factors of the denominator be $\left(p-p_{r}\right)$ for the $n$ nonrepeated roots $p_{r}$ of the equation $g(p)=0$, and $\left(p-o_{a}\right)$ for a root $p_{a}$ repeated $m$ times.

Transients-operational calculus and Laplace transforms

$$
\begin{equation*}
\frac{h(p)}{g(p)}=\sum_{r=1}^{n} \frac{A_{r}}{p-p_{r}}+\sum_{r=1}^{m} \frac{B_{r}}{\left(p-\rho_{a}\right)^{m-r+1}} \tag{21a}
\end{equation*}
$$

There is a summation term for each root that is repeated. The constant coefficients $A_{r}$ and $B_{r}$ can be evaluated by re-forming the fraction with a common denominator. Then the coefficients of each power of $p$ in $h(p)$ and the re-formed numerator are equated and the resulting equations solved for the constants. More formally, they may be evaluated by

$$
\begin{align*}
& A_{r}=\frac{h\left(p_{r}\right)}{g^{\prime}\left(p_{r}\right)}=\left[\frac{h(p)}{g(p) /\left(p-p_{r}\right)}\right]_{p=p_{r}}  \tag{21b}\\
& B_{r}=\frac{1}{(r-11!} f^{(r-1)}\left(\rho_{a}\right) \tag{21c}
\end{align*}
$$

where
$f(p)=\left(p-p_{a}\right)^{m} \frac{h(p)}{g(p)}$
and $f^{(r-1)}\left(p_{a}\right)$ indicates that the $(r-1)$ th derivative of $f(p)$ is to be found, after which we set $p=p_{a}$.
Fractions of the form $\frac{A_{1} \rho+A_{2}}{p^{2}+\omega^{2}}$ or, more generally,
$\frac{A_{1} p+A_{2}}{p^{2}+2 a p+b}=\frac{A(p+a)+B \omega}{(p+a)^{2}+\omega^{2}}$
where $b>a^{2}$ and $\omega^{2}=b-a^{2}$, need not be reduced further. By pairs 8, 23, and 24 of the table on pages 612 and 613 , the inverse transform of (22a) is $\epsilon^{-a t}(A \cos \omega t+B \sin \omega t)$
where

$$
\begin{align*}
& A=\frac{h(-a+j \omega)}{g^{\prime}(-a+j \omega)}+\frac{h(-a-j \omega)}{g^{\prime}(-a-j \omega)} \\
& B=j\left[\frac{h(-a+j \omega)}{g^{\prime}(-a+j \omega)}-\frac{h(-a-j \omega)}{g^{\prime}(-a-j \omega)}\right] \tag{22d}
\end{align*}
$$

Similarly, the inverse transform of the fraction $\frac{A(p+a)+B \alpha}{(p+a)^{2}-\alpha^{2}}$ is $\epsilon^{-a t}(A$ cosh $\alpha t+B \sinh \alpha t)$, where $A$ and $B$ are found by $(22 c)$ and $(22 d)$, except that $j \omega$ is replaced by $\alpha$ and the coefficient $j$ is omitted in the expression for $B$.

## Coefficient of coupling*

Several types of coupled circuits are shown in Figs. IB to F, together with formulas for the coefficient of coupling in each case. Also shown is the dependence of bandwidth on resonance frequency. This dependence is only a rough approximation to show the trend, and may be altered radically if $L_{m}, M$ or $C_{m}$ are adjusted as the circuits are tuned to various frequencies.

$$
k=X_{120} / \sqrt{X_{10} X_{20}}=\text { coefficient of coupling }
$$

$X_{120}=$ coupling reactance at resonance frequency $f_{0}$
$X_{10}=$ reactance of inductor lor capacitorl of first circuit at $f_{0}$
$X_{23}=$ reactance of similar element of secoñd circuit at $f_{0}$
$(\mathrm{bw})_{C}=$ bandwidth with capacitive tuning
$(\mathrm{bw})_{L}=$ bandwidth with inductive tuning

## Gain at resonance

## Single circuit

In Fig. 1A,

$$
\frac{E_{0}}{E_{u}}=-g_{m}\left|X_{10}\right| Q
$$

where
$E_{0}=$ output volts at resonance frequency $f_{0}$
$E_{0}=$ input volts to grid of driving tube
$g_{m}=$ transconductance of driving tube

## Pair of coupled circuits (Figs. 2 and 3)

In any figure-Figs. IB to $F$,
$\frac{E_{0}}{E_{g}}=j g_{m} \sqrt{X_{10} X_{20}} Q \frac{k Q}{1+k^{2} Q^{2}}$
This is maximum at critical coupling, where $k Q=1$.
$Q=\sqrt{Q_{1} Q_{2}}=\underset{\text { geometric-mean } Q \text { for the two circuits, as loaded with the }}{ }$ tube grid and plate impedances

* See also "Coefficient of coupling--geometrical consideration," p. 96.

fig. 1-continued

*Where $A=\frac{Q^{2}}{1+k^{2} Q^{2}}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}$


## Gain af resonance

For circuits with critical coupling and over coupling, the approximate gain is

$$
\left|\frac{E_{0}}{E_{\theta}}\right|=\frac{0.1 \mathrm{~g}_{\mathrm{m}}}{\sqrt{C_{1} C_{2}}(\mathrm{bw})}
$$

where (bw) is the useful pass band in megacycles, $g_{m}$ is in micromhos, and $C$ is in micromicrofarads.


Fig. 2-Connection wherein $\boldsymbol{k}_{m}$ opposes $k_{c}$. ( $k_{c}$ may be due to stray capacitance.) Peak of aftenuation is at $f=f_{0} \sqrt{-k_{m} / k_{o}} \quad$ Reversing connections or winding direction of one coil causes $\boldsymbol{k}_{m}$ to aid $\boldsymbol{k}_{\mathrm{c}}$.


Fig. 3-Connection wherein $\boldsymbol{k}_{\text {m }}$ aids $k_{i-}$ If mutual-inductance coupling is reversed, $\boldsymbol{k}_{m}$ will oppose $\boldsymbol{k}_{c}$ and there will be a transfer minimum at $f=f_{0} \sqrt{-k_{m} / h_{0}}$.

## Selectivity far from resonance

The selectivity curves of Fig. 4 are based on the presence of only a single type of coupling between the circuits. The curves are useful beyond the peak region treated on pp. 119-124.
In the equations for selectivity in Fig. 1

$$
\begin{aligned}
E= & \text { output volts at signal frequency } f \text { for same value of } E_{0} \text { as that pro- } \\
& \text { ducing } E_{0}
\end{aligned}
$$

## For inductive coupling

$A=\frac{Q^{2}}{1+k^{2} Q^{2}}\left[\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}-k^{2}\left(\frac{f}{f_{0}}\right)^{2}\right]=\frac{Q^{2}}{1+k^{2} Q^{2}}\left(\frac{f}{f_{0}}-\frac{f_{0}}{f}\right)^{2}$

## For capacitive coupling

A is defined by a similar equation, except that the neglected term is $-k^{2}\left(f_{0} / f^{2}\right.$. The 180-degree phase shift far from resonance is indicated by the minus sign in the expression for $E_{0} / E$.


Fig. 4-Selectivity for frequencies far from resonance. $Q=100$ and $|k| 0=1.0$.

Example: The use of the curves, Figs. 4, 5, and 6, is indicated by the following example. Given the circuit of Fig. IC with input to $P B$, across capacitor $C_{1}$. Let $Q=50, k Q=1.50$ and $f_{0}=16.0$ megacycles. Required is the response at $f=8.0$ megacycles.
Here $f / f_{0}=0.50$ and curve C, Fig. 4, gives -75 decibels. Then applying the corrections from Figs. 5 and 6 for $Q$ and $k Q$, we find
Response $=-75+12+4=-59$ decibels


Fig. 5-Correction for $Q \neq 100$.


Fig. 6-Correction for $|k| Q \neq 1.0$.

## Selectivity of single- and double-funed circuits near resonance

Formulas and curves are presented for the selectivity and phase shift:
Of $n$ single-tuned circuits
Of $m$ pairs of coupled tuned circuits
The conditions assumed are
a. All circuits are tuned to the same frequency $f_{0}$.
b. All circuits have the same $Q$, or each pair of circuits includes one circuit having $Q_{1}$, and the other having $Q_{2}$.
c. Otherwise the circuits need not be identical.
d. Each successive circuit or pair of circuits is isolated from the preceding and following ones by tubes, with no regeneration around the system.
Certain approximations have been made in order to simplify the formulas. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that
a. The reactance around each circuit is equal to $2 X_{0} \Delta f / f_{0}$.
b. The resistance of each circuit is constant and equal to $X_{0} / Q$.
c. The coupling between two circuits of a pair is reactive and constant. When an untuned link is used to couple the two circuits, this condition frequently is far from satisiled, resulting in a lopsided selectivity curve.)
d. The equivalent input voltage, taken as being in series with the tuned circuit for the first of a pairl, is assumed to bear a constant proportionality to the grid voltage of the input tube or other driving source, at all frequencies in the band.
e. Likewise, the output voltage across the circuit for the final circuit of a pair) is assumed to be proportional only to the current in the circuit.
The following symbols are used in the formulas in addition to those defined on pages 114 and 117.

$$
\frac{\Delta f}{f_{0}}=\frac{f-f_{0}}{f_{0}}=\frac{\text { (deviation from resonance frequency) }}{\text { (resonance frequency) }}
$$

$$
\begin{aligned}
(b w)= & \text { bandwidth }=2 \Delta f \\
X_{0}= & \text { reactance at } f_{0} \text { of inductor in tuned circuit } \\
n= & \text { number of single-funed circuits } \\
m= & \text { number of pairs of coupled circuits } \\
\phi= & \text { phase shift of signal at } f \text { relative to shift at } f_{0} \\
& \text { as signal passes through cascade of circuits }
\end{aligned}
$$

## 120

## Selectivity of single-and double-funed circuits

## near resonance continued

$p=k^{2} Q^{2}$ or $p=k^{2} Q_{1} Q_{2}$, a parameter determining the form of the selectivity curve of coupled circuits
$B=p-\frac{1}{2}\left(\frac{Q_{1}}{Q_{2}}+\frac{Q_{2}}{Q_{1}}\right)$
Selectivity and phase shift of single-tuned circuits
$\frac{E}{E_{0}}=\left[\frac{1}{\sqrt{1+\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}}\right]^{n}$
$\frac{\Delta \gamma}{\hat{\beta}_{0}}= \pm \frac{1}{2 Q} \sqrt{\left(\frac{E_{0}}{E}\right)^{\frac{2}{n}}-1}$

single-tuned circuil

Decibel response $=20 \log _{10}\left(\frac{E}{E_{0}}\right)$
(db response of $n$ circuits) $=n \times$ (db response of single circuit)
$\phi=n \tan ^{-1}\left(-2 Q \frac{\Delta f}{f_{0}}\right)$
These equations are plotted in Figs. 7 and 8, following.

## Q determination by 3-decibel points

For a single-tuned circuit, when
$E / E_{0}=0.707(3$ decibels down)

Selectivify and phase shift of pairs of coupled tuned circuits
Case 1: When $Q_{1}=Q_{2}=Q$
These formulas can be used with reasonable accuracy when $Q_{1}$ and $Q_{2}$ differ by ratios up to 1.5 or even 2 to 1 . In such cases use the value $Q=\sqrt{Q_{1} Q_{2}}$.
$\frac{E}{E_{0}}=\left[\frac{p+1}{\sqrt{\left[\left(2 Q \frac{\Delta f}{\rho_{0}}\right)^{2}-(p-11]^{2}+4 p\right.}}\right]^{m}$


## Selectivity of single- and double-tuned circuits

## near resonance continued


$Q \frac{2 \Delta f}{f_{0}}=Q \frac{(b w)}{f_{0}}$

Fig. 7 - Selectivity curves showing response of a single circuit $n=1$, and a pair of coupled circuits $m=1$.

The selectivity curves are symmetrical about the axis $Q \frac{\Delta f}{f_{0}}=0$ for practical purposes.

Extrapolation beyond lower limits of chart:

$\Delta$ response for doubling $\Delta f$		useful limit	
	circuit	of $\frac{(\mathrm{bw})}{\mathrm{f}_{0}}$	error becomes
- 6 db	$\leftarrow$ single $\rightarrow$	$\pm 0.6$	1 to 2 db
$-12 \mathrm{db}$	$\leftarrow$ pair $\rightarrow$	$\pm 0.4$	3 to 4 db

Example: Of the use of Figs. 7 and 8. Suppose there are three single-funed circuits ( $n=3$ ). Each circuit has a $Q=200$ and is tuned to 1000 kilocycles. The results are shown in the following table:

abscissa   (bw)   $\mathbf{f 0}$	bandwidth   kilocycles	ordinate   dbresponse   for $\mathbf{n}=\mathbf{1}$	decibels   response   for $\mathbf{n}=\mathbf{3}$	$\phi^{*}$   for $\mathbf{n}=1$	$\phi^{*}$   for $\mathbf{n}=\mathbf{3}$
	5.0	-3.0	-9	$\mp 45^{\circ}$	$\mp 135^{\circ}$
1.0	15	-10.0	-30	$\mp 712^{\circ}$	$\mp 215^{\circ}$
3.0	50	-20.2	-61	$\mp 84^{\circ}$	$\mp 252^{\circ}$

* $\phi$ is negative for $f>f_{0}$, and vice versa.


## Selectivity of single- and double-funed circuits

near resonance confinued


## Selectivity of single- and double-tuned circuits

near resonance continued
$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{(p-1) \pm \sqrt{(p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-4 p}}$
For very small values of $E / E_{0}$ the formulas reduce to
$\frac{E}{E_{0}}=\left[\frac{\mathrm{p}+1}{\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]^{m}$
Decibel response $=20 \log _{10}\left(E / E_{0}\right)$
( db response of $m$ pairs of circuits) $=m \times(\mathrm{db}$ response of one pair)
$\phi=m \tan ^{-1}\left[\frac{-4 Q \frac{\Delta f}{f_{0}}}{(p+1)-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]$
As $p$ approaches zero, the selectivity and phase shift approach the values for $n$ single circuits, where $n=2 m$ (gain also approaches zerol.

The above equations are plotted in Figs. 7 and 8.
For overcoupled circuits ( $p>1$ )
Location of peaks: $\quad \frac{f_{\text {peak }}-f_{0}}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{p-1}$
Amplitude of peaks: $\quad \frac{E_{\text {peak }}}{E_{0}}=\left(\frac{p+1}{2 \sqrt{p}}\right)^{m}$
Phase shift at peaks: $\quad \phi_{\text {leak }}=m \tan ^{-1}(\mp \sqrt{p-1})$
Approximate pass band (where $E / E_{0}=1$ ) is
$\frac{f_{\text {unity }}-f_{0}}{f_{0}}=\sqrt{2} \frac{f_{\text {park }}-f_{0}}{f_{0}}= \pm \frac{1}{Q} \sqrt{\frac{p-1}{2}}$

Case 2: General formula for any $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$
$\frac{E}{E_{0}}=\left[\frac{p+1}{\sqrt{\left[\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}-B\right]^{2}+(p+1)^{2}-B^{2}}}\right]^{m}$ (For B see top of $\left.p .120.\right)$

## 124

## Selectivity of single- and double-funed circuits

near resonance
$\frac{\Delta f}{f_{0}}= \pm \frac{1}{2 Q} \sqrt{\left.B \pm[1 p+1)^{2}\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-(p+1)^{2}+B^{2}\right]^{\frac{2}{2}}}$
$\phi=m \tan ^{-1}\left[-\frac{2 Q \frac{\Delta f}{f_{0}}\left(\sqrt{\frac{Q_{1}}{Q_{2}}}+\sqrt{\frac{Q_{2}}{Q_{1}}}\right)}{10+11-\left(2 Q \frac{\Delta f}{f_{0}}\right)^{2}}\right]$

For overcoupled circuits
Location of peaks: $\frac{f_{\text {veak }}-f_{0}}{f_{0}}= \pm \frac{\sqrt{B}}{2 Q}= \pm \frac{1}{2} \sqrt{k^{2}-\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)}$
Amplitude of peaks: $\quad \frac{E_{\text {netk }}}{E_{0}}=\left[\frac{p+1}{\sqrt{(p+1)^{2}-B^{2}}}\right]^{m}$
Case 3: Peaks just converged to a single peak
Here $B=0$ or $k^{2}=\frac{1}{2}\left(\frac{1}{Q_{1}{ }^{2}}+\frac{1}{Q_{2}{ }^{2}}\right)$
$\frac{E}{E_{o}}=\left[\frac{2}{\sqrt{\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{4}+4}}\right]^{m}$
where $Q^{\prime}=\frac{2 Q_{1} Q_{2}}{Q_{1}+Q_{2}}$
$\frac{\Delta f}{f_{0}}= \pm \frac{\sqrt{2}}{4}\left(\frac{1}{Q_{1}}+\frac{1}{Q_{2}}\right) \sqrt[4]{\left(\frac{E_{0}}{E}\right)^{\frac{2}{m}}-1}$
$\phi=m \tan ^{-1}\left[-\frac{4 Q^{\prime} \frac{\Delta f}{f_{0}}}{2-\left(2 Q^{\prime} \frac{\Delta f}{f_{0}}\right)^{2}}\right]$
The curves of Figs. 7 and 8 may be applied to this case, using the value $p=1$, and substituting $Q^{\prime}$ for $Q$.

## Triple-tuned circuits

Exact design formulas for $n$ identical cascaded tripie-tuned stages used to produce the "maximally-flat" amplitude-response shape are given. Typical circuit is shown in Fig. 9, together with the response.


Fig. 9-Typical triple-tuned circuil and response curve.
To obtain the required $Q$ s,
$\frac{Q_{1}}{f_{0} /(b W)_{\beta}}=0.737 \sqrt[6]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}$

$$
Q_{2}=Q_{3}=4.24 Q_{1}
$$

in the above formulas, $Q_{3}$ and $Q_{1}$ may be interchanged.
To obtain the required coefficient of coupling.
$k_{12}=k_{23}=\frac{0.527}{Q_{1}}$
To obtain the gain per stage,
$\frac{\text { (stage gain) }}{g_{m} / 4 \pi(b w)_{\beta} \sqrt{C_{1} C_{3}}}=\sqrt[8]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}$
The exact amplitude response is given by
$\frac{V_{p}}{V}=\left\{1+\left[\left(V_{p} / V_{\beta}\right)^{2 / n}-1\right]\left[\frac{(b w)}{(b w)_{\beta}}\right]^{6}\right\}^{\frac{n}{2}}$ or $\frac{(b w)}{(b w)_{\beta}}=\frac{\sqrt[8]{\left(V_{p} / V\right)^{2 / n}-1}}{\sqrt[8]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}}$
This equation is plotted in Fig. 10.

126

Triple-tuned circuits continued
The exact phase response for one stage is given by

$$
\theta=\tan ^{-1} \frac{\left(\frac{2}{\sqrt[3]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}}\right)\left[\frac{(b w)}{(b w)_{\beta}}\right]-\left[\frac{(b w)}{(b w)_{\beta}}\right]^{3}}{\frac{1}{\sqrt{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}}-\frac{2}{\sqrt[5]{\left(V_{p} / V_{\beta}\right)^{2 / n}-1}}\left[\frac{(b w)}{(b w)_{\beta}}\right]^{2}}
$$

$$
\geq
$$

$$
{ }^{10^{5}} E
$$

$$
\begin{aligned}
& 10^{4}
\end{aligned}
$$



$$
10^{4}
$$

$$
10^{3}
$$

## Stagger tuning of single-tuned interstages

Response shape B (Butterworth) (Fig. $1 /$
The required $Q$ 's are given by
$\frac{1}{Q_{m}}=\frac{(b w)_{\beta} / f_{0}}{\sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}} \sin \left(\frac{2 m-1}{n} 90^{\circ}\right)$
The required stagger tuning is given by
$\left(f_{a}-f_{b}\right)_{m}=\frac{(\mathrm{bw})_{\beta}}{\sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}} \cos \left(\frac{2 m-1}{n} 90^{\circ}\right)$
$\left(f_{a}+f_{b}\right)_{m}=2 f_{0}$
The amplifude response is given by

$$
\begin{aligned}
V_{p} / V & =\left\{1+\left[\left(V_{p} / V_{\beta}\right)^{2}-1\right]\left[(\mathrm{bw}) /(\mathrm{bw})_{\beta}\right]^{2 n}\right\}^{\frac{3}{2}} \\
\frac{(\mathrm{bw})}{(\mathrm{bw})_{\beta}}= & {\left[\frac{\left(V_{p} / V\right)^{2}-1}{\left.\left(V_{p} / V_{\beta}\right)^{2}-1\right]^{1 / 2 n}}\right.} \\
n & =\frac{\log \left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]}{2 \log \left[(\mathrm{bw}) /(\mathrm{bw})_{\beta}\right]}
\end{aligned}
$$



Stage gain $=\frac{g_{m}}{2 \pi(\mathrm{bW})_{\beta} C} \sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}$
or
$n=\frac{\log \left[\frac{(\text { tolal gain) }}{\sqrt{\left(V_{p} / V_{B}\right)^{2}-1}}\right]}{\log \left(\frac{g_{m}}{2 \pi(b w)_{\beta} C}\right)}$
where

$$
\begin{aligned}
g_{m} & =\text { geometricsmean transconductance of } n \text { fubes } \\
C & =\text { geometric-mean capacitance }
\end{aligned}
$$

## Response shape C (Chebishev) (Fig. 12)

The required $Q$ 's are given by

$$
\begin{aligned}
\frac{1}{Q_{m}} & =\frac{(b w)_{\beta}}{f_{0}} S_{n} \sin \left[\frac{2 m-1}{n} 90^{\circ}\right] \\
S_{n} & =\sinh \left[\frac{1}{n} \sinh ^{-1} \frac{1}{\sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]
\end{aligned}
$$



The required stagger tuning is given by

$$
\begin{aligned}
\left(f_{a}-f_{b} i_{m}\right. & =(b w)_{\beta} C_{n} \cos \left(\frac{2 m-1}{n} 90^{\circ}\right) \\
\left(f_{a}+f_{b}\right)_{m} & =2 f_{0} \\
C_{n} & =\cosh \left[\frac{1}{n} \sinh ^{-1} \frac{1}{\sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]
\end{aligned}
$$

Shape outside pass band is

$$
\begin{aligned}
\frac{V_{p}}{V} & =\sqrt{1+\left[\left(\frac{V_{p}}{V_{\beta}}\right)^{2}-1\right]\left\{\cosh ^{2}\left[n \cosh ^{-1} \frac{(b w)}{(b w)_{\beta}}\right]\right\}} \\
\frac{(b w)}{(b w)_{\beta}} & =\cosh \left\{\frac{1}{n} \cosh ^{-1}\left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]^{\frac{1}{2}}\right\} \\
n & =\frac{\cosh ^{-1}\left[\frac{\left(V_{p} / V\right)^{2}-1}{\left(V_{p} / V_{\beta}\right)^{2}-1}\right]^{\frac{1}{2}}}{\cosh ^{-1}\left[(b w) /(b w)_{\beta}\right]}
\end{aligned}
$$

Shape inside pass band is

$$
\begin{aligned}
& \frac{V_{p}}{V}=\sqrt{1+\left[\left(\frac{V_{p}}{V_{\beta}}\right)^{2}-1\right]\left\{\cos ^{2}\left[n \cos ^{-1} \frac{(b w)}{(b w)_{\beta}}\right]\right\}} \\
& \frac{(b w)_{\text {crest }}}{(b w)_{\beta}}=\cos \left(\frac{2 m-1}{n} 90^{\circ}\right) \\
& \frac{(b w)_{\text {trousl }}}{(b w)_{\beta}}=\cos \left(\frac{2 m}{n} 90^{\circ}\right)
\end{aligned}
$$

Stage gain $=\frac{g_{m}}{2^{1 / n} \pi(b w)_{\beta} C} \sqrt[2 n]{\left(V_{p} / V_{\beta}\right)^{2}-1}$
$n=\frac{\log \left[\frac{(\text { tolal gain) }}{\frac{1}{2} \sqrt{\left(V_{p} / V_{\beta}\right)^{2}-1}}\right]}{\log \left[\frac{g_{m}}{\pi(b w)_{\beta} C}\right]}$
where
$\mathrm{G}_{m}=$ geometric-mean transconductance of $n$ tubes
$C=$ geometric-mean capacitance

## General

The basic filter half section and the full sections derived from it are shown in Fig. 1. The fundamental filter equations follow, with filter characteristics and design formulas next. Also given is the method of building up a composite filter and the effect of the design parameter $m$ on the image-impedance characteristic. An example of the design of a low-pass filter completes the chapter. It is to be noted that while the impedance characteristics and design formulas are given for the half sections as shown, the attenuation and phase characteristics are for full sections, either $T$ or $\pi$.

Fig. 1-Basic flter sections.


## Fundamental filter equations

## Image impedances $Z_{T}$ and $Z_{\pi}$

$Z_{\mathrm{T}}=$ mid-series image impedance $=$ impedance looking into $1-2$ (Fig. $|\mathrm{A}|$ with $Z_{\pi}$ connected across 3-4.
$Z_{\pi}=$ mid-shunt image impedance $=$ impedance looking into 3-4 (Fig. IA) with $Z_{T}$ connected across 1-2.

Formulas for the above are

$$
\begin{aligned}
Z_{\mathrm{T}} & =\sqrt{Z_{1} Z_{2}+Z_{1}^{2} / 4}=\sqrt{Z_{1} Z_{2}} \sqrt{1+Z_{1} / 4 Z_{2}} \text { ohms } \\
Z_{\pi} & =\frac{Z_{1} Z_{2}}{\sqrt{Z_{1} Z_{2}+Z_{1}^{2} / 4}}=\frac{\sqrt{Z_{1} Z_{2}}}{\sqrt{1+Z_{1} / 4 Z_{2}}} \text { ohms } \\
Z_{\mathrm{T}} Z_{\pi} & =Z_{1} Z_{2}
\end{aligned}
$$

## Image fransfer constant $\theta$

The transfer constant $\theta=\alpha+j \beta$ of a network is defined as one-half the natural logarithm of the complex ratio of the steady-state volt-amperes entering and leaving the network when the latter is terminated in its image impedance. The real part $\alpha$ of the transfer constant is called the image attenuation constant, and the imaginary part $\beta$ is called the image phase constant.
Formulas in terms of full sections are
$\cosh \theta=1+Z_{1} / 2 Z_{2}$

## Pass band

$\alpha=0$, for frequencies making $-1 \leqslant Z_{1} / 4 Z_{2} \leqslant 0$
$\beta=\cos ^{-1}\left(1+Z_{1} / 2 Z_{2}\right)= \pm 2 \sin ^{-1} \sqrt{-Z_{1 / 4} / 4 Z_{2}}$ radians
Image impedance $=$ pure resistance

## Stop band

$$
\begin{aligned}
& \left\{\begin{array}{l}
\alpha=\cosh ^{-1}\left|1+Z_{1} / 2 Z_{2}\right|=2 \sinh ^{-1} \sqrt{Z_{1} / 4 Z_{2}} \text { nepers for } Z_{1} / 4 Z_{2}>0 \\
\beta=0 \text { radians }
\end{array}\right. \\
& \left\{\begin{array}{l}
\alpha=\cosh ^{-1}\left|1+Z_{1} / 2 Z_{2}\right|=2 \cosh ^{-1} \sqrt{-Z_{1} / 4 Z_{2}} \text { nepers for } Z_{1} / 4 Z_{2}<-1 \\
\beta= \pm \pi \text { radians }
\end{array}\right.
\end{aligned}
$$

Image impedance $=$ pure reactance
The above formulas are based on the assumption that the impedance arms are pure reactances with zero loss.

## 132

## Low-pass filter design



## Notations:

$Z$ in ohms, $\alpha$ in nepers, and $\beta$ in radians

$$
\begin{aligned}
\omega_{e} & =2 \pi f_{c}=\text { angular cutoff frequency } \\
& =1 / \sqrt{L_{k} C_{k}} \\
\omega_{\infty} & =2 \pi f_{c o}=\begin{array}{c}
\text { angular frequency of peak } \\
\text { attenuation }
\end{array}
\end{aligned}
$$

$m=\sqrt{1-\omega_{c}{ }^{2} / \omega_{\infty}{ }^{2}}$
$R=$ nominal tepminating resistanco
$=\sqrt{L_{k} / C_{k}}$
$=\sqrt{\boldsymbol{Z}_{\mathrm{T} k} \boldsymbol{Z}_{\boldsymbol{\pi} k}}$


## High-pass filter design



## Notations:

$Z$ in ohms, $\alpha$ in nepers, and $\beta$ in radians

$$
\begin{aligned}
\omega_{c} & =2 \pi f_{c}=\text { angular cutof frequency } \\
& =1 / \sqrt{L_{k} C_{k}}
\end{aligned}
$$

$$
\omega_{\infty}=2 \pi f_{\infty}=\underset{\text { angular frequency of peak }}{\text { attenuation }}
$$

$m=\sqrt{1-\omega_{\infty}{ }^{2} / \omega_{c}{ }^{2}}$
$R=$ nominal terminating resistance
$=\sqrt{L_{k} / C_{k}}$
$=\sqrt{Z_{T k Z_{\pi k}}}$

full-section   attenuation $\alpha$ and phase $\beta$ characteristics	design formulas	
	series arm	shunt arm
	$C_{k}=\frac{1}{\omega_{c} R}$	$L_{k}=\frac{R}{\omega_{c}}$
	$C_{1}=\frac{C_{k}}{m}$	$\begin{aligned} & \mathrm{L}_{2}=\frac{\mathrm{L}_{k}}{m} \\ & \mathrm{C}_{2}=\frac{m}{1-m^{2}} C_{k} \end{aligned}$
When $\begin{aligned} & \begin{array}{l} \omega_{\infty}<\omega<\omega_{c} \quad \alpha \\ \beta=-\pi \text { and } \end{array} \quad \begin{aligned} & \alpha=\cosh ^{-1}\left[2 \frac{\omega_{c}^{2}-\omega_{\infty}{ }^{2}}{\omega^{2}-\omega_{\infty}{ }^{2}}-1\right] \\ &=\cosh ^{-1}\left[2 \frac{m^{2}}{\left.\frac{\omega^{2}}{\omega_{c}^{2}}-11-m^{2}\right)}-1\right] \end{aligned} \\ & \text { When } \end{aligned}$ $\begin{aligned} & 0<\omega<\omega_{\infty} \\ & \boldsymbol{\beta}=0 \text { and } \end{aligned} \quad \alpha=\cosh ^{-1}\left[1-2 \frac{\omega_{\infty}^{2}-\omega_{r}^{2}}{\omega_{\infty}^{2}-\omega^{2}}\right]$	$\begin{aligned} & L_{1}=\frac{m}{1-m^{2}} L_{k} \\ & C_{1}=\frac{C_{k}}{m} \end{aligned}$	$\mathrm{L}_{2}=\frac{L_{k}}{\mathrm{~m}}$
When $=\cosh ^{-1}\left[1+2-\frac{m^{2}}{\left.(1)-m^{2}\right)-\frac{\omega^{2}}{\omega_{c}^{2}}}\right]$ $\begin{aligned} \boldsymbol{\omega}_{c}<\omega<\infty \\ \boldsymbol{\alpha}=0 \text { and } \end{aligned} \quad \beta=\cos ^{-1}\left[1-2 \frac{\omega_{\infty}^{2}-\omega_{c}^{2}}{\omega_{\infty}^{2}-\omega^{2}}\right] \quad \begin{aligned} & \left(1-m^{2}\right)-\frac{\omega^{2}}{\omega_{c}^{2}} \\ & \\ & \end{aligned}$	For constant- $R^{2}=Z_{1 k} Z_{2 k}$   For m-derive   Curves drawn $\begin{aligned} R^{2} & =Z_{T_{2} Z_{\pi 1}} \\ & =Z_{1 \text { (series }} \\ & =Z_{1 \text { thunt }} \end{aligned}$	type   $k^{2}$   type   for $m \approx 0.6$   $Z_{2 \text { (Bbunt-m) }}$   $Z_{2 \text { (series-m) }}$

## 136

## Band-pass filter design

## Nofations:

The following notations apply to the charts on band-pass filter design that appear on pp. 136-145
$Z$ in ohms, $\alpha$ in nepers, and $\beta$ in radians
$\omega_{1}=2 \pi f_{1}=$ lower cutoff angular frequency
$\omega_{2}=2 \pi f_{2}=$ upper cutoff angular frequency
$\omega_{0}=\sqrt{\omega_{1} \omega_{2}}=$ midband angular frequency
$\omega_{2}-\omega_{1}=$ width of pass band
$R=$ nominal terminating resistance
$\omega_{1 \infty}=2 \pi f_{1 \infty}=$ lower angular frequency of peak attenuation
$\omega_{2 \infty}=2 \pi f_{2 \infty}=$ upper angular frequency of peak attenuation

$$
\begin{aligned}
& m_{1}= \frac{\frac{\omega_{1} \omega_{2}}{\omega_{2 \infty}^{2}} g+h}{1-\frac{\omega_{i \infty}^{2}}{\omega_{2 \infty}^{2}}} \\
& m_{2}= g+h \frac{\omega_{1 \infty}^{2}}{\omega_{1 \omega_{2}}} \\
& 1-\frac{\omega_{i \infty}^{2}}{\omega_{2 \infty}^{2}}
\end{aligned}
$$

type and
half section
impedance characteristics

## Constant-k




$$
Z_{T k}=\frac{R \sqrt{\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}}{\omega\left(\omega_{2}-\omega_{1}\right)}
$$

$$
Z_{\pi k}=\frac{R \omega\left(\omega_{2}-\omega_{1}\right)}{\sqrt{\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}}
$$

$\left.\begin{array}{rl}g & =\sqrt{\left(1-\frac{\omega_{1 \infty}^{2}}{\omega_{1}^{2}}\right)\left(1-\frac{\omega_{1 \infty}^{2}}{\omega_{2}^{2}}\right)} \\ h & =\sqrt{\left(1-\frac{\omega_{1}^{2}}{\omega_{2 \infty}^{2}}\right)\left(1-\frac{\omega_{2}^{2}}{\omega_{2 \infty}^{2}}\right)} \\ L_{1 k} C_{1 k} & =L_{2 k} C_{2 k}=\frac{1}{\omega_{1} \omega_{2}}=\frac{1}{\omega_{0}^{2}} \\ R^{2} & =\frac{L_{1 k}}{C_{2 k}}=\frac{L_{2 k}}{C_{1 k}} \\ & =Z_{1 k} Z_{2 k}=k^{2} \\ & =Z_{T k} Z_{\pi k} \\ & =Z_{1 \text { (series-m) }} Z_{2 \text { (shunt-m) }} \\ & =Z_{2 \text { (series-m) }} Z_{1 \text { (shunt-m) }} \\ & =Z_{\mathrm{T}(\text { shunt-m) }} Z_{\pi \text { (series-m) }} \\ Z_{\mathrm{T} \text { (neries-m) }} & =Z_{\mathrm{T} k} \\ Z_{\pi \text { (shunt-m) }} & =Z_{\pi k}\end{array}\right\}$ for any one pair of m-derived half-sections


## 138

Band-pass filter design*
type and
half section
impedance choracteristics
3-element series 1


3-element shunt I

$Z_{\mathrm{T} 2}=\frac{R \omega}{\left(\omega_{2}+\omega_{1}\right)} \sqrt{\frac{\omega_{2}^{2}-\omega^{2}}{\omega^{2}-\omega_{1}^{2}}}$
$=R^{2} / Z_{\pi I}$
$Z_{\pi 2}=Z_{\pi /}$

3-element series II


$$
\begin{aligned}
& Z_{\mathrm{T} 3}=Z_{\mathrm{T} k} \\
& Z_{\pi 3}=\frac{R \omega\left(\omega_{2}+\omega_{\mathrm{N}}\right)}{\omega_{2}^{2}} \sqrt{\frac{\omega_{2}^{2}-\omega^{2}}{\omega^{2}-\omega_{1}^{2}}}
\end{aligned}
$$



$$
Z_{\mathrm{T} 4}=\frac{R \omega_{2}^{2}}{\omega\left|\omega_{2}+-\omega_{1}\right|} \sqrt{\omega_{2}^{2}-\omega_{1}^{2}} \omega_{2^{2}}^{\omega^{2}}
$$

$$
=R^{2} / Z_{\pi 3}
$$

$$
Z_{\pi 4}=Z_{\pi k}
$$

[^15]| full-section attenuation $\alpha$ and phase $\beta$ charac!eristics | conditions | írequencies of peak $\alpha$ | design formulas |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | series arm | shunt arm |
|   <br> When $0<\omega<\omega_{1}, \beta=0$ and $\alpha=\cosh ^{-1}\left[1-2 \frac{\omega^{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}\right]$ <br> When $\omega_{1}<\omega<\omega_{2}, \quad \alpha=0$ and $\beta=\cos ^{-1}\left[1-2 \frac{\omega^{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}\right]$ <br> When $\omega_{2}<\omega<\infty, \beta=\pi$ and $\boldsymbol{\alpha}=\cosh ^{-1}\left[2 \frac{\omega^{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}-1\right]$ | $\begin{aligned} m_{1} & =1 \\ m_{2} & =\frac{\omega_{1}}{\omega_{2}} \end{aligned}$ | $\omega_{200}=\infty$ | $L_{1}=L_{1 k}$ $C_{1}=\frac{C_{1 k}}{m_{2}}$ $L_{1}=\frac{1-m \underline{2}}{1+m_{2}} L_{16}$ | $C_{2}=\frac{1-m_{2}}{1+m_{2}} C_{2 k}$ $L_{2}=\frac{L_{2 k}}{m_{2}}$ $\mathrm{C}_{2}=\mathrm{C}_{2 k}$ |
|   <br> When $0<\omega<\omega_{1}, \quad \beta=-\pi$ and $\alpha=\cosh ^{-1}\left[2 \frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}\right)}{\omega^{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}-1\right]$ <br> When $\omega_{1}<\omega<\omega_{2}, \quad \boldsymbol{\alpha}=0$ and $\beta=\cos ^{-1}\left[1-2 \frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}\right)}{\omega^{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}\right]$ <br> When $\omega_{2}<\omega<\infty, \beta=0$ and $\alpha=\cosh ^{-1}\left[1-2 \frac{\omega_{1}^{2}\left(\omega_{2}^{2}-\omega^{2}\right)}{\omega^{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}\right]$ | $\begin{aligned} & m_{1}=\frac{\omega_{1}}{\omega_{2}} \\ & m_{2}=1 \end{aligned}$ | $\omega_{1 \infty}=0$ | $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & C_{1}=C_{1 k} \end{aligned}$ $C_{1}=\frac{1+m_{1}}{1-m_{1}} C_{1 k}$ | $L_{2}=\frac{1+m_{1}}{1-m_{1}} L_{2 k}$ $L_{2}=L_{2 k}$ $C_{2}=m_{1} C_{2 k}$ |

## Band-pass filter design* continued

type and half section	impedance characteristics
4-element series I	
4-element shunt	
4-element series II	

4-element shunt II



$$
\left.\begin{array}{rl}
Z_{T_{4}}= & \frac{\left.R \omega \mid \omega_{2}-\omega_{1}\right)}{\left.\left(\omega_{2}^{2}-\omega^{2}\right)+m_{1}^{2} \mid \omega^{2}-\omega_{1}^{2}\right)} \\
& \quad \times \sqrt{\omega_{2}^{2}-\omega^{2}} \\
= & R^{2} / Z_{\pi 3}-\omega_{1}^{2}
\end{array}\right] \begin{aligned}
& Z_{\pi 4}= \\
& Z_{\pi k}
\end{aligned}
$$

[^16]

142
Band-pass filter design*




6-element shunt



$$
\begin{aligned}
& Z_{\mathrm{T} 2}=R^{2} / Z_{\pi 1} \\
& Z_{\pi 2}=Z_{\pi k}
\end{aligned}
$$

full-section attenuation $\alpha$ and phase $\beta$ characteristics
When $\omega_{1}<\omega<\omega_{2}, \quad \alpha=0$ and
$\beta=\cos ^{-1}\left[1-\frac{\left.2 \mid \omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\left.\omega_{0}^{2} m_{2}\right|^{2}+\left(\omega_{2}^{2}-\omega^{2} \mid\left(\omega^{2}-\omega_{1}{ }^{2}\right)\right.\right.}\right]$
When $\omega_{2}<\omega<\omega_{2 \infty}, \beta=\pi$ and
$\alpha=\cosh ^{-1}\left[\frac{2\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}+1\right]$


When $0<\omega<\omega_{1 \infty}, \quad \beta=0$ and
$\alpha=\cosh ^{-1}\left[1-\frac{2\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}^{2}\right)}\right]$


When $\omega_{1 \infty}<\omega<\omega_{1}, \quad \beta=-\pi$ and
$\alpha=\cosh ^{-1}\left[\frac{\left.2\left(\omega^{2} m_{t}-\omega_{1}\right)^{2} m_{2}\right)^{2}}{\left(\omega^{2} m_{1}-\omega_{0}^{2} m_{2}\right)^{2}+\left(\omega_{2}^{2}-\omega^{2}\right)\left(\omega^{2}-\omega_{1}{ }^{2}\right)}-1\right]$
When $\omega_{2 \infty}<\omega<\infty, \beta=0$ and
$\alpha=$ same formula as for $0<\omega<\omega_{1 \infty}$

[^17]| design formulas |  |
| :---: | :---: |
| series arm | shunt arm |
| $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m_{2}} \end{aligned}$ | $\begin{aligned} & L_{2}=\frac{L_{1 k}}{m_{2}}\left[\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}\right] \\ & L_{2}^{\prime}=\frac{1-m_{1}^{2}}{m_{1}} L_{1 k} \\ & C_{2}=\frac{m_{1} C_{1 k}}{\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}} \\ & C_{2}^{\prime}=\frac{m_{2}}{1-m_{2}^{2}} C_{1 k} \end{aligned}$ |
| $\begin{aligned} & L_{1}=\frac{m_{1} L_{2 k}}{\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}} \\ & C_{1}=\frac{C_{2 k}}{m_{2}}\left[\frac{\left(\omega_{2}-\omega_{1}\right)^{2}}{\omega_{0}^{2}}-\frac{\left(m_{1}-m_{2}\right)^{2}}{m_{1} m_{2}}\right] \\ & \mathrm{L}_{1}^{\prime}=\frac{m_{2}}{1-m_{2}^{2}} L_{2 k} \\ & C_{1}^{\prime}=\frac{1-m_{1}^{2}}{m_{1}} C_{2 k} \end{aligned}$ | $\begin{aligned} & L_{2}=\frac{L_{2 k}}{m_{2}} \\ & C_{2}=m_{1} C_{2 k} \end{aligned}$ |


conditions		frequency of peak $\alpha$
$m_{1}=\frac{g \frac{\omega_{0}^{2}}{\omega_{2}^{2}}+h}{1-\frac{\omega_{1}{ }^{2}}{\omega_{2}(2}}$	$m_{2}=\frac{g+h \frac{\omega_{1} \stackrel{⿳}{2}^{2}}{\omega_{1}^{2}}}{1-\frac{\omega_{1}^{2} \omega^{-}}{\omega_{2} \stackrel{2}{\omega}}}$	$\begin{aligned} & \omega_{1}^{2} \dot{\omega}+\omega_{2}^{2} \omega=\frac{\omega_{2}^{2}+\omega_{1}^{2}-2 \omega_{0}^{2} m_{1} m_{2}}{1-m_{1}^{2}} \\ & \omega_{1 \infty}^{2} \times \omega_{2}^{2} \stackrel{\infty}{2}=\omega_{0}^{4}\left(\frac{1-m_{2}^{2}}{1-m_{1}^{2}}\right) \end{aligned}$

## Band-stop filter design

## Notations

$Z$ in ohms, $\alpha$ in nepers, and $\beta$ in radians

$$
\begin{aligned}
\omega_{1}= & \text { lower cutoff angular fre- } \\
& \text { quency } \\
\omega_{2}= & \text { upper cutof angular fre- } \\
& \text { quency } \\
\omega_{0}= & \sqrt{\omega_{1} \omega_{2}}=1 / \sqrt{L_{1 k} C_{1 k}} \\
& =1 / \sqrt{L_{2 k} C_{2 k}} \\
\omega_{2}-\omega_{1}= & \text { width of stop band } \\
\omega_{1 \infty}= & \text { lower angular frequency } \\
& \text { of peak attenuation }
\end{aligned}
$$

$$
\begin{aligned}
\omega_{2 \infty} & =\text { upper angular frequency of } \\
& \text { peak attenuation } \\
R & =\text { nominal perminating resistance } \\
R^{2} & =\frac{L_{1 k}}{C_{2 k}}=\frac{L_{2 k}}{C_{1 k}} \\
& =Z_{1 k} Z_{2 k}=Z_{\mathrm{T}} k Z_{\pi k}=k^{2} \\
& =Z_{1(\text { serics-m) }} Z_{2(\text { shunt-m) }} \\
& =Z_{2(\text { series-m) }} Z_{1 \text { (shunt-m) }} \\
& =Z_{\mathrm{T} 2} Z_{\pi 1}
\end{aligned}
$$

146

Band-stop filter design continued


[^18]

## Building up a composite filter



Fig. 2-Method of building up a composite fliter.


Fig. 3-Effect of design parameter $m$ on the image-impedance characteristics in the pass band.

## Building up a composite filter

The intermediate sections (Fig. 2) are matched on an image-impedance basis, but the attenuation characteristics of the sections may be varied by suitably designing the series and shunt arms of each section. Thus, the frequencies attenuated only slightly by one section may be strongly attenuated by other sections. However, the image impedance will be far from constant in the passband, unless the value of $m$ is appropriately selected. In order to have a more constant impedance at the external terminals, suitably designed half sections are added. For these terminating sections, a value of $m \approx 0.6$ is used (Fig. 3). When they are designed with the same cutoff frequencies and the same load resistance as the midsections, the image impedance will match that of the midsections.

## Example of low-pass filter design

To cut off at 15 kilocycles/second; to give peak attenuation at 30 kilocycles; with a load resistance of 600 ohms; and using a constant-k midsection and an m-derived midsection. Full T-sections will be used.

## Constant-k midsection

$$
\begin{aligned}
& L_{k}=\frac{R}{\omega_{c}}=\frac{600}{(6.28)\left(15 \times 10^{3}\right)}=6.37 \times 10^{-3} \text { henry } \\
& C_{k}=\frac{1}{\omega_{c} R}=\frac{1}{(6.28)\left(15 \times 10^{3}\right)(600)}=0.0177 \times 10^{-6} \text { farad } \\
& \alpha=2 \cosh ^{-1} \frac{\omega}{\omega_{c}}=2 \cosh ^{-1} \frac{f}{15} \\
& \beta=2 \sin ^{-1} \frac{\omega}{\omega_{c}}=2 \sin ^{-1} \frac{1}{15}
\end{aligned}
$$

where $\alpha$ is in nepers, $\beta$ in radians, and $f$ in kilocycles.

## m-derived midsection

$$
\begin{gathered}
m=\sqrt{1-\omega_{c}^{2} / \omega_{\infty}^{2}}=\sqrt{1-15^{2} / 30^{2}} \\
\quad=\sqrt{0.75}=0.866 \\
\begin{aligned}
L_{1}=m L_{k} & =0.866\left(6.37 \times 10^{-3}\right) \\
& =5.52 \times 10^{-3} \text { henry }
\end{aligned}
\end{gathered}
$$



$$
\begin{aligned}
& L_{2}=\frac{1-m^{2}}{m} L_{k}=\left[\frac{1-(0.866)^{2}}{0.866}\right]\left(6.37 \times 10^{-3}\right)=1.84 \times 10^{-3} \text { henry } \\
& C_{2}=m C_{k}=0.866\left(0.0177 \times 10^{-6}\right)=0.0153 \times 10^{-6} \text { farad } \\
& \alpha=\cosh ^{-1}\left[1-\frac{2 m^{2}}{\frac{\omega_{c}{ }^{2}}{\omega^{2}}-\left(1-m^{2}\right)}\right]=\cosh ^{-1}\left[1-\frac{1.5}{\frac{225}{f^{2}}-0.25}\right] \\
& \beta=\cos ^{-1}\left[1-\frac{2 m^{2}}{\frac{\omega_{c}{ }^{2}}{\omega^{2}}-\left(1-m^{2}\right)}\right]=\cos ^{-1}\left[1-\frac{1.5}{\frac{225}{f^{2}}-0.25}\right]
\end{aligned}
$$

End sections $m=0.6$

$$
\begin{aligned}
L_{1} & =m L_{k}=0.6\left(6.37 \times 10^{-3}\right) \\
& =3.82 \times 10^{-3} \text { henry } \\
L_{2} & =\frac{1-m^{2}}{m} L_{k} \\
& =\left[\frac{1-(0.6)^{2}}{0.6}\right]\left(6.37 \times 10^{-3}\right)=6.80 \times 10^{-3} \text { henry } \\
C_{2} & =m C_{k}=0.6\left(0.0177 \times 10^{-6}\right)=0.0106 \times 10^{-6} \mathrm{farad}
\end{aligned}
$$

Frequency of peak attenuation $f_{\infty}$
$f_{\infty}=\sqrt{\frac{f_{c}^{2}}{1-m^{2}}}=\sqrt{\frac{\left(15 \times 10^{3}\right)^{2}}{1-(0.6)^{2}}}=18.75$ kilocycles

Filter showing individual sections


## Example of low-pass filter design

 continued
## Filter after combining elements



Attenuation of each section


Attenuation of composite filter


152
Example of low-pass filter design continued
$\begin{aligned} & \text { Phase character- } \\ & \text { istic of each }\end{aligned}$
$\begin{aligned} & \text { section }\end{aligned}$
$\begin{aligned} & \text { solid line }=\begin{array}{c}\text { constant-k } \\ \text { midsection }\end{array} \\ & \text { dashed }=\begin{array}{c}m \text {-derived } \\ \text { midsection }\end{array} \\ & \text { dash-dot }=\begin{array}{c}m \text {-derived } \\ \text { ends }\end{array}\end{aligned}$.


Phase characteristic of composite filter


Impedance looking into filter $Z_{\text {in }}$
$Z_{i n}=\frac{R\left[1-\frac{\omega^{2}}{\omega_{c}{ }^{2}}\left(1-m^{2}\right)\right]}{\sqrt{1-\omega^{2} / \omega_{c}{ }^{2}}}$

$$
=\frac{600\left[1-0.64(f / 15)^{2}\right]}{\sqrt{1-(f / 15)^{2}}}
$$




## Attenuafors

## Deflnitions

An attenuator is a network designed to introduce a known loss when working between resistive impedances $Z_{1}$ and $Z_{2}$ to which the input and output impedances of the attenuator are matched. Either $Z_{1}$ or $Z_{2}$ may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working.
Three forms of resistance network that may be conveniently used to realize these conditions are shown on page 158. These are the $T$ section, the $\pi$ section, and the bridged-T section. Equivalent balanced sections also are shown. Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions on pages 632 to 634. Tables of the various types of attenuators are given on pages 161 to 168 .

## Ladder affenuator

Ladder attenuator, Fig. 1 , input switch points $P_{0}, P_{1}, P_{2}, P_{3}$ at shunt arms. Also intermediate point $P_{m}$ tapped on series arm. May be either unbalanced, as shown, or balanced.


Fig. 1-Ladder attenuator.
Ladder, for design purposes, Fig. 2, is resolved into a cascade of $\pi$ sections by imagining each shunt arm split into two resistors. Last section matches $Z_{2}$ to $2 Z_{1}$. All other sections are symmetrical, matching impedances $2 Z_{1}$, with a terminating resistor $2 Z_{1}$ on the first section. Each section is designed for the loss required between the switch points at the ends of that section.
Input to $P_{0}$ : Loss in decibels $=10 \log _{10} \frac{\left(2 Z_{1}+Z_{2}\right)^{2}}{4 Z_{1} Z_{2}}$
Input impedance $Z_{1}^{\prime}=\frac{Z_{2}}{2} \quad$ Output impedance $=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$

## Ladder attenuator

Input to $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}$, or $\boldsymbol{P}_{3}$ : Loss in decibels $=3+$ isum of losses of $\pi$ section; between input and output). Input impedance $Z_{1}{ }^{\prime}=Z_{1}$


Fig. 2 -Ladder attenuator resolved into a cascade of $\pi$ sections.

Input to $\boldsymbol{P}_{m}$ (on a symmetrical $\pi$ section):
$\frac{e_{0}}{e_{m}}=\frac{1}{2} \frac{m(1-m)(K-1)^{2}+2 K}{K-m(K-1)}$
where
$e_{0}=$ output voltage when $m=0$ (Switch on $P_{1}$ )
$e_{m}=$ output voltage with switch on $P_{m}$
$K=$ current ratio of the section (from $P_{1}$ to $P_{2}$ ) $K>1$
Input impedance $\left.Z_{1}{ }^{\prime}=Z_{1}[m(1)-m) \frac{(K-1)^{2}}{K}+1\right]$
Maximum

$$
Z_{1}^{\prime}=Z_{1}\left[\frac{(K-1)^{2}}{4 K}+1\right] \text { for } m=0.5
$$

The unsymmetrical last section may be treated as a system of voltage-dividing resistors. Solve for the resistance $R$ from $P_{0}$ to the tap, for each value of
$\binom{$ output voltage with input on $P_{0}}{$ output voltage with input on tap }

## A useful case

When $Z_{1}=Z_{2}=500$ ohms.
Then loss on $P_{0}$ is 3.52 decibels.
Let the last section be designed for loss of 12.51 decibels. Then
$R_{13}=2444$ ohms (shunted by 1000 ohms)
$R_{23}=654$ ohms (shunted by 500 ohms)
$R_{12}=1409$ ohms
The table shows the location of the tap and the input and output impedances for several values of loss, relative to the loss on $P_{0}$ :

relative   loss in   decibels	Lap   $\mathbf{R}$   ohms	input   impedance   ohms	oupput   impedance   ohms
	0		
0	170	250	250
2	375	368	304
4	615	478	353
6	882	562	394
8	1157	600	428
10	1409	577	454
12			473

Input to $\mathbf{P}_{0:} \quad$ Output impedance $=0.6 \mathrm{Z} \quad$ (See Fig. 3.)
Input to $P_{0}, P_{1}, P_{2}$, or $P_{3}$ : Loss in decibels $=6+$ (sum of losses of $\pi$ sections between input and outputl. Input impedance $=Z$
Input to $\mathbf{P}_{m}$ :
$\frac{e_{0}}{e_{n}}=\frac{1}{4} \frac{m(1-m)(K-1)^{2}+4 K}{K-m(K-1)}$
Input impedance:
$Z^{\prime}=Z\left[\frac{m(1-m)(K-1)^{2}}{2 K}+1\right]$
Maximum $Z^{\prime}=Z\left[\frac{(K-1)^{2}}{8 K}+1\right]$ for $m=0.5$
2/2


Fig. 3-A variation of the ladder aftenuator, useful when $\mathbf{Z}_{1}=\mathbf{Z}_{2}=\mathbf{Z}$. Simpler in design, with improved impedance characteristics, but having minimum inserlion loss 2.5 decibels higher than attenuator of Fig. 2. All $\pi$ sections are symmetrical.

## Load impedance

## Effect of incorrect load impedance on operation of an attenuator

In the applications of attenuators, the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks that, when operated between resistive impedances $Z_{1}$ and $Z_{2}$, present matching terminal impedances $Z_{1}$ and $Z_{2}$, respectively. The results may be derived in the general case by the application of the network theorems, and may be readily confirmed mathematically for simple specific cases such as the $T$ section.

For the designed use of the network, let
$Z_{1}=$ input impedance of properly terminated network
$Z_{2}=$ load impedance that properly terminates the network
$N=$ power ratio from input to output
$K=$ current ratio from input to output
$K=\frac{i_{1}}{i_{2}}=\sqrt{\frac{N Z_{2}}{Z_{1}}}$ (different in the two directions except when $Z_{2}=Z_{1}$ )

For the actual conditions of operation, le $\dagger$
$\left(Z_{2}+\Delta Z_{2}\right)=Z_{2}\left(1+\frac{\Delta Z_{2}}{Z_{2}}\right)=$ actual load impedance
$\left(Z_{1}+\Delta Z_{1}\right)=Z_{1}\left(1+\frac{\Delta Z_{1}}{Z_{1}}\right)=$ resulting input impedance
$(K+\Delta K)=K\left(1+\frac{\Delta K}{K}\right)=$ resulting current ratio

While $Z_{1}, Z_{2}$, and $K$ are restricted to real quantities by the assumed nature of the network, $\Delta Z_{2}$ is not so restricted, e.g.,
$\Delta Z_{2}=\Delta R_{2}+j \Delta X_{2}$

As a consequence, $\Delta Z_{1}$ and $\Delta K$ can become imaginary or complex. Furthermore, $\Delta Z_{2}$ is not restricted to small values.

## Load impedance

 continuedThe results for the actual conditions are

$$
\frac{\Delta Z_{1}}{Z_{1}}=\frac{2 \Delta Z_{2} / Z_{2}}{2 N+(N-1) \frac{\Delta Z_{2}}{Z_{2}}} \quad \text { and } \quad \frac{\Delta K}{K}=\left(\frac{N-1}{2 N}\right) \frac{\Delta Z_{2}}{Z_{2}}
$$

## Certain special cases may be cited

Case 1: For small $\Delta Z_{2} / Z_{2}$

$$
\begin{aligned}
\frac{\Delta Z_{1}}{Z_{1}} & =\frac{1}{N} \frac{\Delta Z_{2}}{Z_{2}} \quad \text { or } \quad \Delta Z_{1}=\frac{1}{K^{2}} \Delta Z_{2} \\
\frac{\Delta i_{2}}{i_{2}} & =-\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}
\end{aligned}
$$

but the error in insertion power loss of the attenuator is negligibly small.
Case 2: Short-circuited output
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{-2}{N+1}$
or input impedance $=\left(\frac{N-1}{N+1}\right) Z_{1}=Z_{1} \tanh \theta$
where $\theta$ is the designed attenuation in nepers.
Case 3: Open-circuited output
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}$
or input impedance $=\left(\frac{N+1}{N-1}\right) Z_{1}=Z_{1} \operatorname{coth} \theta$
Case 4: For $N=1$ (possible only when $Z_{1}=Z_{2}$ and directly connected)
$\frac{\Delta Z_{1}}{Z_{1}}=\frac{\Delta Z_{2}}{Z_{2}}$
$\frac{\Delta K}{K}=0$
Case 5: For large $N$
$\frac{\Delta K}{K}=\frac{1}{2} \frac{\Delta Z_{2}}{Z_{2}}$

158

Attenuator network design see page 100 for symbols

description	configuration	
	unbalanced	balanced
Unbalanced $T$ and balanced H (see Fig. 8)		
Symmetrical   $T$ and $H$ $\left(Z_{1}=Z_{2}=Z\right)$   (see Fig. 4)		
Minimum-loss pad matching $Z_{1}$ and $Z_{2}$ $\left(Z_{1}>Z_{2}\right)$ (see Fig. 7)		
Unbalanced $\pi$ and balanced 0		
Symmetrical $\pi$ and 0 $\left(Z_{1}=Z_{2}=Z\right)$   (see Fig. 5)		
Bridged T and bridged H (see Fig. 6 )		


design formulas		checking formulas
hyperbolic	arithmelical	
$\begin{aligned} & R_{3}=\frac{\sqrt{Z_{1} Z_{2}}}{\sinh \theta} \\ & R_{1}=\frac{Z_{1}}{\tanh \theta}-R_{3} \\ & R_{2}=\frac{Z_{2}}{\tanh \theta}-R_{3} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{2 \sqrt{N Z_{1} Z_{2}}}{N-1} \\ & R_{1}=Z_{1}\left(\frac{N+1}{N-1}\right)-R_{3} \\ & R_{2}=Z_{2}\left(\frac{N+1}{N-1}\right)-R_{3} \end{aligned}$	
$\begin{aligned} & R_{3}=\frac{Z}{\sinh \theta} \\ & R_{1}=Z \tanh \frac{\theta}{2} \end{aligned}$	$\begin{aligned} R_{3} & =\frac{2 Z \sqrt{N}}{N-1}=\frac{2 Z K}{K^{2}-1} \\ & =\frac{2 Z}{K-1 / K} \\ R_{1} & =Z \frac{\sqrt{N}-1}{\sqrt{N}+1}=z \frac{K-1}{K+1} \\ & =Z[1-2 / K K+11] \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =\frac{Z^{2}}{1+\cosh \theta}=Z^{2} \frac{2 K}{(K+1)^{2}} \\ \frac{R_{1}}{R_{3}} & =\cosh \theta-1=2 \sinh ^{2} \frac{\theta}{2} \\ & =\frac{(K-1)^{2}}{2 K} \\ Z & =R_{1} \sqrt{1+2 \frac{R_{3}}{R_{1}}} \end{aligned}$
$\begin{aligned} & \cosh \theta=\sqrt{\frac{Z_{1}}{Z_{2}}} \\ & \cosh 2 \theta=2 \frac{Z_{1}}{z_{2}}-1 \end{aligned}$	$\begin{aligned} & R_{1}=Z_{1} \sqrt{1-\frac{Z_{2}}{Z_{1}}} \\ & R_{3}=\frac{Z_{2}}{\sqrt{1-\frac{Z_{2}}{Z_{1}}}} \end{aligned}$	$\begin{aligned} R_{1} R_{3} & =Z_{1} Z_{2} \\ \frac{R_{1}}{R_{3}} & =\frac{Z_{1}}{Z_{2}}-1 \\ N & =\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{1}}{Z_{2}}-1}\right)^{2} \end{aligned}$
$\begin{aligned} & R_{3}=\sqrt{Z_{1} Z_{2}} \sinh \theta \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1} \tanh \theta}-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2} \tanh \theta}-\frac{1}{R_{3}} \end{aligned}$	$\begin{aligned} & R_{3}=\frac{N-1}{2} \sqrt{\frac{Z_{1} Z_{2}}{N}} \\ & \frac{1}{R_{1}}=\frac{1}{Z_{1}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \\ & \frac{1}{R_{2}}=\frac{1}{Z_{2}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{3}} \end{aligned}$	
$\begin{aligned} & R_{3}=Z \sinh \theta \\ & R_{1}=\frac{Z}{\tanh \frac{\theta}{2}} \end{aligned}$	$\begin{aligned} R_{3} & =z \frac{N-1}{2 \sqrt{N}}=z \frac{K^{2}-1}{2 K} \\ & =Z(K-1 / K) / 2 \\ R_{1} & =Z \frac{\sqrt{N}+1}{\sqrt{N}-1}=2 \frac{K+1}{K-1} \\ & =Z[1+2 /(K-1)] \end{aligned}$	$\begin{aligned} R_{1} R_{3} & \left.=Z^{2}(1)+\cosh \theta\right)=Z^{2}\left(\frac{(K+1)^{2}}{2 K}\right. \\ \frac{R_{3}}{R_{1}} & =\cosh \theta-1=\frac{(K-)^{2}}{2 K} \\ z & =\frac{R_{1}}{\sqrt{1+2 \frac{R_{1}}{R_{3}}}} \end{aligned}$
	$\begin{aligned} & R_{1}=R_{2}=Z \\ & R_{4}=Z(K-1) \\ & R_{3}=\frac{Z}{K-1} \end{aligned}$	$\begin{aligned} R_{3} R_{4} & =z^{2} \\ \frac{R_{4}}{R_{3}} & =(K-1)^{2} \end{aligned}$

Four-terminal networks: The hyperbolic formulas above are valid for passive linear four-terminal networks in general, working between input and output impedances matching the respective image impedances. In this case: $Z_{1}$ and $Z_{2}$ are the image impedances; $R_{1}, R_{2}$ and $R_{3}$ become complex impedarses; and $\theta$ is the image transfer constant. $\theta=\boldsymbol{\alpha}+\boldsymbol{\beta}$, where $\alpha$ is the image attenuation constant and $\beta$ is the image phase constant.

## Symbols

$Z_{1}$ and $Z_{2}$ are the terminal impedances (resistive) to which the attenuator is matched.
$N$ is the ratio of the power absorbed by the attenvator from the source to the power delivered to the load.
$K$ is the ratio of the attenvator input current to the output current into the load. When $Z_{1}=Z_{2}, K=\sqrt{N}$. Otherwise $K$ is different in the two directions.
Attenuation in decibels $=10 \log _{10} \mathrm{~N}$
Attenuation in nepers $=\theta=\frac{1}{2} \log _{e} N$
For a table of decibels versuspower and voltage or current ratio, see page 30. Factors for converting decibels to nepers, and nepers to decibels, are given at the foot of that table.

## Notes on error formulas

The formulas and figures for errors, given in Figs. 4 to 8, are based on the assumption that the attenvator is terminated approximately by its proper terminal impedances $Z_{1}$ and $Z_{2}$. They hold for deviations of the attenvator arms and load impedances up to $\pm 20$ percent or somewhat more. The error due to each element is proportional to the deviation of the element, and the total error of the attenuator is the sum of the errors due to each of the several elements.
When any element or arm $R$ has a reactive component $\Delta X$ in addition to a resistive error $\Delta R$, the errors in input impedance and output current are
$\Delta Z=A(\Delta R+j \Delta X)$
$\frac{\Delta i}{i}=B\left(\frac{\Delta R+j \Delta X}{R}\right)$
where $A$ and $B$ are constants of proportionality for the elements in question. These constants can be determined in each case from the figures given for errors due to a resistive deviation $\Delta R$.
The reactive component $\Delta X$ produces a quadrature component in the output current, resulting in a phase shift. However, for small values of $\Delta X$, the error in insertion loss is negligibly small.
For the errors produced by mismatched terminal load impedance, refer to Case 1, page 157.

## Symmetrical T or Hattenuators

## Inferpolation of symmetrical T or $\mathbf{H}$ attenuators (fig. 4)

Column $R_{1}$ may be interpolated linearly. Do not interpslate $R_{3}$ column. For 0 to 6 decibels interpolate the $1000 / R_{3}$ column. Above 6 decibels, interpolate the column $\log _{10} R_{3}$ and determine $R_{3}$ from the result.

Fig. 4-Symmetrical $T$ and $H$ attenuator values. $Z=500$ ohms resistive (diagram on page 158).

attenuation in decibels	series arm $\mathbf{R}_{\mathbf{1}}$ ohms	shunt arm $\mathrm{R}_{3}$ ohms	$1000 / R_{3}$	$\log _{10} \mathbf{R}_{\mathbf{z}}$
0.0	0.0	inf	0.0000	-
0.2	5.8	21,700	0.0461	-
0.4	11.5	10,850	0.0921	_
0.6	17.3	7.230	0.1383	-
0.8	23.0	5,420	0.1845	-
1.0	28.8	4,330	0.2308	-
2.0	57.3	2,152	0.465	--
3.0	85.5	1,419	0.705	$\square$
4.0	1131	1,048	0.954	-
5.0	140.1	822	1.216	-
6.0	166.1	669	1.494	
7.0	191.2	558	-	$2.747$
8.0	215.3	473.1	-	2.675
9.0	238.1	405.9	-	2.608
10.0	259.7	351.4	-	2.546
12.0	299.2	268.1	-	2.428
14.0	333.7	207.8	-	2.318
16.0	363.2	162.6	-	2.211
18.0	388.2	127.9	--	2.107
20.0	409.1	101.0	-	2.004
22.0	426.4	79.94	$\square$	1.903
24.0	440.7	63.35	-	1.802
26.0	452.3	50.24	-	1.701
28.0	461.8	39.87	-	1.601
30.0	469.3	31.65	-	1.500
35.0	482.5	17.79	-	1.250
40.0	490.1	10.00	-	1.000
50.0	496.8	3.162	- -	0.500
60.0	499.0	1.000	-	0.000
80.0	499.9	0.1000	-	$-1.000$
100.0	500.0	0.01000	-	-2.000

## Symmetrical T or Hattenuators continued

## Errors in symmetrical $\mathbf{T}$ or $\mathbf{H}$ attenuators

Series arms $R_{1}$ and $R_{2}$ in error: Error in input impedances:
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{K^{2}} \Delta R_{2}$
and
$\Delta Z_{2}=\Delta R_{2}+\frac{1}{K^{2}} \Delta R_{1}$


$$
\text { nominally } \boldsymbol{R}_{1}=\boldsymbol{R}_{2}
$$

$$
\mathbf{z}_{1}=\mathbf{z}_{2}
$$

Error in insertion loss, in decibels,
$\mathrm{db}=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$ approximately
Shunt arm $R_{3}$ in error (10 percent high)

designed loss,   in decibels	error in insertion   loss, in decibels	error in input   impedance   $100 \frac{\Delta z}{z}$ percent
0.2	-0.01	0.2
1	-0.05	1.0
6	-0.3	3.3
12	-0.5	3.0
20	-0.7	1.6
40	-0.8	0.2
100	-0.8	0.0

Error in input impedance:
$\frac{\Delta Z}{Z}=2 \frac{K-1}{K(K+1)} \frac{\Delta R_{3}}{R_{3}}$

Error in output current:
$\frac{\Delta i}{i}=\frac{K-1}{K+1} \frac{\Delta R_{3}}{R_{3}}$

See Notes on page 160.

## Symmetrical $\pi$ and 0 attenuators

Interpolation of symmetrical $\boldsymbol{\pi}$ and $\mathbf{0}$ attenuators (fig. 5 ).
Column $R_{1}$ may be interpolated linearly above 16 decibels, and $R_{3}$ up to 20 decibels. Otherwise interpolate the $1000 / R_{1}$ and $\log _{10} R_{3}$ columns, respectively.

Fig. 5-Symmetrical $\pi$ and 0 attenuator. $Z=500$ ahms resistive (diagram, page 158).

oltenuation in decibels	shunt arm $\mathbf{R}_{1}$ ahms	1000/ R	series orm $\mathbf{R}_{\mathbf{z}}$ ohms	$\log _{10} \mathbf{R}_{3}$
0.0	$\infty$	0.000	0.0	-
0.2	43,400	0.023	11.5	-
0.4	21.700	0.046	23.0	-
0.6	14,500	0.069	34.6	-
0.8	10,870	0.092	46.1	-
1.0	8,700	0.115	57.7	-
2.0	4,362	0.229	116.1	-
3.0	2,924	0.342	176.1	-
4.0	2,210	0.453	238.5	-
5.0	1,785	0.560	304.0	-
6.0	1,505	0.665	373.5	-
7.0	1,307	0.765	448.0	-
8.0	1,161.4	0.861	528.4	-
9.0	1,049.9	0.952	615.9	-
10.0	962.5	1.039	711.5	-
12.0	835.4	1.197	932.5	-
14.0	749.3	1.335	1,203.1	-
16.0	688.3	1.453	1,538	-
18.0	644.0	-	1,954	-
20.0	611.1	-	2,475	3.394
22.0	586.3	-	3,127	3.495
24.0	567.3	-	3,946	3.596
26.0	552.8	-	4,976	3.697
28.0	541.5	-	6,270	3.797
30.0	532.7	-	7,900	3.898
35.0	518.1	-	14,050	4.148
40.0	510.1	-	25,000	4.398
50.0	503.2	-	79,100	4.898
60.0	501.0	-	$2.50 \times 10^{5}$	5.398
80.0	500.1	-	$2.50 \times 10^{6}$	6.398
100.0	500.0	-	$2.50 . \times 10^{7}$	7.398

## Errors in symmetrical $\pi$ and 0 attenuators

Error in input impedance:


$$
=4 \frac{K-1}{K+1}\left(-\frac{\Delta R_{1}}{R_{1}}-\frac{\Delta R_{2}}{R_{2}}+2 \frac{\Delta R_{3}}{R_{3}}\right)
$$

See Notes on page 160.

## Bridged T or H attenuators

## Interpolation of bridged $\mathbf{T}$ or $\mathbf{H}$ attenuators (Fig. of

Bridge arm $R_{4}$ : Use the formula $\log _{10}\left(R_{4}+500\right)=2.699+$ decibels $/ 20$ for $Z=500$ ohms. However, if preferred, the tabular values of $R_{4}$ may be interpolated linearly, between 0 and 10 decibels only.

Fig. 6-Values for bridged $\mathbf{T}$ or $\mathbf{H}$ attenuators. $\mathbf{Z}=500$ ohms resistive, $\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{2}=$ 500 ohms (diagram on page 158).

attenuation in decibels	bridge arm $\mathrm{R}_{4}$ ohms	shunt $\operatorname{arm} R_{3}$ ohms	attenuation in decibels	bridge arm $\mathrm{R}_{4}$ ohms	shunt   arm $\mathbf{R}_{3}$   ohms
0.0	0.0	$\infty$	12.0	1,491	167.7
0.2	11.6	21,500	14.0	2,006	124.6
0.4	23.6	10,610	16.0	2,655	94.2
0.6	35.8	6,990	18.0	3,472	72.0
0.8	48.2	5,180	20.0	4,500	55.6
1.0	61.0	4,100	25.0	8,390	29.8
2.0	129.5	1,931	30.0	15,310	16.33
3.0	236.3	1,212	40.0	49,500	5.05
4.0	292.4	855	50.0	157,600	1.586
5.0	389.1	642	60.0	499,500	0.501
6.0	498	502	80.0	$5.03 \times 10^{6}$	0.0500
7.0	619	404	100.0	$50.0 \times 10^{6}$	0.00500
8.0	756	331	-	-	-
9.0	909	275.0	-	-	-
10.0	1.081	231.2	-	-	

Shunt arm $R_{3}$ : Do not interpolate $R_{3}$ column. Compute $R_{3}$ by the formula $R_{3}=10^{6} / 4 R_{4}$ for $Z=500$ ohms.

Note: For attenuators of 60 db and over, the bridge arm $R_{4}$ may be omitted provided a shunt arm is used having twice the resistance tabulated in the $R$ column. (This makes the input impedance 0.1 of 1 percent high at 60 db .)

## Errors in bridged T or H attenuators

Resistance of any one arm 10 percent higher than correct value

designed loss   decibels	A decibels*	B percent*	C percent*
0	0.01	0.005	0.2
1	0.05	0.1	1.0
6	0.2	2.5	2.5
12	0.3	5.6	1.9
20	0.4	8.1	0.9
40	0.4	10	0.1
100	0.4	10	0.0

* Refer to following tabulation.

element in error ( 10 percent high)	error in loss	error in terminal impedance	remarks
Series orm $R_{1}$ lanalogous for orm $R_{2}$ l	Zoro	B, for adjacens terminals	Error in impedance af opposife ferminals is zero
Shunt arm $R_{3}$	- A		Loss is lower than designed loss
Bridge arm $R_{4}$	A	C	Loss is higher than de. signed loss

Error in input impedance:
$\frac{\Delta Z_{1}}{Z_{1}}=\left(\frac{K-1}{K}\right)^{2} \frac{\Delta R_{1}}{R_{1}}+\frac{K-1}{K^{2}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{\Delta R_{4}}{R_{4}}\right)$
For $\Delta Z_{2} / Z_{2}$ use subscript 2 in formula in place of subscript 1 .
Error in output current:
$\frac{\Delta i}{i}=\frac{K-1}{2 K}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{4}}{R_{4}}\right)$
See Notes on page 160.

## 166

## Minimum-loss pads

## Interpolation of minimum-loss pads (fig. 71

This table may be interpolated linearly with respect to $Z_{1}, Z_{2}$, or $Z_{1} / Z_{2}$ except when $Z_{1} / Z_{2}$ is between 1.0 and b.2. The accunacy of the interpolated value becomes poorer as $Z_{1} / Z_{2}$ passes below 2.0 toward 1.2, especially for $R_{3}$.

## For other terminations

If the terminating resistances are to be $Z_{A}$ and $Z_{B}$ instead of $Z_{1}$ and $Z_{2}$, respectively, the procedure is as follows. Enter the table of $\frac{Z_{1}}{Z_{2}}=\frac{Z_{A}}{Z_{B}}$ and

Fig. 7-Values for minimum-loss pads matching $Z_{1}$ and $Z_{2}$, both resistive (diagram
on page 158).

$\begin{gathered} \mathbf{Z}_{1} \\ \text { ohm: } \end{gathered}$	$\begin{gathered} \mathbf{Z}_{2} \\ \text { ohms } \end{gathered}$	$\mathbf{Z}_{1} / \mathbf{Z}_{2}$	losmin decibels	series arm $\mathrm{R}_{1}$ ohms	shunt arm $R_{3}$ ohms
10,000	500	20.00	18.92	9,747	543.0
8,000	500	16.00	17.92	7.746	516.4
6,000	500	12.00	16.63	5,745	522.2
5,000	500	10.00	15.79	4,743	527.0
4,000	500	8.00	14.77	3,742	534.5
3,000	500	6.00	13.42	2,739	544.5 547.7
2,500	500	5.00	12.54	2,236	559.0
2,000	500	4.00	11.44	1.732	577.4
1,500	500	3.00	9.96	1,224.7	612.4
1,200	500	2.40	8.73	916.5	654.7
1.000	500	2.00	7.66	707.1	707.1
800	500	1.60	6.19	489.9	816.5
600	500	1.20	3.77	244.9	1,224.7
500	400	1.25	4.18	223.6	894.4
500	300	1.667	6.48	316.2	474.3
500	250	2.00	7.66	353.6	353.6
500	200	2.50	8.96	387.3	258.2
500	160	3.125	10.17	412.3	194.0
500	125	4.00	11.44	433.0	144.3
500	100	5.00	12.54	447.2	111.80
500	80	6.25	13.61	458.3	87.29
500	65	7.692	14.58	466.4	69.69
500	50	10.00	15.79	474.3	
500	40	12.50	16.81	479.6	41.70
500	30	16.67	18.11	484.8	30.94
500	25	20.00	18.92	$487 \% 3$	25.65

## Minimum-loss pads

continued
read the loss and the tabuiar values of $R_{1}$ and $R_{3}$. Then the series and shunt arms are ${ }_{A}$ respectively, $M R_{1}$ and $M R_{3}$, where $M=\frac{Z_{A}}{Z_{1}}=\frac{Z_{B}}{Z_{2}}$.

## Errors in minimum-loss pads

Impedance ratlo   $\mathbf{Z}_{1} / \mathbf{Z}_{2}$	D decibels**	E percent*	Fpercent
	F		
1.2	0.2	+4.1	+1.7
2.0	0.3	7.1	1.2
4.0	0.35	8.6	0.6
10.0	0.4	9.5	0.25
20.0	0.4	9.7	0.12

## * Notes

Series arm $R_{1} 10$ percent high: Loss is increased by $D$ decibels from above table. Input impedance $Z_{1}$ is increased by $E$ percent. Input impedance $Z_{2}$ is increased by $F$ percent.

Shunt arm $R_{3} 10$ percent high: Loss is decreased by $D$ decibels from above table. Input impedance $Z_{2}$ is increased by $E$ percent. Input impedance $Z_{1}$ is increased by F percent.

Errors in input impedance
$\frac{\Delta Z_{1}}{Z_{1}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{1}}{R_{1}}+\frac{1}{N} \frac{\Delta R_{3}}{R_{3}}\right)$
$\frac{\Delta Z_{2}}{Z_{2}}=\sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}+\frac{1}{N} \frac{\Delta R_{1}}{R_{1}}\right)$

Error in output current, working either direction
$\frac{\Delta i}{i}=\frac{1}{2} \sqrt{1-\frac{Z_{2}}{Z_{1}}}\left(\frac{\Delta R_{3}}{R_{3}}-\frac{\Delta R_{1}}{R_{1}}\right)$
See Notes on page 160.

Miscellaneous Tand $\mathbf{H}$ pads (Fig. 81
Fig. 8-Values for miscellaneous $T$ and $H$ pads (diagram on page 158).

esistive terminations		loss decibels	altenuator arms		
$\mathbf{Z}_{1}$ ohms	$\mathbf{Z}_{2}$ ohms		$\begin{gathered} \text { series } R_{1} \\ \text { ohms } \end{gathered}$	series $\mathbf{R}_{2}$ ohms	shunl $R_{3}$ ohms
5,000	2,000	10	3,889	222	2,222
5,000	2,000	15	4,165	969	1,161
5,000	2,000	20	4,462	1,402	639
5,000	500	20	4,782	190.7	319.4
2,000	500	15	1,763	165.4	367.3
2,000	500	20	1,838	308.1	202.0
2,000	200	20	1,913	76.3	127.8
500	200	10	388.9	22.2	222.2
500	200	15	416.5	96.9	116.1
500	200	20	446.2	140.2	63.9
500	50	20	478.2	19.07	31.94
200	50	15	176.3	16.54	36.73
200	50	20	183.8	30.81	20.20

## Errors in T and H pads

Series arms $R_{1}$ and $R_{2}$ in error: Errors in input impedances are
$\Delta Z_{1}=\Delta R_{1}+\frac{1}{N} \frac{Z_{1}}{Z_{2}} \Delta R_{2} \quad$ and $\quad \Delta Z_{2}=\Delta R_{2}+\frac{1}{N} \frac{Z_{2}}{Z_{1}} \Delta R_{1}$
Error in insertion loss, in decibels $=4\left(\frac{\Delta R_{1}}{Z_{1}}+\frac{\Delta R_{2}}{Z_{2}}\right)$ approximately

Shunt arm $\mathrm{R}_{3}$ in error (10 percent high)

$\mathbf{Z}_{1} / \mathbf{Z}_{2}$	designed loss   decibels	error in loss   decibels	$\mathbf{1 0 0} \frac{\Delta \mathbf{Z}_{1}}{\mathbf{Z}_{1}}$	$\mathbf{1 0 0} \frac{\Delta \mathbf{Z}_{2}}{\mathbf{Z}_{2}}$
2.5	10	-0.4	$1.1 \%$	$7.1 \%$
2.5	15	-0.6	1.2	4.6
2.5	20	-0.7	0.9	2.8
4.0	15	-0.5	0.8	6.0
4.0	20	-0.65	0.6	3.6
10	20	-0.6	0.3	6.1

$\frac{\Delta Z_{1}}{Z_{1}}=\frac{2}{N-1}\left(\sqrt{\frac{N Z_{2}}{Z_{1}}}+\sqrt{\frac{Z_{1}}{N Z_{2}}}-2\right)^{\frac{\Delta R_{3}}{R_{3}}} \quad\left\{\begin{array}{r}\text { for } \Delta Z_{2} / Z_{2} \text { interchange sub- } \\ \text { scripts } 1 \text { and } 2 .\end{array}\right.$
$\frac{\Delta i}{i}=\frac{N+1-\sqrt{N}\left(\sqrt{\frac{Z_{1}}{Z_{2}}}+\sqrt{\frac{Z_{2}}{Z_{1}}}\right)}{N-1} \frac{\Delta R_{3}}{R_{3}}\{$ where $i$ is the output current.

## Infroduction

In the diagrams of bridges below, the source is shown as a generator, and the detector as a pair of headphones. The positions of these two elements may be interchanged as dictated by detailed requirements in any individual case, such as location of grounds, etc. For all but the lowest frequencies, a shielded transformer is required at either the input or output lbut not usually at bothl terminals of the bridge. This is shown in some of the following diagrams. The detector is chosen according to the frequency of the source. Above the middle audio frequencies, a simple radio receiver or its equivalent is essential. The source may be modulated in order to obtain an audible signal, but greater sensitivity and discrimination against interference are obtained by the use of a continuous-wave source and a heterodyne detector. An amplifier and oscilloscope or an output meter are sometimes preferred for observing nulls. In this case it is convenient to have an audible output signal available for the preliminary setup and for locating trouble, since much can be deduced from the quality of the audible signal that would not be apparent from observation of amplitude only.

Fundamental alternating-current or

## Wheatstone bridge

Balance condition is $Z_{x}=Z_{s} Z_{a} / Z_{b}$ Maximum sensitivity when $Z_{d}$ is the conjugate of the bridge output impedance and $Z_{0}$ the conjugate of its

input impedance. Greatest sensitivity when bridge arms are equal, e.g., for resistive arms,
$Z_{d}=Z_{a}=Z_{b}=Z_{x}=Z_{a}=Z_{o}$

## Bridge with double-shielded transformer

Shield on secondary may be floating, connected to either end, or to center of secondary winding. It may be in two equal parts and connected to opposite ends of the winding. In any case, its capacitance to ground must be kept to a minimum.


## 170

## Wagner earth connection

None of the bridge elements are grounded directly. First balance bridge with switch to $B$. Throw switch to $G$ and rebalance by means of $R$ and $C$. Recheck bridge balance and repeat as required. The capacitor balance $C$ is necessary only when the

frequency is above the audio range. The transformer may have only a single shield as shown, with the capacitance of the secondary to the shield kept to a minimum.

## Capacitor balance

Useful when one point of bridge must be grounded directly and only a simple shielded transformer is used. Balance bridge, then open the two arms at $P$ and $Q$. Rebalance by
auxiliary capacitor $C$. Close $P$ and $Q$ and check balance.


Series-resistance-capacitance bridge

$C_{x}=C_{B} R_{b} / R_{a}$
$R_{x}=R_{s} R_{c} / R_{b}$

## Wien bridge

$$
\frac{C_{x}}{C_{s}}=\frac{R_{b}}{R_{a}}-\frac{R_{s}}{R_{x}}
$$

$$
C_{s} C_{x}=1 / \omega^{2} R_{s} R_{x}
$$

Wien bridge continued
For measurement of frequency, or in a frequency-selective application, if

we make $C_{x}=C_{s}, R_{x}=R_{s}$ and $R_{b}=2 R_{a}$, then
$f=\frac{1}{2 \pi C_{s} R_{s}}$

## Owen bridge

$L_{x}=C_{b} R_{a} R_{d}$
$R_{x}=\frac{C_{b} R_{a}}{C_{d}}-R_{c}$


## Resonance bridge

$$
\begin{aligned}
\omega^{2} L C & =1 \\
R_{z} & =R_{s} R_{a} / R_{b}
\end{aligned}
$$



Maxwell bridge
$L_{x}=R_{a} R_{b} C_{s}$
$R_{x}=\frac{R_{a} R_{b}}{R_{s}}$
$Q_{x}=\omega \frac{L_{x}}{R_{x}}=\omega C_{s} R_{s}$


## Hay bridge

For measurement of large inductance.

$L_{x}=\frac{R_{a} R_{b} C_{s}}{1+\omega^{2} C_{s}{ }^{2} R_{s}{ }^{2}}$
$Q_{x}=\frac{\omega L_{x}}{R_{x}}=\frac{1}{\omega C_{s} R_{s}}$

## Schering bridge

$C_{x}=C_{s} R_{b} / R_{a}$
$1 / Q_{x}=\omega C_{x} R_{x}=\omega C_{b} R_{b}$


Substitution method for high impedances

Initial balance lunknown terminals $x-x$ openl:
$C_{s}^{\prime}$ and $R_{s}^{\prime}$
Final balance lunknown connected to $x-x$ ):
$C_{s}^{\prime \prime}$ and $R_{s}^{\prime \prime}$
Then when $R_{x}>10 / \omega C_{s}^{\prime}$, there results, with error $<1$ percent,
$C_{x}=C_{s}^{\prime}-C_{s}^{\prime \prime}$
The parallel resistance is

$$
R_{x}=\frac{1}{\omega^{2} C_{s}^{\prime 2}\left(R_{s}^{\prime}-R_{s}^{\prime \prime}\right)}
$$



If unknown is an inductor,
$L_{x}=-\frac{1}{\omega^{2} C_{x}}=\frac{1}{\omega^{2}\left|C_{s}^{\prime \prime}-C_{s}^{\prime}\right|}$

## Measurement with capacitor in series

with unknown
Initial balance lunknown terminals $x-x$ short-circuited):
$C_{s}^{\prime}$ and $R_{s}^{\prime}$
Final balance $(x-x$ un-shorted $):$
$C_{s}^{\prime \prime}$ and $R_{s}^{\prime \prime}$
Then the series resistance is
$R_{x}=\left(R_{s}^{\prime \prime}-R_{s}^{\prime}\right) R_{a} / R_{b}$
$C_{x}=\frac{R_{b} C_{s}^{\prime} C_{s}^{\prime \prime}}{R_{a}\left(C_{s}^{\prime}-C_{s}^{\prime \prime}\right)}$

$$
=\frac{R_{b}}{R_{a}} C_{s}^{\prime}\left(\frac{C_{s}^{\prime}}{C_{s}^{\prime}-C_{s}^{\prime \prime}}-1\right)
$$




When $C_{s}^{\prime \prime}>C_{s,}^{\prime}$
$L_{z}=\frac{1}{\omega^{2}} \frac{R_{a}}{R_{b} C_{s}^{\prime}}\left(1-\frac{C_{s}^{\prime}}{C_{s}^{\prime \prime}}\right)$

Measurement of direct capacitance
Connection of $N$ to $N^{\prime}$ places $C_{n g}$ across phones, and $C_{n p}$ across $R_{b}$ which requires only a small readjustment of $R_{s}$.


Initial balance: Lead from $P$ disconnected from $X_{1}$ but lying as close to connected position as practical.

Final balance: lead connected to $X_{1}$.
By the substitution method above, $C_{p q}=C_{s}^{\prime}-C_{s}^{\prime \prime}$

## Felici mutual-inductance balance

At the null:

$$
M_{x}=-M_{s}
$$



Useful at lower frequencies where capacitive reactances associated with windings are negligibly small.


Using low-loss capacitor. At the null $M_{x}=1 / \omega^{2} C_{s}$

## Hybrid-coil method

At null:
$Z_{1}=Z_{2}$
The transformer secondaries must be accurately matched and balanced to

ground. Useful at audio and carrier frequencies.

## Q of resonant circuit by bandwidth

For 3-decibel or half-power points. Source loosely coupled to circuit. Adjust frequency to each side of resonance, noting bandwidth when $v=0.71 \times(v$ at resonance $)$ $Q=\frac{\text { (resonance frequency) }}{\text { (bandwidth) }}$


Q-meter (Boonton Radio Type 160A)
$R_{1}=0.04 \mathrm{ohm}$
$R_{2}=100$ megohms
$V=$ vacuum-tube voltmeter
$I=$ thermal milliammeter
$L_{x} R_{x} C_{0}=$ unknown coil plugged into COIL terminals for measure. mint.


## Correction of Q reading

For distributed capacitance $C_{0}$ of coil

where
$Q=$ reading of $Q$-meter (corrected for internal resistors $R_{1}$ and $R_{2}$ if necessary
$C=$ capacitance reading of $Q$ meter

## Measurement of $C_{0}$ and true $L_{z}$

C plotted vs $1 / f^{2}$ is a straight line.


Measurement of $C_{0}$ and true $L_{x}$
continued
$L_{x}=$ true inductance

$$
=\frac{1 / f_{2}^{2}-1 / f_{1}^{2}}{4 \pi^{2}\left(C_{2}-C_{1}\right)}
$$

$C_{0}=$ negative intercep $\dagger$
$f_{0}=$ natural frequency of coil
When only two readings are taken and $f_{1} / f_{2}=2.00$,
$C_{0}=\left(C_{2}-4 C_{1}\right)^{\prime} 3$

## Measurement of admitlance

Initial readings $C^{\prime} Q^{\prime} \cup L R_{p}$ is any suitable coill


Final readings $C^{\prime \prime} Q^{\prime \prime}$

$1 / Z=Y=G+j B=1 / R_{p}+j \omega C$
Then

$$
\begin{aligned}
C & =C^{\prime}-C^{\prime \prime} \\
\frac{1}{Q} & =\frac{G}{\omega C} \\
& =\frac{C^{\prime}}{C}\left(\frac{1000}{Q^{\prime \prime}}-\frac{1000}{Q^{\prime}}\right) \times 10^{-3}
\end{aligned}
$$

If $Z$ is inductive, $\mathrm{C}^{\prime \prime}>\mathrm{C}^{\prime}$

Measurement bf impedances lower than
those directly measurable
For the initial reading, $C^{\prime} Q^{\prime}, C O N D$ terminals are open.


On second reading, $C^{\prime \prime} Q^{\prime \prime}$, a capacitive divider $C_{a} C_{b}$ is connected to the COND terminals.


Final reading, $C^{\prime \prime \prime} Q^{\prime \prime \prime}$, unknown connected to $x-x$.

$Y_{a}=G_{a}+j \omega C_{a} \quad Y_{b}=G_{b}+j \omega C_{b}$ $G_{a}$ and $G_{b}$ not shown in diagrams.
Then the unknown impedance is

$$
\begin{aligned}
Z=\left(\frac{Y_{a}}{Y_{a}+Y_{b}}\right)^{2} & \frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}} \\
& -\frac{1}{Y_{a}+Y_{b}} \text { ohms }
\end{aligned}
$$

where, with capacitance in micromicrofarads and $\omega=2 \pi \times$ (frequency in megacycles/second):

Measurement of impedances lower than
those diraclly measurable continued

$$
\begin{aligned}
& \frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}}= \\
& \frac{10^{6} / \omega}{C^{\prime}\left(\frac{1000}{Q^{\prime \prime \prime}}-\frac{1002}{Q^{\prime \prime}}\right) \times 10^{-1}+i\left(C^{\prime \prime}-C^{\prime \prime \prime}\right)}
\end{aligned}
$$

$$
\text { Usually } G_{a} \text { and } G_{b} \text { may be neglected, }
$$

when there results

$$
\begin{array}{r}
Z=\left(\frac{1}{1+C_{b} / C_{a}}\right)^{2} \frac{1}{Y^{\prime \prime \prime}-\gamma^{\prime \prime}} \\
\quad+j \frac{10^{6}}{\omega\left(C_{a}+C_{b}\right)} \text { ohms }
\end{array}
$$

For many measurements, $C_{a}$ may be 100 micromicrofarads. $C_{b}=0$ for very low values of $Z$ and for highly reactive values of $Z$. For unknowns that are principally resistive and of low or medium value, $C_{b}$ may take sizes up to 300 to 500 micromicro. farad's.
When $C_{b}=0$
$Z=\frac{1}{Y^{\prime \prime \prime}-Y^{\prime \prime}}+j \frac{10^{6}}{\omega C_{a}}$ ohms
and the "second" reading above becomes the "initial", with $C^{\prime}=C^{\prime \prime}$ in the formulas.

## Parallel-T (symmetrical)

Conditions for zero transfer are
$\omega^{2} C_{1} C_{2}=2 / R_{2}{ }^{2}$

$$
\begin{aligned}
\omega^{2} C_{1}^{2} & =1 / 2 R_{1} R_{2} \\
C_{2} R_{2} & =4 C_{1} R_{1}
\end{aligned}
$$

Use any two of these three equations.


When used as a frequency-selective network, if we make $R_{2}=2 R_{1}$ and $C_{2}=2 C_{1}$ then
$f=1 / 2 \pi C_{1} R_{2}=1 / 2 \pi C_{2} R_{1}$

## Twin-T admittance-measuring circuit

(General Radio Co. Type 821-A)
This circuit may be used for measuring admittances in the range samewhat exceeding 400 kilocycles to 40 megacycles. It is applicable to the special measuring techniques described above for the Q-meter.


Conditions for null in output
$G+G_{6}=R \omega^{2} C_{1} C_{2}\left(1+C_{0} C_{3}\right)$
$C+C_{b}=1 / \omega^{2} L$

$$
-C_{1} C_{2}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)
$$

With the unknown disconnected, call the initial balance $C_{b}^{\prime}$ and $C_{b}^{\prime}$.

With unknown connected, final balance is $C_{b}^{\prime \prime}$ and $C_{0}^{\prime \prime}$.

Then the components of the unknown
$Y=G+j \omega C$ are
$C=C_{b}^{\prime}-C_{b}^{\prime \prime}$
$G=\frac{R \omega^{2} C_{1} C_{2}}{C_{3}}\left(C_{0}^{\prime \prime}-C_{0}^{\prime}\right)$

## Rectifier basic circuits

Half-wave rectifier (Fig. 1): Most applications are for low-power direct conversion of the type necessary in small ac-dc radio receivers (withoui an intermediary transformerl, and often with the use of a metallic rectifier. Not generally used in high-power circuits due to the low frequency of the ripple voltage and a large direct-current polarization effect in the transformer, if used.

Full-wave rectifier (Fig. 2): Extensively used due to higher frequency of ripple voltage and absence of appreciable direct-current polarization of transformer core because transiormer-secondary halves are balanced.

Bridge rectifier (Fig. 3): Frequently used with metallic-rectifier elements; may operate by direct conversion or through a transformer. Compared to full-wave rectifiers, has greater transformer utilization, but requires twice the number of rectifier elements and has twice the rectifierelement voltage drop. If tubes are used, three well-insulated filamenttransformer secondaries are required.

Voltage multiplier (Fig. 4): May be used with or without a line transformer. Without the transformer, it develops sufficiently high output voltage for low-power equipment; however, lack of electrical insulation from the power line may be objectionable. May also be used for obtaining high voltages from a transformer having relatively low step-up ratio.


Fig. 1-Half-wave single-phose rectifier.


Fig. 3-Bridge rectifier.


Fig. 4-Volfage-doubler rectifler.

## Typical power rectifier circuif connections and circuit dała

rectifler   types	single-phase full-wave	single-phase full-wave (bridge)	3-phase half-wave	3-phase holf-wave
circulis mansformer	single-phase center-tap	single-phase	delta-wye	delta-zlg $\mathbf{z o g}$
secondaries   circuits   primaries				
Number of phases of supply   Number of rubes*	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$
Ripple valtoge Ripple frequency	$\begin{aligned} & 0.48 \\ & 2 f \end{aligned}$	$\begin{aligned} & 0.48 \\ & 2 f \end{aligned}$	$\begin{aligned} & 0.18 \\ & 3 f \end{aligned}$	$\begin{aligned} & 0.18 \\ & 3 i \end{aligned}$
line voltage   line current   Line power foctor $\boldsymbol{f}$	$\begin{aligned} & 1.11 \\ & 1 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.816 \\ & 0.826 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 0.816 \\ & 0.826 \end{aligned}$
Trans primary volts per leg	1.11	1.11	0.855	0.855
Trans pimary amperes per leg   Trans primary kva	1.11	$\begin{aligned} & 1 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 0.471 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 0.471 \\ & 1.21 \end{aligned}$
Trans average kva	1.34	1.11	1.35	1.46
Trans secondary volis per leg	$1.11(A)$	1.11	0.855	$0.493(\mathrm{Al}$
Trans secondary am. peres per leg	0.707	1	0.577	$0.577$
Transformer second. ary kvo	1.57	1.11	1.48	$1.71$
Peok inverse voltage per tube	3.14	1.57	2.09	2.09
Peak current per fube	1	1		
Average current per tube	0.5	0.5	0.333	0.333

Unless otherwise stated, factors shown express the ratio of the root-mean-square value of the circuit quantities designated to the average direct-current-output values of the rectifier.
Factors are based on a sine-wave valtage input, infinite-impedance choke, and no transformer or rectifier losses.

## RECTIFIERS AND FILTERS 179



* These circuit factors are equally applicable to tube or metallic-plate rectifying elements.
$\dagger$ line power factor $=$ direct-current output watts/line volt-amperes.


## Grid-controlled gaseous rectifiers

Grid-controlled rectifiers are used to obtain closely controlled voltages and currents. They are commonly used in the power supplies of high-power radio transmitters. For low voltages, gas-filled tubes, such as argon those that are unaffected by temperature changes) are used. For higher voltages, mercury-vapor tubes are used to avoid flash-back (conduction of current when plate is negative). These circuits permit large power to be handled, with smooth and stable control of voltage, and permit the control of short-circuit currents through the load by automatic interruption of the rectifier output for a period sufficient to permit short-circuit arcs to clear, followed by immediate reapplication of voltage.

critical grid voltage
Fig. 5-Critical grid voltage versus plate voltage.

In a thyratron, the grid has a oneway control of conduction, and serves to fire the tube at the instant that it acquires a critical voltage. Relationship of the critical voltage to the plate voltage is shown in Fig. 5. Once the tube is fired, current flow is generally determined by the external circuit conditions; the grid then has no control, and plate current can be stopped only when the plate voltage drops to zero.


Fig. 6-Basic thyratron circuit. The grid voltage has direct- and alternatingcurrent components.


Fig. 7-Control of plate-current conduction period by means of variable direct grid voltage. $E_{v}$ lags $E_{p}$ by 90 degrees.

## Grid-controlled gaseous rectifiers

continued


Fig. 8-Control of plate-current conduction period by fixed direct grid voltage (not indicated in schematic) and alternating grid voltage of variable phase. Either induc-lance-resistance or capacitance-resistance phase-shift networks (A and $B$, respectively) may be used. $L$ may be a variable inductor of the saturable-reactor type.

## Basic circuif

The basic circuit of a thyratron with alternating-current plate and grid excitation is shown in Fig. 6. The average plate current may be controlled by maintaining
a. A variable direct grid voltage plus a fixed alternating grid voltage that lags the plate voltage by 90 degrees (Fig. 7).
b. A fixed direct grid voltage plus an alternating grid voltage of variable phase (Fig. 8).

## Phase shiffing

The phase of the grid voltage may be shifted with respect to the plate voltage by the methods illustrated in Figs. 8 and 9.
a. Varying the indicated resistor.
b. Variation of the inductance of the saturable reactor.
c. Varying the capacitor.

On multiphase circuits, a phase-shifting transformer may be used.


Fig. 9-Full-wave thyratron rectifier. The capacitor is the variable element in the phose-shifting network, and hence gives control of output valtage.

For a stable output with good voltage regulation, it is necessary to use an inductor-input filter in the load circuit. The value of the inductance is critical, increasing with the firing angle. The design of the plate-supply transformer of a full-wave circuit (Fig. 9) is the same as that of an ordinary full-wave rectifier, to which the circuit of Fig. 9 is closely similar. Grid-controlled rectifiers yield larger harmonic output than ordinary rectifier circuits.

## Filters for rectifier circuits

Rectifier filters may be classified into three types:
Inductor input (Fig. 10): Have good voltage regulation, high transformerutilization factor, and low rectifier peak currents, but also give relatively low output voltage.


Fig. 10-Inductor-input filter.
Capacitor input (Fig. 11): Have high output voltage, but poor regulation, poor transformer-utilization factor, and high peak currents. Used mostly in radio receivers.

Resistor input (Fig. 12): Used for low-current applications.


Fig. 11 -Capacitor-input fller. $C_{1}$ is the inpul capacitor.

## Filters for rectifler circuits continued

## Design of inductor-input filters

The constants of the first section (Fig. 10) are determined from the following considerations:
a. There must be sufficient inductance to insure continuous opera-


Fig. 12-Resistor-input filter. tion of rectifiers and good voltage regulation. Increasing this critical value of inductance by a 25 -percent safety factor, the minimum value becomes
$L_{\text {miln }}=\frac{K}{f_{g}} R_{l}$ henries
where
$f_{s}=$ frequency of source in cycles/second
$R_{l}=$ maximum value of total load resistance in ohms
$K=0.060$ for full-wave single-phase circuits
$=0.0057$ for full-wave two-phase circuits
$=0.0017$ for full-wave three-phase circuits
At 60 cycles, single-phase full-wave,
$L_{\text {niln }}=R_{l} / 1000$ henries
b. The LC product must exceed a certain minimum, to insure a required ripple factor

$$
\begin{equation*}
r=\frac{E_{r}}{E_{\mathrm{dc}}}=\frac{\sqrt{2}}{p^{2}-1} \frac{10^{6}}{\left(2 \pi f_{s p}\right)^{2} L_{1} C_{1}}=\frac{K^{\prime}}{L_{1} C_{1}} \tag{2}
\end{equation*}
$$

where, except for single-phase half-wave, $p=$ effective number of phases of rectifier
$E_{r}=$ root-mean-square ripple voltage appearing across $C_{1}$
$E_{\mathrm{dc}}=$ direct-current voltage on $\mathrm{C}_{1}$
$L_{1}$ is in henries and $C_{1}$ in microfarads.
For single-phase full-wave, $p=2$ and
$r=\frac{0.83}{L_{1} C_{1}}\left(\frac{60}{f_{s}}\right)^{2}$

## Filters for rectifler circuits

For three-phase, full-wave, $p=6$ and
$r=\left(0.0079 / L_{1} C_{1}\right)\left(60 / f_{s}\right)^{2}$
Equations (1) and (2) define the constants $L_{1}$ and $C_{1}$ of the filter, in terms of the load resistor $R_{l}$ and allowable ripple factor $r$.

effective load resistance $=$ actual load resistance plus filter-choke resistance in ohms Reprinted Irom "Radio Engineers Handbook" by F. E Terman, $\quad R=R_{s}+R_{r}$ (see Fig. 11) Ist ed., p. 672, 1943; by permission. McGrow Hill Book Co., N. Y.
—__ input capacitance $=\infty$
Fig. 13-Performance of capacitor-input filter
— - $\quad=8 \mu f$
for 60 -cycle full-wave rectifier, assuming negligible leakage-inductance effect.
— — — $\quad=4 \mu \mathrm{f}$

Swinging chokes: Swinging chokes have inductances that vary with the load current. When the load resistance varies through a wide range, a swinging choke, with a bleeder resistor $R_{b}\{10,000$ to 20,000 ohms) connected across the filter output, is used to guarantee efficient operation; i.e., $L_{\text {mull }}=R_{l}^{\prime} / 1000$ for all loads, where $R_{l}^{\prime}=\left\{R_{l} R_{b}\right\rangle /\left(R_{l}+R_{b}\right)$. Swinging chokes are economical due to their smaller relative size, and result in adequate filtering in many cases.

Second section: For further reduction of ripple voltage $E_{r 1}$, a smoothing section (Fig. 10 ) may be added, and will result in output ripple voltage $E_{r 2}$ :
$E_{r 2} / E_{r 1}=1 /\left(2 \pi f_{r}\right)^{2} L_{2} C_{2}$
where $f_{r}=$ ripple frequency

## Design of capacifor-input filters

The constants of the input capacitor (Fig. 11) are determined from:
a. Degree of filtering required.
$r=\frac{E_{r}}{E_{\mathrm{cc}}}=\frac{\sqrt{2}}{2 \pi f_{r} C_{1} R_{l}}=\frac{0.00188}{C_{1} R_{l}}\left(\frac{120}{f_{r}}\right)$
where $C_{1} R_{l}$ is in microfarads $X$ megohms, or farads $X$ ohms.
b. A maximum-allowable $C_{1}$ so as not to exceed the maximum allowable peak-current rating of the rectifier.

Unlike the inductor-input filter, the source impedance Itransformer and rectifierl affects output direct-current and ripple voltages, and the peak currents. The equivalent network is shown in Fig. 11.

Neglecting leakage inductance, the peak output ripple voltage $E_{r 1}$ lacross the capacitor) and the peak plate current for varying effective load resistance are given in Fig. 13. If the load current is small, there may be no need to add the L-section consisting of an inductor and a second capacitor. Otherwise, with the completion of an $L_{2} C_{2}$ or $R C_{2}$ section (Fig. 11), greater filtering is obtained, the peak output-ripple voltage $E_{r 2}$ being given by (3) or

$$
\begin{equation*}
E_{r 2} / E_{r 1} \approx 1 / \omega R C_{2} \tag{5}
\end{equation*}
$$

respectively.

## Iron-core transformers and reactors

## General

Iron-core transformers are, with few exceptions, closely coupled circuits for transmitting alternating-current energy and matching impedances. The equivalent circuit of a generalized transformer is shown in fig. l.

## Major transformer types used in electronics

## Power transformers

Rectifier plate and/or filament: Operate from a source of nearly zero impedance and at a single frequency.
Vibrator power supply: Permit the operation of radio receivers from directcurrent sources, such as automobile batteries, when used in conjunction with vibrator inverters.
Scott connection: Serve to transmit power from 2-phase to 3-phase systems, or vice-versa.
Autotransformer: Is a special case of the usuat isolation type in that a part of the primary and secondary windings are physically common. The size, voltage regulation, and leakage inductance of an autotransformer are, for a given rating, less than those for an isolation-type transformer handling the same power.


Fig. 1-Equivalent nefwork of a transformer.

## Major fransformer types used in electronics continued

## Audio-frequency iransformers

Match impedances and transmit audio frequencies.
Output: Couple the plate(s) of an amplifier to an output load.
Input or interstage: Couple a magnetic pickup, microphone, or plate of a tube to the grid of another tube.

Driver: Couple the plate (s) of a driver stage (preamplifier) to the grid(s) of an amplifier stage where grid current is drawn.
Modulation: Couple the plate(s) of an audio-output stage to the grid or plate of a modulated amplifier.

## High-frequency transformers

Match impedances and transmit a band of frequencies in the carrier or higher-frequency ranges.

Power-line carrier-amplifier: Couple different stages, or couple input and output stages to the line.
Intermediate-frequency: Are coupled tuned circuits used in receiver inter-mediate-frequency amplifiers to pass a band of frequencies these units may, or may not have magnetic coresl.
Pulse: Transform energy from a pulse generator to the impedance level of a load with, or without, phase inversion. Also serve as interstage coupling or inverting devices in pulse amplifiers. Pulse transformers may be used to obtain low-level pulses of a certain repetition rate in regenerative-pulsegenerating circuits (blocking oscillators).
Sawtooth-amplifier: Provide a linear sweep to the horizontal plates of a cathode-ray oscilloscope.

## Major electronic reactor types

Filter: Smooth out ripple voltage in direct-current supplies. Here, swinging chokes are the most economical design in providing adequate filtering, in most cases, with but a single filtering section.
Audio-frequency: Supply plate current to a vacuum tube in parallel with the output circuit.
Radio-frequency: Pass direct current and present high impedance at the high frequencies.
Wave-filter: Used as filter components to aid in the selection or rejection of certain frequencies.

## Special nonlinear transformers and reactors

These make use of nonlinear properties of magnetic cores by operating near the knee of the magnetization curve.
Peaking transformers: Produce steeply peaked waveforms, for firing thyratrons.
Saturable-reactor elements: Used in funed circuits; generate pulses by virtue of their saturation during a fraction of each half cycle.

Saturable reactors: Serve to regulate voltage, current, or phase in conjunction with glow-discharge tubes of the thyratron type. Used as voltageregulating devices with dry-type rectifiers. Also used in mechanical vibrator rectifiers and magnetic amplifiers.

## Design of power transformers for rectifiers

The equivalent circuit of a power transformer is shown in Fig. 2.
a. Determine total output volt-amperes, and compute the primary and secondary currents from

$$
\begin{aligned}
E_{\nu} I_{p} \times 0.9 & =\frac{1}{\eta}\left[\mid E_{s} I_{\mathrm{dc}}\right)_{\mathrm{mp}} K+\left(E I_{\mathrm{ni}}\right] \\
I_{s} & =K^{\prime} I_{\mathrm{dc}}
\end{aligned}
$$



Fig. 2-Equivalent network of a power transformer. $l_{p}$ and $l_{s}$ may be neglected when there are no strict requirements on voltage regulation.
where the numeric 0.9 is the power factor, and the efficiency $\eta$ and the $K, K^{\prime}$ factors are listed in Figs. 3 and 4. $E_{p} I_{p}$ is the input volt-amperes, $I_{\text {de }}$ refers to the total direct-current component drawn by the supply; and

Fig. 3-Factors $K$ and $K^{\prime}$ for various rectifier supplies.

flter		
	K	$\mathbf{K}^{\prime}$
Full-wave:	0.717	1.06
Capacitor input   Reactor input	0.5	0.707
Half-wave:		
Capacitor input   Reactor input	1.4	2.2
	1.06	1.4

[^19]
## Design of power fransformers for rectifiers

the subscripts pl and fil refer to the volt-amperes drawn from the platesupply and filament-supply (if present) windings, respectively. $E_{8}$ is the root-mean-square voltage applied to the plate of a rectifier element. In a full. wave circuit, this would be half of the total secondary voltage.
b. Compute the size of wire of each winding, on the basis of current densities given by

For 60-cycle sealed units,
amperes $/$ inch $^{2}=2470-585 \log W_{\text {out }}$
or, inches diameter $\approx 1.13 \sqrt{\frac{I \text { (in amperes) }}{2470-585 \log W_{\text {our }}}}$
For 60-cycle open units, uncased,
amperes $/$ inch $^{2}=2920-610 \log W_{\text {out }}$
or, inches diameter $\approx 1.13 \sqrt{\frac{I \text { (in amperes) }}{2920-610 \log W_{\text {out }}}}$
Fig. 5-Equivalent $\mathbb{L}^{f}$ and El ratings of power transformers: $B_{m}=$ flux density in gauss; $E l=$ volt-amperes. This table gives the maximum values of $\mathbb{L}^{2}$ and $E l$ ratings at 60 and 400 cycles for various size cores. Ratings are based on a 50 -degreecentigrade rise above ambient. These values can be reduced to obtain a smaller temperature rise. El ratings are based on a two-winding transformer with normal operating voltage. When three or more windings are required, the El ratings should be decreased slightly.

[12 ${ }^{2}$	at 60 cycles		at 400 cycles		El-type punchings	```tongue width of E in inches```	stack   height in inches	omperes per inch ${ }^{2}$
	El	$\mathrm{B}_{\text {m }}{ }^{*}$	E1	$\mathrm{B}_{\mathrm{m}}{ }^{*}$				
0.0195	3.9	14,000	9.5	5000	21	$\frac{1}{3}=$	$\frac{1}{2}$	3200
0.0288	5.8	14,000	15.0	4900	625	$\frac{3}{8}$	8	2700
0.067	13.0	14,000	30.0	4700	75	$\frac{3}{4}$	$\frac{3}{4}$	2560
0.088	17.0	14,000	38.0	4600	75	$\stackrel{3}{3}$	1	2560
0.111	24.0	13,500	50.0	4500	11	${ }_{8}^{7}$	$\frac{7}{8}$	2330
0.200	37.0	13,000	80.0	4200	12	1	1	2130
0.300	54.0	13,000	110.0	4000	12	1	1 $\frac{1}{1}$	2030
0.480	82.0	12,500	180.0	3900	125	$1 \frac{1}{4}$	14	1800
0.675	110.0	12,000	230.0	3900	125	14	$1{ }_{6}$	1770
0.850	145.0	12,000	325.0	3700	13	$1 \frac{1}{2}$	11	1600
1.37	195.0	11,000	420.0	3590	13	12	2	1500
3.70	525.0	10,500	1100.0	3200	19	18	11	1220

From "Radio Components Handbook," Technical Advertising Associates; Chellenham, Pa.; May, 1948: see p. 92.

* $B_{m 3}$ reters to 29-gauge silicon steel.
continued Design of power transformers for rectifiers

Fig. 6 -Wire lable for transformer design. The resistance $R_{T}$ at any temperature $T$ is given by $R_{T}=\frac{23}{23}$ femperature of winding, and $r=$ resistance of winding at temperafure f.										
	diameter in inches			turns per inch (formvor)	space factor	$\begin{aligned} & \text { ohms por } \\ & 1000 \mathrm{fH} \end{aligned}$	$\begin{aligned} & \text { pounds } \\ & \text { per } \\ & 1000 \mathrm{H} \\ & \hline \end{aligned}$	morgin $m$ in inches	Interlayer Insulation $\ddagger$ 1	AWG B\& 5 gauge
AWG B\&S gauge	bore	single formvar*	double formvar							
10 11 12 13 14	$\begin{aligned} & 0.1019 \\ & 0.0907 \\ & 0.0808 \\ & 0.0719 \\ & 0.0641 \end{aligned}$	$\begin{aligned} & 0.1039 \\ & 0.0927 \\ & 0.0827 \\ & 0.0738 \\ & 0.0659 \end{aligned}$	$\begin{aligned} & 0.1055 \\ & 0.0942 \\ & 0.0842 \\ & 0.0753 \\ & 0.0673 \end{aligned}$	8 9 10 12 13	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.9989 \\ & 1.260 \\ & 1.588 \\ & 2.003 \\ & 2.525 \end{aligned}$	$\begin{aligned} & 31.43 \\ & 24.92 \\ & 19.77 \\ & 15.68 \\ & 12.43 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \\ & 0.25 \\ & 0.25 \end{aligned}$	0.010K   0.010 K   0.010 K   0.010 K   0.010 K	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$
15 16 17 18 19	0.0571 0.0508 0.0453 0.0403 0.0359	0.0588 0.0524 0.0469 0.0418 0.0374	$\begin{aligned} & 0.0602 \\ & 0.0538 \\ & 0.0482 \\ & 0.0431 \\ & 0.0386 \end{aligned}$	15 17 19 21 23	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3.184 \\ & 4.016 \\ & 5.064 \\ & 6.385 \\ & 8.051 \end{aligned}$	$\begin{aligned} & 9.858 \\ & 7.818 \\ & 6.200 \\ & 4.917 \\ & 3.899 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.1875 \\ & 0.1875 \\ & 0.1875 \\ & 0.1582 \end{aligned}$	0.010K   0.010 K   0.007 K   0.007 K   0.007 K	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$
20 21 22 23 24	0.0320   0.0285   0.0253   0.0226   0.0201	0.0334 0.0299 0.0266 0.0239 0.0213	$\begin{aligned} & 0.0346 \\ & 0.0310 \\ & 0.0277 \\ & 0.0249 \\ & 0.0223 \end{aligned}$	26 30 33 37 42	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 10.15 \\ & 12.80 \\ & 16.14 \\ & 20.36 \\ & 25.67 \end{aligned}$	$\begin{aligned} & 3.092 \\ & 2.452 \\ & 1.945 \\ & 1.542 \\ & 1.223 \end{aligned}$	$\begin{aligned} & 0.1562 \\ & 0.1562 \\ & 0.125 \\ & 0.125 \\ & 0.125 \end{aligned}$	0.005 K   0.005 K   0.003 K   0.003 K   0.002 G	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$
25 26 27 28 29	$\begin{aligned} & 0.0179 \\ & 0.0159 \\ & 0.0142 \\ & 0.0126 \\ & 0.0113 \end{aligned}$	0.0190 0.0169 0.0152 0.0135 0.0122	$\begin{aligned} & 0.0200 \\ & 0.0179 \\ & 0.0161 \\ & 0.0145 \\ & 0.0131 \end{aligned}$	47 52 57 64 71	$\begin{aligned} & 90 \\ & 89 \\ & 89 \\ & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 32.37 \\ & 40.81 \\ & 51.47 \\ & 64.90 \\ & 81.83 \end{aligned}$	$\begin{aligned} & 0.9699 \\ & 0.7692 \\ & 0.6100 \\ & 0.4837 \\ & 0.3836 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.125 \\ & 0.125 \\ & 0.125 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 0.002 \mathrm{G} \\ & 0.002 \mathrm{G} \\ & 0.002 \mathrm{G} \\ & 0.0015 \mathrm{G} \\ & 0.0015 \mathrm{G} \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$
30 31 32 33 34	0.0100   0.0089   0.0080   0.0071   0.0063	0.0109 0.0097 0.0088 0.0079 0.0070	0.0116 0.0104 0.0094 0.0084 0.0075	$\begin{array}{r} 80 \\ 88 \\ 98 \\ 110 \\ 124 \end{array}$	$\begin{aligned} & 89 \\ & 88 \\ & 88 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & 103.2 \\ & 130.1 \\ & 164.1 \\ & 206.9 \\ & 260.9 \end{aligned}$	$\begin{aligned} & 0.3042 \\ & 0.2413 \\ & 0.1913 \\ & 0.1517 \\ & 0.1203 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.125 \\ & 0.0937 \\ & 0.0937 \\ & 0.0937 \end{aligned}$	$\begin{aligned} & 0.0015 \mathrm{G} \\ & 0.0015 \mathrm{G} \\ & 0.0013 \mathrm{G} \\ & 0.0013 \mathrm{G} \\ & 0.001 \mathrm{G} \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$
35 36 37 38 39 40	0.0056 0.0050 0.0045 0.0040 0.0035 0.0031	0.0062 0.0056 0.0050 0.0045 0.0040 0.0036	$\begin{aligned} & 0.0067 \\ & 0.0060 \\ & 0.0054 \\ & 0.0048 \\ & 0.0042 \\ & 0.0038 \end{aligned}$	$\begin{aligned} & 140 \\ & 155 \\ & 170 \\ & 193 \\ & 215 \\ & 239 \end{aligned}$	$\begin{aligned} & 88 \\ & 87 \\ & 87 \\ & 87 \\ & 86 \\ & 86 \end{aligned}$	$\begin{gathered} 329.0 \\ 414.8 \\ 523.1 \\ 659.6 \\ 831.8 \\ 1049 \end{gathered}$	0.0954   0.0757   0.0600   0.0476   0.0377   0.0299	$\begin{aligned} & 0.0937 \\ & 0.0937 \\ & 0.0937 \\ & 0.0625 \\ & 0.0625 \\ & 0.0625 \end{aligned}$	$\begin{aligned} & 0.001 \mathrm{G} \\ & 0.001 \mathrm{G} \\ & 0.001 \mathrm{G} \\ & 0.001 \mathrm{G} \\ & 0.0007 \mathrm{G} \\ & 0.0007 \mathrm{G} \end{aligned}$	$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$

## Design of power transformers for rectiflers continued

c. Compute, roughly, the net core area
$A_{c}=\frac{W_{\text {out }}}{5.58} \sqrt{\frac{60}{\beta} \text { inches }^{2}}$
where $f$ is in cycles (see also Fig. 5). Select a lamination and core size from the manufacturer's data book that will nearly meet the space requirements, and provide core area for a flux density $B_{m}$ not to exceed a limiting value 110,000 gauss for 29 -gauge 4 -percent silicon steel, at 60 cycles) under normal operating conditions.
d, Compute the primary turns $N_{p}$ from the transformer equation
$E_{p}=4.44 f N_{p} A_{c} B_{m} \times 10^{-8}$
and the secondary turns
$N_{s}=1.05\left(E_{s} / E_{p}\right) N_{p}$
(this allows 5 percent for $I R$ drop of windings).
e. Calculate the number of turns per layer that can be placed in the lamination window space, deducting from the latter the margin space given in Fig. 6 Isee also Fig. 71.
f. From (d) and (e) compute the number of layers $n_{l}$ for each winding. Use interlayer insulation of thickness $t$ as given in Fig. 6, except that the minimum allowance should be 40 volts $/ \mathrm{mil}$ dielectric strength.
g. Calculate the coil-built $a$ :
$a=1.1\left[n_{l}(D+t)-t+t_{c}\right]$
for each winding from (b) and (f), where $D=$ diameter of insulated wire and $t_{c}=$ thickness of insulation under and over the winding; the numeric 1.1 allows for a 10-percent bulge factor. The total cail-built should not exceed 85-90 percent of the window width. (Note: Insulation over the core may vary from 0.025 to 0.050 inches for core-builts of $\frac{1}{2}$ to 2 inches.)
h. Compute the mean length per turn (MLT), of each winding, from the geometry of core and windings. Compute length of each winding N(MLT)
i. Calculate the resistance of each winding from (h) and Fig. 6, and determine $I R$ drop and $I^{2} R$ loss for each winding.
i. Make corrections, if required, in the number of turns of the windings to allow for the $I R$ drops, so as to have the required $E_{s}$ :
$E_{s}=\left(E_{p}-I_{p} R_{p}\right) N_{s} / N_{p}-I_{s} R_{s}$

## Design of power transformers for rectifiers

continued
k. Compute core losses from weight of core and the table on core materials, Fig. 8.
I. Determine the percent efficiency $\eta$ and voltage regulation (vr) from

$$
\begin{aligned}
\eta & =\frac{W_{\text {out }} \times 100}{W_{\text {out }}+(\text { core loss })+(\text { copper loss })} \\
(\mathrm{vr}) & =\frac{I_{s}\left[R_{s}+\left(\mathrm{N}_{s} / N_{p}\right)^{2} R_{p}\right]}{E_{s}}
\end{aligned}
$$

$\mathbf{m}$. For a more accurate evaluation of voltage regulation, determine leakage-reactance drop $=l_{\mathrm{dc}} \omega l_{\mathrm{nc}} / 2 \pi$, and add to the above (vr) the value of $\left(I_{d o} \omega l_{\mathrm{sc}}\right) / 2 \pi E_{d c}$. Here, $l_{\mathrm{sc}}=$ leakage inductance viewed from the secondary; see "Methods of winding transformers", p. 205 to evaluate $I_{s c}$.
n. Bring out all terminal leads using the wire of the coil, insulated with suitable sleevings, for all sizes of wire heavier than 21 ; and by using 7-30 stranded and insulated wire for smaller sizes.

High-frequency power transformers: For use in rectification may be designed similarly to low-frequency units. Of interest are units that may use FerroxcubeIII cores having practically no eddy-current losses.

```
g=width of lamination tongue
p = width of lamination stack
k = stacking factor
 \approx0.90 for 14-mil lamination
 \approx0.80 for 2-mil lamination or ribbon-
 wound core
 m}=\mathrm{ marginal space given in Fig. }
 T= window length tolerance
 =1/16 inch, total
 b = coil width
 f= thickness of interloyer insulation
 w = width of core window
 Ie = average length of magnetic:?ux path
 a}=\mathrm{ height of coil
 =coil-built
```



Fig. 7-Dimensions relating to the design of a transformer coil-built and core. Core area $A_{c}=(\rho p) k$.
continued Design of power transformers for rectifiers
Fig. 8-Core materials for low- and medium-frequency transformers.

Fig. 8-Core materials for low- and medium-frequency transformers.								
alloy	initial permeability $\mu_{n}$	maximum permeability $\mu \mathrm{m}$	saturation induction $B^{*} s$ in gauss*	corcive force in oersteds	specific esistivity in microhms centimeter	core losses in watts pound (at $B_{m}=10,000$ )	$\begin{gathered} \text { gouge } \\ \text { in } \\ \text { mil. } \end{gathered}$	chiof uses
4 -percent silicon steel	400	10,000	12,000	0.6	60	0.6 at 60 cycles	14	Small power and audio transformers, chokes and saturable reactors
Hipersil	1.500	40,000	17,000	0.1	48	$\begin{aligned} & 0.33-0.44 \\ & \text { at } 80 \text { cycles } \end{aligned}$	14	larger power and wider-range audio trans. formers and chokes, and saturable reactors
						3.8 of 400 cycles	5	400-800-cycle power transformers
						$\begin{aligned} & 1.25 \text { of } 800 \text { cycles } \\ & 18 m=4,000) \end{aligned}$	2	High-Irequency and pulse transformers
Hiperco	800	10,000	24,000	0.4	-	$\begin{aligned} & 4 \text { at } 60 \text { cycles } \\ & 18 \mathrm{~m}=20,0001 \end{aligned}$	14	Sma!l power transformers for aircraft equip. ment
Hipernik	4,000	80,000	15,000	0.05	35	-	14	Audio transformers with better character. Istics; low- and high-voltoge levels
Allegheny $4750 \dagger$	4,000	40,000	15,000	0.07	52	0.36 at 60 cycles	-	
Monimax	3.200	38,000	14,000	0.15	80	1.7 at 400 cycles	4	400-800-cycle power transtormers
Sinimax	4,600	30,000	11,000	0.1	90	1.7 at 400 cycles	6	400-800-cycle power transformers
Mumetal	20,000	110,000	7,200	0.03	60	-	-	Low-voltage-level, high-fidelity transformers
4-79 molybde-num-permalloy $\ddagger$	20,000	80,000	8,500	0.05	57	-	-	Low-voltage-level, high-fidelity transformers
Ferroxcube-III	600	-	2,500	-	$10^{8}$	-	-	High.frequency power and pulse transformers
Data mostiy from: R. M. Bozorth, "Magnetism," Reviews of Modern Physics, v. 19, p. 42, January, 1947.								
* These $B^{\prime}$ s volues may be termed useful safuration values of induction, in contradistinction with the true saturation values $8_{s}$, which may be consid silicon steel, $B_{e} \approx 20,000$. For these high $B_{a}$ values, the exciting current and core losses would become prohibitive, due to very low permeabilities.								
$\dagger$ Corpenter 49 alloy is approximately the equivolent of Allegheny 4750 .								
: Carpenter Hymu is the approximate equivalent of Western Electric Company's 4-79 Molybdenum-permalloy.								

## Design of filter reactors for rectifiers and plate-current supply

These reactors carry direct current and are provided with suitable air-gaps. Optimum design data may be obtained from Hanna curves, Fig. 9. These curves relate direct-current energy stored in core per unit volume, $L_{d o}{ }^{2} / \mathrm{V}$ to magnetizing field $\mathrm{N} l_{\mathrm{de}} / l_{c}$ (where $l_{c}=$ average length of flux path in corel, for an appropriate air-gap. Heating is seldom a factor, but direct-current-resistance requirements affect the design; however, the transformer equivalent volt-ampere ratings of chokes (Fig. 5) should be useful in determining their sizes.
As an example, take the design of a choke that is to have an inductance of 10 henries with a superimposed direct current of 0.225 amperes, and a direct-current resistance $\leqslant 125$ ohms. This reactor shall be used for suppressing harmonics of 60 cycles, where the alternating-current ripple voltage (2nd harmonic) is about 35 volts.


Fig. 9-Hanna curves for 4-percent silicon-steel core material.

## Design of filter reactors for rectifiers continued

a. $L^{2}=0.51$. Based on data of Fig. 5, try 4-percent silicon-steel core, type El-125 punchings, with a core-built of 1.5 inches. From manufacturer's data, volume $=13.7$ inches $^{3} ; l_{c}=7.5$ inches; $A_{c}=1.69$ inches 2.
b. Compute $L I_{\mathrm{dc}}{ }^{2} / V=0.037$; from Fig. $9, N I_{\mathrm{dc}} / I_{c}=85$; hence, by substitution, $N=2840$ turns. Also, gap ratio $l_{\mathfrak{q}} / l_{c}=0.003$, or, total gap $l_{g}=22$ mils.
Alternating-current flux density $B_{m}=\frac{E \times 10^{8}}{4.44 f \mathrm{NA}_{e}}=210$
c. Calculate from the geometry of the core, the mean length/turn, (MLT) $=0.65$ feet, and the length of coil $=\mathrm{N}(\mathrm{MLT})=1840$ feet, which is to have a maximum direct-current resistance of 125 ohms. Hence, $R_{d c} /$ N(MLT) $=0.068$ ohms $/$ foot. From Fig. 6, the nearest size is No. 28.
d. Now see if 1840 turns of No. 28 single-Formex wire will fit in the window space of the core. (Determine turns per layer, number of layers, and coilbuilt, as explained in the design of power transformers.)
e. This is an actual coil design; in case lamination window space is too small lor too largel change stack of laminations, or size of lamination, so that the coil meets the electrical requirements, and the total coil-built $\approx 0.85$ to $0.90 \times$ (window width).
Note: To allow for manufacturing variations in permeability of cores and resistance of wires, use at least 10 -percent tolerance.

## Design of wave-filter reactors

These must have high $Q$ values to enable sharp cutoff, or high attenuation at frequencies immediately of the pass-band. Data on high- $Q$ cores is given in table on cores, Fig. 10. Nicalloy and Hymu (or their equivalents) are listed primarily for low frequencies, and should be used only with suitable gaps to minimize losses and insure stability of inductance and effective resistance for small magnetizing fields. Maximuin $Q$ is obtained when
(copper loss) $\approx$ (core loss)
The inductance is given by
$L=\frac{1.25 \mathrm{~N}^{2} \mathrm{~A}_{c}}{l_{g}+l_{c} / \mu_{0}} 10^{-8}$ henries
where dimensions are in centimeters and $\mu_{0}=$ initial permeability.
When using molybdenum-permalloy-dust toroital cores, the inductance is given by
$L=\frac{1.25 \mathrm{~N}^{2} A_{e}}{I_{c}} \mu_{e f} \times 10^{-8} \quad$ for $\mu_{e f}=125$

Fig. 10-Characteristics of core materials for high-Q coils.				continued		Design of wave-filfer reactors			
alloy	initial permeability $\mu_{0}$	resistivity in microhms/ centimeter	hysteresis coefficient $\ddagger$ $\left(a \times 10^{6}\right)$			residual coefficient $\ddagger$ $\left(c \times 10^{6}\right)$	eddy-current coefficient ${ }_{+}^{+}$ $\left(e \times 10^{9}\right)$	$\begin{gathered} \text { gauge } \\ \text { in } \\ \text { mils } \end{gathered}$	uses   (frequencies in kilocycles)
4-percent silicon steel	400	60	120	75	870	14	Rectifier filters		
Nicalloy*	3,500	45	0.4	14	1550	14	Wave filters up to 0.1-0.2		
					284	6	Wave filters up to 10		
Hymu*	20,000	55	0.05	0.05	950	14	Wave filters up to 0.1-0.2		
					175	6	Wave filters up to 10		
2-81 molybdenum-	125	$1 \mathrm{ohm} / \mathrm{cm}$	1.6	30	19	-	Wave filters 0.2 to 7		
permalloy dust $\ddagger$	60	-	3.2	50	10	-	Wave filters 5-20		
	26	-	6.9	96	7.7	-	Wave filters 15-60		
	14	--	11.4	143	7.1	-	Wave filters 40-150		
Carbonyl types C	55	-	9	80	7	-	Wave filters		
P	26	-	3.4	220	27	-	Wave filters		
Th	16	-	2.5	80	8	-	Wave filters 40-high		
Ferroxcube-1IIt	600	50 ohms/cm	3.0	40 at 10 kc 120 of 100 ke 630 at 1000 ke	-	-	-		

 frequencies above 200 cycles.
H Has a temperature coefficient of inductance of about 0.15 percent/degree between 10 and 40 degrees centigrode, and a Curie temperature $=120$ degrees centigrade.
$\ddagger$ Data on molybdenum-permalloy dust and definition of constants $a, c$, and e are from an article by V. E. Legg, and F. J. Given, "Compressed Powdered Molybdenum-Permalloy for High-Quality Inductance Coils," Bell System Technical Journal, v. 19, pp. 385 406; July, 1940: $R_{c} / f L=\mu_{11}\left(a B_{m}+c\right)+\mu_{0} \mathrm{ef}$
where $R_{c}=$ resistonce due to core loss, in ohms.

## Design of wave-filter reactors

continued
$L=0.85 \frac{1.25 \mathrm{~N}^{2} A_{e}}{I_{c}} \mu_{e f} \times 10^{-8} \quad$ for $\mu_{e f}=65$
Ferroxcube-III cores may be used only if cognizance is taken of their high temperature instability 10.15 percent/degree centigrade, between 10 and 40 degreesl and their low Curie temperature of 120 degrees centigrade. Suitable gaps would reduce core losses, improve $Q$, and insure stability of constants for varying alternating voltage; and also (to some extent) for varying temperatures.

## Design of audio-frequency transformers

Important parameters are: generator and load impedances $R_{g}, R_{l}$, respectively, generator voltage $E_{g}$, frequency band to be transmitted, efficiency loutput transformers only), harmonic distortion, and operating voltages (for adequate insulation).
At mid-frequencies: The relative low- and high-frequency responses are taken with reference to mid-frequencies, where

$$
\frac{a E_{\text {out }}}{E_{g}}=\frac{1}{\left(1+R_{s} / R_{l}\right)+R_{1} / a^{2} R_{l}}
$$

At low frequencies: The equivalent unity-ratio network of a transformer becomes approximately as shown in Fig. 11:

$$
\text { Amplifude }=\frac{1}{\sqrt{1+\left(\mathbb{R}_{\text {par }}^{\prime} / X_{m}\right)^{2}}}
$$



Fig. Il-Equivalent network of an audiofrequency transformer at low frequencies. $\boldsymbol{R}_{1}=\boldsymbol{R}_{0}+\boldsymbol{R}_{p}$ and $\boldsymbol{R}_{2}=\boldsymbol{R}_{s}+\boldsymbol{R}_{\mathrm{l}}$. In $a$ good output transformer, $R_{p \prime} R_{z}$ and $R_{c}$ moy be neglected. In input or interstage transforiners, $R_{c}$ may be omitted.


Fig. 12-Equivalent network of an audiofrequency transformer at high frequencies, neglecting the effect of the winding shunt capacitances. Primary shorteircuit inductance $I_{s e p}=I_{p}+a^{2} I_{a}$.

At high frequencies: Neglecting the effect of winding and other capacitances las in low-impedance-level output transformers), the equivalent unity-ratio network becomes approximately as in Fig. 12:

$$
\text { Amplitude }=\frac{1}{\sqrt{1+\left(X_{l} / R_{\mathrm{se}}^{\prime}\right)^{2}}}
$$

Phase angle $=\tan ^{-1} \frac{X_{l}}{R_{s e}^{\prime}}$
where $R_{\text {se }}^{\prime}=R_{1}+R_{2} a^{2}$ and $X_{l}=2 \pi f f_{s c}$


Fig. 13-Universal frequency- and phase-response characteristics of output transformers.

## Design of audio-frequency transformers continuad

These low- and high-frequency responses are shown on the curves of Fig. 13.
If at high frequencies, the effect of winding and other capacitances is appreciable, the equivalent network on a 1:1-furns-ratio basis becomes as shown in Fig. 14. The relative highfrequency response of this network is given by


Fig. 14-Equivalent nefwork of a 1:I-furns-rafio audio-frequency transformer at high frequencies when effect of winding shunt capacitances is appreciable. In a step-up fransformer, $C_{2}=$ equivalent shunt capacifances of both windings. In a sfep-down transformer, $C_{\text {- }}$ shunts bofh leakage inductances and $R_{2}$.
 \& Sons, N. Y. $\boldsymbol{B}=\boldsymbol{X}_{c} / \mathbf{R}_{\mathbf{l}}$.

## Design of audio-frequency transformers continued

This high-frequency response is plotted in Figs. 15 and 16 for $R_{1}=R_{2}$ (matched impedances), and $R_{2}=\infty$ (input and interstage transformers). Harmonic distortion: Requirements may constitute a deciding factor in the design of transformers. Such distortion is caused by either variations in load impedance or nonlinearity of magnetizing current. The percent harmonic voltage appearing in the output of a loaded transformer is given by*
Percent harmonics $=\frac{E_{h}}{E_{f}}=\frac{I_{h}}{I_{f}} \frac{R_{\text {par }}^{\prime}}{X_{m}}\left(1-\frac{R_{\text {mar }}^{\prime}}{4 X_{m}}\right)$
where $100 I_{h} / I_{f}=$ percent of harmonic current measured with zeroimpedance source lvalues are given in Fig. 17 for 4 -percent silicon-steel corel.
*N. Partridge, "Harmonic Distortion in Audio-Frequency Transformers," Wireless Engineer, v. 19; September, October, and November, 1942.


## Example of audio-output-transformer design

This transformer is to operate from a 4000 -ohm impedance; to deliver 5 watts to a matched load of 10 ohms; to transmit frequencies of 60 to 15,000 cycles with a $V_{\text {out }} / V_{\text {In }}$ ratio of 71 percent of that at mid-frequencies $(400$ cycles); and the harmonic distortion is to be less than 2 percent. (See Figs. 11 and 12.1
a. We have: $E_{s}=\sqrt{W_{\text {wur }} R_{l}}=7.1$ volts

$$
\begin{aligned}
I_{s} & =W_{\text {atit }} / E_{s}=0.7 \text { amperes } \\
a & =\sqrt{R_{0} / R_{l}}=20
\end{aligned}
$$

Then
$I_{p} \approx 1.1 I_{s} / a=0.039$ amperes, and $E_{p} \approx 1.1 a E_{s}=156$
b. To evaluate the required primary inductance to transmit the lowest frequency of 60 cycles, determine $R_{s e}^{\prime}=R_{1}+a^{2} R_{2}$ and $R_{\text {par }}^{\prime}=\frac{R_{1} R_{2} a^{2}}{R_{1}+R_{2} a^{2}}$, where $R_{1}=R_{p}+R_{p}$ and $R_{2}=R_{l}+R_{s}$. We choose winding resistances $R_{s}=R_{p} / \alpha^{2} \approx 0.05 R_{l}=0.5$

Ifor a copper efficiency $=\frac{R_{l} a^{2} \times 100}{\left(R_{l}+R_{s}\right) a^{2}+R_{p}}=91$ percentl. Then, $R_{\text {se }}^{\prime}=2 R_{1}=8400$ ohms, and $R_{\text {par }}^{\prime}=R_{1} / 2=2100$ ohms.
c. In order to meet the frequency-response requirements, we must have, according to Fig. $13, \frac{\omega_{\text {low }} L_{p}}{R_{\text {par }}^{\prime}}=1=\frac{\omega_{\text {haph }} l_{\text {vep }}}{R_{\text {se }}^{\prime}}$, which yield
$L_{p}=5.8$ henries and $I_{\text {scp }}=0.093$ henries
Fig. 17-Harmonics produced by various fux densities $\boldsymbol{B}_{m}$ in a 4-percent silicon-steel. core audio transformer.

$\mathbf{B}_{m}$	percent 3rd harmonic	percent 5th harmonic
100	4	
500	7	1.0
1,000	9	2.5
		2.0
3,000	15	2.5
5,000	20	3.0
10,000	30	5.0

## Example of audio-output-transformer design continued

d. Harmonic distortion is usually a more important factor in determining the minimum inductance of output transformers than is the attenuation requirement at low frequencies. Compute now the number of furns and inductance for an assumed $B_{m}=5000$ for 4 -percent silicon-steel core with rype $E l-12$ punchings in square stack. Here, $A_{c}($ net $)=5.8$ centimeters 2, $I_{c}=15.25$ centimeters, and $\mu_{\mathrm{ac}}=5000$. See Fig. 18.
$N_{p}=\frac{E_{p} \times 10^{8}}{4.444 \mathrm{~A}_{c} B_{m}}=2020$
$N_{s}=1.1 N_{p} / a=111$
$L_{p}=\frac{1.25 N_{p}^{2} \mu_{\mathrm{cc}} A_{c}}{I_{c}} \times 10^{-8}=97$ henries
At 60 cycles, $X_{m}=\omega L_{p}=36,600$ and $R_{\text {par }}^{\prime} / X_{m}=0.06$.
From values of $I_{n} / I_{f}$ for 4-percent silicon-steel (See Fig. 17):
$\frac{E_{h}}{E_{f}}=\frac{I_{h}}{I_{f}} \frac{R_{\text {par }}^{\prime}}{X_{m}}\left(1-\frac{R_{\text {nar }}^{\prime}}{4 X_{m}}\right)=0.012$ or 1.2 percent
e. Now see if core window is large enough to fit windings. Assuming a simple method of winding isecondary over the primary), compute from geometry of core the approximate (MLT), for each winding.


Fig. 18-Incremental permeability $\mu_{\mathrm{ac}}$ characteristics of Allegheny audio-transformer "A" sheet steel at 60 cycles/second. No. 29 U.S. gauge, L-7 standard laminations slacked 100 percent, interleaved. This is 4 -percent silicon-steel core material. $H_{0}=$ magnetizing field in oersteds.

## Example of audio-output-transformer design continued

For the primary, $($ MLT $)=0.42$ feet and $N_{p}($ MLT $) \approx 850$ feet.
For the secondary, $(M L T)=0.58$ feet and $N_{s}(M L T) \approx 65$ feet.
For the primary, then, the size of wire is obtained from $R_{p} / N_{p}(M L T)=0.236$ ohms $/$ foot; and from Fig. 6, use No. 33.
For the secondary, $R_{B} / N_{8}(M L T) \approx 0.008$, and size of wire is No. 18.
f. Compute the turns/layer, number of layers, and total coil-built, as for power transformers. For an efficient design,
(total coil-built) $=10.85$ to $0.901 \times($ window width $)$
g. To determine if leakage inductance is within the required limit of (c) above, evaluate
$I_{\mathrm{sc}}=\frac{10.6 \mathrm{~N}_{\nu}^{2}(\mathrm{MLT})(2 \mathrm{nc}+\mathrm{a})}{\mathrm{n}^{2} \mathrm{~b} \times 10^{9}}=0.036$ henries
which is less than the limit 0.093 henries of (c). The symbols of this equation are defined in Fig. 19. If leakage inductance is high, interleave windings as indicated under "Methods of winding transformers", p. 205.

## Example of audio-input-transformer design

This transformer must couple a 500 -ohm line to the grids of 2 tubes in class-A push-pull. Attenuation to be flat to 0.5 decibels over 100 to 15,000 cycles; step-up $=1: 10$; and input to primary is 2 volts.
a. Use Allegheny 4750 material for high $\mu_{0}(4000)$ due to low input voltage. Interleave primary between halves of secondary. Use No. 40 wire for secondary. For interwinding insulation use 0.010 paper. Use winding-space tolerance of 10 percent.
b. Total secondary load resistance $=R_{\text {par }}^{\prime}=\frac{a^{2} R_{1} R_{2}}{\alpha^{2} R_{1}+R_{2}}=a^{2} R_{1}$

$$
=500 \times 10^{2}=50,000 \mathrm{ohms}
$$

From universal-frequency-response curves of Fig. 13 for 0.5 decibel down at 100 eycles (voltage ratio $=0.95$ ) ,
$\frac{\omega_{\text {low }} L_{s}}{R_{\text {par }}^{\prime}}=3$, or $L_{s}=240$ henries
c. Try Allegheny type EI-68 punchings, square stack. Here, $\mathrm{A}_{e}=3.05$ centimeters, $I_{c}=10.5$ centimeters, and window dimensions $=\frac{1}{3} \frac{1}{2} \times 1 \frac{1}{3} \frac{1}{2}$ inches,
interleaved singly: $I_{v}=0.0005$. From formula $L=\frac{1.25 \mathrm{~N}^{2} A_{c}}{I_{0}+I_{c} / \mu_{0}} \times 10^{-8}$ and above constants, compute
$N_{s}=4400$
$N_{v}=N_{s} / a=440$
d. Choose size of wire for primary winding, so that $R_{p}=0.1 R_{p}=50$ ohms. Fron geometry of core, (MLT) $=0.29$ feet; also, $R_{p} / N_{p}($ MLT $)=0.392$, or No. 35 wire ( $D=0.0062$ for No. 35 F).
e. Turns per layer of primary $=0.9 \mathrm{~b} / \mathrm{d}=110$; number of layers $n_{p}$ $=N_{p} / 110=4$; turns per layer of secondary $0.9 b / d=200$; number of layers $n_{8}=N_{s} / 200=22$.
f. Secondary leakage inductance
$)_{s c s}=\frac{10.6 \mathrm{~N}^{2}{ }_{s}(\text { MLT })(2 n c+a) \times 10^{-9}}{n^{2} b}=0.35$ henries
g. Secondary effective layer-to-layer capacitance
$C_{e}=\frac{4 C_{l}}{3 n_{l}}\left(1-\frac{1}{n_{l}}\right)$
(see Fig. 19) where $C_{l}=0.225 A_{\epsilon} / t=1770$ micromicrofarads. Substituting this value of $C_{l}$ into above expression of $C_{\varepsilon}$, we find
$C_{e}=107$ micromicrofarads
h. Winding-to-core capacitance $=0.225 A \epsilon / t=63$ micromicrofarads lusing 0.030 -inch insulation between winding and corel. Assuming tube and stray capacitances total 30 micromicrofarads, total secondary capacitance $C_{s}=200$ micromicrofarads
i. Series-resonance frequency of $l_{\mathrm{sc}}$ and $C_{8}$ is
$f_{r}=\frac{1}{2 \pi \sqrt{I_{s e} C_{s}}}=19,200$ cycles,
and $X_{e} / R_{1}$ at $f_{r}$ is $1 / 2 \pi f_{r} C_{s} R_{1}=0.83$; at 15,000 cycles, $f / f_{r}=0.78$.
From Fig. 16, decibels variation from median frequency is seen to be less than 0.5 .

If it is required to extend the frequency range, use Mumetal core material for its higher $\mu_{0}(20,000)$. This will reduce the primary turns, the leakage inductancs, and the winding shunt capacitance.

## Methods of winding transformers

Most common methods of winding transformers are shown in Fig. 19. Leakage inductance is reduced by interleaving, i.e., by dividing the primary or secondary coil in two sections, and placing the other winding between the two sections. Interleaving may be accomplished by concentric and by coaxial windings, as shown on Figs. 19B and C; reduction of leakage inductance may be seen from formula
$I_{\mathrm{se}}=\frac{10.6 \mathrm{~N}^{2}(\mathrm{MLT})(2 \mathrm{nc}+\mathrm{a})}{n^{2} \mathrm{~b} \times 10^{9}}$ henries
(dimensions in inches) to be the same for both Figs. 19B and C.


Fig. 19-Methods of winding transformers.
Effective interlayer capacitance of a winding may be reduced by sectionalizing it as shown in D. This can be seen from the formula
$C_{e}=\frac{4 C_{l}}{3 n_{l}}\left(1-\frac{1}{n_{l}}\right)$ micromicrofarads
where
$C_{l}=$ capacitance of one layer to another
$n_{l}=$ number of layers
$C_{l}=\frac{0.225 A \epsilon}{f}$ nicromicrofarads
where
$A=$ area of winding layer
$=\left(\right.$ MLT) $b$ inches ${ }^{2}$
$t=$ thickness of interlayer insulation in inches
$\epsilon=$ dielectric constant
$\approx 3$ for paper

206

## Temperature and humidity

The average life expectancies of class- $A$ and class- $B$ insulated transformers are given by*
Class A: $\log t=8.7-0.038 T$
Class B: $\log t=10-0.038 T$
where $t=$ time in hours and $T=$ temperature in degrees centigrade.
For class-A insulation lorganic materials), operating-temperature limits are set at 95 degrees.

For class-B insulation linorganic: glass, mica, asbestos), operating temperature limits are set at 125 degrees.
Higher operating temperatures of 200 degrees are being reached with the use of silicones.

Open-type constructions will naturally be cooler than the enclosed types. To eliminate the detrimental effects of humidity, transformers may be enclosed in hermetically sealed cans, or surrounded by some suitable compound (such as the Intelin 211 compound) that will insulate all leads and prevent moisture conduction as well.

## Dielectric insulation and corona

For class-A, a maximum dielectric strength of 40 volts/mil is considered safe for small thicknesses of insulation. At high operating voltages, due regard should be paid to corona, which starts at about 1250 volts and is then of greater importance than dielectric strength in causing failure. 60-cycle root-mean-square corona voltage may be given by, approximately,
$\log \frac{V(\text { in volts })}{800}=\frac{2}{3} \log (100 \mathrm{f})$
where $t=$ total insulation thickness in inches. This may be used as a guide in determining the thickness of insulation. With the use of some new varnishes that require no solvents, but solidify by polymerization, the bubbles present in the usual varnishes are eliminated, and much higher operating voltages and, hence, reduction in the size of high-voltage units may be obtained. Fosterite, and some polyesters, such as the Intelin 211 compound, belong in this group. In the design of high-voltage transformers, the creepage distance required between wire and core may necessitate the use of insulating channels covering the high-voltage coil, or taping of the latter. For units operating at 10 kilovolts or higher, oil insulation will greatly reduce creepage and, hence, size of the transformer.

[^20]
## Safurable reactors and magnetic amplifiers

A saturable reactor (S.R.) is one in which the core, or part of it, operates near the knee of the magnetization curve, and the impedance of the


Fig. 20-Safurable-reactor connections.
alternating-current windings is varied by a direct lor slowly varying) current in the control windings, in which no voltage is induced by the alternatingcurrent windings. Typical connections are shown in Fig. 20.
A magnetic amplifier has an essential component, the saturable reactor(s), and also has rectifier(s), load, and possibly other elements. Similar to vac-uum-tube amplifiers, magnetic amplifiers may be used in nonregenerative or regenerative circuits, as shown in Fig. 21.
Regenerative- (positive-) type amplifiers have increased sensitivities to changes in the control current, are responsive to the polarity of the input signals, and usually require, for the minimum output at zero-signal input, fixed negative-bias winding(s). The maximum output obtainable from


Fig. 21-Magnefic-amplifier connections.
a magnetic amplifier depends on the size and properties of the core material and the value of the load; it is substantially the same for regenerative or nonregenerative arrangements.
Great sensitivity of response $S=\left(N I_{\text {mut }} /(N)_{\text {th }}\right.$ and power gain $=P_{\text {mut }} / P_{\text {tn }}$ are achieved with magnetic cores having nearly rectangular hysteresis loops. Speed of response is obtained by use of thin laminations also having high resistivity (to reduce eddy currents that retard response). A reduction of time constant $L / R$, especially in the input control circuit of a multistage amplifier, will greatly improve the speed of response. This may be achieved by the series addition of external resistors to the control circuit, and the use of regeneration to compensate for the loss due to this addition. Speed of response is inversely proportional to frequency of source and power gain. The relative sensitivity and power gain of regenerative and nonregenerative circuits using different core materials are listed below.

	nonregenerative		regenerative
material	sensitivity	power gain $\dagger$	sensitivity $+\quad$
4-percent siliconstee $\left.\right\|^{*}$	$\left(S_{1}\right)=5$	150	$5\left(S_{1}\right)=25$
Allegheny 4750	$\left(S_{2}\right)=20$	350	$50\left\{S_{2}\right\}=40 \times 5\left(S_{1}\right\}=1000$
Mumetal	-	450	$2.5 \times 50\left\{S_{2}\right\}=2500$
Permenorm 5000Z	-	-	$25 \times 50\left\{S_{3}\right\}=25,000$

[^21]
## General data*

## Cathode emission

The cathode of an electron tube is the primary source of the electron stream. Available emission from the cathode must be at least equal to the sum of the instantaneous peak currents drawn by all of the electrodes. Maximum current of which a cathode is capable at the operating temperature is known as the saturation current and is normally taken as the value at which the current first fails to increase as the three-halves power of the voltage causing the current to flow. Thoriated-tungsten filaments for continuous-wave operation are usually assigned an available emission of approximately one-half the saturation value; oxide-coated emitters do not have a well-defined saturation point and are designed empirically. In the following table the figures refer to the saturation current.

Commonly used cathode materials

type	specific   efficiency in   milliamperes   watt	emission   $I_{s}$ in   amperes/   centimeter	emissivity   in watts   centimeter	operating   tempin   degrees   Kelvin	ratio   hot/cold   resistance
Bright   tungsten (W)	$5-10$	$0.25-0.7$	$70-84$	$2500-2600$	$14 / 1$
Thoriated tung-   sten (Th-W)	$40-100$	$0.5-3.0$	$26-28$	$1950-2000$	$10 / 1$
Tantalum (Ta)	$10-20$	$0.5-1.2$	$48-60$	$2380-2480$	$6 / 1$
Oxide coated   (Ba-Ca-St)	$50-150$	$0.5-2.5$	$5-10$	$1100-1250$	$2.5105 .5 / 1$

Operation of cathodes: Thoriated-tungsten and oxide-coated emitters should be operated close to specified voltage. A customary allowable voltage deviation is $\pm 5$ percent. Bright-fungsten emitters may be operated at the minimum voltage that will supply required emission as determined by poweroutput and distortion measurements. Life of a bright-tungsten emitter will be lengthened by lowering the operating temperature. Fig. 1 shows the relationship between filament voltage and temperature, life, and emission in a typical case.

Mechanical stresses in filaments due to the magnetic field of the heating current are proportional to $I_{j}{ }^{2}$. Current flow through a cold filament should be limited to 150 percent of the normal operating value for large tubes, and

[^22]250 percent for medium types. Excessive starting current may easily warp or break a filament.

Thoriated-tungsten filaments may sometimes be restored to useful activity by applying filament voltage (only) in accordance with one of the following schedules:


Fig. 1-Effect of change in flament voltage on the temperature, life, and emission of a brighttungsten filament (based on 2575-degree-Kelvin normal temperature).

## General data

a. Normal filament voltage for several hours or overnight.
b. If the emission fails to respond; at 30 percent above normal for 10 minutes, then at normal for 20 to 30 minutes.
c. In extreme cases, when $a$ and $b$ have failed to give results, and $a t$ the risk of burning out the filament; at 75 percent above normal for 3 min utes followed by schedule b.

## Electrode dissipation

Typical operating data for common types of cooling

type	overage coolingsurface temperature in degrees centigrade	specific dissipation in watts/centimeter ${ }^{2}$ of cooling surface	coolingmedium supply
Rodiation	400-1000	4-10	
Woter	30-150	30-110	$0.25-0.5$ gollons/minute / kilowatt
Forced.air	150-200	0.5-1	$\begin{aligned} & 50-150 \mathrm{feer}^{3} / \text { minute / } \\ & \text { kilowall } \end{aligned}$

In computing cooling-medium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained. The figures for specific dissipation apply to clean cooling surfaces and may be reduced to a small fraction of the values shown by heat-insulating coatings such as scale or dust.

Operating temperature of a radiation-cooled surface for a given dissipation is determined by the relative total emissivity of the anode material. Temperature and dissipation are related by the expression,
$P=\epsilon_{t} \sigma\left(T^{4}-T_{0}^{4}\right) \times 10^{-7}$
where
$P=$ radiated power in watts/centimeter ${ }^{2}$
$\boldsymbol{\epsilon}_{\boldsymbol{t}}=$ total thermal emissivity of the surface
$\sigma=$ Stefan-Boltzmann constant
$=5.72 \times 10^{-12}$ watt-centimeters $^{-2} \times$ degrees Kelvin ${ }^{-4}$
$T=$ temperature of radiating surface in degrees Kelvin
$T_{0}=$ temperature of surroundings in degrees Kelvin
Total thermal emissivity varies with the degree of roughness of the surface of the material, and the temperature. Values for typical surfaces are as follows:

Total thermal emissivity $\epsilon_{l}$ of electron-fube materials

material	temperature in   degrees Kelvin	total thermal   emissivity
Aluminum	450	0.1
Anode graphite	1000	0.9
Copper	300	0.07
Molybdenum	1300	0.13
Molybdenum, quartz-blasted	1300	0.5
Nickel	600	0.09
Tantalum	1400	0.18
Tungsten	2600	0.30

Except where noted, the surface of the metals is as normally produced.

Dissipation and temperature rise for water cooling
$P=264 Q_{W}\left(T_{2}-T_{1}\right)$
where

$$
\begin{aligned}
P= & \text { power in watts } \\
Q_{W}= & \text { flow in gallons/minute } \\
T_{2}, T_{1}= & \text { outlet and inlet water } \\
& \text { temperatures in degrees } \\
& \text { Kelvin, respectively }
\end{aligned}
$$

Dissipation and temperature rise for forced-air cooling
$P=169 Q_{A}\left(\frac{T_{2}}{T_{1}}-1\right)$
where $Q_{A}=$ air flow in feet ${ }^{3} /$ minute, other quantities as above. Fig. 2 shows the method of measuring air flow and temperature rise in forced-air-cooled systems. A water manometer is used to determine the static pressure against which the blower must deliver the required air flow. Air velocity and outlet air temperature must be weighted over the cross-section of the air stream.

Fig. 2-Measurement of air flow and temperalure rise in a forced-air-cooled system is shown at the right.


## General data

Grid temperature: Operation of grids at excessive temperatures will result in one or more harmful effects; liberation of gas, high primary (thermall emission, contamination of the other electrodes by deposition of grid material, and melting of the grid may occur. Grid-current ratings should not be exceeded, even for short periods.

## Noise in tubes*

Noise figure $F$ : is defined as the ratio of the available signal/noise ratio at the signal-generator finputl terminals to the available signal/noise ratio at the output terminals. A more detailed discussion of noise figure will be found in the chapter "Radio noise and interference."

Shot effect: Is noise due to random emission, is less pronounced in space-charge-limited than in temperature-limited fubes.

Flicker effect: Due to variations in the activity of the cathode, is most common in oxide-coated emitters.

Collision ionization: Causes noise when ionized gas atoms or molecules liberate bursts of electrons on striking the cathode.

Partition noise: Caused by random division of current between electrodes.
Induced noise: Caused by ultra-high-frequency components of the random space-charge fluctuations.

Miscellaneous noises: Due to microphonics, hum, leakage, charges on insulators, and poor contacts.

## Nomenclafure

Application of the standard nomenclature $\dagger$ to a typical electron-tube circuit is shown in Fig. 3. A typical oscillogram is given in Fig. 4 to illustrate the designation of the various components of a current. By logical extension of these principles, any tube, circuit, or electrical quantity may be covered.


Courlesy of McGraw Hill Book Company
Fig. 3-Typical electron-fube circtit.

[^23]
## Nomenclature continued

$\mathrm{e}_{c}=$ instantaneous total grid voltage
$\mathrm{e}_{b}=$ instantaneous total plate voltage
$i_{e}=$ instantaneous total grid current
$E_{c}=$ average or quiescent value of grid voltage
$E_{b}=$ average or quiescent value of plate voltage
$I_{c}=$ average or quiescent value of grid current
$e_{o}=$ instantaneous value of varying component of grid voltage
$e_{p}=$ instantaneous value of varying component of plate voltage
$i_{\theta}=$ instantaneous value of varying component of grid current
$E_{g}=$ effective or maximum value of varying component of grid voltage
$E_{p}=$ effective or maximum value of varying component of plate voltage
$I_{0}=$ effective or maximum value of varying component of grid current
$I_{f}=$ filament or heater current
$I_{s}=$ total electron emission from cathode
$C_{a p}=$ grid-plate direct capacitance
$\mathrm{C}_{g k}=$ grid-cathode direct capacitance
$C_{p k}=$ plate-cathode direct capacitance
$\theta_{p}=$ plate-current conduction angle
$r_{b}=$ external plate load resistance
$r_{p}=$ variational (a-c) plate resistance


Fig. 4-Nomenclature of the various components of a current.

## Low- and medium-frequency tubes

This section applies particularly to triodes and multigrid tubes operated at frequencies where electron-inertia effects are negligible.

## Terminology

Space-charge grid: Placed adjacent to the cathode and positively biased to reduce the limiting effect of space charge on the current through the tube.

Control grid: Ordinarily placed between the cathode and the anode, for use as a control electrode.

Screen grid: Placed between the control grid and the anode, and usually maintained at a fixed positive potential, for the purpose of reducing the electrostatic influence of the anode in the space between the screen grid and the cathode.

Suppressor grid: Interposed between two electrodes (usually the screen grid and platel, both positive with respect to the cathode, in order to prevent the passage of secondary electrons from one to the other.

Anode: Electrode to which a principal electron stream flows.

Electron emission: The liberation of electrons from an electrode into the surrounding space. Quantitatively, it is the rate at which electrons are emitted from an electrode.


Fig. 5-Electrode arrangement of a small external-anode triode. Overall length is $41 / 10$ inches. A-filament, B-filament centralsupport rod, C-grid wires, D-anode, E-gridsupport sleeve, F-filament-leg support rods, G-metal-to-glass seal, H -glass envelope, l-filament and grid terminals, J-exhaust tubulation.

Thermionic emission: Electron or ion emission due directly to the temperature of the emitter. Thermionic electron emission is also known as primary emission.

Secondary emission: Electron emission due directly to impact by electrons or ions.
Gria emission: Electron or ion emission from a grid.
Perveance: Ratio of the current, expressed in amperes, to the $\frac{3}{2}$ power of the potential expressed in volts.
Electrode admittance: The quotient of the alternating component of the electrode current by the alternating component of the electrode voltage, all other electrode voltages being maintained constant.

Electrode impedance: The reciprocal of the electrode admittance.
Electrode characteristic: A relation, usually shown by a graph, between an electrode voltage and current, other electrode voltages maintained constant.

Transfer characteristic: A relation, usually shown by a graph, between the voltage of one electrode and the current to another electrode, all other voltages being maintained constant.
Electrode capacitance: The capacitance of one electrode to all other electrocies connected together.

Constant-current characteristics: Show the relation, usually by a graph, between the voltages on two electrodes for constant specified current to one of them, all other voltages being maintained constant.

Electronic efficiency: Of a vacuum-tube oscillator or amplifier, is the electromagnetic power delivered by the electron stream divided by the power contained in the stream.
Circuit efficiency: Of a vacuum-tube ascillator or amplifier, is the electromagnetic power delivered to the load divided by the electromagnetic power received from the electron stream.

## Coefficients

Amplification factor $\mu$ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes

$$
\left.\mu=\left[\frac{\delta \mathrm{e}_{b}}{\delta \mathrm{e}_{e 1}}\right]_{I_{b}} \quad E_{c n}\right\} \text { constant }
$$

## Low-and medium-frequency fubes continued

Transconductance $s_{m}$ : Ratio of incremental plate current to control-electrode voltage change at constant voltage on other electrodes

$$
\begin{gathered}
s_{m}=\left[\frac{\delta i_{b}}{\delta e_{c 1}}\right] E_{b}, E_{c 2} \ldots \ldots E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

When electrodes are plate and control grid, the ratio is the mutual conductance, $g_{m}$
$g_{m}=\frac{\mu}{r_{p}}$
Variational ( $a-c$ ) plate resistance $r_{p}$ : Ratio of incremental plate voltage to current change at constant voltage on other electrodes

$$
\begin{gathered}
r_{p}=\left[\frac{\delta e_{b}}{\delta i_{b}}\right] E_{c 1} \ldots \ldots E_{c n} \text { constant } \\
r_{l}=0
\end{gathered}
$$

Total (d-c) plate resistance $R_{p}$ : Ratio of total plate voltage to current for constant voltage on other electrodes

$$
\begin{gathered}
R_{p}=\left[\frac{E_{b}}{I_{b}}\right]_{E_{c 1} \ldots \ldots \ldots \ldots E_{c n}} \text { constant } \\
r_{l}=0
\end{gathered}
$$

A useful approximation of these coefficients may be obtained from a family of anode characteristics, Fig. 6.

$$
\begin{aligned}
& \text { Amplification factor } \mu=\frac{e_{b 2}-e_{b 1}}{e_{c 2}-e_{c 1}} \\
& \text { Mutual conductance } g_{m}=\frac{i_{b 2}-i_{b 1}}{e_{c 2}-e_{c 1}} \\
& \text { Total plate resistance } R_{p}=\frac{e_{b 2}}{i_{b 2}} \\
& \text { Variational plate resistance } r_{p}=\frac{e_{b 2}-e_{b 1}}{i_{b 2}-i_{b 1}} \quad \text { en }
\end{aligned}
$$

Fig. 6-Graphical method of determining coefficients.

## Formulas

For unipotential cathode and negligible saturation of cathode emission

function	parallel-plane cathode and anode	cylindrical cathode and anode
Diode anode current lamperes)	$\mathrm{G}_{1} \mathrm{e}^{\frac{3}{2}}$	$\mathrm{G}_{1} \mathrm{e}^{\text {㐌 }}$
Triode anode current lamperes)	$\mathrm{G}_{2}\left(\frac{\mathrm{e}_{b}+\mu \mathrm{e}_{c}}{1+\mu}\right)^{\frac{3}{2}}$	$\mathrm{G}_{2}\left(\frac{e_{b}+\mu \mathrm{e}_{c}}{1+\mu}\right)^{\frac{3}{2}}$
Diode perveance $G_{1}$	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b}{ }^{2}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r_{b}{ }^{2}}$
Triode perveance $\mathrm{G}_{2}$	$2.3 \times 10^{-6} \frac{A_{b}}{d_{b} d_{c}}$	$2.3 \times 10^{-6} \frac{A_{b}}{\beta^{2} r_{b} r_{c}}$
Amplification factor $\mu$	$\frac{2.7 d_{c}\left(\frac{d_{b}}{d_{c}}-1\right)}{\rho \log \frac{\rho}{2 \pi r_{0}}}$	$\frac{2 \pi d_{c}}{\rho} \frac{\log \frac{d_{b}}{d_{c}}}{\log \frac{\rho}{2 \pi r_{\theta}}}$
Mutual conductance $\mathrm{gm}_{m}$	$\begin{aligned} & 1.5 G_{2} \frac{\mu}{\mu+1} \sqrt{E_{0}^{\prime}} \\ & E_{0}^{\prime}=\frac{E_{b}+\mu E_{c}}{1+\mu} \end{aligned}$	$\begin{gathered} 1.5 G_{2} \frac{\mu}{\mu+1} \sqrt{E_{\theta}^{\prime}} \\ E_{\theta}^{\prime}=\frac{E_{b}+\mu E_{e}}{1+\mu} \end{gathered}$

where
$A_{b}=$ effective anode area in square centimeters
$d_{b}=$ anode-cathode distance in centimeters
$d_{c}=$ grid-cathode distance in centimeters
$\beta=$ geometrical constant, a function of ratio of anode-to-cathode radius; $\beta^{2}=1$ for $r_{b} / r_{k}>10$ (see curve Fig. 7)
$\rho=$ pitch of grid wires in centimeters
$r_{0}=$ grid-wire radius in centimeters
$r_{b}=$ anode radius in centimeters
$r_{k}=$ cathode radius in centimeters
$r_{c}=$ grid radius in centimeters
Note: These formulas are based on theoretical considerations and do not provide accurate results for practical structures; however, they give a fair idea of the relationship between the qube geometry and the constants of the tube.

Low- anid medium-frequency tubes
continued


$$
r_{b} / r_{k}
$$

Fig. 7-Values of $\beta^{2}$ for values of $r_{b} / r_{k}<10$.

## High-frequency triodes and multigrid tubes*

When the operating frequency is increased, the operation of triodes and multigrid tubes is affected by electron-inertia effects. The poor microwave performance of these tubes has fostered the development of other types of tubes for use as oscillators and amplifiers at microwave frequencies. The three principal varieties are the magnetron, the klystron, and the traveling-wave amplifier.

## Terminology

The definitions of the previous section apply in addition to those given below:

Pulse: Momentary flow of energy of such short time duration that it may be considered as an isolated phenomenon.
Pulse operation: Method of operation in which the energy is delivered in pulses.

Coherent-pulse operation: Method of pulse operation in which the phase of the radio-frequency wave is maintained through successive pulses.
R-F pulse duration: Time interval between the points at which the amplitude of the envelope of the radio-frequency pulse is 70.7 percent of the maximum amplitude of the envelope.

[^24]
## High-frequency triodes and multigrid tubes continued

Duty: The product of the pulse duration and the pulse-repetition rate.
Transit angle: The product of angular frequency and time taken for an electron to traverse the region under consideration. This time is known as the transit time.

The design features that distinguish the high-frequency tube shown in Fig. 8 from the lower-frequency tube (Fig. 5) are: reduced cathode-to-grid and grid-to-anode spacings, high emission density, high power density, smali active and inactive capacitances, heavy terminals, short support leads, and adaptability to a cavity circuit.

## Factors affecting ultra-highfrequency operation

Electron inertia: The theory of electron-inertia effects in smallsignal tubes has been formulated;* no comparable complete theory is now available for large-signal tubes.

When the transit time of the electrons from cathode to anode is an appreciable fraction of one radiofrequency cycle:
a. Input conductance due to reaction of electrons with the varying field from the grid becomes appreciable. This conductance, which increases as the square of the frequency, results in lowered gain, an increase in driving-power requirement, and loading of the input circuit.

* A. G. Clavier, "Effect of Electron TransitTime in Valves," L'Onde Electrique, v. 16, pp. 145-149; March, 1937: also, A. G. Clovier, "The Influence of Time of Transit of Electrons in Thermionic Valves," Bulletin de la Societe Francoise des Electriciens, v. 19, pp. 79-91; January, 1939. F. B. Hewellyn, "ElectronInertia Effects," 1st ed., Cambridge University Press, London; 1941.


Fig. 8-Electrode arrangement of ex-ternal-anode ultra-high-frequency triode. Overall length is $49 / 16$ inches. A-filament, B-filament central-support rod, C-grid wires, D-anode, E-grid-support cone, F-grid terminal flange, G-filament-leg support rods, H -glass envelope, l-filament terminals.
b. Grid-anode transit time introduces a phase lag between grid voltage and anode current. In oscillators, the problem of compensating for the phase lag by design and adjustment of a feedback circuit becomes difficult. Efficiency is reduced in both oscillators and amplifiers.
c. Distortion of the current pulse in the grid-anode space increases the anode-current conduction angle and lowers the efficiency.

Electrode admittances: In amplifiers, the effect of cathode-lead inductance is to introduce a conductance component in the grid circuit. This effect is serious in small-signal amplifiers because the loading of the input circuit by the conductance current limits the gain of the stage. Cathode-grid and grid-anode capacitive reactances are of small magnitude at ultra-high frequencies. Heavy currents flow as a result of these reactances and tubes must be designed to carry the currents without serious loss. Coaxial cavities are often used in the circuits to resonate with the tube reactances and to minimize resistive and radiation losses. Two circuit difficulties arise as operating frequencies increase:
a. The cavities become physically impossible as they tend to take the dimensions of the tube itself.
b. Cavity $Q$ varies inversely as the square root of the frequency, which makes the attainment of an optimum $Q$ a limiting factor.

Scaling factors: For a family of similar tubes, the dimensionless magnitudes such as efficiency are constant when the parameter
$\phi=f d / V^{\frac{1}{2}}$
is constant, where
$f=$ frequency in megacycles
$d=$ cathode-to-anode distance in centimeters
$V=$ anode voltage in volts
Based upon this relationship and similar considerations, it is possible to derive a series of factors that determine how operating conditions will vary as the operating frequency or the physical dimensions are varied isee table, p. 2221. If the tube is to be scaled exactly, all dimensions will be reduced inversely as the frequency is increased, and operating conditions will be as given in the "size-frequency scaling" column. If the dimensions of the tube are to be changed, but the operating frequency is to be maintained, operation will be as in the "size scaling" column. If the dimensions are to be maintained, but the operating frequency changed, operating conditions will be as in the "frequency scaling" column. These factors apply in general to all types of tubes.

## 222

High-frequency triodes and multigrid tubes continued
Scaling factors for ultra-high-frequency tubes

quantity	ratio	sizefrequency scaling	size scaling	frequency scaling
Voltage	$V_{2} / V_{1}$	1	$d^{2}$	$f^{2}$
Field	$E_{2} / E_{1}$	f	d	$\mathrm{f}^{2}$
Current	$I_{2} / L_{1}$	1	$d^{3}$	$\beta$
Current density	$\mathrm{J}_{2} / \mathrm{J}_{1}$	$\mathrm{f}^{2}$	d	$f$
Power	$\mathrm{P}_{2} / \mathrm{P}_{1}$	1	$d^{5}$	$f^{5}$
Power density	$h_{2} / h_{1}$	${ }^{2}$	$d^{3}$	${ }^{6}$
Conductance	$\mathrm{G}_{2} / \mathrm{G}_{1}$	1	d	f
Magnetic-nux density	$B_{2} / B_{1}$	f	1	f

$d=$ ratio of scaled to original dimensions
$f=$ ratio of ariginal to scaled frequency


Fig. 9-Maximum ultra-high-frequency continuous-wave power obtainable from a single triode or tetrode. These dala are based on present knowledge and techniques.

## High-frequency friodes and mulfigrid fubes

With present knowledge and techniques, it has been possible to reach certain values of power with conventional tubes in the ultra- and super-high-frequency regions. The approximate maximum values that have been obtained are plotted in Fig. 9.

## Positive-grid tubes

Specially designed triodes have been operated with positive grid and negative anode to produce oscillations in the microwave region. Such tubes utilize an oscillating space charge produced by acceleration of electrons through the positive grid toward a negative reflecting anode. This principle has been used to generate oscillations at wavelengths down to one centimeter. A typical tube is shown in Fig. 10.


Fig. 10-Cunstruction of a positive-grid tube. Electrode arrangement is shown at the right.

Low power output and low efficiency have hitherto limited their wide application. As local oscillators, positive-grid
 tubes possess the advantage of a relatively long and linear frequency vs. anode-voltage characteristic. A frequency variation of $\pm 25$ megacycles at 3000 megacycles is obtainable.

## Magnetrons*

A magnetron is a high-vacuum tube containing a cathode and an anode, the latter usually divided into two or more segments, in which tube a constant magnetic field modifies the space-charge distribution and the current-

[^25]voltage relations. In modern usage, the term "magnetron" refers to the magnetron oscillator in which the interaction of the electronic space charge with a resonant system converts direct-current power into alternat-ing-current power.

Many forms of magnetrons have been made in the past and several kinds of operation have been employed. The type of tube that is now almost universally employed is the multicavity magnetron generating travelingwave oscillations. It possesses the advantages of good efficiency at high frequencies, capability of high outputs either in pulsed or continuous-wave operation, moderate magnetic-field requirements, and good stability of operation. The basic structure of a typical magnetron is shown in Fig. 11.

In this type of tube, the operating frequency is determined by the resonant frequency of the separate cavities that are arranged around the central cathode and parallel to it. Under the action of the radio-frequency voltages across these resonators, and the axial magnetic field, the electrons from the cathode form a bunched space-charge cloud that rotates around the tube axis, exciting the cavities and maintain. ing their voltages. Direct current is fed into


Fig. 11-Basic structure of a typical multicavity centi-meter-wave magnetron. The cathode is not shown. the tube and radiofrequency output is brought out through a suitable transmission line or wave guide, usually coupled to one of the resonator cavities. The tube operates most efficiently when in the $\pi$ mode, that is, in such a fashion that the phase difference between the voltages across each adjacent resonator is 180 degrees. Since other modes of operation are possible, it is often desirable to provide means for suppressing them; a common method is to strap alternate anode segments together conductively, so that large circulating currents flow in the unwanted modes of operation, thus damping them.

## Magnetrons

## Terminology

Many of the definitions given in previous sections apply.
Anode strap: Metallic connector between selected anode segments of a multicavity magnetron.
Interaction space: Region between anode and cathode.
End spaces: In a multicavity magnetron, the two cavities at either end of the anode block terminating all of the anode-block cavity resonators.
End shields: Limit the interaction space in the direction of the magnetic field.

Magnet gap: Space between the pole faces of the magnet.
Mode number $n$ (magnetron): The number of radians of phase shift in going once around the anode, divided by $2 \pi$. Thus, $n$ can have integral values 1 , $2,3, \ldots, N / 2$, where $N$ is the number of anode segments.
$\pi$ mode: Of a multicavity magnetron, is the mode of resonance for which the phase difference between any two adjacent anode segments is $\pi$ radians. For an $N$-cavity magnetron, the $\pi$ mode has the mode number $N / 2$.
Frequency pulling: Of an oscillator, is the change in the generated fre. quency caused by a change of the load impedance.
Pulling figure: Of an oscillator, is the difference in megacycles/second between the maximum and minimum frequencies of ascillation obtained when the phase angle of the load-impedance reflection coefficient varies through 360 degrees, while the absolute value of this coefficient is constant and equal to 0.20.

Frequency pushing: Of an oscillator, is the change in frequency due to change in anode current for in anode voltage).
Pushing figure: Of an oscillator, is the rate of frequency pushing in mega. cycles/second/ampere (or megacycles/second/volt).
Q: Of a specific mode of resonance of a system, is $2 \pi$ times the ratio of the stored electromagnetic energy to the energy dissipated per cycle when the system is excited in this mode.
Unloaded Q: Of a specific mode of resonance of a system, is the $Q$ of the mode when there is no external coupling to it.
Loaded $Q$ : Of a specific mode of resonance of a system, is the $Q$ when there is external coupling to that mode. Note: When the system is connected to the load by means of a transnission line, the loaded $Q$ is customarily deter. mined when the line is terminated in its characteristic impedance.
External $Q$ : The reciprocal of the difference between the reciprocals of the loaded and unloaded Q's.

## Performance data

The performance data for a magnetron is usually given in terms of two diagrams, the performance chart and the Rieke diagram.
Performance chart: Is a plot of anode current along the abscissa and anode voltage along the ordinate of rectangularcoordinate paper. For a fixed typical tube load, pulse duration, pulse-repetition rate, and setting of the tuner of tunable tubes, lines of constant magnetic field, power output, efficiency, and frequency, may be plotted over the complete operating range of the tube. Regions of unsatisfactory operation are indicated by cross hatching. For tunable tubes, it is customary to show performance charts for more than one setting of the tuner. In the case of magnetrons with attached magnets, curves showing the variation of anode voltage, efficiency, frequency, and power output with change in anode current are given. A typical chart for a magnetron having eight resonators is given in Fig. 12.
Rieke diagram: Shows the variation of efficiency, and frequency with changes in th and phase angle of the load for fixed typical operating conditions such as magnetic field, anode current, pulse duration, pulse-repetition rate, and the setting of the tuner for tunable tubes. The Rieke diagram is plotted on polar coordinates, the radial coordinate being the reflection coefficient measured in the line joining the tube to the load and the angular coordinate being the angular distance of the voltage standing-wave minimum from a suitable reference plane on the output terminal. On the Rieke diagram, lines of constant frequency, anode voltage, efficiency, and output may be drawn (Fig. 13).


Fig. 12-Performance chart for pulsed magnetron.
power output, anode voltage,


Courtasy of Bell System Tech. Jour.


Fig. 13-Rieke diagram.

## Magnetrons

 continued
## Design data

The design of a new magnetron is usually begun by scaling from an existing magnetron having similar characteristics. Normalized operating parameters have been defined in such a way that a family of magnetrons scaled from the same parent have the same electronic efficiency for like values of $I / \mathcal{I}, V / V$, and $B / B$,
where the normalized parameters $\mathcal{J}, \mathcal{U}$, and $\mathbb{B}$ for the $\pi$ mode are

$$
\begin{aligned}
\mathfrak{J} & =\frac{2 \pi \sigma_{1}}{\left(1-\sigma^{2}\right)^{2}(1 / \sigma+11} \frac{m}{e}\left(\frac{4 \pi c}{N \lambda}\right)^{3} r_{a}{ }^{2} \epsilon_{0} h \\
& =\frac{8440 a_{1}}{\left(1-\sigma^{2}\right)(1 / \sigma+1)}\left(\frac{4 \pi r_{a}}{N \lambda}\right)^{3} \frac{h}{r_{a}} \text { amperes }
\end{aligned}
$$

$V=\frac{1}{2} \frac{m}{e}\left(\frac{4 \pi c}{N \lambda}\right)^{2} r_{a}^{2}=253,000\left(\frac{4 \pi r_{a}}{N \lambda}\right)^{2}$ volts
$\mathbb{B}=2 \frac{\mathrm{~m}}{\mathrm{e}}\left(\frac{4 \pi \mathrm{c}}{N \lambda}\right) \frac{1}{\left(1-\sigma^{2}\right)}=\frac{42,400}{N \lambda\left(1-\sigma^{2}\right)}$ gausses
where
$a_{1}=a$ slowly varying function of $r_{a} / r_{c}$ approximately equal to one in the range of interest
$r_{a}=$ radius of anode in meters
$r_{c}=$ radius of cathode in meters
$h=$ anode height in meters
$N=$ number of resonators
$\mathrm{n}=$ mode number
$\lambda=$ wave length in meters
$m=$ mass of an electron in kilograms
$\mathrm{e}=$ charge on an electron in coulombs
$c=$ velocity of light in free space in meters/second
$\epsilon_{0}=$ permittivity of free space
and $I, V$, and $B$ are the operating conditions. Scaling may be done in any direction or in several directions at the same time. For reasonable performance it has been found empirically that
$\frac{V}{V} \geqslant 6, \quad \frac{B}{B} \geqslant 4, \quad$ and $\quad \frac{1}{3}<\frac{1}{\mathfrak{J}}<3$
The minimum voltage required for oscillation has been named the "Hartree" voltage and is given by
$V_{H}=v\left(2 \frac{B}{G}-1\right)$
Slater's rule gives the relation between cathode and anode radius as
$\sigma=\frac{r_{c}}{r_{a}} \approx \frac{N-4}{N+4}$
Magnetrons for pulsed operation have been built to deliver peak powers varying from 3 megawatts at 10 centimeters to 100 kilowatts at one centimeter. Continuous-wave magnetrons having outputs ranging from one kilowatt at 10 centimeters to a few watts at 1 centimeter have been produced. Operation efficiencies up to 60 percent at 10 centimeters are obtained, falling to 30 percent at 1 centimeter.

## Klystrons*

A klystron is a vacuum tube in which the distinguishing features are the modulation or periodic variation of the longitudinal velocity of an electron stream without appreciable variation of its convection current, and the subsequent conversion of this velocity modulation into convection-current modulation by the process of bunching.
In the usual form of klystron, a beam of electrons passes through the interaction gap of an input resonator where additional acceleration is given to each electron by the voltage across the gap. The sign and magnitude of this acceleration depends upon the magnitude and phase of the voltage at the instant the electron crosses the gap. The stream of electrons thus modulated in velocity then passes through a radio-frequency-field-free drift space where the velocity modulation is converted into density modulation. At the end of the drift space, the electron stream passes through the interaction gap of an output resonator which is excited by the densitymodulated, or bunched beam. By applying a signal to the input resonator and a load to the output resonator, amplifier action may be obtained. This amplification takes place because of the conversion of a portion of the

[^26]
## Klystrons continued

direct-current beam energy into radio-frequency energy that is abstracted by the output resonator. If some of the output is coupled back to the input cavity in the proper energy phase, oscillations may be obtained. A schematic of a typical structure is shown in Fig. 14.


Fig. 14-Diagram of a 2-cavity klystron.


Fig. 15-Diagram of a reflex klystron.

A variation of the basic klystron tube that has advantages as an oscillator is the reflex klystron. In this tube, the electron stream, after being velocity modulated in the interaction gap of a cavity, enters a retarding-field region where it is reversed in direction and returned through the original resonator gap. While in the retarding-field region, the velocity-modulated beam is bunched. By proper proportioning of dimensions and retarding voltage, the bunches return in the proper phase to deliver energy to the resonator and oscillations may be sustained. A typical structure is shown in Fig. 15.
Frequency of operation is determined by the frequency to which the resonators are tuned, and the repeller voltage. Since the reflex klystron has only a single resonator, the tuning procedure is simplified. This advantage and the possibility of using the repeller voltage for automatic frequency control or frequency-modulation purposes accounts for its widespread use.

## Terminology

Many of the definitions given in the previous sections apply.
Cavity resonator: Any region bounded by conducting walls within which resonant electromagnetic fields may be excited.

## Klystrons continued

Interaction gap: Region between electrodes in which the electron stream interacts with a radio-frequency field.
Input gap: Gap in which the initial velocity modulation of the electron stream is produced. This gap is also known as the buncher gap.
Output gap: Gap in which variations in the convection current of the electron stream are subjected to opposing electric fields in such a manner as to extract usable radio-frequency power from the electron beam. This gap is also known as the catcher gap.
Drift space: Region relatively free of radio-frequency fields where a convection-current modulation of electron stream arises as a result of the existence of differences in the electron velocities.
Reflector: Electrode whose primary function is to reverse the direction of an electron stream. It is also called a repeller.
Velocity modulation: Process whereby a periodic time variation in velocity is impressed on an electron stream; also, the condition existing in the stream subsequent to such a process.
Convection-current modulation: Periodic variation in the convection current passing any one point, or the process of producing such a variation.
Bunching: Any process that introduces a radio-frequency convectioncurrent component into a velocity-modulated electron stream as a direct result of the variation in electron transit time that the velocity modulation produces.
Reflex bunching: Type of bunching that occurs when the velocity-modulated electron stream is made to reverse its direction by means of an opposing direct-current field.
Beam-coupling coefficient: Ratio of the amplitude of the velocity modulation produced by a gap, expressed in volts, to the radio-frequency gap voltage.
Cavity impedance: The impedance of the cavity which appears across the gap.
Mode number (klystron): Number of whole cycles that a mean-speed electron remains in the drift space of a reflex klystron.
Electron transit time: For a reflex klystron, is $N+\frac{3}{4}$ cycles, where $N$ is the mode number.

## Performance data

The performance data for a reflex klystron is usually given in terms of a Reflector (or Repeller) characteristic chart. This chart displays power output
and frequency deviation as a function of reflector voltage. Usually information is given on four modes. This chart is also called a Reflector mode chart. A typical chart is shown in Fig. 16.
Klystrons find use as amplifiers, oscillators, and frequency multipliers. In the latter service, the output resonator is tuned to a harmonic of the input-resonator frequency. Klystron amplifiers have been developed for frequencies from 1000 to 5000 megacycles with output powers up to 750 watts and power gains to 1500

Pulsed 2 -cavity oscillators have been built with a power output of 10 kilowatts and an efficiency of 20 percent at 3000 megacycles.


Courresy of Sperry Gyroscope Co.
Fig. 16-Klystron reflector characteristic ch art.

Reflex klystrons with the following characteristics have been developed			
frequency in   megacycles	power output   in watts	efficiency   in percent	operating beam   voltage
3000	0.150	2.3	300
5000	12	8	1200
9000	0.030	0.5	300

Klystron frequency multipliers from 300 to 5100 megacycles have been built with output powers in the tens of milliwatts and efficiencies in the neighborhood of $\frac{1}{2}$ percent.

## Traveling-wave fubes*

Traveling-wave tubes are a relatively new class of tubes useful as amplifiers in the ultra-high- and super-high-frequency ranges. They depend on the

[^27]

Fig. 17-Diagram of a traveling-wave amplifier. The electron beam fravels from bottom to top through the center of the helix. Microwave input and output signals are coupled through the rectangular wave guides. Impedance of the wave guides is matched to that of the helix by means of the movable shorting stubs.

Traveling-wave tubes continued
interaction of a longitudinal electron beam with a wave-propagating structure.

By virtue of the distributed interaction of the wave and the electron stream, traveling-wave tubes do not suffer the gain-bandwidth limitation of ordinary thermionic tubes. The bandwidth is most easily characterized by a percentage of the center frequency, 20 percent being not uncommon. An essential feature of traveling-wave tubes is the approximate synchronism between the speed of the electron stream and the wave on the propagating structure. Practical considerations require low voltages and hence wave guides with phase velocities $v$ of the order of $0.1 c$, where $c$ is the velocity of light.

The best-known type of traveling-wave tube uses a helix as the slow-wave guide, Fig. 17. Such a tube gives gains as high as 23 decibels over a bandwidth of 800 megacycles around a center frequency of 4000 megacycles. These amplifiers are limited in output and operate at very low efficiencies, but such limitations are not fundamental.

The gain of a traveling-wave tube is given approximately by
$G=-9+47.3 \mathrm{CN}$
in decibels for a lossless helix, where
$N=\frac{l}{\lambda_{0}} \times \frac{c}{v}$
$C=\left(\frac{E_{2}{ }^{2}}{(\omega / V)^{2} P} \times \frac{I_{0}}{8 V_{0}}\right)^{\frac{1}{3}}$
where

$$
\begin{aligned}
I & =\text { length of the helix } \\
I_{0} & =\text { beam current } \\
V_{0} & =\text { beam voltage }
\end{aligned}
$$

and $E_{2}{ }^{2} /(\omega / v)^{2} P$ is a normalized wave impedance that may be defined in a number of ways. For lossy helices, the gain is given approximately by

$$
G=-9+47.3 C N-L / 3 \text { decibels }
$$

where $L$ is the cold insertion loss of the helix. The maximum output power is given approximately by $P_{\text {out }}=C I_{0} V_{0}$. Commonly, $C$ is of the order of 0.02 to 0.04 in helix traveling-wave tubes.

## Gas tubes*

A gas tube is a vacuum tube in which the pressure of the contained gas or vapor is such as to affect substantially the electrical characteristics of the tube. The presence of gas allows the formation of positive ions that effectively neutralize the electron space charge and allow large currents to flow at low voltages. Construction of a typical gas triode is shown in Fig. 18.

## Terminology

Critical grid voltage: Instantaneous value of the grid voltage when the anode current starts to flow.

Critical grid current: Instantaneous value of the grid current when the anode current starts to flow.


Fig. 18-Electrode arrangement of a typical gas triode. A-heater, B-cathode, C-grid, Danode, E-glass envelope, F-anode terminal, G-heater, cathode, and grid terminal pins.

Control characteristic: A relation, usually shown by a graph, between critical grid voltage and anode voltage.

Deionization time: Time required after anode-current interruption for the grid to regain control.

Cathode-heating time: Time required for the cathode to attain operating temperature with normal voltage applied to the heating element.
Tube-heating time: In a mercury-vapor tube, is the time required for the coolest portion of the tube to attain operating temperature.

## Mercury-vapor rectifier tubes

In mercury-vapor tubes, the source of the vapor is usually a reservoir of liquid mercury. Since the vapor pressure of this mercury is a function of the temperature of the condensed mercury, the operating characteristics are dependent upon the temperature (Figs. 19 and 201 .

[^28]

Fig. 19-Dependence of mercury-vapor pressure on temperature.

Gas tubes continued

Operation below the minimum temperature recommended by the manufacturer results in excessive internal voltage drop. This in turn results in destructive bombardment of the cathode lin hotcathode tubesl by mercury ions.

Operation above the maximum temperature recommended by the manufacturer results in a decrease in the peak-inverse voltage that the tube can withstand.

Pool-cathode rectifiers: Wherein electron supply is from a cathode spot on a pool of mercury, are affected only to the extent that low temperatures increase the in. ternal voltage drop and decrease the efficiency.


Fig. 20-Tube drop and arcback voltages as a function of the condensed mercury temperature in a hot-cathode mercuryvapor tube.

## Hot-cathode gas-rectifier fubes

These tubes approximate their mercury-vapor counterparts in physical form and operating characteristics. Generally, the internal voltage drop is higher, and the peak-inverse-voltage rating is lower than in mercury-vapor tubes. Their operating characteristics are substantially independent of the temperature of the gas.
lonizing voltages for various gases

Argon	15.4	Hydrogen	15.9	Nitrogen	16.7
Carbon monoxide	14.2	Mercury	10.4	Oxygen	13.5
Helium	24.6	Neon	21.5	Water vapor	13.2

Cathode-ray tubes*
A cathode-ray tube is a vacuum tube in which an electron beam, deflected by applied electric and/or magnetic fields, indicates by a trace on a fluorescent screen the instantaneous value of the actuating voltages and/or currents.

[^29]
## Cathode-ray tubes <br> continued

## Terminology

Modulating electrode: Electrode to which potential is applied to control the beam current. It is also known as grid or control electrode.
Focusing electrode: Controls the cross-sectional area of the electron beam in electrostatic-focus fubes.

Accelerating electrode: Used to increase the velocity of the electrons in the beam.

Deflecting electrodes (deflecting plates): Electrodes to which a potential is applied to produce angular displacement of the beam.
Cut-off voltage: Negative grid potential at which beam current becomes zero.
Control characteristic (modulation characteristic): A curve of beam current versus grid potential.
Focusing voltage: In electrostatic-focus fubes, the voltage at which the spot comes to a focus.
Focusing current or focusing ampere turns: In magnetic-focus fubes, the current required through a given focus coil located at a given point on the tube to bring the spot into focus.
Deflection factor: In electrostatic-focus fubes, the voltage required between a pair of deflection plates to produce unit deflection. Value usually is expressed in direct-current volts/inch.
Deflection factor: In magnetic-focus tubes, the current required through a definite deflection yoke at a definite point on the tube to produce unit deflection. Value usually is expressed in milliamperes/inch.


Fig. 21-Electrode arrangement of typical electrostatic focus and defection cathoderay tube. A-heater, B -cathode, C -control electrode, D -screen grid or pre-accelerator, E-focusing electrode, F-accelerating electrode, G-deflection-plate pair, H-defectionplate pair, J-conductive coating connected to accelerating electrode, K-intensifierelectrode terminal, L-intensifier electrode (conductive coating on glass), M-fluorescent screen.

Cathode-ray tubes continued

Deflection sensitivity: The reciprocal of the deflection factor. Value is expressed in inches/volt for electrostatic-deflection tubes.

## Formulas

Electrostatic deflection: Is proportional to the deflection voltage, inversely proportional to the accelerating voltage, and deflection is in the direction of the applied field (Fig. 22). For structures using straight and parallel deflection plates, it is given by
$D=\frac{E_{d} L l}{2 E_{a} A}$
where
$D=$ deflection in centimeters
$E_{a}=$ accelerating voltage


Fig. 22-Electrostatic deflection.
$E_{d}=$ deflection voltage
$l=$ length of deflecting plates or deflecting field in centimeters
$L=$ length from center of deflecting field to screen in centimeters
$A=$ separation of plates
Electromagnetic deflection: Is proportional to the flux or the current in the coil, inversely proportional to the square root of the accelerating voltage, and deflection is at right angles to the direction of the applied field (Fig. 23).

Deflection is given by
$D=\frac{0.3 \mathrm{~L} / \mathrm{H}}{\sqrt{E_{a}}}$


Fig. 23-Magnetic deflection.
where $H=$ flux density in gauss
$I=$ length of deflecting field in centimeters
Deflection sensitivity: Is linear up to frequency where the phase of the deflecting voltage begins to reverse before an electron has reached the end of the deflecting field. Beyond this frequency, sensitivity drops off, reaching zero and then passing through a series of maxima and minima as $n=1,2$, $3, \ldots$ Each succeeding maximum is of smaller magnitude.
$D_{\text {zero }}=n \lambda \mathrm{~V} / \mathrm{c}$
$D_{\max }=(2 n-1) \frac{\lambda}{2} \frac{v}{c}$

## Cathode-ray tubes

## where

$D=$ deflection in centimeters
$v=$ electron velocity in centimeters/second
$c=$ speed of light $\left(3 \times 10^{10}\right.$ centimeters $/$ second $)$
$\lambda=$ free-space wavelength in centimeters
Magnetic focusing: There is more than one value of current that will focus. Best focus is at minimum value. For an average coil
$I N=220 \sqrt{\frac{V_{0 d}}{f}}$
IN = ampere turns
$V_{0}=$ accelerating voltage in kilovolts
$d=$ mean diameter of coil
$f=$ focal length
$d$ and $f$ are in the same units. A well-designed, shielded coil will require fewer ampere turns.

Example of good shield design (Fig. 24):

$$
x=\frac{d_{1}}{20}
$$



Fig. 24-Magnetic focusing.

## Cathode-ray-tube phosphors

	P 1	P2	P4	P5	P7	P11
Color	Green	Blue fluorescence; green phosphorescence	White	Blue	Blue fluorescence; yellow phosphorescence	Blue
Spectral range in Angstrom units	5740-4850	4280-6080	$\begin{aligned} & 3980- \\ & 6880 \end{aligned}$	3470-6100	4140-6210	3770-5690
Spectral peak in Angstrom units	5220	4550; 5300	$\begin{aligned} & 4600- \\ & 5550 \end{aligned}$	4280	4500; 5700	4400
Persistence	Medium30 millisec. onds for decay to 10 percent	Long	Medium	Very short15 microseconds for decay to 10 percent	long	Short-60   microseconds for decay to 10 percent

Armed Services preferred list of electron fubes

Receivin	diodes	diode-triodes	triodes	$\underset{\text { triodes }}{\text { twin }}$	pentodes		converters	klystrons	$\begin{aligned} & \text { power } \\ & \text { output } \end{aligned}$	$\begin{gathered} \text { funing } \\ \text { indicators } \end{gathered}$	rectifiers	miscellaneous	
					remote	sharp						cathode ray	crystals
1.4	1A3			3A5	174	$\begin{aligned} & 104 \\ & 105 \end{aligned}$	IRS		$\begin{aligned} & 384 \\ & 354 \\ & 3 V 4 \end{aligned}$		'Z2	2BPI   3DPIA   3JP $11,7,12$	$\begin{aligned} & \text { 1N218 } \\ & \text { 1N23 } \\ & \text { 1N25 } \end{aligned}$
50											$504 \mathrm{G}$ $5 \mathrm{YYGT}$		1N26 in31
	$\begin{aligned} & 2822 \\ & 6 A 15 \end{aligned}$	$\begin{aligned} & \text { 6AT6 } \\ & \text { 6BF6 } \end{aligned}$	$\begin{aligned} & 2 C 40 \\ & 6 C 4 \\ & 6 F 4 \\ & 654 \end{aligned}$	$\begin{array}{\|l\|l} 2 C S 1 \\ 6 A S T G \\ 66 \\ 6 N 7 G T \\ 6 S 7 T W \\ 12 A A 7 \\ 12 A U 7 \\ 12 A X 7 \end{array}$	$\begin{aligned} & \text { 6BAB } \\ & \text { 6BD } 6 \\ & \text { 6SG7 } \\ & 65 \mathrm{K7} \\ & 9003 \end{aligned}$	6AC76AG56AH66AK56AS66AUS6SH76S7SOS6	$\begin{aligned} & 68 E 6 \\ & 6 S B 7 Y \end{aligned}$	$2 K 22$$2 \times 25$22626$2 K 28$2229$2 K 41$2245$2 K 55$2254$2 K 55$		6ES	$\begin{aligned} & 6 \times 4 \\ & 6 \times 5 G T \end{aligned}$	5JP1A	
													$\begin{aligned} & 1 P 37 \\ & 1 P 39 \\ & 1 P 40 \\ & 927 \end{aligned}$
25 or over   Only rypes for 28 volts anode.supply operation									2566 T		2576GT	OA3 0,3	
		26 Cb				26A6	2606		26A7GT				

Transmitting


- Amplifiers and oscillators


## Classification

It is common practice to differentiate between types of vacuum-tube circuits, particularly amplifiers, on the basis of the operating regime of the tube.

Class-A: Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle $\left(\theta_{p}=360\right.$ degrees).
Class-AB: Grid bias and alternating grid voltages such that plate current flows appreciably more than half but less than entire electrical cycle $\left(360^{\circ}>\theta_{p}>180^{\circ}\right)$.

Class-B: Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle $\left(\theta_{p}=180^{\circ}\right)$.
Class-C: Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle $\left(\theta_{p}<180^{\circ}\right)$.

A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1, respectively. Thus a class-AB:2 amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted, and accordingly in-phase power is required to drive the tube.

## General design

For quickly estimating the performance of a tube from catalog data, or for predicting the characteristics needed for a given application, the ratios given below may be used.
The table gives correlating data for typical operation of tubes in the various amplifier classifications. From the table, knowing the maximum ratings of a tube, the maximum power output, currents, voltages, and corresponding load

## Typical amplifier operating data. Maximum signal conditions-per tube

function	class A	$\begin{gathered} \text { closs B } \\ a-f(p-p) \end{gathered}$	$\underset{\substack{\text { class } B \\ \text { rof }}}{ }$	$\underset{r-f}{\text { closs } C}$
Plate efficiency $\eta$ (percent)	20-30	35-65	60-70	65-85
Peak instantaneous to d-c plate current ratio $\mathrm{M}_{i_{b} / I_{b}}$	1.5-2	3.1	3.1	3.1-4.5
PMS alternating to $d-c$ plate current ratio $I_{p} / l_{b}$	0.5-0.7	1.1	1.1	1.1-1.2
RMS alternating to $\mathrm{d}-\mathrm{c}$ plate voltage ratio $E_{p} / E_{b}$	$0.3-0.5$	0.5-0.6	0.5-0.6	0.5-0.6
D.C to peak instantaneous grid current $I_{c} / \mathrm{M}_{i_{c}}$		0.25-0.1	0.25-0.1	0.15-0.1

## General design

 confinuedimpedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class-C radio-frequency power amplifier and oscillator-the constant-current characteristics of which are shown in Fig. 1-published maximum ratings are as follows:

D-C plate voltage $E_{b}=20,000$ volts
D.C grid voltage $E_{c}=3,000$ volts
D.C plate current $\quad I_{b}=7$ amperes

R-F grid current $\quad I_{0}=50$ amperes
Plate input $\quad P_{i}=135,000$ watts
Plate dissipation $P_{p}=40,000$ watts
Maximum conditions may be estimated as follows:
For $\eta=75$ percent $\quad P_{i}=135,000$ watts $\quad E_{b}=20,000$ volts
Power output $P_{0}=\eta P_{i}=100,000$ watts
Average d-c plate current $I_{b}=P_{i} / E_{b}=6.7$ amperes
From tabulated typical ratio ${ }^{M_{i b}} / I_{b}=4$, instantaneous peak plate current $\mathrm{M}_{i_{b}}=4 I_{b}=27$ amperes*

The rms alternating plate-current component, taking ratio $I_{p} / I_{b}=1.2$, $I_{p}=1.2 I_{b}=8$ amperes
The rms value of the alternating plate-voltage component from the ratio $E_{p} / E_{b}=0.6$ is $E_{p}=0.6 E_{b}=12,000$ volts.

The approximate operating load resistance $r_{l}$ is now found from
$r_{l}=E_{p} / I_{p}=1500$ ohms
An estimate of the grid drive power required may be obtained by reference to the constant-current characteristics of the tube and determination of the peak instantaneous positive grid current ${ }^{{ }^{M}{ }_{j}}{ }_{c}$ and the corresponding instantaneous total grid voltage ${ }^{m} e_{e}$. Taking the value of grid bias $E_{c}$ for the given operating condition, the peak alternating grid drive voltage is
${ }^{\mathrm{M}} E_{g}=\left({ }^{\mathrm{M}} \mathrm{e}_{c}-E_{d}\right)$
from which the peak instantaneous grid drive power is
${ }^{\mathrm{M}} \mathrm{P}_{\mathrm{c}}={ }^{\mathrm{M}} E_{g}{ }^{\mathrm{M}} \mathrm{i}_{\mathrm{c}}$

[^30]
## General design

An approximation to the average grid drive power $P_{0}$, necessarily rough due to neglect of negative grid current, is obtained from the typical ratio
$\frac{I_{c}}{\mathrm{M}_{\mathrm{i}_{c}}}=0.2$
of $d-c$ to peak value of grid current, giving

$$
P_{g}=I_{c} E_{g}=0.2{ }^{\mathrm{M}_{\mathrm{i}}} \mathrm{E}_{q} \text { watts }
$$

Plate dissipation $P_{p}$ may be checked with published values since


Fig. 1-Constant-current characteristics with typleal load lines AB-class C, CDclass B, EFG-class A, and HJK-class AB.

## General design continued

It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum d-c plate operating voltage of 20,000 volts does not permit operation af the maximum d-c plate current of 7 amperes since this exceeds the maximum plate input rating of 135,000 watts.

Plate load resistance $r_{l}$ may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance-matching elements as in audio-frequency transformer coupling, or effectively represented by a loaded parallel-resonant circuit as in most radio-frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio-frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult.
The physical load resistance present in any given set-up may be measured by audio-frequency or radio-frequency bridge methods. In many cases, the proper value of $r_{l}$ is ascertained experimentally as in radio-frequency amplifiers that are tuned to the proper minimum d-c plate current. Conversely, if the circuit is to be matched to the tube, $r_{l}$ is determined directly as in a resistance-coupled amplifier or as
$r_{l}=N^{2} r_{s}$
in the case of a transformer-coupled stage, where $N$ is the primary-to-secondary voltage transformation ratio. In a parallel-resonant circuit in which the output resistance $r_{s}$ is connected directly in one of the reactance legs,
$r_{!}=\frac{X^{2}}{r_{s}}=\frac{L}{C r_{s}}=Q X$
where $X$ is the leg reactance at resonance (ohms), and $L$ and $C$ are leg inductance in henries and capacitance in farads, respectively;
$Q=\frac{X}{r_{s}}$

## Graphical design methods

When accurate operating data are required, more precise methods must be used. Because of the nonlinear nature of tube characteristics, graphical methods usually are most convenient and rapid. Examples of such methods are given below.

A comparison of the operating regimes of class $A, A B, B$, and $C$ amplifiers is given in the constant-current characteristics graph of Fig. 1. The lines
Graphical design methods
continued


total grid volts $e_{c}$ for tube II

## Graphical design methods

corresponding to the different classes of operation are each the locus of instantaneous grid $e_{c}$ and plate $e_{b}$ voltages, corresponding to their respective load impedances.
For radio-frequency amplifiers and oscillators having tuned circuits giving an effectively resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit time), and the loci become straight lines.
For amplifiers having nonresonant resistive loads, the loci are in general nonlinear except in the distortionless case of linear tube characteristics (constant $r_{p}$ ), for which they are again straight lines.
Thus, for determination of radio-frequency performance, the constantcurrent chart is convenient. For solution of audio-frequency problems, however, it is more convenient to use the $\left(i_{b}-e_{c}\right)$ transfer characteristics of Fig. 2 on which a dynamic load line may be constructed.
Methods for calculation of the most important cases are given below.

## Class-C radio-frequency amplifier or oscillator

Draw straight line from $A$ to $B$ (Fig. I) corresponding to chosen $d-c$ operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of $A B$ on the horizontal axis thus corresponds to ${ }^{M} E_{p}$. Using Chaffee's 11 -point method of harmonic analysis, lay out on $A B$ points:

$$
\mathrm{e}_{p}^{\prime}={ }^{\mathrm{M}} E_{p} \quad \mathrm{e}_{p}^{\prime \prime}=0.866^{\mathrm{M}} E_{p} \quad \mathrm{e}_{p}^{\prime \prime \prime}=0.5^{\mathrm{M}} E_{p}
$$

to each of which correspond instantaneous plate currents $i_{b}{ }^{\prime}, i_{b}{ }^{\prime \prime}$ and $i_{b}{ }^{\prime \prime \prime}$ and instantaneous grid currents $i_{c}{ }^{\prime}, i_{c}^{\prime \prime}$ and $i_{c}{ }^{\prime \prime \prime}$. The operating currents are obtained from the following expressions:

$$
\begin{aligned}
I_{b} & =\frac{1}{12}\left[i_{b}^{\prime}+2 i_{b}^{\prime \prime}+2 i_{b}^{\prime \prime \prime}\right] & I_{c} & =\frac{1}{12}\left[i_{c}^{\prime}+2 i_{c}^{\prime \prime}+2 i_{c}^{\prime \prime \prime}\right] \\
\mathrm{M}_{I_{p}} & =\frac{1}{6}\left[i_{b}^{\prime}+1.73 i_{b}^{\prime \prime}+i_{b}^{\prime \prime \prime}\right] & \mathrm{M}_{I_{Q}} & =\frac{1}{6}\left[i_{c}^{\prime}+1.73 i_{c}^{\prime \prime}+i_{c}^{\prime \prime \prime}\right]
\end{aligned}
$$

Substitution of the above in the following give the desired operating data Power output $P_{0}=\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2}$
Power input $P_{i}=E_{b} I_{b}$
Average grid excitation power $=\frac{{ }^{\mathrm{M}} E_{o}{ }^{\mathrm{M}} I_{g}}{2}$

## Graphical design methods

 continuedPeak grid excitation power $={ }^{\mathrm{M}} \mathrm{E}_{\boldsymbol{q}} i^{\prime}{ }_{c}$
Plate load resistance $\quad r_{l}=\frac{{ }^{\mathrm{M}} E_{p}}{{ }^{\mathrm{M}} I_{p}}$
Grid bias resistance $\quad R_{c}=\frac{E_{c}}{I_{c}}$

Plate efficiency

$$
\eta=\frac{P_{0}}{P_{i}}
$$

Plate dissipation

$$
P_{p}=P_{i}-P_{0}
$$

The above procedure may also be applied to plate-modulated class-C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for ${ }^{\text {crest }} E_{b}=2 E_{b}$ and ${ }^{\text {crest }} P_{0}=4 P_{0}$ keeping $r_{l}$ constant. After a cut-and-try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation.

To illustrate the preceding exposition, a typical amplifier calculation is given below:

Operating requirements (carrier condition)
$E_{b}=12,000$ volts
$P_{0}=25,000$ watts
$\eta=75$ percent

Preliminary calculation (refer to table below)

Class-C r-f amplifier data for 100 -percent plate modulation.

symbol	preliminary carrier	detailed	
		carrier	crest
Eb (volts)	12,000	12,000	24,000
${ }^{M} E_{p}$ (volts)	10,000	10,000	20,000
$E_{c}$ (volts)	-	- 1,000	-700
${ }^{M} E_{g}$ (volts)	-	1,740	1,740
$I_{0}$ (amp)	2.9	2.8	6.4
${ }^{M} I_{p}$ (amp)	4.9	5.1	10.2
$I_{c}$ (amp)	-	0.125	0.083
$\mathrm{M}_{I_{\sigma}}$ (amp)	-	0.255	0.183
$P_{i}$ (watts)	35,000	33,600	154,000
$P_{0}$ (watts)	25,000	25,500	102,000
	-	220	160
$\eta$ (percent)	75	76	66
$r_{i}$ (ohms)	2,060	1,960	1,960
$R_{e}$ (ohms)	,	7.100	7.100
$E_{c c}$ (volts)	-	- 110	- 110

Graphical design methods

## Complete calculation

Lay out carrier operating line, $A B$ on constant-current graph, Fig. 1, using values of $E_{b},{ }^{\mathrm{M}} E_{p \text {, }}$ and ${ }^{\mathrm{M}}{ }_{i}$ from preliminary calcuiated data. Operating carrier bias voltage, $E_{c}$, is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point $A$.
The following data are taken along $A B$ :

$$
\left.\begin{array}{rlrl}
i_{b}^{\prime} & =13 \mathrm{amp} & i_{c}^{\prime} & =1.7 \mathrm{amp} \\
i_{b}^{\prime \prime \prime} & =10 \mathrm{amp} & i_{c}^{\prime \prime} & =-0.1 \mathrm{amp}
\end{array}\right) E_{c}=-1000 \text { volts } .
$$

From the formulas, complete carrier data as follows are calculated:
${ }^{\mathrm{M}} \mathrm{I}_{p}=\frac{1}{6}[13+1.73 \times 10+0.3]=5.1 \mathrm{amp}$

$$
P_{0}=\frac{10,000 \times 5.1}{2}=25,500 \mathrm{watts}
$$

$$
I_{b}=\frac{1}{12}[13+2 \times 10+2 \times 0.3]=2.8 \mathrm{amp}
$$

$$
P_{i}=12,000 \times 2.8=33,600 \mathrm{watts}
$$

$$
\begin{aligned}
& \frac{E_{p}}{E_{b}}=0.6 \\
& E_{p}=0.6 \times 12,000=7200 \text { volts } \\
& { }^{\mathrm{M}} E_{p}=1.41 \times 7200=10,000 \text { volts } \\
& I_{p}=\frac{P_{o}}{E_{p}} \\
& I_{p}=\frac{25,000}{7200}=3.48 \text { amperes } \\
& { }^{\mathrm{M}} I_{p}=4.9 \text { amperes } \\
& \frac{I_{p}}{I_{b}}=1.2 \\
& I_{b}=\frac{3.48}{1.2}=2.9 \text { amperes } \\
& P_{i}=12,000 \times 2.9=35,000 \text { watts } \\
& \frac{\mathrm{m}_{i_{b}}}{I_{b}}=4.5 \\
& \mathrm{M}_{\mathrm{i}_{b}}=4.5 \times 2.9=13.0 \text { amperes } \\
& r_{l}=\frac{E_{p}}{I_{p}}=\frac{7200}{3.48}=2060 \mathrm{ohms}
\end{aligned}
$$

## Graphical design methods continued

$$
\begin{aligned}
\eta & =\frac{25,500}{33,600} \times 100=76 \text { percent } \\
r_{l} & =\frac{10,000}{5.1}=1960 \mathrm{ohms} \\
I_{c} & =\frac{1}{12}[1.7+2(-0.1)]=0.125 \mathrm{amp} \\
{ }^{\mathrm{A}} I_{q} & =\frac{1}{6}[1.7+1.7(-0.1)]=0.255 \mathrm{amp} \\
P_{q} & =\frac{1740 \times 0.255}{2}=220 \text { watts }
\end{aligned}
$$

Operating data at 100 -percent positive modulation crests are now calculated knowing that here

$$
E_{b}=24,000 \text { volts } \quad r_{l}=1960 \text { ohins }
$$

and for undistorted operation

$$
P_{0}=4 \times 25,500=102,000 \text { watts } \quad{ }^{M} E_{p}=20,000 \text { volts }
$$

The crest operating line $A^{\prime} B^{\prime}$ is now located by trial so as to satisly the above conditions, using the same formulas and method as for the carrier condition.

It is seen that in order to obtain full-crest power output, in addition to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period, but lower plate efficiency.

The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid-resistance voltage drop required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by

$$
R_{c}=\frac{-\left[E_{c}-{ }^{\text {crest }} E_{c}\right]}{I_{c}-{ }^{\text {crest }} I_{c}}
$$

and the value of fixed bias by
$E_{c c}=E_{c}-\left(I_{c} R_{c}\right)$
Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of audio-frequency harmonic distortion is necessary, the above method may be applied to the additional points required.

Graphical design methods
continued

## Class-B radio-frequency amplifiers

A rapid approximate method is to determine by inspection from the tube $\left(i_{b}-e_{b}\right.$ ) characteristics the instantaneous current, $i^{\prime}{ }_{b}$ and voltage $e^{\prime}{ }_{b}$ corresponding to peak alternating voltage swing from operating voltage $E_{b}$.
A.C plate current ${ }^{\mathrm{M}} I_{p}=\frac{i_{b}}{2}$

D-C plate current $\quad I_{b}=\frac{i_{b}{ }_{b}}{\pi}$
A-C plate voltage ${ }^{M} E_{p}=E_{b}-e^{\prime}{ }_{b}$
Power output $\quad P_{0}=\frac{\left(E_{b}-e^{\prime}{ }_{b}\right) i^{\prime}{ }_{b}}{4}$
Power input $\quad P_{i}=\frac{E_{b} i^{\prime} b}{\pi}$
Plate efficiency $\quad \eta=\frac{\pi}{4}\left(1-\frac{\mathrm{e}^{\prime} b}{E_{b}}\right)$
Thus $\eta \approx 0.6$ for the usual crest value of ${ }^{3} E_{p} \approx 0.8 E_{b}$.
The same method of analysis used for the class-C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same $E_{b}$, the carrier condition corresponding to an alter-nating-voltage amplitude of ${ }^{\mathrm{M}} E_{p} / 2$ such as to give the desired carrier power output.

For greater accuracy than the simple check of carrier and crest conditions, the radio-frequency plate currents ${ }^{\mathrm{M}} I_{p}{ }^{\prime},{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime},{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime \prime},{ }^{\mathrm{M}} I_{p}{ }^{\circ},-{ }^{\mathrm{M}} I_{p}{ }^{\prime \prime \prime}$, - ${ }^{\mathrm{M}} I_{p}{ }^{\prime \prime}$, and - ${ }^{\mathrm{M}} I_{p}$ ' may be calculated for seven corresponding selected points of the audio-frequency modulation envelape $+{ }^{\mathrm{N}} E_{g}+0.707{ }^{\mathrm{M}} E_{g}$ $+0.5^{\mathrm{M}} E_{g,} 0,-0.5^{\mathrm{M}} E_{g},-0.707^{\mathrm{M}} E_{g}$, and $-{ }^{\mathrm{M}} E_{g}$, where the negative signs denote values in the negative half of the modulation cycle. Designating
$S^{\prime}={ }^{M} I_{p}^{\prime}+\left(-{ }^{M} I_{p}^{\prime}\right)$
$D^{\prime}={ }^{M} I_{p}^{\prime}-\left(-{ }^{M} I^{\prime}{ }_{p}\right)$, etc.,
the fundamental and harmonic components of the output audio-frequency current are obtained as
${ }^{\mathrm{M}} I_{p 1}=\frac{S^{\prime}}{4}+\frac{S^{\prime \prime}}{2 \sqrt{2}}$ (fundamental) $\quad{ }^{\mathrm{M}} I_{p 2}=\frac{5 D^{\prime}}{24}+\frac{D^{\prime \prime}}{4}-\frac{D^{\prime \prime \prime}}{3}$

Graphical design methods continued
$\begin{array}{ll}{ }^{\mathrm{M}} I_{p 3}=\frac{S^{\prime}}{6}-\frac{S^{\prime \prime \prime}}{3} & { }^{\mathrm{M}} I_{p 1}=\frac{D^{\prime}}{8}-\frac{D^{\prime \prime}}{4} \\ { }^{\mathrm{M}} I_{p \mathrm{p}}=\frac{S^{\prime}}{12}-\frac{S^{\prime \prime}}{2 \sqrt{2}}+\frac{S^{\prime \prime \prime}}{3} & { }^{\mathrm{M}} I_{p 6}=\frac{D^{\prime}}{24}-\frac{D^{\prime \prime}}{4}+\frac{D^{\prime \prime \prime}}{3}\end{array}$
This detailed method of calculation of audio-frequency harmonic distortion may, of course, also be applied to calculation of the class- $C$ mociulated amplifier, as well as to the class-A modulated amplifier.

## Class-A and $A B$ audio-frequency amplifiers

Approximate formulas assuming linear tube characteristics:
Maximum undistorted power output ${ }^{\mathrm{M}} p_{0}=\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2}$
when plate load resistance $r_{b}=r_{p}\left[\frac{E_{c}}{\frac{{ }_{M} E_{p}}{\mu}-E_{c}}-1\right]$
and
negative grid bias $E_{c}=\frac{{ }^{\mathrm{M}} E_{p}}{\mu}\left(\frac{r_{b}+r_{p}}{r_{b}+2 r_{p}}\right)$
giving
maximum plate efficiency $\eta=\frac{{ }^{M} E_{p}{ }^{\mathrm{M}} I_{p}}{8 E_{b} I_{b}}$
Maximum maximum undistorted power output ${ }^{\text {MM }} p_{0}=\frac{{ }^{M} E^{2} p}{16 r_{p}}$
when
$r_{i}=2 r_{p} \quad E_{c}=\frac{3}{4} \frac{{ }^{M} E_{p}}{\mu}$
An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Such a line is CKF of Fig. 2 which is constructed about operating point $K$ for o given lyad resistance $r_{l}$ from the following relation:
$i_{b}^{\mathbf{s}}=\frac{e_{o}^{\mathrm{R}}-\mathrm{e}_{b}^{\mathbf{s}}}{r_{l}}+i_{o}^{\mathrm{R}}$
where
R, S, etc., are successive conveniently spaced construction points.

## Graphical design methods

Using the seven-point method of harmonic analysis, plot instantaneous plate currents $i_{b}{ }^{\prime}, i_{b}{ }^{\prime \prime}{ }_{y}, i_{b}{ }^{\prime \prime \prime}, i_{b},-i_{b}{ }^{\prime \prime \prime},-i_{b}{ }^{\prime \prime}$, and $-i_{b}{ }^{\prime}$ corresponding to $+{ }^{\mathrm{M}} E_{g}+0.707^{\mathrm{M}} E_{g},+0.5^{\mathrm{M}} E_{g r}, 0.0 .5^{\mathrm{M}} E_{g}-0.707^{\mathrm{M}} E_{g}$, and $-{ }^{\mathrm{M}} E_{g}$, where 0 corresponds to the operating point K. In addition to the formulas given under class-B radio-frequency amplifiers:
$I_{b}$ average $=I_{b}+\frac{D^{\prime}}{8}+\frac{D^{\prime \prime}}{4}$
from which complete daia may be calculated.

## Class- $A B$ and $B$ audio-frequency ampliflers

Approximate formulas assuming linear tube characteristics give Ireferring to Fig. I, line CDI for a class-B audio-frequency amplifier:

$$
\begin{aligned}
{ }^{\mathrm{M}} I_{p} & =i_{b}^{\prime} \\
P_{o} & =\frac{{ }^{\mathrm{M}} E_{p}{ }^{\mathrm{M}} I_{p}}{2} \\
P_{i} & =\frac{2}{\pi} E_{b}{ }^{\mathrm{M}} I_{p} \\
\eta & =\frac{\pi}{4} \frac{{ }^{\mathrm{M}} E_{p}}{E_{b}} \\
R_{p p} & =4 \frac{{ }^{\mathrm{M}} E_{p}}{i^{\prime}{ }_{b}}=4 r_{b}
\end{aligned}
$$

Again an exact solution may be derived by use of the dynamic load line $J K L$ on the ( $i_{b}-e_{c}$ ) characteristic of Fig. 2. This line is calculated about the operating point $K$ for the given $r_{l}$ lin the same way as for the class-A casel. However, since two tubes operate in phase opposition in this case, an identical dynamic load line MNO represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see Fig. 2 ).

Algebraic addition of instantaneous current values of the two tubes at each value of $e_{c}$ gives the composite dynamic characteristic for the two tubes OPL. Inasmuch as this curve is symmetrical about point $P$, it may be analyzed for harmonics along a single half-curve PL by the Mouromtseff 5-point method. A straight line is drawn from $P$ to $L$ and ordinate plate-current differences $a, b, c, d$, $f$ between this line and curve, corresponding to $e_{0}{ }^{\prime \prime}, e_{0}{ }^{\prime \prime \prime}$, $e_{\theta}{ }^{\text {IV }}, e_{\theta}{ }^{\mathbf{V}}$, and $e_{\theta}{ }^{\text {VI }}$, are measured. Ordinate distances measured upward from curve PL are taken positive.

Fundamental and harmonic current amplitudes and power are found from the following formulas:

$$
\begin{aligned}
& { }^{\mathrm{M}} I_{p 1}=i^{\prime}{ }_{b}-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5}-{ }^{\mathrm{M}} I_{p 7}+{ }^{\mathrm{M}} I_{p 9}-{ }^{\mathrm{M}} I_{p 11} \\
& { }^{\mathrm{M}} I_{p 3}=0.4475(b+f)+\frac{\mathrm{d}}{3}-0.578 d-\frac{1}{2}{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 5}=0.4(0-f) \\
& { }^{\mathrm{M}} I_{p 7}=0.4475(b+f)-{ }^{\mathrm{M}} I_{p 3}+0.5{ }^{\mathrm{M}} I_{p 5} \\
& { }^{\mathrm{M}} I_{p 9}={ }^{\mathrm{M}} I_{p 3}-\frac{2}{3} d \\
& { }^{\mathrm{M}} I_{p 11}=0.707 c-{ }^{\mathrm{M}} I_{p 3}+{ }^{\mathrm{M}} I_{p 5} .
\end{aligned}
$$

Even harmonics are not present due to dynamic characteristic symmetry. The direct-current and power-input values are found by the 7 -point analysis from curve PL and doubled for two tubes.

## Classification of amplifier circuits

The classification of amplifiers in classes $A, B$, and $C$ is based on the operating conditions of the tube.
Another classification can be used, based on the type of circuits associated with the tube.

A tube can be considered as a four-terminal network with two input terminals and two output terminals. One of the input terminals and one of the output terminals are usually common; this common junction or point is usually called "ground".
When the common point is connected to the filament or cathode of the tube, we can speak of a grounded-cathode circuit. It is the most conventional type of vacuum-tube circuit. When the common point is the grid, we can speak of a grounded-grid circuit, and when the common point is the plate or anode, we can speak of the grounded-anode circuit.
This last type of circuit is most commonly known by the name of cathode follower.
A fourth and most general class of circuit is obtained when the common point or ground is not directly connected to any of the three electrodes of the tube. This is the condition encountered at u-h-f where the series impedances of the internal tube leads make it impossible to ground any of them. It is also encountered in such special types of circuits as the phase-splifter, in which the impedance from plate to ground and the impedance from cathode to ground are made equal in order to obtain an output between plate and cathode balanced with respect to ground.


Design information for the first three classifications is given in the table on page 253, where
$Z_{2}=$ load impedance to which output terminals of amplifier are connected
$E_{1}=$ rms driving voltage across input terminals of amplifier
$E_{2}=$ rms output voltage across load impedance $Z_{2}$,
$I_{1}=$ rms current at input terminals of amplifier
$\gamma=$ voltage gain of amplifier $=E_{2} / E_{1}$
$Y_{1}=$ input admittance to input terminals of amplifier $=I_{1} / E_{1}$
$\omega=2 \pi \times$ (frequency of excitation voltage $E_{1}$ )
$j=\sqrt{-1}$
and the remaining notation is in accordance with the nomenclature of pages 213 and 214.

## Cathode-follower data

## General characteristics

a. High-impedance input, low-impedance output.
b. Input and output have one side grounded.
c. Good wideband frequency and phase response.
d. Output is in phase with input.
e. Voltage gain or transfer is always less than one.
f. A power gain can be obtained.
g. Input capacitance is reduced.

## General case

Transfer $=\frac{g_{m} R_{L}}{g_{m} R_{L}+1}$ or $g_{m} Z_{r}$
$Z_{r}=$ resultant cathode-to-ground impedance $=R_{\text {out }}$ in parallel with $R_{e}$
$R_{\text {out }}=$ output resistance
$=\frac{R_{p}}{\mu+1}$ or approximately $\frac{1}{g_{m}}$
$g_{m}=$ transconductance in mhos $(1000$ micromhos $=0.001$ mhos $)$
$R_{L}=$ total load resistance
Input capacitance $=C_{a p}+\frac{C_{g k}}{1+g_{m} R_{L}}$


## AMPLIFIERS AND OSCILLATORS

Cathode-follower data continued

## Specific cases

a. To match the characteristic impedance of the transmission line, $R_{\text {out }}$ must equal $Z_{0}$. The transfer is approximately 0.5 .

c. If $R_{\text {out }}$ is greater than $Z_{0}$ add resistor $R_{c}$ in parallel so that
$R_{c}=\frac{Z_{0} R_{\text {out }}}{R_{\text {out }}-Z_{0}}$
Transfer $=\frac{g_{m} Z_{0}}{2}$
b. If $R_{\text {oue }}$ is less than $Z_{0}$, add resistor $R_{e}{ }^{\prime}$ in series so that $R_{e}{ }^{\prime}=Z_{0}-R_{\text {otu }}$. The transfer is approximately 0.5.
 impedance transmission line, for maximum transfer choose a tube with a high $\mathrm{g}_{\boldsymbol{m}}$.

## Resistance-coupled audio-amplifier design

Stage gain: At
medium frequencies $=A_{m}=\frac{\mu R}{R+R_{p}}$
high frequencies $=A_{h}=\frac{A_{m}}{\sqrt{1+\omega^{2} C_{1}^{2} r^{2}}}$
low frequencies* $=A_{b}=\frac{A_{m}}{\sqrt{1+\frac{1}{\omega^{2} C_{2}^{2} \rho^{2}}}}$

[^31]256

## Resistance-coupled audio-amplifier design cantinued

where
$R=\frac{r_{l} R_{2}}{r_{l}+R_{2}}$
$r=\frac{R r_{p}}{R+r_{p}}$
$\rho=R_{2}+\frac{r_{l} r_{p}}{r_{l}+r_{p}}$

$\mu=$ amplification factor of tube
$\omega=2 \pi \times$ frequency
$r_{l}=$ plate-load resistance in ohms
$R_{2}=$ grid-leak resistance in ohms
$r_{p}=a-c$ plate resistance in ohms
$\mathrm{C}_{1}=$ total shunt capacitance in farads
$C_{2}=$ coupling capacitance in farads
Given $C_{1}, C_{2}, R_{2}$, and $X=$ fractional response required.
At highest frequency

$$
r=\frac{\sqrt{1-X^{2}}}{\omega C_{1} X} \quad R=\frac{r r_{p}}{r_{p}-r} \quad r_{l}=\frac{R R_{2}}{R_{2}-R}
$$

At lowest frequency*
$C_{2}=\frac{X}{\omega \rho \sqrt{1-X^{2}}}$

## Negative feedback

The following quantities are functions of frequency with respect to magnitude and phase:
$E, N$, and $D=$ signal, noise, and distortion output voltage with feedback $e, n$, and $d=$ signal, noise, and distortion output voltage without feedback

$$
\begin{aligned}
A= & \text { voltage amplification of amplifier at a given frequency } \\
\beta= & \text { fraction of output voltage fed back; for usual negative } \\
& \text { feedback, } \beta \text { is negative } \\
\phi= & \text { phase shift of amplifier and feedback circuit at a given } \\
& \text { frequency }
\end{aligned}
$$

[^32]Negative feedback

## Reduction in gain caused by feedback



Fig. 3-In negative-feedback amplifier considerations $\beta$, expressed as a percentage, has a negative value. A line across the $\beta$ and $A$ scales intersects the center scale to indicate change in gain. It also indicates the amount, in decibels, the input must be increased to maintain original output.


258

## Negative feedback continued

The total output voltage with feedback is
$E+N+D=e+\frac{n}{1-A \beta}+\frac{d}{1-A \beta}$
It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping $E=e$.
$(1-A \beta)$ is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is
$20 \log _{10}|1-A \beta|$
Voltage gain with feedback $=\frac{A}{1-A B}$
and change of gain $=\frac{1}{1-A \beta}$
If the amount of feedback is large, i.e., $-A \beta \gg 1$,
voltage gain becomes $-1 / \beta$ and so is independent of $A$.
In the general case when $\phi$ is not restricted to 0 or $\pi$

$$
\begin{equation*}
\text { the voltage gain }=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { and chenge of gain }=\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}} \tag{7}
\end{equation*}
$$

Hence if $|A B| \gg 1$, the expression is substantially independent of $\phi$.
On the polar diagram relating ( $A \beta$ ) and $\phi$ (Nyquist diagram), the system is unstable if the point ( 1,0 ) is enclosed by the curve. Examples of Nyquist diagrams for feedback amplifiers will be found in the chapter on "Servo mechanisms".

## Feedback amplifier with single beam-power tube

The use of the foregoing negative feedback formulas is illustrated by the amplifier circuit shown in Fig. 4.
The amplifier consists of an output stage using a $6 \mathrm{~V} 6-\mathrm{G}$ beam-power tetrode with feedback, driven by a resistance-coupled stage using a 6J7-G

## Negative feedback

 continuedin a pentode connection. Except for resistors $R_{1}$ and $R_{2}$ which supply the feedback voltage, the circuit constants and tube characteristics are taken from published data.

The fraction of the output voltage to be fed back is determined by specifying that the total harmonic distortion is not to exceed 4 percent. The plate supply voltage is taken as 250 volts. At this voltage, the $6 \mathrm{~V} 6-\mathrm{G}$ has 8 -percent


Fig. 4-Feedback amplifier with single beam-power tube.
total harmonic distortion. From equation (1), it is seen that the distortion output voltage with feedback is
$D=\frac{d}{1-A \beta}$
This may be written as
$1-A \beta=\frac{d}{D}$
where
$\frac{d}{D}=\frac{8}{4}=2 \quad 1-A \beta=2 \quad \beta=-\frac{1}{A}$
and where $A=$ the voltage amplification of the amplifier without feedback.
The peak a-f voltage output of the 6V6.G under the assumed conditions is $E_{0}=\sqrt{4.5 \times 5000 \times 2}=212$ volts
This voltage is obtained with a peak a.f grid voltage of 12.5 volts so that the voltage gain of this stage without feedback is
$A=\frac{212}{12.5}=17$

## 260

Negative feedback

Hence $\beta=-\frac{1}{A}=-\frac{1}{17}=-0.0589$ or 5.9 percent, approximately.
The voltage gain of the output stage with feedback is computed from equation (3) as follows
$A^{\prime}=\frac{A}{1-A \beta}=\frac{17}{2}=8.5$
and the change of gain due to feedback by equation (4) is thus
$\frac{1}{1-A \beta}=0.5$
The required amount of feedback voltage is obtained by choosing suitable values for $R_{1}$ and $R_{2}$. The feedback voltage on the grid of the $6 \mathrm{~V} 6-\mathrm{G}$ is reduced by the effect of $R_{4}, R_{L}$ and the plate resistance of the 6J7-G. The effective grid resistance is
$R_{g}{ }^{\prime}=\frac{R_{q} r_{p}}{R_{0}+r_{p}}$
where $R_{g}=0.5$ megohm.
This is the maximum allowable resistance in the grid circuit of the $6 \mathrm{~V} 6-\mathrm{G}$ with cathode bias.
$r_{p}=4$ megohms $=$ the plate resistance of the 6J7-G tube
$R_{G}{ }^{\prime}=\frac{4 \times 0.5}{4+0.5}=0.445$ megohm
The fraction of the feedback voltage across $R_{2}$ that appears at the grid of the $6 \mathrm{~V} 6-\mathrm{G}$ is
$\frac{R_{g}{ }^{\prime}}{R_{g}{ }^{\prime}+R_{\mathrm{L}}}=\frac{0.445}{0.445+0.25}=0.64$
where $R_{\mathrm{L}}=0.25$ megohm.
Thus the voltage across $R_{2}$ to give the required feedback must be
$\frac{5.9}{0.64}=9.2$ percent of the output voltage.
This voltage will be obtained if $R_{1}=50,000$ ohms and $R_{2}=5000$ ohms. This resistance combination gives a feedback voltage ratio of
$\frac{5000 \times 100}{50,000+5000}=9.1$ percent of the output voltage

In a transformer-coupled output stage, the effect of phase shift on the gain with feedback does not become appreciable until a noticeable decrease in gain without feedback also occurs. In the high-frequency range, a phase shift of 25 degrees lagging is accompanied by a 10 -percent decrease in gain. For this frequency, the gain with feedback is computed from (6).
$A^{\prime}=\frac{A}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}$
where $\quad A=15.3, \quad \phi=155^{\circ}, \quad \cos \phi=-0.906, \quad \beta=0.059$.
$A^{\prime}=\frac{15.3}{\sqrt{1+|0.9|^{2}+2|0.9| 0.906}}=\frac{15.3}{\sqrt{3.44}}=\frac{15.3}{1.85}=8.27$
The change of gain with feedback is computed from (7).
$\frac{1}{\sqrt{1+|A \beta|^{2}-2|A \beta| \cos \phi}}=\frac{1}{1.85}=0.541$
If this gain with feedback is compared with the value of 8.5 for the case of no phase shift, it is seen that the effect of frequency on the gain is only 2.7 percent with feedback compared to 10 percent without feedback.

The change of gain with feedback is 0.541 times the gain without feedback whereas in the frequency range where there is no phase shift, the corresponding value is 0.5 . This quantity is 0.511 when there is phase shift but no decrease of gain without feedback.

## Distortion

A rapid indication of the harmonic content of an alternating source is given by the distortion factor which is expressed as a percentage.
$\binom{$ Distortion }{ factor }$=\sqrt{\frac{\text { (sum of squares of amplitudes of harmonics) }}{\text { (square of amplitude of fundamental) }}} \times 100$ percent If this factor is reasonably small, say less than 10 percent, the error involved in measuring it,

[^33]
## Capacitive-differentiation amplifiers

Capacitive-differentiation systems employ a series-RC circuit (fig. 5) with the output voltage e $e_{2}$ taken across $R_{2}$. The latter includes the resistance of the load, which is assumed to have a negligible reactive component compared to $R_{2}$. In many applications the circuit time constant $R C \ll T$. where $T$ is the period of the input pulse $e_{1}$. Thus, transients constitute $a$ minor part of the response, which is essentially a steady-state phenomenon within the time domain of the pulse.

## Differential equation

$e_{1}=e_{c}+R C \frac{d e_{c}}{d t}$
where $R=R_{1}+R_{2}$. Then


Fig. 5-Capacifive differentiation.
$e_{2}=R_{2} C \frac{d e_{e}}{d t}=\frac{R_{2}}{R}\left(e_{1}-e_{c}\right)$
When the rise and decay times of the pulse are each $\gg R C$,
$e_{2} \approx R_{2} C \frac{d e_{1}}{d t}$

## Trapezoidal input pulse

When $T_{1}, T_{2}$, and $T_{3}$ are each much greater than $R C$, the output response $e_{2}$ is approximately rectangular, as shown in Fig. 6.
$E_{21}=E_{1} R_{2} C / T_{1}$
$E_{23}=-E_{1} R_{2} C / T_{3}$
More accurate!y, for any value of $T$, but for widely spaced input pulses,
If $0<t<T_{1}: e_{21}=\frac{E_{1} R_{2} C}{T_{1}}\left[1-\exp \left(-\frac{1}{R C}\right)\right]$


Fig. 6-Trapezoidal input pulse and principal response.
$T_{1}<1<\left(T_{1}+T_{2}\right): e_{22}=\frac{E_{1} R_{2} C}{T_{1}}\left[\exp \left(\frac{T_{1}}{R C}\right)-1\right] \exp \left(-\frac{1}{R C}\right)$
Note: $\exp \left(-\frac{1}{R C}\right)=\epsilon^{-1 / R C}$

Capacitive-differentiation ampliffers continued

$$
\begin{aligned}
& \begin{array}{l}
\left(T_{1}+T_{2}\right)<1<T: e_{23}=
\end{array}-\frac{E_{1} R_{2} C}{T_{3}}\left\{1-\left\{\frac{T_{3}}{T_{1}}\left[\exp \left(\frac{T_{2}}{R C}\right)-1\right]\right.\right. \\
&\left.\left.\quad+\exp \left(\frac{T_{1}+T_{2}}{R C}\right)\right\} \exp \left(-\frac{1}{R C}\right)\right\} \\
& t>T: e_{2 x}= \frac{E_{1} R_{2} C}{T_{3}}\left\{\frac{T_{3}}{T_{1}}\left[\exp \left(\frac{T_{1}}{R C}\right)-1\right]\right. \\
&\left.\quad+\exp \left(\frac{T_{1}+T_{2}}{R C}\right)-\exp \left(\frac{T}{R C}\right)\right\} \exp \left(-\frac{1}{R C}\right) \\
&= A \exp \left(-\frac{1}{R C}\right)
\end{aligned}
$$

when $T_{2} \gg R C: \quad e_{23}=-\frac{E_{1} R_{2} C}{T_{3}}\left[1-\exp \left(-\frac{t_{3}}{R C}\right)\right]$
For a long train of identical pulses repeated at regular intervals of $T_{r}$ between starting points of adjacent pulses, add to each of the above $\left(e_{21}, e_{22}, e_{23}\right.$, and $\left.e_{2 x}\right)$ a term $\mathrm{e}_{20}=\frac{A}{\exp \left(\frac{T_{r}}{R C}\right)-1} \exp \left(-\frac{t}{R C}\right)$
where $A$ is defined in the expression for $e_{2 x}$ above.

## Rectangular input pulse



Fig. 7-Single rectangular pulse and tangular pulse and
response for $T$ much shorter than in Fig. 6. thorthan

Fig. 7 is a special case of Fig. 6 , with $T_{1}=T_{3}=0$.

$$
\begin{aligned}
0<t<T: \quad e_{21} & =\frac{R_{2}}{R} E_{1} \exp \left(-\frac{t}{R C}\right)=E_{21} \exp \left(-\frac{t}{R C}\right) \\
t>T: \quad e_{23} & =-\frac{R_{2}}{R} E_{1}\left[\exp \left(\frac{T}{R C}\right)-1\right] \exp \left(-\frac{t}{R C}\right) \\
& =E_{23} \exp \left(-\frac{t_{3}}{R C}\right)
\end{aligned}
$$

$$
\text { where } E_{23}=-\frac{R_{2}}{R} E_{1}\left[1-\exp \left(-\frac{T}{R C}\right)\right]
$$

## Capacitive-differentiation amplifiers

## Triangular input pulse

Fig. 8 is a special case of the trapezoidal pulse, with $T_{2}=0$. The total output amplitude is approximately

$$
\left|E_{21}\right|+\left|E_{23}\right|=\left|E_{1}\right| R_{2} C \frac{T_{1}+T_{3}}{T_{1} T_{3}}
$$

which is a maximum


Fig. 9-Capacifive-differentiation circuit with cathode-follower source.
when $T_{1}=T_{3}$.


Fig. 10-Capacitive-differentiation circuit with platecircuit source.

## Schematic diagrams

Two capacitive-differentiation circuits using vacuum tubes as driving sources are given in Figs. 9 and 10.

## Capacitive-integration amplifiers

Capacitive-integration circuits employ a series-RC circuit (Fig. Il) with the output voltage $e_{2}$ taken across capacitor $C$. The load admittance is accounted for by including its capacitance in $C$; while its shunt resistance is combined with $R_{1}$ and $R_{2}$ to form a voltage divider treated by Thevenin's theorem. In contrast with capacitive differentiation, time constant $R C \gg T$ in many applications. Thus, the output voltage is composed mostly of the early part of a transient response to the input voltage wave. For a long repeated train of identical input pulses, this repeated transient response becomes steady-state.

## Circuif equations

$e_{1}=e_{2}+R C \frac{d e_{2}}{d t}$


Fig. 11-Capacitive integration.

When $t \ll R C$ and $E_{20}$ is very small compared to the amplitude of $e_{1}$,
$e_{2} \approx E_{20}+\frac{1}{R C} \int_{0}^{t} e_{1} d t$
where $E_{20}=$ value of $e_{2}$ at time $t=0$.

## Rectangular input-wave train

See Fig. 12.
$E_{a v}=\frac{1}{T} \int_{0}^{T} e_{1} d t$

Then
$E_{11} T_{1}+E_{12} T_{2}=0$


Fig. 12-Rectangular inputwave train at top. Below, output wave on an exaggerated voltage scale.

After equilibrium or steady-state has been established,
$e_{21}=E_{a v}+E_{11}\left[1-\exp \left(-\frac{t_{1}}{R C}\right)\right]+E_{21} \exp \left(-\frac{t_{1}}{R C}\right)$
$\mathrm{e}_{22}=E_{\mathrm{av}}+E_{12}\left[1-\exp \left(-\frac{t_{2}}{R C}\right)\right]+E_{22} \exp \left(-\frac{t_{2}}{R C}\right)$
If the steady-state has not been established at time $t_{1}=0$, add to $e_{2}$ the term
$\left(E_{20}-E_{a v}-E_{21}\right) \exp \left(-\frac{t_{1}}{R C}\right)$
When $T_{1}=T_{2}=T / 2$, then
$E_{11}=-E_{12}=E_{1}$
$E_{2}=E_{22}=-E_{21}=E_{1} \tanh (T / 4 R C)$

## 266

## Capacitive-integration ampliffers continued

Approximately, for any $T_{1}$ and $T_{2}$, provided $T \ll R C$,
$0<t_{1}<T_{1}: \quad e_{21}=E_{n v}-E_{2}\left(1-2 t_{1} / T_{1}\right)$
$0<t_{2}<T_{2}: \quad e_{22}=E_{\mathrm{av}}+E_{2}\left(1-2 t_{2} / T_{2}\right)$
where $E_{2}=E_{22}=-E_{21}=E_{11} T_{1} / 2 R C$
$=-E_{12} T_{2} / 2 R C$
Error: Due to assuming a linear outputvoltage wave (Fig. 13) is
$E_{\Delta} / E_{2}=T / 8 R C$
when $T_{1}=T_{2}=T / 2$. The error in $E_{2}$ due to setting tanh $(T / 4 R C)=T / 4 R C$ is comparatively negligible. When $T / R C=0.7$, the approximate error in $E_{2}$ is only 1 percent. However, the error $E_{\Delta}$ is 1 percent of $E_{2}$ when $T / R C=0.08$.

## Biased rectangular input wave

In Fig. 14, when $\left(T_{1}+T_{2}\right) \ll R C$, and $E_{20}=0$ at $t=0$, the output voltage approximates a series of steps.


Fig. 13-Error Es from assuming a linear outpul, idashed line).


Fig. 14-Rectangular input wave gives stepped output.
$E_{2}=E_{1} T_{1} / R C$

## Triangular input wave

In Fig. 15, when $\left(T_{1}+T_{2}\right) \ll R C$, and after the steady-state has been established, then, approximately,

$$
\begin{aligned}
& 0<t_{1}<T_{1:} \\
& e_{21}=E_{20}+E_{21}-4 E_{21}\left(\frac{t_{1}}{T_{1}}-\frac{1}{2}\right) \\
& 0<t_{2}<T_{2}: \\
& e_{22}=E_{20}+E_{22}-4 E_{22}\left(\frac{t_{2}}{T_{2}}-\frac{1}{2}\right)
\end{aligned}
$$

where

$$
E_{20}=E_{1}\left(T_{2}-T_{1}\right) / 6 R C
$$

$$
E_{21}=E_{1} T_{1} / 4 R C
$$

$$
E_{22}=-E_{1} T_{2} / 4 R C
$$



Fig. 15-Triangular input wave af top. Below, parabolic output wave on an exaggerated voltage scale.

## Schematic diagrams

Two capacitive-integration circuits using vacuum tubes as sources are given in Figs. 16 and 17.

Fig. 16 (right)-Capacitive-integration circuit with cathode-follower source.


Fig. 17 (right)-Capacitive-inte gration circuit with plate-circuitsource. $C_{p} \gg C$ and $R^{\prime} \gg R$


## Nonsinusoidal generators

Free-running zero-bias symmetrical multivibrator
Exact equation for semiperiod (figs. 18 and 19):
$\mathfrak{J}_{1}=\left(R_{01}+\frac{R_{l 2} r_{p}}{R_{l 2}+r_{p}}\right) C_{1} \log _{e} \frac{E_{b}-E_{m}}{E_{x}}$


Fig. 18-Schematic diagram of symmetrical mulfivibrator and volfage waveforms on tube elements.

## Nonsinusoidal generators

where
$J=J_{1}+J_{2}=1 / f, J_{1}=J_{2}, R_{g 1}=R_{g 2}, C_{1}=C_{2}$.
$f=$ repetition frequency in cycles/second
$J=$ period in seconds
$J_{1}=$ semiperiod in seconds
$r_{p}=$ plate resistance of tube in ohms
$E_{b}=$ plate-supply voltage
$E_{m}=$ minimum alternating voltage on plate
$E_{x}=$ cutoff voltage corresponding to $E_{b}$


Fig. 19-Multivibrator potentials on plate-characteristic curve.
$C=$ capacitance in farads
Approximate equation for semiperiod, where $R_{v 1} \gg \frac{R_{l 2 r_{p}}}{R_{t 2}+r_{p}}$, is $J_{1}=R_{01} C_{1} \log _{e}\left(\frac{E_{b}-E_{m}}{E_{x}}\right)$

Equation for buildup time is
$J_{B}=4\left(R_{B}+r_{p}\right) C=98$ percent of peak value

## Free-running zero-bias unsymmetrical multivibrator

See symmetrical multivibrator for circuit and terminology; the wave forms are given in Fig. 20.

Equations for fractional periods are


Fig. 20 - Unsymmetrical multivibrator waveforms.

$$
\begin{aligned}
J_{1} & =\left(R_{01}+\frac{R_{l 2} r_{p}}{R_{l 2}+r_{p}}\right) C_{1} \log _{e}\left(\frac{E_{l 2}-E_{m 2}}{E_{x 1}}\right) \\
J_{2} & =\left(R_{g 2}+\frac{R_{l 1 r_{p}}}{R_{l 1}+r_{p}}\right) C_{2} \log _{e}\left(\frac{E_{b 1}-E_{m 1}}{E_{x 2}}\right) \\
\mathfrak{J} & =J_{1}+J_{2}=1 / f
\end{aligned}
$$

## Nonsinusoidal generators

## Free-running positive-bias multivibrator

Equations for fractional period (Fig. 21) are

$$
\begin{aligned}
& J_{1}=\left(R_{01}+\frac{R_{l 2} r_{p}}{R_{l 2}+r_{p}}\right) C_{1} \log _{e}\left(\frac{E_{b 2}-E_{m 2}+E_{c 1}}{E_{c 1}+E_{x 1}}\right) \\
& J_{2}=\left(R_{g 2}+\frac{R_{l 1} r_{p}}{R_{l 1}+r_{p}}\right) C_{2} \log _{e}\left(\frac{E_{b 1}-E_{m 1}+E_{c 2}}{E_{c 2}+E_{x 2}}\right)
\end{aligned}
$$

where
$\mathfrak{J}=J_{1}+J_{2}=1 / 1$
$E_{c}=$ positive bias voltage
$R_{c}=$ bias control


Fig. 21-Free-running positive-bias multivibrator.

## Driven (one-shot) multivibrator

Circuit is given in Fig. 22. Equations are
$f_{m v}=f_{s}$
$f_{m v}=$ multivibrator frequency in cycles/second
$f_{s}=$ synchronizing frequency in cycles/second

Condifions of operation are
$f_{s}>f_{n}$ or $J_{s}<J_{n}$
where

$$
\begin{aligned}
f_{n} & =\text { free-running frequency in cycles/second } \\
J_{s} & =\text { synchronizing period in seconds } \\
J_{n} & =\text { free-running period in seconds } \\
J_{n 2} & =R_{g 2} C \log _{e}\left(\frac{E_{b 1}-E_{m 1}+E_{c 2}}{E_{c 2}+E_{x 2}}\right)
\end{aligned}
$$



Fig. 22-Driven (one-shot) multivibrator schematic and waveforms.

## Phantastron*

The phantastron circuit is a time-delay device of the multivibrator type having high-accuracy possibilities. A negative pulse of about 30 -volis amplitude is applied at the input, and the circuit produces a delayed positive output pulse at the cathode of the 6SA7. The amount of delay is determined by the setting of the calibrated delay-control potentiometer, delay being linearly proportional to the output voltage of this potentiometer to within $\pm 0.5$ microsecond. At any one setting of the delay control, the long-time variation in time delay is about half of the above figure.

Maximum time delay $=R_{g} C_{g}\left(E_{\text {max }}-E_{\min }\right) / E_{b}$
where $E_{\text {max }}$ is the maximum value of the control voltage, $E_{m i n}$ is the minimum control voltage resulting in delay ( 40 to 60 volts), and $E_{b}$ is the platesupply voltage.
Minimum delay $\approx 0.02 \times($ maximum delay $)$

[^34]
## AMPLIFIERS AND OSCILLATORS

Nonsinusoidal generators continued
For the circuit shown, $E_{\max }=225$ volts, $E_{\min }=50$ volts, and delay range is 60 to 3000 microseconds.


Fig. 23-Schematic of a lypical phantastron delay network.

## Free-running blocking oscillator

Conditions for blocking
$E_{1} / E_{0}<1-\epsilon^{1 / a f-\theta}$
where
$E_{0}=$ peak grid volts
$E_{1}=$ positive portion of grid swing in volts
$E_{c}=$ grid bias in volts
$f=$ frequency in cycles/second
$\alpha=$ grid time constant in seconds
$\epsilon=2.718=$ base of natural logs
$\theta=$ decrement of wave
a. Use strong feedback

$$
=E_{0} \text { is high }
$$

b. Use large grid time constant

$$
=\alpha \text { is large }
$$

c. Use high decrement (high losses) $=\theta$ is high
Pulse width is $J_{1} \approx 2 \sqrt{L C}$


Fig. 24-Free-running blocking oscillator-schematic and waveforms.


Fig. 25-Blocking-oscillator grid voltage.

## Nonsinusoidal generators

where
$\boldsymbol{J}_{1}=$ pulse width in seconds
$L=$ magnetizing inductance of transformer in henries
$C=$ interwinding capacitance of transformer in farads

$$
L=M \frac{n_{1}}{n_{2}}
$$

where

$$
\begin{aligned}
M= & \text { mutual inductance between } \\
& \text { windings }
\end{aligned}
$$

$n_{1} / n_{2}=$ turns ratio of transformer
Repetition frequency
$J_{\underline{Q}}=\frac{1}{p} \approx R_{p} C_{p} \log _{e} \frac{E_{b}+E_{g}}{E_{b}+E_{x}}$


Fig. 26-Blocking oscillator pulse waveform.
where
$\mathrm{J}_{2} \gg \mathrm{~J}_{1}$
$f=$ repetition frequency in cycles/second
$E_{b}=$ plate-supply voltage
$E_{g}=$ maximum negative grid voltage
$E_{x}=$ grid cutoff in volts
$\mathfrak{J}=\mathfrak{J}_{1}+\mathfrak{J}_{2}=1 / \mathfrak{f}$

## Free-running positive-bias wide-frequency-range blocking oscillator

> Typical circuit values are $\begin{aligned} R= & 0.5 \text { to } 5 \text { megohms } \\ C= & 50 \text { micromicrofarads to } \\ & 0.1 \text { microfarads } \\ R_{t}= & 10 \text { to } 200 \text { ohms } \\ R_{b}= & 50,000 \text { to } 250,000 \text { ohms } \\ \Delta f= & 100 \text { cycles to } 100 \text { kilocycles }\end{aligned}$


Fig. 27 - Free-running positivebias blocking oscillator.

## Nonsinusoidal generators

continued

## Synchronized blocking oscillator

Operating conditions (Fig. 28) are
$f_{n}<f_{s}$ or $T_{n}>T_{s}$
where
$f_{n}=$ free-running frequency in cycles/ second
$f_{s}=$ synchronizing frequency in cycles/ second
$T_{n}=$ free-running period in seconds
$T_{s}=$ synchronizing period in seconds

## Driven blocking oscillator

Operating conditions (Fig. 29) are
a. Tube off unless positive voltage is applied to grid.
b. Signal input controls repetition frequency.
c. $E_{c}$ is a high negative bias.


Fig. 29-Driven blocking oscillator.


Fig. 30-Free-running gas-fube oscillator.

Velocity error $=$ change in velocity of cathode-ray-tube spot over trace period.
Maximum percentage error $=\alpha \times 100$
if $\alpha \ll 1$.
Position error $=$ deviation of cathode-ray-tube trace from linearity.
Maximum percentage error $=\frac{\alpha}{8} \times 100$
if $\alpha \ll 1$.

## Synchronized gas-fube oscillator

Conditions for synchronization (Fig. 31) are
$f_{s}=N f_{n}$
where
$f_{n}=$ free-running frequency in cycles/second
$f_{s}=$ synchronizing frequency in cycles/second
$N=a n$ integer
For $f_{s} \neq N f_{n}$, the maximum $\delta f_{n}$ before slipping is given by
$\frac{E_{0}}{E_{s}} \frac{\delta f_{n}}{f_{s}}=1$
where
$\delta f_{n}=f_{n}-f_{s}$
$E_{0}=$ free-running ignition voltage
$E_{8}=$ synchronizing voltage referred to plate circuit

## Introduction

The process of modulation of a radio-frequency carrier $y=A(t) \cos \gamma(t)$ is treated under two main headings as follows:
a. Modification of its amplitude $A(t)$
b. Modification of its phase $\gamma(f)$

For a harmonic oscillation, $\gamma(t)$ is replaced by $(\omega t+\phi)$, so that
$y=A(t) \cos (\omega t+\phi)=A(t) \cos \psi(t)$
$A$ is the amplitude. The whole argument of the cosine $\psi(t)$ is the phase.

## Amplitude modulation

In amplitude modulation (Fig. $11, \omega$ is constant. The signal intelligence $f(t)$ is made to control the amplitude parameter of the carrier by the relation

$$
\begin{aligned}
A(t) & =\left[A_{0}+a f(t)\right] \\
& =A_{0}\left[1+m_{a} f(t)\right]
\end{aligned}
$$

where

$$
\psi(t)=\omega t+\phi
$$

$\omega=$ angular carrier frequency
$\phi=$ carrier phase constant


Fig. 1-Sideband and vector representation of amplitude modulation for a single sinusoidal modulation frequency (acos $\rho t$ ).

## 276

## Amplitude modulation

$A_{0}=$ amplitude of the unmodulated carrier
$\mathrm{a}=$ maximum amplitude of modulating function
$f(t)=$ generally, a continuous function of time representing the signal; $0 \leqslant f(t) \leqslant 1$
$m_{a}=a / A_{0}=$ degree of amplitude modulation; $0 \leqslant m_{a}<1$
$y=A_{0}\left[1+m_{a} f(t)\right] \cos \left(\omega_{0} t+\phi\right)$
For a signal $f(t)$ represented by a sum of sinusoidal components
$f(t)=\sum_{K=1}^{K=3} a_{K} \cos \left(\rho_{K^{\prime}} t+\theta_{K}\right)$
where $\rho_{K^{\prime}}$ is the angular frequency of the modulating signal and $\theta_{\kappa}$ is the constant part of its phase.
Assuming the system is linear, each frequency component $\rho_{K}$ gives rise to a pair of sidebands $\left(\omega+\rho_{K}\right)$ and $\left(\omega-\rho_{K}\right)$ symmetrically located about the carrier frequency $\omega$.

$$
y=A_{0}\left[1+\frac{1}{A_{0}} \sum_{K=1}^{K=1} a_{k} \cos \left(\rho_{K^{\prime}}+\theta_{K}\right)\right] \cos (\omega t+\phi)
$$

The constant component of the carrier phase $\phi$ is dropped for simplification.

$$
\begin{aligned}
y= & \underbrace{A_{0} \cos \left(\omega_{0} t\right)}_{\text {corrier }}+\underbrace{\left(\cos \omega_{0} t\right)\left[\sum_{K=1}^{K=M} a_{K} \cos \left(\rho_{K} t+\theta_{K}\right)\right]}_{\text {modulation vectors }} \\
= & \underbrace{A_{0} \cos \omega_{0} t}_{\text {carrier }}+\underbrace{\frac{a_{1}}{2} \cos \left[\left(\omega_{0}+\rho_{1}\right) \dagger+\theta_{1}\right]}_{\text {upper sideband }}+\underbrace{\frac{a_{1}}{2} \cos \left[\left(\omega_{0}-\rho_{1}\right) t-\theta_{1}\right]}_{\text {lower sideband }}+\cdots \\
& +\underbrace{\frac{a_{m}}{2} \cos \left[\left(\omega_{0}+\rho_{m}\right) t+\theta_{m}\right]}_{\text {upper sideband }}+\underbrace{\frac{a_{m}}{2} \cos \left[\left(\omega_{0}-\rho_{m}\right) \dagger-\theta_{m}\right]}_{\text {lower sideband }}
\end{aligned}
$$

Degree of modulation $=\frac{1}{A_{0}} \sum_{K=1}^{K=m} a_{K} \quad$ for $\rho$ 's not harmonically related.

$$
\text { Percent modulation }=\frac{(\text { crest ampl })-(\text { trough ampl })}{\text { (crest ampl })+(\text { trough ampl })} \times 100
$$

## Amplitude modulation cantinued



To determine the modulation percentage from an oscillogram of type illustrated apply measurements $A$ and $B$ to scales $A$ and $B$ and read percentage from center scale. Any units af measurement may be used.
Example: $A=3$ inches, $B=0.7$ inches $=62$-percent modulation.
Fig. 2-Modulation percentage from oscillograms.

## 278

## Amplitude modulation continued

Percent modulation may be measured by means of an oscilloscope, the modulated carrier wave being applied to the vertical plates and the modulating voltage wave to the horizontal plates. The resulting trapezoidal pattern and a nomograph for computing percent modulation are shown in Fig. 2. The dimensions A
 and $B$ in that figure are proportional to the crest amplitude and trough amplitude, respectively.

Peak voltage at crest for $\rho$ 's not harmonically related:
$A_{\text {crest }}=A_{0, \mathrm{rms}}\left[1+\frac{1}{A_{0}} \sum_{K=1}^{K=m} a_{\kappa}\right] \times \sqrt{2}$
Effective value of the modulated wave in general:

$$
A_{\mathrm{eft}}=A_{0, \mathrm{rms}}\left[1+\frac{1}{A_{0}^{2}} \sum_{K=1}^{K=m} a_{K}^{2}\right]^{\frac{1}{2}}
$$

## Angle modulation

All sinusoidal angle modulations derived from the harmonic oscillation $y=A \cos (\omega t+\phi)$ can be expressed in the form

$$
\begin{aligned}
y & =A \cos \psi(t) \\
& =A \cos \left(\omega_{0} t+\Delta \theta \cos \rho t\right)
\end{aligned}
$$

where the oscillating component $\Delta \theta \cos \rho f$ of the phase excursion is determined by the type of angular modulation used. In all angle modulations $A$ is constant.

## Frequency modulation

$y=A_{0} \cos \psi(t)$
The signel intelligence $f(t)$ is made to control the instantaneous frequency parameter of the carrier by the relation

$$
\begin{aligned}
\omega(t) & =\omega_{0}+\Delta \omega f(t) \\
& =\frac{d \psi(t)}{d t}
\end{aligned}
$$

## Angle modulation continued

where
$\omega(t)=$ instantaneous frequency
$=d \psi(t) / d t$
$\psi(t)=\int \omega(t) d t$
$\omega_{0}=$ frequency of unmodulated carrier
$\Delta \omega=$ maximum instantaneous frequency excursion from $\omega_{0}$
For single-frequency modulation $f(t)=\cos \rho t$,
$y=A \cos \left(\omega_{0} t+\frac{\Delta \omega}{\rho} \sin \rho t\right)$
$\Delta \omega / \rho=\Delta \theta$ lin radians) is the modulation index. The phase excursion $\Delta \theta$ is inversely proportional to the modulating frequency $\rho$. In general for broadcast applications, $\Delta \omega \ll \omega_{0}$ and $\Delta \theta \gg 1$.

## Phase modulation

$y=A_{0} \cos \psi(t)$

The signal intelligence $f(t)$ is made to control the instantaneous phase excursions of the carrier by the relation $\delta \theta=\Delta \theta f(t)$.

$$
\begin{aligned}
\psi(t) & =\left[\omega_{0} t+\Delta \theta f(t)\right]=\int_{0}^{2} \omega(t) d t \\
y & =A \cos \left[\omega_{0} t+\Delta \theta f(t)\right]
\end{aligned}
$$

For sinusoidal modulation $f(t)=\cos \rho t$,
$y=A \cos \left(\omega_{0} t+\Delta \theta \cos \rho t\right)$

Maximum phase excursion is independent of the modulating frequency $\rho$.
The instantaneous frequency of the phase-modulated wave is given by the derivative of its total phase:

$$
\begin{aligned}
\omega(t) & =d \psi(t) / d t=\left(\omega_{0}-\rho \Delta \theta \sin \rho t\right) \\
\delta \omega & =\omega(t)-\omega_{0}=-\rho \Delta \theta \sin \rho t
\end{aligned}
$$

Maximum frequency excursion $\Delta \omega=-\rho \Delta \theta$ is proportional to the modulation frequency $p$.

280

Angle modulation continued

Sideband energy distribution in angle modulation
$y=A \cos \left(\omega_{0} \dagger+\Delta \theta \cos \rho t\right)$
for $\Delta \theta \ll 0.2$ and a single sinusoidal modulation. See Fig. 3.

$$
\begin{aligned}
y & =A(\underbrace{\cos \omega_{0}^{t}}_{\text {carrier }}-\underbrace{\left.\Delta \theta \cos \rho t \sin \omega_{0}^{t}\right)}_{\text {modulation vector }} \\
& =A[\underbrace{\cos \omega_{0} t}_{\text {carrier }}-\underbrace{\frac{\Delta \theta}{2} \sin \left(\omega_{0}+\rho \mid t\right.}_{\text {upper sideband }}-\underbrace{\frac{\Delta \theta}{2} \sin \left(\omega_{0}-\rho \mid t\right.}_{\text {lower sideband }}]
\end{aligned}
$$

## Frequency spectrum of angle modulation

No restrictions on $\Delta \theta$.
$y=A \cos \left(\omega_{0} t+\Delta \theta \cos \rho \dagger\right)$


Fig. 3-Sideband and modulation vector representation of angle modulation for $\Delta \theta \ll 0.2$ as well as for amplitude modulation.

Angle modulation continued

$$
\begin{aligned}
y=A\left[J_{0}(\Delta \theta) \cos \omega_{0} t\right. & -2 J_{1}(\Delta \theta) \cos \rho t \sin \omega_{0} t \\
& +2 J_{2}(\Delta \theta) \sin 2 \rho t \cos \omega_{0} t \\
& -2 J_{3}(\Delta \theta) \sin 3 \rho t \sin \omega_{0} t \\
& +\ldots \ldots .]
\end{aligned}
$$

This gives the carrier modulation vectors. See Fig. 4.


The sideband frequencies are given by

$$
\begin{aligned}
y=A\left\{J_{0}(\Delta \theta) \cos \omega_{0} t\right. & -J_{1}(\Delta \theta)\left[\sin \left(\omega_{0}+\rho\right) t+\sin \left(\omega_{0}-\rho \mid t\right]\right. \\
& +J_{2}(\Delta \theta)\left[\sin \left(\omega_{0}+2 \rho\right) t+\sin \left(\omega_{0}-2 \rho \mid t\right]\right. \\
& -J_{3}(\Delta \theta)\left[\sin \left(\omega_{0}+3 \rho\right) \mid t+\sin \left(\omega_{0}-3 \rho \mid t\right]\right\}
\end{aligned}
$$

Here, $J_{n}(\Delta \theta)$ is the Bessel function of the first kind and $n$th order with argument $\Delta \theta$. An expansion of $J_{n}(\Delta \theta)$ in a series is given on page 614, tables of Bessel functions are on pages 636 to 639; and a 3-dimensional representation of Bessel functions is given in Fig. 5. The carrier and sideband amplitudes are oscillating functions of $\Delta \theta$ :
Carrier vanishes for $\quad \Delta \theta$ radians $=2.40 ; 5.52 ; 8.65+n \pi$
First sideband vanishes for $\Delta \theta$ radians $=3.83 ; 7.02 ; 10.17 ; 13.32+n \pi$
The property of vanishing carrier is used frequently in the measurement of $\Delta \omega$ in frequency modulation. This follows from $\Delta \omega=(\Delta \theta)(\rho)$. Knowing $\Delta \theta$ and $\rho, \Delta \omega$ is computed.

## Angle modulation

The approximate number of important sidebands and the corresponding bandwidth necessary for transmission are as follows, where $f=\rho / 2 \pi$ and $\Delta f=\Delta \omega / 2 \pi$,

$m_{f}$	5	10	20
Signal frequency f	$0.2 \Delta f$	$0.1 \Delta f$	$0.05 \Delta f$
Number of pairs of sidebands	7	13	23
Bandwidth	$14 f$	$26 f$	$46 f$
	$2.8 \Delta f$	$2.6 \Delta f$	$2.3 \Delta f$

This table is based on neglecting sidebands in the outer regions where all amplitudes are less than $0.02 A_{0}$. The amplitude below which the sidebands are neglected, and the resultant bandwidth, will depend on the particular application and the quality of transmission desired.


Fig. 5-3-dimensional representation of Bessel functions:

## Inferference and noise in AM and FM

## Interference rejection in amplitude and frequency modulations

Simplest case of interference; two unmodulated carriers:

$$
\begin{aligned}
e_{0} & =\text { desired signal } \\
& =E_{0} \sin \omega_{0} t \\
e_{1} & =\text { interfering signal } \\
& =E_{1} \sin \omega_{1} t
\end{aligned}
$$

The vectorial addition of these two results in a voltage that has both amplitude and frequency modulation.

## Amplitude-modulation inferference

$E_{t}=$ resultant voltage

$$
=E_{0}\left[1+\frac{E_{1}}{E_{0}} \cos \left(\omega_{1}-\omega_{0} t\right)\right] \text { for } E_{1} \ll E_{0}
$$

The interference results in the amplitude modulation of the original carrier by a beat frequency equal to $\left(\omega_{0}-\omega_{1}\right)$ having a modulation index equal to $E_{1} / E_{0}$.

## Frequency-modulation interference

$\omega(t)=$ resultant instantaneous frequency

$$
=\omega_{0}+\frac{E_{1}}{E}\left(\omega_{1}-\omega_{0}\right) \cos \left(\omega_{1}-\omega_{0}\right) t \text { for } E_{1} \ll E_{0}
$$

$\left.\Delta \omega_{1}=\omega(t)-\omega_{0}=\frac{E_{1}}{E}\left(\omega_{1}-\omega_{0}\right) \cos \left(\omega_{1}-\omega_{0}\right) \right\rvert\, t$

The interference results in frequency modulation of the original carrier by a beat frequency equal to ( $\omega_{0}-\omega_{1}$ ) having a frequency-modulation index equal to $E_{1}\left(\omega_{1}-\omega_{0}\right) / E \Delta \omega$
$\left(\frac{\text { interference amplitude modulation }}{\text { interference frequency modulation }}\right)=\frac{\Delta \omega}{\left(\omega_{1}-\omega_{0}\right)}$
where $\Delta \omega$ is the desired frequency deviation.

## Noise reduction in frequency modulation

The noise-suppressing properties of frequency modulation apply when the signal carrier level at the frequency discriminator is greater than the noise level. When the noise level exceeds the carrier signal level, the noise suppresses the signal. For a given amount of noise at a receiver there is a sharp threshold level of frequency-modulation signal above which the noise is suppressed and below which the signal is suppressed. This threshold has been defined as the improvement threshold. For the condition where the threshold level is exceeded:

Random noise: Assuming the receivers have uniform gain in the pass band, the resultant noise is proportional to the square of the voltage components over the spectrum of noise frequencies:

$$
\left(\frac{F-M \text { signal } / \text { random-noise ratio }}{A \cdot M \text { signal } / \text { random-noise ratio }}\right)=\sqrt{3} \frac{\Delta \omega}{\rho}=\sqrt{3} \Delta \theta
$$

Impulse noise: Noise voltages add directly:

$$
\left(\frac{F-M \text { signal } / \text { impulse-noise ratio }}{A-M \text { signal/impulse-noise ratio }}\right)=2 \frac{\Delta \omega}{\rho}=2 \Delta \theta
$$

Fig. 6-Improvement threshold for frequency modulation. Deviation $\Delta \theta$ affects amount of signal required to reach threshold and also amount of noise suppression oblained. Solid line shows peak, and dotled line the root-meansquare noise in the output.

Courlesy of McGrow Hill Book Compony

decibels $A M$ carrier/peak noise

The carrier signal required to reach the improvement threshold depends on the frequency deviation of the incoming signal. The greater the deviation, the greater the signal required to reach the improvement threshold, but the greater the noise suppression, once this level is reached. Fig. 6 illustrates this characteristic.
In amplitude modulation, the presence of the carrier increases the background noise in a recciver. In frequency modulation, the presence of the carrier decreases the background noise, since the carrier effectively suppresses it.

## Pulse modulation

## Pulse-modulation methods

There are four general classes of pulse-modulation methods:
a. Modulation methods in which the values of instantaneous samples of the modulating wave are caused to modulate the time of occurrence of some characteristic of a pulse carrier. This class has been called pulse-time modulation, or PTM.)
b. A second class in which the values of the instantaneous samples of the modulating wave are caused to modulate the amplitude of a pulse carrier with the time of occurrence of the individual pulses being fixed.
c. That class in which the modulating wave is sampled, quantized, and coded. This method has been called pulse-code modulation, or PCM.I
d. The class that includes composite methods combining the modulation characteristics of the aforementioned classes.

## Class a

Pulse-position modulation (PPM): Pulse-time modulation (PTM) in which the value of each instantaneous sample of a modulating wave is caused to modulate the position.
Pulse-duration modulation (PDM): Pulse-time modulation in which the value of each instantaneous sample of the modulating wave is caused to modulate the duration of a pulse. A!so called pulse-width modulation (PWM).
Pulse-frequency modulation (PFM): Modulation in which the modulating wave is used to frequency-modulate a carrier wave consisting of a series of direct-current pulses.
Addifional methods: Which include modified-time-reference and pulseshape modulation.

## Class b

Pulse-amplifude modulation (PAM): Used when the modulating wave is caused to amplitude-modulate a pulse carrier. Forms of this type of modulation include unidirectional PAM and bidirectional PAM.

## Class c

Binary pulse-code modulation (PCM): Pulse-code modulation in which the code for each element of information consists of one of two distinct kinds or values, such as pulses and spaces.

Ternary pulse-code modulation (PCM): Pulse-code modulation in which the code for each element of information consists of any one of three distinct kinds or values, such as positive pulses, negative pulses, and spaces.
N-ary pulse-code modulation (PCM): Pulse-code modulation in which the code for each element of information consists of any one of $N$ distinct kinds or values.

## Terminology

Pulse: A single disturbance characterized by the rise and decay in time or space, or both, of a quantity whose value is normally constant.

Unidirectional pulses: Single-polarity pulses that all rise in the same direction.
Bidirectional pulses: Pulses some of which rise in one direction and the remainder in the other direction.

Pulse duration: Equal to the duration of rectangular pulses whose energy and peak power equal those of the pulse in question.

Pulse-rise time: The time required for the instantaneous amplitude to go from 10 percent to 90 percent of the peak value.
Pulse-decay time: The time required for the instantaneous amplitude to go from 90 percent to 10 percent of the peak value.
Transducer: A device by means of which energy can flow from one or more transmission systems to one or more other transmission systems.
Clipper: A transducer that gives output only when the input exceeds the critical value.
Limiter: A transducer whose output is constant for all inputs above a critical value.

Time gate: A transducer that gives output only during chosen time intervals.
Improvement threshold: In pulse-modulation systems, the condition that exists when the ratio of peak-pulse voltage to peak-noise voltage exceeds 2 after selection and before any nonlinear process such as amplitude clipping and limiting.
Quantization: A process wherein the complete range of instantaneous values of a wave is divided into a finite number of smaller subranges, each of which is represented by an assigned or quantized value within the subranges.
Code: A plan for representing each of a finite number of values as a particularly arrangement of discrete events.
Code element: One of the discrete events in a code.

## Pulse modulation

 continuedCode character: A particular arrangement of code elements used in a code to represent a single value.

Baud: The unit of signaling speed equal to the number of code elements per second.

Level: The number by which a given subrange of a quantized signal may be identified.

Pulse regeneration: The process of replacing each code element by a new element standardized in timing and magnitude.

Quantization distortion: The inherent distortion introduced in the process of quantization. This is sometimes referred to as quantization noise.

## Sampling

The modulation is impressed on the pulses by the process known as sampling, wherein the amplitude of the modulating signal is determined at the time of occurrence of the pulse. A characteristic of the pulse, such as its time position or amplitude, is then affected by the signal amplitude at that instant. This process, for the several types of modulations, is illustrated in Fig. 7.

The minimum ratio of sampling frequency $f_{p}$ to modulating frequency bandwidth $\left(f_{h}-f_{l}\right)$, where $f_{h}$ and $f_{l}$ are the high- and low-frequency limits of the modulating-frequency band, respectively, is given by
$f_{p} /\left(f_{h}-f_{l}\right)=2$
In practice, a larger ratio is utilized to permit the sampling components to be separated from the voice components with an economical filter. Consequently, a ratio of about 2.5 is used.

## Pulse bandwidth

The bandwidth necessary to transmit a video pulse


Fig. 7-Pulse trains of single chamels for various pulse systems, showing effect of modulation on amplitude and lime-spacing of subcarrier pulses. The modulating signal is af the top.

## Pulse modulation

train is determined by the rise and decay times of the pulse. This bandwidth $F_{0}$ is approximately given by
$F_{0}=1 / 2 t_{7}$
where $t_{r}$ is the rise or decay time, whichever is the smaller.
The radio-frequency bandwidth $F_{R}$ is then
$F_{R}=1 / t_{r}$
for amplitude-keyed radio-frequency carrier. Bandwidth is
$F_{R}=\frac{1}{i_{p}}(m+1)$
for frequency-keyed radio-frequency carrier where $m$ is the index of modulation.

## Signal-fo-noise rafio

The signal/noise improvement factors (NIF) for the pulse subcarrier are as follows:

Pulse-amplitude modulation: If the minimum bandwidth, is used for transmission of PAM pulses, the signal/noise ratio at the receiver output is equal to that at the input to the receiver. The improvement factor is therefore unity.
Pulse-position modulation: By the use of wider bandwidths, an improvement in the signal/noise ratio at the receiver output may be obtained. This improvement is similar to that obtained by frequency modulation applied to a continuous-wave carrier. Since PPM is a constant-amplitude method of transmission, amplitude noise variations may be removed by limiting and clipping the pulses in the receiver. An improvement threshold is then established at which the signal/noise power ratio $s / n$ at the receiver output is closely given by

$$
s / n=160\left(F_{v} t_{m}\right)^{2} \frac{f_{p}}{f_{n}-f_{l}}
$$

where $t_{m}$ is the peak modulation displacement.
Pulse-code modulation: The output signal/noise ratio is extremely large after the improvement threshold is exceeded. However, because of the random nature of noise peaks, the exact threshold is indeterminate. The output

## Pulse modulation

signal/noise ratio in decibels can be closely given in terms of the input power ratio by
$($ decibels output $s / n) \approx \frac{4.4}{N} \times($ input $s / n)$
where $N$ is the order of the code.
For a binary-PCM system, $N=2$ and, therefore,
(decibels output $s / n)=2.2 \times($ input $s / n)$
The overall radio-frequency-transmission signal/noise ratio is determined by the product of the transmission and the pulse-subcarrier improvement factors. To calculate the overall output $s / n$ ratio, the pulse-subcarrier signal/noise ratio is first determined using the radio-frequency modulationimprovement formula. This value of pulse $s / n$ is substitut $\begin{aligned} & d \\ & \text { as the input } s / n \\ & n\end{aligned}$ in the above equations.

## Quantization

In generating pulse-code modulation, the process of quantization is introduced to enable the transformation of the sampled signal amplitude into a pulse code. This process divides the signal amplitude into a number of discrete levels. Quantization introduces a type of distortion that, because of its random nature, resembles noise. This distortion varies with the number of levels used to quantize the signal. The percent distortion $D$ is given by $D=\frac{1}{\sqrt{6 L}} \times 100$
where $L$ is the number of levels on one side of the zero axis.

## Time-division multiplex

Pulse modulation is commonly used in time-division-multiplex systems. Because of the time space available between the modulated pulses, other pulses corresponding to other signal channels can be inserted if they are


Fig. 8-Time-multiplex train of subcarrier pulses for 8 channels and marker pulse $M$ for synchronization of receiver with transmitter.

## 290

Pulse modulation continued
in frequency synchronism. A multiplex train of pulses is shown in Fig. 8. It is common practice to use a channel or a portion of a channel for synchronization between the transmitter and the receiver. This pulse is shown as $M$ in Fig. 8. This synchronizing pulse may be separated from the signal-carrying pulses by giving it some unique characteristic such as modulation at a submultiple of the sampling rate, wider duration, or by using two or more pulses with a fixed spacing.
An important characteristic of a multiplex system is the interchannel crosstalk. Such crosstalk can be kept to a reasonably low value by preventing excessive carryover between channel pulses.
Crosstalk between channels in a pulse-code-modulation system will arise if the carryover from the last pulse of a channel does not decay to one-half or less of the amplitude of the pulse at the time of the next channel.
For pulse-amplitude modulation, the requirement is more severe, since the crosstalk is directly proportional to the amplitude of the decaying pulse at the time of occurrence of the following channel. Thus if the pulse decays over a time $T$ in an exponential manner, such as might be caused by transmission through a resistance-capacitance network, the crosstalk ratio is then crosstalk ratio $=\exp \left[2 \pi F_{\mathrm{t}} T\right]$
where $F_{v}$ is measured at the 3-decibel point.
For pulse-position modulation, the crosstalk ratio under the same conditions is
crosstalk ratio $=\frac{\exp \left[2 \pi F_{0} T\right]}{\sinh \left(2 \pi F_{0} t_{m}\right)} \frac{t_{m}}{t_{r}}$

## Real form of Fourier series

For functions defined in the interval $-\pi$ to $+\pi$ or 0 to $2 \pi$, as illustrated below,

$$
\begin{align*}
f(x) & =\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty}\left(A_{n} \cos n x+B_{n} \sin n x\right) \quad x \text { in radians }  \tag{1}\\
& =\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty} C_{n} \cos \left(n x+\phi_{n}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& C_{n}=\sqrt{A_{n}^{2}+B_{n}{ }^{2}} \\
& \phi_{n}=\tan ^{-1}\left(-B_{n} / A_{n}\right)
\end{aligned}
$$



The coefficients $A_{0}, A_{n}$, and $B_{n}$ are determined by
$A_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \quad=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x$
$A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$
$B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x$

## Arbitrary expansion interval

For functions defined in the intervals $-T / 2$ to $+T / 2$ or from 0 to $T$ instead of from $-\pi$ to $+\pi$ or 0 to $2 \pi$, the Fourier expansion is given by
$f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty}\left(A_{n} \cos 2 n \frac{\pi}{T} x+B_{n} \sin 2 n \frac{\pi}{T} x\right)$
and the coefficients by
$A_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(x) \cos \frac{2 n \pi x}{T} d x=\frac{2}{T} \int_{0}^{T} f(x) \cos \frac{2 n \pi x}{T} d x$
$B_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(x) \sin \frac{2 n \pi x}{T} d x=\frac{2}{T} \int_{0}^{T} f(x) \sin \frac{2 n \pi x}{T} d x$

## 292

## Complex form of Fourier series

For functions defined in the interval $-\pi$ to $+\pi$,
$f(x)=\sum_{n=-\infty}^{n=+\infty} D_{n} \mathrm{e}^{j n x}$
where

$$
D_{n}=\frac{A_{n}-j B_{n}}{2}
$$

$D_{-n}=\frac{A_{n}+j B_{n}}{2}$

$$
D_{0}=\frac{A_{0}}{2}
$$

The summation is over negative as well as positive integral values of $n$, including zero.

$$
\begin{equation*}
D_{n}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} f(x) e^{-j n x} d x \tag{7}
\end{equation*}
$$

where $n$ takes on all positive and negative integral values including zero.
For the arbitrary expansion interval $-T / 2$ to $T / 2$ or 0 to $T$

$$
\begin{aligned}
f(x) & =\sum_{n=-\infty}^{n=+\infty} D_{n} \exp \left[j \frac{2 n \pi x}{T}\right] \\
D_{n} & =\frac{1}{T} \int_{0}^{T} f(x) \exp \left[-j \frac{2 n \pi x}{T}\right] d x
\end{aligned}
$$

## Periodic functions

When the function $f(x)$, such as shown in the illustration on page 291 is periodic, i.e., every value of the function is repeated after each $2 \pi$ interval, then the Fourier expansions will continue to be valid throughout the whole range in which the functions are periodic.

## Odd and even functions

If $f(x)$ is an odd function, i.e.,
$f(x)=-f(-x)$
then all the coefficients of the cosine terms $\left(A_{n}\right)$ vanish and the Fourier series consists of sine terms alone.

If $f(x)$ is an even function, i.e.,
$f(x)=f(-x)$
then all the coefficients of the sine terms $\left(B_{n}\right)$ vanish and the Fourier series consists of cosine terms alone, and a possible constant.

The Fourier expansions of functions in general include both cosine and sine terms. Every function capable of Fourier expansion consists of the sum of an even and an odd part:
$f(x)=\underbrace{\frac{A_{0}}{2}+\sum_{n=1}^{n=\infty} A_{n} \cos n x}_{\text {even }}+\underbrace{\sum_{n=1}^{n=\infty} B_{n} \sin n x}_{\text {odd }}$
To separate a general function $f(x)$ into its odd and even parts, use
$f(x) \equiv \underbrace{\frac{f(x)+f(-x)}{2}}_{\text {even }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd }}$
Whenever possible choose the origin so that the function to be expanded is either odd or even.

## Odd or even harmonics

An odd or even function may contain odd or even harmonics. The condition that causes a function $f(x)$ of period $2 \pi$ to have only odd harmonics in its Fourier expansion is
$f(x)=-f(x+\pi)$

The condition that causes a function $f(x)$ of period $2 \pi$ to have only even harmonics in the Fourier expansion is
$f(x)=f(x+\pi)$

To separate a general function $f(x)$ into its odd and even harmonics use
$f(x) \equiv \underbrace{\frac{f(x)+f(x+\pi)}{2}}_{\text {even harmonics }}+\underbrace{\frac{f(x)-f(x+\pi)}{2}}_{\text {odd harmonics }}$

## Odd or even harmonics continued

A periodic function may sometimes be changed from odd to even, and vice versa, but the presence of particular odd or even harmonics is unchanged by such a shift.

## Graphical solution

If the function to be analyzed is not known analytically, a solution of the Fourier integral may be approximated by graphical means.

The period of the function is divided into a number of ordinates as indicated by the graph.


The values of these ordinates are recorded and the following computations made:

	$Y_{0}$	$Y_{1}$	$Y_{2}$	$Y_{3}$	$Y_{4}$	$Y_{5}$	$Y_{6}$
		$Y_{11}$	$Y_{10}$	$Y_{9}$	$Y_{8}$	$Y_{7}$	
		$S_{0}$	$S_{1}$	$S_{2}$	$S_{3}$	$S_{4}$	$S_{5}$
Sum	$S_{6}$						
Difference		$d_{1}$	$d_{2}$	$d_{3}$	$d_{4}$	$d_{5}$	

The sum terms are arranged as follows:

	$S_{0}$	$S_{1}$	$S_{2}$	$S_{3}$	(9)	$S_{0}$	$S_{1}$
	$\mathrm{S}_{6}$	$S_{5}$	$S_{4}$			$\overline{S_{2}}$	$\overline{S_{3}}$
Sum	$\overline{S_{0}}$	$\overline{S_{1}}$	$\overline{S_{2}}$	$S_{3}$		$S_{7}$	$\mathrm{S}_{8}$
Difference	$D_{0}$	$D_{1}$	$D_{2}$				

The difference terms are as follows:


The coefficients of the Fourier series are now obtained as follows, where $A_{0}$ equals the average value, the $B_{1} \ldots n$ expressions represent the coefficients of the cosine terms, and the $A_{1} \ldots \ldots$ expressions represent the coefficients of the sine terms:
$B_{0}=\frac{\overline{S_{7}}+\overline{S_{8}}}{12}$
$B_{1}=\frac{D_{0}+0.866 D_{1}+0.5 D_{2}}{6}$
$B_{2}=\frac{\overline{S_{0}}+0.5 \overline{S_{1}}-0.5 \overline{S_{2}}-\overline{S_{3}}}{6}$
$B_{3}=\frac{D_{6}}{6}$
$B_{4}=\frac{\overline{S_{0}}-0.5 \overline{S_{1}}-0.5 \overline{S_{2}}+\overline{S_{3}}}{6}$
$B_{5}=\frac{D_{0}-0.866 D_{1}+0.5 D_{2}}{6}$
$B_{6}=\frac{\overline{S_{7}}-\overline{S_{8}}}{12}$
Also
$A_{1}=\frac{0.5 \overline{S_{4}}+0.866 \overline{S_{5}}+\overline{S_{6}}}{6}$
$A_{2}=\frac{0.866\left(D_{3}+D_{4}\right)}{6}$
$A_{3}=\frac{D_{5}}{6}$
(22)

## Graphical solution

$A_{4}=\frac{0.866\left(D_{3}-D_{4}\right)}{6}$
$A_{5}=\frac{0.5 \overline{S_{4}}-0.866 \overline{S_{5}}+\overline{S_{6}}}{6}$

## Analyses of commonly encountered waveforms

The following analyses include the time function, the corresponding frequency function, and the coefficients of the Fourier series for all harmonics Inth order). The symbols used are

$$
\begin{aligned}
A & =\text { pulse amplitude } \\
T & =\text { period } \\
t_{0} & =\text { pulse width } \\
t_{1} & =\text { pulse build-up time } \\
t_{2} & =\text { pulse decay time } \\
n & =\text { order of harmonic } \\
C_{n} & =\text { amplitude of } n \text {th harmonic } \\
\theta_{n} & =\text { phase angle of } n \text {th harmonic } \\
A_{\text {asv }} & =\text { average value of function } \\
& =\frac{1}{T} \int_{0}^{T} y(t) \text { di } \\
A_{\text {rms }} & =r o o t-m e a n-s q u a r e ~ v a l u e ~ o f ~ f u n c t i o n ~ \\
& =\left\{\frac{1}{T} \int_{0}^{T}[y(t)]^{2} d t\right\}^{\frac{1}{2}}
\end{aligned}
$$

The frequency function is a plot of the envelope of the amplitudes $C_{n}$ of the harmonics versus frequency $F=1 / T$., with $1 \leqslant n \leqslant \infty$. The directcurrent term is shown by $A_{a v}$. The ratio $n=F / f_{0}=f_{0} / T$ determines the number of harmonics that lie between $F=0$ and $n F / f_{0}=1$.
As an example, consider a rectangular pulse where $A_{a v}=A / 4$ and $A_{\text {rws }}=A / 2$. Then,
$C_{n}=2 A_{\mathrm{av}}\left(\frac{\sin \frac{\pi n F}{f_{0}}}{\pi n F / f_{0}}\right)=2 A_{\mathrm{av}}\left(\frac{\sin \frac{\pi n}{4}}{\pi n / 4}\right)$

If is seen that the even harmonics disappear. The amplitude coefficients may be read directly from the graph of the frequency function for the rectangular pulse.

$\boldsymbol{n}$	$\boldsymbol{n F} / \boldsymbol{f}_{0}$	$\boldsymbol{C}_{n} / \boldsymbol{A}_{\mathrm{av}}$	amplitudes
1	0.25	1.8	$C_{1}=0.45 \mathrm{~A}$
2	0.50	1.35	$C_{2}=0.34 \mathrm{~A}$
3	0.75	0.64	$C_{3}=0.16 \mathrm{~A}$
4	1.00	0	$C_{1}=0$

The frequency function for this case is as shown at right.
Alternatively, the graph (as shown below) for the $(\sin x) / x$ function, where $y(x)$ is even, may be used to evaluate the amplitude coefficients.


continued Analyses of commonly encountered waveforms



** $\nabla /$ "



Clipped sawtooth wave

$300$


FOURIER WAVEFORM ANALYSIS $S U$

$302$



## General

The formulas compiled below apply to transmission lines in the steady state. They give the voltage, impedance, etc., at a point 2 on the line with respect to the values at a reference point 1 (Fig. II. Point 2 may be either on the source side or on the load side of 1 , provided in the latter case, that a minus sign is placed before $x$ and $\theta$ in the formulas. The minus sign may then be cleared through the hyperbolic or circular functions; thus,
$\sinh (-\gamma x)=-\sinh \gamma x$, etc.
The formulas for small attenuation are obtained by neglecting the terms $\alpha^{2} x^{2}$ and higher powers in the expansions of $\boldsymbol{\epsilon}^{a x}$, etc. Thus, when
$\alpha x=\frac{\alpha}{\beta} \theta=0.1$ neper
lor about 1 decibell, the error in the approximate formulas is of the order of 1 percent.


Fig. 1-Generalized transmission line showing reference points and sign conventions.

## Symbols and sign conventions

Voltage and current symbols usually represent the alternating-current complex sinusoid, with magnitude equal to the root-mean-square value of the quantity. Referring to Fig. 1, all voltages $E$ represent the potential of conductor $w_{1}$ with respect to the potential of $w_{2}$. Currents $I$ refer to current in $w_{1}$, and are positive when flowing toward the load.

Symbols carrying subscript 1 refer to reference point 1 , and subscript 2 to the other point, 2.

Certain quantities, namely $C, c, f, L, T, v$, and $\omega$ are shown with an optional set of units in parentheses. Either the standard units or the optional units may be used, provided the same set is used throughout.

## Symbols and sign conventions

$B_{m}=$ susceptive component of $Y_{m}$ in mhos
$C=$ capacitance of line in farads/unit length (microfarads/unit length)
$\begin{aligned} c= & \text { velocity of light in units of length/second lunits of length/micro. } \\ & \text { second) }\end{aligned}$
$E=$ voltage (root-mean-square complex sinusoid) in volts
${ }_{s} E=$ voltage of forward wave, traveling toward load
${ }_{r} E=$ voltage of reflected wave
$\left|E_{\text {flat }}\right|=$ root-mean-square voltage when standing-wave ratio $=1.0$
$\left|E_{\text {uax }}\right|=$ root-mean-square voltage at crest of standing wave
$\left|E_{\text {min }}\right|=$ root-mean-square voltage at trough of standing wave
$e=$ instantaneous voltage
$f=$ frequency in cycles/second (megacycles/second)
$G=$ conductance of line in mhos/unit length
$\mathrm{G}_{m}=$ conductive component of $Y_{m}$ in mhos
$g_{a}=Y_{a} / Y_{0}=$ normalized admittance at voltage standing-wave maximum
$g_{b}=Y_{b} / Y_{0}=$ normalized admittance at voltage standing-wave minimum
$I=$ current (root-mean-square complex sinusoid) in amperes
$J=$ current of forward wave, traveling toward load
${ }_{r} I=$ current of reflected wave
$i=$ instantaneous current
$L=$ inductance of line in henries/unit length Imicrohenries/unit length)
$P=$ power in watts
(pf) $=\mathrm{G} / \omega \mathrm{C}=$ power factor of dielectric
$R=$ resistance of tine in ohms/unit length
$R_{m}=$ resistive component of $Z_{m}$ in ohms
$r_{a}=Z_{a} / Z_{0}=$ normalized impedance at voltage standing-wave maximum
$r_{b}=Z_{b} / Z_{0}=$ normalized impedance at voltage standing-wave minimum

## Symbols and sign conventions continued

(swr) = voltage standing-wave ratio
$T=$ delay of line in seconds/unit length (microseconds/unit length)
$v=$ phase velocity of propagation in units of length/second lunits of length/microsecond)
$X_{m}=$ reactive component of $Z_{m}$ in ohms
$x=$ distance between points 1 and 2 in units of length Isee Fig. I regarding signs)
$Y_{1}=G_{1}+j B_{1}=1 / Z_{1}=$ admittance in mhos looking toward load from point 1
$Y_{0}=G_{0}+j B_{0}=1 / Z_{0}=$ characteristic admittance of line in mhos
$Z_{1}=R_{1}+j X_{1}=$ impedance in ohms looking toward load from point 1
$Z_{0}=R_{0}+i X_{0}=$ characteristic impedance of line in ohms
$Z_{\mathrm{oc}}=$ input impedance of a line open-circuited at the far end
$Z_{\text {se }}=$ input impedance of a line short-circuited at the far end
$\alpha=$ attenuation constant $=$ nepers/unit length
$=0.1151 \times$ decibels $/$ unit length
$\beta=$ phase constant in radians/unit length
$\Gamma=|\Gamma| / 2 \psi=$ reflection coefficient
$\gamma=\alpha+\beta \beta=$ propagation constant
$\epsilon=$ base of natural logarithms $=2.718$; or dielectric constant of medium (relative to air), according to context
$\eta=$ efficiency (fractionall
$\theta=\beta x=$ electrical length or angle of line in radians
$\theta^{\circ}=57.3 \theta=$ electrical angle of line in degrees
$\lambda=$ wavelength in units of length
$\lambda_{0}=$ wavelength in free space
$\phi=$ time phase angle of complex voltage at voltage standing-wave maximum
$\psi=$ half the angle of the reflection coefficient $=$ electrical angle to nearest voltage standing-wave maximum toward source
$\omega=2 \pi f=$ angular velocity in radians/second $($ radians $/$ microsecond)

## Fundamental quantities and line parameters

$$
\begin{aligned}
d E / d x & =(R+j \omega L) I \\
d^{2} E / d x^{2} & =\gamma^{2} E \\
d I / d x & =(G+j \omega C) E \\
d^{2} I / d x^{2} & =\gamma^{2} I \\
\gamma & =\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)} \\
& =j \omega \sqrt{L C} \sqrt{(1-j R / \omega L)(1-j G / \omega C)} \\
\alpha & =\left\{\frac{1}{2}\left[\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}+R G-\omega^{2} L C\right]\right\}^{\frac{1}{2}} \\
\beta & =\left\{\frac{1}{2}\left[\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)}-R G+\omega^{2} L C\right]\right\}^{\frac{1}{2}} \\
\gamma x & =\alpha x+j \beta x=\frac{\alpha}{\beta} \theta+j \theta \\
\theta & =\beta x=2 \pi x / \lambda=2 \pi f T_{x} \\
\theta^{\circ} & =57.3 \theta=360 x / \lambda=360 f T_{x} \\
Z_{0} & =\frac{1}{Y_{0}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}=\sqrt{\frac{L}{C}} \times \sqrt{\frac{1-j R / \omega L}{1-j G / \omega C}}=R_{0}\left(1+j \frac{X_{0}}{R_{0}}\right)} \\
Y_{0} & =1 / Z_{0}=G 0\left(1+j B_{0} / G_{0}\right) \\
1 / T & =v=R=\omega / \beta \\
\beta & =\omega / v=\omega T=2 \pi / \lambda
\end{aligned}
$$

a. Special case-distortionless line: when $R / L=G / C$, the quantities $Z_{0}$ and $\alpha$ are independent of frequency

$$
\begin{aligned}
X_{0} & =0 \\
\alpha & =R / R_{0} \\
Z_{0} & =R_{0}+j 0=\sqrt{L / C} \\
\beta & =\omega \sqrt{L C}
\end{aligned}
$$

b. For small attenuation: $R / \omega L$ and $G / \omega C$ are small
$\gamma=j \omega \sqrt{L C}\left[1-j\left(\frac{R}{2 \omega L}+\frac{G}{2 \omega C}\right)\right]=j \beta\left(1-j \frac{\alpha}{\beta}\right)$
$\beta=\omega \sqrt{L C}$
$T=1 / v=\sqrt{L C}$
$\frac{\alpha}{\beta}=\frac{R}{2 \omega L}+\frac{G}{2 \omega C}=\frac{R}{2 \omega L}+\frac{(p f)}{2}=$ attenuation in nepers/radian

## 308

Fundamental quantities and line parameters continued
$\alpha=\frac{R}{2} \sqrt{\frac{C}{L}}+\frac{G}{2} \sqrt{\frac{L}{C}}=\frac{R}{2 R_{0}}+\pi \frac{(\mathrm{pf})}{\lambda}=\frac{R}{2 R_{0}}+\frac{(\mathrm{pf}) \beta}{2}$
where $R$ and $G$ vary with frequency, while $L, C$, and (pf) are nearly independent of frequency.

$$
\left.\begin{array}{rl}
Z_{0} & =\frac{1}{Y_{0}}=\sqrt{\frac{L}{C}}\left[1-j\left(\frac{R}{2 \omega L}-\frac{G}{2 \omega C}\right)\right]=R_{0}\left(1+j \frac{X_{0}}{R_{0}}\right) \\
& =\frac{1}{G_{0}\left(1+j B_{0} / G_{0}\right)}=\frac{1}{G_{0}}\left(1-j \frac{B_{0}}{G_{0}}\right) \\
R_{0} & =1 / G_{0}=\sqrt{L / C} \\
\frac{B_{0}}{G_{0}} & =-\frac{X_{0}}{R_{0}}=\frac{R}{2 \omega L}-\frac{(p f)}{2} \\
X_{0} & =-\frac{R}{2 \omega \sqrt{L C}}+\frac{G}{2 \omega C} \sqrt{\frac{L}{C}}=-\frac{R \lambda}{4 \pi}+\frac{(p f)}{2} R_{0} \\
L & =1.016 R_{0} \sqrt{\epsilon} \times 10^{-3} \text { microhenries/foot } \\
& =\frac{1}{3} R_{0} \sqrt{\epsilon} \times 10^{-4} \text { microhenries/centimeter } \\
C & =1.016 \frac{\sqrt{\epsilon}}{R_{0}} \times 10^{-3} \text { microfarads/foot } \\
& =\frac{\sqrt{\epsilon}}{3 R_{0}} \times 10^{-4} \text { microfarads/centimeter } \\
v / c & =1 / \sqrt{\epsilon} \\
\lambda & =\lambda_{0} v / c=c / f \sqrt{\epsilon}
\end{array}\right\}=\frac{\text { dieled }}{\text { relati }}
$$

## Voltages and currents

$$
\begin{aligned}
E_{2} & ={ }_{f} E_{2}+{ }_{r} E_{2}={ }_{f} E_{1} \epsilon^{\gamma x}+{ }_{r} E_{1} \epsilon^{-\gamma x}=E_{1}\left(\frac{Z_{1}+Z_{0}}{2 Z_{1}} \epsilon^{\gamma x}+\frac{Z_{1}-Z_{0}}{2 Z_{1}} \epsilon^{-\gamma x}\right) \\
& =\frac{E_{1}+I_{1} Z_{0}}{2} \epsilon^{\gamma x}+\frac{E_{1}-I_{1} Z_{0}}{2} \epsilon^{-\gamma x} \\
& =E_{1}\left[\cosh \gamma x+\left(Z_{0} / Z_{1}\right) \sinh \gamma x\right]=E_{1} \cosh \gamma x+I_{1} Z_{0} \sinh \gamma x \\
& =\frac{E_{1}}{1+\Gamma_{1}}\left(\epsilon^{\gamma x}+\Gamma_{1} \epsilon^{-\gamma x}\right)
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & ={ }_{f} I_{2}+{ }_{r} I_{2}={ }_{f} I_{1} \epsilon^{\gamma x}+{ }_{r} I_{1} \epsilon^{-\gamma x}=Y_{0}\left({ }_{f} E_{1} \epsilon^{\gamma x}-{ }_{r} E_{1} \epsilon^{-\gamma x}\right) \\
& =I_{1}\left(\frac{Z_{0}+Z_{1}}{2 Z_{0}} \epsilon^{\gamma x}+\frac{Z_{0}-Z_{1}}{2 Z_{0}} \epsilon^{-\gamma x}\right)=\frac{I_{1}+E_{1} Y_{0}}{2} \epsilon^{\gamma x}+\frac{I_{1}-E_{1} Y_{0}}{2} \epsilon^{-\gamma x} \\
& =I_{1}\left(\cosh \gamma x+\frac{Z_{1}}{Z_{0}} \sinh \gamma x\right) \\
& =I_{1} \cosh \gamma x+E_{1} Y_{0} \sinh \gamma x=\frac{I_{1}}{1-\Gamma_{1}}\left(\epsilon^{\gamma x}-\Gamma_{1} \epsilon^{-\gamma x}\right)
\end{aligned}
$$

a. When point No. I is at a voltage maximum or minimum; $x^{\prime}$ is measured from voltage maximum and $x^{\prime \prime}$ from voltage minimum:
$E_{2}=E_{\text {max }}\left[\cosh \gamma x^{\prime}+\frac{1}{(s w r)} \sinh \gamma x^{\prime}\right]$
$=E_{\mathrm{mln}}\left[\cosh \gamma x^{\prime \prime}+(\mathrm{swr}) \sinh \gamma x^{\prime \prime}\right]$
$I_{2}=I_{\max }\left[\cosh \gamma x^{\prime}+\frac{1}{(s w r)} \sinh \gamma x^{\prime}\right]$
$=I_{\min }\left[\cosh \gamma x^{\prime \prime}+(s w r) \sinh \gamma x^{\prime \prime}\right]$
When attenuation is neglected:

$$
\begin{aligned}
E_{2} & =E_{\max }\left[\cos \theta^{\prime}+j_{(\mathrm{swr})}^{1} \sin \theta^{\prime}\right] \\
& =E_{\operatorname{man}}\left[\cos \theta^{\prime \prime}+j(\mathrm{swr}) \sin \theta^{\prime \prime}\right]
\end{aligned}
$$

b. Letting $Z_{l}=$ impedance of load, $I=$ distance from load to No. 1 , and $x_{l}=$ distance from load to No. 2 :
$E_{2}=E_{1} \frac{\cosh \gamma x_{l}+\left(Z_{0} / Z_{l}\right) \sinh \gamma x_{l}}{\cosh \gamma l+\left(Z_{0} / Z_{i}\right) \sinh \gamma l}$
$I_{2}=I_{1} \frac{\cosh \gamma x_{l}+\left(Z_{l} / Z_{0}\right) \sinh \gamma x_{l}}{\cosh \gamma I+\left(Z_{l} / Z_{0}\right) \sinh \gamma I}$
c. $\mathrm{e}_{2}=\left.\sqrt{2}\right|_{\jmath} E_{1} \left\lvert\, \epsilon^{a x} \sin \left(\omega t+2 \pi \frac{x}{\lambda}-\psi_{1}+\phi\right)\right.$

$$
+\left.\sqrt{2}\right|_{r} E_{1} \left\lvert\, \epsilon^{-a x} \sin \left(\omega t-2 \pi \frac{x}{\lambda}+\psi_{1}+\phi\right)\right.
$$

$i_{2}=\sqrt{2}\left|f I_{1}\right| \epsilon^{a x} \sin \left(\omega t+2 \pi \frac{x}{\lambda}-\psi_{1}+\phi+\tan ^{-1} \frac{B_{0}}{G_{0}}\right)$

$$
+\left.\sqrt{2}\right|_{r} I_{1} \left\lvert\, \epsilon^{-a x} \sin \left(\omega t-2 \pi \frac{x}{\lambda}+\psi_{1}+\phi+\tan ^{-1} \frac{B_{0}}{G_{0}}\right)\right.
$$

d. For small attenuation:

$$
\begin{aligned}
E_{2} & =E_{1}\left[\left(1+\frac{Z_{0}}{Z_{1}} \alpha x\right) \cos \theta+j\left(\frac{Z_{0}}{Z_{1}}+\alpha x\right) \sin \theta\right] \\
I_{2} & =I_{1}\left[\left(1+\frac{Z_{1}}{Z_{0}} \alpha x\right) \cos \theta+j\left(\frac{Z_{1}}{Z_{0}}+\alpha x\right) \sin \theta\right]
\end{aligned}
$$



Fig. 3-Voltages and currents at time $t=0$ at a point $\psi$ electrical degrees to ward the load from a voltage standing-wave maximum.


Fig. 4-Abbreviated diagram of a line with zero attenuation.

$$
\begin{aligned}
I_{2} & =I_{1} \cos \theta+j E_{1} Y_{0} \sin \theta=I_{1}\left[\cos \theta+j\left(Z_{1} / Z_{0}\right) \sin \theta\right] \\
& =Y_{0}\left(I_{j} E_{1} \epsilon^{j \theta}-{ }_{r} E_{1} \epsilon^{-j \theta}\right)
\end{aligned}
$$

## Impedances and admittances

$\frac{Z_{2}}{Z_{0}}=\frac{Z_{1} \cosh \gamma x+Z_{0} \sinh \gamma x}{Z_{0} \cosh \gamma x+Z_{1} \sinh \gamma x}$
$\frac{Y_{2}}{Y_{0}}=\frac{Y_{1} \cosh \gamma x+Y_{0} \sinh \gamma x}{Y_{0} \cosh \gamma x+Y_{1} \sinh \gamma x}$
a. When $Z_{2}=$ load impedance $Z_{1}$, and $-x=$ distance / from No. 1 to load:
$\frac{Z_{l}}{Z_{0}}=\frac{Z_{1} \cosh \gamma I-Z_{0} \sinh \gamma l}{Z_{0} \cosh \gamma I-Z_{1} \sinh \gamma l}$
b. The input impedance of a line at a position of maximum or minimum voltage has the same phase angle as the characteristic impedance:
$\frac{Z_{1}}{Z_{0}}=\frac{Z_{b}}{Z_{0}}=\frac{Y_{0}}{Y_{b}}=r_{b}+j 0=\frac{1}{(s w r)}$ at a voltage minimum (current maximum).
$\frac{Y_{1}}{Y_{0}}=\frac{Y_{a}}{Z_{0}}=\frac{Z_{0}}{Z_{a}}=g_{a}+\gamma 0=\frac{1}{(s w r)}$ at a voltage maximum (current minimum).
c. When attenuation is small:
$\frac{Z_{2}}{Z_{0}}=\frac{\left(\frac{Z_{1}}{Z_{0}}+\alpha x\right)+j\left(1+\frac{Z_{1}}{Z_{0}} \alpha x\right) \tan \theta}{\left(1+\frac{Z_{1}}{Z_{0}} \alpha x\right)+j\left(\frac{Z_{1}}{Z_{0}}+\alpha x\right) \tan \theta}$
For admittances, replace $Z_{0}, Z_{1}$, and $Z_{2}$ by $Y_{0}, Y_{1}$, and $Y_{2}$, respectively. When $A$ and $B$ are real:
$\frac{A \pm j B \tan \theta}{B \pm j A \tan \theta}=\frac{2 A B \pm j\left(B^{2}-A^{2}\right) \sin 2 \theta}{\left(B^{2}+A^{2}\right)+\left(B^{2}-A^{2}\right) \cos 2 \theta}$
d. When attenuation is neglected:
$\frac{Z_{2}}{Z_{0}}=\frac{Z_{1} / Z_{0}+j \tan \theta}{1+j\left(Z_{1} / Z_{0}\right) \tan \theta}=\frac{1-j\left(Z_{1} / Z_{0}\right) \cot \theta}{Z_{1} / Z_{0}-j \cot \theta}$
and similarly for admittances.
e. When attenuation $\alpha x=\theta \alpha / \beta$ is small and (swr) is large (say $>10$ ):

For $\theta$ measured from a voltage minimum
$\frac{Z_{2}}{Z_{0}}=\left(r_{b}+\frac{\alpha}{\beta} \theta\right)\left(1+\tan ^{2} \theta\right)+j \tan \theta=\left(r_{b}+\frac{\alpha}{\beta} \theta\right) \frac{1}{\cos ^{2} \theta}+j \tan \theta$
(See Note 11

$$
\begin{aligned}
\frac{Z_{0}}{Z_{2}}=\frac{Y_{2}}{Y_{0}} & =\left(r_{b}+\frac{\alpha}{\beta} \theta\right)\left(1+\cot ^{2} \theta\right)-j \cot \theta \\
& =\left(r_{b}+\frac{\alpha}{\beta} \theta\right) \frac{1}{\sin ^{2} \theta}-j \cot \theta
\end{aligned}
$$

See Note 21

For $\theta$ measured from a voltage maximum
$\frac{Z_{0}}{Z_{2}}=\frac{Y_{2}}{Y_{0}}=\left(g_{a}+\frac{\alpha}{\beta} \theta\right)\left(1+\tan ^{2} \theta\right)+j \tan \theta$
(See Note 11
$\frac{Z_{2}}{Z_{0}}=\left(g_{a}+\frac{\alpha}{\beta} \theta\right)\left(1+\cot ^{2} \theta\right)-j \cot \theta$
(See Note 2)

Note 1: Not valid when $\theta \approx \pi / 2,3 \pi / 2$, etc., due to approximation in denominator $1+\left(r_{b}+\theta \alpha / \beta\right)^{2} \tan ^{2} \theta=1$ (or with $g_{a}$ in place of $\left.r_{b}\right)$.

Note 2: Not valid when $\theta \approx 0, \pi, 2 \pi$, etc., due to approximation in denominator $1+\left(r_{b}+\theta \alpha / \beta\right)^{2} \cot ^{2} \theta=1$ lor with $g_{a}$ in place of $\left.r_{b}\right)$. For open- or short-circuited line, valid af $\theta=0$.
f. When $x$ is an integral multiple of $\lambda / 2$ or $\lambda / 4$. For $x=n \lambda / 2$, or $\theta=n \pi$,
$\frac{Z_{2}}{Z_{0}}=\frac{\frac{Z_{1}}{Z_{0}}+\tanh n \pi \frac{\alpha}{\beta}}{1+\frac{Z_{1}}{Z_{0}} \tanh n \pi \frac{\alpha}{\beta}}$
For $x=n \lambda / 2+\lambda / 4$, or $\theta=\left(n+\frac{1}{2}\right) \pi$
$\frac{Z_{2}}{Z_{0}}=\frac{1+\frac{Z_{1}}{Z_{0}} \tanh \left(n+\frac{1}{2}\right) \pi \frac{\alpha}{\beta}}{\frac{Z_{1}}{Z_{0}}+\tanh \left(n+\frac{1}{2}\right) \pi \frac{\alpha}{\beta}}$
g. For small attenuation, with any standing-wave ratio: For $x=n \lambda / 2$, or $\theta=n \pi$, where $n$ is an integer
$\frac{Z_{2}}{Z_{0}}=\frac{\frac{Z_{1}}{Z_{0}}+n \pi \frac{\alpha}{\beta}}{1+\frac{Z_{1}}{Z_{0}} n \pi \frac{\alpha}{\beta}}$

$$
\begin{aligned}
& g_{a 2}=\frac{g_{a 1}+\alpha n \lambda / 2}{1+g_{a 1} \alpha n \lambda / 2}=\frac{1}{(\text { swr })_{2}} \\
& \text { For } x=\left(n+\frac{1}{2}\right) \lambda / 2, \text { or } \theta=\left(n+\frac{1}{2}\right) \pi, \text { where } n \text { is an integer } \\
& \frac{Z_{2}}{Z_{0}}=\frac{1+\frac{Z_{1}}{Z_{0}}\left(n+\frac{1}{2}\right) \alpha \frac{\lambda}{2}}{\frac{Z_{1}}{Z_{0}}+\left(n+\frac{1}{2}\right) \alpha \frac{\lambda}{2}} \\
& g_{b 2}=\frac{1+g_{a 1}\left(n+\frac{1}{2}\right) \frac{\alpha}{\beta} \pi}{g_{a 1}+\left(n+\frac{1}{2}\right) \frac{\alpha}{\beta} \pi}=(\text { swr) }
\end{aligned}
$$

Subscript a refers to the voltage-maximum point and $b$ to the voltage minimum. In the above formulas, the subscripts $a$ and $b$ may be interchanged, and/or $r$ may be substituted in place of $g$.

## Lines open- or short-circuited at the far end

Point No. 1 is the open-or short-circuited end of the line, from which $x$ and $\theta$ are measured.
a. Voltages and currents:

Use formulas of "Voltages and currents" section p. 308 with the following conditions

Open-circuited line: $\quad \Gamma_{1}=1.00 / 0^{\circ}=1.00 ; \quad{ }_{r} E_{1}={ }_{f} E_{1}=E_{1} / 2 ;$
${ }_{s} I_{1}=-{ }_{f} I_{1} ; \quad I_{1}=0 ; \quad Z_{1}=\infty$.
Short-circuited line: $\Gamma_{1}=1.00 / 180^{\circ}=-1.00 ; \quad, E_{1}=-{ }_{j} E_{1 ;}$ $E_{1}=0 ; \quad \boldsymbol{r} l_{1}={ }_{f} I_{1}=I_{1} / 2 ; \quad Z_{1}=0$.
b. Impedances and admittances:
$Z_{\infty}=Z_{0} \operatorname{coth} \gamma x$
$Z_{\mathrm{sc}}=Z_{0} \tanh \gamma \times$
$Y_{\mathrm{oc}}=Y_{0} \tanh \gamma x$
$\gamma_{\mathrm{sc}}=Y_{0}$ coth $\gamma x$

## Lines open- or short-circuited at the far end

c. For small attenuation:

Use formulas for large (swr) in paragraph e, pp. 311-312, with the following conditions
Open-circuited line: $g_{u}=0$
Short-circuited line: $r_{b}=0$
d. When attenuation is neglected:
$Z_{o c}=-J R_{0} \cot \theta$
$Z_{\mathrm{sc}}=j R_{0} \tan \theta$
$Y_{\mathrm{oc}}=j \mathrm{G}_{0} \tan \theta$
$Y_{\mathrm{BC}}=-j \mathrm{G}_{0} \cot \theta$
e. Relationships between $Z_{o c}$ and $Z_{\mathrm{sc}}$ :

$$
\begin{aligned}
& \sqrt{Z_{\mathrm{oc}} Z_{\mathrm{sc}}}=Z_{0} \\
& \pm \sqrt{Z_{\mathrm{sc}} / Z_{\mathrm{oc}}}=\tanh \gamma x=\frac{\alpha}{\beta} \theta\left(1+\tan ^{2} \theta\right)+j \tan \theta=\frac{\alpha \theta}{\beta \cos ^{2} \theta}+j \tan \theta \\
& \quad=j \tan \theta\left[1-j \frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta 1]=j \tan \theta\left(1-j \frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}\right)\right.
\end{aligned}
$$

Note: Above approximations not valid for $\theta \approx \pi / 2,3 \pi / 2$, etc.

$$
\begin{aligned}
& \pm \sqrt{Z_{\mathrm{oc}} / Z_{\mathrm{sc}}}=\operatorname{coth} \gamma x=\frac{\alpha}{\beta} \theta\left(1+\cot ^{2} \theta\right)-j \cot \theta=\frac{\alpha \theta}{\beta \sin ^{2} \theta}-j \cot \theta \\
& \quad=-j \cot \theta\left[1+j \frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)\right]=-j \cot \theta\left(1+j \frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}\right)
\end{aligned}
$$

Note: Above approximations not valid for $\theta \approx \pi, 2 \pi$, etc.
f. When attenuation is small (except for $\theta=n \pi / 2, n=1,2,3 \ldots$ ):
$\pm \sqrt{\frac{Z_{s c}}{Z_{o c}}}= \pm \sqrt{\frac{Y_{o c}}{\gamma_{s c}}}= \pm j \sqrt{-\frac{C_{o c}}{C_{s c}}}\left[1-j \frac{1}{2}\left(\frac{G_{o c}}{\omega C_{o c}}-\frac{G_{s c}}{\omega C_{s c}}\right)\right]$
Where $Y_{o c}=G_{o c}+j \omega C_{o c}$ and $Y_{s c}=G_{s c}+j \omega C_{s c}$. The + sign is to be used before the radical when $C_{u c}$ is positive, and the - sign when $C_{o c}$ is negative.

## Lines open- or shor-circuited at the far end

g. $R /|X|$ component of input impedance of low-attenuation nonresonant line: Short-circuited line lexcept when $\theta=\pi / 2,3 \pi / 2$, etc.)

$$
\frac{R_{2}}{\left|X_{2}\right|}=\frac{G_{2}}{\left|B_{2}\right|}=\left|\frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)+\frac{B_{0}}{G_{0}}\right|=\left|\frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}+\frac{B_{0}}{G_{0}}\right|
$$

Open-circuited line lexcept when $\theta=\pi, 2 \pi$, etc.)

$$
\frac{R_{2}}{\left|X_{2}\right|}=\frac{G_{2}}{\left|B_{2}\right|}=\left|\frac{\alpha}{\beta} \theta(\tan \theta+\cot \theta)-\frac{B_{0}}{G_{0}}\right|=\left|\frac{\alpha}{\beta} \frac{2 \theta}{\sin 2 \theta}-\frac{B_{0}}{G_{0}}\right|
$$

h. Input admittance and lumped-circuit equivalent of resonant low-loss lines:
$\theta=n \pi / 2=$ length of line at resonance frequency $f_{0}$
$n=1,2,3 \ldots$ even or odd as stated in Fig. 5
$\theta_{1}$ or $\pi / 2-\theta_{1}$ is electrical length at $f_{0}$ from end of line to tap point The admittance looking into the line at the tap point $\theta_{1}$ is approximately $Y=G+j B=\frac{n \pi Y_{0}}{2 \sin ^{2} \theta_{1}}\left(\frac{\alpha}{\beta}+j \frac{\Delta f}{f_{0}}\right)=\frac{n \pi Y_{0}}{4 \sin ^{2} \theta_{1}}\left(\frac{1}{Q}+j \frac{2 \Delta f}{f_{0}}\right)$
provided $\Delta f / f_{0}=\left(f-f_{0}\right) / f_{0}$ is small. Formula not valid when


Fig. 5-Resonant low-loss transmission lines and their equivalont lumped circuit.

## 316

## Lines open- or short-circuited at the far end

$\theta_{1}=0, \pi, 2 \pi$, etc. A further condition for its accuracy is that
$\left|\theta \frac{\Delta f}{f_{0}} \cot \theta_{1}\right| \ll 1.0$

Such a resonant line is approximately equivalent to a lumped LCG parallel circuit, where

$$
\omega_{0}^{2} L_{1} C_{1}=\left(2 \pi f_{0}\right)^{2} L_{1} C_{1}=1
$$

Admittance of the equivalent circuit is

$$
\begin{aligned}
Y & =G+j\left(\omega C_{1}-\frac{1}{\omega L_{1}}\right) \\
& \approx \omega_{0} C_{1}\left(\frac{1}{Q}+j \frac{2 \Delta f}{f_{0}}\right)
\end{aligned}
$$

Then, subject to the conditions stated above,
$L_{1}=\frac{4 \sin ^{2} \theta_{1}}{n \pi \omega_{0} Y_{0}}$
$C_{1}=\frac{n \pi Y_{0}}{4 \omega_{0} \sin ^{2} \theta_{1}}=\frac{n Y_{0}}{8 f_{0} \sin ^{2} \theta_{1}}$
$G=\frac{n \pi Y_{0}}{2 \sin ^{2} \theta_{1}} \frac{\alpha}{\beta}=\frac{n \pi Y_{0}}{4 Q \sin ^{2} \theta_{1}}$
$Q=\frac{\omega_{0} C_{1}}{G}=\frac{1}{\omega_{0} L_{1} G}=\frac{\beta}{2 \alpha}$
Referring to the section above on "Fundamental quantities", page 307,
$Q=\frac{\beta}{2 \alpha}$
$=\frac{\omega L}{R}$ when dielectric losses are negligible
$=\frac{1}{(\mathrm{pf})} \quad \begin{aligned} & \text { when conductor losses are negligible } \\ & \text { compared to dielectric losses }\end{aligned}$

Example: Find the equivalent circuit of a resonant $\lambda / 4$ line shorted at one end, open at the other, if the line has a characteristic impedance of 70 ohms, a measured $Q$ of 1000 , is tapped at a point 10 electrical degrees from the shorted end, and is resonant at 200 megacycles.

From the data,
$Y_{0}=1 / 70, Q=1000, \theta_{1}=10^{\circ}, \sin \theta_{1}=0.174, \omega_{0}=12.57 \times 10^{8}$, and $\mathrm{n}=1$; therefore
$L_{1}=\frac{4(0.174)^{2}}{\pi(12.57) \times 10^{8} / 70}=2.15 \times 10^{-9}$ henry, or 2.15 millimicrohenries
$C_{1}=\frac{\pi / 70}{4(12.57) \times 10^{8}(0.174)^{2}}=2.95 \times 10^{-10}$ farad, or $295 \begin{gathered}\text { micromicro- } \\ \text { farads }\end{gathered}$
$G=\frac{\pi / 70}{4(1000)(0.174)^{2}}=3.70 \times 10^{-4}$ mho, or 370 micromhos

## Reflection coefficient, standing-wave ratio, and power

$$
\Gamma_{1}=\frac{{ }_{r} E_{1}}{{ }_{f} E_{1}}=-\frac{r I_{1}}{{ }_{f} I_{1}}=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}=\frac{Y_{0}-Y_{1}}{Y_{0}+Y_{1}}=\left|\Gamma_{1}\right| / 2 \psi_{1}
$$

where $\psi_{1}$ is the electrical angle to the nearest voltage maximum on the generator side of point No. 1 (Figs. 2, 3, and 4).

$$
\begin{aligned}
& \Gamma_{2}=\Gamma_{1} \epsilon^{-2 a x} /-2 \theta \\
& \left|\Gamma_{2}\right|=\left|\Gamma_{1}\right| / 10^{d b / 10} \\
& Z_{1}=\frac{E_{1}}{I_{1}}=\frac{{ }_{r} E_{1}+{ }_{r} E_{1}}{{ }_{j} I_{1}+{ }_{r} I_{1}}=Z_{0} \frac{1+\Gamma_{1}}{1-\Gamma_{1}} \\
& \frac{Z_{2}}{Z_{0}}=\frac{1+\Gamma_{2}}{1-\Gamma_{2}}=\frac{1+\left|\Gamma_{1}\right| / 2 \psi_{1}-2 \theta}{1-\left|\Gamma_{1}\right| / 2 \psi_{1}-2 \theta} \text { (neglecting attenuation) } \\
& \left({ }_{s w r}\right)=\left|\frac{E_{\max }}{E_{\mathrm{man}}}\right|=\left|\frac{I_{\max }}{I_{\mathrm{man}}}\right|=\left|\frac{{ }_{\mathrm{m}} E|+|{ }_{\mathrm{r}} E}{{ }_{f} E|-|{ }_{r} E}\right|=\left|\frac{{ }_{f} I|+|{ }_{r} I}{{ }_{\rho} I \mid-{ }_{r} I}\right| \\
& =\frac{1+|\Gamma|}{1-|\Gamma|}=r_{a}=\frac{1}{g_{a}}=g_{b}=\frac{1}{r_{b}} \\
& |\Gamma|=\frac{(s w r)-1}{(s w r)+1}
\end{aligned}
$$

## Reflection coefficient, standing-wave ratio, and power continued

a. When the angle $X_{0} / R_{0}$ of the surge impedance is negligibly small, the net power flowing toward the load is given by
$P_{1}=G_{0}\left(\left|{ }_{f} E_{1}\right|^{2}-\left|{ }_{f} E_{1}\right|^{2}\right)=\left|f E_{1}\right|^{2} G_{0}\left(1-\left|\Gamma_{1}\right|^{2}\right)=\left|E_{\text {max }} E_{\text {tuin }}\right| / R_{0}$
where $|E|$ is the root-mean-square voltage.
$P_{2}=\left|f E_{1}\right|^{2} G_{0}\left|\epsilon^{2(\alpha / \beta) \theta}-\left|\Gamma_{1}\right| \epsilon^{-2(\alpha / \beta) \theta}\right|$
b. Efficiency:
$\eta=\frac{P_{1}}{P_{2}}=\frac{\left.1-\mid \Gamma_{1}\right\}^{2}}{\epsilon^{2(\alpha / \beta) \theta}-\left|\Gamma_{1}\right|^{2} \epsilon^{-2(\alpha / \beta) \theta}}$
When the load matches the line, $\Gamma_{1}=0$ and
$\eta_{\text {max }}=\epsilon^{-2(\alpha / \beta) \theta}$
For any load,
$\eta=\frac{1-\left|\Gamma_{1}\right|^{2}}{1-\left|\Gamma_{1}\right|^{2} \eta_{\max }^{2}} \eta_{\max }$
c. Attenuation in nepers $=\frac{1}{2} \log _{e} \frac{P_{2}}{P_{1}}=0.1151 \times$ (attenuation in decibels)

For a matched line, attenuation $=(\alpha / \beta) \theta=\alpha \times$ nepers.
Attenuation in decibels $=10 \log _{10} \frac{P_{2}}{P_{1}}=8.686 \times$ (attenuation in nepers)
When $2(\alpha / \beta) \theta$ is small,
$\frac{P_{2}}{P_{1}}=1+2 \frac{\alpha}{\beta} \theta \frac{1+\left|\Gamma_{1}\right|^{2}}{1-\left|\Gamma_{1}\right|^{2}}$ and
decibels/wavelength $=10 \log _{10}\left(1+4 \pi \frac{\alpha}{\beta} \frac{1+\left|\Gamma_{1}\right|^{2}}{1-\left|\Gamma_{1}\right|^{2}}\right)$
d. For the same power flowing in a line with standing waves as in a matched, or "flat," line:

$$
\begin{aligned}
P & =\left|E_{\text {nat }}\right|^{2} / R_{0} \\
\left|E_{\text {max }}\right| & =\left|E_{\text {nat }}\right| \sqrt{\text { (swr) }} \\
\left|E_{\text {nuta }}\right| & =\left|E_{\text {nat }}\right| / \sqrt{(\mathrm{swr})}
\end{aligned}
$$

## Reflection coefficient, standing-wave ratio, and power continued

$$
\begin{aligned}
& \left|{ }_{f} E\right|=\frac{\left|E_{\text {fat }}\right|}{2}\left[\sqrt{(s w r)}+\frac{1}{\sqrt{(s w r)}}\right] \\
& \left.\right|_{r} E \left\lvert\,=\frac{\left|E_{\text {nat }}\right|}{2}\left[\sqrt{(s w r)}-\frac{1}{\sqrt{(s w r)}}\right]\right.
\end{aligned}
$$

When the loss is small, so that (swr) is nearly constant over the entire length,
$\frac{\text { (power loss) }}{\text { (loss for flat line) }}=\frac{1}{2}\left[(s w r)+\frac{1}{(s w r)}\right]$
e. When a load is connected to a generator through a line, the generator output impedance being equal to the $Z_{0}$ of the line, then, for any load impedance,
$\frac{P}{P_{m}}=1-|\Gamma|^{2}=\frac{4(s w r)}{[1+(s w r)]^{2}}$
where

$$
P=\text { power delivered to the load }
$$

$P_{m}=$ power that would be delivered to a load impedance matching the line I and Iswrl are the values at the load.

## Attenuation and resistance of transmission lines

## at ultra-high frequencies

$$
A=4.35 \frac{R_{t}}{R_{0}}+2.78 \sqrt{\epsilon}(\mathrm{pf}) f=\text { attenuation in decibels per } 100 \text { feet }
$$ where

$R_{t}=$ total line resistance in ohms per 100 feet $(\mathrm{pf})=$ power factor of dielectric medium
$f=$ frequency in megacycles

$$
\begin{aligned}
R_{i} & =0.1\left(\frac{1}{d}+\frac{1}{D}\right) \sqrt{f} \quad \text { for copper coaxial tine } \\
& =\frac{0.2}{d} \sqrt{f} \quad \text { for copper two-wire open line }
\end{aligned}
$$

$d=$ diameter of conductors (coaxial line center conductor) in inches
$D=$ diameter of inner surface of outer coaxial conductor in inches

## Measurement of impedance with slotted line

## Symbols

$$
\begin{aligned}
Z_{0} & =\text { characteristic impedance } & \lambda & =\text { wo } \\
& \text { of line } & \chi & =\text { dis } \\
Z & =\text { impedance of load } & & \text { (the unknown) }
\end{aligned}
$$

where $f$ is in megacycles and $\boldsymbol{X}$ in centimeters.


## Procedure

Measure $\lambda / 2, \chi, V_{\text {max }}$, and $V_{\text {min }}$
Determine
$Z_{1} / Z_{0}=1 /(s w r)=V_{\text {min }} / V_{\text {max }}$
$($ wavelengths toward load $)=\chi \lambda=0.5 \chi /(\lambda / 2)$
Then $Z / Z_{0}$ may be found on an impedance chart. For example, suppose
$V_{\text {min }} / V_{\text {max }}=0.60$ and $\chi / \lambda=0.40$
Refer to the chart, such as the Smith chart reproduced in part here. Lay off with slider or dividers the distance on the vertical axis from the center point (marked 1.0 ) to 0.60 . Pass around the circumference of the chart in a counterclockwise direction from the starting point 0 to the position 0.40, toward the load. Read off the resistance and reactance components of the normalized load impedance $Z / Z_{0}$ at the point of the dividers. Then it is found that
$Z=Z_{0} 10.77+j 0.391$
Similarly, there may be found the admittance of the load. Determine
$Y_{1} / Y_{0}=V_{\text {max }} / V_{\text {miln }}=1.67$

## Measurement of impedance with slotted line

in the above example. Now pass around the chart counterclockwise through $\chi / \lambda=0.40$, starting at 0.25 and ending at 0.15 . Read off the components of the normalized admittance.

$Y=\frac{1}{Z}=\frac{1}{Z_{0}}(1.03-j 0.53)$
Alternatively, these results may be computed as follows:
$Z=R_{s}+j X_{s}=\frac{1-j(s w r) \tan \theta}{(s w r)-j \tan \theta}=\frac{2(s w r)-j\left[(s w r)^{2}-1\right] \sin 2 \theta}{\left[(s w r)^{2}+1\right]+\left[(s w r)^{2}-1\right] \cos 2 \theta}$
$Y=G+j B=\frac{1}{Z}=\frac{1}{R_{p}}-j \frac{1}{X_{p}}=\frac{2(\mathrm{swr})+j\left[(\mathrm{swr}){ }^{2}-1\right] \sin 2 \theta}{\left[(\mathrm{swr})^{2}+1\right]-\left[(\mathrm{swr})^{2}-1\right] \cos 2 \theta}$
where $R_{s}$ and $X_{s}$ are the series components of $Z$, while $R_{p}$ and $X_{p}$ are the parallel components.

## 322

## Surge impedance of uniform lines

## 0 to 210 ohms



## 0 to 700 ohms



parallel wires in air

$Z_{i 0}=\frac{138}{\sqrt{E}} \log _{10} \frac{D}{d}$
Curve is for
$\epsilon=1.00$
coaxial

## Transmission-line data

type of line	characteristic impedance
A. single coaxial line	$\begin{aligned} Z_{0} & =\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{D}{d} \\ & =\frac{60}{\sqrt{\epsilon}} \log _{e} \frac{D}{d} \\ \epsilon & =\text { dielectric constant } \\ & =1 \text { in air } \end{aligned}$
B. balanced shielded line	$\begin{aligned} & \text { For } D \gg d, h \gg d, \\ & \begin{aligned} Z_{0} & \approx \frac{276}{\sqrt{\epsilon}} \log _{10}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ & \approx \frac{120}{\sqrt{\epsilon}} \log _{e}\left[2 v \frac{1-\sigma^{2}}{1+\sigma^{2}}\right] \\ v & =\frac{h}{d} \quad \sigma=\frac{h}{D} \end{aligned} \end{aligned}$
C. beads-dielectric $\epsilon_{1}$	For cases ( $A$ ) and ( $B$ ),   if ceramic beads are used at frequent intervals-call new surge impedance $Z_{0}{ }^{\prime}$ $Z_{0}^{\prime}=\frac{Z_{0}}{\sqrt{1+\left(\frac{\epsilon_{1}}{\epsilon}-1\right) \frac{W}{S}}}$
D. open two-wire line in air	$\begin{aligned} Z_{0} & =120 \cosh ^{-1} \frac{D}{d} \\ & \approx 276 \log _{10} \frac{2 D}{d} \\ & \approx 120 \log _{e} \frac{2 D}{d} \end{aligned}$

324
E. wires in parallel, near ground


For $d \ll D, h$,
$Z_{0}=\frac{69}{\sqrt{\epsilon}} \log _{10}\left[\frac{4 h}{d} \sqrt{1+\left(\frac{2 h}{D}\right)^{2}}\right]$
F. balanced, near ground


For $d \ll D, h$,

$$
Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10}\left[\frac{2 D}{d} \frac{1}{\sqrt{1+(D / 2 h)^{2}}}\right]
$$

G. single wire, near ground


For $d \ll h$,
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{4 h}{d}$
H. single wire, square enclosure
$Z_{0}=138 \log _{10} \rho+6.48-2.34 \mathrm{~A}$ $-0.48 B-0.12 C$
where $\rho=D / d$

$$
\begin{aligned}
& A=\frac{1+0.405 \rho^{-4}}{1-0.405 \rho^{-4}} \\
& B=\frac{1+0.163 \rho^{-8}}{1-0.163 \rho^{-8}} \\
& C=\frac{1+0.067 \rho^{-12}}{1-0.067 \rho^{-12}}
\end{aligned}
$$

I. balanced 4-wire


For $d \ll D_{1}, D_{2}$
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{2 D_{2}}{d \sqrt{1+\left(D_{2} / D_{1}\right)^{2}}}$

| J. parallel-strip line | characteristic impedance |
| :--- | :--- | :--- |
| K. five-wire line line | $Z_{0} \approx 377 \frac{w}{l}$ |

M. air coaxial with dielectric supporting wedge

$Z_{0}=\frac{138 \log _{10}(D / d)}{\sqrt{1+(\epsilon-1)(\theta / 360)}}$
$\epsilon=$ dielectric constant of wedge
$\theta=$ wedge angle in degrees

## 326


Q. balanced line between grounded parallel planes


For $d \ll D, h$,
$Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10}\left(\frac{4 h \tanh \frac{\pi D}{2 h}}{\pi d}\right)$
type of line
R. balanced line between grounded parallel planes


For $d \ll h$,
$Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10} \frac{2 h}{\pi d}$
S. single wire in trough


For $d \ll h$, $w$,
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10}\left[\frac{4 w \tanh \frac{\pi h}{w}}{\pi d}\right]$
T. balanced 2-wire line in rectangular enclosure


For $d \ll D, w, h$,
$Z_{0}=\frac{276}{\sqrt{\epsilon}}\left\{\log _{10}\left[\frac{4 h \tanh \frac{\pi D}{2 h}}{\pi d}\right]\right.$

$$
\left.-\sum_{m=1}^{\infty} \log _{10}\left[\frac{1+\mathbf{u}_{m}^{2}}{1-\mathbf{v}_{m}^{2}}\right]\right\}
$$

where

$$
u_{m}=\frac{\sinh \frac{\pi D}{2 h}}{\cosh \frac{m \pi w}{2 h}} \quad v_{m}=\frac{\sinh \frac{\pi D}{2 h}}{\sinh \frac{m \pi w}{2 h}}
$$

U. eccentric line


For $d \ll D$,
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10}\left\{\frac{D}{d}\left[1-\left(\frac{2 c}{D}\right)^{2}\right]\right\}$
For $c / D \ll 1$ this is the $Z_{0}$ of type $A$ diminished by approximately
$\frac{240}{\sqrt{\epsilon}}\left(\frac{c}{D}\right)^{2}$ ohms

## 328

## Transmission-line data

 continued| type of line | characteristic impedance |
| :---: | :---: |
| V. balanced 2-wire line in semiinfinite enclosure | For $d \ll D_{1}, w$, $Z_{0}=\frac{276}{\sqrt{\epsilon}} \log _{10} \frac{2 w}{\pi d \sqrt{A}}$ <br> where $A=\operatorname{cosec}^{2}\left(\frac{\pi D}{w}\right)+\operatorname{cosech}^{2}\left(\frac{2 \pi h}{w}\right)$ |
| W. outer wires grounded, inner wires balanced to ground | $\begin{aligned} Z_{0}= & \frac{276}{\sqrt{\epsilon}}\left\{\log _{10} \frac{2 D_{2}}{d}\right. \\ & \left.-\frac{\left[\log _{10} \frac{1+\left(1+D_{2} / D_{1}\right)^{2}}{1+\left(1-D_{2} / D_{1}\right)^{2}}\right]^{2}}{\log _{10} \frac{2 D \sqrt{2}}{d}}\right\} \end{aligned}$ |

X. slotted air line


When a slot is introduced into an air coaxial line for measuring purposes, the increase in characteristic impedance in ohms, compared with a normal coaxial line, is less than a quantity given by the formula
$\Delta Z=0.03 \theta^{2}$
where $\theta$ is the angular opening of the slot in radians

## Transmission-line attenuation due to load mismatch

Let $W_{t}=$ power delivered to line by transmitter
$W_{l}=$ power delivered to load by line
Then $A=10 \log _{10} W_{d} / W_{l}$ decibels
$A$ reduces to $A_{0}$ when the load impedance equals the characteristic impedance of the line.
$A_{0}=$ normal attenuation (matched)
$A=$ total attenuation (mismatched) e.g., power loss in line, not reflection loss $\rho=$ standing-wave ratio $V_{\text {max }} / V_{\text {minn }}$ at the load
Example: Find the attenuation at 200 megacycles in a 200 -foot length of RG-8/U cable terminated to give a voltage standing-wave ratio of $3: 1$.
From the chart on page 338 , the normal attenuation of RG-8/U cable at 200 megacycles is 3.1 decibels per 100 feet, or 6.2 decibels for 200 feet. Referring to the chart below, the added attenuation $\left(A-A_{0}\right)$ due to mismatch for $A_{t 1}=6.2$ and $p=3$ is approximately 1.2 decibels. The total attenvation $A$ is therefore $6.2+1.2=7.4$ decibels.


## Quarter-wave marching sections

The accompanying figures show how voltage-reflection coefficient or standing-wave ratio (swr) vary with frequency $f$ when quarter-wave matching lines are inserted between a line of characteristic impedance $Z_{0}$ and a load of resistance $R$. $f_{0}$ is the frequency for which the matching sections are exactly one-quarter wavelength ( $\lambda / 4$ ) long.



## Impedance matching with shorted stub



## Impedance matching with open stub



## 332

Impedance matching with coupled section


Detuning from resonance for a particular type of section

$A=$ coupled section-two 0.75 -inch diameter copper tubes, coplanar with line.
$B=$ transmission line-two 0.162 -inch diameter wires.
$C=$ olternative positions of shorting bar for impedance matching.
$D=$ position of shorting bar for maximum current in section conductors.


## Length of transmission line



This chart gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency, provided the velocity of propagation on the transmission line is equal to that in free space. The length is given on the $L$-scale intersection by a line between
$\lambda$ and $I^{\circ}$, where $I^{\circ}=\frac{360 \mathrm{~L} \text { in centimeters }}{\lambda \text { in centimeters }}$
Example: $f=600$ megacycles,$l^{\circ}=30$, Length $L=1.64$ inches or 4.2 centimeters.

class of								Army-Navy standard list of radio-frequency cables					
		$\begin{gathered} \text { Army- } \\ \text { Navy } \\ \text { type } \\ \text { number } \end{gathered}$	$\begin{gathered} \text { inner } \\ \text { conductor } \\ \hline \end{gathered}$	$\begin{array}{\|l} \text { dielec } \\ \text { mate. } \\ \text { rial } \\ \hline \end{array}$	$\left\|\begin{array}{c} \text { nomlnal } \\ \text { diam of } \\ \text { dielectric } \\ \text { inches } \end{array}\right\|$	shielding braid	prolective covering	nomina overall diam inches	$\underset{\substack{\text { weight } \\ 16 / i t}}{\substack{\text { and }}}$	naminal Imped. ohms	nominal capaciruf/fi	voltage   maximum operating voliage rms	remorks
$\begin{aligned} & 50-55 \\ & \text { Ohms } \end{aligned}$	$\begin{aligned} & \text { Single } \\ & \text { braid } \end{aligned}$	RG-8/U	$\begin{aligned} & 7 / 21 \text { AWG } \\ & \text { copper } \\ & \hline \end{aligned}$	A	0.285	Copper	Viny!	0.405	0.106	52.0	29.5	4,000	General.purpose mediumsize flexible cable
		RG-10/U	$\begin{aligned} & 7 / 21 \text { AWG } \\ & \text { copper } \end{aligned}$	A	0.285	Copper	Vinyl Inone Contaninatingl. Armor	$\begin{aligned} & \text { Imox } \\ & 0.475 \end{aligned}$	0.146	52.0	29.5	4,000	Some os RG-8/U armored for naval equip. ment
		RG-16/U	Copper tube Nom. diam. 0.125 in .	A	0.460	Copper	Vinyl	0.630	0.254	52.0	29.5	6,000	Power-transmission cable
		RG-17/U	$\begin{aligned} & 0.188 \\ & \text { copper } \end{aligned}$	A	0.880	Copper	Yinyl   linon-contami-   nating!   Vay!	0.870	0.460	52.0	29.5	11,000	Large high-power low-ottenuation transmission coble
		RG-18/U	$\begin{aligned} & 0.188 \\ & \text { copper } \end{aligned}$	A	0.680	Copper	Vinyl inoncontaminatingl. Armor .	$\operatorname{lmax}_{0.945}$	0585	52.0	29.5	11,000	$\begin{aligned} & \text { Same as RG-17/U or- } \\ & \text { mored for noval equip. } \\ & \text { ment } \end{aligned}$
		RG-19/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	$\begin{aligned} & \text { Vinyl } \\ & \begin{array}{l} \text { Inon-contami- } \\ \text { nating! } \end{array} \\ & \hline \end{aligned}$	1.120	0.740	52.0	29.5	14,000	Very large high-power low-attenuation transmission cable
		RG-20/U	$\begin{aligned} & 0.250 \\ & \text { copper } \end{aligned}$	A	0.910	Copper	$\begin{aligned} & \text { Vinyl Inon- } \\ & \text { contarinatingl. } \\ & \text { Afmor } \end{aligned}$	$\begin{aligned} & \text { Imoxl } \\ & 1.195 \end{aligned}$	0.925	52.0	29.5	14,000	Same as RG-19/U ar- mored for noval equip- ment
		RG-29/U	$\begin{aligned} & 20 \text { AWG } \\ & \text { copper } \end{aligned}$	A	0.116	Tinned copper	Polyethylene	0.184	0.0194	53.5	28.5	1,900	Same as RG-58/U; poly. ethylene jacket
		RG58A/U	20 AWG class C stranded finned copper	A	0.116	Tinned copper	Vinyl	0.395	0.025	52.0	28.5	1,900	```Smoll-size highly flexiblo cable```
		RG-58/U	$\begin{aligned} & 20 \text { AWG } \\ & \text { copper } \end{aligned}$	A	0.116	Tinned Copper	Vinyl	0.195	0.025	53.5	28.5	1,900	General-purpose smallsize fexible cable

continued Army-Navy standard list of radio-frequency cables

class of cables		Army Novy type number RG-5/U	inner conductor   16 AWG copper	diolec   mate-   rial   A	nominal diam of dielectric inches   0.185	shielding   braid   Copper	protective   covering   Vinyl	nominal   overall   diam   inches   0.332	weight lb/4   0.087	nominal   imped-   ance   ohms   52.5	nominal   capaci-   tonce   $\mu \mu f / f 1$   28.5	maximum   operating   voltage   rms   3,000	remarks
$\overline{50-55}$   ohms cont.	Double broid												Small microwave cable
		RG-9A/U	7/21 AWG silvered copper	A	0.280	Silvered copper	Vinyl Inoncontaminating	0.420	0.122	51.0	30.0	4,000	Some as RG-9/U with high attenuation stability
		RG-9/U	7/21 AWG silvered copper	A	0.280	Inner--silver coated copper. Outer-copper	Viny! Inon-contaminotingl	0.420	0.150	51.0	30.0	4,000	Medium-size low-levelcircult cable
		RG-14/U	10 AWG copper	A	0.370	Copper	Vinyl inon-contaminatingl	0.545	0.216	52.0	29.5	5,500	General-purpose semiflexible power transmission coble
		RG-38/U	17 AWG finned copper	C	0.196	Tinned copper	Polyethylene	0.312	0.110	52.5	38.0	1,000	High-loss flexible cable
		RG-55/U	20 AWG copper	A	0.116	Tinned copper	Polyethylene	$\begin{aligned} & 1 \text { maxl } \\ & 0.206 \end{aligned}$	0.034	53.5	28.5	1,900	Small-size flexible cable
		RG-74/U	10 AWG copper	A	0.370	Copper	Vinyl Inoncontominalingl. Armor	0.615	0.310	52.0	29.5	5,500	Same as RG-14/U armored for naval equip. ment
$55-60$ ohms	Single broid	$\begin{aligned} & \text { RG- } \\ & \text { S4A/U } \end{aligned}$	$7 / 0.0152$ copper	A	0.178	Tinned copper	Polyethylene	0.250	0.0580	58.0	26.5	3,000	Smoll-size nexible cable with light-weight jacket
Ohms $\begin{aligned} & 70-80 \\ & \text { ohms }\end{aligned}$	Single braid	RG-59/U	22 AWG copperweld	A	0.146	Copper	Vinyl	0.242	0.032	73.0	21.0	2,300	General-purpose small. size video cable
Ohms		RG-11/4	7/26 AWG tinned copper	A	0.285	Copper	Vinyl	0.405	0.096	75.0	20.5	4,000	Medlum-size, flexible video and communication cable
		RG-12/U	7/26 AWG tinned copper	A	0.285	Copper	Vinyl Inon. contaminating) Armor	0.475	0.141	75.0	20.5	4,000	Same os RG-11/U armored for naval equip. ment
		RG-34/U	7/21 AWG copper	A	0.455	Copper	Vinyl	0.625	0.215	71.0	21.5	5,200	Medium-size flexible communication cable



336

$\begin{gathered} \text { class of } \\ \text { cables } \end{gathered}$		$\begin{gathered} \text { Army- } \\ \text { Novy } \\ \text { type } \\ \text { number } \end{gathered}$	$\begin{gathered} \text { inner } \\ \text { conductor } \end{gathered}$	$\begin{aligned} & \text { dielece } \\ & \begin{array}{c} \text { male. } \\ \text { rial: } \end{array} \\ & \hline \end{aligned}$	nominaldiam ofdielectricinches	shielding braid	continued   protective covering	Army-Navy standard list of radio-frequency cables						
		nominal overall diom inches						weight $\mathrm{lb},+\mathrm{H}$	$\begin{gathered} \text { nominal } \\ \text { imped- } \\ \text { ance } \\ \text { ohms } \\ \text { ohms } \end{gathered}$	nominal capacitance $\mu \mu^{\prime} / \mathrm{f}$	$\underset{\substack{\text { maximum } \\ \text { operating } \\ \text { voltage }}}{ }$ rms	remarks		
$\begin{aligned} & \text { 70-80 } \\ & \text { ohms } \\ & \text { cont. } \end{aligned}$	Single braid cont		RG-35/U	9 AWG copper	A	0.880	Coppor	Vinyl Inoncontaminatingl. Armor	0.945	0.439	71.0	21.5	10,000	Lorge-size video cable
	$\begin{aligned} & \text { Double } \\ & \text { braid } \end{aligned}$	RG-6/U	21 AWG copperweld	A	0.185	$\begin{aligned} & \text { Inner-silver } \\ & \text { coated copper. } \\ & \text { Outer-copper } \end{aligned}$	Vtayl lnon-contomi- na ingl	0.332	0.082	76.0	20.0	2,700	cable   Small size video and I-F coble	
		RG-13/U	$\begin{aligned} & \text { 7/26 AWG } \\ & \text { Hined } \\ & \text { copper } \end{aligned}$	A	0.280	Copper	Vinyl	0.420	0.126	74.0	20.5	4,000	1.f cable	
		RG-15/U	IS AWG copperweld	A	0.370	Copper	Vinyl	0.545	0.181	76.0	20.0	5,000	Medium-size video cable	
		RG-39/U	$\begin{aligned} & 22 \text { AWG } \\ & \text { linned } \\ & \text { copperweld } \end{aligned}$	c	0.196	Tinned copper	Polyethylene	${ }^{0.312}$	0.100	72.5	28.0	1,000	High-loss video cable	
		RG-40/U	$\begin{aligned} & \text { 22 AWG } \\ & \text { linned } \\ & \text { copperweld } \end{aligned}$	c	0.195	Tinned copper	Synthetic rubber	0.420	0.150	72.5	28.0	1,000	High.loss video cable	
Cables of spe ciol chorac.	$\begin{aligned} & \text { Twin } \\ & \text { con. } \\ & \text { ductor } \end{aligned}$	RG-22/U	2 cond. $7 / 0.0152$ copper	A	0.285	$\begin{aligned} & \text { Single-tinned } \\ & \text { copper } \end{aligned}$	Vinyl	0.405	0.107	95.0	16.0	1,000	Smaill size twin-conductor cable	
		RG-23/U	2 cond 7/21 AWG copper	A	0.330	Copper-individual inner: common outer	Vinyl	$0.650 \times$	0.367	125.0	120	3,000	Bolanced twin-coaxial cable	
		R3-57/U	2 cond. 7/21 AWG copper	A	0.472	$\begin{aligned} & \text { Single-tinned } \\ & \text { copper } \end{aligned}$	Vinyl	0.625	0.225	95.0	17.0	3,000	Large size iwin-conductor cable	
	High attenu. ation	RJ-21/U		A	0.185	Inner-silver. coated copper Culer-copper	$\begin{aligned} & \text { Vinyl } \\ & \text { Inon.contomi- } \\ & \text { natl\|ngl } \end{aligned}$	0.332	0.087	53.0	29.0	2,700	Special oftenuating cable with small temperature coefficient of atlenuation	
		R3-42/U	21 AWG ance wire	A	0.196	$\begin{aligned} & 2 \text { braids- } \\ & \text { silvered } \\ & \text { copper } \end{aligned}$	Vinyl Inoncontaminatingl	0.342	0.120	78.0	20.0	2,700	Altenuating coble with small remperature coef. of attenuation	

Army-Navy standard list of radio-frequency cables

This value is the diameter over the outer layer of conducting rubber.

## Attenuation of A-N cables versus frequency

The charts below refer to cables listed in the Army-Navy standard list of radio-frequency cables. The numbers on the charts represent the RG-/U designation of the cables.
For example, the curve labeled " $55,58,29$ " is the attenuation curve for cables $R G-55 / \mathrm{U}, \mathrm{RG}-58 / \mathrm{U}$, and $\mathrm{RG}-29 / \mathrm{U}$.



Wave guides and resonators

## Propagation of electromagnetic waves in hollow wave guides

For propagation of energy at microwave frequencies through a hollow metal tube under fixed conditions, a number of different types of waves are available, namely:

TE waves: Transverse-electric waves, sometimes called H waves, characterized by the fact that the electric vector ( $E$ vector) is always perpendicular to the direction of propagation. This means that
$E_{x} \equiv 0$
where $x$ is the direction of propagation.
TM waves: Transverse-magnetic waves, also called E waves, characterized by the fact that the magnetic vector ( $H$ vector) is always perpendicular to the direction of propagation.

This means that
$H_{x} \equiv 0$
where $x$ is the direction of propagation.
Note-TEM waves: Transverse-electromagnetic waves. These waves are characterized by the fact that both the electric vector ( $E$ vector) and the magnetic vector ( $H$ vector) are perpendicular to the direction of propagation. This means that
$E_{x}=H_{x}=0$
where x is the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a wave guide.

The solutions for the field configurations in wave guides are characterized by the presence of the integers $n$ and $m$ which can take on separate values from 0 or 1 to infinity. Only a limited number of these different $n, m$ modes can be propagated, depending on the dimensions of the guide and the frequency of excitation. For each mode there is a definite lower limit or cutoff frequency below which the wave is incapable of being propagated. Thus, a wave guide is seen to exhibit definite properties of a high-pass filter.
The propagation constant $\gamma_{n, m}$ determines the amplitude and phase of each component of the wave as it is propagated along the length of the guide. With $x=$ (direction of propagation) and $\omega=2 \pi \times$ (frequency), the factor for each component is
$\exp \left[j \omega f-\gamma_{n, m x}\right]$

Propagation of electromagnetic waves in hollow wave guides continued
Thus, if $\gamma_{n, m}$ is real, the phase of each component is constant, but the amplitude decreases exponentially with $x$. When $\boldsymbol{\gamma}_{n, m}$ is real, it is said that no propagation takes place. The frequency is considered below cutoff. Actually, propagation with high attenuation does take place for a small distance, and a short length of guide below cutoff is often used as a calibrated attenuator.
When $\gamma_{n, m}$ is imaginary, the amplitude of each component remains constant, but the phase varies with $x$. Hence, propagation takes place. $\gamma_{n, m}$ is a pure imaginary only in a lossless guide. In the practical case, $\gamma_{n, m}$ usually has both a real part, which is the


Fig. 1-Rectangular wave guide. attenuation constant, and an imaginary part, which is the phase propagation constant.

## Rectangular wave guides

fig. I shows a rectangular wave guide and a rectangular system of coordinates, disposed so that the origin falls on one of the corners of the wave guide; $x$ is the direction of propagation along the guide, and the crosssectional dimensions are $y_{0}$ and $z_{0}$.
For the case of perfect conductivity of the guide walls with a nonconducting interior dielectric (usually air), the equations for the $T M_{n, m}$ or $E_{n, m}$ waves in the dielectric are:

$$
\begin{aligned}
& E_{x}=A \sin \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& E_{\nu}=-A \frac{\gamma_{n, m}}{\gamma^{2} n_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& E_{2}=-A \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& H_{x}=0 \\
& H_{y}=A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& H_{z}=-A \frac{j \omega \epsilon_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}
\end{aligned}
$$

## Rectangular wave guides continued

where $\epsilon_{k}$ is the dielectric constant and $\mu_{k}$ the Dermeability of the dielectric material in meter-kilogram-second (rationalized) units.

Constant $A$ is determined solely by the exciting voltage. It has both amplitude and phase. Integers $n$ and $m$ may individually take values from 1 to infinity. No TM waves of the 0,0 type or 0,1 type are possible in a rectangular guide so that neither $n$ nor $m$ may be 0 .

Equations for the $T E_{n, m}$ waves or $H_{n, m}$ waves in a dielectric are:

$$
\begin{aligned}
& H_{x}=B \cos \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& H_{y}=B \frac{\gamma_{n, m}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& H_{z}=B \frac{\gamma_{n, m}}{\gamma_{n, m}^{2}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}} \\
& E_{x} \equiv 0 \\
& E_{y}=B \frac{j \omega \mu_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{m \pi}{z_{0}}\right) \cos \left(\frac{n \pi}{y_{0}} y\right) \sin \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m} x} \\
& E_{z}=-B \frac{j \omega \mu_{k}}{\gamma^{2}{ }_{n, m}+\omega^{2} \mu_{k} \epsilon_{k}}\left(\frac{n \pi}{y_{0}}\right) \sin \left(\frac{n \pi}{y_{0}} y\right) \cos \left(\frac{m \pi}{z_{0}} z\right) e^{j \omega t-\gamma_{n, m^{x}}}
\end{aligned}
$$

where $\epsilon_{k}$ is the dielectric constant and $\mu_{k}$ the permeability of the dielectric material in meter-kilogram-second (rationalized) units.
Constant B depends only on the original exciting voltage and has both magnitude and phase; $n$ and $m$ individually may assume any integer value from 0 to infinity. The 0,0 type of wave where both $n$ and $m$ are 0 is not possible, but all other combinations are.
As stated previously, propagation only takes place when the propagation constant $\gamma_{n, m}$ is imaginary;
$\gamma_{n, m}=\sqrt{\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}-\omega^{2} \mu_{k} \epsilon_{k}}$
This means, for any $n, m$ mode, propagation takes place when
$\omega^{2} \mu_{k \in \epsilon_{k}}>\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}$


Fig. 2-Field configuration for $\mathrm{TE}_{0,1}$ wave.


Fig. 3-Field configuration for a TE $\mathrm{E}_{1,2}$ wave.


Fig. 4-Characteristic E lines for TE waves.

## Rectangular wave guides

or, in terms of írequency $f$ and velocity of light $c$, when

$$
f>\frac{c}{2 \pi \sqrt{\mu_{1} \epsilon_{1}}} \sqrt{\left(\frac{n \pi}{y_{0}}\right)^{2}+\left(\frac{m \pi}{z_{0}}\right)^{2}}
$$

where $\mu_{1}$ and $\epsilon_{1}$ are the relative permeability and relative dielectric constant, respectively, of the dielectric material with respect to free space.
The wavelength in the wave guide is always greater that the wavelength in an unbounded medium. If $\lambda$ is the wavelength in free space, the wavelength in the guide for the $n, m$ mode with air as a dielectric is

$$
\lambda_{U(n, m)}=\frac{\lambda}{\sqrt{1-\left(\frac{n \lambda}{2 \gamma_{o}}\right)^{2}-\left(\frac{m \lambda}{2 z_{o}}\right)^{2}}}
$$

The phase velocity within the guide is also always greater than in an unbounded medium. The phase velocity $v$ and group velocity $u$ are related by the following equation:
$u=\frac{c^{2}}{v}$
where the phase velocity is given by $v=c \lambda_{0} / \lambda$ and the group velocity is the velocity of propagation of the energy.

To couple energy into wave guides, it is necessary to understand the configuration of the characteristic electric and magnetic lines. Fig. 2 illustrates the field configuration for a $\mathrm{TE}_{0,1}$ wave. Fig. 3 shows the instantaneous field configuration for a higher mode, a $T E_{1,2}$ wave.
In Fig. 4 are shown only the characteristic $E$ lines for the $T E_{0.1}, T E_{0.2}, T E_{1,1}$ and $T E_{1,2}$ waves. The arrows on the lines indicate their instantaneous relative directions. In order to excite a TE wave, it is necessary to insert a probe to coincide with the direction of the $E$ lines. Thus, for a $T E_{0,1}$ wave, a single probe projecting from the side of the guide parallel to the $E$ lines would be sufficient to couple into it. Several means of coupling from a coaxial line to a rectangular wave guide to excite the $T E_{0,1}$ mode are shown in Fig. 5. With structures such as these, it is possible to make the standing-wave ratio due to the junction less than 1.15 over a 10 - to 15 -percent frequency band. Fig. 6 shows the instantaneous configuration of a $\mathrm{TM}_{1,1}$ wave; Fig. 7, the instantaneous field configuration for a $\mathrm{TM}_{1,2}$ wave. Coupling to this type of wave may be accomplished by inserting a probe, which is parallel to the $E$ lines, or by means of a loop so oriented as to link the lines of hux.

## 344

## Rectangular wave guides continued



Fig. 5-Methods of coupling to $\mathrm{TE}_{0.1}$ mode ( $a \approx \lambda_{V} / 4$ ).


Fig, 6-Instantaneous field configuration for a $T M_{1,1}$ wave.


Fig. 7-Instantaneous field configuration for a TM $M_{1,2}$ wave.

## Circular wave guides

The usual coordinate system is $\rho, \theta, z$, where $\rho$ is in the radial direction; $\theta$ is the angle; $z$ is in the longitudinal direction.

TM waves (E waves): $H_{z} \equiv 0$
$E_{z}=A J_{n}\left(k_{n, m} \rho\right) \cos n \theta \mathrm{e}^{j \omega t-\gamma_{n, m^{2}}}$
By the boundary conditions, $E_{z}=0$ when $\rho=a$, the radius of the guide. Thus, the only permissible values of $k$ are those for which $J_{n}\left(k_{n, m} a\right)=0$ because $E_{z}$ must be zero at the boundary.
The numbers $n, m$ take on all integral values from zero to infinitym The waves are seen to be characterized by the numbers, $n$ and $m$, where $n$ gives the order of the bessel functions, and $m$ gives the order of the root of $J_{n}$ $\left(k_{n, m} a\right)$. The bessel function has an infinite number of roots, so that there are an infinite number of $k$ 's that make $J_{n}\left(k_{n, m} a\right)=0$.
The other components of the electric vector $E_{\theta}$ and $E_{\rho}$ are related to $E_{z}$ as are $H_{\theta}$ and $H_{p}$.

TE waves ( $H$ waves): $E_{z} \equiv 0$
$H_{z}=B J_{n}\left(k_{n, m} \rho\right) \cos n \theta e^{j \omega t-\gamma_{n, m^{2}}}$
$H \rho, H_{\theta}, E_{\rho}, E_{\theta r}$ are all related to $H_{z}$.
Again $n$ takes on integral values from zero to infinity. The boundary condition $E_{\theta}=0$ when $\rho=$ a still applies. To satisfy this condition $k$ must be such as to make $J_{n}^{\prime}\left(k_{n, m}\right.$ al equal to zero [where the superscript indicates the derivative of $\left.J_{n}\left(k_{n, m} a\right)\right]$. It is seen that $m$ takes on values from 1 to infinity since there are an infinite number of roots of $J^{\prime}{ }_{n}\left(k_{n, m} a\right)$.
For circular wave guides, the cut-off frequency for the $n, m$ mode is
$f_{c n, m}=c k_{n, m} / 2 \pi$
where $c=$ velocity of light and $k_{n, m}$ is evaluated from the roots of the bessel functions
$k_{n, m}=U_{n, m} / a$ or $U_{n, m}^{\prime} / a$
where $a=$ radius of guide or pipe and $U_{n, m}$ is the root of the particular bessel function of interest (or its derivative).
The wavelength in any guide filled with a homogeneous dielectric is
$\lambda_{o}=\lambda_{0} / \sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}$
Where $\lambda_{0}$ is the wavelength in free space, and $\lambda_{c}$ is the free-space cutoff wavelength.

## Circular wave guides

The following tables are useful in determining the values of $k$. For TE waves the cutoff wavelengths are given in the following table.
Values of $\lambda_{c} / a$ (where $\mathbf{a}=$ radius of guide)

m	0	1	2
1	1.640	3.414	2.057
2	0.896	1.178	0.937
3	0.618	0.736	0.631

For Tm waves the cutoff wavelengths are given in the following table.
Values of $\lambda_{c} / a$

$m\rangle^{n}$	0	1	2
1	2.619	1.640	1.224
2	1.139	0.896	0.747
3	0.726	0.618	0.541

where $n$ is the order of the bessel function and $m$ is the order of the root. Fig. 8 shows $\lambda_{0} / \lambda_{0}$ as a function of $\lambda_{0} / \lambda_{e}$. From this, $\lambda_{g}$ may be determined when $\lambda_{0}$ and $\lambda_{c}$ are known.
The pattern of magnetic force of TM waves in a circular wave guide is shown in Fig. 9. Only the maximum lines are indicated. In order to excite this type of pattern, it is necessary to insert a probe along the length of the wave guide and concentric with the $H$ lines. For instance, in the $T M_{0,1}$ type of wave, a probe extending down the


Fig. 8-Chart for determining guide wavelength. length of the wave guide at the very center of the guide would provide the proper excitation. This method of excitation is shown in Fig. 10. Corresponding methods of excitation may be used for the other types of TM waves shown in Fig. 9.
Fig. 11 shows the patterns of electric force for TE waves. Again only the maximum lines are indicated. This type of wave may be excited by an antenna that is parallel to the electric lines of force. The $T E_{1,1}$ wave may be excited by means of an antenna extending across the wave guide. This is illustrated in Fig. 12.

Circular wave guides

$348$


Attenuation constants continued
All of the attenuation constants contain a common coefficient
$\alpha_{0}=\frac{1}{3} \sqrt{\mu_{2} \epsilon_{1} \pi / \sigma_{2} \mu_{1}}$
$\epsilon_{1}$ and $\mu_{1}$ are the dielectric constant and the magnetic permeability of the insulator, respectively; and $\sigma_{2}$ and $\mu_{2}$ are the electric conductivity and magnetic permeability of the metal, respectively.

For air and copper,
$\alpha_{0}=0.35 \times 10^{-9}$ nepers $/$ meter $=0.3 \times 10^{-5}$ decibels/kilometer
To convert from nepers/meter to decibels/ 100 feet, multiply by 264. Fig. 13 summarizes some of the most important formulas. Dimensions $a$ and $b$ are measured in meters.

## Attenuation in a wave guide beyond cutoff

When a wave guide is used at a wavelength greater than the cutoff wavelength, there is no real propagation and the fields are attenuated exponentially. The attenuation $L$ in a length $d$ is given by
$L=54.5 \frac{d}{\lambda_{c}} \sqrt{1-\left(\frac{\lambda_{c}}{\lambda}\right)^{2}}$ decibels
where $\lambda_{c}=$ cutoff wavelength and $\lambda=$ operating wavelength

## Standard wave guides and connectors

The following presents a list of rectangular wave guides that have been adopted as standard, their wavelength range, attenuation factors, and standard connectors.

		cutoff	usable wavelength range for	conn	clors	attenuation in brass wave guide decibels/foot
dimensions inches	Army-Navy lype number	wovelength $\lambda_{c}$ (centimeters)	TE, 1 mode (centimeters)	choke	flange	
$\begin{aligned} & 11 / 2 \times 3 \\ & \times 0.081 \text { wall } \end{aligned}$	RG-48/U	14.4	7.6-11.8	UG-54/U	UG-53/U	0.012 @ 10 cm
$1 \times 2 \times 0.064 \mathrm{woll}$	RG-49/U	9.5	5.15-7.6	UG-148/U	UG-149/U	0.021 @ 6 cm
$\begin{array}{r} 3 / 4 \times 11 / 2 \\ \times 0.064 \mathrm{wall} \end{array}$	RG-50/U	6.97	3.66-5.15	UG-150/U	contoct type	0.036@ ${ }^{\text {@ cm }}$
$\begin{aligned} & 3 / 6 \times 11 / 4 \\ & \times 0.064 \text { woll } \end{aligned}$	RG-51/U	5.7	3.0-4.26	UG-52/U	UG-51/U	0.050 (9) 3.6 cm
$\begin{array}{r} 1 / 2 \times 1 \\ \times 0.050 \text { wall } \end{array}$	RG-52/U	4.57	2.4-3.66	UG-40/U	UG-39/U	0.076 (9) 3.2 cm

## Nave-guide circuit elements

Just as at low frequencies, it is possible to shape metallic or dielectric pieces to produce local concentrations of magnetic or electric energy within a wave guide, and thus produce what are, essentially, lumped inductances or capacitances.

The most convenient form of variable capacitance is a screw projecting into the guide from one side along an electric-field line. In lines handling high levels of pulsed power, such tuners are undesirable because of their tendency to cause breakdown of the air dielectric.

Because of the variation of impedance along a transmission line, it is often possible to replace a lumped capacitance by a lumped inductance at some other point in the line. The most common form of shunted lumped inductance is the diaphragm. Figs. 14 and 15 show the relative susceptance $B / Y_{0}$ for symmetrical and asymmetrical diaphragms in rectangular wave guides. These are computed for infinitely thin diaphragms. Finite thicknesses result in an increase in $B / Y_{0}$.


Fig. 14-Normalized susceplance of a symmetrical inductive diaphragm.


Another form of shunt inductance that is useful because of mechanical simplicity is a round post completely across the narrow dimension of a rectangular guide (for $T E_{0,1}$ mode). Figs. 16 and 17 give the normalized values of the elements of the equivalent 4 -terminal network for several post diameters.

Frequency dependence of wave-guide susceptances may be given approximately as follows:


Fig. 16 -Equivalent circuil for inductive cylindrical post.

## 352

Wave-guide circuit elements
continued
Inductive $=B / Y_{0} \propto \lambda_{0}$
Capacitative $=B / Y_{0} \propto 1 / \lambda_{a}$ (distributed)
$=B / Y_{0} \propto \lambda_{g} / \lambda^{2}$ (lumped)
Distributed capacitances are found in junctions and slits, whereas tuning screws act as lumped capacitances.



Fig. 17-Equivalent circuit for inductive cylindrical post.

## Hybrid junctions (the magic $T$ )

The hybrid junction is illustrated in various forms in Fig. 18. An ideal junction is characterized by the fact that there is no direct coupling between arms 1 and 4 or between 2 and 3 . Power flows from 1 to 4 only by virtue of reflec-

## Hybrid junctions (the magic T)

fions in arms 2 and 3. Thus, if arm 1 is excited, the voltage arriving at arm 4 is $E_{4}=\frac{\sqrt{2}}{2} E_{1}\left(\Gamma_{2} e^{j 2 \theta_{z}}-\Gamma_{3} e^{j \theta_{3}}\right)$
and the reflected voltage in arm 1 is
$E_{r 1}=\frac{\sqrt{2}}{2} E_{1}\left(\Gamma_{2} \mathrm{e}^{j 2 \theta:}+\Gamma_{3} \mathrm{e}^{j 2 \theta^{2}}\right)$
where $E_{1}$ is the amplitude of the incident wave, $\Gamma_{2}$ and $\Gamma_{3}$ are the reflection coefficients of the terminations of arms 2 and 3 , and $\theta_{2}$ and $\theta_{3}$ are the respective distances of the terminations from the junctions. In the case of the rings, $\theta$ is the distance between the arm-and-ring junction and the termination.


Fig. 18-Hybrid junctions (magic T).

## 354

## Resonant cavities

A cavity enclosed by metal walls will have an infinite number of natural frequencies at which resonance will occur. One of the more common types of cavity resonators is a length of transmission line (coaxial or wave guide) short circuited at both ends.

Resonance occurs when
$2 h=1 \frac{\lambda g}{2}$ where $l$ is an integer
$2 h=$ length of the resonator
$\lambda_{0}=$ guide wavelength in resonator

$$
=\frac{\lambda}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}
$$

where $\lambda=$ free-space wavelength and $\lambda_{c}=$ guide cutoff wavelength For $T E_{n, m}$ or $T M_{n, m}$ waves in a rectangular cavity with cross section $a, b$, $\lambda_{c}=\frac{2}{\sqrt{\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}}$
where $n$ and $m$ are integers.
For $\mathrm{TE}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi \mathrm{a}}{U_{n, m}^{\prime}}$
where $a$ is the guide radius and $U_{n, m}$ is the $m$ th root of the equation $J_{n}(U)=0$.

For $\mathrm{TM}_{n, m}$ waves in a cylindrical cavity
$\lambda_{c}=\frac{2 \pi a}{U_{n, m}}$
where $a$ is the guide radius and $U_{n, m}$ is the $m$ th root of the equation $J_{n}(U)=0$.

For TM waves $/=0,1,2 \ldots$
For TE waves $1=1,2 \ldots$ but not 0

Resonant cavities continued

## Rectangular cavity of dimensions $\boldsymbol{a}, \mathbf{b}, \mathbf{2 h}$

$$
\lambda=\frac{2}{\sqrt{\left(\frac{l}{2 h}\right)^{2}+\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}}} \text { (where only one of } l, n \text {, m may be zerol. }
$$

## Cylindrical cavities of radius a and length $\mathbf{2 h}$

$$
\lambda=\frac{1}{\sqrt{\left(\frac{1}{4 h}\right)^{2}+\left(\frac{1}{\lambda_{c}}\right)^{2}}}
$$

where $\lambda_{c}$ is the guide cutoff wavelength.

## Spherical resonators of radius a

$\lambda=\frac{2 \pi a}{U_{n, m}}$ for a TE wave $\quad \lambda=\frac{2 \pi a}{U_{n, m}^{\prime}}$ for a TM wave
Values of $U_{n, m}$ :
$U_{1,1}=4.5, U_{2,1}=5.8, U_{1,2}=7.64$
Values of $U_{n, m}{ }_{n}$
$U_{1,1}^{\prime}=2.75=$ lowest-order root

## Additional cavity formulas

type of cavliy	mode	$\lambda_{0}$ resonant wavelength	(all dimenslons In same units)
Right circular cylinder	$T M_{0,1,1}\left(E_{0}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{2.35}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{\sigma}{\lambda_{0}} \frac{1}{1+\frac{a}{2 h}}$
	$T E_{0,1,1}\left(H_{0}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{5.93}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{0}{\lambda_{0}}\left[\frac{1+0.168\left(\frac{o}{h}\right)^{2}}{1+0.168\left(\frac{a}{h}\right)^{3}}\right]$
	$T E_{1,1,1}\left(H_{1}\right)$	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^{2}+\frac{1.37}{a^{2}}}}$	$\frac{\lambda_{0}}{\delta} \frac{h}{\lambda_{0}}\left[\frac{2.39 h^{2}+1.73 a^{2}}{3.39 \frac{h^{3}}{a}+0.73 a h+1.73 a^{2}}\right]$

Resonant cavifies continued
Characteristics of various types of resonators


Skin depth in meters $=\delta=\sqrt{10^{7} / 2 \pi \omega \sigma}$
where $\sigma=$ conductivity of wall in mhos/meter and $\omega=2 \pi \times$ frequency

## Resonant cavities

continued


Fig. 19-Mode chart for right-circular-cylinder cavity.

## 358

Resonant cavities

Fig. 19 is a mode chart for a right-circular-cylindrical resonator, showing the distribution of resonant modes with frequency as a function of cavity shape. With the aid of such a chart, one can predict the various possible resonances as the length ( $2 h$ ) of the cavity is varied by means of a movable piston.

## Effect of temperature and humidity on cavity tuning

The resonant frequency of a cavity will change with temperature and humidity, due to changes in dielectric constant of the atmosphere, and with thermal expansion of the cavity. A homogeneous cavity made of one kind of metal will have a thermal-tuning coefficient equal to the linear coefficient of expansion of the metal, since the frequency is inversely proportional to the linear dimension of the cavity.

melal	linear coefficient   of expansion $/{ }^{\circ} \mathbf{C}$
Yellow brass	$20 \times 10^{-6}$
Copper	17.6
Mild steel	12
Invar	1.1

The relative dielectric constant of air (vacuum $=1$ ) is given by
$k_{e}=1+210 \times 10^{-6} \frac{P_{a}}{T}+180 \times 10^{-6}\left(1+\frac{5580}{T}\right) \frac{P_{v}}{T}$
where $P_{a}$ and $P_{w}$ are partial pressures of air and water vapor in millimeters of mercury, and $T$ is the absolute temperature. Fig. 20 is a nomograph showing change of cavity tuning relative to conditions at 25 degrees centigrade and 60 percent relative humidity (expansion is not included).

## Coupling to cavities and loaded Q

Near resonance, a cavity may be represented as a simple shunt-resonant circuit, characterized by a loaded $Q$
$\frac{1}{Q_{l}}=\frac{1}{Q_{0}}+\frac{1}{Q_{e x t}}$
where $Q_{0}$ is the unloaded $Q$ characteristic of the cavity itself, and $1 / Q_{\text {ext }}$

## WAVE GUIDES AND RESONATORS

## Resonant cavities continued



Fig. 20-Effect af temperature and humidity an cavity luning.
is the loading due to the external circuits. The variation of $Q_{\text {ext }}$ with size of the coupling is approximately as follows:

coupling	$\mathbf{1} / \mathbf{Q}_{\text {ext }}$ is proportional to
Small round hole	(diameter)
Symmetrical inductive diaphragm	( $\delta)^{4}$ see Fig. 14
Small loop	(diameter)

## Summary of formulas for coupling through a cavity

The following table summarizes some of the useful relationships in a 4terminal cavity (transmission type) for three conditions of coupling: matched input (input resistance at resonance equals $Z_{0}$ of input linel, equal coupling $11 / Q_{\text {in }}=1 / Q_{\text {out }}$ ), and matched output (resistance seen looking into output terminals at resonance equals output-load resistancel. A matched generator is assumed.

	matched input	equal coupling	matched output
Input standing-   wave ratio	1	$1+g_{c}^{\prime}=2\left(\frac{1}{\sqrt{T}}-1\right)$	$1+2 g_{c}^{\prime}$
Transmission	$1-g_{c}^{\prime}=1-2 \rho$	$\left.11+g_{c}^{\prime} / 2\right)^{-2}=(1-\rho)^{2}$	$\left.11+g_{c}^{\prime}\right)^{-1}=1-2 \rho$
$Q_{l} / Q_{0}=\rho$	$\frac{g_{c}^{\prime}}{2}=\frac{1-T}{2}$	$\frac{g_{c}^{\prime}}{2+g_{c}^{\prime}}=1-\sqrt{\tau}$	$\frac{g_{c}^{\prime}}{2\left(1+g_{c}^{\prime \prime}\right.}=\frac{1-T}{2}$

where $g_{c}^{\prime}$ is the apparent conductance of the cavity at resonance, with no output load; the transmission $T$ is the ratio of the actual output-circuit power delivered to the available power from the matched generator.

## Simple wave-guide cavify

A cavity may be made by enclosing a section of wave guide between a pair of large shunt susceptances, as shown in Fig. 21. Its loaded $Q$ is given by


Fig. 21-Wave-guide cavity and equivalent circuit.

Resonant cavities continued
$\frac{1}{Q_{l}}=\frac{1}{Q_{0}}+\frac{1}{Q_{1 \mathrm{n}}}+\frac{1}{Q_{\text {out }}}=\frac{2}{n \pi}\left(\frac{\lambda}{\lambda_{g}}\right)^{2}\left(\alpha L^{-}+\frac{1}{b_{1}^{2}}+\frac{g_{2}}{b_{2}^{2}}\right)$
for $b_{1}$ and $b_{2} \gg 1$, where $b_{1}$ and $b_{2}$ are the input and output normalized susceptances, $g_{2}$ is the conductance seen looking from the output terminals, $\alpha$ is the aftenuation constant, and $L$ is given by
$L=\frac{\lambda_{0}}{2}\left(1+\frac{b_{1}+b_{2}}{2 \pi b_{1} b_{2}}\right)$

## Resonant irises

Resonant irises may be used to obtain low values of loaded $Q(<100)$. The simplest type is shown in Fig. 22. It consists of an inductive diaphragm and a capacitive screw located in the same plane across the wave guide. For $Q_{l}<50$, the losses in the resonant circuit may be ignored, and
$1 / Q_{l} \approx 1 / Q_{e x t}$


Fig. 22-Resonant iris in wave guide.

To a good approximation, the loaded $Q$ (matched load and matched generatorl is given by
$Q_{l}=\frac{B_{l}}{2 Y_{0}}$
where $B_{l}$ is the susceptance of the inductive diaphragm. This value may be taken from charts such as Figs. 14 and 15.

## The elementary dipole

## Field infensify*

The elementary dipole forms the basis for many antenna computations. Since dipole theory assumes an antenna with current of constant magnitude and phase throughout its length, approximations to the elementary dipole are realized in practice only for antennas shorter than one-tenth wavelength. The theory can be applied directly to a loop whose circumference is less than one-tenth wavelength, thus forming a magnetic dipole. For larger antennas, the theory is applied by assuming the antenna to consist of a large number of infinitesimal dipoles with differences between individual dipoles of space position, polarization, current magnitude, and phase corresponding to the distribution of these parameters in the actual antenna. Field-intensity equations for large antennas are then developed by integrating or otherwise summing the field vectors of the many elementary dipoles.

The oufline below concerns electric dipoles. It also can be applied to magnetic dipoles by installing the loop perpendicular to the PO line at the center of the sphere in Fig. I. In this case, vector $h$ becomes $\epsilon$, the electric field; $\boldsymbol{\epsilon}_{\boldsymbol{i}}$ becomes the magnetic tangential field; and $\boldsymbol{\epsilon}_{r}$ becomes the radial magnetic field.

Fig. 1
Electric and magnetic components in spherical coordinates for electric dipoles.


In the case of a magnetic dipole, the table, Fig. 2, showing variations of the field in the vicinity of the dipole, can also be used.
For electric dipoles, Fig. I indicates the electric and magnetic field components in spherical coordinates with positive values shown by the arrows.

[^35]\[

$$
\begin{aligned}
r= & \text { distance } O M \\
\theta= & \text { angle POM measured } \\
& \text { from P toward } M \\
I= & \text { current in dipole } \\
\lambda= & \text { wavelength } \\
\beta= & \text { frequency }
\end{aligned}
$$
\]

$$
\omega=2 \pi f
$$

$$
\alpha=\frac{2 \pi}{\lambda}
$$

$$
c=\text { velocity of light (see page } 25 \text { ) }
$$

$$
v=\omega t-\alpha r
$$

The following equations expressed in electromagnetic units* (in vacuum) result:

$$
\begin{align*}
& \epsilon_{r}=-\frac{c / \lambda I}{\pi} \frac{\cos \theta}{r^{3}}(\cos v-\alpha r \sin v) \\
& \epsilon_{\imath}=+\frac{c / \lambda I}{2 \pi} \frac{\sin \theta}{r^{3}}\left(\cos v-\alpha r \sin v-\alpha^{2} r^{2} \cos v\right)  \tag{1}\\
& h=-I I \frac{\sin \theta}{r^{2}}(\sin v-\alpha r \cos v)
\end{align*}
$$

*See pages 26 and 27.

Fig. 2-Variations of fleld in the vicinity of a dipole.

$\mathbf{r} / \boldsymbol{\lambda}$	$\mathbf{1} / \boldsymbol{\alpha r}$	$\mathbf{A}_{\mathbf{r}}$	$\boldsymbol{\phi}_{\mathbf{r}}$	$\mathbf{A}_{\mathbf{l}}$	$\phi_{\boldsymbol{h}}$	$\mathbf{A}_{\mathbf{h}}$	$\boldsymbol{\phi}_{\mathbf{h}}$
0.01	15.9	4.028	$3^{\circ} .6$	4.012	$3^{\circ} .6$	253	$93^{\circ} .6$
0.02	7.96	508	$7^{\circ} .2$	500	$7^{\circ} .3$	64.2	$97^{\circ} .2$
0.04	3.98	65	$14^{\circ} .1$	61	$15^{\circ} .0$	16.4	$104^{\circ} .1$
0.06	2.65	19.9	$20^{\circ} .7$	17.5	$23^{\circ} .8$	7.67	$10^{\circ} .7$
0.08	1.99	8.86	$26^{\circ} .7$	7.12	$33^{\circ} .9$	4.45	$116^{\circ} .7$
0.10	1.59	4.76	$32^{\circ} .1$	3.52	$45^{\circ} .1$	2.99	$122^{\circ} .1$
0.15	1.06	1.66	$42^{\circ} .3$	1.14	$83^{\circ} .1$	1.56	$132^{\circ} .3$
0.20	0.80	0.81	$51^{\circ} .5$	0.70	$114^{\circ} .0$	1.02	$141^{\circ} .5$
0.25	0.64	0.47	$57^{\circ} .5$	0.55	$133^{\circ} .1$	0.75	$147^{\circ} .5$
0.30	0.56	0.32	$62^{\circ} .0$	0.48	$143^{\circ} .0$	0.60	$152^{\circ} .0$
0.35	0.45	0.23	$65^{\circ} .3$	0.42	$150^{\circ} .1$	0.50	$155^{\circ} .3$
0.40	0.40	0.17	$68^{\circ} .3$	0.37	$154^{\circ} .7$	0.43	$158^{\circ} .3$
0.45	0.35	0.134	$70^{\circ} .5$	0.34	$158^{\circ} .0$	0.38	$160^{\circ} .5$
0.50	0.33	0.106	$72^{\circ} .3$	0.30	$160^{\circ} .4$	0.334	$162^{\circ} .3$
0.60	0.265	0.073	$75^{\circ} .1$	0.26	$164^{\circ} .1$	0.275	$165^{\circ} .1$
0.70	0.228	0.053	$77^{\circ} .1$	0.22	$166^{\circ} .5$	0.234	$167^{\circ} .1$
0.80	0.199	0.041	$78^{\circ} .7$	0.196	$168^{\circ} .3$	0.203	$168^{\circ} .7$
0.90	0.177	0.032	$80^{\circ} .0$	0.175	$169^{\circ} .7$	0.180	$170^{\circ} .0$
1.00	0.159	0.026	$80^{\circ} .9$	0.157	$170^{\circ} .7$	0.161	$170^{\circ} .9$
1.20	0.133	0.018	$82^{\circ} .4$	0.132	$172^{\circ} .3$	0.134	$172^{\circ} .4$
1.40	0.114	0.013	$83^{\circ} .5$	0.114	$173^{\circ} .5$	0.114	$173^{\circ} .5$
1.60	0.100	0.010	$84^{\circ} .3$	0.100	$174^{\circ} .3$	0.100	$174^{\circ} .3$
1.80	0.088	0.008	$84^{\circ} .9$	0.088	$174^{\circ} .9$	0.088	$174^{\circ} .9$
2.00	0.080	0.006	$85^{\circ} .4$	0.080	$175^{\circ} .4$	0.080	$175^{\circ} .4$
2.50	0.064	0.004	$86^{\circ} .4$	0.064	$176^{\circ} .4$	0.064	$176^{\circ} .4$
5.00	0.032	0.001	$88^{\circ} .2$	0.032	$178^{\circ} .2$	0.032	$178^{\circ} .2$

$A_{r}=$ coefficient for radial magnetic field
$A_{l}=$ coefficient for tangential magnetic field
$A_{h}=$ coefficient for electric field
$\phi_{r}, \phi_{t}, \phi_{h}=$ phase angles corresponding to coefficients

These formulas are valid for the elementary dipole at distances that are large compared with the dimensions of the dipole. Length of the dipole must be small with respect to the wavelength, say $l / \lambda<0.1$. The formulas are for a dipole in free space. If the dipole is placed vertically on a plane of infinite conductivity, its image should be taken into account, thus doubling the above values.

## Field great distance

When distance $r$ exceeds five wavelengths, as is generally the case in radio applications, the radial electric field $\epsilon_{r}$ becomes negligible with respect to the tangential field and

$$
\left.\begin{array}{l}
\epsilon_{r}=0  \tag{2}\\
\epsilon_{l}=-\frac{2 \pi c l I}{\lambda_{r}} \sin \theta \cos (\omega t-\alpha r) \\
h=-\frac{\epsilon_{t}}{c}
\end{array}\right\}
$$

## Field at short distance

In the vicinity of the dipole $\operatorname{r} / \lambda<0.011$, $\alpha r$ is very small and only the first terms between parentheses in (1) remain. The ratio of the radial and tangential field is then

$$
\frac{\boldsymbol{\epsilon}_{r}}{\boldsymbol{\epsilon}_{i}}=-2 \cot \theta
$$

Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further, the ratio of the magnetic and electric tangential field is
$\frac{h}{\epsilon_{\ell}}=-\frac{\alpha r}{c} \frac{\sin v}{\cos v}$

The magnitude of the magnetic field at short distances is, therefore, extremely small with respect to that of the tangential electric field, relative to their relationship at great distances. The two fields are in quadrature. Thus, at short distances, the effect of the dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points.

## The elementary dipole

## Field at intermediate distance

At intermediate distance, say between 0.01 and 5.0 wavelengths, one should take into account all the terms of the equations (1). This case occurs, for instance, when studying reactions between adjacent antennas. To calculate the fields, it is convenient to transform the equations as follows:
$\left.\begin{array}{l}\epsilon_{r}=-2 \alpha^{2} \mathrm{c} I I \cos \theta A_{r} \cos \left(v+\phi_{r}\right) \\ \epsilon_{t}=\alpha^{2} c I I \sin \theta A_{t} \cos \left(v+\phi_{l}\right) \\ h=\alpha^{2} I I \sin \theta A_{h} \cos \left(v+\phi_{h}\right)\end{array}\right\}$
where
$\left.\begin{array}{ll}A_{r}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{3}} & \text { tan } \phi_{T}=\alpha r \\ A_{t}=\frac{\sqrt{1-(\alpha r)^{2}+(\alpha r)^{4}}}{(\alpha r)^{3}} & \cot \phi_{t}=\frac{1}{\alpha r}-\alpha r \\ A_{h}=\frac{\sqrt{1+(\alpha r)^{2}}}{(\alpha r)^{2}} & \cot \phi_{h}=-\alpha r\end{array}\right\}$
Values of A's and $\phi$ 's are given in Fig. 2 as a function of the ratio between the distance $r$ and the wavelength $\lambda$. The second column contains values of $1 / \alpha r$ that would apply if the fields $\epsilon_{l}$ and $h$ behaved as at great distances.

## Linear polarization

An electromagnetic wave is linearly polarized when the electric field lies wholly in one plane containing the direction of propagation.

Horizontal polarization: Is the case where the electric field lies in a plane parallel to the earth's surface.

Vertical polarization: Is the case where the electric field lies in a plane perpendicular to the earth's surface.

E plane: Of an antenna is the plane in which the electric field lies. The principal $E$ plane of an antenna is the $E$ plane that also contains the direction of maximum radiation.

H plane: Of an antenna is the plane in which the magnetic field lies. The $H$ plane is normal to the $E$ plane. The principal $H$ plane of an antenna is the $H$ plane that also contains the direction of maximum radiation.

## Elliptical and circular polarization

An electromagnetic wave is elliptically polarized when the electric field does not lie wholly in one plane containing the direction of propagation. In a plane normal to the direction of propagation, the electric field rotates around the direction of propagation, making one complete revolution in a time equal to the period of the wave. If $x$ and $y$ are two orthogonal coordinate axes in the plane perpendicular to the direction of propagation, the field components along these axes are
$E_{x}=A \sin \omega t$
$E_{y}=B \sin |\omega t+\phi|$
where

$$
\begin{aligned}
A, B & =\text { constants } \\
\omega & =2 \pi f \\
f & =\text { frequency in cycles/second } \\
t & =\text { time in seconds } \\
\phi & =\text { phase difference between } x \text { and } y \text { components in radians }
\end{aligned}
$$

If $\phi=0$, the field is linearly polarized. If $\phi= \pm \pi / 2$ and $A=B$, the field is circularly polarized. If $\phi=+\pi / 2$, the field is right-handed-circularly polarized. If $\phi=-\pi / 2$, the field is left-handed-circularly polarized. At a fixed instant of time a right-handed-circularly polarized field rotates clockwise around the direction of propagation when viewed in the direction of propagation. In a plane normal to the direction of propagation a right-handed-circularly polarized field rotates counter-clockwise as a function of time. To avoid confusion, the sense of rotation should be specified with respect to the direction of propagation.

The locus of the instantaneous values of the electric field in an elliptically polarized wave is an ellipse in the plane normal to the direction of propagation. The ratio of the minor diameter to the major diameter is called the axial ratio. The axial ratio is unity for circular polarization and zero for linear polarization.

The relative power received by an elliptically polarized receiving antenna as it is rotated in a plane normal to the direction of propagation of an elliptically polarized wave is given by
$P_{r}=K \frac{\left(1 \pm r_{1} r_{2}\right)^{2}+\left(r_{1} \pm r_{2}\right)^{2}+\left(1-r_{1}{ }^{2}\right)\left(1-r_{2}{ }^{2}\right) \cos 2 \theta}{\left(1+r_{1}{ }^{2}\right)\left(1+r_{2}{ }^{2}\right)}$

## Elliptical and circular polarization <br> continued


$M=$ ellipse major axis
$m=$ ellipse minor axis
$\beta=$ inclination of ellipse major axis
$(A R)=m / M=$ oxial ratio
$E_{1}=k, I_{1} \cos \omega t$
$E_{2}=k_{1} I_{2} \cos (\omega t-\phi)$


Fig. 3-Elliplically polarized field as a function of relative current amplitude and phase $\phi$. Axial-ratio (AR) lines and $\beta$ lines are plotfed.

## Elliptical and circular polarization continued

where

$$
K=\text { constant }
$$

$r_{1}=$ axial ratio of elliptically polarized wave
$r_{2}=$ axial ratio of elliptically polarized antenna
$\theta=$ angle between the direction of maximum amplitude in the incident wave and the direction of maximum amplitude of the elliptically polarized antenna

The + sign is to be used if both the receiving and transmitting antennas produce the same hand of polarization. The ( - ) sign is to be used when one is left handed and the other right handed.
Fig. 3 is useful in the design of circularly polarized antennas. For example if an axial ratio of 0.5 is measured with an angle of 15 degrees between the maximum field and the reference axis, this elliptically polarized field can be considered to be produced by two similar radiators normal to each other, the ratio of whose currents is 1.8 , and the current in the radiator along the reference axis is larger and 70 degrees ahead of the current in the other radiator.

## Vertical radiators

## Field intensity from a vertically polarized antenna with base close to ground

The following formula is obtained from elementary-dipole theory and is applicable to low-frequency antennas. It assumes that the earth is a perfect reflector, the antenna dimensions are small compared with $\lambda$, and the actual height does not exceed $\lambda / 4$.
The vertical component of electric field radiated in the ground plane, at distances so short that ground attenuation may be neglected lusually when $D<10 \mathrm{~N})$, is given by
$E=\frac{377 I H_{e}}{\lambda D}$
where
$E=$ field intensity in millivolts/meter
$l=$ current at base of antenna in amperes
$H_{e}=$ effective height of antenna
$\lambda=$ wavelength in same units as $H$
$D=$ distance in kilometers

## Vertical radiators

The effective height of a grounded vertical antenna is equivalent to the height of a vertical wire producing the same field along the horizontal as the actual antenna, provided the vertical wire carries a current that is constant along its entire length and of the same value as at the base of the actual antenna. Effective height depends upon the geometry of the antenna and varies slowly with $\lambda$. For types of antennas normally used at low and medium frequencies, it is roughly one-half to two-thirds the actual height of the antenna.

For certain antenna configurations effective height can be calculated by the following formulas

Straight vertical antenna: $h \leqslant \lambda / 4$
$H_{e}=\frac{\lambda}{\pi \sin \frac{2 \pi h}{\lambda}} \sin ^{2}\left(\frac{\pi h}{\lambda}\right)$
where $h=$ actual height
Loop antenna: $A<0.001 \lambda^{2}$
$H_{e}=\frac{2 \pi n A}{\lambda}$
where
$A=$ mean area per turn of loop
$n=$ number of turns

## Adcock antenna

$H_{e}=\frac{2 \pi a b}{\lambda}$
where
$a=$ height of antenna
$b=$ spacing between antennas

In the above formulas, if $H_{e}$ is desired in meters or feet, all dimensions $h, A$, $a, b$, and $\lambda$ must be in meters or feet, respectively.

## Practical vertical-tower antennas

The field intensity from a single vertical tower insulated from ground and either of self-supporting or guyed construction, such as is commonly used for medium-frequency broadcasting, may be calculated by the following
formula. This is more accurate than formula (6). Near ground level the formula is valid within the range $2 \lambda<D<10 \lambda$.

$$
\begin{equation*}
E=\frac{60 I}{D \sin 2 \pi \frac{h}{\lambda}}\left[\frac{\cos \left(2 \pi \frac{h}{\lambda} \cos \theta\right)-\cos 2 \pi \frac{h}{\lambda}}{\sin \theta}\right] \tag{7}
\end{equation*}
$$

where
$E=$ field intensity in millivolts/meter
$I=$ current at base of antenna in amperes
$h=$ height of antenna
$\lambda=$ wavelengths in same units as $h$
$D=$ distance in kilometers
$\theta=$ angle from the vertical
Radiation patterns in the vertical plane for antennas of various heights are shown in Fig. 4. Field intensity along the horizontal as a function of antenna height for one kilowatt radiated is shown in Fig. 5.


Fig. 4-Field strength as a function of angle of elevation for vertical radiators of different heights.

Both Figs. 4 and 5 assume sinusoidal distribution of current along the antenna and perfect ground conductivity. Current magnitudes for one-kilowatt power used in calculating Fig. 5 are also based on the assumption that the only resistance is the theoretical radiation resistance of a vertical wire with sinusoidal current.

Since inductance and capacitance are not uniformly distributed along the tower and since current is aftenuated in traversing the tower, it is impossible to obtain sinusoidal current distribution in practice. Consequently actual radiation patterns and field intensities differ from Figs. 4 and 5.* The closest approximation to sinusoidal current is found on constant-cross-section towers.


Fig. 5-Field strength along the horizontal as a function of antenna height for a vertical grounded radiator with one kilowatt radiated power.

In addition, antenna efficiencies vary from about 70 percent for 0.15 wavelength physical height to over 95 percent for 0.6 wavelength height. The input power must be multiplied by the efficiency to obtain the power radiated.
Average results of measurements of impedance at the base of several actual vertical radiators, as given by Chamberlain and Lodge $\dagger$, are shown in Fig. 6.

[^36]372


Fig. 6-Resistance and reactance components of impedance befween tower base and ground of vertical radiators as given by Chamberlain and Lodge. Solid lines show average results for 5 guyed fowers; dashed lines show average results for 3 selfsupporting towers.

## Vertical radiators continued

For design purposes when actual resistance and current of the projected radiator are unknown, resistance values may be selected from Fig. 6 and the resulting effective current obtained from

$$
\begin{equation*}
I_{e}=\sqrt{\frac{W \eta}{R}} \tag{8}
\end{equation*}
$$

where

$$
I_{e}=\text { current effective in producing radiation in amperes }
$$

$W=$ watts input
$\eta=$ antenna efficiency, varying from 0.70 at $h / \lambda=0.15$ to 0.95 at $h / \lambda=0.6$
$R=$ resistance at base of antenna in ohms
If $I_{e}$ from 181 is substituted in (7), reasonable approximations to the field intensity at unit distances, such as one kilometer or one mile, will be obtained.

The practical equivalent of a higher tower may be secured by adding a capacitance "hat" with or without tuning inductance at the top of a lower tower.*

A good ground system is important with vertical-radiator antennas. It should consist of at least 120 radial wires, each one-half wavelength or longer, buried 6 to 12 inches below the surface of the soil. A ground screen of highconductivity metal mesh, bonded to the ground system, should be used on or above the surface of the ground adjacent to the tower.

## Field infensity and radiated power from antennas in free space

## Isotropic radiator

The power density $P$ at a point due to the power $P_{t}$ radiated by an isotropic radiator is

$$
\begin{equation*}
P=P_{t} / 4 \pi R^{2} \text { watts } / \text { meter }^{2} \tag{9}
\end{equation*}
$$

[^37]
## Field intensity and radiaied power continued

where
$R=$ distance in meters
$P_{t}=$ transmitted power in watts
The electric-field intensity $E$ in volts/meter and power density $P$ in watts/ meter ${ }^{2}$ at any point are related by
$P=E^{2} / 120 \pi$
where $120 \pi$ is known as the resistance of free space. From this
$E=\sqrt{120 \pi P}=\sqrt{30 P_{t}} / R$ volts $/$ meter

## Half-wave dipole

For a half-wave dipole, in the direction of maximum radiation
$P=1.64 P_{t} / 4 \pi R^{2}$
$E=\sqrt{49.2 P_{t} / R}$
These relations are shown in Fig. 7.

## Received power

To determine the power intercepted by a receiving antenna, multiply the power density from Fig. 7 by the receiving area. The receiving area is

Area $=G \lambda^{2} / 4 \pi$
where
$G=$ gain of receiving antenna
$\lambda=$ wavelength in meters
The receiving areas and gains of common antennas are given in Fig. 25.
Equation (13) can be used to determine the power received by an antenna of gain $G_{r}$ when the transmitted power $P_{t}$ is radiated by an antenna of gain $G_{l}$.
$P_{r}=\frac{P_{t} G_{r} G_{t} \lambda^{2}}{(4 \pi R)^{2}}$
$G_{t}$ and $G_{r}$ are the gains over an isotropic radiator. If the gains over a dipole are known, instead of gain over isotropic radiator, multiply each gain by 1.64 before inserting in (13).

Field intensity and radiated power continued


Fig. 7-Power density at various distances from a half-wave dipole.

## Radiation from an end-fed conductor of any length

configuration (length of radiator)
A. half-wave, resonant
$\qquad$
B. any odd number of half waves, resonant
C. any even number of half waves, resonant
E. any length, nonresonant

$$
F(\theta)=\frac{\cos \left(90^{\circ} \sin \theta\right)}{\cos \theta}
$$

expression for intensity $F(\theta)$

$$
F(\theta)=\frac{\cos \left(\frac{l^{\circ}}{2} \sin \theta\right)}{\cos \theta}
$$

$$
F(\theta)=\frac{\sin \left(\frac{l^{\circ}}{2} \sin \theta\right)}{\cos \theta}
$$

$$
\begin{aligned}
F(\theta)=\frac{1}{\cos \theta}[ & 1+\cos ^{2} \eta^{\circ}+\sin ^{2} \theta \sin ^{2} l^{\circ} \\
& -2 \cos \left(l^{\circ} \sin \theta\right) \cos l^{\circ} \\
& \left.-2 \sin \theta \sin \left(l^{\circ} \sin \theta\right) \sin l^{\circ}\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
F(\theta)=\tan \frac{\theta}{2} \sin \frac{l^{\circ}}{2}(1-\sin \theta)
$$

where
$l^{\circ}=3601 / \lambda$
$=$ length of radiator in electrical degrees, energy to flow from left-hand end of radiator.
$l=$ length of radiator in same units as $\lambda$
$\theta=$ angle from the normal to the radiator
$\lambda=$ wavelength
See also Fig. 8.



Fig. 8-Directions of maximum (solid lines) and minimum (dotted lines) radiation from a single-wire radiator. Direction given here is $\left(90^{\circ}-\theta\right)$.

## Rhombic anfennas

Linear radiators may be combined in various ways to form antennas such as the horizontal vee, inverted vee, etc. The type most commonly used at high frequencies is the horizontal terminated rhombic shown in Fig. 9.


Fig. 9-Dimensions and radiation angles for rhombic antenna.
In designing rhombic antennas* for high-frequency radio circuits, the desired vertical angle $\Delta$ of radiation above the horizon must be known or assumed. When the antenna is to operate over a wide range of radiation angles or is to operate on several frequencies, compromise values of $H, L$, and $\phi$ must

* For more complete information see A. E. Harper, "Rhombic Antenna Design," D. Van Nostrand Company, New York, New York; 1941.
be selected. Gain of the antenna increases as the length $L$ of each side is increased; however, to avoid too-sharp directivity in the vertical plane, it is usual to limit $L$ to less than six wavelengths.


Fig. 10-Rhombic-antenna design chart.
Knowing the side length and radiation angle desired, the height $H$ above ground and the tilt angle $\phi$ can be obtained from fig. 10 as in the following example:
Problem: Find $H$ and $\phi$ if $\Delta=20$ degrees and $L=4 \lambda$.
Solution: On fig. 10 draw a vertical line from $\Delta=20$ degrees to meet $L / \lambda=4$ curve and $H / \lambda$ curves. From intersection at $L / \lambda=4$, read on the right-hand scale $\phi=71.5$ degrees. From intersection on $H / \lambda$ curves, there are two possible values on the left-hand scale
a. $H / \lambda=0.74$ or $H=0.74 \lambda$
b. $H / \lambda=2.19$ or $H=2.19 \lambda$

Similarly, with an antenna $4 \lambda$ on the side and a tilt angle $\phi=71.5^{\circ}$, working backwards, it is found that the angle of maximum radiation $\Delta$ is $20^{\circ}$, if the antenna is $0.74 \lambda$ or $2.19 \lambda$ above ground.

Figs. 11 and 12 give useful information for the calculation of the terminating resistance of rhombic antennas.

A-No. 14
B-No. 12
C-No. 10
D-No. 8
E-No. 6
F-No. 6 Iron wire
All sizes are American wire gauge

Fig. 11-Attenuation of balanced 600ohm transmission lines for use as terminating nelworks for rhombic antennas.

United States Steel Type "12" or American Iron and Steel Institute No. 410 Stainless Steel.



$$
Z_{0}=276 \log _{10} \frac{2 S}{d} \text { ohms } \quad \begin{aligned}
& S=\text { center-to-center spacing } \\
& d=\text { conductor diameter }
\end{aligned}
$$

Fig. 12-Parallel-line spacing and wire size to give 600 -ohm terminating impedance for rhombic antennas. Attenuation of $\mathbf{6 0 0 - o h m}$ lines is given in Fig. 11 . All wire sizes are American wire gauge.

## Antenna arrays*

The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction while suppressing the radiation in undesired directions. The individual sources may be any type of antenna.

## Individual elements

Expressions for the radiation pattern of several common types of individual elements are shown in Fig. 13, but the array expressions are not limited to these. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for $A$, the radiation pattern of the individual antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by $A$, the result of combining it with similar antennas is obtained by multiplying $A$ by a suitable array factor, thus obtaining an $A^{\prime}$ for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups or, for instance, of placing the group above ground, is obtained by multiplying $A^{\prime}$ by another of the array factors given.

## Linear array

One of the most important arrays is the linear multielement array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Fig. 14 gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.
In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the Binomial array, may be used.

## Binomial array

Here again all the radiators are fed in phase but the current is not distributed equally among the array elements, the center radiators in the array being fed more current than the outer ones. Fig. 15 shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop antennas in order to obtain single-lobe directivity

[^38]
## Antenna arrays

 continuedFig. 13-Radiation patterns of several common types of antennas.

type of radiator	currentdistribution	directivity	
		horizontal Eplane A $(\theta)$	vertical H plane A ( $\beta$ )
A   half-wave dipole		$\begin{aligned} A(\theta) & =K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \\ & \approx K \cos \theta \end{aligned}$	$A(\beta)=K(1)$
B   shortened dipole		$A(\theta) \approx K \cos \theta$	$A(\beta)=K(1)$
C   lengthened dipole		$\begin{aligned} & A(\theta)= \\ & K\left[\frac{\cos \left(\frac{\pi l}{\lambda} \sin \theta\right)-\cos \frac{\pi I}{\lambda}}{\cos \theta}\right] \end{aligned}$	$A(\beta)=K(1)$
D   horizontal loop		$A(\theta) \approx K(1)$	$A(\beta)=K \cos \beta$
E   horizontal turnstile	$i_{1}$ and $i_{2}$ phased $90^{\circ}$	$A(\theta) \approx K^{\prime}(1)$	$A(\beta)=K^{\prime}(1)$

$\theta=$ horizontal angle measured from perpendicular bisecting plane
$\beta=$ vertical angle measured from horizon
$K$ and $K^{\prime}$ are constants and $K^{\prime} \approx 0.7 K$

## Antenna arrays continued

in the vertical plane. If such an array were desired in the horizontal plane, say $n$ dipoles end to end, with the specified current distribution the expression would be
$F(\theta)=2^{n-1}\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos ^{n-1}\left(\frac{1}{2} S^{\circ} \sin \theta\right)$
The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the numerical coefficients of the terms in the binomial expansion $(a+b)^{n-1}$ where $n$ is the number of elements in the array. This is shown in Fig. 15.

Fig. 14-Linear-multielement-array broadside directivity. See Fig. 13 to compare A for common antenna types.
Configuration of array

## Antenna arrays continued

Fig. 15-Development of the binomial array. The expression for the general case is given in $E$.


## Optimum current distribution for broadside arrays*

It is the purpose here to give design equations and to illustrate a method of calculating the optimum current distribution in broadside arrays. The resulting current distribution is optimum in the sense that lal if the side-lobe level is specified, the beam width is as narrow as possible, and (b) if the first null is specified, the side-lobe level is minimized. The current distribution for 4 - through 12-; and $16-, 20$-, and 24 -element arrays can be calculated after either the side-lobe level or the position of the first null is specified.

Parameter Z: All design equations are given in terms of the parameter Z. To determine $Z$ if the side-lobe level is specified, let
$r=\frac{\text { (maximum amplitude of main lobe) }}{\text { (maximum amplitude of side lobe) }}$
then
$Z=\frac{1}{2}\left[\left(r+\sqrt{r^{2}-1}\right)^{1 / M}+\left(r-\sqrt{r^{2}-1}\right)^{1 / M}\right]$
where
$M=2 N-1$ for an array of $2 N$ elements
$=2 N$ for an array of $2 N+1$ elements

To determine $Z$ if the position of the first null is specified (Fig. 16), let $\theta_{0}=$ position of first null. Then
$Z=\frac{\cos (\pi / 2 M)}{\cos \left(\frac{\pi S}{\lambda} \sin \theta_{0}\right)}$
 broadside array, showing first null at $\theta_{0}$.
where $S=$ spacing between elements.
Design equations: The following are in Z. It is assumed that all elements are isotropic, are fed in phase, and are symmetrically arranged about the center. See fig. 17 for designation of the respective elements to which the following currents I apply.

[^39]Antenna arrays continued

4-element array
$I_{2}=Z^{3}$
$I_{1}=3\left(I_{2}-Z\right)$

8-element array
$I_{4}=Z^{7}$
$I_{3}=7\left(I_{4}-Z^{5}\right)$
$I_{2}=5 I_{3}-14 I_{4}+14 Z^{3}$
$I_{1}=3 I_{2}-5 I_{3}+7 I_{4}-7 Z$

12-element array
$I_{6}=Z^{11}$
$I_{5}=11\left(I_{6}-Z^{9}\right)$
$I_{4}=9 I_{5}-44 I_{6}+44 Z^{7}$
$I_{3}=7 I_{4}-27 I_{5}+77 I_{6}-77 Z^{5}$
$I_{2}=5 I_{3}-14 I_{4}+30 I_{5}-55 I_{6}+55 Z^{3}$
$I_{1}=3 I_{2}-5 I_{3}+7 I_{4}-9 I_{5}+11 I_{6}-11 Z$

16-element array
$I_{8}=Z^{15}$
$I_{7}=15 I_{8}-15 Z^{13}$
$I_{6}=13 I_{7}-90 I_{8}+90 Z^{11}$
$I_{5}=11 I_{6}-65 I_{7}+275 I_{8}-275 Z^{9}$
$I_{4}=9 I_{5}-44 I_{6}+156 I_{7}-450 I_{8}$ $+450 Z^{7}$
$I_{3}=7 I_{4}-27 I_{5}+77 I_{6}-182 I_{7}$ $+378 I_{8}-378 Z^{5}$
$I_{2}=5 I_{3}-14 I_{4}+30 I_{5}-55 I_{6}$ $+91 I_{6}-140 I_{8}+140 Z^{3}$
$I_{1}=3 I_{2}-5 I_{3}+7 I_{4}-9 I_{5}$ $+11 I_{6}-13 I_{7}+15 I_{8}-15 z$

The relative current values necessary for optimum current distribution are plotted as a function of side-lobe level in decibels for 8-, 12-, and 16element arrays (figs. 18-20).

$N$ elements

Courtesy of Proceedings of the I,R.E.
Fig. 17-Broadside array of $N$ and $N+1$ elements showing nomenclature of radiators, spacing $S$, and beam-angular measurement 0 .

## Antenna arrays continued



Courtesy of Proceedings of the I.R.E.

Fig. 19-The relative current values for a 12-element array necessary for "the optimum current distribution" as a funcfion of side-lobe level in decibels.


Courtesy of Proceedings of the I.R.E.
Fig. 20-The relative current values for a 16 -element array necessary for "the optimum current distribution' as a funesion of side-iobe level in decibels.

## Effect of ground on antenna radiation at very-high

 and ulifa-high frequenciesThe behavior of the earth as a reflecting surface is considerably different for horizontal than for vertical polarization. For horizontal polarization the earth may be considered a perfect conductor, i.e., the reflected wave at all vertical angles $\beta$ is substantially equal to the incident wave and 180 degrees out of phase with it. $F(\beta)$ in Fig. 21B was derived on this basis. The approximation is good for all practical types of ground.

For vertical polarization, however, the problem is much more complex as both the relative amplitude $K$ and relative phase $\phi$ change with vertical angle $\beta$, and vary considerably with different types of ground. Fig. 22 is a set of curves that illustrate the problem. The subscripts to the amplitude and phase coefficients $K$ and $\phi$ refer to the type of polarization.

It is to be noted particularly that at grazing incidence ( $\beta=0$ ) the reflection coefficient is the same for vertical and horizontal polarization. This is substantially true for all practical ground conditions.

## Antenna arrays continued

## Directivity of several miscellaneous arrays

Fig. 21 -Directivity of several array problems that do not fall into any of the preceding classes.
A. two radiators any phase $\phi$

$F(\theta)=$
$\left[A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(S^{\circ} \sin \theta+\phi\right)\right]$
$W h e n A_{1}=A_{2}$
$F(\theta)=2 A \cos \left(\frac{S^{\circ}}{2} \sin \theta+\frac{\phi}{2}\right)$
B. radiator above ground (horizontal polarization)


$$
F(\beta)=2 A \sin \left(h_{1}{ }^{\circ} \sin \beta\right)
$$

C. radiator parallel to screen


$$
F(\beta)=2 A \sin \left(d^{\circ} \cos \beta\right)
$$

or
$F(\theta)=2 A \sin \left(d^{\circ} \cos \theta\right)$
$S^{\circ}=$ spacing in electrical degrees
$h_{1}^{\circ}=$ height of radiator in electrical degrees
$d^{\circ}=$ spacing of radiator from screen in electrical degrees

## Antenna arrays continued



Fig. 22-Typical ground-reflecfion coefficients for horizontal and vertical polarizations.


## Electromagnetic horns and parabolic reflectors

Radiation from a wave guide may be obtained by placing an electromagnetic horn of a particular size at the end of the wave guide.

Fig. 23 gives data for designing a horn to have a specified gain with the shortest length possible. The length $L_{1}$ is given by
$L_{1}=L\left(1-\frac{a}{2 A}-\frac{b}{2 B}\right)$
where
$a=$ wide dimension of wave guide in the $H$ plane
$b=$ narrow dimension of wave guide in $E$ plane
If $L \geqslant a^{2} / \lambda$, where $a=$ longer dimension of aperture, the gain is given by $G=10 a b / \lambda^{2}$

The half-power width in the $E$ plane is given by
$51 \lambda / b$ degrees
and the half-power width in the $H$ plane is given by
$70 \lambda / a$ degrees
where
$E=$ electric vector
$H=$ magnetic vector
Fig. 24 shows how the angle between 10-decibel points varies with aperture.

Electromagnetic horns and parabolic reflectors


Fig. 23-Design of electromagnelic-horn radiator.

## Electromagnetic horns and parabolic reflectors continued



Fig. 24-10-decibel widths of horns. $L \geqslant A^{2} / \lambda$

## Parabolas

If the intensity across the aperture of the parabola is of constant phase and tapers smoothly from the center to the edges so that the intensity at the edges is 10 decibels down from that at the center, the gain is given by
$G=8 A / \lambda^{2}$
where $A=$ area of aperture. The half-power width is given by $70 \lambda / D$ degrees
where $D=$ diameter of parabola.

## Antenna gain and effective area

The gain of an antenna is a measure of how well the antenna concentrates its radiated power in a given direction. It is the ratio of the power radiated in a given direction to the power radiated in the same direction by a standard antenna la dipole or isotropic radiator), keeping the input power constant. If the pattern of the antenna is known and there are no ohmic losses in the system, the gain $G$ is defined by

## Anfenna gain and effective area continued

$$
\begin{equation*}
G=\left(\frac{\text { maximum power intensity }}{\text { average power intensity }}\right)=\frac{\left|E_{0}\right|^{2}}{\int_{\substack{\text { oll } \\ \text { angles }}}|E|^{2} d \Omega} \tag{14}
\end{equation*}
$$

where
$\left|E_{0}\right|=$ magnitude of the field at the maximum of the radiation pattern $|E|=$ magnitude of the field in any direction

The effective area $A_{r}$ of an antenna is defined by

$$
\begin{equation*}
A_{T}=\frac{G \lambda^{2}}{4 \pi} \tag{15}
\end{equation*}
$$

where
$G=$ gain of the antenna
$\lambda=$ wavelength

The power delivered by a matched antenna to a matched load connected to its terminals is $P A_{r}$, where $P$ is the power density in watts/meter ${ }^{2}$ of the antenna and $A_{r}$ is the effective area in meters ${ }^{2}$.

The gains and receiving areas of some typical antennas are given in Fig. 25.

Fig. 25-Power gain $G$ and effective orea $A$ of several common ontennas.

radiator	gain above isotropic radiolor	effective area
Isotropic radiator	1	$\lambda^{2 / 4} \pi$
Infinitesimal dipole or loop	1.5	$1.5 \lambda^{2 / 4 \pi}$
Half-wave dipole	1.64	$1.64 \lambda^{2 / 4 \pi}$
Optimum horn Imouth area $=\mathrm{Al}$	$10 \mathrm{~A} / \lambda^{2}$	0.81 A
Horn Imaximum gain for fixed length-see Fig. 24, mouth orea $=$ Al	5.6 A/ $\lambda^{2}$	0.45 A
Parabola or metal lens	6.3 to 7.5 A/ $\mathrm{\lambda}^{2}$	0.5 to 0.6 A
Broadside array larea $=$ Al	$4 \pi A / \lambda^{2}(\max )$	A (max)
Omnidirectiona! stacked array llength $=L$, stack interval $\leqslant \lambda$	$\approx 2 L / \lambda$	$\approx L \lambda / 2 \pi$
Turnstile	1.15	$1.15 \lambda^{2 / 4 \pi}$

## Antenna gain and effective area continued

The gains and effective areas given in Fig. 25 apply in the receiving case only; when the polarizations are not the same, the gain is given by
$\mathrm{G}_{\theta}=\mathrm{G} \cos ^{2} \theta$
where
$G=$ gain of the antenna
$\theta=$ angle between plane of polarization of the antenna and the incident field
Equation (16) applies only to linear polarization. Equation (5) gives the variation for circular or elliptical polarization. If a circularly polarized antenna is used to receive power from an incident wave of the same screw sense, the gains and receiving areas in Fig. 25 are correct. If a circularly polarized antenna is used to receive power from a linearly polarized wave (or vice versa) the gain or receiving area will be one-half those of Fig. 25. If the half-power widths of a narrow-beam antenna are known, the approximate gain above an isotropic radiator may be computed from

$$
\begin{equation*}
G=\frac{30,000}{W_{k} W_{H}} \tag{17}
\end{equation*}
$$

where
$W_{E}=E$-plane half-power width in degrees
$W_{H}=H$-plane half-power width in degrees
Equation (17) is not accurate if the half-power widths are greater than about 20 degrees, or if there are many large side lobes.

## Vertically stacked horizontal loops

Radiation pattern for array at right is
$F(\beta)=\frac{\sin \left(\frac{n S^{\circ}}{2} \sin \beta\right)}{\sin \left(\frac{S^{\circ}}{2} \sin \beta\right)} \cos \beta$
where

$$
n=\text { number of loops }
$$

$S^{\circ}=$ spacing in electrical degrees
$S=$ spacing in radians


## Vertically stacked horizontal loops continued

The gain is
gain $=\left\{\frac{1}{n}+\frac{6}{n^{2}} \sum_{k=1}^{n-1}(n-k)\left[\frac{\sin k S^{\circ}}{(k S)^{3}}-\frac{\cos k S^{\circ}}{(k S)^{2}}\right]\right\}^{-1}$

The gain as a function of the number of loops and the electrical spacing is given in Fig. 26.

The data are also directly applicable to stacked dipoles, discones, tripoles, etc., and all other antenna systems that have vertical directivity but are omnidirectional in the horizontal plane. Such antennas are widely used for frequency-modulation, television, and radio-beacon applications.


Fig. 26-Gain of linear array of horizontal loops vertically stackeć

## Examples in the solution of antenna-array problems

Problem 1: Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively $\lambda / 2$, or 180 degrees.

Solution: From Fig. 14D, radiation from four radiators spaced 180 degrees is given by
$F(\theta)=4 A \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$
From Fig. 13A, the horizontal radiation of a half-wave dipole is given by
$A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
therefore, the total radiation
$F(\theta)=K\left[\frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}\right] \cos \left(180^{\circ} \sin \theta\right) \cos \left(90^{\circ} \sin \theta\right)$
Problem 2: Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180 degrees successively.

Solution: From Fig. 140 we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terins of vertical angle $\beta$.
$F(\beta)=4 A \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$.
From Fig. 13A we find that the vertical radiation from a horizontal dipole lin the perpendicular bisecting planel is nondirectional. Therefore the vertical pattern is
$F(\beta)=K(1) \cos \left(180^{\circ} \sin \beta\right) \cos \left(90^{\circ} \sin \beta\right)$

Problem 3: Find horizontal radiation pattern of group of dipoles in problem 2.

Solution: From Fig. 13A.
$F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}=K \cos \theta$

## Examples in the solution of antenna-array problems continued

Problem 4: Find the vertical radiation pattern of stack of five loops spaced $2 \lambda / 3$, or 240 degrees, one above the other, all currents equal in phase and amplitude.
Solution: From Fig. 14E, using vertical angle because of vertical stacking,
$F(\beta)=A \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
From Fig. 13D, we find $A$ for a horizontal loop in the vertical plane
$A=F(\beta)=K \cos \beta$
Total radiation pattern
$F(\beta)=K \cos \beta \frac{\sin \left[5\left(120^{\circ}\right) \sin \beta\right]}{\sin \left(120^{\circ} \sin \beta\right)}$
Problem 5: Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops.
Solution: From Fig. 15E
$F(\beta)=K \cos \beta\left[\cos ^{4}\left(120^{\circ} \sin \beta\right)\right]$
(all terms not functions of vertical angle $\beta$ are combined in constant $K$ )
Current distribution $(1+1)^{4}=1+4+6+4+1$, which represent the current intensities of successive loops in the array.
Problem 6: Find horizontal radiation pattern from two vertical dipoles spaced one-quarter wavelength apart when their currents differ in phase by 90 degrees.
Solution: From Fig. 21A
$s^{\circ}=\lambda / 4=90^{\circ}=$ spacing
$\phi=90^{\circ}=$ phase difference
Then,
$F(\theta)=2 A \cos \left(45 \sin \theta+45^{\circ}\right)$
Problem 7: Find the vertical radiation pattern and the number of nults in the vertical pattern $10 \leqslant \beta \leqslant 901$ from a horizontal loop placed three wavelengths above ground.

## Solution

$h_{1}^{\circ}=3(360)=1080^{\circ}$

396

## Examples in the solution of antenna-array problems <br> continued

From Fig. 21B
$F(\beta)=2 A \sin (1080 \sin \beta)$
From Fig. 13D for loop antennas
$A=K \cos \beta$
Total vertical radiation pattern
$F(\beta)=K \cos \beta \sin (1080 \sin \beta)$
A null occurs wherever $F(\beta)=0$.
The first term, $\cos \beta$, becomes 0 when $\beta=90$ degrees.
The second term, $\sin (1080 \sin \beta$ ), becomes 0 whenever the value inside the parenthesis becomes a multiple of 180 degrees. Therefore, number of nulls equals
$1+\frac{h_{1}^{\circ}}{180}=1+\frac{1080}{180}=7$
Problem 8: Find the vertical and horizontal patterns from a horizontal half-wave dipole spaced $\lambda / 8$ in front of a vertical screen.

Solution:
$d^{\circ}=\frac{\lambda}{8}=45^{\circ}$
From Fig. 21C
$F(\beta)=2 A \sin \left(45^{\circ} \cos \beta\right)$
$F(\theta)=2 A \sin \left(45^{\circ} \cos \theta\right)$
From Fig. 13A for horizontal half-wave dipole
Vertical pattern $A=K(1)$
Horizontal pattern $A=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta}$
Total radiation patterns are
Vertical: $\quad F(\beta)=K \sin \left(45^{\circ} \cos \beta\right)$
Horizontal: $F(\theta)=K \frac{\cos \left(\frac{\pi}{2} \sin \theta\right)}{\cos \theta} \sin \left(45^{\circ} \cos \theta\right)$

## Radio-wave propagation

## Very-long waves-up to $60 \mathrm{kc} / \mathrm{s}$

The received field intensity in microvolts/meter has been experimentally found to follow the Austin-Cohen equation,
$E=\frac{298 \times 10^{3} \sqrt{P}}{D} \cdot \sqrt{\frac{\theta}{\sin \theta}} \cdot \epsilon^{-a D / \sqrt{\lambda}}$
where
$E=$ received field intensity in microvolts/meter
$P=$ radiated power from the transmitter antenna in kilowatts
$D=$ kilometers between transmitter and receiver
$\theta=$ transmission distance in radians
$\epsilon=2.718$
$\lambda=$ wavelength of radiation in kilometers
$\alpha=$ attenuation constant
The two nomograms, Figs. 1 and 2,* give solutions for the most important problems related to very-long-wave propagation. The first nomogram solves the following equations

$$
\begin{align*}
\sqrt{P} & =\frac{H I}{\lambda} \cdot \frac{377}{298}  \tag{2}\\
M & =\frac{E}{298 \times 10^{3} \sqrt{P}} \tag{3}
\end{align*}
$$

where
$H=$ radiation height (effective height) in meters
$I=$ antenna current in amperes
$M=$ quantity used in Fig. 2

## Example

To effect a solution of the above equations:
a. On Fig. I, draw two straight lines, the first connecting a value of H with a value of $I$, the second connecting a value of $\lambda$ with a value of $P$; if both

[^40]Very-long waves continued


Fig. 1-First nomogram for the solution of very-long-wave field strength. For the solulion of $P$ and $M$, equations (2) and (3).

Very-long waves confinued


Fig. 2-Second nomogram for the determination of very-long-wave fleld strength by the Austin-Cohen equation (1). Value $M$ is firsl determined from Fig. 1.
lines intersect on the central $M$ line of the nomogram, the values present a solution of (2). Note: This does not give a solution of (3), i.e., a solution for $M$.
b. Draw a straight line connecting values of $P$ and $E$. The intersection of this line with the central nomographic scale $M$ gives the corresponding value of $M$, as indicated in (3).

Fig. 2 represents the Austin-Cohen equation, affording the possibility of either determining or using various values for the attenuation constant $\alpha$. To use,
c. Draw a straight line connecting points located on the two distance scales for the proper transmission distance.
d. Draw a second straight line connecting the proper values of wavelength (or frequency) and $M$; its intersection with the straight line in (c) above must lie at the proper value of $\alpha$ among the family of curves represented. The values of $M, \lambda, D$, and $\alpha$ thus indicated represent a solution of (1).

## Long and medium waves- 100 to $3000 \mathrm{kc} / \mathrm{s}^{*}$

For low and medium frequencies, of approximately 100 to 3000 kilocycles, with a theoretical short vertical antenna over perfectly reflecting ground:
$E=186 \sqrt{P_{r}}$ millivolts/meter at 1 mile
or,
$E=300 \sqrt{P_{r}}$ millivolts/meter at 1 kilometer
where $P_{r}=$ radiated power in kilowatts.
Actual inverse-distance fields at one mile for a given transmitter output power depend on the height and efficiency of the antenna and the efficiency of coupling devices.

Typical values found in practice for well-designed stations are:
Small 1 or $T$ antennas as on ships: $\quad 25 \sqrt{P_{i}}$ millivolts/meter at 1 mile
Vertical radiators 0.15 to $0.25 \lambda$ high: $150 \sqrt{P_{i}}$ millivolts/meter at 1 mile
Vertical radiators 0.25 to 0.40 X high: $175 \sqrt{\mathrm{P}_{t}}$ millivolts/meter at 1 mile
Vertical radiators 0.40 to $0.60 \lambda$ high
or top-loaded vertical radiators: $220 \sqrt{P_{l}}$ millivolts/meter at 1 mile

[^41]
## Long and medium waves

continued
where $P_{t}=$ transmitter output power in kilowatts. These values can be increased by directive arrangements.
The surface-wave field (commonly called ground wave) at greater distances can be found from Figs. 3-6. Figs. 4-6 are based on a field strength of 186 millivolts/meter at one mile. The ordinates should be multiplied by the ratio of the actual field at 1 mile to 186 millivolts/meter.

Fig. 3-Ground conductivity and dielectric constant for medium- and long-wave propagation to be used with Norton's, van der Pol's, Eckersley's, or other developments of Sommerfeld propagation formulas.

terrain	dielectric   conductivity $\sigma$   in emu	consfant e   in esu
Sea water	$4 \times 10^{-11}$	80
Fresh water	$5 \times 10^{-14}$	80
Dry, sandy flat coastal land	$2 \times 10^{-14}$	10
Marshy, forested flat land	$8 \times 10^{-14}$	12
Rich agricultural land, low hills	$1 \times 10^{-13}$	15
Pastoral land, medium hills ond forestation	$5 \times 10^{-14}$	13
Rocky land, steep hills	$2 \times 10^{-14}$	10
Mountainous thills up to 3000 teetl	$1 \times 10^{-14}$	5
Cities, residential areas	$2 \times 10^{-14}$	5
Cities, industrial areas	$1 \times 10^{-15}$	3



Fig. 4-Strength of surface waves as a function of distance with a vertical antenna for good earth ( $\sigma=10^{-13} \mathrm{emu}$ and $\mathrm{E}=15 \mathrm{esu}$ ).


Fig. 5-As Fig. 4, for poor earth ( $\sigma=2 \times 10^{-14} \mathrm{emu}$ and $\epsilon=5 \mathrm{esu}$ ).


Fig. 6-As Fig. 4, for sea. water ( $\sigma=4 \times 10^{-11} \mathrm{emu}$ and $\epsilon=80$ esu).

## Long and medium waves continued

Figs. 4, 5, and 6 do not include the effect of sky waves reflected from the ionosphere. Sky waves cause fading at medium distances and produce higher. field intensities than the surface wave at longer distances, particularly at night and on the lower frequencies during the day. Sky-wave field intensity is subject to diurnal, seasonal, and irregular variations due to changing properties of the ionosphere.

The annual median field strengths are functions of the latitude, the frequency on which the transmission takes place, and the phase of the solar sunspot cycle at a given time.

The dependence of the annual median field for transmissions on frequencies around the middle of the United States standard broadcast band is shown on Fig. 7 for a period of sunspot maximum (1939) and on Fig. 8, for a period of sunspot minimum (1944).

The curves are given for 35,40 , and 45 degrees latitude. The latitude used to characterize a path is that of a control point on the path. The control point is taken to be the midpoint of a path less than 1000 miles long; and for a longer path, the reflection point (for two-reflection transmission) that is at the higher latitude.

The curves are extracted from a report of the Federal Communications Commission in 1946.*

## Short waves- 3 to $25 \mathrm{mc} / \mathrm{s}$

At frequencies between about 3 and 25 megacycles and distances greater than about 100 miles, transmission depends entirely on sky waves reflected from the ionosphere. This is a region high above the earth's surface where the rarefied air is sufficiently ionized (primarily by ultraviolet sunlight) to reflect or absorb radio waves, such effects being controlled almost exclu. sively by the free-electron density. The ionosphere is usually considered as consisting of the following layers.

D layer: At heights from about 50 to 90 kilometers, $\dagger$ it exists only during daylight hours, and ionization density corresponds with the altitude of the sun.

This layer reflects very-low and low-frequency waves, absorbs mediumfrequency waves, and weakens high-frequency waves through partial absorption.

[^42]

Fig. 7-Sky-wave signal range at medium frequencies for 1939 (sunspot maximum). Shown are the values exceeded by field intensities (hourly median values) for various percentages of the nights per year per 100 millivalts/meter radiated at 1 mile. Annual overage is also shown. Values are given for latitudes of $\mathbf{3 5}, \mathbf{4 0}$, and 45 degrees.


Fig. 8-Sky-wave signal range af medium frequencies for 1944 (sunspot minimum). Shown are the values exceeded by field intensities (hourly median values) for various percentages of the nights per year per 100 millivolts/meter radiated at 1 mile. Annual average is also shown. Values are glven for latitudes of $\mathbf{3 5 , 4 0}$, and $\mathbf{4 5}$ degrees.

Elayer: At height of about 110 kilometers, this layer is of importance for short-wave daytime propagation at distances less than 1000 miles, and for medium-wave nighttime propagation at distances in excess of about 100 miles. lonization density corresponds closely with the altitude of the sun. Irregular cloud-like areas of unusually high ionization, called sporadic E may occur up to more than 50 percent of the time on certain days or nights. Sporadic $E$ occasionally prevents frequencies that normally penetrate the E layer from reaching higher layers and also causes occasional long-distance transmission af very high frequencies. Some portion (perhaps the major partl of the sporadic-E ionization is now definitely ascribable to visible- and subvisible-wavelength bombardment of the atmosphere.
F1 layer: At heights of about 175 to 250 kilometers, it exists only during daylight. This layer occasionally is the reflecting region for shortwave transmission, but usually oblique-incidence waves that penetrate the $E$ layer also penetrate the $F_{1}$ layer to be reflected by the $F_{2}$ layer. The $F_{1}$ layer introduces additional absorption of such waves.
$F_{2}$ layer: At heights of about 250 to 400 kilometers, $F_{2}$ is the principal reflecting region for long-distance short-wave communication. Height and ionization density vary diurnally, seasonally, and over the sunspot cycle. Ionization does not follow the altitude of the sun in any simple fashion, since lat such extremely low air densities and molecular-collision rates) the medium can store received solar energy for many hours, and, by energy transformation, can even detach electrons during the night. At night, the $F_{1}$ layer merges with the $F_{2}$ layer at a height of about 300 kilometers. The absence of the $F_{1}$ layer, and reduction in absorption of the $E$ layer, causes nighttime field intensities and noise to be generally higher than during daylight hours.


Fig. 9-Single- and two-hop transmission paths due to $E$ and $F_{2}$ layers.


Fig. 10-Schematic explanation of skip-signal zones.

## Short waves continued

As indicated to the right on Fig. 10, these layers are contained in a thick region throughout which ionization generally increases with height. The layers are said to exist where the ionization gradient is capable of refracting waves back to earth. Obliquely incident waves follow a curved path through the ionosphere due to gradual refraction or bending of the wave front. When attention need be given only to the end result, the process can be assimilated to a reflection.

Depending on the ionization density at each layer, there is a critical or highest frequency $f_{c}$ at which the layer reflects a vertically incident wave. Frequencies higher than $f_{c}$ pass through the layer at vertical incidence. At oblique incidence, and distances such that the curvature of the earth and ionosphere can be neglected, the maximum usable frequency is given by
(muf) $=f_{c} \sec \phi$
where
(muf) $=$ maximum usable frequency for the particular layer and distance
$\phi=$ angle of incidence at reflecting layer
At greater distances, curvature is taken into account by the modification (muf) $=k f_{c} \sec \phi$
where $k$ is a correction factor that is a function of distance and vertical distribution of ionization.
$f_{c}$ and height, and hence $\phi$ for a given distance, vary for each layer with local time of day, season, latitude, and throughout the eleven-year sunspot cycle. The various layers change in different ways with these parameters. In addition, ionization is subject to frequent abnormal variations.
The loss at reflection for each layer is a minimum at the maximum usable frequency and increases rapidly for frequencies lower than maximum usable frequency.
Short waves travel from the transmitter to the receiver by reflections from the ionosphere and earth in one or more hops as indicated in Figs. 9 and 10. Additional reflections may occur along the path between the bottom edge of a higher layer and the top edge of a lower layer, the wave finally returning to earth near the receiver.
Fig. 9 illustrates single-hop transmission, Washington to Chicago, via the $E$ layer ( $\phi_{1}$ ). At higher frequencies over the same distance, single-hop transmission would be obtained via the $F_{2}$ layer $\left(\phi_{2}\right)$. Fig. 9 also shows two-hop

## Short waves

Pransmission, Washington to San Francisco, via the $F_{2}$ layer $\left(\phi_{3}\right)$. Fig. 10 indicates transmission on a common frequency, (1) single-hop via $E$ layer, Denver to Chicago, and, (2) single-hop via $F_{2}$, Denver to Washington, with, (3) the wave failing to reflect at higher angles, thus producing a skip region of no signal between Denver and Chicago.

Actual transmission over long distances is more complex than indicated by Figs. 9 and 10, because the layer heights and critical frequencies differ with time land hence longitudel and with latitude. Further, scattered reflections occur at the various surfaces.

June 1933 and 1944


June 1937 and 1949


December 1937 and 1949

local time at place of reflection

Fig. 11-Single-hop transmission al various frequencies.

## Short waves continued

Maximum usable frequencies (muf) for single-hop transmission at various distances throughout the day are given in Fig. 11. These approximate values apply to latitude $39^{\circ} \mathrm{N}$ for the approximate minimum years (1944 and 1955) and approximate maximum years (1949 and 1960) of the sunspot cycle. Since the maximum usable frequency and layer heights change from month to month, the latest predictions should be obtained whenever available.

This information is published lin the form of contour diagrams, similar to Fig. 14, supplemented by nomograms) by the National Bureau of Standards in the U. S. A., and equivalent predictions are supplied by similar organizations in other countries.

Preferably, operating frequencies should be selected from a specific frequency band that is bounded above and below by limits that are systematically determinable for the transmission path under consideration. The recommended upper limit is called the optimum working frequency lowil and is defined as 85 percent of the maximum usable frequency (muf). The 85 -percent limit provides some margin for ionospheric irregularities and turbulence, as well as statistical deviation of day-to-day ionospheric characteristics from the predicted monthly median value. So far as may be consistent with available frequency assignments, operation in reasonable proximity to the upper frequency limit is preferable, in order to reduce absorption loss.

The lower limit of the normally available band of frequencies is called the lowest useful high frequency (luhf). Below this limit ionospheric absorption is likely to be excessive, and radiated-power requirements quite uneconomical. [For lack of better information the (luhf) was formerly arbitrarily designated at 50 percent of the (muf). Even for single-hop transmission, the 50 -percent factor is now considered unreliable, and it will usually be very misleading when applied to multiple-hop paths.] For a given path, season, and time, the (luhf) may now be predicted by a systematic graphical procedure, roughly similar to that illustrated below for the determination of (muf). Unlike the (muf), the predicted (iuhf) has to be corrected by a series of factors dependent on radiated power, directivity of transmitting and receiving antennas in azimuth and elevation, class of service, and presence of local noise sources. Available data include atmospheric-noise maps, fieldintensity charts, contour diagrams for absorption factors, and nomograms facilitating the computation. The procedure is formidable but worth while. The current technique includes some approximations and estimates that are gradually being replaced by an influx of new information derived from measured data.

## Short waves continued

The upper and lower frequency limits change continuously throughout the day, whereas it is ordinarily impractical to change operating frequencies correspondingly. Each operating frequency, therefore, should be selected to fall within the above limits for a substantial portion of the daily operating period.

If the operating frequency already has been dictated by outside considerations, and if this frequency has been found to be safely below the maximum usable frequency, then the same noise maps, absorption contours, nomograms, and correction factors (mentioned abovel may be applied to the systematic statistical determination of a lowest required radiated power (lrrp), which will just suffice to maintain the specified grade of service.

For single-hop transmission, frequencies should be selected on the basis of local time and other conditions existing at the mid-point of the path. In view of the layer heights and the fact that practical antennas do not operate effectively below angles of about three degrees, single-hop transmission cannot be achieved for distances in excess of about 2500 miles $\left(4000\right.$ kilometers) via $F_{2}$ layer, or in excess of about 1250 miles ( 2000 kilometers) via the E layer. Multiple-hop transmission must occur for longer distances and, even at distances of less than 2500 miles, the major part of the received signal frequently arrives over a two- or more-hop path. In analyzing two-hop paths, each hop is treated separately and the lowest frequency required on either hop becomes the maximum usable frequency for the circuit.

It is usually impossible to predict accurately the course of radio waves on circuits involving more than two hops because of the large number of possible paths and the scattering that occurs at each reflection. When investigating $F_{2}$-layer transmission for such long-distance circuits, it is customary to consider the conditions existing at points 2000 miles along the path from each end as the points at which the maximum usable frequencies should be calculated.

When investigating E-layer transmission, the corresponding control points are 1000 kilometers 1620 miles) from each end. For practical purposes, $F_{1}$-layer transmission lusually of minor importancel is lumped with E-layer transmission and evaluated at the same control points.

## Forecasts of short-wave propagation

In addition to forecasts for ionospheric disturbances, the Central Radio Propagation Laboratories of the National Bureau of Standards issues monthly Basic Radio Propagation Predictions 3 months in advance used to
determine the optimum working frequencies for shortwave communication. Indication of the general nature of the CRPL data and a much abbreviated example of their use follows:

## Example

To determine working frequencies for use between San Francisco and Wellington, N. Z.

## Method

a. Place a transparent sheet over Fig. 12 and mark thereon the equator, a line across the equator showing the meridian of time desired Iviz., GCT or PSTI, and locations of San Francisco and Wellington.
b. Transfer sheet to Fig. 13, keeping equator lines of chart and transparency aligned. Slide from left to right until terminal points marked fall along a Great Circle line. Sketch in this Great Circle between terminals and mark "control points" 2000 kilometers along this line from each end.
c. Transfer sheet to Fig. 14, showing muf for transmission via the $F_{2}$ layer. Align equator as before. Slide sheet from left to right placing meridian line on time desired and record frequency contours at control points. This illustration assumes that radio waves are propagated over this path via the $F_{2}$ layer. Eliminating all other considerations, 2 sets of frequencies, corresponding to the control points, are found as listed below, the lower of which is the (muf). The (muf), decreased by 15 percent, gives the optimum working frequency.

Maximum usable frequency

GCT	of San Francisco control point ( 2000 km from San Francisco)	of Wellington, N. Z. control point ( 2000 km from Wellington)	optimum working Prequency = lower of (muf) $\times 0.85$
0000	32.0	31.5	26.8
0400	34.2	25.0	21.0
0800	23.2	13.7	11.7
1200	18.0	14.8	12.6
1600	23.4	12.2	10.4
2000	24.6	2.88	20.9

Transmission may also take place via other layers. For the purpose of illustration only and without reference to the problem above, Figs. 15 and 16 have been reproduced to show characteristics of the $E$ and sporadic- $E$ layers. The complete detailed step-by-step procedure, including special considerations in the use of this method, are contained in the complete CRPL forecasts.
Forecasts of short-wave propagation
continued

Forecasts of short-wave propagation



RADIO-WAVE PROPAGATION 415
Fig. 15-E-layer 2000kilometer maximum usable frequency in megacycles predicted for July, 1946.
continued Forecasts of short-wave propagation
43100
Ррח!
Ytnos


416
Fig. 16-Median fE $_{\text {s }}$ in megacycles (spodicled for July, 1946.

## Forecasts of short-wave propagation



Forecasts of short-wave propagation continued


Fig. 17-F-layer transmission for a 2000-kilometer guard band for control points on the 4000-kilometer (muf) contour. Frequency is 15 percent below 30 megacycles. For December, 1946. Zones are $E=$ east, $W=$ west, and $I=$ intermediate. Map is a modified cylindrical projection.


Fig. 18-As Fig. 17, for June, 1947.


Fig. 19A-Field-intensity contours in microvolis/meter for 1 kilowatt radiated at 6 megacycles. Azimuthal equidistant projection centered on station at 40 degrees south latitude. Time is noon of a June day during a sunspot-minimum year.

## Contour charts of field intensity-dark spot and skip zones

Figs. 17 and 18 are skip-zone charts showing areas in which F-layer transmission is normally impossible at a particular frequency, 30 megacycles on the example shown. Fig. 17 is for December, 1946, east, west, and intermediate zones. Fig. 18 is for June, 1947.
These charts are established for a 2000 -kilometer guard-distance for control points on the 4000 -kilometer (muf) contour for a frequency 15 percent below 30 megacycles.
World-coverage field-intensity contours are useful for determining the strength of an interfering signal from a given transmitter, as compared with the wanted signal from another transmitter. A sample instance of such a

Forecasis of short-wave propagation continued


Fig. 19B—Field intensity at antipodes, drawn to twice the scale of Fig. 19A.
field-intensity-contour chart is shown in Figs. 19A and B. The field is given in microvolts/meter for a 1 -kilowatt station at 6 megacycles. Fig. 19A is an azimuthal equidistant projection centered on the transmitter (periphery of figure represents antipodes). Fig. 19B, at twice the scale, is centered on antipodes, but for a half-sphere only. These diagrams are useful in determining the point on the surface of the earth where the field intensity is a minimum, the so-called dark spot.

## Great-circle calculations

## Mathematical method

Referring to Figs. 20, 21, and 22, $A$ and $B$ are two places on the earth's surface the latitudes and longitudes of which are known. The angles $X$ and $Y$
at $A$ and $B$ of the great circle passing through the two places and the distance $Z$ between $A$ and $B$ along the great circle can be calculated as follows:
$B=$ place of greater latitude, i.e., nearer the pole, $L_{A}=$ latitude of $A$, $L_{B}=$ latitude of $B$, and $C=$ difference of longitude between $A$ and $B$,

Then,
$\tan \frac{Y-X}{2}=\cot \frac{C}{2} \frac{\sin \frac{L_{B}-L_{A}}{2}}{\cos \frac{L_{B}+L_{A}}{2}}$ and $\tan \frac{Y+X}{2}=\cot \frac{C}{2} \frac{\cos \frac{L_{B}-L_{A}}{2}}{\sin \frac{L_{B}+L_{A}}{2}}$
give the values of $\frac{Y-X}{2}$ and $\frac{Y+X}{2}$.
from which
$\frac{Y+X}{2}+\frac{Y-X}{2}=Y \quad$ and $\quad \frac{Y+X}{2}-\frac{Y-X}{2}=X$
In the above formulas, north latitudes are taken as positive and south latitudes as negative. For example, if $B$ is latitude $60^{\circ} \mathrm{N}$ and $A$ is latitude $20^{\circ} \mathrm{S}$,
$\frac{L_{B}+L_{A}}{2}=\frac{60+(-20)}{2}=\frac{60-20}{2}=\frac{40}{2}=20^{\circ}$
$\frac{L_{B}-L_{A}}{2}=\frac{60-(-20)}{2}=\frac{60+20}{2}=\frac{80}{2}=40^{\circ}$
If both places are in the southern hemisphere and $L_{B}+L_{A}$ is negative, it is simpler to call the place of greater south latitude $B$ and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north.
The distance $Z$ (in degrees) along the great circle between $A$ and $B$ is given by the following:
$\tan \frac{Z}{2}=\tan \frac{L_{B}-L_{A}}{2}\left(\sin \frac{Y+X}{2}\right) /\left(\sin \frac{Y-X}{2}\right)$
The angular distance $Z$ (in degrees) between $A$ and $B$ may be converted to linear distance as follows:
$Z$ (in degrees) $\times 111.195=$ kilometers
$Z$ (in degrees) $\times 69.093=$ statute miles
$Z$ (in degrees) $\times 60.000=$ nautical miles

## Great-circle calculations continued

Fig. 20
$L_{A}=$ latitude of $A$
$L_{B}=$ latifude of $B$
$C$ = difference of longitude


Fig. 21
$L_{A}=$ latitude of $A$
$\mathbf{L}_{\mathrm{B}}=$ latitude of $B$
$C=$ difference of longitude


Fig. 22
$L_{A}=$ latitude of $A$
$\Lambda_{\mathrm{B}}=$ latitude of B
$C=$ difference of longitude

In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example, $Z=37^{\circ} 45^{\prime} 36^{\prime \prime}$ becomes $37.755^{\circ}$.

Example: Find the great-circle bearings at Brentwood, Long Island, Longitude $73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W}$, Latitude $40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$, and at Rio de Janeiro, Brazil, Longitude $43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W}$, Latitude $22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S}$; and the great-circle distance in statute miles between the two points.

	longitude	latitude	
Brentwood Rio de Joneiro	$\begin{aligned} & 73^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{W} \\ & 43^{\circ} 22^{\prime} 07^{\prime \prime} \mathrm{W} \end{aligned}$	$\begin{array}{r} 40^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N} \\ 1-) 22^{\circ} 57^{\prime} 09^{\prime \prime} \mathrm{S} \end{array}$	$L_{B}$ $L_{A}$
C	$29^{\circ} 53^{\prime} 03^{\prime \prime}$	$\begin{aligned} & 17^{\circ} 51^{\prime} 31^{\prime \prime} \\ & 63^{\circ} 45^{\prime} 49^{\prime \prime} \end{aligned}$	$\begin{aligned} & L_{B}+L_{A} \\ & L_{B}-L_{n} \end{aligned}$
$\frac{C}{2}=14^{\circ} 56^{\prime} 31^{\prime \prime}$	$\frac{L_{B}+L_{A}}{2}=8^{\circ} 5$	$\frac{L_{k}-L_{k}}{2}$	$52^{\prime} 54^{\prime \prime}$


$\log \cot 14^{\circ} 56^{\prime} 31^{\prime \prime}$	$=10.57371$	$\log \cot 14^{\circ} 56^{\prime} 31^{\prime \prime}=10.57371$
plus $\log \cos 31^{\circ} 52^{\prime} 54^{\prime \prime}$	$=\frac{9.92898}{0.50269}$	plus $\log \sin 31^{\circ} 52^{\prime} 54^{\prime \prime}=\frac{9.72277}{0.29648}$
minus $\log \sin 8^{\circ} 55^{\prime} 45^{\prime \prime}$	$=9.19093$	minus $\log \cos 8^{\circ} 55^{\prime} 45^{\prime \prime}=\frac{9.99471}{Y+X}$
$\log \tan \frac{Y-X}{2}$	$=1.31176$	$\log \tan \frac{Y-30177}{2}$
$\frac{Y+X}{2}$	$=87^{\circ} 12^{\prime} 26^{\prime \prime}$	$\frac{Y-X}{2}=63^{\circ} 28^{\prime} 26^{\prime \prime}$

Bearing at Brentwood $=\frac{Y+X}{2}+\frac{Y-X}{2}=Y=150^{\circ} 40^{\prime} 52^{\prime \prime}$ East of North
Bearing at Rio de Janeiro $=\frac{Y+X}{2}-\frac{Y-\chi}{2}=X=23^{\circ} 44^{\prime} 00^{\prime \prime}$ West of North

$$
\begin{aligned}
\frac{L_{1}-L_{A}}{2} & =31^{\circ} 52^{\prime} 54^{\prime \prime} \\
\frac{Y+X}{2} & =87^{\circ} 12^{\prime} 26^{\prime \prime} \\
\frac{Y-X}{2} & =63^{\circ} 28^{\prime} 26^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
\log \tan 31^{\circ} 52^{\prime} 54^{\prime \prime} & =9.79379 \\
\text { plus } \log \sin 87^{\circ} 12^{\prime} 26^{\prime \prime} & =\frac{9.99948}{9.79327}
\end{aligned}
$$

minus $\log \sin 63^{\circ} 28^{\prime} 26^{\prime \prime}=9.95170$

$$
\log \tan \frac{Z}{2}=\overline{9.84157}
$$

$$
\frac{Z}{2}=34^{\circ} 46^{\prime} 24^{\prime \prime} \quad Z=69^{\circ} 32^{\prime} 48^{\prime \prime}
$$

```
69}3\mp@subsup{2}{}{\prime}4\mp@subsup{8}{}{\prime\prime}=69.54\mp@subsup{7}{}{\circ
```

Linear distance $=69.547 \times 69.093=4805.21$ statute miles

## Use of the nomogram of Fig. 24*

Note: Values near the ends of the nomogram scales of Fig. 24 are subject to error because the scales are compressed. If exact values are required in those regions, they should be calculated by means of the trigonometric formulas of the preceding section.
Method: In Fig. 23, $Z$ and $S$ are the locations of the transmitting and receiving stations, where $Z$ is the west and $S$ the east end of the path. If a point lies in the southern hemisphere, its angle of lafitude is always taken as negative. Northern-hemisphere latitudes are taken as positive.
a. To obtain the great-circle distance $Z S$ ishort routel:

1. Draw a slant line from llat $Z$ - lat $S$ ) measured up from the bottom on the left-hand scale to (lat $Z+$ lat S) measured down from the top on the right-hand scale. If (lat $Z$ - lat $S$ ) or (lat $Z+$ lat $S$ ) is negative, regard it as positive.
2. Determine the separation in longitude of the stations. Regard as positive. If the angle so obtained is greater than 180 degrees, then subtract from 360 degrees. Measure this angle along the bottom scale, and erect a vertical line to the slant line obtained in (I).
3. From the intersection of the lines draw a horizontal line to the lefthand scale. This gives ZS in degrees.
4. Convert the distance ZS to kilometers, miles, or nautical miles, by using the scale at the bottom of Fig. 24.

Note: The long greatcircle route in degrees is simply $360-Z S$. The value will always be greater than 180 degrees. Therefore, in order to obtain the dis-


Fig. 23-Diagram of transmission between points $Z$ and S. For use with Fig. 24.

[^43]

Fig. 24-Nomogram (after D'Ocagne) for obtaining great-circle distances, bearings, solar zenith angles, and latitude and longitude of transmission-contral points. With conversion scole for various units.

## Great-circle calculations

continued
tance in miles from the conversion scale, the value for the degrees in excess of 180 degrees is added to the value for 180 degrees.
b. To obtain the bearing angle PZS (short route):

1. Subtract the short-route distance $Z S$ in degrees obtained in (a) above from 90 degrees to get $h$. The value of $h$ may be negative, but should always be regarded as positive.
2. Draw a slant line from (lat $Z-h$ ) measured up from the bottom on the left-hand scale to (lat $Z+h$ ) measured down from the top on the right-hand scale. If (lat $Z-h)$ or (lat $Z+h$ ) is negative, regard it as positive.
3. From $190^{\circ}$ - lat Sl measured up from the bottom on the left-hand scale, draw a horizontal line until it intersects the previous slant line.
4. From the point of intersection draw a vertical line to the bottom scale. This gives the bearing angle PZS. The angle may be either east or west of north, and must be determined by inspection of a map.
c. To obtain the bearing angle PSZ:
5. Repeat steps (1), (2), (3), and (4) in (b) above, interchanging $Z$ and $S$ in all computations. The result obtained is the interior angle PSZ, in degrees.
6. The bearing angle PSZ is 360 degrees minus the result obtained in (1) (as bearings are customarily given clockwise from due north).
Note: The long-route bearing angle is simply obtained by adding 180 degrees to the short-route value as determined in (b) or (c) above.
d. To obtain the latitude of $Q$, the mid- or other point of the path (this calculation is in principle the converse of (b) above):
7. Obtain $Z Q$ in degrees. If $Q$ is the midpoint of the path, $Z Q$ will be equal to one-half $Z S$. If $Q$ is one of the 2000 -kilometer control points, $Z Q$ will be approximately 18 degrees, or $Z S-18^{\circ}$.
8. Subtract $Z Q$ from 90 degrees to get $h^{\prime}$. If $h^{\prime}$ is negative, regard it as positive.
9. Draw a slant line from (lat $Z-h^{\prime}$ ) measured up from the bottom on the left-hand scale, to llat $Z+h^{\prime}$ l measured down from the top on the righthand scale. If (lat $Z-h^{\prime}$ ) or (lat $Z+h^{\prime}$ ) is negative, regard it as positive.
10. From the bearing angle PZS (taken always as less than 180 degrees) measured to the right on the bottom scale, draw a vertical line to meet the above slant line.
11. From this intersection draw a horizontal line to the left-hand scale.
12. Subtract the reading given from 90 degrees to give the latitude of $Q$. Ilf the answer is negative, then $Q$ is in the southem hemisphere.)
e. To obtain the longitude difference $t^{\prime}$ between $Z$ and $Q$ (this calculation is in principle the converse of lal abovel:
13. Draw a straight line from (lat $Z$ - lat $Q$ l measured up from the bottom on the left-hand scale to llat $Z+$ lat $Q 1$ measured down from the top on the right-hand scale. If (lat $Z-$ lat $Q$ ) or llat $Z+$ lat $Q$ l is negative, regard it as positive.
14. From the left-hand side, at $Z Q$, in degrees, draw a horizontal line to the above slant line.
15. At the intersection drop a vertical line to the bottom scale, which gives $t^{\prime}$ in degrees.

## Avaitable maps and tables

Great-circle initial courses and distances are conveniently determined by means of navigation tables such as
a. Navigation Tables for Navigators and Aviators-HO No. 206.
b. Large Great-Circle Charts:

HO Chart No. 1280-North Atlantic
1281-South Atlantic
1202-North Pacific
1203-South Pacific
1204-Indian Ocean
The above tables and charts may be obtained at a nominal charge from United States Navy Department Hydrographic Office, Washington, D. C.

## Ulira-high-frequency line-of-sight conditions

## Straight-line diagrams

The index of refraction of the normal lower atmosphere (troposphere) decreases with height so that radio rays above approximately 200 megacycles follow a curved path, slightly bent downward toward the earth. If the real earth is replaced by a fictitious earth having an enlarged radius $4 / 3$ times the earth's true radius ( $3963 \times 4 / 3=5284$ miles), the radio rays may be drawn on profiles as straight lines.
The radio distance to effective horizon is given with a good approximation by

## Ultra-high-frequency line-of-sight conditions continued

$d=\sqrt{2 h}$
where
$h=$ height in feet above sea level
$d=$ radio distance to effective horizon in miles
when the height is very small compared to the earth's radius.


Example shown: Height of receiving antenna 60 foet, height of transmitting antenna 500 feet, and moximum radio-path length $=41.5$ miles.

Fig. 25-Nomogram giving rodia-horizon distonce in miles when $h_{r}$ and $h_{t}$ are known.

## Ultra-high-frequency line-of-sight conditions continued

Over a smooth earth, a transmitter antenna at height $h_{l}$ (feet) and a receiving antenna at height $h_{r}$ (feet) are in radio line-of-sight provided the spacing in miles is less than $\sqrt{2 h_{l}}+\sqrt{2 h_{r}}$.


Example shown: Height of receiving-antenna airplane 8500 feet ( 1.6 miles), height of transmittingantenna airplane 4250 feef 10.8 milel; maximum radio-path distance $=220$ miles.

Fig. 26-Nomogram giving radio-path length and tangential distance for transmission between two airplanes at heights $h_{r}$ and $h_{i}$.

## Ultra-high-frequency line-of-sight conditions

The nomogram in Fig. 25 gives the radio-horizon distance between a transmitter at height $h_{t}$ and a receiver at height $h_{r}$. Fig. 26 extends the first nomogram to give the radio-path maximum length between two airplanes whose altitudes are known.

## Alternative "flat-earth" method

Instead of drawing the rays as straight lines and the earth's surface with a circular cross-section, an alternative approximate method of using a "flat" earth and curved rays is frequently convenient. The arc $\mathrm{H}_{1} \mathrm{H}_{0} \mathrm{H}_{2}$ of the effective earth cross-section is replaced by the line $H_{1} T_{0} H_{2}$, and the straight ray $P_{1} Q P_{2}$ becomes a fictitious curved ray $P_{1} P P_{2}$ (Fig. 27).

The approximate value of the deviation QP in feet of this curved ray from the straight-line path is
$Q P=d_{1} d_{2} / 2$
where $d_{1}$ and $d_{2}$ are expressed in miles. This is called the dip, and its maximum value occurs for $d_{1}=d_{2}$ and is equal to
$\left(d_{1}+d_{2}\right)^{2 / 8}$
The apparent lack of homogeneity in these formulas is due to the inclusion of the radius of the earth in the numerical constant.

Where there are one or more obstacles to be investigated for line-of-sight clearance (Fig. 28), a convenient method is to draw a hat profile, draw a straight line between transmitter and receiver antennas, and a parallel line below it at a vertical distance equal to the maximum dip. Anything below the lower line is not an obstacle. For anything above it, the corresponding dip must be checked to determine if there is actual obstruction.


Fig. 27-Flat-earth method of determining line of sight.


Fig. 28-Determination of possible obstructions in a radio path.

## Fresnel-zone clearance at UHF

A criterion to determine whether the earth is suffrciently removed from the radio line-of-sight ray to allow mean free-space propagation conditions to apply is to have the first Fresnel zone clear all obstacles in the path of the rays. This first zone is bounded by points for which the transmission path from transmitter to receiver is greater by one-half wavelength than the direct path. Let $d$ be the length of the direct path and $d_{1}$ and $d_{2}$ be the distances to transmitter and receiver. The radius of the first Fresnel zone corresponding to $d_{2}$ is approximately given by
$R_{1}{ }^{2}=\lambda \frac{d_{1} d_{2}}{d}$
where all quantities are expressed in the same units.
The maximum occurs when $d_{1}=d_{2}$ and is equal to
$R_{1 m}=\frac{1}{2} \sqrt{\lambda d}$
Expressing $d$ in miles and frequency $F$ in megacycles/second, the first fresnel-zone radius at half distance is given in feet by
$R_{1 m}=1,140 \sqrt{d / F}$

## Interference between direct and reflected U-H-F rays

Where there is one reflected ray combining with the direct ray at the receiving point (Fig. 29), the resulting field strength (neglecting the difference in angles of arrival, and assuming perfect reflection at $T$ is related to the free-space intensity by the following equation, irrespective of the polarization:

$$
E=2 E_{d} \sin 2 \pi \frac{\delta}{2 \lambda}
$$



Fig. 29-Interference between direct and reflected rays.

## Interference between direct and reflected U-H-F rays continued

where

```
 \(E=\) resulting field strength
\(E_{d}=\) direct-ray field strength
 same units
 \(\delta=\) geometrical length difference between direct and reflected paths,
 which is given to a close approximation by
 \(\delta=2 h_{t} h_{r} / d\)
```

if $h_{t}$ and $h_{r}$ are the heights of transmitter and receiver points above reflecting
plane on effective earth.
The following cases are of interest:
$E=2 E_{d} \quad$ for $h_{t} h_{r}=d \lambda / 4$
$E=E_{d} \quad$ for $h_{1} h_{r}=d \lambda / 12$
In case $h_{t}=h_{r}=h_{\text {, }}$
$E=2 E_{d}$ for $h=\sqrt{d \lambda / 4}$
$E=E_{d}$ for $h=\sqrt{d \lambda / 12}$

All of these formulas are written with the same units for all quantities.

## Space-diversity reception

When $h_{r}$ is varied, the field strength at the receiver varies approximately according to the preceding formula. The use of two antennas at different heights provides a means of compensating to a certain extent for changes in electrical-path differences between direct and reflected rays by selection of the stronger signal (space-diversity reception).
The spacing should be approximately such as to give a $\lambda / 2$ variation between geometrical-path differences in the two cases. An approximate value of the spacing is given by $\lambda d / 4 h_{l}$ when all quantities are in the same units.
The spacing in feet for $d$ in miles, $h_{t}$ in feet, and $\lambda$ in centimeters is given by spacing $=43.4 \frac{\lambda d}{h_{t}}$

Example: $\lambda=3$ centimeters, $d=20$ miles, and $h_{t}=50$ feet; therefore spacing $=52$ feet

Assuming $h_{r}=h_{t}$, the total height of the receiving point in this case would be 70 (minimum for line-of-sight) $+50+52=172$ feet

## Interference between direct and reflected U-H-F rays

## Variation of field strength with distance

Fig. 30 shows the variation of resulting field strength with distance and Frequency; this effect is due to interference between the free-space wave and the ground-reflected wave as these two components arrive in or out of phase.


## Interference between direct and reflected U-H-F rays cantinued

To compute the field accurately under these conditions, it is necessary to calculate the two components separately and to add them in correct phase relationship. The phase and amplitude of the reflected ray is determined by the geometry of the path and the change in magnitude and phase at ground reflection. For horizontally polarized waves, the reflection coefficient can be taken as approximately one, and the phase shift at reflection as 180 de grees, for nearly all types of ground and angles of incidence. For vertically polarized waves, the reflection coefficient and phase shift vary appreciably with the ground constants and angle of incidence.
For methods of computing field intensities at and beyond the radio-path horizon, or when the antenna height is not negligible compared to distance, see reference below.*

Measured field intensities usually show large deviations from point to point due to reflections from irregularities in the ground, buildings, trees, etc.

## Fading af ultra-high frequencies

Apart from signal-strength variations due to multipath transmission, line-ofsight propagation is affected by other causes, such as abnormal variation of refractive index with height in the lower atmosphere. This was observed ever since microwaves were used for telecommunication, starting with the Calais-Dover experimental link in 1930 and following years on wavelengths of 17 centimeters. $\dagger$
As previously noted, average atmospheric refraction results in a moderate extension of the radio transmission path beyond the geometric horizon. It should be noted, however, that relatively stable and widespread departures from average refraction occur frequently, and may be predicted with fair accuracy from a sufficiently detailed knowledge of local meteorological data. The atmospheric water-vapor gradient is of primary importance, with the vertical temperature gradient exerting a significant supplementary effect. The results occasionally include the formation of radio shadows or "dead spots" even within the geometric horizon. However, greater interest and importance attaches to the production of "mirage" effects that may extend radar and communication channels very far beyond the normally expected range. On such occasions the watervapor density ordinarily decreases with height, while the temperature may

[^44]increase over a limited range of heights. The radio wave is then trapped and efficiently transmitted within a duct that may have the earth's surface as a lower boundary, or may lie completely above the surface. In either case it may oct as would a wave guide, with a definite low-frequency cut-off dependent upon its vertical dimension. Boundary heights vary widely from a fraction of a meter to a few kilometers). Very low boundaries ordinarily occur only over the sea, and then require relatively smooth water. For best results under such conditions, antennas must be placed within the duct land sometimes very close to the waterl. This is a noteworthy exception to the general trend toward maximum elevation of microwave equipment. Addifional data will be found in the literature.*

There is also some absorption due to water vapor in the atmosphere and to rainfalls. Water vapor has an absorption band at a wavelength of 1.33 centimeters and oxygen at 0.5 and 0.25 centimeters.

For transmission paths of the order of 30 miles, it is considered good engineering practice to allow for possible variations of signal strength between -20 and +10 decibels with respect to free-space propagation.

## Free-space fransmission formulas for U-H-F links

## Free-space aftenuation

Let the incoming wave be assimilated to a plane wave with a power flow per unit area equal to $P_{0}$. The available power at the output terminals of a receiving antenna may be expressed as
$P_{r}=A_{r} P_{0}$
where $A_{r}$ is the effective area of the receiving antenna.
The free-space path attenuation is given by
Attenuation $=10 \log \frac{P_{t}}{P_{r}}$
where $P_{t}$ is the power radiated from the transmitting antenna (same units as for $P_{r} l$. Then
$\frac{P_{r}}{P_{t}}=\frac{A_{r} A_{t}}{d^{2} \lambda^{2}}$

[^45]
## Free-space transmission formulas for U-H-F links continued

where
$A_{r}=$ effective area of receiving antenna
$A_{t}=$ effective area of transmitting antenna
$\lambda=$ wavelength
$d=$ distance between antennas
The length and surface units in the formula should be consistent. This is valid provided $d \gg 2 a^{2} / \lambda$, where $a$ is the largest linear dimension of either of the antennas.

## Effective areas of typical antennas

Hypothetical isotropic antenna (no heat loss)
$A=\frac{1}{4 \pi} \lambda^{2} \approx 0.08 \lambda^{2}$
Small uniform-current dipole, short compared to wavelength Ino heat loss)
$A=\frac{3}{8 \pi} \lambda^{2}=0.12 \lambda^{2}$
Half-wavelength dipole (no heat loss)
$A \approx 0.13 \lambda^{2}$
Parabolic reflector of aperture area $S$ there, the factor 0.54 is due to nonuniform illumination of the reflectorl
$A \approx 0.54 \mathrm{~S}$
Very long horn with small aperture dimensions compared to length
$A=0.81 \mathrm{~S}$
Horn producing maximum field for given horn length
$\mathrm{A}=0.45 \mathrm{~S}$
The aperture sides of the horn are assumed to be large compared to the wavelength.

## Path attenuation between isotropic antennas

This is
$\frac{P_{i}}{P_{r}}=4.56 \times 10^{3} \mathrm{f}^{2} \mathrm{~d}^{2}$
where

```
f= megacycles/second
d = miles
```


## Free-space transmission formulas for U-H-F links

Path attenuation $\boldsymbol{\alpha}$ (in decibels) is
$\alpha=37+20 \log 1+20 \log d$

A nomogram for the solution of $\alpha$ is given in Fig. 31 .


Example shown: distance 30 miles, frequency 5000 megacycles;
attenuation $=141$ decibels
Fig. 31-Nomogram for solution of path attenuation $\alpha$ between isotropic antennas.

## Free-space transmission formulas for U-H-F links continued

## Gain with respect to hypothetical isotropic anfennas

Where directive antennas are used in place of isotropic antennas, the transmission formula becomes
$\frac{P_{r}}{P_{t}}=G_{t} G_{r}\left[\frac{P_{r}}{P_{t}}\right]_{\text {isotrople }}$
where $G_{t}$ and $G_{r}$ are the power gains due to the directivity of the transmitting and receiving antennas, respectively.

The apparent power gain is equal to the ratio of the effective area of the antenna to the effective area of the isotropic antenna (which is equal to $\lambda^{2} / 4 \pi \approx 0.08 \lambda^{2}$ ).

The apparent power gain due to a parabolic reflector is thus
$G=0.54\left(\frac{\pi D}{\lambda}\right)^{2}$
where $D$ is the aperture diameter, and an illumination factor of 0.54 is assumed. In decibels, this becomes
$10 \log G=20 \log f+20 \log D-52.6$
where
$f=$ megacycles/second
$D=$ aperture diameter in feet

The solution for $G$ may be found in the nomogram, Fig. 32.

## Beam angle

The beam angle $\theta$ in degrees is related to the apparent power gain $G$ of a parabolic reflector with respect to isotropic antennas approximately by
$\theta^{2} \approx \frac{27,000}{G}$
Since $G=5.6 \times 10^{-6} D^{2} f^{2}$, the beam angle becomes
$\theta=\frac{7 \times 10^{4}}{f D}$

438

## Free-space fransmission formulas for U-H-F links continued

where
$\theta=$ beam angle between 3-decibel points in degrees
$f=$ frequency in megacycles
$D=$ diameter of parabola in feet

$10 \log G=20 \log f+20 \log D-52.6$
Example shown: Frequency 3000 megacycles, diameter 6 feet; gain $=33$ decibels
Fig. 32-Nomogram for determination of apparent power gain G (in decibels) of a parabolic reflector.

Free-space transmission formulas for U-H-F links continued

## Transmitter power for a required output signal/noise ratio

Using the above expressions for path attenuation and reflector gain, the ratio of transmitted power to theoretical receiver noise, in decibels, is given by
$10 \log \frac{P_{t}}{P_{n}}=A_{p}+\frac{S}{N}+(N F)-G_{t}-G_{r}-(\overline{N(F)}$
where
$S / N=$ required signal/noise ratio at receiver in decibels
(NA $=$ noise figure of receiver in decibels Isee chapter "Radio noise and interference ${ }^{n}$ for definitionl
$(\overline{\mathrm{N} \mid F})=$ noise improvement factor in decibels due to modulation methods where extra bandwidth is used to gain noise reduction isee chapter "Modulation" for definition)
$P_{n}=$ theoretical noise power in receiver lsee chapter "Radio noise and interference")
$P_{t}=$ radiated transmitter power
$G_{t}=$ gain of transmitting antenna in decibels
$\mathrm{G}_{\boldsymbol{r}}=$ gain of receiving antenna in decibels
$A_{p}=$ path attenuation in decibels
An equivalent way to compute the transmitter power for a required output signal/noise ratio is given below directly in "erms of reflector dimensions and system parameters:
a. Normal free-space propagation,
$P_{\ell}=\frac{\beta_{1} \beta_{2}}{40} \frac{B L^{2}}{f^{2} r^{4}} \frac{E}{K} \frac{S}{N}$
b. With allowance for fading,
$P_{t}=\frac{\beta_{1} \beta_{2}}{40} \frac{B L^{2}}{f^{2} r^{4}} \frac{F}{K} \sigma\left(\frac{S}{N}\right)_{m}$
c. For multirelay transmission in $n$ equal hops,
$P_{t}=\frac{\beta_{1} \beta_{2}}{40} \frac{B L^{2} n}{f^{2} f^{4}} \frac{F}{K} \sigma\left(\frac{S}{N}\right)_{n m}$

## Free-space transmission formulas for U-H-F links

d. Signal/noise ratio for nonsimultaneous fading is
$10 \log (S / N)_{n}=10 \log \sigma(S / N)_{1 m}-10 \log \bar{n}$
where
$P_{t}=$ power in watts available at transmitter output terminals \{kept constant at each repeater point)
$\beta_{1}=$ loss power ratio (numerical) due to transmission line at transmitter
$\beta_{2}=$ same as $\beta_{1}$ at receiver
$B=$ root-mean-square bandwidth Igenerally approximated to bandwidth between 3-decibel attenuation points) in megacycles
$L=$ total length of transmission in miles
$f=$ carrier frequency in megacycles/second
$r=$ radius of parabolic reflectors in feet
$F=$ power-ratio noise figure of receiver la numerical factor; see chapter "Radio noise and interference")
$K=$ improvement in signal/noise ratio due to the modulation utilized (numerical). For instance, $K=3 m^{2}$ for frequency modulation, where $m$ is the ratio of maximum frequency deviation to maximum modulating frequency
$\sigma=$ numerical ratio between available signal power in case of normal propagation to available signal power in case of maximum expected fading
$S / N=$ required signal/noise power ratio at receiver
$(S / N)_{m}=$ minimum required signal/noise power ratio in case of maximum expected fading
(S $N)_{n m}=$ same as above in case of $n$ hops, at repeater number $n$
$(S / N)_{1 m}=$ same as above at first repeater
$n=$ number of equal hops
$m=$ number of hops where fading occurs
$\bar{n}=n-m+\sum_{1}^{m} \sigma_{k}$
$\sigma_{k}=$ ratio of available signal power for normal conditions to available signal power in case of actual fading in hop number $k$ lequation holds in case signal power is increased instead of decreased by abnormal propagation or reduced hop distance)

## Radio noise and interference

## Noise and its sources

Noise and interference from other communication systems are two factors limiting the useful operating range of all radio equipment.

The values of the main different sources of radio noise versus frequency are plotted in Fig. 1.

Atmospheric noise is shown in Fig. I as the average peaks would be read on the indicating instrument of an ordinary field-intensity meter. This is lower than the true peaks of atmospheric noise. Man-made noise is shown as the peak values that would be read on the EEI-NEMA-RMA standard noise meter. Receiver and antenna noise is shown with the peak values 13 decibels higher than the values obtained with an energy averaging device such as a thermoammeter.

## Atmospheric noise

This noise is produced mostly by lightning discharges in thunderstorms. The noise level is thus dependent on frequency, time of day, weather, season of the year, and geographical location.

Subject to variations due to local stormy areas, noise generally decreases with increasing latitude on the surface of the globe. Noise is particularly severe during the rainy seasons in certain areas such as Caribbean, East Indies, equatorial Africa, northern India, etc. Fig. I shows median values of atmospheric noise for the U. S. A. and these values may be assumed to apply approximately to other regions lying between 30 and 50 degrees latitude north or south.

Rough approximations for atmospheric noise in other regions may be obtained by multiplying the values of Fig. 1 by the following factors:

degrees of latitude	nighttime		daytime	
	$100 \mathrm{kc} / \mathrm{s}$	$10 \mathrm{mc} / \mathrm{s}$	$100 \mathrm{kc} / \mathrm{s}$	$10 \mathrm{mc} / \mathrm{s}$
90-50	0.1	0.3	0.05	0.1
50-30	1	1	1	1
30-10	2	2	3	2
10-0	5	4	6	3

Atmospheric noise is the principal limitation of radio service on the lower frequencies. At frequencies above about 30 megacycles, the noise falls to levels generally lower than receiver noise.

The peak amplitude of atmospheric noise usually may be assumed to be proportional to the square root of receiver bandwidth.


1. All curves assume a bandwidth of 10 kilocycles/second.
2. Refer to Fig. 2 for converting man-made-noise curves to bandwidths greater than 10 kilocycles. For all other curves, noise amplitude varies as the square root of bandwidth.
3. The chart shows the field intensities required to equal the peak receiver noise values assuming
a. The use of a half-wave-dipole antenna.
b. A receiver noise level greater than the ideal receiver level by a factor varying from 10 decibels at 50 megacycles to 15 decibels at 1000 megacycles.
4. Transmission-line loss is not considered in the calculations.
5. For antennas having a gain with respect to a half-wave dipole, equivalent noise-field intensities are less than indicated above in proportion to the net gain of the antenna-transmission-line combination.

Fig. 1-Major sources of radio-frequency noise, showing amplitudes at various fre.. quencies. For the U.S.A. and regions of similar latitude.

## Noise and its sources continued

## Cosmic noise

The intensity of cosmic noise is generally lower than the perturbations due to other sources. In the absence of atmospheric and man-made noise, however, it may become the limiting factor in reception between 10 and 300 megacycles. Three types of cosmic noises have so far been detected in radio receivers.
Galaxy noise: Was first found by Jansky on 200 megacycles (1933), and later by Grote Reber on 150 megacycles. It has the same character as thermal-electronic noise, but shows a spatial distribution with a maximum originating in the genera! region of the Milky Way.
Thermal noise: Due to celestial bodies, observed by Southworth in 1945 on 3000 to 30,000 megacycles for solar radiation, and utilized at Massachusetts Institute of Technology to determine the apparent temperature of the sun and moon, the measurements being made on millimetric waves.
Anomalous solar radiation: Observed by English radio amateurs on 30 megacycles (1936), and dependent on the sunspot cycle (Appleton).

## Man-made noise

This includes interference produced by sources such as motorcar ignition, electric motors, electric switching gear, high-tension line leakage, diathermy, industrial-heating generators. The field intensity from these sources is greatest in densely populated and industrial areas.


Fig. 2-Bandwidth factor. Multiply value of man-made noise from Fig. 1 by the factor above for receiver bandwidths greater than 10 kilocycles.

The nature of man-made noise is so variable that it is difficult to formulate a simple rule for converting 10 -kilocycle-bandwidth receiver measurements to other bandwidth values. For instance, the amplitude of the field strength radiated by a diathermy device will be the same in a 100 - as in a 10 -kilocycle bandwidth receiver. Conversely, peak-noise field strength due to automobile ignition will be considerably greater with a 100 - than with a 10 -kilocycle bandwidth. According to the best available information, the peak field strengths of man-made noise lexcept diathermy and other narrow-band noisel increases as the receiver bandwidth is increased, substantially as shown in Fig. 2.

The man-made noise curves in Fig. I show typical median values for the U.S.A. In accordance with statistical practice, median values are interpreted to mean that 50 percent of all sites will have lower noise levels than the values of Fig. 1; 70 percent of all sites will have noise levels less than 1.9 times these values; and 90 percent of all sites, less than seven times these values.

## Thermal noise

Thermal noise is caused by the thermal agitation of electrons in resistances. Let $R=$ resistive component in ohms of an impedance $Z$. The root-meansquare value of thermal-noise voltage is given by

$$
E^{2}=4 R k T \cdot \Delta f
$$

where

$$
\begin{aligned}
k & =\text { Boltzmann's constant }=1.38 \times 10^{-23} \text { joules/degree Kelvin* } \\
T & =\text { absolute temperature in degrees Kelvin } \\
\Delta f & =\text { bandwidth in cycles/second } \\
E & =\text { root-mean-square noise voltage }
\end{aligned}
$$

The above equation means that thermal noise has a uniform distribution of power through the radio-frequency spectrum.
In case two impedances $Z_{1}$ and $Z_{2}$ with resistive components $R_{1}$ and $R_{2}$ are in series at the same temperature, the square of the resulting root-meansquare voltage is the sum of the squares of the root-mean-square noise voltages generated in $Z_{1}$ and $Z_{2}$;

$$
E^{2}=E_{1}^{2}+E_{2}^{2}=4\left(R_{1}+R_{2}\right) k T \cdot \Delta f
$$

* J. W.M. DuMond and E. R. Cohen, "Our Knowledge of the Atomic Constants F. N, m, and $k$ in 1947, and of Other Constants Derivable Therefrom," Reviews of Modern Physics, vol. 20, pp. 82-108; January, 1948: p. 107.

Noise and its sources continued

In case the same impedances are in parallel at the same temperature, the resulting impedance $Z$ is calculated as is usually done for alternatingcurrent circuits, and the resistive component $R$ of $Z$ is then determined. The root-mean-square noise voltage is the same as it would be for a pure resistance $R$.

It is customary in temperate climates to assign to $T$ a value such that $1.38 T=400$, corresponding to about 17 degrees centigrade or 63 degrees Fahrenheit. Then

```
E}=1.6\times1\mp@subsup{0}{}{-20}R\cdot\Delta
```


## Tube noise

The electric current emitted from a cathode consists of a large number of electrons and consequently exhibits fluctuations that produce tube noise and set a limitation to the minimum signal voltage that can be amplified. This is also called shot or Schottky effect.
Shot effect in temperature-limited case: The root-mean-square value $I_{n}$ of the fluctuating (noise) component of the plate current is given in amperes by
$I_{n}{ }^{2}=2 \epsilon I \cdot \Delta f$
where
$I=$ plate direct current in amperes
$\epsilon=$ electronic charge $=1.6 \times 10^{-19}$ coulombs
$\Delta f=$ bandwidth in cycles/second
Shot effect in space-charge-controlled region: The space charge tends to eliminate a certain amount of the fluctuations in the plate current. The following equations are generally found to give good approximations of the plate-current root-mean-square noise component in amperes.
For diodes:
$I_{n}{ }^{2}=4 k \times 0.64 T_{c} g \cdot \Delta f$
For negative-grid triodes:
$I_{n}{ }^{2}=4 \mathrm{k} \times \frac{0.64}{\sigma} T_{c} g_{m} \cdot \Delta f$
where
$k=$ Boltzmann's constant $=1.38 \times 10^{-23}$ joules $/$ degree Kelvin
$T_{c}=$ cathode temperature in degrees Kelvin
$g=$ diode plate conductance
$g_{m}=$ triode transconductance
$\sigma=$ fube parameter varying between 0.5 and 1.0
$\Delta f=$ bandwidth in cycles/second
Multicollector tubes: Excess noise appears in multicollector tubes due to fluctuations in the division of the current between the different electrodes. Let a pentode be considered, for instance, and let $e_{0}$ be the root-meansquare noise voltage that, if applied on the grid, would produce the same noise component in the plate current. Let $e_{t}$ be the same quantity when the tube is operated as a triode. North has given

$$
\mathrm{e}_{g}^{2}=\left(1+8.7 \sigma \frac{I_{c 2}}{g_{m}} \frac{1000}{T_{c}}\right) \mathrm{e}_{t}^{2}
$$

where

$$
\begin{aligned}
I_{c 2} & =\text { screen current in amperes } \\
g_{m} & =\text { pentode transconductance } \\
\sigma, T_{c} & =\text { as above }
\end{aligned}
$$

Equivalent noise input-resistance values: The most practical way of expressing the properties of vacuum tubes with respect to noise is to determine the equivalent noise input resistance; that is to say, the value of a resistance that, if considered as a source of thermal noise applied to the driving grid, would produce the same noise component in the anode circuit.
The information below has been given by Harris,* and is found to give practical approximations.
For triode amplifiers:
$R_{e g}=2.5 / g_{m}$
For pentode amplifiers:
$R_{e g}=\frac{I_{b}}{I_{b}+I_{c 2}}\left(\frac{2.5}{g_{m}}+\frac{20 I_{c 2}}{g_{m}^{2}}\right)$
*W. A. Harris, "Fluctuations in Space-Charge-Limited Currents at Moderately High Frequencies, Part $\vee$-Fluctuations in Vacuum-Tube Amplifiers and Input Systems," RCA Review vol. 5, pp. 505-524; April, 1941: and vol. 6, pp. 114-124, July, 1941.

## RADIO NOISE AND INTERFERENCE

## Noise and its sources continued

For triode mixers:
$R_{c g}=4 / g_{c}$
For pentode mixers:
$R_{e \theta}=\frac{I_{b}}{I_{b}+I_{c 2}}\left(\frac{4}{g_{c}}+\frac{20 I_{c 2}}{g_{c}{ }^{2}}\right)$
For multigrid converters and mixers:
$R_{e g}=\frac{19 I_{b}\left(I_{a}-I_{b}\right)}{g_{c}{ }^{2} I_{a}}$
where
$R_{e g}=$ equivalent grid noise resistance in ohms
$g_{m}=$ transconductance in mhos
$I_{b}=$ average plate current in amperes
$I_{c_{2}}=$ average screen-grid current in amperes
$G_{e}=$ conversion conductance in mhos
$I_{a}=$ sum of currents from cathode to all other electrodes in amperes
The cathode temperature is assuined to be 1000 degrees Kelvin in the foregoing formulas, and the equivalent-noise-resistance temperature is assumed to be 293 degrees Kelvin.
Low-noise triode amplifiers have noise resistances of the order of 200 ohms; low-noise pentode amplifiers, 700 ohms; pentode mixers, 3000 ohms. Frequency converters have much higher noise resistances, of the order of 200,000 ohms.

## Noise measurements - noise figure

## Measurement for braadcast receivers*

For standard broadcast receivers, the noise properties are determined by means of the equivalent noise sideband input (ENSI). The receiver is connected as shown in Fig. 3.

[^46]Noise measurements - noise figure continued


Fig. 3-Measurement of equivalent noise sideband input of a broadcast receiver.

Components of the standard dummy antenna are
$C_{1}=200$ micromicrofarads
$\mathrm{C}_{2}=400$ micromicrofarads
$L=20$ microhenries
$R=400$ ohms
The equivalent noise sideband input

$$
(E N S I)=m E_{s} \sqrt{P_{n}^{\prime} / P_{s}^{\prime}}
$$

where
$E_{s}=$ root-mean-square unmodulated carrier-input voltage
$m=$ degree of modulation of signal carrier at $400 \mathrm{cycles} /$ second
$P_{s}^{\prime}=$ root-mean-square signal-power output when signal is applied
$P_{n}^{\prime}=$ root-mean-square noise-power output when signal input is reduced to zero

It is assumed that no appreciable noise is transferred from the signal generator to the receiver, and that $m$ is small enough for the receiver to operate without distortion.

## Noise figure of a receiver

A more precise evaluation of the quality of a receiver as far as noise is concerned is obtained by means of its noise figure.*
Let the case be considered first when the receiver does not include any operation capable of improving the signal-to-noise ratio isuch as frequency modulation, or pulse demodulationl.

* The definition of the noise figure was first given by H. T. Friis, "Noise figures of Radio Receivers," Proceedings of the I.R.E., vol. 32, pp. 419-422; July, 1944.


## Noise measurements - noise figure continued


signal generator
receiver under test
square-law detector
Fig. 4-Measurement of the noise figure of a receiver. The receiver is considered as a 4-terminal network.

The equipment used for measuring noise figure is shown in Fig. 4. The incoming signal (applied to the receiver) is replaced by a signal generator with

$$
\begin{aligned}
& R_{0}=\text { internal resistive component } \\
& E_{i}=\text { root-mean-square signal voltage } \\
& E_{n}=\text { root-mean-square noise voltage produced in signal generator }
\end{aligned}
$$

Then

$$
E_{n}^{2}=4 k T_{0} R_{0} \Delta f^{\prime}
$$

where

$$
\begin{aligned}
k & =\text { Boltzmann's constant }=1.38 \times 10^{-23} \text { joules/degree Kelvin } \\
T_{0} & =\text { temperature in degrees Kelvin } \\
\Delta f^{\prime} & =\text { effective bandwidth of receiver (determined as on p. } 450 \text { ) }
\end{aligned}
$$

If the receiver does not include any other source of noise, the ratio $E_{i}{ }^{2} / E_{n}{ }^{2}$ is equal to the power signal/noise ratio measured by the square-law detector.
$\frac{E_{i}{ }^{2}}{E_{n}{ }^{2}}=\frac{E_{i}{ }^{2} / 4 R_{0}}{k T_{0} \Delta f^{\prime}}=\frac{P_{i}}{N_{i}}$

The quantities $E_{i}{ }^{2} / 4 R_{0}$ and $k T_{0} \Delta f^{\prime}$ are called the available signal- and noise-input powers, respectively.

The output signal/noise power ratio measured in a resistance $R$ may be considered as the ratio of a available signal-output power $P_{0}$ to ar available noise-output power $N_{o}$.

## Noise measurements - noise figure continued

The noise figure $F$ of the receiver is defined by

$$
\begin{aligned}
\frac{P_{0}}{N_{0}} & =\frac{1}{F} \times \frac{P_{i}}{N_{i}} \\
F & =\frac{N_{0}}{N_{i}} \times \frac{1}{P_{0} / P_{i}}
\end{aligned}
$$

The ratio $P_{o} / P_{i}$ is the available gain $G$ of the receiver.
Noise figure is often expressed in decibels:
$F_{\mathrm{db}}=10 \log _{10} F$
Effective bandwidth: $\Delta f^{\prime}$ of the receiver is
$\Delta f^{\prime}=\frac{1}{G} \int G_{f} d f$
where $G_{f}$ is the differential available gain. $\Delta f^{\prime}$ is generally approximated to the bandwidth of the receiver between those points of the response showing a 3-decibel attenuation with respect to the center frequency.

## Noise figure of cascaded networks

The overall noise figure of two networks $a$ and $b$ in cascade (Fig. 5) is
$F_{a b}=F_{a}+\frac{F_{b}-1}{G_{a}}$
provided the effective bandwidth of each is the same.


Fig. 5-Overall noise figure $F_{a b}$ of iwo networks, a and b, in cascade.

The value of $F$ is a measure of the quality of the input tubes of the circuits. Up to some 300 megacycles, noise figures of 2 to 4 have been oblained. From 3000 to 6000 megacycles, the noise figure varies between 10 and 40

## Noise measurements - noise figure continued

for the tubes at present available. It goes up to about 50 for 10,000-megacycle receivers.

The additional noise due to external sources influencing real antennas (such as cosmic noise), may be accounted for by an apparent antenna temperature, bringing the available noise-power input to $k T_{a} \Delta f^{\prime}$ instead of $N_{i}=k T_{0} \Delta f^{\prime}$ the physical antenna resistance at temperature $T_{0}$ is generally negligible in high-frequency systems). The internal noise sources contribute (F - ll $N_{i}$ as before, so that the new noise figure is given by

$$
\begin{aligned}
F^{\prime} N_{i} & =\mathbb{F}-11 N_{i}+k T_{0} \Delta f^{\prime} \\
F^{\prime} & =F-1+T_{a} / T_{0}
\end{aligned}
$$

The average temperature of the antenna for a 6 -megacycle equipment is found to be 3000 degrees Kelvin, approximately. The contribution of external sources is thus of the order of 10 , compared with a value of $(F-1)$ equal to 1 or 2 , and becomes the limiting factor of reception. At 3000 megacycles, however, values of $T_{a}$ may fall below $T_{0}$, while noise figures are of the order of 20.

## Noise improvement factor*

In case the receiver includes demodulation processes that produce a signal/no ise ratio improvement (N|F), the value of the noise figure measured as mentioned above should be divided by the signal/noise power improvement ratio, or alternately, the experimental value should be considered as an effective noise figure accounting for all noise transformation within the receiver.

## Measurement of external radio noise

External noise fields, such as atmospheric, cosmic, and man-made, are measured in the same way as radio-wave field strengthst, with the exception that peak, rather than average, values of noise are usually of interest, and that the overall bandpass action of the measuring apparatus must be accurately known in measuring noise. When measuring noise varying over wide limits with time, such as atmospheric noise, it is generally best to employ automatic recorders.

[^47]Besides noise, the efficiency of radio-communication systems can be limited by the interference produced by other radio-communication systems. The amount of tolerable signal/interference ratio, and the determination of conditions for entirely satisfactory service, are necessary for the specification of the amount of harmonic and spurious frequencies that can be allowed in transmitter equipments, as well as for the correct spacing of adjacent channels.

The following information has been extracted from "Final Acts of the International Telecommunication and Radio Conferences (Appendix 1)," Atlantic City, 1947.

Fig. 6-Curves giving the envelopes for Fourier spectra of the emission resulting from several shapes of a single telegraph dot. For the upper curve the dot is taken to be rectangular and its length is $1 / 2$ of the period $T$ corresponding to the fundamenlal dotling frequency. The dotiing speed in bauds is $\mathbf{B}=1 / \mathbf{t}=2 /$ T. The boltom curve would result from the inserlion of a filter with a possband equal to 5 units on the $f / \mathbf{S}$ scale, and having a slope of 30 decibels/octave outside of the passband.

Fig. 7-Received power as a function of frequency separation belween transmitter frequency and midband frequency of the receiver.


## Interference effects in various systems

Available information is not sufficient to give reliable rules in the cases of frequency modulation, pulse emission, and television transmission.

## Simple felegraphy

It is considered that satisfactory radiotelegraph service is provided when the radio-frequency interference power available in the receiver, averaged over a cycle when the amplitude of the interfering wave is at a maximum, is at least 10 decibels below the available power of the desired signal averaged in the same manner, at the time when the desired signal is a minimum.

In order to determine the amount of interference produced by one telegraph channel on another, Figs. 6 and 7 will be found useful.

## Frequency-shift telegraphy-facsimile

It is estimated that the interference level of -10 decibels as recommended in the previous case will also be suitable for frequency-shift telegraphy and facsimile.

## Double-sideband telephony

The multiplying factor for frequency separation between carriers as required for various ratios of signal/interference is given in the following table. This factor should be multiplied by the highest modulation frequency.

ratio of desired to interfering	mutliplying factor for various ratios of signal/interference			
decibels	20 db	30 db	40 db	50 db
60	0	0	0	0
50	0	0	0	0.60
40	0	0	0.60	1.55
30	0	0.60	1.55	1.85
20	0.60	1.55	1.85	1.96
10	1.55	1.85	1.96	2.00
0	1.85	1.96	2.00	2.55
$-10$	1.96	2.00	2.55	2.85
-20	2.00	2.55	2.85	3.2
-30	2.55	2.85	3.2	3.6
-40	2.85	3.2	3.6	4.0
-50	3.2	3.6	4.0	4.5
-60	3.6	4.0	4.5	5.1
-70	4.0	4.5	5.1	5.7
-80	4.5	5.1	5.7	6.4
-90	5.1	5.7	6.4	7.2
$-100$	5.7	6.4	7.2	8.0

The acceptance band of the receiving filters in cycles/second is assumed to be $2 \times$ (highest modulation frequency), and the cutoff characteristic is assumed to have a slope of 30 decibels/octave.

## Broadcasfing

As a result of a number of experiments, it is possible to set down the following results for carrier frequencies between 150 and 285 kilocycles/second and between 525 and 1560 kilocycles.

frequency separation between carriers in kilocycles	minimum ratio of desired and interfering carriers in decibels
11	$0^{*}$
10	$6 \dagger$
9	$14 \dagger$
8	$26 \ddagger$
5 lor less)	$60 \dagger$
* extrapolated † expe	imental $\ddagger$ interpolated

These experimental results agree reasonably well with the theoretical results of the preceding table with a highest modulation frequency of about 4500 cycles/second, and with a signal/interference ratio of 50 decibels.

## Single-sideband telephony

Experience shows that the separation between adjacent channels need be only great enough to insure that the nearest frequency of the interfering signal is 40 decibels down on the receiver filter characteristic when due allowance has been made for the frequency instability of the carrier wave.

## Spurious responses

In superheterodyne receivers, where a nonlinear element is used to get a desired intermediate-frequency signal from the mixing of the incoming signal and a local-oscillator signal, interference from spurious external signals results in a number of undesired frequencies that may fall within the intermediate-frequency band. Likewise, when two local oscillators are mixed in a transmitter or receiver to produce a desired output frequency, several unwanted components are produced at the same time due to the imperfections of the mixer characteristic. The following tables show how the location of the spurious frequencies can be determined.

Spurious responses

## Symbols

$f_{1}=$ signal frequency (or first source)
$f_{1}^{\prime}=$ spurious signal $\left(f_{1}^{\prime}=f_{1}\right.$ for mixing local sources, but when dealing with a receiver, usually $f_{1}^{\prime} \neq f_{1}$ )
$f_{2}=$ local-injection frequency (or second source)
$f_{x}=$ desired mixer-output frequency
$f_{x}{ }^{\prime}=$ spurious mixer-output frequency
$k=m+n=$ order of response, where $m$ and $n$ are positive integers
Coincidence: Is where $f_{1}^{\prime}=f_{1}$ and $f_{x}^{\prime}=f_{x}$

## Defining and coincidence equations

mixing for difference frequency			mixing for sum frequency		
type	defining equations	coincidence	type	defining equations	coincidence
1	$\begin{aligned} f_{x} & = \pm\left(f_{2}-f_{2}\right) \\ f_{x}^{\prime} & = \pm\left(\ln f_{2}-m f_{1}{ }^{\prime}\right) \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\text {co }}=\frac{m+1}{n+1}$	Iv	$\begin{aligned} & f_{x}=f_{1}+f_{2} \\ & f_{x}^{\prime}=m f_{1}^{\prime}-n f_{2} \end{aligned}$	$\left[\frac{p_{2}}{f_{1}}\right]_{00}=\frac{m-1}{n+1}$
11	$\begin{aligned} f_{z} & = \pm\left(f_{1}-f_{2}\right) \\ f_{x}^{\prime} & = \pm\left(m f_{1}^{\prime}-n f_{2}\right) \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{co}}=\frac{m-1}{n-1}$	$v$	$\begin{aligned} f_{x} & =f_{1}+f_{2} \\ f_{x}^{\prime} & =n f_{2}-m f_{1}^{\prime} \end{aligned}$	$\left[\frac{p_{2}}{f_{1}}\right]_{c o}=\frac{m+1}{n-1}$
III	$\begin{aligned} & f_{x}=f_{1}-f_{2} \\ & f_{x}^{\prime}=m f_{1}^{\prime}+n f_{2} \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{co}}=\frac{1-m}{n+1}$	vi	$\begin{aligned} f_{x} & =f_{1}+f_{2} \\ f_{x}^{\prime} & =m f_{1}^{\prime}+n f_{2} \end{aligned}$	$\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{co}}=\frac{1-m}{n-1}$

In types I and II, both $f_{x}$ and $f_{x}^{\prime}$ must use the same sign throughout.
Types III and VI are relatively unimportant except when $m=n=1$.

Image $(m=n=1)$
$\left.\begin{array}{l|l|l}\begin{array}{l}\text { kind of } \\ \text { mixing }\end{array} & \text { receiver }\left(f_{x}^{\prime}=f_{x}\right)\end{array} \quad \begin{array}{c}\text { iwolocal sources } \\ \left(f_{1}^{\prime}=f_{1}\right)\end{array}\right]$

Intermediate-frequency rejection: Must be provided for spurious signal $f_{1}{ }^{\prime}=f_{x}$ where $m=1, n=0$.

456

Spurious responses continued

## Selectivity equations

For types I, II, IV, and V only.
When $f_{x}^{\prime}=f_{x}$
$\frac{f_{1}^{\prime}-f_{1}}{f_{1}}=\frac{A}{m}\left\{\frac{f_{2}}{f_{1}}-\left[\frac{f_{2}}{f_{1}}\right]_{c o}\right\}$

When $f_{1}{ }^{\prime}=f_{1}$

$$
\begin{aligned}
& \frac{f_{x}^{\prime}-f_{x}}{f_{1}}=B\left\{\frac{f_{2}}{f_{1}}-\left[\frac{f_{2}}{f_{1}}\right]_{\mathrm{eo}}\right\} \\
& \frac{f_{x}^{\prime}-f_{x}}{f_{x}}=C \frac{\left(f_{2} / f_{1}\right)-\left[f_{2} / f_{1}\right]_{\mathrm{co}}}{1 \mp f_{2} / f_{1}}
\end{aligned}
$$

Where the coefficients and the $F$ signs are

		$B$		$B$
type	$\mathbf{A}$	$\mathbf{f}_{2}<\mathbf{f}_{1}$	$\mathbf{f}_{2}>\mathbf{i}_{1}$	$\mathbf{C}$
1	$n+1$	$A$	$-A$	Fsign
$1 \mid$	$n-1$	$-A$	$A$	-
$I V$	$n+1$	$-A$	$-A$	$-A$
$V$	$n-1$	$A$	$A$	$-A$

## Variation of output frequency vs input-signal deviation

For any type
$\Delta f_{x}{ }^{\prime}= \pm m \Delta f_{1}{ }^{\prime}$

Use the + or the - sign according to defining equation for type in question.

## Table of spurious responses

Type I coincidences: $\left[\frac{f_{2}}{f_{1}}\right]_{c o}=\frac{m+1}{n+1}$, where $f_{c}^{\prime}=f_{x}$ and $f_{1}^{\prime}=f_{1}$

Spurious responses continued

frequency ratio $=\left[f_{2} / /_{1}\right]_{\text {co }}$			lowest order			higher orders
fraction	decimal	reciprocal	$k_{1}$	$m_{\text {I }}$	$n_{1}$	
1/1	1.000	1.000	2	1	1	All oven orders $m=n$ (See note b)
8/9	0.889	1.125	15	7	8	
7/8	0.875	1.143	13	6	7	
6/7	0.857	1.167	11	5	6	
5/6	0.833	1.200	9	4	5	
4/5	0.800	1.250	7	3	4	
7/9	0.778	1.286	14 5	6	8 3	
$3 / 4$ $5 / 7$	0.750	1.333 1.400	5	2	3 6	$\left\{\begin{array}{l}m_{1}=5 \\ n_{1}=7\end{array}\right.$
5/7	0.714	1.400	10	4	6	
7/10	0.700	1.429	15	6	9	
$2 / 3$	0.667	1.500	3	1	2	$\left\{\begin{array}{l}n_{1}=3 \\ n_{1}=5\end{array}\right.$
5/8	0.625	1.600	11	4	7	
3/5	0.600	1.667	6	2	4	$\left\{\begin{array}{l}m_{1}=5 \\ n_{3}=9\end{array}\right.$
4/7	0.571	1.750	9	3	6	
5/9	0.556	1.800	12	4	8	
$6 / 11$	0.545	1.833	15	5	10	$f m_{1}=1 \quad\{=2 \quad\{=3 \quad\{=4$
$1 / 2$	0.500	2.000	1	0	1	$\left\{\begin{array}{l}m_{1}=3 \\ n_{1}=3\end{array}\left\{\begin{array}{l}\text { a }\end{array}\right\}=7 \begin{array}{l}\text { a }\end{array}\right\}$

Types II, IV, and $V$ coincidences: For each ratio $\left[f_{2} / f_{1}\right]_{\text {co }}$ there are also the following responses

type	$k$	$m$	$n$
II	$k_{11}=k_{1}+4$	$m_{12}=m_{1}+2$	$n_{21}=n_{1}+2$
$I V$	$k_{1 v}=k_{1}+2$	$m_{1 v}=m_{1}+2$	$n_{i v}=n_{1}$
$V$	$k_{v}=k_{1}+2$	$m_{v}=m_{1}$	$n_{v}=n_{1}+2$

## Notes:

a. When $f_{2}>f_{1}$ use reciprocal column and interchange the values of $m$ and $n$.
b. At $\left[f_{2} / f_{1}\right]_{\mathrm{co}}=1 / 1$, additional important responses are
type II: $m=n=2$
type IV: $m=2, n=0$
type $V$ : $m=0, n=2$

## Chart of spurious responses



Each circle represents a spurious response coincidence, where $\boldsymbol{f}_{1}^{\prime}=\boldsymbol{f}_{1}$ and $\boldsymbol{f}_{\mathcal{E}}{ }^{\prime}=\boldsymbol{f}_{\boldsymbol{z}}$.
Example: Suppose two frequencies whose ratio is $f_{2} / f_{1}=0.12$ are mixed to obtain the sum frequency. The spurious responses are found by laying a transparent straightedge on the chart, passing through the circle $-1,-1$ and lying a little to the right of the line marked $f_{2} / f_{1}=0.10$. It is observed that the straightedge passes near circles indicating the responses
Type $I V\left\{\begin{array}{l}m=1 \\ n=0\end{array} \quad\left\{\begin{array}{l}=2 \\ =7\end{array} \quad\left\{\begin{array}{l}=2 \\ =8\end{array}\right.\right.\right.$
Type V

$$
\left\{\begin{array} { r } 
{ m = 0 } \\
{ n = 9 }
\end{array} \quad \left\{\begin{array}{l}
=0 \\
=10
\end{array}\right.\right.
$$

The actual frequencies of the responses $f_{x}{ }^{\prime}$ or $f_{1}{ }^{\prime}$ can be determined by substituting these coefficients $m$ and $n$ in the defining equations.

## Radar fundamentals

## General

A simplified diagram of a set for RAdio Direction And Range finding is shown in Fig. I. A pulsed high-power transmitter emits centimeter waves for approximately a microsecond through a highly directive antenna to illuminate the target. The returned echo is picked up by the same antenna,


Fig. 1-Simplified diagram of a radar set.


Fig. 2-Time between transmission and reception of a reflected signal.
amplified by a high-gain wideband receiver, and displayed on an indicator. Direction of a target is usually indicated by noting the direction of the narrow-beam antenna at the time the echo is received. The range is measured in terms of time because the radar pulse travels with the speed of light, 300 meters one way per microsecond, or approximately 10 microseconds per round-trip radar mile. Fig. 2 gives the range corresponding to a known echo time.

The factors characterizing the operation of each component are shown in Fig. 1. These are discussed below in turn and combined into the freespace range equation. The propagation factors modifying free-space range are presented.

## Transmitter

Important transmitter factors are:
$\tau=$ pulse length in microseconds
$f_{r}=$ pulse rate in cycles/second
$d=$ duty cycle $=\tau f_{T} \times 10^{-6}=P_{a} / P_{D}$
$P_{a}=$ average power in kilowatts
$P_{p}=$ peak power in kilowatts
$\lambda=$ carrier wavelength in centimeters
Pulse length is generally about one microsecond. A longer pulse may be used for greater range, if the oscillator power capacity permits. On the other hand, if a range resolution of $\triangle R$ feet is required, the pulse cannot be longer than $\triangle R / 500$ microseconds.

The repetition frequency must be low enough to permit the desired maximum unambiguous range $\left(f_{r}<90,000 / R_{z}\right)$. This is the range beyond which the echo returns after the next transmitter pulse and thus may be mistaken for a shortrange echo of the next cycle. If this range is small, oscillator maximum average power may impose an upper limit.
The peak power required may be computed from the range equation (see belowl after determination or assumption of the remaining factors. Peak and average power may be interconverted by use of Fig. 3. Pulse energy is $P_{p} \tau \times 10^{-3}$ joules.
The choice of carrier frequency is a complex one, often determined by available oscillators, antenna size, and propagation considerations. Frequency-wavelength conversions are facilitated by Fig. 4, which also defines the band nomenclature.


Fig. 3-Power-time relationships.


Fig. 4-Correlation between trequency, wavelength, and band nomenclature for radar.

## Antenna

The beam width in radians of any antenna is approximately the reciprocal of its dimension in the plane of interest expressed in wavelength units. Beam width may be found readily from Fig. 5, which also shows gain of a paraboloid of revolution. The angular accuracy and resolution of a radar are roughty equal to the beam width; thus precision radars require high frequencies to avoid excessively cumbersome antennas.


Fig. 5-Beam width and gain of a parabolic reflector.

## Target echoing area

The radar cross section $\sigma$ is defined as $4 \pi$ times the ratio of the power per unit solid angle scattered back toward the transmitter, to the power per unit area striking the target. For large complex structures and short wavelengths, the values vary rapidly with aspect angle. The effective areas of several important configurations are listed in the following table.*

[^48]Target echoing area

reflectior	
Tuned $\lambda / 2$ dipole	$0.22 \lambda^{2}$
Small sphere with radius $=a$, where $a / \lambda<0.15$	$\left.9 \pi a^{2} / 2 \pi a / \lambda\right)^{4}$
large sphere with radius $=a$, where $a / \lambda>1$	$\pi a^{2}$
Corner reflector with one edge $=a($ maximum)	$4 \pi a^{4} / 3 \lambda^{2}$
Flat plate with area $=A$ Inormal incidence)	$4 \pi A^{2} / \lambda^{2}$
Cylinder with radius $=a$, length $=L$ (normal incidence)	$2 \pi L^{2} a / \lambda$
Small airplane $(A T-11)$	200 feet 2
large airplane $(B-17)$	800 feet 2
Small cargo ship	1,500 feet 2
large cargo ship	160,000 feet 2

## Receiver

The receiver is characterized by an overall noise figure $N$, defined as the ratio of signal power available from the antenna to theoretical noise


Fig. 6-Noise figure of a receiver of given bandwidth.


## type H



Signal appears as two dots. Left dot gives range and azimuth of target. Relative position of right dot gives rough indication of elevation

## type J



Same as type $A$, except time base is circular, and signals appear as radial pips

## type 1



Same as type K, but signals from two lobes are placed back to back
type N


A combination of type $K$ and type $M$
lype I


Antenna scan is conical. Signal is a circle, the radius proportional to range. Brightest part indicates direcfion from axis of cone to target

## type $K$



Type $A$ with lobe-switching antenna. Spread voltage splits signals from two lobes. When pips are of equal size, antenno is on target
type $M$


Type A with range step or range notch. When pip is aligned with step or notch, ronge can be read from dial or counter
type P(PPI)


Range is measured rudially from center

## 466

## Receiver continued

power $K T b$, when the mean noise power and the signal power are equal.* This equality must be observed at some stage in the receiver where both have been amplified so highly as to override completely any noise introduced by succeeding stages. $K T=4.1 \times 10^{-21}$, and $b=$ receiver bandwidth in cycles/second. The bandwidth in megacycles should be $1.2 / \tau$, plus an allowance for frequency drift, thus usually about $2 / \tau$. Fig. 6 enables the determination of the noise figure of a receiver operating from any source impedance, $Z_{\theta}$ ohms. $E$ is one-half the open-circuit voltage of a fifty-ohm source, adjusted for receiver output signal-plus-noise 3 decibels above noise alone.
Thus, if the generator is calibrated for microvolts into. $Z_{g}$ ohms, use $\frac{1}{2} \sqrt{50 / Z_{0}}$ times the indicated voltage. If it is calibrated for voltage into an open circuit, multiply by $\sqrt{50 / Z_{9}}$, but add series resistance to make source $=Z_{0}$ ohms.

## Indicator

The many types of radar indicators are shown in Fig. 7. Type A is the first type used, and the best example of a deflection-modulated display. The PPI is the most common intensity-modulated type. For the purpose of determining maximum radar range, an indicator is characterized by a visibility factor $V$, defined $\dagger$ as follows:
$V=\tau P_{\min } \times 10^{-6} / \mathrm{NKT}$
where $P_{\min }$ is the receiver input-signal power in watts for a 50 -percent probability of detection.
For an A-scope presentation, $V$ may be found from Fig. 8 , where $\tau$ is in microseconds, and $B$ is in megacycles. The values are conservative, but the effects of changing $\tau B$ and $f_{T}$ are shown correctly.


Fig. 8-Visibility factor for on A scope.

[^49]
## Range equation

The theoretical maximum free-space range of a radar using an isotropic common receiving and transmitting antenna, lossless transmission line, and a perfect receiver, may be found as follows:

Transmitted pulse energy $=P^{\prime}$ (in peak watts) $\times \tau^{\prime}$ (in seconds)
Energy incident on taraet $=P^{\prime} \tau^{\prime} / 4 \pi R^{2}$ per unit area
Energy returned to antenna $=F^{\prime} \tau^{\prime} \sigma /\left(4 \pi R^{2}\right)^{2}$ per unit area
Energy at receiver input $=P^{\prime} \tau^{\prime} \sigma \lambda^{2} /(4 \pi)^{3} R^{4}$
where $\sigma, \lambda$, and $R$ are in the same units.
Receiver input-noise energy $=K T=4.11 \times 10^{-21}$ joules. Assuming that the receiver adds no noise, and that the signal is visible on the indicator when signal and noise energies are equal, the maximum range is found to be
$R^{4}=\frac{P^{\prime} \tau^{\prime} \sigma \lambda^{2}}{(4 \pi)^{3} K T}$
The free-space range of an actual radar will be modified by several dimensionless factors, primarily antenna gain $G$, receiver noise figure $N$, and indicator visibility factor $V$, as discussed above.
Additional minor losses may be lumped under factors $L_{1}$ and $L_{2}$, one-way and two-way loss factors, respectively. $L_{1}$ includes losses in transmission lines running from the TR switch to both transmitter and receiver, as well as TR loss, usually about 1 decibel. $L_{2}$ includes loss of the transmission line between TR box and antenna, and atmospheric absorption.

The range equation, including these factors, and using convenient units, is
$R_{m}=0.1146 \sqrt[4]{P_{p} \tau \sigma \lambda^{2} G^{2} L_{1} L_{2}{ }^{2} / V N}$
where
$R_{m}=$ maximum free-space range in miles
$P_{p}=$ peak power in kilowatts
$\tau=$ pulse width in microseconds
$\sigma=$ effective target area in square feet
$\lambda=$ wavelength in centimeters
The use of this equation is facilitated by use of decibels throughout, since many of the factors are readily found in this form. Thus, to find maximum radar range,

## Range equation continued

a. From Fig. 9 , find $\left(P_{p}+\tau+\sigma+\lambda^{2}\right)$ in decibels.
b. Add $2 \times$ Igain in decibels of common antennal.
c. Subtract $\left(L_{1}+2 L_{2}+V+N\right)$ in decibels. Note $V$ may be negative.
d. From the net result and Fig. 9, find $R_{m}$ in miles.


Fig. 9-The radar range equation.

## Reflection lobes

The maximum theoretical free-space range of a radar is often appreciably modified, especially for low-frequency sets, by reflections from the earth's surface. For low angles and a flat earth, the modifying factor is
$F=2 \sin \frac{\left(2 \pi h_{1} h_{2}\right)}{\lambda R}$
where $h_{1}, h_{2}$, and $R$ are defined in Fig. 10, all in the same units as $\lambda$. The result-

## Reflection lobes



Fig. 10-Radar geometry, showing reflection from flat earth.

range
Fig. 11 -Vertical-lobe pottern resulting from reflections from earth.
ing vertical pattern is shown in Fig. 11 for a typical case. The angles of the maxima of the lobes and the minima, or nulls, may be found from
$\theta_{m}=\frac{h_{2}}{R}=\frac{n \lambda}{4 h_{1}}$
where
$\theta_{m}=$ angle of maximum in radians, when $n=1,3,5 \ldots$
$=$ angle of minimum in radians, when $n=0,2,4 \ldots$
This expression may be applied to the problem of finding the height of a maximum or null over the curved earth with the following approximate result:
$H_{2}=44 n \lambda D / H_{1}+D^{2} / 2$
where
$H=$ feet
$\lambda=$ centimeters
$D=$ miles

## 470

## Reflection zone

The reflection from the ground occurs not at a point, but over an elliptical area, essentially the first Fresnel zone. The center of the ellipse and its dimensions may be found from

$$
x_{0}=d_{1}(1+2 a), \quad x_{1}=2 d_{1} \sqrt{a l l+a)}, \quad y_{1}=2 h_{1} \sqrt{a(1+a)}
$$

where $x_{0}, x_{1}, y_{1}, d$, are shown in Fig. 10, and

$$
\begin{aligned}
d_{1} & =h_{1} d / h_{2}=h_{1} / \sin \theta \\
a & =\lambda / 4 h_{1} \sin \theta
\end{aligned}
$$

In the maximum of the first lobe, $a=1$, and the distances to the nearest and farthest points are

$$
x_{0}-x_{1}=0.7 h_{1}^{2} / \lambda, \quad x_{0}+x_{1}=23.3 h_{1}^{2} / \lambda, \quad y_{1}=2 \sqrt{2 h_{1}}
$$

These dimensions determine the extent of flat ground required to double the free-space range of a radar as above. The height limit of any large irregularity in the area is $h_{1} / 4$. If the same area is available on a sloping site of angle $\phi$, double range may be obtained on a target on the horizon. In this case
$x_{0}+x_{1}=1.46 \lambda / \sin ^{2} \phi$

## Absorption

When passing through atmospheric moisture, microwaves suffer an attenuation at an approximate rate of

$$
L \approx 10 Q / \lambda^{2}
$$

where
$L=$ attenuation in decibels/mile
$\lambda=$ wavelength in centimeters
$Q=$ rate of rainfall in inches/hour

## Refraction

The moisture content of the air is also responsible for refraction of radar waves. In the so-called "standard" atmosphere, the moisture content decreases with height so that there is a tendency for the waves to curve toward the earth. This may be taken into account by assuming straight-line propagation over an earth of $4 / 3$ the actual radius, or 5280 miles, for convenience. This value has been assumed in the equation for lobe height given above.

## Refraction

 continuedWhen the decrease in moisture content with height is abnormally rapid, a condition of super-refraction or anomalous propagation is said to exist. This effect is common over large bodies of water, and is strongest for the shortest wavelengths. Thus, S-band radars often show targets far beyond the normal horizon.

## Terminology

A brief glossary is presented below of various terms that have fallen into most common use in the field of radar. In view of the fact that these terms, being widely familiar, may not be defined in the technical literature, they are presented here. Complete glossaries may be found in many of the more widely used radar texts.

Al: Aircraft interception. Short-range airborne radar sets that guide nightfighters in their interception of enemy aircraft.
ATR switch: Anti-TR switch to prevent received power from entering transmitter.

Blister: The housing for radar antenna (see Radome).
BTO: Bombing through overcast.
Chaff: Foil-and-paper strips dropped from airplanes to create false signals on enemy radar sets (see Window).
Clutter: Echoes from fixed or relatively slow-moving objects, e.g., hills, towers, clouds, sea surface.
Coherent: Refers to correspondence in phase at some time between two oscillations.
Coho: Coherent oscillator used with MTI.
Duct: Atmospheric phenomenon causing radar waves to bend toward earth, increasing radar range.
Duplexer: Navy term for TR switch.
GCA: Ground-controlled approach. The technique and/or apparatus for "talking down" an aircraft into approach for landing in poor visibility.
GCI: Ground lor shipl controlled interception. GCI stations vector li.e., supply bearings) to within visual or radar range of enemy aircraft.
GL: Gun laying. Range, bearing, and elevation are provided by GL equipment to direct guns and control their fire.
IFF: Identification of friend or foe. Method of automatically challenging and receiving positive response from aircraft or ship.

## Terminology continued

Jamming: Introduction of false radiation into enemy radio and radar devices.

LO: Local oscillator.
MTI: Moving-target indicator.
PPI: Plan-position indicator.
PPPI or $\mathbf{P}^{3}$ : Precision PPI.
$P^{4}$ : Photographic-projection PPI.
Racon: Radar beacon used as a navigational aid, blind landing of planes, etc

Radome: Antenna housing.
RCM: Radio or radar counter measures.
RDF: Radio direction finding, also Radiclocation. British terms for Radar.
SLC: Search-light-control radar.
Sralo: Stable local oscillator, used with MTI.
TR switch: Transmit-receive device to prevent application of full transmitter power to receiver input.
Window: Mechanical reflecting devices dropped by planes to confuse enemy radar.

## Broadcasting

## Infroduction

Radio broadcasting for public entertainment in the U.S.A. is at present of three general types.

Standard broadcasting: Utilizing amplitude modulation in the 550-1600kilocycle/second band.

Frequency-modulation: Broadcasting in the 88-108-megacycle/second band.

Television brocdcasting: Utilizing amplitude-modulated video and fre-quency-modulated aural transmission in the (low) 54-88-megacycle band and the (high) 174-216-megacycle band.

There is also

International broadcasting: On assigned frequencies in the region between 6000 and 21,700 kilocycles in accordance with international agreement*.

Operation in these bands in the U.S.A. is subject to licensing and technical regulations of the Federal Communications Commission.

Selected administrative and technical information and rules from F.C.C. publications applicable to each of these broadcast applications, are given in this chapter.

General reference: "Rules Governing Radio Broadcast Service of June 25, 1940, revised to June 16, 1948," Federal Communications Commission, Washington, D.C.

## Standard broadcasting $\dagger$

Standard-broadcast stations are licensed for operation on 10-kilocyclespaced channels occupying the band 550-1600 kilocycles, inclusive, and are classified as follows.

[^50]Standard broadcasfing continued

$\begin{aligned} & \text { class } \\ & \text { of } \\ & \text { station } \end{aligned}$	class of chonnel	normal service	permissible power in kilowatts	signal-intensity contour in micravolts/meter of areo protected from objectionable interference	
				$\begin{gathered} \text { day } \\ \text { (ground-wave) } \end{gathered}$	night
lo	Clear	Primary and secondary	50	$\begin{aligned} & S C=100 \\ & A C=500 \end{aligned}$	Not duplicated
lb	Clear	Primary and secondary	10 10 50	$\begin{aligned} S C & =100 \\ A C & =500 \end{aligned}$	500   $150 \%$ sky wavel
II	Clear	Primary	0.25 to 50	500	$\begin{aligned} & 2500 \\ & \text { (Ground wave) } \end{aligned}$
III-A	Regional	Primary	1 10 5	500	$2500$   (Ground wave)
III-B	Regional	Primary	$\begin{aligned} & \text { Night }=0.5 \text { to } 1 \\ & \text { Day }=5 \end{aligned}$	500	$4000$   (Ground wave)
IV	Local	Primary	0.1 to 0.25	500	$4000$   (Ground wave)

SC = same channel $\quad A C=$ adjacent channel
Taken from "Standards of Good Engineering Practice Concerning Standard Broadcasting, August 1, 1939, revised October 30, 1947," Federal Communications Commission, Washington, D.C.

## Field-intensify requirements

## Primary service

City areas: 2 to 50 millivolts/meter, ground wave
Rural areas: 0.1 to 1.0 millivolt/meter, ground wave

## Secondary service

All areas having sky-wave field intensity greater than 500 microvolts/meter for 50 percent or more of the time.

## Coverage data

The charts of Figs. 1-3 show computed values of ground-wave field intensity as a function of the distances from the transmitting antenna. These are used for the determination of coverage and interference. They were computed for the frequencies indicated, a dielectric constant equal to 15 for ground and 80 for sea water (referred to air as unity), and for the surface conductivities noted. The curves are for radiation from a short vertical antenna at the surface of a uniformly conductive spherical earth, with an antenna power and efficiency such that the inverse-distance field is 100 millivolts/meter at one mile.

The following table gives data on ground inductivity and conductivity in the U.S.A.

type of terrain	inductivity referred to air $=1$	conductivity in emu	absorption factor at 50 miles, 1000 kilocycles*
Sea water, minimum attenuation	81	$4.64 \times 10^{-11}$	1.0
Pastoral, low hills, rich soil, typical of Dallas, Texas; lincoln, Nebraska; and Wolf Point, Montana, areas	20	$3 \times 10^{-15}$	0.50
Pastora!, low hills, rich soil, typical of Ohio and Illinois	14	$10^{-13}$	0.17
Flat country, marshy, densely wooded, typical of Louisiana near Mississippi River	12	$7.5 \times 10^{-14}$	0.13
Pastoral, medium hills, and forestation, pypical of Maryland, Pennsylvania, New York, exclusive of mountainous territory and sea coasts	13	$6 \times 10^{-14}$	0.09
Pastoral, medium hills, and forestation, heavy clay soil, typical of central Virginia	13	$4 \times 10^{-14}$	0.05
Rocky soil, steep hills, typical of New England	14	$2 \times 10^{-14}$	0.025
Sandy, dry, flat, typical of coastal country	10	$2 \times 10^{-14}$	0.024
City, industrial areas, average attenuation	5	$10^{-14}$	0.011
City, industrial areas, maximum attenuation	3	$10^{-15}$	0.003

* This figure is stated for comparison purposes in order to indicate at a glance which values of conductivity and inductivity represent the higher absorption. It is the ratio between field intensity obtained with the soil constants given and with no absorption. From "Standards of Good Engineering Practice Concerning Standard Broadcasting, August 1, 1939, revised October 30, 1947," Federal Communications Commission, Washington, D.C.


## Station performance requirements

Operation is maintained in accordance with the following specifications.
Modulation: Amplitude modulation of at least 85 to 95 percent.
Audio-frequency distortion: Harmonics less than 5 percent arithmetical sum or root-mean-square amplitude up to 85 percent modulation; less than 7.5 percent for 85 to 95 percent modulation.

Audio-frequency response: Transmission characteristic flat between 100 and 5000 cycles to within 2 decibels, referred to 1000 cycles.

## Standard broadcasting continued

Noise: At least 50 decibels, unweighted, below 100 percent modulation for the frequency band 150 to 5000 cycles, and at least 40 decibels down outside this range.

Carrier-frequency stability: Within 20 cycles of assigned frequency.


Fig. 1-Ground-wave field intensity plotted against distance. Computed for 550 kilocycles. Dielectric constant $=15$. Ground-conductivity values above are emu $\times 10^{14}$.

## Frequency modulation*

Frequency-modulation broadcasting stations are authorized for operation on 100 allocated channels each 200 kilocycles wide extending consecutively from channel No. 201 on 88.1 megacycles to No. 300 on 107.9 megacycles.

* See "Federal Communications Commission Rules and Regulations Governing FM Broadcast Services September 20, 1945, revised to January 9, 1946," Federal Communications Commission, Washington, D.C.
miles from antenna


Fig. 2-Ground-wave field intensity plotled against distance. Computed for 1000 kilocycles. Dielectric constant $=15$. Ground-conductivity values above are emu $\times 10^{14}$.

## Frequency modulation

Commercial broadcasting is authorized on channels No. 221192.1 megacycles) through No. 300. Noncommercial educational broadcasting is licensed on channels No. 201 through 220189.9 megacycles).

## Station service classification

Licenses are issued to stations of two main classifications.


Fig. 3-Ground-wave field intensity platted against distance. Computed for 1600 kilocycles. Dielectric constant $=15$. Ground-conductivity values above are emu $\times 10^{14}$.

Class-A stations: Render service primarily to communities other than the principal city of an area. A maximum effective rated power of 1 kilowatt and an antenna height of 250 feet are permitted.

Class-B stations: Render service primarily to a metropolitan district or principal city and its surrounding rural area, or to primarily rural areas. In FM Area I, which includes New England and the North - and Middle-Atlantic-states areas, they are licensed to operate with 10 kilowatts minimum, 20 kilowatts maximum, effective rated power and 300 feet minimum, 500 feet maximum, effective antenna height. In FM Area II Ibalance of U.S.A. outside of Area $I$, class-B stations are licensed to operate with 2 kilowatts minimum, 20 kilowatts maximum, effective rated power and 300 feet minimum, 500 feet maximum, effective antenna height.


Fig. 4-Ground-wave signal range for television band 46 megacycles. Conductivity $=5 \times 10^{-14} \mathrm{emu}$, and dielectric constant $=15$. Receiving-antenna height $=30$ feet. For horizontal (and approximately for vertical) polarization.

## Coverage data

The frequency-modulation broadcasting service area is considered to be only that served by the ground wave. The median field intensity considered necessary for adequate service in city, business, or factory areas is 100 microvolts/meter; in rural areas, $50 \mathrm{microvolts} /$ meter is specified. A median field intensity of 3000 to 5000 microvolts/meter is specified for the principal city to be served. The curves of Fig. 7 give data for determination of F-M broad-cast-station coverage as a function of rated power and antenna height.

Objectionable interference from other stations may limit the service area. Such interference is considered by the F.C.C. to exist when the ratio of desired to undesired signal values is as follows:


Fig. 5-Ground-wave signal range for television band 63 megacycles. Conductivity $=5 \times 10^{-14} \mathrm{emv}$, and dielectric constant $=15$. Receiving-antenna height $=30 \mathrm{fe} \mathrm{f}$. For horizontal (and approximately for vertical) polarization.

Same channel:

$$
10 / 1
$$

Adjacent channel (200-kc/s separation): 2/1
Values are ground-wave median field for the desired signal, and the tropospheric-signal intensity exceeded for 1 percent of the time for the undesired signal. It is considered that stations having alternate-channel spacing ( 400 -kilocycle separation) may be operated in the same coverage area without objectionable mutual interference.

## Station performance requirements

Operation is maintained in accordance with the following specifications.


Fig. 6-Ground-wave signal range for television band 82 megacycles. Conductivity $=5 \times 10^{-14} \mathrm{emu}$, and dielectric constant $=15$. Receiving-antenna height $=30$ feet. For horizontal (and approximately for vertical) polarization.

## Frequency modulation continued

Audio-frequency response: Transmitting system capable of transmitting the band of frequencies 50 to 15,000 cycles. Preemphasis employed and response maintained within limits shown by curves of Fig. 9.

Audio-frequency distortion: Maximum combined audio-frequency harmonic root-mean-square voltage in system output less than

modulating frequency   incycles/second	percent   harmonic
$50-100$	3.5
$100-7500$	2.5
$7500-15000$	3.0



Fig. 7-Ground-wave signal range for frequency-modulation broadcasting band, 98 megacycles. Conductivity $=5 \times 10^{-14} \mathrm{emu}$, and dielectric constant $=15$. Receiv-ing-antenna height $=30$ feet. For horizontal (and approximately for vertical) polarization.


Fig. 8-Ground-wave signal range for television band 195 megacycles. Conductivity $=5 \times 10^{-14} \mathrm{emv}$, and dielectric constant $=15$. Receiving-antenna height $=30$ feet. For horizontal (and approximately for vertical) polarization.

Fig. 9-Standard pre-emphasis curve for frequency-modulation and television aural broadcasting. Time constant $=75$ micro-seconds (solid line). Frequencyresponse limits are set by the two lines.


## Frequency modulation

 continuedPower output: Standard transmitter power output ratings are 250 watts, and $1,3,10,25,50$, and 100 kilowatts.
Modulation: Frequency modulation with a modulating capability of 100 percent corresponding to a frequency swing of $\pm 75$ kilocycles.

## Noise:

FM-In the band 50 to 15,000 cycles, at least 60 decibels below 100-percent swing.
AM-In the band 50 to 15,000 cycles, at least 50 decibels below level representing 100 -percent amplitude modulation.
Center-frequency stability: Within $\pm 2000$ cycles of assigned frequency.
Antenna polarization: Horizontal.

## Television broadcasting

Television-broadcast stations are (January, 1949) authorized for commercial operation on 12 channels designated as follows:

channel number	band in me/s	\|channel number	band in mc/s
2	$54-60$	8	$180-186$
3	$60-66$	9	$186-192$
4	$66-72$	11	$192-198$
5	$76-82$	12	$198-204$
6	$82-88$	13	$204-210$
7	$174-180$	$210-216$	

Assignment of channels to specific areas has been made by the F.C.C. in such a manner as to facilitate maximum interference-free coverage within the available frequency spectrum. Within a given area, operation is on alternate channels or with at least a 4 -megacycle channel guard band.

## Station classification

Channels 2 through 13 are authorized for three basic types of television stations.

Community stations: Stations of this type render service to smaller metropolitan districts or principal cities. An effective radiated peak power of 1 kilowatt and a maximum antenna height of 500 feet are permitted.
Metropolitan stations: Are designed primarily to render service to a single metropolitan district or a principal city and surrounding rural area. Peak effective radiated power is limited to 50 kilowatts at a maximum antenna

## Television broadcasting

height of 500 feet above average terrain. Greater heights with equal or less power may be permitted.

Rural stations: Are proposed to serve an area predominantly rural in character. Technical conditions of operation of such stations, as well as their licensing, are determined upon special action of the F.C.C.

## Broadcast coverage

The television-broadcast service area, like that of frequency modulation, is considered to be that region receiving a satisfactory ground-wave signal intensity. Median field intensities (at synchronizing-pulse peaks) considered necessary for service are

City, business, or factory areas: 5000 microvolts/meter Residential and rural areas: $\quad 500$ microvolts/meter

The curves of Figs. 4-8 give coverage distance through the allocated television-frequency bands as a function of radiated power and antenna height.

Objectionable visual interference, limiting the satisfactory signal values indicated above, is considered to exist when the ratio of desired/undesired signals is

Same channel:	$100 / 1$
Adjacent channel $(6-\mathrm{mc} / \mathrm{s}$ separation):	$2 / 1$

The desired-signal intensity is that of the ground-wave median field, while the undesired-signal value is the tropospheric signal intensity exceeded for 10 percent of the time. It is considered that stations having an alternatechannel (12-megacycle) or a 10 -megacycle separation may be operated in the same coverage area without objectionable interference.

## Overall station performance requirements

F.C.C. television standards (December 19, 1945) are

Channel width: 6 megacycles/second.
Picture carrier location: 4.5 megacycles below aural center frequency.
Aural center frequency: 0.25 megacycles below upper-frequency limit of channel.

## Polarization of radiation: Horizontal.

Modulation: Amplitude-modulated composite picture and synchronizing signal on visual carrier, together with frequency-modulated audio signal on aural carrier shall be included in a single television channel (Figs. 10 and 111.

Television broadcasting continued

## Visual transmission requirements

Modulation: Amplitude modulation.

Radio-frequency-amplitude characteristic: As per Fig. 10.

Scanning lines: 525 lines/frame, interlaced two to one.

Frame frequency: $30 /$ second.
Field frequency: 60/second.
Aspect ratio: 4 units horizontal to 3 units vertical.

Scanning sequence:
Horizontal-left to right
Vertical-top to bottom

channel frequency spectrum in megacycles referred to lower frequency limit of channel

Fig. 10-Radio-frequency amplitude characteristic of television picture transmission. Field intensity at points $A$ shall not exceed 20 decibels below picture carrier. Drawing not to scale.


Fig. 11-(Above and at right) Television composite-signal waveform data.

## Television broadcasting



Fig. 11 - continued

## Television broadcasting continued

Transmission polarity: Negative li.e., a decrease in initial light intensity corresponds to an increase in radiated power).

Pedestal level: $75 \pm 2$ percent of peak carrier amplitude.
Black level: Constant at or closely approaching pedestal level.
White level: 15 percent or less of peak carrier amplitude.
Transmitter output variation: At synchronizing peak and black levels, the total output variation due to noise, hum, response, etc., shall not exceed 5 percent of synchronizing-peak amplitude within each frame.

Brightness characteristic: Transmitter output shall vary in substantially inverse logarithmic relation to the brightness of the subject.

## Visual transmitter design

Overall frequency response: The output measured into the antenna after vestigial-sideband filters shall be within limits of +0 and
-2 decibels at 0.5 megacycles
-2 decibels at 1.25 megacycles
-3 decibels at 2.0 megacycles

- 6 decibels at 3.0 megacycles
-12 decibels at 3.5 megacycles
with respect to video amplitude characteristic of Fig. 12.

Lower-sideband radiation: For modulafing frequency of 1.25 megacycles or greater, radiation must be 20 decibels


Fig. 12-ideal demadulated amplitude characteristic of television transmitter below carrier level.
 modified by vestigial operation characteristic of Fig. 10.

Horizontal pulse-timing variations: Variation of time interval between successive pulse leading edges to be less than 0.5 percent of average interval.

Horizontal pulse-repetition stability: Rate of change of leading-edge recurrence frequency shall not exceed 0.15 percent/second.

## Television broadcasting continued

## Aural transmitter

Effective radiation: Greater than 50 percent and less than 150 percent of visual-transmitter peak radiated power.
Modulation: Frequency modulation with 100 -percent swing of $\pm 25$ kilocycles. Required maximum swing $= \pm 40$ kilocycles.
Audio-frequency response: 50 to 15,000 cycles within limits and utilizing preemphasis as shown in Fig. 10.
Audio-frequency distortion: Max́imum combined harmonic root-mean-square output voltage shall be less than

modulating frequency   in cycles/second	percent   harmonic
$50-100$	3.5
$100-7500$	2.5
$7500-15000$	3.0

Noise
FM-55 decibels below 100 -percent swing.
AM-50 decibels below level corresponding to 100-percent modulation.

Wire transmission

## Telephone transmission-line dafa

## Line constants of copper open-wire pairs

```
8- and 12-inch spacing
Insulators:
 40 pairs foll and double-petticoat (DP) per mile
 53 pairs Pyrex glass (CS) per mile
Temperafure 68% lahrenheil
```

$\begin{gathered} \text { freq } \\ \text { in } \\ \mathrm{ke} / \mathrm{s} \end{gathered}$	resistance in ohms/loop mile						inductance in millihenries/loop mile					
	165 mil		128 mil		104 mil		165 mil		128 mil		104 mil	
	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \\ & \hline \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ D P \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$
0.1	4.10	4.10	6.82	6.82	10.33	10.33	3.37	3.11	3.53	3.27	3.66	3.40
0.5	4.13	4.13	6.83	6.83	10.34	10.34	3.37	3.10	3.53	3.27	3.66	3.40
1.0	4.19	4.19	8.87	6.87	10.36	10.36	3.37	3.10	3.53	3.27	3.66	3.40
1.5	4.29	4.29	6.94	6.94	10.41	10.41	3.37	3.10	3.53	3.28	3.66	3.40
20	4.42	4.42	7.02	7.02	10.47	10.47	3.36	3.10	3.53	3.26	3.66	3.40
3.0	4.76	4.76	7.24	7.24	10.62	10.62	3.35	3.09	3.52	3.26	3.66	3.40
5.0	5.61	5.61	7.92	7.92	11.11	11.11	3.34	3.08	3.52	3.25	3.66	3.40
10	7.56	7.56	10.05	10.05	12.98	12.98	3.31	3.04	3.49	3.23	3.64	3.38
20	10.23	10.23	13.63	13.63	17.14	17.14	3.28	3.02	3.46	3.20	3.61	3.35
30	12.26	12.26	16.26	18.26	20.55	20.55	3.26	3.00	3.44	3.17	3.58	3.33
50	15.50	15.50	20.41	20.41	25.67	25.67	3.25	2.99	3.43	3.16	3.57	3.31
100	21.45	21.45	28.09	28.09	35.10	35.10	3.24	2.98	3.42	3.15	3.55	3.29
150	26.03	26.03	33.96	33.98	42.42	42.42	3.23	2.97	3.41	3.14	3.54	3.28
200	29.89	29.89	38.93	38.93	48.43	48.43	3.23	2.97	3.40	3.14	3.54	3.28
500	46.62	46.62	60.53	80.53	74.98	74.98	3.22	2.96	3.39	3.13	3.53	3.27
1000	65.54	65.54	84.84	84.84	104.9	104.9	3.22	2.96	3.38	3.12	3.52	3.26


$\begin{gathered} \text { freq } \\ \text { in } \\ \mathrm{ke} / \mathrm{s} \end{gathered}$	leakage conductance in micromhos/loop mile			
	dry-all	gauges	wef-all	gauges
	$12^{\prime \prime}$-DP	$8^{\prime \prime}$-CS	$12^{\prime \prime}-D P$	$8^{\prime \prime}-\mathrm{CS}$
0.1	0.04	0.04	2.5	2.0
0.5	0.15	0.06	3.0	2.3
1.0	0.29	0.11	3.5	2.6
1.5	0.43	0.15	4.0	2.9
2.0	0.57	0.20	4.5	3.2
3.0	0.85	0.30	5.5	3.7
5.0	1.4	0.49	7.5	4.6
10	2.8	0.97	12.1	6.6
20	5.6	1.9	20.5	9.6
30	8.4	2.9	28.0	12.1
50	14.0	4.8	41.1	15.7


wire size	capacitance in microfarads/loop mile	
	$12^{\prime \prime}$	$8^{\prime \prime}$
In space		
165 mil	0.00898	0.00978
128 mil	0.00855	0.00928
104 mil	0.00822	0.00888
on 40 -wire line, dry		
$165 \mathrm{mil}$	0.00915	0.01000
128 mll	0.00871	0.00948
104 mil	0.00857	0.00908
on 40-wire line, wel		
165 mil	0.0093	0.0102
128 mil	0.0039	0.0097
104 mil	0.0085	0.0093

## Telephone transmission-line data

## Line constants of $40 \%$ Copperweld open-wire pairs

## 8-and 12-inch spacing

## Insulators:

40 pairs toll and double-pelticoat (DP) per mile 53 pairs Pyrex glass (CS) per mile

Temperature $68^{\circ}$ fahrenheit

	resistance in ohms/loop mile						inductance in millihenries/loop mile					
	165 mil		128 mil		104 mil		165 mil		128 mil		104 mil	
	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { Cs } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { Cs } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ D P \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ D P \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$
0.0	9.8	9.8	16.2	16.2	24.6	24.6		-	-	-	-	-
0.1	10.0	10.0	16.3	16.3	24.6	24.6	3.37	3.11	3.53	3.27	3.66	3.40
0.5	10.0	10.0	18.4	18.4	24.7	24.7	3.37	3.10	3.53	3.27	3.66	3.40
1.0	10.1	10.1	16.6	16.6	24.8	24.8	3.37	3.10	3.53	3.27	3.66	3.40
1.5	10.1	10.1	16.7	16.7	24.9	24.9	3.37	3.10	3.53	3.26	3.66	3.40
2.0	10.2	10.2	16.8	16.8	25.2	25.2	3.36	3.10	3.53	3.26	3.66	3.40
3.0	10.4	10.4	17.1	17.1	25.4	25.4	3.35	3.09	3.52	3.26	3.66	3.40
5.0	10.6	10.6	17.4	17.4	26.0	26.0	3.34	3.09	3.52	3.25	3.66	3.40
10	10.8	10.8	17.7	17.7	26.5		3.31	3.04	3.49	3.23		3.39
20	11.4	11.4	18.2	18.2	27.1	27.1	3.28	3.02	3.46	3.20	3.61	3.35
30	12.3	12.3	18.8	13.8	27.5	27.5	3.26	3.00	3.44	3.17	3.58	3.33
50	14.5	14.5	20.4	20.4	28.7	28.7	3.25	2.99	3.43	3.16	3.57	3.31
100	20.8	208	26.5	26.5	33.3	33.3	3.24	2.98	3.42	3.15	3.55	3.29
150	25.9	25.9	32.5	32.5	39.6	39.6	3.23	2.97	3.41	3.14	3.54	3.28



Telephone transmission-line data continued

## Attenuation of copper open-wire pairs

```
8- and 12-inch spacing
Insulators:
 40 pairs toll and double-pelticoat (DP) per mile
 53 pairs Pyrex glass (CS) per mile
```

Temperature $68^{\circ}$ fahrenheit
dry weather

freq in ke/s	attenuation in decibels per mile								
	165 mil			128 mil			104 mil		
	$\begin{gathered} 12^{\prime \prime} \\ D P \end{gathered}$	$\begin{gathered} 12^{\prime \prime} \\ \text { Cs } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ D P \end{gathered}$	$\begin{gathered} 12 \prime \prime \\ \text { C5 } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { Cs } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \mathrm{Cs} \\ \hline \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$
0.1	0.023	0.023	0.025	0.032	0.032	0.034	0.041	0.041	0.0425
0.5	0.029	0.029	0.0315	0.045	0.045	0.048	0.063	0.063	0.067
1.0	0.030	0.030	0.0325	0.047	0.047	0.0505	0.067	0.067	0.072
1.5	0.031	0.031	0.0335	0.048	0.048	0.051	0.068	0.068	0.073
2.0	0.0325	0.032	0.035	0.0485	0.048	0.052	0.069	0.069	0.074
3.0	0.036	0.034	0.038	0.051	0.050	0.054	0.071	0.070	0.076
5.0	0.044	0.041	0.0445	0.057	0.055	0.0595	0.076	0.074	0.080
10	0.061	0.056	0.0605	0.076	0.070	0.076	0.093	0.087	0.094
20	0.088	0.076	0.083	0.108	0.096	0.104	0.129	0.116	0.125
30	0.110	0.092	0.100	0.135	0.116	0.125	0.159	0.140	0.151
50	0.148	0.118	0.127	0.179	0.147	0.158	0.209	0.176	0.189
100	-	0.165	0.178	-	0.204	0.220	-	0.244	0.262
150	-	0.203	0.218	-	0.249	0.268	-	0.296	0.317
200 -	-	0.235	0.25	-	-	-	-	-	-
500	-	-	0.42士	-	-	-	-	-	-
1000	-	-	0.7土	-	-	-	-	-	-

wet weather

0.1	0.032	0.029	0.030	0.043	0.039	0.040	0.054	0.049	0.0505
0.5	0.037	0.034	0.036	0.053	0.050	0.053	0.072	0.069	0.0705
1.0	0.039	0.035	0.037	0.056	0.052	0.055	0.076	0.073	0.0775
1.5	0.041	0.037	0.0385	0.058	0.0535	0.0565	0.078	0.0745	0.0795
2.0	0.043	0.038	0.040	0.060	0.0545	0.058	0.0805	0.076	0.0805
3.0	0.0485	0.041	0.044	0.064	0.0575	0.061	0.0845	0.078	0.083
5.0	0.060	0.050	0.0525	0.075	0.0645	0.068	0.094	0.084	0.089
10	0.085	0.068	0.072	0.102	0.083	0.0885	0.120	0.101	0.106
20	0.127	0.095	0.101	0.150	0.116	0.123	0.173	0.137	0.144
30	0.161	0.118	0.124	0.188	0.142	0.150	0.216	0.168	0.176
50	0.220	0.154	0.162	0.253	0.185	0.195	0.287	0.217	0.227
100	-	0.228	0.237	-	0.271	0.283	-	0.313	0.326
150	-	0.288	0.299	-	0.339	0.353	-	0.390	0.405

Telephone transmission-line data continued

## Attenuation of $40 \%$ Copperweld open-wire pairs

## 8- and 12 -inch spacing

## insulators:

40 pairs foll and double-petticoat (DP) per mile 53 pairs Pyrex glass (CS) per mile
Temperature $68^{\circ}$ fahrenhelt
dry weather

freq in kc/s	attenuation in decibels per mile								
	165 mil			128 mil			104 mil		
	$\begin{aligned} & 12^{\prime \prime} \\ & D P \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \text { Cs } \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \\ & \text { DP } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ \mathrm{CS} \\ \hline \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \text { CS } \end{aligned}$	$\begin{gathered} 12^{\prime \prime} \\ D P \end{gathered}$	$\begin{gathered} 12^{\prime \prime} \\ C 5 \end{gathered}$	$\begin{aligned} & 8^{\prime \prime} \\ & \mathrm{CS} \end{aligned}$
0.2	0.054	0.054	0.057	0.073	0.073	0.077	0.091	0.091	0.096
0.5	0.067	0.067	0.071	0.097	0.097	0.103	0.127	0.127	0.134
1.0	0.073	0.073	0.078	0.112	0.112	0.120	0.152	0.152	0.162
1.5	0.076	0.076	0.082	0.118	0.118	0.127	0.162	0.162	0.174
2.0	0.077	0.077	0.083	0.120	0.120	0.130	0.168	0.168	0.180
3.0	0.079	0.079	0.085	0.124	0.124	0.134	0.174	0.174	0.188
5.0	0.082	0.082	0.088	0.127	0.127	0.138	0.179	0.179	0.195
10	0.085	0.085	0.092	0.131	0.131	0.142	0.186	0.186	0.201
20	0.088	0.088	0.096	0.135	0.135	0.147	0.191	0.191	0.207
30	0.095	0.095	0.103	0.139	0.139	0.152	0.195	0.195	0.211
50	0.110	0.110	0.119	0.150	0.150	0.163	0.206	0.206	0.221
100	0.156	0.156	0.168	0.188	0.188	0.203	0.234	0.234	0.252
150	0.199	0.199	0.214	0.233	0.233	0.251	0.273	0.273	0.293

wet weather

0.2	0.066	0.060	0.063	0.089	0.081	0.084	0.111	0.101	0.105
0.5	0.077	0.072	0.076	0.111	0.104	0.110	0.145	0.136	0.142
1.0	0.083	0.078	0.084	0.126	0.119	0.126	0.188	0.160	0.169
1.5	0.088	0.082	0.087	0.130	0.124	0.133	0.178	0.170	0.181
2.0	0.089	0.083	0.089	0.136	0.128	0.137	0.184	0.176	0.188
3.0	0.093	0.086	0.092	0.140	0.132	0.142	0.192	0.183	0.196
5.0	0.100	0.091	0.097	0.147	0.137	0.148	0.201	0.190	0.205
10	0.111	0.098	0.104	0.159	0.145	0.155	0.214	0.200	0.215
20	0.126	0.107	0.115	0.175	0.155	0.166	0.233	0.212	0.228
30	0.145	0.120	0.127	0.197	0.168	0.177	0.253	0.224	0.238
50	0.184	0.147	0.153	0.230	0.190	0.199	0.288	0.247	0.261
100	0.282	0.219	0.227	0.314	0.254	0.265	0.372	0.303	0.317
150	0.370	0.285	0.295	0.415	0.324	0.336	0.461	0.367	0.382

Telephone transmission-line data
Characteristics of standard types of aerial copper-wire telephone circuits
1000 cycles per second

CS (special glass with steel pin) insulators for all 8 -inch spaced wires.

type of circult	$\begin{aligned} & \text { gouge } \\ & \text { of } \\ & \text { wires } \\ & \text { mils } \end{aligned}$	$\begin{gathered} \text { spac- } \\ \text { ing } \\ \text { of } \\ \text { wires } \\ \text { inches } \end{gathered}$	primary constonts per loop mile				propagation constant				line impedance				wavelength miles	velocity miles per secand	attenvation db per mile
							polar		rectangular		polar		reciangulor				
			$\begin{gathered} \text { R } \\ \text { ohms } \end{gathered}$	$\underset{\text { henries }}{\text { L }}$	$\underset{\mu \mathrm{I}}{\mathrm{C}}$	$\underset{\mu \mathrm{mho}}{\mathbf{G}}$	mag-nitude	angle deg $+$	$\alpha$	$\beta$	mag-nilude	angle deg	$\begin{gathered} \text { R } \\ \text { ohms } \end{gathered}$	$\underset{\substack{\mathrm{X} \\ \text { ohs }}}{ }$			
	165	8	4.11	. 00311	. 01000	. 11	. 0353	83.99	. 00370	. 0351	565	5.88	562	58	179.0	179,000	. 0325
				. 00337	. 00915	. 29	. 0352	84.36	. 00346	. 0350	612	5.35	610	57	179.5	179,500	. 030
Non-pole pair side	165	12	4.11	.00337	. 0315	29				. 0353	653	5.00	651	57	178.0	178,000	. 028
Pole poir side	165	18	4.11	. 00364	. 00863	. 29	. 0355	84.75	. 00325	. 0333	63	3.00	6s				
Non-pole pair phan	165	12	2.06	. 00208	. 01514	. 58	. 0355	85.34	. 02288	. 0354	373	4.30	372	28	177.5	177,500	. 02
Non-pole pair phys	128	8	6.74	. 00327	. 00948	. 11	. 0358	80.85	. 00569	. 0353	603	8.97	596	94	178.0	178,000	. 0505
pole patr side	128	12	6.74	. 00353	. 00871	. 29	. 0356	81.39	. 00533	. 0352	650	8.32	643	94	178.5	178,500	. 047
	128	18	6.74	. 00380	. 00825	. 29	. 0358	81.95	. 00502	. 0355	693	7.72	886	93	177.0	177,000	. 044
	128	12	3.37	. 00216	. 01454	. 58	. 0357	82.84	. 00445	. 0355	401	6.73	398	47	177.0	177,000	. 039
	104	8	10.15	. 00340	. 00908	. 11	. 0367	77.22	. 00811	. 0358	644	12.63	629	141	175.5	175,500	. 072
poir					00837	. 29	. 0363	77.93	. 00760	. 0355	692	11.75	677	141	177.0	177,000	. 067
Non-pole pair side	104	12	10.15	. 00366	. 00837	. 29					730	10.97	717	139	175.5	175,500	. 063
Pole poir side	104	18	10.15	. 00393	. 00797	. 29	. 0365	78.68	. 00718	. 0358							
Non-pole pair phan	104	12	5.08	. 00223	. 01409	. 58	. 0363	79.84	. 00640	. 0357	421	9.70	415	71	176.0	176,000	. 056

Notes: 1. All values are for dry-weother conditions.
Notes: 1. All capacitance values assume a line carrying 40 wires.
Telephone transmission-line data
continued
Representative values of toll-cable line and propagation constants
13, 16, and 19 AWG quadded toll cable All figures for loop-mile basis Temperature $55^{\circ}$ fahrenheit

freq in ke/s	resistance ohms/mile			inductance millihenries/mile			conductance micromhos/mile			copacitance Hf/mile	characteristic impedance ohms			phose shift radians/mile			attenuation decibels/mile		
	13	16	19	13	16	19	13	16	19	13, 16, or 19	13	16	19	13	16	19	13	16	19
0	20.7	41.8	83.8	1.070	1.100	1.112			$\overline{0}$	0.0610	500-305							-	
0.1	20.7	41.8	83.8	1.069	1.100	1.112	0.40	0.25	0.10	0.0610	530-j505	745-1730	1050-j1040	0.020	0.027	0.040	0.17	0.24	0.35
0.5	20.7	41.9	83.9	1.065	1.099	1.112	1.4	0.75	0.40	0.0609	250-j210	345-j315	480-j460	0.050	0.064	0.092	0.36	0.51	0.77
1.0	20.8	42.0	84.0	1.060	1.098	1.111	2.5	1.5	1.0	0.0609	195-j140	255-j215	345- 3119	0.075	0.092	0.133	0.47	0.69	1.06
1.5	20.9	42.1	84.1	1.057	1.097	1.111	3.5	2.0	1.6	0.0608 0.0608	$170-j 105$ $160-j 85$	225-j175		$0.100$ $0.120$		0.17 0.20	0.53 0.58	0.79 0.87	1.27 1.44
2.0	21.0	42.2	84.2	1.053	1.096	1.110	4.5	2.65 4.15	2.35 4.05	0.0608 0.0607	160-j85	$205-j 150$ $180-j 115$	255-j215	0.120 0.170	$\begin{aligned} & 0.140 \\ & 0.189 \end{aligned}$	0.20 0.25	0.58 0.63	0.87 1.00	1.44 1.88
3.0	21.3	42.4	84.3	1.046	1.095	1.110	6.5 10.5	4.15	4.05 8.0	0.0607 0.0606	$145-j 63$ $135-j 42$	$180-j 175$ $155-j 72$	- $2182-\mathrm{jl20}$	0.26			0.70	1.16	2.03
5.0	22.0	43.0	84.5	1.035	1.093	1.109	10.5			0.0606	135-j42					0.35		1.16	2.03
10	24.0	44.5	85.3	1.007	1.085	1.105	21.0	18.5	20.0	0.0605	131-j23	142- 740	155- 773	0.50	0.52	0.59	0.80	1.32	2.43
20	29.1	49.5	89.0	0.968	1.066	1.095	47.0	46.2	50.0	0.0604	128-j15	137-j25	141- 134	0.57	1.00	1.07	1.04	1.55	2.77
30	35.5	55.4	94.0	0.945	1.047	1.085	78.0	80.5	87.5	0.0602	126- $j 12$	135- 118	137- 330	1.43	1.48	1.57	1.27	1.78	3.02
50	47.5	67.0	105.5	0.910	1.015	1.065	150.	160.	180.	0.0600	124-j10	133- j13	134- 220	2.34	2.42	2.60	1.75	2.24	3.53
100	71.3	91.7	137.0	0.870			350.		450.	0.0598	121- 77.3	130-19	131- j13	4.54	4.71	5.00	2.72	3.31	4.80
150	90.0	111.2	165.0	0.850	0.935	0.980	600.	700.	800.	0.0595	119- 36.0	127- 77	129- j11	6.73	6.94	7.25	3.60	4.27	6.00
200	-	-	-	-	-	-	-	-	-	-	-	-							$\xrightarrow{7.00}$
500	-	-	-	-	-	-	二	-	-				-						18=
1000	-	-	-	-	-		-												
For $0^{\circ}$ F:   Increase by					0.5\%	0.5\%	50\%	50\%	50\%	$2 \%$	-	-	-	2\%	2\%	2\%	9\%	9\%	\%\%
Decrease by	9\%	9\%	9\%	0.5\%	0.5\%	0.5\%				2\%				2\%	2\%	2\%	9\%	\%	\%
For $110^{\circ} \mathrm{F}$ :   Increase by	8\%	8\%	8\%	0.4\%	0.4\%	0.4\%	-	-	-	2\%	-	-	-	2\%	2\%	2\%	9\%	9\%	\%\%
Decrease by		-	-	-	-	-	$50 \%$	50\%	50\%		-	-	-						

Telephone transmission-line data

wire gavge AWG	type of loading*	spacing of Joad coils miles	Approximate cho   constants assumed to be distributed per loop mile				propagation constant				line impedance				wovelength miles	```velocily miles per second```	cut-off frequency $f_{e}$$\qquad$	er second   ottenuation decibels per mile
							nol		recto	gular	pol		recta	gular				
			$\begin{gathered} R \\ \text { ohms } \end{gathered}$	L henries	$\begin{gathered} \mathrm{C} \\ \mu \mathrm{f} \end{gathered}$	$\begin{gathered} \text { G } \\ \mu \text { mho } \\ \hline \end{gathered}$	magnitude	$\begin{gathered} \text { ongle } \\ \text { deg }+ \end{gathered}$	$a$	$\beta$	magnitude	$\begin{aligned} & \text { angle } \\ & \text { deg } \end{aligned}$	$\begin{gathered} R \\ \text { ohms } \\ \hline \end{gathered}$	$\begin{gathered} \text { X } \\ \text { ohms } \end{gathered}$				
side circuil																		
19	N.L.S. ${ }^{\text {P }}$	-	84.0	0.001	0.061	1.0	0.183	47.0	0.1249	0.134	470	42.8	34.5	319.4	46.9	46900	-	1.06
19	H.31-S	1.135	87.2	0.028	0.061	1.0	0.277	76.6	0.0643	0.269	710	13.2	691	162.2	23.3	23300	6700	0.56
19	H.44.S	1.135	88.4	0.039	0.061	1.0	0.319	79.9	0.0561	0.314	818	9.9	806	140.8	20.0	20000	5700	0.49
19	H.88-S	1.135	91.2	0.078	0.061	1.0	0.441	84.6	0.0418	0.439	1131	5.2	1126	102.8	14.3	14300	4000	0.36
19	H.172-S	1.135	96.3	0.151	0.061	1.0	0.610	87.0	0.0323	0.609	1565	2.8	1563	78.9	10.3	10300	2900	0.28
19	B.88.S	0.568	97.7	0.156	0.061	1.0	0.620	87.0	0.0322	0.619	1590	2.8	1588	76.7	10.2	10200	5700	0.28
16	N.L.S.	-	42.1	0.001	0.061	1.5	0.129	49.1	0.0842	0.097	331	40.7	255	215.4	64.5	64500	-	0.69
16	H.31.S	1.135	44.5	0.028	0.061	1.5	0.266	82.8	0.0334	0.264	683	7.0	677	83.0	23.8	23800	6700	0.29
16	H.44.S	1.135	45.7	0.039	0.061	1.5	0.315	84.6	0.0296	0.313	808	5.2	805	72.8	20.1	20000	5700	0.26
16	H.88-S	1.135	48.5	0.078	0.061	1.5	0.438	87.6	0.0224	0.437	1124	2.7	1123	53.1	14.4	14400	4000	0.19
16	H.172-S	1.135	53.6	0.151	0.061	1.5	0.608	88.3	0.0183	0.808	1562	1.5	1562	41.1	10.3	10300	2900	0.16
16	B.88.5	0.568	54.9	0.156	0.061	1.5	0.618	88.3	0.0185	0.618	1587	1.5	1587	41.4	10.2	10200	5700	0.16
13	N.L.S.	-	20.8	0.001	0.061	2.5	0.094	52.9	0.0568	0.075	242	36.9	195	140.0	83.6	83600	-	0.47
phantom circuit																		
19	N.L.P.	- 135	42.0	0.0007	0.100	1.5	0.165	47.8	0.1106	0.122	262	42.0	195	175.2	51.5	51500	-	0.96
19	H.18.P	1.135	43.5	0.017	0.100	1.5	0.270	78.7	0.0529	0.284	429	11.1	421	82.6	23.8	23800	7000	0.46
19	H.25.P	1.135	44.2	0.023	0.100	1.5	0.308	81.3	0.0466	0.305	491	8.5	485	72.4	20.6	20600	5900	0.40
19	H. $50 . \mathrm{P}$	1.135	45.7	0.045	0.100	1.5	0.424	85.3	0.0351	0.423	675	4.5	673	53.3	14.9	14900	4200	0.30
19	H.63.P	1.135	47.8	0.056	0.100	1.5	0.472	86.0	0.0331	0.471	752	3.8	750	49.8	13.3	13300	3700	0.29
19	B-50-P	0.568	49.0	0.089	0.100	1.5	0.594	87.4	0.0273	0.593	945	2.4	944	39.8	10.6	10600	5900	0.24
16	N.L.p.	-	21.0	0.0007	0.100	2.4	0.116	50.0	0.0746	0.089	185	39.0	144	116.3	70.6	70600	-	0.65
16	H.18-P	1.135	22.2	0.017	0.100	2.4	0.262	84.0	0.0273	0.260	417	5.8	415	41.8	24.1	24100	7000	0.24
16	H.25-P	1.135	22.8	0.023	0.100	2.4	0.303	85.4	0.0243	0.302	483	4.4	481	36.8	20.8	20800	5900	0.21
16	H. $50 . \mathrm{P}$	1.135	24.3	0.045	0.100	2.4	0.422	87.4	0.0189	0.422	672	2.4	672	27.5	14.9	14900	4200	0.16
16	H.63.P	1.135	26.4	0.056	0.100	2.4	0.471	87.7	0.0185	0.471	749	2.0	749	26.6	13.4	13400	3700	0.16
16 13	B.50.P N.1.P.	0.568	27.5 10.4	0.089 0.0007	0.100	2.4	0.593	88.5	0.0157	0.593	944	1.3 33	944	21.4	10.6	10600	5900	0.14
13	N.l.P.	-	10.4	0.0007	0.100	2.4	0.086	55.1	0.0442	0.071	137	33.9	114	76.3	89.1	89100	-	0.43
physical circuit																		
16	B-22	0.568	43.1	0.040	0.061	1.5	0.315	85.0	0.0273	0.314	809	4.8	806	67.1	20.0	20000	11300	0.24

Telephone fransmission-line dafa
Approximate characteristics of standard types of paper-insulated exchange telephone cable circuits

wire   gavge   AWG	$\begin{gathered} \text { code } \\ \text { no } \\ \hline \end{gathered}$	$\qquad$	loop mile constants		propagation constant				mid-section characteristic impedance				length miles	1000 cycles per second			
					velocify miles per second	cutoff freq	atten   db   per   mile										
			$\begin{gathered} \mathbf{C} \\ \mu \mathrm{f} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{G} \\ \mu \mathrm{mho} \end{gathered}$				polar		rectangular		polar		rectangular			
								mag	angle   deg	$\alpha$	$\beta$	mag		angle deg	$\mathbf{Z}_{01}$	$Z_{02}$	
26	BST	Nt	. 083	1.6		-	-	-	910	-	-	-		-	second	Areq	2.9
	ST	Nt	. 069	1.6	. 439	45.30	. 307	. 310	1007	44.5	719	706	20.4	20,400	-	2.67	
24	DSM	NL	. 085	1.9					725						-	2.3	
	ASM	NL	. 075	1.9	. 355	45.53	. 247	. 251	778	44.2	558	543	25.0	25,000	-	2.15	
		M88	. 075	1.9	. 448	70.25	. 151	. 421	987	23.7	904	396	14.9	14,900	3100	1.31	
		H88	. 075	1.9	. 512	75.28	. 130	. 495	1160	14.6	1122	292	12.7	12,700	3700	$1.13$	
		B88	. 075	1.9	. 684	81.70	. 099	. 677	1532	8.1	1515	215	9.3	+ 9 , 270	5300	$\begin{aligned} & 1.13 \\ & 0.86 \end{aligned}$	
22	CSA	Nt	. 083	2.1	. 297	45.92	. 207	. 213	576	43.8	416	399	29.4	29,400	S300	1.80	
		M88	. 083	2.1	. 447	76.27	. 106	. 434	905	13.7	880	214	14.5	14,500	2900	0.92	
		H88 H135	. 083	2.1	. 526	80.11	. 0904	. 519	1051	9.7	1040	177	12.1	12,100	3500	0.79	
		H135	. 083	2.1	. 644	83.50	. 0729	. 640	1306	6.3	1300	144	9.8	9,800	2800	0.63	
		B88	. 083	2.1	. 718	84.50	. 0689	. 718	1420	5.3	1410	130	8.75	8,750	5000	0.60	
		B135	. 083	2.1	. 890	86.50	. 0549	. 890	1765	3.3	1770	102	7.05	7,050	4000	0.48	
19	CNB	NL	. 085	1.6	-	-	-	-	400	-		-	.	-	,	1.23	
	DNB	${ }_{\text {Nt }}$	. 066	1.6	. 188	47.00	. 128	. 138	453	42.8	333	308	45.7	45,700	-	1.12	
		M88	. 066	1.6	. 383	82.42	. 0505	. 380	950	8.9	939	146	16.6	16,600	3200	0.44	
		H 88 H 135	. 066	1.6	. 459	84.60	. 0432	. 459	1137	5.2	1130	103	13.7	13,700	3900	0.38	
		H135	. 066	1.6	. 569	86.53	. 0345	. 570	1413	4.0	1410	99	11.0	11,000	3200	0.30	
		H175	. 066	1.6	. 651	87.23	. 0315	. 651	1643	3.3	1640	95	9.7	9,700	2800	0.27	
		B88	. 066	1.6	. 641	86.94	. 0342	. 641	1565	2.8	1560	77	9.8	9,800	5500	0.30	
16	NH		. 064	1.5	. 133	49.10	. 0868	. 1004	320	40.6	243	208	62.6	62,600	S500	0.76	
		M88	. 064	1.5	. 377	85.88	. 0271	. 377	937	4.6	934	76		16,700		$0.24$	
		H88	. 064	1.5	. 458	87.14	. 0238	. 458	1130	2.8	1130	55	13.7	16,700 13,700	3200	$\begin{aligned} & 0.24 \\ & 0.21 \end{aligned}$	
in the inducto	olum		e the	$\text { ers } M \text {, }$	and 8	1	ding-col	spacin	9000	. 6000			1	and the			

## Representative values of line and propagation constants of miscellaneous cables

## All figures for loop-mile basis

Nonloaded
Temperature $55^{\circ}$ fahrenheit
16-gauge spiral-four (disc-insulated) toll-entrance cable

$\begin{aligned} & \text { freq } \\ & \text { in } \\ & k c / s \end{aligned}$	resistance ohms/mile	inductance mh/mile	conductance umhos/mile	capacitance $\mu^{\boldsymbol{\beta} / \text { mile }}$	characteristic impedance ohms	phase shift radions/ mile	attenuation db/mile
0.1	42.4	2.00	0.042	0.02491	-	0.024	0.18
0.5	42.9	1.98	0.053	0.02491	540-j460	0.045	0.32
1.0	43.4	1.94	0.074	0.02491	428-j324	0.067	0.44
1.5	43.9	1.89	0.102	0.02491	380-j275	0.085	0.49
2.0	44.4	1.82	0.127	0.02491	350-j230	0.101	0.55
3.0	45.5	1.74	0.186	0.02490	307-j157	0.145	0.64
5.0	47.5	1.64	0.320	0.02490	279-j107	0.218	0.74
10	50.8	1.56	0.72	0.02489	258-j63	0.405	0.85
20	56.9	1.53	1.95	0.02488	226-j36	0.78	0.99
30	63.0	1.52	3.54	0.02488	248-j26	1.15	1.10
50	73.0	1.51	7.1	0.02488	245-j19	1.90	1.31
100	94.8	1.46	16.9	0.02488	243-j13	3.80	1.71
150	113.5	1.44	27.1	0.02488	240-j10	5.65	2.08
200	130.0	1.43	38.0	0.02487	-	-	2.35

22 AWG emergency cable

side:			-				
0	166	1.00	-	-	-	-	-
1	-	-	1.3	0.063	$468-j 449$	-	1.53
phant:							
0	83	0.69	-	-	-	-	-
1	-	-	2.1	0.100	$265-j 250$	-	1.37

## 19 AWG CL emergency cable

side:		1.39	negligible	-	-	-	-
dry 0	92	1.39	negligible	-	-	-	-
dry 1	-	-	negligible	0.110	272-j244	-	1.48
wet 1	-	-	negligible	0.14	239-j214	-	1.69
phant:							
diy 0	46	0.5	negligible	-			
wet 0	46	0.5	negligible	0.25			
dry 1	-	-	negligible	0.25 0.28	$124-j \mid 16$ $117-j 109$	二	1.6
wet 1	-		negligible	0.28	117-j109	-	1.6

Telephone fransmission-line data continued

Coaxial cable 0.27 -inch diam (New York-Philadelphia 1936 Iype)
Temperafure $68^{\circ}$ fahrenheif

$\begin{gathered} \text { freq } \\ \text { in } \\ \mathrm{ke} / \mathrm{s} \end{gathered}$	resistance ohms/mile	inductance mh/mile	conductance $\mu$ mhos/mile	copacitance	characteristic impedance ohms	phase shift radions/ mile	aftenuation $\mathrm{db} / \mathrm{mile}$
50	24	0.48	23	0.0773	78.5	-	1.3
100	32	0.47	46	0.0773	78	-	1.9
300	56	0.445	156	0.0772	76	-	3.2
1000	100土	0.43	570	0.0771	74.5	-	6.1

Coaxial cable 0.27-Inch diam (Stevens Point-Minneapolis iype)
Temperature $68^{\circ}$ fahrenheif

10	-	-	-	-	-	-	0.75
20	-	-	-	-	-	-	0.92
30	-	-	-	-	-	-	1.10
50	-	-	-	-	$79-j 6$	-	1.38
100	-	-	-	-	$77.8-j 4$	-	1.70
300	-	-	-	-	$76.1-j 2$	-	3.00
1000	-	-	-	-	$75-j 1.3$	-	5.6
3000	-	-	-	-	$74.5-j 1.1$	-	10
10000	-	-	-	-	-	18	

Coaxial cable 0.375 -inch diam (Polyethylene discs)

10	-						
20	-	-	-	-	-	-	0.53
30	-	-	-	-	-	-	0.65
50	-	-	-	-	-	0.72	
100	-	-	-	-	$50 \pm$	-	0.90
300	-	-	-	-	-	-	1.18
1000	-	-	-	-	-	2.1	
3000	-	-	-	-	-	-	4.0
10000	-	-	-	-	-	-	7

500

## Carrier systems

Frequency allocations for open-wire carrier systems


* See p. 501 for telegraph-band A, B, C, D, frequency allocations.



## Notes:

Solid arrows $=$ carrier frequencies Dolted arrows $=$ pilot frequencies
$\uparrow=$ east-west or $A-B$ direction
$\downarrow=$ west-east or $B-A$ direction
1
____ channel No. 1
$\mathrm{S}=$ signalling frequency

FTR $=$ Federal Telephone and Radio Corporation STC $=$ Standard Telephones and Cables, Limited WECo = Western Electric Company

* Carrier frequencies of the 6 channels in each of the 4 telegraph bands represented by $A, B, C$, and $D$ for STOA-3/6 and STOB-3/6 on p. 500 are as follows:

A	B	C	D
6.54 kc	16.63 kc	19.27 kc	29.36 kc
6.66	16.75	19.39	29.48
6.78	16.87	19.51	29.60
6.90	16.99	19.63	29.72
7.02	17.11	19.75	29.84
7.14	17.23	19.87	29.96

$\dagger$ Manufacture discontinued.
$\ddagger$ See p. 500 under "Carrier telephone."

502
continued Carrier systems


WECO   rype J
STC
NA
NB
SOJ-A-12
SOJ-C-12
SB
SOJ-B-12
SOJ-D-12
WECO Iype K
STC 24-channel

Carrier systems
Frequency allocations and modulation steps for coaxial-cable carrier systems

Notes:
Solid arrows $=$ carrier frequencies
Doffed arrows $=$ pilot frequencies
Frequencies shown are line frequencies obtained by two or
more stages of modulation.

## Telephone noise and noise measurement

## Definitions

The following definitions are based upon those given in the Proceedings of the tenth Plenary Meeting (1934) of the Comite Consultatif International Téléphonique (C.C.I.F.).

Note: The unit in which noise is expressed in many of the European countries differs from the two American standards, the noise unit and the $d b$ above reference noise. The European unit is referred to as the psophometric electromotive force.

Noise: Is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heard in the course of a telephone conversation.

It is customary to distinguish between:
Room noise: Present in that part of the room where the telephone apparatus is used.

Frying noise (transmitter noise): Produced by the microphone, manifest even when conversation is not taking place.

Line noise: All noise electrically transmitted by the circuit, other than room noise and frying noise.

## Psophometric electromotive force

In the case of a complete telephone connection the interference with a telephone conversation produced by extraneous currents may be compared with the interference which would be caused by a parasitic sinusoidal current of 800 cycles per second. The strength of the latter current, when the interference is the same in both cases, can be determined.
If the receiver used has a resistance of 600 ohms and a negligible reactance (if necessary it should be connected through a suitable transformer), the psophometric electromotive force at the end of a circuit is defined as twice the voltage at 800 cycles per second, measured at the terminals of the receiver under the conditions described.
The psophometric electromotive force is therefore the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance which, when connected directly to a standard receiver of 600 ohms resistance and zero reactance, produces the same sinusoidal current at 800 cycles per second as in the case with the arrangements indicated above.
An instrument known as the psophometer has been designed. When connected directly across the terminals of the 600 -ohm receiver, it gives a reading of

## Telephone noise and noise measurement continued

half of the psophometric electromotive force for the particular case considered.
In a general way, the term psophometric voltage between any two points refers to the reading on the instrument when connected to these two points.
If, instead of a complete connection, only a section thereof is under consideration, the psophometric electromotive force with respect to the end of that section is defined as twice the psophometric voltage measured at the terminals of a pure resistance of 600 ohms, connected at the end of the section, if necessary through a suitable transformer.
The C. C. I. F. has published a specification for a psophometer which is included in Volume II of the Proceedings of the Tenth Plenary Meeting in 1934. An important part of this psophometer is a filter network associated with the measuring circuit whose function is to weight each frequency in accordance with its interference value relative to a frequency of 800 cycles.

## Noise levels

The amount of noise found on different circuits, and even on the same circuit at different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a quiet circuit, a noisy circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels that may be encountered under the different conditions
Open-wire circuit
db above
Quietref noise20
Average ..... 35
Noisy ..... 50
Cable circuit
Quiet ..... 15
Average ..... 25
Noisy ..... 40

## Relationship of European and American noise units

The psophometric emf can be related to the American units: the noise unit and the decibel above reference noise.

The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 ohms.

## Telephone noise and noise measurement continued

## Relationship of European and American units



## Telegraph facilities

## Signaling speeds and pulse lengths

The graph below shows the speeds of various telegraph systems. The American Morse curve is based on an average character of 8.5 units determined from actual count of representative traffic. The Continental Morse curve similarly on 9 units, and the Cable Morse on 3.7 units.

system	speed of usual types	
	frequency in cycles	bauds
Grounded wire	75	150
Simplex (telephonel	50	100
Composite	15	30
Metallic telegroph	85	170
Corrier channel		
Narrow band	40	80
Wide band	75	150



Feed holes: For Morse, (number feed holes/second) $=$ (number cycles/second For multiplex and teleprinter, (rumber feed holes/second) $=$ (words/minute)/ 10

508

Telegraph facilities continued
Comparison of telegraph codes in current and recent use
Morse codes automatic transmission


## Cable Marse



Synchronous printer codes

	D o , i s spoce
Murray automatic and multiplex	$1+1$

## Baudot ${ }^{*}$


Hughes
RCA error-proof
Start-stop printer codes

Creed and teletype (7-unit)

Creed and teletype ( $71 / 2$-unit)





[^51]
## Theory of sound waves*

Sound (or a sound wave) is an alteration in pressure, stress, particle displacement, or particle velocity that is propagated in an elastic material; or the superposition of such propagated alterations. Sound lor sound sensation) is also the sensation produced through the ear by the above alterations.

## Wave equation

The behavior of sound waves is given by the wave equation

$$
\begin{equation*}
\nabla^{2} p=\frac{1}{c^{2}} \frac{\partial^{2} \rho}{\partial t^{2}} \tag{1}
\end{equation*}
$$

where $p$ is the instantaneous pressure increment above and below a steady pressure (dynes/centimeter ${ }^{2}$ ); $\rho$ is a function of time and of the three coordinates of space. Also,
$t=$ time in seconds
$c=$ velocity of propagation in centimeters/second
$\nabla^{2}=$ the Laplacian, which for the particular case of rectangular co. ordinates $x, y$, and $z$ lin centimeters), is given by
$\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

For a plane wave of sound, where variations with respect to $y$ and $z$ are zero, $\nabla^{2} p=\partial^{2} p / \partial x^{2}=d^{2} p / d x^{2}$; the latter is approximately equal to the curvature of the curve showing $p$ versus $x$ at some instant. Equation (1) states simply that, for variations in $x$ only, the acceleration in pressure $p$ (the second time derivative of $p$ ) is proportional to the curvature in $p$ (the second space derivative of $p$ l.

For a gas las airl, the velocity of propagation $c$ is related to other parameters of the medium by the equation

$$
\begin{equation*}
c=\sqrt{\gamma p_{0} / \rho_{0}} \tag{3}
\end{equation*}
$$

[^52]where
$\gamma=$ ratio of the specific heat at constant pressure to that at constant volume
$\rho_{0}=$ the steady pressure of the gas in dynes/centimeter ${ }^{2}$
$\rho_{0}=$ the steady or average density of the gas in grams/centimeter ${ }^{3}$
The range of variation of these parameters is given in Fig. I for typical substances at standard conditions 120 degrees centigrade, 760 millimeters of mercuryl.

Fig. 1-Table of sound-propagation parameters in various substances.

substance	density $\rho_{0}$ grams/centimeter ${ }^{3}$	velocity of propagation e centimeters/second	characteristic acoustic resistance $\rho_{0} c$ grams/centimeter ${ }^{2}$ second
Air	0.00121	34,400	41.6
Hydrogen	0.00009	127,000	11.4
Corbon dioxide	0.0020	25,800	51.3
Salt water	1.03	150,400	155,000
Mercury	13.5	140,000	1,900,000
Hard rubber	1.1	140,000	150,000
Hord glass	2.4	600,000	1,440,000

Sinusoidal variations in time are usually of interest. For this case the usual procedure is to put $p=$ (real part of $\bar{\rho} \epsilon^{i \omega t}$ i, where $\bar{p}$ now satisfies the equation
$\nabla^{2} \bar{p}+(\omega / c)^{2} \bar{p}=0$
The vector complex velocity $\bar{v}$ of the sound wave in the medium is related to the complex pressure $\bar{p}$ by the formula
$\bar{v}=-\left(1 / j \omega \rho_{0}\right) \operatorname{grad} \bar{\rho}$

The specific acoustical impedance $\bar{Z}$ at any point in the medium is the ratio of the complex pressure to the complex velocity, or
$\bar{Z}=\bar{\rho} / \bar{v}$

The solutions of (1) and (4) take particularly simple and instructive forms for the case of one dimensional plane and spherical waves in one direction. Fig. 2 gives a summary of the pertinent information.
For example, the acoustical impedance for spherical waves has an equivalent electrical circuit comprising a resistance shunted by an inductance. In this

Theory of sound waves continued

Fig. 2-Table of solutions for various parameters.

factor	type of sound wave	
	plane wave	spherical wave
Equation for $p$	$\frac{\partial^{2} p}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}$	$\frac{\partial^{2} p}{\partial x^{2}}+\frac{2}{r} \frac{\partial \rho}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial r^{2}}$
Equation for $\bar{p}$	$\frac{d^{2} \bar{p}}{d x^{2}}+\left(\frac{\omega}{c}\right)^{2} \bar{p}=0$	$\frac{d^{2} \bar{\rho}}{d x^{2}}+\frac{2}{r} \frac{d \bar{p}}{d t}+\left(\frac{\omega}{c}\right)^{2} \bar{p}=0$
Solution for $p$	$\rho=F\left(1-\frac{x}{c}\right)$	$p=\frac{1}{r} F\left(1-\frac{x}{c}\right)$
Solution for $\bar{p}$	$\vec{p}=\bar{A}^{-j_{\omega z} / \mathrm{c}}$	$\vec{p}=\frac{1}{r} \bar{A}^{-i \omega r / a}$
Solution for $\bar{v}$	$\bar{v}=\frac{\bar{A}}{\rho_{0} \mathrm{C}} \mathrm{e}^{-j_{\omega} z / \mathrm{c}}$	$\bar{v}=\frac{\bar{A}}{\rho_{0} c r}\left(1+\frac{c}{j \omega r}\right) e^{-j \omega r / c}$
$z$	$\bar{z}=\rho_{00}$	$\bar{Z}=\rho_{0} c /\left(1+\frac{c}{j \omega r}\right)$
Equivalent electrical circuif for $\bar{Z}$		

where
$\rho=$ excess pressure in dynes/centimeter ${ }^{2}$
$\bar{p}=$ complex excess pressure in dynes/centimeter ${ }^{2}$
$t=$ time in seconds
$x=$ space coordinate for plane wave in centimeters
$r=$ space coordinate for spherical wave in centimeters
$\bar{v}=$ complex velocity in centimeters/second
$\bar{Z}=$ specific acoustic impedance in dyne. seconds/centimeter ${ }^{3}$
$c=$ velocity of propagation in centimeters/ second
$\omega=2 \pi f ; f=$ frequency in cycles/second
$F=$ an arbitrary function
$\bar{A}=$ complex constant
$\rho_{0}=$ density of medium in grams/centimeter ${ }^{3}$

## 512

## Theory of sound waves continued

form, it is obvious that a small spherical source $\{r$ is small cannot radiate efficiently since the radiation resistance $\rho_{0} c$ is shunted by a small inductance $\rho_{0}$. Efficient radiation begins approximately at the frequency where the resistance $\rho_{0} r$ equals the inductive (mass) reactance $\rho_{0} c$. This is the frequency at which the period $(=1 / f)$ equals the time required for the sound wave to travel the peripheral distance $2 \pi r$.

## Sound intensity

The sound intensity is the average rate of sound energy transmitted in a specified direction through a unit area normal to this direction at the point considered. In the case of a plane or spherical wave, the intensity in the direction of propagation is given by
$l=\mathrm{p}^{2} / \rho \mathrm{c} \quad$ ergs $/$ second $/$ centimeter ${ }^{2}$
where
$p=$ pressure (dynes/centimeter ${ }^{2}$ )
$\rho=$ density of the medium (grams/centimeter ${ }^{3}$ ) and
$c=$ velocity of propagation (centimeters/second)
The sound intensity is usually measured in decibels, in which case it is known as the intensity level and is equal to 10 times the logarithm (to the base 10 ) $\begin{aligned} & \text { of the ratio of the sound intensity lexpressed in watts/cen- }\end{aligned}$ timeter ${ }^{2}$ ) to the reference level of $10^{-16}$ watts/centimeter ${ }^{2}$. Fig. 3 shows the intensity levels of some familiar sounds.

## Acoustical and mechanical networks

## and their electrical analogs*

The present advanced state of the art of electrical network theory suggests its advantageous application, by analogy, to equivalent acoustical and mechanical networks. Actually, Maxwell's initial work on electrical networks was based upon the previous work of laGrange in dynamical systems. The following is a brief summary showing some of the network parameters available in acoustical and mechanical systems and their analysis using laGrange's equations.
Fig. 4 shows the analogous behavior of electrical, acoustical, and mechanical systems. These are analogous in the sense that the equations lusually differential equations) formulating the various physical laws are alike.

[^53]
## Acoustical and mechanical networks

## and their electrical analogs continued

Fig. 3-Table of intensity levels.

type of sound	intensity level in decibels above $10^{-18}$ watts/centimeter ${ }^{2}$	intensity in microwalts/ centimeter ${ }^{2}$	root-mean-   square   sound   pressure in dynes/ centimeter ${ }^{2}$	root-meansquare particle velocity in centimeters/ second	peak-to-peak particle displacement for sinsuaidal tone al 1000 cycles in centimeters
Threshold of painful sound	130	1000	645	15.5	$6.98 \times 10^{-3}$
Airplane, 1600 rpm, 18 feet	121	126	228	5.5	$2.47 \times 10^{-3}$
Subway, local station, express possing	102	1.58	40.7	0.98	$4.40 \times 10^{-4}$
Noisest spot at Niagara Falls	92	0.158	12.9	0.31	$1.39 \times 10^{-4}$
Average automobile, 15 feet	70	$10^{-3}$	0.645	$15.5 \times 10^{-3}$	$6.98 \times 10^{-6}$
Average conversational speech $3 \frac{1}{4}$ feet	70	$10^{-3}$	0.645	$15.5 \times 10^{-3}$	$6.98 \times 10^{-6}$
Average office	55	$3.16 \times 10^{-5}$	0.114	$2.75 \times 10^{-3}$	$1.24 \times 10^{-6}$
Average residence	40	$10^{-6}$	$20.4 \times 10^{-3}$	$4.9 \times 10^{-6}$	$2.21 \times 10^{-7}$
Quiet whisper, 5 feet	18	$6.3 \times 10^{-9}$	$1.62 \times 10^{-3}$	$3.9 \times 10^{-5}$	$1.75 \times 10^{-8}$
Reference level	0	$10^{-10}$	$2.04 \times 10^{-4}$	$4.9 \times 10^{-6}$	$2.21 \times 10^{-9}$

## Acoustical and mechanical networks

and their electrical analogs continued

Fig. 4A-Table of analogous behavior of systems-parameter of energy dissipation (or radiation).

electrical	mechanical	acoustical
current in wire	viscaus damping vane	gas flaw_in_small pipe
$P=R i^{2}$ $;=\frac{\mathbf{e}}{\mathbf{R}}=\frac{d \mathrm{a}}{d t}=\dot{\mathrm{a}}$ $R=\frac{\rho l}{A}$	$\begin{aligned} P & =R_{m} v^{2} \\ v & =\frac{f}{R_{m}}=\frac{d x}{d t}=\dot{x} \\ R_{m} & =\frac{\mu \mathrm{A}}{h} \end{aligned}$	$\begin{aligned} P & =R_{a} \dot{X}^{2} \\ \dot{X} & =\frac{P}{R_{a}}=\frac{d X}{d f} \\ R_{a} & =\frac{8 \mu \pi I}{A^{2}} \end{aligned}$
where   $i=$ current in amperes   $e=$ valfage in volts   $q=$ charge in coulombs   $t=$ time in seconds   $R=$ resistance in ohms   $\rho=$ resistivity in ohm-centimeters   $t=$ length in centimeters   $A=$ cross-sectional area of wire in centimeters ${ }^{2}$   $P=$ power in watts	$\begin{aligned} & \text { where } \\ & \begin{aligned} v= & \text { velocity in centimeters } / \\ & \text { second } \\ f= & \text { force in dynes } \\ x= & \text { displacement in centi- } \\ & \text { meters } \\ t= & \text { time in seconds } \\ R_{m}= & \text { mechanical resistance in } \\ & \text { dyne-seconds/centi- } \\ & \text { mefer } \\ \mu= & \text { coefficient of viscosity } \\ & \text { in poise } \\ h= & h e i g h t ~ o f ~ d a m p i n g ~ v a n e ~ \end{aligned} \\ & \\ & \text { in centimeters } \\ & A= \end{aligned}$	where   $\dot{x}=$ volume velocity in centimeters ${ }^{3} /$ second   $p=$ excess pressure in dynes/ centimeter ${ }^{2}$   $X=$ volume displacement in centimeters ${ }^{3}$   $\hat{f}=$ time in seconds   $R_{a}=$ acoustic resistance in dyne-seconds/centimeter ${ }^{5}$   $\mu=$ coefficient of viscosity in poise   $I=$ length of tube in centimeters   $\mathrm{A}=$ area of circular tube in centimeters ${ }^{2}$   $P=$ power in ergs/second

## Acousfical and mechanical nefworks

## and their electrical analogs continued

Fig. 4B-Table of analogous behavior of systems-parameter of energy storage (electrostatic or potential energy).

electrical	mechanical	acoustical
capacifor with closely spaced plates	clamped-free (cantilever beam)	piston acoustic compliance (at audio frequencies, adiabatic expansion)
$\begin{aligned} W_{e} & =\frac{q^{2}}{2 C}=\frac{S q^{2}}{2} \\ q & =C e=\frac{e}{S} \\ C & =\frac{k A}{36 \pi d} \times 10^{-n} \end{aligned}$	$\begin{aligned} V & =\frac{x^{2}}{2 C_{m}}=\frac{S_{m} x^{2}}{2} \\ x & =C_{m} f=\frac{f}{S_{m}} \\ C_{m} & =\frac{l^{3}}{3 E l} \end{aligned}$	$\begin{aligned} & V=\frac{X^{2}}{2 C_{a}}=\frac{S_{a} X^{2}}{2} \\ & X=C_{a} P=\frac{\rho}{S_{a}}=x A \\ & C_{a}=\frac{V_{a}}{C^{2} \rho} \end{aligned}$
where   C = capacitonce in farads   $S=$ stiffness $=1 / C$   $W_{e}=$ energy in walt-seconds   $k=$ relative dielectric con. stant $1=1$ for air, numeric)   $A=$ area of plates in centimeters ${ }^{2}$   $d=$ separation of plates in centimeters	where   $\mathrm{C}_{m}=$ mechanical compliance in centimeters/dyne   $S_{m}=$ mechanical stifness $=1 / C_{m}$   $V=$ potential energy in ergs   $E=$ Young's modulus of elasticity in dynes/ centimeter ${ }^{2}$   $l=$ moment of inertia of cross-section in centimeters ${ }^{\text { }}$   $l=$ length of beam in cen. meters	where   $\mathrm{C}_{\mathrm{a}}=$ acoustical compliance in centimeters ${ }^{3} /$ dyne   $S_{a}=$ acoustical stiffness $=1 / C_{a}$   $V=$ potential energy in ergs   $c=$ velocity of sound in enclosed gas in centimeters/second   $\rho=$ density of enclosed gas in grams/centimeter ${ }^{3}$   $V_{0}=$ enclosed volume in cenimeters ${ }^{3}$   $A=\underset{\substack{\text { meters }}}{\text { area }}$ of piston in centi-

516

## Acoustical and mechanical networks

## and their electrical analogs

Fig. 4 C - Table of analogous behavior of systems - parameter of energy storage (magnetostatic or kinetic energy).


## Acoustical and mechanical networks

## and their electrical analogs

## LaGrange's equations

The laGrangian equations are partial differential equations describing the stored and dissipated energy and the generalized coordinates of the system. They are
$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{v}}\right)+\frac{\partial F}{\partial \dot{q}_{v}}+\frac{\partial V}{\partial \mathrm{q}_{v}}=\mathrm{Q}_{\nu}, \nu=1,2, \ldots, n$,
where $T$ and $V$ are, as in Fig. 4, the system's total kinetic and potential energy (in ergs), $F$ is $\frac{1}{2}$ the rate of energy dissipation lin ergs/second, Rayleigh's dissipation function), $Q_{v}$ the generalized forces (dynes), and $a_{v}$ the generalized coordinates (which may be angles in radians, or displacements in centimeters). For most systems land those considered herein) the generalized coordinates are equal in number to the number of degrees of freedom in the systems required to determine uniquely the values of $T, V$, and $F$.

## Example

As an example of the application of these equations toward the design of electroacoustical transducers, consider the idealized crystal microphone in Fig. 5.
This system has 2 degrees of freedom since only 2 motions, namely the diaphragm displacement $x_{d}$ and the crystal displacement $x_{c}$, are needed to specify the system's total energy and dissipation.
A sound wave impinging upon the microphone's diaphragm creates an excess pressure o ldynes/centimeter ${ }^{2}$ ). The force on the diaphragm is then pA (dynes), where $A$ is the effective area of the diaphragm. The diaphragm has


Fig. 5-Crystal microphone analyzed by use of LaGrange's equations.

## Acoustical and mechanical networks

and their electrical analogs continued
an effective mass $m_{d}$, in the sense that the kinetic energy of all the parts associated with the diaphragm velocity $\dot{x}_{d}\left(=d x_{d} / d t\right)$ is given by $m_{d} \dot{x}_{d}^{2} / 2$. The diaphragm is supported in place by the stiffness $S_{d}$. It is coupled to the crystal via the stiffness $S_{o}$. The crystal has a stiffiness $S_{c}$, an effective mass of $m_{c}$ (to be computed below), and is damped by the inechanical resistance $R_{c}$. The only other remaining parameter is the acoustical stiffness $S_{a}$ introduced by compression of the air-tight pocket enclosed by the diaphragm and the case of the microphone.
The total potential energy $V$ stored in the system for displacements $x_{d}$ and $x_{c}$ from equilibrium position, is

$$
\begin{equation*}
V=\frac{1}{2} S_{d} x_{d}^{2}+\frac{1}{2} S_{d}\left(x_{d} A\right)^{2}+\frac{1}{2} S_{c} x_{c}^{2}+\frac{1}{2} S_{o}\left(x_{d}-x_{c}\right)^{2} \tag{8}
\end{equation*}
$$

The total kinetic energy $T$ due to velocities $\dot{x}_{d}$ and $x_{c}$ is
$T=\frac{1}{2} m_{c} \dot{x}_{c}^{2}+\frac{1}{2} m_{d} \dot{x}_{d}^{2}$
This neglects the small kinetic energy due to motion of the air and that due to the motion of the spring $S_{0}$ t. If the total weight of the unclamped part of the crystal is $w_{c}$ (grams), one can find the effective mass $m_{c}$ of the crystal as soon as some assumption is made as to movement of the rest of the crystal when its end moves with velocity $\dot{x}_{c}$. Actually, the crystal is like a transmission line and has an infinite number of degrees of freedom. Practically, the crystal is usually designed so that its first resonant frequency is the highest passed by the microphone. In that case, the end of the crystal moves in phase with the rest, and in a manner that, for simplicity, is here taken as parabolically. Thus it is assumed that an element of the crystal located $y$ centimeters away from its clamped end moves by the amount $(y / h)^{2} x_{c}$, where $h$ is the length of the crystal. The kinetic energy of a length $d y$ of the crystal due to its velocity of $(y / h)^{2} \dot{x}_{c}$ and its mass of $(d y / h) w_{c}$ is $\frac{1}{2}(d y / h) w_{c}(y / h)^{4} \dot{x}_{c}^{2}$. The kinetic energy of the whole crystal is the integral of the latter expression as $y$ varies from 0 to $h$. The result is $\frac{1}{2}\left(w_{c} / 5\right) \dot{x}_{c}{ }^{2}$. This shows at once that the effective mass of the crystal is $m_{c}=w_{c} / 5$, i.e., $\frac{1}{3}$ its actual weight.

The dissipation function is $F=\frac{1}{2} R_{e} \dot{x}_{e}{ }^{2}$. Finally, the driving force associated with displacement $x_{d}$ of the diaphragm is $p A$. Substitution of these expressions and (8) and (9) in LaGrange's equations (7) results in the force equations

$$
\left.\begin{array}{l}
m_{d} \ddot{x}_{d}+S_{d} x_{d}+S_{o} A^{2} x_{d}+S_{o}\left(x_{d}-x_{c}\right)=p A  \tag{10}\\
m_{c} \ddot{x}_{c}+S_{o}\left(x_{c}-x_{d}\right)+R_{c} \dot{x}_{c}=0
\end{array}\right\}
$$

These are the mechanical version of Kirchhoff's law that the sum of all the resisting forces (rather than voltages) are equal to the applied force. The

## Acoustical and mechanical networks

and their electrical analogs continued
equivalent electrical circuit giving these same differential equations is shown in Fig. 5. The crystal produces, by its piezoelectric effect, an open-circuit voltage proportional to the displacement $x_{c}$. By means of this equivalent circuit, it is now easy, by using the usual electrical-circuit techniques, to find the voltage generated by this microphone per unit of sound-pressure input, and also its amplitude- and phase-response characteristic as a function of frequency.
It is important to note that this process of analysis not only results in the equivalent electrical circuit, but also determines the effective values of the parameters in that circuit.

## Sound in enclosed rooms*

## Good acoustics-governing factors

Reverberation time or amount of reverberation: Varies with frequency and is measuled by the time required for a sound, when suddenly interrupted, to die away or decay to a level 60 decibels (db) below the original sound.

The reverberation time and the shape of the reverberation-time/frequency curve can be controlled by selecting the proper amounts and varieties of sound-absorbent materials and by the methods of application. Room occupants must be considered inasmuch as each person present contributes a fairly definite amount of sound absorption.
Standing sound waves: Resonant conditions in sound studios cause standing waves by reflections from opposing parallel surfaces, such as ceilingfloor and parallel walls, resulting in serious peaks in the reverberation-time/ frequency curve. Standing sound waves in a room can be considered comparable to standing electrical waves in an improperly terminated transmission line where the transmitted power is not fully absorbed by the load.

## Room sizes and proportions for good acoustics

The frequency of standing waves is dependent on room sizes: frequency decreases with increase of distances between walls and between floor and ceiling. In rooms with two equal dimensions, the two sets of standing waves occur at the same frequency with resultant increase of reverberation time at resonant frequency. In a room with walls and ceilings of cubical contour this effect is tripled and elimination of standing waves is practically impossible.

[^54]
## 520

## Sound in enclosed rooms

The most advantageous ratio for height:width:length is in the proportion of $1: 2^{1 / 5}: 2^{2 / 3}$ or separated by $1 / 3$ or $2 / 3$ of an octave.
In properly proportioned rooms, resonant conditions can be effectively reduced and standing waves practically eliminated by introducing numerous surfaces disposed obliquely. Thus, large-order reflections can be avoided by breaking them up into numerous smaller reflections. The object is to prevent sound reflection back to the point of origin until after several rereflections.
Most desirable ratios of dimensions for broadcast studios are given in Fig. 6.



Fig. 7-Optimum reverberation time in seconds for various room volumes at $\mathbf{5 1 2}$ cycles per second.


Fig. 8-Desirable relative reverberation time versus frequency for various structures. and audiforiums.

## 522

## Sound in enclosed rooms

## Optimum reverberation time

Optimum, or most desirable reverberation time, varies with (1) room size, and (2) use, such as music, speech, etc. (see Figs. 7 and 8).

These curves show the desirable ratio of the reverberation time for various frequencies to the reverberation time for 512 cycles. The desirable reverberation time for any frequency between 60 and 8000 cycles may be found by multiplying the reverberation time at 512 cycles (from Fig. 7) by the number in the vertical scale which corresponds to the frequency chosen.

## Computation of reverberation time

Reverberation time at different audio frequencies may be computed from room dimensions and average absorption. Each portion of the surface of a room has a certain absorption coefficient a dependent on the material of the surface, its method of application, etc. This absorption coefficient is equal to the ratio of the energy absorbed by the surface to the total energy impinging thereon at various audio frequencies. Total absorption for a given surface area in square feet $S$ is expressed in terms of absorption units, the number of units being equal to $a_{a v} S$.
$a_{a v}=\frac{\text { (total number of absorption units) }}{\text { (total surface in square feet) }}$
One absorption unit provides the same amount of sound absorption as one square foot of open window. Absorption units are sometimes referred to as

Fig. 9-Table of acoustical coefficients of materials and persons*

descriplion	sound absorption coefficients in cycles/second						authority
	128	256	512	1024	2048	4096	
Brick wall unpainted	0.024	0.025	0.031	0.042	0.049	0.07	W. C. Sabine
Brick wall pointed	0.012	0.013	0.017	0.02	0.023	0.025	W. C. Sabine
Ploster + finish coat on wood lath-wood studs	0.020	0.022	0.032	0.039	0.039	0.028	P. E. Sabine
Ploster + finish coat on metal lath	0.038	0.049	0.060	0.085	0.043	0.056	V. O. Knudsen
Poured concrete unpainiad	0.010	0.012	0.016	0.019	0.023	0.035	V. O. Knudsen
Poured concrete painted and varnished	0.009	0.011	0.014	0.016	0.017	0.018	V. O. Knudsen
Corpet, pile on concrete	0.09	0.08	0.21	0.26	0.27	0.37	Building Research Station
Corpet, plle on $1 / 8 \mathrm{In}$ felt	0.11	0.14	0.37	0.43	0.27	0.25	Building Research Station
Droperies, velour, 18 oz per sq yd in contact with wall	0.05	0.12	0.35	0.45	0.38	0.36	P. E. Sabine
Ozite $8 / 8$ in	0.051	0.12	0.17	0.33	0.45	0.47	P. E. Sobine
Rug, axminstor	0.11	0.14	0.20	0.33	0.52	0.82	Wente and Bedell
Audience, seoted per sq fiof area	0.72	0.89	0.95	0.99	1.00	1.00	W. C. Sabine
Eoch person, seated	1.4	2.25	3.8	5.4	6.6		Bureau of Standards, averages of 4 tests
Eoch person, seated Gloss surfoces	0.05	0.04	0.03	$0 . \overline{025}$	$0 . \overline{022}$	$\begin{aligned} & 7.0 \\ & 0.02 \end{aligned}$	Estimated   Estimated

[^55]
## Sound in enclosed rooms <br> continued

"open window" or "OW" units.
$T=\frac{0.05 V}{-S \log _{e}\left(1-a_{a v}\right)}$
where $T=$ reverberation time in seconds, $V=$ room volume in cubic feet, $S=$ total surface of room in square feet, $a_{a v}=$ average absorption coefficient of room at frequency under consideration.
For absorption coefficients a of some typical building materials, see Fig. 9. Fig. 10 shows absorption coefficients for some of the more commonly used materials for acoustical correction.

Fig. 10-Table of acoustical coefficients of materials used for acoustical correction

material	cycles/second						noisered coef ${ }^{*}$	manufactured by
	128	256	512	1024	2048	4096		
Corkoustic-84	0.08	0.13	0.51	0.75	0.47	0.46	0.45	Armstrong Cork Co.
Corkoustic-86	0.15	0.28	0.82	0.60	0.58	0.38	0.55	Armstrong Cork Co.
Cushlontone A-3	0.17	0.58	0.70	0.90	0.76	0.71	0.75	Armstrong Cork Co.
Koustex	0.10	0.24	0.64	0.92	0.77	0.75	0.85	David E. Kennedy, Inc.
Sanacoustic (metall tiles	0.25	0.58	0.99	0.99	0.91	0.82	0.85	Johns. Manville Sales Corp.
Permacoustic tiles $3 / 4$ in	0.19	0.34	0.74	0.76	0.75	0.74	0.85	Johns. Monville Sales Corp.
Low-frequency element	0.66	0.60	0.50	0.50	0.35	0.20	0.50	Johns. Manville Sales Corp.
Triple-tuned element	0.66	0.61	0.80	0.74	0.79	0.75	0.75	Johns-Manville Sales Corp.
High-frequency element	0.20	0.46	0.55	0.66	0.79	0.75	0.60	Johns-Manvilla Sales Corp.
Absorbatone A	0.15	0.28	0.82	0.99	0.87	0.98	0.75	Luse Stevenson Co.
Acoustex 60R	0.14	0.28	0.81	0.94	0.83	0.80	0.70	Narional Gypsum Co.
Econacoustic ! in	0.25	0.40	0.78	0.76	0.79	0.88	0.70	National Gypsum Co.
PF 9D	0.22	0.46	0.97	0.90	0.68	0.52	0.75	Owens-Corning Fiberglos Corp.
Acoustone $D^{11} / 16$ in	0.13	0.26	0.79	0.88	0.76	0.74	0.65	U. S. Gypsum Company
Acoustone F ${ }^{13} / 60$ in	0.16	0.33	0.85	0.89	0.80	0.75	0.70	U. S. Gypsum Company
Acousti-celotex iype $\mathrm{C}-611 / 4 \mathrm{in}$	0.30	0.56	0.94	0.96	0.69	0.58	0.80	The Celotex Corp.
Absorbex type A 1 in	0.41	0.71	0.96	0.88	0.85	0.96	0.85	The Celotex Corp.
Acousteel 8 metal facing $15 / 8$ in	0.29	0.57	0.98	0.99	0.85	0.57	0.85	The Celotex Corp.

* The noise-reduction coefficient is the average of the coefficients at frequencies from 256 to 2048 cycles inclusive, given to the nearest 5 percent. This average coefficient is recommended for use in comparing materials for noise-quieting purposes as in offices, hospitals, banks, corridors, etc.


## Public-address systems*

## Electrical power levels for public-address requirements

Indoor: Power-level requirements are shown in Fig. 11.
Outdoor: Power-level requirements are shown in Fig. 12.
Note: Curves are for an exponential trumpet-type horn. Speech levels above referenceaverage 70 db , peak 80 db . For a loudspeaker of 25 -percent efficiency, 4 times the power output would be required or an equivalent of 6 decibels. For one of 10 -percent efficiency, 10 times the power output would be required or 10 decibels.

[^56]

Fig. 11 -Room volume and relative amplifier power capacity. To the indicated power level depending on loudspeaker efficiency, there must be added a correction factor which may vary from 4 decibels for the most efficient horn-type reproducers to 20 decibels for less efficient cone loudspeakers.

Public-address systems continued

relative amplifier power capacity-maximum single-frequency output rating in decibels above 0.001 watt

Courtesy Western Electric Company
Fig. 12-Distance from loudspeaker and relative amplifier power capacily required for speech, average for $30^{\circ}$ angle of coverage. For angles over $30^{\circ}$, more loudspeakers and proporional outpul power are required. Depending on loudspeaker efficiency, a correction factor must be added to the indicated power level, varying approximately from 4 to 7 decibels for the more-efficient iype of horn loudspeakers.

Acoustic spectrum
sıว2su！jo daly3＇yoanbs soop ——ーーー 000＇91




## Sounds of speech and music*

A large amount of data are available regarding the wave shapes and statistical properties of the sounds of speech and music. Below are given some of these data that are of importance in the design of transmission systems.

## Minimum-discernible-bandwidth changes

Fig. 13 gives the increase in high-frequency bandwidth required to produce a minimum discernible change in the output quality of speech and music.

Fig. 13-Table showing bandwidth increases necessary to give an even chance of quality improvement being noticeable. All figures are in kilocycles.

minus		reference limen   frequency		plus one limen	
speech	music	music	speech		
-	-	3	3.0	3.3	
3.4	3.3	4	4.8	4.8	
4.1	4.1	5	6.0	6.9	
4.6	5.0	6	7.4	9.4	
5.1	5.8	7	9.3	12.8	
5.5	6.4	8	11.0	-	
5.8	6.9	9	12.2	-	
6.2	7.4	10	13.4	-	
6.4	8.0	11	15.0	-	
7.0	9.8	13	-	-	
7.6	11.0	15	-	-	

These bandwidths are known as differ-ence-limen units. For example, a system transmitting music and having an upper cutoff frequency of 6000 cycles would require a cutoff-frequency increase to 7400 cycles before there is a 50 -percent chance that the change can be discerned. (Curve B, Fig. 14.)
Fig. 14 is based upon the data of Fig. 13. For any high-frequency cutoff along the abscissa, the ordinates give the next higher and next lower cutoff frequencies for which there is an even chance of discernment. As expected, one ob-

[^57]

Fig. 14 - Minimum-discerniblebandwidth changes. Curves show:
A-Plus 1 limen far speech
B-Plus 1 limen for music
C-Minus 1 limen for music
D-Minus 1 limen for speech
serves that, for frequencies beyond about 4000 cycles, restriction of upper cutoff affects music more appreciably than speech.

## Peak factor

One of the important factors in deciding upon the power-handling capacity of amplifiers, loudspeakers, etc., is the fact that in speech very large fluctuations of instantaneous level are present. Fig. 15 shows the peak factor Iratio of peak to root-mean-square pressure) for unfiltered (or widebandl speech, for separate octave bandwidths below 500 cycles, and for separate $\frac{1}{2}$-octave bandwidths above 500 cycles. The peak values for sound pressure of unfiltered speech, for example, rise 10 decibels higher than the averaged root-mean-square value over an interval of $\frac{1}{8}$ second, which corresponds roughly to a syllabic period. However, for a much longer interval of time, say the time duration of one sentence, the peak value reached by the sound pressure for unfiltered speech is about 20 decibels higher than the root-mean-square value averaged for the entire sentence.


Courlesy of Journal of the Acoustical Sociely of America

Fig. 15-Feak factor (ratio of peak/root-mean-square pressures) in decibels for speech in 1 -anaं 1/2-octave frequency bands, for $1 / 8$ - and 75 -second time intervals.

## Sounds of speech and music

continued

Thus, if the required sound-pressure output demands a long-time average of, say, I watt of electrical power from an amplifier, then, to take care of the instantaneous peaks in speech, a maximum-peak-handling capacity of 100 watts is needed. If the amplifier is tested for amplitude distortion with a sine wave, 100 watts of peak-instantaneous power exists when the average power of the sine-wave output is 50 watts. This shows that if no amplitude distortion is permitted at the peak pressures in speech sounds, the amplifier should give no distortion when tested by a sine wave of an average power 50 times greater than that required to give the desired long-time-average root-mean-square pressure.

The foregoing puts a very stringent requirement on the amplifier peak power. In relaxing this specification, one of the important questions is what percentage of the time will speech overload an amplifier of lower power than that necessary to take care of all speech peaks. This is answered in Fig. 16; the abscissa gives the probability of the $\frac{\text { peak }}{\text { long-time-average }}$ powers exceeding the ordinates for continuous speech and white noise. When multiplied by 100 , this probability gives the expected percent of time during which peak distortion occurs. If 1 percent is taken as a suitable criterion


Fig. 16-Statistical properties of the peak factor in speech. The abscissa gives the probability (ratio of the time) that the peak factor in the uninterrupted speech of one person exceeds the ordinate value. Peak factor = (decibels instantaneous peak value) - (decibels root-mean-square long-time average).

## 530

Sounds of speech and music
continued
then a 12 -decibel ratio of $\frac{\text { peak }}{\text { long-time-average }}$ powers is sufficient. Thus, the amplifier should be designed with a power reserve of 16 in order that peak clipping may occur not more than about I percent of the time.

## Speech-communication

## systems

In many applications of the transmission of intelligence by speech sounds, a premium is placed on intelligibility rather than flawless reproduction. Especially important is the reduction of intelligibility as a function of both the background noise and the restriction of transmission-channel bandwidth. Intelligibility is usually measured by the percentage of correctly received monosyllabic nonsense words uttered in an uncorrelated sequence. This score is known as syllable articulation. Because the sounds are nonsense syllables, one part of the word is entirely uncorrelated with the remainder, so it is not consistently possible to guess the whole word correctly if only part of it is received intelligibly. Obviously, if the test speech were a commonly used word, or say a whole sentence with commonly used word sequences, the score would increase because of correct guessing from the context. Fig. 17 shows the inter-relationship between syllable, word, and sentence


Fig. 17-Relations between various measures of speech intelligibility. Relations are approximate; they depend upon the type of material and the skill of the talkers and listeners.


Courtesy of Proceedings of the I.R.E.
Fig. 18 -Bands of equal articulation index. 0 decibels $=0.0002$ dyne/centimeter.

## Speech-communication systems

articulation. Also given is a quantity known as articulation index.
The concept and use of articulation index is obtained from fig. 18. The abscissa is divided into 20 bandwidths of unequal frequency interval. Each of these bands will contribute 5 percent to the articulation index when the speech spectrum is not masked by noise and is sufficiently loud to be above the threshold of audibility. The ordinates give the root-mean-square peaks and minimums lin $\frac{1}{8}$-second intervals), and the average sound pressures created at 1 meter from a speaker's mouth in an anechoic lecho-freel chamber. The units are in decibels pressure per cycle relative to a pressure of 0.0002 dynes/centimeter ${ }^{2}$. (For example, for a bandwidth of 100 cycles, rather than 1 cycle, the pressure would be that indicated plus 20 decibels; the latter figure is obtained by taking 10 times logarithm (to the base 10) of the ratio of the 100 -cycle band to the indicated band of 1 cycle.)
An articulation index of 5 percent results in any of the 20 bands when a full 30-decibel range of speech-pressure peaks to speech-pressure minimums is obtained in that band. If the speech minimums are masked by noise of a higher pressure, the contribution to articulation is accordingly reduced to a value given by $\frac{1}{6}$ [ldecibels level of speech peaks) - (decibels level of average noisel]. Thus, if the average noise is 30 decibels under the speech peaks, this expression gives 5 percent. If the noise is only 10 decibels below the speech peaks, the contribution to articulation index reduces to $\frac{1}{6} \times 10=1.67$ percent. If the noise is more than 30 decibels below the speech peaks, a value of 5 percent is used for the articulation index. Such a computation is made for each of the 20 bands of Fig. 18, and the results are added to give the expected articulation index.
A number of important results follow from Fig. 18. For example, in the presence of a large white (thermal-agitation) noise having a flat spectrum, an improvement in articulation results if pre-emphasis is used. A preemphasis rate of about 8 decibels/octave is sufficient.

## Loudness

Equal loudness contours: Fig. 19 gives average hearing characteristics of the human ear at audible frequencies and at loudness levels of zero to 120 decibels versus intensity levels expressed in decibels above $10^{-16}$ watt per square centimeter. Ear sensitivity varies considerably over the audible range of sound frequencies at various levels. A loudness level of 120 decibels is heard fairly uniformly throughout the entire audio range but, as indicated in Fig. 19, a frequency of 1000 cycles at a 20 -decibel level will be heard at very nearly the same intensity as a frequency of 60 cycles at a 60 -decibel level. These curves explain why a loudspeaker operating at lower-than-

## 532

Loudness
continued


Fig. 19-Equal loudness confours.
normal-level sounds as though the higher frequencies were accentuated and the lower tones seriously attenuated or entirely lacking; also, why music, speech, and other sounds, when reproduced, should have very nearly the same intensity as the original rendition. To avoid perceptible deficiency of lower tones, a symphony orchestra, for example, should be reproduced at an acoustical level during the loud passages of 90 to 100 decibels.

## Definitions

A servo system is a combination of elements for controlling a source of power. The output of the system or some function of the output is fed back for comparison with the input, and the difference between these quantities is used to control the power. Examples of servo systems are: automatic gain controls, automatic-frequency-control systems, positioning systems, etc. A servo mechanism is a servo system that involves mechanical motion.

## Basic system elements

The basic elements of the system (Fig. 1) are:

An input quantity $\theta_{i}$
An output quantity $\theta_{0}$
A mixer or comparator that subtracts $\theta_{o}$ from $\theta_{i}$ to yield an error


Fig. 1-Example of simple servo system. quantity $\epsilon=\theta_{i}-\theta_{o}$

A controller which so regulates the flow of power from the power source that $\epsilon$ tends toward zero. The controller may include amplifiers, motors, and other devices.

## Classification of servo mechanisms

Servo mechanisms may be classified as follows:
Use: Remote control, power amplification, indicating instruments, computers, etc.

Motive characteristics: Hydraulic servos, thyratron servos, Ward-Leonard controls, amplidyne controls, two-phase alternating-current servos, me-chanical-torque amplifiers, pneumatic servos, etc.

Control characteristics: Relay-type servo in which the full power of the motor is applied as soon as the error is large enough to operate a relay, definite-correction servo where the power of the motor is controlled in finite steps at definite time intervals, continuous-control servos in which the power of the motor is continuously controlled by some function of the error. Only the continuous type of servo is treated in the following material.

## 534

## Fundamental quantities for linear-lumped-constant servos

$f(t)=$ function of time
$F(p)=$ Laplace transform of $f(t)$
$\theta_{i}=$ input quantity
$\theta_{0}=$ output quantity
$\epsilon=$ error quantity $=\theta_{i}-\theta_{0}$
$Y(p)=$ loop transfer function
$=\frac{\theta_{0}(p)}{\epsilon(p)}=\frac{\mid K Q_{m}(p)}{p^{s} P_{n}(p)}$ where $m<n$ and $s$ is an integer. $\mid K$ is de-
fined in (7). $Q_{m}$ and $P_{n}$ are polynomials of degree $m$ and $n$, of which the coefficient of zero power of $p$ is taken as unity.

$$
\begin{equation*}
K=\text { loop gain }=\lim _{p \rightarrow 0} p^{s} Y(p) \tag{6}
\end{equation*}
$$

$Y_{o}(p)=$ overall transfer function $=\frac{\theta_{o}(p)}{\theta_{i}(p)}=\frac{Y(p)}{1+Y(p)}=\left\lvert\, K_{0} \frac{S_{m}(p)}{R_{n}(p)}\right.$,
where $S_{m}, R_{n}$ are polynomials similar to $Q_{m}$ and $P_{n}$ in (6) above
$Y_{i}(p)=$ error-input transfer function $=\frac{\epsilon(p)}{\theta_{i}(p)}$

$$
\begin{align*}
& =\frac{1}{1+Y(p)}=\frac{p^{s} P_{n}(p)}{1+\mid K Q_{m}(p)} \\
f_{s s} & =\text { steady-state quantity }=f(t)=\lim _{p \rightarrow 0} p F(p) \tag{10}
\end{align*}
$$

When s $=1$ in (6), the system is termed a zero-displacement-error system, since from equations (9) and (10), $\epsilon_{s s}=0$ when $\theta_{i}(t)$ is a step displacement. Similarly, when $s=2$, the system is termed a zero-velocity-error system since $\epsilon_{s s}=0$ when $\theta_{i}(t)$ is a step velocity. Obviously a zero-velocity-error system is also a zero-displacement-error system.

## Positioning-type servo mechanisms

The fundamental quantities described above are applicable to all classifications of continuous-servo mechanisms. The remaining material in this chapter applies to positioning systems using electronic and electromechanical devices. Other servo mechanisms can be treated in exactly analoaous fashions.

## Positioning-type servo mechanisms continued


fig. 2-Positioning-type servo.
A typical positioning servo is shown in Fig. 2. For this system:
$Y(p)=\frac{\theta_{o}(p)}{\epsilon(p)}=\frac{k_{1} Y_{A}(p) Y_{m}(p) U(p)}{1+Y_{m}(p) U(p) V(p)}$
$Y_{0}(p)=\frac{\theta_{0}(p!}{\theta_{i}(p)}=\frac{k_{1} Y_{A}(p) Y_{m}(p) U(p)}{1+k_{1} Y_{A}(p) Y_{m}(p) U(p)+Y_{m}(p) U(p) V(p)}$
$Y_{i}(p)=\frac{\epsilon(p)}{\theta_{i}(p)}=\frac{1+Y_{m}(p) U(p) V(p)}{1+k_{1} Y_{A}(p) Y_{m}(p) U(p)+Y_{m}(p) U(p) V(p)}$
Comparator $1:$ is an error-measuring system that converts the difference between $\theta_{i}$ and $\theta_{0}$ into error voltage $e$, where $e=k_{I} \epsilon$. $k_{I}$ is usually a real constant. Examples of error-measuring systems are shown in Fig. 3.
Mixer 2: Is a circuit arrangement that subtracts $E_{c}$ from $E_{a}$ to yield a voltage $e_{1}=E_{a}-E_{c}$.
$U(p):$ Represents the motor and load characteristics. It includes the motor gearing and all inertias and forces imposed by the load. Quantities and relationships making up and describing $U(p)$ are described by (14) to (34).


Fig. 3-Error-measuring systems.

## Positioning-type servo mechanisms continued

## Linear motor and load characteristics

In the following, subscript $m$ refers 10 motor, I refers to load, and o refers to combined motor and load:
$\theta=$ angular position in radians
$\Omega=$ angular velocity in radians/second $=d \theta / d t$
$M_{m}=$ motor-developed torque in foot-pounds
$J_{m}=$ motor inertia in slug-feet ${ }^{2}$
$E_{m}=$ impressed volts
$k_{l}=$ motor stalled-torque constant in foot-pounds/volt
$=\mid \Delta M_{m} / \Delta E_{m} \|_{\Omega_{m}}$
$k_{m}=$ velocity constant in radians/second/volt
$=\left(\Delta \Omega_{m} \quad \Delta E_{m}\right)_{M_{m}}$
$f_{m}=$ motor internal-damping characteristic in foot-pound-seconds
per radian $=-\frac{k_{t}}{k_{m}}=\left(-\frac{\Delta M_{m}}{\Delta \Omega_{m}}\right)_{E_{m}}$
$r_{m}=$ motor torque-inertia constant in $\mathrm{l} /$ seconds $^{2}=\mathrm{M}_{\mathrm{m}} / \mathrm{J}_{\mathrm{m}}$
$J_{l}=$ load inertia in slug-feet ${ }^{2}$
$f_{l}=$ load viscous-friction coefficient in foot-pound-seconds per radian
$F_{3}=$ load coulomb friction in foot-pounds
$S_{3}=$ load elastance in foot-pounds/radian
$N=$ motor-to-load gear ratio $=\theta_{m} / \theta_{b}$
$f_{o}=$ overall viscous-friction coefficient referred to load shaft $=f_{i}+N^{2} f_{m}$
$J_{0}=$ overall inertia referred to load shaft $=J_{l}+N^{2} J_{m}$
$T_{o}=$ overall time constant in seconds $=J_{o} / f_{o}$
The ideal motor characteristics of Fig. 4 are quite representative of directcurrent shunt motors. For alternating-current two-phase motors, one phase of which is excited from a constant-voltage source, the curves are valid up to about 40 percent of synchronous speed.
The motor and load-transfer characteristics are given by

$$
\begin{equation*}
\theta_{o}(p)=\frac{\left(k_{l} / N\right) E_{m}(p)-F_{l}(p)}{p^{2} J_{o}+p f_{o}+S} \tag{31}
\end{equation*}
$$



Fig. 4-Ideal molor curves.
When $S=0$, which is very often the case,
$\theta_{o}(p)=\frac{\left(k_{t} / N\right) E_{m}(p)-F_{b}(p)}{p\left(f_{a}+p J_{0}\right)}$
and
$U(p)=\frac{\theta_{0}(p)}{E_{m}(p)}=\frac{k_{1}}{N\left(f_{0}+p J_{0}\right) p}-\frac{F_{l}(p)}{E_{m}(p)\left(f_{0}+p J_{0}\right) p}$
When $F_{1}$ can be assumed zero, then
$U(p)=\frac{k_{l}}{N\left(f_{o}+p J_{o}\right) p}=\frac{k_{l}}{N f_{o p}\left(T_{o p}+1\right)}$
$Y_{m}(p)$ : Represents the power amplifier that energizes the motor system $U(p)$. This amplifier may be of the hard-tube, thyratron, fixed-magnetic, or rotarymagnetic lamplidyne) types. Typical values of $Y_{m}(p)$ are:
$Y_{m}(p)=\frac{K_{a}}{1+\rho T_{a}}$
for electronic amplifiers, where $T_{a}$ is often of negligible magnitude, and
$Y_{m}(p)=\frac{K_{a}}{\left(1+p T_{a}\right)\left(1+p T_{b}\right)}$
for a 2 -stage magnetic amplifier.
$Y_{A}(p)$ : Represents the error-voltage amplifier. This amplifier may include various equalizing networks that modify e as required to improve the servo

538

## Positioning-fype servo mechanisms continued

response. Servos are often classified in accordance with the characteristics of $Y_{A}(p)$. For example,

$Y_{A}(p)$	Proportional
$k_{A}$	Proportional plus derivative of servo
$k_{A}\left(1+\rho T_{a}\right)$	Proportional plus integral
$k_{A}\left(1+\frac{1}{\rho T_{a}}\right)$	Proportional plus derivative plus infegral

Practical circuits that approximate some of these characteristics are shown in Fig. 5.

The above circuits are for use where the steady-state error voltage $e_{s s}$ has a direct-current value. In those cases where $e_{s s}$ is a sinusoid of frequency $\omega_{0}$, the bridged-T circuit is useful as a proportional-plus-derivative network (Figs. 6 and 7). For the circuit to possess approximately proportional-plusderivative characteristics, it is necessary that
$Y(j \omega)=G\left[1+j T_{d}\left(\omega-\omega_{0}\right)\right]$


Fig. 5-Direct-current equalizing networks.

This is true when
$R_{1}=\frac{1}{T_{d} \omega_{0}^{2} C}, \quad R_{3}=\frac{T_{d}}{C}, \quad$ and $G=\frac{2}{T_{d}^{2} \omega_{0}^{2}+2}$


Fig. 6-Alternating-current derivative network.
$V(p)$ : Is a feedback and amplifier network that is used effectively to modify the characteristics of the power amplifier and motor elements. Often this takes the form of a tachometer generator coupled to the output shaft, or equivalent, that develops a voltage $e_{g}$ proportional to the outputshaft speed. This voltage may be further modified by circuits that are usually of the derivative type. Typical circuits are shown in Fig. 8.


Fig. 7-Allernaling-current derivative network characteristics.


Fig. 8-Tachometer feedback network.

540

## Typical positioning-servo mechanisms

## Simple viscous-damped system

For this servo, referring to Fig. 2,
$Y_{A}(p)=k_{A}, \quad Y_{n}(p)=1, \quad V(p)=0, \quad$ and $U(p)=\frac{k_{t} / N}{f_{0 p}\left(T_{0 p}+1\right)}$
From (III, we have
$Y(p)=\frac{k_{1} k_{A} k_{l} / N}{f_{o p}\left(T_{o p}+1\right)}=\frac{\mid K}{p\left(T_{o p}+1\right)}$
where $\left\lvert\, K=\frac{k_{1} k_{A} k_{l}}{f_{o} N}\right.$ seconds ${ }^{-1}$
or
$Y(p)=\frac{\mid K_{m}}{J_{o p}\left(p+1 / T_{o}\right)}$
where $\left|K_{m}=\right| K f_{o}$ foot-pounds/radian.
Also, from (13),

Where
$\omega_{n}=\left(\mid K_{m} / J_{0}\right)^{\frac{1}{2}}=$ system natural angular velocity,
$r=1 / 2 T_{a} \omega_{n}=$ ratio of actual to critical damping.
For $\quad \theta_{i}(p)=\omega_{i} / p^{2}$ (step-velocity function of amplitude $\left.\omega_{i}\right)$,
$\frac{\epsilon(t)}{\theta_{s s c}}=r\left[1-\epsilon^{-r \omega_{n} t}\left(\cos \sqrt{1-r^{2}} \omega_{n} t+\frac{2 r^{2}-1}{2 r \sqrt{1-r^{2}}} \sin \sqrt{1-r^{2}} \omega_{n}^{\dagger}\right)\right]$
where
$\theta_{s s c}=2 \omega_{i} / \omega_{n}=$ steady-state error for critical damping
Equation (45) is plotted in Fig. 9.

Typical positioning-servo mechanisms
continued


Fig. 9-Proportional viscous-damped system.

## Proportional-plus-derivative system

The transfer functions of this system are identical with those of the proportional system, except that
$\left.Y_{A}(p)=k_{A}(1)+p T_{A}\right)$
so that

$$
\begin{equation*}
Y(p)=\frac{\mid K_{m}}{J_{0}} \frac{1+p T_{A}}{p\left(p+1 / T_{0}\right)} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{i}(p)=\frac{p\left(p+1 / T_{0}\right)}{p^{2}+p\left(\frac{1}{T_{0}}+\frac{\mid K_{m}}{J_{0}} T_{A}\right)+\frac{\mid K_{m}}{J_{0}}}=\frac{p\left(p+2 \omega_{n} c r\right)}{p^{2}+2 r \omega_{n} p+\omega_{n}^{2}} \tag{49}
\end{equation*}
$$

Where

$$
\begin{align*}
\omega_{n} & =\left(\mid K_{m} / J_{o}\right)^{\frac{1}{2}}  \tag{50}\\
c & =\frac{1 / T_{o}}{\frac{1}{T_{0}}+\omega_{n}^{2} T_{A}}=\text { ratio of viscous to overall damping, } \tag{51}
\end{align*}
$$

542

## Typical positioning-servo mechanisms <br> continued

and
$r=\frac{1}{2 \omega_{n}}\left(\frac{1}{T_{0}}+\omega_{n}^{2} T_{A}\right)=\frac{1}{2 \omega_{n} c T_{0}}$
For $\theta_{i}(p)=\omega_{i} / p^{2}$,
$\epsilon(t)=\frac{2 r c \omega_{i}}{\omega_{n}}\left[1-\epsilon^{-r \omega_{n} t}\left(\cos \sqrt{1-r^{2}} \omega_{n} t+\frac{2 r^{2} c-1}{2 r c \sqrt{1-r^{2}}}\right.\right.$

$$
\begin{equation*}
\left.\left.x \sin \sqrt{1-r^{2}} \omega_{n} t\right)\right] \tag{53}
\end{equation*}
$$

Equation (53) for $c=0$ (i.e., $1 / T_{0}=0$ and $f_{0}=0$ ) is plotted in Fig. 10.


Fig. 10-Proportional-plus-derivative system.

## Examples of simple system with auxiliary feedback loop

For this system (Fig. 2), $Y_{A}(p)=k_{A}$ and $Y_{m}(p)=1$;

$$
\begin{align*}
U(p) & =\frac{k_{t} / N}{f_{a} p\left(T_{o p}+11\right.}=\frac{k_{t} / N}{p^{2} J_{o}+f_{o p} p} \\
V(p) & =k_{Q D} p \text { for the circuit of Fig. 8A. } \\
& =k_{D} T_{o} p^{2} \text { for the circuit of Fig. 8B, assuming } 1>p T_{D,} \text { so that } \\
Y(p) & =\frac{\frac{k_{A} k_{t} / N}{p^{2} J_{o}+p f_{o}}}{1+\frac{k_{t} V(p)}{N\left(p^{2} J_{o}+p f_{o}\right)}}=\frac{k_{A} k_{t} / N}{p^{2} J_{a}+f_{o p}+\frac{k_{t}}{N} V(p)} \tag{54}
\end{align*}
$$

## Typical positioning-servo mechanisms

It is seen therefore that, if $V(p)=k_{B} p$, the effect is to increase the motor damping to $f_{0}+k_{t} k_{0} / N$.
Similarly, when $V(p)=k_{g} T_{0} p^{2}$, the overall inertia is effectively increased to $J_{o}+k_{t} k_{g} T_{g} / N$.

Since $k_{g}$ can be negative or positive, it follows that $V(p)$ provides a method of effectively decreasing or increasing the damping and inertia.

## Servo-mechanism performance criteria

It is very difficult to describe completely or specify the performance of servo mechanisms. However, the following steady-state quantities and their typical magnitudes may be used as a guide.
Static error $\epsilon_{s}=$ error when input shaft is at rest (55)

Velocity figure of merit $K_{V}=\omega_{i} / \epsilon_{s s}=$ input velocity/error (56)

Acceleration figure of merit $K_{\alpha}=\alpha_{i} / \epsilon_{s s}=$ input acceleration/error
Typical performance values are:

quantity	excellent	good	poor
$\epsilon_{s}$	15 min	1 deg	5 deg
$K v$	$200 \mathrm{sec}^{-1}$	$100 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$
$K_{a}$	$150 \mathrm{sec}^{-2}$	$75 \mathrm{sec}^{-2}$	$15 \mathrm{sec}^{-2}$

## Stability criteria

A system is unstable when its amplitude of ascillation theoretically increases without limit. Instability is mathematically determined by taking the denominator of $Y_{0}(p)$ or $Y_{i}(p)$, equations (8) and (9),
$D=\sum_{i=0}^{i=n} a_{i} p_{i}$
and putting it into the form
$D=\left(p+p_{0}\right)\left(p+p_{1}\right)\left(p+p_{2}\right) \ldots\left(p+p_{n}\right)$
If any root $p_{i}$ has a negative real part, the system is then unstable.
The labor involved in transforming (58) into (59) is considerable, particularly when $n$ exceeds 2. To avoid this labor Routh has specified requirements for

## Stability criteria continued

the coefficients $a_{i}$. If these requirements are satisfied, no $p_{i}$ has a negative real part.

The requirements, known as the "Routh stability criteria," are as follows:
a. All coefficients $a_{i}$ must be positive.
b. A certain relationship, depending upon the degree of $D$, must exist between the coefficients $a_{i}$.

For the lower-degree equations, the relationships in $b$ above are as follows.
a. For the first and quadratic degrees, the coefficient of $p$ must exceed zero:
b. Cubic, $a_{3} p^{3}+a_{2} p^{2}+a_{1 p}+a_{0}$.

For stability, $a_{2} a_{1}>a_{3} a_{0}$.
c. Quartic, $a_{4} p^{4}+a_{3} p^{3}+a_{2} p^{2}+a_{1} p+a_{0}$.

For stability, $a_{3} a_{2} a_{1}>a_{3}{ }^{2} a_{0}+a_{1}{ }^{2} a_{4}$.
d. Quintic, $a_{5} p^{5}+a_{4} p^{4}+a_{3} p^{3}+a_{2} p^{2}+a_{1 p}+a_{0}$.

For stability,
$a_{2}\left(a_{4} a_{1}-a_{5} a_{0}\right)\left(a_{4} a_{3}-a_{5} a_{2}\right)>a_{4}\left(a_{4} a_{1}-a_{5} a_{0}\right)^{2}+a_{0}\left(a_{4} a_{3}-a_{5} a_{2}\right)^{2}$.
A second method for determining stability is known as the "Nyquist stability criterion." This method consists of obtaining the locus of the loop-transfer function $Y(p),(6)$ in the $Y$ plane for values of $p=j \omega$, where $\omega$ varies from $+\infty$ to $-\infty$. If the locus, described in a positive sense, encloses the point $-1,0$, the system is unstable. (By positive sense is meant that the interior of the locus is always on the left as A the point describes the locus.) Since the locus is always symmetrical about the real axis, it is necessary to draw only the locus for positive values of $\omega_{\text {; }}$ the remainder of the locus is then obtained by reflection in the real axis.

Fig. Il shows loci for several simple systems. Curves $A$ and $C$ represent stable systems, curve $B$ an unstable system. Curve $D$ is a conditionally stable one; that is, for a


Fig. 11 -Typical Nyquist loci. Plotted in $Y(j \omega)$ plane.
solid line $=$ locus for $0 \leqslant \omega \leqslant \infty$
dotted $=$ locus for $-\infty \leqslant \omega \leqslant 0$
dash-dol $=$ locus for $\omega=0$

## Stability criteria continued

particular range of values of $\mid K$ it is unstable, but it is stable for both larger and smaller values. It is unstable as shown.

Curve A illustrates a zero-displacement-error system; curve $C$ a zero-velocity-error system.

Curve $A$ also demonstrates the phase margin $\theta_{p}$, and gain margin $g$. The phase margin is the angle between the negative real axis and the $Y$ vector when $|Y|=1$. The gain margin is the value of $|Y|$ when the phase angle is 180 degrees. The gain margin is often specified in decibels, so that $g=20 \log |Y|$. Typical satisfactory values are 15 decibels for $g$ and 50 degrees for $\theta_{p}$.

## Linearity considerations

The preceding material applies strictly to linear systems. Actually all systems are nonlinear to some extent. This nonlinearity may cause serious deterioration in performance. Common sources of nonlinearity are:
a. Nonlinear motor characteristics.
b. Overloading of amplifiers by noise.
c. Static friction.
d. Backlash in gears, potentiometers, etc. For good performance it is recommended that the total backlash should not exceed 20 percent of the expected static error.
e. Low-efficiency gear or worm drives that cause locking action.

In spite of all the available types and sources of nonlinearity, it is usually found that when care is taken to minimize it, the linear theory applies quite well.

- Miscellaneous data


## Atmospheric data

## Pressure-altitude graph

Design of electrical equipment for aircraft is somewhat complicated by the requirement of additional insulation for high voltages as a result of the decrease in atmospheric pressure. The extent of this effect may be determined from the chart below and the information on the opposite page.

1 inch mercury $=25.4 \mathrm{~mm}$ mercury $=0.4912$ pounds $/$ inch 2


## MISCELLANEOUS DATA <br> 547

Atmospheric data
continued


Data above is for a voltage that is continuous or at a frequency low enough to permit complete deionization between cycles, between needle points, or clean, smooth spherical surfaces (electrodes ungrounded) in dust-free diy air. Temperature is 25 degrees centigrade and pressure is 760 millimeters $(29.9$ inches) of mercury. The following multiplying factors apply for atmospheric conditions other than those stated above:

pressure		temperature in degrees centigrade					
in Hg	mm Hg	-40	$-20$	0	20	40	60
5	127	0.26	0.24	0.23	0.21	0.20	
10	254	0.47	0.44	0.42	0.39	0.20 0.37	$\begin{aligned} & 0.19 \\ & 0.34 \end{aligned}$
15	381	0.68	0.64	0.60	0.56	0.53	$\begin{aligned} & 0.34 \\ & 0.50 \end{aligned}$
20	508	0.87	0.82	0.77			
25	635	1.07	0.99	0.93	0.87	0.82	0.64 0.77
30	762	1.25	1.17	1.10	1.03	0.97	0.91
35	889	1.43	1.34	1.26			
40	1016	1.61	1.51	1.42	1.33	1.12 1.25	1.05 1.17
45	1143	1.79	1.68	1.58	1.49	1.40	1.17
50	1270	1.96	1.84	1.73	1.63		
55	1397	2.13	2.01	1.89	1.78		1.44 1.57
60	1524	2.30	2.17	2.04	1.92	1.80	1.69

continued Atmospheric data Centigrade table of relafive humidity or percent of safuration

Example: Assume dry-bulb reading thermometer exposed directly to ofmosphorel is $20^{\circ} \mathrm{C}$ and


## Combined psychrometric and volume chart

Shows pounds of water per pound of dry air, and volume in feet ${ }^{3}$ per pound of dry air


## Weather data

Compiled from "Climate and Man," Yearbook of Agricultura, U. S. Dept. of Agriculture 1941. Obicinable from Superintendent of Documents, Government Printing Office, Washington 25, D.C.

## Temperature extremes

## Unlted States

Lowest temperatured
$-66^{\circ} \mathrm{F}$ Riverside Range Station, Wyoming (Feb. 9, 1933)
Highest temperature

## Alaska

Lowest temperaiure
Highest temperature

## World

Lowest temperature
Highest temperature
lowest mean temperature lannual!
HIghest mean temperature iannuall
$134^{\circ} \mathrm{F}$
$-78^{\circ} \mathrm{F}$ Fort Yukon Uan. 14, 19341
$100^{\circ} \mathrm{F}$ Fort Yukan
$-90^{\circ} \mathrm{F} \quad$ Verkhoyansk, Siberla Ifeb. 5 and 7,1892 )
$136^{\circ} \mathrm{F}$ Azizia, Libyo, North Africa ISept. 13, 1922
$-14^{\circ} \mathrm{F} \quad$ Framhelm, Antarctica
$86^{\circ} \mathrm{F}$ Massawa, Eritrea, Africo

## Precipitation exłremes

## United States

## Weltest state

Oryest stato
Maximum recorded
Minimums recorded

## World

Maximums recorded

Minimums recorded

Louisiana-average onnual ralnfall 55.11 inches
Nevada-average annual rainfall 8.81 inches
New Smyrno, Fla., Oct. 10, 1924-23.22 inches in 24 hours
Bagdad, Calif., 1909-1913- 3.93 inches in 5 years
Greenland Ranch, Calif.-1.35 inches annual avarage
Cherrapunji, India, Aug. 1841-241 inches in 1 month
(Average annual rainfall of Cherrapunji is 426 inches) Bagui, tuzon, Philippines, July 14-15, 1911 - 46 inches in 24 houps

Wadi Halfa, Anglo-Egyption Sudan and Awan, Egypt are in the "ralnless" area; average annual ralnfoll is too small to be measured

## World temperafures

lerritory	maximum ${ }^{\circ} \mathrm{F}$	minimum ${ }^{\circ} \mathrm{F}$	territory	$\underset{\sim}{\operatorname{maximum}}$	minimum $\circ \mathrm{F}$
NJORTH AMERICA			ASIA continued		
Alaska	100	-78	Indio	120	-19
Conada	103	-70	Iraq	123	19
Conal Zone	97	63	Japan	101	-7
Greenland	86	-46	Malay Srates	97	66
Mexico	118	11	Philippine Islands	101	58
U. S. A.	134	-66	Siam	106	52
West Indies	102	45	Tibet	85	-20
West			Turkey	111	-22
SOUTH AMERICA			U. S. S. R.	109	-90
Argentina	115	-27			
Bolivia	82	25	AFRICA		
Brazil	108	21	Algeria	133	1
Chile	99	19	Anglo-Egyption Sudan	126	28
Venezuela	102	45	Angola	91	33
Vonezuela			Belgion Congo	97	34
EUROPE			Egypt	124	31
British Isles	100	4	Ethiopia	111	32
France	107	-14	French Equatorial Africo	118	46
Germany	100	-16	French West Alrico	122	41
Iceland	71	-6	Itallan Somalitand	93	61
Iraly	114	4	libya	136	35
Norway	95	-26	Marocea	119	5
Spain	124	10	Rhodesia	103	25
Sweden	92	-49	Tunisio	122	28
Turkey	100	17	Union of South Alrico	111	21
U. S. S. R.	110	-61	AUSTRAIASIA		
ASIA			Australia	127	19
Arablo	114	53	Hawali	91	51
China	111	-10	New Zealand	94	23
East Indies	101	60	Samoan Islands	96	61
French Indo.Chino	113	33	Solomon ! slands	97	70

Weather data

## World precipitation

lerritory	highest average				lowest average				yoarly average Inches
	Jan inches	April inches	July inches	Oct inches	Jan Inches	April inches	July inches	Oct   inches	
NORTH AMERTCA									
Alaska	13.71	10.79	8.51	22.94	. 15	. 13			
Canada	8.40	4.97	4.07	6.18	. 48	. 31	.93 1.04	. 37	43.40
Conal Zone	3.74	4.30	16.00	15.13	. 91	2.72	7.28	10.31	26.85
Greenland	3.46	2.44	3.27	6.28	. 35	2.72 .47	7.28 .91	10.31 .94	97.54 24.70
Mexico	1.53	1.53	13.44	5.80	. 04	. 00	. 43	. 34	24.70 29.82
U. S. A.	4.45	6.65	5.80		. 92	1.18	.43 1.53	. 5	29.82 29.00
West indies	4.45	0.65	5.80	6.89	. 92	1.18	1.53	5.44	49.77
SOUTH AMERICA									
Argentina	6.50	4.72	2.16	3.35	. 16	. 28	. 04	. 20	
Bolivia	6.34	1.77	. 16	1.42	3.86	1.46	. 16	1.30	16.05 24.18
Brazil	13.26	12.13	10.47	6.54	2.05	2.63	. 01	. 05	55.42
Chile	11.78	11.16	16.63	8.88	. 00	. 00	. 03	. 00	46.13
Venezuela	2.75	6.90	6.33	10.44	. 02	. 61	1.87	3.46	$\begin{aligned} & 46.13 \\ & 40.01 \end{aligned}$
EUROPE									
British Isles	5.49	3.67	3.78	5.57	1.86	1.54	2.38	2.63	
France	3.27	2.64	2.95	4.02	1.46	1.65	2.38	2.32	36.16 27.48
Germany	1.88	2.79 3	5.02	2.97	1.16	1.34	2.92	1.82	27.48 26.64
iceland Italy	5.47 4.02	3.70	3.07	5.95	5.47	3.70	3.07	5.59	20.64 52.91
Italy	4.02	4.41	2.40 5.79	5.32	1.44	1.63	. 08	2.10	29.74
Norway Spain	8.54 2.83	4.13 3.70	5.79 2.05	8.94 3.58	1.06	1.34	1.73	2.48	40.51
Sweden	1.52	1.07	2.05 2.67	3.58 2.20	$\begin{array}{r}1.34 \\ \hline 88\end{array}$	1.54	. 04	1.77	22.74
Turkey	3.43	1.65	1.06	2.52	.98 3.43	.78 1.65	1.80	1.60	18.12
U. S. S. R.	1.46	1.61	3.50	2.07	3.43 .49	1.65 .63	1.06 .20	2.52 .47	$\begin{aligned} & 28.86 \\ & 18.25 \end{aligned}$
ASIA									
Arabia	1.16	. 40	. 03	. 09	. 32	. 18			
Chino	1.97	5.80	13.83	6.92	. 15	. 61	5.78	. 69	3.05
East Indies	18.46	10.67	6.54	10.00	7.48	2.80	5.78 .20	. 67	50.63
French Indo-China	. 79	4.08	12.08	10.61	7.48 .	2.80 2.07	9.24	.79 3.67	78.02
India	3.29	33.07	99.52	13.83	. 09	. 06	9.24 .47	3.67 .00	65.64
Jraq	1.37	. 93	. 00	. 08	1.17	. 48	. 47	. 00	75.18
Japan	10.79	8.87	9.94	7.48	2.06	$\underline{2.83}$	5.02	.05 4.59	6.75 70.18
Maloy States	9.88	7.64	6.77	8.07	9.88	2.83 7.64	5.02 6.77	4.59 8.07	70.18
Philippine Islands	2.23	1.44	17.28	10.72	. 82	7.84 1.28	14.98	8.07 6.71	95.06 83.31
Siom	.33 4.13	1.65	6.24	8.32	. 33	1.65	14.98 6.24	6.71 8.32	83.31 52.36
Turkey U. S. S. R.	4.13 1.79	2.75 2.05	1.73	3.34	2.05	1.65 1.73	6.24 .21	8.32 .93	52.36 25.08
U. S. S. R.	1.79	2.05	3.61	4.91	. 08	. 16	. 10	. 06	$\begin{aligned} & 25.08 \\ & 11.85 \end{aligned}$
AFRICA									
Algerla	4.02	2.06	. 35	3.41					
Anglo-Egyprian Sudon	. 88	4.17	7.87	4.29	. 00	. 00	. 00	.05 .00	9.73 18.27
Angola	8.71	5.85	. 00	3.80	. 09	. 83	. 00	. 09	18.27
Belgian Congo	9.01	6.51	. 13	2.77	3.69	1.81	. 00	.09 1.88	23.46
Egypt	2.09	. 16	. 00	. 28	. 00	. 1.00	. 00	1.88	39.38
Ethiopia	. 59	3.42	10.98	3.39	. 28	3.11	. 8.23	. 79	3.10
French Equarorial Africa	9.84	13.42	6.33	13.58	. 00	3.11 .34	8.23 .04	. 79	49.17
French West Africo	. 10	1.61	8.02	1.87	. 00	. 34	. 118	.86	57.55
Iralion Somolitand	. 00	3.66	1.67	2.42	. 00	3.60	1.67	.00 2.42	19.51 17.28
libyo	3.24	. 48	. 02	1.53	2.74	. 18	. 00	$\begin{array}{r}2.42 \\ \hline 67\end{array}$	17.28
Morocco	3.48	2.78	. 07	2.47	1.31	. 36	. 00	. 67	13.17
Rhodesic	8.40	. 95	. 04	1.20	5.81	. 65	. 00	. 23	15.87
Iunisia Union of South Africa	2.36	1.30	. 08	1.54	2.36	1.30 1.30	. 08	.88 1.54	29.65 15.80
Union of South Africo	6.19	3.79	3.83	5.79	. 06	. 23	. 27	1.54 .12	15.80 26.07
AUSTRAIASIA									
Australia	15.64	5.33	6.57	2.84	. 34				
Howall	11.77 3	13.06	9.89	10.97	3.54	.85 2.06	.07 1.04	.00 1.97	28.31
New Zealand	3.34 18.90	3.80	5.55	4.19	2.67	2.78	2.99	1.97 3.13	82.43 43.20
Solomon Islands	18.90 13.44	11.26 8.24	2.60	7.05	18.90	11.26	2.60	7.05	43.20 118.47
Solomon islands	13.44	8.24	6.26	7.91	13.44	8.24	6.26	7.91	115.37

552

Weather data continued

## Wind-velocity and temperature extremes in North America

Maximum corrected wind velocity for a period of 5 minutes in miles/hour.

station	wind   miles/hour	temperature degrees fahrenheit	
		maximum	minimum
UNITED STATES, 1871-1947		104	-24
Albany, New York	70	107	$-16$
Amarillo, Tex			
	73	97	-20 7
Charleston, South Carolino	81	104	7 -23
Chicago, Illinols	65	105	$-23$
Bismarck, North Datoto	74	108	-45 8
Hatteras, North Corolina	90	95	8 27
Miomi, Florida	123	96	27
Minneapolls, Minnesoto	65	108	-34 -1
Mobile, Alobama	87	103	-1
Mi. Washington, New Hompshire	$140^{*}$	80	-46
Nontuckef, Massochusetts	66	92	-6 -14
Nontuckef, Massochusetrs Now York, New York	81	102	-14 -35
North Platte, Nebraska	73	109	-35
Pensacola, Florido	91	103	
Weshingron, D.C.	53 135	106 94	-15 62
Son Juon, Puerto rico	135	94	
CANADA, 1947		97	-45
Bonf, Alberto	34	107	-31
		86	$-12$
Sable Island, Novia Scotio	48	105	-46

* Gusts were recorded ot 225 miles/hour Icorrectedl.

Wind velocities and pressures

indicated velocities miles per hour* $v_{i}$	actual velocities miles per hour $v_{a}$	cylindrlcal surfaces   pressure lbs $/ \mathbf{t + 2}$ projected areas $\mathbf{P}=0.0025 \mathbf{V}_{0}^{2}$	flat surface:   pressure lbs/ $/ \mathrm{H}^{2}$ $\mathbf{P}=0.0042 \mathbf{V}_{\mathbf{d}}^{2}$
$\begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 110 \\ 120 \\ 125 \\ 130 \\ 140 \\ 150 \\ 160 \\ 170 \\ 175 \\ 180 \\ 190 \\ 200 \end{array}$	$\begin{array}{r} 9.6 \\ 17.8 \\ 25.7 \\ 33.3 \\ 40.8 \\ 48.0 \\ 55.2 \\ 62.2 \\ 69.2 \\ 76.2 \\ 83.2 \\ 90.2 \\ 93.7 \\ 97.2 \\ 104.2 \\ 11.2 \\ 118.2 \\ 125.2 \\ 128.7 \\ 132.2 \\ 13.2 \\ 146.2 \end{array}$	0.23 0.8 1.7 2.8 4.2 5.8 7.6 9.7 12.0 14.5 17.3 20.3 21.9 23.6 27.2 30.9 34.9 39.2 41.4 43.7 48.5 53.5	0.4   1.3   2.8   4.7   7.0   9.7   12.8   16.2   24.3   29.1   34.2   36.9   39.7   45.6   51.9   58.6   65.7   69.5   73.5   81.5   89.8

* As measured with a cup onomometer, these being the average maximum for a period of five minutes.

Principal power supplies in foreign countries

territory	d-e volis	a-c volts	frequency
NORTH AMERICA			
Alaska	-	110,220	60
British Honduras	110	-110, 115, 150, 230	60, 25
Canado	110	110, 115, 150, 230	60, 25
Costa Rica	110	110	
Cuba	110, 220	110,220	
Dominican Republic	110	110,120 110,220	60, 50
Guotemalo	220, 125	110,220 110,220	60, 50
Hait	-	110,220	60, 25
Honduras	110,220	110.220	
Mexico	110,220	110, 125, 115, 220, 230	60, 50
Newfoundland	-	110,115	60, 50
Nicaragua	110	110	60
Panama (Republic)	-	110, 220	60,50
Panama ICanal Zonel	- 10,220	110	25
Puerto Rico	110, 220	110	60
Salvador	110, 220	110	
Virgin lisionds	110,220	-	
WEST INDIES		115	60
Bahamas Is.	-	110	50
Barbodos Bermuda	-	110	60
Curacao	-	127	50
Jamaico	-	110	40,60
Martinique	-	115,200	
Trinidad	-	110, 220	60
SOUTH AMERICA	220	220, 225	50, 60, 43
Argentina Bolivia	110	110, 220	50, 60
Brazil	1	127, 120, 220	50, 60
Chile	220, 110	220	50, 80
Colombia	-	110, 220, 150	60,50
Ecuador	$\bar{\square}$	110	
Paraguay	220	220	60, 50
Peru	110	110, 220	$\begin{aligned} & 60 \\ & 50 \end{aligned}$
Uruguay	220 110,220	220, 110	$60,50$
Venezuelo	110, 220	110, 220	60, 50
EUROPE	220	220, 125, 150	50
Auspria	220, 110, 150	220, 125, 150, 120, 127, 110	50
Azores	220	220	
Belgium	220, 110, 120	220, 127, 110, 115, 135	50,40
Bulgaria	220, 120	220, 120, 150	
Crrus tBr.l	220	$\begin{array}{llll}110 \\ \mathbf{2 2 0}, & 110,115,127\end{array}$	50, 42
Czechoslovakia	220, 150, 110, 120, 150	220, $\mathbf{2 2 0}, 120,127$	50
Denmark	220, 110	220, 120, 127	50
Estonio	220, 110	220, 120, 110, 115	50
finland	120, 220, 110 $110,220,120,125$	110, 115, 120, 125, 220, 230	50, 25
France	$110,220,120,125$ $220,110,120,250$	220, 127, 120, 110	50, 25
Gibraltar	$220,110,10$	110,220	76
Greeco	220, 110	127, 220	
Hungory	220, 110,120	220, 110, 115, 120	50,42
Icelond	220, 110	220, 110, 120	
Irish free State	220	220, 380, 200	50 - 50.45
Itoly	120, 220, 150	150, 127, 125, 115, 220, 110	42, 50,45
Latvio	220, 110	220, 120	50
Lithuania	220, 110	220	50
Malio	-	105,210	100
Manoco	-	110	50
Netherlands	220	220, 120, 127	50
Norway	220	220, 230, $130,127,110,120,150$ $\mathbf{2 2 0}, 120,110$	50
Poland	220, 110	220, 120, 110 $\mathbf{2 2 0}, 110,125$	50, 42
Portugal Rumania	220, 150, 125 $\mathbf{2 2 0}, 110,105,120$	220, $120,125,110,115,105$	50, 42
Rumania Russia	220, $110,105,120$ $220,110,120,115,250$	120, 110,220 ,	50
Spain	110, 120, 115, 105	120, 125, 150, 110, 115, 220, 130	50
Sweden	220, 110, 120, 115, 250	220, 110, 190, 127, 125	50, 25
Switzerland	$220,120,110,150$	120, 220, 145, 150, 110, 120	50, 40
Turkey	110, 220	220, 110	50, 40, 25
United Kingdom Yugostovia	230, 220,440 110,120	230, $220,240,250$ $120,220,150$	$50,40,25$ 50,42

Principal power supplies in foreign countries

lerritory	d.e volis	a-c volts	Prequency
ASIA			
Arabla	-	230	
British Malayo:		230	50
Colony of Singapore	230	230	50
Molayon Federation North Borneo	-	230	50, 60, 40
Ceylon	220	110	60, 60,40
China	220, 110	110, 200, 220	50, 60
french Indochina	110, 120, 220, 240	$110,200,220$ $120,220,110,115$ 240	50, 60, 25
India	220, $110,225,230,250$	230, 220, 110	50
Iran (Persial	220, $110^{\circ}$, 230,	$220{ }^{220,110}$	50,25 50
Jraq	220, 200	220, 230	
Japen	100	100, 110	50, 60
Korea		100, 200	60
Netherland East Indies:	-	110	$60,50,25$
Borneo	110	127, 110	
Java and Madura	- 22	127, 110, 220	50
Polestine	220	127, 110, 220	50
Phllippine Republle	-	220	50
Syria	-	220, 110	60
Siam	-	110, 115, 220	50
Turkey	220,110	220, 110	50 50
AFRICA			
Angola (Port.)	-	110	50
Algerio	220	115, 110, 127	50
Belgion Congo British West Africa	220	220	50
British East Africa	220	230	50
Canary Islands	110	240, 230,400	50
Egypt	200, 100	200, 110, 105, 110,220	50
Ethlopia (Abyssinial	200, 100	220, 250 , 105, 110, 220	50, 40
Italion Afrlca:		220, 250	50
Cyrenalsa	150	110, 150	50
Eritrea	-	127	50
Ilbya ITripall   Somaliland ISomaliol	$\overline{120}$	125, 110, 270	50, 42, 45
Morocco (frenchl	120 110	230	$50^{\text {5 }}$
Morocco (Spanlsh)	200	115, 110	50
Madagascar	200	127, 110, 115	50
Senegal (frencht	230	120, 115, 110	50
Tunisia	110	120	50
Union of South Africo IBr.l	220, 230, 240, 110	220, 230, 240	50
OCEANIA			
Australio:			
New South Wales	240	240	
Victorla	230	230	50
Queensland	220, 240	240	
South Australia	200, 230, 220	200, 230, 240	50
West Australio	220, 110, 230	250,	40
Tasmania	230	240	50
New Zealand	230	230	50
Fiii islands	240, 110, 250	240	50
Samoa	,	110	50
Society Istands	-	120	60

from "World Electrical Current Chapacteristics," issued by U. S. Department of Commerce; October, 1948.
Caution: The llstings in these tables represent types of electrical supplies most generally used in particular countries. For power-supply characteristics of particular cities of foreign countries, refer to the preceding reference, which may be oblained at nominal charge by addressing the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Voltages and frequencies are Ilsted in order of preference. Where both alternating and direct current are avallable, bold numbers indicate the type of supply and voltage predominating. Where approximately equal quantitles are available, each of the principal voltages are bold.

The electrical authorities of Great Britain hava adopted a plan of unifying electrlcal-distribution systems. The standard potential for both alternating and direct-current supplies will be 230 volts. Systems using other voltages will be changed over. The standard frequency will be 50 cycles.
World time chart


## Materials and finishes for tropical and marine use

Ordinary finishing of equipment fails in meeting satisfactorily conditions encountered in tropical and marine use. Under these conditions corrosive influences are greatly aggravated by prevailing higher relative humidities, and temperature cycling causes alternate condensation on, and evaparation of moisture from, finished surfaces. Useful equipment life under adverse atmospheric influences depends largely on proper choice of base materials and finishes applied. Especially important in tropical and marine applications is avoidance of electrical contact between dissimilar metals.
Dissimilar metals, widely separated in the galvanic series,* should not be bolted, riveted, etc., without separation by insulating material at the facing surfaces. The only exception occurs when both surfaces have been coated with the same protective metal, e.g., electroplating, hot dipping, galvanizing, etc.

In addition to choice of deterioration-resistant materials, consideration must be given to weight, need for a conductive surface, availability of ovens, appearance, etc.
Aluminum should always be anodized. Aluminum, steel, zinc, and cadmium should never be used bare. Electrical contact surfaces should be given copper-nickel-chromium or copper-nickel finish, and, in addition, they should be silver plated. Variable-capacitor plates should be silver plated.

All electrical circuit elements and uncoated metallic surfaces lexcept electrical contact surfaces) inside of cabinets should rece ive a coat of fungicidal moisture-repellant varnish or lacquer.

## Wood parts should receive:

a. Dip coat of fungicidal water repellent sealer.
b. One coat of refinishing primer.
c. Suitable topcoat.

* The galvanic series is given on p. 32.

Finish application table $\dagger$

material	Anish	remarks
Aluminum alloy	Anodizing	An electrochemical.oxidation surface treotment, lor improving corrosion resistonce; not an electroplating process. For rlveted or welded assemblies specily chromic acid anodizing. Do not anodize parts with nonaluminum inserts. Colors vary: Yellow. green, groy or black.
	"Alrok"	Chemical-dip oxide treatment. Cheap. Inferior In abrasion and corrosion resistance to the anodizing process, but opplicable to assemblies of oluminum and nonaluminum materials.

$\dagger$ By Z. Fox. Reprinted by permission from Product Engineering, vol. 19, p. 161; January, 1948.

Materials and finishes for tropical and marine use continued

material	Anish	remarks
Magnesium alloy	Dichromate freatment	Corrosion -preventive dichromate dip. Yellow color.
Stainless steel	Passivating treatment	Nitric-acid immunlzing dip.
Steel	Codmium	Electroplate, dull white color, good corrosion resistance, easily scratched, good thread anfi-seize. Poor wear and galling resistance.
	Chromium	Electroplate, excellent corrosion resistance and lustrous appearance. Relatively expensive. Specify hard chrome plate for exceptionally hard abrasion-resistive surface. Has low coefficient of friction. Used to some extent on nonferrous metals particularly when die-cast. Chrome plated objects usually receive a bose electroplate of copper, then nickel, followed by chromium. Used for build-up of parts that are undersized. Do not use on parts with deep recesses.
	"Blueing"	Immersion of cleaned and polished steel Into heated saltpeter or carbonaceous material. Part then rubbed with linseed oil. Cheop. Poor corrosion resistance.
	Silver plate	Electroplate, frosted appearance; buff to brighten. Tornishes readily. Good bearing lining. For electrical confacts, reflectors.
	Zinc plate	Dip in molten zinc lgalvanizingl or electroplate of low.carbon or low-alloy steels. Low cost. Generally inferior to cadmium plate. Poor appearance. Poor wear resistance, electroplate has better adherence to bose metal than hot-dip coating. For improving corrosion resistance, zinc-plated parts are given special inhibiting treatments.
	Nickel plate	Electroplate, dull white. Does not protect steel from galvanic corrosion. If plating is broker, corrosion of base metal will be hostened. Finishes in dull white, polished or black. Do not use on parts with deep recesses.
	Black oxide dip	Nonmetallic chemical black oxidizing treatment for steel, cast iron, and wrought iron. Interior to electroplate. No build-up. Suitable for paris with close dimensional requirements as gears, worms and guides. Poor abrasion resistance.
	Phosphate treatment	Nonmetalfic chemical treatment for steel and iron products. Suitable for protection of internal surfaces of hollow parts. Small amount of surface build.up. Inferior to metallic electroplate. Poor abrasion resistance. Good paint base.
	Tin plate	Hot dip or electroplato. Excellent corrosion resistance, but if broken will not protect steel from galvanic corrosion. Also used for copper, brass and bronze parts which must be soldered ofter plating. Tin-plated parts can be soverely worked and deformed without rupture of plating.
	Brass plate	Electroplate of copper and zinc. Applied to brass and steel parts where uniform appearance is desired. Applied to steel parts when bonding to rubber is desired.
	Copper plate	Electroplate applied preliminaty to nickel or chrome plates. Also for parts to be brazed or protected against carburization. Tarnishes readily.
Copper and zinc alloys	Bright acid dip	Immersion of parts in acid solution. Clear lacquer applied to prevent tarnish.
Brass, bronze, zinc die. costing alloys	Brass, chrome, nickel, tin	As discussed under steel.

558

Electric-mofor data


* Reprinted by parmission from American Machinist, vol. 87, pp. 115-116; December 9. 1943.

This guide is general and does not include the motor field in its entirety.
See following page for wiring data on the above types.

	speed data			approximate torque (4 poles)		bullt-In starting mechonism	reveralbility		radlo   inferference	approxト mate comporative price in percent
range	rated speed	speed characteristics	apeed control	slant ing*	breakdownt		$\begin{gathered} \text { ot } \\ \text { rest } \end{gathered}$	$\operatorname{in}_{\text {motion }}$		
$\square$	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \end{array}$	Constant	None	Medium	Medium	Ceatrifugal switch	Yea-   change connections	No-excent with special design and relay	None	85
$1 / 1$ to $1 / 3$	1725	Constant	None	High	High	$\begin{aligned} & \text { Centrifugal } \\ & \text { switch } \end{aligned}$	Yeschange connections	No-except with special design and relay	None	60
$\begin{array}{ll} \overline{1 / 8} \\ \text { to } \\ 1 / 4 \end{array}$	$\begin{aligned} & \overline{1725 / 1140} \\ & 1725 / 860 \end{aligned}$	Two-speed	1-pole doublethrow switeh	Medium	Medium	Centrifugal switch	Yeschange connections	No	None	16:5
	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \end{array}$	Constant	None	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	High to extra ligh	Centrifugal switch	Yesclange connections	No-except with special design and relay	None	100
$\begin{array}{ll} 1 / 3 & 1 \\ \text { to } & 1 \\ 3 / 4 \end{array}$	$\begin{aligned} & 1725 / 1140 \\ & 1725 / 860 \end{aligned}$	Two-speed	1-pole doublethrow switch	Medium	Medium	Centrifugal switch	Yeschange connections	No	None	200
$\begin{aligned} & 1 / 20 \\ & 1 \\ & 1 / 6 \end{aligned}$	$\begin{array}{r} 1620 \\ 1080 \\ 820 \end{array}$	Constant or adjustable varying	Twe-speed   gwitch or   auto-   transformer	Low	Medium	None	Yenchange connections	No	None	125
$\begin{aligned} & \hline 1 / 300 \\ & \text { to } \\ & 1 / 30 \end{aligned}$	$\begin{aligned} & 1500 \\ & 10001 \end{aligned}$	Constant ur adjustable varying	Choke coil	Low	Low	None	No	No	None	-
$\begin{aligned} & 1 / 230 \\ & \text { to } \\ & 1 / 3 \end{aligned}$	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	Abeolutely constant	None	Low	Mediun	Centrifugal switch	See No 1	See No 1	None	325
				Medium	Mediun	Centrifugal switch	See No 4	See No 4		
				Very low	Medium	None	See No 6	See No 6		
				Medium	Velium	None	See No 12	See No 12		
$\begin{aligned} & \overline{3 / 6} \\ & \text { to } \\ & 8 / 4 \end{aligned}$	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \\ \hline \end{array}$	Constant	None	High	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	None	Yeschange conbections	Yeschange connections	None	140
$\begin{aligned} & 1 / 20 \\ & \text { to } \\ & 3 / 4 \end{aligned}$	$\begin{array}{r} 3450 \\ 1725 \\ 1140 \\ 860 \\ \hline \end{array}$	Conetant or ajduata- ble vary- ing	Armature resistance	Extra high	-	None	Yeschange conneetions	No-except with special design	Yea	185
$\begin{aligned} & \hline 1 / 125 \\ & 1 / 30 \\ & 1 / 30 \end{aligned}$	$\begin{aligned} & 900 \\ & 10 \\ & 2000 \end{aligned}$	Faryingor adjustable varying	Resistance	Fxtra high	-	None	Yeqchange conneetions	No-except with special design	Yes	-
$\begin{aligned} & \hline 1 / 150 \\ & 10 \\ & 3 / 4 \\ & \text { (integral } \\ & \text { hp) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & \text { to } \\ & 15000 \end{aligned}$	Varsing	Voltage control using	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	-	None	No-except with special design	No-except with special design	Ies	-
$\begin{aligned} & \hline 1 / 40 \\ & \text { to } \\ & 21 / 2 \\ & \text { (integral } \\ & \text { hp) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & \text { to } \\ & 15000 \end{aligned}$	Varying	resistance or transformer	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	-	None	No-except with special deaign	No-except with special design	Yes	-
$\begin{aligned} & 1 / 50 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$	$\begin{aligned} & 2000 \\ & 10 \\ & 6000 \end{aligned}$	Adjustable constant	Adjustable governor	$\begin{aligned} & \text { Extra } \\ & \text { high } \end{aligned}$	-	None	No-except with special design	No-except with special design	Ye\%	-

* Starting torque in percent of full.load torque is.

Low $-<100$; medium-100-200; high-200-300; extra high $->300$.
$\dagger$ Breakdown sorque in percent of full.load torque is
Low- < 150 ; medium- $150-225$; high- $225-300$; extra high- $>300$.

## 560

## Electric-motor data

## Wiring diagrams for small motors*



[^58]

Na. 11-Synchranous palyphose No. 12-Polyphase squirrel-coge


No. 13-Direct-current shunt and compound wound


Na. 15-Universal noncompensated


Na. 17 - Universal governor-controlled

No. 14-Direct-current series wound

## Wiring and fusing data*

single phase-115 volis							single phase-230 volts					
		minimum size wire AWG or MCM		condull sizet		maximum running fuse amperes	current rating ampers	minimum size wire AWG or MCM		$\begin{gathered} \text { conduil } \\ \text { sixet } \end{gathered}$		maximum running fuse amperes
	current rating amperes	type   R or $T$	$\begin{aligned} & \text { type } \\ & \text { RH } \end{aligned}$	$\begin{aligned} & \text { type } \\ & \text { Ror } T \\ & \hline \end{aligned}$	type RH			type   R or T	$\begin{aligned} & \text { type } \\ & \text { RH } \end{aligned}$	type $R$ or $\boldsymbol{T}$	$\begin{gathered} \text { Iype } \\ \text { RH } \end{gathered}$	
$1 / 2$ $3 / 4$	7.4 10.2 13	14 14 12	14 14 12	$1 / 2$ $1 / 2$ $1 / 2$	$1 / 2$ $1 / 2$ $1 / 2$	10 15 20	3.7 5.1 6.5	14 14 14	14 14 14	$1 / 2$ $1 / 2$ $1 / 2$	$1 / 2$ $1 / 2$ $1 / 2$	6 8 10
$11 / 2$ 2 3	18.4 24 34	10 10 6	10 10 8	$3 / 4$ $3 / 4$ 1	$3 / 4$ $3 / 4$ $3 / 4$	25 30 45	${ }^{12} 12^{9.2}$	14 14 10	14 14 10	$1 / 2$ $1 / 2$ $3 / 4$	$1 / 2$ $1 / 2$ $7 / 4$	12 15 25
5 $71 / 2$ 10	56 80 100	4 1 $1 / 0$	4 3 1	$11 / 2$ $11 / 2$ $11 / 2$	$11 / 4$ $11 / 4$ $11 / 2$	70 100 125	28 40 50	8 6 4	8 6 6	$3 / 4$ 1 $11 / 4$	$3 / 4$ 1 1	35 50 60

3-phase induction- 220 volts

$1 / 2$	2	14	14	$1 / 2$	$1 / 2$	3
$3 / 4$	2.8	14	14	$1 / 2$	$1 / 2$	4
1	3.5	14	14	$1 / 2$	$1 / 2$	4
$11 / 2$	5	14	14	$1 / 2$	$1 / 2$	8
2	6.5	14	14	$1 / 2$	$1 / 2$	8
3	9	14	14	$1 / 2$	$1 / 2$	12
5	15	12	12	$1 / 2$	$1 / 2$	20
$71 / 2$	22	10	10	$1 / 4$	$3 / 4$	30
10	27	8	8	$3 / 4$	$3 / 4$	35

3-phose induction- $\mathbf{4 4 0}$ volts

1	14	14	$1 / 2$	$1 / 2$	2
1.4	14	14	$1 / 2$	$1 / 2$	2
1.8	14	14	$1 / 2$	$1 / 2$	3
			14		
2.5	14	14	$1 / 2$	$1 / 2$	4
3.3	14	14	$1 / 2$	$1 / 2$	4
4.5	14	14	$1 / 2$	$1 / 2$	6
7.5			14	$1 / 2$	$1 / 2$
11	14	14	$1 / 2$	$1 / 2$	10
14	12	12	$1 / 2$	$1 / 2$	20

direct current- $\mathbf{2 3 0}$ volts

2.3	14	14	$1 / 2$	$1 / 2$	3
3.3	14	14	$1 / 2$	$1 / 2$	4
4.3	14	14	$1 / 2$	$1 / 2$	6
6.3	14	14	$1 / 2$	$1 / 2$	8
8.2	14	14	$1 / 2$	$1 / 2$	12
12	14	14	$1 / 2$	$1 / 2$	15
20	10	10	$3 / 4$	$3 / 4$	25
29	8	8	$3 / 4$	$3 / 4$	40
38	6	6	1	1	50

* Reprinted by permission from General Electric Supply Corp. Catalogue; 94WP. Adapted from 1947 National Electrical Code.
$\dagger$ Conduit size based on three conductors in one conduit for 3 -phase alternating-current motors, and on two conductors in one conduit for direct-current and single-phase motors.


## Torque and horsepower

Torque varies directly with power and inversely with rotating speed of the shaft, or
$T=K P / N$
where $T=$ torque in inch-pounds, $P=$ horsepower, $N=$ revolutions/minute, and $K$ (constant) $=63,000$.

## Electric-motor data

continued

Example 1: For a two-horsepower motor rotating at 1800 rpm , $T=\frac{63,000 \times 2}{1800}=70$ inch-pounds

If the shaft is 1 inch in diameter, the force at its periphery
$F=\frac{T}{\text { radius }}=\frac{70 \text { inch-pounds }}{0.5}=140$ pounds
Example 2: If 150 inch-pounds torque are required at 1200 rpm ,
$150=\frac{63,000 \times h p}{1200} \quad$ horsepower $=\frac{150 \times 1200}{63,000}=2.86$

## Transmission-line sag calculations*

For transmission-line work, with towers on the same or slightly different levels, the cables are assumed to take the form of a parabola, instead of their actual form of a catenary. The error is negligible and the computations are much simplified. In calculating sags, the changes in cables due to variations in loads and temperature must be considered.


For supports at same level: The formulas used in the calculations of sags are
$H=W L^{2} / 8 S$
$S=W L^{2} / 8 H=\sqrt{\left(L_{c}-L\right) 3 L / 8}$
$L_{c}=L+8 S^{2} / 3 L$

[^59]564
Transmission-line sag calculations continued

## where

$L=$ length of span in feet
$L_{c}=$ length of cable in feet
$S=$ sag of cable at center of span in feet
$H=$ tension in cable at center of span in pounds
$=$ horizontal component of the tension at any point
$W=$ weight of cable in pounds per lineal foot
Where cables are subject to wind and ice loads, $W=$ the algebraic sum of the loads. That is, for ice on cables, $W=$ weight of cables plus weight of ice; and for wind on bare or ice-covered cables, $W=$ the square root of the sum of the squares of the vertical and horizontal loads.
For any intermediate point at a distance $x$ from the center of the span, the sag is
$S_{x}=S\left(1-4 x^{2} / L^{2}\right)$

## For supports at different levels

$$
S=S_{0}=\frac{W L_{0}^{2} \cos a}{8 T}=\frac{W L^{2}}{8 T \cos a}
$$

$S_{1}=\frac{W L_{1}{ }^{2}}{8 H}$
$S_{2}=\frac{W L_{2}{ }^{2}}{8 H}$
$\frac{L_{1}}{2}=\frac{L}{2}-\frac{h H \cos \sigma}{W L}$
$\frac{L_{2}}{2}=\frac{L}{2}+\frac{h H \cos a}{W L}$
$L_{c}=L+\frac{4}{3}\left(\frac{S_{1}{ }^{2}}{L_{1}}+\frac{S_{2}{ }^{2}}{L_{2}}\right)$
where
$W=$ weight of cables in pounds per lineal foot between supports or in direction of $L_{0}$
$T=$ tension in cable direction parallel with line between supports

The change $I$ in length of cable $L_{c}$ for varying temperature is found by multiplying the number of degrees $n$ by the length of the cable in feet times the coefficient of linear expansion per foot per degree fahrenheit $c$. This is ${ }^{*}$
$l=L_{c} \times n \times c$
A short approximate method for determining sags under varying temperatures and loadings that is close enough for all ordinary line work is as follows:

supports at different elevations
a. Determine sag of cable with maximum stress under maximum load at lowest temperature occurring at the time of maximum load, and find length of cable with this sag.
b. Find length of cable at the temperature for which the sag is required.
c. Assume a certain reduced tension in the cable at the temperature and under the loading combination for which the sag is required; then find the decrease in length of the cable due to the decrease of the stress from its maximum.
d. Combine the algebraic sum of (b) and (c) with (a) to get the length of the cable under the desired conditions, and from this length the sag and tension can be determined.
e. If this tension agrees with that assumed in (d), the sag in (d) is correct. If it does not agree, another assumption of tension in (c) must be made and the process repeated until (c) and (d) agree.

[^60]
## 566

## Summary of Joint Army-Navy nomenclature system

The Joint Army-Navy or AN nomenclature system has been introduced to eliminate confusing and conflicting designations formerly used by the armed services, and to provide a nomenclature that in itself gives a brief description of the article designated. In the AN system, nomenclature consists of a name followed by a type number. The name will be terminology of standard engineering usage, e.g., Radio Receiver, Switchboard, etc. The type number will consist of indicator letters shown below, and an assigned number. Additional symbols are added as required. An example is


## Nomenclature policy

AN nomenclature will be assigned to:
a. Complete sets of equipment and major components of military design.
b. Groups of articles of either commercial or military design that are grouped for a military purpose.
c. Major articles of military design that are not part of or used with a set.
d. Commercial articles when nomenclature will facilitate military identification and/or procedures.
AN nomenclature will not be assigned to:
a. Articles cataloged commercially except in accordance with paragraph (d) above.
b. Minor components of military design for which other adequate means of identification are available.
c. Small parts such as capacitors and resistors.
d. Articles having other adequate identification in American War Standard or Joint Army-Navy Specifications.
Nomenclature assignments will remain unchanged regardless of later changes in installation and/or application. .

## Summary of Joint Army-Navy nomenclature system cantinued

Set or equipment indicator letters

type of installation	type of equipment	purpose
A Airborne	A Invisible light, heat radiation	A Auxiliary assemblies (not complete operating sets)
B Underwater mobile, submarine	B Pigeon	B Bombing
C Air transportable linactivated, do not usel	C Corrier Iwirel	C Communications
D Pilatless carrier		D Direction finder
F Ground, fixed	F Photographic	
G Ground, general ground use lincludes two or more ground installations)	G Telegraph or teletype (wire)	G Gun directing
		H Recording fphotographic, meteorological, and sound)
	I Interphone and public address	
		」 Countermeasures
$K$ Amphibious	$K$ Telemetering	
		L Searchlight control
M Ground, mobile in a vehicle which has no function other than transporting the equip. ment	M Meteorological	M Maintenance and test as. semblies
	N Sound in air	N Navigational aids
P Ground, pack, or portable	P Radar	P Reproducing lphotographic and soundl
	Q Underwater sound	Q Special, or combination of types
	$R$ Radio	$R$ Receiving
S Shipboard	S Special pypes, magnetic, etc., or combinations of types	S Search
T Ground, transportable	T Telephone (wire)	T Transmitring
U General utility fincludes two or more general installation classes, airborne, shipboard, and ground)		
	$\checkmark$ Visual and visible light	
W Underwater, fixed		WRemote control
	$\times$ Facsimile or television	$X$ Identification and recognition

Table of component indicators

indicator	family name	indicator	family name
$A B$	Supports, Antenno	$M X$	Miscellaneous
AM	Amplifiers	$\bigcirc$	Oscillators
AS	Antenna Assemblies	OA	Operating Assemblies
AT	Antennas	OS	Oscilloscope, Test
BA	Battery, primary type	PD	Prime Drivers
BB	Battery, secondary type	PF	Fittings, Pole
BZ	Signal Devices, Audible	PH	Pholographic Articles
C	Control Articles	PP	Power Supplies
CA	Commutator Assemblies, Sonar	PT	Plotting Equipments
CB	Capocitor Bank	PU	Power Equipments
CG	Cables and Trans. Line, R.F.	R	Radio and Radar Receivers
CK	Crystal Kits	RD	Recorders and Reproducers
CM	Comparators	RE	Relay Assemblies
CN	Compensators	RF	Radio Frequency Component
$C P$	Computers	RG	Cables and Trans. Line, Bulk R.F.
CR	Crystals	RL	Reel Assemblies
CU	Coupling Devices	RP	Rope and Twine
CV	Converters lelectronicl	RR	Reflectors
CW	Covers	RT	Receiver and Transmittel
CX	Cords	S	Shelters
CY	Coses	SA	Switching Devices
DA	Antenna, Dummy	SB	Switchboards
DT	Detecting Heads	SG	Generators, Signal
DY	Dynamotors	SM	Simulators
E	Hoist Assembly	SN	Synchronizers
F	Filters	ST	Strops
FN	Furniture	T	Radio and Radar Transmitters
FR	Frequency Measuring Devices	TA	Telephone Apparatus
G	Generators	TD	Timing Devices
GO	Goniometers	TF	Transformers
GP	Ground Rods	TG	Positioning Devices
H	Head, Hand, and Chest Sets	TH	Telegroph Apporatus
HC	Crystal Holder	TK	Tool Kits or Equipments
HD	Air Conditioning Apparatus	Tl	Tools
10	Indicating Devices	TN	Tuning Units
IL	Insulators	TS	Test Equipment
IM	Intensity Measuring Devices	TT	Teletype and Facsimile Apparatus
IP	Indicators, Cathode-Ray Tube	TV	Tester, Tube
J	Junction Devices	U	Connectors, Audio and Power
KY	Keying Devices	UG	Conne'ctors, R.F.
LC	Tools, liné Construction	$\checkmark$	Vehicles
LS	loudspeakers	VS	Signaling Equipment, Visual
M	Microphones	WD	Cables, Two-Conductor
MD	Modulators	WF	Cables, Four-Conductor
ME	Meters, Portable	WM	Cables, Multiple-Conductor
MK	Maintenance Kits or Equipments	WS	Cables, Single-Conductor
ML	Meteorological Devices	WT	Cables, Three-Conductor
MT	Mountings	ZM	Impedance Measuring Devices

## Summary of Joint Army-Navy nomenclature system continued

## Experimenial indicators

In order to identify a set or equipment of an experimental nature with the development organization concerned, the following indicators will be used within the parentheses:

XA Aircraft Radio Laboratory, Wright Field, Dayton, Ohio
XB Naval Research Laboratory, Anacostia Station, Belleville, D. C.
XC Coles Signal Laboratory, Red Bank, New Jersey
XE Evans Signal Laboratory, Belmar, New Jersey
XG USN Electronic Laboratory, San Diego, California
XM Squier Signal Laboratory, Fort Monmouth, New Jersey
XN Navy Department, Washington, D. C.
XU USN Underwater Sound Laboratory, Fort Trumbull, New London, Connecticut
XW Watson Laboratories, Red Bank, New Jersey

## Examples of AN type numbers

AN/ARC-3 () General reference for the third airborne radio set for communication to be assigned AN nomenclature, not necessarily used by both Army and Navy.
AN/ARC-3(XA-2) Second experimental type developed for Aircraft Radio Laboratories

AN/ARC-3 Original procurement type.
AN/ARC-3C Third modification, functionally interchangeable, not in detail. Same frequency range.

AN/ARC-3Z $X, Y, Z$ used to indicate change in power source; may be voltage, phase, or frequency.
AN/ARC-3-T1 () General reference for training set for AN/ARC-3 11.
AN/ARC-TI First general airborne radio training set.
T-22/ARC-3 Original procurement type of transmitter No. 22, part of, or used with, AN/ARC-3.

T-22A/ARC-3 Interchangeable with above, physically, electrically, and mechanically; as a whole, not parts.

RG-8/U Bulk radio-frequency cable for general use on several types of equipment for several purposes.

## Maxwell's equations

## General*

The following four basic laws of electromagnetism for bodies at rest are derived from the fundamental, experimental, and theoretical work of Ampére and Faraday, and are valid for quantities determined by their average values in volumes that contain a very great number of molecules (macroscopic electromagnetism).

## Statement of four basic laws

rationalized mks units
a. The work required to carry a unit magnetic pole around a closed path is equal to the total current linking that path, that is, the total current passing through any surface that has the path for its periphery. This total current is the sum of the conduction current and the displacement current, the latter being equal to the derivative with respect to time of the electric induction flux passing through any surface that has the above closed path for its periphery.
b. The electromotive force (e.m.f.) induced in any fixed closed loop is equal to minus the time rate of change of the .magnetic induction flux $\phi_{B}$ through that loop. By electromotive force is meant the work required to carry a unit positive charge around the loop.
c. The total flux of electric induction diverging from a charge $Q$ is equal to $Q$ in magnitude.
d. Magnetic-flux lines are continuous (closed) loops. There are no sources or sinks of magnetic flux.

## Expression of basic laws in integral form

a. $\int_{0} \mathbf{H} \cdot \mathbf{d s}=I_{\text {total }}=I_{\text {conduction }}+\frac{\partial \phi_{D}}{\partial t}$ where

$$
\begin{aligned}
\int_{0} & =\text { a line integral around a closed path } \\
\mathbf{d s} & =\text { vector element of length along path } \\
\mathbf{H} & =\text { vector magnetic field intensity } \\
\boldsymbol{\phi}_{\mathrm{I}} & =\text { electric induction flux }
\end{aligned}
$$



[^61]b. $\int_{0} \mathbf{E} \cdot \boldsymbol{d} \mathbf{s}=-\frac{\partial \phi_{B}}{\partial t}$

The time rate of change of $\phi_{B}$ is written as a partial derivative to indicate that the loop does not move (the coordinates of each point of the loop remain fixed during integration). $\mathbf{E}$ is the vector electric-field intensity.
c. $\int_{s} \mathbf{D} \cdot \mathbf{d S}=\mathbf{Q}$
where

$$
S=\text { any closed surface }
$$

$\mathbf{d S}=$ vector element of $S$
$\mathbf{D}=$ vector electric-flux density
$Q=$ the net electric charge within $S$
and the integral indicates that D.dS is to be calculated for each element of $S$ and summed.
d. $\int_{-} \mathbf{B} \cdot \mathbf{d S}=0$
where
$\mathbf{B}=$ vector magnetic-flux density.


B lines are closed curves; as many enter region as leave it.

572

Basic laws in derivative form					
general form	static case	steady-state	quasi-steady-state	Free-space	freespace single-frequency
$\begin{aligned} & \left.\begin{array}{c} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=\boldsymbol{j}_{e}+\frac{\partial \mathbf{D}}{\partial t} \\ & \boldsymbol{j}_{e}=\begin{array}{c} \text { conduction current } \\ \text { density } \end{array} \end{aligned}$	$\left.\begin{array}{rl} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=0 .$	$\left.\begin{array}{r} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=\boldsymbol{j}_{c}$   Conducting current exists but time derivatives are zero	$\left.\begin{array}{r} \operatorname{curl} \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\} \approx \boldsymbol{j}_{c}$   $\partial \mathbf{D} / \partial t$ can be neglected except in capacitors lac at industrial power frequencies)	$\left.\begin{array}{rl} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=\frac{\partial \mathbf{D}}{\partial t}, ~=\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$   $\boldsymbol{j}_{c}=0$ and $\epsilon_{0}$ is the dielectric constant of free space	$\left.\begin{array}{r} \text { curl } \mathbf{H} \\ \nabla \times \mathbf{H} \end{array}\right\}=j \omega \boldsymbol{\epsilon}_{0} \mathbf{E}$   $\omega=2 \pi f=$ angular fre, quency, $f=$ the fre. quency considered, and $j=\sqrt{-1}$
b $\left.\begin{array}{c} \mathbf{b}_{\text {curl } \mathbf{E}} \\ \nabla \times \mathbf{E} \end{array}\right\}=-\frac{\partial \mathbf{B}}{\partial t}$	$\left.\begin{array}{r} \text { curl } \mathbf{E} \\ \nabla \times \mathbf{E} \end{array}\right\}=0$	$\left.\begin{array}{c}\text { curl } \mathbf{E} \\ \nabla \times \mathbf{E}\end{array}\right\}=0$	$\left.\begin{array}{c}\text { curl } \\ \nabla \times \mathbf{E}\end{array}\right\}=-\frac{\partial B}{\partial t}$	$\left.\begin{array}{rl} \text { curl } \mathbf{E} \\ \nabla \times \mathbf{E} \end{array}\right\}=-\frac{\partial B}{\partial t}, ~=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}$   $\mu_{0}=$ magnetic permeability of free space	$\left.\begin{array}{r}\text { curl } \mathbf{E} \\ \nabla \times \mathbf{E}\end{array}\right\}=-j \omega_{\mu_{0} \mathrm{H}}$
$\begin{aligned} & \left.\begin{array}{c} \begin{array}{c} \text { div } \mathbf{D} \\ \nabla \cdot \mathbf{D} \end{array} \end{array}\right\}=\rho \\ & \begin{array}{l} \rho=\text { charge density } \\ = \\ =\text { charge per unit } \\ \text { volume } \end{array} \end{aligned}$	$\left.\begin{array}{c}\operatorname{div} \mathbf{D} \\ \nabla \cdot \mathbf{D}\end{array}\right\}=\rho$	$\left.\begin{array}{c}\operatorname{div} \mathbf{D} \\ \nabla \cdot \mathbf{D}\end{array}\right\}=\rho$	$\left.\begin{array}{c}\operatorname{div} \mathbf{D} \\ \nabla \cdot \mathbf{D}\end{array}\right\}=\rho$	$\left.\begin{array}{c}\operatorname{div} \mathbf{E} \\ \nabla \cdot \mathbf{E}\end{array}\right\}=0$	$\left.\begin{array}{c}\operatorname{div} \mathbf{E} \\ \nabla \cdot \mathbf{E}\end{array}\right\}=0$
	$\left.\begin{array}{c}\operatorname{div} B \\ \nabla \cdot B\end{array}\right\}=0$	$\left.\begin{array}{c}\operatorname{div} \mathbf{B} \\ \nabla \cdot \mathrm{B}\end{array}\right\}=0$	$\left.\begin{array}{c}\operatorname{div} \mathbf{B} \\ \nabla \cdot \mathbf{B}\end{array}\right\}=0$	$\left.\begin{array}{r}\operatorname{div} \mathbf{H} \\ \nabla \cdot \mathbf{H}\end{array}\right\}=0$	

## Basic laws in derivative form

## Notes:

For an explanation of the operator $\nabla$ (dell) and the associated vector operations see p. 616 in the "Mathematical formulas" chapter.
$\left.\begin{array}{l}\boldsymbol{\epsilon}_{0}=\frac{1}{36 \pi \times 10^{9}} \text { farad/meter } \\ \mu_{0}=4 \pi \times 10^{-7} \text { henry/meter }\end{array}\right\} \begin{aligned} & \text { in the rationalized meter-kilogram-second } \\ & \text { system of units. }\end{aligned}$
Maxwell's equations obey the law of conservation of electric charges, the integral form of which is
$I=-\partial Q_{i} / \partial t$
$Q_{i}=$ net sum of all electric charges within a closed surface $S$
$I=$ outgoing conduction current
and the derivative form
$\operatorname{div} j_{c}=-\partial \rho / \partial t$
Boundary conditions at the surface of separation between two media 1 and 2 are

$$
\begin{array}{ll}
\mathbf{H}_{2 T}-\mathbf{H}_{1 T}=\boldsymbol{j}_{s} \times \mathbf{N}^{\circ}{ }_{1,2} & \mathbf{B}_{2 N}-\mathbf{B}_{1 N}=0 \\
\mathbf{E}_{2 T}-\mathbf{E}_{1 T}=0 & \mathbf{D}_{2 N}-\mathbf{D}_{1 N}=\sigma
\end{array}
$$

Subscript $T$ denotes a tangential, and subscript $N$ a normal component. $\mathbf{N}^{\circ}{ }_{1,2}=$ unit normal vector from medium 1 to medium 2 , which is the positive direction for normal vectors
$j_{s}=$ convection current density on the surface, if any
$\sigma=$ density of electric charge on the surface of separation

## Retarded potentials H. A. Lorentz

Consider an electromagnetic system in free space in which the distribution of electric charges and currents is assumed to be known. From the four basic equations in derivative form:

$$
\begin{array}{ll}
\text { curl } \mathbf{H}=j_{c}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} & \text { curl } \mathbf{E}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t} \\
\operatorname{div} \mathbf{H}=0 & \operatorname{div} \mathbf{E}=\frac{\rho}{\epsilon_{0}}
\end{array}
$$

## Retarded potentials

two retarded potentials can be determined:
one scalar, $\phi=\frac{1}{4 \pi \epsilon_{0}} \int_{\infty} \frac{\rho^{*} d V}{r} \quad$ one vector, $\mathbf{A}=\frac{1}{4 \pi} \int_{\infty} \frac{j_{c}^{*}}{r} d V$
The asterisks mean that the values of the quantities are taken at time $t-r / c$, where $r$ is the distance from the location of the charge or current to the point $P$ considered, and $c=$ velocity of propagation $=$ velocity of light $=1 / \sqrt{\epsilon_{0} \mu_{0}}$.

The electric and magnetic fields at point $P$ are expressed by
$\mathbf{H}=$ curl $\mathbf{A} \quad \mathbf{E}=-\operatorname{grad} \phi-\mu_{0} \frac{\partial \mathbf{A}}{\partial t}$
Fields in terms of one vector only Hertz vector
The previous expressions imply a relation between $\phi$ and $\mathbf{A}$
$\operatorname{div} \mathbf{A}=-\boldsymbol{\epsilon}_{0} \frac{\partial \phi}{\partial \dagger}$
Consider a vector II such that $\mathbf{A}=\partial I I / \partial t$. Then for all variable fields
$\phi=-\frac{1}{\epsilon_{0}} \operatorname{div}$ II
The electric and magnetic fields can thus be expressed in terms of the vector II only
$\mathbf{H}=$ curl $\frac{\partial I I}{\partial t}$
$\mathbf{E}=\frac{1}{\boldsymbol{\epsilon}_{0}}$ grad div II $-\mu_{0} \frac{\partial^{2} \Pi}{\partial t^{2}}$

## Poynfing vector

Consider any volume $V$ of the previous electromagnetic system enclosed in a surface $S$. It can be shown that

$$
-\int_{V} \mathbf{E} \cdot j_{c} d V=\frac{\partial}{\partial t} \int_{V}\left(\frac{\epsilon_{0} E^{2}}{2}+\frac{\mu_{0} H^{2}}{2}\right) d V+\text { flux }_{S} \mathbf{E} \times \mathbf{H}
$$

The rate of change with time of the electromagnetic energy inside $V$ is equal to the rate of change of the amount of energy localized inside $V$

## Poynting vector çontinued

plus the flux of the vector $\mathbf{E} \times \mathbf{H}$ through the surface $S$ enclosing said volume $V$. The vector product $\mathbf{E} \times \mathbf{H}$ is called the Poynting vector.
In the particular case of single-frequency phenomena, a complex Poynting vector $\mathbf{E} \times \mathbf{H}^{*}$ is often utilized ( $\mathbf{H}^{*}$ is the complex conjugate of $\mathbf{H}$ ). It can be shown that

$$
-\int_{V} \frac{\mathbf{E} \cdot \dot{j}_{c}^{*}}{2} d V=2 j \omega \int_{V}\left(\mu_{0} \frac{H H^{*}}{4}-\epsilon_{0} \frac{E E^{*}}{4}\right) d V+\operatorname{llux}_{s} \frac{\mathbf{E} \times \mathbf{H}^{*}}{2}
$$

This shows that in case there is no conduction current inside $V$ and the flux of the complex Poynting vector out of $V$ is zero, then the mean value per period of the electric and magnetic energies inside $V$ are equal.

## Superposition theorem

The mathematical form of the four basic laws llinear differential equations with constant coefficients) shows that if two distributions $\mathbf{E}, \mathbf{H}, \boldsymbol{j}_{c}, \rho_{\text {, }}$ and $\mathbf{E}^{\prime}, \mathbf{H}^{\prime}, \boldsymbol{j}_{c}{ }^{\prime}, \rho^{\prime}$, satisfy Maxwell's equations, they are also satisfied by any linear combination $\mathbf{E}+\lambda \mathbf{E}^{\prime}, \mathbf{H}+\lambda \mathbf{H}^{\prime}, \boldsymbol{j}_{c}+\lambda \boldsymbol{j}_{c}{ }^{\prime}$, and $\rho+\lambda \rho^{\prime}$.

## Reciprocity theorem

Let $\boldsymbol{j}_{\boldsymbol{c}}$ be the conduction current resulting in any electromagnetic system from the action of an external electric field $\mathbf{E}_{a}$, and $\dot{j}_{c}{ }^{\prime}$ and $\mathbf{E}_{a}{ }^{\prime}$ be the corresponding quantities for another possible state; then
$\int_{\infty}\left(\mathbf{E}_{a} \cdot \dot{j}_{c}{ }^{\prime}-\mathbf{E}_{a}{ }^{\prime} \cdot \boldsymbol{j}_{c}\right) d V=0$
This is the most useful way of expressing the general reciprocity theorem (Carson). It is valid provided all quantities vary simultaneously according to a linear law lexcluding ferromagnetic substances, electronic space charge, and ionized-gas phenomenal. A particular application of this general reciprocity theorem will be found on p. 89.

## Maxwell's equations in different systems of coordinates

When a particular system of coordinates is advantageously used; such as cylindrical, spherical, etc., the components are derived.from the vector equations by means of the formulas included in the chapter "Mathematical formulas," pages 618 and 619.

## Mensuration formulas

Areas of plane figures
Parallelogram Area $=b h$

Triangle


Area $=\frac{1}{2} b h$

Regular polygon


$$
\begin{aligned}
\text { Area } & =n r^{2} \tan \frac{180^{\circ}}{n} \\
& =\frac{n}{4} S^{2} \cot \frac{180^{\circ}}{n} \\
& =\frac{n}{2} R^{2} \sin \frac{360^{\circ}}{n} \\
n & =\text { number of sides } \\
r & =\text { short radius } \\
S & =\text { length of one side } \\
R & =\text { long radius }
\end{aligned}
$$

## MATHEMATICAL FORMULAS 577

Mensuration formulas continued


$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
r & =\text { radius } \\
\pi & =3.141593
\end{aligned}
$$

Segment of circle


$$
\begin{aligned}
\text { Area } & =\frac{1}{2}[b r-c(r-h)] \\
b & =\text { length of arc } \\
c & =\text { length of chord } \\
& =\sqrt{4\left(2 h r-h^{2}\right)}
\end{aligned}
$$

Sector of circle


## Parabola



Area $=\frac{b r}{2}=\pi r^{2} \frac{\theta}{360^{\circ}}$

Area $=\frac{2}{3} b h$

578
Mensuration formulas continued


## Area of irregular plane surface



Trapezoidal rule
Area $=\Delta\left(\frac{y_{1}}{2}+y_{2}+y_{3}+\ldots+y_{n-2}+y_{n-1}+\frac{y_{n}}{2}\right)$
Simpson's rule: $n$ must be odd
Area $=\frac{\Delta}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+2 y_{5}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$
$y_{1}, y_{2}, y_{3} \ldots y_{n}=$ measured lengths of a series of equidistant parallel chords

## Surface areas and volumes of solid figures



## formula

Sector of sphere


Segment of sphere


Spherical surface $=2 \pi r h=\frac{\pi}{4}\left(c^{2}+4 h^{2}\right)$

$$
\begin{aligned}
\text { Volume } & =\pi h^{2}\left(r-\frac{h}{3}\right) \\
& =\pi h^{2}\left(\frac{c^{2}+4 h^{2}}{8 h}-\frac{h}{3}\right)
\end{aligned}
$$

Cylindrical surface $=\pi \mathrm{dh}=3.1416 \mathrm{dh}$
Total surface $=2 \pi r(r+h)$

$$
\begin{aligned}
\text { Volume } & =\pi r^{2} h=0.7854 \mathrm{~d}^{2} h \\
& =\frac{\mathrm{c}^{2} h}{4 \pi}=0.0796 \mathrm{c}^{2} h \\
c & =\text { circumference }
\end{aligned}
$$

580
Mensuration formulas continued

figure	formula
Torus or ring of circular cross-section	$\begin{aligned} \text { Surface } & =4 \pi^{2} R r=39.4784 R r=9.8696 \text { Dd } \\ \text { Volume } & =2 \pi^{2} R r^{2}=19.74 R r^{2} \\ & =2.463 D d^{2} \\ D & =2 R=\text { diameter to centers of cross- } \\ \quad r & =d / 2 \quad \text { section of material } \end{aligned}$
Pyramid	$\begin{aligned} \text { Volume } & =\frac{A h}{3} \\ & =\frac{h}{3}\left[n r^{2}\left(\tan \frac{360^{\circ}}{2 n}\right)\right] \\ & =\frac{h}{3}\left[\frac{n s^{2}}{4}\left(\cot \frac{360^{\circ}}{2 n}\right)\right] \\ A & =\text { area of base } \\ n & =\text { number of sides } \\ r & =\text { short radius of base } \end{aligned}$

Pyramidic frustum


Cone with circular base


$$
\begin{aligned}
\text { Volume } & =\frac{h}{3}(a+A+\sqrt{a A}) \\
A & =\text { area of base } \\
a & =\text { area of top }
\end{aligned}
$$

$$
\begin{aligned}
\text { Conical area } & =\pi r s=\pi r \sqrt{r^{2}+h^{2}} \\
\text { Volume } & =\frac{\pi r^{2} h}{3}=1.047 r^{2} h=0.2618 d^{2} h \\
s & =\text { slant height }
\end{aligned}
$$

Mensuration formulas continued

กigure	formula
Conic frustum	
Wedge frustum	$\begin{aligned} \text { Volume } & =\frac{h s}{2}(a+b) \\ h & =\text { height between parallel bases } \end{aligned}$
Ellipsoid	$\begin{aligned} \text { Volume } & =\frac{4 \pi R r^{2}}{3}=4.1888 R r^{2} \\ & =0.053 \pi^{2} D d^{2}=0.5231 D d^{2} \end{aligned}$
Paraboloid	$\begin{aligned} \text { Volume } & =\frac{\pi r^{2} h}{2}=1.5707 r^{2} h \\ \text { Curved surface } & =0.5236 \frac{r}{h^{2}}\left[\left(r^{2}+4 h^{2}\right)^{3 / 2}-r^{3}\right] \end{aligned}$

Algebraic and trigonometric formulas including complex quantitios

## Quadratic equation

If $a x^{2}+b x+c=0$, then
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}$
provided that $a \neq 0$

## Arithmetic progression

$l=a+(n-1) d$
$S=\frac{n}{2}(a+n)=\frac{n}{2}[2 a+(n-1) d]$
where
$a=$ first term $\quad S=$ sum of $n$ terms $\quad l=$ value of $n$th term
$d=$ common difference $=$ value of any term minus value of preceding term

## Geometric progression

$l=a r^{n-1}$
$S=\frac{a\left(r^{n}-1\right)}{r-1}$
where
$a=$ first term $\quad S=$ sum of $n$ terms $\quad I=$ value of the $n$th term
$r=$ common ratio $=$ the value of any term divided by the preceding term

## Combinations and permutations

The number of combinations of $n$ things, all different, taken $r$ a* a time is
${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$
The number of permutations of $n$ things $r$ at a time is

$$
\begin{aligned}
& { }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!} \\
& { }_{n} P_{n}=n!
\end{aligned}
$$

## Algebraic and trigonometric formulas continued

## Binomial theorem

$$
(a \pm b)^{n}=a^{n} \pm n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2} \pm \frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots
$$

If $n$ is a positive integer, the series is finite and contains $n+1$ terms; otherwise, it is infinite, converging for $|b / a|<1$, and diverging for $|b / a|>1$.

## Complex quantities

In the following formulas all quantities are real except $;=\sqrt{-1}$

$$
\begin{aligned}
(A+j B)+(C+j D) & =(A+C)+j(B+D) \\
(A+j B)(C+j D) & =(A C-B D)+j(B C+A D)
\end{aligned}
$$

$$
\begin{aligned}
\frac{A+j B}{C+j D} & =\frac{A C+B D}{C^{2}+D^{2}}+j \frac{B C-A D}{C^{2}+D^{2}} \\
\frac{1}{A+j B} & =\frac{A}{A^{2}+B^{2}}-j \frac{B}{A^{2}+B^{2}} \\
A+j B & =\rho(\cos \theta+j \sin \theta)=\rho \epsilon^{i \theta} \\
\sqrt{A+j B} & = \pm \sqrt{\rho}\left(\cos \frac{\theta}{2}+j \sin \frac{\theta}{2}\right)
\end{aligned}
$$

where

$$
\rho=\sqrt{A^{2}+B^{2}}>0
$$

$\cos \theta=A / \rho$
$\sin \theta=B / \rho$

## Properties of $\mathbf{e}$

$$
\begin{array}{rlr}
\mathrm{e} & =1+1+1 / 2!+1 / 3!+\ldots=2.71828 \\
1 / \mathrm{e} & =0.367879 \\
\mathrm{e}^{ \pm i x} & =\cos x \pm j \sin x=\exp ( \pm j x) \\
\log _{10} \mathrm{e} & =0.43429 \quad \quad \log _{10}(0.43429)=9.63778-10 \\
\log _{e} 10 & =2.30259=1 / \log _{10} \mathrm{e} \quad \log _{10}\left(e^{n}\right)=n(0.43429) \\
\log _{e} N & =\log _{e} 10 \times \log _{10} N & \\
\log _{10} N & =\log _{10} \mathrm{e} \times \log _{e} N
\end{array}
$$

584

## Algebraic and frigonometric formulas

 continued
## Trigonometric identities

$$
\begin{aligned}
& 1=\sin ^{2} A+\cos ^{2} A=\sin A \operatorname{cosec} A=\tan A \cot A=\cos A \sec A \\
& \sin A=\frac{\cos A}{\cot A}=\frac{1}{\operatorname{cosec} A}=\cos A \tan A= \pm \sqrt{1-\cos ^{2} A} \\
& \cos A=\frac{\sin A}{\tan A}=\frac{1}{\sec A}=\sin A \cot A= \pm \sqrt{1-\sin ^{2} A} \\
& \tan A=\frac{\sin A}{\cos A}=\frac{1}{\cot A}=\sin A \sec A \\
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A=\frac{\mathrm{e}^{j A}-\mathrm{e}^{-j A}}{2 j} \\
& \cos A=\frac{e^{j A}+e^{-j A}}{2} \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \cot (A \pm B)=\frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}=\frac{\cot A \mp \tan B}{1 \pm \cot A \tan B} \\
& \sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B) \\
& \tan A \pm \tan B=\frac{\sin (A \pm B)}{\cos A \cos B} \\
& \sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \cos A+\cos B=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B) \\
& \cot A \pm \cot B=\frac{\sin (B \pm A)}{\sin A \sin B} \\
& \cos B-\cos A=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) \\
& \sin 2 A=2 \sin A \cos A \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Algebraic and trigonometric formulas

$$
\begin{array}{rlrl}
\cos ^{2} A-\sin ^{2} B & =\cos (A+B) \cos (A-B) \\
\sin \frac{1}{2} A & = \pm \sqrt{\frac{1-\cos A}{2}} & \cos \frac{1}{2} A & = \pm \sqrt{\frac{1+\cos A}{2}} \\
\tan \frac{1}{2} A & =\frac{\sin A}{1+\cos A} & \sin ^{2} A & =\frac{1-\cos 2 A}{2} \\
\cos ^{2} A & =\frac{1+\cos 2 A}{2} & \tan ^{2} A & =\frac{1-\cos 2 A}{1+\cos 2 A}
\end{array}
$$

$\frac{\sin A \pm \sin B}{\cos A+\cos B}=\tan \frac{1}{2}(A \pm B)$
$\frac{\sin A \pm \sin B}{\cos B-\cos A}=\cot \frac{1}{2}(A \mp B)$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin x+\sin 2 x+\sin 3 x+\ldots+\sin m x=\frac{\sin \frac{1}{2} m x \sin \frac{1}{2} \cdot(m+1) x}{\sin \frac{1}{2} x}$
$\cos x+\cos 2 x+\cos 3 x+\ldots+\cos m x=\frac{\sin \frac{1}{2} m x \cos \frac{1}{2}(m+1) x}{\sin \frac{1}{2} x}$
$\sin x+\sin 3 x+\sin 5 x+\ldots+\sin (2 m-1) x=\frac{\sin ^{2} m x}{\sin x}$
$\cos x+\cos 3 x+\cos 5 x+\ldots+\cos (2 m-1) x=\frac{\sin 2 m x}{2 \sin x}$
$\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos m x=\frac{\sin \left(m+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}$

angle	0	$30^{\circ}$	$45^{\circ}$	$60^{\circ}$	$90^{\circ}$	$180^{\circ}$	$270^{\circ}$	$360^{\circ}$
sine	0	1/2	$1 / 2 \sqrt{2}$	$1 / 2 \sqrt{3}$	1	0	-1	0
cosine	1	$1 / 2 \sqrt{3}$	$1 / 2 \sqrt{2}$	$1 / 2$	0	$-1$	0	1
tangent	0	$1 / 3 \sqrt{3}$	1	$\sqrt{3}$	$\pm \infty$	0	$\pm \infty$	0

$$
\begin{aligned}
\text { versine } \theta & =1-\cos \theta \\
\sin 14 \frac{1}{2}^{\circ} & =\frac{1}{4} \text { approximately } \\
\sin 20^{\circ} & =11 / 32 \text { approximately }
\end{aligned}
$$

586

Algebraic and trigonometric formulas continued

## Approximations for small angles

$$
\begin{aligned}
\sin \theta & =\left(\theta-\theta^{3} / 6 \ldots \ldots\right) & & \theta \text { in radians } \\
\tan \theta & =\left(\theta+\theta^{3} / 3 \ldots \ldots\right) & & \theta \text { in radians } \\
\cos \theta & =\left(1-\theta^{2} / 2 \ldots \ldots\right) & & \theta \text { in radians }
\end{aligned}
$$

Right-angled friangles right angle or C

$$
\begin{aligned}
\sin A & =\cos B=a / c \quad B=90^{\circ}-A \\
\tan A & =a / b \\
\text { vers } A & =1-\cos A=\frac{c-b}{c} \\
c & =\sqrt{a^{2}+b^{2}} \quad b=\sqrt{c^{2}-a^{2}}=\sqrt{(c+a)(c-a)} \\
\text { Area } & =\frac{a b}{2}=\frac{a}{2} \sqrt{c^{2}-a^{2}}=\frac{a^{2} \cot A}{2}=\frac{b^{2} \tan A}{2}=\frac{c^{2} \sin A \cos A}{2}
\end{aligned}
$$

## Oblique-angled triangles

$$
\begin{aligned}
\sin \frac{1}{2} A & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{1}{2} A & =\sqrt{\frac{s(s-a)}{b c}} \\
\text { where } s & =\frac{a+b+c}{2}
\end{aligned}
$$


$A+B+C=180^{\circ}$

$$
\begin{aligned}
\tan \frac{1}{2} A & =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, \text { similar values for angles } B \text { and } C \\
\text { Area } & =\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{2} a b \sin C=\frac{a^{2} \sin B \sin C}{2 \sin A}
\end{aligned}
$$

$$
c=\frac{a \sin C}{\sin A}=\frac{a \sin (A+B)}{\sin A}=\sqrt{a^{2}+b^{2}-2 a b \cos C}
$$

$$
\tan A=\frac{a \sin C}{b-a \cos C}, \quad \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C
$$

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A \text {, similar expressions for other sides. }
$$

## Spherical trigonometry

In the following triangles each element is assumed to be less than 180 degrees.

## General (for any spherical triangle)

```
cos}a=\operatorname{cos}b\operatorname{cos}c+\operatorname{sin}b\operatorname{sin}c\operatorname{cos}
cos}\alpha=-\operatorname{cos}\beta\operatorname{cos}\gamma+\operatorname{sin}\beta\operatorname{sin}\gamma\operatorname{cos}
\frac{\operatorname{sin}\alpha}{\operatorname{sin}a}=\frac{\operatorname{sin}\beta}{\operatorname{sin}b}=\frac{\operatorname{sin}\gamma}{\operatorname{sin}c}
sin a cos \beta=cosb\operatorname{sin}c-\operatorname{sin}b\operatorname{cos}c\operatorname{cos}\alpha
sin}\alpha\operatorname{cos}b=\operatorname{cos}\beta\operatorname{sin}\gamma+\operatorname{sin}\beta\operatorname{cos}\gamma\operatorname{cos}
sin}\alpha\operatorname{cot}\beta=\operatorname{cot}b\operatorname{sin}c-\operatorname{cos}c\operatorname{cos}
sin}a\operatorname{cot}b=\operatorname{cot}\beta\operatorname{sin}\gamma+\operatorname{cos}a\operatorname{cos}
```



## Right spherical triangles $\left(\gamma=90^{\circ}\right)$

```
\operatorname{cos}c=\operatorname{cos}a\operatorname{cos}b
\operatorname{cos}c=\operatorname{cot}\alpha\operatorname{cot}\beta
cos}\alpha=\operatorname{sin}\beta\operatorname{cos}
cos}\beta=\operatorname{sin}\alpha\operatorname{cos}
cos}\alpha=\operatorname{tan}\textrm{b}\operatorname{cot}\textrm{c
cos}\beta=\operatorname{tan}a\operatorname{cot}
 sin}a=\operatorname{sin}c\operatorname{sin}
 sin}b=\operatorname{sin}c\operatorname{sin}
 sin}b=\operatorname{tan}a\operatorname{cot}
 sin}a=\operatorname{tan}b\operatorname{cot}
```

Species (right triangles): Two angular quantities are of the same species if both are in the same quadrant; otherwise they are of different species. Rules for species are:
a. An oblique angle and its opposite side are always of the same species.
b. If the hypotenuse is less than $90^{\circ}$, the oblique angles (and the two sides) are of the same species; otherwise they are of different species.

## 588

Spherical trigonometry

## Oblique spherical triangle

$$
\begin{aligned}
& \text { Let } a+b+c=2 s \\
& \sin ^{2} \frac{1}{2} \alpha=\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}, \text { etc. } \\
& \cos ^{2} \frac{1}{2} \alpha=\frac{\sin s \sin (s-a)}{\sin b \sin c}, \text { etc. } \\
& \tan \frac{1}{2} \alpha=\frac{r}{\sin (s-a)}, \text { etc. } \\
& \text { where } r=\left[\frac{\sin (s-a) \sin (s-b) \sin (s-c)}{\sin s}\right]^{\frac{1}{2}} \\
& \cos \alpha=\frac{\cos \alpha+\cos \beta \cos \gamma}{\sin \beta \sin \gamma}, \text { etc. } \\
& \sin ^{2} \frac{1}{2} a=-\frac{\cos S \cos (S-\alpha)}{\sin \beta \sin \gamma}, \text { etc. }
\end{aligned}
$$

where $2 S=\alpha+\beta+\gamma$.

$$
\begin{aligned}
\cos ^{2} \frac{1}{2} a & =\frac{\cos (S-\beta) \cos (S-\gamma)}{\sin \beta \sin \gamma}, \text { etc. } \\
\tan ^{2} \frac{1}{2} a & =-\frac{\cos S \cos (S-\alpha)}{\cos (S-\beta) \cos (S-\gamma)}, \text { etc. } \\
\frac{\tan \frac{1}{2}(a-b)}{\tan \frac{1}{2} c} & =\frac{\sin \frac{1}{2}(\alpha-\beta)}{\sin \frac{1}{2}(\alpha+\beta)} \\
\frac{\tan \frac{1}{2}(\alpha-\beta)}{\cot \frac{1}{2} \gamma} & =\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)}
\end{aligned} \quad \frac{\tan \frac{1}{2}(a+b)}{\tan \frac{1}{2} c}=\frac{\cos \frac{1}{2}(\alpha-\beta)}{\cos \frac{1}{2}(\alpha+\beta)}
$$

## Rules for species (oblique triangles)

a. If a side (or angle) differs more than another side (or angle) from $90^{\circ}$, it is of the same species as its opposite angle (or side).
b. Half the sum of two sides is of the same species as half the sum of two opposite angles.

## Plane analytic geometry

In the following, $x$ and $y$ are coordinates of a variable point in a rectangular-coordinate system.

## Straight line



## Slope-intercept form

$y=s x+b$
$b=y$-intercept
$s=\tan \theta$

## Intercept-intercept form

$\frac{x}{a}+\frac{y}{b}=1$
$a=x$-intercept
$b=y$-intercept


## Point-slope form

$$
\begin{aligned}
y-y_{1}= & s\left(x-x_{1}\right) \\
s= & \tan \theta \\
\left(x_{1}, y_{1}\right)= & \text { coordinates of known point } \\
& \text { on line. }
\end{aligned}
$$

## Point-point form

$$
\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}
$$


$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are coordinates of two different points on the line.
Normal form

$$
\frac{A}{ \pm \sqrt{A^{2}+B^{2}}} x+\frac{B}{ \pm \sqrt{A^{2}+B^{2}}} y+\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}=0
$$

the sign of the radical is chosen so that

$$
\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}<0
$$

## 590

## Plane analytic geometry continued

Distance from point $\left(x_{1}, y_{1}\right)$ to a line
Substitute coordinates of the point in the normal form of the line. Thus,
distance $=\frac{A}{ \pm \sqrt{A^{2}+B^{2}}} x_{1}+\frac{B}{ \pm \sqrt{A^{2}+B^{2}}} y_{1}+\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}$

## Angle between two lines

$\tan \phi=\frac{s_{1}-s_{2}}{1+s_{1} s_{2}}$
where
$\phi=$ angle between the lines
$s_{1}=$ slope of one line
$s_{2}=$ slope of other line
When the lines are mutually perpendicular, $\tan \phi=\infty$, whence $s_{1}=-1 / s_{2}$

## Transformation of rectangular coordinates

## Translation

```
\(x_{1}=h+x_{2}\)
\(y_{1}=k+y_{2}\)
\((h, k)=\) the coordinates of the new origin referred to the old origin
```


## Rotation

$x_{1}=x_{2} \cos \theta-y_{2} \sin \theta$
$y_{1}=x_{2} \sin \theta+y_{2} \cos \theta$
$\left(x_{1}, y_{1}\right)=$ "old" coordinates
$\left|x_{2}, y_{2}\right|=$ "new" coordinates
$\theta=$ counterclockwise angle of rotation of axes

## Circle

The equation of a circle of radius $r$ with center at $(m, n)$ is
$(x-m)^{2}+(y-n)^{2}=r^{2}$
Tangent line to a circle: At $\left(x_{1}, y_{1}\right)$ is
$y-y_{1}=-\frac{x_{1}-m}{y_{1}-n}\left(x-x_{1}\right)$

## Plane analytic geometry continued

Normal line to a circle: At $\left(x_{1}, y_{1}\right)$ is
$y-y_{1}=\frac{y_{1}-n}{x_{1}-m}\left(x-x_{1}\right)$

## Parabola

## $x$-parabola

$(y-k)^{2}= \pm 2 p(x-h)$
where $(h, k)$ are the coordinates of the vertex, and the sign used is plus or minus when the parabola is open to the right or to the left, respectively. The semi-latus rectum is $p$.
$y$-parabola

$$
(x-h)^{2}= \pm 2 p(y-k)
$$

where $(h, k)$ are the coordinates of the vertex. Use plus sign if parabola is open above, and minus sign if open below.

Tangent lines to a parabola
$\left(x_{1}, y_{1}\right)=$ point of tangency
For $x$-parabola,
$y-y_{1}= \pm \frac{\rho}{y_{1}-k}\left(x-x_{1}\right)$
Use plus sign if parabola is open to the right, minus sign if open to the left. For $y$-parabola,
$y-y_{1}= \pm \frac{x_{1}-h}{\rho}\left(x-x_{1}\right)$
Use plus sign if parabola is open above, minus sign if open below.

Normal lines to a parabola
$\left(x_{1}, y_{1}\right)=$ point of contact
For $x$-parabola,
$y-y_{1}=\mp \frac{y_{1}-k}{\rho}\left(x-x_{1}\right)$

## Plane analytic geometry continued

Use minus sign if parabola is open to the right, plus sign if open to the left. For $y$-parabola,
$y-y_{1}=\mp \frac{\rho}{x_{1}-h}\left(x-x_{1}\right)$
Use minus sign if parabola is open above, plus sign if open below,

## Ellipse

Figure shows ellipse centered at origin.

$$
\begin{aligned}
F_{\prime}^{\prime} F^{\prime} & =\text { foci } \\
D D^{\prime}, D^{\prime \prime} D^{\prime \prime \prime} & =\text { directrices } \\
e & =\text { eccentricity }<1 \\
2 a & =A^{\prime} A=\text { major axis } \\
2 b & =B B^{\prime}=\text { minor axis }
\end{aligned}
$$

Then

$$
\begin{aligned}
O C & =a / e \\
F C & =a e \\
1-e^{2} & =b^{2} / a^{2}
\end{aligned}
$$



Equation of ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Sum of the focal radii
To any point on ellipse $=2 a$

Equation of tangent line to ellipse
$\left(x_{1}, y_{1}\right)=$ point of tangency
$\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$

Equation of normal line to an ellipse
$y-y_{1}=\frac{a^{2} y_{1}^{\prime}}{b^{2} x_{1}}\left(x-x_{1}\right)$

## Plane analytic geometry

## Hyperbola

Figure shows $x$-hyperbola centered at origin.

$$
F, F^{\prime}=\mathrm{foci}
$$

$D D^{\prime}, D^{\prime \prime} D^{\prime \prime \prime}=$ directrices
$e=$ eccentricity $>1$
$2 a=$ transverse axis $=A^{\prime} A$
$\mathrm{CO}=\mathrm{a} / \mathrm{e}$
$C F=a e$

Equation of $x$-hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

where
$b^{2}=a^{2}\left(e^{2}-1\right)$

Equation of conjugate ( $y$-) hyperbola
$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$

Tangent line to $x$-hyperbola
$\left(x_{1}, y_{1}\right)=$ point of tangency
$a^{2} y_{1 y}-b^{2} x_{1} x=-a^{2} b^{2}$

Normal line to $x$-hyperbola
$y-y_{1}=-\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right)$

Asymptotes to hyperbola
$y= \pm \frac{b}{a}$.

## Solid analytic geometry

In the following, $x, y$, and $z$ are the coordinates of a variable point in space in a rectangular-coordinate system.

Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$
$d=\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right]^{\frac{1}{2}}$

## Equations of the straight line

The straight line is specified in terms of its projections on two of the coordinate planes. For example, using the projections on the $x-z$ and $y-z$ planes respectively, the equations of the line are
$x=m z+\mu$
$y=n z+\nu$
where
$m=$ slope of $x-z$ projection
$n=$ slope of $y-z$ projection

$\mu=$ intercept of $x-z$ projection on $x$-axis
$\nu=$ intercept of $y-z$ projection on $y$-axis

## Equation of plane, intercept form

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
where $a, b, c$ are the intercepts of the plane on the $x, y$, and $z$ axes, respectively.

## Prolate spheroid

$a^{2}\left(y^{2}+z^{2}\right)+b^{2} x^{2}=a^{2} b^{2}$
where $a>b$, and $x$-axis $=a x i s$ of revolution

## Oblate spheroid

$$
\begin{aligned}
& b^{2}\left(x^{2}+z^{2}\right)+a^{2} y^{2}=a^{2} b^{2} \\
& \text { where } a>b \text {, and } y \text {-axis }=a x i s \text { of revolution }
\end{aligned}
$$

## Solid analytic geometry

## Paraboloid of revolution

$$
\begin{aligned}
& y^{2}+z^{2}=2 p x \\
& x \text {-axis }=\text { axis of revolution }
\end{aligned}
$$

## Hyperboloid of revolution

Revolving an $x$-hyperbola about the $x$-axis results in the hyperboloid of two sheets
$a^{2}\left(y^{2}+z^{2}\right)-b^{2} x^{2}=-a^{2} b^{2}$

Revolving an $x$-hyperbola about the $y$-axis results in the hyperboloid of one sheet
$b^{2}\left(x^{2}+z^{2}\right)-a^{2} y^{2}=a^{2} b^{2}$

## Ellipsoid

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
where $a, b, c$ are the semi-axes of the ellipsoid or the intercepts on the $x, y$, and $z$ axes, respectively.

## Hyperbolic functions

$$
\begin{array}{rlrl}
\sinh x & =\frac{e^{x}-e^{-x}}{2} & \cosh x=\frac{e^{x}+e^{-x}}{2} \\
\sinh (-x) & =-\sinh x & \cosh (-x)=\cosh x \\
\sinh (j x) & =j \sin x \quad \cosh (j x)=\cos x \\
\sinh 2 x & =2 \sinh x \cosh x & \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x \\
\sinh (x \pm j y) & =\sinh x \cos y \pm j \cosh x \sin y \\
\cosh (x \pm j y) & =\cosh x \cos y \pm j \sinh x \sin y
\end{array}
$$

596

## Differential calculus

## List of derivatives

In the following $u, v, w$ are differentiable functions of $x$, and $c$ is a constant.
General

$$
\begin{aligned}
\frac{d c}{d x} & =0 \\
\frac{d x}{d x} & =1 \\
\frac{d}{d x}(u+v-w) & =\frac{d u}{d x}+\frac{d v}{d x}-\frac{d w}{d x} \\
\frac{d}{d x}(c v) & =c \frac{d v}{d x} \\
\frac{d}{d x}(u v) & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
\frac{d}{d x}\left(v^{c}\right) & =c v^{\sigma-1} \frac{d v}{d x} \\
\frac{d}{d x}\left(\frac{u}{v}\right) & =\frac{d u}{d x}-u \frac{d v}{d x} \\
\frac{d y}{d x} & =\frac{d y}{d v} \cdot \frac{d v}{d x} \text { if } y=y(v) \\
\frac{d y}{d x} & =\frac{1}{d x / d y} \quad \text { if } \frac{d x}{d y} \neq 0
\end{aligned}
$$

Transcendental functions

$$
\frac{d}{d x}\left(\log _{e} v\right)=\frac{1}{v} \frac{d v}{d x}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(c^{v}\right)=c^{v} \log _{e} c \frac{d v}{d x} \\
& \frac{d}{d x}\left(e^{v}\right)=e^{v} \frac{d v}{d x} \\
& \frac{d}{d x}\left(u^{v}\right)=v u^{v-1} \frac{d u}{d x}+\left(\log _{e} u\right) u^{v} \frac{d v}{d x}
\end{aligned}
$$

## Differential calculus continued

$$
\begin{aligned}
\frac{d}{d x}(\sin v) & =\cos v \frac{d v}{d x} \\
\frac{d}{d x}(\cos v) & =-\sin v \frac{d v}{d x} \\
\frac{d}{d x}(\tan v) & =\sec ^{2} v \frac{d v}{d x} \\
\frac{d}{d x}(\cot v) & =-\csc ^{2} v \frac{d v}{d x} \\
\frac{d}{d x}(\sec v) & =\sec v \tan v \frac{d v}{d x} \\
\frac{d}{d x}(\csc v) & =-\csc v \cot v \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \sin v) & =\frac{1}{\sqrt{1-v^{2}}} \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \cos v) & =-\frac{1}{\sqrt{1-v^{2}}} \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \tan v) & =\frac{1}{1+v^{2} \frac{d v}{d x}} \\
\frac{d}{d x}(\operatorname{arc} \cot v) & =-\frac{1}{1+v^{2}} \frac{d v}{d x} \\
\frac{d}{d x}(\operatorname{arc} \sec v) & =\frac{1}{v \sqrt{v^{2}-1} \frac{d v}{d x}} \\
\frac{d}{d x}(\operatorname{arc} \csc v) & =-\frac{1}{v \sqrt{v^{2}-1}} \frac{d v}{d x}
\end{aligned}
$$

## Curvafure of a curve

$K=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}}=\frac{1}{R}$
where
$K=$ curvature
$R=$ radius of curvature
$y^{\prime}, y^{\prime \prime}=$ respectively, first and second derivatives of the curve $y=f(x)$ with respect to $x$

598

## Integral caiculus

## Rational algebraic integrals

1. $\int x^{m} d x=\frac{x^{m+1}}{m+1}, \quad m \neq-1$
2. $\int \frac{d x}{x}=\log _{e} x$
3. $\int(a x+b)^{m} d x=\frac{(a x+b)^{m+1}}{a(m+1)}, \quad m \neq-1$
4. $\int \frac{d x}{a x+b}=\frac{1}{a} \log _{c}(a x+b)$
5. $\int \frac{x d x}{a x+b}=\frac{1}{a^{2}}\left[a x+b-b \log _{e}(a x+b)\right]$
6. $\int \frac{x d x}{(a x+b)^{2}}=\frac{1}{a^{2}}\left[\frac{b}{a x+b}+\log _{c}(a x+b)\right]$
7. $\int \frac{d x}{x(a x+b)}=\frac{1}{b} \log _{e} \frac{x}{a x+b}$
8. $\int \frac{d x}{x(a x+b)^{2}}=\frac{1}{b(a x+b)}+\frac{1}{b^{2}} \log _{e} \frac{x}{a x+b}$
9. $\int \frac{d x}{x^{2}(a x+b)}=-\frac{1}{b x}+\frac{a}{b^{2}} \log _{e} \frac{a x+b}{x}$
10. $\int \frac{d x}{x^{2}(a x+b)^{2}}=-\frac{2 a x+b}{b^{2} \times(a x+b)}+\frac{2 a}{b^{3}} \log _{e} \frac{a x+b}{x}$
11. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
12. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}=-\frac{1}{a} \tanh ^{-1} \frac{a}{x}$
13. $\int \frac{d x}{\left(a x^{2}+b\right)^{m}}=\frac{x}{2(m-1) b\left(a x^{2}+b\right)^{m-1}}$

$$
+\frac{2 m-3}{2(m-11 b} \int \frac{d x}{\left(a x^{2}+b\right)^{m-1}}, \quad m \neq 1
$$

14. $\int \frac{x d x}{\left(a x^{2}+b\right)^{m}}=-\frac{1}{2(m-1) a\left(a x^{2}+b\right)^{m-1}}, \quad m \neq 1$

## Integral calculus

 continued15. $\int \frac{x d x}{a x^{2}+b}=\frac{1}{2 a} \log _{e}\left(a x^{2}+b\right)$
16. $\int \frac{x^{2} d x}{a x^{2}+b}=\frac{x}{a}-\frac{b}{a} \int \frac{d x}{a x^{2}+b}$
17. $\int \frac{x^{2} d x}{\left(a x^{2}+b\right)^{m}}=-\frac{x}{2\left(m-11 a\left(a x^{2}+b\right)^{m-1}\right.}$

$$
+\frac{1}{2(m-1) a} \int \frac{d x}{\left(a x^{2}+b\right)^{m-1}}, \quad m \neq 1
$$

18. $\int \frac{d x}{a x^{3}+b}=\frac{k}{3 b}\left(\sqrt{3} \tan ^{-1} \frac{2 x-k}{k \sqrt{3}}+\log _{e} \frac{k+x}{\sqrt{k^{2}-k x+x^{2}}}\right)$,
where $k=\sqrt[2]{b / a}$
19. $\int \frac{x d x}{a x^{3}+b}=\frac{1}{3 a k}\left(\sqrt{3} \tan ^{-1} \frac{2 x-k}{k \sqrt{3}}-\log _{e} \frac{k+x}{\sqrt{k^{2}-k x+x^{2}}}\right)$, where $k=\sqrt[3]{b / a}$
20. $\int \frac{d x}{x\left(a x^{n}+b\right)}=\frac{1}{b n} \log _{e} \frac{x^{n}}{a x^{n}+b}$

Let $X=a x^{2}+b x+c$ and $q=b^{2}-4 a c$
21. $\int \frac{d x}{x}=\frac{1}{\sqrt{q}} \log _{e} \frac{2 a x+b-\sqrt{q}}{2 a x+b+\sqrt{q}}$, when $q>0$
22. $\int \frac{d x}{x}=\frac{2}{\sqrt{-q}} \tan ^{-1} \frac{2 a x+b}{\sqrt{-q}}$, when $a<0$

For the case $q=0$, use equation 3 with $m=-2$
23. $\int \frac{d x}{x^{n}}=-\frac{2 a x+b}{(n-1) q x^{n-1}}-\frac{2(2 n-3) a}{q(n-1)} \int \frac{d x}{x^{n-1}}, \quad n \neq 1$
24. $\int \frac{x d x}{x}=\frac{1}{2 a} \log _{e} x-\frac{b}{2 a} \int \frac{d x}{x}$
25. $\int \frac{x^{2} d x}{x}=\frac{x}{a}-\frac{b}{2 a^{2}} \log _{e} x+\frac{b^{2}-2 a c}{2 a^{2}} \int \frac{d x}{x}$

600

## Integral calculus continued

## Integrals involving $\sqrt{a x+b}$

26. $\int x \sqrt{a x+b} d x=\frac{2(3 a x-2 b) \sqrt{(a x+b)^{3}}}{15 a^{2}}$
27. $\int x^{2} \sqrt{a x+b} d x=\frac{2\left(15 a^{2} x^{2}-12 a b x+8 b^{2}\right) \sqrt{(a x+b)^{3}}}{105 a^{3}}$
28. $\int x^{m} \sqrt{a x+b} d x=\frac{2}{a(2 m+3)}\left[x^{m} \sqrt{(a x+b)^{3}}\right.$
$\left.-m b \int x^{m-1} \sqrt{a x+b} d x\right]$
29. $\int \frac{\sqrt{a x+b} d x}{x}=2 \sqrt{a x+b}+\sqrt{b} \log _{e} \frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}, \quad b>0$

$$
=2 \sqrt{a x+b}-2 \sqrt{-b} \tan ^{-1} \sqrt{\frac{a x+b}{-b}}, \quad b<0
$$

30. $\int \frac{\sqrt{a x+b} d x}{x^{m}}=-\frac{1}{(m-1) b}\left[\frac{\sqrt{(a x+b)^{3}}}{x^{m-1}}\right.$

$$
\left.+\frac{(2 m-5) a}{2} \int \frac{\sqrt{a x+b} d x}{x^{m-1}}\right], m \neq 1
$$

31. $\int \frac{x d x}{\sqrt{a x+b}}=\frac{2(a x-2 b)}{3 a^{2}} \sqrt{a x+b}$
32. $\int \frac{x^{2} d x}{\sqrt{a x+b}}=\frac{2\left(3 a^{2} x^{2}-4 a b x+8 b^{2}\right)}{15 a^{3}} \sqrt{a x+b}$
33. $\int \frac{x^{m} d x}{\sqrt{a x+b}}=\frac{2}{a(2 m+11}\left(x^{m} \sqrt{a x+b}-m b \int \frac{x^{m-1} d x}{\sqrt{a x+b}}\right), m \neq \frac{1}{2}$
34. $\int \frac{d x}{x \sqrt{a x+b}}=\frac{1}{\sqrt{b}} \log _{e} \frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}, \quad b>0$

$$
=\frac{2}{\sqrt{-b}} \tan ^{-1} \sqrt{\frac{a x+b}{-b}}, \quad b<0
$$

35. $\int \frac{d x}{x^{m} \sqrt{a x+b}}=-\frac{\sqrt{a x+b}}{(m-1) b x^{m-1}}-\frac{(2 m-3) a}{(2 m-2) b} \int \frac{d x}{x^{m-1} \sqrt{a x+b}}$,

$$
m \neq 1
$$

## Integral calculus continued

## Integrals involving $\sqrt{x^{2} \pm a^{2}}$ and $\sqrt{a^{2}-x^{2}}$

36. $\int \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{2}\left[x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \log _{c}\left(x+\sqrt{x^{2} \pm a^{2}}\right)\right]$
37. $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1} \frac{x}{a}\right)$
38. $\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)$
39. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}$
40. $\int x \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{3} \sqrt{\left(x^{2} \pm a^{2}\right)^{3}}$
41. $\int x^{2} \sqrt{x^{2} \pm a^{2}} d x=\frac{x}{4} \sqrt{\left(x^{2} \pm a^{2}\right)^{3}} \mp \frac{a^{2}}{8}\left[x \sqrt{x^{2} \pm a^{2}}\right.$

$$
\left. \pm a^{2} \log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)\right]
$$

42. $\int x \sqrt{a^{2}-x^{2}} d x=-\frac{1}{3} \sqrt{\left(a^{2}-x^{2}\right)^{3}}$
43. $\int x^{2} \sqrt{a^{2}-x^{2}} d x=-\frac{x}{4} \sqrt{\left(a^{2}-x^{2}\right)^{3}}+\frac{a^{2}}{8}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1} \frac{x}{a}\right)$
44. $\int \frac{\sqrt{a^{2} \pm x^{2}}}{x} d x=\sqrt{a^{2} \pm x^{2}}-a \log _{e} \frac{a+\sqrt{a^{2} \pm x^{2}}}{x}$
45. $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x=\sqrt{x^{2}-a^{2}}-a \cos ^{-1} \frac{a}{x}$
46. $\int \frac{\sqrt{x^{2} \pm a^{2}}}{x^{2}} d x=-\frac{\sqrt{x^{2} \pm a^{2}}}{x}+\log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)$
47. $\int \frac{\sqrt{a^{2}-x^{2}}}{x^{2}} d x=-\frac{\sqrt{a^{2}-x^{2}}}{x}-\sin ^{-1} \frac{x}{a}$
48. $\int \frac{x d x}{\sqrt{a^{2}-x^{2}}}=-\sqrt{a^{2}-x^{2}}$
49. $\int \frac{x d x}{\sqrt{x^{2} \pm a^{2}}}=\sqrt{x^{2} \pm a^{2}}$

## 602

Infegral caiculus
50. $\int \frac{x^{2} d x}{\sqrt{x^{2} \pm a^{2}}}=\frac{x}{2} \sqrt{x^{2} \pm a^{2}} \mp \frac{a^{2}}{2} \log _{e}\left(x+\sqrt{x^{2} \pm a^{2}}\right)$
51. $\int \frac{x^{2} d x}{\sqrt{a^{2}-x^{2}}}=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}$
52. $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \cos ^{-1} \frac{a}{x}$
53. $\int \frac{d x}{x \sqrt{a^{2} \pm x^{2}}}=-\frac{1}{a} \log _{e}\left(\frac{a+\sqrt{a^{2} \pm x^{2}}}{x}\right)$
54. $\int \frac{d x}{x^{2} \sqrt{x^{2} \pm a^{2}}}= \pm \frac{\sqrt{x^{2} \pm a^{2}}}{a^{2} x}$
55. $\int \frac{d x}{x^{2} \sqrt{a^{2}-x^{2}}}=-\frac{\sqrt{a^{2}-x^{2}}}{a^{2} x}$
56. $\int \sqrt{\left(x^{2} \pm a^{2}\right)^{3}} d x=\frac{1}{4}\left[x \sqrt{\left(x^{2} \pm a^{2}\right)^{3}} \pm \frac{3 a^{2} x}{2} \sqrt{x^{2} \pm a^{2}}\right.$

$$
+\frac{3 a^{4}}{2} \log _{e}\left(x+\sqrt{\left.x^{2} \pm a^{2}\right)}\right]
$$

57. $\int \sqrt{\left(a^{2}-x^{2}\right)^{3}} d x=\frac{1}{4}\left[x \sqrt{\left|a^{2}-x^{2}\right|^{3}}+\frac{3 a^{2} x}{2} \sqrt{a^{2}-x^{2}}+\frac{3 a^{4}}{2} \sin ^{-1} \frac{x}{a}\right]$
58. $\int \frac{d x}{\sqrt{\left(x^{2} \pm a^{2}\right)^{3}}}=\frac{ \pm x}{a^{2} \sqrt{x^{2} \pm a^{2}}}$
59. $\int \frac{d x}{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}=\frac{x}{a^{2} \sqrt{a^{2}-x^{2}}}$

Infegrals involving $\sqrt{\mathbf{a} \mathbf{x}^{2}+\mathbf{b x}+\mathbf{c}}$
Let $X=a x^{2}+b x+c$ and $a=b^{2}-4 a c$
60. $\int \frac{d x}{\sqrt{x}}=\frac{1}{\sqrt{a}} \log _{c}\left(\sqrt{x}+\frac{2 a x+b}{2 \sqrt{a}}\right), a>0$

$$
=\frac{1}{\sqrt{-a}} \sin ^{-1} \frac{(-2 a x-b)}{\sqrt{a}}, \quad a<0
$$

## MATHEMATICAL FORMULAS <br> 603

Integral calculus continued
61. $\int \frac{x d x}{\sqrt{x}}=\frac{\sqrt{x}}{a}-\frac{b}{2 a} \int \frac{d x}{\sqrt{x}}$
62. $\int \frac{x^{2} d x}{\sqrt{x}}=\frac{(2 a x-3 b) \sqrt{x}}{4 a^{2}}+\frac{3 b^{2}-4 a c}{8 a^{2}} \int \frac{d x}{\sqrt{x}}$
63. $\int \frac{d x}{x \sqrt{x}}=-\frac{1}{\sqrt{c}} \log _{e}\left(\frac{\sqrt{x}+\sqrt{c}}{x}+\frac{b}{2 \sqrt{c}}\right), c>0$
64. $\int \frac{d x}{x \sqrt{x}}=\frac{1}{\sqrt{-c}} \sin ^{-1} \frac{b x+2 c}{x \sqrt{q}}, c<0$
65. $\int \frac{d x}{x \sqrt{x}}=-\frac{2 \sqrt{x}}{b x}, c=0$
66. $\int \frac{d x}{(m x+n) \sqrt{x}}=\frac{1}{\sqrt{k}} \log _{e}\left[\frac{\sqrt{k}-m \sqrt{x}}{m x+n}+\frac{b m-2 a n}{2 \sqrt{k}}\right], k>0$

$$
=\frac{1}{\sqrt{-k}} \sin ^{-1}\left[\frac{(b m-2 a n)(m x+n)+2 k}{m(m x+n) \sqrt{q}}\right], k<0
$$

67. $\int \frac{d x}{(m x+n) \sqrt{x}}=-\frac{2 m \sqrt{x}}{(b m-2 a n)(m x+n)}$. $k=0$
where $k=a n^{2}-b m n+c m^{2}$.
68. $\int \frac{d x}{x^{2} \sqrt{x}}=-\frac{\sqrt{x}}{c x}-\frac{b}{2 c} \int \frac{d x}{x \sqrt{x}}$
69. $\int \sqrt{x} d x=\frac{(2 a x+b) \sqrt{x}}{4 a}-\frac{q}{8 a} \int \frac{d x}{\sqrt{x}}$
70. $\int x \sqrt{x} d x=\frac{x \sqrt{x}}{3 a}-\frac{b(2 a x+b) \sqrt{x}}{8 a^{2}}+\frac{b q}{16 a^{2}} \int \frac{d x}{\sqrt{x}}$
71. $\int x^{2} \sqrt{x} d x=\frac{(6 a x-5 b) x \sqrt{x}}{24 a^{2}}+\frac{\left(5 b^{2}-4 a c\right)(2 a x+b) \sqrt{x}}{64 a^{3}}$
$-\frac{\left(5 b^{2}-4 a c\right) a}{128 a^{3}} \int \frac{d x}{\sqrt{x}}$
72. $\int \frac{\sqrt{x} d x}{x}=\sqrt{x}+\frac{b}{2} \int \frac{d x}{\sqrt{x}}+c \int \frac{d x}{x \sqrt{x}}$

604
73. $\int \frac{\sqrt{x} d x}{m x+n}=\frac{\sqrt{x}}{m}+\frac{b m-2 a n}{2 m^{2}} \int \frac{d x}{\sqrt{x}}$

$$
+\frac{a n^{2}-b m n+c m^{2}}{m^{2}} \int \frac{d x}{(m x+n) \sqrt{x}}
$$

74. $\int \frac{\sqrt{x} d x}{x^{2}}=-\frac{\sqrt{x}}{x}+\frac{b}{2} \int \frac{d x}{x \sqrt{x}}+a \int \frac{d x}{\sqrt{x}}$
75. $\int \frac{d x}{x \sqrt{x}}=-\frac{2(a x+b)}{q \sqrt{x}}$
76. $\int x \sqrt{x} d x=\frac{2(2 a x+b) x \sqrt{x}}{8 a}-\frac{3 a(2 a x+b) \sqrt{x}}{64 a^{2}}+\frac{3 q^{2}}{128 a^{2}} \int \frac{d x}{\sqrt{x}}$

## Miscellaneous irrational integrals

77. $\int \sqrt{2 a x-x^{2}} d x=\frac{x-a}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x-a}{a}$
78. $\int \frac{d x}{\sqrt{2 a x-x^{2}}}=\cos ^{-1} \frac{a-x}{a}$
79. $\int \sqrt{\frac{m x+n}{a x+b}} d x=\int \frac{(m x+n) d x}{\sqrt{a m x^{2}+(b m+a n) x+b n}}$

## Logarithmic integrals

80. $\int \log _{a} x d x=x \log _{a} \frac{x}{a}$
81. $\int \log _{e} x d x=x\left(\log _{e} x-11\right.$
82. $\int x^{m} \log _{a} x d x=x^{m+1}\left(\frac{\log _{a} x}{m+1}-\frac{\log _{a} e}{(m+1)^{2}}\right)$
83. $\int x^{m} \log _{e} x d x=x^{m+1}\left(\frac{\log _{e} x}{m+1}-\frac{1}{(m+1)^{2}}\right)$

## Exponential integrals

84. $\int a^{x} d x=\frac{a^{x}}{\log _{e} a}$

Integral calculus continued
85. $\int e^{x} d x=e^{x}$
86. $\int x e^{x} d x=e^{x}(x-1)$
87. $\int x^{m} \mathrm{e}^{x} d x=x^{m} \mathrm{e}^{x}-m \int x^{m-1} \mathrm{e}^{x} d x$

## Trigonometric integrals

In these equations $m$ and $n$ are positive integers unless otherwise indicated, and $r$ and $s$ are any integers.
88. $\int \sin x d x=-\cos x$
89. $\int \sin ^{2} x d x=\frac{1}{2}(x-\sin x \cos x)$
90. $\int \sin ^{n} x d x=-\frac{\sin ^{n-1} \times \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$
91. $\int \frac{d x}{\sin ^{n} x}=-\frac{\cos x}{\ln -1) \sin ^{n-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\sin ^{n-2} x}, n \neq 1$
92. $\int \cos x d x=\sin x$
93. $\int \cos ^{2} x d x=\frac{1}{2}(x+\sin x \cos x)$
94. $\int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x$
95. $\int \frac{d x}{\cos ^{n} x}=\frac{\sin x}{(n-1) \cos ^{n-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\cos ^{n-2} x}, \quad n \neq 1$
96. $\int \sin ^{n} x \cos x d x=\frac{\sin ^{n+1} x}{n+1}$
97. $\int \cos ^{n} x \sin x d x=-\frac{\cos ^{n+1} x}{n+1}$
98. $\int \sin ^{2} x \cos ^{2} x d x=\frac{4 x-\sin 4 x}{32}$
99. $\int \frac{d x}{\sin x \cos x}=\log _{\theta} \tan x$
100. $\int_{1} \sin ^{r} x \cos ^{8} x d x=\frac{\cos ^{s-1} \times \sin ^{r+1} x}{r+s}+\frac{s-1}{r+s} \int \sin ^{r} \times \cos ^{-2} x d x$, $r+s \neq 0$
$-\frac{\sin ^{r-1} \times \cos ^{a+1} x}{r+s}+\frac{r-1}{r+s} \int \sin ^{r-2} \times \cos ^{s} x d x$,
$r+s \neq 0$ $=\frac{\sin ^{r+1} \times \cos ^{s+1} x}{r+1}+\frac{s+r+2}{r+1} \int \sin ^{r+2} \times \cos ^{8} x d x$, $r \neq-1$
$=-\frac{\sin ^{r+1} \times \cos ^{s+1} x}{s+1}$
$+\frac{s+r+2}{s+1} \int \sin ^{r} \times \cos ^{2+2} x d x, \quad s \neq-1$
101. $\int \tan x d x=-\log _{e} \cos x$
102. $\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x$
103. $\int \cot x d x=\log _{e} \sin x$
104. $\int \cot ^{n} x d x=-\frac{\cot ^{n-1} x}{n-1}-\int \cot ^{n-2} x d x$
105. $\int \sec x d x=\log _{e}(\sec x+\tan x)$
106. $\int \sec ^{2} x d x=\tan x$
107. $\int \sec ^{n} x d x=\frac{\sin x}{(n-1) \cos ^{n-1} x}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x, n \neq 1$

Integral calculus continued
108. $\int \csc ^{2} x d x=-\cot x$
109. $\int \csc x d x=\log _{e}(\csc x-\cot x)$
110. $\int \csc ^{n} x d x=\frac{\cos x}{-11 \sin ^{n-1} x}+\frac{n-2}{n-1} \int \csc ^{n-2} x d x, n \neq 1$
$111 \int \sec ^{n} x \tan x d x=\frac{\sec ^{n} x}{n}$
112. $\left.\int \csc ^{n} x \cot x d x=-\frac{\csc ^{n} x}{n} \right\rvert\,$
113. $\int \tan ^{n} \times \sec ^{2} x d x=\frac{\tan ^{n+1} x}{n+1}$
114. $\int \cot ^{n} x \csc ^{2} x d x=-\frac{\cot ^{n+1} x}{n+1}$
115. $\int \frac{d x}{a+b \sin x}=\frac{-1}{\sqrt{a^{2}-b^{2}}} \sin ^{-1} \frac{b+a \sin x}{a+b \sin x}$, $a^{2}>b^{2}$ $=\frac{+1}{\sqrt{b^{2}-a^{2}}} \log _{e} \frac{b+a \sin x-\sqrt{b^{2}-a^{2}}(\cos x)}{a+b \sin x}$. $b^{2}>a_{2}$
116. $\int \frac{d x}{a+b \cos x}=-\frac{1}{\sqrt{a^{2}-b^{2}}} \sin ^{-1}\left(\frac{b+a \cos x}{a+b \cos x}\right), \quad a>b>0$

$$
\begin{aligned}
& =\frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \sin ^{-1}\left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{a+b \cos x}\right), a>b>0 \\
& =\frac{1}{\sqrt{a^{2}-b^{2}}} \cdot \tan ^{-1}\left(\frac{\sqrt{a^{2}-b^{2}} \cdot \sin x}{b+a \cos x}\right), a>b>0 \\
& =\frac{1}{\sqrt{b^{2}-a^{2}}} \log _{e}\left(\frac{b+a \cos x+\sqrt{b^{2}-a^{2}} \sin x}{a+b \cos x}\right) \\
& \quad \text { when } b^{2}>a^{2}, a<0
\end{aligned}
$$

117. $\int \sqrt{1-\cos x} d x=-2 \sqrt{2} \cos \frac{x}{2}$

## Integral calculus continued

118. $\int \sqrt{(1-\cos x)^{3}} d x=\frac{4 \sqrt{2}}{3}\left(\cos ^{3} \frac{x}{2}-3 \cos \frac{x}{2}\right)$
119. $\int x \sin x d x=\sin x-x \cos x$
120. $\int x^{2} \sin x d x=2 x \sin x+\left(2-x^{2}\right) \cos x$
121. $\int x \cos x d x=\cos x+x \sin x$
122. $\int x^{2} \cos x d x=2 x \cos x+\left(x^{2}-2\right) \sin x$

## Inverse trigonometric integrals

123. $\int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{2}}$
124. $\int \cos ^{-1} x d x=x \cos ^{-1} x-\sqrt{1-x^{2}}$
125. $\int \tan ^{-1} x d x=x \tan ^{-1} x-\log _{e} \sqrt{1+x^{2}}$
126. $\int \cot ^{-1} x d x=x \cot ^{-1} x+\log _{e} \sqrt{1+x^{2}}$
127. $\int \sec ^{-1} x d x=x \sec ^{-1} x-\log _{e}\left(x+\sqrt{x^{2}-1}\right)$

$$
=x \sec ^{-1} x-\cosh ^{-1} x
$$

128. $\begin{aligned} \int \csc ^{-1} x d x & =x \csc ^{-1} x+\log _{e}\left(x+\sqrt{x^{2}-1}\right. \\ & =x \csc ^{-1} x+\cosh ^{-1} x\end{aligned}$

$$
=x \csc ^{-1} x+\cosh ^{-1} x
$$

## Definite integrals

129. $\int_{0}^{\infty} \frac{a d x}{a^{2}+x^{2}}=\frac{\pi}{2}$, if $a>0 ;=0$, if $a=0 ;=-\frac{\pi}{2}$, if $a<0$
130. $\int_{0}^{\infty} x^{n-1} e^{-x} d x=\int_{0}^{1}\left[\log \frac{1}{x}\right]^{n-1} d x \equiv \Gamma(n)$

* $\boldsymbol{\Gamma}(\mathrm{n})=$ gamma function

131. $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x=\int_{0}^{\infty} \frac{x^{m-1} d x}{(1+x)^{m+n}}=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
132. $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}, n>-1$
133. $\int_{0}^{\infty} \frac{\sin m x d x}{x}=\frac{\pi}{2}$, if $m>0 ;=0$, if $m=0 ;=-\frac{\pi}{2}$, if $m<0$
134. $\int_{0}^{\infty} \frac{\sin x \cdot \cos m x d x}{x}=0$, if $m<-1$ or $m>1$; $=\frac{\pi}{4}$, if $m=-1$ or $m=1 ;=\frac{\pi}{2}$, if $-1<m<1$
135. $\int_{0}^{\infty} \frac{\sin ^{2} x d x}{x^{2}}=\frac{\pi}{2}$
136. $\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}$
137. $\int_{0}^{\infty} \frac{\cos m x d x}{1+x^{2}}=\frac{\pi}{2} \cdot e^{|-m|}, \quad m>0$
138. $\int_{0}^{\infty} \frac{\cos x d x}{\sqrt{x}}=\int_{0}^{\infty} \frac{\sin x d x}{\sqrt{x}}=\sqrt{\frac{\pi}{2}}$
139. $\int_{0}^{\infty} \mathrm{e}^{-a^{2} x^{2}} d x=\frac{1}{2 a} \sqrt{\pi}=\frac{1}{2 a} \Gamma\left(\frac{1}{2}\right), \quad a>0$
140. $\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$
141. $\int_{0}^{\infty} e^{-x^{2}-a^{2} / x^{2}} d x=\frac{e^{-2 a \sqrt{\pi}}}{2}, a>0$
142. $\int_{0}^{\infty} \mathrm{e}^{-n x} \sqrt{x} d x=\frac{1}{2 n} \sqrt{\frac{\pi}{n}}$
143. $\int_{0}^{\infty} \frac{e^{-n x}}{\sqrt{x}} d x=\sqrt{\frac{\pi}{n}}$

* $I^{\prime}(n)=$ gamma function

610

Integral calculus continued
144. $\int_{0}^{\infty} \mathrm{e}^{-a^{2} x^{2}} \cos b x d x=\frac{\sqrt{\pi} \cdot \mathrm{e}^{-b^{2} / 4 a^{2}}}{2 a}, a>0$
145. $\int_{0}^{1 \log _{e} x} \frac{1-x}{1-\frac{\pi^{2}}{6}}$
146. $\int_{0}^{1} \frac{\log _{e} x}{1+x} d x=-\frac{\pi^{2}}{12}$
147. $\int_{0}^{1} \frac{\log _{e} x}{1-x^{2}} d x=-\frac{\pi^{2}}{8}$
148. $\int_{0}^{1} \log _{e}\left(\frac{1+x}{1-x}\right) \cdot \frac{d x}{x}=\frac{\pi^{2}}{4}$
149. $\int_{0}^{1} \frac{\log _{e} x d x}{\sqrt{1-x^{2}}}=-\frac{\pi}{2} \log _{e} 2$
150. $\int_{0}^{1} \frac{\left(x^{p}-x^{q}\right) d x}{\log _{e} x}=\log _{e} \frac{p+1}{q+1}, p+1>0, q+1>0$
151. $\int_{0}^{1}(\log x)^{n} d x=(-1)^{n} \cdot n!$
152. $\int_{0}^{1} \frac{d x}{\sqrt{\log _{e}\left(\frac{1}{x}\right)}}=\sqrt{\pi}$
153. $\int_{0}^{1} x^{m}\left(\log _{e} \frac{1}{x}\right)^{n} d x=\frac{\Gamma(n+1)}{(m+1)^{n+1}}, m+1>0, n+1>0$
154. $\int_{0}^{\infty} \log _{e}\left(\frac{e^{x}+1}{e^{x}-1}\right) d x=\frac{\pi^{2}}{4}$
155. $\int_{0}^{\frac{\pi}{2}} \log _{e} \sin x d x=\int_{0}^{\frac{\pi}{2}} \log _{c} \cos x d x=-\frac{\pi}{2} \log _{c} 2$
156. $\int_{0}^{\pi} x \cdot \log _{e} \sin x d x=-\frac{\pi^{2}}{2} \log _{e} 2$
157. $\int_{0}^{\pi} \log _{e}(a \pm b \cos x) d x=\pi \log _{e}\left(\frac{a+\sqrt{a^{2}-b^{2}}}{2}\right), a \geqslant b$

[^62]
## Integral calculus continued

158. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{2}\left(\frac{\pi}{2} \sin x\right) d x}{\cos x}=1.22$

## Table of Laplace fransforms

## Symbols

Constants are real unless otherwise specified.

$$
\begin{aligned}
R(x) & =\text { "real part of } x " \\
j & =\sqrt{-1} \\
f(t) & =0, t<0 \\
S_{-1}(t) & =\text { unit step } \\
& =0, t<0 \\
& =1, t>0 \\
S_{0}(t) & =\text { unit impulse } \\
& =0, t<0 \\
& =0, t>0 \\
& =\infty, \text { if } t=0, \text { and } \int_{-\infty}^{\infty} S_{0}(t) d t=1
\end{aligned}
$$

Note: Let

$$
\begin{aligned}
f(t) & =0, t<0 \\
& =g(t), 0<t<\delta \quad \lim _{\delta \rightarrow 0} \int_{0}^{\delta} g(t) d t=1 \\
& =0, t>\delta
\end{aligned}
$$

$$
\text { then } S_{0}(t)=\operatorname{Lim}_{\delta \rightarrow 0} f(t)
$$

$$
\begin{aligned}
\omega & =2 \pi \times \text { frequency } \\
m, k & =\text { any positive integers } \\
\gamma & =\text { period of a periodic function }(t>0) \\
\Gamma(x) & =\text { gamma function } \\
& =\int_{0}^{\infty} e^{-u} u^{x-1} d u \\
\Gamma(k) & =(k-1)!, k=\text { positive integer } \\
J_{0}(x) & =\text { Bessel function, first kind, zero order } \\
J_{k}(x) & =\text { Bessel function, first kind, kth order }
\end{aligned}
$$

612

Table of Laplace transforms continued


[^63]MATHEMATICAL FORMULAS 613

Table of Laplace fransforms continued

lime function	transform
12. Unit step	
$S_{-1}(t)$	$\frac{1}{p}$
13. Unit impulse	
$S_{0}(1)$	1
14. Unit cisoid	
$e^{j \omega t}$	$\frac{1}{p-j \omega}$
15. 1	$\frac{1}{p^{2}}$
16. ${ }^{\text {k }}$	$\frac{k!}{p^{k+1}}$
17. 1 p, R(v) $>-1$	$\frac{\Gamma^{\prime}(v+11}{p^{v+1}}$
18. $1^{\mathbf{k}} \mathrm{e}^{-a t}$	$\frac{k!}{(p+o)^{k+1}}$
19. $1 / \sqrt{\pi i}$	$1 / \sqrt{\rho}$
20. $\frac{(2 t)^{k}}{1 \cdot 3 \cdot 5 \cdots(2 k-1) \sqrt{\pi i}}$	$\frac{1}{\rho^{k} \sqrt{\rho}}$
21. $e^{a t}$	$\frac{1}{p-0}$
22. $\frac{1}{a}\left(e^{a l}-1\right)$	$\frac{1}{p(p-\alpha)}$
23. $\sin$ at	$\frac{o}{p^{2}+\sigma^{2}}$
24. cos at	$\frac{p}{p^{2}+a^{2}}$
25. $J_{0}(a)$	$\frac{1}{\sqrt{\rho^{2}+\sigma^{2}}}$
26. $J_{k}(0)$	$\frac{1}{r}\left(\frac{r-p}{a}\right)^{k}, \quad r^{2}=p^{2}+a^{2}$

## 614

## Series

## Maclaurin's theorem

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{1.2} f^{\prime \prime}(0)+\ldots+\frac{x^{n}}{n!} f^{n}(0)+\ldots
$$

## Taylor's theorem

$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots$.
$f(x+h)=f(x)+f^{\prime}(x) \cdot h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\ldots+\frac{f^{n}(x)}{n!} h^{n}+\ldots$.

## Miscellaneous

$$
\left.\begin{array}{l}
\log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots .|x|<1 \\
e^{x}=1+x+\frac{x_{2}}{2!}+\frac{x^{3}}{3!}+\ldots,|x|<\infty \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots . \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots . \\
\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots .|x|<\infty ; x \text { in radians } \\
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots .
\end{array}\right\}|x|<\infty
$$

For $n=0$ or a positive integer, the expansion of the Bessel function of the first kind, $n$th order, is given by the convergent series,

$$
\begin{aligned}
J_{n}(x)=\frac{x^{n}}{2^{n} n!}\left[1-\frac{x^{2}}{2(2 n+2)}\right. & +\frac{x^{4}}{2 \cdot 4(2 n+2)(2 n+4)} \\
& \left.-\frac{x^{6}}{2 \cdot 4 \cdot 6(2 n+2)(2 n+4)(2 n+6)}+\ldots\right]
\end{aligned}
$$

and
$J_{-n}(x)=(-1)^{n} J_{n}(x)$
Note: $0!=1$

Series continued

## Binomial series

See "Binomial theorem," p. 583.

$$
\begin{aligned}
\tan x & =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\ldots,|x|<\frac{\pi}{2} \\
\cot x & =\frac{1}{x}-\frac{x}{3}-\frac{x^{3}}{45}-\frac{2 x^{5}}{945}-\frac{x^{7}}{4725}-\ldots, \quad|x|<\pi \\
\arcsin x & =x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\ldots,|x|<1 \\
\arctan x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots, \quad|x|<1 \\
\operatorname{arc} \sinh x & =x-\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\ldots,|x|<1 \\
\operatorname{arctanh} x & =x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots, \quad|x|<1
\end{aligned}
$$

## Vector-analysis formulas

## Rectangular coordinates

In the following, vectors are indicated in bold-faced type.
Associative law: For addition

$$
a+(b+c)=(a+b)+c=a+b+c
$$

Commutative law: For addition
$\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}$
where
$\mathbf{a}=\mathbf{a}_{1}$
$a=$ magnitude of $a$
$\boldsymbol{a}_{1}=$ unit vector in direction of $\boldsymbol{a}$
Scalar, or "dot" product

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\mathbf{b} \cdot \mathbf{a} \\
& =a b \cos \theta
\end{aligned}
$$

where $\theta=$ angle included by $\mathbf{a}$ and $\boldsymbol{b}$.

616

Vector-analysis formulas

Vector, or "cross" product
$\boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \mathbf{a}$
$=\mathrm{ab} \sin \theta \cdot \mathbf{c}_{1}$
where
$\theta=$ angle swept in rotating $\mathbf{a}$ into $\mathbf{b}$
$\boldsymbol{c}_{1}=$ unit vector perpendicular to plane of $\boldsymbol{a}$ and $\boldsymbol{b}$, and directed in the sense of travel of $a$ right-hand screw rotating from $\boldsymbol{a}$ to $\boldsymbol{b}$ through the angle $\theta$.

Distributive law for scalar multiplication
$\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
Distributive law for vector multiplication
$\mathbf{a} \times(b+c)=a \times b+a \times c$

## Scalar triple product

$\mathbf{a} \cdot \boldsymbol{b} \times \mathbf{c}=\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}=\mathbf{c} \cdot \mathbf{a} \times \mathbf{b}=\mathbf{b} \cdot \mathbf{c} \times \mathbf{a}$
Vector triple product

$$
\begin{aligned}
& \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\
&(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\
&(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \times \mathbf{b} \cdot \mathbf{d}) \mathbf{c}-(\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}) \mathbf{d} \\
& \nabla=\text { operator "del" } \\
& \equiv \mathbf{i} \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
\end{aligned}
$$

where $\mathbf{i}, \boldsymbol{j}, \boldsymbol{k}$ are unit vectors in directions of $x, y, z$ coordinates, respectively.

$$
\operatorname{grad} \phi=\nabla \phi=i \frac{\partial \phi}{\partial x}+j \frac{\partial \phi}{\partial y}+k \frac{\partial \phi}{\partial z}
$$

$\operatorname{grad}(\phi+\psi)=\operatorname{grad} \phi+\operatorname{grad} \psi$

$$
\begin{aligned}
\operatorname{grad}(\phi \psi) & =\phi \operatorname{grad} \psi+\psi \operatorname{grad} \phi \\
\text { curl } \operatorname{grad} \phi & =0 \\
\operatorname{div} \mathbf{a} & =\nabla \cdot \mathbf{a}=\frac{\partial a_{x}}{\partial x}+\frac{\partial a_{y}}{\partial y}+\frac{\partial a_{z}}{\partial z}
\end{aligned}
$$

where $a_{x}, a_{y}, a_{z}$ are the components of $\mathbf{a}$ in the directions of the respcctive coordinate axes.

$$
\begin{aligned}
\operatorname{div}(\boldsymbol{a}+\boldsymbol{b}) & =\operatorname{div} \boldsymbol{a}+\operatorname{div} \boldsymbol{b} \\
\text { curl } \boldsymbol{a} & =\nabla \times \boldsymbol{a} \\
& =\boldsymbol{i}\left(\frac{\partial a_{z}}{\partial y}-\frac{\partial \alpha_{y}}{\partial z}\right)+\boldsymbol{j}\left(\frac{\partial \alpha_{x}}{\partial z}-\frac{\partial{a_{z}}_{z}}{\partial x}\right)+\boldsymbol{k}\left(\frac{\partial{a_{y}}_{\partial x}}{\partial x}-\frac{\left.\partial{a_{x}}^{\partial y}\right)}{}\right. \\
& =\left|\begin{array}{lll}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
a_{x} & a_{y} & a_{z}
\end{array}\right|
\end{aligned}
$$

$\operatorname{curl}(\phi \mathbf{a})=\operatorname{grad} \phi \times \mathbf{a}+\phi$ curl $\mathbf{a}$
div curl $a=0$
$\operatorname{div}(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{b} \cdot$ curl $\boldsymbol{a}-\mathbf{a} \cdot$ curl $\boldsymbol{b}$
$\nabla^{2} \equiv$ Laplacian
$\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$
in rectangular coordinates.
curl curl $\boldsymbol{a}=\operatorname{grad} \operatorname{div} \mathbf{a}-\left(i \nabla^{2} \alpha_{x}+j \nabla^{2} a_{y}+\boldsymbol{k} \nabla^{2} a_{z}\right)$
In the following formulas $\tau$ is a volume bounded by a closed surface $S$. The unit vector $\boldsymbol{n}$ is normal to the surface $S$ and directed positively outwards.
$\int_{\tau} \nabla \phi \cdot d \tau=\int_{S} \phi \boldsymbol{n} d S$
$\int_{\sigma} \nabla \cdot \boldsymbol{a} d \tau=\int_{S} \boldsymbol{a} \cdot \boldsymbol{n} d S \quad$ (Gauss' theorem)
$\int_{\tau} \nabla \times \boldsymbol{a} d \tau=\int_{S} \boldsymbol{n} \times \boldsymbol{a} d S$
$\int_{\tau}\left(\psi \nabla^{2} \phi-\phi \nabla^{2} \psi\right) d \tau=\int_{S}\left(\psi \frac{\partial \phi}{\partial n}-\phi \frac{\partial \psi}{\partial n}\right) d S$
where $\partial / \partial n$ is the derivative in the direction of the positive normal to $S$ (Green's theorem).

## 618

Vector-analysis formulas continued

In the two following formulas $S$ is an open surface bounded by a contour $C$, with distance along $C$ represented by $s$.

$$
\begin{aligned}
& \int_{S} n \times \nabla \phi d S=\int_{C} \phi d s \\
& \int_{S} \nabla \times \mathbf{a} \cdot \boldsymbol{n} d S=\int_{C} \mathbf{a} \cdot d \mathbf{d} \quad \text { (Stokes theorem) }
\end{aligned}
$$

where $\boldsymbol{s}=s \mathbf{s}_{1}$, and $\mathbf{s}_{1}$ is a unit vector in the direction of $s$.

## Gradient, divergence, curl, and Laplacian in coordinate systems other than rectangular

Cylindrical coordinates: $(\rho, \phi, z)^{*}$, unit vectors $\rho_{1}, \phi_{1}, k$, respectively, $\operatorname{grad} \psi=\nabla \psi=\frac{\partial \psi}{\partial \rho} \rho_{1}+\frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \phi_{1}+\frac{\partial \psi}{\partial z} k$

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{a}=\nabla \cdot \boldsymbol{a}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho a_{\rho}\right)+\frac{1}{\rho}\left(\frac{\partial a_{\phi}}{\partial \phi}\right)+\frac{\partial a_{z}}{\partial z} \\
& \begin{aligned}
& \operatorname{curl} \mathbf{a}=\nabla \times \mathbf{a}=\left(\frac{1}{\rho} \frac{\partial a_{z}}{\partial \phi}-\frac{\partial a_{\phi}}{\partial z}\right) \rho_{1}+\left(\frac{\partial a_{\rho}}{\partial z}-\frac{\partial a_{z}}{\partial \rho}\right) \phi_{1} \\
&+\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho a_{\phi}\right)-\frac{1}{\rho} \frac{\partial a_{\rho}}{\partial \phi}\right] \mathfrak{k}
\end{aligned}
\end{aligned}
$$

$$
\nabla^{2} \psi=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}
$$

Spherical coordinates: $(r, \theta, \phi)$, unit vectors $r_{1}, \theta_{1}, \phi_{1}$
$r=$ distance to origin
$\theta=$ polar angle
$\phi=$ azimuthal angle
$\operatorname{grad} \psi=\nabla \psi=\frac{\partial \psi}{\partial r} \boldsymbol{r}_{1}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \epsilon_{1}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \phi_{1}$

$$
\begin{aligned}
& \operatorname{div} \mathbf{a}=\nabla \cdot \mathbf{a}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} a_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(a_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial a_{\phi}}{\partial \phi} \\
& \text { curl } \mathbf{a}=\nabla \times \mathbf{a}= \frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(a_{\phi} \sin \theta\right)-\frac{\partial a_{\theta}}{\partial \phi}\right] r_{1} \\
&+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial a_{r}}{\partial \phi} \frac{\partial}{\partial r}\left(r a_{\phi}\right)\right] 0_{1} \\
&\left.+\frac{1}{r}\left[\left.\frac{\partial}{\partial r} \right\rvert\, r a_{\theta}\right)-\frac{\partial a_{r}}{d \theta}\right] \phi_{1}
\end{aligned}
$$

Vector-analysis formulas continued

$$
\nabla^{2} \psi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}
$$

## Orthogonal curvilinear coordinates

## Coordinates: <br> $u_{1}, u_{2}, u_{3}$

Metric coefficients: $\left.h_{1}, h_{2}, h_{3} I d s^{2}=h_{1}{ }^{2} d u_{1}{ }^{2}+h_{2}{ }^{2} d u_{2}{ }^{2}+h_{3}{ }^{2} d u_{3}{ }^{2}\right)$
Unit vectors: $\quad i_{1}, i_{2}, i_{3}\left(d \mathbf{s}=\boldsymbol{i}_{1} h_{1} d u_{1}+i_{2} h_{2} d u_{2}+i_{3} h_{3} d u_{3}\right)$
$\operatorname{grad} \psi=\nabla \psi=\frac{1}{h_{1}} \frac{\partial \psi}{\partial v_{1}} i_{1}+\frac{1}{h_{2}} \frac{\partial \psi}{\partial v_{2}} i_{2}+\frac{1}{h_{3}} \frac{\partial \psi}{\partial u_{3}} i_{3}$

$$
\begin{aligned}
\operatorname{div} \boldsymbol{a}=\nabla \cdot \boldsymbol{a}= & \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} a_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{3} h_{1} a_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} a_{3} \mid\right]\right. \\
\operatorname{cur} \mid \mathbf{a}=\nabla \times \boldsymbol{a}= & \frac{1}{h_{2} h_{3}}\left[\frac{\partial}{\partial u_{2}}\left(h_{3} a_{3}\right)-\frac{\partial}{\partial u_{3}}\left(h_{2} a_{2}\right)\right] i_{1} \\
& +\frac{1}{h_{3} h_{1}}\left[\frac{\partial}{\partial u_{3}}\left(h_{1} a_{1} \left\lvert\,-\frac{\partial}{\partial u_{1}}\left(h_{3} a_{3}\right)\right.\right] i_{2}\right. \\
& +\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} a_{2}\right)-\frac{\partial}{\partial u_{2}}\left(h_{1} a_{1}\right)\right] i_{3} \\
= & \left.\frac{1}{h_{1} h_{2} h_{3}} \left\lvert\, \begin{array}{lll}
h_{1} i_{1} & h_{2} i_{2} & h_{3} i_{3} \\
\frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
h_{1} a_{1} & h_{2} a_{2} & h_{3} a_{3}
\end{array}\right.\right]
\end{aligned}
$$

$$
\nabla^{2} \psi=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \phi}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial \phi}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \phi}{\partial u_{3}}\right)\right]
$$

Common logarithms of numbers and proportional parts

	0	1	2	3	4	5	6	7	8	9	proportional parts							
											1	2	3	4	5	6	7	89
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374		8	12	17		25	29	3337
11	0414	0453	0492	0531	0569	0807	0645	0682	0719	0755		8	11	15	19	23	26	$30 \quad 34$
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106		7	10	14	17	21	24	2831
13	1139	1173	1208	1239	1271	1303	1335	1367	1399	1430		6	10	13	16	19	23	2629
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	2427
15	1781	1790	1818	1847	1875	1903	1931	1959	1987	2014	3		8	11	14	17	20	2223
16	2041	2088	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	2124
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	2022
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	1921
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	1820
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17 19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	,	8	10	12	14	1618
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	1517
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	$15 \quad 17$
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	1416
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133		3	5	7	9	10	12	1415
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298		3	5	7	8	10	11	1315
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	1314
28	4472	4487	4502	4518	4533	4548	4584	4579	4594	4609		3	5	6	8	9	11	1214
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	1213
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900		3	4	6	7	9	10	1113
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038		3	,	6	7	8	10	1112
32	5051	5085	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	1112
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302		3	4	5	6	8	9	1012
34	5315	5328	5340	5353	5366	5378	5391	5403	5418	5428	1	3	4	5	6	8	9	1011
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551		2	4	5		7	9	1011
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670		2	4	5	6	7	8	1011
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786		2	3	5	\%	7	8	910
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899		2	3	5	6	7	8	910
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	910
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	7	910
41	8128	8138	8149	8180	6170	6180	8191	6201	6212	6222		2	3	4	5	6	7	8
42	6232	6243	8253	8263	6274	8284	8294	6304	6314	6325	1	2	3	4	5	6	7	-
43	6335	6345	6355	6365	6375	8385	6395	6405	6415	6425	1	2	3	4	5	6	7	8
44	8435	6444	6454	6464	6474	6484	6493	8503	8513	6522	1	2	3	4	5	6	7	8
45	6532	6542	6531	6561	6571	6580	6590	6599	6609	6618		2	3	4	5	6	7	8
46	6628	6637	6646	6658	6685	6675	6884	6693	6702	6712		2	3	4	5	6	7	7
47	6721	6730	6739	6749	8758	8787	8778	6785	6794	6803		2	3	4	5	5	6	78
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	78
51	7076	7084	7093	7101	7110	7118	7128	7135	7143	7152	1	2	3	,	4	5	6	78
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235		2	2	3	4	5	6	77
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7318	I	2	2	3	4	5	\%	67
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7398	1	2	2	3	4	5	6	6

Common logarithms of numbers and proportional parts

	0	1	2	3	4	5	6	7	8	9	proportional parts							
											12	23	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	12	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	12	2	3	4	5	5		7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	12	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	11	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	11	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	11	2	3	4	4	5		6
61	7853	7880	7868	7875	7882	7889	7896	7903	7910	7917	11	2	3	4	4	5	8	6
82	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	11	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	11	2	3	3	4	5		6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	11	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	11	2	3	3	4	5		6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	11	2	3	3	4	5		6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	11	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	11	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8.426	8432	8439	8445	11	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	11	2	2	3	4	4		6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	11	2	2	3	4	4		5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	11	2	2	3	4	4		5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	11	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	11	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	11	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	11	2		3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	11	2	.	3	3	4		5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	11	2	2	3	3	4	4	5
79	8976	8932	8987	8993	8998	9004	9009	9015	9020	9025	11	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	11	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	11	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	11	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	11	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	11	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	11	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	11	2	2	3	3	4	4	J
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	01	1	2	2	3	3	4	
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	01	1		2	3	3	4	,
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	01	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	01	1	2	2	3	3	,	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	01	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	01	,	2	2	3	3	,	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	01	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	01	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	01	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	01	,	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	01	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	01	1	2	2	3	3	3	4

Natural trigonometric functions
for decimal fractions of a degree

deg	$\sin$	cos	tan	cot		deg	$\sin$	cos	tan	col	
0.0	. 00000	1.0000	. 00000	$\infty$	90.0	6.0	. 10453	0.9945	.10510	9.514	84.0
. 1	. 00175	1.0000	. 00175	573.0	. 9	. 1	. 10626	. 9943	. 10687	9.357	84.0
. 2	. 00349	1.0000	. 00349	286.5	. 8	. 2	. 10800	. 9942	. 10863	9.205	8
. 3	. 00524	1.0000	. 00524	191.0	. 7	. 3	. 10973	. 9940	. 11040	9.058	. 7
. 4	. 00698	1.0000	. 00698	143.24	.6	. 4	. 11147	.9938	. 11217	8.915	. 6
5	. 00873	1.0000	. 00873	114.59	. 5	. 5	. 11320	9936	. 11394	8.777	. 5
. 8	. 01047	0.9999	. 01047	95.49	. 4	. 6	. 11494	. 9934	. 11570	8.643	. 4
. 7	. 01222	. 9999	. 01222	81.85	. 3	. 7	. 11667	. 9932	. 11747	8.513	. 3
. 8	. 01396	. 9999	. 01396	71.62	. 2	8	. 11840	. 9930	. 11924	8.386	. 2
. 9	. 01571	. 9999	. 01571	83.66	.1	. 9	. 12014	.9928	. 12101	8.264	. 1
1.0	. 01745	0.9998	. 01746	57.29	89.0	7.0	. 12187	0.9925	. 12278	8.144	83.0
. 1	. 01920	.9998	. 01920	52.08	. 9	.1	. 12360	. 9923	. 12458	8.028	. 9
.2	. 02094	. 9998	. 02095	47.74	8	. 2	. 12533	. 9921	. 12833	7.916	. 8
. 3	. 02269	. 99997	. 02269	44.07	. 7	. 3	. 12706	. 9919	. 12810	7.806	. 7
.4	. 02443	. 9997	. 02444	40.92	. 6	. 4	. 12880	. 9917	. 12988	7.700	. 6
. 5	. 02618	. 9997	. 02619	38.19	. 5	. 5	. 13053	. 9914	. 13165	7.596	. 5
. 6	. 02792	. 9996	. 02793	35.80	.4	. 6	. 13226	. 9912	. 13343	7.495	. 4
. 7	. 02967	. 9996	. 02968	33.69	. 3	. 7	. 13399	. 9910	. 13521	7.396	. 3
. 8	. 03141	. 9995	. 03143	31.82	. 2	. 8	. 13572	. 9907	. 13698	7.300	. 2
. 9	. 03316	. 9995	. 03317	30.14	. 1	.9	. 13744	. 9905	. 13876	7.207	. 1
2.0	. 03490	0.9994	. 03492	28.64	88.0	8.0	. 13917	0.9903	. 14054	7.115	82.0
.1	. 03684	. 9993	. 03667	27.27	.9	. 1	. 14090	. 9900	. 14232	7.026	-820
. 2	. 03839	. 9993	. 03842	26.03	. 8	. 2	. 14283	. 9898	. 14410	6.940	. 8
. 3	. 04013	. 9992	. 04016	24.90	. 7	. 3	. 14436	. 9895	. 14588	6.855	. 7
. 4	. 04188	. 9991	. 04191	23.86	. 6	. 4	. 14608	. 9893	.14767	6.772	. 8
. 5	. 04362	. 9990	. 04366	22.90	. 5	. 5	. 14781	. 9890	. 14945	6.591	. 5
. 6	. 04536	. 9990	. 04541	22.02	. 4	. 6	. 14954	. 9888	. 15124	8.612	. 4
. 7	. 04711	. 9989	. 04716	21.20	. 3	. 7	. 15126	. 9885	. 15302	6.535	. 3
. 8	. 04885	. 9988	. 04891	20.45	. 2	. 8	. 15299	. 9882	. 15481	6.460	. 2
. 9	. 05059	. 9987	. 05066	19.74	.1	9	. 15471	. 9880	. 15660	6.386	. 1
3.0	. 05234	0.9986	. 05241	19.081	87.0	9.0	. 15643	0.9877	. 15838	6.314	
. 1	. 05408	. 8985	. 05416	18.464	. 9	. 1	. 15816	. 98874	. 16017	6.243	8.
.2	. 05582	.9984	. 05591	17.886	. 8	. 2	. 15988	. 9871	. 16196	6.174	. 8
. 3	. 05756	. 9983	. 05766	17.343	. 7	.3	. 16160	. 9869	. 16376	6.107	. 7
. 4	. 05931	. 9982	. 05941	16.832	. 6	.4	. 16333	. 9866	. 16555	6.041	. 6
.5	. 06105	. 9981	. 06116	16.350	. 5	. 5	. 16505	. 9883	. 16734	5.976	.5
.6	. 06279	. 9980	. 06291	15.895	. 4	. 8	. 16677	. 9850	. 16914	5.912	. 4
. 7	. 06453	. 9979	. 06467	15.464	3	. 7	. 16849	. 9857	. 17093	5.850	3
. 8	. 06627	. 9978	. 06642	15.056	. 2	. 8	. 17021	. 9854	. 17273	5.789	. 2
. 9	. 06802	. 9977	. 08817	14.869	. 1	. 9	.17193	. 9851	. 17453	5.730	. 1
4.0	. 06976	0.9976	. 06993	14.301	86.0	10.0	. 1736	0.9848	. 1763	5.671	80.0
. 1	. 07150	. 9974	. 07168	13.951	. 9	. 1	. 1754	. 9845	. 1781	5.614	. 9
. 2	. 07324	. 9973	. 07344	13.617	8	. 2	. 1771	. 9842	. 1799	5.558	. 8
. 3	. 07498	. 9972	. 07519	13.300	. 7	. 3	. 1788	. 9839	. 1817	5.503	. 7
. 4	. 07672	.9971	. 07695	12.996	. 6	. 4	. 1805	. 9836	. 1835	5.449	. 6
. 5	. 07846	. 9969	. 07870	12.706	. 5	. 5	. 1822	. 9833	. 1853	5.396	. 5
. 6	. 08020	. 9968	. 08046	12.429	.4	. 6	. 1840	. 9829	. 1871	5.343	.4
7	. 08194	. 9966	. 08221	12.163	. 3	. 7	. 1857	. 9826	. 1890	5.292	. 3
. 8	. 08368	. 9965	. 08397	11.909	. 2	. 8	. 1874	. 9823	. 1908	5.242	. 2
9	. 08542	. 9963	. 08573	11.684	. 1	. 9	. 1891	. 9820	. 1926	5.193	.1
5.0	. 08716	0.9962	. 08749	11.430	85.0	11.C	. 1908	0.9816	. 1944	5.145	79.0
. 1	-08889	. 9960	. 08925	11.205	. 9	. 1	. 1925	. 9813	. 1962	5.097	. 9
. 2	. 09063	. 9959	. 09101	10.988	. 8	. 2	. 1942	. 9810	. 1980	5.050	. 8
. 3	. 09237	. 9957	. 09277	10.780	. 7	. 3	. 1959	. 9806	. 1998	5.005	. 7
. 4	. 09411	. 9956	. 09453	10.579	. 6	. 4	. 1977	. 9803	. 2016	4.959	. 6
. 5	. 09585	. 9954	. 09629	10.385	. 5	. 5	. 1994	. 9799	. 2035	4.915	. 5
. 6	. 09758.	. 9952	. 09805	10.199	4	. 6	. 2011	. 9796	. 2053	4.872	. 4
7	. 09932	. 9951	. 09981	10.019	.3	.7	. 2028	. 9792	. 2071	4.829	. 3
. 8	. 10106	. 9949	. 10158	9.845	.2	8	. 2045	. 9789	. 2089	4.787	. 2
. 9	.10279	. 9947	. 10334	9.677	. 1	. 9	. 2062	. 9785	. 2107	4.745	. 1
6.0	. 10453	0.9945	.10510	9.514	84.0	12.0	. 2079	0.9781	. 2126	4.705	78.0
	605	*in	cot	Ian	deg		cos	sin	cot	tan	deg

Natural trigonometric functions
for decimal fractions of a degree continued

deg	$\sin$	cos	tan	cot		deg	$\sin$	cos	Ion	cot	
12.0	0.2079	0.9781	0.2126	4.705	78.0	18.0	0.3090	0.9511	0.3249	3.078	72.0
12.0	. 2096	. 9778	. 2144	4.665	. 9	. 1	3107	. 9505	. 3269	3.060	9
. 2	. 2113	. 9774	. 2162	4.825	. 8	. 2	. 3123	. 9500	. 32888	3.042	8
. 3	2130	. 9770	. 2180	4.585	. 7	. 3	. 3140	. 9494	. 3307	3.024	7
. 4	. 2147	. 9767	. 2199	4.548	. 6	4	. 3156	. 94889	. 3327	3.006	. 5
. 5	. 2164	. 9763	. 2217	4.511	. 5	. 5	. 3173	.9483	.3346 .3365	2.989	. 5
. 6	. 2181	. 9759	. 2235	4.474	. 4	. 6	. 3190	. 9478	. 3365	2.971 2.954	4
. 7	. 2198	. 9755	. 2254	4.437	. 3	. 7	. 3206	. 94472	. 3404	2.937	. 2
. 8	. 2215	. 9751	. 2272	4.402 4.360	. 2	. 8	. 3223 ( 3239	. 946461	. 34424	2.937 2.921	. 1
. 9	. 2233	. 9748	. 2290	4.368	.	. 9	. 3239	.9461	. 3424	2.92	
13.0	0.2250	0.9744	0.2309	4.331	77.0	19.0	0.3256	0.9455	0.3443	2.904	71.0
. 1	. 2267	. 9740	. 2327	4.297	. 9	. 1	. 3272	. 9449	. 3463	2.888	9
. 2	. 2284	. 9736	. 2345	4.264	. 8	. 2	. 3289	. 9444	.3482	2872	8
. 3	. 2300	. 9732	. 2364	4.230	7	. 3	. 3305	. 9438	.3502	2.856	7
. 4	. 2317	. 9728	2382	4.198	. 6	4	. 3322	. 9432	.3522	2.840	. 5
. 5	. 2334	. 9724	2401	4.165	. 5	5	. 3338	. 9426	. 3541	2.824	. 5
. 6	. 2351	. 9720	. 2419	4.134	. 4	. 6	. 3355	. 9421	. 3561	2.808	4
. 7	. 2368	. 9715	. 2438	4.102	3	. 7	. 3331	. 9415	. 3581	2.793	. 2
. 8	. 2385	. 9711	. 2456	4.071	. 2	. 8	.3387 .3404	. 9409	. 3600	2.778 2.762	. 1
. 9	. 2402	. 9707	. 2475	4.041	. 1	. 9	. 3404	. 9403	. 3620		.
14.0	0.2419	0.9703	0.2493	4.011	76.0	20.0	0.3420	0.9397	0.3640	2.747	70.0
14.0	. 2436	. 9699	. 2512	3.981	. 9	. 1	. 3437	. 9391	. 3659	2.733	. 9
. 2	. 2453	. 9694	. 2530	3.952	8	2	. 3453	. 9385	3679	2.718	8
. 3	. 2470	. 9690	. 2549	3.923	7	. 3	. 3469	. 9379	3699	2.703	. 7
. 4	2487	. 9686	. 2568	3.895	. 6	$\stackrel{5}{5}$	.3486	. 9373	. 3719	2.689	. 6
. 5	. 2504	. 9881	. 2586	3.867	. 5	5	. 3502	. 9367	. 3739	2.675	. 5
. 6	. 2521	. 9677	. 2605	3.839	4	0	. 3518	. 9361	. 3759	2.660	. 3
. 7	. 2538	. 9673	. 2623	3.812	. 3	7	3535	. 9354	. 3779	2.846	2
. 8	. 2554	. 9668	. 2642	3.785	. 2	. 8	. 3551	. 934848	.3799 .3819	2.633 2.619	. 2
. 9	. 2571	. 9664	. 2661	3.758	. 1	. 9	. 3567	9342	. 3819	2.619	.
15.0	0.2588	0.9659	0.2679	3.732	75.0	21.0	0.3584	0.9336	0.3839	2.605	69.0
. 1	. 2605	. 9655	. 2698	3.706	9	1	. 3600	. 9330	. 3859	2.592	. 9
. 2	. 2622	. 9650	. 2717	3.681	8	2	. 3616	. 9323	. 3879	2.578	8
. 3	. 2639	. 9646	2736	3.655	. 7	. 3	. 3633	. 9317	. 3899	2.565	. 7
4	. 2656	. 9641	2754	3.630	. 6	. 4	. 3649	.9311	. 3919	2.552	8
. 5	. 2672	. 9636	. 2773	3.606	. 5	. 5	. 3685	. 9334	-3939	2.539	4
6	. 2689	. 9632	2792	3.582	4	6	. 3681	. 9298	. 3959	2.526	. ${ }^{4}$
. 7	. 2706	. 9627	. 2811	3.558	. 3	7	. 3697	. 9291	. 3979	2.513	. 3
. 8	. 2723	. 9622	. 2830	3.534	- 2	8	. 3714	. 9285	. 4000	2.500	. 2
. 9	. 2740	. 9617	. 2849	3.511	. 1	. 9	. 3730	. 9278	. 4020	2.488	. 1
16.0	0.2756	0.9613	0.2867	3.487	74.0	22.0	0.3748	0.9272	0.4040	2.475	68.0
. 1	. 2773	. 9608	.2886	3.465	. 9	1	. 3762	. 9265	. 4061	2.463	. 8
. 2	. 2790	1.9603	. 2905	3.442	8	. 2	. 3778	. 9259	. 4081	2.450	. 7
. 3	. 2807	. 9598	. 2924	3.420	. 7	3	. 3795	. 9252	. 4101	2.438	7
. 4	. 2823	. 9593	. 2943	3.378	. 6	4	. 3811	. 9245	. 4122	2.426	. 6
. 5	. 2840	. 9588	. 2962	3.376	. 5	. 5	. 3827	. 9239	. 4142	2.414	. 5
. 6	. 2857	. 9583	. 2981	3.354	. 4	. 6	. 3843	. 9232	. 4163	2.402	4
. 7	. 2874	. 9578	. 3000	3.333	. 3	. 7	. 3859	. 9225	. 4183	2.391	. 3
. 8	. 2890	. 9573	. 3019	3.312	. 2	. 8	. 3875	. 9219	. 4204	2.379	.2
. 9	. 2907	. 9568	. 3038	3.291	. 1	. 9	. 3891	.9212	4224	2.367	. 1
17.0	0.2924	0.9563	0.3057	3.271	73.0	23.0	0.3907	0.9205	0.4245	2.356	67.0
17	. 2940	. 9558	. 3076	3.251	. 9	. 1	. 3923	.9198	. 4265	2.344	8
. 2	. 2957	. 9553	. 3096	3.230	. 8	. 2	. 3939	.9191	. 4286	2.333 2.322	. 7
. 3	. 2974	. 9548	. 3115	3.211	. 7	. 3	. 3955	. 9184	. 4307	2.322	. 7
4	. 2990	. 9542	. 3134	3.191	. 6	. 4	. 3971	. 9178	. 4327	2.311	. 6
. 5	. 3007	. 9537	. 3153	3.172	. 5	. 5	. 3987	. 9171	. 43.3	2.300	. 5
. 6	. 3024	. 9532	. 3172	3.152	4	. 6	. 4003	. 9164	. 4369	2.289	-
. 7	. 3040	. 9527	. 3191	3.133	. 3	7	. 4019	. 9157	. 4390	2.278 2.267	. 2
. 8	. 3057	. 9521	. 3211	3.115 3.096	. 2	. 8	.4035 .4051	.9150	. 4431	2.267 2.257	. 1
. 9	. 3074	.9516	. 3230	3.096	.	9	. 4051	914	. 4431		
18.0	0.3090	0.9511	0.3249	3.078	72.0	24.0	0.4067	0.9135	0.4452	2.246	66.0
							cos	sin	cot	tan	deg

## Natural trigonometric functions

for decimal fractions of a degree continued

deg	sin	cos	tan	col		deg	sin	cos	Ian	cot	
24.0	0.4067	0.9135	0.4452	2.246	66.0	30.0	0.5000	0.8660	0.5774	17321	
. 1	4083	. 9128	. 4473	2.236	. 9	,	. 5015	. 8652	. 5797	1.7251	60.0
${ }^{2}$	. 4099	. 9121	. 4494	2.225	. 8	. 2	. 5030	. 8643	. 5820	1.7182	. 8
. 3	. 4115	. 9114	. 4515	2.215	7	. 3	. 5045	. 8634	. 5844	1.7113	7
. 4	. 4131	. 9107	. 4536	2.204	. 6	. 4	. 5060	. 8625	. 5867	1.7045	. 6
. 5	. 4147	. 9100	. 4557	2.194	5	. 5	. 5075	. 8616	. 5890	1.6977	. 5
${ }^{6}$	. 4163	. 9092	. 4578	2.184	. 4	6	. 5090	. 8607	. 5914	1.6909	. 4
. 7	. 4179	. 9085	. 4599	2.174	. 3	7	. 5105	. 8599	. 5938	1.6842	. 3
. 8	4195	. 9078	. 4621	2.164	. 2	8	. 5120	. 8590	. 5961	1.6775	. 2
. 9	4210	. 9070	. 4642	2.154	. 1	. 9	. 5135	. 8581	. 5985	1.6709	. 1
25.0	0.4226	0.9063	0.4663	2.145	65.0	31.0	0.5150	0.8572	0.6009		
1	. 4242	. 9056	. 4684	2.135	. 9	. 1	. 5165	. 8563	. 6032	1.6577	9.9
2	: 4258	. 9048	. 4706	2.125	. 8	2	. 5180	. 8554	. 6056	1.6512	. 8
3	. 4274	. 9041	. 4727	2.116	. 7		. 5195	. 8545	. 6080	1.6447	. 7
. 4	. 4289	. 9033	. 4748	2.106		4	. 5210	. 8536	. 6104	1.6383	. 6
. 5	. 4305	. 9026	. 4770	2.097	. 5	. 5	. 5225	. 8526	. 6128	1.6319	. 5
.6	. 4321	. 9018	. 4791	2.087	4	6	. 5240	. 8517	. 6152	1.6255	. 4
7	. 4337	. 9011	. 4813	2.078	3	7	. 5255	. 8508	. 6176	1.6191	. 3
$.8$	. 4352	. 9003	. 4834	2.069	2	. 8	. 5270	. 8499	. 6200	1.6128	2
	. 4368	. 8996	. 4856	2.059	. 1	9	. 5284	. 8490	. 6224	1.6066	. 1
26.0	0.4384	0.8988	0.4877	2.050	64.0	32.0	0.5299	0.8480	0.8249	1.6003	58.0
1	. 4399	. 8980	. 4899	2.041	. 9	. 1	. 5314	. 8487	. 6273	1.5941	58.0
. 2	. 4415	. 8973	. 4921	2.032	. 8	. 2	. 5329	. 8462	. 6297	1.5880	. 8
3	. 4431	. 8965	. 4942	2.023	. 7	. 3	. 5344	. 8453	. 6322	1.5818	7
${ }^{4}$	. 4446	. 8957	. 4964	2.014	. 6	. 4	. 5358	. 8443	. 6346	1.5757	. 6
. 5	. 4462	. 8949	. 4986	2.006	. 5	. 5	. 5373	. 8434	. 6371	1.5697	. 5
. 6	. 4478	. 8942	. 5008	1.997	. 4	. 6	. 5388	. 8425	. 6395	1.5637	. 4
. 7	. 4493	. 8934	. 5029	1.988	. 3	. 7	. 5402	. 8415	. 6420	1.5577	. 3
$.8$	.4509 .4524	. 88926	. 5051	1.980	.2	. 8	. 5417	. 8406	. 6445	1.5517	. 2
		. 8918	. 5073	1.971	1	. 9	. 5432	. 8396	. 6469	1.5458	. 1
27.0	0.4540	0.8910	0.5095	1.963	63.0	33.0	0.5446				
. 1	. 4555	. 8902	. 5117	1.954	. 9	. 1	. 5461	. 8377	. 6519	1.5340	57.0
. 2	. 4571	. 8894	. 5139	1.946	. 8	. 2	. 5476	. 8368	. 6544	1.5282	. 8
.3	. 4586	. 8888	. 5161	1.937	. 7	. 3	. 5490	. 8358	. 6569	1.5224	. 7
${ }^{4}$	. 4602	. 8878	. 5184	1.929	. 6	4	. 5505	. 8348	. 6594	1.5166	. 6
. 5	. 4617	. 8870	. 5206	1.921	. 5	. 5	. 5519	. 8339	. 6619	1.5108	. 5
. 6	. 4633	. 8862	. 5228	1.913	4	. 6	. 5534	. 8329	. 6644	1.5051	. 4
. 7	. 4648	. 8854	. 5250	1.905	3	. 7	. 5548	. 8320	. 6669	1.4994	. 3
$\begin{aligned} & .8 \\ & .8 \end{aligned}$	. 4664	. 8846	. 5272	1.897	. 2	. 8	. 5563	. 8310	. 6694	1.4938	. 2
$.9$	. 4679	. 8838	. 5295	1.889	. 1	. 9	. 5577	. 8300	. 8720	1.4882	,
28.0	0.4695	0.8829	0.5317	1.881	62.0	34.0	0.5592	0.8290	0.6745	1.4826	56.0
1	. 4710	. 8821	. 5340	1.873	. 9	1		. 8281	-. 6771	1.4770	. 9
. 2	. 4726	. 8813	. 5362	1.865	8	. 2	. 5621	. 8271	. 6796	1.4715	. 8
. 3	. 4741	. 8805	5384	1.857	. 7	. 3	. 5635	. 8261	. 6822	1.4659	. 7
. 4	. 4756	. 8796	5407	1.849	. 6	. 4	. 5650	. 8251	. 6847	1.4605	. 6
. 5	. 4778	. 8788	5430	1.842	. 5	. 5	. 5664	.8241	. 6873	1.4550	. 5
. 6	.4787 .4802	.8780 .8771	. 54575	1.834 1.827	. 4	6 7	.5678 .5693	. 8231	. 6899	1.4496	4
. 8	. 4818	. 8763	. 5498	1.819	. 2	8	. 56973	. 82211	. 6924	1.4442	. 3
. 9	. 4833	. 8755	. 5520	1.811	. 1	. 9	. 5721	. 8202	. 6976	$\begin{aligned} & 1.4388 \\ & 1.4335 \end{aligned}$	. 2
29.0	0.4848	0.8746	0.5543	1.804	81.0	35.0			0.7002		
. 1	. 4883	. 8738	. 5556	1.797	. 9	. 1	. 5750	. 8181	. 7028	1.4229	. 9
. 2	. 4879	. 8729	. 5589	1.789	8	. 2	. 5764	. 8171	. 7054	1.4176	. 8
. 3	. 4894	. 8721	. 5612	1.782	7	. 3	. 5779	. 8161	. 7080	1.4124	. 7
${ }^{4}$	. 4909	. 8712	. 5635	1.775	. 6	4	. 5793	. 8151	. 7107	1.4071	. 6
. 5	. 49248	. 87804	. 5658	1.767	. 5	. 5	. 5887	. 8141	. 7133	1.4019	. 5
7	. 4955	. 8688	. 5704	1.760 1.753	. 3	. 7	. 5821	.8131 .8121	. 7159	1.3968   1.3916	${ }^{4}$
. 8	. 4970	. 8678	. 5727	1.746	2	. 8	. 5850	. 8111	. 7212	1.3865	. 2
. 9	. 4985	. 8669	. 5750	1.739	. 1	. 9	. 5864	. 8100	. 7239	1.3814	,
30.0	0.5000	0.8680	0.5774	1.732	60.0	36.0	0.5878	0.8090	0.7265	1.3764	54.0
	cos	$\sin$	cot	lan	deg		cos	sin	cot	10	deg

## Natural trigonometric functions

for decimal fractions of a degree continued

deg	sin	$\cos$	tan	cot		deg	$\sin$	$\cos$	tan	cot	
36.0	0.5878	0.8090	0.7265	1.3764	54.0	40.5	0.6494	0.7604	0.8541	1.1708	49.5
. 1	. 5892	. 8080	. 7292	1.3713	. 9	. 6	. 6508	. 7593	. 8571	1.1667	. 4
2	. 5906	. 8070	. 7319	1.3663	. 8	. 7	. 6521	. 7581	. 8801	1.1626	. 3
. 3	. 5920	. 8059	. 7346	1.3613	. 7	. 8	. 6534	. 7570	. 8632	1.1585	. 2
. 4	. 5934	. 8049	. 7373	1.3564	.6	. 9	. 6547	. 7559	. 8662	1.1544	. 1
. 5	. 5948	. 8039	. 7400	1.3514	. 5	41.0	0.6561	0.7547	0.8693	1.1504	49.0
. 6	. 5962	. 8028	. 7427	1.3465	4	. 1	. 6574	. 7533	. 8724	1.1463	. 9
7	. 5976	. 8018	. 7454	1.3416	3	. 2	. 6587	. 7524	. 8754	1.1423	. 8
. 8	. 5990	. 8007	. 7481	1.3367	2	. 3	. 6600	. 7513	. 8785	1.1383	. 7
. 9	. 6004	. 7997	. 7508	1.3319	.1	.4	. 6613	. 7501	. 8816	1.1343	. 6
37.0	0.8018	0.7986	0.7536	1.3270	53.0	. 5	. 6626	. 7490	. 8847	1.1303	. 5
. 1	. 6032	. 7976	. 7563	1.3222	. 9	. 6	. 6639	. 7478	. 8878	1.1263	. 4
. 2	. 6046	. 7965	. 7590	1.3175	. 8	. 7	. 6652	. 7466	. 8910	1.1224	. 3
. 3	. 6060	. 7955	. 7618	1.3127	. 7	. 8	. 6665	. 7455	. 8941	1.1184	. 2
. 4	. 6074	. 7944	. 7646	1.3079	. 6	. 9	. 6678	. 7443	. 8972	1.1145	. 1
. 5	. 6088	. 7934	. 7673	1.3032	. 5	42.0	0.6691	0.7431	0.9004	1.1106	48.0
. 6	. 8101	. 7923	. 7701	1.2985	. 4	. 1	. 6704	. 7420	. 9036	1.1067	. 9
. 7	. 6115	. 7912	. 7729	1.2938	. 3	\%	. 6717	. 7408	. 9067	1.1028	. 8
. 8	. 6129	. 7902	. 7757	1.2892	. 2	E	. 6730	. 7396	. 9099	1.0990	7
. 9	. 6143	. 7891	. 7785	1.2846	. 1	. 4	. 6743	. 7385	. 9131	1.0951	. 6
38.0	0.6157	0.7880	0.7813	1.2799	52.0	$\cdots$	. 6758	. 7373	. 9163	1.0913	. 5
. 1	. 6170	. 7869	. 7841	1.2753	. 9	. 6	. 6769	. 7361	. 9195	1.0875	. 4
. 2	. 6184	. 7859	. 7869	1.2708	. 8	. 7	. 6782	. 7349	. 9228	1.0837	. 3
. 3	. 6198	. 7848	. 7898	1.2662	. 7	. 8	. 6794	. 7337	. 9260	1.0799	. 2
.4	. 6211	. 7837	. 7926	1.2617	. 6	.	. 6807	. 7325	. 9293	1.0761	. 1
. 5	. 6225	. 7826	. 7954	1.2572	. 5	43.0	0.6820	0.7314	0.9325	1.0724	47.0
6	. 6239	. 7815	. 7983	1.2527	. 4	.	. 6833	. 7302	. 9358	1.0686	. 9
. 7	. 6252	. 7804	. 8012	1.2482	. 3	. 2	. 6845	. 7290	. 9391	1.0649	. 8
. 8	. 6266	. 7793	. 8040	1.2437	.2	. 3	. 6858	. 7278	. 9424	1.0612	. 7
. 9	. 6280	. 7782	. 8069	1.2393	.1	. 4	. 6871	. 7266	. 9457	1.0575	. 6
39.0	0.6293	0.7771	0.8098	1.2349	51.0	. 5	. 6884	. 7254	. 9490	1.0538	. 5
. 1	. 6307	. 7760	. 8127	1.2305	. 9	. 6	. 6896	. 7242	. 9523	1.0501	. 4
. 2	. 6320	. 7749	. 8156	1.2261	. 8	7	. 6909	. 7230	. 9556	1.0464	. 3
. 3	. 6334	. 7738	. 8185	1.2218	. 7	8	. 6921	. 7218	. 9590	1.0428	. 2
. 4	. 6347	. 7727	. 8214	1.2174	. 6	. 9	. 6934	. 7206	. 9623	1.0392	. 1
	. 6361	. 7716	. 8243	1.2131	. 5	44.0	0.6947	0.7193	0.9657	1.0355	46.0
. 6	. 6374	. 7705	. 8273	1.2688	. 4	. 1	. 6959	. 7181	. 9691	1.0319	. 9
7	-6388	. 7694	. 8302	1.2045	. 3	. 2	. 6972	. 7169	. 9725	1.0283	. 8
. 8	. 6401	. 7683	. 8332	1.2002	. 2	. 3	. 6984	. 7157	. 9759	1.0247	. 7
. 9	. 6414	. 7672	. 8361	1.1960	. 1	. 4	. 6997	. 7145	. 9793	1.0212	. 6
40.0	0.6428	0.7660	0.8391	1.1918	50.0	. 5	. 7009	. 7133	. 9827	1.0176	. 5
. 1	. 6441	. 7649	. 8421	1.1875	. 9	. 6	. 7022	. 7120	. 9861	1.0141	. 4
. 2	. 6455	. 7638	. 8451	1.1833	. 8	.7	. 7034	. 7108	. 9896	1.0105	. 3
. 3	. 6468	. 7627	. 8481	1.1792	. 7	. 8	. 7046	. 7096	. 9930	1.0070	. 2
. 4	. 6481	. 7615	.8511	1.1750	. 6	. 9	. 7059	. 7083	. 9965	1.0035	. 1
40.5	0.6494	0.7604	0.8541	1.1708	49.5	45.3	0.7071	0.7071	1.0000	1.0000	45.0
	cos	$\sin$	col	tan	deg		cos	$\sin$	col	tan	deg

## Logarithms of trigonometric functions

## for decimal fractions of a degree

deg	$L \sin$	L cos	$L$ tan	L cot		deg	1 sin	1 cos	Ltan	1 col	
0.0	- $\infty$	0.0000	-	$\infty$	90.0	6.0	9.0192	9.9976	9.0216	0.9784	84.0
. 1	7.2419	0.0000	7.2419	2.7581	. 9	. 1	9.0264	9.9975	9.0289	0.9711	. 9
2	7.5429	0.0000	7.5429	2.4571	. 8	. 2	9.0334	9.9975	9.0360	0.9640	. 8
. 3	7.7190	0.0000	7.7190	2.2810	. 7	. 3	9.0403	9.9974	9.0430	0.9570	7
. 4	7.8439	0.0000	7.8439	2.1561	. 6	. 4	9.0472	9.9973	9.0499	0.9501	. 6
. 5	7.9408	0.0000	7.9409	2.0591	. 5	. 5	9.0539	9.9972	9.0567	0.9433	. 5
. 6	8.0200	0.0000	8.0200	1.9800	. 4	. 6	9.0605	9.9971	9.0633	0.9367	. 4
. 7	8.0870	0.0000	8.0870	1.9130	. 3	. 7	9.0670	9.9970	9.0699	0.9301	. 3
. 8	8.1450	0.0000	8.1450	1.8550	. 2	. 8	9.0734	9.9969	9.0764	0.9236	. 2
. 9	8.1961	9.9999	8.1962	1.8038	. 1	9	9.0797	9.9968	9.0828	0.9172	. 1
1.0	8.2419	9.9999	8.2419	1.7581	89.0	7.0	9.0859	9.9968	9.0891	$0.9109^{\circ}$	83.0
. 1	8.2832	9.9999	8.2833	1.7167	. 9	. 1	9.0920	9.9967	9.0954	0.9046	. 9
. 2	8.3210	9.9999	8.3211	1.6789	. 8	. 2	9.0981	9.9966	9.1015	0.8985	. 8
. 3	8.3558	9.9999	8.3559	1.6441	. 7	. 3	9.1040	9.9965	9.1076	0.8924	. 7
. 4	8.3880	9.9999	8.3881	1.6119	. 6	. 4	9.1099	9.9964	9.1135	0.8865	. 6
. 5	8.4179	9.9999	8.4181	1.5819	. 5	. 5	9.1157	9.9963	9.1194	0.8806	. 5
. 6	8.4459	9.9998	8.4461	1.5539	. 4	. 6	9.1214	9.9962	9.1252	0.8748	4
. 7	8.4723	9.9998	8.4725	1.5275	. 3	. 7	9.1271	9.9961	9.1310	0.8690	. 3
. 8	8.4971	9.9998	8.4973	1.5027	. 2	. 8	9.1326	9.9960	9.1367	0.8633	. 2
. 9	8.5206	9.9998	8.5208	1.4792	. 1	. 9	9.1381	9.9959	9.1423	0.8577	. 1
2.0	8.5428	9.9997	8.5431	1.4569	88.0	8.0	9.1436	9.9958	9.1478	0.8522	82.0
. 1	8.5640	9.9997	8.5643	1.4357	. 9	. 1	9.1489	9.9956	9.1533	0.8467	. 9
. 2	8.5842	9.9997	8.5845	1.4155	. 8	.2	9.1542	9.9955	9.1587	0.8413	-8
. 3	8.6035	9.9996	8.6038	1.3962	. 7	. 3	9.1594	9.9954	9.1640	0.8360	. 7
. 4	8.6220	9.9996	8.6223	1.3777	. 6	4	9.1646	9.9953	9.1693	0.8307	. 6
. 5	8.6397	9.9996	8.6401	1.3599	. 5	. 5	9.1697	9.9952	9.1745	0.8255	. 5
. 6	8.6567	9.9996	8.6571	1.3429	. 4	. 6	9.1747	9.9951	9.1797	0.8203	4
. 7	8.6731	9.9995	8.6736	1.3264	.3	. 7	9.1797	9.9950	9.1848	0.8152	. 3
. 8	8.6889	9.9995	8.6894	1.3106	.2	8	9.1847	9.9949	9.1898	0.8102	. 2
. 9	8.7041	9.9994	8.7046	1.2954	. 1	9	9.1895	9.9947	9.1948	0.8052	. 1
3.0	8.7188	9.9994	8.7194	1.2806	87.0	9.0	9.1943	9.9946	9.1997	0.8003	81.0
. 1	8.7330	9.9994	8.7337	1.2663	. 9	. 1	9.1991	9.9945	9.2046	0.7954	. 9
.2	8.7468	9.9993	8.7475	1.2525	. 8	. 2	9.2038	9.9944	9.2094	0.7906	. 8
. 3	8.7602	9.9993	8.7609	1.2391	7	. 3	9.2085	9.9943	9.2142	0.7858	7
. 4	8.7731	9.9992	8.7739	1.2261	. 6	. 4	9.2131	9.9941	9.2189	0.7811	. 6
. 5	8.7857	9.9992	8.7865	1.2135	. 5	. 5	9.2176	9.9940	9.2236	0.7764	. 5
. 6	8.7979	9.9991	8.7988	1.2012	4	. 6	9.2221	9.9939	9.2282	0.7718	. 4
. 7	8.8098	9.9991	8.8107	1.1893	.3	. 7	9.2266	9.9937	9.2328	0.7672	-3
. 8	8.8213	9.9990	8.8223	1.1777	. 2	. 8	9.2310	9.9936	9.2374	0.7626	. 2
. 9	8.8326	9.9990	8.8336	1.1664	. 1	. 9	9.2353	9.9935	9.2419	0.7581	. 1
4.0	8.8436	9.9989	8.8446	1.1554	86.0	10.0	9.2397	9.9934	9.2463	0.7537	80.0
. 1	8.8543	9.9989	8.8554	1.1446	9	. 1	9.2439	9.9932	9.2507	0.7493	. 9
. 2	8.8647	9.9988	8.8659	1.1341	8	. 2	9.2482	9.9931	9.2551	0.7449	. 8
. 3	8.8749	9.9988	8.8762	1.1238	. 7	. 3	9.2524	9.9929	9.2594	0.7406	7
. 4	8.8849	9.9987	8.8862	1.1138	. 6	. 4	9.2565	9.9928	9.2637	0.7363	. 6
. 5	8.8946	9.9987	8.8960	1.1040	. 5	. 5	9.2606	9.9927	9.2680	0.7320	. 5
. 6	8.9042	9.9986	8.9056	1.0944	4	6	9.2647	9.9925	9.2722	0.7278	. 4
. 7	8.9135	9.9985	8.9150	1.0850	. 3	7	9.2687	9.9924	9.2764	0.7236	. 3
. 8	8.9226	9.9985	8.9241	1.0759	2	. 8	9.2727	9.9922	9.2805	0.7195	. 2
. 9	8.9315	9.9984	8.9331	1.0669	. 1	9	9.2767	9.9921	9.2846	0.7154	. 1
5.0	8.9403	9.9983	8.9420	1.0580	85.0	11.0	9.2806	9.9919	9.2887	0.7113	79.0
. 1	8.9489	9.9983	8.9506	1.0494	9	1	9.2845	9.9918	9.2927	0.7073	. 9
. 2	8.9573	9.9982	8.9591	1.0409	. 8	2	9.2883	9.9916	9.2967	0.7033	. 8
. 3	8.9655	9.9981	8.9674	1.0326	. 7	3	9.2921	9.9915	9.3006	0.6994	. 7
. 4	8.9736	9.9981	8.9756	1.0244	. 6	. 4	9.2959	9.9913	9.3046	0.6954	. 6
. 5	8.9816	9.9980	8.9836	1.0164	. 5	. 5	9.2997	9.9912	9.3085	0.6915	. 5
. 6	8.9894	9.9979	8.9915	1.0085	4	. 6	9.3034	9.9910	9.3123	0.6877	4
. 7	8.9970	9.9978	8.9992	1.0008	. 3	7	9.3070	9.9909	9.3162	0.6838	. 3
. 8	9.0046	9.9978	9.0068	0.9932	. 2	. 8	9.3107	9.9907	9.3200	0.6800	. 2
. 9	9.0120	9.9977	9.0143	0.9857	. 1	. 9	9.3143	9.9906	9.3237	0.6763	. 1
6.0	9.0192	9.9976	9.0216	0.9784	84.0	12.0	9.3179	9.9904	9.3275	0.6725	78.0
	L cos	$1 \sin$	L cot	Lian	deg		L cos	Lsin	L cot	L Ian	deg

Logarithms of trigonometric functions
for decimal fractions of a degree conlinued

deg	1 sin	1 cos	1 ton	L cot		deg	1 sin	1 cos	1 tan 1	1 cot	
12.0	9.3179	9.9904	9.3275	0.6725	78.0	18.0	9.4900	9.9782	9.5118	0.4882	72.0
. 1	9.3214	9.9902	9.3312	0.6688	. 9	. 1	9.4923	9.9780	9.5143	0.4857	. 9
. 2	9.3250	9.9901	9.3349	0.6651	. 8	. 2	9.4946	9.9777	9.5169	0.4831	. 8
. 3	9.3284	9.9899	9.3385	0.6615	. 7	. 3	9.4969	9.9775	9.5195	0.4805	. 7
. 4	9.3319	9.9897	9.3422	0.6578	. 6	. 4	9.4992	9.9772	9.5220	0.4780	. 8
. 5	9.3353	9.9896	9.3458	0.6542	. 5	. 5	9.5015	9.9770	9.5245	0.4755	. 5
. 6	9.3387	9.9894	9.3493	0.6507	. 4	. 6	9.5037	9.9767	9.5270	0.4730	. 4
. 7	9.3421	9.9892	9.3529	0.6471	. 3	. 7	9.5060	9.9764	9.5295	0.4705	. 3
. 8	9.3455	9.9891	9.3564	0.6436	. 2	. 8	9.5082	9.9762	9.5320	0.4680	. 2
. 9	9.3488	9.9889	9.3599	0.6401	. 1	.9	9.5104	9.9759	9.5345	0.46 .55	. 1
13.0	9.3521	9.9887	9.3634	0.6366	77.0	19.0	9.5126	9.9757	9.5370	0.4630	71.0
. 1	9.3554	9.9885	9.3668	0.6332	. 9	. 1	9.5148	9.9754	9.5394	0.4606	. 9
. 2	9.3586	9.9884	9.3702	0.6298	. 8	$\therefore 2$	9.5170	9.9751	9.5419	0.4581	. 8
. 3	9.3618	9.9882	9.3736	0.6264	. 7	. 3	9.5192	9.9749	9.5443	0.4557	. 7
. 4	9.3650	9.9880	9.3770	0.6230	. 6	4	9.5213	9.9746	9.5467	0.4533	. 6
. 5	9.3682	9.9878	9.3804	0.6196	. 5	. 5	9.5235	9.9743	9.5491	0.4509	. 5
. 6	9.3713	9.9876	9.3837	0.6163	. 4	. 6	9.5256	9.9741	9.5516	0.4484	. 4
. 7	9.3745	9.9875	9.3870	0.6130	. 3	. 7	9.5278	9.9738	9.5539	0.4461	. 3
. 8	9.3775	9.9873	9.3903	0.6097	. 2	. 8	9.5299	9.9735	9.5563	0.4437	. 2
. 9	9.3806	9.9871	9.3935	0.6065	. 1	. 9	9.5320	9.9733	9.5587	0.4413	.1
14.0	9.3837	9.9869	9.3968	0.6032	76.0	$20.1)$	9.5341	9.9730	9.5611	0.4389	70.0
. 1	9.3887	9.9867	9.4000	0.6000	. 9	. 1	9.5361	9.9727	95634	0.4386	. 9
. 2	9.3897	9.9865	9.4032	0.5968	. 8	. 2	0.5382	9.9724	9.5658	0.4342	. 8
. 3	9.3927	9.9863	9.4064	0.5936	. 7	. 3	9.5402	9.9722	9.5681	0.4319	. 7
. 4	9.3957	9.9861	9.4095	0.5905	. 6	. 4	9.5423	9.9719	9.5704	0.4296	. 6
. 5	9.3986	9.9859	9.4127	0.5873	. 5	. 5	9.5443	9.9716	9.5727	0.4273	. 5
. 6	9.4015	9.9857	9.4158	0.5842	. 4	. 5	9.5463	9.9713	9.5750	0.4250	. 4
. 7	9.4044	9.9855	9.4189	0.5811	. 3	7	9.5484	9.9710	9.5773	0.4227	. 3
. 8	9.4073	9.9853	9.4220	0.5780	. 2	. 3	9.5504	9.9707	9.5796	0.4204	. 2
. 9	9.4102	9.9851	9.4250	0.5750	. 1	. 7	9.5523	9.9704	9.5819	0.4181	. 1
15.0	9.4130	9.9849	9.4281	0.5719	75.0	21.1)	9.5543	9.9702	9.5842	0.4158	69.0
. 1	9.4158	9.9847	9.4311	0.5689	. 9	. 1	9.5563	9.9699	9.5864	0.4136	. 9
. 2	9.4186	9.9845	9.4341	0.5659	. 8	. 2	9.5583	9.9696	9.5887	0.4113	. 8
. 3	9.4214	9.9843	9.4371	0.5629	. 7	. 3	9.5602	0.9693	9.5909	0.4091	. 7
. 4	9.4242	9.9841	9.4400	0.5800	. 6	. 4	9.5621	9.9690	9.5932	0.4068	. 6
. 5	9.4269	9.9839	9.4430	0.5570	. 5	. 5	9.5641	9.9687	9.5954	0.4046	. 5
. 6	9.4296	9.9837	9.4459	0.5541	. 4	. 3	9.5660	9.9684	9.5976	0.4024	. 4
. 7	9.4323	9.9835	9.4488	0.5512	. 3	. 7	9.5679	9.9681	9.5998	0.4002	. 3
. 8	9.4350	9.9833	9.4517	0.5483	. 2	. 8	9.5698	9.9678	9.6020	0.3980	. 2
. 9	9.4377	9.9831	9.4546	0.5454	.	.9	9.5717	9.9675	9.6042	0.3958	. 1
16.0	9.4403	9.9828	9.4575	0.5425	74.0	22.3	9.5736	9.9672	9.6064	0.3936	68.0
. 1	9.4430	9.9826	9.4603	0.5397	. 9	. 1	9.5754	9.9669	9.8086	0.3914	. 9
. 2	9.4456	9.9824	9.4632	0.5388	. 8	. 2	9.5773	9.9666	9.6108	0.3892	. 8
. 3	9.4482	9.9822	9.4660	0.5340	. 7	. 3	9.5792	9.9662	9.6129	0.3871	. 7
. 4	9.4508	9.9820	9.4688	0.5312	. 6	4	9.5810	9.9659	9.6151	0.3849	. 6
. 5	9.4533	9.9817	9.4716	0.5284	. 5	. 5	9.5828	9.9656	9.6172	0.3828	. 5
. 6	9.4559	9.9815	9.4744	0.5256	. 4	. 6	9.5847	9.9653	9.6194	0.3806	. 4
. 7	9.4584	9.9813	9.4771	0.5229	. 3	. 7	9.5865	9.9650	9.6215	0.3785	. 3
. 8	9.4609	9.9811	9.4799	0.5201	. 2	. 8	9.5883	9.9647	9.6236	0.3764	. 2
. 9	9.4634	9.9808	9.4826	0.5174	.1	. 9	9.5901	9.9643	9.6257	0.3743	. 1
17.0	9.4659	9.9806	9.4853	0.5147	73.0	23.3	9.5919	9.9640	9.6279	0.3721	67.0
. 1	9.4684	9.9804	9.4880	0.5120	. 9	. 1	9.5937	9.9637	9.6300	0.3700	. 9
. 2	9.4709	9.9801	9.4907	0.5093	. 8	2	9.5954	9.9634	9.6321	0.3679	. 8
. 3	9.4733	9.9799	9.4934	0.5066	. 7	3	9.5972	9.9631	9.6341	0.3659	7
. 4	9.4757	9.9797	9.4961	0.5039	. 6	4	9.5990	9.9627	9.6362	0.3638	6
. 5	9.4781	9.9794	9.4987	0.5013	. 5	5	9.6007	9.9624	9.6383	0.3617	. 5
. 6	9.4805	9.9792	9.5014	0.4986	. 4	6	9.6024	9.9621	9.6404	0.3596	- 4
. 7	9.4829	9.9789	9.5040	0.4960	. 3	7	9.6042	9.9617	9.6424	0.3576	. 3
. 8	9.4853	9.9787	9.5068	0.4934	. 2	8	9.6059	9.9614	9.6445	0.3555	. 2
. 9	9.4876	9.9785	9.5092	0.4908	. 1	9	9.6076	9.9611	9.6465	0.3535	.1
18.0	9.4900	9.9782	9.5118	0.4882	72.0	24.0	9.6093	9.9607	9.6486	0.3514	66.0
	L cos	Lsin	L cot	Lion	deg		L cos	$L \sin$	L col	ton	des

## Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	L sin	L cos	Ltan	1 cot		deg	$1 \sin$	$1 \cos$	Ltan	1 cot	
24.0	9.6093	9.9607	9.6486	0.3514	86.0	30.0	9.6990	9.9375	9.7614	0.2386	60.0
. 1	9.6110	9.9604	9.6506	0.3494	. 9	. 1	9.7003	9.9371	9.7632	0.2368	. 9
. 2	9.6127	9.9801	9.6527	0.3473	. 8	. 2	9.7016	9.9367	9.7649	0.2351	8
. 3	9.6144	9.9597	9.6547	0.3453	. 7	. 3	9.7029	9.9362	9.7667	0.2333	. 7
. 4	9.6161	9.9594	9.6567	0.3433	. 6	. 4	9.7042	9.9358	9.7684	0.2316	6
. 5	9.6177	9.9590	9.6587	0.3413	. 5	. 5	9.7055	9.9353	9.7701	0.2299	. 5
. 6	9.6174	9.9587	9.6607	0.3393	. 4	. 6	9.7088	9.9349	9.7719	0.2281	4
. 7	9.6210	9.9583	9.6627	0.3373	. 3	. 7	9.7080	9.9344	9.7736	0.2284	3
. 8	9.6227	9.9580	9.6647	0.3353	. 2	. 8	9.7093	9.9340	9.7753	0.2247	2
. 9	9.6243	9.9576	9.6667	0.3333	. 1	. 9	9.7106	9.9335	9.7771	0.2229	1
25.0	9.6259	9.9573	9.6687	0.3313	85.0	31.0	9.7118	9.9331	9.7788	0.2212	59.0
. 1	9.6276	9.9569	9.6706	0.3294	. 9	. 1	9.7131	9.9326	9.7805	0.2195	9
. 2	9.6292	9.9566	9.6726	0.3274	. 8	. 2	9.7144	9.9322	9.7822	0.2178	. 8
. 3	9.6308	9.9562	9.6746	0.3254	. 7	. 3	9.7158	9.9317	9.7839	0.2161	7
. 4	9.6324	9.9558	9.6765	0.3235	. 6	. 4	9.7168	9.9312	9.7858	0.2144	. 8
. 5	9.6340	9.9555	9.6785	0.3215	. 5	. 5	9.7181	9.9308	9.7873	0.2127	. 5
. 6	9.6356	9.9551	9.6804	0.3196	. 4	. 6	9.7193	9.9303	9.7890	0.2110	4
. 7	9.6371	9.9548	9.6824	0.3176	. 3	. 7	9.7205	9.9298	9.7907	0.2093	3
. 8	9.6387	9.9544	9.6843	0.3157	. 2	. 8	9.7218	9.9294	9.7924	0.2076	. 2
. 9	9.8403	9.9540	9.6863	0.3137	. 1	. 9	9.7230	9.9289	9.7941	0.2059	. 1
26.0	9.6418	9.9537	9.6882	0.3118	64.0	32.0	9.7242	9.9284	9.7958	0.2042	58.0
. 1	9.6434	9.9533	9.6901	0.3099	. 9	. 1	9.7254	9.9279	9.7975	0.2025	. 9
. 2	9.6449	9.9529	9.6920	0.3080	. 8	. 2	9.7266	9.9275	9.7992	0.2008	. 8
. 3	9.6465	9.9525	9.6939	0.3061	. 7	. 3	9.7278	9.9270	9.8008	0.1992	7
. 4	9.8480	0.9522	9.6958	0.3042	. 6	. 4	9.7290	9.9265	9.8025	0.1975	. 6
. 5	9.8495	9.9518	9.6977	0.3023	. 5	. 5	9.7302	9.9260	9.8042	0.1958	. 5
. 6	9.6510	9.9514	9.6996	0.3004	. 4	. 6	9.7314	9.9255	9.8059	0.1941	4
7	9.6526	9.9510	9.7015	0.2985	. 3	7	9.7326	9.9251	9.8075	0.1925	3
. 8	9.6541	9.9506	9.7034	0.2966	. 2	8	9.7338	9.9246	9.8092	0.1908	. 2
. 9	9.8556	9.9503	9.7053	0.2947	. 1	9	9.7349	9.9241	9.8109	0.1891	. 1
27.0	9.6570	9.9499	9.7072	0.2928	63.0	33.0	9.7361	9.9236	9.8125	0.1875	57.0
27.1	9.6585	9.9495	9.7090	0.2910	. 9	. 1	9.7373	9.9231	9.8142	0.1858	. 9
. 2	9.6600	9.9491	9.7109	0.2891	8	. 2	9.7384	9.9226	9.8158	0.1842	. 8
. 3	9.6615	9.9487	9.7128	0.2872	7	. 3	9.7396	9.9221	9.8175	0.1825	. 7
. 4	9.6629	9.9483	9.7146	0.2854	. 6	. 4	9.7407	9.9216	9.8191	0.1809	. 6
. 5	9.6644	9.9479	9.7165	0.2835	. 5	. 5	9.7419	9.9211	9.8208	0.1792	. 5
. 6	9.6659	9.9475	9.7183	0.2817	. 4	. 6	9.7430	9.9206	9.8224	0.1776	. 4
. 7	9.6673	9.9471	9.7202	0.2798	.3	. 7	9.7442	9.9201	9.8241	0.1759	. 3
. 8	9.6687	9.9467	9.7220	0.2780	. 2	8	9.7453	9.9196 8.9191	9.8257	0.1743	. 2
. 9	9.6702	9.9463	9.7238	0.2762	. 1	. 9	9.7464	9.9191	9.8274	0.1726	. 1
28.0	9.6716	9.9459	9.7257	0.2743	62.0	34.0	9.7476	9.9186	9.8290	0.1710	36.0
. 1	9.6730	9.9455	9.7275	0.2725	. 9	. 1	9.7487	9.9181	9.8306	0.1694	. 9
. 2	9.6744	9.9451	9.7293	0.2707	8	. 2	9.7498	9.9175	9.8323	0.1677	. 8
. 3	9.6759	0.9447	9.7311	0.2689	. 7	. 3	9.7509	9.9170	9.8339	0.1661	. 7
. 4	9.6773	9.9443	9.7330	0.2670	. 6	. 4	9.7520	9.9165	9.8355	0.1645	. 6
. 5	9.6787	9.9439	9.7348	0.2652	. 5	5	9.7531	9.9160 9.9155	9.8371 9.8388	0.1629 0.1612	. 5
. 6	9.6801	9.9435	9.7366	0.2634	. 4	6 .	9.7542 9.7553	9.9155 9.9149	9.8388 9.8404	0.1612 0.1596	. 4
. 8	9.6814 9.6828	9.9431 9.9427	9.7384 9.7402	0.2616 0.2598	. 3	. 7	9.7553 9.7564	9.9149 9.9144	9.8404 9.8420	0.159 0.1580	. 2
. 8	9.6828 9.6842	9.9427 9.9422	9.7402 9.7420	0.2598 0.2580	. 2	.8	9.7584 9.7575	9.9139	9.8436	0.1564	. 1
29.0	9.6856	9.9418	9.7438	0.2562	61.0	35.0	9.7586	9.9134	9.8452	0.1548	55.0
. 1	9.6869	9.9414	9.7455	0.2545	. 9	. 1	9.7597	9.9128	9.8468	0.1532	. 9
. 2	9.6883	9.9410	9.7473	0.2527	. 8	. 2	9.7807	9.9123	9.8484	0.1516	8
. 3	9.6896	9.9406	9.7491	0.2509	. 7	. 3	9.7618	9.9118	9.8501	0.1499	7
. 4	9.6910	9.9401	9.7509	0.2491	. 6	. 4	9.7629	9.9112	9.8517	0.1483	. 6
. 5	9.6923	9.9397	- 9.7526	0.2474	. 5	. 5	9.7640	9.9107	9.8533	0.1467	. 5
. 6	9.6937	9.9393	9.7544	0.2456	. 4	. 6	9.7650	9.9101 9.9096	9.8549 9.8565	0.1451 0.1435	. 4
. 7	9.6950	9.9388	9.7582	0.2438	. 3	. 7	9.7661	9.9096	9.8565 98581	0.1435 0.1419	. 2
. 8	9.6963	9.9384	9.7579 9.7597	0.2421	. 2	. 8	9.7671 0.7682	9.9091 9.9085	9.8581 9.8597	0.1419 0.1403	. 2
. 9	9.6977	9.9380	9.7597	0.2403	. 1	9	9.7682	9.9085	9.8597	0.1403	. 1
30.0	9.6990	9.9375	9.7814	0.2386	60.0	36.0	9.7692	9.9080	9.8613	0.1387	54.0
	cot	sin	L col	1 fon	deg		Leos	$L \sin$	1 cot	L ton	dog

## Logarithms of trigonometric functions

for decimal fractions of a degree continued

deg	$L \sin$	L cos	Ltan	L cot		dog	$L \sin$	$L \cos$	LIan	1 col	
36.0	9.7692	-. 9080	9.8613	0.1387	54.0	40.5	9.8125	9.8810	9.9315	0.0585	49.5
. 1	9.7703	9.9074	9.8629	0.1371	. 9	. 6	9.8134	9.8804	9.9330	0.0670	. 4
. 2	9.7713	9.9069	9.8644	0.1356	. 8	. 7	9.8143	9.8797	9.9346	0.0654	. 3
. 3	9.7723	9.9063	9.8660	0.1340	7	. 8	9.8152	9.8791	9.9361	0.0639	. 2
. 4	9.7734	9.9057	9.8876	0.1324	. 6	. 9	9.8161	9.8784	9.9376	0.0624	1
. 5	9.7744	9.9052	9.8692	0.1308	. 5	41.0	9.8169	9.8778	9.9392	0.0608	49.0
. 6	9.7754	9.9046	9.8708	0.1292	. 4		9.8178	9.8771	9.9407	0.0593	. 9
. 7	9.7764	9.9041	9.8724	0.1276	. 3	2	9.8187	9.8765	9.9422	0.0578	. 8
. 8	9.7774	9.9035	9.8740	0.1260	. 2	. 3	9.8195	9.8758	9.9438	0.0562	. 7
. 9	9.7785	9.9029	9.8755	0.1245	. 1	4	9.8204	9.8751	9.9453	0.0547	. 6
37.0	9.7795	9.9023	9.8771	0.1229	53.0	. 5	9.8213	9.8745	9.9468	0.0532	. 5
. 1	9.7805	9.9018	9.8787	0.1213	. 9	.	9.8221	9.8738	9.9483	0.0517	. 4
. 2	9.7815	9.9012	9.8803	0.1197	. 8	7	9.8230	9.8731	9.9499	0.0501	. 3
. 3	9.7825	9.9006	9.8818	0.1182	. 7	. 8	9.8238	9.8724	9.9514	0.0486	. 2
.4	9.7835	9.9000	9.8834	0.1166	. 6	-	9.8247	9.8718	9.9529	0.0471	. 1
. 5	9.7844	9.8995	9.8850	0.1150	. 5	42.0	9.8255	9.8711	9.9544	0.0456	48.0
. 6	9.7854	9.8989	9.8865	0.1135	4	. 1	9.8264	9.8704	9.9560	0.0440	. 9
.7	9.7864	9.8983	9.8881	0.1119	. 3	. 2	9.8272	9.8697	9.9575	0.0425	. 8
. 8	9.7874	9.8977	9.8897	0.1103	. 2	. 3	9.8280	9.8690	9.9590	0.0410	. 7
. 9	9.7884	9.8971	9.8912	0.1088	. 1	. 1	9.8289	9.8683	9.9605	0.0395	. 6
38.0	9.7893	9.8965	9.8928	0.1072	52.0	. 5	9.8297	9.8676	9.9621	0.0379	. 5
. 1	9.7903	9.8959	9.8944	0.1056	. 9	. 3	9.8305	9.8669	9.9636	0.0364	. 4
. 2	9.7913	9.8953	9.8959	0.1041	. 8	7	9.8313	9.8662	9.9651	0.0349	. 3
. 3	9.7922	9.8947	9.8975	0.1025	7	. 3	9.8322	9.8655	9.9666	0.0334	. 2
.4	9.7932	9.8941	9.8990	0.1010	. 6	. 7	9.8330	9.8648	9.9681	0.0319	. 1
. 5	9.7941	9.8935	9.9006	0.0994	. 5	43.3	9.8338	9.8641	9.9697	0.0303	47.0
. 6	9.7951	9.8929	9.9022	0.0978	. 4	. 1	9.8346	9.8634	9.9712	0.0288	. 9
. 7	9.7960	9.8923	9.9037	0.0963	. 3	2	9.8354	9.8627	9.9727	0.0273	. 8
. 8	9.7970	9.8917	9.9053	0.0947	. 2	. 3	9.8362	9.8620	9.9742	0.0258	. 7
. 9	9.7979	9.8911	9.9008	0.0932	. 1	4	9.8370	9.8613	9.9757	0.0243	. 6
39.0	9.7989	9.8905	9.9084	0.0916	31.0	. 5	9.8378	9.8506	9.9772	0.0228	. 5
. 1	9.7998	9.8899	9.9099	0.0901	. 9	.6	9.8386	9.8598	9.9788	0.0212	. 4
. 2	9.8007	9.8893	9.9115	0.0885	. 8	7	9.8394	9.8591	9.9803	0.0197	. 3
. 3	9.8017	9.8887	9.9130	0.0870	. 7	8	9.8402	9.8584	9.9818	0.0182	. 2
. 4	9.8026	9.8880	9.9146	0.0854	. 6	9	9.8410	9.8577	9.9833	0.0167	. 1
. 5	9.8035	9.8874	9.9161	0.0839	. 5	44.0	9.8418	9.8569	9.9848	0.0152	46.0
. 6	9.8044	9.8868	9.9176	0.0824	. 4	. 1	9.8426	9.8562	9.9864	0.0136	. 9
. 7	9.8053	9.8862	9.9192	0.0808	. 3	. 2	9.8433	9.8555	9.9879	0.0121	. 8
. 8	9.8063	9.8855	9.9207	0.0793	. 2	. 3	9.8441	9.8547	9.9894	0.0106	. 7
. 9	9.8072	9.8849	9.9223	0.0777	. 1	4	9.8449	9.8540	9.9909	0.0091	. 6
40.0	9.8081	9.8843	9.9238	0.0762	50.0	5	9.8457	9.8532	9.9924	0.0076	. 5
. 1	9.8090	9.8836	9.9254	0.0746	. 9	6	9.8464	9.8525	9.9939	0.0061	. 4
. 2	9.8099	9.8830	9.9269	0.0731	. 8	7	9.8472	9.8517	9.9955	0.0045	. 3
. 3	9.8108	9.8823	9.9284	0.0716	. 7	8	9.8480	9.8510	9.9970	0.0030	. 2
. 4	9.8117	9.8817	9.9300	0.0700	. 6	9	9.8487	9.8502	9.9985	0.0015	. 1
40.5	9.8125	9.8810	9.9315	0.0685	49.5	45.0	9.8495	9.8495	0.0000	0.0000	45.0
	L cos	$L$ sin	L cot	Lion	deg		L cos	$L \sin$	L col	$L$ Ion	deg

## 630

Natural logarithms

											mean differences									
	0	1	2	3	4	5		7				2	3	4	5		6	7	8	9
1.0	0.0000	0100	0198	0296	0392	0488	0583	0677	0770	0862	10	19	29	38	48		57	67	76	86
1.1	0.0953	1044	1133	1222	1310	1398	1484	1570	1655	1740	9	17	26	35	44		52	61	70	78
1.2	0.1823	1906	1989	2070	2151	2231	2311	2390	2469	2546	8	16	24	32	40		48	56	64	72
1.3	0.2624	2700	2776	2852	2927	3001	3075	3148	3221	3293	7	15	22	30	37		44	52	59	67
1.4	0.3365	3436	3507	3577	3646	3716	3784	3853	3920	3988	7	14	21	28	35		41	48	55	62
1.5	0.4055	4121	4187	4253	4318	4383	4447	4511	4574	4637	6	13	19	26	32		39	45	52	58
1.6	0.4700	4762	4824	4886	4947	5008	5068	5128	5188	5247	6	12	18	24	30		36	42	48	55
1.7	0.5306	5365	5423	5481	5539	5596	5653	5710	5766	5822	6	11	17	23	29		34	40	46	51
1.8	0.5878	5933	5988	6043	6098	6152	6206	6259	6313	6366	5	11	16	22	27		32	38	43	49
1.9	0.6419	6471	6523	6575	6627	6678	6729	6780	6831	6881	5	10	15	20	26		31	36	41	46
2.0	0.6931	6981	7031	7080	7129	7178	7227	7275	7324	7372	5	10	15	20	24		29	34	39	44
2.1	0.7419	7467	7514	7561	7608	7655	7701	7747	7793	7839	5	9	14	19	23		28	33	37	42
2.2	0.7885	7930	7975	8020	8065	8109	8154	8198	8242	8286	4	9	13	18	22		27	31	36	40
2.3	0.8329	8372	8416	8459	8502	8544	8587	8629	8671	8713	4	9	13	17	21		26	30	34	38
2.4	0.8755	8796	8838	8879	8920	8961	9002	9042	9083	9123	4	8	12	16	20		24	29	33	37
2.5	0.9163	9203	9243	9282	9322	9361	9400	9439	9478	9517	4	8	12	16			24	27	31	35
2.6	0.9555	9594	9632	9670	9708	9746	9783	9821	9858	9895	4	8	11	15	19		23	26	30	34
2.7	0.9933	9969	1.0006	0043	0080	0116	0152	0188	0225	0260	4	7	11	15	18		22	25	29	33
2.8	1.0296	0332	0367	0403	0438	0473	0508	0543	0578	0613	4	7	11	14	18		21	25	28	32
2.9	1.0647	0682	0716	0750	0784	0818	0852	0886	0919	0953	3	7	10	14	17		20	24	27	31
3.0	1.0986	1019	1053	1086	1119	1151	1184	1217	1249	1282	3	7	10	13	16		20	23	26	30
3.1	1.1314	1346	1378	1410	1442	1474	1506	1537	1569	1600	3	6	10	13	16		19	22	25	29
3.2	1.1632	1663	1894	1725	1756	1787	1817	1848	1878	1909	3	6	9	12	15		18	22	25	28
3.3	1.1939	1969	2000	2030	2060	2090	2119	2149	2179	2208		6	,	12	5		18	21	24	27
3.4	1.2238	2267	2296	2326	2355	2384	2413	2442	2470	2499	3	8	9	12	15		17	20	23	26
3.5	1.2528	25.56	2585	2613	2641	2669	2698	2726	2754	2782		,		11	1		17	20	23	25
3.6	1.2809	2837	2865	2892	2920	2947	2975	3002	3029	3056	,	5	8	11	1		16	19	22	25
3.7	1.3083	3110	3137	3164	3191	3218	3244	3271	3297	3324	3	5	8	11	13		16	19	21	24
3.8	1.3350	3376	3403	3429	3455	3481	3507	3533	3558	3584	3	5	8	10	1		16	18	21	23
3.9	1.3610	3635	3661	3686	3712	3737	3762	3788	3813	3838	3	S	8	10	13		15	18	20	23
4.0	1.3863	3888	3913	3938	3962	3987	4012	4036	4061	4085		,	7	1			15	17	20	22
4.1	1.4110	4134	4159	4183	4207	4231	4255	4279	4303	4327	2	,	7	10	12		14	17	19	22
4.2	1.4351	4375	4398	4422	4446	4469	4493	4516	4540	4563	2	5	7		12		14	16	19	21
4.3	1.4588	4609	4633	4656	4679	4702	4725	4748	4770	4793	2	5	7		1		14	16	18	21
4.4	1.4816	4839	4861	4884	4907	4929	4951	4974	4996	5019	2	5	7		1		14	16	18	20
4.5	1.5041	5063	5085	5107	5129	5151	5173	5195	5217	5239	2	4	7		1		13	15	18	20
4.6	1.5261	5282	5304	5328	5347	5369	5390	5412	5433	5454		4	6		,		13	15	17	19
4.7	1.5476	5497	5518	5539	5560	5581	5602	5623	5644	5665	2	4	6		1		13	15	17	19
4.8	15686	5707	5728	5748	5769	5790	5810	5831	5851	5872	2	4	6				12	14	16	19
4.9	1.5892	5913	5933	5953	5974	5994	6014	6034	6054	6074	2	4	6		1		12	14	16	18
5.0	1.6094	6114	8134	6154	6174	6194	6214	6233	6253	6273	2	4	6		1		12	14	16	18
5.1	1.6292	6312	6332	6351	6371	6390	6409	6429	6448	8467	2	4	6		1		12	14	16	18
5.2	16487	6506	6525	6544	6563	6582	8801	6820	6639	8658	2	4	6				11	13	15	17
5.3	16577	6696	6715	6734	6752	6771	6790	6808	6827	6845	2	4	6				11	13	15	S 17
5.4	1.6864	6882	6901	6919	8938	656	6974	6993	7011	7029	2	4	5		7		11	13	is	517

Nafural logarithms of $10^{+n}$

$n$	1	2	3	4	4	5	6	6	7	8
$\log _{4} 10^{n}$	2.3026	4.6052	6.9078	9.2103	11.5129	13.8155	16.1181	18.4207	20.7233	

Natural logarithms continued

	0	1	2	3	4	5	6	7	8	9	mean differences								
											1	2	3	4	3	6	7	8	9
5.5	1.7047	7056	7084	7102	7120	7138	7156	7174	7192	7210	2	4	5	7	9	11	13	14	16
5.6	1.7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	2	4	5	7	9	11	12	14	16
5.7	1.7405	7422	7440	7457	7475	7492	7509	7527	7544	7561	2	3	5	7	9	10	12	14	16
5.8	1.7579	7596	7613	7630	7647	7664	7681	7699	7716	7733	2	3	5	7	9	10	12	14	15
5.9	1.7750	7766	7783	7800	7817	7834	7851	7867	7884	7901	2	3	5	7	8	10	12	13	15
6.0	1.7918	7934	7951	7967	7984	8001	8017	8034	8050	8066	2	3	5	7	8	10	12	13	15
6.1	1.8083	8099	8116	8132	8148	8165	8181	8197	8213	8229	2	3	5	6	8	10	11	13	15
6.2	1.8245	8262	8278	8294	8310	8326	8342	8358	8374	8390	2	3	5	6	8	10	11	13	14
6.3	1.8405	8421	8437	8453	8469	8485	8500	8516	8532	8547	2	3	5	6	8	9	11	13	14
6.4	1.8563	8579	8594	8610	8825	8641	8856	8672	8687	8703	2	3	5	6	8	9	11	12	14
6.5	1.8718	8733	8749	8764	8779	8795	8810	8825	8840	8856	2	3	5	6	8	9	11	12	14
6.6	1.8871	8886	8901	8916	8931	8946	8961	8976	8991	9006	2	3	5	6	8	9	11	12	14
6.7	1.9021	9036	9051	9066	9081	9095	9110	9125	9140	9155	,	3	4	6	7	9	10	12	13
6.8	1.9169	9184	9199	9213	9228	9242	9257	9272	9286	9301	1	3	4	6	7	9	10	12	13
6.9	1.9315	9330	9344	9359	9373	9387	9402	9416	9430	9445	1	3	4	6	7	9	10	12	13
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	1	3	4	6	7	9	10	11	13
7.1	1.9601	9615	9629	9643	9657	9671	9685	9699	9713	9727	1	3	4	6	7	8	10	11	13
7.2	1.9741	9755	9769	9782	9798	9810	9824	9838	9851	9865	1	3	4	6	7	8	10	11	12
7.3	1.9879	9892	9906	9920	9933	9947	9961	9974	9988	2.0001	1	,	4	5	7	8	10	11	12
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	1	3	4	5	7	8	9	11	12
7.5	2.0149	0162	0178	0189	0202	0215	0229	0242	0255	0268	1	3	4	5	7	8	9	11	12
7.6	2.0281	0295	0308	0321	0334	0347	0360	0373	0386	0399	,	3	4	5	7	8	9	10	12
7.7	2.0412	0425	0438	0451	0464	0477	0490	0503	0516	0528	1	3	4	5	6	8	9	10	12
7.8	2.0541	0554	0567	0580	0592	0605	0618	0631	0543	0656	,	3	4		6	8	9	10	11
7.9	2.0669	0681	0694	0707	0719	0732	0744	0757	0769	0782	,	3	4	5	6	8	9	10	11
8.0	2.0794	0807	0819	0832	0844	0857	0869	0882	0894	0906	,	3	4	5	6	7	9	10	11
8.1	2.0919	0931	0943	0956	0968	0980	0992	1005	1017	1029	,	2	4	5	6	7	9	10	11
8.2	2.1041	1054	1066	1078	1090	1102	1114	1126	1138	1150	1	2	4	5	6	7	9	10	11
8.3	2.1163	1175	1187	1199	1211	1223	1235	1247	1258	1270	1	2	4	5	6	7	8	10	11
8.4	2.1282	1294	1306	1318	1330	1342	1353	1365	1377	1389	1	2	4	5	6	7	8	9	11
8.5	2.1401	1412	1424	1436	1448	1459	1471	1483	1494	1506	1	2	4	5	6	7	8	9	11
8.6	2.1518	1529	1541	1552	1564	1576	1587	1599	1610	1622	1	2	3	5	6	7	8		10
8.7	2.1633	1645	1656	1688	1679	1691	1702	1713	1725	1736	,	2	3	5	6	7	d	9	10
8.8	2.1748	1759	1770	1782	1793	1804	1815	1827	1838	18.49	1	2	3	5	6	7	8	9	10
8.9	2.1861	1872	1883	1894	1905	1917	1928	1939	1950	1961	1	2	3	4	6	7	8	9	10
9.0	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	1	2	3	4	6	7	8	9	10
9.1	2.2083	2094	2105	2116	2127	2138	2148	2159	2170	2181	,	2	3	4	5	7	8	9	10
9.2	2.2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	1	2	3	4	5	6	8	9	10
9.3	2.2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	,	2	3	4	5	6	7	9	10
9.4	2.2407	2418	2428	2439	2450	2460	2471	2481	2492	2502	1	2	3	4	5	6	7	8	10
9.5	2.2513	2523	2534	2544	2555	2565	2576	2586	2597	2607	1	2	3	4	5	6	7	-	9
9.6	2.2618	2628	2638	2649	2659	2670	2680	2696	2701	2711	1	2	3	4	5	6	7	-	9
9.7	2.2721	2732	2742	2752	2762	2773	2783	2793	2803	2814	1	2	3	4	5	6	7	8	9
9.8	2.2824	2834	2844	2854	2865	2875	2885	289	2905	2915	1	2	3	4	5	6	7	8	9
9.9	2.2925	2935	2946	2956	2966	2976	2986	$299 t$	3006	3016	,	2	3	4	5	6	7	8	9

Natural logarithms of $10^{-n}$


Hyperbolic sines [sinh $\left.x=1 / 2\left(e^{x}-e^{-x}\right)\right]$

X	0	1	2	3	4	5	6	7	8	9	avg diff
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901	100
. 1	0.1002	0.1102	0.1203	0.1304	0.1405	0.1506	0.1807	0.1708	0.1810	0.1911	101
. 2	0.2013	0.2115	0.2218	0.2320	0.2423	0.2526	0.2629	0.2733	0.2837	0.2941	103
. 3	0.3045	0.3150	0.3255	0.3360	0.3466	0.3572	0.3678	0.3785	0.3892	0.4000	106
. 4	0.4108	0.4216	0.4325	0.4434	0.4543	0.4653	0.4764	0.4875	0.4986	0.5098	110
0.5	0.5211	0.5324	0.5438	0.5552	0.5666	0.5782	0.5997	0.6014	0.8131	0.6248	116
. 6	0.6367	0.6485	0.6605	0.6725	0.6846	0.6967	0.7090	0.7213	0.7336	0.7461	122
. 7	0.7586	0.7712	0.7838	0.7966	0.8094	0.8223	0.8353	0.8484	0.6815	0.8748	130
. 8	0.8881	0.9015	0.9150	0.9286	0.9423	0.9561	0.9700	0.9840	0.9981	1.012	138
. 9	1.027	1.041	1.055	1.070	1.085	1.099	1.114	1.129	1.145	1.160	15
1.0	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
. 1	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.474	1.491	17
. 2	1.509	1.528	1:546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
. 3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1,862	1.883	21
. 4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
. 6	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
. 7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
. 8	2.942	2.973	3.005	3.037	3.069	3.101	3.134	3.167	3.200	3.234	33
. 9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
. 1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
. 2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
. 3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302 5869	5.356 5.929	5.411	53
. 4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
2.5	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
. 6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
.7	7.406	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
. 8	8.192	8.275	8.359	8.443	8.529	8.615	8.702	8.790	8.879 9.819	8.969 9.918	87
. 9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
3.0	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	11
3.0	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
. 2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
. 3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
- 4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
3.5	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
. 6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
. 7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	21
. 8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
. 9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
4.0	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29
. 1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
.2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35
. 3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
.4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43
4.5	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
. 6	49.74	50.24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
. 7	54.97	55.52	56.08	58.64	57.21	57.79	58.37	58.96	59.55	60.15	58
. 8	60.75	81.36	61.98	62.60	63.23	63.87	64.51	65.16	65.81	66.47	64
. 9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
5.0	74.20										

If $x>5, \sinh x=1 / 2\left(e^{x}\right)$ and $\left.\log _{10} \sinh x=10.4343\right) x+0.6990-1$, correct to four significant figures.

Hyperbolic cosines $\left[\cosh x=1 / 2\left(e^{x}+e^{-x}\right)\right]$

X	0	1	2	3	4	5	6	7	8	9	avg diff
0.0	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1
. 1	1.005	1.006	1.007	1.008	1.010	1.011	1.013	1.014	1.016	1.018	2
. 2	1.020	1.022	1.024	1.027	1.029	1.031	1.034	1.037	1.039	1.042	3
. 3	1.045	1.048	1.052	1.055	1.058	1.062	1.066	1.069	1.073	1.077	4
. 4	1.081	1.085	1.090	1.094	1.098	1.103	1.108	1.112	1.117	1.122	5
0.5	1.128	1.133	1.138	1.144	1.149	1.155	1.161	1.167	1.173	1.179	6
. 6	1.185	1.192	1.198	1.205	1.212	1.219	1.226	1.233	1.240	1.248	7
. 7	1.255	1.263	1.271	1.278	1.287	1.275	1.303	1.311	1.320	1.329	8
. 8	1.337	1.346	1.355	1.365	1.374	1.384	1.393	1.403	1.413	1.423	10
. 9	1.433	1.443	1.454	1.465	1.475	1.486	1.497	1.509	1.520	1.531	11
1.0	1.543	1.555	1.567	1.579	1.591	1.604	1.616	1.629	1.642	1.655	13
. 1	1.669	1.682	1.696	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
. 2	1.811	1.826	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
. 3	1.971	1.988	2.005	2.023	2.040	$2 . C 58$	2.076	2.095	2.113	2.132	18
. 4	2.151	2.170	2.189	2.209	2.229	2.249	2.269	2.290	2.310	2.331	20
1.5	2.352	2.374	2.395	2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
. 6	2.577	2.601	2.625	2.650	2.675	2.700	2.725	2.750	2.776	2.802	25
. 7	2.828	2.855	2.882	2.909	2.936	2.964	2.992	3.021	3.049	3.078	28
. 8	3.107	3.137	3.167	3.197	3.228	3.259	3.290	3.321	3.353	3.385	31
. 9	3.418	3.451	3.484	3.517	3.551	3.585	3.620	3.655	3.690	3.726	34
2.0	3.762	3.799	3.835	3.873	3.910	3.948	3.987	4.026	4.065	4.104	38
. 1	4.144	4.185	4.226	4.267	4.309	4.351	4.393	4.436	4.480	4.524	42
. 2	4.568	4.613	4.658	4.704	4.750	4.297	4.844	4.891	4.939	4.988	47
. 3	5.037	5.087	5.137	5.188	5.239	5.290	5.343	5.395	5.449	5.503	52
. 4	5.557	5.812	5.667	5.723	5.780	5.837	5.895	5.954	6.013	6.072	58
2.5	6.132	8.193	6.255	6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
. 6	6.769	6.836	6.904	6.973	7.042	7.112	7.183	7.255	7.327	7.400	70
. 7	7.473	7.548	7.823	7.699	7.776	7.853	7.932	8.011	8.091	8.171	78
. 8	8.253	8.335	8.418	8.502	8.587	8.673	8.759	8.847	8.935	9.024	86
. 9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95
3.0	10.07	10.17	10.27	10.37	10.48	10.38	10.69	10.79	10.90	11.01	11
. 1	11.12	11.23	11.35	11.46	11.57	11.69	11.81	11.92	12.04	12.16	12
. 2	12.29	12.41	12.53	12.66	12.79	12.91	13.04	13.17	13.31	13.44	13
. 3	13.57	13.71	13.85	13.99	14.13	14.27	14.41	14.56	14.70	14.85	14
. 4	15.00	15.15	15.30	15.45	15.61	15.77	15.92	16.08	16.25	16.41	16
3.5	16.57	16.74	16.91	17.08	17.25	17.42	17.60	17.77	17.95	18.13	17
. 6	18.31	18.50	18.68	18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
.7	20.24	20.44	20.64	20.85	21.06	21.27	21.49	21.70	21.92	22.14	21
. 8	22.36	22.59	22.81	23.04	23.27	23.51	23.74	23.98	24.22	$24.4{ }^{7}$	23
. 9	24.71	24.96	25.21	25.46	25.72	25.78	28.24	26.50	26.77	27.04	26
4.0	27.31	27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
. 1	30.18	30.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32
. 2	33.35	33.69	34.02	34.37	34.71	35.06	35.41	35.77	36.13	36.49	35
. 3	36.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93	40.33	39
. 4	40.73	41.14	41.55	41.97	42.39	42.32	43.25	43.68	44.12	44.57	43
4.5	45.01	45.47	45.92	46.38	46.85	47.32	47.80	48.28	48.76	49.25	47
. 6	49.75	50.25	50.75	51.26	51.78	52.30	52.82	53.35	53.89	54.43	52
. 7	54.98	. 55.53	56.09	56.65	57.22	57.30	58.38	58.96	59.56	60.15	58
. 8	60.76	61.37	61.99	82.61	63.24	63.37	64.52	65.16	65.82	66.48	64
. 9	67.15	67.82	68.50	69.19	69.89	70.59	71.30	72.02	72.74	73.47	71
5.0	74.21										

Uf $x>5, \cosh x=1 / 2\left(0^{x}\right)$, and logio $\cosh x=10.43431 x+0.6990-1$, correct to four significont figures.

Hyperbolic tangents [tanh $x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)=\sinh x / \cosh x$ ]

$x$	0	1	2	3	4	5	6	7	8	9	avg   diff
0.0	. 0000	. 0100	. 0200	. 0300	. 0400	. 0500	. 0599	. 0699	. 0798	. 0898	100
. 1	. 0997	. 1096	. 1194	. 1293	. 1391	. 1489	. 1587	. 1684	. 1781	. 1878	98
. 2	. 1974	. 2070	. 2165	. 2260	. 2355	. 2449	. 2543	. 2636	. 2729	. 2821	94
. 3	. 2913	. 3004	. 3095	. 3185	. 3275	. 3364	. 3452	. 3540	. 3627	. 3714	89.
. 4	. 3800	. 3885	. 3969	. 4053	. 4136	. 4219	. 4301	. 4382	. 4462	. 4542	82
0.5	. 4621	. 4700	. 4777	. 4854	. 4930	. 5005	. 5080	. 5154	. 5227	. 5299	75.
. 6	. 53370	. 5441	. 5511	. 5581	. 5649	. 5717	. 5784	. 5850	. 5915	. 5980	67
. 7	. 6044	. 6107	. 6169	. 6231	. 6291	. 6352	. 6411	. 6469	. 6527	. 6584	60.
. 8	. 6640	. 6696	. 6751	. 6805	. 6858	. 6911	. 6963	. 7014	. 7064	. 7114	52
. 9	. 7163	. 7211	. 7259	. 7306	. 7352	. 7398	. 7443	. 7487	. 7531	. 7574	45.
1.0	. 7616	. 7658	. 7699	. 7739	. 7779	. 7818	. 7857	. 7895	. 7932	. 7969	39.
. 1	. 8005	. 8041	. 8076	. 8110	. 8144	. 8178	. 8210	. 8243	. 8275	. 8306	33.
.2	. 8337	. 8367	. 8397	. 8426	. 8455	. 8483	. 8511	. 85388	. 8565	. 8591	28
. 3	. 8617	. 8643	. 8568	. 8693	. 8717	. 8741	. 8764	. 8787	. 8810	. 8832	24
4	. 8854	. 8875	. 8896	. 8917	. 8937	. 8957	. 8977	. 8996	. 9015	. 9033	20
1.5	. 9052	. 9069	. 9087	. 9104	. 9121	. 9138	. 9154	. 9170	. 9186	. 9202	17
. 6	. 9217	. 9232	. 9246	. 9261	. 9275	. 9289	. 9302	. 9316	. 9329	. 9342	14.
7	. 9354	. 9367	. 9379	. 9391	. 9402	. 9414	. 9425	. 9436	. 9447	. 9458	11
. 8	. 9468	. 9478	. 9488	. 9498	. 9508	. 9518	. 9527	. 9536	. 9545	. 9554	9
.9	. 9562	. 9571	. 9579	. 9587	. 9595	. 9603	. 9611	. 9619	. 9626	. 9633	8.
2.0	. 9640	. 9647	. 9654	. 9861	. 9668	. 9874	. 9680	. 9687	. 9693	. 9699	6
. 1	. 9705	. 9710	. 9716	. 9722	. 9727	. 9732	. 9738	. 9743	. 9748	. 9753	5.
. 2	. 9757	. 9762	. 9767	. 9771	. 9776	. 9780	. 9785	. 9789	. 9793	. 9797	4
. 3	. 9801	. 9805	. 9809	. 9812	. 9816	. 9820	. 9823	. 9827	. 9830	. 9834	4.
. 4	. 9837	. 9840	. 9843	. 9848	. 9849	. 9852	. 9855	. 9858	. 9861	. 9863	3.
2.5	. 9866	. 9869	. 9871	. 9874	. 9876	. 9879	. 9881	. 9884	. 9886	. 9888	2
. 6	. 9890	. 9892	. 9895	. 9897	. 9899	. 9901	. 9903	. 9905	. 9906	. 9908	2
. 7	. 9810	9912	. 9914	. 9815	. 9917	. 9919	. 9920	. 9922	. 9923	. 9925	2.
. 8	. 9928	. 9928	. 9929	. 9931	. 9932	. 9933	. 9935	. 9936	. 9937	. 9938	1
. 9	. 9940	. 9941	. 9942	. 9943	. 9944	. 9945	. 9946	. 9947	. 9949	. 9950	1
3.0	. 9951	. 9959	. 9967	. 9973	. 9978	. 9982	. 9985	. 9988	. 9990	. 9992	4
4.0	. 9993	. 9995	. 9996	. 9996	. 9997	. 9998	. 9998	. 9998	. 9999	. 9999	1
5.0	. 9999										

If $x>5$, tanh $x=1.0000$ to four decimal places.

## Multiples of 0.4343 [ $0.43429448=\log _{10} \mathrm{e}$ ]

| $\mathbf{x}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 . 0}$ | 0.0000 | 0.0434 | 0.0869 | 0.1303 | 0.1737 | 0.2171 | 0.2606 | 0.3040 | 0.3474 | 0.3909 |
| $\mathbf{1 . 0}$ | 0.4343 | 0.4777 | 0.5212 | 0.5646 | 0.6080 | 0.6514 | 0.6949 | 0.7383 | 0.7817 | 0.8252 |
| $\mathbf{2 . 0}$ | 0.8686 | 0.9120 | 0.9554 | 0.9989 | 1.0423 | 1.0857 | 1.1292 | 1.1726 | 1.2160 | 1.2595 |
| $\mathbf{3 . 0}$ | 1.3029 | 1.3463 | 1.3897 | 1.4332 | 1.4766 | 1.5200 | 1.5635 | 1.6069 | 1.6503 | 1.6937 |
| $\mathbf{4 . 0}$ | 1.7372 | 1.7806 | 1.8240 | 1.8675 | 1.9109 | 1.9543 | 1.9978 | 2.0412 | 2.0846 | 2.1280 |
|  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{5 . 0}$ | 2.1715 | 2.2149 | 2.2583 | 2.3018 | 2.3452 | 2.3886 | 2.4320 | 2.4755 | 2.5189 | 2.5623 |
| $\mathbf{6 . 0}$ | 2.6058 | 2.6492 | 2.6926 | 2.7361 | 2.7795 | 2.8229 | 2.8663 | 2.9098 | 2.9532 | 2.9966 |
| 7.0 | 3.0401 | 3.0835 | 3.1269 | 3.1703 | 3.2138 | 3.2572 | 3.3006 | 3.3441 | 3.3875 | 3.4309 |
| 8.0 | 3.4744 | 3.5178 | 3.5612 | 3.6046 | 3.6481 | 3.6915 | 3.7349 | 3.7784 | 3.8218 | 3.8652 |
| $\mathbf{9 . 0}$ | 3.9037 | 3.9521 | 3.9955 | 4.0389 | 4.0824 | 4.1258 | 4.1692 | 4.2127 | 4.2561 | 4.2995 |

Multiples of $2.3026\left[2.3025851=1 / 0.4343=\log _{e} 10\right]$

X	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.2303	0.4605	0.6908	0.9210	1.1513	1.3816	1.6118	1.8421	2.0723
1.0	2.3026	2.5328	2.7631	2.9934	3.2236	3.4539	3.6841	3.9144	4.1447	4.3749
2.0	4.6052	4.8354	5.0657	5.2959	5.5262	5.7565	5.9867	6.2170	6.4472	6.6775
3.0	6.9078	7.1380	7.3683	7.5985	7.8288	8.0590	8.2893	8.5196	8.7498	8.9801
4.0	9.2103	9.4406	9.6709	9.9011	10.131	10.362	10.592	10.822	11.052	11.283
5.0	11.513	11.743	11.973	12.204	12.434	12.664	12.894	13.125	13.355	13.585
6.0	13.816	14.046	14.276	14.506	14.737	14.967	15.197	15.427	15.658	15.888
7.0	16.118	16.348	16.579	16.809	17.039	17.269	17.500	17.730	17.960	18.190
8.0	18.421	18.651	18.881	19.111	19.342	19.572	19.802	20.032	20.263	20.493
9.0	20.723	20.954	21.184	21.414	21.644	21.875	22.105	22.335	22.565	22.796

Exponentials [ $e^{n}$ and $e^{-n}$ ]

n	$e^{n}$ diff	$n$	$0^{n}$ diff	$n$	$e^{\text {n }}$	-	$e^{-n}$ diff	n	$e^{-4}$	n	$0^{-}$
0.00	1.00010	0.50	1.64916	1.0	2.718*	0.00	$1.000-10$	0.50	. 607	1.0	. 368 *
01	1.01010	. 51	1.665	. 1	3.004	. 01	0.990-10	. 51	. 600	1	. 333
. 02	1.02010	. 52	1.68217	. 2	3.320	02	. $980-10$	. 53	. 595	2	. 301
.03 .04	1.03011	. 53	1.699 1.716	. 3	3.669 4.055	03 .04	$.970-961-9$	. 53	. 5889	3 4	.273 .247
. 04	1.04110	. 54	1.71617		4.055		. 961 - 10	. 54	. 583		. 247
0.05	1.05111	0.55	1.73318	1.5	4.482	0.05	. 951 - 9	0.55	. 577	1.5	. 223
. 06	1.06211	. 56	1.75117	. 6	4.953	. 06	. 942 - 10	. 56	. 571	. 6	. 202
. 07	1.07311	. 57	1.768	. 7	5.474	. 07	. 932 - 9	. 57	. 566	7	. 183
. 08	1.083	. 58	1.786	. 8	6.050	. 08	.923-9	. 58	. 560	8	. 165
. 09	1.09411	. 59	1.80418	. 9	6.686	. 09	914-9	. 59	. 554	. 9	. 150
0.10	1.10511	0.60	1.82218	2.0	7.389	0. 10	.905 - 9	0.60	. 549	2.0	. 135
. 11	1.116	. 61	1.840	. 1	8.166	11	.896-9	. 61	. 543	1	. 122
. 12	1.127	. 62	1.859	2	9.025	12	.887-9	. 62	. 538	2	. 111
. 13	1.13912	. 63	1.87818	. 3	9.974	. 13	.878-9	. 63	. 533	3	. 100
. 14	1.15012	. 64	1.896	. 4	11.02	14	.869-8	. 64	. 527	4	. 0907
0.15	1.162	0.65	1.916	2.5	12.18	0.15	.861-9	0.65	. 522	2.5	. 0821
. 16	1.174	. 68	1.93519	6	13.46	16	.852-8	. 66	. 517	. 6	. 0743
. 17	1.18512	. 67	1.95420	. 7	14.88	17	.844-9	. 67	. 512	7	. 0672
. 18	1.19712	. 68	1.97420	8	16.44	. 18	.835-8	. 68	. 507	8	.0608 .0550
. 19	$1.209$	. 69	1.99420				. 827 - 8		. 502	. 9	. 0550
0.20	1.221	0.70	2.014	3.0	20.09	0.20	.819 -	0.70	. 497	3.0	. 0498
. 21	1.234	. 71	2.034	. 1	22.20	. 21	.811-8	. 71	. 492	. 1	. 0450
. 22	1.246	. 72	2.054	2	24.53	22	. 803 - 8	. 72	. 487	. 2	. 0408
. 23	1.25912	. 73	$2.075{ }^{21}$	.3	27.11	23	.795-8	73	. 482	3	. 0369
. 24	1.271	. 74	2.09621	. 4	29.96	. 24	.787-8	. 74	. 477	. 4	. 033
0.25	1.284	0.75	2.117	3.5	33.12	C. 25	.779-8	0.75	. 472	3.5	. 0302
. 26	1.29713	. 76	$2.138 \quad 21$	. 6	36.60	. 26	.771-8	. 76	. 468	. 6	. 0273
. 27	1.310	. 77	$2.160 \quad 22$	. 7	40.45	. 27	.763-7	. 77	. 463	7	. 0247
. 28	1.323	. 78	2.18121	. 8	44.70	. 28	.756-8	78	. 458	8	. 0224
.29	1.33614	. 79	$2.203{ }_{23}^{22}$	. 9	49.40	. 29	. $748=7$	. 79	. 454	. 9	. 0202
0.30	1.350	0.80	2.226	4.0	54.60	0.30	.741 - 8	0.80	. 449	4.0	. 0183
. 31	1.363	. 81	2.248	. 1	60.34	. 31	.733-7	. 81	. 445	. 1	. 0166
. 32	1.37714	. 82	$2.270{ }^{22}$	. 2	68.69	. 32	.726-7	. 82	. 440	2	. 0150
. 33	1.39114	. 83	2.29323	. 3	73.70	. 33	.719-7	. 83	. 436	3	. 0136
. 34	1.40514	84	$2.316{ }_{24}^{23}$	. 4	81.45	. 34	.712-7	. 84	. 432	. 4	. 0123
0.35	1.419	0.85	2.340	4.5	90.02	0.35	705-7	0.85	. 427	4.5	. 0111
. 36	1.43315	. 86	$2.363{ }^{23}$			. 36	.698-7	. 86	. 423		
. 37	1.448	. 87	2.38724	5.0	148.4	. 37	.691-7	. 87	. 419	5.0	. 00674
. 38	1.462	. 88	$2.411{ }^{24}$	6.0	403.4	. 38	.684-7	. 88	. 415	6.0	. 00248
. 39	1.477 15	. 89	$2.435{ }_{25}^{24}$	7.0	1097.	. 39	. 677 - 7	. 89	. 411	7.0	. 000912
0.40	1.492	0.90	2.460	8.0	2981.	0.40	. 670	0.90	407	8.0	. 000335
. 41	1.50715	. 91	$2.484{ }^{24}$	9.0	8103.	. 41	. 664 - ${ }^{\text {- }}$	. 91	. 403	9.0	. 000123
. 42	1.522 15	. 92	2.50925	10.0	22026.	. 42	.657- $=6$	. 92	. 399	10.0	. 000045
. 43	1.537	. 93	$2.535{ }^{26}$			. 43	.651-7	. 93	. 395		
44	1.55315	. 94	2.560	$\pi / 2$	4.810	. 44	. $644-6$	. 94	. 391	$\pi / 2$	. 208
				$2 \pi / 2$	23.14					$2 \pi / 2$	
0.45	1.56816	0.95	2.58626	$3 \pi / 2$	111.3 535.5	0.45	. $6331-7$	0.95 .96	.387 .383	$3 \pi / 2$ $4 \pi / 2$	.00898 .00187
. 46	1.584 1.60016			$4 \pi / 2$ $5 \pi / 2$	535.5 2576.			. 96	. 383	$4 \pi / 2$ $5 \pi / 2$	. 001878
. 47	1.60016	. 98	2.638	5\%/2	12392.	. 48	. 6219 - 8	-. 98	. 375	ST/2	. 0000038
. 49	1.63217	.98	2.69127	7m/2	59610.	. 49	. $613^{-8}$	. 99	. 372	$7 \pi / 2$	. 0000017
				$8 \pi / 2$	286751.					$8 \pi / 2$	. 000003
0.50	1.649	1.00	2.718			0.50	0.607	1.00	. 368		

[^64]Properties of e are listed on p. 583.
Table I- $\mathbf{J}_{0}(\mathbf{z})$
Bessel functions

$z$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	1.0000	0.9975	0.9900	0.9776	0.9604	0.9385	0.9120	0.8812	0.8463	0.8075
1	0.7652	0.7196	0.6711	0.6201	0.5669	0.5118	0.4554	0.3980	0.3400	0.2818
2	0.2239	0.1666	0.1104	0.0555	0.0025	-0.0484	$-0.0968$	-0.1424	$-0.1850$	$-0.2243$
3	-0.2601	-0.2921	-0.3202	-0.3443	-0.3643	-0.3801	$-0.3918$	-0.3992	-0.4026	-0.4018
4	-0.3971	-0.3887	-0.3766	$-0.3610$	-0.3423	-0.3205	-0.2961	$-0.2693$	-0.2404	-0.2097
5	$-0.1776$	-0.1443	$-0.1103$	-0.0758	-0.0412	-0.0068	$+0.0270$	0.0599	0.0917	0.1220
6	0.1506	0.1773	0.2017	0.2238	0.2433	0.2601	0.2740	0.2851	0.2931	0.2981
7	0.3001	0.2991	0.2951	0.2882	0.2786	0.2663	0.2516	0.2346	0.2154	0.1944
8	0.1717	0.1475	0.1222	0.0960	0.0692	0.0419	0.0146	$-0.0125$	-0.0392	-0.0653
9	$-0.0903$	$-0.1142$	$-0.1367$	-0.1577	$-0.1768$	$-0.1939$	-0.2090	$-0.2218$	$-0.2323$	$-0.2403$
10	-0.2459	$-0.2490$	-0.2496	-0.2477	-0.2434	$-0.2366$	$-0.2276$	-0.2164	-0.2032	-0.1881
11	$-0.1712$	-0.1528	$-0.1330$	$-0.1121$	-0.0902	$-0.0677$	-0.0446	$-0.0213$	+0.0020	0.0250
12	0.0477	0.0697	0.0908	0.1108	0.1296	0.1469	0.1626	0.1766	0.1887	0.1988
13	0.2069	0.2129	0.2167	0.2183	0.2177	0.2150	0.2101	0.2032	0.1943	0.1836
14	0.1711	0.1570	0.1414	0.1245	0.1065	0.0875	0.0679	0.0476	0.0271	0.0064
15	-0.0142	-0.0346	-0.0544	-0.0736	$-0.0919$	$-0.1092$	$-0.1253$	-0.1401	$-0.1533$	-0.1650

Bessel functions

\% 1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0499	0.0995	0.1483	0.1960	0.2423	0.2867	0.3290	0.3688	0.4059
1	0.4401	0.4709	0.4983	0.5220	0.5419	0.5579	0.5699	0.5778	0.5815	0.5812
2	0.5767	0.5683	0.5560	0.5399	0.5202	0.4971	0.4708	0.4416	0.4097	0.3754
3	0.3391	0.3009	0.2613	0.2207	0.1792	0.1374	0.0955	0.0538	0.0128	-0.0272
4	$-0.0660$	$-0.1033$	-0.1386	$-0.1719$	-0.2028	$-0.2311$	-0.2566	-0.2791	-0.2985	-0.3147
5	-0.3276	$-0.3371$	-0.3432	$-0.3460$	-0.3453	$-0.3414$	-0.3343	$-0.3241$	-0.3110	-0.2951
6	$-0.2767$	-0.2559	-0.2329	$-0.2081$	$-0.1816$	-0.1538	-0.1250	-0.0953	-0.0652	-0.0349
7	$-0.0047$	+0.0252	0.0543	0.0826	0.1096	0.1352	0.1592	0.1813	0.2014	0.2192
8	0.2346	0.2476	0.2580	0.2657	0.2708	0.2731	0.2728	0.2697	0.2641	0.2559
9	0.2453	0.2324	0.2174	0.2004	0.1816	0.1613	0.1395	0.1166	0.0928	0.0684
10	0.0435	0.0184	-0.0066	$-0.0313$	$-0.0555$	-0.0789	-0.1012	$-0.1224$	-0.1422	$-0.1603$
11	-0.1768	$-0.1913$	-0.2039	-0.2143	-0.2225	$-0.2284$	$-0.2320$	$-0.2333$	$-0.2323$	$-0.2290$
12	-0.2234	-0.2157	-0.2060	-0.1943	$-0.1807$	-0.1655	$-0.1487$	$-0.1307$	-0.1114	$-0.0912$
13	$-0.0703$	-0.0489	-0.0271	-0.0052	$+0.0166$	0.0380	0.0590	0.0791	0.0984	0.1165
14	0.1334	0.1488	0.1626	0.1747	0.1850	0.1934	0.1999	0.2043	0.2066	0.2069
15	0.2051	0.2013	0.1955	0.1879	0.1784	0.1672	0.1544	0.1402	0.1247	0.1080


Table III- $\mathrm{J}_{2}(\mathrm{z})$								continued Bessel functions		
$z$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0012	0.0050	0.0112	0.0197	0.0306	0.0437	0.0588	0.0758	0.0946
1	0.1149	0.1366	0.1593	0.1830	0.2074	0.2321	0.2570	0.2817	0.3061	0.3299
2	0.3528	0.3746	0.3951	0.4139	0.4310	0.4461	0.4590	0.4696	0.4777	0.4832
3	0.4861	0.4862	0.4835	0.4780	0.4697	0.4586	0.4448	0.4283	0.4093	0.3879
4	0.3641	0.3383	0.3105	0.2811	0.2501	0.2178	0.1846	0.1506	0.1161	0.0813
Table IV-J ${ }_{3}(\mathrm{z})$										
$\pm$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0002	0.0006	0.0013	0.0026	0.0044	0.0069	0.0102	0.0144
1	0.0196	0.0257	0.0329	0.0411	0.0505	0.0610	0.0725	0.0851	0.0988	0.1134
2	0.1289	0.1453	0.1623	0.1800	0.1981	0.2166	0.2353	0.2540	0.2727	0.2911
3	0.3091	0.3264	0.3431	0.3588	0.3734	0.3868	0.3988	0.4092	0.4180	0.4250
4	0.4302	0.4333	0.4344	0.4333	0.4301	0.4247	0.4171	0.4072	0.3952	0.3811
Table V—J $\mathrm{J}_{4}(\mathrm{z})$										
2	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0006	0.0010	0.0016
1	0.0025	0.0036	0.0050	0.0068	0.0091	0.0118	0.0150	0.0188	0.0232	0.0283
2	0.0340	0.0405	0.0476	0.0556	0.0643	0.0738	0.0840	0.0950	0.1067	0.1190
3	0.1320	0.1456	0.1597	0.1743	0.1891	0.2044	0.2198	0.2353	0.2507	0.2661
4	0.2811	0.2958	0.3100	0.3236	0.3365	0.3484	0.3594	0.3693	0.3780	0.3853

## Table VI

$p$	Jp(l)	Jp(2)	$\mathrm{Jp}_{\mathrm{p}}(3)$	Jo(4)	Jp(5)	$\mathrm{Jp}_{\mathrm{p}}(6)$	Jp(7)	Jp(8)	$J_{p}(9)$	Jp(10)	$\mathrm{Jp}_{\mathrm{p}}(11)$	Jo(12)	Jp (13)	Jp(14)
$\begin{aligned} & 0 \\ & 0.5 \end{aligned}$	+.7652 +.6714	+.2239 +.5130	-.2601 .+ .06501	-.3971 -.3019	$\begin{aligned} & -.1776 \\ & -.3422 \end{aligned}$	$\begin{aligned} & +.1506 \\ & -.09102 \end{aligned}$	$\begin{aligned} & +.3001 \\ & +.1981 \end{aligned}$	$\begin{array}{r} +.1717 \\ +.2791 \end{array}$	$\begin{aligned} & -.09033 \\ & +.1096 \end{aligned}$	$\begin{aligned} & -.2459 \\ & -.1373 \end{aligned}$	$\begin{aligned} & -.1712 \\ & -.2406 \end{aligned}$	$\begin{aligned} & +.04769 \\ & -.1236 \end{aligned}$	$\begin{aligned} & +.2069 \\ & +.09298 \end{aligned}$	$\begin{aligned} & +.1711 \\ & +.2112 \end{aligned}$
1.0 1.5	+.4401 +.2403	+.5767 +.4913	+.3391 +.4777	-.06604 +.1853	-.3276 -.1697	-.2767 -.3279	-.024583 -.1991	$\begin{aligned} & +.2346 \\ & +.07593 \end{aligned}$	+.2453 +.2545	+.04347 +.1980	$\begin{aligned} & -.1768 \\ & -.02293 \end{aligned}$	-. 2234	$\begin{aligned} & -.07032 \\ & -.1937 \end{aligned}$	$\begin{aligned} & +.1334 \\ & -.01407 \end{aligned}$
$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & +.1149 \\ & +.04950 \end{aligned}$	+.3528 +.2239	+.4861 +.4127	+.3641 +.4409	+.04857 +.2404	-. 2429	-.3014 -.2834	-.1130 -.2506	+.1448	+.2546 +.1967	+.1390 +.2343	$\begin{array}{r} -.08493 \\ +.07242 \end{array}$	-. 21777	$\begin{aligned} & -.1520 \\ & -.2143 \end{aligned}$
3.0 3.5	+.01956 +.027186	+.1289 +.06852	+.3091 +.2101	+.4302 +.3658	+.3648 +.4100	+.1148 +.2671	-.1676 -.023403	-.2911 -.2326	-.1809 -.2683	+.05838 -.09965	+.2273 +.1294	+.1951 +.2348	$\begin{aligned} & +.023320 \\ & +.1407 \end{aligned}$	$\begin{aligned} & -.1768 \\ & -.06245 \end{aligned}$
$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	+.022477 +.03807	+03400 +.01589	+1320 +.07760	+2811 +.1993	+.3912 +.3337	+.3576 +.3846	+ +.1578 +.2800	$\begin{aligned} & -.1054 \\ & +.04712 \end{aligned}$	-2655 -.1839	-.2196 -.2664	$\begin{aligned} & -.01504 \\ & -.1519 \end{aligned}$	+.1825 +.06457	+.2193 +.2134	$\begin{aligned} & +.07624 \\ & +.1830 \end{aligned}$
$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	+.022498 +.047	$\begin{array}{r} +.027040 \\ +.0^{22973} \end{array}$	+.04303 +.02266	+.1321 +.08261	+.2611 +.1906	+.3621 +.3098	+.3479 +.3634	$\begin{array}{r} +.1858 \\ +.2856 \end{array}$	$\begin{aligned} & -.05504 \\ & +.08439 \end{aligned}$	-.2341 -.1401	$\begin{aligned} & -.2383 \\ & -.2538 \end{aligned}$	$\begin{aligned} & -.07347 \\ & -.1864 \end{aligned}$	$\begin{aligned} & +.1316 \\ & +.07055 \end{aligned}$	$\begin{aligned} & +.2204 \\ & +.1801 \end{aligned}$
$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & +.042094 \\ & +.086 \end{aligned}$	$\begin{aligned} & +.021202 \\ & +0^{3} 467 \end{aligned}$	$\begin{aligned} & +.01139 \\ & +.025493 \end{aligned}$	+.04909 +.02787	+.1310 +.08558	+.2458 +.1833	+.3392 +.2911	+.3376 +.3456	+.2043 +.2870	-.01446 +.1123	-2016 -.1018	-.2437 -.2354	$\begin{array}{r} -.1180 \\ -.2075 \end{array}$	$\begin{array}{r} +.08117 \\ -.04151 \end{array}$
$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$+.0^{51502}$	$+0^{3} 1749$	$+.082547$	+.01518	$+.05338$	$\begin{aligned} & +.1296 \\ & +.08741 \end{aligned}$	+.2336 +.1772	+.3206 +.2759	+3275 +3302	+ +.2167 +.2861	$\begin{aligned} & +.01838 \\ & +.1334 \end{aligned}$	$\begin{aligned} & -.1703 \\ & -.06865 \end{aligned}$	-.2406 -.2145	$\begin{aligned} & -.1508 \\ & -.2187 \end{aligned}$
$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	+.079422	$\underline{+}$	$+{ }_{+}^{0.3934}$	$+{ }^{\text {O2 }}$ -	+.01841	$\begin{aligned} & +.05653 \\ & +.03520 \end{aligned}$	$\begin{aligned} & +.1280 \\ & +.08854 \end{aligned}$	+.2235 +.1718	$\begin{array}{r} +.3051 \\ +.2633 \end{array}$	$\begin{array}{r} +.3179 \\ +.3169 \end{array}$	$\begin{aligned} & +.2250 \\ & +.2838 \end{aligned}$	$\begin{aligned} & +.04510 \\ & +.1496 \end{aligned}$	$\begin{aligned} & -.1410 \\ & -.04006 \end{aligned}$	$\begin{aligned} & -.2320 \\ & -.1928 \end{aligned}$
$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	+.085249	+.052492	+.048440	+. $0^{39} 9386$	+.025520	$\begin{aligned} & +.02117 \\ & +.01232 \end{aligned}$	$\begin{aligned} & +.05892 \\ & +.03785 \end{aligned}$	$\begin{aligned} & +.1263 \\ & +.08921 \end{aligned}$	$\begin{aligned} & +.2149 \\ & +.1672 \end{aligned}$	$\begin{array}{r} +.2919 \\ +.2526 \end{array}$	$\begin{aligned} & +.3089 \\ & +.3051 \end{aligned}$	$\begin{aligned} & +.2304 \\ & +.2806 \end{aligned}$	$\begin{aligned} & +.06698 \\ & +.1621 \end{aligned}$	$\begin{aligned} & -.1143 \\ & -.01541 \end{aligned}$
10.0	+.0\%2631	+.062515	+.041293	+. $0^{3} 1950$	+.021468	+. $0^{26964}$	+. 02354	+.06077	+. 1247	+. 2075	+.2804	+.3005	+.2338	+. 08501

Note: $.027186=.007186$ and $.03807=.000807$

640

## Factorials

$\mathbf{x}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{x 1}$	$\mathbf{1}$	2	2	6	24	120	720	5040	40,320	362,880

For $x>10$, Stirling's formula may be used, with an error not exceeding 1 percent, as follows
$x!=x^{x} e^{-x} \sqrt{2 \pi x}$
If common logarithms are used for computing $x$ l, $\log (x!)=\left(x+\frac{1}{2}\right) \log x-0.43429 x+0.3991$
For example, if $x=10$,

$$
\begin{aligned}
x+\frac{1}{2} & =10.5000 \\
\log x & =1 \\
\log (x!) & =10.5000-4.3429+0.3991=6.5562 \\
x! & =3.599(10)^{6}=3,599,000
\end{aligned}
$$

A
Abbreviations of frequency bands
Absorption
acoustic materials 522
radar 470
unił 522
Acceleration 28
electrode 236
absorption units 522
acoustical
coefficients
522
mechanical analog 512
coefficients, acoustical 522
frequency
musical instruments 526
voices 526
LaGrange equations 517
loudness 531
materials 522
mechanical-acoustical analog 512
music 527
networks
acoustical
512
analog 512
particle
velocity 509
pressure
propagation 510
509236

Acoustics, Sound isee also Electro.

    acoustics, Public address)
    
    509
    Acoustics, Sound Isee also Electro. acoustics, Public address) ..... 509acousticalcoefficients522

analog, acoustical-mechanical 512
alog, acoustical-mechanical ..... 512

bandwidth improvement 527
coffials,522

corrective materials 523
corrective materials ..... 2

enclosed rooms, sound 519

equal loudness 531 ..... 531
frequencymusical instruments526

intensity 512
intensity ..... 5

levels 513
levels ..... 513522music527

musical instruments, range 526networksacoustical

    mechanical
    
    512
    mechanical ..... 512

open-window units 522

    displacement 509
    on ..... 509

persons, acoustical coefficients 522
persons, acoustical coefficients ..... 522

substances

510
substances ..... 510

Acoustics, Sound continued range
musical instruments 526
voices 526
reverberation time 519
computation 522
oprimum 522
resistance 510
room
sizes 519
sound in enclosed 517
sizes of rooms 519
sound
enclosed rooms 519
intensity $\quad 512,513$
spectrum 526
speech 527
standing waves 519
stress 509
theory 509
time, reverberation 519
computation 522
optimum 522
velocity 28
voices, frequency range 526
waves
equations 509
standing 519
window, open units 522
Address, public 523
Admittance
electrode 216, 221
four-terminal network 93
measurement
175, 176
transmission lines 311
Aeronautical stations 11
AI 471
Air 510
cooling 211
Aircraft
inferception 471
stations 11

## Algebraic formulas

Algebraic formulas	582
Allegheny 4750	193, 208
Allocation	
carrier system frequencies	500
frequency	9
services	9
Alloys, constants	34
Alrok	556
Alternating current, average, effective, rms values	
Altitude-pressure	546
Aluminum, finishes	556
American	
Morse code	508
noise units	505
Standards Association	54
wire gauge	40
Ampere-furns, focusing	236
Amplidyne servo mechanisms	533
Amplification, Amplifiers	240
audio frequency	250, 251
resistance coupled	255
capacitive-differentiation	
differential equation	262
rectangular input pulse	263
trapezoidal input puise	262
triangular inpur pulse	264
capacitive-integration	
circuit equations	265
rectangular input wave	265
blased	266
schematic diagrams	267
triangular input wave	266
cathode-follower	253, 254
classification	240, 252
A	240, 250
A8	240, 250, 251
B	240, 249, 251
C	240, 245
design	
general	240
graphical	243, 245
distortion	261
grounded	
cathode	253
grid	253
plate	253
magnetic	207
negative feedback	256
beam-power tube	258
gain reduction	257
radio frequency	245, 249
resistance coupled	255
Amplifude modulation	14, 18, 275
interference	283
AN nomenclature	566
Analytic geometry	
plane	589
solid	594
Angle beam	437


Angle continued	
between lines	590
modulation	278
frigonometric formulas	586
Angstrom unit	8
Anode	215
strap	225
Anodizing	556
Antennas	362-396
area, effective	390
arrays	380
binomial	380
directivity	383
broadside	384
directivity	382, 383, 387
linear	380
current distribution	384
dipole	362, 374, 381
field intensity	362
directivity	
arrays	382, 383, 387
dipole	381
loop	381
turnstile	381
effective areas	435
electromagnetic horn	388
field intensity	376
dipole	362, 374
free space	373
ground effect	386
half-wave dipole	374
isotropic	373
received power	374
vertical radiator	368
gain	390
ground, effect on radiation	386
half-wave dipole	362, 374, 381
horns	388
isotropic	373
loop	381
stacked	392
parabolas	388, 390
polarization	365, 484
circular	366
elliptic	366
Eplane	365
horizontal	365
H plane	365
vertical	365
radar	462
radiation Isee Antennas, Fi	Id intensityl
received power	374
reflectors, parabolic	388
rhombic	377
vertical	368
field intensity	368
Anti-TR switch	471
Arbitrary expansion interval	291
Arcback voltage	235
Area antenna	390

modulation 278
trigonometric formulas 586
Angstrom unit 8
Anode 215
strap 225
Anodizing 556
Antennas 362-396
area, effective 390
arrays 380
383
broadside 384
directivity 382, 383,387
linear 380
current distribution 384
362, 374, 38
directivity -
dipole 381
loop 381
turnstile 381

- 3 ective areas
field intensity 376
dipole 362, 373
ground effect 386
half-wave dipole 374
isotropic 373
received power 374
vertical radiator
ground, effect on radiation 386
half-wave dipole $\quad 362,374,381$
isotropic 373
OOp 381
polarization 365, 484
- 366

E plane 365
horizontal 365
H plane 365
radar 462
radiation Isee Antennas, Field intensity)
received power 374
rhombic 377
vertical 368
368
Anti-TR switch 471
Arbitrary expansion interval 291
$\begin{array}{ll}\begin{array}{ll}\text { Arcback voltage } \\ \text { Area } \\ \text { antenna }\end{array} & 235 \\ & 390\end{array}$


Altenuation, Attenuator continued transmission lines	
$T$, symmetrical	158,161
$T$, unbalanced	158
unbalanced	
pi	158
$T$	158
wave guides	348, 349
0	
balanced	158
symmetrical	158, 163
Audio frequencies Ises also Acoustics)	) 19
distortion, television	489
reactor	187
response	
frequency modulation	482
standard broadcasting	475
television	489
transformers	187, 197
Aural center frequency, television	485
Auroral zones	412
Autotransformers	186
Average value of alternating current	101
Avogadro's number	25
B	
B\&S wire gauge	40
Bands, frequency	8, 9
elimination filter	145
pass filter	136
stop filter	145
Bandwidth	16
acoustic	526, 527
amplitude modulation	18
broadcasting	18
commercial telephony	18
determination	17
facsimile	17
frequency modulation	19
measurement	174
musical instruments	526
pulse	287
modulation	17
selective circuit	114
telegraphy	17
telephony	17
television	17
traveling-wave tubes	233
Base stations	12
Baudot code	508
Bauds	17, 287
Beacon, Racon	472
Beam angle	437
Beam-coupling coefficient	230
Berne Bureau	8
Bessel functions	636
Bidirectional pulses	286
Binomial, Binary	
arrays	380
pulse-code modulation	285

## Binomial, Binary



## Broadcasting continued <br> international 473

noise
receiver 447
station 447
standard 473
audio frequency
distortion 475
response 475
carrier stability 476
channels 474
field intensity 474
coverage 474
primary 474
secondary 474
frequency stability 476
modulation 475
noise 476
power 474
service 474
station 474
television 473
amplitude characteristic 486
antenna polarization 485
audio frequency
distortion 489
response 489
aspect ratio 486
aural center frequency 485
black level 488
brightness 488
caprier
picture 485
sound 485
center frequency, aural 485
channels 484
width $\quad \ddagger 85$
classification 484
coverage 485
field frequency 486
frame frequency 486
frequency
field 486
frame 486
response 488
liorizontal pulse
reperition stability 488
$\begin{array}{ll}\text { reperifion stability } \\ \text { timing variation } & 488\end{array}$
level
black 488
pedestal 488
white 488
modulation 485, 486, 489
noise 489
pedestal level 488
picture carrier 485
polarization 485
transmission 488
radiation effectivo 489
lower sideband 488

Broadcasting cantinued	
radio-frequency amplitude	486
ratio, aspect	486
scanning	
lines	486
sequence	486
stations	
community	484
metropolitan	484
rural	485
transmission	
output	488
polarity	488
variation, transmitter	480
white level	488
Broadside array	391
Bronze finishes	557
BTO	471
Bunching	228, 230
Button-mica capacitors	66
C	
Cable isee types of cables, also Transmission lines)	
Cadmium finish	557
Calculus	
differential	596
integral	598
operational	108
Capacitance, Capacitors	
annular	90
balance	174
bridge	170
button-mica	66
capacitance	66
characteristics	66
color code	66
humidity	67
temperature coefficient	66
thermal shack	67
ceramic	59
capacitance	60
tolerance	60
color code	59
life	61
Q	62
quality tests	61
temperature coefficient	60
tolerance	61
type designation	59
charge	102
circular ring	90
coaxial cable	334
discharge	102
distributed	73, 174
electrode	216
exchange cable	497

Capacitance, Capacitors cantinued
fixed
ceramic 59
mica 62
paper 67
formulas 90
impregnants 69
measurement 173
mica, molded 62
capacitance 63,65
color code 64
dielectric strength 65
humidity 65
insulation resistance 63
life 66
Q 63
temperature coefficient 63,65
thermal shock 65
type designation 62
paper 67
ambient temperature 67,68
capacitance 71
impregnants 69,70
insulation resistance 69
life $\quad 67,68,69,71$
power factor 71
resistance, insulation 69
temperature 67
coefficient 71
voltage 67,68
waveform 69
parallel plates 90
reactance 76,90
telephone lines 490,494
time constant 102
toll cable 495, 496
Capacitive-differentiation amplifiers 262
Capacitive-integration amplifiers 264
Capacitive reactance 90
Carbon dioxide 510
Carbonyl 196
Carrier
stobility, broadcasting 476
systems 500
coaxial cable 503
Cascaded networks, noise 450
Cathodes (see Electron tubes)
Cavity resonator
229, 354
characteristics 356
coupling 358
impedance 230
Q 358
funing 358
Gentigrade-Fahrenheit 37
Centimetric waves 8
Central Radio Prapagation Laboratory 19
Ceramics 48
capacitors 59
CGS units 26
Chaff 471
Channel width, television 485

## Charge

Charge	
capacitor	102
inductor	104
R-L-C circuit	104
Chemical symbols, elements	31
Chokes (see Reactance)	
Chromium finish	557
Circle	577
tangent	590
Circults Isee Filter networks, Networks, Selective circuits, Wave guides)	
Circular	
cylinder resonator	356
polarization	366
wave guides	345
Clearance drill, screw	46
Clipped sawtooth wave analyses	299
Clipper	286
Clutter	471
Coast stations	11
Coaxial cables	
Army-Navy standard	334
aitenuation	338, 348
beads	323
capacitance	334
carrier	503
cutoff wavelength	348
dielectric	323, 334
polyethylene discs	499
wedge	325
dimensions	334
impedance	334
New York-Philadelphia	499
polyethylene discs	499
resonator	356
shielding	334
slotted	328
Stevens Point-Minneapolis	499
voltage	334
wedge dielectric	325
weight	334
Code	286
Army-Navy	566
character	287
color	54
element	286
telegraph	508
Coherent oscillator	471
Coherent-pulse operation	219
Coho	471
Coils (see Inductance)	
Cold-filament current	209
Collision ionization	213
Color coding	54
capacitors	59, 64, 66
resistors	56, 58
transformers	72
audio frequency	72
intermediate frequency	72
power	72
Combinations and permutations	582


Commercial insulating materials	47
Commercial telephony	18
Common logarithms of numbers	620
Comite Consultatif International Radio	- 13
Communication, speech	530
Community stations, television	484
Comparator, servo-mechanism	533
Complex quantities	583
Components isee specific componentl	1 54-72
Composite filter	148
Composite transmission	14
Composition resistors (see Resistancel	
Compton wavelength	25
Computers, servo-mechanism	533
Condensers (see Capacitors)	
Conductance	
exchange cable	497
telephone line	490, 494
toll cable	495, 496
Conductivity (see Resistivity)	34
Conductor	
radiation	376
skin effect	86
stranded	44
Cone	580
Connection, wave guide	349
Constant-current characteristic	216
Constants, units, conversion factors	22-30
Continental Morse code	508
Continuous-control servo mechanism	533
Control	
characteristic	234, 236
grid	215
servo mechanism	533
Convection-current modulation	230
Conversion factors, units, constants	22-30
Coordinate systems	618
Copper	
alloy finishes	557
plate	557
wire tables	40
Copperweld	
telephone line	491
wire	43
Core materials	193, 196
Corona, transiormers	206
Corresponding phases, radar	471
Corrosion, galvanic series	32
Cosines	586
hyperbolic	633
Cosmic noise	443
galaxy	443
solar	443
thermal	443
Counter measures	472
Coupling	
beam	230
cavity	358, 360
coefficient	96, 114
matching section	332


Coupling continued optimum	
stagger funed	127
Coverage data	
broadcasting	474
frequency modulation	480
standard-frequency transmission	21
television	485
Creed Morse code	508
Critical grid current	234
C.R-L circuits	
charge	104
circuit transients	107
discharge	104
Curl	618
Current	
decitels	30
focusing	236
four-terminal network	94
transmission lines	308
Curvature, differential calculus	597
Cutoff frequency	
exchange cable	497
toll cable	496
wave guides	348
Cutofl voltage	236
Cylinder	579
covity	355
coordinates	618
D	
Damped waves	14
DeBroglie wavelength	25
Decametric waves	8
Decibels (see also Attenuation)	30
Decimal-fraction	
degree, trigonometric	622
equivalents	28
Decimetric waves	8
Definite-correction servo mechanism	533
Definite integrals	608
Deflection	
electrodes	236
electromagnetic	237
electrostatic	237
factor	236
plates	236
sensitivity	237
Degrees	
longitude	28
trigonometric functions	622
Decay time, pulse	286
Deionization time	234
Delta-Y transformation	97
Density	510
Derivatives, calculus	595
Designation	
A-N nomenclature	566
emissions	14

Determination of bandwidth ..... 17
Dichromate finish ..... 557
Dielectric
capacitors ..... $59,62,66,67$
323, 334
beads ..... 323
polyethylene discs ..... 499
wedge ..... 325
constants ..... 47
materials ..... 47
transformer ..... 206
Differential calculus ..... 596
Dimensions
rhombic antenna ..... 377
screws ..... 46
transmission lines ..... 333
Dipole (see also Antennas) ..... 362, 391
half-wave ..... 374
radiation ..... 381
Direct capacitance measurement ..... 173
Direct-reflected wave interference ..... 430
Directive antennas (see Antennas)
Disc-insulated cable ..... 498
Discharge
capacitor ..... 102
inductor ..... 104
R.L.C circuir ..... 104
Dissipation
electrode ..... 211
factors ..... 47
Distance
between two points ..... 594
flat earth ..... 429
great circle ..... 420
line of sight ..... 426
point to line ..... 590
Distortion ..... 261
factor meter ..... 261
frequency-modulation broadcasting ..... 482
quantization ..... 287
standard broadcasting ..... 475
Distributed capocitance ..... 73
Disturbances, propagation ..... 19
Divergence ..... 618
Diversity reception ..... 431
Double sideband ..... 14.
telephony interference ..... 453
Double-tuned circuit
phase shift ..... 120
selectivity ..... 119. 120
Drift spoce ..... 230
Drill, machine screws ..... 46
Driver transformers ..... 187
Dry-bulb temperature ..... 548
Duct ..... 471
Duplexer ..... 471
Duration, pulse ..... 286
Duty ..... 220
Dykanol ..... 70
Dynamic circuit resistance ..... 91

## $E$

e, properties of	583
$E$ layer	406
$E$ waves	339,345
Ear sensitivity	526
Effective	
area, antenna	435
radiation, television	489
value, alternating current	101
Efficiency	
circuit	216
electronic	216
klystron	231
Electrical	
analog	512
conversion factors	22-30
motor selection	558
power, public address	523
units, conversion	22
Electroacoustics, Public address Isee	
bandwidth improvement	527
electrical power	
indoor	523
outdoor	523
peak foctor	527
power required	
indoors	523
outdoors	523
speech communication	530
intelligibility	530
Electrode (see Electron fubes)	
Electromagnetic	
deflection	237
horn	388
units	26
waves	7
Electromotive force	32
psophometric	504
Electromotive series	32
Electrons Isee also Electron fubes)	
atomic weight	25
charge	25
energy	25
mass	25
orbit	25
symbols	25
volts	25
Electron tubes	209-239
accelerating electrode	236
admitiance, electrode	216, 221
air cooling	211, 212
alternating-current plate resistance	217
ampere-furns, focusing	236
amplification factor	216, 218
- anode	215
current	
diode	218
triode	218
strap	225

Electron tubes continued
Armed Services, preferred 239
beam-coupling coefficient 230
bunching 230
reflex 230
capacitance, electrode 216
cathode
emission 209
follower 254
heating time 234
materials 209
operation 209
oxide coated 209
pool 235
ray 235
phosphors 238
screens 238
tantalum 209, 210
tungsten 209, 210
thorialed 209
cavity resonator 229
impedance 230
circuit efficiency 216
coefficients 216
collision ionization 213
conductance, mutual 218
control
characteristic 234, 236
grid 215
constant-current characteristic 216
convection-current modulation 230
critical
grid current 234
grid voltage 234
current
critical grid 234
diode anode 218
focusing 236
triode anode 218
cutoff voltage 236
deflection
electrode 236
electromagnetic 237
electrostatic 237
factor 236
sensitivity 237
deionization time 234
diode anode current 218
direct-current plate resistanco 217
dissipation, electrode 211
drift space 230
duty 220
efficiency
circuit 216
electronic 216
electrode
accelerating 236
admittance 216, 221
capacitance 216
characteristic 216
deflecting 236

Electron fubes continued	
dissipation	211
focusing	236
impedance	216
modulating	236
electromagnetic deflection	237
electron	
efficiency	216
emission	215
inertia	220
transit time	230
electrostatic deflection	237
emission	207
electrode	215
grid	216
secondary	216
thermionic	216
end	
shields	225
spaces	225
external $Q$	225
flicker effect	213
focusing	
ampere-purns	236
current	236
electrode	236
magnetic	238
voltage	236
Prequency	
pulling	225
pushing	225
gap	
input	230
interaction	230
magnet	225
output	230
gas	234
ionization voltages	235
grid	
control	215
rectifiers	180
current, critical	234
emission	216
positive	223
screen	215
space charge	215
suppressor	215
temperature	213
voltage, critical	234
high frequency	219
impedance, electrode	216
induced noise	213
inertia, electron	220
input gap	230
interaction	
gap	230
space	225
ionization voltages	235
klystrons	228
loaded Q	225
low frequency	215-219

Electron fubes cantinued magnet gap ..... 225
magnetic focusing ..... 238
magnetrons ..... 223
design ..... 227
materials cathode ..... 209
elements ..... 212
emissivity ..... 212
medium frequency ..... 215-219
mercury vapor ..... 234
mode
number ..... 225, 230
pi ..... 225
modulation
characteristic ..... 236
convection current ..... 230
electrode ..... 236
velocity ..... 230
multigrid ..... 219
mutual conductance ..... 218
noise ..... 213, 445
collision ..... 213
flicker ..... 213
induced ..... 213
partition ..... 213
shot ..... 213
nomenclature ..... 213
output gap ..... 230
oxide-coated cathodes ..... 209
partition noise ..... 213
performance, Rieke diagram ..... 226
perveance ..... 216
triode ..... 218
phosphors ..... 238
pi mode ..... 225
plate resistance ..... 217
pool cathode ..... 235
positive grid ..... 223
preferred ..... 239
pulling figure ..... 225
pulse ..... 219
duration ..... 219
operation ..... 219
coherent ..... 219
pushing figure ..... 225
Q
external ..... 225
loaded ..... 225
unloaded ..... 225
radiation cooling ..... 211
rectifier ..... 234
pool cathode ..... 235
reflector ..... 230
resonator, cavity ..... 229
Rieke diagram ..... 226
scaling factors ..... 221
screen ..... 238
grid, ..... 215
secondary emission ..... 216
sensifivity, deflection ..... 237

## Electron tubes

Electron tubes continued shot effect	213
space	
charge grid	215
drift	230
strap, anode	225
suppressor grid	215
symbols, letter	214
tantalum	209
terminology	215
thermionic emission	216
time	
cathode heating	234
deionization	234
tube heating	234
transconductance	217
transfer characteristic	216
transit	
angle	220
time	230
traveling wave	231
triode	
anode current	218
perveance	218
tube-heating time	234
fungsten	209, 210
thorioted	209
unloaded Q	225
variational plate resistance	217
volocity modulation	230
voltage	
critical grid	234
cutoff	236
focusing	236
water cooling	211, 212
wave, troveling	231
Electrostatic	
deflection	237
units	26
Elements	
otomic number	31
atomic weight	31
electromotive series	32
letter symbols	31
Elimination band (see Stop band)	
Ellipse	577, 592
Ellipsoid	581,595
Elliptical polarization	366
Emergency	
cable	498
ship transmitters	11
Emission	
designation	14
electron	215
secondary	216
thermionic	216
Enclosed rooms, sound	519
End shields, spaces	225
Energy of electron	25
Equal loudness	531
Equalizers, R-C, R-L, L-C	99


Equator, great-circle chart	413
Equivalent noise input resistonce	446
Exponential integrals	604
European noise units	505
Even	
functions	292
harmonics	293
Exchange cable	497
Expansion	
interval	291
theorem	111
Exponentials	635
wave analysis	301
External Q	225
External radio noiso	451
Extremely high frequency	8
F	
Fl layer	406
F2 layer	406
Facsimile	14,17
interference	453
Factorials	640
Fading of ultra-high frequencies	433
Fahrenheit-centigrade	37
Faraday's constant	25
Feedback	533
reverse	256
Feed holes	507
Felici balance	173
Ferroxcube	193, 196
Field frequency, television	486
Field intensity	
broodcasting	474
dipole	362
great distance	364
intermediate distance	365
short distance	364
free-space antenna	373
vertical polarization	368
wave guides	342
Figure, noise	448
Filaments (see Electron tubes, Cathodes)	
Filter networks isee also Net Rectifiers and filters, Sel circuits, Wave filters)	rks, tive 130-152
band pass	136
aftenuation	137
constant-k	136
full section	137
half section	136
impedance	136
phase	137
band stop	145
aftenuation	147
constant-k	146
full section	147
half section	146
impedance	146
$m$-derived	146


Filter networks continued phase	147
composite	148
attenuation	151
impedanco	152
phase	152
full section	
band pass	137
band stop	145
high pass	135
low pass	133
pi	130
$T$	130
general	130
half section	
band pass	136
band stop	146
high pass.	134
low pass	132
high pass	134
attenuation	135
constant-k	134
full section	135
half section	134
impedance	134
m-derimed	134
phase	135
image	
impedance	131
transfer constant	131
impedance	
band pass	136
composite	152
high pass	134
image	131
low pass	132
low pass	99, 132, 149
attenuation	133, 149
constant-k	132, 149
full section	133
half section	132
impedance	132
m-derived	132, 149
phase	133
pass band	131
pi section	130
power supply	99, 177, 182
copacitor input	182, 185
inductor input	182, 183
resistor input	182
R-C, R-L, L-C	99
reactor	187, 194
resonant frequency	98
ripple	184
sections	98
T	130
pi	130
stop band	131
transfer constant, image	131
Finishes, fropical and marine	556
Fixed capacitors Isee Capaci	


Fixed resistors (see Resistancel	
Fixed stations	11
Flat-earth distance calculation	429
Flicker effect, electron fube	213
Flux	
brazing	37
soldering	37
Focusing	
ampere-turns	236
current	236
electrode	236
magnetic	238
voltage	236
Forced-air cooling	211
Forecasts, propagation	410
Form factor, solenoids	75
Formulas, mensuration	576
Four-terminal network	
admittance	93
currents	94
impedance	92
voltages	94
Fourier analysis	291-303
analysis of waveforms	296
exponential	301
fractional sine	303
full sine	300
half sine	300
isosceles triangle	298
rectangular	298
rectified $\sin e$	301
sowtooth	299,303
clipped	299
sine	
fractional	303
full	300
half	300
rectified	301
trapezoid	
symmetrical	302
unsymmetrical	302
arbitrary expansion interval	291
complex form of series	292
even	
functions	292
harmonics	293
expansion interval	291
functions	
even	292
odd	292
periodic	292
graphical solution	294
harmonics	
even	293
odd	293
interval, expansion	291
odd	
functions	292
harmonics	293
periodic functions	292
real form of series	291

ixed resistors (see Resistance)
Flat-earth distance calculation ..... 429fluxbrazing37
soldering236
current ..... 236magnetic238Forced-air cooling211
casts, propagation ..... ,
Formulas, mensuration ..... 576
admittance ..... 93impedance92
voltages ..... 94
analysis of waveforms ..... 296
品fractional sine
300isosceles triangle298rectified $\sin \theta$301
lipped299
tractional ..... 303
hal ..... 000
rapezoid
symmerrical ..... 302
arbitrary expansion interval ..... 291evenfunctions292expansion interval29
even ..... 292periodic292
graphical soluion293interval, expansion291functions292
periodic functions ..... 292
real form of series ..... 291

## Fourier analysis

Fourier analysis continued series		Functions continued logarithms	626
complex form	292	Fundamental quantities, transmission	
real form	291	lines	307
waveforms, analysis	296	Fundamentals of networks (see Net-	
Fraction-decimal equivalents	28	works)	73-113
Fractional-sine-wave analysis	303	Fusing and wiring data	562
Frame frequency, television	486		
Free-space		G	
antennas	373	O	
attenuation	434	Gain	
Frequency data	6-21	antenna	390,437
allocations	9	resonance	114
Angstrom unit	8	Galaxy noise	443
bands, classification	8	Galvanic series	32
bandwidth	16	Gap	
amplitude modulation	18	input	230
frequency modulation	19	interaction	230
carrier systems	500	magnetic	225
conversion to wavelength	7	output	230
emissions, classification	13	Gas	
hapmonic intensities	13	constant per mol	25
international regulations	8	ionization voltages	235
maximum usable	407	tubes	234
micron	8	oscillator	273
modulation	14, 19, 278	rectifiers	180
broadcasting	473, 477, 478	phase shifting	181
interference	283	volume	25
stability	484	Gate, time	286
multipliers	231	GCA, GCl	471
power relations	222	Generators Isee Oscillation)	
propagation constant	8	Geometry	
pulling and pushing	225	plane analytic	589
range, musical instruments	526	progression	582
regulations, international	8	solid analytical	594
response, television	488	GL	471
scaling	221	Glass	48,510
series circuit, resonant	91	Giobe wireless code	508
services, classification	9	Gradient	618
shift telegraphy	19	Graphical solution, harmonies	294
interference	453	Great-circle	
spectrum	6	calculations	419
angle modulation	280	chart	413
standard transmissions	19	Greek alphabet	20
standard intermediate	72	Grid Isee Electron tubes, grid)	
tolerances	11	Ground-controlled	
transmission, classification	14	approach	471
velocity of propagation	8	interception	471
wavelength	7	Ground, effect on radiation	386
Frequency modulation Isee $B$ Frequency spectrum	adcastingl	Gun laying	471
Fresnel zone	430	H	
Frying noise	504	H	
Full-wave rectifier	177	Half-sine-wave analysis	300
Functions		Half-wave	
Bessel	636	dipole	374
even	292	rectifier	177
hyperbolis	595	Hard rubber	510
odd	292	Harmonics	293
periodic	292	graphical solutions	294
trigonometric	622	intensity	13



[^65]
## Input

Input continued wave		J	
		Jamming	472
triangular	266	Joining metals	37
Instantaneous frequency	17	Joint Army-Navy	
Instruments, musical range	526	nomenclature	566
Insulation		specifications	54
capacitors 59,62	62, 66, 67		
coaxial cable	323, 334		
beads	323	K	
polyethylene discs	499	Keying, frequency shift	19
wedge	325	Kilametric waves	8
materials	47	Klystrons	228
transformer	206	reflex	231
Integral 231			
calculus	598		
definite	608		
exponential	604	$L$	
inverse trigonometric	608	LaGrange's equations	517
logarithmic	604	land stations	11
rational algebraic	598	mobile	12
trigonometric	605	LaPlace	
Intensity		formulas	618
harmonics	13	transforms	108, 611
levels	513	L.C equalizers	-99
sound	512	L-C filters	97
Interaction		L.C-R circuit	
gap	230	charge	104
space	225	discharge	104
Interference		transients	107
direct and reflected waves	430	Leakage, telephone lines	490
-ffects in systems	452	letter symbols	26
rejection, modulation	283	atomic	25
Intermediate-frequency transformers	72, 187	attenuation	160
International		electronic	25
broadcasting	473	elements	31
regulations	8	Greek	29
telecommunications conferences	8	modulation	14
International Telecommunication Union 8		servo mechanisms	534, 536
Interrupted continuous waves	14	transmission	
Interstage		characteristics	14
stagger funing	127	lines	304, 320
transformers	187	types	14
Interval, expansion	291	level	287
Inverse		Lifeboal	11
feedback	256	Light, velocity	28
trigonometric integrals	608	limiter	286
lonization		Linear units, Conversion factors	22
collision	213	lines	
gas voltages	235	angle between	590
Ionosphere	403	array	380
layers		noise	504
D	403	normal to circle	591
$E$	406	of sight distances	426
F1	406	polarization, dipole	365
F2	406	straight	589, 594
Irises, resonant	361	to point distances	590
Irregular plane surface, area	578	telephone	490
Isotropic		transmission	304
antennas, path attenuation	435	10	472
radiator	373, 391	load impedance, altenuator	156


Loaded Q	225
cavity	358
loading	
exchange cable	497
toll cable	496
lobes, reflection radar	468
local oscillator	472
logarithms	
integral	604
natural	630
numbers	620
trigonometric funcrions	626
long waves, propagation	400
longitude	28
loops	391
radiation	381
stocked	392
Lorentz, retarded potentials	573
Loudness	531
loudspeakers	509
public address	523
Low frequency	8
electron pubes	215
Low-pass filters	99, 132
Low-power resistors Isee Resistancel	58
M	
Machine	
nuts	46
screws	45
Maclaurin's theorem	614
Magic $T$	352
Magnesium, finishes	557
Magnet-wire data	74,190
Magnetic	
amplifiers	207
focusing	238
gap	225
materials	
high Q	196
transformers	193
Magneton	25
Magnetrons	223
Man-made noise	443
Marine materials and finishes	556
Mass ratio, proton-to-electron	25
Marching section, quarter-wave	330
Materials	
ocoustic absorption	522
properties of	31-53
tropical and marine	556
Mathematical formulas isee also	
Mathematical tables)	576-619
algebraic, trigonometric formulas	582
angles, small	586
arithmetic progression	582
binomial theorem	583
combinations	582
complex quantities	583
$\bigcirc$	583

Mathematical formulas continued geometric progression 582
permutations 582
quadratic 582
small angles 586
triangles
oblique angled 586
right angled 586
trigonometric identities 584
differential calculus 596
curvature of curve 597
general 596
transcendental functions 596
hyperbolic functions 595
integral calculus 598
definite integrals 608
exponential integrals 604
integrals involving
$\sqrt{a x+b} \quad 600$
$\sqrt{x^{2} \pm a^{2}}, \sqrt{a^{2}-x^{2}} \quad 600$
$\sqrt{a x^{2}+b x+c} \quad 602$
irrational integrals 604
logarithmic integrals 604
rational integrals 598
trigonometric integrals 605
inverse 605
Laplacion transforms 611
symbols 611
plane analytic geometry 589
circle 590
ellipse 592
hyperbola 593
parabola 591
rectangular coordinates 590
transformation 590
straight line 589
plane figures, areas 576
circle 577
sector 577
segment 577
ellipse 578
irregular 578
parabolo 577
parallelogram 576
polygon, regular 576
trapezium 578
trapezoid 576
triangle 576
series
binomial 615
Maclauren 614
miscellaneous 614
Taylor 614
solid analytical geometry 594
distance between ooints 594
ellipsoid 595
hyperboloid of revolution 595
oblate spheroid 594
paraboloid of revolution 595

## Mathematical formulas

Mathematical formulas continued plane, intercept form
prolate spheroid
594
straight line
594
solid figures, areas, volumes 579
cone
580
frustrum 581
eylinder 579
ellipsoid 581
paraboloid 581
pyramid 580
frustrum 580
ring
580
sphere
579
sector
segment
579
serus
torus
wedge frustrum
spherical trigonometry
spherical triangles
general
oblique
right
vector-analysis formulas
coordinates
cylindrical
orthogonal curvilinear
rectangular
spherical
curl
divergence
gradient
taplacian
rectangular coordinates
Mathematical tables isee also
Mathematical formulas)
620-640
Bessel functions
636
common logarithms
620
cosines, hyperbolic
633
degree, trigonometric functions
exponentials
622
635
factorials
hyperbolic
cosines
633
sines
tangents
632
logarithms
common
620
natural 630
multiples of
0.4343
2.3026
natural
logorithms
trigonometric functions
sines, hyperbolic
tangents, hyperbolic
trigonometric functions
0.4343 , multiples of
2.3026, multiples of

Maximum usable frequency

Maxwel
bridge 171
equations 570
basic laws 570
derivative form 572
integral form 572
different coordinates 575
Lorentz retarded potentials 573
vectors 574
Hertz 574
Poynting 574
reciprocity theorem 575
retarded potentials 573
superposition theorem 575
Measures, Conversion foctors 22
Mechanical
analog 512
network 512
torque, servo mechanisms 533
Medium frequency 8
propagation 400
Medium-frequency electron fubes 215
Melting point
alloys 34, 37
ceramics 37
metals 37
Mensuration formulas 576
Mercury 510
vapor tubes 234
Mesh isee Networkst
Metals
brazing 37
constants 34
galvanic series 32
melting point 34
resistivity 34
soldering 37
specific gravity 34
specific heat 34, 36
temperature 37
thermal conductivity 34
welding 37
Metric-inch equivalents 28
Metric waves 8
Metropolitan stations, television 484
Mica capacitors (see Capacitance) 62
Micron 8
Microphones 509
Millimeter-inch equivalents 28
Millimetric waves 8
Minimum bandwidth changes 527
Minimum-loss attenuators 158, 166
Minneapolis-Stevens Point coaxial cable 499
Mismatch, attenuation 329
Mixer, servo mechanism 533
MKS units 26
Mobile stations 11
Mode number 225, 230
Modulation, Modulators 275-290
amplitude 14, 275
interference 283

Modulation, Modulctors canfi angle	278	Modulation, Modulators cantinued time-division multiplex	289
frequency	278	width	14
spectrum	280	single sideband	14
phase	279	standard broadcasting	475
sideband distribution	280	lelevision	485
bandwidth	16	transformer	187
characteristic	236	velocity	230
convection current	230	Mol, gas constant	25
damped waves	14	Molded capacitors (see Capacitance	) 62
double sideband	14	Molybdenum-permalloy	193,196
electrode	236	Monimax	193
frequency	14, 17, 278	Morkrum code	508
broadcasting	484	Motor	
interference	283	rypes	558
noise reduction	284	wiring	560
independent sidebands	14	Moving-target indicator	472
phase	14,279	MTI	472
pulse	285, 286	Multicollector tube noise	446
amplitude	14, 285	Mulsigrid electron tubes	219
bandwidth	287	Multiples of	
code	285	0.4343	634
binary	285	2.3026	634
n-ary	285	Multiplex	
ternary	285	code	508
duration	285	time division	289
frequency	285	Multipliers	
methods	285	frequency	231
multiplex	289	voltage	177
phase	14	Multivibrator	267
position	14, 285	phantastron	270
quantization	289	Mumetal	196, 208
sampling	287	Murray code	508
signal-to-noise ratio	288	Music	527
amplitude	288	pitch	20
code	288	rongo of instruments	526
position	288	Mutual-inductance balance	173
terminology		Myriametric waves	8
band	287		
bidirectional pulse	286	N	
clipper	286	N	
code	286	National Bureau of Standards	19
character	287	Natural	
element	286	logarithms	630
gate, time	286	trigonometric functions	622
improvement threshold	286	Navy-Army	
level	287	nomenclature	566
limiter	286	preferred tubes	239
pulse	286	standard cables	334
bidirectional	286	$N$-ary pulse-code modulation	286
decay time	286	NBS wire gauge	40
duration	286	Negative feedback	256
regeneration	287	Nepers	30
rise time	286	Networks isee also Filter networks,	
unidirectional	286	Selective circuits)	73-113
quantization	286	admittance	82
distortion	287	input	93
threshold, improvement	286	alternating-current values	101
time gate	286	coupling	
transducer	286	coefficient	96
unidirectional pulses	286	optimum	96


Networks continued	
equalizers	99
filters	98, 130
R-C, R-L, C-L	99
resonant frequency	98
time constant	98
Heaviside expansion theore	111
impedance	
image	93
input	92
parallel	91
circuit	79
series circuit	79
LaPlace transforms	108
operational calculus	108
parallel-tuned circuit	
dynamic resistance	91
impedance	79
phase angle	82
power transfer	95
R, L, C	95
charge and discharge	95
series-tuned circuit	
impedance	79
resonant frequency	91
transients	107
T-pi	97
theorems	89
Heaviside expansion	111
reciprocity	89
superposition	89
Thevenin	89
time constants	102
transients	101
unit impulse	109
unit step	110
voltages	94
$Y$-delta	97
New York-Philadelphia coaxia	cable 499
Nicalloy	196
Nickel plate	557
Noise	441-458
atmospheric	441
broadcasting	454
receivers	447
cascaded notworks	450
cosmic	443
galaxy	443
solar	443
thermal	443
double-sideband telephony	453
equivalent input resistance	446
external radio	451
facsimile	453
figure	447, 448, 450
receiver	448
frequency modulation	284, 484
frying	504
galaxy	443
improvement factor	451


Noise continued levels	505
line	504
man made	443
bandwidth factor	443
multicollector tubes	446
nelworks, cascaded	450
psophomatric	504
radio, external	451
reduction, frequency modulation	284
responses, spurious	454
room	504
shot	445
single-sideband telephony	454
solar	443
sources	441
spurious responses	454
chart	458
coincidence	455
image	455
input deviation	456
selectivity	456
jable	456
standard broadcasting	476
telegraphy	453
frequency shift	453
telephony	504
double sideband	453
single sideband	453
television	489
thermal	443, 444
transmitter	504
tube	213,445
equivalent input resistance	446
induced	213
multicollector	446
partition	213
shot effect	445
units, European, American	505
Nomenclature, Army-Navy	566
Nonlinear transformers	188
Nonsinusoidal generators	267
Normal to circle, line	591
Number, mode	225, 230
Numbers, preferred	55, 56
Nuts, machine	46
Nyquist stability criteria	544
0	
Oblate spheroid	594
Oblique-angled triangles	586
Oblique spherical triangle	588
Odd functions, harmonics	292, 293
Open	
circuited transmission lines	313
stub matching section	331
window units	523
wire	
carrier systems	500
lines	490

    line 504
    man made 443
        bandwidth factor 443
    multicollector tubes 446
    networks, cascaded 450
    psophometric 504
    radio, external 451
    reduction, frequency modulation 284
    responses, spurious 454
    room 504
    shot 445
    single-sideband telephony 454
    solar 443
    sources 441
    purious responses 454
        chart 458
        coincidence 455
        Mage 455
        selectivity 456
        table 456
    standard broadcasting 476
        egraphy -453
        telephony 504
        double sideband 453
        single sideband 453
    television 489
    thermal 443, 444
    transmitter 504
        213,445
        induced 213
        multicollector 446
        partition 213
        shot effect 445
    uniłs, European, American 505
    Nomenclature, Army-Navy 566
Nonlinear transformers 188
Nonsinusoidal generators 267
Normal to circle, line 591
Number, mode 225, 230
Numbers, preferred 55,56
Nuts, machine 46
Nyquist stability criteria 544
0
Oblate spheroid 594
Oblique-angled triangles 586
Oblique spherical triangle 588
Odd functions, harmonics 292, 293
313
331
ire
lines 490

Operational' calculus	108
Optimum	
coupling	96
reverberation time	521
Organic liquids	$50^{\circ}$
Orthogonal coordinates	619
Oscillation, Oscillators	
class C	245
design, graphical	245
graphical design	245
nonsinusoidal	267
driven blocking	273
free running	
blocking	271
gaseous	273
positive bias	272
multivibrator	
driven	269
free running	
positive bias	269
zero bias, symmetrical	267
zero bias, unsymmetrical	268
phantastron	270
synchronized	
blocking	273
gaseous	274
radio frequency	245
Outdoor, power for public address	523
Output	
gap	230
transformers	187, 201
Owen bridge	171
Oxide	
coated cathodes	209
dip	557
P	
Pads Isee also Attenuation)	153
Paper-dielectric copacitors lsee also Capacitancel	
Parabola 390, 391, 577,	581, 591
reflector	388
revolution	595
Parallel	
circuit	
dynamic resistance	91
impedance	79,91
$T$ measurement	176
Parallelogram	576
Parameters, transmission line	307
Parasitic emission	13
Partition noise, electron tube	213
Pass band	131
Passivating stainless steel	557
Path attenuation, isotropic antennas	435
Patterns, antenna radiation	381
Peak factor	528
Peaking transformers	188
Pedestal level, television	488
Peptodes (see Electron tubes, Multigrid)	

Performance chart, magnetron ..... 226
criteria, servo mechanisms ..... 543
requirements, broadcasting ..... 475
frequency modulation ..... 481
television ..... 485
Periodic functions ..... 292
Permalloy-molybdenum ..... 193, 196
Permenorm ..... 208
Permutations and combinations ..... 582
Perveance ..... 210
Phantastron ..... 270
Phase
modulation ..... 14, 279
shift
double circuit ..... 120
gaseous rectifier ..... 181
single circuit ..... 120
toll cable ..... 495
triple eircuit ..... 125
Philadelphia-New York coaxial cable ..... 499
Phosphate treatment ..... 557
Phosphors ..... 238
Photographic-projection plan-position indicator ..... 472
Physical constants
alloys ..... 34
conversion factors ..... 22
metals ..... 34
wire ..... 44
Physical conversion factors ..... 22-30
Pi attenuators ..... 158,163
Pi -T transformation ..... 97
Picture carrier, television ..... 485
Plan-position indicator ..... 472
Planek's constont ..... 25
Plane
analytic geometry ..... 589
intercept equation ..... 594
wave ..... 510
Plastics ..... 48
Plate
deflecting ..... 236
resistance ..... 217
Preumatic servo mechanisms ..... 533
Point to line, distance ..... 590
Points, distance between two ..... 594
Polar materials ..... 47
Polarization
dipole ..... 365
television ..... 485, 488
Polyethylene-disc coaxial cable ..... 499
Polygon ..... 576
Pool-cothode rectifiers ..... 235
Positioning-type servo mechanisms ..... 534
Positive-grid fubes ..... 223
Power amplification, servo mechanism ..... 553
Power
between two coupled meshos ..... 95
decibels ..... 30
free-space antenna ..... 373

Power confinued	
frequency-modulation broadcosting	g 484
frequency relations	222
lines (see Transmission lines)	
motor	562
Output, klystrons	231
received antenna	374
signal-noise ratio	439
supplies	177, 553
filters	99, 182
transformers	190
vibrator	186
transfer	95
transformers	186, 188
voltage, current ratios	30
Poynting vector	574
PPI	472
PPPI	472
P/1	472
Practical units	26
Precipitation extremes	550
Precision plan-position indicator	472
Preferred	
numbers	55, 56
room dimensions	520
tubes	239
values	55
Pressure	
altitude	546
wind	552
Principal	
atomic constants	25
of superposition	89
Projector, horn	388
Prolate spheroid	594
Propagation	397-440
constant	8
exchange cable	497
telephone lines	494
toll cable	496
disturbances	19
field strength	
long waves	400
medium waves	400
short waves	403
ultra-high frequencies	432
very-long waves	397
great-circle distances	419
maps available	426
mathematical	419
nomograms	423
ionosphere	403
layers	
D	403
$E$	406
FI	406
F2	406
long waves	400
medium woves	400
short waves	403
field strength	403

    layers
            D 403
            Fl 406
        sunspots 408
        angle, beam 437
        antennas
            area 435
            isotropic 435
    attenuation
            free space 434
            direct ray 430
            attenuation 434
            transmission 434
            gain, antenna 437
            isotropic antennas 435
            line of sight 427
            required power 439
            signal-noise 439
            straight-line diagrams 426
    very-long waves 397
    60 kilocycles 397
    \(100-300\) kilocycles 400
    Propagation continuea

    forecasts 410
    Propaģation continuea
forecasts ..... 410

    frequencies, maximum usable 408layers
    403

            E 406 ..... 406
    
            F2 406
    F2 ..... 406

        maximum usable frequencies 408
    maximum usable frequencies ..... 408

    ultra-high frequencies 426
    ultra-high frequencies ..... 426
437antennasarea

            beam angle 437
    beam angle435

            gain 437
    gain ..... 437

    area of antenna 435
    area of antenna ..... 435free space434

            isotropic antennas 435
    isotropic antennas ..... 435

            beam angle 437
    beam angle430

            lading 433, 440
    fading ..... 433, 440

            field strength 432
    field strength ..... 432

            flat-earth calculations 429
    nat-earth calculations ..... 429

            free space
    tree space
..... 434
rosmission ..... 434

            Fresnel zone 430
    Fresnel zono437

            inferference, direct, reflected rays 430
    interference, direct, reflected rays ..... 430line of sight427

            noise-signal 439
    noise-signal ..... 439

            power 439 ..... 439
    
            reflected ray 430
    por
reflected ray ..... 430signal-noise439

            space-diversity 431
    space-diversity ..... 431
traigisio diagras ..... 426

            transmission formulas 434
    transmission formulas ..... 434

    velocity 8,510397
    
    warning notices 21
    warning notices ..... 21

    wave guides 340
    wavo gides ..... 340

    3-25 megacycles 403
    - 25 megacycles ..... 403100-300 kilocycles400

Properties of e 583
Properties of e ..... 583

Properties of materials 31-53
Properties of materials ..... 31-53

Proportional-plus-derivative servo
mechanism 541
Proportional-plus-derivative servo mechanism ..... 541

Proportions, room acoustics 519
Proportions, room acoustics ..... 519

Proton mass 25
Proton mass ..... 25

Psophometric electromotive force 504
Psophometric electromotive force ..... 504

Psychrometric chart 549

Public-address 523
Public-address ..... 523

Pulling figure and frequency 225
Pulling figure and frequency ..... 225

Pulse	219, 286
amplitude modulation	14, 285
bandwidth	287
code modulation	285
decay time	286
duration	219
modulation	285
length	507
modulation	14, 285
phase	14
position	14,285
width	14
rectangular input	263
regeneration	287
rise time	286
transformers	187
trapezoidal input	262
triangular input	264
Pulsed-frequency modulation	285
Pushing figure and frequency	225
Pyramid	580
Pyranol	70
Q	
$Q$ factors	225
cavity	358
external	225
loaded	225
magnetic material for high	196
measurement	174
meter	174
single eircuit	120
unloaded	225
Quadratic equation	582
Quantities, complex	583
Quantization	286, 289
distortion	287
Quarter-wove matching section	330
R	
Racon	472
Radar	459-472
absorption	470
antenna	462
area, target echoing	462
bands	461
countermeasures	472
echoing area, target	462
frequency	461
general	459
indicators	464, 465,466
lobes, reflection	468
power	461
pulse rate	461
range	467
receiver	463
noise figure	463
reflection	468

Radar continued
zone
refraction 470
target echoing area 462
terminology 47
$\begin{array}{ll}\text { AI } & 471 \\ \text { ATR } & 471\end{array}$
blister 471
BTO 471
chaff 471
clutter 471
coherent 471
coho 471
duct 471
duplexer 471
GCA 471
GCl 471
GL 471
IFF 471
jamming 472
LO 472
MTI 472
PPI 472
PPPI 472
$P^{3} \boldsymbol{4 7 2}$
P4 472
racon 472
radome 472
RCM 472
RDF 472
SLC 472
stalo 472
TR switch 472
window 472
transmitter 460
wavelength 461
Radiation
cooling 211
end-fed conductor 376
ground effect 386
pattern, antennas 381
power, free-space antenna 373
rhombic antenna 377
television 489
Radiator (see Antennas)
Radio
broadcasting 473
counter measures 472
direction finding 472
frequencies 19
cables 334
pulse duration 219
reactor 187
standard 19
transformers 187
location 472
navigation 11
Radio broadersting (see Broadcasting)
Radio Manulacturers Association 54
Radome 471, 472

## Range

Range equation, radar musical instruments	467 526	Reflection direct-wave interference layers	430
Rational algebraic integrals	598	lobes, radar	468
RCA code	508	transmission lines	317
$R-C$ equalizers and filters	99	zone, radar	470
RCM	472	Reflector	230
RDF	472	parabolic	388
Reactance, Reactors		Reflex bunching	
audio frequency	187	bunching   klystron	230
capacitor	90	Refraction radar	231
charts	76	Refraction, radar	470
filter	187, 194	Regeneration, pulse	287
inductor	90	Regulations, international	8
magnetic		Relative humidity	548
amplifiers	207	Relay-type servo mechanisms	533
materials, high $Q$	196	Remote-control servo mechanism	533
plate supply	194	Resistance, Resistors	
radio frequency	187	acoustic	510
rectifier	194	composition, fixed	56
saturable	188, 207	color cod	56
wave filter	187,195	resistance	57
windings	190	temperature coefficient	57
wire table	190	voltage coefficient	57
Real form Fourier series	291	coupled amplifiers	255
Receiving, Receiver		equivalent noise input	446
antenna Isee Antennas)		formulas	90
radar	463	low power	58
tubes Isee Electron tubes)		plate	217
Reciprocity theorem	89,575	skin effect	86
Rectangular		telephone lines	490, 494
cavity	355	toll cable	495, 496
courdinates, transformation	590	transmission lines	319
input		wirewound, fixed	58
pulse	263	color code	58
wave	265	resistance, maximum	58
wave		temperature coefficient	59
analysis	298	wattage	59
guides	340	Resistivity	34
Rectifiers	177-182, 234	volume	47
bridge	177	Resonance	
center tap	178	bridge	171
delta	178, 179	circuit gain	114
fork	179	selectivity	
full wave	177	far from	117
gaseous	180	near	119
grid controlled	180	series circuit	91
half wove	177, 178	Resonant circuits lsee Selective cir	uits)
phase shifting	181	Resonators	354-361
pool cathode	235	cavities	229, 354
sine-wave analysis	301	circular cylinder	355, 356
single phase	178	coaxial	356
six phase	179	coupling	358, 360
star	179	cylindrical	355, 356
three phase	178, 179	humidity	358, 359
thyratron	180	irises, resonant	361
voltage multiplier	177	loaded Q	358
wye	178, 179	mode	355
zig-zag	178	Q	355
Reduced carrier	14	loaded	358


Resonators continued	
rectangular	355
resonance	354
irises	361
right-cireular eylinder	355
mode	357
spherical	355, 356
with cones	356
square prism	356
temperature	358, 359
wave-guide cavity	360
wavelength	355
Retarded potentials	573
Reverberation	519
time	
calculation	522
optimum	521
Reverse feedback	256
Revolution	
hyperboloid of	595
paraboloid of	595
Rhombic antennas	377
Rieke diagram, magnetron	226
Right-angled triangles	586
Right spherical triangle	587
Ring	580
Ripple (see Filter networks)	
Rise time, pulse	286
$R-L$ equalizers and filters	99
R-L-C eircuit	
charge	104
discharge	104
transients	107
RMS value of alternating current	101
Room	
dimensions	520
noise	504
sizes, acoustic	519
sound, enclosed	519
Routh stability criteria	544
Rubber	52
Rural stations, television	485

## S

Sag, transmission lines	563
Salt water	510
Saturable reactor	188,207
Saturation, percentage	548
Sawtooth	187
$\quad$ amplifier, transformers	299,303
$\quad$ analysis	221
Scaling factors	
Scanning, television	486
$\quad$ lines	486
$\quad$ sequence	172
Schering bridge	186
Scott-connection transformers	215
Screen grid	238

Screws, machine ..... 45
clearance drill ..... 46
dimensions ..... 45, 46
tap drill ..... 46
Searchlight-control radar ..... 472
Secondary emission ..... 216
Sector
circle ..... 577
sphere ..... 579
Segment
circle ..... 577
sphere ..... 579
Selective circuits ..... 114-129
bandwidth ..... 115
coefficient of coupling ..... 114
coupling ..... 114
double funed ..... 119, 120
equations ..... 456
gain at resonance ..... 114
selectivity
far from resonance ..... 117
near resonance ..... 119
phase shift ..... 120
Q ..... 120
single tuned ..... 119, 120
stagger tuned ..... 127
friple funed ..... 125
Self-inductance (see Inductance)
Sensitivity, deflection ..... 237
Series ..... 614
binomial ..... 615
circuit, impedance ..... 79
Fourier ..... 291
resonant circuit ..... 91
Services, frequency
allocation ..... 9
tolerances ..... 11
Servo mechanisms ..... 533-545
basic elements ..... 533
classification ..... 533
control ..... 533
motive ..... 533
use ..... 533
definitions ..... 533
elements, basic ..... 533
letter symbols ..... 534, 536
positioning type ..... 534
comparator ..... 535
linearity ..... 545
load ..... 536
mixer ..... 535
motor ..... 536
performance criterio ..... 543
proportional plus derivative ..... 541
stability criteria ..... 543
viscous damped ..... 540
quantities ..... 534, 536
symbols ..... 534, 536
Shielded transformer ..... 169
Shields, end ..... 225
Ship-controlled interception ..... 471

## Ship stations

Ship stations	11
Short-circuited transmission lines	313
Short waves	
forecasts	410
propagation	403
Shorted-stub matching section	331
Shot	
effect, electron tube	213
noise	445
Sideband	
energy, angle modulation	280
radiation, television	488
Sign conventions, fransmission lines	304
Signal	
envelope, television	488
noise ratio	288, 439
speeds	507
Silicon steel	193
Silver plate	557
Sine	586
hyperbolic	632
wave analysis	300
Single sideband	14
telephony interference	454
Single-funed circuit	
phase shift	120
Q	120
selectivity	119,120
Sinimax	193
Size	
room, acoustics	519
scaling	221
standard cables	334
Skin effect	86
Skip zones	418
SLC	472
Slotted transmission line	320
Small angles	586
Smith chart	321
Solar noise and radiation	443
Soldering	37
Solenoids (see Inductance)	
Solid analytic geometry	594
Sound (see also Acoustics) channel, television	485
Space	
charge grid	215
diversity reception	431
drift	230
end	225
interaction	225
Spark-gap breakdown voltages	547
Specific metals and alloys	
gravily, metals and alloys heat	$\begin{array}{r}34 \\ 34\end{array}$
Spectrum	6
acoustic	526
Speech	527
communication	530
Speed electron	25

Speed continued
signaling
Sphere , 579
resonator 356
with cones 356
Spherical
coordinates 618
resonator 355
trigonometry 587
wave 510
Spiral-four cable . 498
Spurious responses 454
Square-prism resona!or 356
Stable local oscillator, radar 472
Stability criterion, servo-mechanism 543
Stacked loops 392
Stagger funing 127
Stainless steel, finishes 557
Stalo 472
Standards 54
audio frequencies 19
broadcasting 473
transmissions 19
audio frequencies 19
coverage 21
musical pitch 20
radio frequencies 19
time 19
transmitters 20
volume of gas 25
wave guides 349
Standing waves
sound
transmission lines 317
Start-stop printer codes 508
Stations, transmitting 11
Steel, finishes 557
Stefan-Boltzmann constant 25
Stevens Point-Minneapolis coaxial cable 499
Siop band 131
Siraight line 589,594
Stranded copper conductors 44
Strap, anode 225
Stub matching section 331
Stub's wire gauge 40
Substitution, impedance measurement 172
Sunspots 408
Super-high frequency 8
Superposition theory 89,575
Suppressor grid 215
Surge impedance, transmission lines 322
Survival craft 11
Symbols, letter 26
atomic 25
attenuation 160
electronic 25
elements 31
Greek 29
modulation 14
servo mechanism 534,536

Symbols, letter continued transmission		Time	19
		cathode heating	234
characteristic	14	chart	555
lines	304, 320	constant	98, 102
types	14	deionization	234
Synchronous printer codes	508	division multiplox	289
System interference effects	452	gate   pulse	286
T		decay	286
		rise	286
Tangents hyperbolic to circle	586	reverberation	519
	634	computation	522
	590	optimum	521
Tantalum	209	signals	20
Tap drill, screws	46	standards	19
Target		ticks	20
echo area	462	transit	230
indicator	472	tube heating	234
$T$ attenuators 158, 1	158, 161, 164, 168	Tin plate	557
Taylor's theorem	614	Tolerance	54
Telegraph		frequency	11
codes	508	Toll cable	495,496
frequency shift	19	$T$, magic	352
interference	453	TM waves	339, 345
modulation	14	Torque	562
speed	17	Torus	580
Telephony isee also Corrier, Transmission, etc.)		Tower, antenna	369
		$T$-pi transformation	97
Teletype code	508	TR switch	472
Television Isee also Broadcasting	castingl 14,17	Transconductance	217
TEM waves	339	Transducer	286
Temperatures	552	Transfer	
cavity funing	358	characteristic	216
extremes	550	constant, image	131
metals	37	Transformation	
scales	37	rectangular coordinates	590
transformers	206	$T$-pi or $Y$-delia	97
Tensile strength, wire 42		Transformers	
Terminology, radar	471	audio frequency	187, 197
Ternary-pulse-code modulation	ation 286	driver	187
Test voltage, components	55	harmonic distortion	200
Tetrodes (see Electron tubes, Multigrid)		input	187, 203
TE waves	339,345	interstage	187
Theorem		modulation	187
binomial	583	output	187, 201, 203
Heaviside expansion	111	auto	186
Maclauren	614	color code	72
reciprocity	89. 575	core materials	193
superposition	89, 575	corona	206
Taytor	614	dielectric	206
Thevenin	89	filament	186
Thermal		general	186
conductivity, metals and alloys	alloys 34	high frequency	187
noise	443, 444	carrier	187
Thermionic emission	216	intermediate frequency	72,187
Thermocouples	33	power	192
Thevenin's theorem	89	line, carrier	187
Thoriated tungsten	209	pulse	187
Threads, screw	46	radio frequency	187
Throshold, improvement	286	sawtooth amplifior	187
Thyratron rectifiers	180	humidity	208

## Transformers



Transmission, Transmitters continued characteristic	
coaxial	334
matching	
coupled section	332
open stub	331
shorted stub	331
slotted line	320
surge	322
length	333
letter symbols	304, 320
matching	
open stub	331
quarter wave	330
shorted stub	331
mismatch attenuation	329
open circuited	313
parameters	307
power	317
quantities, fundamental	307
quarter-wave matching	330
ratio, standing-wave	317
reflection coefficient	317
resistance	319
sag	563
short circuited	313
signs	304
single wire	
between grounded planes	324
eccentric	327
near ground	324
square enclosure	324
trough	327
slotted	220
air	328
standing-wave ratio	317
strips, parallel	325
surge impedance	322
symbols, letter	304, 320
two wire	
balanced	
between grounded planes	326, 327
near ground	324, 326
shielded	323
semi-infinite enclosure	328
unequal diameters	326
open in air	323
parallel	
near ground	324
shoath return	325
rectangular enclosure	327
ultro-high frequency	319
voltages	308
wove, standing ratio	317
noise	504
power	439
radar	460
receive switch	471,472
standard frequency	20
television	488
tubes Isee Electron fubes)	

characteristic ..... 323
matching ..... 334
ction331
shorted stub320
urge ..... 322
efter sym331
quarter wave33
open ch allenuation313
parameters ..... 307
quantities, fundamental ..... 307ratio, standing-wave317
reflaction coefliciant319
sag ..... 563
signs ..... 304
between grounded planes327
near ground ..... 324trough327air328
strips, parallel325
surge impedance ..... 322
326, 327
near ground323
osure326
open in air324rectangular enclosure327
thathigh frequency308
wove, standing ratio ..... 317
power ..... 439
radar ..... 460
standard frequency ..... 20tubes Isee Electron Pubes)

Transmission, Transmitters cantinued	
types	14
wire	490
WWV	20
Transverse waves	
electric	339
magnetic	339
Trapezium	578
Trapezoid	576
input pulse	262
wave analysis	302
Traveling-wave tubes	231
Triangle	576, 586
input pulse	264
nput wave	266
wave analysis	298
Trigonometric	
formulas	582
functions	622, 626
identities	584
integrals	605
Trigonometry, spherical	587
Triodes, high frequency	219
Triple-tuned circuits	125
phase shift	125
selectivity	125
Tropical material and finishes	556
Tubes (see Electron tubes)	
Tuned circuits (see Selective circuits)	
Tungsten cathodes	209
Turnstile antenna	391
radiation	381
Twin-T measurement	176
Two-phase servo mechanisms	533
U	
Ulira-high frequency	8
fading	433
line of sight	426
links	434
power	222
propagation	426
transmission lines	319
Unidirectional pulse	286
Unipotential cathodes	218
Unit	
impulse	109
step	110
Units, constants, conversion factors	22-30
Unloaded Q	225
Unmodulated transmission	14
U.S. Naval Observatory	21
V	
Vacuum fubes (see Electron fubes)	
Vapor tubes, mercury	234
Variational plate resistance	217

Vector
analysis 615
Hertz 574
Poynting 574
Velocity
modulation 230
propagation 8,510
exchange cable 497
light
telephone lines 494
toll cable 496
wind 552
Vertical radiator 368, 369
Very-high frequency 8
Very-long waves 397
Very-low frequency 8
Vibrator power supply 186
Viscous-damped servo mechanism 540
Voltage
cut off
236
decibels 30
focusing 236
four-terminal network 94
multiplier 177
rating, components 55
spark-gap breakdown 547
standard cables 334
transmission lines 308
Volume
conversion factors 22
perfect gas 25
resistivity 47
W
Wagner earth 170
Ward-Leonard servo mechanisms 533
Washers 46
Water 510
pressure 28
weight 28
Wave guides 339-353
aftenuation 348, 349
beyond cutoff 349
circuit elements 350
eircular 345
attenuation 348
coupling 347
cutof wavelength 348
$\begin{array}{ll}\text { waves } \\ E & 345\end{array}$
$\begin{array}{lr}\mathrm{H} & 345\end{array}$
TE 345
TM 345
connectors 349
cutoff wavelength 348
hybrid junction 352
magic $T \quad 352$
propagation 339
rectangular 340
attenuation . 348

Wire cantinued transmission ..... 490
winding table ..... 190
Wire transmission ..... 490-508
cables, exchange ..... 497
attenuation ..... 497
capacitance ..... 497
characteristic impedance ..... 497
conductance ..... 497
cutaff trequency ..... 497
loading ..... 497
propagation constant ..... 497
velacity ..... 497
wavelength ..... 497
cables, miscellaneous ..... 498-499
attenuation ..... 498, 499
capacitance ..... 498, 499
characteristic impedance ..... 498, 499
conductance ..... 498, 499
inductance ..... 498, 499
phase shift ..... 498, 499
resistance ..... 498, 499
cables, toll ..... 495
attenuation ..... 495
capacitance ..... 495
characteristic impedance ..... 495
circuits ..... 496
attenuation ..... 496
capacitance ..... 496
conductance ..... 496
cutoff frequency ..... 496
impedance ..... 496
inductance ..... 496
load coils ..... 496
propagation constant ..... 496
resistance ..... 496
velocity ..... 496
wavelength ..... 496
conductance ..... 495
inductance ..... 495
phase shift ..... 495
resistance ..... 495
carrier systems ..... 500
cooxial cable ..... 503
rfequency allocations ..... 500
noise ..... 504
American units ..... 505
Europaan units ..... 505
frying ..... 504
levels ..... 505
line ..... 504
psophometric ..... 504
room ..... 504
telegraph ..... 507
codes ..... 508
American Morse ..... 508
automatic transmission ..... 508
Baudot ..... 508
cable Morse ..... 508
continental ..... 508
Creed ..... 508

Wire transmission continued		Wirewound resistors	58 562
Globe Wireless	508	Wiring and fusing data	562
Hughes	508	Wiring diagrams, motor	560
IBM	508	Wood	52
Morkrum	508	Working voltage	55
Morse	508	World	
Murray	508	temperatures	550
printer	508	time chart	555
RCA	508	precipitation	551
start-stop	508	WWV	19, 20
synchronous printer	508		
pulse lengths	507		
signaling speeds	507	$Y$	
telephone-line circuits	494	Y	
attenuation	494	$Y$-delta transformation	97
capacitance	494		
conductance	494		
impedance	494	Z	
inductance	494	2	
propagation constant	494	Zinc finishes	557
resistance	494	Zones	
velocity	494	auroral	412
wavelength	494	radar reflection	470
telephone lines, open-wire pairs	490,491	skip	418
aftenuation	492		
capacitance	490, 491	Numerical	
Copperweld	491, 492	0 attenuators	158, 163
frequency	490, 491	0.4343, multiples of	634
inductance	490, 491	2.3026, multiples of	634
leakage conductance	490, 491	12-channel carrier	500
resistance	490,491	24.channel carrier	500

Notes


[^0]:    * See notes on page 13

[^1]:    *Based on "U.S. Bureau of Standards Letter Circular IC886," Central Rodio Propagation Laboratory, National Bureau of Standards, U.S. Department of Commerce, Washington 25, D.C.; January 30, 1948.

[^2]:    * Resistivity of copper $=1.7241 \times 10^{-6}$ ohm-centimeters.

[^3]:    * By K. H. McPhee. Reprinted by permission from Electronics, vol. 21, p. 118; December, 1948.

[^4]:    * For information on insulated wire for inductor windings, see pp. 74 and 190.

[^5]:    *Courtesy of Copperweld Steel Co., Glossport, Po.

[^6]:    * The data listed in these tobles have been taken from various sources including "Tables of Dielectric Materials," vols. 1-lill, prepared by the Laboratory for Insulation Research of the Massachusetts Institute of Technology, Cambridge, Massachusetts; June, 1948.

[^7]:    * Recently revised standards provide an additional characteristic $|G|$ with 70 -degree-centigrade ambient allowed at 100 -percent rating.

[^8]:    ${ }^{1}$ Radio Manufacturer's Assaciation Standard M4-505.
    ${ }^{2}$ Radio Manufacturer's Association Standard M4-507
    ${ }^{3}$ The brown and yellow colors are used to indicate the starts of the windings, but only when
    ${ }_{5}^{4}$ Radio Manufacturer's Association Standard REC-114
    ${ }^{5}$ Radio Manufacturer's Association Standard M4-506

[^9]:    * Formulas and chart (Fig. II derived from equations and tables in Bureau of Standards Circular No. C74.

[^10]:    * Nominal bare diameter plus moximum additions.

    For additional data on copper wire, see pp. 40-45 and p. 190.

[^11]:    * Many formulas tor computing capacitance, inductance, and mutual inductance will be found in Bureau of Standards Circular No. C74.

[^12]:    * Scope and limitations: The formulas for 4-terminal networks, given in paragraphs 8 to 12 inclusive, are applicoble to any such network composed of linear passive elements. The elements may be elther lumped 0 - distributsd, or a combination of both kinds.

[^13]:    * See footnote on p. 92.

[^14]:    * See footnote on p. 92

[^15]:    *See notations on pp. 136-137.

[^16]:    * See notations on pp 136-137.

[^17]:    * See notations on pp. 136-137.

[^18]:    * See notations on preceding page.

[^19]:    *From "Radio Components Handbook," Technical Advertising Associates; Cheltenham, Pa., May, 1948: p. 92.

[^20]:    *R. Lee, "Fibrous Glass Insulation in Radio Apparatus," Electronics, vol. 12, pp. 33-34; October, 1939.

[^21]:    *Data for 4 -percent silicon steel are for singly interleaved laminotions leffective gap $\approx 0.0005$ inchl.
    $\dagger$ Refers to singly interleaved laminations leffective gap $\approx 0.0005$ inch).
    $\ddagger$ Refers to ribbon-wound cores, except for 4 -percent silicon-steel core.

[^22]:    * J. Millman, and S. Seelv, "Electronics," Ist ed., McGraw-Hill Book Company, New York, New York; 1941. K. R. Spangenberg, "Vocuum Tubes," 1st ed., McGrow-Hill Book Compony, New York, New York; 1948.

[^23]:    * B. J. Thompson, D. O. North, and W. A. Harris, "Fluctuations in Space-Charge-limited Currents at Moderately High Frequencies," RCA Review: Part I-January, 1940; Part Il-July, 1940; Part III-Ocrober, 1940; Part IV—January, 1941; Part V—April, 1941.
    $\dagger$ "Standards on Abbreviations, Graphical Symbols, Letter Symbols, and Mathematical Signs," The Institute of Radio Engineers; 1948.

[^24]:    * D. R. Hamilton, J. K. Knipp, and J. B. H. Kuper, "Klystrons and Microwave Triodes," Ist ed," McGraw-Hill Book Company, New York, New York; 1948.

[^25]:    * G. B. Collins, "Microwave Mognetrons," v. 6, Radiation Laboratory Series, 1st ed., McGraw. Hill Book Company, New York, New York; 1948. J. B. Fisk, H. D. Hagstrum, and P. L. Hartman, "The Magnetron as a Generator of Centimeter Waves," Bell System Technical Jaurnal, v. 25, pp. 167-348; April, 1946.

[^26]:    *D. R. Hamilton, J. K. Knipp, and J. B. H. Kuper, "Klystrons and Microwave Triodes," 1st ed., McGraw-Hill Book Company, New York, New York; 1948. J. R. Pierce, and W. G. Shepherd, "Reflex Oscillators," Bell System Technical Journal, v. 26, pp. 460-681; July, 1947.

[^27]:    * R. Kompfner, "The Traveling-Wave Tube as Amplifier of Microwoves," Proceedings of the IR.E., v. 35, pp. 124-127; February, 1947. J. R. Pierce, "Theory of the Beam-Type TrovelingWave Tube," Proceedings of the I.R.E., v. 35, pp. 111-123; February, 1947.

[^28]:    * J. D. Cobine, "Gaseous Conductors," 1st ed., McGraw-Hill Book Company, New York, New York; 1941

[^29]:    *K. R. Spangenberg, "Vacuum Tubes," lst ed., McGraw-Hill Book Company, New York, New York; 1948.

[^30]:    * In this discussion, the superscript $M$ indicates the use of the maximum or peak value of the varying component, i.e., $M_{i_{b}}=$ maximum or peak value of the alternating component of the plate current.

[^31]:    * The low-frequency stage gain also is affected by the values of the cathode bypass capacitor and the screen bypass capacitor.

[^32]:    * The low-frequency stage gain also is affected by the values of the cathode bypass capacitor and the screen bypass capacitor.

[^33]:    (sum of squares of amplitudes of harmonics)
    (sum of squares of amplitudes of fundamental and harmonics) $\times 100$ percent is also small. This latter is measured by the distortion-factor meter.

[^34]:    * R. N. Close, and M. T. Lebenbaum, "Design of Phantastron Time-Delay Circuits," Electronics, vol. 21, pp. 100-107; April, 1948.

[^35]:    * Based on R. Mesny, "Rodio-Electricité Générale," Etienne Chiron, Paris, France; 1935.

[^36]:    * For informatian on the effect of same practical current distributions on field intensities see H. E. Gihring and G. H. Brawn, "General Cansiderations of Tower Antennas for Broadcast Use," Proceedings of the I.R.E., vol. 23, pp. 311-356; April, 1935.
    $\dagger$ A. B. Chamberlain and W. B. Lodge, "The Broadcast Antenna," Proceedings af the I.R.E., vol. 24, pp. 11-35; January, 1936.

[^37]:    * For additional information see G. H. Brown, "A Crifical Study of the Characteristics of Broadcast Antennas as Affected by Antenna Current Distribution," Proceedings of the I.R.E., vol. 24, pp. 48-81; January, 1936: and G. H. Brown and J. G. Leitch, "The Fading Characteristics of the Top-Loaded WCAU Antenna," Proceedings of the I.R.E., vol. 25, pp. 583-611; May, 1937.

[^38]:    * Examples of problems involving the use of the antenno-array information presented here are given on pp. 394-396.

[^39]:    * C. L. Dolph, "A Current Distribution for Broadside Arrays Which Optimizes the Relationship Between Beam Width and Side-Lobe Level," Proceedings of the I.R.E., vol. 34, pp. 335-348; June, 1946. See also discussion on subject paper by H. J. Riblet and C I. Dolph, Proceedings of the I.R.E., vol. 35, pp. 489-492; May, 1947.

[^40]:    * The nomograms, Figs. 1 and 2 are due to Mrs. M. Lindeman Phillips of the Central Radio Propagation Laboratory, National Bureau of Standards, Washington, D. C.

[^41]:    * For more exact methods of computation see F. E. Terman, "Radio Engineers" Handbook," Ist edition, McGraw-Hill Book Company, New York, New York, 1943; Section 10. Also, K. A. Norton, "The Calculation of Ground-Wave Field Intensities Over a Finitely Conducting Spherical Earth," Proceedings of the I.R.E., vol. 29, pp. 623-639; December, 1941.

[^42]:    *Committee III-Docket 6,741, "Skywave Signal Range at Medium Frequencies," Federal Communications Commission, Washington, D. C.; 1946.
    $\dagger 1$ kilometer $=0.621$ mile .

[^43]:    * Taken from Bureau of Srandards Radio Propagation Prediction Charts.

[^44]:    * "The Propagation of Rodia Waves Through the Standard Atmosphere," Summary Technical Report of the Committee on Propagation, vol. 3, National Defense Research Council, Washington, D. C.; 1946.
    $\dagger$ See for instance, A. G. Clavier, "Propagation Tests with Micro-Rays," Electrical Cammunicatian, vol. 15, pp. 211-219; January, 1937.

[^45]:    *See "Tropospheric Propagation and Radio Metearolagy," Central Radio Propagation Laboratory Repopt CRPL-T3, National Bureau of Standards, Washingion, D. C.; Oetober, 1946. Also, "Meteorological Factors in Radio. Wave Propagation"; report of 1946 conference with The Royal Meteorological Society, published by The Physical Society, London.

[^46]:    * "Standards on Radio Receivers: Methods of Testing Broadcast Radio Receivers, 1938," published by The Institute of Radio Engineers; 1942.

[^47]:    * For a discussion of noise improvement factor (NIF) in such systems as frequency modulation and pulse demodulation, see the chapter "Modulation," pp. 288-289.
    $\dagger$ For methods of measuring field strengths and, hence, noise, see "Standards on Radio Wave Propagotion: Measuring Methods, 1942," published by The Institute of Radio Engineers. For information on suitable circuits to obtain peak values, particularly with respect to man-made noise, see C. V. Agger, D. E. Foster, and C. S. Young, "Instruments and Methods of Measuring Radio Noise," Electrical Engineering, vol. 59, pp. 178-192; March, 1940.

[^48]:    *L. N. Ridenour, "Radar System Engineering," v. I, Radiation Laboratory Series, McGraw-Hill Book Company, Now York, New York; 1947. See pp. 64-68, 78, 80.

[^49]:    *Receiver noise figures are more completely discussed in the chapter "Radio noise and inferference," p. 448-451.
    $\dagger$ K. A. Norton, and A. C. Omberg, "The Maximum Range of a Radar Set," Proceedings of the I.R.E., v. 35, pp. 4-24; January, 1947: p. 6.

[^50]:    * A more detailed explanation of international-broadeasting frequency assignments and requirements is given in the chapter "Frequency data," pp. 9-11.
    $\dagger$ See "Standards of Good Engineering Practice Concerning Standard Broodcast Stations August i, 1939, revised to Oct. 30, 1947," Federal Communications Commission, Washington, D.C.

[^51]:    * Add two units to each character for 2-channel, and one unit to each character for 4 -channel operation. These allow for synchronization and retardation.

[^52]:    * Lord Rayleigh, "Theory of Sound," vols. I and II, Dover Publications, New York, New York; 1945. P. M. Morse, "Vibration and Sound," 2nd edition, McGraw-Hill Book Company, New York, New York; 1948.

[^53]:    * E. G. Keller, "Mathematics of Modern Engineering," vol. 2, 1st ed., John Wiley, New York, New York; 1942. Also, H. F. Olson, "Dynamical Analogies," Ist ed., D. Van Nostrand, New York, New York; 1943.

[^54]:    *F. R. Watson, "Acoustics of Buildings;" 3rd ed., John Wiley and Sons, New York, New York;
    1941.

[^55]:    * Reprinted by pormission from Archltectural Acoustics by V. O. Knudsen, published by John Wiley ond Sons, Inc.

[^56]:    *H. F. Olson, "Elements of Acoustical Engineering," 2nd ed., D. Van Nostrand, New York, New York; 1941.

[^57]:    *H. Fletcher, "Speech and Hearing," Ist ed., D. Van Nostrand Company, New York, New York; 1929. S. S. Stevens, and H. Davis, "Hearing," J. Wiley and Sons, New York, New York; 1938.

[^58]:    *Reprinted by permission from American Machinist, vol. 87, p. 115; December 9, 1943.

[^59]:    *Roprinted by permission from "Transmission Towers," American Bridge Company, Pittsburgh,
    Pa.; 1923: p. 70.

[^60]:    * Temperature coefficient of linear expansion is given on pp. 44-45.

[^61]:    * Developed Irom: J. E. Hill, "Maxwell's four Basic Equations," Westinghouse Engineer, vol. 6, p. 135; September, 1946.

[^62]:    * $\Gamma^{\prime}(n)=$ gamma function.

[^63]:    * See Pair 1.

[^64]:    * Note: Do not interpolate in this column.

[^65]:    Impedance cantinued
    admittance 175
    bandwidth Q 174
    Boonton Q meter 174
    distributed capacitance 174
    General Radio twin-T 176
    inductance, true 174
    low impedance 175
    parallel-T 176
    Q 174
    meter 174
    substitution method 172
    iwin-T 176
    network 79
    parallel 79,91
    power, two meshes 95
    series 79
    slofted line 320
    standard cables 334
    telephone lines 494
    toll cable 495, 496
    transmission line 311,322
    Impregnants, capacitor 69
    Improvement threshold 286
    Inch-metric equivalents 28
    Inch-millimeter equivalents 28
    Independent sidebands 14
    Indicator *
    moving target 472
    radar 464
    servo mechanism 533
    Indoor, power for public address 523
    Induced noise, electron tube 213
    Inductance, Inductors
    balance 173
    capacitance, distributed 73,174
    charge and dischargo 104
    coil
    73
    distributed capacitance ..... 73
    form factor ..... 75
    formulas ..... 90
    mognetic materials ..... 196
    magnet wire ..... 74, 190
    reactance ..... 76,90
    solenoids ..... 73
    telephone lines ..... 490,494
    toll cable ..... 495, 496
    true ..... 174
    Inerteen ..... 70
    Inertio, electron ..... 220
    Infinite-mass constant ..... 25
    Input
    admittance, four-terminal network ..... 93
    gap ..... 230
    impedance, four-terminal network ..... 92
    pulse
    rectangular ..... 263
    trapezoidal ..... 262
    triangular ..... 264
    resistance, equivalent noiso ..... 446
    transformers ..... 203

