

AMATEURSI!I Don'f 6

For 41 years the name Thordarson on laboratory-quality production and pe Because of its full content transformer transformer over-heating, high loss or is proud of its heritage and constently

The Author - - And the Laboratory

Equipment described in this Handbook is first conceived, then engineered, then designed, then constructed, if necessary then reconstructed again and again and, finally, when exhaustive tests under actual operating conditions both with local stations and with others in the far corners of the world have shown the worth of the conceptions they find their way into the pages of this Handbook.

The Third Edition of Your Handbook

TWo previous editions of this Handbook were produced in collaboration with a radio magazine publisher. Much of the data in these earlier issues was more or less a reprint of previously published technical magazine miterial. Many photographs and circuit diagrams were literally lifted from the pages of the magazine and transferred to the Handbook. Thus these earlier editions lacked the refreshing newness which is so evident in this the third edition. The author is no longer associated with a magazine publisher; he has written nothing for the pages of any magazine in recent months, for it was his desire to produce a book that would fill a long-felt want . . . a Handbook new and different.

Only the theoretical Chapters in this Handbook remain unchanged, for an Ohm is still an Ohm, the dots and dashes of the Continental Code are still memorized in the same tried-and-proven manner, and electrical and radio tests are not subject to drastic and sudden change. Yet, as you page through this edition of the Handbook, you will find many new thoughts even in those Chapters which previously left little to be desired from the average technical point of view. The Chapters that deal with Receivers, Exciters, Vacuum Tubes, Transmitters for Phone and C. W., Diathermy, Television, Ultra-HighFrequencies and Antemnas are as new as tomorrow. Thousands of dollars were invested in new photographs and circuit diagrams alone.

Your particular attention is directed to the new Jones Multi-Band Crystal Oscillators which function at several frequencies from a single quartz crystal, and without buffer or doubler stages. The new Jones Receivers are far in advance of the times, some so simple in design and construction that even the inexperienced layman should have no difficulty in duplicating the performance of the engineer's model. Your listencrs will enjoy a new thrill if you communicate with them by means of the new Jones crystal-controlled 5 -meter transmitters. The author's 5 -meter Exciter has already won wide acclaim among radio club members who were given a "preview" of the new device. The greatly enlarged Chapter on Antennas will help solve many of your difficult problems, particularly if you reside in congested areas.

The author has given all of his recent time to the engineering of equipment that will do a better job for you, at a lower cost. Only that which has withstood the rigid tests in the laboratory, followed by practical tests on the air under actual operating conditions, is found in the pages of this Handbook.

In the preparation of the text the author wishes to acknowledge gratefully the assistance he has received from Prof. F. E. Terman, Ralph R. Batcher, Arthur H. Halloran, Clayton F. Bane and D. B. McGown.

Chapter Contents

PAGE
1-Electrical Phenomena and Radio Theory 5
2-Vacuum Tube Theory 15
3-Decibels, Logarithms and Data Charts 23
4-Radio Code Instruction 33
5-Antennas 37
6-Radio Receiver Theory and Construction 89
7-Receiver Tube Characteristics, Circuits and Charts 133
8-C.W. Transmitter Theory 165
9-Transmitter Frequency Control 203
10-C.W. Transmitter Construction 229
11-Transmitter Tube Characteristics, Circuits and Charts 249
12-Radiotelephone Theory 273
13-Radiotelephone Construction 293
14-Ultra-High-Frequency Communication 321
15-Radio Therapy 359
16-Cathode-Ray Television 363
17-Test Instruments 371
18-Power Supplies 385
19-Laws and Regulations 403

Chapter 1

Electrical Phenomena and Radio Theory

- . 1 study of electrical or rad phenumena requires a knowledge of the electron theoretical conception of matter and energy. This theory assumes a scheme whereby very small particles of matter carrying electrical charges form the basic mechanism in electric conduction. These elemental units or electronic cllarges form the basis of the electron theory which has been universally accepted as the best means for coordinating present knowledge of electric phenomena.

In general, the smallest particle of matter which can exist alone is the atom. It consists of a heavy mucleus of one or more protons surrounded at planetary distances by an equal number of electrons. The outermost electrons revolve in elliptical paths around this inner nucleus. Every atom of matter has as many electrons as protons, and therefore the total number of positive and negative charges nentralize cach other. This atomic system has been given the name of the nuclear atom. The charge retained in the nucleus of an atom is what designates its aecight, while the attendant electrons revolving around the nucleus is that which determines the atomic number. Atonic numbers run from one to ninetytwo, which are the ranges given to all the chemical elements.

To the electrons, or more properly to the negative electronic charges with corresponding positive charges on the protons, or positive nuclei, are ascribed properties of electric fields (the space surrounding magnets, electric charges and electric currents), considered as innate characteristics of each elemental unit. Electrons at rest produce electro-static phenomena, while electro-dynamic effects result from electrons in motion.

In all substances which are non-conductors of electricity, the electrons in the atoms are held permanently in place in fixed orbits shout the nuclens. but in the atoms of all electrical conductors one or more of the electrons farthest out from the nucleus are attached rather loosely and may, by various means, be drawn away from the atom altogether. These are termed frece slectrons.

Electromotive Force

- Electricity consists of a movement of electrons through a conductor or conducting medium. To initiate the flow, a difference in electrical pressure (analogous to a hydrostatic head of water) or electromotive force must exist hetween the two ends
ui the conductor. Tu clarify these statements in an electronic exposition is without the scope of this text, but briefly the explanation is: The looseness with which the outer electrons are held in any atom is related to the electrical conductivity of the suthstance composed of this particular atom. The more loosely the free electrons are attaclicd to their nuclei, the better the electrical conductivity. Thus, the flow of current in a conductor consists of a stream of electrons moving along the conductor, from atom to atom, in a definite direction nuler the influence of an outside applied force or pressure. In electrical circuits this outside force consists of an equalizing tendency on the part of the electrons which, like water, seek their level. Hence, there will be a flow of current in any conductor which puoseesses an excoss of electrons at one point and a deficiency at another. This flow will continue until the number of electrons at all points along the conductor is equal. This equalizing force is called the clectromotive force, abbreviated EMF. and is usually expressed in zolls. This force is due to the non-uniform distribution of electrons in a circuit. For illustration, if a battery is placed in a closed circuit. a current of electricity will fow around the conducting medium because the battery pulls electrons into one terminal nud pushes plectrons out of the other. The source from which the electrons flow is called the negatia'e terminal, and the point which the electrons travel to is called the positize terminal. The words POSITIVE and NEGATIVE liave no meaning, but serve only to distinguish or differentiate between the two electrical charges. The terms were chosen many years before the electron-movement theory was established, and for a long time it was assumed, for reasons of conventionality, that current flowed from a positive terminal to a negative terminal. It is now known that the co-ordinated motion of electrons actually move in the opposite direction: that is, from the negative to positive terminals.

Electric Potential

The value of an electromotive force existing between any two points is known as the petential difference, and is measured in units of volts.

The Electric Circuit

- The simplest electrical circuit consists of a source of electromotive force and a con-
tinuous path from the negative to the positive terminals through a resistance. The source voltage may be either a unidirectional (DC), or alternating (AC) force. If direct current, the voltage source maintains a constant positive and negative polarity. On the other hand, if the current be of an alternating nature the polarity of the two terminals is periodically reversed. In an alternating current circuit the direction of the electron movement reverses once each cycle. In the ordinary 60 cycle AC power line, the polarity of the AC generator reverses 120 times per second, which is proportional to the line FREQLENCY. Alternating and direct currents have quite different characteristics. Accordingly the study of electricity is divided into two parts: direct currents and alternating currents.

Electric Resistance

- Electrons moving through a conductor continually collide with atoms of the conducting material. This impedes or slows the electron flow to such an extent that the amount of current is limited which can flow through a circuit when a given voltage is applied. This limiting effect is termed the resistance of the conductor; it is expressed in ohms. Hence, a circuit has a resistance of 1 ohm when an EMF of 1 volt will force a current of 1 ampere through it. And, in an inverted sense, a source of EMF is said to have 1 volt electrical pressure when it will establish a current of 1 ampere in a resistance of 1 ohm .
The collisions between the free electrons and the atoms move the atoms arouncl slightly, which takes a certain amount of energy away from the electron stream. This energy heats up the conductor and explains why resistors carrying current increase their temperature.

Electric Current

Electric current describes the quantity of flow of electricity through a circuit, and the unit of current flow is the ampere. Electric currents are measured either by their leating effects on a conductor (thermoammeters, etc.) or by their magnetic effects (moving coil and moving iron instruments).

Sources of Electricity

An electromotive force (and therefore a flow of current) can be produced either by chemical or mechanical means. All batteries produce electricity hy converting energy from one form to another by means of a chemical reaction. All the common types of electrical generators transform mechanical energy into electrical energy, either by magnetic or electrostatic action.

Series and Parallel Circuits

- A simple circuit can contain any number of resistances. For example, ligure 1 shows a circuit having two resistances connected in series, while that in Figure 2 has resistances connected in parallel. The current in a parallel circuit will divide between the various resistance branches, and will not be equal in each branch unless the resistance in every branch is equal. In a series circuit the current flow is equal at every point in the circuit.

Fig. 1

Ohm's Law

- The resistance of any conductor depends on the structure of the material of which it is made, together with its cross-section and length. The relationship between the electromotive force (volts), the flow or current (amperes), and the resistance impeding the flow of current (olims) is expressed in Ohm's Law, which states: "For any circuit or part of any circuit the current in amperes is cqual to the clectromotive force in zolts dizided by the resistance in olms." This relationship is usually expressed by the following three formulas:

Where I is the current in amperes,
E is the electromotive force in volts,
R is the circuit resistance in ohms.

$$
\mathrm{E}=\mathrm{IR} \quad \mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}} \quad \mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}}
$$

Thus, resistance equals voltage divided by current,
current equals voltage divided by resistance,
voltage equals current times resistance.

In many commonly used circuits it is found that there are resistances connected in series, in parallel or in series-parallel, as shown in ligure 3. In order to calculate the total resistance of any network composed of two or nore resistances connected in any of the above three ways, the formula shown in Figure 3 is used. Note that the total resistance of resistors connected in series is larger than that of the
highest resistance in the circuit. Also, the total resistance of resistors connected in parallei is less than that of the lozest resistance in the circuit.

Fig. 3

Electric Power and Heating Effects

- The heat generated in a conductor by the flow of current varies directly with the resistance of the conductor and as the square of the amperes of current flew. The unit of power is the watt, and equals the product of the voltage across a resistor, times the current through it. This equals the amount of electrical power transformed into heat in the resistor. Using the symbols deserified above, plus $I W=$ Watts of Pozecr, it is found that the following relationships hold true:

$$
W=\mathrm{EI} \quad W=I^{2} \mathrm{R} \quad W=\frac{\mathrm{F}^{3}}{\mathrm{R}}
$$

Weetrical power can do other forms of work besides generating heat, such as driving a motor, radiating waves from an antenna or driving a loudspeaker. Electrical power :akes many different forms and can be transluced from one form to another by means of a motor-generator, or vacuum tube.

Electromagnetic Phenomena

- A magnetic field envelops or surrounds a concuctor when an electric cu-rert is flowing. How this field is developed is expiained as follows: Electrons of like charge will repel each other due to the electrostatic field of force which surrounds each elec-

R M A STANDARD RESISTOR COLOR CODE

A BODY COLOR-lst figure of resistance value.
 B COLORED END-2nd figure.
 C CENTER DOT-number of ciphers following first two figures.

figure	color	figure	color
0	RLACK	5	GREEN
1	RROWN	6	BLUE
2	RED	7	VIOLET
3	ORANGE	8	GRAY
4	YELLOW	9	WHITE

tron; tl is force is inversely proportional to the square of the distance. Thus, if the repulsion at any distance is a certain value, the repulsion at twice this distance is onehalf squared, or one-quarter as much. The electrostatic field around any electron which is at rest, or moving with a constant velocity, can be visualized by a group of concentric equipoteritial circles surrounding the electron. See Figure lelow:

When an electron moves, it must carry its field of force along with it. Hence, due to the relatively enormous volume of this field, each electron has considerable inertia. Thus, when a switch in a circuit is closed, the current does not jump instantly to the final value determined by the voltage divided ly the resistance.

This gradual build-up of current in any circuit depends upon the circuit characteristics. It takes a geater length of time for current to build-up in a circuit containing a coiled wire than in one which consists of one long, straight wire. This is because the moving elect-o-static fields overlap surrounding electrons in adjacent turns of the coil. The energy stored at any point in space is proportional to the square of the electro-static intensity (or force) at that point. Thus, by coiling the wire, the energy concentration stored in the space around the coil has been materially increased. due
to the increased overlap in the fields of the electrons. If the electro-static intensity at any point has been increased a hundred times over that of a point near a straight wire, the energy storage is 100 squared, or 10,000 times that of the energy stored in the space surrounding the long, straight wire. This stored energy comes from the source of power supplying the circuit, and any given current in a coil represents much more stored energy than the same current in a straight wire. Hence, for a given impressed voltage, it takes more time to start or stop the current flow in a coil than in a straight wire. Likewise, to start or stop the current flow in a coil in a given time requires the application of a larger voltage than would be necessary to start or stop the same current flow in a straight wire.

The inertia offered by a circuit to either an increase or a decrease in current is termed the inductance of the circuit. This inertia can be visualized in the following manner. When an electron is accelerated, or speeded up. its electro-static field does not instantly respond to the motion of the electron becanse the electro-static disturbances caused by the sudden acceleration of the electron travel outward from the electron with the speed of light. Hence, different parts of these fields are moving at different speeds, as shown in Figure 4 (B), and the concentration of energy ahead of the electron is greater than the concentration behind it. As soon as the electron attains constant velocity, its field again becomes systematically arranged. When the electron is decelerated the concentration of energy behind it becomes greater than that aheal of it, as shown in Figure 4 (C). These non-uniform concentrations of energy tend to oppose anv change in the velocity of the electron, and it should be evident that the overlapping of the electron fields which occurs in the coil increases the non-uniform energy concent:ation which accompanies any change in the velocity of an electron, thus increasing the opposition to change, or inertia of the electron. This inertia, therefore, exerts a force opposing any change in the current through an inductance, and this opposing force is called the back electro-motive force.

Induction and Induced Voltages

When an alsernating current is passed through a coil of wire, energy is alternately stored in the field and returned to the wire. The greater the number of turns of wire on the coil, the greater is the mag-neto-motive force. This force varies with the number of turns, the diameter of the coil and the current. MMF corresponds to magnetic pressure.

Magnetic Flux

- Magnetic tlux consists of the lines of magnetic force which surround any conductor. Magnetic flux might be termed magnetic current, just as magneto-motive force corresponds to magnetic voltage. The reluctance of a magnetic circuit could be described as the resistance of the magnetic path and the relationship between magnetic tlux; magneto-motive force and reluctance is exactly similar to that between current, voltage and resistance, (Ohm's Law).

Magnetic flux depends on the material, cross-section and length of the magnetic circuit and varies directly as the current Howing in the circuit. Feluctance depends upion the length, cross-section, permeability and air-gap, if any, in the magnetic circuit.

Permeability

- Permeability descril)es the difference of the magnetic properties of any magnetic substance compared with the magnetic properties of air. Iron, for example, has a permeability of approximately 2,000 times that of air, whicls means that a given amount of magnetizing effect produced in an iron core by current flowing through a coil of wire will produce 2,000 times the flux density that the same magnetizing effect would produce in air. The permeability of different iron alloys varies quite widely and permeabilities up to $\leq 00,000$ can be obtained, if required. Permeability is similar to electric conductivity. However, there is one important difference-the permeability of iron is not independertt of the magnetic current (flux) flowing through'it, although electrical conductivity is usually independent of electric current in a wire. After a certain point is reached in the flux density of a magnetic conductor, an increase in the magnetizing field will not produce any material increase in the flux density. This point is known as the point of saturation. The inductance of a choke coil whose core becomes saturated declines to a very low value. This characteristic is extremely valuable in the swinging choke and in the saturable reactor used in some controlled carrier modulation systems.

The magnetizing effect of a coil is often described in ampere-turnes. Two amperes of current flowing through one turn equals two ampere-turns, or one ampere of current flowing through two turns also equals two ampere-turns.

Mutual Inductance

When two parallel wires are placed in proximity to each other and a varying current flows through one of them, the nonminorm energy concentrations around the
accelerating and decelerating electrons in the conductor carrying the varying current cause an induced electro-motive force to be applied to the free electrons in the neighboring conductor. The electro-motive force (voltage) produced in the adjacent wire is always in the same direction as the back-electro-motive force set up in the wire which is carrying the exciting current. This point helps to explain why the inductance of a circuit containing many turns of wire is greater than that of a circuit composed only of a straight wire. In a coil, each turn has a back-electro-motive force induced ly the changing current within itself. In addition, it has an induced electro-motive force in the same direction, due to the changing current in the adjacent turns on each side of the portion of the coil under consideration. The self-inductance of a coil in henrys equals the induced voltage in volts across that coil when the current is varying at the rate of one ampere per second.

If a second coil is wound directly over the first cuil, any change in current in the first coil will induce a voltage in the second coil, and the mutual inductance in henrys between the two coils equals the voltage induced in either coil when the current in the other is varying at the rate of one ampere per second. The unit of inductance is the henry.

Inductive Reactance

- The principal action of an inductance is to resist any change in current through it, and therefore any inductance in a circuit will impede the flow of alternating current. The higher the frequency of the alternating voltage impressed across the inductance the lower will be the current through the coil. The current flowing through the inductance is related to the inductance in henrys and to the frequency in cycles per second.

Formula :

Where X_{1} is the inductive reactance in ohms,
f , the frequency in cycles per second,
L , the inductance in henrys, $\mathrm{X}_{1}=2^{\pi \mathrm{fL}}$
Thus, if the inductance of a coil and the frequency of the impressed alternating voltage is known, the curreat in any AC circuit in which there is an inductance can be determined by dividing the voltage by the inductive reactance.

Inductances can be connected in series or in parallel. The electrical effect of making such connections is quite sisnilar to those obtained when connecting resistors in series or parallel. Inductances in series :

L total $=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3$, etc.,
Inductances in parallel:

$$
\frac{1}{L_{\text {total }}}=\frac{1}{L_{-1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\text {, etc., }
$$

Transformers

From the foregoing, it was seen that 2 variation of current flowing through an in-ductive- winding will induce a similar voltage in an adjacent winding if both are coupled within the proximity of the common magnetic circuit. This explains the operation of a transformer. The winding of a transformer carrying the exciting current is known as the primary, and the coupled coil in which is induced a voltage is known as the secondary. If both primary and secondary windings have an equal number of turns which are closely coupled, and if neither of the windings are tuned by means of a capacity to rescnance at the frequency of operation, the voltage across the secondary will be equai to the voltage across the primnary. If the secondary has twice as many turns as the primary, the induced voltage in the secondary will be twice the exciting voltage across the primary. For any other turns ratio between the primary and secondary windings, the ratio of the secondary voltage to the primary voltage will be equal to the ratio between the number of secondary turns to the number of primary turns. These relationships hold as long as no current flows in the secondary winding. which is the case in all low-level audio-frequency circuits. When a load is connected across the secondary, as in a power transformer, or audio-output transformer, the DC resistance and the leakage reactance of the transformer windings slightly modify the voltage relationships.
Usefitl transformer formula:

$$
\frac{Z_{p}}{Z_{g}}=\left(\frac{N_{p}}{N_{\Delta}}\right)^{\prime}
$$

Where $Z_{p}=$ primary impedance
$Z_{n}=$ secondary impedance
$\mathrm{N}_{\mathrm{p}}=$ number of primary turns
$\mathrm{N}_{\mathrm{s}}=$ number of secondary turns

Condensers and Capacitive Reactance

- A condenser is a device for storing electrical energy, and in its simplest form consists of two parallel metallic plates separated ly an insulatur, such as air. If the two plates are connected to a DC source, one will be positively and the other negatively charged. As soon as the postential difference between the two plates becomes equal to the voltage of the DC sourte, the
current in the circuit will cease. If the condenser is connected to an AC voltage, the current will surge back and forth every cycle, because first one plate takes on a positive charge, then the other. During that part of the cycle when one plate becomes negative, the excess of electrons driven on to this plate repels an equal number of electrons off the other plate. These electrons then travel back toward the positive terminal of the voltage source. On the next half cycle this process is reversed. No electrons actually pass through the condenser from one plate to the other, because the electrons arriving at one plate drive an equal number away from the other plate. The effect on the circuit is the same as if the electrons actually passed right through the condenser - except for the phase relation between the impressed voltage and the resulting current.

The quantity of electricity stored in a condenser is proportional to the square of the impressed voltage. The quantity stored is measured in coulombs or ampere-seconds. One coulomb is the quantity of electricity carried by one ampere of current flowing for one second. Hence, if the voltage changes at the rate of one volt per second and the current produced (or absorbed) is one ampere, the capacity of the condenser has one farad; that is, the condenser has a capacity of one farad. The farad is too large a unit for practical use, so in radio work a very small fraction of this capacity is used, the more common unit being the micro-farad, which is one-millionth of a farad.
The capacity of a condenser depends on the area of the plates, their spacing, and the dielectric properties of the insulator which separates the plates. For mechanical reasons, it is desirable to construct condensers with two or more plates; hence. most radio condensers consist of two paralleled sets of plates, each connected together conductively. The dielectric property varies with the insulating material which affects the ability of a condenser to store electricity. The dielectric constant, therefore, describes the ability of a condenser to increase its capacity over that of an air condenser.
The capacity of a condenser can be computed from the following formula:

$$
\mathrm{C}(\text { microfarads })=0.8842 \frac{\mathrm{kA}}{\mathrm{~d}}(\mathrm{n}-1) 10^{7}
$$

Where $\mathrm{k}=$ the dielectric constant (air 1.00 , mica 4.5 to 7.5)
$\mathrm{A}=$ area in cm^{2} (one side of one plate)
$\mathrm{d}=$ separation in cm
$\mathrm{n}=$ number of plates

Condensers in Parallel and Series

- Condensers can be connected in series or in parallel, but the effect is just the opposite to that of connecting inductances or resistances in series or parallel. A simple rule covering parallel or series connections is: Capacities in parallel should be added to find the total capacity, and for capacities in series the reciprocal of the sum of reciprocals must be taken. Illustrating by formula:

$$
\begin{aligned}
& C \text { (parallel) }=C_{1}+C_{2}+C_{3} \text { etc., } \\
& C \text { (series) }: \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \text { etc., }
\end{aligned}
$$

Capacitive Reactance

- Alternating current does not flow through a capacity without some impeding effect taking place, which is termed capacitive reactance. This retarding factor is inversely proportional to the frequency and the capacity of the condenser. To find the capacitive reactance, the following formula is given:

$$
\mathrm{X}_{\mathrm{c}}=\frac{1,000,000}{2 \pi \mathrm{fC}}
$$

Where $\mathrm{X}_{\mathrm{c}}=$ the capacitive reactance in ohms
$\mathrm{f}=$ the frequency in cycles per second
$\mathrm{C}=$ the capacity in microfarads
Thus, if the capacity of a condenser and the frequency of the impressed alternating voltage is known, the current through any condenser can be determined by dividing the voltage by the capacitive reactance.

Impedance

When an inductance, capacity and a resistance are connected in series, the combined effect is called the impedance of the circuit.

The capacitive reactance and inductive reactance are of opposite sign, because the current through a conductor leads the impressed voltage by 90 electrical degrees, while the current through an inductance lags the voltage by 90 degrees. Thus, the current is 180 degrees out of phase with that through the inductance. The reactance of the circuit becomes $\mathrm{X}_{\mathrm{t}}-\mathrm{X}_{\mathrm{e}}$. Since the current through an inductance or capacity lags or leads that through a resistance by 90 degrees, it is necessary to take the square root of the sum of the squares to solve for the total impedance of the circuit to the flow of current.

$\mathrm{Z}($ impedance $)=\mathrm{V} \overline{\mathrm{R}^{2}+\left(\overline{\mathrm{X}_{\mathrm{L}}}-\mathrm{X}_{\mathrm{c}}\right)^{2}}$

With any two quantities known, the third can be solved from the following formulas:

$$
\mathrm{E}=\mathrm{IZ} \quad \mathrm{Z}=\frac{\mathrm{E}}{\mathrm{I}} \quad \mathrm{I}=\frac{\mathrm{E}}{\mathrm{Z}}
$$

Fron the equation of the impedance of a series circuit it can be seen that the impedance is equal to the resistance when the inductive reactance is equal to the capacitive reactance. This is known as resonance.

Alternating Current Considerations

- Alternating current produces a heating effect in a resistor in spite of the fact that the current flow periodically reverses at a uniform rate of speed. To explain the theory, principle, and applications of alternating current in its many ramifications, would be taking too much of the more valuable space in this book. The student, then, is referred to texts wherein this and other information on AC phenomena can be found. Briefly, a generator produces alternating current which starts at zero, reaches maximum, returns to zero, reverses direction, and repeats the perfornance. This variation follows a mathematical law called a sine wave. The actual heating effect of this alternating current depends on the effective value of each half-sine wave. This is called the RMS value and is equal to the peak value divided by 1.41 , in case it is a pure sine wave. The RMS value of either voltage or current is the value read on most AC valtmeters or ammeters.

In considering alternating current the actual power is not the product of $\mathrm{I}^{*} Z$, smce the effect of either the inductance or capacity is to make the current lag or lead that through the resistance of the circuit. The lag or lead is known as the phase angle, and the power can be computed from the expression $\mathrm{P}=\mathrm{E} \times \mathrm{I} \cos \theta$. The $\cos \theta$ represents the power factor which has a zero (unity) value in a pure (100%) resistive circuit. A perfect condenser laving no resistance would have a zero power factor, which would provide a neeans for making comparative tests with other condensers.
'One of the many interesting applications of "power factor" is in determining the effective shunt and series resistance of a condenser when the frequency of operation is known. Solutions for the determinants are :

$$
\text { Series Resistance }=\frac{\text { power factor }}{2 \pi \mathrm{fC}}
$$

$R_{n}=$ Shunt Resistance $=\frac{1}{2 \pi \mathrm{f} \underset{\mathrm{f} \times \mathrm{p} \times \mathrm{power}}{\mathrm{C}}}$

Eliminating the power factor term gives

$$
\text { Series Resistance }=\frac{1}{\mathrm{~K}_{\mathrm{s}}(2 \pi \dot{\mathrm{f}})^{n}}
$$

Fundamentals of Radio

In power, telephone and telegraph lines, electricity energy is carried from the sending point to the receiving point through individual and isolated lines. All radio signals, however, utilize a common conducting medium. the ether. The nixing of thousands of radio signals in one conducting medium necessitates some method of selecting the desired signal and rejecting all others. This is accomplished by means of resonant circuits involving inductances and capacitances in series or parallel. Vacuum tubes are used to amplify the signals, while tuned circuits are used for selecting the desired signals.

Inductance Considerations

- Inductances are used in radio, audio-frequency and power circuits. An inductance used for the latter purpose can be designed from a rather simple formula:

$$
\mathrm{L}=1.257 \mathrm{~N}^{2} \mathrm{P} \times 10^{-9}
$$

$$
\begin{aligned}
\text { Where } & \begin{aligned}
& N \text { the number of turns of wire } \\
& \mathrm{L}=\text { the inductance in henrys } \\
& \mathrm{P}=\text { the permeance of the com- } \\
& \text { plete magnetic circuit }
\end{aligned}
\end{aligned}
$$

In most inductances, the magnetic circuit is confured by means of an iron magnetic core to the close proximity of the coil itself. For radio-frequencies some form of air-core coil is most often used. Lately, pulverized iron has been successfully employed for low and modium frequency coils, such as in in-termediate-frequency transformer assemblies.

The inductance of an air-core solenoid can be calculated from the formula:

$$
\mathrm{L}_{1}=\mathrm{N}^{2} \mathrm{dK}
$$

Where $L_{2}=$ the inductance in microhenrys
$\mathrm{N}=$ the number of turns
$\mathrm{d}=$ the average diameter of the coil
$\mathrm{K}=\mathrm{a}$ constant depending on the ratio of the length to the coil diameter
This formula shows that the inductance of radio-frequency coils varies as the square of the number of turns and directly as the diameter of the coil.

An inductance has a certain amount of resistance due to the metallic conductor used in winding the coil. At radio-frequencies this resistance is a great many times more than the resistance would be for direct current. At radio-freqencies the current
tends to concentrate at the surface of the conductor, which in effect gives an increase in the resistance. This crowding of the current density toward the surface of a conductor is known as the "skin effect."

The ratio between the inductive reactance of the coil and its effective resistance gives a measure of its efficiency, and is known as the " Q " of the coil. " Q," therefore, is the factor of merit of a reactance element; this factor can be determined by the following formula :

$$
Q=\frac{1}{2 \pi \mathrm{fCK}}=\frac{2^{\pi \mathrm{fL}}}{\mathrm{~K}}
$$

Series Resonance

When an inductance, resistance and capacitance are connected in series, there will be a certain resonant frequency at which the inductive reactance is equal and opposite in effect to the capacitive reactance, and the flow of current will only be limited by effective resistance of the circuit. At higher frequencies than resonance, the capacitive reactance is less than the inductive reactance, with the result that the impedance is higher than at resonance. The same holds true at lower frequencies, except that the larger reactive term is capacitive. The reactive voltage drop across either the coil or condenser is very high at resonance, because the current is only limited by the resistance of the circuit. This reactive voltage may he several hundred times the value of the impressed voltage, as given by the expression:

$$
\mathrm{Ex}=\frac{\mathrm{E} \times 2 \pi \mathrm{f} \mathrm{~L}}{\mathrm{R}}=\frac{\mathrm{E}}{2 \pi \mathrm{fCR}}=\mathrm{E} \times \mathrm{Q}
$$

For example, if the impressed voltage is 10 volts, and if the " Q " of the coil is 100 , the reactive voltage across the condenser or coil would be 1,000 volts. The sharpness of a resonance curve depends upon the " Q " of the coil, for example:

1
 2 Q difference of frequency from reso-

nance will only give 70% of the resonant current.

1

- difference of frequency from resonance will only give 45% of current at resonance. Series resonance is applied to antennas, antenna feeders, and occasionally in audiofrequency and filter circuits.

Parallel Resonance

Parallel resonant circuits are used in both transmitters and receivers for purposes of
selectivity or coupling between vacuum tubes. At frequencies below resonance, the inductive branch draws high current while the capacitive brancl draws low current, resulting in a lagging current known as inductive reactance. The opposite holds true for frequencies higher than resonance. At resonance the inductive reactance is equal to the capacitive reactance, and the parallel impedance is an effectively high resistance. The parallel impedance at resonance is equal to:

$$
Z=\frac{(2 \pi \mathrm{f} \mathrm{~L})^{2}}{\mathrm{R}}=2 \pi \mathrm{fL} \mathrm{~L}
$$

This shows that at resonance there is a resonant rise in impedance of " Q " times the reactance of either branch; meaning, for example, that a tuned radio-frequency amplifier would have more gain and also better selectivity with a high " Q " coil in the tuned coupling circuits. Since the plate impedance of an RF amplifier tube is often much greater than 100,000 ohms, it is important that inter-stage turred circuits have a very high resonant impedance so that a good impedance match and maximum voltage step-up will be obtained.

When parallel circuits are placed across the grid or plate circuits of a transmitting amplifier tube, the impedance of the tank is greatly reduced, because of the low shunt resistance across the parallel tuned circuit. The effect of a shunt resistance is to increase the effective series resistance of the same circuit; the amount can be determined by the following formula:

$$
r=\frac{1}{r_{s}\left(2^{\pi f} C\right)^{2}}
$$

Where $r_{s}=$ the shunt resistance.
For example, a shunt resistance of 2,000 ohms would increase the effective series resistance of a representative tank circuit from 5 ohms to 100 ohms at a frequency of 7 megacycles. Assuming the circuit had a " Q " of 100 without any shunt load, the " Q " would be reduced to 5 , due to the loading effect. The parallel impedance (from the above formulas) would be approximately 2500 ohms under load conditions, and 50,000 ohms with no load. The example brings out the effect of a resistance shunted across a parallel tuned circuit.

The resonant frequency of a parallel tuned high- Q circuit is given by the expression:

$$
\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

This expression is slightly in error for low-Q circuits, because the resonant frequency is affected by the effective series resistance. The sharpness of resonance is
similar to that of a series resonant circuit arrd the same " Q " formulas can be used for determining currents at frequencies off resona:ce.

In many applications of a parallel tuned circuit, it is desirable to obtain a step-down ratio of impedance. A typical example is in matching a 500 olm single wire antenna feedline to the tuned output circuit of a transmitter, as shown in Figure 6.

In this case, the load is only comected across part. of the parallel tuned circuit impedance in o:der that optinum power transfer will be obtaired.

Another case of parallel resonance occurs in radio-frequency cloke coils which are

FIG. 6
used to prevent radio-frequency currents from flowing into undesired circuits. The self-capacitance of the coil resonates it with its inductance to a frequency usually much lower than the operating frequency. The RF choke functions as a very small condenser of not more than two or three microfarads which presents a ligh impedance to RF currents. At frequencies helow resonance the choke performs like an inductance having an apparent value equal to:

$$
\frac{L .}{1-\mathrm{m}^{2}}
$$

Where m is the ratin of applied frequency to the natural resonant frequency of the coil; and L , the theoretical inductance. This apparent inductance can be very great near resonance.

Coupled Circuits

- Is single reactive circuits are not always emplored in radio transmitting and receiving circuits, it is theefore more common to use various combinations of coupled circuits; four simple electrical contigurations are shown in ligure 7 . In all of the diagrams the presence oi a secondary circuit changes the impedance of the primary circuit br an amount equal to the expression:

$$
\frac{(2 \pi \mathrm{f} M)^{2}}{\mathrm{Z}_{\mathrm{g}}}
$$

The equivalent primary impedance becomes:

$$
\begin{aligned}
Z & =Z_{L}+\frac{(2 \pi \mathrm{fM})^{2}}{Z_{2}} \\
Z_{1} & =\text { the series impedance }
\end{aligned}
$$

Where $7_{2}=$ the series imperance of the primary alone
$Z_{2}=$ the stries impedance of the secontary alone
$\mathrm{M}=$ the nritual inductance of the coils L_{1} and L_{2}
Note: When Z_{2} is low, such as at resonance, and M is not small, the effect on the primary is large. The effect of the secondary upon the primary circuit may be determined from the above expression when applied to the schematic diagrams shown here. From these expressions it is possible to roughly analyze most any transmitter or receiving circuit.

FIG. 7
Power transiormers are a form of occupied circuits of the type shown in Figure 7-a. The difference beween a power transformer and a similar RI coupled circuit is that the leakage reactance may only be about two per cent in the former case, and as ligis as 90 per cent in the latter case. The leakage reactance is much higher at radio-frequencies, because most high-frequency coupled circuits are resonant and require very loose coulding with a very small value of M to attain the desired result. In many cases the coupling between two or more circuits is obtwined by other methods usit:g some form oí inductive or capacitive reactance, or even resistance coupling.
Band-pass circuits are special forms of parallel resonant coupled circuits. The coupling is increased until the secondary causes an extreme broadening of the resonance curve or it may even form a double resonant peak in the primary circuit. True band-pass circuits are seldom used in shortwave radio receivers or transmitters because selectivity and gain are more important to the amateur than a level frequency response over a range of frequencies.

Gume Ciz. CROSS SECTIOMAL AREA				oce.		RMS PE osc.	ssc.	INCM Enis.	$\longrightarrow \underset{\substack{\text { Enem. and } \\ \text { secc. }}}{ }$			scc.	IURMS PER SQUASE INCH OSC. SSC. Eman					\longleftarrow FT. PEn Pouno \longrightarrow			aES PER 1000 Ft. Coger	cabryimg capacity Copper				
Be	${ }_{M_{11}}^{u_{1}^{\prime}}$	$c_{\text {m+1 }}$	si.								DCC					scc.	Bm	$\begin{aligned} & 1000 \mathrm{~cm} \\ & \text { Po } \mathrm{Amp} . \end{aligned}$	${ }_{p_{\nabla}}^{1500} \mathrm{~cm}$							
0000	150.0	211600	. 1662																					1.561	211.6	140.7
000	109.6	167800	. 1318																	1.968	. 0629	167.8	111.3			
00	364.8	133100	. 1045																	2.482	.0793	133.1	88.9			
-	324.9	10.550	. 082×8																	3.130	. 1080	105.5	70.3			
i	2k9.3	${ }_{83650}$																		3.947	. 1260	83.7	35.7			
2	257.6	66370	. 03213																	4.978	1638	65.4	4.18			
3	229.4	526.40	. 06134																	6.278	. 2004	52.6	35.0			
-	20.3	51780	. 03278																	7.914	. 2336	41.7	27.7			
5	182.9	33109	. 02600																	9.986	. 3198	33.1	22.0			
6	162.0	26250	. 02052	5.44	5.60															12.58	. 5028	26.3	17.5			
7	14.3	20820	. 01635	6.08	6.23															13.87	. 5080	20.8	13.8			
	128.5	16519	. 01297	6.80	6.94													19.6	19.9	20.08	. 6805	16.5	11.0			
\%	114.4	13090	. 01028	7.64	7.68													24.6	25.1	25.23	. 8077	13.1	8.7			
10	101.9	10350	.004155	8.51	8.55													38.9	31.6	31.82	1.018	10.4	6.9			
11	90.78	8234	.006467	9.58	9.60													38.9	39.8	10.12	2.284	8.2	5.5			
12	80.81	6530	. 005129	10.62	10.80	11.8	12.1	12.1	11.4	11.8	121	136	139	145	196	130	139	48.9	50.2	50.59	1.619	6.5	4.4			
$\frac{13}{13}$	71.96	5178	. 040617	$1 f .88$	12.06	13.2	13.5	13.5	12.8	13.2	153	171	173	183	183	162	173	61.5	63.2	63.80	2.042	5.2	3.5			
14	64.09	1107	.003225	13.10	13.45	14.9	15.1	15.2	14.2	14.7	1×7	213	216	229	239	201	216	77.3	79.6	80.44	2.575	4.1	2.7			
15	57.07	3257	.002558	14.68	14.90	16.4	16.9	17.0	15.8	16.5	229	264	268	287	290	250	271	97.3	100	101.4	3.247	3.3	2.2			
16	50.82	2593	. 002028	16.40	17.20	19.2	18.9	18.7	17.6	18.4	260	327	333	35\%	350	309	338	119	126	127.9	4.094	2.6	1.7			
17	45.25	2019	.001609	18.10	18.80	20.3	21.2	21.1	19.5	20.5	340	404	112	448	458	381	421	150	153	161.3	5.163	2.4	1.3			
1 N	40.30	1624	-001276	20.00	21.00	22.6	23.6	24.0	21.7	22.9	112	198	310	359	${ }^{375}$	${ }^{6} 69$	525	188	196	203.4	6.510	1.6	1.1			
19	35.k9	1288	. 0 Dini 2	21.83	23.60	25.4	26.8	27.2	24.2	25.8	508	629	614	715	739	589	665	237	247	236.5	8.210	1.3	. 86			
20	31.98	1072	.nnosne3	23.91	25.40	27.8	29.5	30.1	26.5	28.4	596	752	773	867	904	701	805	298	311	323.4	10.35	1.0	. 68			
21	28.4 ${ }^{\text {¢ }}$	810.1	.00063\%3	26.20	29.70	30.8	32.8	33.6	29.6	31.5	7.32	919	919	1098	1129	878	991	370	389	407.8	13.05	. 81	54			
22	25.35	612.4	. 0 0n30, 6	28.58	32.06	31.1	36.6	37.7	32.7	35.0	899	1161	1161	1337	1419	1071	1227	461	191	514.8	16.46	64	43			
23	22.57	309.3	0000002	31.12	31.30	37.6	10.7	12.3	36.1	39.0	1090	1116	1916	1636	1785	1306	1518	584	624	648.4	20.76	51	34			
21	20.10	408.n	.0003173	33.60	37.70	41.5	15.3	17.2	39.7	43.1	1266	1722	1722	2018	2225	1575	1858	145	778	817.7	26.17	41	. 29			
25	17.90	320.1	.0002:17	36.20	41.50	45.7	50.3	52.9	43.9	47.9	1191	2045	2085	2:2,	2800	1907	2289	903	958	1031	33.00	. 22	21			
26	15.91	25.4	. 0 nn1996	39.90	45.30	50.2	35.7	59.0	178	52.8	$1: 15$	2515	2515	3108	3484	2281	2788	1118	1188	1300	41.62	. 25	17			
27	14.20	$2 \mathrm{~T}, 5$. 0001583	12.50	49.40	55.0	61.7	65.8	52.1	58.1	2029	3019	3019	3811	4328	2713	3381	1122	1533	1635	52.48	. 20	13			
2 28	12.24	159.8	. 0001255	15.50	51.60	60.1	68.3	73.9	57.0	85.4	2317	3611	3619	4665	5156	3250	4141	1759	1903	2067	66.17	. 16	. 11			
29	11.26	126.7	.anno9953	$4 \times .00$	58.80	65.5	35.4	82.2	61.9	70.6	2596	4294	4298	5688	6761	3830	4988	2207	2461	2607	83.44	. 13	. 08.8			
30	10.03	ino. 5	.noin7994	51.12	64.40	71.3	83.1	92.3	67.4	77.9	3076	5081	5081	6911	8527	1517	6075	2534	2893	3287	105.20	. 10	. 067			
31	8.928	79.70	. 000006260	56.80	69.00	77.3	91.6	103.0	72.8	85.3	3489	5981	5981	8389	10358	5305	7261	2768	3883	4145	132.70	. 079	. 053			
32	7.950	53.21	. 00004964	60.20	75.00	83.9	108.0	116.0	79.1	93.9	3931	7003	7003	10101	13363	6250	8818	3137	1414	5287	167.30	. 063	. 042			
33	7. 880	50.13	. 00003937	61.30	81.00	90.3	110.0	130.0	85.6	103.0	4198	8143	8143	18130	16952	7326	10672	4697	5688	6591	211.00	. 650	. 033			
31	6.305	39.8.7	.0n00.122	68.60	87.60	97.0	120.0	185.0	91.7	112.0	4×83	9107	9407	14199	20967	8403	12610	${ }_{6168} 6$	6400	8310	266.00	. 033	. 026			
35	5.615	31.52	. 00002476	73.00	94.20	1 l ¢ 0	131.0	154.0	98.8	123.0	5191	10817	10817	17217	26745	9766	15186	6737	8393	10480	335.00	. 032	. 021			
35	5.000	25.00	. 000019 Cm	78.50	101.00	111.0	143.0	182.0	105.0	133.0	6917	12316	12316	20408	33031	11080	17777	7877	9846	13210	\$23.00	. 025	. 017			
37	4.433	19.83	. 00001557	84.00	108.00	118.0	155.0	206.0	113.0	186.0	6152	13996	19995	24015	40366	12758.	21295	9309	11636	16660	533.40	. 020	. 013			
34	3.965	15.72	. 00001235	89.10	115.09	126.0	158.0	235.0	120.0	157.0	6978	15763	15763	28106	54990	14291	24685	10666	13848	21010	672.60	. 016	. 010			
39	3.331	12.47	.0nnon9793	95.00	122.50	133.0	1×1.0	251.0	128.0	182.0	7624	176.10	176.30	32690	68120	16308	29412	11909	18286	26300	848.10	. 012	. 008			
40	3.134	9.88\%	.000007766	102.50	130000	110.0	194.0	290.0	134.0	184.0	N015	19589	193.49	37779	84245	1×141	43727	16228	24381	33410	1069.00	. 009	. 000			
$\square 1$	2.800	7.811	.0n0006150	112.90	153.00													17920 22600	30610 38700	42130 33100	1323.00	. 008 .				
42	2.994	6.220	. 0000002885	124.00	$\underline{168.00}$													286810	38700	53100	1667.00	. 0006 .				
43	2.221	4.9 .931	. 0.000003873	${ }_{1}^{140.00}$	${ }_{210}^{19.00}$													35950	61400	88460	2655.00	. 004	${ }^{.003}$			
4	1.978	3.910	.000003073	133.00																						

Chapter 2

Vacuum Tube Theory

- In radio transmission and reception, vacuum tubes are employed for the generation, detection, and amplification of radio and sadio-frequency currents; in addition, elecfron thbes serve as power rectifiers which convert alternating current into direct cursent, and in special cases for controlling and inverting electric power.

The functions performed by a thermionic tube depend on the emission of electrons from a metallic surface and the flow of fhese electrons to other surfaces; the transition tonstituting an electric current.

Ar. electron tube consists essentially of an cvacuated glass or metal envelope in which are enclosed an electron emitting surface, called a cathode, and one or more additional electrodes. The cornections from the various elements are carried through the tube envelope to special connectors.

Electron Emission-Cathodes

- The rate of electronic motion in every atom increases if the molecular constituents of any material are subjected to thermal agitation. Hence, by leating certain metallic conductors the motion of electrons becomes so rapiel that some of them break away from their parent atoms and are set free in space. In the absence of any external attraction, the electrons escaping from the emissive surface repel each other because they are all negatively charged. Therefore, the number of electrons leaving the emitter are limited on account of the free negatively charged electrons counteracting the escape function of new electrons. The point of electronic saturation is called the "space charge effect." When this condition is reached no further electrons will leave the emitter regardless of how much higher the temperature of the emitting surface is increasci. The element irom which electrons are detached in a radio vacuum tube is energized electrically by the passage of current through either a directly-heated filamentary cathode, or metallic slecve indi-rectly-ieated by an internal resistive element. In all modern vacuum tubes the surface of the cathode material is chemically ireated to increase electronic emission. The two principal types of surface treatment inciude "thoriated tungsten filaments," as used in medium and ligh-powered transmitting tubes, and "oxide coated filaments." or cathode slecves, such as used in most receiving tubes. Pure tungsten filaments are practically obsolete, and are only being manufactured for some types of high-power iransmitting tubes where sufficient vacuum
cannot be maintained for properly operating a thoriated tungsten type of filanent.

Cathode Current

- When a heated cathode and separate metallic plate are placed in an evacuated envelope. it is found that a few of the clectrons thrown off by the cathode leave with sulficient velocity so that they reach the plate. If the plate is electrically connected back to the cathode, the electrons will flow back to the cathode, due to the difference in electrical charges caused by the electrons leaving the cathode and reaching the plate. This small curreit that flows is the plate current. If a battery, or other source of DC voltage is placed in the cxternal circuit between the plate and cathode, so that the battery voltage places a positive protential on the plate, the flow of current from the cathode to plate will be increased. This is chete to the attraction offered oy the positively charged plate for any negatively charged electrons. If the positive potential on the plate is increased, the flow of electrons hetween the cathode and plate will also increase up to the point of saturation. Saturation current flows when all of the electrons leaving the cathode are attracted over to the plate, and no increase in plate voltage can increase the number being attracted to the plate. Raising the temperature of the cathode will increase the plate current on account of the electronic

Fig. 9 - Curve showing emission from a cathode.
increment from the emitter. Operating a cathode at a tenperature materially above its normal rating will shorten the life of the emitting surface. In the case of thoriated tungster emitters, which are rather sensitive to changes in filament temperature, it is advisable to provide a close control over the filament voltage. If there is any doubt about the filament voltage, it is better to operate the filanient slightly higher than normal, rather than below normal, especially if the tube is operating with high plate current.

Diode Rectification

- If a negative charge is applied to the plate, the electrons in the space charge are repelled back to the cathode and no current flows in the circuit between the cathode and plate. Thus, in a vacuum tube, current can flow from the cathode to plate, but not from plate to cathode. If an alternating current is applied to the plate, current will flow on:y when the plate is positive with respect to the cathode. This current will be pulsating, but uni-directional. If a suitable smoothing filter is placed in the circuit, the pulsations will be smoothed out and will simulate that of a direct current. This process is known as rectification, it is widely applied in all radio circuits. All amplifiers employing radio tubes usually require the application of rather ligh positive DC potential to the plate, which of course, necessitates the stepping-up of the AC current supplied by the power mains before it is rectified and filtered. Other applications of the principle of rectification occur in radio receivers and transmitters.

Vacuum Tubes as Amplifiers

- The addition of a mesh-like structure, called a grid, interposed between the cathode and plate in a vacuum tube allows a wide control over the electron flow from the cathode to plate. This control is made possible by applying small control voltages to the grid whiblh either increase or decrease the plate current according to the direction of potential command. Vacuum tubes in which there are three electrodes are called triodes. Hence, when the grid is given a negative charge with respect to the cathode, it repels the electronic flow to the plate, resulting in a decreased plate current. On the other hand, if the voltage is made high enough, the plate current will lee cut off. The point at which the flow ceases is called the "cut-off bias," and it depends on the grid-to-plate spacing. as well as the closeness of mesh of the grid structure. When the potential on the grid is made positive with respect to the cathode. electrons are attracted awav from the space charge area surrounding the cathode and are speeded on through and past the grid structure on to the plate with increased velocity. This increases the plate current.

Some of the eiectrons are intercepted by the grid and flow back to the cathode through the external grid circuit, hut this grid current is usually quite small in comparison to the plate current. The ideal grid structure would te one that would give high acceleration to the electron flow when positive, yet would not intercept any grid current. The interception of grid current
requires that the source of controlling voltage applied to the grid will supply enough power to swing the grid voltage to the reguired positive point, in spite of the resisting effect of the grid current.

A vacuum tube amplifies the voltage excursions of the grid by reason of the fact that the effected change in the plate current causes a similar amplified voltage drop to take place across an impedance in series with the plate circuit.

Tetrodes and Pentodes

- The term "tetrode" and "pentode" indicate the presence of four and five element tubes, respectively.

A tetrode consists of a triode to which has been added a second grid between the control grid and the plate. The grid is usually maintained at a prositive potential, with respect to the cathode. The purpose of this grid is two-fold: first, it accelerates the electron flow from cathode to plate, thereby improving the tulbe's alsility to amplify voltage. Second. it provides a grounded electro-static screen between the plate and control gricl, so that energy will not be fed back to the control grid through the plate-to-grid capacitance of the tube. If the amplification through the tube is high enough, this feedback, or regeneration, of energy, might set the tube into self-oscillation, which would destroy its usefulness as an amplifier. This reseneration is put to work in certain detectors and in all oscillators, but its presence is undesirable in most amplifier applications. The tetrode has several disadvantages, the principal one being that the instantaneous AC plate voltage caused ly the changing plate current cannot be allowed to swing to a value below the fixed positive potential on the outer, or screen grid. When the potential on the plate becomes less than the potential on the screen grid, the secondary electrons constantly heing driven out of the plate by the impact of those arriving from the cathode fall into the more positive screen, instead of falling back into the plate, as they normally do. This increases the screen current, and under certain conditions, gives the tube negative resistance. This effect causes
tremendous distortion in a voltage amplifier and limits the output of a power amplifier.

The pentode was developed to avoid this disadvantage of the tetrode. In this development, a third grid is added between the grid and the plate for the purpose of shielding the plate from the screen grid, so that the secondary electrons emitted from the plate will be forced to fall back into the plate and are prevented from going over to the screen. This outer grid in a pentode is called the suppressing grid because it suppresses the secondary electrons driven out of the plate.

I•entodes are highly useful for all class A voliage and power amplifiers, although they are not as desirable as triodes in high effisiency power amplifiers (above 40% overall efficiency). The main drawback to the use of tetrodes in high efficiency power amplifiers is the fact that the presence of the adilitional grids raises the plate resistance sumewhat more tian the amplification factor. Thus, the control-grid to plate transconductance cannct be as high in a similar triocle. Transconductance, as will be explained in the next few paragraphs, is the best yardstick of a vacaum tube's ability to amplify power, particularly at high plate efficiencies required by cconomy considerations in the construction of radio transmitters.

Gaseous Conduction

If a diode vacuum tube is evacuated and then filled with a gas, suct: as mercury vapor, its characteristics and performance wilt differ materially frem an cordinary high vacaum type diode tube.

The principle on whith depends tine operation of a gas-filled rectifier is known as the phenomrenon of ionization. Investigations have shown that electrons eraitted by the not-cathode in a mercury vapor tube are accelerated toward the anode (plate) with great velocity. These accelerated electrons move in the (electrical) force-free space between the hot-cathode and arrode, in which space they collide with mercury vapor molecules. If the moving electrons attain a velocity equivalent to falling through a potential difference of 10.4 volts (for mercury), they are able to knock electrons out
of the atoms with which they collide. When an electron is separated from its norinal orbit it leaves not as an electron but as a positive ion. This ireed positive ion will consequently be neutralized by the optional acquisition of a free electron. Finally the free electrons will be attracted to the anode or plate as will the positive ions that have been separated fron the mercury atoms, which collectively constitute the flow of current in the tube. Tlie passage of ions and electrons cause more of the atoms to be broken up by collision so that the vapor becomes heavily ionized and transmits a considerable amount of current. When the anode is positive, the ions are repelled and attracted to the cathode, tending to neutralize the negative space charge as long as saturation current is not being drawn. The mechanics of this electronic effect nettralize the negative space charge to such a degree that the voltage drop across the tube is reduced to a very low value and, in addition, reduces the heating of the diode plate as well as improving the voltage regulation of the circuit in which the tube is used. This greatly increases the efficiency of rectification because the voltage drop across any vacuum tube represents a waste of power.

Grid Controlled Rectifier

- A controlled rectifier is a gaseou.s type of diode employing either mercury, neon or argon gases, and a control grid. As the grid does not perform in the same manner as in the triode, it is necessary to give a description of the coatrolling action.

If a grid is placed between the cathode and the plate in a gascous tube, the starting of the plate current can be controlled. A negative bias (or an absence of the required positive bias, in positive controlled tubes) prevents the flow of electrons from starting. Ilowever, once the flow begins, and the gas has become ionized, the grid loses all control ove: the electron s!ream. After starting, the grid neither modnlates, limits, nor extinguishes the discharge. Herein lies the fundamental difference between high vacuum tubes and grid controlled rectifiers. The grid can regain control and prevent the passage of current if the potential on the plate is lowered to below the ionization voltage of the conducting vapor or gas. The time for de-ionization is very short; hence, interrupting the plate cur:ent for a few micro-seconds allows the grid to regain control.

If an. AC voltage is applied to the plate, the grid :s permitted to regain control after every positive half-cycle when the plate goes negative. In addition. the grid can delay the start of ionization for as long a period during the positive half cycle, as long as the grid bias voltage is sufficiently negative. In
this manner, the grid can control the average current flowing through the tube if both plate and grid are supplied with AC, and the phase relation between the grid and plate voltage are adjusted to either increase or decrease the frequency or time of ionization.

Grid controlled rectifiers are more commonly known by their trade names-"Thyraton" (General Electric Co.) and "Grid Glow Tubes" (Westinghouse Company). For the amateur, the tubes are quite useful in varying the output of DC power supplies. Grid controlled rectifiers are also used in keying CW transmitters, or in applying carrier control to the plate power supply of a modulated amplifier.

The use of gaseous conduction tubes are limited to very low frequencies, such as 500 cycles and lower. The tubes are unstable at high-frequencies due to the finite time required for the internal gas to deionize after each cycle of conduction.

Vacuum Tube Characteristics

- The characteristics of a vacuum tube are the electrical properties which describe its ability to perform various functions. These characteristics are obtained by operating a vacuman tube under certain known electrode voltages, and then measuring the electrode currents. By plotting the change in any electrode current as any one of the electrodes voltages are likewise varied, a characteristic curze is obtained. When a negligible amount of impedance is inserted in the plate circuit of a tube and different DC potentials are applied to the tube electrodes. and should the variations in electrode current he graphically plotted on cross-section paper, the results are known as the tubes' static characteristic curve. On the other hand, if there is an impedance in the plate circuit, the plate voltage will vary with the plate current; hence, if a pure resistive impedance is placed in the plate circuit, and an AC voltage is impressed on the control-grid under various conditions of DC potentials on the electrodes, and if the variations in current are plotted on graph paper, the result will be the dynamic charactcristic curze. This characteristic indicates the performance of a vacuum tube under actual operating conditions.

From three sets of static curves, it is possible to calculate in advance the actual performance of practically any type of vacuum tube aroplifier or detector. Investigators have done a great deal of work in developing neans by which the optimum operating conditions for the operation of class B and C power amplifiers can be accurately determined in advance. This information, in the form of curves or tables, will probably be made available soon by
the tube manufacturers, so that proper values of bias, plate voltage, grid current and plate current can be chosen in order to obtain optimum power cutput and plate efficiency from any power amplifier.

Dynamic Characteristics Amplification Factor

The amplification factor. cryptically written as either μ, mu , of k , is the ratio of the change in plate voltage, plate current constant, to a change in grid voltage in the opposite direction. For example, if the plate voltage is changed 30 volts, and if it requires a change of 2 volts (opposite polarity) in the control grid voltage to hold the plate current constant, the amplification factor is $20 / 2$ or 10 . Expressed as an equation, it is:

$$
\mu=\frac{d E_{\mathrm{H}}}{d E_{5}}
$$

Where $\mathrm{d}=$ any small change increment
$\mathrm{I}_{\mathrm{E}}=\begin{gathered}\text { variable } \\ \text { voltage }\end{gathered}$ component of plate
Where $\wp_{\mathrm{g}}=\begin{gathered}\text { variable component of grid } \\ \text { voltage }\end{gathered}$

Plate Resistance

The plate resistance of a vacuum tube is defined as the ratio of a small change in plate voltage to the resulting change in plate current, when the grid voltage is assumed to remain constant. For example, if a change in plate voltage of 20 volts causes a change in plate current of 10 milliamperes (ma.), the plate current resistance equals 20 divided by .01 ampere (10 ma .), or 2000 ohms. Expressed as an equation:

$$
\mathrm{R}_{\mathrm{r}}=\frac{\mathrm{dE}_{\mathrm{p}}}{\mathrm{dI}_{\mathrm{p}}}
$$

It is desirable to make the plate resistance of a tube as low as possible, especially in power amplifiers where the load circuit is coupled to the plate in order to make a more effective impedance match. This allows the use of a lower plate woltage than would otherwise be obtained.

Transconductance

The control grid-plate transconductance (S_{m}). formerly called mutual conductance. combines in one term the μ and the plate resistance of a vacuum tube, and is the ratio of the first to the second. By introducing the equations given above for μ and R_{D} in the ratio defined for transconductance, it can be seen that the S_{m} can also be expressed as the ratic of the change in
plate current to the small change in grid voltage producing it (plate voltage constant, load resistance zero). Comlining the above expressions, the formula for transconductance can be written:

$$
S_{M}=\frac{\mu}{R_{\mathrm{p}}}=\frac{\frac{\mathrm{d} \mathrm{E}_{\mathrm{p}}}{\mathrm{dE}_{\mathrm{z}}}}{\frac{\mathrm{dE}}{\mathrm{~d} \mathrm{E}_{\mathrm{p}}}}=\frac{\mathrm{dI}}{\mathrm{~d} \dot{F}_{\mathrm{p}}}
$$

S_{u} is expressed in MHIOs, the unit of conductance.
Note that it is ohm spelled backwards; this is logical, since corductanee is the reciprocal of resistance.

To illustrate an example oi transconductante, take the case winere ratio oi the dlp to dE_{s} equals S_{m} : hence, if a grit voltage change of 5 volts causes a plate current change of 10 ma., the transconductance is . 04 divided by $\mathbf{5}$, or $0.40: 2 \mathrm{mlw}$.

A convenient means of determining transconductance without any calculations is to read the plate current clange caused by a change of exactly one volt on the control gricl. By multiplying the resulting 1_{p} change in ma. by 1000. the S_{m} ohtained is directly in micromhos.

Vacuum Tube Amplification

- A tube aunplifies by reason of the fact that a suluall change in grid voltage produces a larger change in plate current than would be produced be the same clange in plate voltage. See Figure 11, page 17. This function can be applied in many ways, depending upon the result desired.

Vacuun tubes can ta classitiod into two genera: categories, according to application and operating characteristics.

In eeneral. vacum tules may be classified into four groups. according to their principal application. These are:

> Voltage amplifiers
> Power amplificrs
> Current amplitiers
> General purpose amplifiers

A roltage amplifier tuhe usually has a very high mul and fiods its greatest use where tremendous vol:age amplification is desirect This type of tulie. like the type 5\%, must feed into a high impedance device :ike the grid of another vacumm tube for maximum voltage amplification. High mm tubes are used mostly as ralio and inter-mediate-frequency amplifiers.

A power amplifier tube has a relatively fow amplification facto- and is used where the primary consideration requires a maximum amount of undistorted output. For maxumum power transfer the load im-
pedances must be properly matched to the plate resistance, which is generally of a low value. In power tubes, the output increases with great rapidity as the plate voltage is increased; hence, for maximum transfer, power tubes are operated with high plate voltages.

A current amplifier tube is one tha: gives large clanges in plate current for very small changes in grid voltage; in other words, a tube havitig a high S_{m} will pass high plate currents; hence, the term "current amplifier." The use of these tubes is mostly confined to electronic industrial applicatiors and therefore will not be discussed leere.

General purpose amplifier tubes have characteristics between voltage and power amplifier tubes. The usefulness of this type of amplifier tube, in radio, is practically without end; for instance, in voltage amplification where a smalier power output is desired, and where the connecting link is a voltage step-up transformer, a general purpose triode will supply the circuit requirements. These tubes are now used extensively in class B or C power amplifiers.

From the foregoing it can be seen that vacuum tulbes may be employed in a wide variety of ways, depending on the result desired. In addition to the above classification there are three principal types of tube amplifiers and two secondary types. These types differ largely in the choice of bias axis, angle of plate current flow and whether the average DC plate input is constant or variable.

Class A Amplifier

- The class A amplifier is biased asually in the middle of the linear portion of the dynamic characteristic curve. This is the usual condition of operating vacuum tubes, since the input impedance is then very high and very little energy is required to control the tube. In this type of amplifier, plate current flows the whole AC cycle, or 36 degrees. The average plate current waveform is indepertent of the signal or exciting voltage.

Class A amplifiers are used in a 1 RF , IF and low level audio amplifiers in receivers. It is characterized by low plate efficiency and power output, but almest infinite pewer gain, because the control grid never goes positive and thus requires no gricl driving power.

Class B Amplifier

The class B amplitier is always biased to the point known as the "theoretica' cutoff." The plate current is not zero at this point. but is quite low (no signal present on the grid). Theoretical cut-off bias
equals the plate voltage divided by the μ, or amplitication factor (not applicable to pentodes). It can also be determined by extending the linear portion of the dynamic characteristic down to the zero plate current line and reading the negative bias intercepted at that point. In class B amplifiers, the useful plate-current fiow should last for exactly 180 electrical degrees, or one-half cycle.

The class B amplifier is used as an audio power amplifier where it is too expensive to provide the required audio power output from a class A amplifier. It will also give distortionless antplification of a radio-frequency wave that has been modulated in some preceding stage of a transmitter. Class B is characterized by maximum plate efficiencies from 40 to 70 per cent, depending upon application. This type amplifier is practically a compromise between power gain and power output, when functioning as an amplifier of unmodulated radio-frequency power. For audio-frequencies, it is necessary to use two tubes in push-putl in order to elinninate high distortion. Is an atulio-amplifier, the plate input varies widely with the sigual, but the input remains constant when amplifying a modulated radio-frequency wave. At audio-frequencies the power output is proportional (o) the square of the grid excitation voltage.

Class C Amplifier

The class C amplifier is biased considerably beyond the cut-off, and requires the application of a high amplitude signal voltage to carry the grid positive. Plate current dows for less than 180 degrees and the pulsating power pulses are usually quite peaked, which renders this type of amplifier tinfit for distortionless amplification. However, for radia-frequency amplifiers and vacuum tube oscillators it is customary to use some type of class C amplifier. The claracteristics of the amplifier render it capable of very high plate efficiency and power output, although the power gain drops as the plate efficiency and power ontput go up. In general, the output varies as the square of the plate voltage within limits. A common use for a class C amplifier is that of functioning as a plate modulated RF power amplifier, in which case the grid must be biased to at least twice the cut-off.

Class AB Amplifier

- The class AF amplifier is biased somewhere between the class A and the class B points. Plate current flows for more than 180 degrees, but less than 360 degrees. The plate efficiency and power output are intermediate between class A and B, and tubes with low μ are often adaptable to this class
of service. Amplifiers of this class are almost exclusively used for audio-frequencies which are generally operated in pushpull to avoid distortion. The class AB amplifier was formerly called the class A I'rime Amplifier.

Class BC Amplifier

- 'lohe Class IIC amplifier is biased somewhat beyond the cut-off, and thus plate current Hows for less than 180 degrees. The only applications of the class ISC amplifier at the present time are the RF linear amplifier and the grid bias modtlated RF amplifier. In both these amplifiers, fixed low resistance bias equal to "theoretical cut-off" is supplemented by approximately an equal amount of cathode resistor bias. This arrangement pernits the angle of plate current flow to be constant and independent of the audio modulation signal, even though the actual plate current flow is less than 180 degrees. The power output, plate efficiency and power gain are intermediate between class B and C.

Detection

Detection is a process by which the audio modulation is separated from the radiofrequency signal carrier at the receiver.

b-plate de egtion
Showing how the average plate current increases.

Showing how the average plate current
decreases.

Detection always involves rectification or non-linear amplification of an AC current. All other types of detectors or demodulators provide exactly the same rectification except the triode, tetrode and pentode detectors which, in addition, combine the function of amplification to such an advantage that more over-all amplification can be obtained with fewer tubes.

There are two types of detectors used in radio; these are the plate and griul detectors. How each of these function are briefly described below.
The plate detector (or bias detector), sometimes improperly called power detector, amplifies the radio-frequency wave and then rectifies it and passes the audio-signal component on to the succeeding audio amplifier. The detector works on the lower bend ir the plate current characteristic, as it is biased out close to the cut-off point. It might be called a class B amplifier. Plate detectors can be either of the weak signal or power type. The plate current is quite low in the absence of a signal and the audio component is evidenced by an increase in the average unmodulated plate current. The grid detector differs from the plate detector, as will be evidenced in the subsequent explanation.
The grid detector rectifies in the grid circuit and then amplifies the resulting audio signal. The only source of grid bias is the grid leak, so that the plate current is maximum when no signal is present. This detector works on the upper, or saturated, lend of its curve at a high plate voltage, and tine demodulated signal appears as an audio-frequency decrease in the average plate current. However, at low plate voltage most of the rectification usually takes place as a result of the curvature in the grid characteristic. As with plate detcetors, grid detectors can be either of the weak signal, or power type. By proper choice of grid leak and plate voltage, distortion can be held to a small value. The grid detector absorbs some power from the preceding stage, because of drawing grid current. The higher gain through the grid detector does not indicate that it is more sensitive. Detector sensitivity is a matter of rectification efficiency, not amplification alone.

The grid detector has an advantage when used as a regenerative detector because the grid leak asually allows a somewhat smoother control of regeneration than is possible with any form of plate or hias detection.

Oscillation

- The ability of an amplifier tube to control power enables it to function as an oscillator in a suitable circuit. By coupling part of the amplified output back into the
input circuit, sustained oscillations will be generated; that is, ii the input voltage to the grid is of the proper magnitude and phase with respect to the plate. In general, the voltage fed back and applied to the grid must be approximately 180 degrees uut of phase with the voltage across the load impedance in the plate circuit and, in addition, have sufficient magnitude to develop the necessary grid voltage. The voltage swings are limited by the circuit losses and are of a frequency depending upon circuit conditions.

When a parallel resonant circuit consisting of an inductance and a capacitance (LC) is inserted in series with the plate circuit of an amplifier tube and comected so that the potential drop across its terminals is impressed on the grid in the same tube 180 degrees out of phase, amplification of the potential across the LC circuit will result. The potential would increase to an unrestricted value were it not for the limited range of linearity of the tube characteristic and the limited voltage available on the plate. Therefore, a value will eventually be reached limiting the amplitude of oscillation. When this value is attained, the process of amplification reverses, redacing the voltage across the LC circuit as quickly as it had pieen raised a moment lefore. When the voltage across the resonant circuit reaches zero, it reverses, and is develozed to another value having the same amplitude but of opposite polarity; at the point of the greatest voltage swing, amplification again reverses, and the process continues indefinitely.

The frequency range of an oscillator can be made very great; thus, by varying the circuit constants, oscillations from a few cycles per second up to many millions can be generated. One of the unique properties of an oscillator is that it can oscillate at more than one frequency at the same time; these frequencies are called harmonics.

One of the most common types of oscillator circuits known is called the "Hartley Oscillator." a diagram of which is shown.

In this circuit the plate and grid inductances together with the tank condenser form an oscillatory circuit known as the tank circuit. If the condenser in this circuit be charged, then allowed to discharge through the plate and grid inductances as
shown, the current flow would be alternating and of decreasing magnitude. The frequency is determined by the size of the condenser and inductances and is equal to:

$$
\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

Where f, the cycles per second; L, in henrys; and C , in farads.

The decrease in amplitude is due to losses in the tank circuit and to the energy delivered to the ounput. If sufficient energy be supplied to this circuit, during each cycle, to supply the losses and power output per cycle, the amplitude of the current would remain unchanged. The function of the vacuum tube is to deliver the reguired energy to the tank circuit.

As the energy stored in the tank circuit alternates, there will be a time when the grid will be charged positively with respect to the filament. A large direct-current plate current will flow under the influence of this positive grid potential, building up the field and storing energy in the plate cloke (inductance). At a time of one-half cycle later the grid will be negative, thereby greatly decreasing the flow of plate current and causing the plate choke to discharge its energy into the tank circuit. This discharge occurs once each cycle and thereloy the necessary energy is delivered to the tank circuit to maimain oscillations of constant magnitude.

When the grid is positive with respect to the filament, electrons ieak back to the cathode via the grid leak and condenser, If the value of this RC path is high, a high effective grid bias results, making the tube function as a class C amplificr. This results in maximum outp:it and high efficiency.
The best way to classify regenerative vacuum tube oscillators is by the feedback coupling method. All such oscillators use either capacitive or induct:ve coupling from the plate circuit back into the grid circuit. Usually very low-frequency oscillators (below 100 KC) use some form of inductive coupling, while high-frecuency oscillators (100 to $100,000 \mathrm{KC}$) are capacitively or inductively coupled; however, for frequencies higher than $100,000 \mathrm{KC}$, only capacitive feedback is required.

At frequencies above $100,000 \mathrm{KC}$ (3 meters) the effectiveness of the regenerative oscillator drops off rapidly because the time of flight from the electrons between the grid and plate becomes a large fraction of one cycle of oscillation. The losses in regenerative oscillators also become so large at these frequencies that the plate circuit is incapable of supplying the grid losses let alone supplying power for driving an amplifier or antenna.

Thus, at frequencies above 100 MC (100,000 KC), the newer electron orbit oscillator is becoming more widely used. This type of oscillator can be of several forms, the more important heing the Magnetron and the Barkhansen-Kurz oscillators.

Color Code for Mica Condenser Marking

- The following color code is useful for the capacity marking of mica condensers for manufacturers' use. The colors are those adopted as standard in the R. M. A. Resistance Code, as follows :

Numeral	Coldr	Numeral	Color
0	Black	\vdots	Green
1	Brown	6	Blue
2	Red	\div	Violet
3	Orange	8	Gray
$\mathbf{4}$	Yellow	$\mathbf{9}$	White

A prerequisite to the use of this code is that capacity first be expressed in terms of micro-inicrofarads, as $.000: 25 \mathrm{mfd} .=250$ mmf .

The three color rings on the face carrying the name are used as follows, reading from left to right :

1. The first dot indicates the first digit.
2. The second dot indicates the second digit.
3. The third dot indicates the number of zeros which appear after the first two digits. The above covers practically all require-
ments, but if three numbers exclusive of zero appear in the capacity, such as 1250 mmf., then the marking is as follows:
$.00125 \mathrm{mld} .=1250 \mathrm{mmf} .=$ Brown $\underset{\text { Grear }}{\text { Red }} \underset{\text { Brown }}{ }$
$.000375 \mathrm{mfd} .=375 \mathrm{mmi} .=\begin{gathered}\text { Oange } \\ \text { Grear }\end{gathered}$ Violet $\quad \circ$
Examples:
 first and second lots, as tisual.
4. The third dot is left blank, which indicates the remaining code is on the reverse side of condenser.
5. Use is then made of the two code rings on the reverse side of the condenser from the trademark, the dot on the left indicating the third digit, and the dot on the right indicating the number of zeros which appear after the first three digits, as (Courtesy Solar Mig. Co.)

Chapter 3

DECIBELS AND LOGARITHMS

Decibels-Technique and Practical Application

- The decibel unit used in radio engineering and virtually universal in all power and energy measurements is actually a unit of anplification expressed as a common logarilhm of a power or energy ratio. One decibel is $1 / 10$ th of a bel. One bel or 10 decibels indicates an amplification by 10 , the common logarithm of 10 being 1 . Similarly, 2 bels or $2 \mathrm{C} D \mathrm{DB}$ means amplification by 100 ; 30DB nreans amplification by 1,000 and so on. The power ratio for one decibel is expressed as

$$
\frac{P_{1}}{P_{2}}=10.1 \ldots \ldots \ldots . .(1)
$$

where P_{1} is the power input; P_{2}, the power output. The number of decibels represents a power gain or loss depending upon whether the relation P_{1} / P_{2} is greater or less than 1 .

Expressions for various power ratios are now commonly employed in communication engineering at audio and at radio frequencies. To express a ratio between any two amounts of power, it is convenient to use a logarithmic scale. A table of logarithms facilitates making conversions in positive or negative directions between the number of decibels and the t:orresponding power, voltage and current ratios.

The Logarithmic Table

A table of logarithms is here presented. This table does not differ essentially from any other similar table except that here no preportional parts are given and the figures are stated to only threc decinial places; this arrangement has been found to he satisfactory for all practical purposes. A complete exposition on logarithms is without the scope of this HANDHOOK, however, the very essentials together with the practical use of the tables and their application to decibels is given herewith. Thus, a person need not be concerned with the study of logarithms other than their direct employment to decibels,
The logarithm of a number usually consists o: two parts; a whole number called the characteristic, and a decimal called the mantissa. The characteristic is the integral portion to the left of the decimal point (see
examples below), and the mantissa is the value placed to the right. The mantissa is all that appears in any table of logarithms. In the logarithm the mantissa is independent of the position of the decimal point, while on the contrary, the characteristic is dependent only on the pasition of the number with the relation to the decimal point. Thus in the following examples:

	NUMBER	LOGARITHM
(a)	4021.	$=3.604$
(b)	402.1	$=$
(c)	40.21	$=$
(d)	4.0041	$=0.604$
(e)	.4021	$=-1.604$
(i)	.04091	$=-2.604$

It will be seen that the characteristic is equal, algebraically, to the number of places minus one, which is the first significant figure occupied to the left of the decimal point. In (a) the characteristic is 3 ; in (b) 2 ; in (d) 0 ; in (e) -1 ; and ini (f) -2. The ollowing shonld be remenibered: (1) that for a number greater than 1 , the characteristic is one less than the number of significant figures in the number: and (2), that a number wholly a decimal, and the characteristic is negative and is numerically one greater than the number of ciphers immediately following the decimal point. Notice (e) and (f) in the above examples.

Finding a Logarithm

-To find a common logarithm of any number simply proceed as directed herewith: Suppose the number to be 5576 . First, determine the characteristic. An inspection will show that this number will be three. This figare is placed to the left of a diecimal point. The mantissa is now found by referring to the logarithm table. Proceed selecting the first two numbers which are 55 , then glance down the N column untii coming to these figures, advance to the right until coming in line with the column headed 7 . the number will be 746. (Note that the column headed 7 corresponds to the third figure in the number 5576). Place the mantissa 746 to the right of the decimal point making the number now read 3.ith. This is the logarithm of $5: 576$. Important: do not consider the last figure, 6, in the number 5576 when looking for the mantissa; in fact, disregard all figures beyond the first three
when determining the mantissa, however, be doubly sure to include all figures when ascertaining the magnitude of the characteristic.

Practical applications applying the logarithm to decibels will follow. Other methods using the logarithm will be discussed as the subject develops. See Logarithm Table.

Power Levels

- In the design of radio devices and amplifying equipment the power level is taken at six milliwatts (.006w). This corresponds to the arbitrary reference level of zero decibels. All power levels above the reference level are designated as "plus" quantities, and below as "minus." The figure is always prefixed by a plus (+) or minus (-) sign commanding the direction in which the quantity is to be read.

Power to Decibels

- The power output (watts) of any amplifier may be easily converted into decibels by the following formula, assuming that the input and output impedances are equal

$$
\begin{equation*}
N_{\mathrm{ab}}=10 \log _{10} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \tag{2}
\end{equation*}
$$

where N_{db} is the desired power level in decibels; P_{1}, the output of the amplifier; and P_{2}, the reference level of 6 milliwatts. The subnumeral, 10, affixed to the logarithm indicates that the Log is to be extracted from a table to which 10 must be raised in order to produce a number.

By substituting values for the letters shown in the above formula, take the following illustration:

An amplifier using a 2A5 tube is said to deliver an undistorted output of three watts. How much is this in decibels?

Solution by formula (2):

$$
\begin{aligned}
& \frac{P_{1}}{P_{2}}=\frac{3}{.006}=500 \\
& \text { and Log } 500=2.69
\end{aligned}
$$

therefore $10 \times 2.59=26.9$ DECIBELS.
By placing other values for those shown in the solution any output power may be converted into decibels provided that the decibel equivalent is above the zero reference level or the power is not less than 6 milliwatts.

To solve most all problems to which the solution will be given in minus DBs, a simple understanding of algebraic adding is required. To add algebraically, it is necessary to observe the plus and minus signs of expressions. (1)o not confuse these signs

Three Place Logarithms								
N	0				45	7	78	
00	000	000	000	000	000000	000000	000000	
10	000	004	008	012	017021	02502	029033	
11	04।	045	049	053	056060	06406	068071	075
12	079	082	086	089	093096	10010	103107	
13	113	117	120	123	127130	133136	136139	
14	146	149	52	155	158161	16416	167170	
15	176	179	181	184	187190	193195	195198	
16	204	206	209	212	214217	22022	222	227
17	230	233	235	238	240243	24524	248250	52
18	255	257	260	262	264267	26927	271274	
19	278	281	283	285	287290	29229	294296	98
20	301	303	305	307	309311	313316	316318	320
21	322	324	326	328	330332	334336	336338	40
22	342	344	346	348	350352	35435	356358	59
23	361	363	365	367	368371	37237	374376	78
24	380	382	383	385	387389	390392	392	396
25	397	399	401	403	404406	40840	409411	
26	415	416	418	420	421423	42442	426428	29
27	431	433	434	436	437439	440442	442444	445
28	447	448	450	451	453454	45645	457	460
29	462	463	465	466	468469	47147	472474	
30	477	478	480	481	482484	48548	487488	
31	491	492	494	495	496498	49950	501502	
32	505	506	507	509	510511	51351		
33	518	519	521	522	523525	52652	527528	
34	531	532	534	535	536537	53954	540541	42
35	544	545	546	547	549550	55155	552553	555
36	556	557	558	559	561562	56356	564565	
37	568	569	570	571	572574	57557	576577	78
38	579	580	582	583	584585	58658		99
39	591	592	593	594	595596	59759	598599	601
40	602	603	604	605	606607	60860	609610	
1	612	613	614	616	617618	61962	620621	22
42	623	624	625		627628	62963		32
43	633	634	635	636	637638	63964	640	642
44	643							
45	653		655					
46	662	663	664	665	666667	66866	669	
47	672	673	673		675676	67767	678	
48	681	682	683	683	684685	68668	68768	
49	690	691	692	692	693694	69569	69669	
50	699	699	700	701	702703	70470	705	
51	707	708	709	710	711712	13		
52	716	716	717	718	719 720	7217	72272	
53	724	725	725	726	粏 727728	72973	730	
54	732	733	34					

with decibels.) In the succeeding illustrations notice that the result was caused sometimes by addition and at other times by subtraction.

$$
\begin{array}{cccc}
\text { (a) } & \text { (b) } & \text { (c) } & \text { (d) } \\
+2 & -4 & -4 & +4 \\
-4 & -2 & +2 & +2 \\
\hline-2 & -6 & -2 & +6
\end{array}
$$

The terms used in (c) are those that apo ply to decibel calculations.

Three Place Logarithms										
	0	1	2	3		5	6	7	8	9
55	740	741	741	742	743	744	745	746	74	47
	748	749	749	750	751	752	752	753	754	755
57	755	756	757	758	758	759	760	761	761	762
58	763	764	764	765	766	767	767	768	769	770
59	770	771	772	773	773	774	775	776	776	777
60	778	778	779	780	781	781	782	78	783	784
61	785	786	786	787	788	788	789	790	91	
62	792	793	793	794	795	795	796	797	798	798
63	799	800	800	801	802	802	803	804	304	805
64	806	806	807	808	809	810	810	81	81	12
65	813	813	814	814	815	816	816	817	818	8
66	819	820	820	821	822	822	823	824	824	185
67	826	82'	827	828	828	829	829	830	83	831
68	832	833	833	834	835	835	836	837	837	88
69	838	839	840	840	841	842	842	843	843	
70	845	845	846	847	848	848	849	849	850	850
7	851	85	852	853	853	854	85	855	856	
72	857	857	858	859	859	860	860	86	86	
73	863	863	864	865	865	866	866	867	868	868
74	869	869	870	871	871	872	872	873	873	
75	875	875	876	876	877	877	878	879	879	80
76	880	881	882	882	883	883	88	88	88	885
77	B86	887	887	888	888	889	889	890	891	
78	892	892	893	893	894	894	895	896	896	897
79	897	898	898	899	899	900	900	90	902	
80	903	903	904	904	905	905	906	906	907	,
81	908	909	909	910	910	911	911	912	912	913
82	913	914	914	915	915	916	917	917	918	
83	919	919	920	920	921	921	922	922	923	23
84	924	924	925	925	926	926	927	927	928	28
85	929	929	930	930	931	932	932	933	933	934
86	934	935	935	936	936	937	937	938	938	939
87	939	940	940	941	941	942	942	943	943	944
88	944	945	945	946	946	946	947	947	948	988
8	949	949	950	950	951	951	952	952	953	53
90	954	954	955	955	956	956	957	957	958	58
91	959	959	960	960	960	961	961	962	962	963
92	963	964	964	965	965	966	966	967	967	968
93	968	968	969	969	970	970	971	971	972	72
94	973	973	974	974	975	975	975	976	976	977
95	977	978	978	979	979	980	980	980	981	981
96	982	982	983	983	984	984	985	985	985	986
97	986	978	987	988	988	989	989	989	990	9
98	991	991	992	992	993	993	993	994	994	995
99	995	996	996	996	997	997	998	998	999	999
0	000	004	008	. 012	017	021	025	29	033	037
N	0	1		3	4	5	6	7	8	

When a solution to a problem involving logarithms will be in minus DBs, note particularly that the characteristics of the logarithm will be prefixed by a minus sign (一). This sign only effects the characteristic while mantissa remains positive. The mantissa always remains thus, no matter the direction the solution brings the decibel. A prefir -1 to a logarithm means that the first figure of the number will be the first place to the right of the decimal; -2 , will occupy the second place to the right, while
a cipher fills the first place; -3 , the third place with two ciphers filling the first and second places, and so on.

To multiply a minus claracteristic and a positize mantissa by 10 , each par: must be considered separately, multiplied by 10 , and then the products added algebraically; thus, in the following illustration:

An amplifier using a 199 tube has an output of 5 milliwatts. How much is this in decibels?

Solution by formula (2) :

$$
\frac{\mathbf{P}_{1}}{\boldsymbol{P}_{\mathbf{2}}}=\frac{.005}{.006}=.83
$$

r.og $.83=-1.9$ (actually -1.920)

Therefore $10 \times-1.9=-1$ DECIBEI $(10 \times-1=-10$; and $10 \times .9=+9$, hence, adding the products algebraically $=-1$).

By substituting other values for those in the above solution, any output power below 6 milliwatts or the zero reference level may be converted into decibels.

Determining DB Gain or Loss

- In using amplifiers it is a prime requisite to know the decibel gain or loss when the input and output powers are known. To determine the gain or loss in DB employ the following formula:

$$
\begin{aligned}
& \text { (gain) } N_{d u}=10 \log \frac{P_{\mathbf{0}}}{P_{1}}(3) \\
& \text { (loss) } N_{a b}=10 \log \frac{P_{1}}{P_{0}}(4)
\end{aligned}
$$

where Nab is the number of DB gained or lost ; P_{1}, the input power; and P_{0}, the output power.

Applying, for example, formula (3) : Suppose that an intermediate amplifier is being driven by an input power of 2 watts. and after amplification, the output is found to be 6 watts.

$$
\begin{aligned}
& \frac{P_{0}}{P_{1}}=\frac{6}{.2}=30 \\
& L_{\log }^{30}=1.48
\end{aligned}
$$

Therefore $10 \times 1.48=14.8 \mathrm{DB}$ POWER GAIN.

Amplifier Ratings

- The technical specifications or rating on power amplifiers must contain the following information: the overall gain in decibels; the power output in watts; the value of the input and oatput impedances; the input signal level in IDB; the input signal voltage; and the power output level in decibels.
If the specifications on any one particular amplifier had included only the input and
output signal levels in DB, it then would be necessary to know how much these values represented in power. The methods employed to determine power levels are not sinilar to those used in previous calculations. Caution should therefore be taken in reading the following explanations with particular care and attention being paid to the minor arithmetical operations.

The Anti-logarithm

- To deternine a power level from some given decibel value, it is necessary to invest the logarithmic process formerly employed in converting power to decibels. Here, instead of looking ior the log of a number it is now necessary to find the anti-logarithm or number corresponding to a given logarithm.
In deriving a number corresponding to a logarithm it is important that these simple rules be committed to memory: (1) that the figures that form the original number from a corresponding logarithm depend entirely upon the mantissa or decimal part of the log; (2), that the characteristic serves only to indicate where to place the decimal point of the original number; and (3), that if the original number was a whole number the decimal point would be placed to the extreme right.
The procedure of finding the number corresponding to a logarithm is explained as follows: Suppose the logarithm to be 3.574 . First, search in the table under any column from 0 to 9 for the numbers of the mantissa 574. If the exact number cannot be found, look for the next towest figure. which is nearest to, but less than, the given mantissa. After the mantissa has been located simply glance immediately to the left to the N column and there will be read the number, 37 . This number comprises the first two figures of the number corresponding to the antilog. The third figure of the number will appear at the head of the column in which the mantissa was found. In this instance the number heading the column will be 5 . If the figures have been arranged as they have been found, the number will now be 375 . Now since the characteristic is 3 , there must be four figures to the left of the decimal point; therefore, by annexing a cipher the number becomes 3750 ; this is the number that corresponds to the lomarithm 3.574 . If the characteristic was 2 instead of 3, the number would be 375. If the logarithm was - 3.574 or-1.274 the antilogs or corresponding numbers would be .00375 and .375 respectively. After a little experience a person can obtain the number corresponding to a logarithm in a very few seconds.

Converting Decibels to Power

- It is always convenient to be able to con-
vert a decibel value to a power equivalent in order to determine the ratio difference. The formula used for converting decibels into watts is similar in many respects to equation (2), the only difference being that the factor P_{1} corresponding to the power level is not known. Usually the formuia for converting decibels into power is written as

$$
N_{\mathrm{db}}=10 \log \frac{P_{1}}{.006}(5)
$$

In practice it has been found that it is too difficult to explain the solution to the above equation on account of the expression being written in the reverse. However, by re-arranging the various factors, the expression can be simplified to permit easy visualization, thus

$$
\mathrm{P}=.006 \times \operatorname{antilog} \frac{\mathrm{Nab}}{10}(6)
$$

where P is the desired power level; .006, the reference level in milliwatts; $\mathrm{Na}_{\text {db, }}$ the decibels to be converted; and 10, the divisor. To deternine the power level, P , from a decibel equivalent simply divide the decibel value by 10 , then take the number comprising the antilog and multiply it by .006, the product gives the power level of the decibel value.
Note: In all problems dealing with the conversion of mimus decibels to power it often happenis that the decibel value - N_{ab}, is not always equally divisible by 10 . When this is the case, the numerator in the factor - $\mathrm{N}_{\mathrm{dt}} / 10$ must be made evenly divisible by the denominator in order to derive the proper power ratio. Note that the value $-\mathrm{N}_{\mathrm{db}}$ is negative, hence, when dividing by 10 , the negative signs must be observed and the quotient labeled accordingly.
To make the numerator in the value $-\mathrm{N}_{\mathrm{db}}$ equally divisible by 10 , proceed as follows: Assume - $\mathrm{Na}_{\mathrm{ab}}$ to be the logarithm - 38 with a zero mantissa, hence, in order to make - 38 divisible by 10 simply annex as many units as is necessary from the zero mantissa and add them to the -38 until the figure can be equally divided. An examination will show it was only necessary to add two units to bring - 38 up to - 40 . CARFFULLY NOTE that every unit borrowed from the zero mantissa must be returned to it as a positive quantity multiplied by 10 . Thus, the two units borrowed to bring - 38 up to -40 is returned as 20 , making what was a zero mantissa now have a value of 20 . The numerator $-\mathrm{N}_{\mathrm{stb}}$, now becomes -40.20: this figure can now be equally divided by 10 .

While the above discussion applied strictly to negative values the following examples will clearly show the technique to be followed for most all practical problems.
(a) The output level o: a popular velocity
ribbon microphone is rated at $-7+\mathrm{DB}$. What is this equivalent in milliwatts:

Solution by equation (6)

$$
\begin{aligned}
& \frac{-\mathrm{N}_{\mathrm{d}}}{10}=\frac{-74}{10} \text { (not equally divisible by } 10 \text {) } \\
& \text { Routine: } \\
& \text {-74 mantissa } \\
& +660(6 \times 10) \\
& \frac{-N \mathrm{du}}{10}=\frac{-80.60}{10}=-8.6 \\
& \text { Antilog -8.6 }=.00000004 \\
& .046 \times .00000004=.000000000240 \text { or }
\end{aligned}
$$

(b) This example liffers somewhat from that of the above in that the mantissas are added differently.-A low powered amplifier has an input signal level of -17.3 DB . How many milliwatts does this value represent?

Solution by equation (6)

$$
\begin{aligned}
& -\mathrm{N} \mathrm{a}=\frac{-17.3}{10}=-2.33 \\
& +17 \cdot 3 \\
& +3 \cdot 30 \\
& -20 \cdot 33
\end{aligned}
$$

(The mantissas were added as 30 plus 3, and NOT . 3 plus .30)

$$
\begin{aligned}
\text { Antilog }-.333 & =.0214 \\
.006 \times .0 .14 & =.00012 \mathrm{~N} \text { or } \\
.13 & \text { mincIWATSTS. }
\end{aligned}
$$

Voltage Amplifiers

- When plans are being drafted contemplating the design of power amplifiers it is essential that the following data be determined: First, the input and output signal levels to be used; seconch, the size of the power tubes that would adequately deliver an :indistorted fitput: and third, the input signal voltage that riust be applied to the amplifier to deliver the desired output. This last requirement is the most important in the design of volage amplifiers as it is the ratio of the input signal voltage ta the output signal voltage that governs the amount of amplification.

The voltage step-up in a transformer coupled amplifier depends chiefly upon the mu of the tubes and the tumis atio of the inter-stage coupling transforners. The stepup value in any anrlifier is calculated by maltiplying the step-t:p factor oi each voltage amplifying or step-up device. Thus for example, if an amplifier were designed having an output transfomer with a ratio of $3: 1$ coupled to a tube having a ma of 7 , the vollage step-up would be approximately 3 times 7, or 21. It is seldom that the total product will be exactly the figure derived
because it is not quite possible to obtain the full mu of the tube.

From the voltage gain in an amplifier it is possible to calculate the input and output signal levels and at the same time be able to determine at what level the inpat signal must be in order to obtain the desired output. By converting voltage ratios into decibels, power levels can be determined. Hence, to find the gain in DB when the input antl output voltages are known, the following expression is used:

$$
\begin{equation*}
\text { (gair.) } \mathrm{Na}_{\mathrm{ab}}=20 \log \frac{\mathbf{E}_{1}}{\mathbf{E}_{2}} \tag{7}
\end{equation*}
$$

where E_{1} is the output voltage: and E_{2}. the input soltage.

Employing the above equation to a practical prohlem, note that the logarithm is multiplied by 20 instead of by 10 as in [revious examples.

A certain one-stage amplifier comsisted of the following parts: 1 input transformer. ratio 2:1: and 1 output tube having a mu of 9.\%. Determine the gain in decibels with an input voltage of 1 volt.

Soluion by equation (i)

$$
\begin{aligned}
2 \times 95 & =190 \text { valtage gain } \\
\text { therefore, } \frac{190}{\mathrm{~F}_{1}} & =\frac{1}{1}=190 \\
20 \times 2.278 & =45.56 \text { DrcIBrI GAIN }
\end{aligned}
$$

To reverse the above and convert decibels to voltage ratios, use the following expression:

$$
\begin{equation*}
E(g a i n)=\operatorname{antilog} \frac{N_{d b}}{20} \tag{8}
\end{equation*}
$$

Where E is the voltage gain (power ratio) ; $\mathrm{N}_{\text {din }}$, the decibels: and 20 , the diviso:-

To find the gain, simply divide the decibels by 20, then extract the antilog from the yuotient, the result gives the voltage ratio.

Input Voltages

- In designing power amplifiers, it is paramount to have cxact knowledge of the magnitude of the input signal voltage necessary to drive the output power tubes to maximum undistorted output. Without this information it woutd largely be a matter of guesswork in determining whether or not the power stages were being worked overloaded or underloaded.

To cetermine the irput voltage take the Pak zoltage necessary to drive the grid of the output tube to maximum and divide this figure hy the total overall gain preceding the last stage.

Microphone Levels

Practically all acoustic-electric apparatus energizing amplifiers have output levels rated in decibels. The output signal levels of these devices vary considerably from cach other as may be noted from the table above:

	Decibels Average		
Phonograph pickup	0 to	-30	-15
Carbon microphones	-30 to	-60	-45
Piezo-elec. micro-			
phones			
Dynannic micro-	-70 to	-80	-75
phones			
Condenser micro-	-75 to	-95	-85
phones			
Velocity micro- phones	-95 to -100	-97	

In general, the lower the output signal level, the higher will be the acoustic fidelity over the entire audio spectrum. On the other hand, the higher the input signal level, the lower will be the overall fidelity.

The output levels of microphones and phonograph pickups have the same power values ascribed to them as those derived from calculating power output levels of amplifiers. Therefore, the same equations employed in connection with power ratios are similarly applied when converting output signal levels to power levels.

Computing Specifications

From the preceding explanations the following data can be computed with a very high degree of accuracy:
(1) Voltage amplification
(2) Overall gain in DB
(3) Output signal level in DB
(4) Input signal level in DB
(5) Input signal level in watts
(6) Input signal voltage

Push-Pull Amplifiers

- To double the output of any cascade amplifier it is only necessary to push-pull the last amplifying stage and replace the interstage and output transformers with push-pull types.

To determine the voltage step (voltage ratio) of a push-pull amplifier take the ratio of one half of the secondary winding of the push-pull transformer and multiply it by the mu of one of the output tubes in the push-pull stage ; the product, when doubled, will be the voltage amplification or step-up.

Note: Doubling the output power of any amplifier will not double the output signal
level. In general, doubling the power adds about only 3 DB.

Acoustically, that is from the loudspeaker standpoint, it takes approximately one DB to note any appreciable change in the volume of sound. This is because the intensity of suund as heard by the ear varies logarithmically with the acoustic power. For practical purposes it is only necessary to remember that if two sounds differ in physical intensity by less than one DB they usually sound alike. If they are much more than one decibel apart one sounds slightly louder than the other. This quantitative data is also applicable to amplifiers in that the output signal levels must differ by at least 1.5 DB in order to note any change in volume.

Pre-amplifiers

- Pre-amplifiers are emploved to raise low input signal levels up to some required input level of another intermediate or succeeding amplifier. For example: If an amplifier was designed to operate at an input level of -30 DB , and instead, a considerably lower input level was used, a pre-amplifier would then have to be designed to bring the low input signal up to the rated input signal level of -30 DB to obtain the full undistorted output from the power tubes in the main amplifier. The amount of gain necessary to raise a low input signal level up to another level may be determined by the following equation:

$$
\mathrm{E}(\text { gain })=\operatorname{antilog} \frac{\mathrm{N}_{\mathrm{db}_{1}}-\mathrm{N}_{\mathrm{db}}}{20}(9)
$$

where E is the voltage step-up or gain; N_{dh}, the input signal level of the pre-amplifier or the new input signal level; N_{db}, the input signal level to the intermediate amplifier; and 20, the divisor.

To apply the equation, take the following example: If a 7 -watt amplifier had an input signal level of -32.8 DB and a microphone had an output signal level of -60DB whicp was exciting the amplifier, how much voltage amplification will be necessary to raise the gain up to - 32.8 DB so that the amplifier will work at full output?

$$
\frac{\mathrm{N}_{\mathrm{d} \mathrm{~b}_{1}}-\mathrm{Ndt}_{2}}{20}=\frac{60-32.8}{20}=1.355
$$

Antilog $1.355=\mathbf{2 2 . 6}$ FOLTAGE GAIN
The additional gain can be obtained by designing a pre-amplifier having an input transformer with a ratio of $2.5: 1$ coupled to a tube having a mu of 9 .

Design of Fixed Networks (T\&H Pads)

- The "T" section, which is an unsymmetrical network (unbalanced) is most frequently used where small unbalances in the line or to ground are of little importance. Fixed type networks are chiefly employed in circuits where it is desired to limit the

FIG. 1-"T" Pad.
amount of input voltage available to excite amplifiers, thus precluding the possibilities of overloading certain components in the amplifying system. A resistive network which functions as an ahsorption device loses its identity as a "pad" and is most often referred to as an "insertion loss," because the section has been inserted to attenuate a known and definite quantity.

To design a fixed "T" or "H" type section for some predetemined loss in l) 1 , the following equations are give:. These equations only hold gool when the line impedarces terminating each end of the network are equal ; therefore from Figure 1 where R_{x}

$$
\begin{aligned}
& R_{x}=\frac{Z}{2} \frac{(K-1)}{(K+1)} \\
& R_{y}=2 Z \frac{K}{\left(K^{2}-1\right)} \\
& K=\operatorname{an}: i \log \frac{N_{a b}}{24}
\end{aligned}
$$

equals the series resistor (this value must be multiplied by 2 for "r" sections); R_{5}. the shunt resistor; Z, the line impedance; and K, a constant derived by taking the inserted atsentation in DB and dividing by 20 , then extracting the antilog.

Impedance Matching Networks

- At audio frequencies an impedance matching network comprised of resistive impedances can be substituted for an impedance matching transformer or like device. Unfortunately, this type of network introduces a small doss: however, this loss is of little consequence because it can be counteracted by simply working the input or output circuits at a higher level.

FIG. 2-Impedance Matching Network.
In Figure 2 it is very important that the resistors R-1 and $\mathrm{K}-2$ be placed correctly in the configuration otherwise impedances will be mismatched and reflections will oc-

FIG. 3-"'L"-Type Network.
cur in the system. In Figure 3, resistor R1 must face the highest terminal impedance.

To design an impedance matching network of the "T" type requires the use of the folluwing equations:

$$
\begin{aligned}
& R-1=\frac{\left(R_{s}+R_{L} ; K_{1}+\left(R_{\mathrm{B}}-R_{\mathrm{L}}\right)\right.}{2} \\
& R-2=\frac{\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{L}}\right) \mathrm{K}_{1}-\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{L}}\right)}{2} \\
& R-3=\frac{\left(\mathrm{Rs}_{\mathrm{s}}+\mathrm{R}_{\mathrm{L}}\right)}{2 \mathrm{~K}_{2}}
\end{aligned}
$$

Where R_{*} is the input impedance; R_{L}, the output imperance: and K_{1} and K_{2} are constants taken from the table shown on page 30. These constants appear directly oppcsite the amount of attenuation in the N_{db} column:

Nab	K_{1}	Ks
d	. 057	0.115
2	. 114	0.232
3	. 171	0.352
	. 226	0.477
5	. 280	0.609
6	. 331	0.747
7	. 382	0.897
8	. 430	1.055
9	. 476	1.233
10	. 519	1.422
11	. 560	1.634
12	. 598	1.863
13	. 634	2.122
14	. 667	2.404
15	. 697	2.720
16	. 726	3.075
17	. 752	3.468
18	. 776	3.907
19	. 798	4.398
20	. 818	4.952
21	. 835	5.555
22	. 852	6.262
23	. 867	7.013
24	. 880	7.868
25	. 893	8.870
26	. 904	9.977
27	. 914	11.188
28	. 923	12.484
29	. 931	14.091
30	. 938	15.734
31	. 945	17.744
32	. 950	19.810
33	. 956	2:.339
34	. 960	24.939
35	. 965	27.121
36	. 968	31.393
37	. 972	35.397
38	. 975	39.515
39	. 978	44.555
40	. 980	50.237
41	. 982	56.079
42	. 984	63.230
43	. 985	70.583
44	. 987	78.792
45	. 988	88.836
46	. 990	100.165
47	. 991	111.813
48	. 992	126.070
49	. 993	140.729
50	. 994	158.672

To design an impedance matching network of the "L" type requires this set of equations:

$$
\begin{aligned}
& R_{1}=Z_{x}\left(Z_{x}-Z_{y}\right) \\
& R_{2}=\frac{Z_{x} Z_{y}}{\sqrt{Z_{x}\left(Z_{x}-Z_{y}\right)}}
\end{aligned}
$$

Since the insertion loss is a function of the impedances terminating the network it can be calculated as follows:

$$
K=\sqrt{\frac{Z_{x}}{Z_{y}}+\sqrt{\frac{Z_{x}}{Z_{y}}-1}}
$$

Where loss in $\mathrm{DB}=20 \mathrm{Log}_{10} \mathrm{~K}$.

Radio Data Charts

Radio data charts provide designers of amateur radio equipment with a ready and convenient means of solving problems without having recourse to complicated formula and mathematics.

To properly use the chart and to prevent disfiguring the page, simply place a piece of tracing paper, celluloid, or waxed paper over the scales, then, the index line which intercepts the scales may be drawn with a hard pencil and a straight edge.

The first chart which is a logarithmic aligument nomogram will solve many problems encountered in ordinary practice.

Voltage Drop Calculation in Resistors

- To find the voltage drop for a certain bias for a self-biased tube, add three ciphers to the value desired, seek this value on scale A; next, search for the value which corresponds to the plate current (cathode current) on the B scale, now, drawing a line between these two points will intersect a point on C , this corresponds to the ohmage. Hence, a resistance required to produce 9 volts bias for a triode which operates at 3 MA plate current is: on the A scale, 9 plus three ciphers equals 9000 ; on the B scale 3 MA ; and the ohmage 3000 . is found on C.

Wattage or Heat Capacity in Resistors

To find the power liberated in watts by a certain resistor when ohmage and voltage is known, proceed as follows: On C find the voltage, on A, the resistance; draw a line comecting these two points over to the B scale, next, find the voltage (for the second time) on the A scale and draw a line from point B through A, the wattage will be given on C. See the auxiliary Figure for an example.

If the current instead of the voltage is known in the above procedure, the technique is as follows: On C find the value of current, on A, the resistance, a line drawn connecting these points will intercept the wattage rating on V .

Series Capacity Calculations

- To determine the value of any two seriescapacities, find one of the values on C and the other on B , draw a line to connect these

Jones Radio Handbook Logarithmic Alignment Nomogram.

two points; next, add the values of the capacities on B, then from this new point, draw a line to intersect A , and the series value will be read on C.
If three series capacities are to be employed, the value of any two of them is found as above, and then this is treated as a single capacity and its value combined with the third can be found by repeating the process which can be carried on indefinitely.
An example illustrating the method is shown in auxiliary Figure (b).
Note: Raise the A scale the distance from 1 to 1 H when the reading is beyond the bottom, or by taking a piece of tracing paper and tracing the A scale so as to extend it another length of 1 to 10.

Parallel Resistor Calculations

These are treated exacily as series capacities, and the above explanation will solve all values.

Coil Winding Considerations

- It is often necessary to know, in coil winding procedure, the resistance of coils when re-wound to the same volume with a wire larger or smaller than the coil was originally wound with; hence, by knowing the size of the wires, the circular-mil areas, and the ohmage of the original winding, the ohmic value of the new winding can be found as follows: select the value corresponding to the circular-mil area of the new winding on the C scale, select the value corresponding to the ohmage of the original winding on the V scale, draw a line to A intersecting these points; next, on C find the value corresponding to the circular-mil area of the old winding, a line drawn from A to C will intercept the ohmage of the new winding on V .

These calculations are based on the principle that resistances are inversely proportional to the squares of the wire sizes. This is sensibly true for a change of a few sizes. but the error increases with the range of sizes which should not be over five.

Sound and Light Calculations

- The intensity of sound and light, on a surface varies inversely as the square of the distance from the source. Variations proportional to the square is of importance in the sound, light, magnetic and gravitational fields. By employing the considerations given in the preceding paragraph all problems enunciated in this topic can be solved. By using the example shown in auxiliary Figure (a) it will be found that if a surface 12.7 feet distant from a light source receives an intensity of 100 foot-candles when moved 20.2 feet from the light, it will receive 39.5 font-candles. (After C.P. Nachod, N\&US Sig. Co.)

Areas of Circles

The area of any circle can be found by placing the Pi constant (3.1416) on A and the radius on C , the area will be found on V when a line intersects V drawn through A and C.

Another method for finding the area is to place the constant 0.785 on A , the diameter on C and the area will be found on V when a line is drawn through A, C.

Circumference of Circles

The circumference of any circle can be found by placing the Pi constant (3.1416) on B and the diameter on E , a line connecting B. C will intercept the circumference on A.

Multiplication

The multiplication table is represented on scales A, B, and C. A line drawn through values on scales B, C will intersect the product on A.

Division

To divide the process of multiplication is reversed, the values for the divisor will appear on the C scale, and the dividend on A and a line drawn through these points will intersect the quotient on B.

Square Root

To extract the square root of any number, seek the number on the A scale and the root will appear horizontally on either the B or C scales.

Powers of Numbers

To raise the number to the fourth power ($3 \times 3 \times 3 \times 3=81$), select the number in both the B and C coluinns, a horizontal line drawn through these points intersects the fourth power on the V scale.

Chapter 4

Radio Code Instruction

- Every person who desires to operate an amatear transmitting station must obtain a "station" and "operating" license from the district offices of the Federal Communication Commission. The locale of these district aftices is given in the Appendix. A license is not required to operate a receiver. To secure the necessary licenses, the applicant roust pass an examination in order to prove his technical knowledge of the theory and practice of amateur radio communication, as well as being able to copy the Contimental Code at a speed of thirteen words per minute.

Those who desire to learn the code without the aid from others may do so by means of a CODE PRACTICE SET. Several kinds of these sets can be constructed, of which the simplest is not always the best. Any amateur will gladly assist the beginner to properly build a practice instrument. Of importance, the instrument must be so designed that a sharp, clear tone will be produced in the receivers, simulating that of a continuous-wave signal (c.w.) as commonly heard on short-wave receivers. Only a iew moments are required to assemble a code practice set, of which the parts may be purchased at a modest cost from most any radio store. Should diffictilty be encountered in making the instrument properly function, it should be taken to an amateur or radio service man who will make the necessary adjustments.

Fig. 1
The simplest code practice set is shown in ligure 1. Here, an oscillator consisting of a high-frequency buzzer, one or two drycells, a pair of headphones, and a telegraph key complete the instrument ensemble. The adrantages of this oscillator are that the mizzer operates continumusly to produce a stable audio-frequency tone. The headphones and telegraph key are connected in series across the buzzer coil. The buzzer contacts shculd be adjusted for the least change in the note when the key is clepressed. Although the buzzer operates continuously as long as current is being supplied from the batteries, the tone is only heard in the headphones when the key is manipulated.

Another code practice set is shown in Figure 2. Here à cathode-heater type vacuun tube functions as an oscillator in what is known as a "Hartley" oscillating circuit. The 2.5 volt or 6.3 volt tubes may be substituted in the circuit with equal success. The type 76 tube is the 6.3 volt equivalent of the type 56 which draws only 0.3 ampere heating current; hence, on account of such low current consumption the tube

Fig. 2

Code Practice Oscillatar Using Heater Tube

can be uperated from a series of four No. 6 dry-cells. The coupling transformer is of the audio-frequency type, any turns ratio.

Pictorial and schematic diagrams showing how to wire a simple code practice oscillator for use with dry batteries.

Fig. 3
A type ' 30 tube, a single dry-cell and a $221 / 2$ volt B battery gives good resilts in the code practice set shown in Fig. 3.

The telegraph key is in series with the headphones and the plate ("D") terminal of the audio transformer. The pitch of the note may be varied by merely increasing or decreasing the " B " voltage. It will be found that the most pleasing note will be obtained at about $221 / 2$ volts.

The capacity of the fixed condensers will also affect the p:tch of the note, as well as the volume. The vacuum tube code practice oscillator is far more satisfactory than the buzzer type shown in Fig. 1. It gives a more stable tone, which can be varied in intensity and piteh to suit the individual requirements of the operator.

Code Practice Oscillator as shown in Fig. 2.

How to Master the Radio Code

- There is nothirg complicated about learning the code. Many young boys and girls have succeeded in attaining a code speed of ten words per minute with but few months of practice. When learning the code it is important to distinguish dots and dashes: that is, a dot or a clash must always be properly characterized, 11) matter how fast or slow one transmits. A dash, huwever, sloould be three times as long as a clot. Beginners commonly make the mistake of "loolding the dots"-not making dots at all but a series of long and short dashes. A dot is made by oue quick, sharp touch of the key, irrespective of the sending speed. A dash should never be made longer than the time required to make three quick dots. The difference between slow and fast sending is the time interval between letters which comprise words, and not between the characters which make a letter. The space hetzoer: letters and acords may be lengthened abhen sloce specd scuding is used. All dots and dashes should have the same "time form" no matter whether an attempt is being mate to send 5 or fo worls per minute. The
the radio telegraph code

Numerals, Punctuation Marks, Etc.

secret of success of gond operating is in the specing between letters and words, but there should be no spacing between dots and dashes which make up an individual letter. For example: take the letter A : it consists of a dot and a dash, but in code it should no: be considered graphicallv except as a dot and a dash. Phonetically, pronounce it as "did-daw," "dlid" for the dot, "daw" for the dash. Thus, the letter A lecomes "diddaw," not dot-clash. liy repuating the phonetic somnds, the letter soon beconnes firmly

Proper grip for manipulating the key.
fixed in the mind. During mental repetition, no pauses should be made between the "did" and the "daw"; the two must roll smoothly into each other; thus, "diddaw." One of the greatest mistakes made by operators is in permitting a patuse to come betwern the "did" and the "daw." To further illustrate code learning examples, take tic letter B, which consists of a dash and three dots. Again, there must be no spacing between the dash and the three dots. B is "dawdiddiddid." Now, if a space is permitted the come between the daw and the three dids, the code character will have the form of the letters $T S$, and not B.

Send cautionsly. slowly and surely! Ilaste makes waste. (j:te uften hears of the operator "who falls all over himself." He becomes confused, sende faster than he can: receive. Nothing is more painful than to listen to a fast. errat c operator who cannot read his own sending. How, then, can he expect others to copy his sigmals?

The SOUN゙D systen of learming the corle has been miversally prowen as the hest methoil for beginners to use. This system teaches the operator to think in terms of SOUND, instead of the more common letter formations. By thinking in such terms a letter is recognized by its characteristic somel and cadence. W"hen the sound "did-

Correct "grip" and position of wrist for operating automatic key ("bug").
daw' is heard, it is immediately recognized as the letter A, and not in any other form.

With the code practice set comected, grasp the key gently with the thumb, fore and index fingers being placed on the knob of the key. The illustration shows how to properly manipulate the key. Avoid cramping the hand-relax-forget entirefy that the thund and foretingers are on the key. Be interested in correctly making the telegraph signals "dids" and "daws." Send slowly, tuntil becoming adept to the knack of sending. Do not opren the key too wide, else the sending wil" become "choppy." On the other hand, if the key does not have sufficient play, the sending will sound "sloppy" Do not make the key too "stiff" by excating too great a pressure on the adjusting spring. If in doubt about the correct tension, ask a more experiensed operator so assist you in making the proper adjustn:ent.

Easily Memorized Practice Letters.
Begin learning the code without assistance from others. First memorize a few letters of the alphabet. starting with the letter A. Proceed hy the methods outlined in the above text urtil finally practicing
with the telegraph key. To augment the mind's retentive powers, use a short-wave receiving set and pick out as many diddaws as can be recognized from a slow sending station. At each recognition the letter should be written down on a small pad. After becoming thoroughly acquainted with the letter A, proceed until the complete alphabet can be instantly recognized by sound code-formations. Later, connective words like AND, TO, OF and others should be learned. Words composed entirely of dots and dashes are excellent for practice For example: (all dots) is, his, sis, and she : (all dashes) to, Tom, Otto and etc. In exercising, it is important that the letters be properly spaced lest the word structure be ruined.

The next step is to make short sentences
consisting of words, some of which are all comprised of dots, others all dashes, such as "slie sees Otto." The student operator will find that by learning all code characters comprised of dots or dashes before others, that his telegraphic technique will be developed at much faster rate than it otherwise would be. Every effort should be made to copy signals heard on short-wave sets until proficiency is attained.
Throughout the day, it would be advisable to make silent repetitions of the diddaw sounds, including words, short sentences, figures, calls and other miscellany. Always think in terms of SOUND . : . in dids and daws. Soon it will be amazing to learn how simple it is to gain speed and accuracy in a relatively short period of time.

Radio Symbols Used in Schematic Circuit Diagrams

Chapter 5

ANTENNAS

Antenna Theory

An antenna is an electrical conductor, suspended in air and insulated from ground, which either radiates or receives radio-frequency energy. Sometimes the ground is used in conjunction with the antenna condenctors, as will be defined later. The eifectiveness of an a:tenna depends upon numerous electrical and mechanical factors of design, all of which are discussed under antema types.
An antenna can be compared to any tuned circuit, except that its capacity and inductance are distributed along the wire instead of being lumped, as in a coil and variable condenser. Every a:temna system has a itindamental wavelength or resonant frequency of its own. It slould always be operated at its resonat freçuency, because the eficiency is many times greater in this condition.

The plysical dimensions of the antenna af resonance bear a certain relation to the wavelength. In order to simplify the expianation of radiation in space, it can be compared with waves in waier produced by throwing a stone into a still body of water: there will be waves which have peaks and trougis, similar to those produced in space by radio waves. The radio waves, in effect, require a physical anmunt of space between the peaks and troughs (condensations and rarefactions) and therefore the antenna is made of such a length that it is equal to one peak or one trough of a wave in plysical length.

FiG. 1

Conventional Antenna for Receiving.

A complete wave consists of one peak and one trough. defined as one wazelength. Any resonant circuit is the electrical equivalent o: one-half wavelength; in the case of a tuned circuit the constants are lumped and
the space required is very small. For an antenna, the wire may be stretched out into a straight line so that it is nearly a full half wavelength long. For an antemna consisting of a straight wire cue-half wavelerigth long electrically, the physical length will be approximately 5% shorter than the electrical length, because it is impossible to secure a wire laving zero diameter supported in -pace without end insulators.

Single Wire Antenna for Transmitting.
Radio waves travel with approximately the speed of light. Which is 300 million meters per second. This provides a convenient method for expressing the resonant frequercy in terms of wavelength, ar viceversa.

$$
F=\frac{300,000,000}{\lambda}
$$

where F is the frequeacy in cycles per sec(nd A is the waveleagth in meters.

Radiation Field

- A rire comected to any source of uscillating electrical energy will radiafe radio waves due to the warying intensity of the electrical field surrounding the wire. The neld closest to the wire is called the induction filld. which osciflates to-and-fro; that part of the field which escapes torms the energy in the radiated field which is urged outyard and diffused in all directions througi space. Any wire supported in space and within range of the radiated field will intercept the energy and will have induced in it a radio-frequency voltage, which is detectable as an incoming signal loy receiving apparatus.

Radio waves are transmitted from an antenna through space in two general types of wares. One is cailed the gromb rcave,
which follows along the surface of the ground, and is rapidily attenuated for very short waves. The ground wave is useful in long-wave radio communication, also for very short distance work on ultra-short wavelengths. Best broadcast reception is always had when the receiver picks up only the ground wave, which means that normally it must be within a 100 mile radius of even a high power transmitter. Fading effects take place at greater distances, due to the interference between the ground wave and the sky waves.
That portion radiated upward from the antenna is known as the sliy zuave, since it is reflected back to earth by ionized layers in the upper atmosphere known as The Ken-nelly-Heaviside Layers, as shown in Fig. 3.

Fig. 3

Reflection of Radio Waves from the Heaviside Layer Around the Earth.

At very low angles of radiation, the waves start out practically tangent to the earth's surface, penetrate into the ionized layers and are bent back to the earth at a very distant point. Higher angles of radiation are bent back to earth at shorter distances until a certain high angle is reached for any particular frequency which will not be bent back to earth. This angle varies with the season of the year, frequency and time of day. At angles slightly less than this value at which the layers are penetrated, the radio waves can be carried around one of the upper layers to extremely great distances before being bent back to earth, no matter what the angle of propagation.

The Kennelly-Heaviside Layer is a strata of ionized air molecules, of which the ionization is due to the ultra-violet radiations from the sun. This stratosplieric layer lies above the earth at distances of less than one hundred up to several hundred miles elevation. The relative density of the layers is not constant, but varies from year to year and seems to depend upon sun-spot activity.
The time required for the sky waves to reach the receiver varics in accordance with the number of reflections to and from earth and the changes of ionization in the Ken-
nelly-Heaviside Layers. Obviously the time required for a ground wave to reach the receiver will be less than that of a high angle sky wave, resulting in variations of signal strength at the receiver. When two or more waves from these different paths arrive at the same instant (in phase) the signal strength will be greatest. If the time lag is great enough so that one wave tends to neutralize another (out of phase), the signal intensity will decrease, resulting in the phenomena known as fading.
The rate of fading varies with frequency, and even small changes of frequency sometimes have entirely different rates of fading. A modulated wave from a radiophone station consists of a band of frequencies being transmitted, and this variation of fading within this narrow band results in distortion in the received signal. This effect is known as selective fading, because the sideband frequencies may be stronger at a given instant than the carrier sigmal at the receiving point. resulting in bad distortion of audio quality in the output of the receiver.

Electrical Properties

- A wire stretched out info space has inductance of the same type as that produced by wire wound into a coil. This antenna wire also has a distributed capacity to nearhy objects, such as the ground. As in any electrical circuit, inductive reactance and capacitive reactance impede the flow of current in either a transmitting or receiving antenna. At resonance, the inductive reactance is equal and opposite to the capacitive reactance, with the result that the electrical current is only limited by the resistance. The resistance consists of several components, such as wire resistance, dielectric losses from nearby objects, ground resistance, insulator losses and radiation resistance. The latter is a fictitious term which is useful in expressing the power radiated by the antenna. It is that resistance which would consume the same amount of power that is radiated into space by the antenna; the power lost in other forms of resistance is wasted. Short-wave antennas generally have a very high ratio of radiation resistance to loss resistance and are therefore very efficient.

In a resonant antenna, standing zeaves of current and voltage exist. In a typical half wave antenna the current is maximum at the center, and zero at the ends. The radiofrequency voltage is maximum at the ends and minimum at the center. These standing waves exist because an impressed radio wave will travel out to the end of the antenna and be reflected back toward the center, since the end is an open circuit corresponding to a large mismatch of im-
pedance. The resomant antema is 0° such length that the retlected wave will be in phase with each succeeding impressed wave, or oscillation, resulting in a standing wave along the antema wire. Standing waves produce more actual radiated powe: into space from an antenna than when the values of voltage and current are uniform and of lower value all along the antenna wire. Radio-frequency feeders to an antenna are generally designed for uniform distribution of current and voltage along their entire length (nio standing wave). In wher words, the feeders should not radiate because the antenna proper alone should be the radiating medium.

The impedance along a half wave antenna varies from a minimum at the center to a maximum at the ends. The impedance is that property which determines the antenna current at any point along the wire for the value of radio-frequency voltage at that point. The main component of this impedance is the radiation resistance ; normally the latter is referred to the center of the half wave antenna where the current is a maximum. The square of the current multiplied by the racliation resistance is equal to the power racliated by the antenna, and for convenience these values are usually referred to the center of a half wave section of antenna.

The curve in Fig. 5 indicates the theoretical center point radiation resistance of a half wave horizontal antenna for various heights above grounc. These values are of sone importance ir matching radio freauency feeders to the antenna in order to cbtain both a good impedance match and an abseace of standing waves on the feeders.

A transmitting antenna usually consists of a wire of definite length which may be grounded, imgrounded or connecter to a counterpoise. A ground made by either a direct or capacitive connection acts as a reflector to the aerial wire, therefore completing the circuit. With a direct ground ronnection, the antenna may be either an electrical quarter wavelength or ofd multiples of quarter wavelengths; the ground

Fig. 5
Radiation Resistance of Half Wave Horizontal Antenna for Various Heights Above Ground.
acts as a subterrarean reflector, fuenishing quarter waves to the antenna to give half waves or multiples of half waves for the desired resonlant effect. A very short wire can be loaded to an electrical quarter wave by means of a loading coil to ground; a wire over a quarter wave long can be reduced to an electrical quarter wave by means of a series condenser to ground.

Fig. 6
A counterpoise which consists of one or more wires in a network insulated from ground will often reduce loss resistances which might occur when the quarter wave antenna is connected to poorly conducting carth. The counterpoise in the case of a network of several wires acts as a condenser plate with high capacity to earth, with the result of lower loss in the antenna system; for this reason the counterpoise should be fairly close to the ground.

Fig 7 slows a vertical antenta with an elaborate gronnd wire system buried under the surface of the earth for the purpose of obtaining low loss resistance connection to ground. This system is more generally used than the counterpcise.

Fig. 7

Directional Properties

- The radiation field of an antenna is more intense in certain directions, depending upon its height above ground, as well as the length of the antenna and the tilt or angle of the antenna wire with respect to ground. A short antenna (up to a half wavelength long) radiates most of its energy in a circular pattern at right-angles to the wire, something in the shape of a doughnut.

As the length of a horizontal antemna is increased in multiples of half waves, the radiation pattern changes into cone-shaped loops, one at each end of the antema. Smaller intermediate loops occur as shown in Fig. 8. A short horizontal antenna, therefore, may be considered as a broadside, radiator and a long antenna as an end-fire radiator. A vertical half wave or quarter wave antenna radiates equally well in all directions, horizontally.

Angle Radiation

All but the ultra-short-waves are reflected back to earth from the Heaviside Layer. By directing the greater portion of the transmitted wave at certain angles above the horizon, the signal at the receiving station will be increased; the angle above the horizon depends upon the distance and condition of the Heaviside Layer. For extremely long distances a low angle radiation is preferable, or an extremely ligh critical angle above the earth horizon. Intermediate angles tend to shorten the skip distance, and in case of long distances the total number of reflections may be so great as to attenuate the signal to such an extent that it cannot be received. Each time the signal is reflected from the earth's surface back to the Heaviside Layer the signal strength is reduced, due to losses which become evident because the earth is not a perfect reflector.
Vertical antennas provide low angle radiation as indicated in Fig. 9. The earth acts as a mirror and prevents the radiated wave from going out exactly in a plane to the horizon, unless the vertical antenna is several wave lengths above the earth.

QUARTER WAVE ABODE GROUND

Fig. 8

Horizontal Halł Wave Antenna Radiation Patterns.

The effect of the earth on the angle of radiation is more noticeable in the case of horizontal antennas, as can be seen in Fig. 10, showing that the horizontal antenna
should be approximately a half wave above ground in urder to avoid excessive radiation straight up, which would penetrate the Heaviside Layer and not be reflected back to earth at distant points.

Heights above ground of one quarter wave and three quarter waves provide excessive radiation straight upward, which represents a loss of power. The radiation pattern shown in C of Fig. 10 indicates that nearly all of the radiation is at right angles to the antenna wire. This is not actually true, because the doughnut-shaped radiated field actually produces high angle radiation outwardly over the ends of even a half wave horizontal antenna.

Long antennas operated at a harmonic tend to give low angle radiation. An analogy can be made to an ordinary garden hose and nozzle when considering the radiation from one end of the antenna. As the nozzle is turned from the fine spray position, the cone of water has a more narrow angle and is more concentrated. A second or third harmontic antenna (two or three half waves) is like the fine spray condition, whereas a long antenna oi six or eight wavelength projects most of the siguals outward in the form of a very narrow cone, having a radiation much greater at its maximum as compared with a half wave antenna.

Careful antenna design will enable a low power transmitter to deliver a powerful signal at certain distant points.

Antenna Tilt

- The presence of ground near any horizontal antenna has a very decided effect upon its directivity pattern. A half wave antenna normally produces high angle radiation from its ends, and both high and low angie radiation from its sides, as can be seen loy referring back to Fig. 8.

The difference becomes more pronounced with a full wave antemia; in either case, tilting the antenna will lower the angle of radiation to some extent in line with the antenna wire. Since low angle radiation is generally desirable for long distance communication, a slight tilt from the horizontal angle with respect to earth in the desired direction will often produce a very noticeable increase in signal strength. An antenna which has one end higher above the earth than the other does not transmit or receive well in the direction toward the higher end.

Antennas for Transmitting

- Antennas for transmitting differ from those used for receiving only in that the former require better insulation. A good

Full Wave Antenna Gives Maximum Radiation Upward at an Angle of 34 Degrees from the Horizon.

Hall Wave Antenna, Same Height as Full Wave Antenna Above. Here the Radiation Is Known as 16-Degree "Low Angle" Radiation.

Increasing Height of Antenna Above Ground Lowers Angle of Radiation to 7.5 Degrees. as Shown.

Short Yertical Antenna, Grounded, Gives Very Low Angle Radiation.

Quarter Wave Grounded Antenna Concentrates More of the Radiation at a Low Angle Than the $1 / 8$ Wave Antenna Does.

Full Wave Grounded Antenna.
Fig. 9
Angle of Radiation of Half Wave Vertical Antennas.

Horizontal Antenna Hali Wave Above Ground. This is the best height for horizontal antenna for general use.

Horizontal Antenna, Quarter Wave Above Ground.

Horizontal Antenna, $3 / 4$ Wave High, Radiates Mainly Upward.

Fig. 10
Showing How the Earth Affects the Angle of Radiation from a Horizontal Antenna.
antenna for transmitting likewise makes a good antenna for receiving. All antennas for transmitting fall into two general classifications: (1) A half wave, or multiple of half waves, known as a Hertz Anterna, (2) A quarter wave, or odd multiples of quarter waves, known as a Marconi Antenna, because it must be used in conjunction with either a ground or counterpoise connection. For frequencies above $3,000 \mathrm{KC}$ (100 meters), Hertz Antennas are more efficient because losses catsed by ground connections are eliminated. The Hertz designation covers such types as Single Wire Ficd, Zepp, Two Wire Fed, End Fed, Doublets, and Directional Arrays, because these systems use half wave sections of antennas for the radiating portion.
Marconi Antennas are generally used for frequencies below 3000 KC because space requirements are less than when Hertz Antennas are used. Marconi Antennas are generally a quarter wave long, measured between ground and the far end of the antenna. The electrical length can be adjusted by a tuning condenser, either in shunt or in series with the coupling coil. A shunt condenser increases, and a series condenser decreases, the electrical length of the antenna system. The Marconi Antenna is cut so that the electrical length is exactly a quarter wave long; the coupling coil and tuning condensers can be eliminated and some form
of single wire feed line can be used to supply power from the transmitter to the antenna. The effectiveness of a Marconi Antenna depends on its height above ground, also upon a very low resistance ground connection. Where a sufficiently low resistance ground is not available, a counterpoise is used. If the physical length does not exceed a quarter wave by more than $1 / 3 \mathrm{rd}$, the use of a series tuning condenser will reduce it to an electrical quarter wavelength. For wires less than a quarter wave long, an inductance (loading coil) will lengthen the antenna to a quarter wave electrically. The effective electrical length of the antenna can be increased slightly by the use of a large capacity at the end of the wire, such as insulator caps, balls, or cages.

Choice of Antenna

- There are so many suitable types of antennas for accomplishing a similar result that a brief explanation of some of the features of each is here disclosed. For 160 meter operation, some form of Marconi Antenna is desirable because most Amateurs have only a limited amount of space in which to erect an antenna. Most Marconi Antennas radiate a fairly strong ground wave, which is desirable for short and moderate distance communication. For 80 meter operation, the choice lies in some form of half wave antenna, such as a Zepp, End Fed, or Single Wire Fed. The difference lies in the method of coupling the radiating portion of the antenna to the final amplifier of the transmitter. Any one of the three aforementioned antennas can be operated on several bands by utilizing harmonics of the antenna. For example, a 130 foot half wave antenna operating on 80 meters becomes a full wave second harmonic antenna on 40 meters, and a two wave fourth harmonic antenna on 20 meters. Other forms of 80 meter half wave antennas are often desirable under certain conditions.

The Johnson "Q." Collirs All-Wave Antenna, Two Wire Matched Impedance Antenna, and the Twisted Pair Feeder Antenna are all suitable for 80 meter operation. The advantages and disadvantages of each are discussed elsewhere in these pages.

Figure 11 shows the directivity patterns of a horizontal antenna operated at its fundamental and on its various harmonics.

For 40 meter operation, any of the types listed for 80 meter operation are suitable, yet an antenna for 80 meter operation is twice as long as one required for 40 meter operation. Directional effects should be taken into consideration if space permits the choice of antenna placement. For 20 meter operation, the same types of antennas are suitable, but on this band the physical size of the antenna is so small that highly-direc-

- $\frac{1}{2}$ wave antenna
(3nO malmonl)

2 (tave antenna

$$
\begin{aligned}
& 2 \frac{1}{2} \text { WAVE :N-ENNA } \\
& \text { (STM MARMINIC) }
\end{aligned}
$$

4 WAVE AKTENNA
(atm Manmone)

Fig. 11

Radiation Patterns of Horizontal Antennas.
 Half Wave to 4 Waves Long.

tional types can be used to greater advantage. Directional antennas increase the power radiated in some certain desired directions, but at the expense of lower radiatiom in the other directions.

For 10 meter operation any harmonic antema can be used, although a half wave vertical antema is most popular because it transmits a very low angle af ratiation and is non-directional. Lirectional arrays are easily constructed for operation on this band, and they are equivalent to greatly increasing the power in the transmitter proper.

The ground wave alone is useful for 5 and $21 / 2$ meter operation, and thus the vertical types of antemas are more suitable. For short distance commurication (a few miles), a single vertical halí wave antenna, mounted as high as possible, gives satisfactory results. Directional arrays are reconmended for point-to-point communication. Various furms of directional arrays should be used for micro-wave operation because these arrays can be easily rotated, due to their small physical size. Half wave or quarter wave antennas are only occasionally used for micro-wave communication.

Single Wire Fed Antenna

- When a single wire feeder is connected to the proper impedance matching point of a half wave (or multiple of half waves) in the radiating portion of an antema, it is called a Single Wire Fed Herts Antenna. The center impedance is somewhere between 50 and 100 ohms in a half wave antenna, increasing outwardly toward the ends. A feeder wire can be attached at a point of about 500 to 600 ohms impedance either side of center for the purpose of supplying RF energy from the transmitter. In this case, the ground acts as a phantom return circuit and the characteristic impedance of the single wire to ground is in the neighborhood of 600 ohns. The exact value of impedance varies with the frequency of operation and the diameter of the conductor.

Antenna Impedance

- The impedance of any circuit is a function of the reactance and resistance which impedes the flow of current. In a resonant antema the reactive terms cancel each other, as in any resonant circuit, and the impedance is equal to the resistance which in this case is largely radiation resistance. The radiation resistance at the center of a half wave antema is about 73 ohms, and 2400 ohms at the ends if it is very high above earth. It can thus be seen that at either side of center, values of from approximately 73 ohms to 2400 ohms can be obtained for impedance matching to non-resonant RF feeders. The single wire feeder is one type of non-resonant line.

A non-resonant RF feeder system of infinite length has a characteristic surge impedance which is a function of the diameter of the wires, the spacing and the dielectric between the wires. Short lines, such as used in radio practice, can be terminated by using the characteristic impedance as a load. which makes the line equivalent to one of infinite length without reflections and standing waves of RF voltage. If the line is not terminated by the proper impedance the impressed radio wave will be reflected and standing waves will exist to cause radiation from the feeder or feeders. To simplify the foregoing explanation, the single wire feeder gives best results when it is comected across approximate: 600 ohms of antenna impedance. This value of impedance (600 ohms) normally occurs at a point about one-seventh of the total length either side of center. The same applies to any half wave antenna which is not too close to nearby objects or ground. Under conditions of perfect impedance match there will be no standing waves on the RF feeder and maximum efficiency will result. Unfortunately,
this point is not correct for harmonic operation and if the single wire fed antenna is to be used on several bands a compromise should be made which will not materially lower the efficiency on any band. The feeder should be connected to the antenna at a point one-sixth, instead of one-seventh, of the total length of the antema either side of center. Another simple way to find this point is to divide the antenna into three equal lengths and attach the feeder at a point one-third of the total length from either end. See Fig. 12.

Typical example: A $13+$ foot 80 meter antema (for operation on 80, 40, 20 and 10 meters) should be tapped 45 feet from one end, or 22 feet from the center of the antenna. See Fig. 12. This automatically places the tap 12 feet from center of one of the half wave sections when the antenna is operated on 40 meters, and 5 feet from the center of a half wave section when the antema is operated on 20 meters. These values are such that good impedance match will be had, resulting in satisfactory all-band operation. For a 67 foot (40 meter) antema, the tap should be a little over 22 feet from one end, which places it at about 11 feet from center. This automatically provides a point which is 6 feet off-center on 20 meters and $21 / 2$ feet off-center on 10 meters. The value of 9 -feet-4-inches-offcenter for a 40 meter antenna, widely recommended in the past, gives a distance of only 0.8 -foot off-center for 10 meter operation, which explains why such poor results are obtained when such a 40 meter antenna is used for 10 meter operation. The same holds true for 80 meter antemas operating on 20 meters. Connection of the feeder at a point of such low impedance for harmonic operation will not provide much actual radiation from the flat top portion of the antenna.

There will be a small standing wave on the single wire feeder when it is terminated one-third the distance from the end of the antenna. The reactive effect can be practically eliminated by making the feeder some multiple of quarter waves long. At the station end, the impedance would then be purely resistive, and no detuning effect will be in evidence in the final amplifier tuning circuit when connecting or disconnecting the feeder. The formula for calculating the feeder length in feet is:

$$
1=\frac{234,000}{f_{1}}
$$

Where f_{1} is the lowest frequency of operation in Kilocycles, 1 is the feeder length in feet.

The antemna length should be cut so that it will resonate at the middle frequency band desired. The formula:

$$
\mathrm{L}=\frac{(\mathrm{K}-.05)+92,100}{\mathrm{f}_{2}}
$$

where l is the antenna length in feet,
f_{2} is the frequency in kilocycles,
k is the number of hale wavelengths at that freturency.
Tine slight error in length sor the lower and higher frecuencies must be tolerated because the actual length is a compromise. The end effects shorten a half wave antenna approximately 5%, which is equivalent to $31 / 2 C_{6}$ per end. In a long antenna, such as 1 wo full waves, the two end half wave sections are each shortened $21 / 2 \%$. The middle sections are not shortened. This means that a wire cut for 3.600 KC operation as a half wave antemna will be a little sbort for operation as a full wave antenna on 7200 KC , which is the second harmonic. In spite of these minor defects, this antenra has become righly popular and is being widely used because of its simplicity and al!-around usefulness.

Non-resonant feeders of any type can be of any length and semetimes they are made as long as 4000 feet. No slarp bends should be tolerated, otherwise the RF wave will be -eflected and standing wave efects will result. The feeder zeire should run at a rightangle to the flat tof portion fur at least a fuarter zeazelcngth from the point where
it attaches to the autenna. A single wire feeder should always be used in conjunction with a good ground connection at any wavelength because the single wire fexder uses the ground as part of its return system in feeding power to the antenna.
One of the disadvantages of the single wire fed antema is a tendency for the RF to feed back into electric wiring circuits near the transmitter. Ir. radiophone operation this feedback can find its way into the microphone circuits, resulting in distortion and audio howls.

Coupling the Single-Wire Feeder to the Final Amplifier

- A single-wire antenna with off-center feeder should preferably be coupled to the final amplifier by means of system A, shown iu Fig. 13. B and C are alternate methods for increasing or decreasing the electrical length of the feeder, yet these methods are seldom required.
The method shown in A consists of link coupling the final amplifier plate coil to an antenna tuning systern. L1 is the final amplifier olate coil. L2 is a coupling loop of from one to four turns of insulated wire arourd the center of L1. J_3 is a similar coupling loop around the center of the antenna coil L.4.

L4 should have approximately 10% fewer turns than L1, but both coils should be of the same diameter. The coupling loops L2 and L3 are comnected together with a twisted pair feed line so as to isolate the

Fig. 13
"A" Is the Best Coupling System for a Single Wire Feeder: " $B^{\prime \prime}$ and "C" Are Seldom Used in Amateur Practice.
final amplifier plate coil from the antenna coil by several feet. L4 is tuned with a 100 mmid. variable condenser which has sufficient plate spacing to prevent flash-over. Taps are soldered to L 4 at points beginning approximately one-third the way up from the grounded end of the coil, and continuing up the coil to a point near the center. One end of L4 schould be grounded to the transmitter chassis, or to an earth ground, or both.

Fig. 14
Alternate Method of Coupling Single Wire Antenna by Tapping the Link Line Directly to the Antenna Coil. The Lower End of the Antenna Coil Should be Grounded. Unless the Antenna Is of the End-Fed Type.

A small flashlight globe, or a 0 -to- 1 RF antenna ammeter should be connected in series with the feeder and the tap on coil L4 in order to provide a means of comparative indication of antenna power. See Fig. 15. The indicating device should be removed, or short-circuited, at the completion of the tests.

Fig. 15
Lamp Indicator or R-F Meter for Denoting Comparative Output.

Tuning Procedure

(1) With the antemna feeder disconnected from coil L4, tune the final amplifier plate circuit to resonance, then tune the antenna coil to resonance. The final amplifier plate current should take the customary pronounced resonance dip when either the plate or antenna circuit is tuned to resonance. If resonance in the final amplifier cannot be secured when the antenna coil is tuned, turns should be removed from, o: added to, coil L. When resonance is secured by tuning either circuit, the antemna feeder should be connected to L4.
(2) Connect the feeder to a tap on L4 at a point about one-third the way up from the grounded end of the coil. Observe the indication of the RF antenna meter or flashlight globe. Hold one hand on the final plate tuning condenser dial, the other hand on the antema tuning condenser dial. Vary both condensers at the same time and tune for maximum indication of the RF meter or flashlight globe. Then connect the antenna feeder to a different tap on coil L4 and repeat the tuning process. A tap position will soon be found which gives greatest indication of antenna power, at normal plate current. Once the system is correctly tuned, the resonance dip indicated by the final amplifier plate milliammeter will be very small when the final plate condenser is tuned through the resonance point. If the dip is pronounced, make slight readjustments of both circuits until maximum indication is shown by the RF meter or fashlight globe. The point to remember is that both condensers should be tuned and retuned simultaneously for maximum output.
(3) If the final amplifier draws more than normal plate current after the system is tuned to resonance. remove a turn or more of wire from both L. 2 and L3: conversely, add a turn or more to both L2 and L3 if the plate current is too low.

Relative Radiation Patterns

Fig. 16 shows other methods for coupling the single wire feeder here described, as well as a sketch showing the directivity of an 80 meter antenna of this type. For all-around

FIG. 16.
Left: 80-Meter Anterna, 132 to 134 Feet Long, Suitable for Operation on 80, 40, 20 and 10 Meters. Center: Antenna Feeder Loading System for 160 Meier Operation. Right: Approximate Direction of Other Countries.
operation in as many directions as possible, from any point in the United States, this 80 meter antemna should preferably be run in a North and South direction, as shown. On the other land, when this sane antenna is operated on its harmonics, the antenna directivity changes to four main lobes in the approximate directions as shown.
the figures. The radiation is in the form of a doughnut for a half wave antenna and consequently high angle radiation does take place in the end directions, assuming that the an:tenna points North and South. The main low angle radiation on 80 meters would be East and West. When this 80 meter antenna operates on harmonics, the radiation

FIG. 17.
80- and 20-Meter Radiation Patterns for All-Band Single-Wire Fed Antenna.
All of the lobes in Figs. 17 and 18 apply to an 80 meter antema, operating on harmonics. Long-distance operation is more easily accomplished on the shorter wavelengths, such as 10,20 and 40 meters, thus making it a very effective all-band radiator. The directivity patterns do not hold good for all locations, anc neither is it necessary to point the antenna in the prescribed direction in order to communicate with other countries or localities. However, if an approximate North and South placement can he arranged, better results will be secured.

appears to be in four separate directions, or lobes, as slown in Fig. 18. The radiation goes out in two main cones and therefore it is not as directional as would appear at a casual glance.

Impedance Matching Stubs

- In a great many directive antenna arrays, and often in the more simple forms of antennas, an impedance matching "stub" is desirable. This stub permits the use of a non-resonant ieeder system, which results

FIG 18.
40- and 10-Meter Radiation Patterns for Same Antenna.

Fig. 18 shows the radiation patterns of an so meter antenna of this type when operated an 40 and 10 meters. These diagrams show the cross-section only, therefore the directivity, in effect, is not the same as indicated in
in better efficiency than could otherwise be obtained with long Zepp feeders. The stub consists of a quarter or half wave section of feeder, either open at the lower end, or with a sliding link for tuming the stub. Fig.

Fig. 19
Half Wave Antenna with Quarter Wave Matehing Stub.

19 shows a quarter wave stub, which is similar to a quarter wave Zepp feeder.

Fig. 20

Center Fed Half Wave Antenna with Half Wave Matching Stub.

Fig. 20 shows a half wave stub for feeding into the center of a half wave antema.

The impedance at the short-circuited end of this stub is only a few ohms, and this impedance increases toward the antenna end. A non-resonant feeder can be tapped across this stub at a point corresponding to its characteristic impedance, which usually lies between 400 and 600 ohms.

Fig. 21
Center Fed Half Wave Antenna with Stub Line Cut to Exact Length Without Shorting Bar.

The antenna length and stub length must be such that exact resonance is obtained. In the case where the stub has a shorting link near one end, the link may be moved up or
down to tune the system to resonance with the transmitter frequency. In the case of a center fed antenna with a quarter wave stub without shorting link, Fig. 21, the wires must be cut to correct length by trial in order to obtain resonance. The nan-resonant feeders tap across the matcling stub at a point which eliminates standing waves on this line. The antenna and stub lengths should be correct for the particular installation in order to eliminate standing waves on the nonresonant feeders. The crystal detectormilliammeter measuring device described in Fig. 95 is suitable for tuning up this type of antenna system.

Fig. 22
Two Half Wave Sections in Phase, with Quarter Wave Stub.

In lig. 22 two half wave sections are used in phase in order to obtain greater radiation at right angles to the direction of the antemia.

Fig. 23
Pictorial of Fig. 22, Showing Simplicity of 20 Meter Antenna Installation.

In one particular installation (Fig. 23) it was found that the standing waves on the non-resonant feed line could not he eliminated until one of the half wave antennas was shortened nearly 10%. The apparent reason was the proximity of a small metal chimney to one end of this antema.

10 Meter Vertical Antenna With Matching Stub

A very effective antenna system for nondirectional 10 meter operation is shown in Fig. 24. It consists of a $2 \overline{5}$ foot pole, supported on the roof or to one side of a building or other structure, a $161 / 2$ foot vertical antenna wire run up along the pole and insulated from it with small insulating strips or ruds. At the bottom of the $161 / 2$ foot section is another section of two wires, called the matching stub. These wires are 8 feet long, one of them being a portion of the antenna proper. A shorting bar, connected across the bottom of the two wires, is moved upward or downward for antenna tuning ; likewise, the feed live tapped acrosi the two wires at a point about $1 / 3$ rd the way down from where the two wire portion begins, is also later adjusted and readjusted in tuming up the system.

Fig. 24

Tuning Procedure

(1) Place transmission line $1 / 3$ rd the way down from the point where the two wires begin, that is, $1 / 3$ rd the way down from the top of the "matcling transformer."
(2) Adjust the shorting bar by placing it approximately 1 foot or 18 inches from the bottom of the "matching transformer."
(3) Turn "on" transmitter. and loosely couple the antenna coil to the final amplifier plate coil.
(4) Place a "field strength meter" somewhere where it can be seen from the roof, or let someone else watch the reading of the meter.
(5) Never re-adjest the field strength meter once it is set, while the antenna is being tuned.
(6) Take readings on the field strength meter and adjust the antenna coupling to the instrument so that half scale readings are oltained.
(7) Return to the roof, put on a pair of gloves, and adjust the sherting-bar until the field strength meter denotes maximum reading.
(8) Next, adjust the position of the feedline to a point, where maximum indication is again had on the field strength meter.
(9) Lastly, re-adjust the shortirg-bar so that a more accurate position can be found, as again denoted by still greater reading of the field strength milliammeter.

The Johnson " Q " Antenna

Another type of single band half wave antenna is the Johnson " Q," which uses a special quarter wave matching transformer to couple a more or less conventional 400 to 600 olnn two-wire line to the 73 ohm impedance which exists at the center of a half wave antenna. Tlis matching transformer consists of two parallel aluminum tulfes, each a quarter wave in length, suspended from the center of the antenna. See Figs. 25 and 26.

JOHNSON "Q" ANTENNA

Fig. 25

The surge impedance is made fairly low by using half-inch diameter tubing, spaced 1.6 inches apart. This spacing results in an impedance of slightly over 200 olums, which is the geometric mean between the antenna center impedance of 73 ohms and the impedance of a two-wire line of 600 ohms. The matching section should be approximately a quarter wave in length for the particular frequency used.

Fig. 26
Pictorial Sketch of Johnson "Q."

The design formalas are as follcws:

$$
\begin{aligned}
& L(\text { in fect })=\frac{468,000}{f} \\
& 1(\text { in feet })=\frac{246,000}{f}
\end{aligned}
$$

where L is the antenna length in feet.
1 is the matching section length in feet.
f is the frequency in kilocycles.
This antenna is quite widely used on 20 meters because of its relatively high efflciency. The 600 ohm untuned or non-resonant line can be of any length and should be connected across the equivalent of 600 ohms of impedance at the transmitter.

The Collins Multi-Band Antenna

- This antema system is a special form of Zepp antenna suitable for operation on several bands. The iosses are less in dry weather, and even in wet weather it should be a comparable system to the Zepp antenna. It consists of a half wave antemna at the lowest frequency of cperation, with parallel copper tubing quarter wave feeders connected in the center of the antenna. See Figs 27 and 28. The system can be used on harmonics because of the special form of RF feeders which are used.

The center impedance of a half wave antenna is approximately 75 ohms; the center impedance of a full wave antemna is about 1200 ohms. Consequently the RF feeder is designed to have an impedance which is the geometric mean of these two values, or 300 ohms. This value of 300 ohms is obtained by usitg quarter-inch copper tubing with $1 \frac{1}{2}$-inch spacing, held in position with small ceramic separators. The impedance mismatch between 300 ohms and 75 or 1200 ohms is t-to-1, which is not
great enough to cause excessive values of standing waves on the feeders. The line is made a multiple of quarter waves in length and thus the reactance at the station end is negligible; it will provide a resistive impedance of 75 or 1200 obms. A simple untuned pickup coil (variable turns) is suitable for coupling to the transmitter or receiver tuned circuits. The design formulas are as follows:

Antenna length in $\mathrm{ft} .=\mathrm{L}=\frac{(\mathrm{k}-\mathrm{-} .05) 492,000}{\mathrm{f}}$

$$
\text { Feeder length in feet }=1=\frac{234,000 \mathrm{~m}}{\mathrm{f}}
$$

Where $\mathrm{k}=$ number of half wavelengths.
$\mathrm{f}=$ frequency in kilccycles.
$\mathrm{m}=$ number of quarter wavelengths.

Fig. 27

Fig. 28
Close-Up of Center of Antenna, Showing Feeder Connections.

CHART FOR COLLINS MULTI-BAND ANTENNA							
Antenna	A	B	c	D	E	F	G
Antenna in Feet	136	136	2753/2	250	67	67	143
Fueder Length in Fee	${ }^{66}$	115	99	122	${ }_{6} 5$	98	821/2
Frequency Range in Negacycles	$\begin{aligned} & 3.7=4.0 \\ & 1: 0-14.3 \\ & 1: 0 \end{aligned}$	3.7-4.0		${ }_{3}^{1.7-2.6}$			
Nominal Input Impedance in Ohms	$\begin{gathered} \text { 1200 } \\ \text { bands } \\ \text { band } \end{gathered}$	$\underset{\substack{7, i \\ \text { bauds } \\ \text { bauc }}}{ }$		$\begin{aligned} & \text { 1200 } \\ & \text { bands } \\ & \text { band } \end{aligned}$	$\begin{aligned} & 75 \text { on } \\ & \text { 70n. } \\ & \text { inot } \\ & \text { on 200 } \\ & \text { ond } \\ & \text { 10M. } \end{aligned}$	$\begin{gathered} 1200 \\ \text { band } \\ \text { band } \end{gathered}$	$\begin{aligned} & 1200 \\ & \text { and } \\ & \text { band } \end{aligned}$

The efficiency of the feeders may run as high as 97% in spite of the impedance mismatch. The feeders weigh approximately 10 pounds and they hang from the center of the antenna, therefore the antenna wire should be copper-clad steel under tension, unless a support in the form of a mast is placed at the center of the antenna. A study oi the antenna chart will indicate several possibilities for amateur installation.

Zepp Antenna

- This antema consists of a half wave section with tuned feeders connected to the end, Fig. 29, or into the center, Fig. 30, of the half wave radiating section.

The purpose of the feeders is to permit the erection of an antema as high above fround and as clear from nearby objects as possible. The feeders transfer radio-frequency power from the final amplifier of the transmitter to the radiating portion of the antenna. The portion of the antenna called the Zepp Feeder (which is a resonant coupling device, and thus forms part of the antenna proper) simply consists of an additional length of antenna which is folded back upon itself in such a way that the standing waves on the two feeders neutralize each other, thus preventing the feeder portion of the antenna from radiating. The first fundamental of Zepp Antenna design is that the flat top portion must be cut to within 10% for the frequency used. Variations of less than 10% can be compensated for by tuning the feeders in the radio room.

When one wire of a Zepp Feeder is con-

Fig. 29
Zepp Antenna System and Feeder Tuning Methods.

Fig. 30
Zepp Feeders Connected in Center of Half
Wave Antenna.
nected to the end of a half wave antenna the feeders should be some odd multiple of quarier wavelengths long, because the two wires folded back on each othe- form half wave resonant sections. The coupling coil and tuning condensers in the feeder circuit

Fig. $30-\mathrm{A}$
20 and 40 Meter Vertical Antenna with Zepp Freeders. C1-C2 Are .00025 mid. Condensers.
are part of the tuned feeder system. If the physical length of the two feeders is either longer or shorter than an odd multiple ($1,3,5$, etc.) of quarter waves, this length can be made electrically correct by varying the number of turns on the coupling coil or the capacity of the feeder tuning condensers. Thus when Zepp, Feeders are tuned, merely their electrical length is varied. The presence of the coupling coil, or coils, adds electrical length which may be offset by using tuning condensers which reduce the electrical lengtl. Sometimes combinations of series and parallel tuning are necessary when operating a Zepp Antenna on more than one band. If the physical length of the feeders, plus the inductance of the coupling coil is less than a quarter wave, or slightly less than three quarters of a wave, it is necessary to use parallel tuning for the feeders. If the physical length of the feeders is somewhat greater than a quarter wave, or thiree quarters of a wave, the feeders must be tuned with series condensers.

Not all Zepp feeders have coupling coils and tuning condensers; instead, a shortcircuiting har or copper wire can be shurted across the two feeders at the lower end to complete the circuit. In this type of construction the feeders are tuned by sliding the bar up or down across the feeders until resonance is established. Coupling to the transmitter is accomplished by a non-resonant line connected to the resonant feeders at the proper impedance matching points.

Zepp Feeder Spacing

The spacing between the two wires of the Zepp feeder should be about 6 inches. Glazed ceramic feeder separators which resist moisture absorption should be used to maintain proper spacing between the two wires. If the spacing is too great, the standing waves on the feeders do not properly neutralize each other and excessive feeder radiation will result. If the spacing is too smalt,
there will be excessive loss at the feeder separators along that firtion where high radio-frequency voltage exists.

Directional Effects of Zepp Antenn α

- When the Zepp antenna is operated on its fundamental frequency, the main portion of the radiation is at right angles to the direction of the wire. For operation at higher frequencies (harmonics), the curves of lig. 8 indicate the optimum directions for transmitting or receiving.

SUMMARY

- The principal advantage of the Zepp Feeder system is that, no matter how inefficiently it may be built, power will always be drawn from the final amplifier. The power radiated may be only a small fraction of the energy conveyed iu transit. Because a Zepp feeder system draws the greatest amount of power from the final amplifier, and gives the greatest meter indication of RF current, is no indication that the system is working efficiently. Other forms of coupling devices usually refuse to draw power from the final amplifier unless the radiating portion of the antenna is functioning properly. Sometimes it is assumed that the non-resonant transmission line is faulty and difficult to adjust because the final amplifier camot be made to draw enough plate current; however, the fault may be traced to the antenna not having the proper length for operation on the desired frequency. In other words, an effective non-resonant transmission line will ordinarily draw no power from the transmitter unless it can deliver it to the antenna.

The most outstanding feature of the Zepp coupling system is its simplicity and ease of adjustment. It is less efficient than most non-resonant transmission iines. Theoretically, Zepp feeders do not radiate, but, as a matter of fact, the perfect Zepp feeder exists only on paper.

Another advantage of the Zepp feeder lies in the fact that it can be used for operation on several bands.

Construction

- Zepp feeders should be cut as closely as possible to an odd number of quarter wavelengtlis long for connection to the end of an antenna, or an even number of quarter wavelengths for connection into the center of a half wave antenna. The feetlers should be supported in the clear, and no sharp bends should be tolerated. If the feeders are within one foot of such objects as a stucco wall or other structure in which there is predominance of metal, as much as 50% of the power from the transmitter can be wasted by absorption.

Center-Feed Zepp

- This system differs from the morecommon voltage fed type in that it connects to a low impedance point on the antenna instead of at a high impedance point. For this reason it is sometimes known as the Curreni Fed Zcpp, or Donblet, whereas the more-common type is known as the l'oltaye Fed Autenna. The Center-Fed system provides a better balance because both wires comect into the antemna, whereas the end comection leaves one feeder wire unterminated, resulting in some unbalance of current in the two feeder wires. The directional effect of either system is the same for operation on the fundamental wavelength. When the center-fed system is operated on the second harmonic the flat top portion becomes two voltage fed half wave antennas in phase. This produces an increased directional effect at right angles to the direction of the antemna wire, instead of a fourleaf clover effect which is otherwise obtained when the end-comection is used.

Voltage-Fed vs. Current-Fed

- Voltage-fed: The Zepp feeders are connected to the radiating portion at points of high RF voltage. These points exist at the ends of each half wave section, due to standing wave effects.
Current-fed: Comection is into the half wave section at a point of low impedance and high current. Since the voltage and current are approximately 90 degrees out of phase. the point of maximum current occurs at the point of minimum voltage. See Fig. 30. This print exists at the center of each half wave section for the particular frequency used. In this discussion half wave sections are referred to the particular band in use, such as 130 fect for the 80 meter band, approximately 66 feet for the 40 meter band, and 33 feet for the 20 meter band.

Length of Any Half Wave Antenna

- Antemas which are fed by any type of nom-resonant line must be cut to exact length, subject to modification due to the presence of nearby objects. For all practical purposes, the antema can be cut to the calcu'ated length and the wire should be of a kind that does not stretch. If the wavelength of operation is known, the length can be calculated by multiplying the wavelength by 1.56, giving the result in feet.

$$
\mathrm{L}=1.56 \times \lambda
$$

where $L=$ length in feet.
$\lambda=$ wavelength of transmiter.
Fi the frequency of operation is known, the antenna length in feet can be calculated by dividing the frequency in kilocycles into 468,000.

$$
\mathrm{L}=\frac{468,000}{\vdots}
$$

where $\mathrm{L}=$ length in feet.
$\mathrm{i}=\begin{gathered}\text { transmitter } \\ \text { cycles. }\end{gathered}$
These formulas do not apply for long wire antennas.

The values calculated for a Zepp antenna are not critical, and if the flat top portion is within 10% of these values the error can be compensated for by tuning the feeder system. The old popalar conception that a Zepp antema must be cut to exact length is erroneous. No matter how close an antenna is cut to prescrihed length the proximity of nearby objects will often clange the effective electrical length as much as 5% or 10%. Hercin lies one of the advantages of the Zepp antenna, since the antenoa can be tuned to exact resonance at the transmitter.

LENGTH OF FEEDERS	Type of Feeder Tuning to Use
Up to One Quarter Wave	Parallel Tuning
Between One and Two Quarter Waves	Series Tuning
Between Two and Three Quarter Waves	Parallel Taning
Between Three and Four Quarter Waves	Series Tuaing
Between Four and Five Quarter Waves	Parallel Tuning
Between Five and Six Quarter Waves	Series Tuning

Zepp Feeder Tuning Chart

For	5 meters one quarter wave is	4 ft.
For	10 meters one quarter wave is	8 ft
For	20 meters one quarter wave is	16 ft
For	40 meters one quarter wave is	33 ft
For	80 meters one quarter wave is	66 tt.
For	160 meters one quarter wave is 132 ft.	

For Half Wave Zepp Flat-Tops
Zepp Feeder Lengths

Band	Length of Flat-Top
160 meters 250 feet
80 meters	130 feet
40 meters	. 66 feet
20 meters	33 feet
10 meters	. 16.5 teet
5 meters	. 8 feet

Two Wire Matched Impedance Antenna

- This antemua is useful only for one-band operation, but it is more efficient than a single wire fed antenna. It consists of a half wave section with the two feeders connected to each side of center, as shown in Fig. 31. This method of feeder connection provides the incorrect phase relation for harmonic operation. It is often used for 5meter communication and is quite effective on 10 and 20 meters.

Fig. 31
Two Wire Matched Impedance Antenna System.

The surge impedance of a two wire line can be calculated irom the formula:

$$
Z_{0}=2 \tilde{\tau} 6 \log _{10} \frac{b}{a}
$$

where $Z_{\text {s }}$ is the surge impedance in ohms.
a is the radius of the wire.
b is the distance between the two wires.

Since the impedance of an antenna depends upon the points between which measurement is made, and varies from a low value at the center to a very high value at the ends of the antema, the line must be tapped to the antenna at points where the impedance is equal to the impedance of the line. With the ordinary type of two wire line it is necessary to fatl-out the feeders at the far end to evenly increase or transform the feeder impedance so that it matches the antenna. The details of this matching impedance between the 600 ohm line and a half wave antenna are figured as follows:

$$
L(\text { in feet })=\frac{492,000}{t} \times 0.95
$$

where L is the antenna length.
f is the frequency in kilocycles.
The portion of the antenna between the two taps, T and T1 where the feeders connect is computed as follows:

$$
\text { T to } T 1 \text { (in feet) }=\frac{492,000}{f} \times 0.24
$$

The fanned-out " Y " portion is computed as follows:

$$
Y(\text { in fect })=\frac{147,000}{f}
$$

The feeder spacing "S" for a 600 ohm two wire line is computed approximately as follows:

$$
S=150 \times r
$$

where S is the center-to-center distance between the wires, r is the radius of the wires.
These should be expressed in the same units, whether in inches or centimeters. The spacing of the feeders is rather critical and the line must be kept taut. Each side of the line must be of the same length and symmetrical with respect to ground. The transmission line should be connected at rightangles to the antenna for a distance at least equal to one-third of the antenna length. Bends in the feed line should be gradual because sharp bends cause reflection losses and midesired feeder radiation.

Feeder Adjustment

The antenna length and taps T and $T 1$ should be adjusted for actual operating conditions in order to minimize standing wave effects on the transmission line. If the feeders are of bare copper wires a small RF milliammeter can be bridged across approximately one foot of wire with a pair of wire hooks, as illustrated in Fig. 32. This de-

Fig. 32
Method for Locating Standing Waves on
Two Wire Non-Resonant Feeder.
vice can be moved along a quarter wave section of the RF feeder to cleck for standing waves. The current will be constant if
no standing waves are present. A more practical device is illustrated in Fig. 95. It can be carried aiong the feed line, close enough to it so that RF energy coupled into the pickup coil will give an indication on the meter scale. Sometimes the proximity of buildings, trees or antenna towers will affect the electrical length of the half wave antemna. One side of the antenna must sometimes be slightly shorter than the other, in order to eliminate standing waves on the feed line. The positions of the taps T1 and T2 can be moved to obtain this effect after the antema itself is pruned to exact length for the frequency of operation.

The directive properties of this antenna are such that best results are secured in the direction at right angles to the flat top wire. For ultra-short-wave operation the antenna portion is usually made vertical, and reflector systems are often employed to increase the radiation in the desired direction.

The End Feed Antenna

- When a half wave antenna, or one with multiplies of half waves, has one end brougint directly to the radio transmitter it is called an End Fed Antenna, or Fuchs Autesuia. These antennas can be operated or sereral bands with almost equal efficiency. Their main disadvantage lies in the faft that the antenna is brought directly into the radio room, therefore a material portion of the radiation may be lost by the nearness of loss-creating objects. It is an easy antenna to tune because there are no RF feeders wich require adjustment, and the electrical length can be varied at the transmitter in order to obtain exact resonance on any band.

The antenna should have an overall length of an even number of quarter waves in length. By making it a tritle too long, the far end can later be "pruned" until exact resorance is obtained. The tuming process consists of operating the final amplifier of the transmitter at reduced nower, tuning it to resonance, and then tapping the antemna across part of the final amplifier plate coil. The antenna should be of such length that no change in the plate tuning condenser is necessary in order to obtain resonance in the amplifier either with or without the antema connected to the amplifier.

A series coil and concleaser, when connected in the antenna near the end, will tune the antenna to resonance for different frequencies. See Fig. 33. Slight errors in length can be compensated for by adjusting the parallel tuned coupling circuit. If the antema is cut to the correct length this

Fig. 33
End Fed Antenna with Series Tuning Circuit.

End Fed, Voltage Fed Hertz Anienna.
coupling circuit will be tumed to exactly the same frequency as that of the final amplifier plate circuit, shown in Fig 3 t.

When an end fed antenna designed for 80 meter operation is used on 160 meters it becomes a Marconi aitemna, as shown in Figs. 3.5 and 36. A good ground connection is necrssary. The antenna coupding coil should have approximately 20 turns of wire, wound on a form approximately the same diameter as the final anmplifier plate coil. The coupling should he variable.

Fig. 35
80 Meter End Fed Antenna with Counterpoise for 160 Meter Operation.

Fig. 36
80 Meter End Fed Antenna with Loading Coil for 160 Meter Operation.

The directional effects of this antemma are similar to those shown in Fig. 8, except when operated on 160 meters. If the antema stretches out nearly horizontal from the transmitter, these directive patterns are approximately correct. This antemna is most practical for coperation where the radio transmitter is located on the top floor of a building. The iosses are apt to be excessive if the antema rums close to the side of a building and into a radio transmitter located near the ground.
The approximate length of the antenna is determined from the formula:

$$
L=\frac{492,000}{f}
$$

where L is the length in feet of the antema.
f is the freguency in kilocycles.

Long Single Wire Antenna

Kemarkable results for both transmitting and receiving can be secured with a long antema operated on its harmonics. This antema is more directional than a half wave antenna. it should be pointed more nearly in the direction in which general long-distance communication is desired. The

If the end of the antema is brought into the operating room, the system can be tuned to exact resonance for any desired harmonic. Zepp. feeders are also very suitable for this type of antenna. A study of the " V " Antenna Design Table will show that an antenua 55% feet long for 7100 KC does not resonate at twice that frequency for 20 meter operation, rather it is resonant at 14,250 К'C. Zepp. ieeder tuning, or end feed tuning adjustments, will make possible the resonating of the antenna at $14,200 \mathrm{KC}$ if operation from one crystal is wanted for both the 20 and 40 meter bands.
Several of these antennas can be strung in various directions because great height is not absolutely essential.

Twisted Pair Fed Antenna

A very effective one-band antema for transmitting and receiving consists of a half wave flat top with a twisted pair feeder. The impedance of a twisted pair ranges from 50 to 175 ohms, depending upon the spacing between the conductors and the diameter of the wire. This impedance is low enough so that the feeders can be comected directly into the center of the antenna. In practice, the last few inches of the feeders are fanmed-out into a small triangle, as shown in Fig. 3%.

Fig. 37
One-Band Doublet Antenna for Transmitting and Receiving.
horizontal directivity diagrams previously shown in Fig. 11 indicate the main directions of greatest radiation. An actual gain of from: 2 to 4 times is obtained by making the wire from 4 to 8 waves in length. Even shorter lengtlis will provide very noticeable gain, such as can le obtained by a $2: 5$-foot wire on 40 meters. This same antenna will be even more effective on 20 meters, but somewhat more directional in the line of the wire. The dimensions for these long wire antennas can be obtained from the Table, "I". Antenna Design.

The feeder can be any length. and it can be carried around corners of buildings, through walls anted along picture mouldings. Nearby objects have very little effect on the efficiency of the feeders because of their close spacing and the large number of transpositions or twists along the feed line. The losses in the feed line are exceptionally low. largely because the small spacing between the wires causes the line to have a very low characteristic impedance. This means that for a given amount of power the voltage between the two wires is very low,
thus insulation and dielectric losses can be held to a minimum. Ordinary stranded lamp-cord should be avoided because of high losses, but single conductor No. 12 to No. 18 twisted pair is satisfactory. The special twisted pair made for RCA double-doublet antennas is satisfactory for power inputs of several hundred watts. Type E01 twisted pair, available from most radio dealers, is designed for an 80 ohm impedance and will handle powers up to 1 KW . These commercially made twisted pairs are covered with a special grade of rubber which has a low dielectric loss and is quite resistant to weather.

Harmonic operation is not recommended because the line is no longer non-resonant for such operation, and standing waves will cause high RF voltage across some portions of the line. If much power input is used. the lite insulation will break down and hurn. Operation on the seconll harnonic is possible but the efficiency of the line then drops approximately 50%. This antemba is excrllent for receiving because of reduction in noise pickup. Two of these antemnas placed at right angles to each other will proride transmission or reception in all directions.

Problems of Space Limitations

- Countless experimenters are faced with the problem of erecting an antenna in a space too small for a half wave antenna of the desired freguency of operation. For example, only 90 feet of space may be available, yet operation on is neter plione would require an antema approximately 125 feet long. Certain forms of Marioni Antennas can he used, since these are a quarter wave in length, or approximately 63 feet. A counterpoise or a gond ground comection would be required, and by this means fairly satisfactory results can be ohtained. A half ware antema which is horizontal over its entire length is often preferable from a standpoint of its directivity and efficiency. Such a half wave antenna can he built into a 0) foot space by using an end Ioading coil to make it an electrical half wave in length. as illustrated in Fig. 3s. The loading coil carr be wound with approximately one-fourth to onc-lalf as much wire as would normally he used for the antema, in this case, 12: feet long: approximately 10 to 15 feet of wire would therefore be wound on the loading coil. The winding form can be from 2 to 3 inches in diameter and the coil should be space wound with the same size and kind of wire as the antema. The loading cail should be covered with a weatherproof housing and the antemna strain should be taken up with strain insulators, rather than depending upon the coil form to act as

Chart Showing Theoretical Length of Half Wave Antennas. Such as Single Wire Fed, Collins, Johnson " Q ." Matched Impedance, Twisted Pair and Zepp.

BAND	Frequency	Antenma Length
111/4 Meter		$\begin{aligned} & 22^{\circ} \\ & 24^{\circ} \\ & 23.5^{\circ} \end{aligned}$
21/2 Meter	$\begin{aligned} & 112 \mathrm{mc} \\ & 116 \mathrm{mc} \\ & 120 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 4^{\prime} 2^{\prime \prime} \\ & 4^{\prime} \\ & 3^{\prime} 10^{\circ} \end{aligned}$
5 Meter	56 mc 58 mc 60 mc	$\begin{aligned} & 8^{\prime}, 4^{\circ} \\ & 8^{\prime}, \\ & 7^{\prime} 10^{\circ} \end{aligned}$
10 Meter	28 mc 29 mc 30 mc	$\begin{aligned} & 6^{\prime} 8^{\circ \prime} \\ & 16^{\prime \prime} \\ & 15^{\prime \prime} \\ & \hline 1 / 2 x^{\prime \prime} \end{aligned}$
20 Meter	$\begin{aligned} & 14.05 \mathrm{mcc} \\ & 14.15 \mathrm{mc} \\ & 14.25 \mathrm{mc} \\ & 14.35 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 33^{\prime} 4^{*} \\ & 33^{\prime} \\ & 32^{\prime} \\ & 32^{\prime} 8^{\circ} \end{aligned}$
40 Meter		$\begin{aligned} & 66^{66^{\prime}} \\ & 6^{\prime} \mathbf{y}^{4} \end{aligned}$ $\begin{aligned} & 64^{\prime} \\ & 64^{\prime} \end{aligned}$
80 Meter		$\begin{aligned} & 131^{\prime},{ }^{\circ}{ }^{\circ}{ }^{\circ} 20^{\prime} \mathbf{1 0}^{120^{\prime}} \\ & 123^{\prime} \\ & 118^{\prime} \end{aligned}$
160 Meter	1754 KC 20011 KC	$\begin{aligned} & 267^{\prime \prime} \\ & 252^{\prime} \\ & 233^{\prime}- \end{aligned}$

a strain support for the antema. The newer iorms of low-loss tani- coils wound on celluluid strips should be suitable in locations

Fig. 38
where snow and ice are not encountered, thus they need not be protected from the weather.

A single wire feeder or Zenp. feeder can
be used for this type of antenna, and in the case of a single wire feeder the distance L. in Fig. 38 should be one-third the length which a regulation half wave antenna would ordinarily have zeithout the use of a loading coil. Thus the 90 foot wire previously referred to would have the single wire feeder attached to it at a point approximately 42 feet from the anloaded end, just as if it were a 125 foct length of wire. If this antema is to be operated only on one band, the feeder tap can be moved along the flat-top until standing waves disappear from the feeder, as checked with the simple feeder tuning device described elsewhere in Fig 95.
The approximate adjustment of the loading coil can be made with the antenna suspended only a few feet above the ground, or roof. and coupled loosely to a regenerative receiver. The natural period of the antenna can be found for each adjustment of turns or the loading coil by noting the point at which the regenerative receiver tends to pull ont of oscillation, if the receiver dial is calibrated approximately in wavelength or frequency. The receiving antenna for these tests can be a short wire a few inches from the antenna under test, with just enough coupling between the two antennas to tend to stop oscillation in the receiver at resonance. Another method of tuning the antenna system is to use an antenna field strergth meter connected to a small antenna, parallel to the antenna under test. In this case the transmitter should be coupled to the main antenna and constant power input maintained to the final amplifier. The field strength meter reading will be a maximum when the antenna is correctly loaded to the frequency of operation.

Another example of end loading would be for a half wave antenna for the 40 meter band, built into a space of only 50 or 60 feet. Normally, such an antenna with its insulators and supports would require a space of at least 70 feet. The loading coil will permit successful operation of a 45 or 50 foot flat-top without great sacrifice in efficiency.

160 Meter Coupling Systems

- A simplified Pl coupling system is shown in Fig. 39.

The 150 mmfd , and the 500 mmfd . variable condensers are effectively in series, through the common chassis ground connection. The advantages of this arrangement are: (1) there is no DC on the tuning condensers and the condensers will not flash-over on modulation peaks; (2) there is freedom from filter and rectifier trouble; (3) closer spaced tuning condensers can be

Fig. 39
A Simplified Antenna Coupling Sqstem. The 500 mm . condenser is an ordinary receiving type variable condenser; the 150 mmi. condenser is of the high-voltage type.
used; (4) ample leeway for the tuning circuit because large variable condensers are used. The plate coil Ll consists of 60 turns of No. 20DCC wire, close wound, on a 2 -inch diameter form, tapped at the 40th, soth and 60th turn.

Fig. 40
Fig. 41

Fig. 42
The circuit shows the use of a tuning lamp in series with the antenna and a shorting switch for bridging the lamp after the antennc is tuned. A better method is to merely wrap a turn or two of wire around the lead-in wire and connect the ends of the loop to the lamp. The lamp can then be left permanently in the circuit.

Fig. 40 shows the cormmon inverted-L Marconi antema using parallel tuning of the pick-up coil. Fig. 41 shows the same antenna in a T-form, instead of an invertedL. Practically all 160 -meter antennas are of the quarter wave type and are similar to those used in the broadcast band for either transmission or reception.

FIG. 43-How to Use a 40 Meter Zepp Fed Hertz on 160 Meters
The illustration shows a 40 meter Zeps fed Hertz artenna for operation in the 160 meter band. A counterpoise, about 10 feet above earth, completes the circuit to ground and makes a Marconi, or quarter wave grounded antenna out of the combination. The Zepp feeders are connected together and attached to the tuning condenser and to one end of the antenna coupling coil, as shown. The other end of the coupling coil connects to the counterpoise. It the feeders are not of the same length as those shown in the diagram. the number of turns on the coupling coil must be changed in order to establish resonance. The coupling coil should be loosely coupled to the tenk circuit of the transmitter. For 40 meter operation, the Zepp feeders are adjusted in the usual manner with the coil and condensers, and the counterpoise is not used.

Marconi Antennas

Marconi antemas are widely used on the 160 meter band and for longer wave commercial communication. For 160 meter operation the antenna can be from 90 to 150 feet long, with series tuming coils and conderisers, with the base of the antema to a good connected ground or counterpoise. Firs. 39 to 46 shows various methods for 16 H meter operation. The choice depends largely upon the individual location. It is always important to keep tine lead-in and coupling coil remote from all house wiring and metal objects in order to minimize losses. Grounds can be replaced with a comberpoise of one or more wires; usually a network of wires in the counterpoise is more effective because of greater capacity to ground. A Marconi antema for 160 meters can be adjusted by using series tuning to ground or counterpoise. This requires a tapped antema loading coil and a series variable condenser of $\mathrm{fr} \cdot \mathrm{m}$.00025 to .onomfl. Resonance is obtained be switching taps and by varying the condenser until the antemna loads the plate current of the final stage to its normal value. If this value is more or less than the rating of the turbe, the coupling between the loading coil and the final tank coil should be increased or decreased.

The radiation resistance of a quarter wave Marconi antenna at the point of ground connection is less than 35 ohms. The grourd connection should tave low resistance in order to convert the power into useful radiation, rather than into resistance heat losses. A Marconi antenna less than

Fig. 44
40-Meter Single Wire Fed Hertz for 160 Meter Operation. If " L " has sufficient tums. Cl is not required. " L " is coupled to the plate tank circuit.

Fig. 45
Another System for Loading an Antenna for 160 Meter Operation.
a quarter wave long has even lower values of radiation resistance: values of from 5 to 30 ohms have been encountered with an-

Fig. 46
Loading System for Short Marconi Antenna for Boats, Aeroplanes. Etc.
tennas from $1 / 16$ th to $1 / 5$ th of a wave in length.

These low values of impedance make it impossible to use the Collins Pi Antonna Netzork. Such antennas must be loaderl to a quarter wave, electrically, by means of loading coils, and in some cases the loading coil must be shunted with a variable condenser in order to obtain resonance. These very short Marconi antemas (such as installed on small sea-going craft, see Fig. 46), require a very low resistance connection to the ground or counterpoise in urder to avoid excessive power losses.

Directive Antennas

- All antemas have directional properties and these can be increased by properly combining the antenna elements. The various forms of half wave antennas already described have maximum radiation out at right angles to the direction of the wire. but the directional effect is not very great. If this radiation can be confined to a narrow beam, the signal intensity can be increased a great many times in the desired direction of transmission. This is equivalent to increasing the power output of the transmitter. It is more economical to use a directive antema than to increase transmitter power if general coverage is not desired.

Directive antemas can be designed to give as high as 23 DB gain over that of a single half wave antenna. However, this high gain (nearly 200 times as much power) is confined to such a narrow beam that it can be used only for commercial applications in point-to-point communication. The increase in radiated power in the desired direction is obtained with a corresponding loss in all other directions. Gains of 3 to 10 DB seem to be of more practical value for amateur communication hecause
the angle covered by the beam is wide enough to sweep a fairly large area. 3 to 10 DB means the equivalent of increasing power from 2 to 10 times. For example, an amateur living in the center of the United States would want his beam to be wicle enough to cover all of Europe in one direction, and New Zealand in the opposite direction. His beans should be centered about 45° north-of-east, and about 35° wide. Similarly, a 20° beam width, 50° south-ofeast, would cover South America and the Orient. Another 35° beam pointing east and west would cover Australia and South Africa. In San Francisco, two beam antemas could be made to cover all DX sections fairly well: a 30° beam, 35° south-ofeast for South America and the Orient, and another 35° to 40° beam, 45° north-of-east for Europe, New Zealand and Australia.

In this discussion all antenna arrays are assumed to have two main lobes of radiation in opposite directions (no reflector system). Angles in which the antennas could be pointed can be figured as the Great Circle slourtest distance direction with the aid of a glole of the world. Day and night directions in sone cases are different, due to the skip distance effects of some of the highfrequency bands, because the signals may go around the world in one direction in the morning, and in the other direction at night, to points near the opposite sides of the world.

Four to six half wave antemas or their equivalent are apparently about all that can be used without securing too much directivity, unless the operator is aiming at one locality of relatively small area. With ultrashort wavelengths below 10 meters, the problem of rotating the beam antenna is simplified and more directional effects with greater power are desirable. Reflector systems can be set up for increasing the beam in one direction and preventing radiation in the opposite direction.

Tables of wire lengths for several arrays and directional types of antennas are given. Local conditions of surroundings will modify these values, but for most purposes the wires can be cut to the values listed, and satisfactory results obtained.

The most simple method of feeding many types of directional antennas (if near the transmitter) is by means of Zepp feeders which are generally some old multiple of quarter waves in length. In all cases where the system is much more than a wavelength from the transmitter to the feed point, a non-resonant two-wire feeder and quarter wave matching stub should be employed. The problem is greatly simplified in most cases by the use of Zepp feeders, since the feeders can be tuned at the transmitter just as with any Zepp half wave antema. In some instances the feeders should be electrically an even multiple of
quarter waves in length. A simple field strength meter coupled to the antenna syster! will readily indicate correct feeder tuning.

All directional resonant antenna systems, other than a single long wire system, operate on the one frequency for which they are designed. The " V "" beain can be operated on two bands with fair satisfaction, although the correct angle δ between the arms of the " V " can only be made for one frequency. A type is generaily chosen from a consideration of available space. The " V " beams are less critical in mechanical design; if space is available for pointing the open or closec end of the " V " in the desired directien, this type is excellent.

Horizontal and Vertical Directivity

- The horizontal directivity of any antenna system is that shape of the radiated beam or beams shown looking down at the earth from a point above the anterma system. For e:ample, a beam having a width of 30° horizontally would spread out enough to cover a whole continent, such as Europe, from points in the United States. Vertical Dir.ctiaity is the expression for defining the angle above the horizon at which the major portion of the radiation goes out from the anterna. Directional antenna systems are generally made to have a very low angle of radiation, so that the vertical directivity is outward toward the horizon, rather than upward.

Polarization

- Radio waves are Polarised in that they will induce a greater signal in the receiving antema when the plane of that antenna is parallel to the plane of polarization. For , example, a vertical transmitting antenna will produce a vertically-polarized wave which can best be received by a vertical receiving anterna over relatively short distances, such :as in the ultra-high-frequency region. Wave-lengths between 10 and 100 meters can be transmitted with either vertical or horizontal antennas, resulting in the wave starting out with a vertical or horizontal polarization, and by the time it reaches the -distant receiving antenna it is apt to be mainly horizontally polarized. Reflection and refraction effects in the Heaviside Laver tend to twist the wave polarization so that in most cases a horizontal receiving antenna wil! give best results.

For ultra-short wavelengths, vertically polarized waves are not reflected upward by the surface of the earth as easily as those of horizontally polarized nature and only the ground wave is useful on waveilengths below 10 meters. Vertical trans-
mitting and receiving antennas have thus proven most satisfactory at these frequencies.

Wavelengths above 100 meters are not as easily twisted as those below 100 meters. With ultra-short wavelengths the ptane of polarization may be twisted by such objects as hills or buildings, so that occasionally a horizontal antenna will very efficiently receive signals transmitted by a vertical antenna.

Directive Factors

- Directional antenna systems operate on the principle that the radiation fields add or subtract in space. When several radiating elements, such as half wave antemina, are in close proximity to one another, the radiated fields may aid or oppose each other in different directions. In those directions in which opposition or cancellation occur, the signal is attenuated; similarly in those directions in which the fields aid each other, or add, the signal is increased. All directive antennas depend upon this phenomena. The fields are said to be in phase when they are additive, and out of phase when they cancel each other. Antenna directivity resuits from phasing the radiation from adjacent antenna elements so as to neutralize the radiation in the unflesired directions, and to reinforce the radiation in the desired direction. Directivity can be obtained m either horizontal or vertical planes. In transmission, directive antmas concentrate energy much like reflectors and lenses concentrate light rays. For receiving, the signal is proportional to the amount of antenra wire exposed to the radio waves when the half wave sections are properly phased.

Reflectors

A simple reflector consists of a wire approximately a half wave long, either excited directly by the transmitter so as to be out of phase with the antenna, or it can be of the parasitic type, A Parasitic Reflector one quarter wave away from the antenna must be slightly longer than the antenna in order to have an inductive reactance. The radiated field from the antenna is re-radiated by the reflector wire so that the radiation in line with the two is reinforced back toward the antenna and cancellcd in the opposite direction. If the reflector wire is spaced a half wavelength distant from the anterna the radiated field will be increased in two directions, wr tend to cancel in a direction at right angles. The increase is in a plane at right angles to the plane of the antenna and reflector, as shown in Fig. 47.
Two reflector wires spaced a half wave each side of an antenna, and an additional reflector spaced a quarter wave behind the

Fig. 47
antenna, will combine to increase the field intensity in a forward direction, and tend to cancel the field in all other directions.

Reflector curtains, a combination of several reflector wires in proper phase relation, are normally used in commercial applications in order to confine a beam to one direction. Without such a reflector curtain, which is usually similar to the antenna array, the beam would be transmitted with less intensity in both a forward and backward direction. The reflector in such cases doubles the field in the forward direction.

Parasitic reflectors have no direct connection to the antenna or feeders. Their length can be calculated from the formulas:

$$
\mathrm{L}=1.60 \times \lambda
$$

where L is the reflector length in feet.
λ is the transmitter wavelength in meters.

$$
\mathrm{L}=\frac{492,000 \times 0.97}{\mathrm{f}}
$$

where f is the transmitter frequency in kilocycles.

These formulas can be used for determining the length of single half wave reflector wires, such as those used in a parabolic reflector or in a Yagi antenna.

Directors

- If a wire is placed in front of an antenna and if it has a capacitive reactance, it will aid the radiation in a forzeard direction. More than one wire may be placed in line of the desired direction, such as shown in the Yagi antenna in Fig. 48 in order to greatly increase the directivity and field intensity in that direction. These are called director zeires and they are shorter than those used for reflectors. A capacitive reactance is obtained by making the wire less than an electrical half wave in length. A straight wire loses both inductance and distributed capacitance as it is decreased in length. At a given frequency the inductive reactance will predominate if the wire (less its end effects) is over a half wave in length. Similarly, if it is less than a half wave in
length the capacitive reactance will be greater than the inductance reactance. The antenna should always be resonant, in which case the inductive reactance is equal to the capacitive reactance and the two will then cancel each other.

Fig. 48
Yagi Antenna.

Director wires should be spaced at intervals of $3 / 8$ ths wavelength in the desired direction from the transmitting antenna. These lengths can be calculated as follows:

$$
\mathrm{L}=1.425 \times \lambda
$$

where L is the director length in feet. λ is the transmitter wavelength in meters

$$
L=\frac{492,000 \times 0.87}{f}
$$

where f is the transmitter frequency in kilocycles.

Directional Antenna Types

The Yagi Antenna

- The Yagi Antenna is useful on the ultrashort and micro-wave bands. It consists of several reflector and director wires grouped around a half wave antennit, such as that shown in Fig. 48, which is a top view of a vertical array. The rear reflector wire R is placed a quarter wave behind the antenna wire A, two other reflector wires are placed a half wave from the antema, on each side. The director wires D are spaced a distance of $3 / 8$ ths of a wave apart. The distances A, B, and C are a quarter, half and $3 / 8$ ths of a wave respectively in Fig. 48 . In the table (page 64), dimensiors are listed for the design of this type of directive antenna for wavelengths of from $1 / 4$ meters to 20 meters (224 to 14.4 mc .).

The reflector and director wires are all parasitically excited. The intenna can be

HORIZONTAL DIRECTIVITY OF A SIMPLE YAGI ANTEVNA
Fig. 49
fed with any type of KF feeder, such as a two-wire matched impedance feed, Zepp feeders or by a quarter wave matching stub and non-resonant line.

Fig. 50

The Franklin Antenna

- A directive antenna array which is quite practical for amateur application is shown in Fig. 50. It consists of two or more half wave sections in phase, so that the radiation field is broadside to the antenna. More than four sections wiil provide too sharp a beam for most amateur purposes. The half wave sections may be phased with quarte- wave sections, as shown in Fig. \&1, or by means oi phasing coils, as shown in Fig. 52 . In eithe: case the phasing coil, or quarter wave section, is equivalent to a half wave antema which does not radiate. but only serves the purpose of phasing the antenna current in the same direction in adjacent sections of the adiating antenna. The two end sections L_{1} should be cut for end effects, thus making these sections slightly shorter physically than the intermediate section L_{2}.

The dimensions listed in the Table for Antenna Arrays are theoretical values which may have to be slightly modified in actual practice, due to the proximity of surrounding objects. Ordinarily, this antenna can be tuned to resonance by varying the lengths of the quarter wave stubs L_{3}.

Fig. 51
Non-resonant feeders in the form of a 600 ohm line should preferably be tapped across the middle quarter wave section in order to secure a balanced antemna system. If one of these quarter wave sections is near the transmitter, it can be used as a Zepp. feeder of either one quarter or three-quarters of a wave in length. It can be tuned with series condensers and coils, as discussed under Zepp. Antennas.

Fig. 52
A 20 meter directional antenna of this type is easily constructed because the required space is only about 135 feet, and the height above ground about 40 feet. A single 5 -inch strain insulator can be used to support the L_{1} and L_{2} sections. The L_{3} sections can hang toward the ground, held in position with a small weight. The L_{3} quarter wave sections can be spaced with 6 -inch ceranic $Z_{\text {eppp }}$ feeder separators. Standing waves along the non-resonant feed line can be located hy means of the milliammeter. carborundum detector, and coil arrangement described in Fig. 95. The standing waves are indicated by variations of the milliammeter reading as the feeder test set is moved along the feed line at a constant distance from the line. The standing waves can be eliminated or minimized by changing the pesition of the feeder taps on the quarter wave section, aisa by a variation of the quarter wave section Iengths. In some cases
the values of L_{1} and L_{2} may have to be shortened slightly，and the various sections may sometimes differ from the lengths shown in the Table because of the proximity of some object near one of the sections．In most cases the values shown in the Table can be used without variation，unless the utmost in efficiency is desired．The values of L_{1}, L_{2}, L_{2} and L_{4} are correct for nearly all forms of antema arrays．This Table greatly simplifies directional antenna array design for amateur operation．

Antenna Array Dimensions

For Franklin，Bruce，Chireix－Mesny，
Barrage and Stacked Dipole Arrays．

BAND	$\begin{array}{\|l} \text { Frequency } \\ \text { Mezanyeyces } \end{array}$	L_{1}	L ${ }_{2}$	L；	L．
$\begin{gathered} 40 \\ \text { Meter } \end{gathered}$	7.02 7.10 7.20 7.28	$\begin{aligned} & 68^{\prime \prime} \mathbf{2}^{\circ} \\ & 67^{\prime}{ }^{60^{\prime}} \\ & 65^{\prime} 10^{\circ} \end{aligned}$	70^{\prime} 68，${ }^{\prime}$ 67＇6＂	$\begin{aligned} & 35^{\prime} \\ & 34^{\prime} 7^{\circ} \\ & 34^{\prime} \boldsymbol{y}^{\prime} \\ & 33^{\prime} \end{aligned}$	$\begin{aligned} & 17^{\prime \prime} 1^{\circ} \\ & 16^{\prime \prime}{ }^{\circ} 6^{\circ} 88^{\circ} \\ & 16^{\prime} \end{aligned}$
$\stackrel{20}{\text { Meter }}$	14.05 15.15 14.25 14.35 14.3	$\begin{aligned} & 34^{\prime} 1^{\circ} \\ & 33^{\prime} 0^{\circ} \\ & 33^{\prime} 7^{\circ} \\ & 13^{\prime} 5^{\circ} \end{aligned}$	$\begin{aligned} & 33^{\prime \prime} \\ & 34^{\prime}, 8^{\prime} \\ & 340^{\prime} \\ & 34^{\prime} 3^{\prime} \end{aligned}$	$\begin{aligned} & 17^{\prime \prime 6^{\circ}} \\ & 17^{4} \\ & 173^{\prime} \\ & 177^{\prime} 1^{\circ} \end{aligned}$	
$\begin{gathered} 10 \\ \text { Meter } \end{gathered}$	$\begin{gathered} \begin{array}{c} 28.0 \\ 29.0 \\ 30.0 \end{array} \end{gathered}$	$\begin{aligned} & 17^{\prime \prime}{ }^{10} \\ & 16^{\prime} 6^{\circ} \\ & 16^{\prime} \end{aligned}$	$\begin{aligned} & 17^{\prime} 7^{\circ} \\ & 17^{\prime} \\ & 16^{\prime} 5^{\circ} \end{aligned}$	$\begin{aligned} & 8^{\prime} 9^{\prime} 6^{\circ} 8^{\prime} 8^{\circ} \end{aligned}$	
$\stackrel{5}{\text { Meter }}$	$\begin{aligned} & \hline 56 \\ & 58 \\ & 60 \end{aligned}$	$\begin{aligned} & 8^{\prime} 7^{\prime \prime} \\ & 8^{\prime \prime} 3^{\prime \prime} \\ & 8^{\prime} \end{aligned}$	$\begin{aligned} & 8_{8}^{\prime} 9^{\prime \prime} 6^{\circ} 0^{\circ} \\ & x^{\prime} \end{aligned}$	$\begin{aligned} & 4^{\prime}, 5^{\circ}{ }^{4}{ }^{4}, 3^{4} \\ & 4^{\prime} \end{aligned}$	$\begin{aligned} & 2^{\prime} 2^{\prime \prime} \\ & 2^{\prime} 1^{\prime \prime} \end{aligned}$
$\stackrel{2.5}{\text { Meter }}$	$\begin{aligned} & 112 \\ & \text { 1116 } \\ & 120 \end{aligned}$		$\begin{aligned} & 4^{\prime} 5^{\circ}{ }^{\circ} 4^{\prime} 3^{\prime} \\ & 4^{\prime} \end{aligned}$	$\begin{aligned} & 22^{2} 0^{\circ} \\ & 25^{\circ},{ }^{\circ} \end{aligned}$	$\begin{aligned} & 13^{\circ}{ }^{\circ}{ }^{12}{ }^{\prime \prime} \\ & 12^{22^{\prime}} \end{aligned}$
$\begin{gathered} 1.25 \\ \text { Meter } \end{gathered}$	$\begin{aligned} & 224 \\ & 232 \\ & 242 \end{aligned}$	$\begin{aligned} & 253^{\circ} \\ & 25^{\circ} \\ & 24^{\circ} \\ & \hline y^{\circ} \end{aligned}$		$\begin{aligned} & -\overline{13^{\circ}} \\ & 121 z_{0}^{\circ} \\ & 12^{2} \end{aligned}$	$\begin{aligned} & 61 / 2^{0} 0 \\ & 610 \\ & 6.4 \end{aligned}$

The Bruce Antenna

－One of the simplest antenna arrays is shown in Fig，53．It is not critical as to the length of its elements，and it can be used over a wider frequency range than most other antenna arrays．The antenna is made up of $1 / 8$ and $1 / 4$ wave sections，resulting in good horizontal directivity if the overall length is at least five wavelengths long； however，it possesses very little vertical di－ rectivity because of its lack of height．The currents in each half of a horizontal section are out of phase and thus these sections tend to cancel their radiation field．The vertical sections are in phase，resulting in broadside radiation or reception，because this antenna is normally used for receiving． A similar bent wire，placed a quarter wave behind the antenna，will act as a reflector and make the system unidirectional．

Fig． 53
This antenna is occasionally used for ${ }^{5-}$ meter transmission and reception，due to its small size．The dimensions for different amateur bands are listed in the Table show－ ing Antcnna Array Dimensions．

Reflector and Director Dimensions

Freq．	A	\mathbf{R}	D	a	b	C
224	25＊	26°	23°	13°	261．	20°
232	24＊	25°	22°	121＊	251＊	19＊
240	231＊	24^{*}	21°	12°	$24 \frac{1}{2}$	183＇
112	$4^{\prime} 2^{\prime \prime}$	$4^{\prime} 3^{\prime \prime}$	451＂	25°	4＇5＇	$39^{\prime \prime}$
116	4^{\prime}	$4^{\prime} 1 \frac{1}{2}^{\prime \prime}$	44＊＊	25°	$4^{\prime} 3^{\prime \prime}$	38°
120	$3^{\prime} 10^{\prime \prime}$	4^{\prime}	43＂	24 ${ }^{\circ}$	4＇1＂	37＊
56	8＇4＂	8＇7＇	$7{ }^{\prime}{ }^{\prime}$	$4^{\prime \prime} 5^{\prime \prime}$	8＇9＇	6＇7＇
58	$8{ }^{1} 1$	$8^{\prime} 3^{\prime \prime}$	7＇4 ${ }^{1}$	4＇3＇	8＇6＂	6＇4＊
60	7＇10＂	$8{ }^{\prime}$	7＇1圱＊	4＇1＂	8＇2＇	6＇2＇
28	$16^{\prime} 8^{\prime \prime}$	17＇2＇	15＇3＇	8＇9＇。	$17^{\prime \prime}{ }^{\prime \prime}$	13＇2＇
29	$16^{\prime} 1^{\prime \prime}$	$16^{\prime} 6^{\prime \prime}$	14，${ }^{\prime \prime}$	8＇6＂	$17^{\prime \prime}$	12＇8＇
30	15＇6年＂	16^{\prime}	14＇3＇	$8^{\prime \prime}{ }^{\prime \prime}$	16＇5＇	12＇4＊
14.05	33＇4 ${ }^{\prime \prime}$	34＇1＊	$30^{\prime} 5^{\prime \prime}$	17＇6＇	35＇	26．3＇
14.15	$33^{\prime} 1^{\prime \prime}$	33＇11＂	30，${ }^{\prime \prime}$	17＇4＊	$34^{\prime} 8^{\prime \prime}$	26＇1＇
14.25	32＇10＂	33＇8＇	30^{\prime}	173＇${ }^{\prime \prime}$	34＇6＂	25＇11＊
14.35	$32^{\prime \prime} 8^{\prime \prime}$	33＇5＊	29＇10＊	17＇1＊	$34^{\prime}{ }^{\prime \prime}$	$25^{\prime} 8^{\circ}$

Stacked Dipole Antennas

－A dipole is simply another name for a half wave antema．Several dipoles can be arranged in stacks to form a highly directive antenna system．When an entire＂curtain＂ of these dipoles is used，together with a similar reflector curtain spaced one－quarter wave behind it，the beam becomes very slarp and of great intensity．Actual power gains of 100 to 200 are secured in commer－ cial practice．Both horizontal and vertical directivity can be very great because several elements，such as shown in Fig．5．t，（four radiating dipoles），can be built into a cur－ tain with one row on top of the other．For amateur purposes the single unit will pro－ vide sufficient directivity in most cases．

The radiating sections L_{1} may be either horizontal or vertical，depending on whether horizontal or vertical polarization is desired． The currents in the L_{2} and I_{Δ} sections pro－ duce fields which neutralize each other，with the result that radiation occurs only from
the L_{1} sections which are a half wave in lengeth, electrically. The astual physical lenyth is approximately 0.9 ns 5 of a hali wavelength. The L_{2} sections are made a iali wave in length in order to provide the proper plase in the L_{1} sections. In Fig. 55 the radiation is broadsite to the nintenna, as hown, and end-wise if the two sections L. do not cross.

Fig. 54

Fig. 55

Fig. 56

In the four forms of this antenna slown in Figs. 5t to 57, quarter or half wave matching stubs provide a means of connection to a two-wire non-resonant feeder. In some cases a 600 olm line can be connected directly into the array when the impedance at the chasen paint is 600 olms. Zepp. feeders are satisfactory if they are not over 5 quarter wavelength; long. These arrays are fairly pepular for the uitra-short

Fig. 57
wavelengths for amateur operation, although commercial application is widespread for wavelengths above 10 meters. These systems must be adjusted for the exact frequency of transmission, and quite rigidly supported.
The arrays shown in Figs. 55 and 56 are similar in performance, even though the L_{2} sections do not cross or reverse in one case. The plrase of the current in the L_{1} sections is maintained by connection of a resonant feeder or quarter wave matching stub at the ends of L_{2} in one case, and at the center in the other case.
Figute 58 shows the constructio: of a framework for an ultra high frequency directional antemna with parasitic reflectors spaced a quarter wave behind the " H "-section antenna. If desired, the reflector wires D can be cross-connected at their adjacent ends. The antenna sections A are listed in the Table for Anterina Array Dimensions as L_{1}. The reflector wires D are listed in the Table for Reflector and Dircctor Dimensions as D, which in this case is equivalent to L_{1}. The Zepp. feeders should be an even number of quarter wavelengths, the same as in a center-fed Zepp. antemma.
In practical applications of curtains, the reflector wires sliculd be tuned for maximum current. Usiatily the lengths will be between 2% and 5% greater than a half wave in length. The antenna elements are sometimes as much as 10% shorter than a half wave in length. The reflector curtain has a reactive effect upon the antenna and thus it is generally tuned-up first, then the antenna wires are cut to length experimentalty in order to provide exact resonance under operating conditions. In these curtains, which consist of horizontal rows of half wave elements and often two or three tiers one above the cther, RF power is fed in the proper phase relation to several points.

A reflector placed a quarter wave behind an antenna, and properly tuned, will provide a gain of 3 DB , which is a power gain of two. Two half wave antennas spaced a half wave apart and froperly excited, will also provide a 3 DB gain over that obtained from a simple half wave antenna. Three and four half wave sections in a line a half

Fig. 58
wave apart will provide gains of 5 DB and $61 / 2 \mathrm{DB}$, respectively, over that of a single half wave antema. "The simple "H" type of stacked dipole, Fig. 5\%, which consists of four half wave sections, will give a gain of approximately $61 / 2$ DB. The antema shown in Fig. 57 which has six half wave radiating sections will give a gain of approximately $81 / 2 \mathrm{DB}$. The one shown in Fig. it which has eight sections will give a gain of 10 DB . Adding a reflector section similar to the antenna array. and spaced one-quarter wave behind it. will provide 3 DB additional gain to any of these arrays.

The Barrage Antenna

Another of the many types of directive arrays is shown in Fig. 59, a broadside radiator of vertically polarized waves.

The horizontally polarized waves which would be radiated by the top and bottom horizontal wires are negligible because of the opposition of current flow in the two halves of each of these members. This is obtained by making the vertical sections at the top and bottom of L_{3} a quarter wave long. The middle sections I_{2} are half wave in length. The dimensions for this antenna are listed in the Table of Antenna Array Dimensions for amaleur bands.

RCA Broadside Antenna

- In this array, Fig. 60, all parts of the parallel transmission line connecting the L

Fig. 60
sections are kept in phase by means of shunt inductances.

The waves are vertically polarized and the beam is broadside to the antenna. A reflector system spaced a quarter wave behind the antenna can be used to make it unidirectional.

CHIRETX-MESNY ARRAY ELEMENT
Fig. 61

Chireix-Mesny Antenna

Numerous elements of the type shown in Fig. 61 are comected to form an antenna and reflector curtain for operation in many French commercial stations. In this case, the feeder system is different from that shown.

For amateur application a Zepp. type feeder is recommended. The dimensions for L_{1} and L_{2} are approximately a half wave in length, and for the amateur bands the lengths can be found in the Table of An tenna Array Dimensions.

"V" Antennas

- The horizontal "V" antenna shown in Fig. 62 is suitable for amateur as well as commetcial work. The long wires L can be made several waves in length in order to abtain good directivity,

By choosing the proper angle δ, the lobes of radiation from the two long wire antennas aid each other to form a bi-directional beam. The back end radiation can be re-directed forward by a reflecting antenna similar to the radiating antenna, located an odd number of quarter wavelengths behind. and faced so that the two antennas are supplied with current 90° out of phase. Each wire L by itself would have a radiation pattern similar to that shown for antennas operated at harmonics; refer back to Fig. 11. Desigal data for the 10,20 and 40 meter bands is listed in the Table, together with the proper angle δ.

This type of antenna can be made into a Vertical "V" as shown in Fig. 63, which is particularly adaptable for receiving, because only one antenna mast is required.

The angle δ for different lengths of L is shown in the chart for Diamond Antennas. A good ground connection is necessary.
Horizontal V antennas are easily constructed and have proven very effective. For
amateur operation L can be two or four wavelengths long. Conmercial antennas are usually made eight waves in length in order to secure a sharper beam with a correspondingly greater power gain.

Diamond Antennas

A very effective directional antenna having a low angle of radiation of horizontally polarized waves is shown in Fig. 64A. This non-resonant Diamond antenna consists of

Fig. 62

VERTICAE MV * ANTEVNA
Fig. 63
"V" Antenna Design Table

Frequency in Kilocycles	"Half Wave" Dipole	$\left\lvert\, \begin{gathered} \text { 'Full Wave’’ } \\ \mathrm{L}=\frac{\lambda}{2} \\ \delta=180^{\circ} \end{gathered}\right.$	$\begin{aligned} & \mathrm{L}=\lambda \\ & \delta=104 \end{aligned}$	$\begin{aligned} \mathrm{L} & =2 \lambda \\ \delta & =75^{\circ}\end{aligned}$	$\begin{aligned} \mathrm{L} & =4 \lambda \\ j & =52^{\circ}\end{aligned}$	$\begin{aligned} \mathrm{L} & =8 \lambda \\ \delta & =39^{\circ} \end{aligned}$
28000	$16^{\prime} 8^{\prime \prime}$	$17^{\prime} 1^{\prime \prime}$	$34^{\prime} 8^{\prime \prime}$	$69^{\prime} 8^{\prime \prime}$	140 '	$280{ }^{\prime}$
28500	$16^{\prime} 4^{\prime \prime}$	$16^{\prime} 9{ }^{\prime \prime}$	$34^{\prime} 1^{\prime \prime}$	$68^{\prime} 6^{\prime \prime}$	$137^{\prime} 6^{\prime \prime}$	275'
29000	$16^{\prime} 1^{\prime \prime}$	$16^{\prime} 6^{\prime \prime}$	$33^{\prime} 6^{\prime \prime}$	$67^{\prime} 3^{\prime \prime}$	135'	271^{\prime}
29500	$15^{\prime} 8^{\prime \prime}$	$16^{\prime} 2^{\prime \prime}$	33^{\prime}	$66^{\prime} 2^{\prime \prime}$	133'	266^{\prime}
30000	$15^{\prime} 61 / 2^{* \prime}$	$15^{\prime} 11^{\prime \prime}$	32' $5^{\prime \prime}$	65^{\prime}	131^{\prime}	262 '
14050	$33^{\prime} 4^{\prime \prime}$	34^{\prime}	69^{\prime}	139^{\prime}	279^{\prime}	558'
14150	$33^{\prime} 1^{\prime \prime}$	33' $10^{\prime \prime}$	68' $6^{\prime \prime}$	$138{ }^{\prime}$	277 '	555'
14250	$32^{\prime} 10^{\prime \prime}$	$33^{\prime} 7^{\prime \prime}$	$68^{\prime} 2^{\prime \prime}$	$137{ }^{\prime}$	275'	552'
14350	$32^{\prime} 8^{\prime \prime}$	$33^{\prime} 5^{\prime \prime}$	$67^{\prime \prime} 7^{\prime \prime}$	$136{ }^{\prime}$	273 '	548^{\prime}
7020	66' ${ }^{\prime \prime}$	$68^{\prime} 2^{\prime \prime}$	$138{ }^{\prime} 2^{\prime \prime}$	$278{ }^{\prime}$	558'	
7100	$65^{\prime} 9^{\prime \prime}$	$67^{\prime} 4^{\prime \prime}$	$136{ }^{\prime} 8^{\prime \prime}$	$275{ }^{\prime}$	552'	1100^{\prime}
7200	$64^{\prime} 11^{\prime \prime}$	$66^{\prime} 5^{\prime \prime}$	$134^{\prime} 10^{\prime \prime}$	$271{ }^{\prime}$	545^{\prime}	1090^{\prime}
7280	64^{\prime}	$65^{\prime \prime} 8^{\prime \prime}$	$133^{\prime} 4^{\prime \prime}$	$268{ }^{\prime}$	$538{ }^{\prime}$	$1078{ }^{\prime}$

Fig. 64
Diamond and "V" Antennas.
two " V ". antemas. The current distribution dies away uniformly from the input corner to the terminating resistance. As a result of this behavior, the Diamond antenna is not critical with respect to frequency. It can be used without any change or adjustment over a frequency range of at least two-to-one. Furthermore, it is unidirectional, since the terminating resistance eliminates the radiation: which would otherwise take place in the backward direction. These properties make the Diamond antenna desirable in many ways. It can, for example, be used for 20 meters in the daytime and 40 meters at night, without any change. The terminating resistance should be about 800 ohms, capable of dissipating half of the power supplied by the transmitter. The antenna offers a resistance load of about 800 ohms to the transmission line. Design data is shown in the Diamond Antemna Charts
and the dimensions L are listed in the Table for " V " Antenna Design.

"V" Antenna Design

If the terminating resistance is not used, the Diamond antenna is bi-directional and becomes of the resonant type. Diamond antennas will radiate in an exactly horizontal direction, provided the angle of radia-

MORIZONTAL DIRECTIVITY OF A "V* ANTENNA - A LONG ON EACH SIDE

Fig. 65

MORIZONTAL DIRECTIVITY OR A "V"ANTENNA
Fig. 66
tion in degrecs and the height of the antenna in wavelengths is correctly calculated. These calculations have been simplified, and the Chart will enable the quick determination of the necessary dimensions. For example, slanting the antenna 6° will cause the energy to be radiated in an exactly horizontal plane.

The Diamond antema is much more economical in construction than the various forms of antenna arrays employing vertical curtains of wires. It is just is effective in its directivity and power gain, and is not critcal with respect to frequency of operation.

Beverage Antenna

A very long wire terminated in a resistance equal to its characteristic impedance is called a Bererage, or IVavi Antenna, Fig. 71.

The antenna should be several wavelengths long and it can be of any convenient height, from 10 to 20 feet above earth. It is quite satisfactory for long-wave reception and is sufficiently directive to materially reduce static disturbances. It is non-resonant and can be considered as a one-wire transmission line with ground return. It should be pointed toward the station whose signals

Fig. 67
Diamond Antennas.

YERTIEAL DIRECTIVITY OF A $2 A$ DIAMOND ANTENNA
Fig. 69
are to be received. This antenna operates most effectively when located over poorly conducting earth, since in this case the wave front of the received signal is tilted more than when the wave travels over water or moist earth. This form of Beverage Antenna is not suitable for short-wave recoption.

C
Fig. 68
Diamond and " V " Antenna Design
Curves.

Fig. 70

Antenna Coupling Methods

It is obvious that the power from a transmritter must be transferred or coupled to an antenna in some manner; likewise, the received energy must be coupled into a receiver. There are a great many ways in which this transfer of energy can be accomplished. In some forms, the coupling

Fig. 71
device serves the dual purpose of transierring power and tuning the antenna to resonance; in other cases it prevents illegal radiation of harmonics. The impedance match for a final amplifier is accomplished in the coupler circuits which comect to the antema or feeders. Impedances are matched when the plate current of the final amplifier is at its normal value when all circuits are tuned to exact resonance. When the plate current is below normal it is an indication that the antenna feeder impedance has been transformed into a too-high value, and vice-versa when excessive plate current is drawn by the final amplifier.

Types of Coupling Devices

- The simplest coupling methorl for a single wire fed or end fed antema is by means of Dircet. Coutling, wherein the impedance matching is accomplished by tapping to the final amplifier plate coil, as in Fig. i2A.
A blocking condenser (.002 mfd) should be connected in series with the antenna or feeder to prevent DC plate voltage from reaching the antema and thereby endangering human life. The final amplifier plate coil has a voltage node either at the center or at one end. depending upon the type of amplifier used. The voltage node occurs at the center of the coil in a push-pull amplifier, and also in a plate neutralized amplifier. This voltage node (zero RF voltage) occurs at the lower end of the coil. both in the case of single-ended screen-grid amplifiers and grid neutralized single-ended amplifiers. The antemna or feeder tap is usually comected near the voltage node. The proper impedance match (normal plate current load) is obtained when the tap is at the proper point on the coil. If the tap is too close to the voltage nocle, the antenna will not sufficiently load the amplifier; if the tap is too far toward the plate end of the coil, excessive loading will result, with conseguent overheating of the amplifier tube and lower efficiency.

Comparative RF Feeder Losses

Frequency	D. B. loss per 100 ft .	Type of Line
		(150 ohm impedance, rub-
7 mc.) ber insulated twisted pair
30 mc .	3.5	$\left\{\begin{array}{l}\text { with outer covering of } \\ \text { braid. }\end{array}\right.$
7 mc .	0.4	$\left\{\begin{array}{l}\text { W. E. } 3 / 3 / \mathrm{c} \text { concentric pipe } \\ \text { feeder with inner wire on }\end{array}\right.$
30 mc .	0.9) bead spacers. Impedance
7 mc .		- Open 2 -wire line No. 10 wire. Impedance -440
30 mc .	0.12	$\left\{\begin{array}{l} \text { wire. Impedance }=440 \\ \text { ohms. } \end{array}\right.$
7 mc .		Twisted No. 14 solid
14 mc .		eather prool wire,
30 mc .		weathered for six months (telephone wire).

Inductive Coupling

Energy can be supplied to the antenna or feeder from the final amplifier by means of induction between two coiis. The antenna

Fig. 72-A

Fig. 72.B
coil can be tuned or untuned, as shown for several circuits in Figs. 34, 36, 40, 46 a..d 33.

Zepp. feeders sometimes use a split antenna coil which couples to each end of the final tank coil. A somewhat better system is to link-couple the Zepp. feeder tuning coil to the final amplifier coil because there is less capacity coupling and the coil losses are lower. 160 meter Marconi antenmas can be coupled inductively to the final amplifier plate coil by means of some of the arrangements previously illustrated. The antenna should be tuned to resonance with series or parallel tuning and orcasionally by adjustment of the tapped artenna loading coil. A suitable value of series condenser would be from .00025 mfd . to .0005 mfd . maximum capacity. The spacing between plates will

Fig. 73
L2-Final Plate Coil.
depend upon the power output of the transmitter and the RF voltage gradient at the point where the condenser is located. In most cases, plate spacing of .03 -to-. 07 -inch will suffice. Resonance is obtained by switching taps and varying the condenser until the antenna loads the final stage plate current to its normal value. If this value is more or less than the rating for the tube, the coupling between the loading coil and the final tank coil should be increased or decreased.

Single wire fed, and end fed antemas can be tapped across pa-t or whole of a tuned circuit which in turn is inductively or link coupled to the final amplifier tank circuit. The advantage of having an additional tuned circuit for the antenna compler is in the reduction of harmonic radiation. A better balance can be obtamed in the case of pushpull amplifiers than with direct coupling. More detailed information on coupling single wire antemas is given in preceding pages.

Twisted-pair feeders can be inductivelv coupled to the final tank circuit by using from one to four turns of well-insulated wire, wound over the voltage node of the final tank coil. The number of turns depends upon the frequency of operation and the desired antenna load.

Collins Pi Coupler

- This system consists of one or two coils and two variable condensers connected in the form of a low-pass pi filter. See Figs. it to 80 . The filter permits the passage of only the fundamental frequency and greatly attenuates the undesirable harmonics, similar to the action of a filter used in AC power supplies. The coupler is tuned to the frequency of the transmitter by varying condensers $C I$ and $C z$, also by adjusting the taps on the coil or coils. The impedance of the antemna feeders is matched to the final amplifier by means of the ratio of the capacity of $C I$ and $C 2$, and by adjustment of the coupler taps across the final amplifier tank coil.

This system can be used with some Zepp feeders, single wire or two wire feeders, and end fed antennas.

The plate tank of the final amplifer must be tuned to resonance with the pi network disconnected from it. It is best to do this with reduced plate voltage, and resonance is indicated by greatest dip in the plate current milliammeter rearling. The final amplifier nrust not be retuned thereafter. Then connect the pi networ! to the final amplifier and antenna. Tune the two variable con-

Fig. 74
Single-Wire Feed Line-Single Section Plate Tuning Condenser-Shunt Feed. Cl and C2 in All Circuits Are .00035 mid .

Fig. 75
Two-Wire Feed Line from Single-Ended Amplifier-Split-Stator Plate Tuning and Optional Split-Stator Used as C2. Shunt Feed.

Fig. 76
Single-Wire Feed from End of Low lmpedance Output Tube Tank. Split-Stator Tuning and Series Feed. Cl and C 2 Should Be Variable.

Fig. 77
Two-Wire Line from Single-Ended Amplifier. Split-Stator Tuning and Series Feed.

Fig. 78
Same as Fig. 77, But with Single-Section
Tuning Condenser.
densers in the pi network until maximum antenna current (or feeder current) is obtained at normal values of final amplifier plate current when normal plate voltage is applied. The pi network condenser which is closest to the fimal amplifier is used to obtain resonance in the network for any particular setting of the impedance matching condenser (the nearest one to the antenna). The amount of inductance in the network coils must be determined by experiment to obtain best results.

Fig. 79
Coupling a Two-Wire Line to a Push-Pull Final Amplifier. Single-Wire Line Out of a Push-Pull Final Through a Pl Network is Not Recommended.

Fig. 80
Coupling a Single Wire Antenna or FeedLine to a Push-Pull Final Amplitier.

L1 and L2 should be interwound in order to load both tubes equally in a push-pull amplier. L2- $1 / 3$ Tank Turns, interwound or otherwise very closely coupled.
L3-Standard Collins coil.
C2-C3-. 00035 mfd . each.

Link Coupling

A tuned feeder circuit can be coupled to the final amplifier tank by means of a twisted or parallel pair of wires, with one or more loops of wire at each end, as shown in Fig. 81. These link coupled loops should be wound over the voltage nodes of the two tuned circuits. Variation of coupling can be accomplished by varying the number of loops, or the diameter of the loops with respect to the coil diameters. The number of coupling turns depends ipon the ratio of impedances; in the case of a Zepp. antenna more coupling turns are needed around the antemna coil than around the plate amplifier coil. In nearly all cases
oree to two turns around the plate tank coil will suffice. The number of turns around the antema coil will vary from 1 to 4 , or 5, depending upon the cicuit used, i.e., para-lell-tuned or series-tuned.

Fig. 81

Fig. 82
Link Coupling for End-Fed or Single Wire Feeders.

Fig. 83
Linz Coupling to 160 Meter Antenna System.

Fig. 84

Adjustment of the coupling link and location of antenna taps on tile antenna coil can readily be made with the aid of a field strength meter in order to find the adjustment which will provide maximum antenna field strength for normal load on the final

Fig. 84-A
Link Coupling from Final Amplifier to Tuned Antenna Circuits.
amplifier. When Zepp. feeders are used, RF meters can be connected in series with the feeders as an aid in tunning.

No. 1t or No. 12 rubber-covered solid wire is suitable for the coupling line. The coupling loops should have sufficient insulation to withstand the plate voltage.

Broadcast Type Antennas

Older types of " T " and "Inzerted L " flattop antmmas are rapidlv being replaced with vertical antemas for broadcast transmission. The newer forms confine most of the radiation to very low angles, with the result that fading effects within a radius of 100 miles can be greatly reduced. The L and T type antemnas provide some high angle radiation and the reflected waves from the I Ieaviside Layer cause fading effect at night within a radius of less than 50 miles. Reduct ion of sky wave radiation greatly improves the coverage of a broadcast station.

Vertical antemas are sometimes constructerl by rumuing a heavy wire conductor throug! the center of a lattice-work tower; in a great many cases the metal tower itself is the radiator. The base of the antenna usually comects to a tuning device and then to a rery extensive ground system. The tuming device also serves to terminate the transmission line. sucli as shown in the examples given for Concoutric Lives. The vertical antemas in Fig. 85 have a current distribution as shown, which indicates the relative values of impedance with respect to ground. These antennas connect to ground through tuned circuits and conse-

Fig. 85
quently they are resonant to the frequency of the transmitter. Antennas more than one quarter wave in vertical height provide a better low angle wave (ground wave); because of their greater effective height they are being used in the newer broadcast station installations.

Fig. 86
Base of Vertical Radiator With Heavy Insulator Supports

Two Band Tilt Antenna

- A simple bi-directional antenna for 10 meter operation, and a non-directional 20 meter antenna, is shown in Fig. 87.

This antenna consists of a 33 foot length of $3 / 4$-inch diameter Dural tube, supported on a large stand-off insulator in such a mamer than the angle of tilt can be adjusted and the free end swung through an angle of approximately 180 degrees. The antenna is used in a vertical position for 20 meter operation: for 10 meters it is tilted to an angle of 54 degrees with respect to
the horizon, and pointed toward or away from the direction in which it is desired to transmit or receive. The angle of radiation is in a horizontal plane for both 10 and 20 meter operation. A single wire feeder can be comnected to the pipe at a point eleven feet up from the bottom end, or a Zepp. or enel-fed connection can be employed. The

TWO 日AND (40-20 METER) TILT ANTENNA -
VERTICAL FOR $2 O M E T E R S$-TILT 34° FROM WORIZON FOR 10 METERS

Fig. 87
pipe should be guyed near the center by means of heavy cord or light rope in order to facilitate the rotation of the radiator. A 33 foot pipe can be made from two sections, butted together over a smaller inner tube, or outer sleeve, for a forced-fit connection.

Dummy Antennas

- A non-radiating antemna is essential for experimental tests of any transmitter. The name "Dummy Antcnna" has been applied to such arrangements. It consists of a resistive load which simulates the regular antenna load. The resistors in the dummy antenna must be large enoagh to dissipate the RF power output delivered by the transmitter. Non-inductive resistors made for this purpose can be connected in series with thermo-ammeters to determine RF power output. Mazda Lamps provide a visual indication of RF power output because this power is converted into light in the same manner as illumination is secured from the 110 -volt line. The dummy antenna circuits shown in Figs. 88, 89 and 90 are suitable for all practical purposes.

A 100 watt Mazda Lamp when lighted to normal brilliancy in a dummy circuit indicates that the transmitter is delivering 100 watts of RF output. The resistance of electric lamp hulbs varies widely with filament temperature, therefore it is difficult to
accurately determine the power output of the transmitter by Ohm's I ${ }^{3}$ R Law, because R is a variable factor.

Field Strength Measuring Set

- Actual RF current readings in any portion of an antema vary with the position of the current nodes, with the result that an antema may not be correctly tuned to the operating frequency of the transmitter. An actual indication of the power radiated by an antemna can be secured with the aid of a field strength measuring set, which consists of a low-reading milliammeter, diode rectifier and tuned circuit or pick-up coil. A circuit diagram for an effective field strength measuring set and phone monitor is shown in Fig. 91.

Fig. 88
Mazda Lamp Coupled to Final Tank Coil.

Fig. 89
Dummy Antenna with Non-Inductive Resistor and R-F Meter.

Fig. 90
Dummy Antenna Link Coupled to Plate Coil. L1-L2 Are Wound Over the Plate Coil and Antenna Coil, L.

When the headphones are plugged into the phone jack, the presence of key clicks.
excessive carrier hum or quality of voice modulation can be determined. By plugging a 10,000 ohm resistor into the phone jack, the milliammeter will indicate overmodulation peaks as shown by a fluctuation of the steady carrier strength when voice modulation is applied. Furthermore, this field strength meter can be used as a neutralizing indicator by merely comecting a short pickup antenna wire to the device and placing it near the circuit which is to be neutralized.

Fign 91
Simple Circuit of Field Strength Meter.

Fig. 92
Extexior View of Field Strength Meter and 40-80 Meter Coil.

Plag-in coils are tuned to the frequency of the transmitter. The pick-u; antenna wire which is connected to the field strength measuring set is placed somewhere in the immediate vicinity of the radiating portion of the antenna. The length of the wire and its distance from the transnitting antema depend upon the power output of the transmitter. The pick-up antenna can be from five to six feet long, depending upon the frequency and the amount of pick-up required to secure a deflection of the meter. The antema system is tumed for maximum
reading on the milliammeter scale, which denotes the greatest amount of field radiated by the antenna.

A type 30 tube is connected as a diode, which will operate satisfactorily with only $11 / 2$ volts of filament battery. The diode is connected across a portion of the tuned circuit, which results in more selective tuning and good sensitivity. The $0-1 m a$. DC miliammeter reads the rectified current produced by the RIF energy in the tuned circuit. The diode serves as the rectifier, which can be either a vacuum tube or crystal detector.

A carbormodun crystal detector will quite satisfactorily replace the type 30 tube and battery. This trpe of crystal detector will handle accidental RF^{*} overloads without destroying the sensitivity of the crystal, such as in the "Standing Wave Detector" shown in Figs. 94 and 95.

Fig. 93
Looking Into the Set. A Small 1-11/2 Volt Dry Cell Is Held in Position by a Metal Eracket.

The coils are wound on plug-in forms, $1 / 2-$ inch diameter, three coils being required to cover the six amateur bands from 5 to 160 meters. The 5 to 10 meter coil has two turns, spaced $1 / 2$ in. apart, with a tap at the center. The 20 and 40 meter coil has 12 turns, space-wound to cover a winding length of $3 / 4 \mathrm{in}$., with a tap taken on the fourth turn from the ground end. For 80 and 160 meters, 60 turns are close wound on the form with a tap taken on the 20th turn from the bottom end of the winding. A midget 100 mmfd . variable condenser will tune the coils in such a manner that the lower values of capacity will cover one end of the band and the higher capacity will cover the other; a single coil thus covers two bands.

The field strength mete: should be housed in a completely enclosed metal can.

Grounds

- A good comection to carth is essential for operation of Marconi antennas for both receiving and transmitting. Several pipes driven into the earth, spaced a few feet apart and connected together, will provicle a good ground system for amateur operation. Broadcast and commercial transmit-

Fig. 94
"Standing Wave Detector" and Field Strength Meter. The Device Is Moved Along the Feeder or Antenna, held close to the wire. A variation of current denotes standing waves.

Fig. 95
Simple Circuit Diagram of Device Illustrated in Fig. 94.
ters oiten require a very elaborate ground system of several miles of copper wire or ribbon, buried under the surface of the earth. Such a system can be constructed so that it fans-out in all directions beneath the antenna. Ordinary water pipes are generally suitable for receiver ground connections.
When a satisfactory ground comnection is not available, a Comferpoise must be used with Marconi antennas. The ralliation resistance of a quarter wave antenna is approximately 3 it olms, therefore the gromnd re:istance must be considerably less than $3 \tilde{r}$ ohms in order that the greatest amount of transmitter power will be radiated into space. A high resistance ground connecticn can waste more power than is actually radiated by the antenna. This is one reason why lialf wave antennas are so widely used; they require no ground comection.

Antennas for Ultra-High-Frequency Operation

- The fundamental principles of antennas for wavelengths below 10 meters are no different than those discussed elsewhere for shortwave operation. The physical size of these antennas is such that they are economical to construct and they can easily be made portable. In the ultra-high-frequency field of communication the direct, or ground wave is used; for this reason the transmitting and rece:ving antennas are generally in visual range of each other. It is therefore necessary that the antennas be located as high above ground as possible. Low angle radiation is necessary and antennas which are particularly effective for this purpose slould always be used. The earth reflects the ground wave upward, somewhat like the effect which is created by a body of salt water which pushes the somewhat longer wave in an upward direction. The ground acts like a mirror in reflecting light waves. Vertically polarized waves have less tendency for at upward bending, and thus vertical antennas are generally employed.
The simple non-directional antenna for u.h.f. operation consists of a half wave vertical wire or rod, fed with a two-wire matcled impedance feeder (Fig. 98), or by means of a quarter wave matching stub and two-wire non-resonant line, Figs. 96 and 99.

Zepp. feeders are seldom employed, because the antenna in most cases is located several wavelengths away from the transmitter or receiver in order to secure ample height above the ground.

A Concentric Ferder (Fig. 100) is very effective for feeding either a half wave an-

SIMPLE SMETER DIREGTIONAL ANTENNA WITH REFLEGFOR WMICH DOUBLES OUTPUT \& SENSITIVITY

Fig. 96

Fig. 97
Directivity Pattern oi Antenna Shown im FIG. 96

Fig. 98 5-Meter Matched Impedance Antenna.
temna or a quarter wave Marconi antenna, such as those used for mobile 5 -meter work.

Directive antemas often prove of great value in the ultra-high-frequency region because the high power gain which is obtainable gives the same -esult as a great increase in transmitter power. The cost of increas. ing power is far more than that of a simple antenna array. Iny of the directional antenna systems previously discussed can be used for u.h.f. communication, although those
which give vertical polarization, such as the Stacked Diploe, Yagi, Vertical Franklin, or Bruce are best.

Fig. 99

Fig. 100

Fig. 101

Types of Mobile U. H. F. Antennas

- A quarter wave rertical Marconi antenna (Fig. 102) is very convenient for automobile installations. A 4 -foot rod with the bottom end grounded to the car body can be fed with a single wire feeder several feet long; this feeder connects to the 5 -meter set in the car.

Another 5 -meter antenna consists of an insulated 4 -foot rod, fed by either a twisted pair (solid conducters), or by a concentric transmission line, Figs. 100 and 101. In the case of twisted pair feeders, the impedance match is not very good, but this effect can be overcome to some extent by cutting the
twisted pair to some particular length. This can best le determined by experiment, because a few inches more or less of feeder will provide a tuning effect and allow more efficient operation.
Quarter wave rods can be mounted on the roof of an automobile, if some means of flexible coupling is built into the base of the rod so that the antenna car be swung down

SIMPLE SMETER AUTO ANTENNA
Fig. 102
when it strikes an overhead obstacle, such as a garage entrance, etc. Sometimes the rod is mounted on the front or rear bumper of the car, on the radiator, running board or fender. In many cases the antenna rod is mounted directly on a transmitter housed in the rear trunk of the automobile.

Mobile antenna installations for police radio work differ from the 5 -meter types in that the antennas are somewhat longer hecause the frequency of operation is lower. The length can be calculated from the formula:

$$
L_{-1}=\frac{492,000 \times 0.485}{f}
$$

where $L_{1}=$ The quarter wave antenna length in feet.
$\mathrm{f}=$ The transmitter frequency in kilocycles.

The length of a half wave antenna is twice that of a quarter wave antenna.

Fixed Station 5-Meter Antennas

- These antennas can he constructed from copper or aluminum rod, or wire. When a wire antenna is used, the wire can be supported on stand-off insulators attached to a vertical 2 " $x 3^{\prime \prime}$ wood pole. The pole should be guyed, preferably with ropes, in order to keep metallic conductors away from the field of the antenna. The antenna should be as high as possible and well remote from surrounding objects.

These same types of antennas can be used for television reception by making the half wave antenna resonant to the freguency of the television transmitter. In this case a

U. H. F. Antennas

twisted-pair feeder of solid wire, such as the $E O 1$ Cable, can be used in order to reduce automobile ignition interference. The loss in a twisted-pair feeder at these frequencies is rather high and transposition blocks can be used at intervals along the two-wire feeder line.

Fig. 103

Long wire antennas can be used on 5 meters providing the directional effects are taken into consideration For example, a 20 or 40 meter single wire fed or Zepp. antenna can be operated on 5 meters with fairly satisfactory results for both transmitting and receiving.

21/2-Meter Antemas

Any of the antennas previously described, and which provide vertical polarization, are suitable for $21 / 2$ meter operation. Those shown in Fig. 104 are ideally suitable for use with a $21 / 2$ meter transceiver. The figures are self-explanatory, in that all dimensions are clearly shown. The Table showing Antenna Array Dimensions lists all of the data for the ultra high-irequency bands, down to $11 / 4$ meters. The Table, Reflector and Director Dimensions, shows the data for any form of Yagi or Parabolic Reflector system for wavelengths down to $11 / 4$ meters.

Micro-Wave Antennas

- Antennas for operation in the vicinity of one meter, or less, are classified as MicroWave Antennas. Half wave vertical rods are suitable for portable operation and in most cases they can be capacitively coupled at one end to the micro-wave transmitter or receiver. Directive arrays, especially those of the Yagi type, are easily constructed; they greatly improve the performance of micro-wave sets.

Group of Typical 5-Meter Antennas.

Fig. 104

Concentric Lines

- A concentric transmission line is one of the most satisfactory means for carrying RF power from the transmitter to the radiating antenna. It has low losses, is weather-proof and the outer conductor is at ground potential. No radiation can occur, which is particularly important in a directional antenna system. The characteristic impedance ranges from 50 to 150 ohms, depending upon the ratio of inside diameter of the outer conductor to the outside diameter of the inner conductor. Its impedance can be calculated from the formula:

$$
Z=138 \times \log _{10} \frac{\mathrm{D}}{\mathrm{a}}
$$

where D is the inside diameter of the outside conductor,
d is the outside diameter of the inner conductor.
The outer conductor can be grounded at any point. The inner conductor is insulated from the outer sheath by glass or isolantite beads which are placed at intervals along the line; the beads aiso furnish the necessary mechanical spacing.

Concentric line feeders are used for coupling broadcast transmitters to the antenna, as well as in short-wave and u.h.f. installations. See Figs. 105 to 108 . The impedance can be made to exactly match the

Fig. 105
Heintz \& Kauiman Concentric Transmission Line.

Fig. 106

Fig. 107

Fig. 108

Concentric Feeder Systems for Broadcast Antennas with Various Terminations.

center impedance of a half wave antenna, and very closely matched to a quarter wave antenna. A vertical quarter wave antenna has an approximate radiation resistance of 37 ohms at the current loop (ground connection).

Concentric lines can be baried underground and run for distances of several hundred yards without sacrificing appreciable amounts of RF power.

Reinartz Rotary Beam Antenna

The John L. Reinartz compact directive antenna. Figs. 109 and 111, has relatively bigh efficiency on the short aral ultra-short wavelengths. It is suitable for 5 -meter transmission and reception and its field pattern is similar to that of a balf wave vertical antenna with single reflector, Fig. 110.
It consists of two 8 -foot lengths of tubing, bent into a circle, with 2 in. to 3 in . spacing between the tubes. The circles are not closed; an opening of one inch remains, as shown in the diagram.

Fig. 109
Reinartz Rotary Beam with Twisted-Pair Feeder and Stub.

radiation pattern
Fig. 110
Disectivity of the Reinartz Rotary Beam.

Fig. 111

Reinartz Rotary Beam Antenna with Spaced Feeder and Stub.

The diameter of the circle is a little over 30 inclies. The most efficient method of feeder connection to a 5 -nreter set is by means of a quarter wave matching stub connected to either a twisted pair feeder or two wire 500 ohm line. This type of antenna
can be placed in either a horizonta: or vertical plane, depending upon whether horizontal or vertical polarization is desired. The actual power gain over that of a vertical half wave antenna in the desired direction is approximately 15%. The power directivity is nearly 6 - $\mathrm{tc}-1$ in a forward direction away from the open tids.
$161 / 2 \mathrm{ft}$. rods can be used for 10 meter operation, 33 ft . rods for 20 meters. The spacing between the rods, or circies, need not be increased when the antenna is built for operation on the longer wavelengths.

The antenna should be arranged for 360° rotation.

Antennas for Receiving

Al: of the transmitter antennas previously described are suitable for receiving; their directive properties are unchanged. Allwave receivers present a difficult problem from the standpoint of a suitable antenna that will cover the wide frequency range of the receiver. Noise reduction is a decided factor in the design of an autenna for receiving all waves. The most prolific noisecreakors are electrical devices, such as refrigerator units, violet-ray apparatus, thermostats, diathe my machines, battery chargers, electric signs, buzzers and doorbells. ignition systems of oil-burners and automobiles, eleyators, street cars, electric motors, power-live disturbances which are carried along the line, telephone ringers, etc. These disturbances are of a radio nature; ! however, their intensity dies away rapidly in open space. House wiring and metallic structures conver these electrical disturbances, and noise reduction can therefore be accomplished by locating the antemna in a clear space, also by using a lead-in of such type that pick-up on the lead-in is practically eliminated. The noise interference is sometimes so loud that it will seriously interfere with local reception. It becomes a very troublesome factor in short-wave reception hecause the receivedi signal strength is much lower than that from local broadcast stations.

Two general types of lead-ins are widely used with noise-reducing antenna systems. The shielded lead-in is effective in the broadcast range. but due to the high capacity between the sliied and the lead-in conductorinsitle the shield, it is not often used for sho:t-wave recegtion. For short-wave reception a balanced transposed line is more efficient, as slowit in Fig. 11.2. Balanced lines consist of twisted-pair feeders or twowire lines with transposition blocks. The latter can be tuncri by means of a coil and variable condensers at the receiver in order to increase the sigral energy for a compara-

Fig. 112
Noise-Reducing Short-Wave Doublet Feeder System with Transposition Blocks.
A and B are 33 ft . each. C can be any length. The Tramsposition Blocks are spaced 2 feet apari. C1, C2 and C3 are 350 mmid . Variable Condensers for tuning the system. L is the Receiver Coupling Coil.
tively wide range of frequencies. Twistedpair feeders camnot be easily tuned because standing wave effects will cause excessive dielectric losses. In order to cover a wide range of frequencies with twisted-pair fceders, combination Doublet antennas are connected through impedance matching transformers to form an efficient all-wave antemna system. A single doublet with a twisted-pair feeder and without special transformers is suitable for operation over a very narrow band of onls a few hundred kilocycles on the fundamental and third harmonic. The design of the fecter transformers depends upon the impedance of the twisted-pair feeder, length of line and type of doublet antemas comected to the line. So many complications enter into the lesign of these feeder transiormers that the home constructor cannot easily build them. Complete short-wave anteuna kits with all proper components are available from many sources. The choice of an all-wave antenna for the home constructor is the tuned transposedfeeder system, shown in Fig. 112. In noise-free locations, any single wire antenna will give good results.

RCA World-Wide Antenna System

- In this system a touble-cloublet is con--nected through a complicated antenna transformer to a twisted-pair transmission line. then through another transformer connected to the all-wave receiver. See Fig, 113.

The smaller cloublet is about 3 ? feet long and it peaks at 14 megacycles. The larger doublet, 58 feet long, resonates near $71 / 2$ megacycles and the third harmonic is 22 megacycles. The combination, together
with a critical length of feeder line, results in fairly uniform response from 6 to 24 megacycles. See Fig, 114. The twisted-pair feeder has an impedance of 180 ohms and is constructed with submarine cable rubber and paper insulation in order to keep the losses low. Noise reduction depends upon the design of the transformer which couples the line to the radio receiver. This transformer eliminates in-phase signals while at the same time it passed the out-of-phase signals. The expression "in-phase" means that the voltages of the two sides of the feeder line are positive or negative at the same instant. Out-of-phase signals are those which cause one side of the line to be negative while the other side is positive, and it is this signal which comes from the antenna. In-phase signals are those which are pickedup by the feeder line; they normally have a high ratio of noise signal to radio station signal.

Fig. 113

Fig. 114

The radio set transformer has a static shield between primary and secondary windings in order to eliminate capacity coupling. As a result, the in-phase signals and noise picked up by the line are eliminated, while the out of phase signals picked up by the antenna are passed through to the receiver. See Fig. 11%.

Several windings are needed in each transformer in order to cover the wide frequency range. Automolile ignition noise is greatly reduced, as can be explained by reierring to Fig. 11.j. " S " represents a

Fig. 115
source of auto ignition noise: (A) the capacity coupling from " S " to transmission line: (B) the capacity coupling from " S " to the power supply ine; (H) the capacity couping from one side of the power supply line to the metal chassis; (F) the capacity coupling from " 5 " to actual earth groumd.
The noise voltage that would be induced by capacitive coupling (A) into the transnission line would cerrespond to an in-phase signal and would be fed to the secondary of the coupling transformer by the capacity by the electrostatic shield (D). This prevent; noise voltage from being developed across the input terminals of the radio receiwr.
The noise voltage that would be induced by rapacitive coupling (B) causes current to frow through the power transformer and develop a noise from ground to chassis through capacity (H). If no receiver -ouphing transformer is used, this voltage would occur across the input terminals of the receiver and cause noise interference. Most power transformers have an electrostatic shield between the primary and secondary windings in order to mininize the capacitive coupling (G) . 110 volt a-c supply lines often carry noise interference.

RCA Spiderweb Antenna

- The action of this antema is like that of * "T-type" over the range from 140 to 4000 KC. Above 4000 KC the system automatically operates as an efficient nultiple doublet up to $70,000 \mathrm{KC}$ with good noise reduction between 4.000 and $70,000 \mathrm{KC}$. Half wave doublets operated near resonance are extremely efficient. See Fig. 116. Several douhlets of different lengths can be connected to the same transmission line with-
out effecting the performance of any other, resulting in good signal pick-up in several bands of frequency. If the selected resonant frequencies are not too far apart, the overlapping of their characteristics will tend to give fairly uniform response. Five doublets are utilized in the RCA Spiderweb - Bintenma System.

In Fig. 116 the botton wires E and F resonate to 6 MC (49 meters) by means of a small loading ctiil. A and B, at 12 MC (25 meters) ; C and D at 18 MC (16 meters) ; G and H at 35 MC (9 meters) ; K and L at 60 MC (5 meters). Loading coils are used in the G and $I I$ doublet, as well as in the E and F doublet.

The transmission line requires $\% 5$ feet of twisted-pair wire, although $45-\mathrm{ft}$. sections can be added if the $75-\mathrm{ft}$. length is not sufficient. These lengths must not be changed. because the receiver coupling transformer is matched to the line for these lengths. The transfermer has a balanced primary and an electrostatic shield which prevents capaci-

Fig. 116
RCA Spiderweb Antennce
tive coupling. This is necessary for noise elimination. No noise reduction is secured for frequencies below $4,000 \mathrm{KC}$ because the antenma acts as a T-type on the lower frequencies. The space required for this antema is a span of 38 feet, and a 12 foot vertical clearance.

Philco All-Wave Antenna

- This doublet antenna is approximately 60 feet long and has a special antenna transformer connected to a twisted-pair feeder for all-wave reception from 540 KC to 23.000 KC. See Fig. 117.

A receiver impedance matching transformer is required for radio receivers which have a high impedance primary circuit. This transformer is not needed with radio receivers which have low impedance primary circuits designed for doubiet antenna connection. The transformer is provided with

PHILCO AIL-WAVE ANTENNA
fig. 117
a switch. The switch permits reception of standard broadcast or short-wave signals at will. The twisted-pair feeder can be altered in length to suit any installation without change in results. Noise reduction is claimed for both standard and short-wave reception.

general electaic "v" Doublet
Fig. 118

General Electric "V" Doublet

Another noise-reducing all-wave antenna is the G. E. " Γ " Doublet, consisting of a half wave doublet, matching section and twisted-pair feed line. It also incorporates an impedance matching transformer to the receiver, which is designed to cover a wide frequency range necessary for all-wave reception. This system has a " V " matching section at the center of the antenna instead of the usual coniplicated antenna-to-line transformer. Standing waves exist on the twisted-pair feeder, as is the case in almost every type of all-wave antenna. The arrangement slown in Fig. 118 provides good efficiency on broadcast and short-wave bands, a condition which is not possible with
a simple doublet where the twisted-pair feeder connects directly into the center of the antenna.

Fig. 119

RCA RK-40 Antenna

- The RCA RK-40 Antenna is a simplified antenna system designed to act as an efficient pick-up medium, giving high signal strength over an extremely wide frequency range. See Fig. 119 . The flat top portion is 68 feet long, with an RCA transformer 19 feet from one end, as shown in Fig. 119.
The Transmission Line is a special two conductor cable 75 feet long, which terminates in a sealed junction box in which the receiver coupling unit is housed. This coupling unit matcles the transmission line to the input receiver circuits. Adequate coverage of all short-and-long-wave broadcast bands is secured with a minimum of installation work.

Belden Off-Center Doublet

- To obtain a broad response over a wide frequency range, the Belden Off-Center Doublet Antenna System is constructed along scientific lines. The flat top portion

Fig. 119A
consists of two lengtlis, 16 and 48 feet respectively, of seven strand twisted No. 24 enameled acrial wire. See Fig. 119A.

A fixed coupler in a weather-proof container is used to comect the twisted feeders to the flat top of the antenna. The surge impedance is of a value which spreads the responsive characteristics of the system. At the receiving end, a center-tapped coupling transformer is employed to divert unwanted in-phase signals picked up by the lead-in to the ground. The secondary of this coupler is in series with a small variable capacitor which may be adjusted to match the input impedance of the receiver to the lead-in. This antenna systen may be erected vertically or horizontally. It has practically no directional effect and the length of the leadin is not critical, due to the variable features of the receiver coupler. This antema does not have a sharp resonant point and achieves a ve:y uniform response over the short-wave and broadcast frequency bands.

The coupling transformers at the ends of the twisted lead-in also serve to mimimize the effect of the capacity of the lead-in, preventing loss in signal strength and at the same time preserving the noise reducing features.

The Belden Receiver Coupler is equipped with a switch with whicl to convert the antenna system into a conventional Marconi modified " T " antenna for use on broadcast frequencies.

McMurdo Silver "R9+" Antenna

- This system consists of a doublet with two sections, each 25 feet long, feeding into a twisted-pair transmission line which, in turn, couples to a special all-wave transformer coupling system. See Fig. 120.

The 4 -pole, 5 -position switch effectively matches the antema system into the receiver for all-band operation. The doublet antema resonates at approximately 32 meters, but the feeder and the tuming unit effectively increases the signal strength at other frequencies.

Antennas for Automobiles

The amount of available space in an automobile for antenna installation is limited, therefore a compact system with relatively low efficiency is all that can be expected Farlier types of antennas for automobiles consisted of wire screen or mesh supported in the roof of the car. I ater types make use of plate or rods, suspended under the car or bencath the running boards.

Experiments have proven that most of the ignition interference cxist: above 30 MC ,

MCMIJRDO-SILVER "Rg+" ALL-WAVE OOL'BLET
Fig. 120
yet the noise is sroublesome even in the range of the broadcast band. The principal source of noise eomes from the ignition system, and thus a shielded lead-in or shielded transmission line to the antenna will greatly reduce this interference. In some cases, out-of-phase electrical noise is deliberately introduced into the receiver in order to cancel the noise which is jicked-up by the antema. Modern design has practically eliminated the need for spark-plug suppressors.

Fig. 121

Steel top automobiles call for the use of an antema unler the car. Because the receicer is connected to both the antenna and the car body, the capacity between the two should be as low as possible. Road clearance dictates the limit of spacing.

Three types of antemas for automobile installation are shown in Figs. 121, 122 and 123. The RCA "U" antenna is interesting because it resonates at about 7 meters, where the maximum ignition noise energy occurs. Noise voltages are picked up by the two sides of this " U " and arrive at the

Fig. 122
Triangular Antenna.
lead-in point out-of-phase and thus tend to cancel each other. Broadcast signals, being of longer wavelength, act on the antema as if the two rods were in parallel, and proceed through the lead-in to the receiver.

Fig. 123
Solid Metal Plate Antenna.

Front and rear bumpers can be insulated from the car chassis and used as an antemna. Many of these systems use impedance matching transformers for improsed performance.

The Faraday Screen

- An electrostatic shield between two coils is often used in receiver circuits in order

Fig. 125
to prevent capacitive coupling. One very effective arrangement is known as the Faraday Screcn. It generally consists of a row of small wires, spaced from each other and connected together at one end in order to provide a connection to grond. Eddy current losses are prevented by grounding only one end of the wire, the other end remaining open: see Figs. 124 and 120.

Fig. 124

A Faraday Screen call be constructed by winting a large number of turns of very small insulated wire on a cardboard drum, which las first been treated with insulating varuish. The wire is wound as on any* ordinary coil, then a coating of insulating varnish is applied to the winding. After it has dried, the coil is cut in half, along its length, and flattened out. The insulation is then removed from one end and the wires soldered together, as shown in the diagram.

Aircraft Antennas

- Antennas designed for aircraft must have a good effective height and very low wind resistance. The most efficier:t antema electrically is a long trailing wire for both transmitting and receiving. It must be reeled-in when a landing is made, and it offers an excessive wind load at high speeds. For beacon reception, a hollow streamlined metal rod approximately six feet in height and mounted on top of the faselage is quite widely used. The rod must be insulated from the supporting structure. It has an effective height of about one meter, thus making it satisfactory for use with a sensitive receiver. Other forms of antemnas, such as wires stretched across the wings, or from the tail to the ends of the wings, or from tail to cockpit. are satisfactory for both transmitting and receiving.

A short trailing wire, approximately 25 feet long, can be used on high speed transport planes because it has iess wind resistance than a rod or pole antenna.

Marine Antennas

- Single wire anteminas of the Inverted-L, T and Doublet types are used om shipboard. The wire is usually suspended between masts. or between mast and fummel. A separate antema is widely used for shortwave reception, while for longer wave operation a break-in keying relay connects the receiver to the main transmitting antemna. Marconi antennas for small marine craft can be made more effective when more than one wire is used, such as in a cage or flat tup antenna. Refer back to Fig. 46.

Loop Antennas

Winen highly-directive transmåssion or reception is desired, loop antennas are used.

Fig. 126
A conventional type is shown in Fig. 126. Some are circular in shape, whers are in the form of a rectangle or stquare.

The relative efficiency of loop antemas is very low and they are used only for such shecial applications as direction-finding. The directivity pattern las the same appearance a. that of a half wave dipo"e antenna. The response in the naximum direction (in line with the loop) is very broad, but the minima o: zero signal setting is vers slarp.

Antenna Mast Construction

A practical and economical antenna mast is illustrated in Fig. 12\%. It is corstructed of three pieces of 2×3. or 2×4, clear pine, cach 20 feet long. The completed mast is

Fig. 128
Photograph of Completed Antenna Mast
Described in Fig. 127.
light enough in weight for mourting on house-tops, and it can be erected by two people. The mast is guyed at the top and center with three guys at each point. The guys should be broken about every ten feet with egg-type strain insulators. The illustrations give all of the necessary constructional data.

Fig. 127
Constructional Details for 37-Foot Antenna Mast.

Chapter 6 Radio Receiver Theory and Construction

- Resonant circuits are the major electrical tuning units in all amateur, communication. and broadcast receivers. The importance attached to the tuning circuit and other asseciated elements requires a detailed analysis: however, the following considerations are all that are necessazy.

Electro-magnetic and Electro-static Coupling

- When an electro-magnetic wave is intercepted by an antemna, a sinall radio-frequency voltage is induced in the conductor, which surges to-and-fro in an oscillatory manner. Tapping the untema at a suitable point by a lead-in or feeder and causing the voluage to pass through an inductance will praduce a current in tive coil in proportion to its reactance.

Assuming that the inductance in the antenna circuit is untuned; that is, an inductance without any shunt capacity, the voltage indaced across the coil will be equal to the current times the inductive resistance. Hence, anything clone to increase the voltage develoned across the coil will also increase its magnetic flux; and furthermore, when a secondary winding is coupled to the antenna coil a greater voltage will be induced on account of the increased flux density cutting the secondary inductor:. Anything to cause the antemna voltage to increase, before being applied to the grid of the detectore tube, will augment the over-all amplification of the signal strength.

Now, by changing the untured antenna coil to a tuned parallel resonant circuit by the simple expedient of adding a variable capacity across the inductance, the voltage will roo longer equal the current times the inductive reactance: but, instead. will equal the current times the ratio of tlee reactance and resistance. The imperlance of such a circuit drops off rather rapidly at either side of resonance: the voltage, and consequently the signal diminishes proportionately. In otier words, a circuit that is tuned exactly to the signal frequency will give considerably more gain than one that is untmed or that may differ in some respects from the resonant frequency ly an appreciable amount.

The energy from the antenna can be connected directly across: a coal and induced into another coil without being physically connected to the former; this is known as inductiver coupling. On the other hand, if the energy is connected across the plates of a condenser, then fed to the grid side of the coupling coil, the connection is known as clectro-static coupiing. From the fore-
going explanations it will be apparent that this type of coupling inas no voltage gain in itself, and is therefore inferior, though possibly more convenient to use than induactive coupling.

Whenever an antema circuit is coupled closely to the grid ci-cuit, some clectrostatic compling is bound to exist, due to the capacity between the metals in the respective cuils. A combination of coupling is undesirable in most cases, since electra-static coupling permits steep wave-front vo'tages. such as static and noise, to have greater paralyzing effect on the grid. Pure inductive coupling is only practicable if the separation between the two coils is made large or through the use of an electro-static shield, commoniy known as a "Faraday screen."

In inductively coupled circuits, the amplitude of the induced voltage will depend upon the strength of the magnetic field set up, the proximity of the two "coils" and the impedance of the grid circuit to the particular frequency.

The impedance of the grid will follow the same rales set forth for the antenna circuit, since they are both parallel resonant circuits and are both maintaincel at resonance with the incoming frequency. At this point it is necessary to take into consideration another moperty of resonant circuits known as the "Q."

" Q " of Resonant Circuits

- " Q " may be defined as the inductive reactance divided by the resistance. The Q of a coil is the factor of merit; the higher the Q, the better the roi:. Authorities differ quite widely on the ideal shape for a coil, but, in general, agree that very long, or very short coils are to be avoided. A coil whose length is approximately equal to its diameter is often considered hest.

The diameter of the wire used to form the coil also has a definite influence on the Q. Hence the wire size stopuld be as large as possible to get into a given winding space. NOTE: Practically all the resistance in a parallel resonant circait is contributed by the inductance: the condenser, if well designed, has negligible resistance. But nearly all the resistance in the inductance is contributed by the "sl:itr cffect." This effect increases almost directly with freque icy and is introduced at high-freduencies because the current is not equally distributed throughout the conductor, but travels only on the outermost surface. Thus, in order to provide ample surface for the current to pass along, it is necessary to use a much larger size
conductor than would be the case if the current was equally distributed throughout the conductor.

Round conductors are always better than flat strips because, even if the flat strip has more surface a:ea, the fact remains that the current does not distribute evenly over the entire surface but has a maximum density at the edges, with low density on the sides.

Distributed capacity, or the capacity existing between successive turns and also between these turns and the ends, is to be avoided in any receiver coil, since this capacity has the effect of lowering the Q. Space winding is one means of lessening this effect. Where the conductor is large in diameter, "space winding" reduces the skin-effect, due to currents set up in adjacent turns. Dielectric loss due to poor insulating material in coil forms also has the bad effect of lowering the Q.

Summarizing: The ideal inductance would be one having the following properties:

1-A shape such as to make the length approximate the diameter.

2-Entirely air-supported. Since this condition is practicaliy impossible, a compromise must be adopted taking the form of a coil support of a law-loss dielectric, such as Isolantite.

3-A wire size of ample proportions. This must also be a compromise, since with excessive wire diameters the skin-effect and distributed capacity more than offset the gain due to increased surface. For all practical purposes a wire size larger than No. 16 need not be used in receiver coil design.
-A space type of winding. The spacing will be more or less governed by the length-to-diameter rule. In general, the spacing ought not to excred twice the diameter of the wire.
Considering the coil and condenser as a unit (a parallel resonant circuit), it is required in good design to adhere to the following:

1-In order for the circuit Q to be as high as possible, the inductance-to-capacity ratio should be very high.
2-The tuning condenser should have excellent mechanica: and electrical properties and he preferably insulated with Isolantite. or similar material. Some type of pig-tail connection or positive wiping contact must be included in the assembly for contacting the rotor: this reduces high-resistance during rotation.

Selecting a Receiver

- The selection of the proper type of receiver best suited to one's needs is a prohlem that confronts every beginner. Incidentally, there are practically as many types of receivers as there are kinds of ama-
teurs. No perfect receiver exists for allaround operation under all operating conditions; hence, it is largely the personal choice of the operator that governs the receiver type. All receivers represent a compromise between such factors as cost, size, accessibility, convenience, dependability, versatility, output desired and the purpose for which it is to be used.

If a receiver is to be built, instead of being purchased, and if the constructor has had no experience in receiver construction, it is advisable to first build the more simple types of receivers, using from one to three tubes, instead of the more complicated multitube superlietcrodyne receivers, which may have from six to twelve or more tubes.

The constructor who chooses the regenerative autodyne receiver must weigh the compromises involved in its design. If the receiver is located in a metropolitan area, where power lines, street cars, oil furnaces and other sources of man-made static interference are prevalent, the receiver must be particularly well shielded. If the set is battery-operated, the noise pick-up will be minimized, as no interference will be introduced through AC power lines feeding a mains-operated plate or filament supply. If the receiver is used in the country, remote from man-made static. shiclding is a matter of lesser importance, and thus a somewhat simpler receiver will give entirely satisfactory results.

If a receiver is located in the neighborhood of a powerful radio transmitter, the strong radiations may block or paralyze the RF or detector circuits, making it necessary to provide a tuned stage of radio-frequency amplification or some other form of volume control to obtain satisfactory selectivity. At the same time it may also be necessary to choose a somewhat less sensitive detector circuil in order to make the detector less susceptille to nverload.

One of the salient points of receiver construction is that of cost. The actual design of a receiver is a simple problem. Of course. the design may become complex if all late engineering refinements are incorporated into the construction. In general. the most elaborately designect receiver is actually more modest in cost than might otherwise be expected. Although every set builder will desire the most expensive coil forms, tuning condensers and vernier dials. it is essential to strive for a happy medium when selecting * a receiver circuit which makes the best use of the parts available.

A receiver which is to operate on one band is much easier to build than one which must operate satisfactorily in the entire range of from 160 meters to 10 meters. A band-spread arrangement of condenser combinations which give excellent results on 20° meters will not lee satisfactory when used
to cover the 160 -meter band. Thus, if the constructor desires to operate on two such widely different frequencies, a sacrifice must be macle of both convenience and efficiency on ore or both of these bands.

Methods of Band-Spreading

- Bancl-spreading is an electrical means of obtaining tremendous gear reduction on the tuming condenser dial of a receiver. Highfrequency receivers must cover a very wide range of frequencies and therefore it is difticult to design a dial and drive mechanism which will cover the desired ranges, yet still provide sufficient "vernier" (geared down) drive so that weak signals will not be passed over without hearing them. In newer allwave broadcast receivers this problem is sclued by the use of a two-speed dial arrangement, the low reduction being provided for rough tuning and the high reduction for fare tuning. This is usually accomplished mechanically by means of planetary
Methods of Band Spreading

Fig. 1
gear. The system is quite satisfactory, but rather difficult to manuacture by the average amateur or experimenter. Practically the same effect can be obtained by means of electrical band-spread. Almost all receiver circuits use a variation in the capacity of the tuned circuit for tuning purposes. In order to obtain a small variation in tuning it is essential that the capacity be increased or decreased by a small amount. However, difliculty is encountered in varying the capacity of a large condenser by small increments or decrements, but in an electrical band-spreading system utilizing two tuning condensers-one large condenser to give rough tuning, the other. a very small condenser (two or three plates) may be connected in a wide variety of combinations to give the electrical effect of "fine" or "vernier" tuning. The first system is shown in Figure 1 (A). It is the most common system ard consists of a small condenser C_{2}, comnected directly in parallel with the large condenser C_{1}. In most high-frequency receivers the capacity of C_{1} will be chosen so that the coil and the condenser combination will cover a frequency range of between 2-and-3-to-1. The condenser C_{2} is much smaller than C_{1} and will often be chosen so as to cover a band of approximately 1000 KC .

Figure 1 (B) shows a band-spread condenser in series with the main tuning condenser. Because the capacity of two condensers in series is always smaller than the capacity of the smaller of the two con(ensers. it will be seen that both condensers in Figure 1 (B) must be considerably larger in caparity than the corresponding condensers in Figtre 1 (A) in orcier to cover the same frequency ranges. Both of the systems shown in Figures 1 (A) and 1 (B) have the disadvantage in that the degree of bandspread varies with the tuning of C_{1}, and thas if a given coil covered both 40 and 20 meters, the system may provide too much handspread for 40 meters and not enougl bandspread for 20 meters. In Figure 1 (C) the band-spread effect can be kept constant over a wide range of frequencies by tapping the band-spread condenser across part of a coil, instead of being tapped across the entire coil, as in Figure 1 (A). The position of the tap varies with frequency. On the larger low-frequency coils, the tap will be placed near the top of the coil. On small highfrequency coils, the tap will be placed proportionately farther down on the coil in order to) maintain an approximately constant degree of band-spread. This system has the disarlva:tage in that some selectivity is lost in the tuned circuit. Figure 1 (D) shows another means of equalizing the degree of band-spread over a wide range of frequencies. C_{1} is the conventional large tuning condenser of between 140 and $: 850$ muld.
C_{2} and C_{3} are both band-spread condensers. C_{2} has approximately 50 mmfds. for banclspreading the 80 and 160 meter bands; C_{3}, from 15 to 20 mmi d., is best for use on the 40 and 20 meter bands. The proper condenser is chosen hy means of switches, as shown in Fig. 1 (D). A disadvantage of switching is that rather long leads are required, as well as a possibility of losses in the switch contact.

Plug-in Coils

Practically all regenerative receivers use plug-in coils. This is also true of some of the highest-priced amateur receivers and commercial superlieterodynes. The adwantages of plug-in coils are only obtained when low-loss materials and low-loss design are featured as a complement. The very best low-loss coil form is "clry-air," or self-supported coil winding. Next best are the ceramic forms which use Isolantite, Mycalex, or their equivalents. Then follow the special mica compounds, such as the XP-63 and $\mathrm{R}-39$ compounds. Whereas celluloid is a more inferior dielectric than the afore-mentioned materials, its advantage is that a very thin form will serve as an excellent coil support. In addition, because losses are a function of the volume of dielectric material in an electric field, the thin celluloid makes possible the construction of an extremely low-loss coil form.

Wire for Coil Winding

Bare wire, having as large a diameter as possible, is better than insulated wire in winding coils, because the larger the wire diameter, the lower will be the radio-frequency resistance. In coil winding, the space-wound methud is superior to others, while grooved coil forms are undesirable on account of increasing distributed capacity. It is essential that all coils be placed as far away as possible from metallic shields or other metal bodies. such as the chassis.

Coil Winding Data for Simple Receivers

Coil winding tables vary with the size of the coil form used. The standard form is $1 / 1 / 2$ inches outside diameter. A table is given below for the number of turns required on a coil form to cover the four popular amateur bands. If forms larger than $1 \frac{1}{2}$ inches in diameter are on hand, obviously fewer turns will be required. Conversely, a smaller form will require a greater number of turns per coil. It is a simple matter to use the "cut and try" method when winding coils; however, the accompanying table will greatly simplify matters. It is assumed that the coils are to be wound on standard forms and tuned with a 100 mmfd . midget variable condenser.

Wavelength	LI, Secondary Winding	L2. Tickler Winding
20 M	7 turns, No. 18 DCC, spaced two diameters.	4 turns, No. 22 DSC, close wound.
40 M	18 turns. No. 22 DSC wire. spaced one diameter.	Ditto.
80 M	36 turns, No. 22 DSC wire. close wound.	6 turns, No. 22 DSC, close wound.
160 M	72 turns, No. 32 DSC or SCC wire, close wound.	11 turns. No. 22 DSC or SCC. close wound.
Spacing Between Secondary and Tickler Windings $/ 8$-inch.		

Tickler Winding

- If the detector docs not regenerate, reverse the tickler comections or ald one or two turns of wire to the tiekler coil, until smoothest regeneration is olitained.

The Detector in a Regenerative Autodyne

- The detector is the heart of the regenerative autodyne receiver, and a wide variety of tubes may be used for this purpose, each having certain advantages and disadvantages. The four most commonly used detector tubes are the 76 and 6C6, for operation from house lighting current, and the 30 and 32 types for battery-operated sets. The 76 and 30 are triodes, while the 6 C 6 and 32 are screen-grid types. Screen-grid detectors are somewhat more scmsitive than triodes, although are more susceptible to overload and more difficult to get going. In place of the 6 C 6 or 32 , it is often desirable to utilize a tube with a variable mu, sucla as the 6D6 or 34 . This type of tube is slightly less susceptible to overload than the sharp cutoff detectors, such as 6 C 6 and 32 . Variable mu tubes afford a smorther control of regeneration but necessitate a sacrifice in sensitivity.

The 24.36 and 54 tuhes are very similar to the 6 C 6 . By the same token, the 39 and 58 are similar to the 6D6. Likewise the 27, 37 and 56 will act exactly like the 76 in most circuits. In the battery-operated field there is less choicc, although the 99, 201A and 12 A are quite similar in characteristics to the 30 , and type 22 can be used in a circuit designed for a 3 ?.

Audio Coupling

The detector can be coupled to an audio amplifier in three different ways. which are
known as resistance coupling, impedance coupling, and transformer coupling.

In general, resistance coupling is the least desirable of the three miethods when working out of a regenerative detector, because the question of fidelity is relatively unimportant and fidelity is the principal advantage of a resistance coupled amplifier. Resistance coupling can be used out of either triode or screen-grid detectors.

Imperlance coupling (or clooke coupling) is particularly recommended when working out of a screen-grid detector because it enab'es the full plate voltage to be applied to the detector and also lias enough distributed capacity so that any radio-frequency present is easily by-passed to ground. The only disadvantage of impedance coupling is that it affords no voltage step-up, as does transiormer coupling. An impedance to work out of a triode detector slould be approximately 30 henrys at 15 to 20 milliamperes. An impedance designed to give best results out of a screen-grid or pentode detector should be rated at more than 250 henrys at 5 milliamperes.

Transformer coupling is unsuited when using a screen-grid or pentode detector, although it is recommended when working out of a triode detector. A step-up ratio of app-oximately three-to-one gives the best all-cround results.

Impedance or transformer coupling sometimes gives trouble, due to fringe audio howl in a regenerative receiver. A 50,000 to 250,000 ohm resistor sluunted across the impedance coil or transformer secondary will usually cure this trouble.

Audio Tubes

- The choice of the audio output tube is largely dictated by the amount of audio power required. If loudspeaker operation is desired, two stages of audio amplification will ordinarily suffice; for example, a triode type 76, in the first stage, and a pentode, such as a 41 , in the second stage.

If headplone operation is desired. the second stage may be eliminated and the phomes connected in the plate circuit of the first amplifier stage. For loulspeaker use, pentodes are recommended, su:ch as types 23, 41, 42, 47, 59, 89, 33, or 43 . Triodes may also be used, but will require somewhat more an-plification; they are the $12 \mathrm{~A}, 71 \mathrm{~A}, 45,46$, 2A3, 31, 120, and others.

Any of the following tulbes are entirely salisfactory for headphone reception in the audio stage: $99,30,201 \mathrm{~A}, 112 \mathrm{~A}, 27,37,56$, i6 and cither of the following pentodes when connected as triodes (screen and suppressor grids tied to plate) : 5 t and 6C6.

Notes for Set Builders

Sockets: The sucket material is as important as the material from which the coil forms are made because the socket is in the direct field of the coil. In receiver construction it is essential that only the very best material is used in socket assemblics; thus, ceramic. Isolantite and other good insulators will suffice.
Leads and Connections: I.eads to the tube socket and tuning condenser must be short and diect, sharp bends being avoided whenever possible. All jcints must be carefully soldered with rosin-core solder, and a clean, hot iron should be ised for all soldering operations. Make all connecting wires mechanically secure to all connecting points and keep all wiring well remote from metal shielding and chassis.

Calculating Pilamont Dropping Resistor Valucs: It is important that the filaments of all tubes, either in a transmitter or receiver, be operated at the rated filament voltage. If the voltage is too low or too ligh, tube life is materially reduced. When in doubt, it is advisable to operate the filament at a slightly higher than normal voltage, rather than at lower voltage. The value of a filament resistor can be calculated by means of Ohm's Law, a very simple formila which indicates the relationship between voltage, cu-rent and resistance. If any two are known, the third can be determined. The three forms of this equation are:

$$
E=I R \quad I=\frac{E}{I} \quad I=\frac{E}{R}
$$

Where $\mathrm{E}=$ the voltage; I , current (amperes) ; R, resistance (ohms):
For example, assume the two type 30 tubes are being operated with their filaments in parallel and a 3 volt battery is to supply the filanent power. But, since 3 volts is too high, i: must be dropped to 2 volts througl a series dropping resistor, which will give the normal operating voltage. To calculate the value of the series resistor, it is first necessary to determine the current drawn by the two tubes. The current in this case is 120 milliamperes, or .12 amperes. From the equation $\mathrm{R}=\mathrm{E} / \mathrm{I}$, the resistance is computed by dividing the desi-ed voltage drap by one valt (which is "[" in this case) by $12 / 100$, which is the same as multiplying $100 / 12$. The equation then is $1 / 1 \times 100 / 12$, which equals 8.3 ohms. Therefore, 8 ohms is the proper value of resistor to use, because fractional value resistors are no- obtainable. When connecting two tubes in series, it becomes necessary to provide twice as mucl heating voltage as when only one tube is used; however, there is no increase in heating current.

When the filaments of two type 30 tubes are connected in series, it is necessary to provide 4 volts at 60 milliamperes (0.06 amperes). Either a $41 / 2$ volt "C" battery or three $1^{1 / 2}$ volt dry cells commected in series provide a convenient means for operating the two tubes in series. The dropping resistor should be 8 ohms, which is determined by dividing the voltage drop of $1 / 2$ volt by the total filament current of .06 amperes. Care should be taken to see that tubes which draw different values of filament current are not connected in series unless special precautions are taken, as shown in Figure 2. A shunt resistor must be connected across the filament of the tube drawing the least current, so that the sum of the current through the resistor, plus the current through the filament which it shunts, is equal to the current drawn by the other tube.

Fig. 2. Series connection for dissimilar filament currents.

Calculating Value of Self-Biasing Resistors: In practically all receivers utilizing either radio or audio frequency amplifying stages, some method of self-biasing the grids is employed. This bias is obtained by inserting a resistor in the cathode lead return wire and taking the necessary voltage drop across the resistor. The value of self-biasing resistors can be calculated by the formula:

$$
\text { Ohms }=\frac{\text { grid bias } \times 1000}{\text { plate current }}
$$

Thus, for a 45 tube which has a plate current of 34 ma. for which a grid bias of 50 volts is needed:

$$
\frac{50 \text { Volts } \times 1000}{34}
$$

The wattage or power consumed in the resistor equals E $>$: I or $.03 \pm \times 50$ or 1.7 watts. For push-pull amplifiers combine the plate currents oi each tube. For screengrid and pentodes tise the sum of the plate and screen currents.

Receiver Measurements

- Satisfactory results can only be obtained from a radio receiver when it is properly aligned and adjusted. The most practical
technique for making these adjustments is given in the following discussion.
The simplest type of regenerative receiver requires little adjustment other than those necessary to insure correct tuning and smooth regeneration over some desiree range. Receivers of the tuned radio-frequency type and superheterodynes require almost precision alignment to obtain the highest possible degree of selectivity and sensitivity.

Testing Instruments

Only a very small number of instruments are necessary to check and align any multitube receiver. The most important of these testing units being a modulated oscillator and a DC and AC voltmeter. The meters are essential in checking the voltage applied at each circuit point from the power supply. NOTE: If the AC voltmeter is of the oxide-rectifier type, it can be used, in addition, as an output meter when connected across the receiver output when tuning to a modulated signal. If the signal is a steady tone. such as from a test oscillator. the output meter will irdicate the value of the detected signal. In this mamer lineup adjustments may be visually noted on the meter rather than by increases or decreases of sound intensity as detected by ear.

Tuned RF and Regenerative Detector

- In Figure 1 is shown a single stage of tuned RF and a regenerative detectur. For proper performance, these two tuned circuits must resonate to the same frequency throughout the desired tuning range. It is required, thereiore, that L_{2} and L_{s} have equal values of inductance and equal values of effective shunt capacity at each point on the tuning dial. The inductances may be closely matched by using similar roil forms and

FIG. 1
$\mathrm{R}-\mathrm{F}$ stage and regenerative detector.
windings. li one coil is closer to some metal object. such as the chassis or shield, it will be clifficult to obtain a good match unless coil turns are removed or shifted along the coil-form to change the effective coil length, A resonant antenna will unbalance the RF stage unless I_{-1} is lonsely croupled to L.

Circuit Capacities

- The shunt capacities are due to coil distributed capacity, wiring capacity shunt condensers and tube capacity. Usually trimmer condensers C_{2} and C_{s} axe needed to equalize the fixed circuit capacities. These should be adjusted for maximum signal sensitivity toward the high-frequency end of the tuning dial, that is, minimum capacity position for C_{1} and C_{6}. After making this adjustment (usually with a screw driver) the alignment can be checked tirroughout the tuning range by bending "in" or "out" one of the outside rotor plates oi tuning condenser \mathcal{C}_{i}. Some receivers have condensers with slotted end-plates to facilitate bending to correct circuit alignment over the whole tuning range after C_{2} and C_{a} have been correctly set. The RF tube and primary L_{4} reflect a capacity across L s which can be exactly balanced by having a duplicate primary winding L_{3} on the RF grid coil. A small frimmer condenser simulates the RF tube plate circuit-this refinement is seldom used in receivers, but is well merited.

Multi-Stage Tuned RF Receivers

- The alignment procedure in a multistage RF receiver is exactly the same as aligning a single stage. If the detector is regenerative, each preceding stage is successiveiy aligned while keeping the detector circuit tuned to the test signal, the latter being a station signal or one locally generated by a test oscillator loosely coupled to the antenna lead. During these adjustments the RF amplifier gain control is adjusted for maximum sensitivity, assuming that the RF amplifier is stable and does not oscillate. Oscillation is indicative of improper bypassing or shielding. Ofteri a sensitive receiver can be roughly aligned by tuning for maximum noise-pick-up, such as parasitic oscillations originating from static or electrical machinery.

Superheterodynes

- A superheterodyne presents an involved alignment procedure since it is necessary to align bath the oscillator and first detector as well as the intermediate frequency amplifier. In this case, the latter should be aligned first. METHOD: A calibrated modulated oscillator is set to the frequency of the IF amplifier; this is usually between 175 KC and 500 KC . A lead from the oscillator is connected to the grid of the last IF stage, and C_{3} and C_{8} of Figure 2, varied until maximum signal strength is obtained in the output of the 2 nd detector or audio amplifier. The adjustment can be simplified if the receiver has AVC, the tuning meter being used to indicate the
maximuni signal strength. Since the coupling inductances L_{5} and . L_{s} are generally fixed, the only possibie adjustment will be hy varying the trimmer condensers. After C_{3} and C_{8} are properly set, the oscillator nower is decreased, then coupled to the griti of the first IF amplifier tube. C_{3} and $\mathrm{C}_{\text {。 }}$ may then be adjusted fur maxinum signal strength. The RF input to the receiver must be kept at an optimum value to insure signal readability. The procedure is repeated to align C_{1} and C_{3}, providing the receiver has two $1 F$ stages. Sometimes it is necessary to disconnect the first detector grid lead irom the coil, it then being grounded in series with a 1000 or 5000 ohm grid leak, and the test oscillatur coupled through a small capacity to the grid. The oscillator should have some form of attenuator; however, the coupling may te varied by moving the oscillator lead further away from the tube gric into which :t is coupled. For test purposes, the 1000 olm resistor prevents the RF coil from short-circuiting the IF of the test oscillator so the first detector acts as an amplifier. After the IF is aligned, the first detector grid lead is commected hack to its RF coil.

The technique of lining-up the first detector and R1F stages, if any, is precisely the same as that described in aligning a tuned KF receiver. However, the line-up with the RF oscillator is slightly modified. METHOI): The HF oscillator is esed to provide a signal in the first detector which will beat with the desired signal to form a new signal at the frequency to which the IF amplifier is tuned. If this is $t 50 \mathrm{KC}$, the HF oscillator should tume to 450 KC higher frequency than that of the first detector and RF stage. Figure 3 illustrates this circuit. In general, coil L_{2} must have less inductance than L_{1}, and C_{4} must have less tuning range than C_{1}. These requirements necessitate that La have less turns than 1 . and less capacity in C_{4} than in C_{1}. If C_{1} and C_{4} are of the same capacity ard are coupled in tandem. a fixed or variable condenser C_{3} is placed in series with C_{4} to reduce its maximurn capacity. C_{2} and C_{3} may be either trimmer or band-setting condensers C_{3} is reguired at longer wavelengths where the ratio of the oscillator to detector frequency is not approaching unity of equality. For example: at $14,000 \mathrm{KC}$ with the oscillator at $14,450 \mathrm{KC}$ no series

FIG. 3

Front-End of Superheterodyne.

condenser is necessary; but one would be required at frequencies of $2,000 \mathrm{KC}$ and 2.450 KC if the tuning condensers C_{1} and C_{4} were very large.

Alignment Procedure

- Actual alignment of the front end of a "superhet," such as shown in Irigure 3, follows: The test oscillator is set at the highest frequency which can be tuned-in with a given set of coils. This may require a little manipulation, but if the tuning range is known or can be estimated, an approximate frequency setting of the test oscillator can be made. The test signal is increased in value until it is heard or can be measured at the output of the receiver. C_{2} is then adjusted to bring the dial reading to the desired point for a given frequency, that is, providing the dial is calibrated. C_{1} and C_{4}, of course, leing tuned simultancously ; afterwards, C a is adjusted for maximum sensitivity. Next, the tming dial is rotated through to nearly full capacity setting of C_{1} and C_{4}, of Figure 3, and the oscillator set for this lower freouency. These circuits can be aligned by moving the tuning dial while adjusting C_{3} with a screwdriver or plate bending of C_{1}. A middle dial setting can be checked by means of a third setting of the test oscillator and plate bencing of C_{1}. If alignment camot be obtained by plate bending adjustmerts, a new value of trimmer condenser settings of C_{3} and C_{2} will have to be used and the whole procedure repeated. Sonetimes L_{2} has to have considerably less turns than L_{1}, and a few turns added or subtracted to allow the IIF oscillator to tune throigh the whole range at precisely 450 KC higher in frequency than the detector and KF stages.

Multi-band Receivers

Individual coils in multi-band receivers with coil switching arrangements must have small trimmer condensers shunted across the inductive circuits. as shown in Figure 5. This allows fairly accurate alignment in

each band by following the procedure previcusly outlined. In assembling a superheterodyne, the labor of checking is rather long and tedious since eadl coil must have

Tuned circuits for coil switching.
exactly the correct number of turns because bending the main tuning condenser plates would umbalance or misalign all other coils. Unfortunately in receivers incorporating coil switcling arrangements, it is impossible to obtain accurate circuit alignment. Many commercially built receivers use two stages of KF ahead of the first detector. tuned rather broadly to overcome this defect and obtain better signal-to-noise and image ratios.

If either the circuits of the RI stage are regenerative, they must track exactly with the HF oscillator. This type of circuit is shown in Figure 4, where C_{1} and C_{a} are approximately $\because 0$ to 30 mmfds. ganged tuning condensers on the main tuning dial, and C_{2} and C_{4} are band setting condensers of 100 to 140 mmfds. In this instance, C_{2} can be used as a panel operated trimmer condenser to hold the circuits exactly in line at ligh degrees of regencration. The series condensers C_{3} of Figure 3 are not required in this class of receiver due to the very narrow band tuning-range of C_{1} and $\mathrm{C}_{\text {s }}$. The coil turns on L_{2} and L_{2} can be adjusted so that at random settings of C_{2} and C_{1} they will give practically perfect alignment. In practice, adjustment occurs at slightly greater capacity settings of C_{2} than for C_{1},
tugether with a small increase in inductance L_{1}. Varying the coil turns and spacing between turns will insure good tracking 1hroughout all the amateur bands with the possible excention of the 160 meter band. This form of receiver invariably uses plugin coils which must be adjusted properly, the turns being cemented in place with cellubidal cement.

Beat-frequency Oscillator

- At beat-frequency oscillator, BlO O , is lined up by tuning it so that its hiss is loudest in the receiver ontput; later, a signal is impressed to give a 1000 or 800 cycle beatnute. For example: If the $1 \mathrm{I}^{\circ}$ amplifier is lined up to 450 KC , the $\mathrm{BI}^{\circ}(\mathrm{O}$ must le tuned to eitlier 499 or 451 KiC . If a crystal filter forms part of the IF amplifrer complement, a vernier adjustment for the $\mathrm{Bl}^{\circ} \mathrm{O}$ should be available on the front panel in order to exactly set the beat-note for best results. The IiFO input to the second detector need oniy be sufficient to give a goud beat-note on a fairly strong signal. Too much coupling to the second detector will mean excessive hits level with loss of very weak signals in the mise background. The 1 HFO must be will shielded to prevent harmonics of the circuit from radiating and setting up unwanted signals. The oscillating circuit must have a high C to L ratio in order to generate oscillatory currents of high stability.

Crystal Filters

- In lining up tine IF amplifier for use with a crystal-filter, it is necessary to employ the crystal itself as an oscillator, providing a calibrated test oscillator is unavailable and the exact frequency of the crystal unknown. When the crystal itself functions as the oscillating medium, the circuit shown in Figure 6 should be used. In the diagram, the crystal is comected as a comentional crystal-oscillator in a transmitter, with the

PEST OSCILLATOR CIRCUIT
FIG. 6
Crystal Filter Aligning.
exception that a small air-grap is used and the :rrid-leak and choke combination eliminated. A winding from an IF transformer for the plate inductance with the trimmer attached are all that are required for tuning.

For lining-up purposes, a type 30 tube with 2 volts AC on the filament will sutice; the AC modulates the signal and simplifies the adjusting procedure. Plate voltage (180 volts) is secured from a tap on the voltage divider. A milliammeter inserted in the plate circuit will indicate oscillation, the plate current dipping as the trimmer condenser funcs the inductance to the resonant frequency of the crystal. A piece of insulated wire is brought near the inductance and the far end of the wire hooked over the grid input to the first $I F$. Tuning the $I \stackrel{y}{5}$ to exact resonance with the crystal then becomes a simple matter. Exact IF alignment should be made with the crystal in the circuit for best results after the preliminary adjustment is made, because the crystal frequency is not exactly the same in a resonator as in an oscillator.

In adjusting the crystal filter, the phasing condenser and infut tuning condenser should be adjusted simultaneously for maximum signal response, then a slight readjustment of the phasing condenser will allow elimination of the other sideband.

Notes

In lining up a recciver which has automatic volume control (AVC), it is considered good practice to keep the test-oscillator sigual near the threshold sensitivity at all times to give the effect of a ve:y weak signal relative to the audio amplifier output with the audio gain control on maximum setting.

In checking over a receiver certain troubles are often dillicult to locate. In general, by making voltage or continuity tests, blown-out condensers, or burned-out resistors, coils or transformers may be easily locatect. ()scillators are usually checked by means of a 1)C voltmeter connected from ground to screen or plate-return circuits. Short-circuiting the tuning condenser plates should usually produre a change in voltmeter rearling. A vacuum-tube voltmeter is also very handy for the purpose of measuring the correct amount of oscillator RF voltage supplied to the first detector circuit. The value of the RI voltage is approximately one volt less than the fixed grid bias on the first detector when the voltage is introduced into either the grid or the cathode circuit.

Incorrect voltages, poor resistors or leaky bypass or blocking condensers will ruin the audio tone of the receiver. Defective tubes can be checked in a tube tester. Loudspeaker rattle is not always the clefect in the voice coil or spider support, or metallic filings in its air-gap; more often the distortion is caused by overloading the autio amplifier. An IF amplifier can also impair splendid tone due to a defective tube or overloading
the final $1 F$ tube. In some AVC circuits, the last If tube will easily overload if too much bias is fed back on strong carrier signals. Diode detectors give best fidelity when operated at fairly high input levels which means that there must be ample voltage swing delivered to the output of the last If tube.

Quartz Crystal Filters

- The subject of quartz-crystals is confusing to many users, which may be attributed to the complexities underlying the technical nature of the device.

Briefly, a quartz-crystal cut on certain axes and with parallel faces, has the property of mechanically oscillating in alternat-ing-current electric fields of certain frequency. In addition, it has the very unique property of functioning as a resonator. In CW reception, the self-resonant feature is utilized in a filter circuit to limit the received signal to a band of approximateiy 100 cycles wide, such an electrical combination improves the signal-to-noise ratio as well as assures the highest selectivity obtainable for CW radio telegraphic reception.

General Details

To generally illustrate the function of the crystal and filter circuit, assume that the latter is replaced with its electrical equivalent in inductance and capacity. A crystal of 451.5 has an equivalent inductance of 3.5 henrys and a capacity of less than 0.1 micromicrofarad. The effective " Q " of such a circuit ranges from 1000 to 10,000 . Since " Q " is the propertr which governs the shape of the resonance curve, the circuit would have a very narrow shoulder with a sharply peaked characteristic. Apparently no combination of inductance and capacity could eclipse these effects. Similarly, to an electrical equivalent circuit, the crystal has also properties of a series-resonant circuit. A circuit of this type offers very low impedance to the resonant frequency (that frequency where the inductive reactance and capacitive reactance are equal), while at the same time presents very high impedance to all other frequencies. A series-resonant circuit will pass the resonant frequency (in this case the frequency to which the receiver is tuned) and reject all other adjacent signals. In general, resonance curves do not have vertical sides, they slope. The "steepness" of the slope is dependent, among other things, upon the " Q " of the circuit. With a circoit having a resonance curve with gradual sloping sides, an irterfering signal removing 10 KC from the desired signal may only be ten points down in stength from the desired signal at the output of the receiver. In contrast, a quartz-filter circuit with extremely steep sides can ca:ase interfering signals to
be cut down from the unwanted signal $10,-$ 000 times. These figures are merely illustrative of the effect of the extreme discrimination of such circuits as compared with ordinary tuned-parallel resonant circuits used in an IF amplifier.

Technical Discussion

- The impedance of a quartz-crystal oscillator to an AC electrical current is exceptionally low and it can therefore be used as a series element of an electrical filter for CW reception. The quartz-crystal may be compared to the electrical equivalent circuit shown in Figure \tilde{r}, where C 1 is the capacity across the quartz plate when not vibrating; R , the resistance equivalent to the frictional effects of the vibrating crystal; L, the inductance corresponding to inertia; and C , the capacity corresponding to the elasticity. One side of resonance the circuit has capacitive reactance due to the elastic forces which control the crystal vibrations, while on the other side of resonance the reactance is inductive on account of the inertia effects. At resonance, the crystal vilerates freely, its amplitude being limited by the frictional effects; in the resonating state, L and C are equal in reactance and the resonant frequency is the same as the mechanical wihratory mode.

Fig. 7

Equivalent circuit of a quartz crystal.

If the impressed voltage is at the resonant frequency, the current through it will be large, limited only by the resistance R . There is also a leading component due to C_{1} which can be balanced out by means of a "phasing" condenser. (Nore: A phasing condenser is used in all single-signal receiver circuits to eliminate the by-passing effect of C 1 , of Figure 7, or to use it as a means of eliminating one sideband.) C1 combined with L and C have a sufficient inductive effect to provide a parallel circuit at a frequency slightly different from series resonance.

By placing the plasing condenser in the circuit so that the voltage across it is out of phase with that across the crystal, the parallel resonance can be shifted above or below crystal-resonance. Thus, the phasing condenser can be adjusted so that the parallel resonance causes a sharp dip in the response curve at some desired point. such as? KC away from the desired signal peak.

This means that the other sideband 1 KC away from zero-beat can be practically eliminated with a beat-frequency osc:llator. The scries-resonant effect is used to pass the desirec: signal through an 1 F amplifier for further amplification.

Quartz-Filter Circuits

- In reception, it is required that the noise-to-sigisal ratio be kept at a very low value: to obtain the optimum noise ratio requires circuits having selective and higlly-peaked response curves. Thus, it is desirable to have a band-width only about 100 cycles wide, down to a point at where the gain of the receiver will discriminate against undesired signals audible in the ontput. A welldesigned crystal filter will provide an attenuation of alrout 60 DE to signals more than 5 KC off resonance with, of course, that much more attenuation of the opposite sideband, 1 KC from zero-beat on the opposite sitle from the peak response.

Quartz-crystals have a greater " Q " at lower frequencies. For this reason most filters are designed for operation at 500 to 450 KC , and used in an IF amplifier resonating at the crystal frequency. From a selectivity standpoint, frequencies lower than 450 KC would be desirabie because the crystal " Q " would be greater; however, in the lower ranges image interference becomes a problem.

In quartz-crystal filter circuits, the R value ranges between 2,500 and 10,000 ohms which requires that the circait be designed to minimize its loading effect on any tuned circuits, otherwise the impedance irregularity will cause an excessive loss at the desired signal frequencs. This latter condition occurs in the popular circuit shown in Figure 8.

Fig. 8
Lamb's crystal filter circuit.
Some of the undesirable effects of the circuit shown in Figure 8 are eliminated in the circuit of ligure 9 . Here, the gridleak is replaced by a tapped resonant RF choke. The resonant effect. plus the midpoint connection, gives a step-up in impedance from the series element (the quartzcrystal) with only a slight loss in signal strength. To realize the iull possibilities of this system requires that the resonant choke be properly designed; unfortunately, the design is difficult.

McMurdo Silver's crystal filter.

The difference between the circhits of Figures 8 and 9 is in the manner of obtaining an out-of-phase voltage across the crystal. The coil can be center-tapped to ground, or the cente- frint of the two condensers may be used. In either case, the crystal-input circuit tuning condenser and phasing condenser are simultaneoasly adjusted for maximum signal response and greatest signal effect.

Fig. 10
Frank C. Jones' crystal filter.
In the circuit of Fifure 10 the erystal is used as a series element. connecting two parallel resonant eircuits together in a bancl-pass circuit. The small condenser C of 20 to 30 mmfds . is necessary to prevent over-caupling between the tuned Il transformers, because at se-ies resonance, only a iew thousand ohnus is offered as impedance. The staall condenser C does not appreciably. decrease the signal strength, its function is that of coupling the two tuned circuits togetler. The extra t:med circuits, which cause only an effective loss, eliminate the usual spurions site-band responses of most fuartz crystals. The side-baud responses are a iew kilocycles away from resonance, hut hy careful tuning of the IF transformcrs. these effects can he attenuatec 10 practically zero value.

Another method for matching imredances is shown in ligure 11. Here the low impedance of the crystal at resonance does

A. V. C. and Audio Circuits

Automatic volume control is a distinct advantage when the receiver is used for phone reception. It automatically compensates for signal fading. Briefly, its action depends upon the carrier signal strength which causes a control voltage to vary in proportion to the actual carrier intensity.

AMPLIFIED AVC FOR 222 RECEIVEA OR ANY OTHER SHORT WAVE SUPERMET

High quality audio amplifier with a maximun output of 15 watts. Legend-
C1-0.1. C2-4 mid. C3-4 mid. $\mathrm{C} 4-10 \mathrm{mfd}$. $\mathrm{C} 5-8 \mathrm{mfd}$. $\mathrm{HI}-500$.000 ohm Potentiometer. $\mathrm{R} 2-1250$ ohms, 1 watt. H3- 100,000 ohms, 1 watt. R4- 250,000 ohms, 1 watt. R5 5250,000 ohm Potentiometer. R6500,000 ohms. 1 watt. R7- 750 ohms, 10 watts. R8- 20.000 ohms 1 watt. R9-25,000 ohms, 20 watts. TIOutput Transformer from 2A3s PushPull to Dynamic Speaker. T2Power Transformer, 300 volts each side of center-tap at 150 MA .
not over-couple the two parallel tuned circuits. A 30-1 step-down ratio of impedance wor:s into the crystal, and a sidnilar stepup ratio couples it into the tuned-grid circuii. In this circuit, as well as in the one alx.ve, a small series condenser prevents over-coupling. Laboratory and field tests show that very little, if anything, is gained by the step-down transformers as compared with the system shown in Figure 10. The circuits shown in Figures 9. 10 and 11 are better than that of Figure 8.

Band Pass Crystal Filters

An ideal claracteristic for an I.IF. amplifier it: a c-w recciver would lee a band width s(t) cycles broad at the topl, and practically straight-sided. The total attemeation woukd be down at least 120 I.I. as approximatels 100 cycles either side of this band-pass. The attenuation should extend down to 120 D.B. in orter to eliminate "slop-ever" from very petverinu local stations.

A multiple quartz crystal filter. combined with a munber of tuned 1.F. circuits, would appraach this ideal condition for phone recention: on the other hand its use would not be desirable for $c-w$ reception. Series cryst. 1 filter circuits as used in single signal superiteterodynes give a very narrow width. bat the shape of the curve resembles the ontlise of a volcano. It is too sharp for easy tuming on the peak, and altogether too wide at the base; therefore the strong local s:gnals cannot be eliminated. The peak purtion of the curve is too selective for phone reception, and for this reason the series crystal circuits wil' eventually he discarded.

Fig. 12
The equivalent circuit of a quartz crystal is shown in Fig, 12, wherein both series and parailel resonance occur. Series resonance is due to the equivalent inductance and series cajacity.

$$
\mathrm{F}_{n}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

The crystal holder introduces a sluunt or parallel capacity C_{p} across the crystal. and farallel resonance occurs at:

$$
F_{n}=\frac{1}{2 \pi} \sqrt{\frac{\overline{C_{n}+C_{n}}}{L_{C_{n}} C_{k}}}
$$

The parallel resunance eifect can be varied iby means of a "phasing" condenser in a single signal receiver in such a manner that it will neariy eliminate the second beat note of a $c-w$ signal which is tuned-in on the peak of resonance. The parallel resonance is too sharp to make possible the elimination of the entire undesired beat note, except over a certain range, such as from 800 to 900 or 1,000 cycles. Thus a weak, undesired signal of higher or luwer beat note can still be heard, especially if the lower beat nute signal is of sufficient intensity.

F:g. 13.
Fig. 13 shows two crystals in a band-pass circuit. The crystals nsed in hand-pass circuits are slightly different in frequency.
In liig 13 the response curve is wider at the base, which is the point of least attenuation (the peak of response in a receive:) than for the single series crystal shown in Fig. 1% C.

Fig. 14
Fig. it shows a shunt single crystal filter circuit with series condensers. The circuit is similar to that of Fig. 13, except for the reversal in the peint of greatest attenuation. The curve of (c) depends upon the proper impelance terminations, as well as the correct values of shunt and series condensers.

Fig. 15 shows a system with three crystals for tetter hand-pass characteristic. The band-pass width is less than 0.4% of the series resonance frequency of the crystals; consequently for a 40 Kic crystal the band width would not be greater than 1750 cycles.

These land-pass filters have a low impedance. depending apon their band widths. The narrower the band, the lower is the ralue of impedance to match. This impedance ranges from a few hundred ohms, downward. Imperlance matching can be acconplished with tuned I.F. coils which have low inductance untuned secondary and primary windings.

The attenuation of these band-pass crystal filters is from 30 to 40 D.E., except at the points of fighest attenuation, which may run from 60 to 100 D.B. This sliding-

Fig. 15
off effect on the sides beyond the parallel resonant cut-olf points means that additional attentation in the S.F. amplifier is required, or more than one section of crystal filter must be used between stages.

Simple Battery Receiver Circuit

- This receiver does not in any sense represent a new develcpment in the short-wave construction field. Instead, it is one in which the designer combined well-known and accepted principles to produce a set that is simple and inexpensive to build.
From a casual cxamination of the schematic diagram it will be seen that the receiver is of the sangle-circuit regenerative type, with tickler feed-back. The placement of the parts is extremely important for effective results. As in all receiver designs where the maximum efficiency is desired. only the highest quality of parts should be used. Eequipment of inferior design, carelessly assembled, will not bring the desired results.
For economical uperation, two type 30 low drain two-vult tubes are used. The first serves as a regenerative detector: the second as an audio amplifier. The tuning range of the receiver is 1 is to ?200 meters, covered by a set of four plug-in coils. Regular broadcast reception is optiomal, by adding a set of two plug-in coils to cover $200-500$ meters.

Only two dry-cells and two t.\% wolt "P" batteries are required for complete operation.

Regeneration is controlled by a 50,000 ohm variable resistor connected across the tickler leads. The output of the detector is transformer-coupled to the audio tube by a shielded transfurmer having a ratio of 1 to 3 . A luad resistor of 200,000 ohms is connected across the secondary of the audio-transformer to eliminate any possibility of "iringe how."

The antenna is coupled to the tuning coil by a semi-variable "postase stamp" condenser having a maximum capacity of 80 uuffls.

Tuning is accomplished by a 140 uufd midget variable condenser mounted on the front panel. A smooth vernier-type dial is used to insure proper tuning.

Simple 2-Tube Regenerative Receiver.

Operating Notes: Plone signals are loudest just below the oscillation point, and CW signals just above the oscillation point. When tuning the receiver, set the regeneration control to the point where the detector just starts to oscillate; then the tuning dial should be carefully turned urtil a "whistle" is heard. Careful tuning at this point and further adjustment of the regencration control will bring in the intelligifile signal.

Simple Receiver With One '19 Tube

This receiver gives surprisingly good volume on INX signals; it is especially recommended for the begimner who is contenplating the design of a simple and inexpensive set.

The circuit diagram is self-explanatury: however, there are some details that need explanation. The grid and plate connections must be properly made, as shown in the circuit diagran. The grid bias is secured by means of the rheostat in the filament circuit. The constructor, thercfore, is cantioned to connect the movable arm of the rheostat to the negative A , al:d also to the negative f f on the audio transformer. Best results are secured with a megohn grid-
leak; smaller values may cause the detector to =egenerate with an unpleasant roar. Smootl regeneration is sometimes secured by connecting a 250,000 ohm $1 / 2$ watt resistor across the secondary (GF) terminals of the audio transformer.

Schematic circuit diagram of the one-tube receiver. $L 1$ is the secondary, or grid coil. L2 is the "tickler," or regeneration coil.

The hand-spread tuning condenser is a 3 -plate midget variable: the tank tuning condenser is a 50 mmfd. (or 100 mmfd .) midget variable. A 140 mmfd . midget variable condenser is used for the regeneration control. The secoondary and tickler coils are both wound on the same form, and both coils must be wound in the same direction; otherwise the retector will not oscillate.

Pictorial layout of parts for 1 -tube receiver. This arrangement should be closely adhered to.

The front panel is made of a piece of No. 12 or No. 14 gatuge aluminum, $7 \mathrm{in} . \times 9$ in. The wood baseboard is $9 \mathrm{inn}, \mathrm{x} 11 \mathrm{in}$. The band-spread, tank condenser and regeneration condenser are mounted directly on the panel and the rotors of these condensers
are grounded to the panel. The rotors may be comnected together, and the comecting wire bonded to the ground or panel. An inexpensive airplane dial enhances the symmetry of the iront panel. This dial contruls the $: 8$-plate band-spread tuning condenser.

Rear View of the Completed Receiver.

Front Panel Layout.
Top, left-"Tank" turing condenser. Bottom. lelt-Hegeneration condenser.
Center-Airplane tuning dial.
Extreme righ-Rheostat control.
The headphone jack is mounted between the airplane dial and the rheostat control. This jack MUST be insulated from the metal front pamel and a hole at least $1 / 8$-inch larger in diameter than the outside diameter of the screw thread on the jack should be drilled in the panel.

Ordinary lahnestock battery comectionclips can be used for lieadphone connections in phace of the phone jack; these connectors can be secured to the bascboard in any convenient location. preferably near the atdio frequency transformer.

An on-olf switch can be added, or the dry vells $c: n$ be d'sconnecterl from the receiver when not in use. Two $1 / 2 / 2$-volt dry cells are required. These will give excellent service for a long period of time. The

1-battery voltage may be as low as 22 volts, but at a sacrifice in audio volume; 45 to 90 volts is more suitable for normal operation, except when the receiver is used as a portable. With 22 volts the tickler coil must be placed very close to the secondary coil.

The antema is coupled to the "high potential end" of the secondary coil by a few turns of lead-in wire twisted around the gricl-lead of coil LA; a single turn loop wound around the top of L 1 will give the same results. The small midget condenser shown in rear view plotograph of the receiver is comected in series with the antenna lead and the top lead of L.1. It can be used as a substitute for the twisted-wire coupling arrangement.

COIL DATA

The upper coil is the grid (second ary) coil. Start the winding at point 1, make the connection to prong 1. The bottom of the grid coil (2) connects to prong 2, The top of the tickler coil (3) connects to prong 3; the bottom of the tickler (4) connects to prong 4. Mark the coil prongs and the coil socket contacts to corre-
 spond with these numbers. See the pictorial layout to show how the connections are made to the coil socket. Make certa:n that Connection Nn. 1 goes to the stators of both tuning condersers, and also to one side of the .0001 mld . grid condenser. Likewise, take care to see that Connection No. 4 goes to the plate of the detector portion (P2) of the type 19 tube. If these connections are not properly made, the receiver will not function. The antenna lecd-in wire can be looped around the No. 1 connecting lead.

COIL FORM LEGEND

Terminal No. 1 connects to one side of the .0001 mfd . mica fixed condenser and to the stator of the 100 mmf . (or 50 mmf .) condenser, as well as to the stator of the 3plate midget variable tuning condenser. Likewise, the insulated antenna lead-in wire is twisted around the lead which connects to Terminal No. !.
Terminal No. 2 connects to the rotors of all three variable condensers, and at the point where the three are connected together another lead is run to the "ground" terminal of the receiver.
Terminal No. 3 connects to the stator of the 140 mm . variable condenser which is used for regeneration, and the same terminal also connects to one end of the 2.5 mh . RF choke.
Terminal No. 4 connects to the P2 terminal on the type '19 tube.

COIL WINDING DATA

The secondary coil and the tickler coil are both wound in the same direction.

20-Meter Coil: Secondary winding-7 turns of No. 22 DSC wire, space-wound to cover a winding space of l-in.
Tickler Winding-5 turns of No. 22 DSC wire, close-wound, and spaced about $1 / 8-$ in. from the secondary winding.

40 Meter Coil: Secondary Winding - 14 turns of No. 22 DSC wire, space-wound to cover a winding space of l-in.
Tickler Winding-ll turns of No. 22 DSC wire, close-wound, and sparced $1 / 8-\mathrm{in}$. from secondary winding.

80-Meter Coil: Secondary Winding - 27 turns of No. 22 DSC wire, close wound.
Tickler Winding-11 turns of No. 22 DSC wire, close wound, and spaced $1 / 8$-in. from secondary winding.
160-Meter Coil: Secondary Winding-60 turns of No. 22 DSC wire, close-wound. Tickler Winding-17 turrs of No. 32 Enameled wire, close-wound, and spaced $1 / 8$-inch from secondary winding.

Simple 1, 2 and 3 Metal Tube Regenerative Receivers

- A modern receiver fur the newcomer consi: ts af a single $6 \mathrm{~J} \boldsymbol{\pi}$ metal tube in a conventictaa: circuit with cathode reyeneration, i. e., a circuit in which a single tuned circuit covers the desired frequency band and also provides regeneration.

Regeneration is secured by means of "catlrode tap" connected to the tuned coil at its lower (ground) end, in addition to a variable source of "ls" voltage for the screen of tlre 6 J . If the cathorle tap is placed at the proper point on the cuil. and if the correct screen voltage is applied to the tube, the circuint will go into cscillation very smoothly and both voice and code reception is had with ease.

FIG. 1.
Simple One-Tube Receiver with Rengerative Detector.

The newcomer will find it advisable to first build a receiver with a single metal tulbe; an additional stage of audio amplification, or a "front-end" stage of tuned-radioirequency amplification, can be added later. Even though more than ane tube is to be eventually used. it is desirable to first wirc the receiver ior ane-tube operation, then other tubes can be added at will. Circuits for the simple :lewomers' receiver are shown in Figs. t and 5 . The single-tube receiver will give good results, pick-up many DX stations, even thoush the signal strength is low. An audio amplifier stage can be added at any time, thms the original receiver does not become obsolete. For ordinary reception in rural locations the two-tule receiver leaves little to be desired.

Technical Data

The detector circuit for a single-tube receiver is the same as that for a two-tube re-
ceiver. The antemia lead is twisted around the grid wire (ore or two twists), or around the wire which connects from the

FIG. 2.
Front Panel View of One- or Two-Tube Receiver. The Control dial in the Upper Right Corner Is Not Used in a Cne-Tube Receiver.
top or the tumed coil to the grid condenser and grid-leak. This twisted lead acts as a small capacity (condenser) and by varying the namber of turns, or twists, the capacity is varied. Dead spots in the antenma are

FiG. 3.

compensated for by varying the number of twists, or by sliding the twisted portion along the grid wire, away from the coil and grid,

FIG. 5-Showing how additional stages are added to the one-tume receiver. The dottedline portion shows G pentode power output stage for loud-speaker operation. The coil winding data is unchanged.
in order to reduce the capacity: For ordinary reception, the twisted portion remains fixec over the entire band and the position of this "condenser" is varied only when coil clanges are made.

The detector is of the gridl-leak variety. A. 0001 mfd mica fixed condenser, shunted with a 5 to 10 megolin grid-leak, is in series with the grid of the detector tube. The coil is shunted by two variable condensers, one for "band setting," or "band finding." the other for band-spread tunting. The "band setter" condenser roughly tumes the circuit to the desired band, whereas the bandspread condenser fermits of very close (vernicr) tuning. The condenser with the fewer plates is the hand-spread condenser.

The cathode tap must be carefully located or: the thmed coil. The coil-winding table gises correct data, which should be closely achered to. If the receiver fails to regenerate, the cathode tap should be moved slightly farther away from the ground end of the coil. If regeneration is tor harsli, the tap should be moved closer to the ground end of the coil.

Construction

The detailed drawing shows the parts required and the mett:od of connection. Coil construction data is also given. The "ground" conaections. a number of which can be secn
by referring to the schematic circuist diagram, are ail comected to a common wire, and then to the rotors of the thming condensers. This common gromen connection is then attached to the chassis, and the latter connected to an earth zround.

FIG. 6.
Hum-Free Power Supply for ary receiver with 3 tubes or less. The circuit details are in the Power Supply Chapter.

The coils should be wound exactly as showa in the sketci. The top tum, No. 1, is comected to one side the grid leak and grid condenser. The cathrode tap, No. 2. commects directly to the catiode (K^{-}) of the GI: tabe.

The bottom end of the coil, No. 3, commects to the common ground lead under the chassis, and also to the rotors of both variable condensers. Carefully check these connections to make certain that the leads are properly made to the coil socket and coil prongs.

The plate voltage slould be from 180 to 250 volts. The heater voltage for metal tubes is 6.3 volts. Dry batteries or a conventional power supply unit can be used for uperating the receiver. The antenna can be a single wire, any length. The usual antema would be approximately 100 feet long.

Coil Winding Table for 1, 2 or 3 Tube Regenerative Receiver

160-225 Meters: Wind 70 turns of No. 24 DSC wire on a $11 / 2^{\prime \prime}$ dia. form. Connect cathode tap $11 / 2$ turns up from ground end.

> 70-110 Meters: Wind 36 turns of No. 22 DSC wire on a $11 / 2^{\prime \prime}$ dia. form. Connect cathode tap $11 / 2$ turns up from ground end.

> 32-60 Meters: Wind 21 turns of No. 22 DSC wire on a $11 / 2^{\prime \prime}$ dia. form and space-wind the wire over a winding space of $13 / 4$ ". Connect cathode tap $1 / 2$ turn up from ground end.

19-30 Meters: Wind 11 turns of No. 22 DSC wire on a $11 / 2^{\prime \prime}$ dia. form and space-wind the wire over a winding space of $13 / 4^{\prime \prime}$. Connect cathode tap $1 / 2$ turn up from ground end. The location of the cathode tap is quite critical on the 19-30 meter coil, and a slight amount of
experimenting must sometimes be done in order to find the point where smooth oscillation control is obtained.

Abstract

10-25 Meters: Wind 5 turns of No. 16 DSC wire on a $11 / 2^{\prime \prime}$ dia. form and space-wind the wire over a winding space of $11 / 2^{\prime \prime}$. Connect Cathode tap $1 / 3$ rd turn up from ground end. Experiment with cathode tap connecting point until best control of regeneration is secured.

Note: This receiver will not cover the broadcast band unless a 350 mmf . variable condenser is connected in parallel with the 100 mmf . band-setting condenser. A coil which will cover the broadcast band can be made with a 2 -inch winding length of No. 28 or 30 DSC or Enameled wire on a $11 / 2^{\prime \prime}$ dia. form. Connect cathode tap $21 / 2$ turns up from ground end.

T. R. F. Receiver with Metal Tubes

Extreme receiver selectivity is not always required and in such cases a tuned radiofrequency receiver will give very satisfactory results. The sensitivity of a regenerative detector preceded ty an RF amplifier is very good, and often the signal-to-receiver-noiseratio is better than in a superheterodyne. A T. R.F. receiver is more easily built and adjusted than a superheterodyne, and it does not cost as much.
The receiver here illustrated is suitable for all-wave reception, also for long-wave commercial reception, if suitable coils are wound. With the coils described, continuous bandspread tuning can be had from 8 to 200 meters. One dial tunes a two-gang 140 mmid. condenser for broad range coverage, the other tunes a two-gang 25 mmicl . condenser for band-spread tuning over a narrow range. Obviously, the band-spread feature applies to any portion of the tuning range, not only for the amateur bands.

Technical Notes

- Metal or glass tubes can be used with equal satisfaction. A 6 K 7 RF stage in-
creases the strength of weak signals and also provides greater selectivity. The regenerative 6 J 7 detector has high sensitivity and is impedance-coupled into a 6 C 5 audio amplifier stage. An audio volume control regulates the degree of signal strength in the telephone receiver headset. For loudspeaker reception an additional power stage should be added.

Circuit tracking of the RF and detector tuned circuits is accomplished by winding the secondaries of all coils in a similar manner. The secondary coil turns are pushed together slightly, or they are more widely spaced, before they are securely fastened to the coil form with a few drops of celluloidal or Duco cement. The detector circuit has many miscellaneous capacities across part or all of the circuit and thus a 3 -to- 30 mmid, mica trimmer condenser is connected across the RF tuned circuit. This trimmer can be set to a compromise value for all coils, or it can be set separately for each coil. Different antennas will cause slight detuning, particularly if the antenna happens to resonate in any of the tuning ranges. Tight antenna coupling tends to broaden the tuning of the RF stage to some extent, and for all
practical purposes this stage will track satisfactorily with the sharply-tuned detector staye.

FIG. 7.
Front Panel View of T. R. F. Receiver. The large dials are for the tuning condensers, the one to the left is the "tank" tuning dial or "band locater." The other large dial is for band-spread tuning, and it alone is used to tune the receiver, once the band is located on the other dial. Thus this is a "single-dial" tuning receiver. The smaller controls along the bottom are, left to right-(1) $50,000 \mathrm{ohm}$ "Pot" RF Gain Control. (2) $50,000 \mathrm{ohm}$ "Pot" Detector Regeneration Control. (3) 250,000 ohm "Pot"

Volume Control for 6C5 cudio stage.
A cathode RF wolnme control adjusts the receiver gain. Powerful sigials from nearby statio: $:$ are found in some amateur bands, in which ase a reduction in RF gain will improve the apparent selectivity and permit reception of fairly weak sigmals. The Ri stage is smmewhat regenerative at high gain settings and there may be a tendency for it to oscillate with some coils and some antemas. The KF volume control will prevent regeneration in the RF stage, if it is properly manipulated.

The detector screen voltage is varied in order to cotitrol regeneration. A series 100.000 whm resistor anc' an additional 0.1 mfd . by-pass condenser keeps thic 50.000 ohm regenerasion crintrol from introducing noise into the audio circuit. Impedance coupling, shonted by a 100,000 ohm resistor, permits the the of high plate voltage at the detector plate without 'fringe howl' effects.

Resistance-condenser coupling into the headset isolates the latter from DC voltage
and plate current. The plate supply should be very well filtered, otherwise the AC hum will be excessive. Generally about three filter chokes and three or four 8 mfd . condensers are needed to provide pure DC output without any apureciable trace of hum from the power supply. A 6.3 volt winding for the metal tube lieaters should have its midpoint grounded, or a 50 ohm centertapped resistor can be used for this same purpose.

Constructional Notes

- The front panel is of 14 gauge iron or, preferably, 12 gauge aluminum, 7 in. high and 12 in. long. The chassis is 7 in. wide, 11 in. long and 2 in. deep, No. 18 gauge steel. Two aluminum baffle shields are placed hetween the coils to shield the RF and delector circuits. The larger shield is $8 \frac{1}{2}$ i:n. long, $41 / 2$ in. high, with a $1 / 2 \mathrm{in}$. lip beut aleng the bottom for mounting to the chassis. I'wo irregular slots must be cut out of the shield to ullow space for the two tuning condensers. Tie upper portion of each of these slots is only wide enough to clear the $1 / 4-\mathrm{in}$. condenser shaft, whereas the wider slot must clear the base of the tuning condensers. A smaller aluminum baffle, $4 \frac{1}{2}$ in. $\times 21 / 2$ in., mounts about $1 / 8$ in. from the larger one, and fits fetween the tuning condensers withont touching them.

The isolantite coil sockets are mounted on

FIG. 9-Looking into the T. R. F. Receiver. The two aluminum shields are clearly shown.
small metal sleeves in order to keep the sockets above and away from the steel chassis. A large hole is punched under these sockets so as to facilitate wiring. Conven-

FIG. 10-Coil Construction for 8 to $161 / 2$ Meter Band,
tional metal tube wainer sockets mount under the chassis; the tubes pass through $11 / 8 \mathrm{in}$. holes in the chassis.

Insulated condenser shaft couplings serve two purposes. The mechanical line-up to the tuning dials is simplilied and noise which would otherwise be very troublesome on 10 or 20 meters is eliminated. The latter effect would be caused by poor contact of the metal shaft to the front panel, thas changing the ground return paths of the RF coil circuits. Separate ground leads are connected to each coil from its taming condensers, then to a common gromnd point for each stage on the chassis at the point where the by-pass condensers are grominded to the chassis. The tuning condensers are equipped with contacts for soldering the ground leads, and the RF stage ground leads ean be secured to the chassis with machine screws and nuts. Even when separate groumd leads are connected to each condenser. there is still a common ground coupling effert through the tuming condenser shafts, which catises a slight reaction between stages.

The front and rear rotor plates of each section of the original two-gang 35 mmfd. condenser are removed in or fer to reduce the capacity to about 9.5 mmid., maximum. In the model shown, the antenna and ground posts are mounted near the rear of the chassis, a little too close to the detector stage. These mests should preferably be mounted at the rear side of the chassis ir. such a way that they will protrude throngh a cabinet, if one is userl, thus shichling the leads from the detector. A piece of Belden shield braid is slipped over the antenna lead under the chassis in order to prevent $R F$ stage coupling into the detector circuit leads.

Resistors and by-pass condensers are connected directly to the socket terminals. or to tie-strip lugs beneath the chassis. A 4 -prong wafer socket on the rear edge of the cliassis provides a means for conneiting an external power supply of 6.3 volts at 0.3 amperes. and 200 to 250 volts B supply to the receiver.

After the receiver is conpletely wired, it is a good plan to check the circuit diagram, one wire at a time. thronghout the entire set. It is easy to 亡orget a small part or
a wiring lead, and a recheck of the wiring circuit shonld alwars be made.

Operating Notes

- The coil data should be closely followed and all coils should first be tested for "tracking" before the turns are cemented in place on the ribbed coil forms. When the detecter and RF stage are correctly in line, the detector will not oscillate as easily as when it is detuned. providing the RF gain contro! is at full, or nearly full, gain setting (minimum resistance).

Excessive hum when the detector is oscillating can usually be traced to an inferior 0.1 intd. RF plate by-pass condenser. The (athode tap must be advanced a fraction of a turn if regeneration is not secured because of a weak 6 J т tube or too-low plate voltage. Oscillation in the letector can be heard in the form of a slight click, or thump, as the regeneration contral is varied. If the tube is oscillating, touching the detector tuning stator plates with a finger will produce a click in the headphones, and another click when the finger is removed. Ii there is 110 oscillation, the noise or click will be much weaker, but the "double" click will not be heard. For civ reception the detector must oscillate weakly, and for phone reception the regeneration should be advanced to the "edge" of oscillation. The RF stage should not oscillate.

Winding the Coils

The method of inter-winding the plate and grid toils for the detector stage may confise the average experimenter unless he refers to the pictorial diagram whieh shows how these coils are wound. A specimen pictorial is also shown separately for the coils that cover the s to $16 \frac{1}{2}$ meter band The RF coil construction is simple; there are two windings, $L 1$ for the antenna-ground coil, and L2 for the secondary coil. L2 occupies the top portion of the coil form, L1 is wound below L2 and spaced from L2. The spacing varies for different coils, as the coil-winding chart shows. The detector coil
form is the one on which the cuils L3 and L4 are inter-wound. L4 (grid winding) is first wound; the turns are spaced to occupy the winding length shown in the chart. After L4 is wound, L3 is then inter-2eound, i.e. another coil (L3) is wound between the turns of L4. This winding, L3, has fewer turns than L4, (except for the 8 to $161 / 2$ meter coil), consequently the winding of L3 begins farther down on the coil form. The pictorials clearly show how this winding, L3, is inter-wound with L4. In order to acquaint himself with the methord of coil winding, the experimenter is advised to first wind the coils which cover the 29-62 meter band.

All coils are wound on standard Hammar-
lund $11 / 2$ in. diameter ribbed plug-in-coil forms. The coil form for the RF stage has four prongs, the detector ccil has five.

Cathode Tap

- The cathode tap on coil Lt in the large circuit diagram may confuse the reader because it appears that this tap is taken far up on the coil. This is not the case. The tap is actually made to either the bottom turn of LA, or on the second turn from the bottom, as the coil chart shows. The tap, as shown in the large circuit diagram was shown in this manner only in order to simplify the drafting.

T. R. F. Receiver Coil Table All Coils Wound on $11 / 2^{\prime \prime}$ Diameter Forms.					
Approx. Range in Meters	Ant. Coil Ll	Secondary Coil L2	Primary Coil L3	Secondary Coil L4	Cathode Tap on L4
8 to 16	3 turns, spaced $1 / 8-$ in. from ground end end of L2.	$31 / 2$ turns No. 20 DSC. $3 / 4-\mathrm{in}$. long.	21/2 turns No. 24 DSC. interwound with L4. + B at bottom.	$31 / 2$ turns No. 20 DSC. $3 / 4$-in. long.	Tap at $1 / 3$ turn on bottom turn.
$151 / 2$ to 32	5 turns, $1 / 8-\mathrm{in}$. from L2.	7 turns No. 24 DSC. $11 / 2$-in. long.	3 turns No. 24 DSC. interwound with L4.	7 turns No. 24 DSC. $11 / 2^{-i n}$. long.	Tap at $1 / 2$ turn on bot tom turn.
29 to 62	$\begin{aligned} & 8 \text { turns, } 1 / 8-\mathrm{in} \text {. } \\ & \text { from L2. } \end{aligned}$	16 turns No. 24 DSC. $11 / 2$-in. long.	6 turns No. 24 DSC. interwound with L4.	16 turns No. 24 DSC. $11 / 2$-in. long.	Tap at $3 / 4$ turn on bottom turn.
59 to 107	10 turns $_{2} 1 / 8-\mathrm{in}$. from L2.	31 turns No. 24 DSC. $11 / 2$-in. long.	8 turns No. 34 DSC. interwound with L4 at ground end.	31 turns No. 24 DSC. $11 / 2$-in. long.	Tap at 1 turnup from bottom.
97 to 215	12 turns, $1 / 8$-in. from L2.	54 turns No. 24 DSC. $11 / 2$-in. long.	12 turns No. 34 DSC, wound over bottom end of L4 over celluloid layer of insulation.	54 turns No. 24 DSC. $11 / 2-$-in. long.	Tap at $11 / 4$ turns up from bottom.

Improved Two-Tube Jones Super-Gainer

For simplicity of construction, ease of operation and economy in cost the new improved Super Gainer has no equal. It is highly recommended to the experimenter because of its remarkable selectivity and sensitivity, because it is a super-heterodyne, with only two tubes, yet it performs like a 5 or 6 tube super. This new 1937 Super Gainer
is an improvement over the one shown in previous printings of this Handbook. Those who have built the earlier model can make the improvements by adhering to the newer specifications.

Although the new Super Gainer is in itself an adequate instrument for all ordinary amateur reception, increased selectivity and sig-
ual strength can be secured by connecting the new Regenerative Ire-Sclector ahead of the receiver. This Pre-Selector is described elsewhere in this Chapter. First build the rectiver, then if additional selectivity and signal strength is needed, the Prc-Selector can be added at any future time. It is difficult for the experimenter to conceive thal a two tube super-heterodyne can perform in such a surprising manner as this little Super Gainer.

Like the earlier models of the Super Gainer. this receiver is an exclusive development. and therefore no data is found in contensporary literature.

FIG. 11.
Front View of Two-Tube Super-Gainer.

The function of the receiver is as follows: A ${ }_{6} \mathrm{FF}_{7}$ combination triode and pentode tube serves as a high-frequency oscillator and regenerative first detector for a superheterodyme system. The pentode portion of this tube is tuned to the frequency of the desired signal and regeneration is obtained by connecting the cathode across a small portion of the tuned circuit. The cathode is common ti) both sections of the 6F7, therefore it also provides coupling between the detector and oscillator circuits. The triode section of the tube has a circuit which is tuned to a frequeacy 465 KC above the frequency of the desired signal. Oscillation is obtained by a tickler coil coupled to the tuned circuit L2. Regeneration in the detector portion is controlled by variation of the screen-grid volage. The plate of the detector section of the tube is connected to an Aladdin ironcore I.F. transformer which is tuned to 465 KC . The proper iron-core I.F. transformer for this receiver is the Aladdin Type A-100.

The high degree of selectivity is obtained by means of the two 465 KC tuned circuits in the iron-core I.F. transformer, then aided by means of regeneration in the following tube. The 6A6 tribe serves as a regenerative
second detector and audio amplifier in its two triode sections. The regeneration not only enables beat-frequency c-w reception, but also greatly increases the sensitivity of the receiver for phone reception. Regeneration is kept below the point of oscillation in the 6 A 6 for phone reception, but turned up slightly beyond the soint of oscillation for $\mathrm{c}-\mathrm{w}$ reception. The regeneration control is a variable resistance connected across the cathode coil Lc. A 10,000 ohm tapered potentiometer is shunted with a fixed 1,000 ohm resistor, the twis combining to provide very smooth control of regeneration when comected across the cathode coil.

The cathode coil consists of 100 turns of No. 30 DSC wire, jumble-wound on a $1 / 2$-inch diameter clowel rod, over a winding length of approximately $3 / 8$-inch. This coil should be mounted under the chassis, close to the 10,000 ohm potentioneter.

The 6A6 tube has two high-mm triode sections in a single envelope. One of these sections is comected in a grid-leak detector circuit, the other is in a resistance coupled audio circuit. The 6A6 detector plate voltage is reduced to the proper value through two resistors connected in series; the junction point of the two resistors is then hypassed to ground through a 0.1 mfd . condenser in order to prevent "motor-boating" and hum pickup from the power supply. The audio section of the 6A6 tube is connected to positive B through a 50,000 ohm resistor in order to reduce the plate voltage to a value which will be suitable for operation at zero grid bias. This also enables the phone jack to be insulated by means of a 0.1 mifd. condenser from the 250 volt plate supply.

All resistors shown in the circuit diagram should be of the one-watt size. All fixed condensers are Cornell-Dubilier 600 -volt tubular paper condensers, except those marked "Mica." All ground cornections should be bonded together and then connected to the rotor shafts of all variable condensers.

Single dial tuming over any amateur band is accomplished by means of two 20 mmfd . midget variable condensers, ganged together through an insulated flexible coupling, then connected with a shaft to the Crowe tuning dial, which is also insulated from the shaft by means of another flexible coupling. An aluminum shield separates the oscillator from the detector tuned circuit. This shield is a piece of No. 12 ga. aluminum, 5 in. wide x 8 in. long, with a $1 / 2$ in. right-angle bend to fasten the shield to the chassis.

The detector coil is at the rear left of the chassis, the oscillator at the front right. (See photograph). The 6 F 7 tube (with shield can) is at the left front of the chassis. The 6.A6 is at the right rear corner, covered with a large tube shield can. The I.F. transformer is directly alongside the 6A6 tube. The

band-setting 100 mmfd . midget variable condensers are mounted directly on the front panel. Small indicator scales are fastened under the band-setting condenser knobs. The remaining front panel controls are variable resistors for first and secont derector regeneration. The receiver is mounted in a standard $71 / 2$ in. wide, 10 in. long. i in. high Bud Radio Co. metal cabinet with classis. Catalog No, 871.

The Power Supply preriously shown in this Chapter is suitable for this receiver. A 6 -volt storage battery and 180 to 225 volts of lis battery can be substituted for the AC power supply.

The simplest method for alignirg this receiver is with the aid of an all-wave test or signal oscillator. If such a device is not avail-

FIG. 13--Interior View of Two-Tube Super-Gainer.
alle. the set can be linedup by listening to commercial or amateur signals. The I.F. transformer tunirg should be adjusted to a point where the primary (plate winding) tends to pull the 6A6 detector out of oscillation. If this pulling effect is too great, the coupling between the I.F. ctils should be loosened. or a few more turns added to the cathode coil Lc. The first detector regeneration control should be kept below the point of oscillation at all times. The oscillator padder condenser (100 mmf . midget variable) should be varied across its
dial range until a signal is rectived. 'The detector 100 mmi . padder conderser can be varied until the signal strengtl: is maximum. After the amateur bands are located, the particular paider comdenser settings for each band should be marked on the coils for future reference. The antema coupling should be varied by changing the number of turns of insulated wire twisted around the grid lead of 6 Fr tube until the detector can be set into oscillation within range of the 50,000 ohm potentiometer. In making this adjust-

All Coils Wo	2 TUBE ound on l1/2" Diam Oscillator	ER-GAINER COI Forms. Detector C is Wound on 5-Pron	TA Wound on 4-Prong Forms. ms.
Wavelength	L. Detector	L_{2} Oscillator	L_{3} Tichler
$\begin{aligned} & 160 \\ & \text { Meter } \end{aligned}$	79 turns $\$ 28 \mathrm{E}$. Tapped at 4 turns. Closewound.	58 turns 28 E . Closewound. Grid on top end.	20 turns $\# 28 \mathrm{E}$ Closewound $1 / 8^{\circ}$ from L2. Same direction as L2 with plate on far end.
$\begin{gathered} 80 \\ \text { Meter } \end{gathered}$	40 t 20 DSC ., Spaced to cover $13 /{ }^{10}$ Tap at 2 turns	$33 t 20 \mathrm{DSC}$. Spaced to cover $13 / 4$.	10 t 28 DSC . Closewound 1/ro from L2.
$\begin{gathered} 40 \\ \text { Meter } \end{gathered}$	$12 t$ f 20 DSC., Spaced to cover 1 ,' ${ }^{\prime \prime}$ Tap at $11 / 2$ turn.	11t 20 DSC. Spaced to cover $11 / 4$ 。	$7 \mathrm{t} \# 24 \mathrm{E}$. Closewound. Spaced $1 / 8^{\prime}$ from 22 .
$\begin{gathered} 20 \\ \text { Meter } \end{gathered}$	$7 t$ t20 DSC., Spaced to cover $11 / 8^{\circ}$ Tapped at one turn	7t $\ddagger 20$ DSC., Spaced to cover 11/8.	$4 \mathrm{t} \ddagger 20 \mathrm{DSC}$. Closewound. Spaced $1 / 8^{\prime}$ from L2.
$\begin{aligned} & 10 \\ & \text { Meter } \end{aligned}$	$31 / 2 \mathrm{t} 420 \mathrm{DSC}$. Spaced to cover 1° Tap at $1 / 3$ turn.	31/2t 120 DSC . Spaced to cover 1°.	

FIG. 16-Jones Ultra-Gainer with Noise Limiter, but without Crystal Filter.
detector band-setion must be set in the exact position for maximum signal strength. The circuit diagram shows low the antenna lead-in is wrapped aromen the gricl lead of the 6F: tube, but the photograpli shows this comection brought through the cabinet by means of a small push-thru insulatur, in order to simplify mechanical design. Note: Uscillation in the 61% trionle circuit can be checked by conncting a $0-2: 20$ volt voltmeter between ground and the point marked 6 in the circuit diagram. A temporary short-circuit across the phates of the oscillator twing condenser shoul! produce a clange in the voltmeter racling. This simple test is useful in alljustine the ticker turns and coupling for any cosil range.

FIG. 14-Coil Construction. Both windings must be in the same direction.

The Ultra-Gainer Receiver

- This receiver is a de-luxe version of the Two-Tube Super-Gainer. Its performance is comparable with that of other receiver

FIG. 15-Interior View of Ultra-Gainer.
variable antenna coupling. This design gives unusual sensitivity for 10 and 20 meter operation. The sensitivity is much greater than that of the smaller Super-Gainer reccivers, and it works as well on phone as for cw. The cost of the parts, except for the power supply, is less than $\$ 35.00$, including 5 metal tules, 15 plugin coils, cabinet and an excellent Crowe Verrier Tuning Dial.

The circuit and mechanical construction permits for the addition of a crystal filter at a fut:Ire date. Eities glass or metal tubes are suitable, with the exception of the 6LT first detector for which there is no glass tube efuluvalent. The 6 N 7 netal tube is similar to the 6A6 and the 6 K 7 s are similar to 6DG tubes. An optional noise limiting circuit in the output holds the amplitude of ignition or static noise impulses to the level of a moderate signal. This simple noise limiter enables one to copy a weak signal thrn a barrage of auto ignition or other form of stalic. A switch cuts the noise limiter in or out at will.

Technical Notes

having twice as many tubes. It is more sensitive than conmercial receivers because it has a regenerative RF amplifier stage and

- Five tubes comprise the line-up in a superheterolyne circuit. Metal tubes require less space than glass tubes and they are self
shielded. . I rexenerative $R F$ stage adds greatly to the sensitivity and practically climinates image interference. Variable antema coupling, controlled by a rod thru the front panel, makes best use of regeneration for any kind of antenna in any location. Regeneration on 10 and 20 , or even 40 meters, greatly improves the sensitivity of very weak signals. because regeneration is properly controlled in this receiver. Varia-

FIG. 17.
Front View of Ultra-Gainer. The controls for the RF stage are at the far right.
tion of screcn-grid voltage provides an additional control of regeneration.

The first detector employs a $6 \mathrm{~L}_{7}$ mixer tube in a conventional circuit, except for the cathode volume control. The receiver volume control is placed in this part of the receiver rather than in the I.F. stage, because any variation in the latter would have a slight effect on the beat. An electroncoupled high-frrquency oscillator supplies a mixing voltage 456 KC higher in frequency than the desired signal. Coupling to the detector is between the mixing grid of the $6 \mathrm{~L} T$ and the 6 KT oscillator cathode. This system eliminates harmonics from the oscillator and provides good tuming isolation between the detector and oscillator circuits. There is practically no inter-lock effect. cven on 10 meters, and thus the detector band-setting condenser can be properly set without losing the signal due to oscillator cle-tuning.

A single T.l. stage provides more thin ample gain and sufficient selectivity. Two Aladdin air-taned iron-core 4.56 KC I.F. transformers provide very good selectivity. The I.F. stage has a slight tendency to oscillate, due to very ligh gain. but this difficulty occurs only at full gain setting when the I.F. coils are exactly peaked. The last coil must be tuned $1-\mathrm{KC}$ off resonance in order to obtain a 1000 cycle beat note on cw. Fixed cathode and screen voltages insure a constant piate impedance across the second I.F. transformer and good stability
can be had in the second detector circuit, which must oscillate for cw reception. This characteristic is of more importance when a crystal filter is added between the 6 L 7 and 6 K 7 tubes. since the selectivity would be greater and exact setting of the B.F.O. would be necessary.

The second detector and audio amplifier is, a 6×7. which is similar to the 6 A 6 . It ${ }^{\prime \prime}$ serves as a regenerative detector which gives a high degree of selectivity and sensitivity to the I.F. system, as a Ir.F. Oscillator on cw reception, and also as an audio amplifier. The audio amplifier section is resistancecoupled to the detector, and it also has

The above drawing will aid the constructor in properly cutting and forming the shield partitions.
resistance coupling to the telephone receiver jack. This isolates the telephone reccivers from high $D C$ voltage and prevents DC current from flowing thru the windings. Re-sistance-coupling provides a simple and inexpensive form of noise limiter in the audio amplifier. When the switch is closed, connecting the 500 ohm resistor from the midpoint of the A.F. resistors to ground, the plate voltage on the audio section of the ${ }^{6} . \mathrm{N}_{7}$ is reduced to less than 5 volts, which limits the audio output to a very comfortable level in the telephone receivers. A strong burst of static can only be amplified as much as the desired signal itself, since the tube uperates on the upper saturated portion of its characteristic curve. With the switch (located at the rear of the $s-t$) open, normal plate voltage is applied antel strong signals and bursts of static are amolified to such an extent as to rattle the diaphragms of the headset.

A cathode coil is in the 6N7 detector section in order to provide inductive reactance. just as in an clectron-coupled oscillator. The detector plate circuit is by-passed to ground with a 005 mfd . condenser and therefore the I.F. frequency does not pass into the audio amplifier. The amount of regeneration or oscillation is controlled by a 1000 ohm variable resistor connected across the cathode coil. Grid-leak detection, with a very high value of grid-leak, provides a smooth control of oscillation. A lower value causes

Wave Trap, Aladdin No. IK tin3. Crsital Input Transformer, Aladdin No. G.A. 1リ0-C. I.F. Transfirmers.
FIG. 18-Jones Ultra-Gainer with Noise Limiter and Crystal Filter,
the :egeneration confrol setting to differ for the point at which oscillation starts, and at which it stops. when rotation is reversed. Such a high grid-leak resistance produces an audio howl when regeneration is excessive (far beyond the point oi oscillation for normal cw reception).

The plug-in coils are designed to give good restilts on the amateur bands. Wide bandspread is made possible without complication, and coil losses can be made very small. Bard-switching complicates a receiver for the home constructor and is rot at all efficiert on 10 meters.

Constructional Notes

A metal can 12 in. long. 10 in . wide, and 3 ir:. high houses the receiver. The chassis is of heavy slated iron, about 18 gauge, 113 in. $\times 93 / 4 \mathrm{in}$. $\times 2 \mathrm{in}$. A rigid chassis is needed in order to prevent change of beat note, while receiving, when the receiver is moved slightly, stich as when tuning or adjusting controls.

All by-pass condensers connect from the tube sockets directiy to the chassis. The chassis should be plated so that it will take solder.

The main tuning condenser has a shield in the form of " 2 " between the retector and oscillator sections. The condenser was originally a two-gang double-spaced midget. 35 mmid . per section. One stator plate is removed from each section by means of a
pair of long-nosed phiers. Similar!y, three rotor plates are removed from each rotor section, leaving a maximum capacity of approximately 20 numid. per section. This provides better banil-spread, still covering the 80 and 160 meter bands with correctly designed coils.
No. 12 gange almminum partitions shield the KiF stage from the first detector, and the detector from the H.F. oscillator. The two 100 mmfd. band-setting condensers monnt in their respective shielded compartment. one on either side of the main tuning dial. The latter is a Crowe slow-speed vernier dial, with very smooth acticn, which makes tuning easy. A flexible shaft coupling connects the dial to the tuning condenser.

The RF stage tuning condenser mounts directly on the frunt panel and is controlled by a $23 / 4$ inch dial. A separate control on this stage simplines construction and circuit isolation and aiso allows exact tuning of this stage in order to secure maximum benefit from regeneration.

Tlie space at the right hand rear part of the chassis is reserved for a crystal filter which can be added at any time. The Aládin air-tuned iron core I.F. transformers give excellent stlertivity without neerl of two I.F. stages. They are tuned with air dielectric condensers and no drift is enconntered.
If glass tuhes are substituted for metal, tube shields must be placed on all stages incl:ading the $6 . A_{6}$ tube. The cathode coil
may require an additional 25 to 50 turns for a 6 A 6 tube than for the 6 N 7 . This cathode coil consists of 60 turns of No. 28

FIG. 19—Crystal Filter Stage for the UltraGainer. An Aladdin Wave Trap is mounted to the side of the shield cabinet. See Fig. 18 for circuit details.

DSC wire, a $1 / 2$ inch diameter, jumble or universal wound to occupy not more than $1 / 4$ inch of winding space. A small aluminum can is placed around this coil in order to
prevent radiation of harmonics into the RF portion of the receiver. A little care in locating second detector leads, plus some shielding, will prevent 95 per cent of the trouble usually encountered from the B.F.O. harmonics getting into the RF front end of the receiver. These parasitics are heard as steady cw signals, and are some multiple of the intermediate frequency which sometimes liits the amateur liancis in the form of harmonics. No trouble was experienced from this source in the receiver here shown.
The antenna coil has 10 turns of No. 24 DSC wire, wound on the sawed-off portion of one of the RF coils. All of the RF stage coil forms are cut down one inch, which brings the coil winding to within about存-inch from the top edge or rim. The antenna coil is fastened to a $33 / 4$-inch piece of $1 / 4$-inch diameter brass rod which slides in and out through the front panel. A telephone jack provides a bearing and the jack spring holds the brass rod in any desired position. Coupling to the RF coil is varied by pulling the rod in or out by means of a knob, so that the antema coil slides over the RF coil. Pulling the rod far out clears

Ultra-Gainer Coil Chart				
Meters	H. F. Osc. Coil	Detector Grid Coil	R. F. Plate Winding on Det. Coil	R. F. Grid Coil
10	$31 / 2$ turns No. 18 DSC. 1 -in. long (winding length). Tap at 1 turn.	$31 / 2$ turns No. 18 DSC. 1 -in. long.	3 turns No. 32 DSC. interwound (+B at bottom). Ground of Detector grid coil at bottom also.	5 turns No. 18 DSC. 1 -in. long tap at $1 / 4$ turn.
20	6 turns No. 18 DSC. 1 -in. long, tap at I $1 / 2$ turns.	6 turns No. 18 DSC. 1 -in. long.	$4 t$ No. 32 DSC. interwound with Detector grid coil.	10 turns No. 18 DSC. 1 -in. long, tap at $1 / 4$ turn.
40	11 turas No. 24 DSC. I $1 / 2$-in. long. Tap at 3 turns.	12 turns No. 24 DSC. $13 / 8$ in. long.	8 turns No. 32 DSC. interwound with Detector grid coil.	18 turns No. 18 DSC. 1-in. long, Tap at $1 / 3$ turn.
80	32 turns No. 24 DSC. $13 / 4-\mathrm{in}$. long. Tap at 10 turns.	38 turns No. 24 DSC. $13 / 4$ - in. long.	16 turns No. 32 DSC. interwound with Detector grid coil.	40 turns No. 24 DSC. Closewound. Tap at $1 / 2$ turn.
160	53 turns No. 24 Enam.Closewound. Tap at 15 turns.	80 turns No. 24 Enameled. Closewound.	25 turns No. 32 DSC. Closewound over lower end of Detector grid coil over a layer of celluloid for insulation.	70 turns No. 28 Enam. Closewound. Tap at $3 / 4$ turn.

the RF coil and allows the coil to be changed, as well as giving very loose coupling. Flexible leads from the slitling coil are connected to antenna and ground posts mounted on the sicle of the cabinet.
A four-prong wafer socket is mounted on the rear of the cabinet for cable connection to an external power supply.

The RF coils should have the grid end of the coil tozard the coil socket in order to peevent capacity coupling to the grid from the antema coil.

Operating and Line-Up Notes

- An all wave test oscillator or signal generator is needed for proper aligmment of the receiver. The I.F. transforners should be tuned to approximately 455 KC by coupling into the I.F. tube grid, then into the $6 \mathrm{~L} \overline{6}$ grid with a 456 KC signal. The second detector should go into oscillation smootlly as the 1000 ohn variable resistor is rotated toward maximum resistance. The I.F. tuning can be adjusted so the detector breaks into oscillation easily by tuning it very slightly to one side of maximmm sensitivity. With the GI. i gain control full on, i.e., no resistance, tube hiss should be audible due to high gain in the I.F. stage. The hiss level is very low unless the ketector is oscillating, in which case it is about equal to that caused by any B.F.O. for cw reception.

Too few cathode coil turns wil not allow the $6 \mathrm{~N}^{-} 7$ tube to oscillate. Too many turns will nest allow smooth control of regeneration, tesides causing a noticeable detuning effect as the regeneration controi is varied when adjusting the I.F. transformers.

The detector and II.F. oscillatar coils can next be checked by means of the test oscillator. This is not a difficult problem if the test oscillator is calibrated in frequency. The coil turns can be spaced or pushed together slightly in order to give good tracking over the narrow limits of each amateur band.

Fig. 19A-Complete Set of Coils. 10 to 150 Meters. for the Ultra-Gainer.

The baty setting conelenser readings should be marked on each co:l for its proper setting, once ead amateur band is located. In some cases, two such readings are obtained on the oscillator dial, the lower capacity value being the correct one for tracking. The H.F. oscillator shoule always oscillate 456 KC higher in frequency thatl the irequency to which the KF and detector circuits are tuned.

The RF stage shonld be operated with regeneration below the oscillating point. Proper adjustment of the RF tuning, antenna coupling, and regeneration control are easily determined because the static or noise level pirked-up by the antenna will be at a relatively high value at resonance. The signals will also be amplified several fold at the proper adjustment. Generally, the antenna and $R F$ regeneration controls need little afijustmont once they are set for any: one band. Only the large vernier dial is rotated when tuming over a narrow band.

The 6LT volume centrol should always be adjusted for each signal, because too strong a cow signal will teml to prevent beat note reception: the second detector is adjusted for weak signal reception at all times. Oscillation or lack of it in the II.F. oscillator can be checked by touching the grid of the 6 Kr oscillator with a finger while reading the screen-grid voltage on a voltmeter RF stage oscillation can be checked in the same manner, although tests by ear on the output of the receiver will give an indication of all these factors if one is familiar with short wave receiver adjustment.

The Curnutt DeLuxe Superheterodyne

- Only the experienced anrateur or setbuilder is advised to attempt the construction of the elaborate superheterodyne here described. The original model was built by Mr. T. Curnutt, WGBAY. Its performance is outstanding. The circuit is conventional and incorporates all of the best features of superlreterodyne design. It kas a regenera-
tive tuned RF stage, crystal filter, noise silencer and the tubes are of the latest metal types.

The particular points of it:terest are its mechanical details. The ligh-frequency portion is housed in an infividual heavy aluminum container which can be removed from the chassis of the receiver by merely dis-
connecting a wiring terminal strip and a few machine screws and nuts that hold the unit in place. Various photographs of this unit are shown, and from these the interested constructor can ge? a clear picture of the nechanical design.

The individual high-frequency unit contains the regenerative RF stage, the mixer, and the high-frequency oscillator. This type of construction completely isolates the "heart" of the receiver from the other components by means of perfect shielding between stages. All negative returns are car-

FIG. 20.
Front View of the Curnutt (W6BAY) DeLuxe Superheterodyne.
ried to a common ground bus-bar which runs along one side under the chassis. Although the rotors of all condensers are separately grounded, they are insulated from each other in order to avoid possibility of common coupling. The oscillator is momed closest to the front panel. the mixer in the center.

and the RF stage in the rear of the scparate compartment. This reason for this arrangement is that back-lash could be introduced in the far-end condenser, which would be bothersome in tuning the oscillator, were it placerl in the rear. Another reason is that this line-up permits the antenna to be connected to the coil at a point only one inch from where it epters the receiver. which is most advantagcous for high-frequency operation,

It has not been considered good practice to place the oscilator adjacent to the front pancl because of hand-capacity effects, but
with the special type of construction here used the shielding is so good that there is no effect of hand-capacity no matter where the receiver is touched.

Only three comections from this unit are carried througl the panel or chassis; (1) The shaft that extends through the front panel to the main tuning cial; (2) The cable to the filament and plate supply; (3) The

FIG. 21.
Looking into the Curnutt Superheterodyne.
commection to the RV trimmer condenser. The latter is mounted directly beneath the RF stage under the sub-panel and a pushthrough insulator equippec with a G.R. jack makes contact with a G.R plug.

FIG. 22.

Under-chassis view showing neat arrangements of parts and circuit wiring.

All filament leads from the high-frequency unit are carried through flexille copper braid and grounded to the bus under the chassis.
Conventional phug-in coils are used for all but the 10 meter band. for which ceramic forms are nsed instead. Each coil has a self-contained variable air-padder condenser.

This arrangement permits permanent alignment of each stage for each set of coils and also eliminates the problem of "hunting" for the band each time the coils are changel. The oscillator coil has four prongs, the mixer : prongs, the RF stage 0 prongs. This leaves one unused prong on each coil. On the 20 meter toils, however, this extra prong is used to tap the tuning condenser across only a part of the coil. This arrangement providss greater bandspread. The coils for all bands other than 20 meters lave a jumperwire irside the coil form so as to connect the condenser across the entire coil.

The intermediate - fre-

FXG. 23-Pictorial Drafting showing location of components above chassis.
 FIG. 24.
quency amplifier has Aladdin, iron-core transformers, a crystal filter, noise silencer circuit and a diode detector. The noise silencer circuit is ahead of the crystal filter, where it is most effective and where it also aids in reducing some types of man-made interference.

The Jones crystal filter is incorporated in

FIG. 25.
this receiver, with input and output transformer of the iron-core tyle. Proper adjustment of the coupling and phasing condensers will give almost any desired degree
of selectivity. For fone operation, it was found that good voice intelligibility could be secured with the crystal in series-connection,

FIG. 26.

FIG. 27.

Band	R. F. Coil	Mixer Coil (Detector)	Oscillator Coil
160	L1 - 20 turns No. 28 Enam., close-wound. L1 - 60 turns No. 28 Enam., close-wound. Tap $21 / 2$ turns from bottom.	L3 - 20 turns No. 28 Enam., close-wound. L4 - 60 turns No. 28 Enam., close-wound.	L5-54 turns No. 28 Enam., close-wound. Tap 10 turns from bottom.
80	L1 - 10 turns No. 28 Enam. L2 - 35 turns No. 20 Enam. Tap 21/2 turns from bottora.	L3-15 turns No. 28 Enam. L4-35 turns No. 20 Enam.	L5 - 35 turns No. 20 Enam., spaced one diameter. Tap 5 turns from bottom.
40	Ll-6 turns No. 28 Enam. L2 - 18 turns No. 20 Enam. Tap 2 turns from bottom.	L3-8 turns No. 28 Enam. L4-18 turns No. 28 Enam.	L5-18 turns No. 20 Enam., spaced one diameter. Tap 6 turns from bottom.
20	L1-5 turns No. 28 DSC. L2-83/4 turns No. 16 Enam. Tap 1 turn from bottom.	L3 - 6 turns No. 28 DSC. L4-83/4 turns No. 16 Enam.	L5-83/4 turns No. 16 Enam., spaced one diameter. Band-spread Tap 5 turns from bottom. Cathode tap 1 turn from bottom.
10	L1-3 turns No. 28 DSC. L2 - $3 \frac{3}{4}$ turns No. 16 Enam. Tap $1 / 2$ turn from bottom.	L3 - 3 turns No. 28 DSC. L4-3 3 /4 turns No. 16 Enam.	L5 - 3 turns No. 16 Enam. Spaced 2 diameters. Cathode tap $1 / 2$ turn from bottom.

The Curnutt DeLuxe Superheterodyne

FIG. 28.

FIG. 29.

FIG. 30.
if comparatively tight coupling is used between the input and output crystal filter transformers. This gives the selectivity carve of the crystal stage a rather flat top instead of the usual sharp peak, and also eliminates the difficulty of keeping a modulated signal tuned to the peak of the crystal, which is a common source of trouble in many other receivers. When used in this manner, the crystal does not add as much selectivity to the circuit but the loss of selectivity in this stage is not a disadrantage because the four iron-core transiormers give so much selectivity in the intermediate stages tiat the side-bands are cut appreciably even with
the crystal in the off position. In the series position, the crystal makes an ideal combination with the noise silencer; the crystal discriminates against one type of noise, the silencer circuit against another. The result is a very marked improvement in signal-tonoise ratio.

Construction

There is nothing complicated about the mechanical constr:iction of the receiver. The draftings which accompany this treatise give nany of the physical measurements. Heavy-gauge aluminum is used throughout,

the chassis being of $1 / 8$-inch material. Any sheet-metal shop can be called upon to do the chassis cutting and bending.

Alignment

- The vacuum tube voltmeter (" R "-Meter) wn the front panel scryes as a simple device for aligning the receiver. The crystal is first inserted in an oscillator circuit, such as an amateur crystal oscillatcr in which a BCI-size plate coil is included, and then lonsely conpled to the grid of the 6L7 mixer
tube. The "R"-Meter will show a deflection if the intermediate frequency is in the proximity of the crystal frequency. Starting with the second detector, each stage is adjusted for maximum deflection of the meter. Repeat the process and make a double-check on the alignment. The $\mathrm{Rl} \mathrm{l}^{-}$stages are aligned by setting the oscillator to the desired band, plus the intermediate frequency. Then a signal is tuned-in. either from the air or from a local oscillator, and the mixer and RF stafe is adjustech for maximum rosponse on the " R "-Meter.

Super-Selective Phone Receiver

A remarkable improvement in operating performance is accomplished in this receiver by the use of duplex I.F. circuits. In addition to super-selectivity as a result of the special band-pass I.F. circuits, it has high sensitivity on both 10 - and 20 -meter bands. The receiver is primarily designed for phone reception and therefore does not have a separate beatfrequency oscillator.

The receiver must be lined up by means of an all-wave test oscillator. The I.F. may be aligned by comnecting the test oscillator to the first detector grid. The first detector must oscillate in actual operation and the RF stage should tune sharply when the regeneration control is well advanced. The second detector should go intoroscillation smonthly: The same receiver can be used on tr-meters providing the transmitters are crys:al-controlle d. The set selectivity is very ligh due to the regencration in the second detector.

Technical Details

- Besides the conventionality of the circuit, emphasis is placed on the following details: The I.F. transiormers are connected so as to have four tuned circuits between each stage, intercoupling being accomplished by means of three 30 mmfd. trimmer condensers set to about 5 mmfds. Air dielectric tuning condensers would be desirable in the I.F. units.
I.F. oscillation will take place with two
stages of Aladdin iron-core transformers if the 6D6 tubes are operated at normal voltages. Since full gain of the two stages is not nerded, a large fixed cathode resistor holds the maximum obtainalle I.F. gain to a value only a little higher than can be se-

FIG. 32--Super-Selective Phone Receiver.
cured with a single stage. The two stages merely serve as a coupling convenience and to compensate for the "band pass" circuit losses.

The second detector oscillator coil is made by winding 100 turns of No. 32 DSC wire on a $: / 4$-inch diameter dowel rod. Too many turns will cause strong oscillation, and turns should therefore be removed until the second detector goes smonthly into oscillation. In the circuit diagran, this coil is shunted by a $10,000 \mathrm{ohm}$ taperec' potentiometer. Smoother control of regeneration can often be obtained be using a 1,000 ohm potentiometer, or by
shunting the 10,000 ohm potentiometer with a 1,000 ohm fixed resistor.

If this receiver is to be used extensively for cw reception, the $I . l^{\circ}$. transiormer preceding the 6 A 6 tube should have air-tuned padder condensers in order to minimize frequency drift in the receiver.

FIG. 33.
Receiver with shield compartment covers removed.

The set is built on a $14 \times 9 \times 2$-inch plated steel chassis with an 8×15-inch 10 -gauge aluminum front panel. The three RF shield cans are 5 -inches high, $61 / 2$-inches

FIG. 34.
Under-chassis parts placement and wiring.

FIG. 35.
Curves A and C show the selectivity of α standard factory-made amateur superheterodyne, with and without quartz crystal filter. Curve B was made with the receiver here described.
long, and 4 -inches wide in their outside dimensions, and are made of No. 12-gatge aluminum. A drum dial drives three midget condensers for band tuning. Shunt 100 mmfd. band-setting condensers are individually controlled from the front panel. The R.F. and detector tuning condensers are rated at 20 mmfd, maximum capacity and the oscillator at 15 . By resorting to bending the condenser plates and by expanding or compressing the coil-turns, good track-

FIG. 36 -Jones Super-Selective $10-20$ meter phone receiver.

Coil Data for Super-Selective Phone Receiver					
Wavelength	L_{1}	L_{2}	L_{3}	\mathbf{L}_{4}	L_{6}
160 Meter	$\begin{aligned} & 12 \text { turns } \\ & \text { No. } 32 \text { DSC. } \end{aligned}$	$\begin{aligned} & 13 / 4{ }^{* *} \text { of } \\ & \text { No. } 24 \text { e. } \\ & \text { tapped at } \\ & \text { 1/4. turn } \\ & \text { closewound } \end{aligned}$	25 turns No. 34 DSC. closewound over lower end of L,	$\begin{gathered} \text { Same as } L_{2}, \\ \text { not tapp } \end{gathered}$	$11 / 4$ of No. 24 e. Tap at $2 / 5$ Tap at $2 / 6$ of turns.
$\stackrel{80}{\text { Meter }}$	$\begin{aligned} & \text { 8 turns } \\ & \text { No. } 32 \text { DSC. } . \end{aligned}$		15 turns No. 34 DSC. interwound	$\begin{gathered} \text { Same as: } L_{2} \\ \text { no tap } \end{gathered}$	
$\begin{gathered} 40 \\ \text { Meter } \end{gathered}$	$\begin{aligned} & 6 \text { turns } \\ & \text { No. } 32 \text { DSC. } \end{aligned}$	12 turns No. 22 DSC $11 / 2^{\prime \prime}$ long. Tap at $1 / 2$	8 turn No. 32 DSC. interwound	$\underset{\text { no tap }}{\text { Same as }} \mathrm{L}_{2}$	$\begin{aligned} & 11 \text { turns } \\ & \text { No. t22 DS. } \\ & \text { Tap at } 3 \text {. } \\ & \text { turns. } \\ & 1 / 4^{*} \text { long. } \end{aligned}$
$\stackrel{20}{\text { Meter }}$	2 turns No. 22 DSC.		4 turis No. 32 DSC. interwcund	$\underset{\substack{\text { Same as } \\ \text { no tap }}}{L_{2}}$	$\begin{gathered} 6 \text { turns } \\ \text { No. } 20 \mathrm{DSC} \\ \text { i" long. } \\ \text { Tap at } 1 / 1 / 2 \\ \text { turns. } \end{gathered}$
$\begin{gathered} 10 \\ \text { Meter } \end{gathered}$	2 turns No. 22 DSC.	$\begin{gathered} 31 / 2 \text { turns } \\ \text { No. } 20 \text { DSC. } \\ 1 \text { long. } \\ \text { Tap at } 1 / 4 \\ \text { turn. } \end{gathered}$	3 turns No. 32 DSC. interwound	Same as L_{2}	$\begin{gathered} 31 / 2 \text { turns } \\ \text { No. } 20 \mathrm{DSC} . \\ \text { 1"long. } \\ \text { Tapati } \\ \text { turn. } \end{gathered}$

ing can be witanmed over the narrow amateur bands. The antemna coupling has to be capable of slight variation in order to obtain regeneration with different antennas.

A separate midget condenser with knols control out ui the rear oi the chassis is shimated arruss the second detector input. "Whis alluws wcillation frequency control far singe signal effect. Regentration or oscillation is accomplished by means of a small coil shunted by a tapered variable resistor in series with the cathode circhit. ' l 'his coil consists of about 100 turns of small wire Wuthed ont a "íth-inch dianceter over a winding length oi approxinately one inch. Too mary turns will catuse strong oscillation, whereas the effect should function smoothly in a manner similar to an antoxyme.

Circuit Alignment

- The 1.1 . system aligmment is quite difficult as each circuit must be accurately peaked to about $46,5 \mathrm{KC}$. A test oscillatur should be comped into the individual transformers starting with the one feeding into the second detectur. As each transiormer is aligned, the oscillator can be capacitively coupled to the next preceding transformer until the whole sesten is completely lined up to the desirer I.F. frequency. The R.F. circuits may be lined up with the same oscillater, providing it is of the all-wave type. When proper alignment is obtained phone signals that would ordinarily be unreadable on a comentional "sharp" super-heterodyne can be copied with ease, though the fodelity may be impaired very dightly due to atemuation of the higher frefueney sidebands.

FIG. 37 -Continuation of Fig. 36 from preceding page.

Regenerative Pre-selector

A good RIF pre-selector will greatly improve the operation of any radio receiver. In nine cases out of ten, a weak dx signal can be "boosted" out of the receiver noise background and made readable, especially if the R1: stage is regenerative. Unwanted image signal interference is also practically eliminated when a regenerative pre-selector is used. Thousands of receivers, commercial or homemade, of a year or two in age, can be hrought up-to-date and amazing results obtained with simple pre-selector here shown.

FIG. 38.

Regenerative Pre-Selector in Shield Can.

Even the most modern receivers can be improved for 10 and 20 meter reception by the use of a regenerative KF stage comected between the antenna and the receiver an-tenna-ground binding posts. Circuit losses are very high at 10 meters, and the input grid impedance of present day screen-grid RIF tubes becomes of such a low value that little gain or selectivity is secured without regeneration. The pre-selector here shown is simple to build, costs very little, and is not difficult to operate.

Technical Notes

- This circuit consists of a 6 D of or 58 tube with cathode regeneration and screen-grid voltage control of regeneration. The gricl circuit is tumed to the desired signal and a slight amount of regeneration is introduced by tapping the cathode $1 / 4$ to $3 / 4$ of a turn from the grounded end of the coil in the tuned circuit. A potentiometer varies the screen
voltage from zero to approximately 100 volts, thus a smouth control of regeneration and volune is available.

A very important feature of this preselector is the variable antenna coupling system, which can be adjusted to suit various conditions and receiving antennas. If a strong local signal is bothersome, the antema coupling can be loosened and regeneratiun brought up to a point where it will bring in the desired weak signal. Antenna resonance, which would otherwise prevent adequate use of regeneration can be taken advantage of rather than becoming a loss, by simply varying the antenna coupling. If a twisted-pair feeder is used to a noise reducing doublet antema, the antenna conpler in the pre-selector will minimize capacity coupling and enlance inductive coupling, with a resultant balancing-ont effect of noise pickup from the antenna feeders. In localities where extremely heavy static is encountered, these charges can be grounded-ont by center-tapping the antenna coil to ground When using it two-wire feeder to a doublet antenua.

The plate voltage is fed through a pair of RF chokes for all-hand uperation. The choke nearest the plate of the tube is a special 10-meter choke. becanse most piewound RI* chokes canse a dead spot near, or in. the 10 meter band. The coupling to the receiver antenna binding post is through a small fixed mica condenser. The grounds of the preselector and receiver should be comected together, and by twisting this lead around the pre-selector plate to receiver antema post lead. very little external pick-up is possible, except through the pre-selector itself. The plate lead should be as short as possible, and it should be brought through the pre-sclector can at the side nearest the receiver antenna input lead.

Constructional Notes

- The mit is built into a black crackle finished metal can with linged lid. The can is $\tau \mathrm{in}$. high, $71 / 2 \mathrm{in}$. long, and $71 / 2 \mathrm{in}$. wide and it lias a chassis $13 / 4$ in. decp. These "Iud Radiu" cans are readily available from radio dealers. or they can be built by any sheet metal slop.

The 6 D (or 58 tube is slichded. The grid coils are wound on sawed-off plug-in coil forms. All the coils are sawed 1 inch from the top rim, and one of these "rings" is used for the variable coupling antema coil by winding 10 turns of No. 18 or 20 DSC wire on the ring. Flexible leads to this coil form comect to two insulated antenna binding posts on the side of the metal can.

This antenna coil can be varied through a 45° are by means of the knob in the upper
left corner of the iront panel. A snall metal bracke: 2 in. long has an ordinary short ielaphone jack mounted throngh it about $11 / 2 \mathrm{in}$, from the base of the bracket. The :atter mounts on the inside of the can near the antenna binding post assembly. A $6-\mathrm{in}$, piece of $1 / 4-\mathrm{in}$. dianieter bakelite rod supports the aatema coil and turns througl the stiff jack bearing and $1 / 4-\mathrm{m}$. hole in the front pancl. The jack spring pressure against the rod provides sutficient friction to hold the antenna coil in any position. Additional tension could be applied at the rear of the front panel by means of a spring washer between the panel and a brass collar. if needed. This collar fastens to the shaft by
ratio built into the dial drive assembly is needed because the tuming is sharp on all bands when regeneration is used. The $10-$ meter KF choke consists of 75 to 100 turns of No. 34 ISSC wire, clessewound, on a $3 / 8-\mathrm{in}$. diameter bakelite rod

For srmmetry, the regeneration control potentioneter is mounted in the lower right hand corner of the pre-selector front panel. A 4 or 5 prong wafer socket mounted in the rear of the chassis or can serves as a cable connection to the receiver power supply. The plate voltage can be any value from 180 to 275 volts, with a current drain of less than 10 ma.

The coils are wound on \& prong plug-in

FIG. 39.
New Jones Regenerative Preselector with Variable Antenna Coupler
means of a set screw; it prevents the shaft from pulling out through the front panel. The front panel knob prevents motion in the opposite direction.

The antema coil is fastened to this shaft by a small aluminum strip, clamped around the shaft and held in position by a 6-32 machine screw through the shaft. The other end fastens by a similar screw to the top edge of the coil form.

The RF chokes, resistors and condensers are mounted on snall tie strips beneath the chassis. All ground leads are connected to one common point, or bonded to that point, including the lead from the rotor of the turning condenser. A 35 moff. midget variable contlenser will completely cover any of the amateur bands with the specified coils. A smooth action vernier tining dial, such as shown in the photograph, with a reduction
coil forms. The grid end is at the bottom, and the ground end at the top. This method of winding mininuzes antenna capacity coupling to the grid of the RF tube. The cathode tap on cach coil is also near the sawed-off edge (top). For 160 meters, the coil consists of 80 turns of No. 30 enameled wire, closewound, with a tap $3 / 4$ of a turn from the ground end. For 80 meters, the coil consists of 40 turns of No. 24 DSC wire, closewourd, with a tap at $1 / 2$ turn. For $40 \mathrm{me}-$ ters, the winding has 23 turns of $N c_{6} 18$ DSC, closeround, with a tap at $1 / 3$ to $1 / 2$ turn. For 20 meters, the coil has 12 turns of No. 18 DSC. space-wound to cover $1 \mathrm{I} / 4-\mathrm{in}$. of winding length. with a cathode tap at $1 / 4$ turn. For 10 meters, the winding has 5 turns of No. 18 DSC wire, space-wound to cover 1 inch, with the cathode tan at $1 / 4$ turn. The grid end of each connects througin the iso-

FIG. 40.
Coil Construction for Regenerative PreSelector and constructional details for Antenna Coupler. The grid end of coil L2 is at the bottom: the ground is at the TOP.
lantite coil socket to the stator of the tuning condenser.

Operating Notes

With loose anterna coupling, the RI preselector should oscillate when the regeneration control is turned toward the higher screcn voltage. This can be detected in the
receiver as a carrier signal or squeal as the pre-selector is tuned across the receiver frequency. Closer antenna coupling, plus a lower setting of the regencration control, will bring the pre-selector tube out of oscillation and into a state of regeneration. The tuning is quite sharp at the point of highest regeneration without oscillation, and the signal is greatly increased in strength.

The location of the cathode tap on the coil depends to a certain extent upon the antenna coupling system used in the receiver itself. Slight modifications in the location of the cathode tap may sometimes be necessary. All forms of antenna coupling in the various receivers tested with this pre-selector have proven satisfactory because a great deal of lee-way is possible when there is good control of regeneration. In general, tight antema coupling in the receiver will allow more gain to be realized from the preselector stage. Lsually a few additional antemua coil turns, or greate: capacity in the antenna condenser can be added if the utmost in performance is desired from any particular receiver. Closer coupling to the receiver first tuned circuit provides greater plate impedance load for the pre-selector tube, resulting in more gain.

When this pre-selector was connected ahearl of the two-tube Super-Gainer described elsewhere in these pages, the signal strength increased from 2 to $\&$ " R " points when weak stations were tunted-in. This pre-selector can he comnected ahead of any short-wave superheterodyne receiver or even a T. R. F. or autodyne regenerative detector receiver. The increase in signal strength is even more pronounced when recciving phone signals, especially in the 10 and 20 meter bands.

Watzel Noise-Reducing System

- A hew noise reducer or "silencer" has recently been developed by C. E. Watzel and described in ".All-W"ave Radio" magazine. It functions as effectively as $L a m b$'s silencer. yet it is less comolicated. The circuit requires an additional diode tube if the receiver already uses a dinde detector. The extra diode is connected across the detector. When the noise (or signal voltage) is above the bucking value on this diode, it acts as a short-circuiting resistance of about 2,000 olinis across the detector input. The bucking voltage can be adjusted so that the desired signal does not cut out, then the noise components which are greater in amplitude will block or dampen-ont the detector. If these impulses of noise are of extremely short duration, such as antomobile ignition noise, the time interval over which the detector is inoperative is so short that the hnman ear does not detect the interruption in the desired signal.

The negative voltage of 20 or 30 volts can

be obtained from a $221 / 2$-volt C battery, or from the voltage drop across a 500 ohm resistor in the negative B lead of most receivers. The 50,000 ohm potentiometer should be adjusted for each signal in order to secure best results in extremely noisy locations. The circuit is very simple, and easy to get into operation. Two separate diode tubes or a 6 H 6 double-diode can be used in the circuit.

Chapter 7

Receiver Tubes, Characteristics, Circuits and Charts

RCA ALL－METAL RADIO TUBE CHARACTERISTICS CHART

TYPE	NAME	BASE	SOCKET CONNEC－ tIONS	dimensions MaXimum overall Lemath oiameter	cathode TYPE	hating				USE Valow to ridit twe and civertiontrice tor harleated tymeal uto	Plate SUP－ PLY VOLTS	$\begin{array}{\|c\|} \hline \text { GRID } \\ \text { VOLTSe } \end{array}$	SCREENVOLTS	3CREEN MILLI－ AMP．	plate MILLI－ AMP．	A－C Plate月ESIS－ tance OHMS	MUTUAL CON－ DUC－ TANCE MICRO－ MHOS		LOAD FAR STATED POWER OUTPUT OMMS	POWER OUT－ PUT watts	TYPE
						fllament an weatea		matt	$\begin{array}{\|c\|} \hline \text { chenem } \\ \hline \text { max. } \\ \hline \text { mis } \\ \hline \end{array}$												
						voris	Ampars	$\max _{\text {velis }}$													
648	PENTAGRID	octai small	H0\％	$31^{\prime \prime} \times 1{ }^{\prime \prime}$	heaten	0.3	0.3	250	100	CONVERTER	250	$\left\{\begin{array}{c} 3.0 \\ \text { min. } \end{array}\right\}$	100	3.2	3.3	$\begin{aligned} & \text { Anedp C } \\ & \text { rent, } 40 \\ & \text { ohns. } \end{aligned}$			50 max．vol $1 c_{2} 500 \mathrm{mi}$	$\begin{aligned} & \text { oits: Cut - } \\ & \text { tos, } 50000 \\ & \text { icrombot } \end{aligned}$	648
										Class a AMPUFIER	250	－ 8.0	－		8.0	10000	2000	30			
$6 \mathrm{C5}$	$\begin{aligned} & \text { AMPLIFIER } \\ & \text { THIODE } \end{aligned}$	OcTALGPIN	Fic．ip	2＇ $\mathbf{\| l}^{\prime \prime} 1^{\prime \prime}$	HEATEA	6.3	0.3	250	－	bins detector	250	$\left\{\begin{array}{l} -17.0 \\ \text { epprox. } \end{array}\right\}$	－	－		hate curr	$\begin{aligned} & \text { to be adju } \\ & \text { with no } \end{aligned}$	jurted to aignal．	$\frac{1}{0.2 \text { millian }}$		6C5
$6 F 5$	high－mu triooe	Octal smal	Fic．smm	31＂$\times 11^{\frac{1}{4}}$	HEATEA	6.3	0.3	250	－	CLISS A AMPLIFIER	250	－2．0	－	－	0.9	66000	1500	100	－	－	$6 F 5$
								315	315	CUSS A AMPLFIER	250	－16．5	250	6.5	34.0	80000	2500	200	7000	3.0	
6 F 6	CPENTOOE	Octal	Fic． 73	$3\}^{*} \times 1 \frac{1}{16}$	heaten	6.3	0.7	375	250	CLSSUSH，MMPLFIER	375	－26．0	250	－	$\begin{gathered} \text { Power } \alpha \\ \text { at indic } \end{gathered}$	ficased plate	ue is for －to－plate	$2 \text { tubet }$ load.	10000	19.0	656
6.7	TRIPLE－GRIO DETECTOR	${ }_{\text {STAL }}^{\text {SMAL }}$	FIC． 7 \％	31＂$\times 1{ }^{16}$	heater	6.3	0.3	250	125	SCRENRCRID $R+A M P L I E R$	250	－ 3.0	100	0.5	2.0	$\begin{aligned} & \text { exceeds } \\ & 1.5 \text { mes. } \\ & \hline \end{aligned}$	1225	$\begin{gathered} \text { excesd } \\ 1500 \\ \hline \end{gathered}$	－－	－	
				J $\times 1{ }_{18}$						has detector	250	－ 4.3	100	$\begin{array}{\|r\|} \hline \text { Cathode } \\ 0.43 \mathrm{n} \\ \hline \end{array}$	current ma.		$\begin{aligned} & \text { Plate co } \\ & \hline \text { - Grid cou } \end{aligned}$	oupline re coupling re	$\begin{aligned} & \text { sistor } 50000 \\ & \text { istor } 25000 \end{aligned}$	$\begin{aligned} & 10 \text { ohms. } \\ & 10 \text { ohmes. } \end{aligned}$	6.7
6K7	ThIME－GAIO SUPEA．CONTROL		Fic． 7 \％	31＊$\times 1{ }^{\text {年 }}$	meater	6.3	0.3	250	125	SCREENCRID R． FMFLFITR	250	$\left\{\begin{array}{\|c\|} -3.0 \\ \text { min. } \end{array}\right\}$	125	2.6	10.5	600000	1650	990	－	－	6×7
										SUPERHEETEROOVNE	250	－10．0	100	－－	－		acillator peat	ceak valts	$=7.0$		
								375	250	CINCLEIUBE	300	－12．5	200	2.5	48.0	－			4500	6.5	
$6 \mathrm{L6}$	power amplifien	$\operatorname{OCTAL}_{\operatorname{smat}}$	Fic． 74	418＊$\times 14$	heater	6.3	0.9	400	300	$\begin{aligned} & \text { PUSH PMI } \\ & \text { CLISS } \end{aligned}$	400	－25	300	－	$\begin{aligned} & \text { Power or } \\ & \text { at indic } \end{aligned}$	utput val	$\begin{aligned} & \text { ue if lor } \\ & \text { e-to plate lo } \end{aligned}$	2 tubes load．	6600	34.0	626
								400	300	CLSSAB，MMPLIFIER	400	－25	300	－－	Power or	output valu	se it for －to－plate lo	$2 \text { tubcy }$ lood	3800	60.0	
6 L	PENTAGRIO mirena	Bunall OCTAL 7－PIM	fiat π	31＊$\times 14^{\prime \prime}$	HEATER	6.3	0.3	250	150	SUPERIXEREIN INOTNE	250	－ 3.0	100	6.2	2.4		illator Grid d 33 peak iversion con			in omhos．	6.7
										CLASS A AMPLIEER 4	250	－ 3.0	$\left\{\begin{array}{l} 100 \\ \text { max } \end{array}\right.$	5.5	5.3	800000	1100	880	－	－－	
6N7		octichalitin	Fic．em	31＊＊$\times 11^{1 / 4}$	HEATER	6.3	0.8	300	－	CLass a Amplifier	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	－	二	$\begin{gathered} \text { Power ou } \\ \text { at ntat } \end{gathered}$	utput vilu ed loed，	is for one ate－to－plate	$\begin{aligned} & \text { tube } \\ & \text { te } \end{aligned}$	$\begin{array}{r} 8000 \\ 10000 \\ \hline \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \\ \hline \end{array}$	6N7
6.97	DUPLEX－DIODE HIOH－MU TRIODE		FIC， N	$31^{\prime \prime} \times 13^{\prime \prime}$	heater	6.3	0.3	250	－	CWIODE UNITAS	2508	－2．2	－	－－	0.5	，		Gain per	nage $=43$		6.97
687	$\begin{aligned} & \text { OUNLE-XDODE } \\ & \hline \text { TAlODE } \end{aligned}$	$\cos ^{\text {SMALCL }}$	Fre ${ }^{\text {TV}}$	35 $\times 1{ }^{1} \mathbf{1 6}^{\prime \prime}$	heaten	6.3	0.3	250	－	CLSS A MMPLIFIER	250	－9	－		9.5	8500	1900	16	10000	0.28	687
25A6	$\begin{gathered} \text { POWER AMPLIFIER } \\ \text { PEMOOOE } \end{gathered}$	${ }_{\text {cTML }}^{\text {SMLPIL }}$	fial 78	31＊$\times 1.3^{\prime \prime}$	heatea	6.3	0.3	180	135	cuass a mplifier	$\begin{array}{r} 95 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & -15 \\ & -20 \end{aligned}$	$\begin{array}{r} 95 \\ 135 \\ \hline 135 \end{array}$	$\begin{aligned} & 4.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 45000 \\ & 40000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 90 \\ 100 \end{array}$	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.75 \end{aligned}$	2546
	Grida 3 and m 5 For Grid－lcak Det Grid． 3 and＊4	acreen．Grid n－plate vol axteen．Grid	$\begin{aligned} & \text { in nignal. } \\ & \text { s-100. } \\ & \text { is signal. } \end{aligned}$	it control grid． ut control erid．						4 Grid ${ }^{3} 3$ conne 4 Applied through Applied through	ted 20000 200000	d 11. m voltes hm plate	dropping ouplag	resistor． resiator．		－Fither	d of followi A．C．or D	ring tube． D．C．may	be uned	heater．	
5W4	FULL－WAVE	－SMANLL	FIC．st		Fllament	5.0	1.5	－	－	RRLWALE		ximum A． xinum D	Voltage Output	per Plate Current		$\begin{array}{r} 350 \\ \cdots \cdots . \quad 110 \\ \hline \end{array}$	Volts，RM Milliamper				5 W 4
524	PULL．WAVE	${ }_{\text {STMAL }}^{\text {SMAL }}$	fias	$31^{\prime \prime} \times 1{ }^{1 / 4}$	heater	5.0	2.0	－	－	FULTAVE		ximurn A－C xиmura D．C	Votrage Cusput	per Plate Curtell		$\begin{array}{r} 400 \\ \\ \hline \end{array}$	Volta，RM Milliamper				54
6H6	Twim Oiode	Octal ${ }^{\text {s．apin }}$	Fia． 79		heater	6.3	0.3	－	－	SMIN．DIOOE RECTIFER		ximum A－C imum D	Voltase Output	per Plate Current		$\begin{array}{r} 100 \\ \cdots-\cdots . . \end{array}$	Voles，RM Milliamper				${ }^{6} 46$
6X5	TUL－WAVE		Fig．as	31＊$\times 11^{\prime \prime}$	MEATER	0.3	0.6	－	－	FULDAVE		$\begin{aligned} & \text { ximum A-C } \\ & \text { ximum D.C } \end{aligned}$	$\begin{gathered} \text { C Voltage } \\ \text { c putput } \\ \hline \end{gathered}$	per Plate Current		$\begin{array}{r} 350 \\ \hdashline \quad 75 \\ \hline \end{array}$	Volts，RM Milliamper				6x5
2576	Rectifien－		FIC． 19	$33^{*} \times 1{ }^{16}$	heaten	25.0	0.3	－		VOLTACE		$\begin{aligned} & \text { ximum A.C } \\ & \text { ximum D.C } \end{aligned}$	Voltage	$\begin{aligned} & \text { per Plate } \\ & \text { Curcent } \end{aligned}$ Current		$\begin{array}{r} 125 \\ \cdots \quad 100 \\ \hline \end{array}$	Volts，RM Milliamper				
							0.3	－		half．inave RECTIFIER	M	$\begin{aligned} & \text { ximum A.C } \\ & \text { imum D.C } \end{aligned}$	$\begin{aligned} & \text { Voltage } \\ & \text { c Output } \end{aligned}$	per Plate Current per	Plate	$\begin{array}{r} 250 \\ -\quad 85 \\ \hline \quad . \quad 8 \end{array}$	Volen，RM Milliamper				2526

7

aND ACCUMULATED StUBS

If you wish to discard daily pages singly, keep the screws holding the top plate slightly loose. The drilling of each page is slit so that a light tug at the bottom of the page will remove it.

If you wish to tear off the pages from day to day, discarding the stubs periodically, keep the top plate screws tight. When you are ready to remove the old stubs, loosen the screws, slip off the top plate and pull stubs out.

See Chart on Facing Page for Symbol Identifications

METAL TUBES WITH SIMLILAR CHARACTERISTICS

Metal	MetalGlass	Octal Base Glass	$\begin{gathered} \text { Glass, } \\ \text { Standard } \\ \text { Base } \end{gathered}$
		1C7G	1 C 6
		1D5G	. 1A4
		1D7G	. 1 A6
		IESG	1B4
		1E7G	Twin 1F4
		1FSG	. 1F4
		1F7G	1F6
		1H4G	30
		1H6G	1B5/25S
		1J6G	. 19
		5V4G	83v
5W4		5W4G	
		5X4G	. 5Z3
5Z4	5Z4MG.	5Y3G	. 80
		5Y4G	. 80
6 88	6Å8MG.	6A8G	. 6A7
		6B4G	. 6A3
		6B6G	. 75
		6B8G	$6 \mathrm{B7}$
6C5	6C5MG.	6C5G	
$6 F 5$	6F5MG.	6F5G	Tri. of 75
6F6	6F6MG.	6F6G	42
$6 \mathrm{H6}$	6H6MG.	6H6G	
		6J5G	. 76
6 J 7	6J7MG..	6J7G	. 77
		6K.5G	
		6R6G	. . 41
6K7	6R7MG.	6K7G	. 78
6L6		6L6G	
6L7	6L7MG..	6L7G	
	6N6MG.	6N6G	. 6B5
6N7	6N7MG.	6N7G	. 6Å6
697	6P7MG.	6P7G	. 6F7
6 Q7	6Q7MG.	6Q7G	
6R7	6R7MG	6R7G	
6X5	6X5MG.	6XSG	. 84
25A6	:5A6MG.	25A6G	43
$25 Z 6$	25Z6MG	25Z6G	. 2525

Electrical Equivalent Tube-Type Reference Chart

In order to avoid repetition, Tube Types shown in LEFT Column are NOT described in the Tube Data Yages, because they are similar to Tube Types shown in RIGHT Column, and which are described.

$\begin{aligned} & \text { 1C7G } \\ & \text { 2v. Fil. } \end{aligned}$	Refer To	$1 \mathrm{C6}$
1D5G	kefer To	1 A4
2v. Fil.		
1D76	kefer To	1 A6
2v. Fil.		
1E5C	Kefer To	1B4
2v. imit.		
1E7G	Refer To	Twin 1F4
2v. Fil.		
1F5G	Refer 'To	1 F4
2v. Fil.		
1F76	Refer To	1F6
2v. Fil.		
1H/G	Refer To	30
2v. Fil.		
1HFG	Reier To	1B6
2v. Fil.		
1JCG	Refer To	19
2v. Fil.		
2 A 5	Refer To	42
2.55		
2A6	Refer To	75
$2.5 r$		
2A7	Refer To	6 A 7
$\begin{aligned} & 2.5 \mathrm{w} \\ & 0.89 \end{aligned}$		
$2 \mathrm{B7}$	Refer To	6B7
$\begin{aligned} & 2 . w . \\ & 0.2 x \end{aligned}$		
2E5	Refer To	6E5
$\begin{aligned} & \text { 2.Ev, } \\ & 0 . x_{a} \end{aligned}$		
2G5	Refer To	6G5
2.5 v 0.8 a		
(Continued on Next Page)		

Equivalent Tube Types

Equivalent Tube Types-Continued		
$\begin{aligned} & \overline{53} \\ & 2.5 \mathrm{v}, 2.0 \mathbf{a} . \end{aligned}$	Refer To	6A6
$\begin{aligned} & \hline 55 \\ & 2.5 \mathrm{v}, 1.0 \mathrm{a} \end{aligned}$	Refer To	85
$\begin{aligned} & \overline{56} \\ & 2.5 \mathrm{x}, 1.0 \mathrm{a} . \end{aligned}$	Refer To	76
$\begin{aligned} & \hline 57 \\ & 2.5 \mathrm{v}, 1.0 \mathrm{a} . \end{aligned}$	Refer To	6C6
$\begin{aligned} & \hline 58 \\ & \underline{2.5 \mathrm{v}, 1.0 \mathrm{a} .} \\ & \hline \end{aligned}$	Refer To	6D6
5V4G	Refer To	83V
5X4G	Refer To	5Z3
5 Y 3	Kefer To	80
5Y4G	Kefer To	80
6A3 $6.3 \mathrm{v}, 1.0 \mathrm{a}$,	Refer To	2 A 3
$\begin{aligned} & \text { 6B4G } \\ & \text { 6.3v. } 1.0 \mathrm{a} . \end{aligned}$	Refer To	2A3
6B6	Refer To	75
6B8	Refer To	6B7
$\begin{aligned} & \text { 6D8G } \\ & 6.3 \mathrm{v}, 0.15 \mathrm{a} . \end{aligned}$	Refer To	6A8

6J5G	Refer to Low Capacity	
6F5	Kefer To	6Q7
6K6G	Reier To	41
6L5G	Kefer To	76
$6.3 \mathrm{v}, 0.15 \mathrm{a}$.		
6N6	Reier To	$6 \mathrm{B5}$
6N7	Refer to	$6 \mathrm{A6}$
6P7	Refer To	6F7
6Q6G	Refer To	75
(Note: 0.15 a . lea	; has singfe	e diode. 6.3v,
$\begin{aligned} & \text { 6S7G } \\ & 6.3 \mathrm{v}, 0.15 \mathrm{a} . \end{aligned}$	Kefer To	6K7
6X5	Refer To	84
77	Refer To	6.7
78	Kefer To	$6 \mathrm{K7}$
25A6	Kefer To	43
25Z6	Refer To	$25 \mathrm{Z5}$
OZ3	Refer To	OZ4

Replacement Tube Types					
Type No.	Replaceable by	Type No.	Replaceable by	Type No.	Replaceable by
2A3H	2A3	44	39/44	224-A	24A
$5 Y 3$	$5 \mathrm{Z4}$	64*	36	226	26
5Z4G	524	64A	36	227	27
$5 \mathrm{Z4}$-MG	$5 \mathrm{Z4}$	65*	39/44	230	30
$6 \mathrm{Z3}$	1-V	65A	39/44	231	31
6C5-G	6 C 5	67*	37	232	32
6C5-MG	6C5	67A	37	233	33
6D5-G	6D5	68*	38	234	34
6D5-MG	6D5	68A	38	235	35/51
6F5-G	6F5	83	83-V	236	36
6F5-MG	6F5	84	6Z4/84	238	38
6F6-G	6F6	95	2A5	239	39/44
6F6-MG	6F6	KR-98	6Z4/84	240	10
6H6-G	6H6	112	12A	245	45
$6 \mathrm{H6} 6 \mathrm{MG}$	6H6	112A	12A	247	47
6J7-G	6 J 7	120	20	250	50
6J7-MG	6J7	171	71 A	280	30
6K7-G	6K7	171A	71 A	280-M	$33-\mathrm{V}$
6K7-MG	6 K 7	171AC	71 A	281	31
6L6-G	6L6	171-B	71A	288	93-V
6L7-G	6L7	182-A	71 A	C-299	- -99
6L7-MG	6L7	V-199	V-99	X-299	Y-99
6A8-G	6A8	X-199	X-99	482-A	71A
6A8-MG	6A8	200	200A	551	$35 / 51$
$14 \mathrm{Z3}$	1273	201	01 A	585	50
1	1-V	201 A	01 A	586	50
RE-1	80	210	10	P-861	$6 \mathrm{Z} 4 / 84$
RE-2 SO-2	81 50	213	80	986	¢3
SO-2	60 4 /LA	216	81	AD	1-V
KR-5	6A4/LA	216-B	81	$A F$	82
WD-12 25 S	WX-12 1B5/25-S	220	20	AG	83
25 S 27-HM	${ }_{56}^{1 B 5 / 25-S}$	222	224		6A4/LA
27-HM	56	224	24A	$\begin{aligned} & \text { PZ } \\ & \text { PZH } \end{aligned}$	$\begin{aligned} & 47 \\ & 2.45 \end{aligned}$

Tube Symbols and Bottom Views of Socket Connections

Tube Characteristics and Socket Connections courtesy RCA Cunningham Radiotron Co., Inc.

TrPE	Wame	BASE	SOCKET CONNECTIONS	DIMENSIONS MAXIMUM OVERALL LENTH DIANETE	cathode TYPE $=$	hating				© USE Valuth ternat tive Md chararturlatet for Incientid fitect unt	$\begin{aligned} & \text { Plate } \\ & \text { SUP. } \\ & \text { PLY } \\ & \text { voLTs } \end{aligned}$	$\underset{\substack{\text { GRID } \\ \text { volts. }}}{ }$	screm volts	$\begin{aligned} & \text { SCREEN } \\ & \text { MLLI- } \\ & \text { AMP. } \end{aligned}$	$\begin{aligned} & \text { PLATE } \\ & \text { MILLI. } \\ & \text { MMP. } \end{aligned}$	$\begin{aligned} & \text { A-C } \\ & \text { PLATE } \\ & \text { RESIS: } \\ & \text { TANCE } \\ & \text { OHMS } \end{aligned}$	$\begin{gathered} \text { MUTUAL } \\ \text { CON- } \\ \text { OUC. } \\ \text { TANCE } \\ \text { MIIRO. } \\ \text { MHOS } \end{gathered}$	VOLTAGE AMPLI. FICATION FACTOR	LOAD FOR STATED POWER OUTPUT OHMS	POWER OUTPUT watrs	TVPE
						$\begin{aligned} & \text { mombrt oft } \\ & \text { neaten } \end{aligned}$		matt	cerem												
						nets	ammers	max. vali	$\max _{4 x}$												
146	convente	sman aram	Mo. 2	43, ${ }^{1} \times 180$	TLiment	2.0	0.06	180	69.5	contriter	180	$\left\{\begin{array}{l} -3.0 \\ \min . \end{array}\right\}$	67.5	2.4	1.3	500000	Anode. Gryd Contersion			$\begin{aligned} & 18.23 \mathrm{mbl} \\ & 0000 \mathrm{c}^{2 h m m s} \end{aligned}$ nucrombios	${ }_{146}$
IC6	Pentagip	Smun tmm	F16. 28		flimine	2.0	0.12	180	67.5	conlertr	180	$\left(\begin{array}{l} -3.01 \\ \text { min. } \end{array}\right.$	67.5	2.0	1.5	750000					IC6
								250	-	Cluss a amplifie	250	-45	-	-	60.0	Eno	$5: 50$	4.2	2590	1.5	
243	POWETAMCLIM	MIDIUM 4-MN	ne. 1	$33^{\prime \prime} \times 21^{\prime \prime}$	nlament	2.5	2.5	300	-	PLSHPLC	$\begin{array}{\|l\|l\|} \hline 300 \\ 300 \end{array}$	$\begin{aligned} & -62 \\ & -62 \end{aligned}$		bis3	$\begin{aligned} & 0.0 \\ & 30.0 \end{aligned}$	Power 0	put is lor 2 oad. pl $1 \geq$ t	$2 \text { tubers st }$	$\begin{aligned} & \sin) \\ & 3 n 00 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 15.0 \end{aligned}$	243
2 A 5	Cower ampliten	medum amm	Fic. 19,	$410^{\circ} \times 21^{\circ}$	meater	2.5	1.75	250	250	CTASS A AMPLFIER	350	-16.5	250	6.5	34.0	100000	3:00	3:0	;009	3.0	245
246		Smath t-pIN	Fic. 13	4) $1^{\prime \prime} \times 11^{\circ}$	meater	2.5	0.8	230	-		250.	- 1.35	-	-	0.4	--	-	Cannmer	-reseser $=$	50.60	246
247	mentacand	Small 7 -mm	\%10.30	$4{ }^{\prime \prime} \times 180$	meater	3.5	0.8	250	100	converter	250	$\left(\left.\begin{array}{l} 3.01 \\ 1-3.0 \\ 1 \\ \text { min. } \end{array} \right\rvert\,\right.$	100	2.2	3.5	360000	$\begin{array}{\|l\|} \hline \text { Anode Gliti } \\ \text { Osellisuor } \\ \text { Conversion } \\ \hline \end{array}$				247
							0.8			(entool initas	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{aligned} & -3.0 \\ & =3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \end{aligned}$	$\begin{aligned} & \hline 1.7 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 300000 \\ & 650030 \end{aligned}$	$\begin{gathered} 950 \\ 1155 \end{gathered}$	$\begin{aligned} & 285 \\ & 730 \end{aligned}$	--	-_	
		Smuch 7am	His. 21		keater	2.5	0.8	250	125	F.NTCOELNT ${ }^{\text {a }}$	250¢	- 4.5	so		0.65		,		-	-	287
$\begin{gathered} 644 \\ \operatorname{ctanc} \mathrm{LA} \end{gathered}$	MOWER AMPUFIER	medium spin	F10.6	$418^{*} \times 18^{*}$	\ldots	6.3	0.3	130	180	clus a amplitier	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{array}{r} -6.5 \\ -12.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.9 \end{aligned}$	$\begin{array}{r} 9.0 \\ 22.0 \end{array}$	$\begin{aligned} & 88230 \\ & 81550 \\ & \hline 150 \end{aligned}$	$\begin{aligned} & 1200 \\ & 27000 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & \hline \end{aligned}$		0.31 1.40	6A4
647	CONVEATERA.	Smali 7-Pin	Fic. 20	$4 \mathrm{H}^{\circ} \times 1{ }^{\frac{7}{4}}$	meater	6.3	0.3	250	100	convtrier	250	$\|\{-3.0\}\|$	100	2.3	3.5	360000	$\begin{array}{\|l\|l\|} \hline \text { Antode Grid } \\ \text { Oxcrilltotor } \\ \text { Conversion } \end{array}$				647
687		sman 7.98	5								$\begin{aligned} & 100 \\ & 250 \\ & 20 \end{aligned}$	$\begin{array}{r} -3.0 \\ -3.0 \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & 182 \end{aligned}$	$\begin{array}{r} 1.7 \\ 2.1 \\ \hline \end{array}$	$\begin{aligned} & 5.8 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 300000 \\ & 650150 \end{aligned}$	$\begin{array}{r} 950 \\ 1123 \\ \hline 1 \end{array}$	$\begin{aligned} & 235 \\ & 7310 \end{aligned}$	--	--	
		smul							135		250\%	- 4.5	50	-	0.65	-	-	-	-	-	687
606	tapreario	SmaL 4 PIN	F10. 11	$4 H^{*} \times 180$	heater					Screme CRID	350	- 3.0	100	0.5	2.0	$\begin{aligned} & \text { terceedg } \\ & 1.5 \mathrm{mec} \end{aligned}$	1225	$\begin{array}{\|l\|l\|} \hline \text { excreds } \\ 1500 \end{array}$	-	-	
				H		6.3	0.3	250	100	bus detector	250	-1.93	50	$\begin{gathered} \text { Cathode } \\ 0.65 \end{gathered}$	curtent mis.		Plate eru Grid cour	pling resist pling resist	$\begin{aligned} & \text { star } 250000 \\ & \text { tor } 250000 \end{aligned}$	$\begin{aligned} & \text { Qonmers. } \\ & \text { pohms. } \end{aligned}$	666
606	TMPLEGAD SUPEACONTROL	small	Fic. 11	413** ${ }^{\prime \prime}$	heat	6.3	0.3	250	100	cick	250	$\left\{\begin{array}{l} -3.0 \\ \text { min. } \end{array}\right\}$	100	2.0	8.2	800000	1600	1280	- -	-	606
	Amplimien	smail		418×18					100	SUPERHETERTOONNE	250	-10.0	100	-	-		Oscllator	peak volt	-7.0.		
	* 3 and "	n.										$\begin{aligned} & \text { ied thro } \\ & \text { ed thro } \end{aligned}$	plate	pline	$\begin{aligned} & 3508 \\ & 3 t 05 \\ & \text { stos } \end{aligned}$	$\begin{aligned} & 00000 \\ & 50000 \end{aligned}$	ms	For grid	follo	tube.	
								100	-	Tricof midt	100	- 3.0	-	-	3.5	17800	450	8	-	--	
67	TRITODEE	3 meli	H6. 7	431" $\times 1{ }^{17}$	heaten	6.3	0.3	250	100	FEMOM, Nilt	250	$\left.\begin{array}{\|c\|} \hline-3.0 \\ \min \end{array}\right\}$	108	1.5	6.5	850000	110	900	-	-	657
								250	100	PETCHIR	250	-10.0	100	0.6	2.8	Oscoll		$\text { ots }=7.0$	300 miero	momm.	
'00-A	${ }^{\text {deticitom }}$ Trioot	medum 4 -mm	a. 1	$446^{\prime} \times 1+{ }^{\circ}$	MLOMENT	5.0	0.25	4	-	crioutak	45	$\stackrel{\text { Gra }}{ }$			1.5	30000	${ }_{665}$	30	---		'00-A
01.1	DETECTOR	medium 4 PIm	F10. 1	$43^{\circ} \times 1+8^{\circ}$	mLictem	5.0	0.25	135	-	CLUSS A MPMIFIER	$\begin{aligned} & 190 \\ & 135 \end{aligned}$	-4.5 -9.0	-		2.5 3.0	$\begin{aligned} & 11000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{aligned} & 723 \\ & \text { ning } \end{aligned}$	8.0.	-	-	01.4
10	Mowzhammifien	mcDium 4 Mn	Fic. 1	$58^{\circ} \times 23^{\circ}$	flament	7.5	1.25	425	-	CUSS A AMPLEIER	$\begin{aligned} & 330 \\ & 325 \\ & \hline 25 \end{aligned}$	- 31.0	-	-	$\begin{array}{\|l\|} \hline 16.0 \\ 18.0 \\ \hline \end{array}$	$\begin{aligned} & 5150 \\ & 51000 \\ & 5 \end{aligned}$	$\begin{aligned} & 1550 \\ & 16 n 0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11000 \\ & 10200 \end{aligned}$	0.9	10
$\begin{aligned} & 14 \\ & 12 \\ & \hline \end{aligned}$				$\begin{array}{lll} 44^{*} & x & 1 \frac{1}{6} \\ 411^{*} \\ & \times & 1 \frac{1}{16} \\ \hline \end{array}$	MLMEMENT	5.1	0.25	135	-	Cussa mapurier	$\begin{array}{r} 900 \\ 1150 \\ \hline \end{array}$	$\begin{aligned} & =8.5 \\ & =10.5 \end{aligned}$	-	--	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 15500 \\ & \text { is000 } \end{aligned}$	$\begin{aligned} & 425 \\ & 440 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.6 \end{aligned}$	--	-	$\begin{aligned} & 11 \\ & 12 \\ & \hline \end{aligned}$
19		small 4 PIN	F12. 8	4* $4^{\circ} 1 \frac{1}{6}^{\circ}$	FLLMENT	2.0	0.26	135	-	Cuss b AMPMFIE	$\begin{aligned} & 135 \\ & 135 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ -3.0 \\ \hline \end{array}$	-	-	$\begin{gathered} \text { Power } \\ a t \end{gathered}$	output V stated load	$\begin{aligned} & \text { alue is for on } \\ & \text { d, plote } 0 \text { - } 5 \text { l } \end{aligned}$	$\begin{aligned} & \text { one tube } \\ & \text { nlate. } \end{aligned}$	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$	19
'20	NOWER AMPLUMER	Small 4 PIM	G. 1	$41^{\prime \prime} \times 11^{16^{\prime \prime}}$	PHANENT	3.3	0.132	135	-	Class A MPPLIFICR	.90	$\begin{aligned} & -16.3 \\ & -26 ? \end{aligned}$	-	-	3.0 6.5	$\begin{aligned} & 8000 \\ & 1,1 \cup 3 \cup 1 \end{aligned}$	15 j 15	3.3 3.3	$\begin{aligned} & 9600 \\ & 6300 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.110 \end{aligned}$	\%
22		mzolum 4-pm	F10. 4	$5 \frac{1}{51} \times 18^{*}$	Flumber	3.3	0.132	133	67.5		${ }_{135}^{135}$	-1.5 -1.5 -1.8	${ }^{45}$	0.6*	1.7 3.7	$\begin{aligned} & 732000 \\ & 325000 \end{aligned}$	375 500	${ }_{160}^{270}$	-	-	22
											$\begin{aligned} & 180 \\ & 850 \\ & \hline \end{aligned}$	$\begin{array}{r} -3.0 \\ -3.0 \\ \hline \end{array}$	90 90	$\begin{aligned} & 1.9^{\circ} \\ & 1.7 \end{aligned}$	$\begin{array}{r} 4.0 \\ 4.0 \end{array}$	600000	$\begin{aligned} & 1000 \\ & 1050 \end{aligned}$	$\begin{aligned} & 400 \\ & 630 \end{aligned}$	-	-	
24-A	${ }^{\text {n-tithooten }}$	MEDUM 4 HM	710. 3	5年* $\times 1+{ }^{\circ}$	heatre	2.5	1.75	275	90	bias detector	2506	$\begin{aligned} & -5.0 \\ & \text { spprox } \end{aligned}$	$\begin{aligned} & 2015 \\ & 45 \\ & 45 \end{aligned}$	-		ce curfen	$\begin{aligned} & \text { to be sdjus } \\ & \text { with no } \end{aligned}$	sted to 0 signal.	millamp		24.
26	AMPLIFEA	medium 4 mm	F10. 1	$418^{\prime} \times 148$	flement	3.5	8.05	180	-	Cuss a mmpliticr	$\begin{aligned} & 50 \\ & \hline 180 \\ & \hline \end{aligned}$	$\begin{aligned} & -7.0 \\ & -14.5 \end{aligned}$		-	2.9 6.2 5	$\begin{aligned} & 8900 \\ & 7300 \end{aligned}$	935 1150	8.3	--	-	20
										Cuss a MMPLIEIER	$\begin{aligned} & 115 \\ & 250 \end{aligned}$	-9.0 -31.0	-	-	$\begin{aligned} & 4.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 9000 \\ & 9250 \\ & 920 \end{aligned}$	$\begin{array}{r} 1000 \\ 975 \\ \hline \end{array}$	9.0 9.0	--	-	
27	AMPIILILR	mcolum sman	*12. :	4* $\times 18^{*}$	неаाॅ	2.5	1.75	275	-	Bis detector	259	$\left\lvert\, \begin{aligned} & -30.0 \\ & \text { appor } \end{aligned}\right.$		-		curren		side to 0.2	mulla		27
30	ottectond Thiod	smal 4mM	109. 1	4* $\times 11^{\circ}$	${ }_{\text {FLL }}^{\text {Pament }}$	2.0	0.06	180	-	cuss a mputier	$\begin{aligned} & 90 \\ & \hline 150 \\ & 185 \\ & 180 \end{aligned}$	$\begin{array}{r} -4.5 \\ \hline=9 \\ -13.5 \\ \hline \end{array}$	-	--	$\begin{gathered} 2.5 \\ 3.0 \\ 3.1 \\ \hline \end{gathered}$	$\begin{aligned} & 11000 \\ & 10300 \\ & 10300 \\ & \hline \end{aligned}$	$\begin{aligned} & 890 \\ & \hline 90 \\ & \hline 900 \\ & \hline 900 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 9.3 \\ & 9.3 \end{aligned}$	-	-	30

\begin{tabular}{|c|}
\hline \multirow{3}{*}{THE} \& \multirow{3}{*}{MAME} \& \multirow{3}{*}{LASE} \& \multirow{3}{*}{Sacket CONNEC TInNS} \& \multirow[t]{3}{*}{\begin{tabular}{c}
dimensions \\
Maximum \\
OVERALL \\
\hline HNGth \\
damitra \\
\hline
\end{tabular}} \& \multirow{3}{*}{CAFHODE TYPE E} \& \multicolumn{4}{|c|}{Rating} \& \multirow[b]{3}{*}{} \& \multirow[b]{3}{*}{plate Suir－ PLY VOLTS} \& \multirow{3}{*}{\[
\begin{array}{|c|}
\hline \text { OqIO } \\
\text { YOLISe }
\end{array}
\]} \& \multirow{3}{*}{Screcm volts} \& \multirow{3}{*}{\[
\begin{aligned}
\& \text { SCRE EN } \\
\& \text { MILII- } \\
\& \text { AMP. }
\end{aligned}
\]} \& \multirow{3}{*}{PLATE AMP．} \& \multirow[t]{3}{*}{A－C PLATE nesis． TANCE OHMS} \& \multirow[t]{3}{*}{\[
\begin{gathered}
\text { MUTUAL } \\
\text { CON. } \\
\text { DULC- } \\
\text { TANCE } \\
\text { MCRO- } \\
\text { MHOS }
\end{gathered}
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\begin{tabular}{|c|}
\hline LOAD \\
FOR \\
STITE日 \\
POWER \\
OUTPUT \\
OHMS
\end{tabular}} \& \multirow[b]{3}{*}{POWER ดนT－ PUT watts} \& \multirow{3}{*}{TrPE} \\
\hline \& \& \& \& \& \& \multicolumn{2}{|l|}{ MEA드․} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { nurt } \\
\hline \begin{array}{c}
\text { mary } \\
\text { racis }
\end{array}
\end{gathered}
\]} \& \multirow[b]{2}{*}{\begin{tabular}{|c|}
\hline racte \\
\hline mat． \\
vats \\
\hline
\end{tabular}} \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& vars \& nercti \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 31 \& \(\underset{\text { power Amplifith }}{\text { TRIOL }}\) \& smacl 4．pIm \& Hia 1 \& \({41^{\prime \prime}}^{818}{ }^{\text {8 }}\) \& THEMEMT \& 2.0 \& 0.13 \& 180 \& － \& Cuss a maplilit \& \({ }_{180}^{135}\) \& -22.5
-30.0 \& －－ \& － \& 8.0
12.3 \& 4100
3600 \& 995
1050 \& \begin{tabular}{l}
3.8 \\
3.8 \\
\hline
\end{tabular} \& 7000
5700 \& \begin{tabular}{l}
0.185 \\
0.375 \\
\hline
\end{tabular} \& 31 \\
\hline \& \& \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& \text { is } \\
\& \text { i88 }
\end{aligned}
\] \& － 3.0
-3.0 \& \[
\begin{aligned}
\& 67.5 \\
\& 67.5
\end{aligned}
\] \& 0．4＊ \& 1.7 \& 550000
1200000 \& 640
650 \& 610 \& \& \& \\
\hline 32 \& tethoot \& mcolum taim \& Fic． 4 \& \(5^{\frac{1}{2}}{ }^{\circ} \times 1+7^{\circ}\) \& aramint \& 2.0 \& 0.06 \& 180 \& 67.5 \& gins d．tector \& 180 \& \& 69.5 \& \& \& te current \& \[
\begin{aligned}
\& \text { whith n } \\
\& \text { we ady } \\
\& \text { when }
\end{aligned}
\] \& justed to 0 no 3 mnal． \& 0.2 mallia \& \& 32 \\
\hline 33 \& POWLH MAPLITIER \& meolum \& Hic． 6 \& \(4 \mathrm{HE}^{\prime} \times 1{ }^{\text {a }}\) \& FILIMEMT \& 2.0 \& 0.26 \& 180 \& 184 \& Ctass a mylylit \& 180 \& －180 \& 18.0 \& 5.0 \& 22. \& 35000 \& 1500 \& 90 \& 6000 \& 1.4 \& 33 \\
\hline 34 \& SUPER CONTROL
R－F AMPLFAR AMPLFAL \& meolum 4 \& fica ＋ \& \(53^{\prime \prime} \times 1{ }^{\circ}\) \& \& 2.0 \& 0.06 \& 180 \& 67.5 \& Scrinc crid \& \[
\begin{aligned}
\& 135 \\
\& 180 \\
\& 180
\end{aligned}
\] \& \[
\left\{\begin{array}{c}
-3.0 \\
\mathrm{~m}, \mathrm{n}
\end{array}\right\}
\] \& \[
\begin{aligned}
\& 67.5 \\
\& 67.5
\end{aligned}
\] \& 1.0 \& 2.8 \& \[
\begin{array}{r}
600000 \\
1000000
\end{array}
\] \& \[
\begin{aligned}
\& 800 \\
\& 620 \\
\& 620
\end{aligned}
\] \& 360
670 \& \& － \& 34 \\
\hline 35 \& \& meoum mpim \& nic． \& 5 \({ }^{\text {年 }} \times 11{ }^{\circ}\) \& hentea \& 2.5 \& 1.75 \& 275 \& 90 \& \& 180 \& \(\left\{\begin{array}{l}-3.0 \\ \text { min } \\ =1\end{array}\right.\) \& 90
90 \& \(2.5{ }^{2.5}\) \& 6.3
6.5 \& \[
\begin{aligned}
\& 300000 \\
\& 400000 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 1020 \\
\& 1050 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 365 \\
\& 420 \\
\& \hline
\end{aligned}
\] \& － \& － \& 35 \\
\hline 38 \& morampurim \& smal \& Fla \& \& mLATEP \& 6.3 \& 0.3 \& ：50 \& 9 \& SCREENCRID \& \[
\begin{aligned}
\& 100 \\
\& 180 \\
\& 250 \\
\& 250
\end{aligned}
\] \& \(=1.5\)
\(=3.0\)
\(=3.0\) \& 59
90
90 \& 二 \(\overline{1.7}\) \& 1.8
3.1
3.2 \& \[
\begin{aligned}
\& \begin{array}{l}
350000 \\
30000 \\
580000
\end{array}
\end{aligned}
\] \& \[
\begin{array}{r}
850 \\
1050 \\
1080
\end{array}
\] \& \[
\begin{aligned}
\& 437 \\
\& 525 \\
\& 595
\end{aligned}
\] \& － \& － \& 36 \\
\hline \& retroot \& －man sin \& \& \& \& \& \& \& \& bins detector \& \[
\begin{aligned}
\& 100 \\
\& 250
\end{aligned}
\] \& － 5.0
-8.0 \& 95 \& \& \& esurtene \& \[
\begin{aligned}
\& \text { ne to be adjuy } \\
\& \text { writh no }
\end{aligned}
\] \& jubred to 0. no signal． \& 0.1 millam \& \& \\
\hline 37 \& OETECTOPA \& Smas Smin \& foc． 1 \& \(4{ }^{\circ}\) \& нLater \& 6.3 \& 0.3 \& 350 \& － \& CuSS A AMPLIFIER \& \& -6.0
-13.5
-18.0 \& －－ \& － \& 3.5
4.3
7.5 \& \[
\begin{aligned}
\& 115000 \\
\& 10.000 \\
\& 8800 \\
\& 8800
\end{aligned}
\] \& \[
\begin{array}{r}
800 \\
1900 \\
11 m 0 \\
\hline 1
\end{array}
\] \& 8.2
9.2
0.2 \& － \& － \& 37 \\
\hline 37 \& \& smar \& no． \& － \& \& \& \& \& \& has deteceip \& \％ 90 \& \begin{tabular}{|l|}
-10.0 \\
-28.0 \\
\hline
\end{tabular} \& －－ \& － \& \& te current \& ctote ad， \& Ture toio. \& millam \& \& \\
\hline 38 \& POWEF AMPMIEE \& smal \& Fic．m \& \& mLates \& 6.3 \& 0.1 \& 250 \& 250 \& Cuss a asplifica \& \& \begin{tabular}{l}
－ 9.0 \\
\hline 18.0 \\
-25.0
\end{tabular} \& \[
\begin{aligned}
\& 100 \\
\& 180 \\
\& 2180 \\
\& 200
\end{aligned}
\] \& ¢ \& （ \begin{tabular}{c}
7.0 \\
3,0 \\
32.0 \\
\hline
\end{tabular} \& \[
\left.\begin{aligned}
\& 1406000 \\
\& 1150000 \\
\& 100000
\end{aligned} \right\rvert\,
\] \& \[
\begin{gathered}
875 \\
1050 \\
1200
\end{gathered}
\] \& 120
120
120 \& \[
\begin{aligned}
\& 15000 \\
\& 11600 \\
\& 10000
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.27 \\
\& 1.00 \\
\& 2.50 \\
\& \hline
\end{aligned}
\] \& 38 \\
\hline 39－44 \& \begin{tabular}{l}
surcerconital \\
MFTOTOE
\end{tabular} \& small man \& Flic．\({ }^{4}\) \& 419＊\({ }^{1 / 8}\) \& heater \& 6.3 \& 0.3 \& 250 \& 9 \& STREIRLRIT \& cos \(\begin{gathered}\text { w } \\ \substack{1 \% 0 \\ 250}\end{gathered}\) \& \(\left\{\begin{array}{|c}-3.0 \\ \text { man．}\end{array}\right\}\) \& ｜ \begin{tabular}{l}
40 \\
90 \\
90 \\
\hline
\end{tabular} \& 1.6
1.4
1.4 \& \begin{tabular}{l}
5.6 \\
5.8 \\
5.8 \\
\hline
\end{tabular} \& \[
\begin{array}{r}
1,75000 \\
7560600 \\
15060000
\end{array}
\] \& \[
\begin{aligned}
\& 900 \\
\& 1000 \\
\& 10050 \\
\& \hline 10
\end{aligned}
\] \& 360
700
15050 \& － \& － \& 39－44 \\
\hline \& For Grad－leak Det Eithep A．C．or D． of D．C．on A－C f \& ion－plate vol ．may be uied ment typen， \& \& \[
\begin{aligned}
\& \text { encertit } \\
\& \text { id voli }
\end{aligned}
\] \& \& \& fue use trolese \& \& \& －Applind zh －Applied th \& \[
\operatorname{cosech}_{\text {puth }}
\] \& \[
\begin{aligned}
\& \text { ce couphin } \\
\& \text { esurguin }
\end{aligned}
\] \& ling resistor \& \[
\begin{aligned}
\& \text { of } 2,004 \\
\& \text { of } 1200000
\end{aligned}
\] \& \[
\begin{aligned}
\& 20 \text { whms } \\
\& \text { chimms }
\end{aligned}
\] \& or swe hen \& y chuie \& \& by 025 nanum． \& \[
2 m
\] \& \\
\hline 40 \& \[
\begin{aligned}
\& \text { AOLTAGE } \\
\& \text { AMPLFITRE } \\
\& \text { RRIOOE }
\end{aligned}
\]
TRIOD \& msdium 4．pin \& Hic． 1 \& \(416^{\circ} \times 112^{\circ}\) \& TLICEAT \& 5.0 \& 0.25 \& 140 \& － \& CLASS A AMPLIFES \& \[
\begin{gathered}
135 x \\
1808 \\
\hline
\end{gathered}
\] \& － \(\begin{aligned} \& 1.5 \\ \& -3.0\end{aligned}\) \& － \& － \& 0.2
0.2 \& \[
\begin{array}{r}
150000 \\
150000 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 2000 \\
\& 200
\end{aligned}
\] \& 30
30 \& － \& － \& 49 \\
\hline 41 \& \& smatlempin \& ric．isa \& 4！＂ \(4^{\prime \prime} 16^{\circ}\) \& heatta \& 6.3 \& 0.4 \& 250 \& 250 \& cuss a ampliter \& \[
\begin{aligned}
\& 100 \\
\& \hline 180 \\
\& 280 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
－ 7.0 \\
\(=13.5\) \\
-18.0 \\
\hline 1.5
\end{tabular} \& \[
\begin{aligned}
\& 100 \\
\& 180 \\
\& 250 \\
\& \hline
\end{aligned}
\] \& 1.6
3.0
3.5 \& \[
\begin{array}{|l|}
\hline 9.0 \\
13.5 \\
32.0 \\
\hline
\end{array}
\] \& \[
\begin{array}{|l|}
\hline 1035000 \\
81000 \\
68000
\end{array}
\] \& \[
\begin{aligned}
\& 14350 \\
\& \text { 1450} \\
\& 28200 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 150 \\
\& \text { 150 } \\
\& 150
\end{aligned}
\] \& \[
\begin{aligned}
\& 189000 \\
\& \substack{9000 \\
7600 \\
\hline}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.31 \\
\& \hline .85 \\
\& 3.40 \\
\& \hline .40 \\
\& \hline
\end{aligned}
\] \& 41 \\
\hline 42 \& POWEE SMPLIEA \& meolum \& FIC． 1 \％\({ }^{\text {a }}\) \& 419＊＊ \(111^{\circ}\) \& meater \& 6.3 \& 0.7 \& 250 \& 250 \& CuSS 4 A MPLITER \& 250 \& －16．5 \& 330 \& 6.5 \& 34.0 \& 100000 \& 2200 \& 220 \& 7000 \& 3.00 \& 12 \\
\hline 43 \& POWEGAMPLIFER \& medium \& \({ }^{\text {FIC．}}\) 15 \& \(416^{*} \times 11^{\circ}\) \& heatcr \& 25.0 \& 0.3 \& Lss \& 135 \& cuta a ampliter \& \({ }_{1} 195\) \& \begin{tabular}{l}
-15.8 \\
-20.0 \\
\hline
\end{tabular} \& 135 \& 7．80 \& 20.0
34.0 \& \(\$ 8000\)
35000 \& 2000
2300 \& \＄0 \& 4800
4000 \& O．
2.00

200 \& 43

\hline 45 \& $\underset{\substack{\text { POwER amplifir } \\ \text { TRIOOE }}}{ }$ \& meoium 4．pin \& He． 1 \& $410^{\circ} \times 10^{\circ}$ \& flumment \& 7.5 \& 1.5 \& 375 \& － \& CLSS A MPLITIEA \& $$
\begin{aligned}
& 180 \\
& 250 \\
& 297 \\
& \hline
\end{aligned}
$$ \& -31.5

-50.0
-56.0 \& 1850
270

275 \& － \& $$
\begin{aligned}
& 31.0 \\
& 34.0 \\
& 36.0 \\
& \hline
\end{aligned}
$$ \& 1650

1650
1700 \& 2125
2125
2050
2050 \& 3.5
3.5

3.5 \& $$
\begin{aligned}
& \begin{array}{l}
3700 \\
3790 \\
4500 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$ \& \& 45

\hline \& \& \& \& \& \& \& \& 250 \& －－ \& Cuss a AMPLILILSA \& 250 \& －33．0 \& \& －－ \& 22.0 \& 2800 \& 2150 \& 5.6 \& 6400 \& 1.35 \&

\hline 46 \& POWER OULCMRADILER \& meotum spin \& ロLe．\dagger \& \& finment \& 2.5 \& 1.75 \& 400 \& － \& Cuss ${ }^{\text {a mpufier }}$ \& \[
$$
\begin{aligned}
& 300 \\
& \hline 000
\end{aligned}
$$

\] \& 0 \& \& － \& Power or \& autput value dicated plate \& \[

$$
\begin{aligned}
& \text { cen are for } \\
& \text { e- } 2 \text { ? }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7 \text { tube } \\
& \text { loed. }
\end{aligned}
$$

\] \& （5200 \& \[

$$
\begin{aligned}
& 10.0 \\
& 20.0
\end{aligned}
$$
\] \& 46

\hline 47 \& \& Mc Divina \leqslant PIM \& H6s \& $30^{77} \times{ }^{16}{ }^{6}$ \& thiment \& 1.5 \& 1.73 \& （1） \& ${ }_{230}$ \& \& 28 \& －15 \& ${ }^{25 n}$ \& 60 \& 31.0 \& 60000 \& 2509 \& 1.9 \& 7000 \& 3.7 \& 47

\hline 48 \& \& midium \＆PIM \& FIG． 15 \& 51＂ 21 $^{\circ}$ \& HEALER \& 30.0 \& 0.4 \& 125 \& 100 \& Cuss a amplitea \& ${ }_{125}$ \& -19.0
-29.0 \& ${ }_{100}$ \& 9．08 \& 35.0
58.0 \& － \& 3800
3000 \& － \& 1500
1500 \& 2.0
2.5 \& 48

\hline \& \& \& \& \& \& \& \& 135 \& － \& CLESSAAPLIFIERD \& 135 \& －20．0 \& \& －1 \& 6.0 \& 4175 \& 1175 \& 4.7 \& 11000 \& 0.17 \&

\hline 49 \& mowehampliticr \& medium spin \& FIG． 1 \& 4 $\mathrm{fl}^{\circ} \times 1 \mathrm{fl}^{\circ}$ \& TLMELET \& 2.0 \& 0.12 \& 180 \& － \& Cus iampunient \& ． 180 \& － \& \& － \& Power \& surput value \& el are for 2 \& 2 tubes loed． \& 13000 \& 3.5 \& 49

\hline 50 \& POwEr AMPLIER \& mLDium 4．PIN \& FIC． 1 \& $66^{\circ} \times 2 H^{\circ}$ \& PILMENT \& 7.5 \& 1.25 \& 450 \& － \& CuSt a MMP IFILA \& \[
$$
\begin{aligned}
& 300 \\
& 400 \\
& 400 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& -54.0 \\
& =70.0 \\
& -70.0 \\
& \hline
\end{aligned}
$$

\] \& － \& \cdots \& \[

$$
\begin{array}{r}
35.0 \\
35.0 \\
55.0 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2000 \\
& 1600 \\
& 1800 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21900 \\
& 2100 \\
& 2100 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.8 \\
& 3.8 \\
& 3.8 \\
& \hline .8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \begin{array}{l}
4600 \\
3670 \\
4350
\end{array} \\
& \hline
\end{aligned}
$$

\] \& | 3.6 |
| :--- |
| 3.4 |
| 4.6 |
| .0 | \& 50

\hline 53 \& Twimpripose \& mLDIUM 7－PINE \& 116.34 \& $44^{\circ} \times 1 / 8^{\circ}$ \& heater \& 2.5 \& 3.0 \& 300 \& － \& cust B amplifi \& | 250 |
| :--- |
| 300 |
| 05 | \& ： \& \& － \& ${ }^{\text {Power }}$ Of \& cutpul raue \& eis ior ore \& \[

$$
\begin{aligned}
& \text { at fubl } \\
& \text { late. }
\end{aligned}
$$
\] \& 10000

1000 \& | 8.0 |
| :---: |
| 10.0 |
| c． | \& 53

\hline 55 \& OUPREDTODE \& Smacl arin \& FIL． 11 \& \& meateh \& 2.5 \& 1.0 \& 250 \& － \& CRIOOE LNTT ALS \& $$
\begin{aligned}
& 1835 \\
& 1850 \\
& 250 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& -10.5 \\
& -13.5 \\
& -20.0 \\
& \hline
\end{aligned}
$$

\] \& － \& － \& \[

$$
\begin{aligned}
& 3.7 \\
& \hline 6.0 \\
& 8.0 \\
& \hline .0
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
11000 \\
8800 \\
7500 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
750 \\
\hline 97 \\
\hline 1100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 8.3 \\
& 8.3 \\
& 8.3 \\
& \hline .3 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 200000 \\
& 23000 \\
& 20000 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.075 \\
& 0.160 \\
& 0.350 \\
& \hline
\end{aligned}
$$
\] \& 55

\hline 56 \& SUPER．TAIODE DELECTOR＊ \& smale s－rim \& Fial \& 4＇$\times 11^{\prime \prime}$ \& MLATER \& 3.3 \& 1.0 \& 350 \& － \& \& 250 \& \[
$$
\begin{aligned}
& -13.5 \\
& \left\{\begin{array}{l}
-20.0 \\
\text { approx }
\end{array}\right\}
\end{aligned}
$$

\] \& － \& － \& ${ }_{5}^{5.0}$ \& \[

\frac{9500}{}

\] \& 1450 enth to \& \[

$$
\begin{array}{|l|}
\hline 13.8 \mid \\
\hline \text { tod to } 0.3
\end{array}
$$
\]

iminal. \& ailliem \& \& 68

\hline \& \& \& \& \& \& \& \& \& \& \& 250 \& － 3.0 \& 100 \& 0.5 \& 2.0 \& $$
\begin{aligned}
& \text { exceeds } \\
& .3 \text { met. }
\end{aligned}
$$ \& 1723 \& \[

$$
\begin{array}{|c}
\text { exoend } \\
1500 \\
\hline
\end{array}
$$
\] \& － \& － \&

\hline 57 \& OEFCCIOM \& Sm \& Fic 11 \& $41^{\circ} \times 1{ }^{16}$ \& heaten \& 3.5 \& 1.0 \& 250 \& 100 \& bis detector \& 250 \& －1．95 \& so \& \[
$$
\begin{array}{r}
\text { Cathode } \\
0.65 \mathrm{~m}
\end{array}
$$

\] \& | current |
| :--- |
| na． | \& － \& Plate coup

Grid coupli \& $$
\begin{aligned}
& \text { upling resistc } \\
& \text { pling renisto }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { tor } 250000 \\
& \text { cor } 250000
\end{aligned}
$$

\] \& \[

0 obmen
\] \& 67

\hline
\end{tabular}

[^0]

Receiver Tube Characteristics and Circuits

The more common types of receiver tubes are listed here in the order of their Filament or Heater Voltage, arranged in alphabetical sequence. Special tubes and rectifiers are at the end of the chapter. Circuit applications are given for many tubes. Socket connections are shown in the Tube Charts in previous pages.

1.1 \& 1.5 Volt Series

864 Non-microphonic trinde atdio ampli. ner. Kecommemlerl for low level micriphone preallylitiers.
Characteristics:

J'ilathent Voltage II	(I).C.)	1.1 rolts
Fidamerit Current		0.76 amps.
	!10	13E rolis
lirisl Voltage	4.5	- 0 rolts
l'ate (${ }^{\text {arement }}$	2.9)	3.5 ma.
Plate Resistanme	13.500	$1 *$ - 500 ohms
Ampliticarino reardur	r	8.
Sutual Combuetintm \$10	615 micromhos
Leteal Mbesistinme	15.000	15.000 olans

$$
\therefore \quad \%
$$

WD-11, WX-12

Tr:ode de:ce:tors and annplifiers for old style battery operated ralio ueceivers.

Soté: l'racically obsolete.
Characteristics:

H'ilament Voltage	1. rolts
Filament Current	0.23 amss.
Irate Voltage 90	$13 .:$ volts
(irnd Voltage -4.5	-10.Fin volts
Flate Current ${ }^{\text {2 }}$. 5	3.4 ma.
Plate Resistance 13.500	15,00! ohms
Atuplification Factor \quad. 6	6.6
Mutual Conductance 405	
I'ower Output	40 milliwatts
Grid to Plate Capacitare	3.3 mmfd .
Grd to Filament Capa-itance........	$\frac{2}{2} .5 \mathrm{mmid}$.
flate to Filament Ca; acitance......	2.5 mmfd .

26Audio anplifier or detector. Used in older radio receivers as neutralized RF amplifiers. Now obsolete.
Note: Filament iften introduced excessive hum into radio receivers.

2-Volt Series

Sylvania 15 RF Amplifier. Regenerative dstector or elect-on-coupled osctlators for battery operated receivets.

$$
\because \quad \&
$$

19 'l'wintrione class 13 audio amplifier for portahle radio receivers. Class B Modulator in rortable U.H.F. transmitters and transceivers. ['.Jf.F. oscillator in push-pull circuits.

Characteristics:
Nilament Voltage (D.C.)............... $\quad 2.0$ voits
Fllament Current 0.26 amps.

* \& \&

30 Triode Detertor. Audio Amplifier and Oscillator for battery-operated radio receivers. Al:o used in jmeter trans. ceivers.

CLASS B AUDIO AMP 1 DRIVER FOR POR-ABLE OPERATION

31Triode Power Amplifier for battery operated radio receivers. Not in general use. Occasionally used as a 5 meter oscillator in portable 5 meter transmitters because it has a heavier filament than a rype 30 tube. It is not suitable for 5 meter transceiters.

Characteristics:

Fllament Foltare		ts
Filament Current		0.130 amps .
l'ate Voltage	135	180 volts
Sirict Voltage	28.5	-30 volts
I'late Current		12.3 ma.
Piate liesistance	4100	3600 ohms
Amplification Factor	3.8	3.8
Mutual t'onductance	905	1050 mieromhos
lower Output	0.185	0.375 watts
Load Mesistanes	7000	5700 ohms

$\%$ \%
32
Screen-grid detector and amplifier for battery operated receivers where low filament drain is necessary.

Characteristics:

Filament Voltage		2.0 volts
Filament Curremt ... 0.060 amp.		
Plate Voltage	135	180 max. volts
Seren Voltage	67.5	67.5 max. \%olts
Grid Voltage	-3	-3 volts
Plase Current	1.7	1.7 ma .
Harsen C'urrent	0.4	0.4 max. ma.
Flato Resjstance	000	1.200.000 ohms
Ampltecition Factor	611)	780
Mu:usal fonductance	640	650 micromhos
Grid-I'late C'apacitance (with shielu-cans. . 0.015 max mmid.		
Inpatt Capacitance		6.0 mmpd .
Outdut c*apacitance		11.7 mmft .

Screen Grid Dełector Circuit for Receivers

,ADIO LEAK OCTESTOA IN BATTEAY HPREATEC SHORT WAVE autodine receivea
$\%$ \%
33 Pentode Power Amplifier for output stages of battery operated radio sets. Used in U.ZI.F. transceivers as modu. lator and audio amplifier.

Characteristics:

Filamment Voltage (1)	(1).C. 2.0 volts
Fabmment Current 0.260 ampere
l'ate Voltage	35 max. volts
Screen Voltage	135 max. volts
firid Voltuge	-13.5 volts
l'late current	14.5 millianperes
Sorsen current	3 millamperes
Plate Kesistance	50000 ohm 3
Amplifleation Factor	r 1 . ${ }^{\text {a }}$. . ${ }^{\text {. }}$. 70
Mutual Conductance	micromios
Ioatd lesistunce	7000 ohms
Power Output	

34Screen-Grid R-F or I-F amplitier for portable and battery operated radio receivers, Its super control feature allows AVC voitage application. As a mixer ir superheterodyne receivers, approx. - 5 volts bias is rec. ommended.

Characteristics:

Filament Voltage		2.0 volt: 0.060 ampere 180 mux. soles
Filament Current		
1'late Volage	135	
Sereen Yoltage (Max.)	67.5	67.5 volts
Grid Yoltage, Variable (Mln .)	$\square 3$	-3 velta
Plate Current	2.8	$\pm .8$ milliamperes
screen ('urrent 1.1	1.0	1.0 milliamperes
Ilatt Reststance 1.4	0.6	1.0 me:;ohm
Amplification Factur	360	620
Mutual Conductancetio	600	620 ml cromhos
Mutial Conductance (At -32.5 volts has).......... 15	15	15 mi romlos
Grid-1'laze Capacitance (Witls shiehd-can)		0.015 max. mmid.
Input Capacltance		6.0 mimifd.
Output capacitance		2.6 mufd.

$\%$ \%
49
Double-grici tube for hattery operated radio receive"s. Occasionally used in U.1I.F portatile transmitters.

Note: Class B amp!ifisr uses 2 tubes with grids of eaciz tied together

Class A amplifier has adjacent grid tied to plate for low mu operation.
Characseristics:
Fllament Voltare (1).1•.1.. volt
Filament ('urrent .. umpere.

As Class B Power Amplifier:

Plate Voltage no max. volts bynamic leak llate rurrmi............it max. millamperes Typical omeration (2 (kires)
Filament Voltage 2.0 volts
plate Yoltate
180 volts
(irid Voltage \{both grids tied togetheri............................ volts Static Plate ('urrent (per tube) milliamperes Land Resistance (plate-to-plate)....................0000) ohmas. Nominal lower Output (2 tubes)...................... 3.5 watts

As D-iver-Class A Areplifier:
Filament Voltage 2.0 volta
plate Voltasc ... volts
Grid Voltage (grid adjarent to thate tied
to plate) ... 20 volts
plate Current 5. milliamperes $^{\text {m }}$
1'late R-sistance 4000 ohms.
Ampltfleation Faetor ... 4.5
1.oad Hesistance ... 11000 ohms.

Nimfual Power Outpu? 0.1 . 10 watt

\% \% \%

1 A4-1B4 IAA - Sipier - control K.F. or I.F. amplifier for battery operated radio receivers. Similar to type 31, exccpt small bull.

IRf-R.F. amplizier with sharp catealf, or as detectar for battery now rated radio receivers. Similar to $3 ; 2$, except for smaller bulb.

TYPICAL RF AMPLIFIE:Z FOR BATTERY-OPERATED SETS

Characteristies:	Type IA4	Type 184
Filament Voltage	2.0	2.0 volts
Filament current	. 06	. 116 amps .
Plate Voltage (Max.)	180	180 volts
Screen Voltare (Max.)	67.5	68.5 volts
Grici Voltage (Min.)		-3 volts
Plate C'urrent	$\pm .3$	1.7 ma .
Screen Current (Amprox.s		0.4 ma .
I'late Resistance	96	1.2 negohms.
Amplification Faptor	20	780
Mutual Conductanre	750	(55) micromh
Mutual Conductance at - volts bias 15		
Grial to Plate Capacitance	. 007	. 007 mmfd .
Input 'aparitance		4.6 mmid .
Output Capacitanes	11	11 mmfd .
lsase-sthall 4 pit.		

1 A6-1 C6

Mixer and oscillator combination tulse for hattery operated superheterodyne receivers. Can also be used as a super-regenerative detector in 5 -neter receivers.

Note: The 1 CG has a more rugged filament than the $1 \Delta 0$, hat places more drain on the filansent hattery, which might lie of importance in portable radio receivers. The 106 can be operated un to 25 megacyeles as a converter. while the Jif has an upper limit of about 11 megacycles. Either tube can have AVC voltage applied to the control grid for variation of signal valtage gain.

RF OR If AMPLIfIER \& HALE WAVE OET-CTOR WITH aVC

PENTACRIO COMERTER
$\%$ \&
1B5-25S
Duplex - Dioric - Triode Detector and Audio Amplifirr, resistance or impedance coupled to a 33 or 1 F 4 pentode output amplifier for battery operated radio receivers.

Characteristies:

1F4Pentode Iower Ampliger for battery oplerated radio rec-ivers and 5 mete: portable sets or transceivers. trote: The 1 F 4 rectuires less C bias than the 33 tube; the plate current and powe outplit are alsci lower.
Characteristics:
 plate roltaze .. 135 volts
 (rin Date Mrrent \qquad Amplitication Factor \qquad plate hesistance 0 megohms

 Ilate Inall

$\%$ \% \%

1F6
Ino Diode-Pentode. Second detector for battery operated radio receivers. Diodes can furnish AVC volsage and pettode section ean be operatel as an IF amplitier. or as an audio amplifier. W'ill furnish sufficient output as an audio amplifier to drive a 33 or $1 \stackrel{y}{t}$ output tube to rated values.

Characteristics
Characterist Vnltus I以 Filath nt Cursint . . . $00^{-} \mathrm{mmpl}$ Srict-ta-llate laparitato006 mmit Crid-to- Jibament "apacitane 4 minfd
 $.67^{1 / 2}$ volt 3
creen Voltake
Crid Voltage
1'late C'urent
Anplification
-1.5 volts 1 megohm
-late liesistance 1 megohm

2.5 Volt Series

24A

Ecreen grid detector, audio ampliis.r. RF amplitior in radio receivers. Electron-coupled ospillator for recembrs of trequeticy meters. Noft: Nearly chisntcte. (Replitued for general que by 55°.

[^1]Taput Capacipance

27 (iencral purpose triode witit heatercathode. Used as an ΔF and neutral. ized IFF amplifier and cictector in radio receivers of early AC design.

Notc: Nearly obsoletr.

Characteristies

Heater Fidtage (AC or D			2.5 volts
Heater c'urrent			1.75 amperes
1 hate Voliage ... 90	135	180	250 valte
Grid Voltige -6	-9	-13.5	-21 valts
liate 'urent ... 5.7	4.5	5.9	5.2 milliamperes
1-bute Kexistance . 11000	\$000	9000	3250 otam.
Amplitication			
P'actor	9	9	9
Stutual			
	'00c	1000	975 niferomhos. 3.3 manf:1.
Grid-Cathode Caphatitace			3.5 nrumd.
rlate-cathode c'anaciance			3.0 it ind.

35 Supereontral sereen grid R-F amplifics tube. Cant lee ased as a mixer in superheterodyne circuits with -7 volts grid bias. Notc: Nearly obsolete.

Characteristics:		
Inater Voltage (AC or Jin)		2.5 colts
Hater current		1.75 amberes
1plate Voltage.	1818	250 volts
Siren Valtare gatax.)	81	90 that. colts
(irid Vowike. Variable (Hin)	3	-3 volis
1pate Curreit	6.3	6.5 milliamperes
Sircen (urrent (Mins.)	2.5	2.5 milliamperes
late kesistance	300109	400000 ohns.
Ampltication liactor	315	420
Mutal Conductance	1020	11050 mi romlios.
Mitual Combuctance		
(At - 40 solts bias)	15	15 mi -romhos.
Grid-plate ciparitance		
(W'th shield-ran)		0.007 max. m
Inmut -aparitance		5.3 mmfd .
(batput "amaritalice		10.5 monti.

$\%$ \%

45Equivalent to Metal Tube fil)j. Triode lower luise for push-pull Cass A or AlS servicr. The output in Class AB is suffeient to clrive blass B modulators of 100 to $\because 00$ watts output. . Niso useful as low pewer R-F F binfer tulse in tranimitters.
Characteristies for Class A Amplification:

Whame rit rurrent .

Slutual conductarke .
M.oad Fiesistance . 3930 ohtinns.

Output Capacitance ... 3 mmfd.

Low Distortion Audio Amplifier for Radio Receivers

Push-Pull Class AB Amplifier for Class B Driver or P.A. Service

AUDIO AMPLIFIER, - OR MODULATOR FOR GRID MODULATED TUBES

Neutralized Class C Buffer for RF Stage

46 Class B Amplifier for radio receivers and public address systems. More often used in modulator systems for small radiophone transinitters. Frequently serves as a doubler in RF circuits of radio transmitter.
Note: Audio peak outputs of 40 watts for speech can be secured if a 500 volt plate supply is avail able, although this exceeds the manufacturers rat ings of 400 volts plate supply.

Characteristics:
Fllament Voltage .. 5 volts

As Class A Amplifter (grid adjacent to plate tied to it):

Grid Voltage.
-33 volts
'ate Current
2. ma.

Mutual Conductance . 3 mis micromhos

'ower Output 1.25 watts

47Ablio prower amplifier for radio receivers or modulator service in small AC nerated 5 -meter transmitters. Crystal oscillator in radio transmitters.

Note: This tube has been replaced for most services by tuhes with a separate cathode and heater.

Characteristies:

Filarnent Voltage ... 5 rolts
Ilate Voltago . 1.75 amps .
Gereen Voltage ... 250 rolts
irid Voltage ...
Plate Current
6.5 rolts

'late Resistance . 0000 ohms
Atutual Conductanere 2500 miteromhos

Plate to Firid Capacitance. 1.2 mmfd
Input Capacitance . 8.6 mmfd
Output Capacitance
13 mmed

59 Triple Grid Pentode Arpplitier. Class A Audio amplifier. Triode Class A driver for Class B stage of 53 tubes. Crystal oscillater and frequency-loubler in radio transmitters.

Characteristics:

Class A Amplifier	Triode
I'late Voltace	250
Screen Voltage	
Cril Moltare (No.	28
Plate Current	
Srreen riurrent	
Amplinration Factor	ii
Hete Mesistance ${ }^{\text {Pr }}$	2301
Mutuai Conductame	200id
[oad Mesistance	5004
Aelf- Bias Resistor	1083
Fower Output	1.25
Grid No. 2.	to plate
Grid No. 3.	to plate

Pentode
950 rolts
250 volts
-18 rolts
35
9 mil.
100
40.000 ohms
2500 mimromhos
6000 ohms
410 ohms
3 watts
Screen
Tied to eathode

Class B Amplifier:
Flate Voltisge $300 \quad 400$ velth
Ayg, l'late Dissipation.............. $10 \quad 10$ wits max.
Grids No. 1 and 2 lied togethwr.
Grid No. 3 tied to plate

latoad liest:tanee (plate to plate). $4600 \quad 6000$ onnis
Power Output (2 tubes)......... 15 !0 watts

2A3
Triode Power Amplifier. Normaliy used in push-pull in radio receivers and as a I'sl'. driver stage for Class I 3 modukators which have outpats of from 100 to 300 watts. The low plate resistance load with fixed grit bias nakes these tubes desirable as Class 13 stage drivers, Sometimes operated as a Class C. RF amplifier in radio transmitters, in which case the maxinum plate voltage is 400 volts.

Note: As a Class CRF amplifier, approx. $1 \% \%$ more output can be obtained than from a 45 tube. Not recommended for Class C service above $\%$ me.

Characteristics:

Push-Pull Class AB Amplifier (2 tubes):

	Fixed Bias	Self Bias
Plato Foltage	300	300 max. volts
Cirid Voltage	-62	... volts
Siclf Mias lessisior.		750 ohms
l'ate Current (feer tube)	40	40
Load Rusistance (Plate		
I'late)	3000	500 ${ }^{\text {chms }}$
Harmonir bistortion.	2.5	5%
Power Outnut	- 15	10 watts

2B6

transmitters.
Untrstal Characteristics: Two trindes in one en velope. The power amplifier grid is directcoupled th the driver cathode, aml the driver piate connects directly to plus B.

$2 \mathrm{B6}$ "LES-TE+* GRYSTAL OSCILLATOR-DOUBLER
WHET SECOND THIOD IS USEO AS AN R F ANMLIFIER
Characteristics:

3 Volt Series

22
Screen Grid RF Amplifier for battery operated radio receiver. liote: Irractically obsolete.

 Grle voltare ... 5 max. Prate current simen current Pate lesistance
 1ate Resistance 0.325 megohm
 Grid to Ilate ranaritasce ishielded)0.0. mmpd. Input rapacitance 3 mmpd. Ottput Canaeitance . 10 mmpd.

120 Triotie audio amplifier for battery merated radio receivers. Note: Practically obsolete.
Characteristics:

Characteristics:	
Filament Voltaxe ($1 . C$.	3.0-3.3 volts
Filament Current	0.125-0.132 amp.
Plate Yoltare 90	135 max. rolts
Grid Yotare - 16.5	-2.9.5 volts
Plate Currmt 3.0	f.5.5 milliampa.
Plate hesistance 8000	6300 ohms
Amplifteation Factor 3.3	3.3
Mutual Conductance........ 415	3.5 micromhos
Ioas Resistance............ 0tiot	6500 olmis
Undistorted Power Output.. 0.045	011 watt
Grid-Plate Caparitanes	4.1 mmif.
Grid-Filament Capacitamer	3.0 mmffi.
Plate-Fllament 'aparitance	2.3 mmfd .

$\%$ \%

 operation. Note: Practically obsoletc.Characteristics:
Filament Voltage (I).C.)

......3.0-3.3 volts
Phament Current0.060.0.063 ampere

Grld Voltage 0 max. volts
Plate Current
2.5 milliamps.

Plate 1 tesistance \qquad
Amplification Fartor
.15 .500 ohms
Brid-Plate Cananitance \qquad 495 micromhos
Grid-Filament Canaritarie... 3.5 mmind.
Plate-Filament Capacitanre 2.5 mmpri.

5 Volt Series

O1-A

 Triode storage battery tube fo: use as a decector and amplifier in Note: Practically obsolete.Characteristics:

\& \& \&

71-A
 Triode power amplifier of low output impedance. Notc: I'racfically obsolete.

Characteristics:

112-A

Triode fetector or amplifier for storage battery operated reccivers. Filament type ube.
Note: Practically obsolete.
Characteristics:

racteristics:		
Filament Voltage (I)		-1,0 colls
Filament Current		0.25 \% mis.
Plate Voltage 90	13.7	is 80 max. volts
	!	-1: 5 \% whis
	6.	7.7 milliamps.
Amplificationt F-actor......... ${ }^{\text {. }}$. 5100	.100 $\times .5$	${ }_{8}^{4700} 5$
Matual (omductance........ 15.5	16.50	1 NolO micromhos
Ional Resistance............ \% $^{\text {ano }}$!1010	
Undistored Fower Output..0.035	0.13	$0.2 x 5$ watts
Grin-mate cabacitance		*.5 nimfil.
Grid-Filament "aparitan		4.0 nmbil.
I'late-r゙ilament ('apacha		8.0 mmfi.

$\because 8$

240
Triode bias detector, resistanceconpled audio amplifier for storage battery operated radio receivers.

Votc: Practically obsolete

Characteristics:
Filament Voltar

Direct Interelectrode Capacitances:
Girid to I'ate....
Grid to
8.8 mmfd .

Plate to Filament... 3.4 mmfi.

etector-Operating	Conditions as	Biased	Detecto
Filament.		5.0	5.0 volts
Plate Supply		135	180 volts
Grid		-3	-4.

Grim - 4.5 rolts
Load Res. $250.000 \quad 250.000$ ohms

Operating Conditions as Grid-Leak Detector:
Flament Supply 5.0 . 5.0 volts
Gild condenser of onome. uf. capacite: grid leak of from
2to ti mingohms.
Load Resistance $254,000 \quad 250,000$ ollms

6.3 Volt Series

36
"Screen-Grid RF and IF ampliner for automolile rad:o receivers. Detector with griel-leak or grid-bias circuits

Note: Nearly olisolete.
Characterivites:

\author{

- Maxinarn.
}

Triode detector and atmbo amplifier for automobile radio receivers. Occasionally used as a super regenerative detector in 1T.1I.F. receivers.

Note: Repleced for general use by the $\boldsymbol{\sigma} 6$ and $6 \mathrm{C}^{\circ}+\mathrm{t}$ thes.

\& \& \&
38
Pentode power mplifier for automobile radio receivers, and series-beater receivers. Note: Not in gencral use.

39/44
Subr-control RF or IF anplifier for autmblaile super-heterodye rectices employing automate velume conteol. ("an le used as a mixer with -- wolts grid bias. Note: Not in general use.

Characteristics

42 Pentode ?ower Amplifier for radio receivers.
Equivaler:t Mctal Tube-6F6.
Uses:
(1) Single or push-pull audio amplifier for radio receivers (pentode).
(2) Crystal oscillators in transmitters.
(3) Frequency donblers in transmitters.
(4) Triode driver stage or Class AB push-pull power amplifier.
(See 6L.6 applicatıons.)

PENTODE AUDIO AMPLIFIER FOR RADIO RECEIVERS

Characteristics:

75Duplex Dicde, IIigh Mu Triode. Combined detertor, AVC tube and audio amplifier in super-heterodyne receivers. The triode section is cften used in speech amplifier circuits for radiophon: transmitters.

Note: AVC circuit; are similar to those shown for 6 B \% tube.

Characteristics:
Heater Voltage .. 6.3 volt $\overline{3}$
Heater Current .. 0.3 amps
Cirid to llate Capacitance............................... $1 . \overline{6} \mathrm{mmpd}$.
tirid to Calhode Capacitame 1.6 mmpd .
Plate to cathode cabacitance. 250.3 .8 mmid.
Grid voltare ….. vax volts

Miutual (ommetans
.0 .8 ma .

Typical Operation:

Plate Supply

180	250 volts
1.3	-1.35 volts
5000	3500 ohnis
0.25	0.25 megohms
0.5	0.5
0.26	0.39
56	59
to 40	361046

$\otimes \%$ \&

76Cieneral murpose triole for detector and audio amplifier operation in radio receivers and amplifies. U.H.F. oscillator and super-regenerative detector.

Notc: Somewhat similar to 6C5 metal tube.
Characteristics:
Heater Vollage (A.C. or I).C.)............................ 3 rolts
Heater Current .. 0.3 amps.
plate Voltage ……….................................. 250 niax. volts
ririd Voltage .. 13.5 volts
Plate Current 5 miliamperes
Plate Resistance …...... 13.8
Amplification Factor
1450 micromhos
Mutual Conductance
2.8 mmfd .

Trid-Plate Capacitance
.3 .5 mmfd .
l'late-C'athode Capacitance

79
Class B Twin Triode. Class B audio amplifier in automobile radio receivers.

Characteristics:

Heatcr Voltage (A.C'. or D.C.)........................... 3 volte Pate Voltage ... 250 niax rolts
lavanic race jipit current (per plate) 90 max milliamps Average I'late Dissipation 11.5 max. watts

Typical Operation:

$\begin{array}{lrr}\text { Ifoad Resirtance (plate-to-plate) } & 7000 & 14000 \text { ohms } \\ \text { Nominal Power Output........... } & 5.5 & \mathbf{8 . 0} \text { watts }\end{array}$

* *

85 Metal Tube Equivalent-6R7. DuplexDiode Triode. Combined detector, AVC tube and audio amplifier for superheterodyne receivers.

Note: The prower ontput showr in the table only hoids true with transformer or impedance coupling where full values of plate voltage and current are applied to the tube. Under oplimum conditions, the output is sufficient to drive a Class AB amplifier.

WALF WAVE DETECTOR DIODE BIASEO AMPLIFIER

FIXEO BIAS AMPLIFIER

FULE WAVE OETECTOR OIOOE BIASEO AMPLIFIER

[^2]Characteristies:

Filament Voltage (A.C. or 1).C.)				6.3 volts
frilament Current				0.3 amps.
Plate Voltage	100	135	16.5	150 max. volts
Screen Voltage	100	135	15:5	$1>0$ max. volts
Grid Voltage	6.5	-9	-11	-12 volts
Plate Current	9	14	20	22 milliamperes
Screen Current	1.6	2.5	3.5	3.4 milliamperes
Plate Resistance	83:50	52600	48000	45500 addrox. ohms
Amplitication liuctor	100	100	100	100 approx.
Mutual Conductance	1200	1900	2 EOO	2200 micromhos
Load Resistance	11000	9500	8400	\$000 ohms
Power Output	0.31	0.7	1.:	1.4 watts

Equivalent Metal Tube-6N\%. Twir Triode Iower Tube designed for Class B audio amplifiers in radio receivers. Also very useful as crystal oscillator and frequency doubler in transmitters, for frequencies up to 30 mc . Often used in 5 meter transmitters and receivers as oscillators and detectors.

Precautionary Measures: 300 volt plate supply is maximum as a Class B audio amplifier. As an RF oscillator or doabler, the plate potential must not exceed 400 volts if cathode bias is used, and not over 300 for grid-leak bias. For RF purposes the DC plate current per plate should not exceed 35 ma. and excessive grid excitation should be avoided.

6 A6 Push-Push RF Frequency Doubler
Characteristics:
Heater Voltage
Heater ('urremit
6.3 rolts

Heater ("urrent ... 0.8 amp.
rlate Dissipation 10 watts
As Class A Amplifiers (Triodes in Parallel):
Plate Voltane
Plate Current
Grid Voltage $\ldots . ., \ldots, \ldots, \ldots, \underbrace{6}_{5} \quad{ }_{5} \mathrm{ma}$
Amplification Faetor ….......... $\quad{ }_{35}^{5} \quad-\frac{6}{5}$ rolts
Plate Hesistance $11300 \quad 11000$ ohms
Mutual Conductanee 3100 . 3200 micromhos.
As Class B Amplifier (Triodes in Push-Pull):

I'late voltage	250	300 volts
Grid Voltage	0	0 volts
Zero Signal I'late Current (per plate)	14	17.5 ma .
Maximum ${ }^{\text {Plate }}$ Currenr	125	125 rolts
Load Hesistance (plate to-plate)	8000	10000 ohms
1'ower output (with 350 millwatt input	8	

6A7Metar Tube Equivalent-6AS. Pent. agrid Converter same as 6A8nixer (first detcctor) and oscillator for super-heterodyne receivers.

Frcquency Range: Not recommended above 2.5 mc. Conversion gain drops and apparent tube noise increases above 10 mc .
Characteristits:
IIeater current
6.3 rolts

Meater current 0.3 amps.

1R-F Input 0.3 mmfd .

Mrixer out pit
Oscllator (Grin No. i to Anole Grid No. $2 . .$.
Oscillator Grid No. 1 Injut
Osclllator Anorle-Grid No. 2 Output5mmpt.
Other chararteristies are similar to biA8 metal tube.

6A8
Glass Tube Equivalent - 6AT. Metal Tube Pentagrid Converter. Combined mixer (first detector) and H.F. oscilhator in super-heterodyne receivers. Remote cut-off of control grid allows connection in IVC circuits.
Note: Jue to inter-action effects. the 6A8 conversion gain drops rapilly beiow 10 megacycles, resulting in high tube noise and poor signal sensitivity in most receivers using this tube at 15 or 20 mc .

Charateristies:

Heater Voltage	6.3 rolts
Heater Current	0.3 mmps .
16-1 lnput Capacitanme	. 5 mmfd .
Oscillator Input Capacitance	6.5 mmpd .
Oscillator Output Capacitance	5 mmfd .
Mixer Output Capacitance	2. 5 mmpd .
Flate Voltage	2.50 volts
Scrent Voltage	100 volts
Anode-firid Voltage	175 volts
(tontrol cirial Voltage	3 rolts
Plate Current	3.3 ma.
Screen ('urrent	3.2 mm .
Anode-Grid ('urrent	4.0 ma
Oscillator Grid Current.	0.5 ma .
Conversion Conductanco	micromhos.
Maximun Cathode Current	14 ma.
('ontrol (irid Voltage for Cond Micromhos	-45 volts

Getal liase.

6B5
Equivalent Tubes- $6 \times 6 \mathrm{G}, \quad 6 \mathrm{~N}$. Class Tube Special l'ower Amplifier. Designed for power amplifier ouse in the output stage of a radio receiver. Can be used in push-pull for outputs as high as 20 watts it: small power amplifiers or modulators. Due so the gain within the double triade qube, the input grid does not need to be driven beyond Class A, and a 76 tube will drive a pair of 6 BII tuhes to 20 watts output.

Unwsual Characteristics: An internal grid of the power output triode is direct-conpied to an in ternal cathode. No external connections are necessary, and the small triode drives the large triode in Class AB.

Characteristics:

6B7
)uplex-Diode Pentode, combined detector, amplifier and automatic volume control tube for superheterodyne receivers. Pentode portion is used as KF or AF amplifier.

half wave oet. \& a.v.c., fixed bias amplifier

HALF WAVE DET., FIXED-BIAS HF AMPLIFIER

Note: Due to its low grid to plate capacitance the 6 Br tube is a goud RF amplifier, ciffering from the $6 Q$ r metal tube in this respect.

It has a double diode and single RF peritede.

fULL WAVE DETECTOR. FIXED BIAS AMPLIFER

Characteristies:

Ileater Voltage		6.3 rolte
Heater Current . 0.3 ampg.		
(irjll to llate capachtance		001 mmid .
Gird to ('athode Capacitauce		3.5 mmfd .
Output lapactance		9.5 mmpd .
Plate voltage 100	180	250 max. rolis
Sercen Voltage 100	75	100 volts
Grid Vidtase -3	-3	-i3
Ilate Current ${ }^{\text {i }} 8$	3.4	6.0 ma .
Sere'm \%urrent 1.7	0.9	1.5 ma.
Plate Hesistance ${ }^{\text {d }} 3$	1.0	$0-8$ nesolms
Ampliflcation Factor	840	S00
Mutual Conductance 850	840	100 mieromhos.
Cut-off Hias (Approx.)....-17	--13	- 17.50 cos

6 C 5
Triode for RF or audio purposes. Well suited for resistance or transformet coupled audia anmplifiers. Glass :whe equivalent is 76 .

Because of its high mutual conductance the 6C5 is an effective RF osidlator in super-heterodyne receivers for wave lengths as low as \bar{y}-meters. It may be used as a super-regenerative detector in (T.II.F. receivers down to $21 / 2$ meters (see L..II.F. (hapter).

Characteristics:

Metal Tube Equivalent-6I7. TripleGrid detector and audio amplifier in radio receivers and speech amplifiers. Can be used as RF amplifier for relatively low RF input signals, or as a triode audio amplifier.
Note: Refer to 6J7 for further data.

Characteristics:
 Heater Voltage
 6.3 volts
 Heater Current
 0.3 amps.

6D5
Class Tube Equivalent-45. Metal Tule Triode l'ower Amplifier for radio receivers in single or push-pull connections. Can be used as an oscillator in 5 meter circuits.
Note: See application circuits of type 45 tube.

Characteristics:

Heater Voltage . 3 rolt

Grid Voltage ... 40 volt
Plate rurrent ... 31 ma
Ilate Resistance . qase ohms
Mutual fonductance . 2100 nilcromho
Fower ontput . .. 1.4 watts
Octal base.
.300 volts
Class A B Amplifier:
Maximum I'late Voltage
Grid Voltage
-50 volts
'late Current J'er Tube
$\therefore 23 \mathrm{me}$
Plate Load
5300 ohms.
'ower Output

$\%$ \%

6D6
Metal Tube Equivalent-6K7, see 6 K 7 data for further information. Triple-Grid Super Control RF amplifier in radio receivers. Adaptable to RF and IF stages in receivers with AVC. Can he used as a mixer in super-heterodyne receivers with approx. -10 volt grid bias.

6D8GPentagrid Converter. Detectoroscillator tube in super-hetero dyne receivers where heater current requirements are low.

Characteristics:

6E5-6G5

Electron-Ray Resonance Tuning Indicator for radio receivers. Visual indicator for audio volume expander circuits.

Lnushal Characteristics: The target glows with a gieenash light in a sector of a disk. An increase of negative DC voltage on the grid narrows the width of this segment so that the tube can be used iss visual indicator.

Note: The 6G5 Electron Ray tube is similar to the $6 \mathbb{E} 5$, except for "variable mu" characteristics. its elldeff grid voltage is -22 volts.

CATHODE RAY TUNING INDICATOR CKT
Characteristies:

Heater Voltage	6.3 volts
Heater Eurrent	3 amps
Plase supply Voltage	250 volta
Plate ciurrent	25 ma .
1'taje lixsistor	megohm
Target Current	5 ma .
Grid Vodtage	
Ht-oft" Voltage	

$\%$ \%

6E6
Duplex Triode Class A Power Ain. plitier for low power output automobile radio receivers.
Characteristies:
Heater Voltake .. 6.3 rolts
Heater Current \because... 250 volto
 Mrkd is'as Plato Current.. 27.5 volts Arkditication Factor
Plate tresistarice.
Mutual Conductance
Maximum I'ower Output
...
.... 1750 ohms

$\%$ \%

6F5
Glass Tube Equivalent - Triode Section of 75 . Metal] Tuhe, High Mu Triole for resistance-coupled audio annlifiers. Can be used in 5 -neter receiver circuits as a super-regenerative detector.
.Vote: See 6IfG Circui: application.
Characteristies:

Glass Tube Eiquivalent-42. Metal Tube Amplifier for radio receivers and small puhlic address systems. (See applications of 61.6 and 42.)

Characteristics:
Heater Vohtage .. 6.3 volte

Octal 13ase
Single Tube Class A Amplifier:

6F7Metal Tube Equivalent - 6P7. Triode-Fentode. Mixer-oscillator in super-heterodyne receivers. Second detector and BFO or atudio amplitier. U II.F. receiver circuits.

GRIO , EAK YRIODE OETECTOR \& PENTOOE AUOIO AMPLIFIER

bIASED tRiode detector and pentode audio amplified

Characteristics:
Heater Voltage \qquad
Heater Current 0.3 amps.
Direct Interelectrode Capucitances:
Triode Unit-
Grid to Plate Capacitance 2.0 mmfd.
Grid to Cathode Capacitance..................................... 5 mmfd.
Plate to Cathode Capacitance. 3.0 maid.

Output Capacitance 12.5 mme.

Amplifier Service:

6H6
Twin Diode Metal Tube for radio receiver detector and Automatic Volume Control systems.
Unusual Characteristics: Separate cathode for each diode plate.

fuLL-WAVE RECTIFIEA-OETECTOA \& MIGM GAIN AUDH STAGE

DELAYED AVE \& SECOND DETECTOR CIRCUIT

Characteristics:

Heater Voltage
Heater Current
Heater Current
Plate to Plate Capacitance 0.3 amps.

Fore 10 02 mind.
Maximum RMS rate voltage. 100 volts
Octal Base.
6J7
Glass Tube Equivalent-6C6.
Purpose: Triple.Grid Detector.Am plifier or biased detector in radio receivers. Other applications art high-gain audio amplifier and RF amplifier for low values of input signals where a variable mu characteristic is not necessary. Can be utilized as a regenerative RF amplifier in U.H.F. receivers up to 60 megacycles.

[^3]

Characteristics:

6K7
 Triple-irid K-F or T-F amplifier in radio receivers. Ascillator tor super heterodyne receivers, Mixer-detector it superhetermene receivers.

MIIER OR IST DETECTOR IN A IUPERHETERDOYNE HEGEIVER. AFPRCX. GAIN FROM 30-60.

ELECTRON COUPLEO H F DSGILLATOR OR B F OSCILLATOR

6L5G
Gienemal purpose 1 riorle similar to 6C5G. but with low heater cu-reut drain.

Characteristics:

\& *

6L6 Glass Equivalent-6I.6G. Purposs: Designed primarily for push-patl amplifier in radio receivers but also widely used in crystal uscillater and RE amplitiors for radio transmitters.
f numal (haracteristhe: II as two lowam-formins flates internally ernnectel to the cathode. Ilas mo physieal suppressor grid. The beam action suppreses secondary emission and results in a nore hileibl pentole operation.

Premutionary Measures: Good air ventilation is clecitable because the tabe shell becomes very hot under normal operation. In push-pull circuits. "atanmed tuhns are necossary is well as balanced transfarmers if second harmonic elimination is desired.

Andio Amplificr Application: If not over 34 watts of imblio output is required. a single bicm audio amplifier or power detector will drive a pair of fiLa tulies in push-pull, A 1-to-2, or 1-to- $\$$ step-up interstage transformer is suitable. For outbuts of over 34 watts, push-pull 6(\% tulses are stitable for drivers, with a 1 to $1 / 2$ primary-to- $1 / 2$ sccomlary ratio interstase transformer. The output trinsformer should be of lirge size in order to hanlle up to 60 watts of audio power without core sotumation. Nay bo used as a modulator for phone transmitters.

PuSm-PULL AUDIO AvPLIFIEA FOR REGEIVERS,

Fecd-back Amplifier Application: Reverse feedback operation in a receiver amplifier will dampout low-frequency loudspeaker resonance. The result is similar in action to a triode, but the DC efficiency of a pentale is retained without much sacrifice in power sensitivity. Part of the output is fed back to the grid circuits in reverse phase in order to produce the effect of lower plate impedance.

This Circuit Can Also Be Used with 41, 42, 2A5, 89 and 6F6 Tubes

Crystal Oscillator Application: The crystal RF current is very low dae to the high power sensitivity of this tube. Outputs of from 5 to 15 watts can be obtained as a crystal oscillator without exceeding tube ratings.

$6 L 6$ TRITET OR DOW CAYSTAL OSCILLATOR
The Same Circuit Is Also Suitable for 41, 42, 2A5, 89 and 6F6 Tubes

Characteristies:
Heater Voltage
IIeater Current $\ldots .$.
Amplifration Factor
Plate Besistance..
Mutual Conductanee

Mtual Conductanee	6000 micromhos.				
Operation Characteristics:	Sinalo	Tube		Pull	Tubes
Prate Voltage	250	375	250	400	400
Contrel Grid Yol	250	250	250	300	300
Zero Sigmal Iplate Current	-14	-17.5	-16	-25	-25
Full signal Jlate Current	72	57	80	50	50
Zero Signal screen Current	79 5	2.5	7	${ }^{8} 8$	${ }_{5}^{114} 5$ per tube
Fuil signal Sereen Curreat	7.3	${ }_{6} .5$	8	8.5	9.5 per tube
I.oad in Ohms	14	17.5	16	25	42.5
Power output-watis	2500	4000	5000	6600	:880 plate to plate
Tutal Distortion		11.5	14.5	34 2	
2nd Harmonte	${ }^{9} 9.7$	14.5	2.	2.	2.
3 rd lfarminie	2.5	4.2	$\underline{9}$	$\ddot{\square}$	\because
1eak Grid Driving Powe				0	400

6L7Glass Tube Equivalert-6I.TG. Pentagrid Mixer Amplifier Metal Tube, designed primarily for mixer use in all-wave super-heterodyne zeceivers. Gives more gain at high-frequencies than other types of mixer tubes or circuit combinations. Suitable for RF or 11° ampifier service and in audio volume expander vircuits.

Amplifier Notes: AVC characteristic similar to sharp cut-oft RF amplifiers, but without crossmodulation effects. Easy tuning in AVC receiver circuits can be obtained by substituting 6L7 for GK7 tubes with proper circuit changes. eliminating the need of amplified AVC systems.

6N5
Cathode lay tuning indicator for automobile receivers or other receivers reduiring low current drain.
Characteristics:
Henter Voltage
Heater Current
Plate supply
Plate Supply
Target Voltage
. 14.3 volts

Triode-phate serie
.
0.15 amps.

Triode-flate Feries liesistor-
135 rolt (max.)
Tlade 90 shatcs.
11.25 tregohm:

Triode-Grid Voltage at Zero Shadow
12 rolta

6Q6G
Duplex tube with dione for detecior-AVC applications and a high mu triode for audio.
Note: Low heater current requirements.
Charatteristies :

Volume Expander Circuit for Radio or Phonograph Amplitier

Unusual Characteristics: The additional grid (No. 3, allows a mixing action with higher plate resistarce and less loading effect on the first IF tuned sircuit. This resuts in better selectivity and gain. At signal frequencies of from 10 to 60 megacyeles, the conversion gain is several times as lator such as $6 \mathrm{C} 5,6 \mathrm{~K} 7$, or 955 tube.

6Q7
Glass Equivalent-75. DuplexDiode H:gh Mu Triode Metal Tube, Combined detector, audio amplifier and automatic volunie control tube in radio receivers. Normally used with resistance coupling to an audio power output tube.

TVPICAL $2 N O$ DET.AVC CIKCUIT FOA BAT TUBE

Characteristics:

Heater Voltnge . 3 volt
Hester Currint . 0.3 ninp.
Mate Volrage . -3 volte
Amplification Factor ... 70
Amplifica:ion Factor .
Mutual Cnntuctance . 1200 micromhos
Plate Current 1.1 ma.

Grid to Cathode Capacitance 5.5 mmfd .
Prid to chthete Capacitance. 5 mmotd.
Two dlodr plates and triod. have a common cathote.
Octal base.

6R7
Glass Equivalent-85.
Diode Duplexcaticns same as 6Qi. Can bpli-transformer-coupled to Class A or low power Class AB power stage.

Characteristics:

Heater Voltage .. 6.3 volta
Heater Curreut

6R7 Automatic Volume Control Circuit

6S7G
R-F or A - F° amplifier for circuits where low heater current Irain is important.
Characteristics :

\therefore \& \&
12A5 lentode power amplifier for rarlio receiver's. The heater manections allow series operation for "transformeiless" receivers.

Characteristics:			
Heater Voltage	6.3	or	12.6 volts
Heater C'urrent	0.6	or	0.3 amps .
Plate Voltage	100		180 rolts
Screen Voltase	100		180 volts
Grid Voltago	1.5		- 27 volts
Plate Current	17		38 ma .
Screen Current			8 ma .
[late Resistance			300,000 ohms
Amplification Factor			90
Mutual Condurtance	1700		2300 mifremhos
Load Resistance	4500		3800 ohnis
I'ower Output	0.6.)		2.6 watts

RK-100
Raytheon Gaseous Discharge Anplifier Tube with cathanode element and very low plate resistance. Operates similar to a. high vacumm triode tube of very low plate resistance and high mutual conductance.
l'ses: A a an aum amplifier for 110 volt D) operation. (rystal ascillator. Class C amplifier. CHF oscillator.

Note: Designed primarily for operation on 110 voit DC stpply lines.

CRYSTAL OSCILGATOR WITH GASEOUS-DISCHARGE TUBE

Characteristics:

Heater Voltarc ... 3 volts
levater Current ... 0.9 amp.
firid to Plate capacitance. is mmf
Grid to vathote fapacitance. .

Maximun P'late Dissipation.. 15 mmfd.
Maximun 1). (C. 1late Yothue.............................. 150 volts
Maximum D.C. Dlato Current............................ . .
Maximum DC, firid Current........................... 100 ma.
Maximum Inseharve Current......................................
Push-Pull Audio Amplifier (2 tubes)
D.C. Ilate Voltare.. 110 rolts
D.C. 1יlate Current (per tulse)................................. . . ma .
D.C. (irid Bias 5 volts

Load lesistance (llate to IPlate\}.................... . 4000 ohms
Output l'ower 15.0 watts

Oscillator

D.C. J'late Voltare..................................... . . 110 volts
lonizing Dicharge t'urrent. 150 ma .
D.C. Ilate Current . 80 ma.

Grid lesistor . 500 ohms
Class C Amplifier:
D.C. Illate Voltake.. 110 volts

Ionizink liseharge f'urrut................. 250 ma.
Gritl Resistor . 500 ohms
Output . 12 watts
R-F fuput
12 watts
3 watts

954 Acorn

Acorn Pentode Compranion tube to the 9\%\% acorn triode for L'.H.F. -eceivers as R-F armplitior down to less than 1 meter. A•F amplifier. Biased detector.

Vote: By-pass comdensers should be right at the sofinet in the form of riblon leals insulated from a metel phate by mica spacers. The metal plate th:ough which the grid end of the tuhe extends can hate a metal collar around the hole for greater shielding effect in $\mathrm{K}-\mathrm{F}$ amplifiers.

Sain: Gains of 3 at 1 meter 10 or more at $\overline{5}$ mbters. The innut resistance at II.F. and U.H.F. is several times as great as with ordinary 6 b 6 K .1 tubes. This allows much higher gain and better sedectivity at L'.I..F. This effect is noticeable even on 10 or 15 mc .

954 Acorn RF Amplifier

5-Meter Regenerative Amplifier

955 Acorn
Acorn Triode. The physical size of the tube clements is so small that eficient operation can be oltained down to wave lingths below one meter. lises special socket.

Uses: Audio amplitier in microphone pre-amMlifiers. Oscillator for freduencies between 60 me. allid (00) nic. supher-regencrative cletector in U.IF.I. recivers. Vacunn-tube voltmeter.

Note (I): In U.II.F. circuits the hy-passing condensers should be placed as close to the tube terminals as possible, such as by flat ribbon leads insulated from the monnting metal ground plate by mica spacers to form small by-pass condensers.

Note (2): Variation of capacity of the grid con-
 allow gicater $R-F^{\circ}$ ontlont and longer tube life.

SUPER-REGENERATIVE OETECTOA FOR WAVELENGTHS FROM TG SMETEFS

PUSH - PULL OSCILLATOR FOR 955 ACORN TUBES

Clas C R.F Amplifier ur Oscillator:
1), J. Jate Voltage........................
I. © (irid Voltage

180 volts
I. C. I'late c'urrent
-35 rolts
 I'ower Output . 0.5 watts at fio the.

$\%$ \%

R("A Acorn RF Amplifier-I'entode rembse cut-aff heater-cathode type, for R-F or I-F amplifier and mixer circuits in receivers operating at wave lengths as low as 11.7 meter. The super control feature of the 9 ifi makes the tube very effective in reducing cross-modulation and modulation distortion over the entire range of received signals. At wave lengths of one meter, the 950 is capable of giving a yain of four or more when it is used as a R-F amplifier in circuits of conventional design.
Characteristics:
llealer foltage
lleater current
6. 3 volls

Ilate Voltage
0.15 imp.

Screen Voltage
150 max. volts
(irid Voltage (minn.... 100 max. rolis
suppressor combeted to cathode at sorket.
I'late t'urrint
5. 5 ma.

Spreen Current
1.8 ma.

1'late Resistance
0.8 mesohim

Amplitication Fartor

Grid to l'late ('apacitanee (with shielat). 0.00 mav. mmf
Inbut 'apmeltance .. mmpil
dutput ('apacitance
3.5 mmpl.

Special Tubes

12A7
I'entode and Rectifier Comhination tube for "pocket-size" AC oplerated radio receivers.
Characteristics-Amplifier Section:

Rectifier Section:
Half-Wave ifectifier
12: volts RME
30 ma. l). C'. lowd (max.
25A6
Glass Tube Equivalent - 43. Jower amplifier-pentode for outbut stages of radio receivers, particularly the "A('-b)(line supply" type.

Two tubes can lie used in push-pull Chass A connection in order to obtain approxinately twice as much output.

Duc to its low maximum flate voltage rating, it it not recommended for other ases except in "Universal AC-1) (". ruceisers.
Characteristics:

48Power amplifier for radio receivers designed for operation from llj volt IM lites.
I) pentode.
Characteristics :

Characteristics:		
Heater Voltage (0.0		30.0 volts
Heidter ('urrent		11.4 atils.
Plate Voltagu	815	125 max.
Screen Voltage	95	100 max. v.
Girja Yoltage	$\cdots 0$	- 블.5 bolts
I'late ('urrut	45	50 ma.
Siereen t'urrint	9	9 ma .
Plate lusistance	0.001	10,000 ilp. olmes
Amplification Frasme	?	2x approx.
Mutual Combuetancu	*R100	2800 mirrompos
Load le'sistance.	$\because 1000$	$\because 000$ chms
l'ower ()utput	1.6	$\underline{2.5}$ watts

$\therefore \% \%$
RCA-1603
This tube is a pentule voltage amplifier designed to have low noise and microplonic characteristics for use in very low level preamplifiers. Its electrical characteristies are practionlly identical with the fo'l; which it can directly reflace in suitable eircuits.

Ilalf wave, high vacuum, heater cathoule tym rectitier lesigned for automotile radio receivers.
Characteristics:
Heater Voltase
. 1.3 volts
Heater farrant
0.3 allp.
 I'eak Jnverse Voltage............................... 1000 volts (max.
b. C. (Ontuut ('urrent

50 ma. Max.)

$\%$ \%

80
High vatuum type full-wave rectifier for radio receivers. Either choke or condenser input to fifter is satisfactory.

Characteristics:
Filament Voltare
Filament Curen
.5 rolts
A.C. Voltage 1 'er

D.C. Output Cur-

125 ina.
110 ma.

81Half-wave Rectifier. In a full-wave rectifier circuit with 2 tubes, twice as nuch DC output current can be obtaimed.
(ses: I)C power supplies operating from AC suproly lines.

Dote. Fititer choke or condenser input to filter is satis actory.

Cha'acteristics:
Fijament Voltage
Fhament current
. 7.5 volts
1.t J"lite voltage (isis) 1.25 amps .

し.に: Ouput Current
00 rolts (maix.)
82
Full-wave, mercury vapor type rectifier tuhe for radio receivers or C bias supplies rectuiring excellent voltage regula-
tiol:
Note: Use choke input to filter.
Charactoristics:
Fitiment Voltage
2.5 volts

Filsmert current \qquad 3 amps.

b.i. Mntput C'urrent.
"ak ["ate Current.
torrux •rule brod
400 ma. (max.)

* \%

83 Ifeavy duty, nercury vapor, full-wave rectitier tube for radio receivers or Class 13 addio amplifiers reguiring excellent voltage supply regulation.

Note:: Use choke input to filter.
Characteristies:

Flameat Voltage	
Piament Current	Hull
A. ${ }^{\text {d }}$ Voltage 1Per	0 volts (max.)
leak Inverse Voltag	400 rolts (max.)
I. $\mathrm{S}^{\text {a }}$ Butput Curr	550 ma. max.1
lemk flate Curren	00 ma. (max)

83V

Hirh vacuum tyre heavy duty fullwave rectifier for radio receivers res,uiring excellent voltage supply
regulation.
Dote: Condenser input to filter can be used for hioher output voltage, but with inferior voltage regulation.

Cnarateristics:

IE ate Toltage
.5 volts
hater Current
0 amps.
 t. C: Dutput 'urrent

950 tha. (niax.)

- \%

5W4
All-metal tube of filament type for use as a rectifier in radio receivers with low platr current requirements.
Characteristics :
Filanent Voltage
5 volts

feak Inverse veltake..........................inno volis (max.)
-C. Output Current
.110 mia. (max.)
octal base
5Z3 Heary duty hirh vacuum type fullwave rectitier for radio receivers. Fither condense- or choke input to filter is satisfactory.

Characteristics:

5Z4 Glass Tube Equivalent-80. High vacuum full wave rectitier to obtan 1/C plate supply from $\backslash C$ line supply for radio receivers. Fither condenser or choke input type of filter may be used.
Characteristics:

Meater Cument
A....
Voll
Peak Inverse voltage............................... 100 max. volts D.c. Output current $1 \geqslant 5 \mathrm{max}$
Octal base

$\%$ \% $\%$

6X5
Glass Tube Equivalent-6Zt and 84. Full wave high vacuum metal rectifier for automobile or AC operated radio receivers. Maximum voliage between hrater and cathcde 400 volts.
Characteristics:
Heater fritlage
. 6.3 volti
Huater Current
0.6 amp.

1eak Inwerse Voltare......... 1450 max. volti
D.S. Outude ('urrent.

50 max. rolf Octal bas:

* \% \%

QTA R High vacuum, heater cathode type, full-wave

rectifier for supplying rechified power to automohile radio receivers.
Charaeteristics:
Heater Doltake .. 3 rolis

Peak Inwrrse toltage.............................. 1000 volis (max.)
D.C. Output C'urmt. .

1000 volis (maz.)
...so ma. (max.)

$12 \mathrm{Z3}$

 er.cathode type rectifer forradio receivers of the 'trans. formerless" type. Suitable for series heater connection itn such receivers
Characteristics:

A.c flete voltage tRMsi..................... 050 rolls (max.)

Peak Inwerse
D. (. Out
.60 ma. (max.)

$\%$ \%

$25 Z 6$ Glass Tube Equivalent-25Z5. Rectifier-Douhler slesigned to supply DC power fram an AC power line in "transf(rmerless" radio receivers. In "universal" receivers it may be operated as a halfwave eectificr, and in $A C$ receivers as a voltage dotbler to olotain about twice as high DC plate supply as in a half wave rectifier.
Charact.ristics:
Heater Voltage
Heater furrent
.2.7 volts
Full wave. hish vacuun triee revtither.
Voltage Doubler:
 Irak 1xille c'urrent......... 500 max. ma. In'. ©stput ©urrent.. Half Wave Rectifier:
 b'eak C'urrem ber lplate............................ max. ma.
 (urtal base

* * *

OZ4 Metal tube. Full-wave gas filled rectitire, primarily for vibrator type "p" Supply Units for autonobile ralio receivers.

C"nasual Characteristies: Gas-filled rectifier with mo heater. llas an ionid heated cathode.

Vote: Cencrated $\mathfrak{K} \cdot \mathrm{F}$ noise can lye eliminated by proper filtering and grounding of the metal shell. Characteristics:
No heater

Notes On New Receiver Tubes

Chapter 8

C.W. Transmitter Theory

- The analysis of the circuit and component parts of so complex a device as a radio transnitter is not an easy task, but the development of the subject naterial can be made plain so that the beginner as well as the advanced amateur can develop as well as wicien their scope of the stibject.

Definition

- A radio transmitter consist; of some form of a high-frequency oscillator, and buffer amplifier stages which serve the dual purpose of amplifying the relatively weak output of the oscillator, and isolating the oscillator from the keying or morlulation surges usually applied to the final amplifier.

In addlition to the above. certain types of frequency stabilizing equipment (such as piezo-crystal stabilization) are employed to maintain the frequency at one value. The use of buffer amplifiers may be necessary when doubling the frequency generated by a crystal oscillator: doublers are required becanse mechanical limitations prevent the stable operation of piezo-crystals at frequencies higher than about 8 megacycles. whereas the final amplifier may be required to operate on much higher feequencies. The various buffers and doublers drive the grid or grids of the tuhes used in the final amplifier stage. The final stage functions as a converter of direct-current plate current into radio-frequency alternating current. which is supplied to the radiating portion of the antema system through some form of coupling device.

The Oscillator

- The function of eacil portion of the parts in a transmitter, and the effect of varying the

FIG. 1
Pentode crystal oscillator, link coupled to bulfer stage.
characteristics follow in a step-ly-step analysis. Figure 1 shows the fundamental cir-
cuit oi a typical transmitter using a 47 crystal uscillator and a 46 buffer-doubler.

The first component, from left to right, is the piezo-crystal. It usually consists of a thin, flat quartz plate whose plysical dimensions permit it to resonate mechanically at the frequency of the oscillator. The crystal is mounted between two flat metal plates which rest very ligintly on the crystal in order to avoid the campening effect of any pressure which would tend to retard and make difficult mechanical oscillation. Some of the better type of crystal holders have an air gap between the top plate and crystal to minimize any dampening effects. The two metal plates are lapped perfectly flat, and the flat piece of guartz functions as the dielectric. When the crystal is set into a state of mechanical vibration an alternatingcurrent voltage is developed across the condenser which is impressed across the grid circuit. The crystal will continue to vibrate so long as there is some kind of electrical vilorating stimulus applied to it. Hence, this stimuli can come foom a separate source, such as an oscillator and tube circuit in which a small portion of energy is taken from the tumed piate circuit and ied back to the crystal circuit to sustain its oscillation.

When the crystal is maintained in oscillation. it acts as a very sharply tuned series resonant circuit, consisting of high inductance, low capacity and low resistance. The actual 5requency is iliglitly higher of lower than exact resonance so as to give an inductive or capacitive reactance depending on the character of the uscillating circuit. A crystal oscillator ci-cl:it has a very high " Q ," which is an indes of its resistance to changes in resoman: Erequency with variation in external constants, In this manmer, the crystal acts as a tumed gritl circuit whose resonatat frequency is quite free from changes caused hy load or voltage variations. However, t'e frequency may vary slightly with clanges in the temperature of the plate. but in amisteur practice the temperature effect need not be seriously considered (at least for the present).

The low-frequency crystals which operate upwards to 4000 KC usually start easier and (levelop, more output energy than the higher frequency types, which are more fragile and rather difficult to handle.

The Radio-Frequency Choke

- The next comporents in the oscillator circuit are the radio-frequency choke, RFC1,
and the resistor, R1, which are comected in series and shunted across the crystal. The purpose of the resistor is to provide a DC return for the grid of the ocillator tube. In addition to the DC bias on the grid of the tube, there is also present an AC voltage which is caused by the plate-to-grid feedback in the tube. This AC voltage exceeds the DC bias and causes the grid to periodically go slightly positive with respect to the filament. When the grid is positive it attracts some of the electrons emitted by the filament which are rectified into a uni-directional current (half-wave rectifier). This small rectified DC current flows back through resistor R 1 to the filament ; during this flow a voltage drop orcurs across R 1 which is impressed on the grid and therefore becomes the source of DC bias voltage. The purpose of choke RFC1 is to impede the flow of AC current while at the same time offering little or no resistance to the passage of DC to ground through R1.

In general, lowering the ohmic value of R1 down to about 10,000 ohms will increase the RF output from the oscillator, although the use of high resistive values up to about 50,000 olms will permit the crystal to start easier. It has been found that the better made crystals start with a 10,000 ohm resistor, while poorer or inferior makes require higher ohmages.

In crystal oscillator circuits where harmonic generation is utilized in the erystal stage itself, such as in the "Tri-tet," "Dow Crystal Doubler," and in the "Jones AllBand Exciter," a high value of grid leak is used for an altogether different purpose. The distortion in the coutput of a vacumm-tube amplifier increases as the bias is increase l, and it is the harmonic distortion which produces the second or fourth harmonic selected by the output tank circuit.

Center-tapped Resistor

- These are used to divide the DC and RF currents equally across both halves of the filament. If these returns were comected to only one-half or to one side of the filament the 60 cycle AC hum would increase in the output, because one-halif of the filament heating voltage is periodically added to and subtracted from tiee grid voltage. which effectively modulates it with the hum frequency.

Oscillator Tube

- The oscillator tube requires little mention. Vacuum tube theory and operation are completely covered elsewhere (see Index). The ideal crystal oscillator tube should have a high amplification factor, medium-to-low plate resistance, as well as low inter-electrode capacities. The screening need not be perfect as some feed-back is necessary
for self-oscillation, but it must be kept at a very low value to keep the RIF current at a minimum. In some transmitting pentodes, such as the RK20 and 802, the screening is so perfect that a small external capacity must be used to provide the necessary feedback. This is advantageous in that it allows some adjustment of the feedback so that the best possible compromise between power output and RF current through the crystal can be obtained.

By-pass Condensers

At all points where radio-frequency energy is by-passed in an amateur transmitter, non-inductive condensers of the mica dielectric type should be used.

Resistor R2

This resistance drops the plate voltage for the screen circuit to approximately 100 volts. The value of R 2 can be between 25,000 and 50,000 olums because the screen current varies enough to offset variation in this resistor, thus varying the drop through the resistor so that the screen voltage is normal.

The Buffer Doubler

- The grid circuit is ALWAYS tuned to the same frequency to which the plate tank circuit which feeds it energy is tuned, even if the stage operates as a frequency multiplier, because frequency multiplication manifests itself in a plate circuit. The resistor R:3 acts as the grid leak for the 46 stage and places a DC bias on the grid, due to the rectified current which flows through it causing the usual voltage drop. Whether the stage is to operate as a straight buffer amplifier, as a frequency multiplier, or doubler, are also factors which determine the value of R3. If the available excitation is low (less thatn 10 milliamperes of DC grid current, measured at J2) the grid leak can be eliminated and the lower end of L2 connected directly to ground. In this case, condenser C_{5} would also be eliminated. However, more excitation than 10 milliamperes is generally available and thus the grid leak is desirable. Its value is not critical up to 2.000 ohms. and valtes as high as 5,000 ohms are sometimes desirable for best doubling efficiency.

The grid by-pass condenser C provides a path for the RF return su that the grid circuit is completed back to the filament. In other words, the DC grid path goes to ground through R3, while the RF grid path to ground flows through C a and not through R3.

In the first buffer stage maximum power amplification is desired, not maximum plate efficiency.

Neutralizing

- As was previously shown in the oscillator stage, the plate and grid of an ordinary vacuum tube act as two plates of a small candenser, so that a measurable amount of RF roltage present in the plate circuit is by-passed back to the grid circuit, where it adds to the voltages already present in that circuit in again increasing the amplitude of the RF voltage in the plate circuit. Thus there is a cumulative rise in the $A C$ plate and grid voltages which continues and rises even after the excitation voltage from the oscillator is removed. This condition is called Self-oscillation: it is the frequency at which oscillation is not controlled by the quartz crystal. This state of oscillation is apoiced by the process of neutralization.

The fundamentals of resonant circuits shows that the voltages at the opposite ends of a parallel resonant tank circuit are equal, though opposite in polarity at any given instant, when the center of the coil is the refenence point. In the case of the plate tank coil L3 and the condenser C 7, the referente point is established at the center of the coil and in the condenser by grounding the split-stator rotor. So if the capacity of C6 is equal to the plate-to-gric! capacity of the $t 6$ tuhe, the voltage drop across this condenser will be equal to the voltage drop across the small condenser consisting of the tube, thereby balancing out the AC voltage. If this voltage was not neutralized, the tube would go into a state of self-oscillation.

Neutralization to prevent self-oscillation is recessary only when the stage is operated as a straight buffer-amplifier. When the stage is employed to function as a doubler, there is little tendency for seli-oscillation, because of the plate tank circuit being tuned to a different frequency than that of the grid tank. However, the newtralizing circuit becomes a regeneration circuit and actually aids in doubling by increasing the grid drive at the output frequency due to capacity $C 6$. In a doubling circuit this capacity should be greater than the capacity necessary to properly neutralize a stage which coperates as a straight amplificr.

The RF power in L.? can be employed to excite an antenna by means of any of the diverse antemna coupline methords, or to excite annther RF amplifier stage by means of a coupling link. similar to link 1 between the oscillator and the 46 stage.

Shunt-Feed and Series-Feed Tank Circuits

- Two methods are employed to supple plate power to the transmitting tuhe: one of these is known as "Shunt-Feed." which delivers the 10 C from the power supply directly to the plate of the tube. This method prohibits the
passage of any radio-frequency voltage present on the plate of the tube from being bypassed back to ground through the power supply. 'the RF currents are retarded from sceking this path by the inclusion of a RF choke shunted directly across the plate tank coil. Thus a grool test for a radio-frequency choke is to connect it across the tank condenser and depress the key. If the presence of the RF choke across the tank condenser materially detumes the circuit from resonance, the choke was functioning inefficiently. Few RF chokes can withstand this test. One of the disadvantages of shunt-feed is that no choke has infinite impedance, and therefore a finite amount of RF power is lost to ground. It is difficult to design and build a RF choke that is effective when used on more than one of the amateur bands. These bands are even harmonics of the lowest frequency band, whereas RF chokes operate best on the odd harmonics of the lowest frequency for which they are designed; hence, a multihand choke is only a compromise on all bands and is theoretically perfect on none.

The only arlvantage of shunt-feeding plate voltage through an RF choke is that it allows the plate tank coil and condenser to operate at ground potential with respect to the $D C$ plate volage. This condition is sometimes desirable in the design of transmitters in which the connecting leads must be kefr at a mininrum to permit quick band changing.

Series-feed applies the DC voltage at the bottom, or low potential end (middie of the coil in a split-tank circuit) of the plate tank coil: no radio-frequency difference voltages exist between this point and ground, and jractically no RF finds its way back into the power supply. In some cases where the grounding of the transmitter is somewhat uncertain it is advisable to use an RF choke at the ground end of the coil to prevent the massasc of any sma'l RF potential differences from one part of the transmitter to another. The choke has very little work to do and can be small in size.

Eliminating Key Clicks

- The transmission of intelligence by means of ratio-tclegraphy involves the variation of the RF carrier output between the full "on" and the full "off" position. "Mark" and "Space" are defined by the presence and absence of racliated output, respectively. The carricr wave is wenally cut "on" and "off" during the keying process by opening and closing the supply circuit which delivers plate power to one or more stages in the transmitter. If the change from the "no output" condition to the "full output" condition occurs too quickly. an undesired key click will be produced. This click will he radiated over a vory wide range of frequen-
cies on each side of the carrier frequency, causing a particularly amoying form of interference to other radio services. Key clicks are often audible within a 100 mile radius, but usually cause aggravating interference to radio reception nearby.
There are two distinct types of key clicks; the most common occur at the start of an impulse, or when the key is closed. If the voltage builds up tor rapidly, a discontinuous wave will be produced, and its amplitude may be several hundred times the amplitude of the signal wave. This type of click is usually damped-out by providing some form of time-lag in the circuit which forces the DC current to build up relatively slowly. By "slowly" is meant that the time required for the current from the power supply to go from zero to maximum be about one-onehundredth seconcl. If the time is less than approximately one-five-hundredth second, annoying clicks will be produced.
The most common form of lag circuit is one that uses a variable series inductance in series with the key, or keying relay. Often no variable inductance is available, Jut the inductance of any choke coil can be readily varied by connecting a variable resistor across it, as shown in Figure 4. The required value of the inductance depends on several factors, such as the amount of current flowing, the plate voltage. the voltage regulation of the source of supply, the characteristics of the filter on the supply, etc. Thus, no definite value can be specified in advance. Eliminating keying interference resolves itself into trying every known remedial measure until a satisfactory one is found.

The second type of key click is that which occurs at the end of each impulse when the key is opened. This click is a combination of the spark produced at the key contacts and the sudden change in voltage applied to the RI amplifier. The use of a series inductance increases this type of key click due to the large indluctive back FMF when the circuit is opened, and the spark across the key contacts. Ordinarily, the click produced when the key is opened is considerably less bothersome than that procluced when the keying contact is clased. However, a series inductance can often eliminate the "make" click at the expense of doubling or tripling the amplitude of the "break" click. The latter type of click is best eliminated by comecting a condenser in series with a variable resistor across the keying contacts. The condenser-resistor circuit represents a compromise between a minimum of clicks and good keying characteristics. The value of the condenser is not critical, it may be hetween $1 / 2$ and 2 microfarads. However, the resistor must be carefully adjusted for best results. If the value of the resistor is too large. it will pat "tails" on the dots, making the signal difficult to read. If the ohmic value is too low, the plate voltage will

How the three types of c -w signals appear

 on the screen of an oscilloscope.diminish too rapilly and clicks will he produced. A time-constant of approximately one-one-hundredth second will. in most cases, allow satisfactory leying without bothersome clicks, although a fast operator who manipulates an automatic key may find that the dots are accentuated to a higher degree if the time constant is reduced to i0-to-80-thousandths secont.

Vacuum tube keying unit.
To minimize the effects of the above compromise, it is desirable to key in some circuit that draws negligille power. The grid-block method of keying is useful because the key is required to open a circuit that carries no current at that instant. When keving the oscillator stage to obtain perfect break-in operation, the screen can be employed; on the other hand, the center-tap method of keying the stage is also satisfactory. Most of the high-powered commercial transmitters

FIG. 2
Vacuum Tube Keying. This circuit shows one of the more simple vacuum tube keying circuits. Some current flows through the key and this system sometimes produces clicks when the key is opened. Both filament transformers must be insulated from each other and also from ground. This circuit will not completely cut off the plate current to the keyed stage, but will reduce it to a very small value.
that key many kilowatts of power at speeds up to 500 words per minute use some variation of the vacuum-tube keying system of which representative examples are given in Figures 2, 3, 4 and 5.

A click at the "make" means that some form of series inductance must be added in the plate or grid circuit of one or more of the amplifiers. A click at the "break" indicates that a condenser is required across the keyed circuit to enable the voltage to diminish slowly and evenly. The adjustment of the series resistor is by far the most important in eliminating clicks.

Key Thumps and their Prevention

- The deep keying thump which causes considerable interference is largely due to the plate voltage power supply building up when the key is open, thereby causing a sudden surge of output at the irstant the key is closed. The transient may rise to several times the average amplitude of the steady carrier. The thump may be eliminated by improving the voltage regulation so that it is not over 15 per cent higher when the key is open than when it is closed, during which times a power demand is being made. The best way to improve the voltage regulation is to connect a bleeder resistor across the output of the filter; the bleeder should draw enough power to sustain the voltage when the key is up. The exact value of the bleeder can best be determined by experi-

ORDINARY CENTER TAP KEYING

Ordinary center-tap keying. The centertap of the filament transformer must not be grounded. As a general rule, the filament transformer which supplies the keyed stage will not be used to supply any of the other stages. The B minus lead from the power supply should be grounded.

Conventional center-tap keying with an adiustable key-click filter. This system gives very good results. The actual amount of inductance and capacity in the circuit depends on the amount of current being keyed, and also on the voltage regulation of the plate power supply. Ll should be of a value between 1 and 5 henrys: R1, 20.000 ohms: C, between $1 / 4$ and 2 mids.:
 R, 2,000 ohms.
ment because the regulation of most power supplies varies quite widely.

To design a scheme for the prevention of key thumps and clicks, it is only necessary to place a sufficient amount of incluctance in series with the key to prevent tor-sudden building-up of oscillations. By selecting the proper value of inductance the desired degree of "lag" can be introduced. The effect of the inductance in the circuit is satisfactory when the key is closed, but when the contact is broken, an arc occurs, which has the tendency to burn the contacts. To offset this effect, it is only necessary to connect a condenser across the contacts of the key to absorb the "inductive kick-back." Now, when the key is again closed, the condenser gives up its charge, causing a spot-welding effect on the key contacts, which gives rise to parasitic interference from impact excitation of associated circuits. To remedy this condition, a resistor is placed in series with the condenser to prevent sudden discharge. Unfortunately. the resistor impairs the ability of the condenser to take on a sudden charge, absorbing the self-induced voltage of the

FIG. 5
High speed commercial vacuum-tube keying system.
inductance at the opening of the key and to some extent defeats the original purpose of the condenser. To compromise between the small arc occurring at the opening of the key and the small welding effect on the contacts at the closing of the key necessitates some sort of ingenious remedial measure; Figure 6 shows a scheme of great practicability. There, L1 and I. 2 are in series with the key and provide the necessary "lag." The "kick" from L1 is cushioned by C2. In turn, L2 prevents C2 from spot-welding the contacts on discharge. Similarly, the selfinduced voltage in L.2 at the opening of the circuit is taken care of by C 1 and L 1 and prevents a sudden discharge of C 1 . The correct values of L and C can be determined experimentally. The combinced capacity of C1 plus C2 should be 1 microfarad or less. The value of the chokes are similar to those used in power pacis.

Primary Keying

- This is a type of keying which permits a grid-leak bias to be used on the keyed stages.

FIG. 6
Key thump filter.
This method prevents clicks and safeguards the filter condensers in the keyed stages, and
in addition, does away with the necessity of using a high-voltage bleeder and eliminates back wave 100%, if more than one stage is keyed.

The disadvantages of primary keying are:
(a) requires a heavy current relay that can break an inductive AC circuit.
(b) Tends to blink the lights when used on high power.
(c) Sometimes creates band thumps in BCL sets on the same line, caused by 60 cycle surges.
(d) makes perfect keying at high speeds difficult due to the sendency of the filter condensers to ald "tails" to the dots in some cases.

Center-Tap Keying

This is another widely used method of keying which allows the use of grid-leak bias on the keyed stage, but separate bias must be used on all succeeding stages.

The advantages of center-tap keying are:
(a) will follow an automatic key ("bug") perfectly.
(b) improves the readability of received signals.
(c) permits the use of high voltage DC relays which are relatively modest in price.
The disadvantages of this system of keying are: causes bad clicks unless a welldesigned click filter is used. Thumping is increased if a heavy bleeder is not placed across the high voltage; in addition, the blecder is a necessary accessory to protect the filter condensers from failure when the key is open.

Keying the Oscillator

- This is not a type of keying but a place to key. It justifies special mention because it seems to give best results at the present time.
The outstanding features of this keying arrangement permit complete break-in and completely eliminate back-wave; also, practically eliminate clicks and thumps, and will key at ligh speed. Unfortunately, the plan requires that a fixed bias be supplied to all the amplifier stages; also, the keying may give rise to a "chirping effect" unless the screen voltage for the crystal oscillator tube is taken from a voltage diviler, rather than from a series resistor.

Blocked-Grid Keying

This method can be satisfactorily used to eliminate key clicks in low or medium power transmitters. In Fig. 7, R1 is the usual grid
leak; fixed bias is applied through the $100,-$ 000 oflm resistor R2 in order to block the grid eurrent. As a general rule. 200 to 400

volts of bias from a small C bias supply will reduce the output to zero. In Fig. 8, the value of $R 1$ is from two t_{n}) three times as ligh in value as R 2 , the combination being connected across the high voltage supply. The keying relay shorts out the additional bias obtained in this manner when transmitting.

FIG. 9. Wave trap.

Interference Elimination by Wave Trap

- Interference caused by amateur transuitt.ers in the neighborhood of broadcast receivers is usually due to the fact that the first $R I$ stage in tire set toes not possess sufficient selectivity. Thus the high-frequency signal from the anateur transmitter rides through into the grid of the first tube in the receiver. Usually no amount of selectivity beyond this point will eliminate the interference. Tlie amateur signal causes detection and cross modulation in the first tube. One method of reducing this type of interference is to place a tuned wave-trap in series with the antemna lead to the broadcast receiver. The trap is tumed for the weakest response to the interiering signal: the device shoald be placerl as close as possible to the antenna post on the set. It is also essential that the receiver be provided with a short low-resistance connection to groind to prevent the AC power line from bringing in the interfering signal, in spite of the wave-trap.

Eliminating the Chirps when Keying the Crystals

- In the conventional pentode crystal oscillator cercuit, the screen voltage is obtained from the plate power supply by means of a series Aropping resistor. When an attempt is made to key in the center-tap of such a circuit, a bothersome and spurious-like chi:p is manifested in the signal tone. When the key is up, the screen voltage rises to the same value as the plate voltage, which is from :50 to 4.50 vots. With the key open, no space current llows through the tube because there is no current through the screen dropping resistor; hence, there is no voltage drop, and the high voltage is thus applied to the screen. When the key is closed, and space current starts to flow in the tube, the screen current causes a voltage drop across the usual series dropping resistor and the screen voltage then drops back to its normal 100 volts. However, it does not drop back instantaneously; during the time the screen voltage is dropping there is often a very noticeable change in the frequency,

FIG. 10. Key chirp eliminator.
which causes the rhirp. This effert can be eliminated by keeping the screen voltage approximately constant, whether the key is open or closed. The remedial measure requires the use of a voltage diviler, instead of a series droppiug resistor as a source of screen voltage, as shown in the circuit above. The value of the resistance R should be chosen so that the voltage on the screen, when the key is closed, is 100 volts when measured ly a bigh resistance voltmeter.

Miscellaneous Notes on Transmitter Adjustments

- A transmitter for either phone or c-w requires a proper adjustment of all the circuit components for the attainment of setisfactory operation. The following are a lew practical notes which are of inestimable value in making transmitter adjustments.

Crystal Oscillators

In oscillatory circuits employing pentode tubes such as the $47,2 \mathrm{~A} 5,42$, or 59 , the plate circuit should have a low ratio of tuning capacity to inductance since the plate circuit is tuned for maximum output consistent with stability. Condenser C 1 , of Figure 11, is tuned for a dip in plate current and then re-adjusted for slightly greater capacity for maintaining stability, A 6.3 volt pilot lamp connected in series with a turn of wire and coupled in the proximity of the oscillator coil makes a good oscillation indicator. Another type of indicator consists of taking a small neon tube and touching the tip connection to the stator plates of C 1 , a pink glow indicates oscillation. The plate current of the crystal oscillator will be between 10 and 30 MA , depending upon the applied plate voltage. Potentials below 350 volts will exert less strain on the crystal and will tend to prevent it from fracturing, in addition, will tend to minimize the heating effect, which is one of the causes of frequency drift. The screen voltage should seldon be over 125 volts. The value of the grifl resistor R1, in Figure 11, will vary with different crystals: generally. 10,000 to 50,000 ohms sufficing-the stability increases and the output decreases for ligher resistive values.

FIG. 11. Pentode oscillator.

With ordinary low-mu tubes in the oscillatory circuit, such as a 27,56 or 10 type tubes, the procedure is the same. Plate voltage must never exceed 250 volts maximum for this type of oscillator tube.

In the Tritet or Dow oscillators, oscillation occurs by cathode regeneration at the frequency control, hence, harmonics of this frequency may be selected from the plate circuit by means of a tuned circuit C2I., in Figure 12. The cathode coil and condenser are not tuned to resonance with the crystal, but to a frequency approximately twice as high. This circuit scleme exerts less strain on the crystal with ligh C than for low C in the cathode circuit, so at least 100 mmfd . of operating capacity is zeeded. The coils must be of sucl dimensions to allow operation with at least 100 mmfds . Oscillation will take place over a rather wide range of cathode tuning; certain settings, however, will give greatest power output. The plate circuit must have low C and high inductance at the harmonic chosen. When tuninge to the second har-
monic, the resonance condition is indicated by a decrease in plate current; the decrease will be less pronounced as the load is increased by the succeeding stage. A lamp indicator used here is adaptable to making

FIG. 12. Tritet oscillator.

the best output adjustments comparable with oscillator stability. If a thermo-galvanometer is placed in series with the crystal, it will be found in many cases that the Tritet oscillator has more crystal current than the pentode oscillator: high current means increased heating of the crystal and frequency creepage.

In a few cases, the above oscillator is used with vacuum-tubes haviny large screengrids such as the RK20 or 803 pentodes. Here the cathode coil consists of a double winding wound in series with the filament. The tuning procedure is exact:y as described for the smaller Tritet oscillator.

FIG. 13. Jones 53-6Ā6 oscillator-doubler with cathode bias resistor.

Oscillator Doublers

The 53 or 6AG oscillator-dunbler circuit shown in Figures 13 is adjusted as follows: C_{1} is tuned to the crystal frequency and its capacity increased until the circuit approaches the point where oscillation is about to cease; this point is indicated by maximum output; the total plate current or cathode current will be between 50 and 75 MA , repending upon the plate voltase. The sec-
ond trivde acts as a doubler, and Col.2 are huncd to the harmonic as in a Tritet oscillator. The plate current will dip at resonance and a lamp indicator will glow to indicate maximum RF output. The adjustment of C 1 ior greatest ontput gises about 20) per cent less cathode current than the naximum obtainable while suning C1 through oscillation. With cathode bias, the plate current will drop off to 20 or 30 M.A. when the tube is not oscillating.

A crystal oscillator normally drives a buifer or doubler stage for greater outpmit or frequence multiphication. In ligure 1 t is shown a very simple form of frepuency doubler to uperate in the tu-meter band with an so-neter crystal. The grid bias. due to the gricl current lowing through the gricl leak, should be higher than for a huffer stage, since the doubler is functioning as a distorting device.

A well-designed oscillator-doubler circuit is shown in Figure 1.j, ofrerating as either a mentralized buffer or regenerative doubler stage. As a bulier it is nentralized in the consentional was. but as a doubler. a small coil is used tugether with a larger capacity salue in C? If the preceling thung circuit so of very low C. its impedance to the second harmmic will be high, so C? acts as a re-

FIG. 14.
Simple 46 doubler circuit.
gemeration condenser feeding back seculed harmonic power to the grid circuit. If (: $:$ is too large the tul)e will oscillate at the plate circuit resonant irequency, but ii properly adjusted, the output is from 50 to 100 per cent higher than in a non-regenerative doubler. A R1: indicator, such as a test lamp, will gluw when adjusting C_{1} and C: for maxinum output without actual uscillation. No oscillations sluould be detectable without the crystal osciliator functioning.

I: any low prowered doubler stage, a fixed C bias from C batteries or C bias supply is more desirable than that of grid-leak bias. The bias voltage should nearly be $31 / 2$ times the cut-off bias (plate voltage divided by the mu of the tube) as a minimum value, and practically no IC grid current need flow. If greater RF exciration if available, higher C bias can be applied with greater output and efficiency. The reason for low

FIG. 15.

Regenerative doubler or neutralized buffer.

grid current is that the doubler tube only gives a surge of puwer to the tinned plate circuit every other cecle, since the irequency of the latter is tuice as high as that of the grid circuit driving pwer. When grid current is flowing, the plate circuit receives a surge of power with an actual loss in efficiency; with grid leak bias, some grid current uust flow in order to create the polarizing voltage on the grid, in this case the loss must be tolerated.

Figure 16 shows a popular clonbler cir. cuit which gives a scrge of power or "push" "wery cycle to the second harmonic tuned plate circuit. The efficiency of this circuit is as ligh as some amplifier circuits and is easily aljunsted. The grid circuit is tuned to the fundamental frequency with link coupling to the preceding stage and the plate circuit to twice that frequency. The C bias is made at least $31 / \mathrm{times}$ cut-off and the RF excitation sufficient to allow some grid current to How. A 33 or 6.46 tube makes an excellent "push-push" doubler, or a pair of tubes such as the high-mu type 46 s , 59 s , or t2s can be used. A split-stator grid condenser is needed to provide capacitive reactance to the second harmonic which prevents spurious oscillation in the doubler circuit, that is. similar to a TNT oscillator. A single tuning condenser with a bypass condenser irom the center of the grid coil to the ground, allows half of the grid coil to act as an

FIG. 16. Push-push doubler.
mutuned grid coil of a TNT oscillator. This same circuit is also applicable for nigh-powered output doubler on 10 or 20 meters; with efficiencies from 60 to 70 pe: cent.

Figure 17 shows another form of regenerative doubler which works effectively at high frefuencies such as 14 or 28 MC . Here, the cathode circuit is by-passed with only a small condenser which canses it to have an impedance common to both grid and plate circuits. If this impedance is made very high, such as by placing an RF choke in the cathode circuit. the tulse will oscillate. With the values shown, the circuit will regenerate on 14 or 28 MC when the grid is excited with 7 or 14 MC of power. In all these doubler circuits, the DC grid bias must always be as high as can be used for the available amount of RF excitation. The plate circuit can be loaded fairly heavily by the following stage and the highest allowable potential applied to the plate for a given plate-heating effect.

FIG. 17.
Regenerative doubler.
The circuit of Figure 15 is a popular form of buffer or amplisier stage. It can be capacitively or link coupled to the preceding stage and either fixed bias, grid-leak bias or combination of botin can be applied. The C bias is made at least twice cut-off value for class C operation, but often this can not be used it practice. Quite frequently a buffer stage is employed for maximum power gain rather than for maximum efficiency. Class B operation with cut-off bias will give the greatest power gain; but, unless a large tule is used, the low plate efficiency will cause excessive plate heating. Generally, a compromise between class B and class C operation will give the greatest output for driving the following stage. In a high powered transmitter this means balancing the cost of several low power tube class C intermediate stages against fewer large tulse class B to C stages. For example, a single 211 tube buffer stage might be more economical than two stages of 800 s or 801 s in push-pull.
Figure 18 shows a grid neutralized buffer or final amplifier stage; plate or grid neutralization being optional. though the former, as shown in Figure 19, has certain advantages. This form with a split-stator plate tuning condenser will remain in neutralization for multi-band operation provided the coils are designed to permit operation of the split-
stator condenser at a medium high scale setting. This is much more important for phone onseration than for C.W.

FIG. 18.
Grid neutralized stage.

Neutralizing in either case may be accomplished as follows: The plate voltage is discomected and the grid circuit tuned for maximum grid current as indicated by a DC grid milliammeter, or neon lamp. Then the plate circuit is tuned for maximum RF excitation as indicated by means of a neon or flash-light lamp, or by a thermo-galvanometer with a turn of wire. The neutralizing condenser Nc is adjusted to the point of minimun RF current in the amplifier plate circuit, keeping the grid and plate circuit tuned to resonance. At neutralization, the effect of twing the plate circuit through resonance will be negligible on the grid circuit DC milliameter. If the circuit is improperly neutralized, there will be a sharp deflection of the meter pointer.

Neutralizing High-Power Stages

- In high puwer stages where the grid driving power is 50 watts or more, the plate Kl: current cannot always be brought to

FIG. 19.
Plate neutralized stage.
zero on acconnt of the presence of RF in the plate circuit caused by inter-circuit flow of high-frequency currents through the Nc condenser and through the tube element capacities. Radio-frequency current will
alwars be detected by the RF indicator unless it is coupled to the exact nodal point or center of the plate coil. The DC gricl meter is the most reliable kI indicator for nentralization; the measurenents are always made with the plate voltage discomected. After neutralizing, the voltage is applied and the plate circuit tuned ior minimum plate current, preferably at reduced power. This stage is then loaded for the desired output and phate current at full plate voltage.

Pusilh-pull amplifiers of the type shown in Figure :20 are neutralized by adjusting both Nc condensers as nearly simultaneously as possible. In this circuit the tube leads must be very short to prevent parasitic oscillation at ultra-hrigh frequencies. Sometimes grid suppressurs are needed for either push-pull or parallel operation of tubes; they are made by winding about 10 turns of No. 1t wire on a form one-half inch in diameter, the coil form is then extracted from the core and the coil shunted with a 200 ohm carhon resistor having a 1 or 2 watt dissipation rating. When suppressors are required, they are conmected in series with the grid lead as near as possible to the gricl terminal of the tube.

FIG. 20.
Push-pull stage.
Tuning the final amplifier stage of a C.WV. transmitter is similar to that of a buffer stage except that sufficient RF excitation must be available to allow the stage to operate class C; that is, with at least twice cut-off grid bias. The plate load is then increased so that normal plate current is drawn. The antema adjestments are covered in the section on "Antennas." These adjustments must always be made for maximum power into the act:al antenna (not the dummy antenna) for a given value of plate current or tube heating effect.

For phone operation, the modulated stage must be exactly neutralized and the plate circuit shielded from the grid or any preced:ng stages. The latter also applies to screen-grid tube stages in either phone or C.W. transmitters. The grid excitation for a modulated phone stage is about twice
that actually needed for C.W. operation unless the latter happen to have an excess of exctation. This cata be checked hy means of a V.T. voltmeter, linear rectifier or an uscilloscope for studying both positive and

FIG. 22. Single 865 buffer or doubler circuit.
negative values of modulated waves. Another check is to draw a curve of the output KF current rersus the plate voltage, since there must be a constant increase for sinuilar increases of plate voltage ; too little excitation will cause a droop in this curve. The plate load on a modulated stage must be constant and of the proper value to allow good modulation. An oscilloscope and sine wave audio oscillator are necessary instruments for adjusting all classes of phone transinitters. The section on "Electrical and Radio Measureutents" cover this subject. The grid hias, grid excitation, plate load on the moslulator, plate RF lead, overmodulation, tuhe agengr and other variables are made visual for quantitative analysis by means of the cathode-ray oscilloscope.

Test for High-RF Efficiency

- To test the high efficiency of an RF stage apply sonne excitation to the grid circuit and apply the plate voltage to the plate (after neutralizing). A grid leak bias is used tempurarily. Now, with no load coupled to the plate tank, the plate current should drup below $1: \%$ of normal. The plate current in an efficient stage reads aboun one-tenth of the normal operating plate current, when no load is connected. If the current does not fall, it is an indication that the tube is unt functioning correctly or that there is an undesired luss somewhere in the stage. A high plate current reading with the stage unloaded may be indicative of a high-resistance conmection in either the grid or plate tank circuits. It may also he due to the use of inferior materials for the grid and plate cuil forms. As soon as the plate tank is detuned from resoriance (unloaded) the plate current suddenly rises to a point high above the nor-
mal operating plate current. In other words, the most efficient stage will show the greatest dip in plate current as the plate tank is thued through resonance with no load coupled to the plate circuit.

Grid Circuit Excitation

- Sufficient grid excitation can be secured when the proper circuits are chosen. If the Kli amplifier can be equally well driven with less grid current, it is obvions that there will be a decided saving in buffer power, or the possible climination of a buffer stage. Two circuits are here shown, lïg. 1 A and Fig .1 B , both plate-ncutralized. One is easier to drive than the other.

The circuit in Fig. 1A is casier to drive than the one in Fig. 1B. Fig. 1A will produce far greater output when used as a frequency doubler than the circuit in Fig. 1B, but the latter can be made into a very effective doubler by connecting a bypass condenser from ground to the center of the plate coil.

Tubes that lave a very high mutual conductance, such as the 300 T , camot be used with the circuit in Fig. 1A because difficulty will be encountered from oscillation, even though neutralization would appear to be perfect. Regereration is produced in the circuit in Fig. 1A, making it unsatisfactory for phone operation on any band with ary tube, except for operation on 1 no meters or higher wavelengths. This same circuit will also introduce excessive regencration on 10 meters with nearly any type of tube, yet it performs with entire satisfaction for c.w. operation on wavelengths above 20 meters. The advantages of the circuit in Fig. 1A are numerous: it is a'most twice as easy to drive as the circuit in Fig. 13, and the grid
current is from one-and-one-lalf to two times greater. This means that the output is increased, with a consequent saving in buffer stages. Coil changes can be made for differcnt hands without re-neutralizing the circuit, by simple inserting a small condenser of a few micro-microfarals between the plate coil side of the neutralizing condenser (Cxic) and ground. A small aluminum plate, bent-up near the rotor endplate, will increase the capacity to ground. The circuit in loig. 1A, therefore, is ideal for c.w. operation on wavelengths abowe 20 meters, or as a doubler for either phone or c.w. on any band, or as a final amplifier for phone operation on 160 meters or higher wavelengths.

Use of the 45 and 46 Tube in LowPowered R. F. Amplifiers

- The to tube provides better "buffing" action than a 46 when iunctioning as a buffer to isolate the final amplifier from the oscillator. Even slight changes in plate voltage or plate load cause a noticcable change in the grid impelance of at 46 . With a 45 , changes in the output circuit react but little upon the grid impedance. As an RF amplifier, the 40 eclipses the 46 in periormance. The two tubes can be compared firtlier ; thus, while the $4 \overline{5}$ has a somewhat lower wattage filament, it also has a higher mutual conductance (measured at zero bias) than the 46 (grids tied together and considered as a single grid). The lower mutual conductance of the 46 is largely due to the greater "shadow" effect of the grids. which becomes quite appreciable in multiplegrid tubes. Because of its higher mutual conductance, the 45 actually reguires fewer watts excitation than a to to drive it to a given outhut with a gizen cficicuty. Though it takes more zoltage stimg, it can be said that the 45 is the easier to excite, because driving pozier, not voltage, is the criterion of ease of excitation.
The plate impedance of the 46 is several times that of the 4. Thus, for a given efficiency in the output circuit (ratio of load impedance to plate impedance), much looser coupling must he used to the plate tank of the 46 (raise the load impedance). Then, to regain the output, the plate voltage must be increased beyond a safe operating limit. Although the inter-electrode spacing and the spacing of the plate lead coming through the stem is much greater in the 46 , it will not stand any more plate voltage than a 45. The gas content, not the spacing, limits the plate voltage that can be safely applied to a 46 . Paradoxically, the residual gas in many 46 s will ionize at a given plate voltage and input quicker than a 4 is of the same make operated under the same conditions! The tis permits greater eff-
cicucy than is possible with a 46, both adjuted to a given output at a given plate vatage.

Because of its high grid impedance the 45 can be more advantageously capacitively compled to the preceding stage than a 46 (presuming it is desired to connect from the high-potential end of the plate tank of the preceding stage to avoid parasitics). The 46 , with its very low grid impedance, requires an extremely small coupling capacity to give the preceding stage a sufficiently high load impedance, and most of the excitation is being wasted. The grid inpedance oi a 45 offers a very respectable load for most tubes, and the grid of a 45 can be capacitively coupled on the lower frequency bands with alnost as much efficiency and as great a transíer of energy as can be obtained with link coupling.
The optimum ohmic value for the grid resistor is very high (between 50.000 and T5,000 ohims for a single tube); hence, it is permissible to dispense with the grid choke in capacity-conpled circuit using a 4i. The only precaution recessary is that the grid resistor be either of the carbon or netallized types, these being non-inductive.

Frequency Multiplication

- Quart\%-crystal oscillators have. unfortunately, a vibratory limit of about 8 megacreles; hence. to operate on a frequency higher than this value, one or more stages of frequency multiplying amplification must be added hetween the crystal oscillator and final amplifier. In almost every vacuumtube amplifier there is a certain amount of distortion which represents the generation of new frequencies that are integral multiples of the exciting grid frequency. By tuming the plate circuit to the frequency of the designed harmonic, the fundamental and all t:ndesired frequencies are by-passed to

Two-band operation from a single crystal is secured by tapping the plate coil and tuning each section of the coil with a separate condenser. Moderate power output is obtained.
sround, white the selected harmonic (nsually the second. third, or fourth) is transierred to the suceceding grid circnit.

For efficient doubling, it is essential that the docbler amplifier be carefully adjusted. For every tube there: is one particular value of grid excitation and grid bias that will give maximum output; thus, a means must be provided to smoothiy adjust these factors. It will be found that more bias is necessary for plate doubling than for straight class-C operation. Pentodes and high-mu triodes such as the $53,46,63,841,203 \mathrm{~A}, \mathrm{R} \mathrm{K} 21$ and s:38 furction well as doublers, although there is some question as to whether or not highnus tules are better than those having me-diunn-mul, such as the $210,211,852,50 \mathrm{~T}$, 354 . and 150 T , all with regeneration. The latter can be applied to any single-ended double: stage by uing any of the conventional nentralizing circuits. When tine plate is tuned to a harmonic of the grid circuit, the nentralizing circuit becomes a feedback circuit.

Push-Pull Doubling

- Tlue push-pull circuit in Figure $\ddot{3}$ differs fron most doubler circuits in that doubling is not dependent on distortion, but on the fact that each KF impulse applied to the gricl circuit results in two plate current impulses heing applied to the plate tank circuit. This is because the grids are excited in puid-pull and the plates excite the plate tank in parallel; thus, there are twice as many current impu'ses in the plate circuit as there are cycles in the grid circuit-in other words. the frequency of the plate tank is twice that of the grid tank.

Wrong way.

FIG. 2
Right way.

FIG. 3

The simpler fonns of the push-pull doubler sometimes show a marked tendency to oscillate. The circuit in Figure 1 is particularly noted for this: the better circuits appear in ligure : particularly if a shielding laffle is provilled between the grid and plate tanks. Wher using the higher-C tubes as push-pull doublers, it is often desirable to utilize the KH trpe of doubler shown in Figure 3. Here, oscillation is effectively prevented by separately neutralizing each tube. High grid bias is necessary for efficient operation.

The circuits shown in Figures 2 and 3 should be neutralized while connected as regular push-pull amplifiers, after which no further changes are necessary. To increase the freguency by a factor of two, requires clanging the tank coil of the final amplifier to one that will tune to twice the frequency of the grid circuit. The circuit is then tested with reduced voltage while no load is coupled to the final during which times the tank condenser is varied until a pronounced dip in the plate current is founcl. The final is now ready for operation with a load.

Neutralizing the R. F. Amplifier

- Neutralization of a radio-frequency power amplifier is necessary to prevent self-oscillation. The latter occurs in a power amplifier because of the electrostatic energy fed back through the plate-to-grid capacity of the tube. The energy in the plate circuit is many times that in the grid circuit and self-oscillation results when only a small fraction of the plate circuit energy is applied to the grid circuit. The capacity feedloack through the tube is neutralized by dividing the plate or grid tank circuit so that the voltages at each end of whichever coil is divided are equal, but opposite in polarity with respect to the center of the split tank, which is at ground potential. Both ends of the split tank circuit are then comnected to the highpotential end of the other tank circuit. In other words. when using plate neutralization both ends of the plate tank are connected to the grid of the tube (one through the tube capacity and the other through an external
neutralizing capacity which is equal to the internal tube capacity). See Figure 1. Thus, two feedlack voltages are applied to the grid, but because they are equal and opposing, the net voltage is always zero, so the effective grid voltage (AC) is independent of the RFF voltages in the plate circuit.
In the grid neutralized amplifier (Figures 2 and 3) the grid coil is split, the plate coil being continuous. Thus the RIF plate volt-

Plate, or Hazeltine neutralization.

Grid neutralizing with parallel feed FIG. 3.
age (AC) is applied simultaneously to both ends of the grid tank. For this reason there can be no potential difference between the two ends of the grid tank, caused by feed-
back from the plate tank, and the effective net grid voltage is again independent of that in the plate circuit. It will lee seen that the two capacities which feedback the RF plate voltage to the grid must be exactly equal, if the two voltages are to exactly neutralize each other. For proper neutralization, the capacity of the nentralizing condenser must almost exactly equal the plate-to-grid capacity of the tule.

Gric nentralization may be preierable betwen stages that are joined by link coupling so that inexpensive plate tank and nettralizing condensers can be used: on the other hand, plate neutralization is more desirable with stages capacitively coupled.

How to Neutralize

- In a perfectly neutralized RF amplifier there is no coupling from the plate circuit to the grid circuit. By the same tuken, there is no coupling from the grid circuit to the plate circuit. This characteristic is used in adjusting the neutralizing condenser during tife neutralizing process.

Technique

- With the plate roltage remozed from the staye being neutralized, RF excitation is applied to the grid circuit. Some form of RF indicator, such as a thermo-galvanometer, neon bulb or flashlight globe with a single loop of wire, should then be coupled to the plate circuit. If the amplifier is not neutralized, there will be an indication of RF in the plate tank circuit, when it is tumed to resonance. The neutralizing condenser should be slowly varied tutil all indications of KF in the plate tank circuit disappear. After each variation of the nentralizing condenser, it will be necessary to return the grid and plate tank circuits in order to restore resonance in both these circuits.

Thie successfulness of the above procedure will depend upon the sensitivity of the RE indicator in the plate tank; incidentally. a neon bulb or flashlight globe is not particularly sensitive.

- A better and very sensitive neutralizing indicator can be made by taking an $0-25 \mathrm{DC}$ m:lliammeter and inserting it in the DC. grid return of the stage being neutralized. Nexu, sufficient RF grid excitation must be applied to give a good current reading after tuming the grid circuit for maximum gridl current.

If the amplifier stage is not perfectly neutralizing condenser should be varied rent will be noted when the plate tank condenser is swang through resonance. The neutralizing condenser slomid be varied slowly until no variation in DC grid current is shown by the milliammeter (in the grid? circuit) as the plate tank condenser is tuned through resonance.

Grid-neutralized circuit.
Shunt feed, as used in this amplifier, calls for an efficient RF choke which has no resonant dip near any of the bands on which the amplifier is operated. Many types of RF chokes fail in service when used on 80 meters, but stand up satisfactorily when used on 40 and 20 meters. If the RF choke becomes quite warm after a few minutes of operation, it is proof that power is being lost in the choke and replacement should be made with a more suitable type. The plate-blocking condenser should be mounted at least one-inch from the metal panel in order to minimize the capacity to ground.

If the amplifier which is being nentralized is NOT the final amplifier, another procedure van be followed: A DC grid current meter is placed in the grid circuit of the stage following the buffer stage which is being neutralized. Notw, with no plate roit. age 0 either stage, tune the stage being neutralized through resonance, then tume the next stage to resomance. A small grid current ceading will be obtained as long a* the loeffer stage is not neutralized. hut when it is in a nentralized state, the grid current on the following stage will entirely disappear. Note: The grid current of the stage which follows the one being neutralized acts as a diode vacumm-tube voltmeter and is a very sensitive inticator of RF which is present in the plate tank of the stage being neutralized.

Neutralization of a Push-Pull Stage

- Push-pull RF amplifiers are neutralized by employing the same procedure as was used in neutralizing the single-ended amplifier. The neutralizing condensers are varied in small steps until all indication of RF
disappars from the plate tank, or else there is no variation in 10 grid current when the plate tank is tuned through resunance. Buth neutralizing condensers should be varied simultanconsly in the same direction; ganging the condensers will simplify the adjustment.

Most neutralizing troubles are caused by the Rl: return from the grid and plate tanks to ground. It is necessary that the low potential end of each tank coil (center of a split coil) have a short and direct RF path to the filament center-tap of the tube, or tubes. If a split-stator tank condenser is used, the rutor must be tied to the centertap of the filament. If a single-section condenser is used with a split coil, the center of the coil must be by-passed back to the filament through a mica condenser of from .001 to .006 mifls., the value depending upon the frequency-low frequencies require higher capacities, in addition, ligh interelectrode capacities require high capacities in the plate and grid returns.
It is an established fact that the lower-C tubes (such as the 808, WIE304A, 50T, 852, 150 T .354 and 300 T) are materially easier to neutralize, particularly at the higher frequencies, than those tubes which have higher inter-electrode capacities.

Neutralizing with Field Strength Meter

-A field strength meter is a sensitive RF indicator for neurralizing transmitter stages. The sensitivity to small RF powers is much greater than that of most RF gal anometers on the market. A small antenna with one end connected to the field strength meter. and the free end wrapped around the plate coil, will give sufficient pick-up for neutralizing low-jwwer buffer stages. A certain amount of cut-and-try will indicate the degree of coupling needed to provide a degree of deflection in the milliammeter while neutralizing. Neutralization is obtained at minimum RF indication, just as in any other method.

Collins Inductive Neutralizing System

- Neutralization can be secured by a variation of mutual induction, as shown in Figs. 1 and :.
This simple Collins sustem calls for a small degree of coupling between coils L1 and I.s in liig. 1. The voltage induced back into the grid circuit is out of phase (neutralized) with the RF voltage fed back through the plate-to-grid tube capacity.

Two separate eoils are used in Fig. 2 in order to allow an impedance match between a pentode plate circuit and a triode grid circuit, as well as providing a means of neutralizing. Coil L.I is coupled to the

triode plate cuil for neutraizing the plate-togrid capacity ieedback. The coils must be wound in the correct dircction for reversed feedback. Numerous difficulties encomitered in the oneration of this neutralizing system limit its application to frepuencies below 20 or 30 megacycies.

New Neutralizing System

- A new system of nentralization is shown in Figs. 1 and 2. It operates on the principle of a perfect Whicatstonc Bridyc of capacities. as shown in Fig. 2. and ance nentralized it remains permanently adjusted for all-band operation.

Fig. 1.
It dues not call for a split-stator plate tuning condenser, yet the sircuit is as thoronghly neutralized as when such a condenser is used. Single-ended amplifiers can be successfilly operated on 5 or 10 meters with this circuit because they can be perfectly balanced. Fig. 1 shows a circuit for a single-ended amplifier operating on 5 or 10 meters. The plate-to-filament, and stray plate-to-ground capacities must be balanced with an additional variable condenser, Cx , in order to obtain neutratization with $\mathrm{C} \times$.
It can be seen from the Wheatstone Bridge circuit in Fig. :2 that it is a more perfectly balanced amplifier than one in which a splitstator tuning condenser is wsed. The capacity of condenser CN is equal to the grid-toplate capacity of the tube, and the capacity of Cx is equal to the total plate-to-filament capacity of the circuit. The plate load is across two arms of the Bridge, the grid

tuning circuit across the other two arms, consequently there is no reaction or unbalance when coils are clanged. The plate coil center-tap must not be bypassed, otherwise the Bridge would become unbalanced. Antenna conpling, or coupling into a high fower final amplifier, must be made with a balanced circuit, such as link-coupling around the center of the plate coil.

The grid current drops when plate voltage :s applied to this system; the drop is from two-thirds to one-half in value when full load and plate voltage is applied, just as with a split-stator tuning condenser circuit.

Operating Tubes in Parallel

Parasitic oscillations are sometimes introduced when operating vacuum-tubes in parallel at both audio and radio-frequencies.

Grid chokes and resistors for parallel operation of tubes.

The nost common type of parasitics occurring from parallel operation can be prevented by inserting small RI chokes, shunted with 50 to 200 ohm tarbon resistors, in series with each grid lead. The choke need only consist of from 5 to 10 turns of No. 22 enameled wire wound on a form of about one-lalf inch diameter. Winding the chokes on the resistor will simplify the job as well as provide a convenient method of mounting.

Grid Bias

- The conditions under which gractically all radio-frequency power amplifiers operate are such that plate current flows in the form of short, peaked impısses which last
for less than one-half of the alternating current cycle. This means that plate current is "cut-off" during most of the RF cycle which makes for high efficiency and high power output from small tubes. To keep the plate current at zero during most of the R i cycle, it is neecssary that the control grid of the amplifier tube be kept quite negative with respect to the filament by means of a DC voltage which is termed "negative bias." The AC grid excitation voltage, which usually cones from the plate circuit of the preceding amplifier stage, periodically overcomes the grid bias voltage and makes the grid slightly positive with respect to the filanent, causing a short impulse of plate current to flow.

If no grid bias were used, the tube would draw plate current all of the time. This would result in very inefficient operation because the plate would never have the opportunity to cool off.

Cut-Off Bias

- Any salue of grid bias which is just suifficient to reduce the plate current to zero is called the "cut-off "has." By taking a reading from a milliammeter inserted in the plate circuit, with different varying values of negative bias on the control grid, it will be founci that the plate current will decrease as the negative bias is increascl. At a certain point the plate current will be reduced to zero, and any further increase in negative grid bias has no effect on the plate r:urrent which remains at zero. Thus, the lowest value of negative grid bias which reduces the plate current to zero is termed the "cutoff bias."

It is not necessary to experiment with bias batteries and different plate voltages to determine the cut-of bias for a gisen set of conditions. The required values can be calculated by simply dividing the voltage applied to the plate by the amplification factor; these data may be obtained from a table of tube characteristics. When estimating the cut-off bias add 5 to 10 per cent more hias to that calculated: this is required on account of the variable-mu tendency which is characteristic of all control grids as the cut off point is approached.

Effect of Bias on Efficiency and Output

The amount of negative grid bias has a very definite effect on plate efficiency and power ontput. If the plate voltage and RF excitation voltage remain fixed, and if the bias voltage is increased beyond the cut-off point in a radio-feequency amplifier, the power nutput and input decline, although the plate efficiency rises. It is, therefore. neces-
sary to make a compromise between power output and plate etliciency. The smallest amount of bias that allows the plate of the amplifier tube to run cool should be used beyond the cut-off point. This results in the maximum power output for a given tube, plate voltage, and RF excitation voltage. To increase the power output, it will be necessary to increase the plate voltage, loosen the antenna coupling, and in many cases increase the radio-frenquency excitation voltage. With this procedure, the bias must be readjusted to the lowest value that allows the plate current to remain cool. The actual value of this bias, as measured in the number of times cut-off bias, will vary from about 1,25 times cut-off in a low-efficiency ligh-gain buffer stage, to about 4 times cut-off bias in an extremely high efficiency low-gain amplifier, operating with very high plate voltage and RF excitation. The bias voltage and the grid driving power are closely related, such that the higher the bias the more grid driving power is necessary to reach a given power output. For tubes of similar characteristics, the one with the highest zero bias mutual conductance (see tube tables) reguires the least amount of bias and grid driving power for maximum power output and plate efficiency. As an example of the effect of mutual conductance on the required bias voltage (and therefore the amount of excitation power necessary), it is found that under a given set of conditions a type 852 must be biased to 3.5 times cut-off and excited with 106 watts of grid driving power to obtain 400 watts of radio-frequency power output at 80 per cent plate efficiency. On the other hand, a type 150 T , or 354 , which has considerably higher mutual conductance when used under the same conditions in the same stage. requires a bias of only 2.1 times cut-off and only 29 watts of grid driving power is necessary to obtain the same 400 -watt output at the same plate efficiency (80 per cent).

When a radio-frequency power amplifier is plate modulated, the negative grid bias must be equal to or greater than twice cutoff. This is necessary in order that the peak power output can increase as the square of the plate voltage, which is essential for linear modulation.

Sources of Bias

- In general, bias can be supplied from two distinct sources: (1) from within the amplifier circuit itself through a voltage drop taken across either a grid-leak resistor or cathorle-bias resistor: (2). from an external source. such as batteries or a special rectified AC bias pack.

Grid-leak Bias

- Whenever the control grid of an amplifier tube hecomes positive with respect to the
filament (as it does in all radio-frequency power amplifiers), the positive charge on the grid attracts some of the electrons emitted from the filament. The electrons flow back to the filament through the external DC grid-return and cause a current flow in the circuit. If a resistance is placed in series with the grid-return, a voltage drop will occur across it when the current flows; the end of the resistor closest to the grid will be negative with respect to the other end closest to the filament; thus, necessarily causing the grid to become negative with respect to the filament. The voltage drop across this grid-leak resistor consists of a varying $A C$ voltage superimposed on a constant value of DC voltage, which is proportional to the effective value of the grid current impulses. The AC component is of no concern because it is by-passed by means of a condenser directly back to the filament, and thus by measuring the DC grid current with a DC milliammeter in series with the gricl-leak, the grid bias can be calculated by multiplying the grid current by the ohmic resistance of the grid-leak.

FIG. 1.

Grid-leak bias is quite flexible and more or less automatically adjusts itself with any variation in RF excitation. The value of grid-leak resistor is not particularly critical because the DC grid current usually decreases as the grid-leak resistance increases, thereby keeping the product of the two more or less constant for a given amount of RF excitation. Hence, the value of the grid-leak resistance can vary from one-half to two times the optimum value, a ratio of four to one, without materially affecting the negative DC bias voltage actually applied to the grid of the amplifier tube.

One of the disadvantages of grid-leak bias is that the bias voltage is proportional to the RI excitation, thus precluding its use in grid modnlated or linear amplifiers. whose bias must be supplied from a well-regulated voltage source so that the bias voltage is independent of grid current. When gridleak bias is used alone, it is eviclent that the bias disappears when the excitation fails, therehy allowing dangerously-high values of plate current to flow, with a consequent damage to the tube. It is always desirable

COMBINATION BATTERY

- grio leak bias

FIG. 2.
to augment the grid-leak bias with either cathode or separate bias supplies to keep the plate current within safe limits whenever the excitation fails. The amount of the bias supplied in addition to the grid-leak bias should usually approximate cut-off bias so that the plate current will crop to zero if the crystal stage stops oscillating, or the tuning elements are improperly adjusted in any of the other stages.

Cathode Bias

'Chis form of bias utilizes the voltage drop across a resistor in the B-minus lead from the high-voltage power supply. Because the B-minus lead of most high-voltage power supplies is directly grounded, the bias resistor must be placed in the negative side of the DC plate circuit of the tube itself. The negative side of the DC plate circuit of a vacuum-tube amplifier is between the filament center-tap and ground, and a resistor placed betweer these two points will lave the total plate current flowing through it. The voltage drop across the resistor will be equal to the product of the plate current in amperes, tmes the resistance in ohms. The grounded end of a cathorle-bias resistor is more negative than the filament end by the amount of voltage drop across the resistor; hence. if the DC grid return is brought to the ground end of this resistor, the grid of the amplifier will be nore negative with respect to the filament.

Cailoode bias is probably the safest bias supply known, because the negative bias voltage is a function of the plate current and :s largely independent of the RF grid excitation. With this type of bias the plate current can never reach a dangerously-high value if the excitation fails. Unfortunately, cathode-bias is generally unsuitable for class B linear amplifiers, although its use is essential in the newer class BC linear or gridnodulated amplifiers.

Cathode bias can be used in a plate-modulated class C amplifier provided a large audio by-pass condenser is connected across the bias resistor in addition to the usual mica radio-frequency by-pass condenser. The principal disadvantage of cathode bias is that

FIG. 3.
the bias voltage musi be subtracted from the total power supply in order to obtain the net plate voltage across the amplifier tuide. In a higl efficiency amplifier stage using a lowmu tube and biased to perhaps 3 times cutoff, it may require a 1 is 00 -volt power supply to actually realize 1000 volts on the plate of the amplifier tube, tecause 600 volts is deducted for negative bias. Cathode bias is sometimes called automatic bias because variations in plate current automatically change the bias to compensate for these variations,

Negative grid bias may be supplied from any source of voltage external to the amplifier circuit itself, such as dry batteries or B eliminators. B batteries rarely fail without giving considerable warning to the operator and they represent one of the safest sources of negative bias. However, these batteries wear out rather rapidly due to the chargirg effect of the DC grid current which causes the voltage as well as the internal resistance of the batteries to rise. After a few months of serviee, the batteries cften become noisy, especially when used for phone work. When charged-up they bulge and leak. It is not unusual to find a 45 -volt battery which measures 60 -volts after only a month or two of service in the grici circuit of a class C amplifier. This would be of no particular disadvantage if the 60 volts remained constant, but it often wavers and fluctuates, causing the signal tone to be impaired.

Another form of separate bias supply consists of some form of rectifier and fi'ter system wiose positive terminal is grounded and whose negative terminal connects to the DC gricl return of the amplifier stage. This hias supply often consists of an old B eliminator and is quite satisfactory if certain precautions are observed. If a high-power class C amplifier is biased by a B eliminator, some form of relay should be used and controlled by the bias supply so that the plate voltage to the amplifier is cut off if the bias supply fails. Most of the oller B eliminators, and many of the newer types, have very poor voltage regulation which becomes trouble-
some when the eliminator is used to bias two or more separate amplifier stages. Poor voltage regulation merely means high internal resistance in the B eliminator. Any variation in grid current in any one of the amplifier stages will vary the voltage drop across this internal resistance and thereby affect the bias supplied to the other stages of the transmitter. If a B elininator, or rectified AC bias supply furnishes bias to a class B or class BC linear or grid-modulated amplifier, it is essential that the DC bias voltage remain constant and independent of the DC grid current. This means that the bias supply must have extremely good voltage regulation. L.ow resistance transformers and filter cliokes as well as a mercury-vapor rectifier tube and a low-resistance high-current bleeder should be used to minimize variation in output bias voltage with changes in grid current which normally occur in these types of amplifiers. To adjust the DC voltage output from a bias power supply, tap the primary of the transformer, or an auto-transformer can be comected across the line to vary the voltage supplied to the bias transformer.

Here is a Bias Pack which uses a medium-to-high resistance bleeder. Voltage regulation is usually unimportant in biasing a class C amplitier and only enough bleeder is used to protect the filter condensers.

In the Bias Pack shown above, α lowresistance bleeder is used to provide a heavy, continuous current drain in order to stabilize the voltage output. A Bias Pack of this type is suitable for class B audio or class BC Linear Amplifier operation. The ungrounded side is the negative terminal.

More than one of the above supplies can be placed in series to bias a class C amplifier. In fact, it is recommended that a grid-leak be used to augment the cut-off value of bias whicla is best supplied by either cathode bias resistor, batteries or a separate bias pack.

A grid-leak common to more than one class C stage should be aroided. due to tremendons interaction caused by the two different grid currents in the respective stages.

To compute the wattage rating of the resistor, either as a grid-leak or to give cathode bias, multiply the square of the current in amperes flowing through the resistor by the resistance in olms.

R. F. Impedances in Circuit Coupling

- The difference between the DC plate input and the AC power output is the plate loss, and must be dissipated in the form of heat. Because the tube cost is almost related to plate dissipation, it pays to obtain high plate efficiency as it is then poss:ble to secure high power uutput from small tabes. A vacuumtule AC gencrator has a definite interna: resistance to the flow of current. It varies with the applied voltage ard the grid excitation.

Gizin a constant zoltage gencrator, the sencrator efficioncy increases as the ratio of the impedance mis-match increases-but the poaer ontput is maximum zelhen the load impedance is matched to the internal impedance of the generator.

The Class C RF Amplifier

- The most important application for inpedance mis-matching is found in the class. C radio-frequency amplifier occupying the place of a funal-amplifier in an amatenr transmitter.
The greatest mis-match can be obtained from a tube with the lowest dynamic plate impedance, and with the highest voltage that the tube insulation and gas content will allow. The high plate voltage greatly reduces theinternal innpedance. The circuit should be adjusted so that the plate tank has a high L, and low C. The anterma coupling is loosened as much as possible without reducing the input below that desired. and the hias is adjusted to several times cut-off. The excitation, as measured by the DC grid current, should be lextween 1.5 and 2.5 per cent of the DC plate current, and will vary for different types of tubes. In general the higher the mutual conductance of the amplifier tube, the less excitation power is needed for a given load imperlance.

Advantages of Link Coupling Over Other Types

(1) Effectively establishe; correct impedance relations between grid and plate circuits.
(2) Permits more efficient operation of circuits wherein low-mu tuhes work
into, or out of high-mu tubes, and vice-versa.
(3) Provides a flexible feed-line of several feet in length resulting in efficient operation between stages in "rack type" transmitters in which the stages are spaced quite far apart.
(4) Permits the use of series-feed in both grid and plate circuits.
(5) Makes possible maximum power output and minimizes oscillation difficultes.
(6) For a given amount of excitation on the grid of the first buffer, link coupling reduces plate current in the crystal oscillator stage and therefore reduces the RF current through the crystal itself.
(i) Eliminates the use of taps on coils, with their attendant losses.
(8) Because of the lack of capacitive coupling effect, neutralization is made easier.

Link coupling between push-pull stages.
 stages.

Link coupling provides a low impedance transmission line to transfer energy between two isolated tank coils, one of which is in the plate tank of the driver stage and the other the grid tank of the driven stage. This low impedance transmission line provides coupling of purely inductive natare, the ca-
pacitive loading effect of the coupling loop being negligible. Feed lines, consisting of twisted pairs can be several feet in length. The wires can be of ordinary rubber-covered No. 18 to 14 wire.
A reference to the illustrations shows some of the mecharical aprangements suitable for link coupling. For low power stages one of the fixed-counding-loop systems is recommended. One of the coil forms ideally suitable for the fixed coupling loop is the isolantite vertical plug-in type. This coupling scheme is shown in the illustrations as well as the system using the coupling loop adjustable from the baseboard.

Coupling loop arrangement for large plugin coil.

Link coupling can often be used between stages in a transmitter in a form which will give greater grid swing in each succeeding stage. Sonie tubes which have a high-mu, of the screen-grid type, have an extremely low grid impedance, especially under plate loaded condition. In surch cases, it is difficult to obtain maximum grid swing or reasonable driver plate load with the usual form of one or two turns in the link coupling loop at each end of the link. To eliminate this difficulty, use one or two turns in the link coupling loop on the driver plate coil and two to six. or even sevent turns at the grid coil when the driven tube is a high-man or screen-grid type. The coupling between the grid coil and the link cail should be as close as possible, such as one winding directly over the other, or interwound. The latter is important for proper impedance matching.

Link coupling will give a certain amonnt of automatic impedance matching. This can be proved by noting that about 50 per cent or more grid swing can be altained with the usual link ceupling over the old form of capacitive coupling between a pair of type 210 tubes. Only a small part of this loss in capacitive coupling is due to the grid RF choke, since the latter can be made very effective, the loss is in the impedance nis-match when the grid of the following tube is across the entire tuned circuit. Link coupling gives an impedance matching effect because the coupling is usually less than

The link coupling loop is wound around the lower end of the coil when this end is by-passed to ground.

The link coupling loop is wound around the center of the coil when the coil is center-tapped.
unity or maximum obtainable. The impedance reffected eath way is not entirely dependent upon the ratio of tuned coil turns to link coil turns, since the effective coil coupling is relatively loose and resonant

Wire-wound tank coil with variable coupling loops for connection to twisted-pair feed line.
circuits are being used. Because the coupling is not unity between the coils, impedance matching takes place, if the ratio of impedances are not too great. When the impedances are greatly different, one being several times that of the other, then the low impedance circuit end should have more turns on the link coil and these two coils should be very closely coupled.

Unity Coupling

- Unity coupling between stages of a transmitter can be used as an aid to eliminate

Unity coupling between crystal oscillator and buffer stages.

Complete Circuit Diagram of 47 Oscillator link coupled to 210 amplifier stage. One or two turns of wire are wound around coils Ll and L2 to form the coupling loop. The two loops are connected through a twisted-pair feed line, made with hook-up wire.

RI cloke,troubles. This coupling is not as effective as link coupling, yet it does not require an additional tuned circuit. Unity coupling can be used advantageously in transmitters where space is lacking for link coupling. Care should be taken to see that the grid coil interwound turas are spaced sufficiently from the plate coil turns to prevent DC voltage flashovers. For low power operation, the grid coil is often wound inside of a copper tubing plate coil; wire used for this purpose must be well insulated.

Final Amplifier Tuning Adjustment

- The plate tuning of the amplifier should be set for a point at which minimum plate current occurs, rather than the point at which maximum grid current flows. Varying the plate tuning under operating conditions changes the plate impedance of the amplifier. The point of maximum plate impedance does not necessarily have to occur at the point of mininum grid impedance, as far as the DC current readings are concerned.

Grid Saturation

An excess of grid excitation will not increase the power output and may shorten tube life, due to overheating of the grid. The grid will become white hot when overloaded. In some tubes this will release gas retained in the metal and ruin the tube. Too little grid excitation will cause excessive plate heating and low output. More grid excitation is required as the plate voltage is increased, it also requires more grid excitation for closer antenna coupling than when the antenna is loosely coupled.

Parallel vs. Push-Pull Operation

- The recent development of the low-C tubes practically eliminates the former difficulties encountered from parasitics and instability which accompany parallel operation of vacuum tubes. Parasitics are largely caused by the stray inductance and the capacity in the tubes themselves, as well as in the comecting leads between the tulses and the associated plate tank circuits. Parasitics are not confined to tubes in parallel, but are in fact nearly as common in push-pull circuits because the inductance of the leads when connected through the tank tuning condensers can form an ultra-high frequency tuned-plate-tuned-grid oscillator. This causes oscillations at a frequency other than that desired, with consequent low efficiency and reduced power output, as well as resulting in a poor note.

Parallel operation has many advantages over pusli-pull operation, even at the higher
frequencies, provided low-C tubes are used. The plate tuning condenser can be one of a cheaper variety for a given tuning capacity and one neutralizing condenser is eliminated for parallel operation. Tubes are easier to drive to a given output when in parallel, due to the ligher transconductance of the parallel circuit. The amplification factor is the same for a parallel connection as it is for one tube, whereas the plate resistance is cut in half.

High-C tubes, such as the 45, 2A3, 10 , $211,203 \mathrm{~A}$ and 204 A work best in push-pull below 40 meters because the high capacity shunted across the plate tank, when high-C tubes are used in parallel, makes the use of a low-C, low-loss tank circuit impossible.

R. F. Chokes

- There are several varieties of Pie-wound RF chakes. Those who prefer to wind their own should cloose the solenoid winding types. A RF choke designed for maximum impedance in one amateur band is not satisfactory for operation in other bands because of the effect of its distributed capacity and inductance. This choke would be satisfactory on three times the fundamental frequency, but worthless on twice that frequency.

The coil should be wound so that its fundamental operating frequency is abotit midway betwen its lowest and higlest impedance On even harmonic operation, therefore, the reactance will be fairly high. If the RF choke is to be used only on one band, it can be wound for resonance, as its effect across a tank circuit, when being tested, is negligible at that frequency. If, for example, it is to be used on both 80 and 40 meters, more or less turns are needed in order to keep the second harmonic impedance high. In all such cases the lower end of the RFC should be bypassed back to ground because some RF current will flow through it.

If the length of the solenoid is not great in comparison to its diameter, its fundamental resonance can be calculated from C in nimld. $=.24 \mathrm{~d}$, where $\mathrm{d}=$ diameter in inclies, and C, the distributed capacity. The inductance can be obtained from L in micro-henrys:

$$
L=\frac{a n}{9 a+10 b}
$$

where a, is the radius of the coil in inches; n, the number of turns; b, the length of the coil in inches.

$$
\mathrm{f}=\frac{1000}{2 \pi \sqrt{\mathrm{LC}}} \text { in megacycles. }
$$

The formulae give a starting point.

Actual construction for short wavelengths, such as 5 to 40 meters, can well be made on small diameter rods or tubing with a long winding several times its diameter. The wire should be large enough to safely carry the DC plate or grid current, as well as an appreciable amount of RF current.
In high power tircuits, RF chokes should be placed at points of low-RF potential, if possible, because even the pie-wound chokes, contrary to popular belief, are not efficient on all amateur bands. Care must also be taken to prevent a tuned-grid tuned-plate oscillation between the grid and plate RF chokes at the fundamental frequency of the RF chokes. If possible, the grid choke must have an inductance at least 10 to 20 times that of the plate choke.

Tank Circuits

- The plate tank circuit of any transmitting radio frequency amplifier consists of a parallel resonant tuned circuit. The shunt impedance of any resonant tank circuit is the resultant of two factors: (1) the resistance of the tank circuit itself, and (2) the reflected resistance caused by coupling a load, such as an antenna, to the tank circuit. The output power dissipated in the resistance of the tank itself is entirely lost, so that for high output and efficiency it is desirable to make the tank losses as low as possible. The test for any tank circuit is to disconnect the load (antenna, etc.) and measure the DC plate curernt at normal plate voltage, bias, excitation, etc. This unloaded plate current should be approximately 10 per cent of the normal loaded DC plate current in mast circuits.

Tank "Q"

- The " Q " of a transmitting tank circuit is of importance onfy when determining the optimum ratio of L to C for a given frequency and load resistance. In general, a phone requires twice as much C as for a similar CW amplifier. In the plate tank of a self-excited oscillator, the C is required to be about three times greater than that for a given CW amplifier. Comparatively, the minimum " Q " of a single-ended amplifier should be kept about 10 for CW, 20 for phone, and approximately 30 for a self-excited oscillator.

The accompanying table gives approximations of the optimum tank capacity for a single-ended CW amplifier at different plate voltages, power and frequencies. Variations from the indicated values of capacity up to 20 per cent will not materially affect the operation of the amplifier. Larger capacities will increase the " Q " somewhat,
but with an increase in the tank losses due to the increased circulatimg tank current, which reduces power output and efficiency. The use of less C than that shown will reduce the " Q " and may again reduce the efficiency and power output if minimum plate current does not coincide with maximum output current; that is, at the same point when the tank condenser is tuned. The capacities shown are those which should actually be applied, not just the maximum capacity of the tuning condenser.

The table shows most of the common combinations encountered in practice. However, for widely different frequencies or power inputs, the following formula will enable the approximate tank capacity to be directly determined. The following formula applies to a single-ended grid-neutralized (unsplit tank) amplifier for CW (" Q " of 5) ; for phone, (" Q " of 10) multiply the indicated capacity by 2.

For split-tank coils divide the indicated capacity by 4 .

$$
\begin{gathered}
C=\frac{3,200.000}{f R_{b}} \\
\text { for } Q \text { of } 10
\end{gathered}
$$

Where C equals the tank capacity in mmf.; f, the frequency in megacycles; R_{1}, the DC resistance in ohms. of the plate to filament path of the amplifier (DC plate voltage divided by DC plate current, in amperes).

The optimum AC load impedance into which a Class C amplifier will work most efficiently under average conditions of grid drive and AC plate current is when the angle of flow is betwen . 45 and .55 with an average of 5 times the DC load resistance.

$$
\begin{aligned}
& Q=\omega C Z=\frac{\omega C R_{p}}{2} \text { approx. } \\
& C=\frac{Q}{\pi R_{\mathrm{pl}}} \\
& \text { Since } \omega=2 \pi \mathrm{f} .
\end{aligned}
$$

It will be seen that there will be relatively little difference between the cost of the tank condenser used with either grid or plate neutralization. With grid neutralization, the plate tank capacitr must be four times as large as the capacity required in a plate neutralized amplifier. However, the condensers in the plate neutralized tank circuit will have twice the peak RF voltage across them as well as twice the spacing as the condensers which are used in grid neutralized amplifiers.

The fyywheel effect of the tuned circuit is important in Class C amplifiers and often
the ralue of $\frac{\text { VA }}{W \text { atts }}$ is used in circuit design.
The "VA" represents the volt amperes of the oscillating LC circuit and "watts" represents the actual power transferred to the antenna load, or power output. VA can be computed
from V.A $=\frac{\left(E_{p r m s}\right)^{2}}{\mathrm{X}_{\mathrm{e}}}$ where $\mathrm{X}_{\mathrm{e}}=\frac{1}{2 \pi \mathrm{fc}}$
and $E_{p r m s}$ is the rms of RF plate voltage.
Several computations of actual Class C amplifiers have indicated that for all prac-
tical purposes $Q=\frac{\text { VA }}{\text { Watts }}$ within a limit of
10%.

Characteristics of Plate Tank Circuits

- There are eight different arrangements of plate tank circuits for radio-frequency amplifiers. Fundamentally, there are two basic circuits: these are, (a) the split-tank with plate neutralization, shown in Figures 3, 4, 5, and i; and (b), the unsplit-tank with grid neutralization, shown in Figures 1 and ㄹ. Of course, the push-pull circuits, shown in Figures ${ }^{6}$ and 8, also have a split platetank as well as a split grid-tank, berause the neutralization of a push-pull stage may be considered to be both grid and plate neutralization.

From the standpoint of the optimum ratio between inductance and capacity in the plate tank circuit of a RF amplifier the circuit arrangement affects the required tuning capacity for a given tube, plate voltage, power output and frequency.

For a given set of conditions, the impedance in olnms, measured across the ends of a split tank coil, will be exactly four times the impedance across the unsplit plate tank coil. In the grid nentralized tank circuit shown in Figure 1 the plate circuit of the amplifier tube is connected across the entire circuit so that the required reflected load impedance appears across the entire tank circuit. When the same amplifier is changed to plate nentralization with either the split coil circuit shown in Figure :?, or the split-- stator condenser circuit shown in Figure 4, the plate circuit of the tube is then tapped across only half of the tank circuit. Thus the impedance measured acress either half of the plate tank must be the same in order that the tube will operate under exactly similar conditions as encountered in the grid
neutralized circuit. Because this is an autotransformer arrangencent, the impedances across part or all of the inductance will vary as the square of the turns ratio; and since there are twice as many turns across the

F1G 5

entire tank coil as there are across either half, the impedance across the entire tank will be two squared, or four times the impedance that one-half of the tank reflects back into the tube. For a given power, tube and plate voltage, there is twice the peak RF roltage across the split tank as there is across an unsplit tank. This higher RF voltage means that dielectric losses in the plate tank circuit are four times as high in the split circuit as in the unsplit arrangement. but because the circulating RF current is twice as high in the unsplit tank the resistance losses in that circuit are four times as large.
In a single-ended grid neutralized high efficiency amplifier operating at less than 4000 volts DC plate voltage, the circulating current losses can be minimized hy tapping the plate down on the plate coil in order to reduce the amount of C necessary for a given " Q " (see Figure 1A). This technique is nore desirable than employing plate neutralization; furthermore, it allows the use of a single-section condenser.

Parallel Operation

- The circuit shown in Figure 2 is exactly the same as that in Figure 1, with the exception that the two tubes are in parallel in liigure 2. If the two paralleled tubes draw

Table Showing Proper Values of Tuning Capacities for a Single-Ended Plate Neutralized Class C Amplifier, at Various Frequencies

Tube DC Impedance $Z_{D C}=\frac{E_{p}}{I_{p}}$	Operating Frequency 1,750 KC	Operating Frequency $3,500 \mathrm{KC}$	Operating Frequency 7,000 KC	Operating Frequency $14,000 \mathrm{KC}$
2,000 ohms	228 mmfd .	114 mmfd .	57 mmfd .	28.5 mmfd .
3,000 ohms	152 mmfd .	76 mmfd .	38 mmfd .	19 mmfd .
4,000 ohms	114 mmfd.	57 mmfd .	28.5 mmfd .	14 mmfd .
5,000 ohms	92	46 mmfd .	23 mmfd .	11.5 mmfd .
6,000 ohms	76	38 mmfd .	19 mmfd .	9.5 mmfd .
7,500 ohms	60	30 mmfd .	15 mmfd .	7.5 mmfd .
10,000 ohms	46	23 mmfd .	11.5 mmfd .	6 mmfd .
15,000 ohms	30	15 mmfd .	7.5 mmfd .	4 mmfd .
20,000 ohms	22	11 mmfd .	5.5 mmfd .	3 mmfd .
25,000 ohms	18	9 mmfd .	4.5 mmfd .	2 mmfd .
30,000 ohms	15	7.5 mmfd .	4 mmfd .	2 mmfd .

Determination of Proper Tank Capacity:

The DC plate voltage and DC plate current, under full load, must be known in order to determine the proper tank circuit capacity. The first column to the left in the Table lists a number of values of DC Plate Impedances. This value is secured by dividing the DC plate voltage by the DC plate current, as shown in the following example:

A type 801 tube. operating at 600 volts and 80 milliamperes has a DC Plate Resistance or Impedance of -

$$
\frac{600}{.08}=7.500 \text { ohms. }
$$

By referring to the first column in the Table above (Tube DC Impedance) it can be seen that $7,500 \mathrm{chms}$ Impedance (first column) calls for 60 mmld capacity (second column), for operation at $1,750 \mathrm{KC}$ in order that the circuit can function properly to: c.w. telegraphy. However, this value of capacity, 60 mmfd ., consists of the tube and neutralizing capacities, combined with the actual capacity oi the plate tuning con denser. Therefore the actual value of capacity of the plate tuning condenser should be set to approximately 10% less than 60 mmfd ., or 54 mmfd . because the miscellaneous circuit capacities which are effectively across the tuning condenser amount to approximately 10 mmfd. , and in some cases this value is even higher than 10%. Proceeding now to the third column in the Table above (3500 KC Operation column), it is seen that the capacity decreases as the frequency increases. This reduction in capacity is inversely proportional to the frequency, and for $3,500 \mathrm{KC}$ operation α capacity of only 30 mmid . is required-just half as much as is needed for $1,750 \mathrm{KC}$ operation. This capacity of 30 mmfd . can be obtained from a split-stator condenser with 50 mmfd . per section, set at near maximum capacity, because the miscellaneous shunt capacities will increase the value of this tuning condenser to the required 30 mmifd. Two 50 mmfd . sections in series give the same capacity as a single condenser of 25 mmid .
If the value of Trube DC Impedance falls between those listed in the first column in the Table, the tuning capacities will likewise fall between the two nearest values shown in succeeding columns.

- For Grid Neutralization, multiply above values of capacity by 4.
- For Phone Operation, multiply all values of capacity by 2 .
- Parallel tubes are considered as one tube at twice as much plate current, resulting in lower DC Load Resistance.
- For Push-Pull tubes, divide DC load Resistance by 2. Neutralizing and intor-electrode capacities can be subtracted from above values.
the same plate current under the same conditions of operation as the cne-tube circuit of Figure 1, then the load impedance across the two tank circuits will be equal, and the same tuming capacity will give the same circuit " Q ": but, if a second trabe is added to an alicady existing amplifier to double the output, the bias must remain onchanged, even though the DC grid current will double. The neutralizing capacity must the doubled, and the antema coupling must also be increased in order to make the ampliker draw twice the p'ate current as it did before. In addition, it will be found that the tank tuning capacity must he doubled to preserve the same circuit "Q."

Push-Pull

- Ail push-puil circuits, suci as those shown in ligures 6 and 8 , have split tank coils. In these circuits there are no unbalances due to plate-to-ground capacities; the arrangement shown in Figure 8 is preficrable to others, inciclentally, the total plate tuning capacity is the same in either ligure 6 or 8.

With reference to Figure s, if the two tubes together draw the same plate current as the one tube circuit in Iigure 4 (assuming identical operating parameters), the load impedance across the entire circuit will lie tine same in both cases, and the reduired concienser capacities will be equal in value.

The push-pull circuit makes possible the use of a lower value of " Q " for the same -ircuit merit ; the " Q " of a push-pull circuit need only be approximately go per cent of the " Q " of an equivalent single-ended amplifier. The purpose of " Q " in any tank circatit is to preserve the waveform of the alternating current. This, the barticular adrantage of the push-pull circuit is that it procluces very few even harmonics and thus preserves the shape of the wave better than a single-ended circuit of the same "()." The presence of harmonics in the distorted wave output of a low "()" amplifier is precisely the reason why a high C (meaning high " Q ") tank circuit minimizes the radiafion of undesirable radio-frequency har. manics.

Tank Circuit Relationships

- The impedance across any tuned circuit is related to the series resistance of the tank. The higher the series resistance, the lower the shunt resistance. (Resistance and impedance are identical at resonance). The shunt resistance is always " Q " squared, times the series resistance.

The reactance of either the coil or comdenser of any resonant circuit is always equal to " Q " times the series resistance. or the shunt resistance divided by the " Q ".

Thus a tank loaded so that it has a shunt resistance of 5000 uthms at resonance would be said to have a series resistance of 50 uhms if the LC ratio were such that the circuit "()" were 1 m . In order to have a " Q " of 10 , the coil and the condenser reactance would have to be " Q " times the series resistance, or 10 times 50 , or 500 olmms. The reactance is also shunt resistance divided ly " \mathbf{Q}^{\prime} ", or $5000 / 10=500$. The capacity recuired to equal a 50 olun reactance can be calculated if the operating frequency is known by the following formula:

$$
X_{c}=\frac{1,000,000}{2 \times \pi \times \mathrm{f} \times \mathrm{C}}
$$

where X_{e} equals the reactance in ohms; f, the frequency in cycles per second; and C, the capacity in microfarads.

Antenna Tank Circuits

- Thre use of liak-couphing between the plate tank of the final amplitier and a scparate antanna tank circuit to which the antenta or feeders are coupled has been universally popular. This type of coupling reduces harmonic radiation, preserves better balance on 'a push-pull stage, prevents the feeder radiation from altering stability of the various amplifiers in the transmitter, and tends to improve the effective " Q " of the plate tank circuit of the final amp'ifier.

The ligher the " Q " of the antenna tank the more the harnonic radiation will be reduced. "The " Q " of the antema tank should not be less than 5 but preferably higher. The " Q " is calculated or estimated in exactly the same manner as that of the plate tank.

One of the simplest antenna tank arrangements appears in the schematic of I'igure 9. If the tank is feeding an offcenter llertz antenna the shunt imperance across the tank will be the same as the characteristic impedance of the feeder, Which is in the neighborhood of 600 ohms (Note: see the "ANTENNA" section for other cletails). Thus, to obtain a " Q " of 5. the condenser reactance at the operating freqiency would be 120 ohms. At 7000 KC this would reguire a condenser capacity of 190 mmids. At $3 ; 00 \mathrm{KC}$, twice this capacity wowld be necessary. The values of capacity are larger than can be conveniently handled and therefore the arrangement shown in Figure 10 reduces the required capacity to one-fourth, although the RF voltage (for any given power output) is coubled: consequently the twice spacing must be provided. The feerler is tapped across onehalf of the total :urns, making the imperlance across the entire tank four times the impedance from feeder to gromel, or 2400

ohms across the tank for a 600 ohm feeder. The condenser reactance for a " Q " of 5 is 480 olms ; therefore only 48 mmids. of capacity is necessary at \boldsymbol{r} MC. The capacity is independent of the power output of the transmitter, which is a point of difference between the antemna tank and a plate tank, because the power output of a transmitting tube is very closely related with the reHected load impediance into which the tube works. Thercfore a 1 KiV transmitter would require no nore capacity in a given antenna tank than a 5 watt transmitter, but the voltage spacing would have to be much greater. The effective RF voltage across any tuned circuit is always equal to the square-root of the product of the power in watts, times the shunt impedance, in ohms; or writing

$$
\mathrm{E}=\overrightarrow{\mathrm{V} \vec{P}}
$$

where E efuals the volts; P , watts; and \%, chms.

Thus 1 KWH of power across a 600 ohm feeder represents an effective voltage of 7π volts. The voltage across 2400 ohms for the same power is twice this value, or 1550 volts. The peak voltage can be about twice the effective voltage, particularly if harmonics are present or if the carrier output is voice modulated, and thus the antemna tank tuning condenser mast be rated at from two to three times the peak voltage which is present.

If it is desired to use a still smaller condenser to tune the antenna tank, the feeder can be tapped father down the tank coil. This steps-up the impedance across the entire tank circuit. according to the law of imperdance transformation, wherein the impedance ratio is equal to the square of the turns ratio.

If an end-fed antema is tapped directly to the antema tank coil, the circuit of Figure 9) should be used. as it is not advisable to tap down on the coil. Figures 11 and 12 show split antenna tanks for feeding two-wire non-resumant transmission lines. Figure 13 describes how a Zepp antema can be fed by means of a link from the final amplifier.

Power Transfer

- In all transmitters, care must be taken to properly transfer the power into each succceding stage; otherwise the output from the final stage will be low. The coupling link must be adjusted so that maximum grid current is obtained in the driven stage.

With capacity coupling between stages, the grid coupling condensers must have suff. cient capacity to provide a normal load or the preceding tube with maximum grid current. Lower frequencies, such as $3,500 \mathrm{KC}$, retuire a .00025 grid condesser between the doubler circuit and the buffer grid (for an 801 tube) for the same loading effect on the dontbler plate ($\mathrm{tiA} \mathrm{Al}_{\mathrm{i}}$ in this example). With low impedance tubes, such as 6 AG or 53 types. the input to a buffer stage may be capacitively coupled with nearly as much grid drive as with link coupling, provided a high or medium grid impedance is offered. A low-mu tube offers a higher grid impedance load than does a high-mu tube, such as a 203 A or 46 . Capacity coupling between an 801 and 50 T , both medium-mu tubes, gives only a little more than half as much grid current as is obtained with link-coupling. These important points must be carefully weighed when a transmitte- is to be put into operation on 10 or 20 meters. as the margin of a a ailable grid excitation is much less than on 40 or 80 meters. Probably 90 per cent of the trouble with 20 -meter transmitters is lack of sufficient excitation on one or more grid stages.

Filament By-passing

Each side of the filament must be bypassed with a . 002 mfd . condenser to its particular RF stage ground-bus to provide low impedance paths for neutralizing purposes. Too low-C in the final tank circuit makes neutralization difficult. and zloes not give any more output on the fundamental frequence:.

Self-Excited Oscillators

The self-excited oscillator (SEO) is one of the outstanding developments in the progress of radio transmitting apparatus. When properly designed, it is one of the best forms of frequency generation, for its use permits any desired frequency to be obtained with

few adjustments. In anmateu: hand uperation this advantage results in selecting "clear spots" in which to operate. But it is a rather dangerons circuit for begimers to design. Few amateurs, especially the novice, have wavemeters and frequency :meters to check the desired frequency with a self-excited oscillator. With these precepts, it is suggested that the SEO circuits be set aside until one has become well-grounded in radio knowledge and in practice.
Gcod design of the S1:O necessitates a choice of good parts, solid comnections, freedom from vibration, and a power supply with excellent voltage regulation.

Types of SEO Circuits

The common types are: The HartleyFigure 1; the Colpitts-Figure 2; the tunedplate tumed grid (TPTG)-Figure 3 ; the TNT-Figure 4 , and the eiectron-coupledFigure 5. These circuits need little explanation with possibly a reference to the TNT. Its name is correct : it is TNT in the hands of heginners and, therefore, is not a circuit for any newcomer to use.

SEO circuits can be single tube or two tube (push-pull) affairs. They can 'e shunt or series fed.

Design and Technique

The push-puil circuit is to be recommended over the singled ended circuits, for there is a greater voltage swing, and the even harmonics are eliminated by circuit action. The rule to observe in construction of push-pull sets is symmetry-brith meclanical and elec-
trical. Exact electrical and mechanical symmetry cannut be oitained until left-handed and right-lianded tubes are manufactured, because the grid and plate prongs of the tubes are reversed on the left-handed tubes. Howerer, with the exception of the filament leads, a high degree of symmetry is obtainable. It is required that the leads to each inductance from each grid and plate socket be of the same length. The condensers can be connected to these leads in almost any manner without distur'sil:g the constants. In many instances in which inductances are mounted on top of the condensers, unequal length of leads may result, even though they appear to be correct to the eye. Figure 7 illustrates the fact even though the grid and plate leads to the condensers are both of equal length, the condenser frame makes one of the leads longer thian the other. To overcome this difficutly, mount the coils separately with their equal length connection to the sockets, and then connect the condensers to the leads. This might slightly throw off the balance, but odid lengtlo condenser leads still onstitute capacity-and not inductance. if the leads are short and close together. This is illustrated in Figure 6. Note: Keep the condensers at least a coils' diameter away from the coil.

Piezo Quartz Crystals

- Quartz and tourmaline plates are minerals having a crystalline structure which. when cut and ground on certain crystalographic (optical) axes, possess piezo-electric properties in the influence of an oscillating electrical field. The mechanical ac-
tivity or frequency of a piezo-electric element depends upen its physical dimensions (the frequency being inversely proportional to the thickness). The stability of the oscillatory properties depends mainly upon the uptical cut and the crystal-temperature coefficient.

Piezo-electric Oscillator (after the U.S.N. Conference in 19:3) : A circuit containing a resonator (crystal) and possessing too little regeneration to oscillate itself, but which oscillates through the reaction of the crystal when the latter is vibrating near one of its normal frequencies with energy derived from the circuit. Such a circuit is often called a "crystal controlled" or "piezo-oscillator,"

Fig. 1.
A quartz crystal plate (as used in amateur tramsmitters) is cut from the edges of a quartz crystal parallel to the optical axes known as X, Y and $\%$. see ligure 1 . In general, crystals are cut with their faces either parallel or perpendicular to the $\%$ or clectric axis of the crystal. An X-cut is one that is parallel to the X-axis, while a Y-cut is parallel to the Y-axis. Y-cuts are sometimes referred to as 30 -degree cuts. The thickness dinnensions of the plate are parallel to the X - and Y-axes, respectively, while the rectangular length or elongation of the plate is perpendicular to the optical or Z-axis. An X-cut crystal vibrates in the direction of the Y-axis, and the chief mode of vibration for a Y-cut is that of a shearing vibrational-strain taking place about the 7-axis; with this latter cut. the crystal actually becomes elastic and waves are produced parallel to the Y-axis. A crystal cannot oscillate along the Z-axis, as the forces which hold the atoms of the crystal together are so great that there is relatively little expansion along this axis.

In general, quariz plates are most widely used for controlling frequencies below 10 megacycles, becaust: of their relatue cheapness as compared to tourmaline plates. On the higher frequencies, tourmaline is to be preferred for fundamental control, as quartz plates oscillating above 7 megacycles have a slight tendency toward side-tone oscillation. Tourmaline crystals are mechanically stronger than quariz, and are also easier to grind on account of their smaller elianeter and greater thickness for a given frequency.

In amateur practice, X-cut crystals are sometimes ground with trick contours to boost the power output, but if the process is carried beyond a certain stage, the crystal will oscillate at more than one frequency unless special precautions are taken with the oscillator to prevent it. The temperature coefficient of a Y-cut plate is twice that of an X-cut (and in the opprsite or negative direction), but if the oscillator is run underloaded, the drift will be negligible with either cut. Because of the temperature characteristics, X-cut crystals have a negative temperature coefficient, and Y-cuts postive; for these reasons, an X-cut plate is preferable for use just inside the H! edge of a band, and a Y-cut for the low-frequency edge.

Frequency Drift and "Twin-Peaks"

- Crystals that oscillate at more than one freguency are commonly known as crystals with "twin peaks." The dual vibrational tendency is more pronounced with Y-cuts, and to a certain degree is exhibited by many X-cuts. The use of a well-designed, space wound, low "C" tank coil in an oscillator will prohibit the crystal from oscillating at two frequencies, and in addition will increase the output. Experiments have shown that the frequency stability is not improved by large tank capacities, which only tend to augment the double frequency phenomenon.

Y-cut erystals having perfectly parallel sides, lapped to a high precision, are the worst offenders in regard to twin frequencies, sometimes making it mecessary to resort to a special form of clamp holder in addition to an extremely low capacity tank to confine the oscillations to one peak.

An X-cut crystal that has been accurately grouncl, with both sides absolutely flat and parallel, will oscillate at only one peak, provirled the edges are free from imperfections or nicks. Good output from an X-cut crystal can only be olstained when the top electrode of the crystal-holder does not press too heavily asainst the crystal. By grindling a special contour into the crystal. a nedium output is obtainable that miner certain conditious may suffice; however a crystal ground in this manner will have its output appreciably reduced be heavy electrode pressure. In grinding. if the convexity is carried too far, the crystal will have two oscillating peaks.

Twin frequencies appear in several ways: sometimes the crystal will have two frequencies several hundred cucles apart. oscillating on both frequencies at the same time, and producing an acoustically audible heat note. Other crystals will suddenly "jump" frequency as the tank tuming condenser is varied past a certain setting. Opcration with the tank condenser adjusted near the point where the frequency shifts

Bliley frequency chart of Amadeur Bands and harmonic relationship.
is very unstable, the crystal sometimes going into oscillation on one frequency and sometimes on the other as the plate voltage is cut "on" and "off." Still other crystals will jump frequency only when the temperature is varied over a certain range. And some plates will jump frequency with a change in either tank tuning or temperature, ard produce an audible beat tone at the same time, showing actually two pairs of frequencics!

Crystals are often cut with their axes between the X and Y points, to reduce the temperature coefficient. Siace X- and Y-cut piates have a frequency drift in opposite directions with increase in temperature, a phate cut between the two axes will have a negligible or near-zero drift.

Use and Care of Crystals

- When operating close to the edge of one band, it is advisable to make sure that the crystal will respond to but one frequency in the holder and oscillator in which it is functioning: for a crystal with two peaks can s:ddenly leave a band and operate on another without giving any indications of the chanve on the meter readings of the transmitter. If the transmitter frequency is such that the ojeration takes place on the edge of the band at all times, under all conditions of room temperature, some form of temperature control will be required for the crystal. When working close to the edges (f) the 14 megacycle band it is essential that the crystal temperature be kept at a fairly constant value: the frequency shift in kilocycles per degree Centigrade increases in direct proportion to the operating frequency, regardless of whether the fundamental or harmonic is used. When a crystal shifts its frequency by two kilocycles, its second harmonic has shifted + kilocreles. Amateurs
not operating on the edge of a band need not concern themselves about frequency drift due to changes in room temperature. If a pentode tuhe is used for the crystal oscillator having a plate potential of approximatelv 300 volts, the temperature of the crystal will not increase appreciably to cause any noticeable drift at even 14 kilocycles. When a crystal oscillator is keyed on 3.5 or 1.7 megacucles, the frequency drift is not of any consequence, even with much higher values of plate input, because of the keying and of the fact that the drift is not multiplied as it would be with harmonic operation of a final amplifier.

Crystal holders tave a large effect on the firequency; for example, the frequency of an so meter crystal can vary as much as 3 kilocycles in different holders. Even greater variations are possible on account of the uneveness of some electrodes in various types of manufactured holders. Warped clectrodes toncling a crystal in two or three spots iorn, in effect, a sort of air-gap holder. Holders haring a spring to provide tension on the top electrode appreciabiy affect the frequency. and their use is to be discouraged.
Periodic or weekly crystal cleaning done by rubbing the top electrode around on the crystal surface to dislodge dust particles that may have worked in between the electrode and crystal will, after a year or longer, increase the frequency of the crystal. CAUTION: Do not rub the crystal or electrodes ; disassemble the holder and clean the parts with alcohol. ether, or carbon-tetrachloride (carboala). With prolished crystals there is less tendency of wear; however, as a safety measure, ali crystals should be placed in dust-proof holders.

40 Meter Crystals

- A 40 meter crystal can be used in the conventional 47 crystal oscillator circuit and link coupled to an 841 doubler running at about roo volts to excite a 210 full output with high efficiency on 20 meters, provided the $8+1$ is also link coupled to the 210 . On the higher frequencies there is a worthwhile increase in efficiency and output when using the link form of inductive coupling. rather than capacitive coupling. Capacitive coupling is justified at the higher frequencies only for the sake of simplicity where reduction in efficicncy can be tolerated,

Special precaution must be taken with 40 meter crystals, and more care given to the circuit details than with lower-frequency crystals. Here, a suitable crystal-holder is of prime importance, as many 40 meter crystals refuse to oscillate in any holder except the particular type in which the crystal was designel to o;erate. Because a holder
works well with an no- or lio-meter plate does not indicate that a fo-meter crystal will function likewise.

A to-meter crystal reguires a very light top electrode with mu additional pressure spring for maximum output: spring pressure is not necessary for stability unless the transmitter is subject to severe vibration. The faces of a to-meter crystal are practically blat, and if the surfaces of the holder electrodes are truly plane, the top electrode will mot tend to "rock" on the crystal and cause frefuency instability,
before placing a 40 -meter erystal in its holder, the edges of the crystal should be carefully examined for nicks and imperfections. A nick almost invisible to the naked eye will sometimes have an appreciable effect on the output. If the edges show that they have been chipped, the crystal should be returned to the mandfacturer for refinishing.

Grinding Quariz-Crystals

- Amateurs who have had no previous grinding experience should first attempt grinding a ${ }^{\circ}$-out 80 - or 160 -meter crystal. Althongh it reguires a much longer time to grind ant X-cut after one has become proficient. X-cuts must be finished with a greater degree of precision and are therefore best avoided by the novice for the first attempt.

The necessary material and equipment required for grinding with a minmum of labor and difficulty are: a micrometer, several pieces of heavy plate glass, an oil can filled with water, a pan of clean water, several clean towels, a bottle of lndia ink, a test oscillator, and a frequency measuring device such as a calihrated receiver, and lastly, small quantities of No. 150, No. 280 and No. 400 carborumdum. The latter grain is used only in finishing V -cut plates, and need not he procured if only Y-cuts are to be ground. Water is used in preference to kerosene, because it is necessary to remove all oily traces eaclu time the crystal is tested in the oscillator. A one-half inch micrometer. reading to ten-thomsandths, is best adapted for thickness measurements, hut a one-inch instrument, reading to thousandths, will measure close enough for Y-cut plates by estimating to tett-tiousandtles and with care can even be used for the lower-frequency X-cuts if mothing better is available. It is advantageous to grind down the movable face of the micrometer on al wheel so that the it resembles a cone with a rouncled point. rather than the end of a cylinder. This enables one to measure a point on a crystal instead of a section of the crystal.

The test oscillator must be equipped with a plate milliammeter, a dummy load which can be cut out of the circuit, and plug-in
inductances so that either low or high "C" can the used in the tank for test purposes. An Rlo meter in series with the crystal is untional.

Assmming that one has the necessary materials and a 160 or 80 -tneter Y-cut blank which it is desited to convert into a grood fimished crystal, it is first necessary to fimish one side that, to use as the reierence side (sonte blaks already have the reference side finished and markeds. This can be donce by rabhing one side aromad with even pressure on a piece of plate glass that has been smeared with No. lino cartorumdum grain and water until India ink marks which have heen placed on the tip of each corner disappear. "The crystal is then rinsed in the pan of water and rubhed on another piece of plate glass smeared with No. 280 carborondum and water for half a minute or longer-care being taken to see that the pressure is fairly even all over the crystal and that the grinding is being done on the same side. The crystal is then wasloed and dried. and one corner of the finished side marked with ludia ink. All sulosecpuent grinding is done on the other side. Using

> A piece of raw quartz and several unfinished slabs from which oscillating crystal blanks are cut. The best quartz is mined in Brazil.

a finer grain of abrasive for finishing l"-cut crystals is not advisable, because it does not increase the output, but only aggravates the tendency toward twin-freguency peaks. By using a medium gratin of carborundum for finishing and by giving the right contour to the side that is not yer finished, the second peak can be eliminated.

The crystal shouid now he roughened down with No, 1:0 grain carborundum until it is .002 or .003 inch thicker than the calculated finished thickness, which will be
very close to 029 for 3500 KC and 0435 for ${ }_{17500} \mathrm{KC}$. The finisled thickness of a crystal of either cut can he predetermined for a given frequency within fair!y close limits by applying the following formula:

$$
\begin{aligned}
& \mathrm{X} \text {-cut } \mathrm{T}=\frac{112.6}{\mathrm{~F}} \\
& \text { Y-cut } \mathrm{T}=\frac{\tilde{\ddots}}{\mathrm{F}}
\end{aligned}
$$

Where T is the thickness in incies, and ${ }^{\circ}$, the ireguency in kilocycles.
The next step is to finish the crystal down with No. 280 abrasive to about $.000+$ inch greater than the calculated thickness (.001 for a 160 meter plate), frequent micrometer readings lieing taken to presert any high or low spots from appearing. The crystal is then put in the oscillator. If its surfaces are reasonably parallel, it should now oscillate. If it oscillates at but one frequency as the tank tuning cunclenser is varied, it is a most unusual I^{2}-cut crystal and is not acting in characteristic fashion. Making certain that it is oncillating at the low-frequency peak, the frequency should be checked to ascertain how closely it is agrecing with the formula.

The second peak, which is the highest in frequency, can be eliminated by gising the face now being gromed a convex contour. The degree of convexity necessary to give one-frepuency operation will vary with different crystals. but in every case the secoud peak will disappear before the process is carried far enough to affect the output to any great extent. In fact. a moderate curvature will actually increase the output silghtly over tlat of a Y-cut crystal that has been ground with both sides perfectly flat.

At this peint the corners should be slighty rounded and the edfes finished up. It is best to finish these before phtting the finat touches on the crystal as a preliminary to grinding the crystal to an exact ireguency, because grinding on the edges will sometimes affect the characteristics of the plate. Grinding on the edges has a minar effect on the frequency, and also will sonetimes cause a crystal tlat checks at one frefuency to develop a scoond peak.

The optimum amount of convexity can only be determined for each particular crystal by trial, hint it is mot critical as long as nio spot is higher than the center of the crystal. A contour that has been found suitabie for most 80 meter crystals of the Y-cut type is as followes:

Eitges between corner . 0001 inch lower than center: corners .0003 to .0005 inch
lower than center. For 160 meter crystals the convexity can he slightly greater if necessars to eliminate twin peaks. A piece of glass that has been sliglitly worn down facilitates grinding a uniform conven contour, but until one has used a piece of glass for roughing-down several crystals it will not be hollowed out sufficiently for the requiremeats. If the glass is nearls flat, pressure on each of the edges and cornersone at a time-will be necessary to get the desired curvature.

A final check for twin peaks is made by using a tank coil in the test oscillator which requires slightly more capacity to tune to resonance than will ordinarily be required in the transmitter uscillator. No attempt should be made to keep the crystal from oscillating at two fiequencies with an extremely high-C tank, because almost any crystal will show a second peak if the oscillator is made very high-C. If the "mediumC" tank shows two frequencies. it will be necessary to grind down the tips and the corners until the second one disappears. A solderitig iron should then be held near the crystal as the beat note is monitored in the receiver, until the erystal frequency creeps 10 or i. kilocycles. The shift should occur gradually without sutden "jumps." The tank is then tumed through resonance for only one irequency: if two appear, the tips of the corners of ti:e plate must be ground further. V'ry few plates will be found to requirc such drastic treatment. the slight convexity usually: heing sufficient.
To fest for outpurt and freedom of oscillation, the original low-C tank coil is employed. It is helpitul to have a crystal that is kucmen to be a good oscillator for comparative purposes. A low value of minimum plate rurrent is the criterion for freedom of oscillation. A low minimura plate current means nothing. however, if the crestal becomes unstable or groes out of oscillation the moment a load is coupled to the tank. The uscillator must stand a reasonable amount of loading without going out of oscillation: in addlition, must ber stable when loaded.

If the finished crystal gives good output and has only one frequency response, one is then justifed in attempting to grind an X-cut plate.

Grinding an X-cut Plate

- The reference side of an X゙-cut blank is ground down with No. 150 and No. 280 carlorrudum grain in the same manuer as a Y'-cul blank. It is then rubbed around in a circuiar motion for a half minute on a new piece of glass which is covered witi No. 400 abrasive and water. It is imperative to use a now piece of glass for finishing the reference side of an X-cut blank, becanse maximume output will not be obtained if either side has the sligitest amount of a convex
curvature. One exception can be made: some manufacturers grind their X-cut plates with a special contour which calls for sections of the crystal being very slightly convex, but an amateur inexperienced in grinding will do well to keep away from such special trick contours. The output of an X-cut plate can be boosted by merely grinding it slightly concave on the finishing side. Paradoxically, while Y-cut plates have twin frequencies when the curvature is not great enough, X-cut plates exhihit double frequencies only when the curvature is too great. It is necessary, however, to remove a large section out of the center of an X-cut crystal before the second frequency appears, innless a very high-C tank is used in the oscillator. Grinding the center of an 80 incter X-cit plate .0001 or .0002 inch low will boost the ontput without encounaging a second frequency.

After inking the reference side, the blank is roughed down to about .0.3 inch over the calculated fimished thickness with No. 150 carborundum, and then down a little further with No. 280 grain. The final grinding is clone on a little-used piece of glass, covered with No. 400 grain and water. Enough pressure is exerted in the center of the crystal with one finger to bring the center .0001 or 000% inch lower than the edges and corners. No spot should be lower than the center, otherwise the output will be disappointing. A new piece of glass should he used for finishing each X-cut crystal. The glass is then suitable for grinding Y-cut plates or roughing-down X-cut plates. Because 160 meter X-cut crystals are ton thick to be hollowed out easily by exerting pressure in the center, even if new pieces of plate grass are used, it is necessary in finish them on a special piece of convex glass.

Finishing the edges on X-cut plates is of greater importance than on Y-ctits. An X-cut plate with mfinished eiges may even refuse to oscillate unless the edges and corners do not vary over .0001 inch, or imless about .000 i inch has been hollowed out of the center (which is sufficient to cause double response frequencies). A crystal with variations greater than . 0001 inch between the different corners and edges may give full nutput after the edges are finished. It is important that every minute imperfection be removed from the erlges when finishing X-cut plates. X-cut crystals that refuse to give full output can sometimes be made to oscillate more frecly by grinding the edges so that the cross-section of the crystal is reduced: that is, to grind so that the dimensions of the crystal along the other axes are changed.

To finish the edges of crystals of either cut. all nicks are first ground out by using the same grade of abrasive as used to finish the faces, but applying less water. To complete the work. the corner and edges are then slightly rounded off.

The India ink reference mark can be re-
moved with a moistened, soft rubber eraser. The plate should be washed with soap and warm water to remove any rubber gum which may adhere to the unpolished surfaces. X-cut crystals can be polished to high transparency with rouge; however, the output will not be increased over that which is obtained by grinding with a high grade abrasive.

Mechanical Design and Construction

- The factors entering into the mechanical design and construction of an amateur transmitter are those which govern the efficiency and the results obtainable from a circuit specification. It is important, therefore, that a great deal of consideration be given to the constructional details. Practical notes are given herewith.

Before constructing a transmitter, all of the various parts shouk be laid out on a board (commonly called a "breadboard") or chassis and moved about until all of the RF leads are as short and direct as it is possible to make them. It is not necessary to strive for a symmetrical layout in order to improve the appearance oo an onlooker: short and direct leads are important if the transmitter is to operate efficiently.

It matters little what true of base the apparatus is mounter on. I metal chassis is preferred by some comstructurs. while others preier wood: however, the metal is a little more difficult to work. It the chassis is of metal, aluminum or conper hould be used, especially if radio-fremuencies are present. Cadmium or copper plating on steel is often satisfactory.
Boards have certain losses on account of most soft woods being puor diclectrics, which absorb energy in strong electro-static fields, such as those surrounding a transmitter stage. The losses may be minimized by selecting dry hardwood for the base.

An excellent breadboard base can be made of ordinary white pine covered with a thin shect of No. 20 or 30 gauge aluminum, the sheet being neatly fastened by bending over the colges and tacking the underside down with small wire brads. This type of base allows condensers and coils to be mounted with ordinary wood screws. The metal acts as a shield and also keeps the capacity-toground constant from the various parts of the transmitter. Shielding is a necessary requirement, although it represents a smail loss. Natural shielding: that is, the greatest permissible space between stages, is better than metal shiclds.

Since link coupling has been universally accepted as being a superior method for interlinking stages. there is now no valid reason for placing more than one stage on a single breadboard, as coupling links can be lengthened ipward to ten feet. If transmitter stages closely adjoin each other, it is
necessary to resort to interstage shielding to prevent icedback. Complete shielding, as is specified in receiver construction, is not a necessary requirement in transmitter design; a clouble baffle separated by at least one-fourth inch and six inches high will suthice in practically all cases. - The plates must not touch except where they are supportes to the common ground comnection, or screwed to the metal chassis.

Recently a movement has been introduced to more or less standardize the size of breadboards and chassis. This practice ought to be encouraged by all amateurs, as it facilitates the quick exchange and re-placement of component parts. In general, chassis sizes more or less follow the standard rack construction specifications originally adopted by the liell system. The front panel of a standard rack is 19 inches wide and is some even multiple oi one and three-puarter inches high. Three common sizes are: seven, eight and three-quarters, and ter: and onelualf inches bigh.

The breadboards or chassis that are mounted ont or behind these iront panels camont be wider than 17 inches, due to the clearance limits between the side members of the standard rack. Most classis are eight and one-half to twelve inches deep. No movement toward standardizing the depth has been started on account of the limitations in the strength of the supporting structure.

A neat way to lay out a transmitter is to obtain several pieces of five-ply vencer, eight and one-hali inches square, and ther: covering these pieces with No. 28 gauge aluminum. Euch breadboards are of the correct size ior a single low-power stage. and each can he ruickly removed from the completed transmitter when rehuilding or when changes are necessary. For standard rack monnting two of these small breadboards may be mounted behind each pancl. A plug and jack arrangement conveniently allors almost any stage to be taken out and replaced with another, especially in transnitters having a t^{7} oscillator, Jones Exciter. or electron-coupled oscillator stage. Here the huffer and doubler stages are identical and use type 210 tubes: lience, a 50 watt stage may replace any of the push-pull 210 s.

Nothing in the transmitter should be nailed down. Each coil, condenser, etc., need only be fastened firmly to some support ; however, it is a prerequisite that all the apparatus be placed in such a manner as to permit quick replacement should any part buris out or fail.

Not even a radio engineer can lay out a radio transmitter with the hopes of expecting it to operate periectly the first time it is tested. Often it is found that there is insufficient excitaticn to some particular stage.
requiring, of course, the addition of another buffer stage; this is a relatively simple problem if each stage is mounted on its own little board. Difficalty experienced from parasitic oscillation cati be more easily corrected when individual breadboards are used.

When laying out a stage or a broadboard or chassis. the grid coil must be placed as far from the plate coi; as possible-at least five times the diameter of the plate coil away from it. If the two coils are in close proximity. difficulties may be encountered in neutralizing the stage. In some cases, especially in high-power stages, it is desirable to orient the coils so that they are at right angles to each other so that the fields around the two coils will lave the minimum of interaction between them.

Tank coils for low power stages may be wound on receiving-type plug-in coil forms. providing that they are made of ceramic or isulantite insulating materials. Most amateurs prefer five prong plug-in coils to simplify coil change and exchange between stages.

Isolantite sockets for tubes and coil forms are clesirable. Some of the newer wafertype suckets are satisfactory for stages operaiting with less than roo volts plate voltage. The latest type milget condensers give splendid results when used it the grid and plate circuit of low power stages. Good practice dictates that a closed-circuit jack be placed in every grid and plate circuit, even though some meters may always be in the circuit. When the sage is removed from the transmitter for test or rebuilding, it is always convenient to he able to quickly check the grid and plate current while the stage is being tested on the workbencl.

C.W. Tone Quality on 5 and 10 Meters

- The rough notes emitted by 5 and 10 meter c-w transmitters can usually be traced to insufficient plate supply filter in the crystal oscillator stage. The pure DC note oftained when monitoring an 80 meter crystal oscillator may sound anything but pure DC when several frequency multiplier stages are added to obtain output on 5 or 10 meters. Each frequency multiplier doubles not only the RF frequency, but also the percentage of AC ripple modulation, so that this effect often becomes quite noticcable in the ultra-high frequency range. The cure lies in the use of two or more sections of filter in the plate supply to the crystal oscillator, this filter eonsisting of at least two large filter chokes and several condensers.

Coil Winding Charts for Copper Tubing Tank Coils

TIHE values given are a close approximation to your particular requirements in each case, but exact accuracy depends on the circuit arrangement and the length of the leads in the plate circuit of the tube to be used. The two factors mentioned become more important as the frequency increases. Long leads necessitate fewer turns on the coil, but the leads should be long enough to keep the tank condenser separated from the coil by at least the coil diameter.

All the values in the table are for the tubes specified when used as single-ended amplifiers with the neutralization tap near the center of the ccil. If placed in the center of the coil, this tap will automatically give fixed neutralization on all bands. For pushpull amplifiers, decrease the number of turns by 25% for any given tube. The reason for this decrease will be apparent upon close comparison of single-ended and push-pull circuits. Just twice as much tube capacity is shunted across the tank in push-pull circuits as when single-ended circuits are used.

In low-C tanks, such as these, the voltage rating of the condenser should be equal to four times the plate voltage on the tube for single-section types, and twice the plate voltage (each section) for split-stator models.
CHART NO 1. For Coils Tuned With Split-Stator Condenser and Used in Circuits Employing Lew-C Tubes, such as 150T, 50T, 354, 852, 800, 825, RKI8.

BAND	2" Dia. Coil	3"1 Dia. Coil	4" Dia. Coil	5" Dia. Coil	$6^{\prime \prime}$ Dia. Coil	Size of Tuning Condenser
160	N.S.	N.S.	N.S.	N.S.	80 Turns $36^{\prime \prime}$ Long "/4" Tubing	250 Mmf . Each Section for Full Band Coverage.
80	N.S.	N.S.	$\begin{aligned} & 60 \text { Turns } \\ & 20 \text { "' Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 50 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Lond } \\ & 1 / 4 \text { Tubing } \end{aligned}$	$\begin{aligned} & 40 \text { Turns } \\ & 18^{\prime \prime} \text { Long } \\ & \text { s/0" Tubing } \end{aligned}$	100 Mmf . Each Section for Full Band Coverage.
40	N.S.	$\begin{aligned} & 46 \text { Turns } \\ & 16 \text { "' Long } \\ & \text { n/4" Tubing } \end{aligned}$	$\begin{aligned} & 34 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & \text { 1/4" Tubing } \end{aligned}$	$\begin{aligned} & 28 \text { Turns } \\ & 12 \text { ", Long } \\ & 1 / 4=\text { Tubing } \end{aligned}$	$\begin{aligned} & 22 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / \text { " }^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf . Each Section.
20	$\begin{aligned} & 32 \text { Turns } \\ & 15 \text {," Lond } \\ & 1 / 4^{\prime \prime} \text { Tubinil } \end{aligned}$	$\begin{aligned} & 20 \text { Turns } \\ & 12, \prime \prime \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 14 \text { Turns } \\ & 12, \text { "Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf . Each Section.
10	$\begin{gathered} 8 \text { Turns } \\ 4^{\prime \prime \prime} \text { Lony } \\ 1^{\prime \prime} \text { " Yubin! } \end{gathered}$	$\begin{gathered} 6 \text { Turns } \\ 4^{\prime \prime \prime} \text { Long } \\ y^{\prime \prime} \text { Tubing } \end{gathered}$	$\begin{gathered} 4 \text { Turns } \\ 4^{\prime \prime \prime} \text { Long } \\ 1^{\prime \prime} \text { Tuhing } \end{gathered}$	$\begin{aligned} & 4 \text { Turns } \\ & 4^{\prime \prime \prime} \text { Lond } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{gathered} 3 \text { Turns } \\ 4^{\prime \prime \prime} \text { Long } \\ 1^{\prime \prime} \text { Tubing } \end{gathered}$	35 Mmf. Each Section. N.S. Indicates: NOT SATISFACTORY

CHART NO 2. For Coils Tuned With Single-Section Condenser and Used ir Circuits Employing Low-C Tubes, such as $1501,50 \mathrm{~T}, 354,852,800,825$, RKI 8.

BAND	2" Dia. Coil	$3^{\prime \prime}$ Dia. Coil	$4^{\prime \prime}$ Dia. Coll	5" Dia. Coil	$6^{\prime \prime}$ Dia. Coil	Size of Tuning Condenser
160	N.S.	N.S.	N.S.	N.S.	$\begin{aligned} & 60 \text { Turms } \\ & 36^{\prime \prime \prime} \text { Long } \\ & \text { 3/", Tubing } \end{aligned}$	100 Mmf .
80	N.S.	N.S.	$\begin{aligned} & 50 \text { Turns } \\ & 20^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Yubing } \end{aligned}$	$\begin{aligned} & 40 \text { Turns } \\ & 18^{\prime \prime \prime} \text { " Tong } \\ & 1 / 4 \text { uubing } \end{aligned}$	$\begin{aligned} & 30 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Long } \\ & 3 / s^{\prime \prime} \text { Tubing } \end{aligned}$	100 Mmf. For Full Band Coverade.
40	N.S.	$\begin{aligned} & 36 \text { Turns } \\ & 14^{\prime \prime} \text { Long } \\ & 1^{\prime \prime} \text { ' Tubing } \end{aligned}$	$\begin{aligned} & 24 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / 4 \prime \text { " Tubing } \end{aligned}$	$\begin{aligned} & 20 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 12{ }^{\prime \prime} \text { Lonng } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf .
20	$\begin{aligned} & 22 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Yubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime \prime} \text { Yubing } \end{aligned}$	$\begin{aligned} & 12 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 12{ }^{\prime \prime} \text { Long } \\ & 1 / \text { " }^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 8 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf .
10	$\begin{gathered} 6 \text { Yurns } \\ 5 \text { ", Long } \\ x y^{\prime \prime} \text { Tubing } \end{gathered}$	$\begin{gathered} 4 \text { Yurns } \\ 5^{\prime \prime \prime} \text { Long } \\ 1_{4}^{\prime \prime \prime} \text { Yubing } \\ \hline \end{gathered}$	$\begin{gathered} 4 \text { Turns } \\ 5^{\prime \prime \prime} \text { Lonnd } \\ 1 / 4^{\prime \prime} \text { Yubing } \end{gathered}$	$\begin{aligned} & 4 \text { Turns } \\ & 5^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 2 \text { Yuns } \\ & 5^{\prime \prime} \text { "ong } \\ & \text { x/4" Yubing } \\ & \hline \end{aligned}$	35 Mmf .

CHART NO. 3. For Coils Tuned With Split-Statar Condenser and Used in Circuits Employin's High-C Tubes, Such as 50 Watters, 210, 204A, 849, 212D, 830, 46, RK20.

BAND	2" Dia. Coil	3" Dia. Coi!	$44^{\prime \prime}$ Dia. Coil	5 5" Dia. Coil	$6^{\prime \prime}$ Ulia. Coii	Size of Tulling Condenser
160	N.S.	N.S.	N.S.	N.S.	$\begin{aligned} & 72 \text { Turns } \\ & 36^{\prime \prime} \text { Lonn } \\ & \text { a/s" Tubing } \end{aligned}$	250 Mmf . Each Section for Full Band Coverage.
80	N.S.	N.S.	$\begin{aligned} & 54 \text { Turns } \\ & 16^{\prime \prime \prime} \text { Long } \\ & 1^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 46 \text { Turns } \\ & 18^{\prime \prime} \text { Long } \\ & 1 / /^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 36 \text { Yurns } \\ & 18^{\prime \prime} \text { "Long } \\ & 3 \text { "/ Yubing } \\ & \hline \end{aligned}$	100 Mmf . Each Section for Full Band Coverage.
40	N.S.	$\begin{aligned} & 36 \text { Tums } \\ & 14^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 24 \text { Turns } \\ & 10, " \text { Long } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	$\begin{aligned} & 20 \text { Turns } \\ & 10^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 10, \prime \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf . Each Section.
20	$\begin{aligned} & 24 \text { Turns } \\ & 10^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 16 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Lond } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 12 \text { Tums } \\ & 10^{\prime \prime} \text { Lond } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Lono } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{gathered} 8 \text { Turns } \\ 10^{\prime \prime \prime} \text { Long } \\ 1 / 4^{\prime \prime} \text { Tubbing } \end{gathered}$	35 Mmf . Each Section.
10	$\begin{gathered} 8 \text { Turns } \\ 5^{\prime \prime} \text { Long } \\ \text { s" Tubing } \\ \hline \end{gathered}$	$\begin{gathered} 6 \text { Yums } \\ 5, \prime \text { Long } \\ 1 / 4 " \text { Tubing } \end{gathered}$	$\begin{aligned} & 4 \text { Tums } \\ & 5^{\prime \prime} \text { Long } \\ & x 4^{\prime \prime} \text { Kubing } \end{aligned}$	$\begin{aligned} & 4 \text { Tums } \\ & 5 \text { "' Long } \\ & \text { x/4" Tubing } \end{aligned}$	$\begin{gathered} 3 \text { Yurns } \\ 5^{\prime \prime} \text { Long } \\ y_{6}^{\prime \prime} \text { Tubing } \end{gathered}$	35 Mmf . Each Section.

CHART NO. 4. For Coils Tuned With Single-Section Condenser and Used in Circuits Employine High-C Tubes, Such as 50 Watters, 210. 204A, 849. 212D, 830, 46, RK20.

BAND	2'" Dia. Con	3" Dia. Coil	4" Dia. Coil	5" Dia. Cail	$6^{\prime \prime}$ Dia. Coil	Size of Tuning Condenser
160	N.S.	N.S.	N.S.	N.S.	60 Tums 36" Long 8/4" Tubing	100 Mmf .
80	N.S.	N.S.	50 Turns 20" Long 1/4" Tubing	$\begin{aligned} & 40 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubinu } \end{aligned}$	$\begin{aligned} & 30 \text { Turns } \\ & 18^{\prime \prime \prime} \text { Lonn } \\ & \text { a/k" Tubing } \end{aligned}$	100 Mmf . For Full Band Coverage.
40	N.S.	$\begin{aligned} & 32 \text { Turrs } \\ & 14^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tuhing } \end{aligned}$	$\begin{aligned} & 22 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	$\begin{aligned} & 18 \text { Turns } \\ & 12^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubting } \end{aligned}$	$\begin{aligned} & 14 \text { Turns } \\ & 12^{\prime \prime} \text { Long } \\ & 1 / 3^{\prime \prime} \text { Tubing } \end{aligned}$	35 Mmf .
20	$\begin{aligned} & 18 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 14 \text { Turns } \\ & 100^{\prime \prime} \text { Lomg } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 10 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 2^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{aligned} & 8 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubine } \end{aligned}$	$\begin{aligned} & 6 \text { Turns } \\ & 10^{\prime \prime \prime} \text { Lono } \\ & 1 / 4 " \text { Tubing } \end{aligned}$	35 Mmf .
10	$\begin{aligned} & 4 \text { Turns } \\ & 5^{\prime \prime} \text { Long } \\ & 1 / 4^{\prime \prime} \text { Tubing } \end{aligned}$	$\begin{gathered} 4 \text { Turns } \\ 5^{\prime \prime} \text { "ung } \\ \text { 1/4" Tuning } \end{gathered}$	$\begin{gathered} 4 \text { Turns } \\ 5^{\prime \prime} \text { Long } \\ 1 / 4^{\prime \prime} \text { Tubing } \end{gathered}$	$\begin{aligned} & 4 \text { Turns } \\ & 5 \text { "" Long } \\ & \text { 1/4" Tubing } \end{aligned}$	$\begin{gathered} 2 \text { Turns } \\ 5^{\prime \prime} \text { Lond } \\ 1 / 4 \text { " Tubing } \end{gathered}$	35 Mmf .

Coil Charf for $11 / 2$-in. and $21 / 2$-in. Dia. Coil Forms.

BAND	$\begin{aligned} & 11 / \text { Noil Dia. }^{\prime \prime} \\ & \text { Coil Form } \end{aligned}$	Size of Tuning Condenser	BAND	21/2" dia. Coil Form	Size of Turing Condenser	REMARKS
160	Not Satisfactory		160	46 Turns No. 16 DUC. Close wound	100 MMF. or larger	
80	35 Turns No. 22 DCC. Close wound	100 MMF .	80	23 Turns No. 16 DCC. Spaced one dia.	100 MMF .	here is for coils that are tuned with single-sec
40	$\begin{aligned} & 19 \text { to } 21 \text { Turns } \\ & \text { No. } 16 \text { DCC } \\ & \text { Spaced one dia. } \end{aligned}$	100 MMF .	40	16 Turns No. 16 DCC. Spaced one dia.	25-35 MMF.	tion variable condensers. See Chart below for
20	11 to 13 Turns No. 16 DCC. Spaced one dia.	25.35 MMF.	20	8 to 10 Turns No. 16 DEC. Spaced one dia.	25-35 MMF.	split-stator variable condensers are used.
10	5 to 6 Turns No. 16 DCC. Snaced one dia.	25-35 MMF.	10	5 Turms No. 16 DLC. sraced one dia.	25-35 MMF.	

Coil Winding Chart for $11 / 2$-in. and $21 / 2$-in. Dia. Coil Forms and Split-Stator V.C.

BAND	11/3" Dia. Coill Form	Size of Tuning Cundenser	BAND	$2^{1 / 2 / 2 "}$ dia. Coil Form	Size of Tuning Condenser	
160	Not Satisfactory		160	59 Turns No. 16 Enameled Close wound. Tap at center.	\square	The standard Hammarlund 35 mmf . Each section salit-stator double-spacec midoet variable condensers are satisfactory. The Cardwell Trim-Air 100 mmf midgets can also be used by merely removing alternate plates from rotor and stator sections and ganging two of these condensers together. The capacity will then be 25 mmf . per section.
80	Not Satisfactory		80	55 to 57 Turns No. 16 DCC. Close wound. Tap at oenter.	35 MMF. Each Section	
40	35 Turns No. 16 DCC. Close wound. Tap at center.	35 MMF. Each Section	40	29 Turns No. 14 Enamelec Space wound. To cover 3 inches	35 MMF. Each Section	
20	19 Turns No. 16 DCC. Spaced one dia. Tap at center.	35 MMF. Ear:h Section	20	15 Turns No. 14 Enameled Spaced ente dia. Tap at center.	35 MMF. Each Section	

Chapter 9

Transmitter Frequency Control

All radio transmitters operate on assigned frequencies. or within certain bands of irequencies. For this reason some method must be provided iur accurately controlling the irequency of uperation. The most practical method for securing frequency control is by means of guartz crrestal oscillators lecause the irequency of oscillation is accurately deterraned by the physical size of the quartz plate.

An c.riter can be defined as a crystal controlied oscillator acmlined with such frequency multipliers as are meeded to gencrate the desired operating frequency. Many vacuum tube combinations can be used for this purpose: the numerons block diagrams in the pages that follow show practically all of the modern tule circuit arrangenents for the radio-irellency portion of shortwave transmitters.

In this Chapter the reader will find, for the first time. a number of new exciter circuits which have proved more versatile and efficient than other'; previons'y slown. Of particular interest s the new Jones MultiBand Crystal Oscillator, which operates on two or mure hands from a single crystal, anll with only one tuning circuit.

Exciter Problems

- The cssential reyuirements of crystal uscillators and frequency multipliers are: (1) stability of oscillation: (2) ample power output : (3) proper degree of frequency control. Good stability cannct be expected from some types of circrits, particularly when the oscillator is keyed for c.w. teiegraphy. Some exciters provide too little or 100 much power octput ; frequency drift is exsessive in some oscillators because of temperature change. Frequency drift is also caused by RF overload of the guartz crystal in such circuits where poor design does not permit of sufficient output without excceding the safe recommended plate voltages for the tubes. A certain amount of grid drive is needed for correct operation of frequency doublers or low power buffer stages, yet it would be poor practice to c.perate a stage with more dive than is meeded. Conversely, if the oscillator or exciter does not deliver a sufficient amount of grid driving power, poor design is again ir evidence.

A crystal exciter usually consists of the crystal oscillator and its associated lowpower buffer or irequency doubler stages. These stages can be grouped into a common unit so that the exciter will be an integral part of any transmitter.

If a transmitter is to be operated on one band only, such as 960 meters, there is no need for an elaborate exciter; on the other hand, multi-band operation calls for an exciter with the proper number of iregnency doubler stages.

CRYSTAL OSCILGATJR FOR RADIO-THAMSMITTEA
FIG. 1.

47 Fentode Crystal Oscillator, Widely Used in One-Band Transmitters.

An exciter for a single-band transmitter differs from one which operates on several banls, where the cutput from the oscillator and also from each succeeding frequency doubler stage slould be effectively the same in ralue. Effective value means that the DC grid current and bias voltage should be the same on all bands of the stage that is driven by the exciter. Thus it is seen that an exciter must often deliver more ottput on 10 and 20 meters than on 40 or 30 meters, in order to compensate for the tuned circuit losses at the higher frequencies corresponding to 10 and 20 meters. A low power crystal oscillato is adequate for a one-band transmitter because the required output can then be secured from a buffer or powergaining cloubler. Typical examples of such exciters are the $R K-25-35$ E.rciter, or the $6 L 6 G$ - Oscillator- $\delta L 6 G-P u s h-P u s h-D o u b l e r$, described elsewhere in this Chatter.

A generotis varicty of entirely new crystal oscillators and exciters is shown for the first time in these pages. Those who have experienced diflictly with the difi tube will find new circuits here which have been especially designed to overcome those difticulties. The new exciters with three oAd tubes, or three 6Litig tubes, are ideal for all-band operation because they will not be obsoleted when clanges are made in the transmitter. These exciters deliver output on three bands without coil changing and the coils are easier to construct than those previously shown.

The increasing interest in 5 and 10 meter operation has brouglit with it the development of a special Jones 5 Meter lixciter with a $4!2$ oscillator and three bids irepuency dutabler stages. An 80 meter crystal in the oscillator stage of this exciter will furnish outputs on $80,40,20$ and 10 meters; likewise, a to meter crystal will give good output on 5 meters. A complete description of the new device is found in tite pages that follow.

Protection of Quartz Crystals

- Quartz crystals will fracture if they are subjecterl to excessive RI current. The crystal RIF current is very high in some circuits, particularl! when rolatively high plate potential is applied. Sone tuhes also provile more crystal current than others. Circuits within circuits often produce parasitic or surge voltages which may fracture the guartz plate. Excessive current in regenerative crystal oscillator circuits can be eliminated by comecting a small resistance in series with the crystal. A 6.3 volt pilot lamp, such as those used for illuminatine ratio receiver dials, makes a satisfactory resistance and further provides a visual indication of excessive current.

An experimental bilf erystal ascillator produced a sudden rise in crystal current when the plate tuniag capacities were increased beyond the point of normal oscillation. The plate circuit power output was negligible at this setting, because the crystal oscillator circuit consisted of a network of capacities which caused the crystal current to rise above 100 milliamperes. Th this same oscillator the crystal current was less than 50 milliamperes at the point of normal oscillation and the highest plate circuit output. The problem was solved by connecting a 6.: volt 'amp in series with the crystal, wheh had the effect of dampingout the parasitic oscillation. This series resistance can have a value as high as 100 ohus without materially reftucing the efficiency of most types of crystal oscillator circuits.

The 53-2A3 Exciter

- The type 53 tuhe has long hecn popular
in crystal oscillator circuits because of its simplicity and relatively high output. The 6 A 6 tube, which is the 6.3 volt equivalent of the 0.3 , is a somewhat botter tube than the $5: 3$ because the $6: 16$ has a better heater construction and is less subject to tube failure. These tuhes are suitable for oscillator, doublers or push-pull circuits. Fig. 2 shows a biA6 (or $5: 3$ in a conventional push-pull oscillator circuit with an output of from 5 (1) 10 watts.

FIG. 2.
AA6 (or 53) Push-Pull Oscillator

The 53 or didn first found application as an oscillator in the "Siamose Excitor."

CONVENTIONAL LOW OUTPUT TRIODE TR TWIN TRIODE
FIG. 3.

The grid-leak hias resistor R (Fig. :3) provicles a rather matisfactory means for supplying has to the crystal circuit because the crystal RF current is very high and the thite hat a pronominced tendency to "run wild" when the plate voltage was increased. The resulting output was quite low, and the circuit is mot widely used becianse of these disadvantages.

It was later fuuncl ly Jones tiat the 53 or dids could he made to function with entire satisfaction in a crystal oscillator and doubler circuit. The apparent disadvantages of the "Siamese Exciter" were overcone by using cathode bias and a small RF choke across the quartz crystal. The circuit is shown in lig. t. R is the cathode resistor (400 ohms). The RF choke is a conventional small receiver type short-wave chokr.

FIG. 4.
Bias Circuit of the Original Jones 53-6A6
Harmonic Oscillator, or Exciter. High Output. Low Crystal R-F Current.

JONES GRYSTAL HSCILLATGR-DOUBLER
FIG. 5.
lig. E shows the complete cirenit of the widely-used Jones 53 IIarmonic Oscillator. One triode section of the 5.3 (or (adi) acts as a crystal oscillator with cathode bias. which automaticalle holds the crystal RF current to a moderately low value for plate
can he delivered to a succeeding stage by means of either capacitive or link coupling.

A complete exciter unit with nis or 6.46 uscillator, capacitivety conpled in a $2 . \mathrm{A} 3$ buffer or amplitier stage. is shown in Fig. 6.

The output irom the $\because \mathrm{A} 3$ stacre is between eo and ig: watts, Pxternal battery bias (-13.5 volts) ran be commected in series with :he ad: grid leak if the osciliator circuit is to be keyed ; the circuit in lig, 6 has a 400 ohm cathorle resistor, whic! provides fixed bias.

FIG. 7.
Jones Regenerative Exciter for all-band operation. R-50,000 ohms.

The 5: or (iAf oscillatur can be operated as a regenerative irwouency dubber, tripler or quadrupler. Sce Dig. 7. The output from this regenerative quadrupler is sufficient to drive a tir or 2A: buffer stage, if care is taken wren tuming adjustments are marle. The crystal oscillator section of the

FIG. 6--53 (6A6)-2A3 Exciter.
potentials as high as $: 30$ volts. The seconsl section of the 5 or didis acts as a frequency doubler, with high bias on the grid developed across a 00,000 olum grid-ieak and a 400 ohm cathode resistor. The two sections of the 53 or 6A6 are capacitively coupled. The output from the oscillator or doubler circuit

53 ur 6.16 should always control the frequency and there nust not be too muc: regeneration in the frequency multipfier section.

The simplest tesi or adjustment of this circuit is to use a single turn of wire and a fi-volt pilot-light as an oscillation indicator. The oscilator stage is frst adjusted
and tuned to approximately the mid-point of its oscillating range and the doubler section is tuned to peak output. When the oscillator is not functioning, the cathode current will be approximately 20 ma.; but in a state of oscillation this current will rise to between 50 and 110 ma. If the doubler section is not employed. its gridleak may be opened to remove the load from the nscillator section. The gritl-leak increases the bias of the harmonic producing triode to a great many times cut-off bias. The 400 -ohm cathode resistor provides a fixud bias to both the triode sections, and also stabilizes it for use on plate vultages of over 300 volts.

CAUTION

- Type 53 tubes must be operated at their full rated heater voltage, otherwise the oscillator output will be greatly decreased; erratic operation and short tube life will also result. The heater voltage should be measured at the tube socket with the aid of an AC voltmeter. Heavy wire should be used for carrying the heater current, particularly when several type 53 tubes are operated in a multi-band exciter. It is better practice to operate the tube heat. ers with just a trifle more voltage than recom. mended; never use less than 2.5 volts. 6A6 tubes (6.3 volt heater) draw only 0.8 amp., as against 2 amps. for the type 53, resulting in lower current drain from the filament transformer.

Note: Other than type 2.13 or 4.5 type tubes can be used in the buffer stage of a Jones Exciter. The following table is of value in determizing the type of tube and method of coupding to give the best results.
Single 45 or 2A3.......Capacitive coupling Single 46 Link coupling Single $8+1$................... Link coupling

FIG. 8.
Jones 53 Exciter and Low Power Amplilier with two 2 A 3 s or 45 s , parallel connected.

Single 801ink coupling Single 865...... Capacitive or Link coupling Single 53 Push-Push Doubler.Link coupling Single 59 Regenerative Doubler

Capacitive compling
Two 45s in Parallel or Push-Pull...... .Capacitive or Link coupling Single 802 Capactive compling

Any of the above combinations will provide sufficient excitation for one or two type 211 tubes, or two 50 T .
 for grid modulation. With (TV^{-}transmitters having a very high power imput to the final amplifier, an additional butior stage should be used. Final amplifiers having two type 211 tubes are best ariven by a pair of 210 : or sols operating with a plate wiltage of at least ro0 volts. A single 210 wr sol operating with roo volts on the plate will give sufficient drive for (IV when the final amplifier tubes are of type 1.00 T . HK:3.al. TB1t or IIFeno.

Coil-Winding Table for Jones 53-2A3 Exciter

NOTE-5-Prong $11 / 2$-in. Dia. Coil Forms Used Throughout.

Band	Oscillator Coil	Doubler Plate Coil	Buffer Plate Coil
$\begin{gathered} 160 \\ \text { Meter } \end{gathered}$	68 turns, No. 22 DSC, close wound on $11 / 2-\mathrm{in}$. dia. form. Winding space occupies 21自in.	NONE	78 turns, No. 22 DSC, close wound on 1 1/2in. dia. form. Winding space occupies $21 / 2=$ in. tap to be taken at cenzer of winding.
$\begin{gathered} 80 \\ \text { Meter } \end{gathered}$	27 turns, No. 22 DSC on $11 / 2-i n$. dia. form. Space wound to cover $11 / 2$-in. winding space.	Same coil as 80 meter oscillator coil for doubling to 80 meters from 160 meter oscillator.	45 turns, No. 12 DSC, close wound on 11 2. in. dia, form, center - tapped. Winding space occupies $17 / 8-\mathrm{in}$.
$\begin{gathered} 40 \\ \text { Meter } \end{gathered}$	13 turns, No. 18 DCC on $11 / 2-\mathrm{in}$. dia. form. Space wound to cover winding space of $11 / 2-\mathrm{in}$.	Same coil as 40 meter oscillator coil for doubling to 40 meters from 80 meter oscillator.	22 iurns. No. 18 DCC on form, centertapped. Wind:ng space occupies 13 - 10 .
$\begin{gathered} 20 \\ \text { Meter } \end{gathered}$	Use 40 meter oscillator coil.	7 turns, No. 18 DCC on $11 / 2-\mathrm{in}$. dia. form. Space wound to cover a winding space of $13 / 8$-in.	12 turns, No. 18 DCC on $11 / 2$ - in. dia. form, centert.apped. Winding space occupies $13 / 4-\mathrm{in}$.

The New Jones MULTI-BAND Oscillator

Fundamental and Harmonic Operation From a Single Tuned Circuit

This Oscillator aperates on tzeo bands (ou more) from a single crystal, by merely changing the oscillator plafe coil.

- Heretufore it las not been possible to opierate a crystal oscillator on any but its iu:ciamental frequency without additional tuned circuits. This new Jones Oscillator ues a single crystal, a 6 L 6 metal tube, an matuned regenerative cathole circuit and a plate coil tured to the desired irequency of operation. Briefly, it will deliver output on 86 meters, for example, with an 80 meter plate coil and an 80 meter crystal; likewise, 40 meter operation is secured by simply plingging a to meter plate coil into the circuit ir: blace of the 80 meter coil. The same crystal operates on both hands. The only change in the circuit adjustment is in tuming of the plate condenser to resonate the circuit at the desired ontput frequency. See Fig. 9.

FIG. 9.
The New Jones Multi-Band Oscillator.

Outputs of from 15 to 25 watts can be abtained on 80 meters, and 15 to 20 watts on to meters, depencing unon the value of screen and plate voltages (without exceeding rormal tube ratings). From 3 to 5 watts can be obtained on 20 meters when the tube act: as a quadrupler, and nearly one-half watt is delivered on the eighth harmonic. This oscillator circuit fumetious most effectizely zuith Ito or 80 meter crustals. A 40 meter crystal, however, will deliver between 5 and 10 watts on 20 meters, more than ample prower for driving another 6 L 6 doubler or quadrupler stage.

From the foregoing it is seen that this oscillator eliminates one doubler stage. There are no critical values of bypass condensers or resistors, and the oscillator will operate with crystals which utherwise do not oscillate easily in other circuits. The crystal RF current in an 80 meter crystal, when the ontput circuit is delivering over 20 watts on 80 meter: will be between 20 and 50 milliamperes. The crystal RF current with the sanne crystal when the output circuit is delivering approximately 20 wafts on 40 meters, will be less than 10 mill:amperes. Most crystals are rated to carry up to 100 milliamperes witheat danger of fracture or frequency drift. It can thus be seen that this :new oscillator places very little strain on the guartz crystals, in spite of the very high RF output.

The cathode circuit has an unntued regenerative system which consists of a .0002: mid. mica fixed condenser and a small 2 mh. Rli choke. The type of RF choke is not important, as slown from tests made with a half dozen varieties of RF choles, there being no difference in the final result. If the ligass condenser is too small, the crystal will not maintain control of oscillarion when operating at harmonics, and the crystal curront will be excessive when operating on the inulamental ircuuency. If the bypass condenser is too large, the outpu: on harmonies will be very low or entirely absent, and the output on the fundamental frequency will be less.

Tlis oscillator circuit calls for the use of a mefal-type filis iuhe. The retal shell must be tied to the cathode at the tuhe socket. This provides a small amount of capacity coupling between the cathode and plate, which is necessary in this circuit. If glass 6 . dig tubes are employed, a small fixed capacity of approximately 5 or 10 mmfels. should be comected between the cathode and plate.
glif metal tubes will also operate when used in this circuit, but the output will be only half that secured from the rolb, without wreatly exceeding the rating oi the tube. Of all the varions types of pentodes used in experimental work, the gLg has given the highest output wit's the least amount of effort in circuit aljustment.

This crystal oscillator with an 80 meter crysial continues to oscillate weakly at so meters, no matter what plate tuned circuit is employed. Oscillation can be heard in a fremency monitor, even when the plate coil is antirely removed from the circuit. or
when the screen voltage is disemnected. As long as a positive potential is applied to either screen or piate, the iundanental crystal oscillator circuit continues to function. If the crystal is remused, no sign of oscillation is found, unless the cathode lyyass condenser is umitted, or if it is thu-low in value, such as 0001 mide. The size oi this condenser can be varied aproximately 25% without affecting the operation of the circuit. The screen of the $6 \mathrm{~L}, \mathrm{f}$ tube can be comnected to the ligh voltage supply through a 5,000 olm 10 watt resistor with a 50,000 olim 2 watt bleeder to ground. If the screen is supplied with over ?20 volts, the screen dissipation will be excessive, resulting in reduced tube life. The screen voltage can be adjusted to the desired value under load if the power supply has a beeder resistor with a sliding tap.

The oscillator can be keyed in the cathote circuit and with a sufficient mumber of buffer or doubler stages the key clicks will not be bothersone. Key clicks can be mininnized be shunting a 3000 to 5000 olm resistor across the key cuntacts in the cathode circuit, allowing the oscillator to continue to function at greatly reduced output. The output will be too low to drive the next stage when the leey is up; however. the crystal does not stop oscillating. with the result that the sudden surge which causes bad key clicks is not present.

Coil Design

The plate coils are wound on standard $11 / 2$ inch plug-in furms. The 40 meter coil has 17 turns of No. 18 enameled wire, spaced over a length of $1 \mathrm{t} / 4$ inches. The 80 meter coil has 35 turns of No. 16 enameled wire. slightly spaced to cover a $11 / 2$ inch winding length. The 160 meter coil has $\tau 0$ turns of No. ${ }_{2} 4$ DSC, chose-wound.

PRECAUTIONARY MEASURES

- AT-cut or low-temperature quartz crystals are recommended for the 6L6 or 6L6G oscillator in order to prevent spurious oscillation in the circuit. Crystals with two peaks of oscillation (two frequencies a few kilocycles apart) should never be used in a regenerative or harmonic crystal oscillator. The 6 L. 6 tube's cathode bypass condenser must sometimes be as large as .0005 mid . in value when the circuit is operated on 80 or 160 meters. Care must be taken to prevent excessive regeneration with consequent self-excited operation not controlled by the quartz crystal itself. The larger value of cathode bypass condenser is a safeguard against excessive regeneration.

High Power Crystal Oscillator

- Lrom 100 to $1: 00$ watts oi output can be ubtained un 0 meters from the regenerative crystal oscillator illustrated below. Cathocle bias and cathode regeneration make this high output possiible, and without uverloading the crystal. The crystal Rl current measures only to milliamperes through an AT-cut crystal ; this current is so low that no frequency drift is enconntered. No external feed-back capacity is needed between the control grid and plate circuit in order to obtain uscillation, because the cathode or filament center-tap $R F$ choke and variable

RK-28 Oscillator 100 to 150 Watts Output on 80 Meters.

condenser arrangement produces the necessary feed-back.

This oscillator will serve as a complete one-tube transmitter, with the key in either the cathode or screen circuit. The screen and suppressor of the RK-28 are tied together and operated with approximately 300 volts on the screen. The 100 mmid . midget variable condenser connected from centertap to ground should be set towards maximum capacity. Too much capacity will reduce the output, and the circuit cannot be properly keyed.

Regenerative Pentode Oscillator

- 'lte performance of nearly any pentorle cres:al oscillator cat he impreved, oscillation can lue stabilized, and up to twice as much ontimet can be secured by mans of heavier plate loading with the circuit improvement here bescribel. Most types oi pentode crystal uscillators often refuse to osciliate when they are more than lightly loaded. The circunt improvement shown in Fig. 13 over. comers this difficulty at the cost of about so cests for two additional parts, a snall RF choke and a mica fixed condenser.

-O IUENTIONAL LOW OUTPUT PENTODE CAYSTAL OS:ILLATOA WITH GAISLEAK GIAS RESISTOR

FIG. 12

FIG. 13
C-. 0001 or .00025 mfd (mica). Cl -Screen By-Pass Condenser.

R-Grid-Leak, 50,000 ohms.
'Ine KF choke in the cathode circuit of the tube, and the .0001 or . 0002 m mfd. bypass conklenser shown in Fig. 1:, produce a serenerative effect which san be compared to a regenerative electron-coupled circuit. This effect can only be realized in a tuned plate circuit in which a tetrode or pentode tube has its screen-grid bepassed to ground. The RI' choke sinuply prevents a short-cir-r-it of the "regenerative" bypass condenser for RF purposes, and its value is not at all critcal. Any jumble-wound or commercial type RF choke is stitable if the winding is beavy enongh to carry tite cathode space current. 200 turns of N_{t}, 32 DSC wire.
jumble-woumd on a $1 / 2 \mathrm{in}$. diameter rod or spool, makes a satisfactory choke.

The KF crystal current is greatly reduced in this circuit, and higler plate voltages can

Typical Crystal Oscillator Circcit
FIG. 14

FIG. 15

FIG. 16

FIG. 17

Complete 25 Watt Transmitter, Using Circuit Diagram Shown in Fig. 16. This Is an Ideal Low Power Portable Set.

17. It delivers 25 watts output. The entire transmitter, including power supply, is mounted on an 8 in. $\times 6$ in. $\times 1^{1 / 2}$ in. metal chassis. The regenerative system allows heavy antema loading while keying for c.w. operation. The antema coupling system is a novel one. in that the antema can be a single wire of any lengtl and thus this little transmitter would be ideal for portable operation. The oscillator coils are center-tappecl. A 50 mmid. variable condenser provides a means for varying the antenna coupling. Coil data for this transmitter is similar to that shown for the $6 L 6 G$ thriec-band exditer (except for the centertap). This simple antema coupling system will not provile a periect impedance match with some antennas, yet this defect is offset by the convenience
therefore be appl:ed. As much as 15 watts output has been obtained from a 42 crestal oscillator, and 25 watts from an Rド-2.. See Figs. 14 and 15.

A 47 crystal oscillatur will also function in this circuit if a separate filament winding is provided. A center-tap resistor of 20 ohms, a R1" choke and a midget 1000 munfd. rariable condenser from center-tap resistor to ground will provide regeneration. If the catlode bypass condenser C (Fig. 1:3) is too snall, the orephe will be low and the crystal current will rise. If the condenser is too large, the plate camnot be sufficiently loaded when keying the oscillator muler constant output conditions.

This new circuit improvement was tested in all of the conventional pentode oscillator circuits and it was found that a 00025 mfd. mica condenser for the cathode bypass was satisfactory. A smaller condenser was needed for a high power RK-28 crystal oscillator. This RK-28 high power exciter (described elsewhere in this clapter) makes an ideal one-tube transmitter lecause it delivers from 100 to 150 watts output on 80 meters with less than 40 ma. crystal RF current. 20 and 40 meter crystals should therefore function without overheating at outputs of approximately 100 watts. Reverting to the conventional oscillator circuit with added grid-to-plate capacity. excessive crystal RF current was evidenced with outputs of only 75 watts on 80 meters.

A complete one-tube transmitter with a 6LG metal tube is illustrated in Figs. 16 and
and simplicity of the system for portable operation.

6L6G Tritet Oscillator

- The 6I.gG or (iL6 tube is well suited for the Tritet circhit and it is far more effective than a 42 or 59 in this oscillator-(loubler

FIG. 18
Ll-Cathode Coil L2-Plate Coil.
arrangement. The actual cathode tuming capacity should be at least 200 mmid . for high output and moderate crystal current. Too-low a value of capacity in this circuit will often result in fractured crystals.
The cathode circuit is tuned to a frequency approximately 50% higher than that of the crystal. This produces regeneration
in the triode section (grid, cathode and screen grid circuit), and the system oscillates at the crystal frequency. The large cathoce tuning condenser provibles a cathode by-puss condenser for the second harmonic, to which the plate circuit is correctly tuned with low C-to-L ratio in its thened circuit.

FIG. 19

6L6G Tritet Oscillator.

The table shows the values of output and crystal RF current that were secured at various values of screen woltage with 400 rolts plate supply. A 40 meter crystal produced the foflowing outputs on 20 meters:

Screer. Volts	DC Cathode Current	Crystal Current	Watts Output
165	55	50	5
210	73	75	10
275	105	100	15

These values of output are somewhat lower than those ohtained fram a 6 L 6 G regenerative oscillator, such as the Three-6L6G-E.rciter. The crystal current is approximately three times as high in the Tritet oscillator, but this disadvantage can be offset in some cases by the reduction in number of tubes needed for output on 20 meters. The screen voltage should not be over 200 volts. if excessive crystal heating is to be avoided. Two 6L6G tubes, one oscillator and one doubler, will deliver greater output.
An RCA-802 or RK-25 can be substituted for the 6L6G tube in the Triter Exciter, or the new RCA-807 may also be used. The 807 is similar to the 6L6G, but with the plate lead through the top of the envelope. The RK-20 or RCA-80t will deliver as much as 50 watts on the fundamenta! freluency, and 25 or 30 watts on the second harmonic, when operated at voltages recommended for Class C RF amplifier service, as shown in the Tube Chapter. Lower screen voltages than those recommended may be necessary in order to prevent overheating of the crystal.

6L6G Tritet Coil Data			
All Coils Wound on $11 / 2 \mathrm{in}$. Diameter Forms			
Wavelength	$\begin{gathered} \mathrm{L} 2 \\ \text { Plate Coil } \end{gathered}$	Cathode Coil	Crystal
160	78 turns No. 24 DSC Closewound	Shortcircuited	160
80	38 turns No. 18 Enam. Closewound	$\begin{aligned} & 25 \text { turns } \\ & \text { No. } 22 \text { DSC } \\ & 11 / 2 \text { in. long } \end{aligned}$	160
40	20 turns No. 18 Enam. $11 / 2 \mathrm{in}$. long	12 turns No. 18 Enam. $11 / 2 \mathrm{in}$. long	80
20	9 turns No. 18 Enam. $11 / 4 \mathrm{in}$. long	7 turns No. 18 Enam. $11 / 4 \mathrm{in}$. long	40

35T Crystal Oscillator

- This escillator is a high-power version of a 33 or 6.16 circuit. The light mutual conductance and very low inter-electrode capacities of the 3.5T, in conjunction with its high mu, make it a good crystal uscillator tulve.

Cathode or center-tap resistor bias instead

FIG. 21

FIG. 20
$35 T$ Triode Oscillator.
of grid-leak bias kecps the crystal r-i current low and plate voltages as high as 1000 or even $1: 00$ are satisfactory. With grid leak bias, not over .000 volts can be applied to the plate wihhout clanger to the crystal.

The following results were ubtained in the Laboratury with an limac 3:T.

Crystal Frequency	Plater Volts	Cathode Current	Crystal Current	Watts Output
3550	606	75	45	20
7050	500	68	60	12
7050	600	80	70	20

35 T Oscillator Coil Data	
All Co	Wound on $13 / 4$ in. Dia. Forms.
Wavelength	Plate Coil
160	70 turas, No. 24 DSC. $2^{\prime \prime}$ long
80	34 turns, No. 18 Enam., 2" long
40	16 turns, No. 18 Enam.. $11 / 2^{\prime \prime}$ long
20	8 turns, No. 18 Enam., 11/2"long

Reinartz Crystal Oscillator

- I cathode circuit thmed to hati the erystal irequency wil: provide regentration in a crystal oscillator, resulting in greater output and lower crystal $\mathrm{K} \mathrm{F}^{\circ}$ current. An 80% pentode, with at !east 500 volts on the plate and 150 volts of the screen. will deliver 15 to 25 watts cutput on the fumdamental frequency of the crostal. The reactive effect produces regeneration at the harmonic frequency of the tumed cathorle coil. thus increasing the operating efficiency of the oscillator without danger of uncontrollable oscillation at frepilencies other than that of

FIG. 22
Reinartz 802 Oscillator.

FIG. 23
Reinartz 802 Oscillator Circuit.
the crostal. Complete screening between the control grid and plate circuit of the 802 necessitates the use of a imall external capacity in oreler to obtain stable oscillation. This capacity can consist of a piece of insulated hook-up wire conneced to the control gricl. with $1 / 2$ turns of its free end wrapped around the plate lead at the cuil socket. The circuit is shown in Fig. 23

FIG. 24
Reinartz 6F6 Crystal Oscillator.
A 5.000 ohm wire-wound resistor serves as a combination RF chohe and resistance across the grid circuit. Some makes of wire-wound resistors are not suitable for this purpose because they resonate at some particular frefuency. which canses them to absorb RF energy. Most types of wirewonnel resistors. however, are satisiactory.

The screen-grid circuit can be keyed for c-w operation. When the key is open, the circuit contimues to oscillate weakly, but the power output is not sufficient to excite a buffer or cloubler stage. When the key is closed, normal output is again secured. and since the crystal is maintained in oscillation at all times there is nearly a complete absence of key clicks.

An $\mathrm{KK}-20$ or 803 can be sultstituted for the 80% in this circuit if grater power output is needed. A 100 ohm center-tapped filament resistor at the tube socket terminals will provide a means of comection to the cathode tuned circuit because neither the RK-20 or 803 has a separate cathode.

802 Reinartz Coil Data		
Wavelength Meters	Plate Coil	Cathode Coil
160	70 turns No. 22 DSC 2" long $13 / 4^{\prime \prime}$ diam.	116 turns No. 26 Enam. Closewound '11/2" diam.
80	34 turns No. 18 Enam. 2" long 13/4" diam.	55 turns No. 24 DSC Closewound $11 / 2^{\prime \prime}$ diam.
40	16 turns No. 18 Enam. 11/2" long 13/4" diam.	27 turns No. 24 DSC $11 / 2^{*}$ long $11 / 2^{\prime \prime}$ diam.
20	8 turns No. 18 Enam. $11 / 2^{\prime \prime}$ long $13 / 4^{\prime \prime}$ diam.	14 turns No. 24 DSC $11 / 2^{\prime \prime}$ long $11 / 2^{\prime \prime}$ diam.

804 Exciter

- This crystal uscillator will deliver outputs up to 50 watts without overloading the crystal hecause cathoole regeneration greatly improves the efficiency of the circuit. It will serve as a onc-tule cw transmitter or

FIG. 25
50 Watt Regenerative Exciter
as a high powered exciter for driving a final amplificr to several hundred watts output. The total number of stages in the trans-
mitter can thus be kept to a minimum, if such design is desirable. An RK-20 can be sulstituted without cireuit change.
Cathode or center-tap bias, instead of grid leak bias, reduces the RF crystal current by approximately 50%. The RF choke shunted across the crystal provides an AC path for grid current aud the gral bias is secured by means of a 400 olm 20 -watt resistor in the filament center-tap lead. Regeneration is obtained ly a 100 munfl. variable midget condenser from center-tap to common RF ground. The RF crystal current will be high and the output will be reduced if this capacity is too smale Too much capacity on the other hand will reduce the output under heavy load conditions, or when keying.

FIG. 26
No series Rl filatnent chukes are necessary with a separate $71 / 2$ volt filament supply transformer because more or less capacity to ground in the transformer can be compensated for by the 140 munfd. variable condenser. The exart value of capacitance is not at all critical: a variation of 40 or 30 nmfd. is permissible. Kegeneration greatly reduces the crystal current and crystal heating, with consequent heavier output loading and growd oscillator stability.

804 Crystal Oscillator Coil Data	
All Coil	Wound on $13 / 4 \mathrm{in}$. Dia. Forms.
Wave. length	Plate Coil
160	66 turns, No. 22 DSC. Closewound
80	33 turns, No. 18 Enam., 2" lang
40	16 turns, No. 16 Enam., 11/2" ${ }^{\text {\% }}$ long
20	71/2 turns. No. 16 Enam., $11 / 2^{\prime \prime} \text { long }$

High Power 6L6G Exciter

- Three 6L6G tubes in this exciter deliver a relatively ligh output at double the frequency of the crystal. This output is sufficient to drive almost any final amplifiers without aid of buffer stages. A $150 \mathrm{~T}, 203 \mathrm{H}$, HF200, HK354, or Taylor 814 can be driven to over 400 watts output on c.w. from this exciter.

FIG. 27
30 Watt One-Band Exciter.
The crystal oscillator drives a pair of Raytheon 6LGG tubes in a "push-push" doubler. Output is available on any band, from 80 to 10 meters, by merely changing coils and crystals. 160 to 20 meter crystals are needed. This type of exciter will appeal to those amateurs who transmit on one band most of the time, with occasional operation on other bands.

The screen grids of the 6L6G tubes show color with more than $2 \pi 5$ volts, although much greater output could be obtained with up to 300 volts on the screens. A safe upper limit seems to be 250 volts. The output is greatly reduced with lower screen voltage, as is the crystal RF current, and also the heating effects. Longer tube life can be expected when the screen is supplied with less than 250 volts, and not more than 400 volts on the plates. When better ligh-frequency tube element irsulation supports are eventually incorporated in the 6L6 and 6L6G tubes. higher plate voltages can then be used. At 400 volts the exciter output is approximately 30 watts. With 600 volts on the plates the output was approximately 60 watts in laboratory tests.
The chassis is $15 \mathrm{in} . \times 8 \mathrm{in} . \times 11 / 2 \mathrm{in}$. of plated steel. Ceramic coil forms, tube sockets and coil sockets are used, because of the high RF voltages. The tuning condensers are symmetrically mounted so that the ex-

Coil Data for High Power 6L6G Exciter

All Coils Wound on $13 / 4$-inch I. C. A. Ceramic Forms

160 Meter Oscillator

70 turns No. 24 DSC., with C. T., $2^{\prime \prime}$ long, 13/4" diameter
80 Meter Oscillator or Doubler Coil 34 turns No. 16 E., with C. T., $2^{\prime \prime}$ long, $13 / 4^{\prime \prime}$ diamoter
40 Meter Oscillator or Doubler Coil
16 turns, No. 16 E., with C. T., $11 / 2^{\prime \prime}$ long, 13/4" diameter
20 Meter Oscillator or Doubler Coil
8 turns No. 16 E., with C. T., $11 / 2^{\prime \prime}$ long. 13/4" diameter
10 Meter Doubler Coil
$\frac{41 / 2}{}$ turns No. 16 E., $11 / 2^{\prime \prime}$ long, $13 / 4^{\prime \prime}$ diameter
citer can be fitted to a stanclard 19 in. relay rack panel. The coil sockets, as in most exciters, are supported about one inch above the iron chassis in order to reduce tuned circuit losses.

RK-25, RK-35 Exciter

- A RK-25 regenerative pentode crystal oscillator drives a RK-3.5 doubler to relatively high output for exciting a medium power

HIGM POWER EXCITER-35 TO 60 wat 'S OUTPUT
FIG. 28
Circuit for Exciter Illustrated in Fig. 27
final amplifier in the unit here described. The RK-25 has cathode regeneration and oscillates readily with high output under heavy load, and with very low values of crystal RF current. The Ratheon RK-35 is capacitively coupled to the oscillator, heavily loading the latter. The RK-35 can be

FIG. 29
RK-25, RK-35 Exciter.
neutralized for RF amplificatipn at the crystal frequency, or the nentralizing eondenser can surve as a regeneration feedback condenser for frequency (ombler service.

A combination of grid-leak and fixed bias is shown for the R ト- -3.5 . The grid-leak supplies the main portien of grid hias when the RK-2." is oscillating. and the C hattery supplies a cut-off when the cw or phone key is open. This enables the crystal oscillator stage to be keyed in its catloode circuit for break-in operation.

Fias exciter will deliver aproximately 35 watts output on any hand. It is buitt on a $15 \mathrm{in} . x$ it in. $x 1 / 2$ in. classis, with a $21 / 2$ in. $\times 12$ in x^{1} s in. bakelite vertical subpanel. The latter supports the two tuning condensers and the nentralizind or regeneration condenser. Iswlantite coil and tube sockets are recommended at these Kla power outputs. For the same reason, ceramic coil forms are essential becanse most bakelite coil iorms will blister between the hase

FIG. 30
Circuit for RK-25, RK-30 Exciter

RK 25-35 Exciter Coil Data:			
All Coils Wound on $13 / 4 \mathrm{in}$. Diam. Forms.			
Wave length	RK 25	RK 35	Crystal
160	70 turns No. 24 DSC 2" long	78 turns No. 22 DSC Closewound C.T.	160
80	70 turns No. 24 DSC 2" long	38 turns No. 18 Enam. 2" long C.T.	160
40	38 turns No. 18 Enam. 2" long	20 turns No. 16 Enam. 2" long C.T.	. 80
20	20 turns No. 16 Enam. 2" long	10 turns No. 16 Enam 2" long C.T.	40
10	9 turns No. 16 Enam. 2" long	5 turns No. 16 Enam. $11 / 2^{\prime \prime}$ long C.T.	20

6L6G Three Band Exciter

- illt and 6L6G tultes are excellent crystal uscillaturs because bigh output can be obtained at moderate plate voltage winh very low values of Rli current througl the crystals. The exciter shown in Figs. 31 and 32 will deliver approx:mately :0 watts output on any three bands. such as 40,20 , and 10 meters. from one crestal. The coil construction is simple: there is only a single winding (un cad? coil. With ne taps, and five coils cover the range from 160 to 10 meters.

The crystal oscillator has a regemerative catloole circuit in order to obtain as much output from the oscillator as from the rotubler stages under all load conditions. The doubler stages have a combination of seli-hias cathode resisıors and grid 'ca: bias. the former for the purpose of providing bias when the crystal is not oscillating (keying for ew operation).
A two-turn coupling link can le slipped over the desired coil for the choser output freçuency. I.ink carpling to the grid of the buffer, or to a
prongs. link compling of one to two turns will couple the RK-35 plate circuit to the tumerl grid cireuit of a fairly-high-power final amplifier. This exciter will put out nearly 50 watts at the crystal frequency when coupled to an antema.
medium power output stage, provides maximum transfer of RF power. This exciter actill supply nearly tacice as much output as the 5 exciter previously described, and it is somewhat easier to construct. Bakelite plugin coil forms are suitable, althongh porcelain

Jones Radio Handbook

or ceramic forms (as illustrated) will not blister or burn between treniinal prongs. 'l"heir use is recommended.
located and the entire unit can be mounted lehind a standard $19 \mathrm{in} . \times$ in., or $19 \mathrm{in} . \mathrm{x}$ $83 / 4$ in. relay rack panel.

FIG. 31
Three-Band Exciter

FIG. 32
6L6G Three-Band Exciter.
'The chassis is 8 in. x 1.5 in. x $1 / 2$ in., No. 20 gange plated steel. The tuming condensers mount on a hakelite panel, $21 / 2$ in. x $12 \mathrm{in} . \mathrm{x} 1 / 8 \mathrm{in}$. The parts are symmetrically

Coil Data for 6L6G Three-Band Exciter

160 Meters

70 turns No. 24 DSC.. $13 / 4^{\prime \prime}$ diameter,
$2^{\prime \prime}$ winding space. Approx. inductance equals 135 mh .

80 Meters
34 turns No. 16 Enam., 13/4" diameter, $2^{\prime \prime}$ winding space. Approx. inductance equals 32 mh .

40 Meters
16 turns No. 16 Enam., $13 / a^{\prime \prime}$ diameter, $11 / 2^{\prime \prime}$ winding space. Approx. inductance equals $81 / 2 \mathrm{mh}$.

20 Meters
8 turns No. 16 Enam., $13 / 4^{\prime \prime}$ diam., $11 / 2^{\prime \prime}$ winding space. Approx. inductance equals 2 mh .

10 Meters
41/2 turns No. 16 Enam., 13/4" diameter, $11 / 2^{\prime \prime}$ winding space. Approx. inductance equals $3 / 4 \mathrm{mh}$.

Unity Coupled Exciter

An exciter somewhat similar to the one here shown was described in the 1936 edition of this Ilandbook. It had but three tubes, whereas this new exciter has four. Furthermore, the improved version is more versatile and its ontput, particularly on 10 meters, is higher than that delivered by the earlier motlel.
Fig. 39 shows the complete circuist diagran and liig. 41 s'lows how the unitycoupled coils are wound. The oscillator is a push-pull 53 or 6A6; it places very little RF strain on the crystal, and it delivers aboat twice as much output as a conven-
ligher freguency, no shielding is required. The power units are remotely mounted from the RF ruits so as to preclude the possibility of enconntering hum problems. Only one filter-cheke is shown, hence, it must be well designed and efficient.

The liak-coupling circuits can be wired in series, two turns aronnd the center of each plug-in coil. (See Jome's o-Band Excitcr.) These two-turn coils should be large enough so that the plug-in coil-forms fit through them into the isolantite coil sockets. The links can be supported on stand-off insulators, the output terminating on another pair of through-type insulators

FIG. 38-Jones 4-Band Unity Coupled Exciter. at the rear of the chassis. In the unit shown in Fig. 38 , the coupling coil is merely slipped over the coil which supplied the frequency desired for operating a separate bufferamplifier stage.

The doubler grid-circuits are comected to interwound gricl coils which are closely coupled to the plate tuned-circuits. As can be seen from the coil tables, only enough grid turns are wound on each coil to drive the push-pull grids at the proper frequency. Toci many turns will canse excessive reyencration at the doubler plate-circuit freouency with self-oscillation. This is due to inductive reactance in the grid circuits and, when not excessive, improves the dou-
tional 53 uscillator-doubler. The frequency doulber stages also use 53 or 6.46 tubes. but in a push-ptsh circuit. and at least 10 watts output can be taken from the final douhler circuit for 10 meter operation. This is sufficient output to drive a 210 , $\mathrm{KK}-18$ or RK 29, 803. 35 T or Taylor 756 tube.

Design Specifications: The unit is built on a $10 \times 17 \times 21 / 2$-inch metal chassis mounted belind a $19 \times 83 / 4$-inch relay-rack panel. A built-in power supply completes this unit ard renders the assembly adaptable to further additions of power stages without altering the exciter mit. A $1.2 \times 3 \times{ }^{\frac{3}{3} 6}-\mathrm{inch}$ bakelite or "Mlasonite" sub-panel supports the thiree midget tuning condensers which are near the coil and tube sockets. These condensers are comected through insulated cruplangs to the front panel tuning dials. The arrangement of the tube and coil sockets permits very short grid and plate leads. Since each stage operates on an octave
bler efficiency and output

Cathode resistors and grid-leaks combine to give high grid-bias to the doubler grid circuits. Cathode bias only on the crystal stage las the effect of keeping the crystal RI^{-}cu-rent low for relatively high power output.
An open-circuit plug in any cathode circuit, antomatically cuts that and the succeecling stages out of the circuit. This allows about 10 to 15 per cent greater output from the stage which is actually driving the external buffer. The cathode current varies from 50 to i s MA per stage depending upon plate voltage and RF load. Resonance in each doubler stage is indicated by a sharp decrease in cathode current of from 20 to 50 MA, providing the preceding stage is in resonance. (Note: a single turn of wire comnected in series with a flashlight lamp will function as a resonator indicating device when coupled to the stage under test.)

FIG. 39.

The power sapply has two switches, one for the mains control and the other to apply plate voltage after the 53 or gA6 tube heaters have attained their no:mal operating

FIG. 40.
 Relay-Rack Panel for Jones Exciter

temucratures. Tise DC plate potential should be 'eetween :3: and 405 volts; !higher voltages will give greater ontpat providing the cathode current per tube does not exceed ī or so M. 1.

The greatest output from the oscillatur stage occurs at the maximunn condenser setting just beiore the stage drops out of oscillation, or near that setting. Gencrally, for stability. in keying the crystal stage, this oscillator condenser has to be set back a dial degrec or two towards less capacity and
higler cathode current. The cathode current in any stage should not be over 20 to 30 MA when the crystal is not oscillating, and between 50 to 75 MA when the stage is

FIG. 41.

uscillating. The circuit diagran, Fig. 89, shows $3 \overline{5}$ mmint. plate tuming condensers througiout. Single-spaced 50 or 10 t mind. midget variable condensers will be equaily satisfactory.

Coil Winding Data for 80-to-10 Meter Unity-Coupled Exciter

All Coils Are Wound on $1 / 4-\mathrm{in}$. Bakelite Tubing

80 Meter Uscillator Plate Coil has 42 turns of No. 22 DSC wire, close wound, and center-tapped. Place a celluloid sheet over this plate winding, then wind the Grid coll on the celluloid sheet, as follows: 30 tuins No. 22 DSC, close wound and centertapped.

40 Meter Doubler Coil. Plate winding: 22 turns No. 18 DSC, space-wound over a winding length of $11 / 2$-in., and center-tapped. Grid Coil: 20 turns No. 22 DSC, $11 / 4$-in. winding length, center-tapped. Grid coil insulated from plate coil with celluloid strip, same as tor Uscillator coil.
Meter
Crystal

> 20 Meter Doubler Coil: Plate winding: 12 :urns No. 16 DCC, space wound over a winding length of $13 / 4$-in., and center-tapped. Grid Coil: 10 turns No. 20 DSC, space wound over a winding length of $11 / 2$-in., center-tapped. Cellwloid insulation between iwo coils, same as above.
> 10 Meter Doubler Coil: Plate winding: 6 turns No. 16 DCC, space wound over a winding length of $11 / 2$-in. Not centertapped. The 10 metmr soil has only ore winding, i.e., the plate winding. A link-coupling loop can be slippec over the TOP ot any one ot the above 4 coils for the chasen trequency of operation.

Practical 6-Band Exciter 5 to 160 Meter Operation

- One of the greatest difficulties encountered by the experimenter is the design of a crys-tal-controlled exciter from which several Watts of onfout can be secured in the 5 meter band without resorting to costly and special tubes. Outputs of from 3 to 5 watts are obtained on is meters, and from is to γ watts $0110.20,40,80$ and 160 meters from the simple excite: illustrated here for the first time. It was designed by Jones and first demonstrated to the radio amateurs at the 1936 Anatenr Convention in Oakland. California. Its presentation aroused more interest than any exciter previously shown, because it operates on four bands from a single crystal. For example, the unit shown in the photograph moerates on $40,20,10$ and 5 meters from a 40 meter crystal. There are nos mentralizing problems to cone with. inexpensive receiving tubes are used
mere throw of a toggle switch. All four stages are first tumed to resonance for maximum output, after which nes major retuming of any stage is necessary. Normally, the tuning dials can be left in one position at all times.

The exciter is a completely self-contained mint and it will serve as a driver for any phome or c-w transmitter lecause the plate supply has a two-section filter with negligible hum in the output. Furthermore, it occupies only as much space as is available for a standard 19 in . $\mathrm{x}=\mathrm{in}$. relay rack panel, with a chassis pan 1% in. $x 11 \mathrm{in}$. $\times 13 / 4 \mathrm{in}$.

The coil design is extrenely simple because each coil consists oi only a single winding in the plate tuning circuit, with a two turn coupling loop wound on the same form slightly below the bottom turn of the

FIG. 33
thromghout. a pair of terminals for comecting the coupling iink to the exciter and single-pole toggle switches connect or disconnect the output from any stage without appreciable detuming effects. Thus it can be seen that operation on $40,20,10$ or 5 meters can be secured without change in the coupling to the buf?er stage, and the chosen frequency of operation is determined by the
plate wiuding. 'lhe coupling to the buffer stage can he easily varied by moving the conpling turn (or turns) closer to, or farther away from, the node of the grid coil. The node of the plate coils in the exciter is at the positive B ends of the tuned plate circuits (bottom of plate coil windings). The small mica .00005 (50 mmfd.) fixed coupling condensers con-
nected between plate coils and grids of the doubler stages are mounted above classis between socket terminals or lugs. All tube and coil sockets are supported about $3 / 4 \mathrm{in}$. above chassis. A large hole is punched directly under each coil and tube socket in order to lacilitate wiring comnections. All of the plate thining condensers are insulated from the metal panel with fibre washers of the type that have protrucing collars, so that the condenser shaft will not short-circuit the plate supply to the chassis. The rotor of each tuning condenser should connect to the positive IS sicle of each circuit.

FIG. 34
Top View of 6-Band Exciter
Each stage is individually lypassed to ground, directly at the coii or tube socket, resulting in greater stability and efficiency, especially on 5 and 10 meters. These bypass condensers are 600 volt paper tubulars. mounted under the chassis. The metering

FIG. 35
Front View of Exciter and Coils
jacks are not insulated from the metal panel because the sleeves comect to ground.

An analysis of the circuit diagram shows that the doublers are straight-forward high-mu circuits with the grids and plates of the 6A6 tuhes connected in parallel. Parallel operation results in approximately twice as much output as can be obtained with a single section of a 6A6, and this method of connection has proven satisfac-
tory evell on : meters. The grid drise from each st:cceeding doubler stage is sufficient to hias each stage to several times cut-aff, resulting in ligh doubler efficiency. A connbination of grid-leak and cathode bias is provided.
In crder to simplify the design of the crystal oscillator, a 42 tube was selected This tube can be used as a high-mu triode in a regenerative crystal oscillator circuit. A 6.16 with grids and plates in parallel woukd give more oscillator output, but the crystal RF current is excessive when the plate protential is more than 300 volts. A push-pull 6.Ab crystal oscillator would also require a split plate coil, and such a coil camot be easily coupled into a single grid circuit.

Regeneration in the crystal oscillator increases the output. and with less crystal current than in any other standard circuit

FIG. 36
Under-chassis View, Showing Placement of
Resistors. Condensers. Coupling Link Line
and Switches.
with the same tuine. Regeneration is produced by means of a non-critical RF choke in the cathode circuit, by-passed to ground with a .0001 mid. mica fixed condenser of the postage-stamp variety. The RF choke can be any standard small receiving type with an inductance of approximately 2 mh . The size of the cathode by-pass condenser depends upon the type of tube in the crystai oscillator circuit; for this particular circuit a .0001 mfd , mica condenser is correct. Other tubes may require a condenser as large as .00025 mfd . The tuning of the regenerative oscillator circuit is not critical and there is no self-oscillation when the crystal is removed. The circuit is tuned for maximum output. It can be loaded more heavily than a non-regenerative oscillator without loss of oscillation. The output of the crystal oscillator can be increased at least 50% with the regenerative circuit here shown.
The cathode of the crystal oscillator car be heyed for c-w or break-in operation.

Link coupling terminals are at the reas

FIG. 37
of the chassis deck between the rectifier tube and swinging choke. The power supply requires a power transformer that will supply approximately 400 volts output at 250 milliamperes. A 1000 volt center-tap winding rated at 150 milliamperes RMS is satisfactory. This transformer should also have a 5 volt rectifier filanent winding and a 6.3 volt heater supply for the RF tubes. Swing-ing-choke input gives good voltage regulation when keying the oscillator, or when one or more stages are cut out of operation by means of an open-circuit plug in the cathode jack.

The constructor is advised to build the entire unit at one ti:me, then plug cach succeeding coil into its proper place after the preceding stage has first been tuned to resonance and functions properly. The oscillator cathode current will be between to and fo milliamperes, depending upon the external load and plate supply voltage. Each doubler circuit will draw between 55 and 25 milliamperes, depending upon the external load. These values should not be excecded.

A flashlight globe and single turn of wire provides a convenient method for tuning each doubler circuit to resonance.

The band selector toggle-switching arrangement effectively places the link circuits in parallel when mare than one switch is thrown to the " $O N$ " position at one time. The idling stages should not be detuned. Each coupling link connects through a twisted-pair with a switch in one side, thus completing the circuit to the output standoff insulator connectors.

Coil Winding Specikications

All coils, except the 5 meter coil, are wound on standard five prong $11 / 2 \mathrm{in}$. diameter low-loss plug-in coil forms. The 5 meter coil is wound on $\alpha 11 / 8 \mathrm{in}$. diameter ceramic 5 -prong plug-in form. Coils for 160. 80, 40,20 and 10 meter operation have a 2 -turn winding at the bottom of the form. This 2 -turn winding is the coupling loop, and the ends of the loop are connected to two of the prongs on the coil form. The pictorial drating (Fig. 74) shows a complete group of coils for $40,20,10$ and 5 meter operation with a 40 meter crystal in the oscillator stage.
160 Meter Coil: 60 turns, No. 24 DSC. close-wound.
80 Meter Coil: 30 turns, No. 18 DSC. close-wound.
40 Meter Coil: 16 turns. No. 18 DSC. space-wound over a wirding length of $11 / 2$ inches.
20 Meter Coil: 8 turns, No. 18 DSC, space-wound over a winding length of $11 / 2$ inches.
10 Meter Coil: $31 / 4$ turns, No. 18 DSC, space-wound over a winding length of 1 inch.
5 Meter Coil: $13 / 4$ to $21 / 2$ turns, No. 18 DSC. spaced approximately $3 / 8$ in. between turns. Some readjustment of this spacing may be necessary in order to permit the plate tuning condenser to resonate the circuit.

Transmitter Output, Shown By Block Diagrams

- The several pages of block diagrams in this Chapter will aid the reader in lis choice of a suitable transmitter for almost every purfose. The diagrams are divided into thee groups: (1) C-IV.. (2) Radioteiephony, (3) Combination C. W. and Radiotelerhony: Directly above each tube symbol in each diagram is a figure which denotes the wavelength of operation of the tube. Tine tulse type number is in the center of the tube symbol and the function of the tule, explaining whether it is an oscillator, buffer, huffer-doubler or anplifier. is indicated directly below the tube symbol. The sate operating plate voltage for each tube is also clearly shown. Beginning with the firs! symbol in the C. W. group, it is seen that a 6.16 tube, operating as an 80 meter oscillator, with 450 volts plate supply, will deliver an output of 10 watts for C. WV. telegraphy. The next tube is a bles, operating as a 40 meter oscillator with tho volts plate supply, The output is 2 watts for C. W. telegraphy, l'roceeding to the next bowe diagram, it is seen that a dif. oscillator, operating on 80 meters, with 300 volts phate supply is ink-cupled to a succeeding stage wherein a type 210 tuhe is used in a Class C RF amplifier operating on 80 meters. and with 750 volts plate sumply. The output from the final tube (210) is 40 watts for C. W. telegrap! 1 y.

Filock cliagrans for Radiokleplone Transnititers and for combination RadiotelephoneC. IV゙. transmitters, begin where the C. WV. block diagrams end.

The legend slows the various types of conpling between stages. " U " (U'nity (ompling) consists of irter-winding an tatuaned grid circuit with a tuned plate circuit. Capacitice Compling is indicated by the conventional fixed condenser symbol. link Coupling is indicated loy the loop symhol between tubes, denoting that a tunec: plate circuit is link coupled to a tuned grid circuit. The Légond also indicates whether push-pull or parallel connection of tubes i, suggested. Push-push dnubler connections are the same as those for parallel tube connec tion. All such floublers are of the push-push variety.

Relative power output, rather than the power input, is shown in all of the block diagrams, begiming with low power and conding with high pewer transmitter combinations.

Jones Radio Handbook

(1) (u)

Radiotelephony Block Diagrams

Chapter 10

C.W. Transmitter Construction

25 Watt Transmitter for Newcomers

- Mure power output can be secured from a simpie one-tube transmitter with the new fonce Reycueratioc Osillator Circuit and bilo tule than from any other one-tube oscillator circuit of previous design. The 61.6 is the new beann power pentode tube; its y.lass equivalent is the 6LLiGG, identical in characeristics. Fither tube can be used in lie transmitter liere shown. The glass tube entables the operator to visually determine if the heater, screcn and cathode are functioning properly. The accompanying photographs and circu:t diagrams show the 6 Lb ineta! tube in a 25 watt transmitter. This - output is ample for the newconuer who desires to acquaint himself with amateur operating conditions. The oscillator can later be uscd as a driver for a higher power buffer or amplifier stage.

FIG. 1-Complete One-Tube 25 Watt c.w. Transmitter with 6L6 Metal Tube.

The plug-in coil form on which the plate coil is wound also loulds the winding for the antenia coupling coil, the latter being wound abose the plate winding, with a spacing of from $3 / 8$ in. to $1 / 2$ in. between the plate coil and the antenna coil. A midget $2: 50 \mathrm{mmf}$. rarlabie condenser is commected acruss the antemat coil for parallel tuning of Zepp feeders. The antema thuing condenser is plainiy seen in the photograph.

The laboratory model of this little transmiter successfully covered a distance of more than 15% miles on the 80 meter band. For the sake of simplicity, both a pictorial and sclematic circuit are shown. All values a:e givel, and no sulstitution should be marle The new Jomes reyeneratiac ascilla-
to. frature results in very high output and luw crystal R1: current.
The tabe elements are not visible in the case of a metal tube 61.6, and thus the screen voltage should be measured with a DC voltmeter.

The plate of the $6 \mathrm{~L} . \mathrm{f}$ is supplied with 400 volts, the screen with 200 volts. Slightly higher voltages can be :ased, but the builder is cautioned to carefully keep an eye on the tube so that neither the screen nor the plate show cuior. The screen voltage should be taken directly from a tap on the voltage divider in the power supply mint, as the circuit diagrann shows. Adjust the slider on the voltage divider resistor to a point where the screen of the 6L. 6 is supplied with 200 volts. The 6L6G; fube's screen will run red-hot if the screen voltage is too high.

The escillator is keyed in the cathode circuit. Fitler a closed-circuit jack, or a pair of labunestuck clips can be used for plug-sing-in or conncting the key in the cathode circuit. The plate tuning condenser is of the miuget 100 mulifl, varicty. The new "Star" midget 50 munfd. double-spaced variable concenser will give more satisfactory service, although a single-spazed condenser will usually withstand the plate voltage withwit Hadh-over. The Kl^{7} clooke is a small 12:. M. H Hammarluad receiver-type. Mica fixed comdensers shoult be used where indicated in the circuit diagram. A s-prong sucket :s at the left rear of the baseboard for the power cable plag, although common combect-r clips could adso be used.

The entire transmitter is mounted on a wood haseboard, 9 in. wide, 11 in . deep and $1 / 2$-in. thick. (leats are mounted on the bottom. front and rear, to raise the board from the tabie because some of the wiring is under the boared.

The plate coil for 80 meter operation with an so meter crystal hes 29 turns of No. 18 or 20 DSC ir 1)CC wire, close-womat, on a standard $1 / 2 / 2$ inn cianeter 4 -prong phig-in coil form. Spaced from $3 / 8$ int to $1 / 2 \mathrm{inl}$, from the plate coil is the winding for the antema coil, 19 to 44 turns of No. 20 I)SC or DCC wire, alose wouncl, with the leads brought to the top of the coil form where they are securer to the rill of the form by drilling two hules. tapped to take a $6 / 32$ machine screw, and then connecting the coil leads to the es screw terminats.

A variable antenma conpling system can be made by mercly sawing the plate coil form inte two pieces: the 1 pper portion lapprex. 1-in. long) would then be the antenna coil,
as shown in the Reyeneratia'e Pre-sclector described in the lieceiver Chapter.

The 250 mmid . midget antema tuning condenser is connected directly across the antenna coil leads. The tramsmitter can also be operated on 40 meters with a 40 meter crystal, out in this case the plate coil will have only 1 st turns of No. 20 DSC wire, slightly space wound, and only 8 or 10 turns of wire in the antenna coil. Some slight "pruning" of coil turres will be required in order to give best results with various types and lengths of antenna feeders. When fully loaded to the antema, the 6 L 6 tube should draw from 80 to 100 mills in the plate circuit. Altho these current values may secm somewhat high, the load on the tube is of an intermittent nature, there being no load when the key is up, because in this position the cathorle circuit of the 6L6 is open. When the transmitter is not coupled to the antema, the plate carrent of the GI. 6 will take a pronounced dip to 20 milliamperes or less when the plate tuning condenser is swung through the resonance point. After coupling the antena to the transmitter, slightly readjust the plate tuming condenser, then simultaneonsly adjust and readjust both the plate and antema tuning condensers until the plate of the GLi draws from 80 to 100 milliamperes. A 0-200 MA DC milliammeter can be connected in the plate circuit of the GLf for making tests. It is difficult to properly adjust a transmitter without the aid of a milliammeter. One or more of these meters should be in every amateur station, particularly when the station is operated by a newcomer.

Two-band operation of this transmitter from a single crystal, such as 80 and 40 meter operation from an 80 meter crystal, is accomplished toy merely changing the plate coil, increasing the value of the resistor (across the crystal) to 100,000 ohms, and connecting the metal shell of the GL,

FIG. 2-Pictorial Diagram of One-Tube Transmitter and Plate Coil Construction.

FIG. 3-Schematic Circuit Diagram of RF, Power Supply and Antenna Systems.

'47 Transmilter

- Those who prefer the older type of tubes will fiad the accompanying circuit diagram entirely satisfactory for a simple one-tube transmitter. It can be built on a baseboard the same size as that shown for the 6L.i

FIG. 4-Experimental single-tube transmitter with 47 pentode. The plate coil (Ll) is coupled to α twisted-pair feed line. Resistor R has a value of 10,000 ohms. Refer to Chapter on Antennas for data on "L" in above diagram.
transmitter, and the same parts arrangement can be used throughout. The antenna is coupled to the plate coil in the same manmer as for the 6 L 6 transmitter. The tuning conclenser has the same value, the plate coil winding is the same, and the small by-pass condensers are identical in size and voltage rating. Approximately 10 watts output can be secured from this 1 -tube 4 transmitter with a plate potential of 400 volts and 125 velts on the screcon. This is less than hali the power ortput secured from the 6 L (6) one-tuhe transmiter shown in Fig. 1.

50 Watt C.W. Transmitter

- This transmitter is simple in construction. The circuit design uses - receiving type tubes. The total cost of all parts is arproximately $\$ 25$, includirg power supply and
tubes. The output circuit can be loarled to 50 watis, which is ample for communication over a range of approximately 1000 miles on so meters c.w. The signal is clear and pure; no key-clicks are radiated when the key-click filter is connected as slown in the circuit diagram.

Technical Notes

- A 43 paslı-pull crystal oscillator drives a pair of $2 \Lambda 3$ tubes in parallel on 80 meters. Smaller coils, and a +0 meter crystal can be usel for 40 meter operation. The 2A3 tubes, being of the low-mu variety, have fairly ligh gricl impedance as Class C amplifiers, and they can lie capacitively coupled to the oscillator plate coil. The latter is cen-ter-tapped and by-passed to the ground bus connection in order to make grid neutralization pussible. Grid neutralization allows the plate circuit to be connected into a simplified antenna matching circuit which eliminates nearly all rad:ation of illegal harmonics. This system is very good for working into a single-wire-fed Hertz antenna, as shown elsewhere in this book. The plate current is fed through a RF choke across the andema tuning condenser. A DC blocking condenser passes the KF into the antenna and instulates it from the plas B voltage. A $1 / \downarrow$-ampere "Littlefuse" should be connected in series with the RF choke in order to protect this choke and power supply in the event of an RF arc across the antenna tutning. condenser, which is only single-spaced. This condenser has only a fraction of the RF puak voltage across it, because its reactance is much less than that of the lower capacity plate tuming cordenser.

FlG. 5-Looking Down on the 53-2A3 Transmitter.

The 2A3 tubes can landle more plate dissipation than is needed, thus the output of 50 watts is limited only by the fact that the plate voltage and current are the limiting factors here. These tules have a very high mutual conductance. consequently they are casily driven in a Class C amplifier at moderately high frequencies. such as 80 meters. On the other hand, the rather high inter-electrode capacities of the 2.A3 limit its efficiency on higher frequencies, such as 20 meters.

The 53 push-pull crystal oscillator delivers nearly twice as much output as other escillators at the same plate voltage (with the exeeption of the GLfi), and it places no excessive RF strain on an 80 meter crystal with the value plate voltage shown in the circuit diagram.

Center-tap keying is satisfactory if a key-rlick filter is wired into the circuit. A net-work consisting of a $11 / 2$-herry 60 ohm iron core choke, a $1 / 2$-mufl. condenser and a 400 ohen resistor will eliminate clicks in this transmitter. ()scillator catloode keying can be used if a C hattery with at least 90 volts is connected in series with the 15,000 ohm 2A3 grid leak.

The power supply should have a transformer which does not vibrate perceptibly under load. if it is mounted on the same base-board with the RF components. This
transformer must supply a DC load of 250 ma, thus it should be large enough to landle this current. Choke input maintains goorl voltage regulation while keying the final stage. The filter shown is satisfactury for c.w. output, but it is not suitable for

FIG. 7--Close-up of Final Amplifier and Sub-panel for Tubes, Coil and Neutralizing Condenser. The Final Plate and Antenna Tuning Condensers Are Secured to the Front Panel. See Fig. 6.
phone operation because there would be too much carrier hum.
Operation at lower power could lee accomplished with a smaller power transformer, such as a 700 to 800 volt center-tapped transformer, and condenser input to the filter. Two 8 mff . electrolytic condensers in series will withstand the AC peak roltage in this case. The voltage regulation will not be good, and the circuit shown is reconmended if a 1000 volt center-tapped transformer is available. The alternate filter system for the lower voltage power transformer is shown in dotted lines.

Constructional Notes

- The complete transmitter. except for key and key-click filter, is mounted on all oak haseloard, 17 in. $\times 11$ in. $\times 1$ in. The baseboard is fitted with a pair of cleats, so as to leave space beneath the board for

FIG. 6-Front View, showing Control Panel with Meter-Jacks and Tuning Dials.

wiring, RF chokes, resistors and miscellanecus small parts.
The lakelite vertical front panel is 16 in . x 3 i:a. $\times{ }^{\frac{3}{18}}$ inl. It supports the current measuring jacks, oscillator tuning condenser, 0-200 ma. meter, and the fimal amplifier tuning condersers. Another $\frac{1}{1 / 2}$ in. $x 4$ in. $\times{ }^{3} \mathrm{~T}_{6} \mathrm{in}$. bakeite horizontal sub-parel supports the final pluy-in tank coil, 2A3 tubes and nentralizing condenser. Front panel brackets sulpurt one end of this ampifier deck, and at pair of 3 -inch standoff insulators act as rear stupports.
Isclantite tube and coil suckets are used thronglout because there is less RF loss and danger of flash-over than when bakelite watic sockets are used.

The 80 meter oscillator coil consists of 4. turns of No. 18 I)SC wire in a $11 / 2$-in. plugiin coil form. Coil 12.2 has 32 turns of No. 18 IDSC wire. Difierent autemas may require from 25 to :3 turns of wire on this coil.
The key-click filter choke can be wound (ol) an old AF transformer core with from 2000 to 3000 turns of No. 30 DSC or DCC wirc in a jumble-winding on one leg of the core A piece of writing paper should be sliopled into the butt joint in order to take
care of DC magnetization effects of the 2A3 plate currents.

Operating Notes

- The 53 tube sloculd be operated without plate current for about 30 seconds in order to enable it to reach normal cathode temperature.

The 2 A 3 plate fase should be left out of the circuit until the 53 is oscillating properly; the 2 A 3 stage is then neutralized. The removal of the fuse prevents application of plate voltage. The 53 cathode current will increase to between 51 and 100 ma. when it is oscillating. The oscillator tuning condenser Cl should lie set toward the lighest capacity setting at which oscillation persists, and where output is greatest. The cathode curreut should be between 50 and 75 ma. for this setting, and the final grid current should be at least $: 0$ ma. When the 2A3 stage is netutralized.

A 1 -watt neon glow lamp is held against the plate lead of the gA3 tubes wher neutralizing. Without plate voltage or antenna commection to the firal amplifier, the two tuning condensers should then be set for resonance, as indicated by a dip in gridcurrent and an increase in brilliance of the
neon lamp. The neutralizing condenser is then rotated to the point of zero glow in the neon lamp (being certain that the crystal oscillator is still functioning), and to the indication of no dip in grid current as the plate tuning condenser is varied through resonance. The telegraph key should remain closed during these tests.

After neutralization, plate voltage can be applied to the amplifier and a single-wirefed Hertz antema comected to the output. The antema can be about 135 feet long, fed at 18 feet either side of center, if it is to be used for 80 meters only. If all-wave operation is desired, the feeder should be connected about 22 feet off center. If a Zepp antenna is used, a coupling coil and separate feeder tuning condensers will be necessary. A twisted-pair feeder can be coupled to the lower end of the plate coil by means of : to 3 turns of insulated wire wrapped tightly around the coil form over the winding. In the two latter cases, the antenna condenser Ct should be set toward maximum capacity, with C3 always set for plate current dip (resonance).

In tuning a single wire fed antenna, C 4 shoutd always be set for the desired load, which will occur in the region of high capacity settings. C3 should then be rotated for minimum plate current; if the plate current is too low. reset C4 to a lower value capacity and again retune C3 to resonance. The plate current can be as high as 175 ma. into the 2 A3 tubes for heavy antenna loading. Sometimes the plate coil La must be "pruned" by adding or removing a few turns in order to match a particular antemna. It is a good plan to comect a 50 watt Mazda lamp across the artenna and ground connections to determine the effects of different condenser settings which give greatest output at certain values of plate current. An antenna and ground can later be connected, and the condensers set to give the same values of plate curreat at the point of greatest dip. The oscillator tuning condenser C1 should be set to give greatest output into the 2 A 3 s , with not more than 75 ma . of cathode current for the 53. Here again, the Mazda lamp is of value in determining the proper setting. Comect a loop of wire to the lamp (4 or 5 turns in the loop). and couple the loop to the oscillator coil when making this test.

75 Watt C.W. Transmitter

- Some of the advartages of the 6L6G beam power pentode when properly used in a crystal oscillator circuit are evidenced in the transmitter here described. The photographs show the separate units of the RF portion. The power output from the 6L6G Jones Oscillator is so ligh that the succeed-

FIG. 9-Masonite Relay-Rack Construction for 75-Watt c.w. Transmitter.
ing 210 buffer or doubler stage can be driven to good efficiency in a capacitively-coupled circuit. The 210 buffer-doubler, however, is link-couplef to the push-pull 210 firal amplifier. With 400 volts on the plate of the 6 L 6 G , and 200 volts on the screen, the 210 buffer-doubler grid operates with from 8 to 10 grid mills under load, with a grid-leat resistor of from 5,000 to 10,000 olims, pliss 13.5 volts of C battery, as shown in the schematic diagran:. The transmitter is keyed in the cathode circuit of the oscillator. If S or 10 mills of grid current cannot be secured when a 10,000 ohm resistor is used

FIG. 10-6L6G Exciter and 210 BufferDoubler.
in the first $2: 0$ grid, redace the value to 5,100 olinis.

The push-pull 210 final amplifier grid is driven with 25 mills, urder load. One or two turns in each coupling loop will give anple excitation; first try one turn, then wo.

FIG. 11-Final Amplifier with Two 210 Tubes in Push.Pull. The Tubes, Grid, Coil and Neutralizing Condensers Are Mounted on a Separate Masonite "Deck," Supported on Small Insulators.

The buffer stage is operated with approximately 600 volts on the plate. A serics drupping resistor automatically reduces the voltage to tie correct value. The final amplifier, on the other hand, is operated with the full 650 volts (or slighty more) (in the plates.
and another for the 210 stages. The correct values of all of the power supply components are clearly shown in the circuit dia. gram. Double-spaced midget variable condensers are used throughout. The neutralizing condensers are 35 mmfl . double spaced Star midget varialbles. If 160 meter operation is lesired, all variable condensers should have a maximum capacity of at least 100 mmifd , except the final plate condenser, which should be of the split-stator type, double spaced, 125 mmfl. per section, or more. The circuit diagram shows smaller condenser values, hecause this particular transmitter was designed primarily for 80,40 and 20 mete- operation.

The constructor is acivised to build one stage of the travsmitter at a time. First build and wire the oscillator, give it a thorough test, then rroceed with the construction of the succecding stages.

Mechanical Details

- Relay-rack construction. or common breadboard assembly can be used, as the builtler prefers. Relay racks can be of metal or ilasonitc, painted black. If metal racks are chosen, make certain that the plate circuit meter jacks are avell insulated from the panels. A suitable arrangement is to mount the jacks on a small bakclite strip, screwed to the rear of metal panel. with a $1 / 2$-inch hole drilled through the panel to pass the

FIG. 12-Circuit Diagram of RF Portion of 75-Watt c.w. Transmitter.

The transmitter operates on $160,80,40$ and 20 meters. depending upon the frequency of the crystal.

The power supply consists of two units on a common chassis, one for the oscillator
meter plug. One or more $0-200 \mathrm{MA}$ DC milliammeters can be used. Meter jacks are provided for the oscillator cathode, oscillator plate, buffer-doubler grid. bufferdoubler plate, final grid and final plate cir-

Band	Oscillator Plate Coil	210 Buffer Plate Coil	Final Amp. Grid Coil	Final Amp. Plate Coil
160	60 turns No. 22 DSC close-wound.	72 turns No. 22 DSC wire, closewound. Center-tapped.	Same as 210 Buffer Plate Coil	78 turns No. 18 DCC, 4-in. dia., 4-in. long. Centertapped.
80	25 turns No. 18 DSC close-wound.	34 turns No. 18 DSC, close-wound. Center-tapped	48 turns No. 18 DSC. Close-wound. Center-tapped.	40 turns No. 14 Enam. $25 / 8$ in. dia. $41 / 2 \mathrm{in}$. long. Center-tapped.
40	17 turns No. 18 DSC. spaced to cover $11 / 2$-in.	21 turns No. 18 DSC, spaced to cover $11 / 2$ in. Center-tapped.	24 turns No. 18 DSC, spaced to cover 1-inch. Center-tapped.	22 turns No. 14 Enam. $25 / 8$ in. dia. $41 / 2 \mathrm{in}$. long. Center-tapped.
20	Use 40 meter Oscillator coil and double in Buffer plate.	14 turns No. 18 DSC, spaced two diameters. Center-tapped.	13 turns No. 18 DSC, spaced two diameters. Center-tapped.	10 turns No. 14 Enam. $25 / 8$ in. dia. 4 -in. long. Center-tapped.

cuits. Sume typical milliammeter readings for 80 meter operation are: Oscillator catliode, 60 MA ; oscillator plate, 50 MI ; huf-fer-doubler grid, 10 MA : buffer-duubler plate, 60 to 7 m MA ; final grid, is MA ; final plate, 200 MA with antemna correctly coupled to final plate coil. Condenser input can be
used in the 210 power supply unit if the voltage is insufficient with choke input. Two . $\%$ K. 3 tubes, comected as diodes, can be substituted for the single $5 / 3$ shown in the circuit diagram if the transformer voltage is slightly higher than that recommended for a 5Z3 rectifier.

125 Watt Transmitter with 35T Tubes

The Eimac 35 T tube is ideally suited for use in doubler circuits because it las a high amplification constant. Its low inter-electrode capacitics make operation on 5 -meters
practicable. Two of these Tantalum-plate tubes are shown in the transmitter pictured in lig. 13, the circuit diagram in lig. 14 . This transmitter will put out $1: 5$ watts,

Coil Winding Table for 35T Transmitter Shown in Figs. 13 and 14

L1	53 Osc. 40 Meters.	16 turns, No. 20 DSC on $1 \frac{1}{2}-\mathrm{in}$. dia. form. Space wound to cover winding space of $1 \frac{112-\mathrm{in} \text {. }}{}$
L2	53 Doubler. 20 Meters.	8 turns, No. 20 DSC on $11 / 2$-in. dia. form. Space wound to cover winding space of $13 / 8-\mathrm{in}$.
$\begin{aligned} & \mathrm{L} 3 \\ & \mathrm{~L} 4 \end{aligned}$	2 A 3 Plate. 20 Meters.	10 turns, No. 20 DSC on $11 / 2$-in. dia. form. Space wound to cover winding space of $13 / 8-$ in. This winding must be center-tapped.
	35 T Grid, 20 Meters.	8 turns, No. 22 DSC on $1 \frac{1}{2}-\mathrm{in}$. dia. form. This winding is interwound with L3.
L5	20 Meters.	12 turns, No. 12 Enameled, 2-in. dia., 2-in. long. This winding must be center-tapped.
	10 Meters.	10 turns, No. 8 wire, $11 / 2$-in. dia., 3 -in. long.
L6	20 Meters.	10 turns, No. 12 Enameled, 2-in. dia., $21 / 2$-in. long.
	10 Meters.	8 turns, No. 8 wire, $11 / 2$-in. dia., 3 -in. long.
L7	20 Meters.	12 turns, No. 12 Enameled, 2 -in. dia., $21 / 2$-in. long. This winding must be center-tapped.
	10 Meters.	10 turns, No 8 wire, $11 / 2$-in. dia., 3 -in. long. This winding must be center-tapped.

FIG. 13-The 35T Low-C Triode in a Modern c.w. Transmitter for High-Frequency Operation.
even on 10 meters, withont excceding the :3-watt plate dissipation of the tube. A pair of sia'ls in the final amplifier will deliver more than ! f $k-w$ untput.

A Jones © 03 exciter drives a 2 d 3 buffer stage which, in turn, excites the first 35 T either as a doubler or buffer. [nity coup-

FIG. 14-Circuit Diagram Showing 35T Tubes in a Transmitter with 125 Watts Output.
ling provieles ample grid excitation from the $: 2 .\{: 3$ to the first $: 5$ T. Optimum grid excitation with respect to the $2 . \ 3$ plate load can he adjusted ly varying the number of turns in the grid coil L.t. The value of grid leak shown in the circuit is suitable for doubling. However, it will also function satisfactorily for buffer operation where the output efficiency is higluer, and less input plate power will therciore be required. The grid leak in the final should have a value of from 1,000 to 5,000 ohms.

35T Amplifier, 100 Watts Output, with New Neutralizing System

- An amplifier to follow the Jones AllBand Exteiter is shown in Fig. 15. The exciter will supply from 10 to 15 watts of driving power from four 53 s or 6Atis on 10, 20,40 and 80 meters. This is sufficient power to drive the 35 T amplifier in Class C operation to outputs of over 100 watts. The 35 T is a high-mul triode with exceedingly low interelectrode capacitics, rated at 35 watts plate dissipation, making it an ideal 100 watt output tube for all-band operation. It is also a very excellent crystal oscillatcr and doubler.

Outputs up to 150 watts can be realized from this amplifier when the plate potential is approximately 1800 volts, and the output circuit tuned to 10 meters. The normal maximum plate potential is rated at 1500 volts; for values between 1250 and 1500 volts, 100 watts of output can be secured with apparent case on any band.

Technical Notes

- This amplifier has two systems of neutralization, both of the plate-circuit type. One of these systems is easier to drive for cw operation because the cen-ter-tap of the plate coil is by-passed to ground, thus introducing a certain amount of regeneration when plate voltage is applied. Another distinct advantage is that the grid current is greater. However, regeneration becomes excessive with some types of tubes and the amplifier will selfoscillate, thus making it unsuitable even for cw operation. The 35 T tube functions satisfactorily when the center-tap is by-passed to ground. All regenerative frequency doublers using this type of circuit should have a by-pass in the plate coil center-tap because the output will be greatly increased, and the plate current will decrease.
The other system of neutralization operates on the principle of a perfect Wheatstone l3ridge of capacities. as related in the Transmitter Theory Chapter. This neutralizing systems does not require a split-stator tuming condenser in the plate circuit, and it functions perfectly on 5 and 10 meters.
Condensers Cx and Cn_{N} in Fig. 16 consist of one fixed aluminum plate and two adjust-
able plates. The fixed plase comects to the free end of the plate coil and the variable plates connect to the grid and to chassis ground. The two movable plates can be secured to coil jacks. which act as bearings, or they can simply be made to turn on the screws of the standoff insulators. Once properly adjusted, the plates can be locked in position with the latter form of construction. The fixed plate is 3 inches high and $21 / 2$ inches wide. The grid plate of

FIG. 15-35T Amplifier with New System for Neutralizing.
C_{N} is $1 \frac{1}{2}$ inclies square, mounted so as to clear the fixed plate by $1 / 2$-incl, and to rotate from one end, in order to allow lower values of capacity. The grounded plate is on the opposite side of the fixed plate and is 3 inches high and 2 inches wide, for the particular amplifier shown. Balance occurs with this plate about $3 / 3$-inch, or slightly less. from the fixed plate.

Operating Notes

- A small neon lamp and a grid miliammeter are needed in order to properly neutralize and balance this amplifier. Several neutralizing settings are oossible for different settings of Cx_{x}, but only one is really correct. With the plate by-pass disconnected, and no plate voltage applied, the amplifier is neutralized in the usual manner. When held on the plate lead of the 35 T , the

FIG. 16-RF, Antenna and Power Supplies for 125 Watt 35T Amplifier.
neen lamp shoulce go out as neutralization is approached with CN. Cx is set at a value which will give a setting of CN at which no grid dip is noticeable on the milliammeter when tuning through rescnance witlt the plate tank condenser.

A second test for the proper setting of Cx cecurs when plate voitage is applied. The tube will over-heat at luw output if Cx_{x} is not set roughly to its proper value. Checkines in this manner for different settings of condenser Cx and CN_{N}. with and without plate voltage, will soon enable anyone to acquaint himself with this meutralizing system.

The grid current shoold be at least 15 ma., 20 ma . is correct for a 35 T under load if high efficiency is desired. This amount of drive can be ohtained from a 6A6 pushpall oscillator or a push-push doubler operated with 400 volts on the plates. With the un-bypassed netutralizing system, 15 ma. is about all that can be realized from a $6 . A 6$ d-iver, but up to 30 or 35 ma. can be had when the plate coil is by-passed to ground, at a sacrifice in stahility.

Antenna coupling should be made with a \because-or-3-turn link to another tank coil and concenser similar to the plate tank circtit. The antema feeder or feeders should tap on

FIG. 17-Jones Exciter and 35T Amptifier. 100 to 150 Watts Output.
this additional tuned circuit at points which will give best indication of antenna field strength when normal plate current is drawn at resonance from the final amplifier. Fesonance occurs in the plate tank at minimum point of plate current as the circuit is tuned by rotating the variable condenser rotor.

A twisted-pair feeder antenna can be cot:pled directly to the plate tank coil by wrapping from 1 to 4 turns around the center of the coil. Each band would require a different number of turns, and also
a different antenna, because the twisted-pair feeder is not suited for harmonic operation.

The 35 T plate operates at a cherry red when dissipating its normal amount of power. It is a "high vacumm" type of tulse, designed to operate efficiently when the plate is red hot; however it shoukd not be operated at white heat.

35T Amplifier Coil Data		
Wavelength	Grid Coil $11 / 2^{\prime \prime}$ Diam.	Plate Coil
10	4 turns, No. 18 DCC. 1" long.	6 turns, No. 14 Enam. Center- Tapped. $11 / 2$ turns per inch. 4" long, 2" dia.
20	9 turns. No. 18 DCC. $11 / 2^{\prime \prime}$ long.	10 turns, No. 14 Enam. Center- Tapped. $21 / 2$ turns per inch, 4" long, $23 / 4^{\prime \prime}$ dia.
40	19 turns. No. 18 DCC. $11 / 2^{\prime \prime}$ long.	20 turns, No. 14 Enam. Center- Tapped. 5 turns per inch. $4^{\prime \prime}$ long, $23 / 4^{\prime \prime}$ dia.
80	39 turns. No. 18 DCC, 2" long.	28 turns. No. 16 Enam. CenterTapped. 12 turns per inch. 31/2" long, $2^{\prime \prime}$ dia.

125 Watt C.W. Transmitter with HK-154 Gammatron

- The growing interest in the spectrum below 20 meters has resulted in the introduction of a number of new tubes particularly
suited for very-high-frequency operation. One of these new tubes in the $I I K-154$ Tantalum Plate Gammatron. Its plate dissipation is 50 watts, it can be operated with 1500 volts on the plate, and the grid and plate supports protrude through the sides of the tube envelope. This construction makes the tube particularly suitable for operation on wavelengths as low as 2 meters. Outputs of from 100 to 200 watts jer tube can be ubtained with plate potentials of from 800 to 1500 volts.

A highly satisfactory tratismitter for c-w operation, with a final ampifier that uses a

FIG. 18-New Jones 6L. Exciter and HK-154 Amplifier.
split-coil neutralizing circuit is illustrated in the photograph and circuit diagram, Figs. 18 and 19. The exciter has three GLG metal tubes. It provides sufficient output on any band from 10 meters to 1 if0 meters to drive the HK-1at for c.w. operation at plate potentials of 1000 to 1200 volts. The sante exciter will also supply ample output on : meters to grid modulate one or two HK-154 tubes for voice communication. The crystal oscillator incorporates the new Jones Rcgeneratize Circuit which delivers output on the fundamental, second. or fourth harmonic of the crystal by simply changing the phate coil in the oscillator stage. The remaining two stages in the exciter are ordinary perbtode doublers the output on 5 meters is 5

FIG. 19-125 Watt c.w. Transmitter.
watts, but 15 watts or more call be secured on the longer wavelengths. Either 160 or 80 meter crystals will give adeduate output at any desired frequency.

The amplifier shown in the photograph is ectupped with 20 meter coils. The final plate coil has 10 turns of No. 10 wire, 2 inehes in diameter, 3 turns par inch, centertapped and "air-supported." The final amplificr grid coil has 10 turns of No. 18 wire ort at $13 / 4$ inch diameter ceramic plug-in form; the winding length is 2 inches. The neatralizing condenser consists of two No. $1:$ gange aluminum plates, 2 inches by 3 inches. Onc piate is mounted on a standoff insulator with a coil jack, so that the plate spacing can be varied. The other, or "stator" plate, remains stationary and is also mounted on a standoff insulator. A sphit-coil nentralizing circuit, rather than a split-stator arrangement, praduces sufficient grid ariving power under conditions of fall output.

FIG. 20-The HK-154 Gammatron with Grid and Plate Leads Through Sides of Tube Envelope.

The bypass condensers ant resistors are mounted under the chassis. The final amplifier chassis is 8 in. $\times 14 \mathrm{in} \times .1 / 4 \mathrm{in}$. The exciter chassis is 8 in. $x 15 \mathrm{in}$. $\mathrm{x} 13 / 4 \mathrm{in}$. The coils for the Exciter are wound on 13/4 in. ceramic forms.

All tuning condensers, other than the final plate condenser, are double-spaced 50 mmf .

Exciter Coil Winding Table

160 Meters: 70 turns No. 24 DSC, 2 inches of winding space.
80 Meters: 34 turns No. 16 enameled, 2 inches of winding space.
40 Meters: 16 turns No. 16 enameled, $11 / 2$ in. of winding space.
20 Meters: 8 turns No. 16 enameled, $11 / 2 \mathrm{in}$. of winding space.
10 Meters: $41 / 2$ turns No. 16 enameled, $11 / 2 \mathrm{in}$. of winding space.
variables. The final condenser shown in the photograph is a Hammarlund TC-50-A. 50 mmf. ligh voltage type.

High Power 2-Stage C.W. Transmitter

When two 6L6 ar 6L6G tubes are connected in parallel in a crystal oscillator circuit with the regenerative feature previously described, sufficient ontput is obtained to drive a high power final amplifier to outputs of over 400 watts. 40 or 80 meter operation is secured with either a 40 or 80 meter crystal. The crystal oscillator operates with 400 volts on the plates of the 6L6G tubes. and 250 volts on the screens. The oscillator clelisers between 40 and 50 grid milliamperes,

FIG. 21-Close-up of HK-354 Gammatron Amplifier, Showing Neutralizing Condenser Assembly.
through a 5000 ohm grid-leak, to the HK^{-} 54 tube. This is sufficient grid excitation for operation of the power amplifier at inputs of from 500 to 600 watts with a plate supply of 2000 volts. The split-coil in the plate circuit of the final amplifier, with by-

FIG. 23-One Band c.w. Transmitter-Output 300-350 Watts
pass to ground, provides a neutralizing circuit which has some inherent regeneration. As a result, the grid current does not drop below 40 milliamperes when the voltage is applied with the amplifier coupled to the antenna. The frame of the final plate tuning condenser acts as one side of the neutralizing condenser, another neutralizing plate (the rotor) is attached to the condenser frame with a strip of Mycalex, 1 in. x 3 in.

The entire transmitter is mounted on a large breadboard, 18 in. $x 26$ in. $x 3 / 4$-in., covered with a thin sheet of aluminum, tacked to the under
side of the board. One end of the final plate coil plugs into a sleeve attached to a Mycalex support on the rear frame of the condenser. The other jack plugs into a sleeve secured directly to the condenser frame, resulting in short leads between coil and condenser.

The oscillator is link-coupled to the grid of the final amplifier and the coupling link is supported on standoff insulators.

A more simple method would consist of two turns of wire twisted tightly around the bottom of both the oscillator plate coil and

FIG. 22-2-Stage High Power Transmitter with Parallel 6L6G Oscillator.
final grid coil, and the loops comected together with a conventional twisted-pair line.
The regenerative crystal oscillator circuit enables the use of very tight coupling between the two coils without tendency of pulling the oscillator out of oscillation.

The final amplifier can be keyed in the center tap if a key-click filter is comected in the keying circuit ; prinrary keying is also satisfactory.
The screen voltage on the oscillator should be limited to 200 volts for 40 meter operation, or 250 volts for 80 meters.

FIG. 24-Power Supply for Transmitter Circuit in Fig. 23.

Higher screen voltages will overheat the crystal and fracture it.

Itaboratory tests show that this transmitter is capable of over 700 watts output wit'? 2,800 volts plate supply. In one test, the crystal stage was operated with 600 volts on the plate and 275 volts 011 the screen. The grid current to the final stage was between 75 and 80 milliamperes under load, at the expense of a 40 meter crystal.

The oscillator plate coil for 40 meter operation has 17 turns of No. 16 DCC wire. spaced to cover a winding length of $1 / 2 / 2$-in. The grid coil, for 40 meters, l:as 19 turns of No. 16 DCC wire, spaced the same as the iscillator coil. The final amplifier plate coil ior 50 meters has 20 turns of Na 10 enamelerl wire, $31 / 2-\mathrm{in}$. diameter, 7 in. long. center-tapped.

Coil data for 80 meter operation is as ioliows: Oscillator coil, 36 turns No. 18 or :0) DSC, close wound on a 4 -prong receiving type coil form. Grid coit, 32 turns No. 18 or 20 DSC, close-wound on 4 -prong receiving type coil form. Final amplifier slate coil, 28 turns No. 10 enameed, $41 / 2$ in. liameter, $z^{1 / 2}$ in. long, center-tapped. 50 or To mmf. double-spaceá midget variable conrensers tune the oscillator plate and final grid coils: the final tank condenser should he of the high-voltage type. 35 or 50 mmf ., single section. The one shown in the photosrapil is an Audio Products Co. Type WS156035. The grid tuning condenser is d double-spaced two-section 35 mmf . per section midget variahle, with both sections connected in parallel to give a maximum calacity of 70 mmf .

Tuning

The grid milliamperes will usually drop when the key is pressed. Slight readjustments of the oscillator and grid tuning condensers, when the key is down, will tend to bring the grid current back to almost normal.
The input impedance of the amplifer changes when the key is down and when normal antenna load is applied, thus making it necessary to slightly change the degree of link coupling.

RK-35, RK-36, 500 Watt Transmitter

- This cw transmitter is built into a 30 in . $x 19$ in. relay-rack as a complete unit, including power supplies. The new Raytheon RK-36 low-C tantalum plate 100 -watt tubes are comiected in push-pull in the final amplifier. This final amplifier is driven by an RK- 35 huffer stage for coperation on ary band by mercly changing the coils. The RK-35 is a 35 -watt tantalum plate tube; it supplies more output than is needed to drive the final amplifier if the buffer is operated with more than 1000 volts on thee plate. The final amplifier can be operated at 2000 valts on c.w., with about 350 ma. of plate current.

The type of coupling between buffer and final stage, as shown in L 2 in the circuit diagram. functions very well and requires only one tuned circuit. The grids of the tubes in the final stage are tapped down
toward the center of the coil to a point where the buffer stage draws only normal current (not over 100 ma.). With wirewound coils, these taps are made by soldering $1 / 2$-inch pieces of wire to the coil turns, so that connection can be made with clips. The buffer grid tuned circuit can be linkcoupled to any tuned circuit of the exciter, and threc-band aperation is therefore made pussible withont changing the exciter coils or crystal. The Rド-35 enrid coil and condenser are monnted on the exciter deck in order to conserve space on the deck above.

FIG. 25-Rear View of RK-35, RK-36 c.w. Transmitter.

The neutralizing condensers are made of No. 16 gauge sheet aluminum. The capacity can be varied by bending the grid section plates with a bakelite rod when neutralizing the final amplifier. These two neutralizing condensers have $1 / 2$-inch spacing between adjacent plates and overlap 1 -inch $x \quad 2$ inches; this is sufficient capacity to nettralize either RK-36 or 50 T tubes. The stationary U-shaped plates fasten directly to the stator screws of the final tuning condenser; the "moving" plates mount on standoff insulators and cross-connect to opposite grids. The RF leads are short, and high efficiency on 10 meters, as well as on other bands, is obtained. The buffer neutralizing condenser is made from two plates which overlap. Each plate is 1 -inch square and the separation
between plates is $1 / 4$-inch. A large Johnson coil plug and jack is ideal for the rotor plate bearing.

The rotor of final tank condenser is bypassed to ground, rather than directly connected, in order to prevent a DC arc in case of RIF Hlash-over. KI arcs 2 inches long can be drawn from either stator plate with a lead pencil or screw-elriver test prod.

The high voltage power supply also furnishes power for the buffer stage, although if more space is available a separate 900 or 1000 volt supply would be desirable. The no-load buffer plate voltage rises to nearly 2000 volts, but in spite of this voltage the tramsmitter keys satisfactorily it the crystal uscillatur stage. Fixed bias for the buffer

FIG. 26-The Front Panel Arrangement Is Symmetrical and Beautiful.
and final stages is obtained by floating the negative high voltage and filament supplies at +400 volts from the small power supply unit. The grids are operated at less-positive or ground putential, which in effect provides negative fixed bias to these grids. 10 ma. of grid current in the buffer is sufficient, likewise 50 to 70 ma . is satisfactory in the final amplifier grid circuit.

The exciter is similar to one described in the Exciter Chapter. It has three RK-6L6G tetrodes in a regenerative crystal oscillator, and standard doubler circuits. 6A6 tubes would give sufficient output to drive the RK-35, but 6 L 6 G tubes give more lee-way, and the output can be adjusted by varying the screen voltage on the 400 -volt power supply bleeder resistor. The smaller power

F1G. 27-Complete Circuit of Exciter, RF Portion and Power Supplies for RK-35, RK-36 c.w. Transmitter.
tamsiormer nust be capable of supplying 250 ma . I)C at 400 volts, becasse each 6 L 6 G tube craws approximately 7.5 ma. total cathode current. Cathode bias resistors supply bias to the 6L6G doubler tubes when keying the crystal oscillator cathode circuist. The exciter power supply is built on the exciter chassis, which measures 12 in. $\times 17$ in. $\times 13 / 4$ in. The other chassis are $1: 3$ in. $\times 17$面. $\times 21 / 2 \mathrm{in}$, A $10^{1 / 2} \mathrm{in}$. $\times 19 \mathrm{jn}$, lanel is secured to the main power supply chassis. A ? in. x 19 in . panel, and a 12.4 in. x 19 in . fane! are secured to the exciter and main $=$ mplifier chassis respectively.

The coils are wound on ribled $11 / 2$ - in . diameter furms for the exciter and RK-35 grid coils. The final grid (or $\mathrm{RK}-35$ plate) coils, and the final tank coils, are wound on various sizes of rolling-pin forms, with strips oi celluloid for coil supports. The turns are cemented in place with Duco Houschold Cement. The forms are removed after the Duco cement has dried. Standard wire-wound coils can be used, but it should he remembered that the RK-3:, RK\therefore in tubes are of the very low C type, and fairly large values of inductance are needed for each band.

Coil Data for RK-35, RK-36 500 Watt C.W. Transmitter

Wavelength	Exciter Coil	RK35 Grid Coil	RK.35 Plate Coil	Final Tank Coil
40	18 turns No. 20 DSC $11 / 2^{\prime \prime}$ long 11/2" dia.	20 turns No. 20 DSC 11/2" long 1/2" dia.	18 turns No. 14 Center-Tapped 2 $1 / 2$ " long 23/8" dia., tapped at $43 / 4$ turns from ends	22 turns No. 10 Center-Tapped $31 / 4$ " long $23 / 8^{\prime \prime}$ dia.
20	9 turns No. 20 DSC $11 / 2^{\prime \prime}$ long $11 / 2^{\prime \prime}$ dia.	10 turns No. 20 DSC $11 / 2^{\prime \prime}$ long $11 / 2^{\prime \prime}$ dia.	10 turns No. 14 Center-Tapped 2" long $2^{\prime \prime}$ dia., tapped at 13/4 turns from ends	11 turns No. 10 Center-Tapped $3^{\prime \prime}$ long 23/8" dia.
10	5 turns No. 20 DSC $11 / 2^{\prime \prime}$ long $11 / 2^{\prime \prime}$ dia.	5 turns No. 20 DSC $11 / 2^{\prime \prime}$ long $11 / 2^{\prime \prime}$ dia.	4 turns No. 14 Certer-Tapped 2" long 2" dia., tapped at $1 / 2$:urn from ends	6 turns No. 10 Center-Tapped 21/2" long $21 / 2^{\prime \prime}$ dia.

Economical 1 K.W. Transmitter

Most high sower c.w. transmitters are designed to use several butifer and cloubler stages with moderate size tubes or relatively few stages with larger and more costly tubes and power supplies. The transmitter illustrated here is designed for operation with the new Taylor tubes, which work very efficiently in a three-stage transmitter for allband operation.

Technical Notes

A 6LigG penterle regenerative crystal oscillator drives a Taylor ing buffer-doubler tube to over 40 watts output as a doubler. The buffer-douliler is then directly counhled to a pair of Taylor 814200 -watt tubes in a push-pull final amplifier with an iuput of one kilowatt. The uscillator delivers about 20 watts output to drive the doubler to over seven times cut-i,ff, thus the latter functions at between 80% and 60% efficiency, depending upon the plate load impedance formed be the grids of final amplifier. These grids of the Taylor sit tubes are tapped on the plate coil of east tube at points which will not cause excessive plate current in the T.je tube as a doubler or neutralized amplifier. The final amplifier operates at better than 75% efficiency, and laboratory tests with inputs of 1.6 KW showed no plate color in the tubes. These tulues are very easily excited at relatively high efficiencies and outputs.

Capacitive coupling functions satisfactorily and reduces the number of tuned circuits to three, as the schematic diagram shows. The new improved pentode oscillator circuit allows heavy plate loading, such as that which results when the oscillator is capacitively coupled into a high-mu tuhe grid circuit. Self bias on the Tit6. and fixed pias on the $\$ 1 t$, allows keying in the crystal oscillator for break-in operation and minimizes key-click ra-
supply shown in the circuit diagran is entirely satisfactory for c.w. telegraphy.

Constructional Notes

- The entire RF portion is mounted on an oak baseboard, $11 \mathrm{in} . \times 30 \mathrm{in} . \times 1 \mathrm{inl}$, with end cleats to make room for resistors, jacks, fixed condensers and some wiring under the board. Each plate in the nentralizing condensers for the final amplifier is $31 / 4 \mathrm{in} . \mathrm{x}$ $31 / 2$ in. of 16 gatuge aluminum. The C 'shaped construction gives four plates with $1 / 2$-in. space leetween plates. A 1-in, tab at one end of the back of the " U " provides a means of momuting, with short comecting leads to the stators of the main tuning condenser. The other two " 'C"' sections mount on small standulf insulators and cross-connect to opposite grids for neutralization. These capacities are made equal to the grid-to-plate capracities of the tulses by bending the " U " sections backward or forward while neutralizing. The edges of all condenser plates are rounded with a file.

The fimal tank coil mounts on short brass strips, with coil plugs, attached directly to the stators of the tuning condenser by means of brackets. The tuning conclenser is a homemade affair, built from plates purchased from a radio salvage store. The space between adjacent rotor plates is $13 / 16 \mathrm{i}$ in., and the stator plates are approximately 4 in. x 18 in. x 16 gange aluminum. Any manufactured split-stator tuning condenser with 35 to 50 mmind. per section, with at least $3 / 8$-in. spac-

FIG. 28-1-KW Transmitter with Taylor 756 and 814 Tubes.
ing between rotor and stator plates is satisfactory.
The buffer plate tuning condenser should be double-spaced in order to prevent flashover. Single-spaced osciliator tuning condensers have a slight tendency to flash-over,
diation.

Plate supply costs have been reduced by the system slown. The final amplifier plate supply is slightly overloaded. but c.w. intermittent service places less strain on rectifier tubes and transformers than when phone operation is used: consequently the power

FIG. 29—Economical 1-KW c.w. Transmitter Circuit.
but they can be used if the oscillator plate supply is slightly less than 400 volts. The screen supply of 250 volts also furnishes bias for the final amplifier and hoosts the $5: 0$ volt supply to approximately 800 volts.

The oscillator coil for an 80 meter crystal consists of 31 turns of No. 16 enameled wire on a $13 / 4$ inches in diameter porcelain form. with a winding length of 2 inchres. A 16 -turn coil of the same dimensions is correct for a 40 meter crystal. The 40 meter buffer coil has 14 turns of No. 14 enameled wire, wound on celluloid strips, $21 / 3$ inches in diameter, 2 inches long. It is center-tapped and tapped at $31 / 3$ turns from each end with wire "lugs" for conmection to the Fahnestock clips. The 40 meter final tank coil has 16 turns of No. 10 enameled wire, wound on celluloid strips to occupy a length of 5 inches, $31 / 2$ inches in diameter. Coils for 80,20 and 10 meters can be made hy consulting other coil tahles in the pages.

Operation

- In the experimental transmitter, the oscillator cathorle current was 75 ma., the 756 center-tap space current was 120 ma . as a doubler, and the final plate current was 550 ma. The doubler grid current measured approximately 10 ma., and the final grid current 50 ma., under full antenna load operating conditions. A small parasitic grid choke reduced a tendency for 5 -meter oscillation when the plate voltage was increased to 2750 volts during speeial tests, with the final amplifier operating at inputs of more than 1-KW. The addition of a 2000 ohm grid leak in the final amplifier grid jack circuit is recommended if the oscillator screen supply furnishes less than 250 volts positive bias to the filament return circuit of the final amplifier. The total grid-to-filament DC bias should be at least 250 volts for Class C c.w. operation with plate voltages as shown in the schematic diagram.

Notes

Chapter 11

Transmitter Tube Data

- This chapter contains complete data on all pupular types and makes of statidard and spechal transmitter tubes of American manufactare. Atore information is here given than las previously appeared in any other book. Iicluled are typical operating conditions for class B audio amplifiers or modulators, and for R-F amplifier service. lirom this data the reader can tell at a glance what type of driver stage is needed, power supply reguirements, the output that can be expected, and hou the tube constants vary maler mumerous geratieng conditio:s. Where such information was not given in the Tube Manatherers' Oata Bullctins, separate calculations were mate in order to determine the operation of all types of tubes. These calculations are given in the pages that follow.

Sale zalues of plate voltage and current for all transmitter tubes are given. Many amateurs and experimenters operate their transmitier tubes at higher than mormal ratings, without exceeding the actual plate dissipation ratings of the tubes. This practice can le considered satisfactory ouly when the tube is used for c-w service, and only if the grial driving power is greatly increased so that the tubes can be operated over a lesser angle wi plate current flow during each $\mathrm{K}-\mathrm{F}^{\circ}$ cycle, resulting in operation at higher plate efficienty. The DC grid current should never exceed the maximm rated values, yet the gricl bias voltage may be increased to such a wiut that two or four times as much grid driving power is applied to the grid, or grids, of the tube, or tubes, in the final amplifier stage. This practice results in greater plate officincy (within! limits), but at a sacrifice in powir gain; in extreme cases 200 watts of grid drive may be needed to olbtain 600 watts oi antenna power from a final amplifier. It is obvious that the foregoing does not represent economical design, and thus the Tube Futhes in this chapter are, in general, based on a power gain of approximately 10 , with plate efficiencies of from 66% to $7 \% \%$. Kadiation of harmonies does not become a too-serious problem when Class C anpplifiers operate in this range of efficiency, particulatrly when the proper C-fo-I ratio of tank circuit is emphosec:

The values of arid drizing poacer listed in the Tables are those actually need liy the grid of the tube. The power loss in the C -hias sumply or grid leak should be added to these
values, and for all-band operation the circuit losses sluukl be taken into account when designing amplifiers or buffer stages. At 10 and 20 meters, the tuned circuit losses are higher that in the lower-frequency lands, such as 80 and 160 meters. These circuit losses camot be given in a Tube Table: only the grid biats loss and grid driving power can be listed. An excess of power should be available for the driving stare in order to compensate for circuit losses. Some neutralizing circuits introduce a regenerative effect, requiring less gricl drive. Circuits of this type are particularly (lesirable for c-w operation, but they are not reconmended for phone opcration.

Crystal Oscillator Tubes

From the amateur's viewpoint, the best tube for a crystal oscillator is the metal 6L6 bean power pentode, or its glass eqrivalent, 61.6(i. Next in order are the types 6 A 6 and 53, identical in characteristics except for heater voltage and current. Other tubes suitable for crystal oscillator circuits are types 41. 42, 2A5, 59, 4\%, 56. $66,6 \mathrm{~F} 6,6 \mathrm{C}, 6 \mathrm{~F}, ~$, 6N\%. 30. 19 and 10. Because most oscillator tubes fall in the category of Kecciver Tubes, the reader will not find these tubes listed in the Transmitter Tube rlapter; refer to the chapter on Recciver Tubes for characteristics, circuits and applications.

Frequency Doublers

- Amang receiver type tubes, the gil6 or 6I.b(i again takes its place at the hearl of the list for most satisfactory doubler service. The (i.if or 3 is is next in line followed by the 46 . A tube for doubler service should have a ligh amplification constant ; pentorle $2.45,4.2$ or 59 types are therefore eccasionally used. Outputs of from 2 to 15 watts can be lelivered by such tubes. Greater outputs from frequency doublers are secured irom tubes such as the $8+1$, Eimac 3n- 9. Taverer 656. These tuhes will deliver outputs oi from 15 to \% 0 watts when driven by a $6 . A 6$ or Gl, diblif(i crystal oscillator, and they have a further advantage in that they can be easily neutralized when operating in huffar stages. The ousput from a dobthler is almost as great as from a buffer, if the grid bias in the former
is at least six times cut-off bias, and if nearly normal DC grid current is flowing.

R-F Amplifiers

- The most popular all-around inexpensive tube for amateur service has been the type 10 or 210 . Two or three of these tubes, driven by a crystal exciter, will deliver outputs of more than 100 watts. More elficient and higher power tabes have recently been introduced and the popular 210 is gradually being replaced with tubes of later design.
Nany of the new carbon plate tubes are easy to drive to high outputs. In general, these tubes are easier to drive than the older types
of low C tantalum plate tubes at most amateur frequencies. On the other hand, tantalum plate tubes are less bulky in plate construction for a given plate dissipation, interelectrode capacities are lower, and thus these tubes are more efficient for operation at the ligher frequencies, particularly in the $u-l_{1}-\mathrm{f}$ region. IBotlı types can be made to operate with equal effectiveness on the amateur bands. Tantalum plate tubes are gas-free and can be operated at very higll plate voltages $(4,000$ to 5,000 volts) for $1 \mathrm{~K} . \mathrm{W}$. iuput to a single tube; however, a more powerful driver is needed than for two carbon plate tubes operating at lower plate voltage with the same input.
- Tubes for transmitter, modulator and audio applications are listed in the order of their rated plate dissipation. Frequency range, interelectrode capacities, grid driving power, power output, and average operating conditions are given. The capacity of the neutralizing condenser should be equal to the grid-to-plate capacity of the tube. The power output and grid driving power requirements are listed for average conditions where Class C amplifiers operate at an angle between 120 and 140 degrees. The Class C plate efficiency will run between 66% and 75% under these conditions. If more grid drive is available, greater output and higher efficiencies are secured in some cases. The Amplification Factor (mu) determines the value of d-c grid bias needed for the particular type of amplifier circuit in which the tube operates. Vacuum Tube Theory is more thoroughly treated in Chapter 3. Receiver tubes which are also suitable for transmitter operation, such as types 45, 46, 47, 53, 59, 6A6, 6B5, 41, 42, 2A3, 2A5, 6L6, 6L6G and 6F6 are covered in Chapter 7.

RK-15 RAYTIIEON 4-pin base tube, similar to 46 , and designed for (lass Is audio amplifier or R-F doubling. Control grid at tof of tube.
Characteristics:
Max. I) P Plate Voltage............................... 400 rolts
Max. If Ihate current.................................. 50 ma
Max. Plate Dissipation.................................. 10 watt

\& \& \%

RK-16 RAYTIEON Triode 5-pin hase, similar to 59 when tri-ode-connected. For use as Class B driver stage. Characteristics same as $\mathrm{RK}-15$. $\%$ \%
RK-17 RAYTIIEON Pentode. 5-pin liase. Designed primarily for crystal oscillators in standard pentode circuits. Cantrol grid at top of tube. Char. acteristics same as $1 \mathrm{~K}-1 \overline{\mathrm{~J}}$.

RK-34KAYTIIEOA Twin-Triode Power Amplifier. Designed primarily for U.H.F, amplifier or oscillator service. May be used efficiently up to 240 mc , providing the plate dissipation is maintained at not over 10 watts.

Note: A fixed bias of - 15 volts is desirable in case of failure of RF -excitation.

Unistial Feature: Two plate leads are brought
thrt the toj of the tube envelope, thus reducing interelectrode capacities for U.H.F. service.

Characteristies:	
Heater Voltage	6.3 volts
Heater Current	0.8 amps.
Amplification Factor	
Grid-to-1'late capacity	9.7 mmfd.
Input Capacity	4.2 mmfd.
Output Capacity	2.1 mmid.
Max. Plate Dissipation	10 watts
Max. D.C. l'late Voltage	300 volts
Max. I.C. I'late Current.	80 ma
Max. D.C. Grid Current	45 ma .
Class A Amplifter (Sections in Parallel):	
1).C. Plate Voltage	300 volts
D.C. Grid Voltage	-16 volts
l'ate Hesistance	2950 ohms.
Mutual Conductance	0 micromhos.
Plate Current	25 ma .
I.oad Resistance	5000 ohms.
I'ower Output	0.8 watts
Class B Amplifier:	
D.C. I'late Voltage 180	300 volts
D.C. Grid Voltage................... ${ }^{-6}$	-15 volts
State Plate Current 15	15 ma .
Load Resistance 6000	10.000 ohms
lower Output 7.2	12 watts
Peak A.F. Input (grid-to-grid)...... 100	100 volts
R-F Service-Class C Amplifier :	
D.C. Plate Voltage	300 volts
D.C. Grid Voltage	-45 polts
D.C. I'late Current	.75 ma .
D.C. Grtd Current	15 ma
Grid Driving Power	1.8 watts
Grid Blas Loss.	0.67 watts
Power Input	14 watts
Approx. A.C. Load Impedance	1600 ohmb

RK-23-25

RAYT:IEON R - F An:plifer, Frequency Duabler, Oscillator, Suppressor, Control Grid or Ilate Modulated Anmplifies. As a loubier, approx. 12 watts can be obtained. This tube has large i-pin base. Plate at top of tube. Frequency Range: 100% ratings up to 30 mc .

Typical Low Power Buffer Circuit for RK-23. RK-25

R-F Service:

		Control Grid Modulation	Supp. Mod.	Class C Telegraphy	
n.c.	Plate Voltage.	. 5,00	500	590	500 г.
D.C	Screen Veltage..	200	$\because 00$	200	200 จ.
D.C	Suppress. Volts.	- 45	-45	0	45∇.
D.C.	tirid Voltage....	. -125	-90	- 90	-90 v.
Peak	HF Grid Voltage	- 150	135	135	135 v.
Teak	AF Grid Voltage	e 45	75		
D.C.	Piate Current..	- 34	32	50	55 ma -
T.C.	Screen Current.	- 20	40	40	35 ma .
T.C.	Grid Current....	- 1.5	6	6	6 ma .
Grid 1	Driting Power..	. 1.3	. 8	. 8	. 8 watts
(rilil	Bias Loss 2	. 5	. 5	. 5 watts
FW-	Output (appros.)	i 6.5	5.5	18	24 watts
Screp	H1 Resistor 20.000	7500	7:00	8500 ohms.

842
RC:A Audio Frequency Amplifier and Modulator. Triode. Not as desirable as a type 2A3, which will provide more output at lower plate voltage.
tharacteristies

10
Trioule. Class C Amplijer or Doubler. Class B Power Amplifier and Modulator for medium power transmitters. Crystal Oscillator in commercial transmitters (at 250 volts max. plate supply). Often oprrated at 750 to 900 volts plate supply and 75 ma. per tube in Class C Telography, amateur service.

Frequency Range: Up to 15 mc . at normal ratings. May be operated on freguencies as high as 60 mc . at $\mathrm{r} \pm$ diced plate voltage (100 volts) if tube is equipped
with Ceramic base, or if nolded bakelite bases are cross-slotted with hacksaw cut.

Characteristics:

haracteristies:		
Filament Voltage		7.5 colts
Filament Current		1.25 amps .
Plate Viltage	350	425 max. volts
Grid Voltage	-31	-39 max. volts
I'late Current	16	18 ma .
Plate Resistance	5150	5000 oms.
Amplifleation Factor	8	8
Mutual (onductance	1550	1600 mleromhos.
1.oad Resistance	1.000	10.200 ms .
Selt-Bias Aesistan	1950	2150 ohtms.
1 'ower Obtput	0.9	1.8 watts
1'late-Grid Cap.		7 mmtd .
Indut Cdpacitance		4 mmPd .
Output 'apacitance		3 mmtd .
Base		Medium 4 nin

210 or 801 Buffer-Doubler Circuit with Split Plate Coil, Requiring Minimum Grid Drive Under Load

ass C Amplifter (Telegraphy)		
I.C. Intite Voltage 100	500	600 r.
1.C. Plate ('urrent....... 65	65	65 mia .
13.C. (Grid Voltage -100	-125	-150 v .
I.C. Grid Current 10	10	12 ma .
Appror, AC Load Imped 5000	3800	4600 ohrs.
Approx 1'ower Output.... 16	21	27 watts
1R.F. Grid Excltation.... 2.7	3.0	3.8 watts
dirid lhas lass 1.0	1.25	1.8 watts
1'late Loss 10	11.5	12 watts
Class B, A-F Amplifter:		
Plate Voltage	400	600 v.
Grid 13:as	-50	-75 \%.
Zero sig. Plate Current (per tube)	4	4 ma .
Max. Nig. I'late Current (per tube)	6.5	65 ma .
load Kesistance (Plate to Ilate)	6000	10.000 ohms.
Approx. Power Output (2 tubes).	27	45 watt

802RCA Pentode. R.F Amplifier, Frequeney Doubler, Oscillator Suppressor, Grid or Ilate Modulated Ampiifier. Plate at top of tule
Frequrncy Rame: $100 r_{0}$ up to 30 mc., 55% at 60 me.

Notr: The internal shield should connect so eathode at the socket, in all circuits.

802 Pentode Low Power Buffer Stage

802 Continued

R-F Service:

	Contral Grid Mpdu- lation	Supp. Mod.	Class C Teleg.	
I).C. rlate Voltage.	. 500	500	500	500 volts
1).C. Srreen Voltase.	200	200	200	200 volts
D.s. Suppress. Voltg.	0	-45	0	40 volts
1).C. (ird Voltage.	-130	-90	-100	- 100 volts
I'eak LHF Girid Voltr.	145	12\%	155	135 volt 3
leak AN Grid Voltg.	51	65		
I. C . Plate (${ }^{\text {current. }}$	25	22	45	45 ma .
1).C. Sicreen Current..	. 8	28	22	12 ma .
W. ${ }^{\text {d }}$ Grid Current.	. 1	4.5	8	2 ma.
(iriaj I)riving I'ower..	. .8	. 5	. 9	. 25 watts
Grid lias loss 13	. 4	. 6	W watts
lwr. Output (Approx.)		3.5	14	$1)^{\prime}$ watts
Screen Hesistor35.500	. 00	13,700	20.000 ohms.

WE-307AWestern Filectric Pentorle. Oscillator, IIigh-Fre. quency Amplifier and Donbler, Suppressor-Modulated Amplitier. Desigued for portable H.F. and U.I.F. transmitters.

Frequcncy Kange: 100% ratings up to approx. 60 mc .

Unusual Fcature: Claick-heating filament instead of heater for intermitent use in automobile transmitters.

Characteristics:

lnput Cap. .. 15 mmfd.
Output Cap. $1 . . .$.
Max. I'late Dissipation.................................... watts

R-F Service:

	Suppress. Mod.	Class C Teleg.
D.C. Plate Voltame	. 500	500%.
1.C. Screen Voltage	200	200 r.
1).C. Suppress. Voltage	-50	0 จ.
I).C. Grid Voltage	-35	-354.
P'ak K-F Grid Volt	50	50 v .
P'eak A.F. (irid Voltage	50	0 \%.
1).C. Plate ('urrent	40	51 ma .
D.C. Sirreen Current	21	18 ma .
P'ower Output (Approx.).	,	17 watts
Screen lessistor	14,000	14.000 ohms.

841
lich, Amperex, United. High-Mu ('10) Triode. Class I modulator. ("lass C RF amplifier or doubler. Oscillator. Resistance Coupled atulio amplifier.

Freguch'y Kınge: 100% ratings up to 6 me. New ceramic hase types may be operated up to 30 me at full ratings, which are about 50% higher than the 4 .in volt type listed.

Vote: Girid excitation varies under different operating condition: that the driver stage should be capable of supplying twice as much power as listed for grill drive and has loss.

843

RC' A l"riode. Oscillator, AF power amplifier and R.I*. Amplifier of the heatereathode typ for 2.5 volt filament supply. Nut in general use.
 50% at 30 mc.

Note: firid driving power requrements vary over wide limits.

Characteristics:

Class A Audio Amplifier:

$$
\because \quad \because
$$

844RCA Screen-grid R. F. Amplifierdoubler or bulfer. Oscillator. Not in general use.
Characteristics:

865
RC - Screen Cirid Tetrode. Buffer, amplitier, and frequency doublers. As a dowher about 5 to 10 watts may
lee oltained.
Character istics:
Filinuent Soliage
Wiancent Current
Gind to Jhate Caparity
7.5 rolts

Grid to Irlate Caparibs. 3.0 amps.

Gurut capacits \&. 5 numpd.
Ontplet camacit 8.5 tumfa.
l'lite Voltaza .500 volts
Screct Voltage
$.1 \pm 5$ rolts
Gral Veliane

0 bolts

Vintal romductance -50 micronihos
'ate furrunt $\frac{2}{5} \mathrm{ma}$ watis

Class C Operation:

Single 865 Buffer or Doubler Circuit

801
RCA, Amperex, l'nited 310. Triode. (lass C. RF amplitier for phone or cw. Class B modulators. Freqtuency toulder.
Caution: The values given for grid driving power and power output vary with frequency and loan circuit impedance. The driving stage should have. if possibie, twice as much porer rutput as ncedeal for grid driving jower and bias supply loss.

Note: As a doubler, regoneration can he obtained at the output irequency to mpirove the output efficiency without requiring as high grid bias and grid drive as listed in the table.

Characteristies:			
Filament Voltage			7.5 volts
Filament Current 1.25 unips.			
Gird to I'late Capacity . 6.0 mmid.			
Amplitication Factor 8			
Grid to Filament Capacity			5 mmfd ,
I'late to Filament Capacity....................... 1.5 mrefd.			
Maximum Prate lissipation 0 watts			
Maximum D.e. Plate Voltage...................... $600 .$.			
Maximum 1).C. Grid Current 15 ma.			
Hase . I'X - 4 prong Isolantite			
Class B Audio:			
Plate Voltage 400	500	600	750 volts
Grid Voltage (Appror.) -50 -60 -75 -90 volts			
(per tube)Maxtmum Sig Plate Cur-			
rent (per tube) $\ldots . .65 \quad 65 \quad 65 \quad 65 \mathrm{ma}$.			
Load Resistance (plate			
Power Output 27	36	45	60 watts

807

 R.C.A. Beam Power Pentode Trans mitter Tuive. K-F buffe or donhlel for frequencies up to 60 mc . at iuht rated imput. $50^{\%} \%$ ratings at 150 mc . Also usefir: as crystal oscillator with external capacity cont nected between grid and plate. (las: Ab audis amplifier with 60 watts output for twis tuhes !.ser 6, (t) characteristics). If care is taken in placement of parts and if shield is placed around tube and -i the imput circuits ate shielded from the outpet circute, no neutralization will be required for R-ri circuits.Characteristics:
Heater Voltage
. 9.3 rolis
Heater C:urrent .0 .9 amps.

tnput "apaejty . 1.6 mmis

Maximim Ilate Dissipatiot. 400 rolts
Maximunt D. ${ }^{1}$ jite lead at top of enverope.

R-F Amplifier:
11.1. Prate Visltage. 300 . 400 volts

J.C' Irfil Voltade. -50 - 00 voits

1'eak K-1゙ firit roltan..................... 80 80 voits
!.
1), 『. sereen ('urrent................................. 10 ma.

$\%$ \%

RK-39
Raytheon Beam Power Tetrude. Designed for frequercy doubling or as a crystal oscillator at higher plate voltages than can be used on 6 L 6 tube. This tube should be neutralized when operated as a buffer.
Characteristics:
Hearacteristics: . 6.3 volta

Grid to Ilate Cuacjity 1.0 mmifd.
Input Capacity .. 19 maifd.
output Caparity $\quad . .$. ... 7.5 mmifa.
Maximum 1'tate 1issifathon 20 watta
Mavimum Screen IDiss'pation 3 watts
Maximum I.C. I'late Volrage 750 volts
Maxinum Plate Current
.80 ma.
.10 ma.

Tetrude Crystal Oscillator:

250KCA Audio Amplifier in radio receivers or as a low power modulator for transmitters.
Note: Not over 10,000 olinis resistance can be placed in the grid circuit without endangering tube operation. These tules have been supplemented by more modern tubes, such as the 2 A 3 and 6 L 6 .
Characteristies:

Filament Voltage			
Filament Current			
Grid to Plate Capacity 9 mmfd.			
Grid to Filament Capacity........................ 5 mmid.			
Prate to Frament capacity......................... 3 mmid.			
Maximum Plate Dissipatio			25 watts
Maximum 1'late Voltage 45.			
Class A Audio Amplifier:			
Plate Voltare 350	400	450 max.	volts
Grid Voltage -63	-70	-84	volts
Plate Current 45	55	55	milliamperes
Plate liesistance ... 1900	1800	1800	ohms.
Amplification Factor 3.8	3.8	3.8	
Mutual Conductance 2000	2100	2100	micromhos.
Lotad Resistance . . 410c	36.0	4350	ohms
Undistorted Power			
Output 2.4	3.4	4.6	watts

WE-316AU.H.F. oscillator or amplifier especially designed for operation at frequencies above 100 megacycles. The upper limit of oscillation as a regenerative negative grid oscillator is 750 nic .

Note: Outputs of approximately 8 watts can be ohtained at $3 / 4$ meter, and 4 watts at $1 / 2$ meter (600 mc .).
Characteristies:

ther	
Filament Current	ps.
Amplification Factor \ldots............................... 4 amp. ${ }^{\text {a }}$	
Grid to Plate Capacity	
Prid to Filament Catarity 1.8 mnifd.	
llate to Filament Capacits.	8 mmit .
Maximum Plate Dissipahon 30 watts	
Maximum D.C. Prate Voltage 450 volts	
Maximum lic. Plate Current 80.80 ma	

$$
\% ~ \% ~ \& ~
$$

WE-254B
Tetrode R. I*. Amplifier. Frequeucy Range: 100% up to
$15 \mathrm{mc}, 662 / 3 \%$ at 20 mc .
Characteristies:

lament Voltage	
Filament Current	5 volts
Plate to Grid Capacity	085 mmfd.
Input Caparlty	1.2 mmtd .
Output Capacity	
Amplification Factor	
Maximum Plate loissjp	
Maxtmum Sereen Dissipation	ts
Maximum n.c. Plate Voltage	0 volts
Maximum D.C. Plate Current	
Maximun 1.C. Grid Current	
4	ot envelope

R-I Service

	Class B	Class C Telegraphy	
D.C. Plate Voltare.	${ }^{\text {r }}$		
D.C. Screen Voltage	150	150	I50 volis
D.C. Grld Voltage.	70	-125	125 volts
D.C. Plate Current	50	75	75 ma .
Approximate Power	12.5	25	37.5 watts

800
RCA or Amperex Triode. Class B Morlulator. Class C RF Amplifier. Frequen:y doubler. U.H.F. oscillator and anmplifier.
Frequency Range:
Class C plate Yoitage (max) $1100 \quad 120 \quad 150 \quad 200 \mathrm{mC}$.
. $900 \quad 800 \quad 700 \quad 500$ Teled.
Cattion: Maintain at least 7.5 volts at filament terminals of tubes.

Note: Cirid driving power is a function of load impedance, frequency and type of neutralizing circuit. The driver stage should be capable of supply. ing approximately twice as nuch power output as
required for the listed values of grid drive and grid bias loss.

Class B RF Telephony: Plate voltage of 1000 , plate current of 42 , grid voltage - $\overline{5} \overline{5}$, carrier power 14 watts.
Note: Regeneration at the output frequency in doubler operation will allow equivalent outputs without as high grid drive anis grid bias.

DRIVER FOR PUSH-PULL =LASS C
Characteristies:
おilament Vultago
.7 .5 rolts
Flament Current
Amplilication

Crid to Ilate Capacity.. 5 mmft.
Cirid to Fllament Capacity . 5.5 mmfd.

Haximum 1.C. Plate Voltage.... 1250 solts
Naximum Ib.C. Blate Current.80 ma .
Maximum D.C. Grid Current. 80 ma .
13aso ...
Class B Audio Amplifier:

1).C. Plate Voltage	750	1000	1950 rolts
1).C. (irid Voltage (Approx.)	- 40	-55	- 70 volts
Zero sig. Ilate Current (per tube)	13	11	15 ma.
Load Resistance (plate to plate)	6400	12.500	21.000 ohms.
I). ${ }^{\text {c. }}$ 'late Input	80	80	80 watts
lower Output (${ }^{3}$ tubes)	90	100	106 watts
Class D.C. R.-F. Amplifier (T	- ${ }_{\text {graph }}$	1000	
b.C. Plate Current	-0	10	120 ma .
1).C. Girid Voltage	-100	-135	-175 volts
b.C. Cirid Current	1.5	1.5	15 mat.
Grid Ilriving lower	9.5	3.5	4.5 watts
Grid lias looss	1.5	2.0	2.6 watts
Approximate lower Out	3.7	51	65 watts
lower lnput	52.5	-0	87.5 watts
Approximate A.(. Larad Impedanced			

R.-F Frequency Doubler:
1). C. llate Voltage 1000 volts

1).C. Cirid Voltage. 517 volts
(irid गriving power . .. 8 watis

Approximate Power Output 100 watts
A.C. Load Impedance (Approx.)........
Class C R.F. Amplifier (Telephony):

Class C R.F. Amplifier (Telephony):
I).C. Ilate Foltage
I).C. Plate Yoltage $\quad \frac{750}{70} \quad 1000$ volts (max.
1.C. Ilate Current -20

18 ma .
Griki Jias Ioss Power (Approx.).
Power Output (Approx.).
3.6 watts
A.C. Load llesistance (Approx.) $\quad 5300 \quad 7100$ whms.

Power Input 52. 5in natts
\& \& \&
RK-30
Kaytheon F. F. Triode. Similar to 8 c 0 in all respects. See 800 datz
Characteristies:

RK-20
Raytheon RF Amplifier. Frequency Doubler. Oscillator. Suppressor, Grid - or - Plate modulated Amplifier.

Caution: Do not apply screen voltage without simultaneous application of plate voltage.

Frequicncy Range: 100% ratings mp to 20 MC . The RK 20 has lower input and cutput capacitances than the 804 , and may therefore be used more effectively at higher frequencies, such as 30 mc .

Characteristies:

Filament Voltage . 7.5 volts
Grial Current ... 012 mmps.

inisut capacity 10 mmfd.

 UX 5 pin
Isolaitite. Plate at top of envelope.
$\left.\begin{array}{llll}\text { R-F Service } \\ \text { Sup. } \\ \text { Sressor }\end{array}\right)$

804
RCA Pentode R. F. Amplifier. Frequency doubler. Oscillator. Suppressor, grid or plate modulated am-
plifier.
Caution: Do not apply screen voltage without simeltaneous application of plate voltage.
Frequency Range: 100% ratings at 15 mc . 75% at 35 ncc . and 50% at 80 mc . Special attention shauld be given to shielding and by-passing at high frequelecies.
Characteristies:

1rilament Voltage	7.5 volts
Filament Current	3.0 amps .
Grid to Plate Capacity	01 mmfd .
Input t?apacity	16 mmfd .
Output Capacity	. 5 mmfd .
Maximum lpate Dissipation	40 waits
Maximum Screen Dissipation	15 watts
Mutual Conductance	leromhos.

1).1. Plate Volt-	R-F Service Class B Suppres- Tele- sor Mod. phony Telephony			Pentode Class \mathbf{C} raphy	Tetrode Class C Telepraphy
	1250	1000	1250	1350	1250 volts
1).C. Sureen Volt-		300	1	300	
品.	300	300	301	300	180 volts
poltase	45	-35	-50	43	180 volts
D.C. Grid Bias.	-20	-100	-100	-100	100 volts
$\begin{gathered} \text { Peak } \\ \text { Volts } \end{gathered}$	27	140	140	150	160 rolts
Peak A.F. Grid					
C. ${ }^{\text {rols }}$ +.......	.	60	70		volts
rent	45	45	48	92	92 ma .
D. C. Screen Current		33.5	35.5	27	23 ma .
D.C. Grid Current	1	5.5		7	8 ma .
Grid Driving Power.	. 25	. 7	. 85	. 9	1.2 watts
Grid Bias Loss...		6		. 7	. 8 watts
Power Gutput (Ap-	16	16		80	80 watts
creen Resistor	. 0002	1.000	27,000	35.100	. . ohm

Conventional Screen-Grid Buffer or Final Amplifier

$\%$ \%

RK-35 Raytheon C.H.F. Triode. Genesal purpose triode with tantalum plate. Class B Audio, R.F. Amplifier or oscillator.

Frequency Range: 80% of full ratings at 56 mc ., 60% at 112 mc .

Note: Grid driving pawer requirements vary over wide limits, depending upon plate load, circuit losses and type of circuit.
Characteristies:
Filament Voltage
.7 .5 volts
Fllament Current ...
Amplification Factor
Grid to Plate Capacity
3.25 amps.
.2 .7 mmfd.
Grid to Filament Capacity
3.5 mmPd .

Plate to Fllament Capacit:
0.4 mmfd.

Maximum Plate Dissipation... 35 watts volts
Marimum D.C. Plate Voltage....................................... 100 mata.
Maximum D.C. Plate Current.. 20 ma.
Base......UX. 4 pin. Plate al top, grid at side of envelope

35-T

Einas High-Mu Triode. Crystal oscillator for plate voltages up to 1200 volts. Class B modulator or AF amplifier. Class C buffer or dqubler. Class C telephony. U.H.F. oscillators with quarter-wave line frequency control. L.H.F. r. f. amplifiers.

Frequency Range: 100 多 ratings up to 100 mc .
Note (I): For plate modulation, the values of grid bias should be increased at least 50%, and the grid drive will be approximately doubled.

Note (2): Values of grid bias and grid drive may be redueed with regenerative doubler circuits. The above values are for values of efficiencies between 58% and 68%. Lower grid bias and drive give lower efficiencies. With regeneration, the bias may be reduced to approximately $1 / 3$ of the above values without loss of output. The bias should never be less than $31 / 2$ times cut-off bias when doubling.

Characteristits:

Class B Audio Amplifior (2 tubes):

b. C. J'late Yoltage	500	7:50	1000	51	00 rolts
I.C. Girid Voltage.	0	-10	- \%	- 10	- 50 volts
Zero Signal J.C. l'late current	65				
Maximum sigenaj	65	0	40	20	16 ma.
1).1'. I'late (*arrent	200	200	188	158	110 ma .
Load IResistance (flate for Iate)	11100	7000	11000	17-30)	6400 olims
Iriving Jower	4.5	8.5	$\overline{7.5}$	5.5	4.5 watts
Output I'ower	50	90	120	130	140 watts

Class C r.f. Ampliffer Telegraphy (Buffer Service)

1). ${ }^{*}$. Jlate foltag	400	700	1000	1500 rolts
19.1*. Virld Voltame	\cdots	-38	-50	-100 wolls
	90	(1)	90	(11) ma.
I.C. Cirld turrent	15	18	-0	$\because 0 \mathrm{ma}$.
Grin lbriving lower (Approx.)	\bigcirc	3.0	3.5	4.5 watts
Girid litas looss	$\overline{3}$		3.	\% watts
I'ower Input	34	18.7	(1)	$1: 35$ watts
I'ower ()utput i.inion	$\because 0$	1\%	*iv	101 watts
A.C. Load Resistan	1700	3500	5200	*tiv0 ohms

Frequency Doubler (Without Regeneration) :

I).1. Jlate Voltage.	750	13.50	1.000 volts
1).6. Virial Voltage	-115	- 0 0\%	Sis) volts
W.1* 'Ilate ('urrent	Nin	8080	x_{1}^{-1} ras.
J.t' Virid d`urrent	10	10	$10 \mathrm{ma}$.
Girji Jriving Fow	\bar{y}	6.5	ti. x walts
Crid Hias looss	4.5	5	5, 3 watts
['ower laput	6i.)	106	130 watts
lower Cutnut	35	7-	(1) wat ts
A.C. L.oad lesistan	4000	71800	9500 nhms

Regenerative Frequency Doubler:

I.C. Jlate Voltare.	-:,010	volts
I).C. Grid Voltage.	- !10	- - \%0 volis
1).C. I'late c'urrent	1111)	S1) ma.
I).C. Virid (\%urrent	(0)	¢0 ma.
Grid Inriving l'owe	4.5	5.5 watts
(irid bias loos	1.	3) watts
lower lnput	7	So Watts
l'ower Output (Ipprox	111	50 watts

RK-18Raytheon H. F. Trinde. Glass B itodulator. ("ass C'r. f. amplifier or oscillator. Butter of doubler. Dotc (I): Values of grid drive will vary with load resistance, circait design, and losses; thus the driver stage should be capable of supplying approximately twice as mach output as listed for grid drive and bias loss.
Note (2): The efficicncy of a doubler at a lower value of grid bias than that listed may be improved by regeneration at the output frequency.

Frequency Kange: 100% ratings up to 30 KC .

Characteristics:

R-F Service			
Clans C			
	Tele	aphy	Frequency
U, 『 『ato Vin	Final	Buffer	Doubler
W. $:$ Ciritl Vivalm	1000	1000	1060 volts
	-120	- 80	--je5 volts
[) C Mate firmont	XV	א0	1.4 ina.
B.C. Srin (turdll.	\cdots	15	10 111 a .
firil loriving Ember.	6, 11	3.7	5.3 watts
Girid lilas losss.	$\because .7$	1.4	4.3 whls
Power limpat	*	80	fid watts
Anmoximate lomer chatat	4il	4*	3.) watis
			do wats
Immedatire	5190)		Foul ohms
pifforiomy	tix	S	

RK-31Kivoheon lligh Hu Jriode. Primarily ${ }^{\text {e }}$ (lass l : Audio Amphlier. Way be used for R.f.
Note: R. \mathscr{F}°. grid excitation requirements vary widely thus the driver stage slould be thesigned with anmpe factor of safety for output meeds.

Characteristics:
-ilament foltige

Bmallithration Factor varios il ibi ingut hizh Hutt
Maximumb bé. frate Vibltako 40 wat

Class B Modulator or AF Amplifier:

WE-300A Maver ant especially suitable for automobile tramsmitters.

Note: if fixed C bias is used, the plate current should be limited to not over 60 ma.
Characteristics:

756
Taylor Triode for Doubler and Class C operation. Class B audio amplifier.
Note: Girid drive requirements rary widely nnder different operating conditions.

R F OOUBLER OR NEUTRALIZED BUFFER

Characteristics:
Fllament Current . 2 umps.
Amplitication Faetor
2 amps.
Trad to Plate Capaeity.
Cirld to Filament Capaeity
Plate to Filament Capaclty.
Masimum l'late Dissipation...
Maximum I.C. Blate voltage.
Maximum I.C. Plate Voltage.
Maximum 1).C. Plate Current.
Class B Audio Amplifier (2 \mathbf{T} ubes):

rand miknal Pato Current.
Power Output
.

Class C R.F. Amplifier:

825
Taylor fo watt T :inde. Intermediate between 801 and 211 tubes. Class I attdio amplifer operating in the Class $A B$ region. (lass B r.f. amplifier for telephony ot telegraphy in high frequency transmitters.

Sote: lirid drive requirements vary widely under various current conditions.

Characteristics:

930
United El-ctronics Co. Triode. Amperex (8iso). Oscillator, nodulator, r.f. amplifier. generally as a neutral. ized r.f. anmplifier or buffer stage in high frequency transmitters.

Note: Internediate between 211 and 210 or 801 in operation.

Frequestey Renge: 100% ratings up to 6 MC .
Characteristics:

R-F Se-vice

841 A
Tay/ur II. F. Triode. Doubler or buffe- stage in high power transmitters. R.F. Amplifier down to $71 / 2$ neters.
Nofe: Grid driving power requirements rary over wille limits under operating conditions.

Characteristics:

Filament Voltage
.10 volts
Filament Current
\therefore amps.
Amplifleazion Constant
Grid to l'lato C'aparity....
9 mmfl
Frid to irllament ('apacits 3.5 mm ?d

Maximurr Ilate IDissipation. 50 watts

Maximun 1).C. Griti Curr- nt . 40 ma.
Class C R-F Amplifier :
II.C. I'lito Voltage.

1000 ralts
1). $)^{\circ}$ Gind Voltage. .. 180 volts
13.4. 1'late furrent . 150 ma .
1).6. (irin r"urrent.

150 ma
.0 ma
grid Intiving Power.
.7 watt
Grid lsi:s l.oss.
36 watt
I'ower Input
150 watt
lowar Gutput
100 walls

830BR(* s30-B. Tnited Electronic: Co. o30-B. Class B moxlulator for outputs up to 175 watts. Mar be driven by a push-puli 45 or $2 \$ 3$ driver stage. Also ued for RIF.
R.F. Frequency range: 100% ratings up to 15 $1 \mathrm{~mm}, \pi \%$ at 30 nic. 50% at 60 mc .

Sote: R. F. Crid driving power recuirements vary with loal impelan:e, circuit design and citcuit lossea with increase of frepuency. The drever stage should he capable of supplying iwice as much power output as listea for grid drive and grid bias loss.

Characteristics:
Filament Voltage
10 rolrs
Fiament current
…..
Ampimum lyate Dissipatioun .

Jiaximi:m D.C. Mate Current..
$\boldsymbol{j}^{2} \mathrm{p} \cdot \mathrm{n}$
plate at top of cnvelope.

834RCA L'.H.F. amplifier and oscillator. Frequ'ucy Rante: [ip to sill megacveles.

> Rated input at $100 \mathrm{mc} .-100 \%$
> Kated input at $350 \mathrm{mc}-50 \%$

Note (1): Grid driving power varies with type of circuit used, loan impedance, and freduency range (vlielectric and circuit losses increase with frequeney). Driver should be capable of twice as much output as listed for grid drive and hias loss, as a factor of safety 11 design.

Note (2): Regeneration in the frequency doubler will allow lower valnes of grid bias and grid drive for same output power.
Characteristics:
Filament Voltake \qquad .7 .5 volts
Filament Cutrent
3.25 amps.

Amplification Factor

ririd to Filament rapaelis.
Plate to Flatment "apacit,".
Maximum D'late pissimation
U. fi momfl.
$\frac{2}{0} \cdot 2 m m \mathrm{mfl}$
Maximum D. Plate Votage ${ }^{2}$

Taximum be Mate (urn+it.
100 mia.
Maximum D.c. Grid Curment
"× 4 pin
Itate and rivid Though Top of rube Envelame
R-F Amplifier
Class C
Telegraphy
Amplie
fou.
$\%$ \%
304B
Western Electric U.H.F. oscillator $0:$ amplifier up to 300 nic.
Frequency
100 me.
200 me.
300 me.
Class C Telegraphy
Plate Volts
$1: 50$
1000
1000

Oseillator

Plate Volts 1000
800 800
Characteristies:
.7 .5 rolts
Filament
Filament
Vurene $3.2 j$ amps.
Amplification Factor
2.5 mmol
firid to Plute Canacity.

I'late to Filament Capaeity.
0.7 murtd.

Maximum D.C. Plate Yoltake.
so watts
Maximum H.C. Flate Currert.
19.00 volts

Maximum 1).C. ©rill Curre:1.
.55 ma.
Tlate and Grid at Ton of Fmalune..............................

Class B Audio Amplifier (2 tubes):

©. Grid Voltare........-53

Iax. SIg. B.t l'jate c'ur . 200 Zeto Nix, J.i'. J'late l'ur. . 10 Dower res. Thate to Plate) 7000 Driser ('unsut

1000	-110 rolts
203	200 ma.
20	40 ma.

Driver J'ownr 10
1.000 whans
140 watt

140 watts
10 watts
Class C Service:-See 834.

\& \% \%

808RCA Tantalum Ilate Triode. High Frequency Oscillator and Amplifier. 100% ratings uI to 30 MC . 30% ratings at 1.30 MC .

Characteristics:

Filament Voltige \qquad . 7.5 rolts

Amplithation Factor
firiel to J'late ('abreit,
4 amps.
Flate to frjamment apabacity . 5 mmind.
s'andaral ['X-1 jofa base.
Plate through ton, grid through siale of envelope.
Class B Audio Ampliffer (2 Tubes):

Class C RF Amplifler:

RK-32 Raytheon C'. H. F. Priode. Similar to s:it in all respects. Scessit data.

Characteristics:
Filament Voltage Filament current

. .5 rolts J amps. -.... 11	

Amplification Factor
........11
Gria to Phate raparits.
.1 .0 mmfd
Gritl to Vilament Capacits
1.0 mmfd.

Pate Filament Canaeity.
Maximum Nate Nissibation
.50 watts
Maximim Pate IDissipallion.
Maximum I). ${ }^{\text {Plite Current. }}$

Base .
plate and irid at Top of Wwelome.
$\not \div \%$

RK-37
Rastheon High. Mu Triode, Tantalum Plate. Oscillator or Amplifier far very high frequency operation, loo \% ratings up to 30 Mc . So \% ratings at if MC . 60% ratings at 112 MC .

Characteristics:

Filament Voltage	
Filimment ${ }^{\text {curiment }}$	
Mnximum Jlate Jissipation	
Maximum V.('. I'late foltage	\%0 rotes
Maximum D, P' Pate Current	00 ma .
Maximum J). ${ }^{\text {Co Grid Current }}$	\bigcirc ma.
Grid to Jlate Caparity	9 mmfa
(irid to J'jamment C'apacity	2 mmfa
Plate to F'ilmment (${ }^{\text {chamacits }}$	3 mmfa
Standard I'X-d pin base.	
Flate throngh tor	

Heintz \& Kaufman. General purpose U.H.F. and M.F. triode. Tantalum plate and grid.
Note: Grid drive refuirements tary widely under different operating conditions.

GRID NEUTRALIZEO FINAL AMPLIFIER
Charalteristics:

Fhament Voltage				
Filatrent l'urrent				
Acmplitication Fractor				
Griul to l'late c'apac				
Maximum Plate Piss				
Maxinum lic. Plate				
Maximum lic: plate current............................ 175				
Maxitum I.C. Grid Cur				
A-F Amplifier (2 tubes) :				
D. ${ }^{\text {a }}$. llate Voltage	750		1100	1500 volts
Power output			200	2.50 watts
Grin briving lower (Aprox.). $10 \quad 10 \quad 10$ watrR-F Service				
	Class B R-F		Class	
D.C. l'late Voltage.		750	1000	1500 volts
1).C. 1latu Current.. s0 5id $175 \quad 175$				
I).C. Grid Voltage. - 112 - $225-255-350-500$ volts				
II.C. Grid Current... $20 \quad 20 \quad 20$ ma.				
				13 watts
Grid Bias Loss				10 watts
Approx. P'wer Output	1828		125	200 watts

T-55Taylor Class C r.f. Amplifier. U.II.F. oscillator down so 2 meters wavelength.
Characteristics:

anment Soltage	
lament Current	
Cirid to Plate Capar	
Grid to Filament	
Maximum D.C. Plate Colage................. . . 1500 volts	
Maximum D.C. Plate Curren	150 n
Maxinum II.C. Grid Current.......................... 40 ma.	
Class C R F Amalifier:	
II.C. I'late Voltage.................................. 1500 wilts	
11.1. ririd Voltage..................................... -180	
D. ''. Plate Current 150 ma
D.C' Grid Current..................................... 30 man.	
Grid Driving Power................................... io watt	
Grid litas	
Petrer Ourput	0 wa
Class B Audio Amplifier (T wo Tubes):	
D.C. Plate Voltage............. 1000 volts	1500 volts
D.C. Grid Voltage (Aptrox.) --4.5 volts	if . ${ }^{3}$ volts
Zero D.C. Signal Plate Current.... 40 ma .	40 ma .
Lead Resistance. Plate to Plate. 10.000 otms	12.000 ohms
Audic Ontput (2 tubes)............ . 125 watts	175 watts

$\%$ \&

Vestern Flectric R.F. amplifier, os cillator ur harmonic
generatos at ultra-high frequencies.
Frequency Range: 100% ratings up to 50 mc . $54^{\prime \prime}$ " plate voltage rating at 100 mc .

Note: I'late, scrcen, ani filament center-tap leads come ont tirough rods at top of tube to enahle short learls at very high frequencies. (ooling lugs of copper are necded for oprration at frequencies above 00 mc

Characteristirs:

$\%$ \% \%

W E-282A

Western Electric Tetrode. Screent grid r.f. amplitier
or fregtency doubler.
Freghency Ronge: 100% ratings up to 30 med. 50% ratings at 60 mc .

Characteristics:

\qquad

Maximum 11. P. Plate Voltage.................................. 1000 rolts
Maximum IVC. Plate furrent............................ 100 ma ,
Maximum [8c. (rid Curpent... 50 ma
Maximum sireen-Grid Dissipation 5 ratts

R-F Service
$\underset{R-F}{C l a s s ~ B} \quad \begin{gathered}\text { Class } C \\ \text { Teiegraphy }\end{gathered}$

HF-100
Amperex Triode. II.F. and C.H.F. amplitier or oseil. lator down to 2 meters in
wavelength.
Note: Similar to $830-\mathrm{B}$, rxcept for lower inter. electrode capacities and ability to operate efficiently in U.J. N°. applications.
Characteristics:
Filament Voltage
. .10 to 10.5 volts
Filament current
$\ldots . .$.
Ciricl to Iopate Caparats

l'ate Ofit Tun. Grid Out Side of Envelone Carton plate.
Class C R-F Scrvice:

50TEimac general purpose H.F and U.H.F triode. Tantalum plate and grid. The low inter-electrode capacitances and small physical size make this tube very effective for ultra-high frequency amplification.

Frequency Range: 100% ratings up to 80 mc .
Note: Values of grid excitation vary considerably with load impedance, circuit design, and losses at higher frequencies; thus the driver should be designed to furnish approximately twice as much output as listed for grid drive and bias loss.

Characteristies :

F'ilament Voltage
.5 to 5.25 volts
Fllament Current
….....
Ampid to Plate Capacity...
Grid to Filament Capaclity
Plate to Filament Capacity
Maximum Plate Dissipation
Marimum Plate Dissipation................................ 45 mmafd
Maximum Plate Current.................................... 3000 volts
Maximum Grid Current... 10.
Base ... ${ }^{\text {Plate }}$ pin.
Plate at top, grid at side of envelope.

Class B Audio Amplifler (2 tubes):

UC plate voltage. .	1000	1500	2000	2500	3000 volts
D.C. Grid Voltage (Approx.)	-80	-135	-180	-295	-375 voles
$\begin{gathered} \text { Zero Sig. I.C. } \\ I^{2} \text { late current } \end{gathered}$					
(Approx.) ...	20	20	90	20	20 ma .
Max. Sig. D.C.					
Plate Current.	250	230	200	180	160 ma.
Lo. 2 d Itesistance	5000	19000	20,000	30.00	
Driving IPower....	7	12.000	20,000	30.00 ${ }^{6}$	7 watts
Output I'ower....	106	200	250	300	350 watts

> R-F Service

	Plato Mod. Telephony		$\begin{aligned} & \text { Class C } \\ & \text { Telegraphy } \end{aligned}$			Frequency Doubler
D.C. Plate						
Voltage	1500	2500	1000	2000	3000	2000 volts
D.C. Grid						
Voltage	--350	-600	-200	-400	-509	-810 volts
D.C. Plato						
Current	100	100	195	125	125	100 ma .
D.C. Grid						
Current	25	25	25	25	25	15 ma.
Grid Driving						
Power (Ap.)	12.5	19	9	14	19	14 watts
Grid IBias						
Lusss.	9	15	5	10	15	12 watts
Power Input..	150	250	125	250	375	200 watts
I'ower Output 250						
A.C. Load Re-						
sistance ...	8000	13.000	4000	8500	13.000	18.000 ohms
Mod I.C.						
Losd	5.000	25.000				hms

H-K Heintz and Kaufman Gridless Gammatrons, Types HK55, HK 155, HK255.

HIGH OUTPUT CLASS A AUDIO AMPLIFIER

Characteristics:

Filament Voltage
Filament Current
Normal Plate Dissipation
Amplification Fisctor
Maximum D.C. Plate Current... 150 30 $\quad 300^{2} 1000 \mathrm{ma}$
Maximum D.C. Plate Voltage.. $1250 \quad 3000 \quad 5000$ volts
Plate Impedance $1200 \quad 1100$ 1000 ohms.
Unusual Features:
Control element is a gamma plate of tantalum.
Filament is between regular plate and gamma plate.

Uses: Oscillators, audio and radio frequency amp. lifiers. Nearly complete plate current variation may be secured without driving the control (gamma plate) element positive.
Type 255. Inter. Electrode Capacity:

Type 255 Class B Audie Amplifier (2 Tubes. "Grids" Swing to Zero and Draw no Current)

Plate Loss ….......... $750 \quad 1400 \quad 2000 \quad 2000$ watts
Type 255 Class B R-F Amplifier (Single Tube, no "Grid" Current):
$\begin{array}{lllll}\text { D.C. Plate Voltage. } 2000 & 3000 & 5000 & \mathbf{8 0 0 0} \text { volts } \\ \text { D.C. Grid Voltage....... } & 800 & -1200 & -2100 & -3300 \text { volts }\end{array}$
D.C. Plate Current 120 155 142 152 157 ma .

Load hesistance … 150.
Plate Loss
500 watts
Power Input
775
275
watts
Power Out
52

51
$\% \quad \% \quad$

203-B
Taylor High Mu Triode. Designed primarily for class B audio amplifiers.

Primary
Driver:
$\frac{1 / 2 \mathrm{sec}}{1.6 \text { ratio input }}$ tratnsformer.

ECONOMICAL GLASS B MODULATOR
Characteristies :
Filament Voltage .. 10 volts Filament Current .85 Amps.
Amplification Factor
7100.25

Maximum plate Dissipailon 1000 watts
Maximum D.C. Plate Voltage $\cdots \cdots, \ldots, \ldots, \ldots, \ldots, 1000$ volts
Maximum 1).C. Plate Current..... 75 ma . (in It-F circuits)

plate to Famment Canacity................................. 5 mmfd.
Basetandard 4 pin. 50 watt
Class B Audio Amplifier (2 Tubes):
D.C. Plate Voltage 1000 volts
D.C. Grid Voltage (Approx.).................................. $\mathbf{3 5}$ volts Zero Signal D.C. P'late Current (per tube) 20 ma . Maximum Signal D.C. Plate Current (2 tubes).... 330 ma . Load Imperlance (olate to plate).................... 6800 ohms. Power Output

200 watts
Driving P'ower

$\%$ \%

WE-242A
Western Electric Triode. R.F. Amplifier or oscillator.
Audio amplifier in modulators.
Frequency Kange: 100% up to $6 \mathrm{mc} .50 \%$ of plate voltage ratings at 30 mc .

Characteristies:
Filament Voltage Filanent Current Amplitkation Factor
lirid to ryate Capacity
Grid to Fllament Capacity
Girid to Fllament Capacity
Maxinum l'late lissipation
Naxpuum D.C. I'jate Voltage
Haximum De Grid Current
Hax:mum D.C Grid Current
Class B Audio Amplifier (2 Tubes):
1).C. Plato Voltare 1000 1, 1020 volts

IIC. Grial Voltare
Maximurn Siknal $1, \therefore$ i late Current..
Zarc Nignal 1).C. 1Plate Current
poner output
Jriver Lower
R-F Service

RK-38
Raytheon High-Mu Triode. Tantalum I'late. I Mesigned for Class 13 Audin Amplifier, RF Anmpifier or Oscillator Service. 100% ratings up to .6 MC .

Characteristics:

Filament Current
Grid to Filament Caparity
Plate to Filament Capacity
Maximum Plate Dissipation
Maximum D.C. Plate Voltage.
Maximum D.C. Plate Current
Alaximum b.c. Grid Current................
siandard 4 pin-CX base. Plate through rop. grid through side of envelope.

RF Service
Class B Grid Mod.
1.1' Pate Voltake.
D. © (: Mrid Voltage D. ${ }^{-}$Plate Current Peak lef Girid Power Peak lif Grid Power Peak Audio Vottake
Carrier l'ower Ont put

55
300
60
000
165
10 volts 25 amps.
13.0 namfd.
$13.5 \mathrm{n} m \mathrm{md}$.
4.0 mmfd .
ieto rolts
150 ma
50 ma .
pin, 50 watt

1250 volts

-80
300 malts

300 ma .
8000 ohms
8000 ohms.
400 watts

Class C
Telegraphy
15010 volts
20 nia.
Th watts
$1 \% 7.5$ wat ts
$1=5$ watts

RK-36
Raytheon R. $\mathrm{F}^{\text {R }}$ amplifier or oscillator for II.F. and L.H.F. applications.
Fivauency Range: 100% ratings up 10.56 mc . Vote: Grid drive may vary wide'y under different operating conditions.

Characteristics:

Filament Voltase 0 volts			
Fibancht Current			amps.
Amplification F'actor			
Grid to Plate C'apactty 5 mmfd.			
Grid to filament Caparity ${ }^{\text {a }}$ minfd.			
Maximum liate Dissipation 100 watts			
Maximun 1.C. Plate Voltage			
Maximum 1.c. Plate Current			
Maximunt D.C. Grid Current			
		Grid	
	Class B	Mod.	Class C
[${ }^{\text {c }}$. Plate Voltage	2000	2000	2000 volts
D.1. Grid Voltage	-180	-278	360 rolts
D.C. Plate Current	75	72	150 ma .
1b.C. Arid Current			30 ma .
Grid Driring lower			
(Approx.)	10^{*}	$3.5{ }^{*}$	15 watts
Grid Bias Loss			5.4 watts
l'ower Output (Approx.)	50	4:	200 watts

* Preak).

211 Class If nodulator. Class B and C r.f. amplifier for telephony or telegraphy. Onca ionally used as a frequency doubler.
 cycles. 50% ratings at 30 me.

Votc (:): Cirid driving zequirements vary with load impedance, frequency of operation (due to losses). and type of circuit; thus the driver stage should be capable of supplying twice as much power outjut as listed for grid crive and bias loss.

Note (2): The W. F. 242A is similar in characteristics and operation to the 211 . The 2110 is similar tu the 211 but it also has slightly lower inter-electrode capacitics.

203A
(lass is audio service and as an RF Amplifier.
Frequency Kunge: 100\% zat. ings up $106 \mathrm{mc} .50 \%$ at 30 mc.

Note: 'The grid drive' reluirements vary with load inpedance, circur̃ design, and high frequency circuit losses; thus the driver should be able to deliver twice as much power as listed for grid drive and bias loss.

838
Most used as Class B motulator due to its zero bias characteristic. K. F. Frequenc. Kange: 1010% ratings up to 30 me. 65% at 60 me. $\overline{40} 0$ at 90 mc .
Note, (1): Pusis-pull 2 A 3 tulves in Class it will serve as a driver for class 1383 s tubes. The Class B input transformer should have a turns ratio of Prina.

$$
1 / 2 \mathrm{sec} \text {. }
$$

fixed bias is used on the 2Ass. A litile gremter ratio of stepdown is desirable if the $2 A 3$ drivers are self biaserl.

Note (2): For R.F. the driver should have apmox. twice as much ontput as listed in the table in order to compensate for variations of load impedance, circuit design and range of freftuency of operation.
Characteristics:
Filamutht loltage
Filament
Filament ©urrent .. 10 rolts

Maximum Jhate lissifationtitule of signal

Hase .. 50 wati
Class 8 Modulator:

1). ${ }^{\text {d }}$ Mate Voltage	00	12.50 solts
Apprex. Jerak	${ }^{1}$	0 moits
Cero sijnal	10	90 volts

Zero signal lis. Dlate c'urrent (per
Maxinu
(juer tubs) *isnal $11 . \%$ inate veurrent Enat (uner tume)

53 - 4 ma

- (It I'eak).

845 Triode. Class A or $A B$ audio ampli. rer in public address systems, or as modulator in radio transmitters. Sel-
dom used in R.F. amplifiers.

Single 845 Modulator for 50 Watt Radiophone

Characteristics:

3.25 amps.

Implitiration Fantor (averase)
....... 5

frid to 1*ilament ('apacity 0.0 mmfd.
liate to F'jlament f"apacily................................ 6.5 mmfd .

lbase . 4 pin. 50 watt
Class A Audio Amplifier (I Tube):

11.1. J'late Voltage	7.00	1000	12 O rolts
lot' Erial Voltage	- 48	-150	- 200 rolts
	95	(1.)	5) ma.
	93	150	201 rolis
land M Resistance	341 H	90130	160000 ohins
I'ower Outbut	15	$\underline{1}$	21 watts
Class AB Audio Amplifier (2 Tubes):			
1'ower Output . 1 1:			
Lusad impedance, l'hate-to-			$\because, 000$ olnus.

850
R('A sereen-grid r.f. amplitier of the 100 watt type.

Frequency Range: $100 / 6$ ratings up to 13 mc . 50% at 30 mc

Note: Grid drive varies widay under various load impedances.

Characteristics :

Filament Voltage	10 rolts
Filampnt ('urrent	25 amps .
Amplitication Fartor	. 550
Grid to I'late Capacily	. 25 mimfd.
Input Capacit ${ }^{\text {c }}$	17 mmid .
Output Canaciry	25 mmfd .
Maximum Jlate Jissipation	100 watts
Maximum 1).(. 1'late foltage	1950 volts
Maxinum 1).C. 1'late Curient	175 ma .
Maximun IV.C. (irid Current	40 ma .
Maximum screen Dissinalion	0 watts

R-F Service

	Class B Telephony	Class C Telegraphy		
1.C. Ilate Voltage.	1:50	750	1000	1250 volts
1). S. Sereen Voltage.	175	175	175	175 rolts
1).C. (irld Voltage	-13	-150	-150	-1.50 volts
1).C. I'late Current	110	180	140	160 mit.
1.C. Grid Current		35	35	35 tha.
Grid Jriving l'owev				\%
(Approx.)		10	10	10 watts
Grid Blas I.oss		5	5	5 watts
I'late I'ower Input	13^{7}.	120	160	200 walts
Jower Output ...	4)	5.5	100)	$\overline{1} 80$ watis
Nereen Series liesistor		15000	$\bigcirc 5000$	40000 ohims.

RK-28Raytheon screen-grid tube for suppressor Modulated telepnony. Buffer or final amplifier in radio transmitters. Since it is a screen grid tubs, no neutralization is needed. May be used as a crystal oscillator or doubler at reduced inputs and outputs of approx. 60%.

Frecuition: lnput and output circuits should be shiedded and all circuits carefully by-passed for r.f. Screen voltage should only be applied when piate voltage is connected.

Focquency Range: 100% ratings up to 20 mc . The RK 28 has a lower output capacitance than the 503 , so can be operated nure effectively at higber frequencies, such as $1 \frac{1}{4}$ and 30 mc .

Note: Combined plate and screen modulation thay be applied for a carrier output of 100 watts with a maximum plate supply of 1500 volts. With 400 rolts DC on screen, 300 volts peak $A F^{\circ}$ on it, and 1500 peak volts on the plate will provide 1007ic niodulation.

RK. 28 C.W Radio-Frequency Amplifier

Characteristics:

Gria to l'late ("apacity' . 0.02 mafil.
【nout Capacity \qquad 0 , mmfil.
Output vapracits

Ease 5 pin, 50 watt. Dlate at top of envelope

852Triorle. R(A. Amperex. United. 1^{*} 11.F Oscillator. H.F. Amplifier or Class B modulator.
Frequcney Range: 100% ratings up to 30 mc . 50% at 60 mc . 50% at 120 mc . and 40% at 150 mc. (Z meters).

Characteristics:

Filament Voltage	
Fifamert Current	amps.
Ampliflcation Factor	
Firil to IPlate Capacity	mmfd.
(iril to Fifament Casacity	0 mmfa.
Plate to Filament Capacity.	1.0 mmfd .
Maximum plate Dissipation	00 watts
Mximum lle. Plate voltage	100 rolts
Maximum I), (C. Plate Purt	50 ma .
Maximum I.C Grid Current	0 m
13:15	pin.

Class B Modulator or R-F Amplifier:
1).C. Plate Voltage $2000 \quad 3000$ volts
$-155-250$ volts
-2050 1).C. Grid Voltage (...................... Maximum Signal plate Currerz (per tube)

L'oner Ouput
R-F Service
Plate
Modula-
*(Max.)
$\%$ \& \&

860Screen-Cirid Tetrode. (RCA). R.F. Amplitier for high frecuancies. Frequeney Range: 100% ratings up to $30 \mathrm{mc} .50 \%$ at 40 mc .

Notc (1): When plate modulated, the screen shouh b_{2} modulated simultaneously.

A smatl r.f. by-pass conclenser from screen to flament, and a series 100.000 ohm resistor to the r.f. plate return, will allow simultaneous sereen and plate modulation.

Note (2): The grid excitation will vary with load impredance and circuit losses, thas the driver should have an available output of approximately twice that listed for grid drive and bias loss.

Caution: Do not turn off filament without first removine plate voltage. Do not apply screen voltage without pate voltage.

Characteristics:

Characteristics: 10 volts				
Filament Voltage				
Filament cucrent				
Amplitteation Factor				
luput Cajnacty				
Outsut Camarit				
Maxtmun plate pissination 100 watts				
lase				
R.F Service				
Plate				
		Mod.		
	Class B	Class C		
	Toleph.	Teleph-		ass C
	ons	ony		
1).C. Plate Yoltage.	3060	$2000 *$		3000 voles
13.C. Screen Voltage.	3017	300	300	
D.C. Grid Voltage..	-57	-225	-150	- 150 rolts
I).C. Plate current...	.. 43	67	90	85 ma .
1.C. Grid current.	30	15	15 ma .
Grid Driving lower		15	7	7 watis
frid Blas Loss.		6.1	2.25	2.25 watts
Power Ournut (Ap.)	4]	75	100	165 watts

[^4]$$
\because \% \%
$$

100T

Einac High-Mu and Tow-Mu Triades laving amplification factors of approximately 30 and 10, respectively. Tantalim Plates and Grids. Especially designed for UHF wreation.

Tentative Characteristics:

Filament Voltage	Is
Filament Current	6 mmps .
Srid to Plate Camacity	mmard.
Normal Pate Dissipation	Watts
Maximum l'late Missipation	0 watts
Maximum D.C. Plate Voltage	0 volts
Maximun 1).C. Plate Cur	5 ma .
Maximum Grid Current	-
Base: Standard TiX-4-nin.	throus

211 C The 211 C tubes of various manufacturers (Amperex, Taylor, United) are similar to 211 tubes in operation, except for lower grid to plate capacitance. They are somewhat more effective at the higher frequencies down towards the U.H.F. region. See 217 tube data.

Note: The W.E. 261A and WE 276A are somewhat similar to the 211 C in characteristics and operation.

Characteristics:

Filament Voltage .. 10 volts

Maximum Plate Dissipation 100 to 120 watts
Maximum I.C. Plate Voltage. 1350 volts
Maximum D.C. Plate Current.............................. 180 ma .
Maximum D.C. Grid Current.............................. 50 ma.
Grid to Plate Capacity
$\ldots{ }^{-1}$ to 9 mmfd.
Grid to Filament Capacity.............................. 5.5 mmid.
Prite to Filament Capacity........................ mmfd Base to Flament Capacity.. 5 mmfd.
$\%$ \%
211 H Amperex R.F. amplifier for ra. dio transmitters.
Note (1): The grid input and plate output powers will vary greatly with different values of load impedance and frequency. The values listed are typical operating conditions.

Note (2): At high frequencies, circuit and dielectric losses increase and thus the grid driver should have available approximately twice as much output as shown in the table below for grid drive and bias supply power loss.

Note (3): This tube has the plate lead out through the top of the envelope and thus it will operate more efficiently at higher frequencies than a standard type 211 tube.

Class	C Amplifier Single Tube at 60 me .	$\begin{aligned} & \text { Less } \\ & \text { Than } \\ & 20 \mathrm{mc} . \end{aligned}$	Telegraphy
D.C. Plate Voltage.	1200*	1500*	2000 volts
D.C. Plate Current	175	175	180 ma .
D.C. Grid Bias..	$\underline{200}$	-300	-300 .
D.C. Grid Current.	30	30	50 ma .
Grid Driving Power (Ap.)	11	14	20 watts
Power Output (Approx.)	100	190	15 watts
Power Input	216	190	250 watts
Plate Loss	116	${ }^{73}$	360 watts
Approx. A.C. Load Imped	t. 3500	4300	5500 ohms
Modulator D.C. Load.	6850	8500	11.100 ohms

[^5]\& \& \%

203HAmperex R.F. Amplifier or Os. cillator, especially at high frequencies.
Note (1): The grid r.f. excitation requirements vary with efficiency, plate load and circuit design; thus the driver must be designed to allow for these factors.

Note (2): The plate lead is through the top of the tube: thus it will stand higher plate voltages and operate more efficiently at high frequencies than a regular type 203-A.

Characteristies:	
Flament Voltage	volts
Filament Current ... 3.2 . 25 amps	
Grid to Plate Cap	mmpr.
Grid to Filament Capacity	mmfd.
Plate to Filament Capacit	Pd.
Maximum Plate Dissipati	20 watts
Maximum Plate Voltage.	500 rolts
Maximum Plate Current	180 ma .
Maximum Grid Current	
Amplification Fartor	
Base	50 watt

Class C Amplifier At Less			
D.C. Piate Voltage.		$\begin{array}{r} 60 \mathrm{mc} . \\ . \end{array}$	Than 20 me . $1500 \text { yolts }$
D.C. Grid Voltage.		-150	-180 volts
D.C. Plate Current		175	175 ma .
D.C. Grid Current.		40	40 ma .
Grid Driving Power		14	17 watts
Grid Bias Loss.		6	7.3 watts
Power Input		210	263 watts
Power Output (App	rox.)	100	180 watts

805RCA High-mu type tube for Class B audio service. May also be used for r.f. service.

Note (1): Plate lead out tup of tube reduces flash-over danger.

Frequency Range: 100% ratings up to 30 mc , 75% at 45 mc . and 50% at 85 mc .

Note (2): The Class B input transformer between push pull 2A3s (fixed Eias) and Class B 805 tubes should have a turns-ratio of

$$
\frac{\text { primary }}{1 / 2 \mathrm{Sec}}=3.0
$$

Note (3): The grid excitation and bias may vary widely for Class C operation. It is desirable that the driver be capable of supplying approximately twice as much output as listed for grid drive and bias loss.

805 High Power Class B Modulator and Driver
Characteristics:
Filament voltage . 10 voles
Filament Current 3.25 amps.
Amplification Factor Varles with Input Signal.
Grid to Plate Capacity. 6.5 mmid.
Prid to Fllament Capacity. 8.5 mmild.
Plate to Flament Capacity........................... . . . 10.5 mmid.
Maximum Plate Dissipation. 125 watt
Maximum D.C. Plate Voltage........................ . . . 1500 volts
Maximum D.C. Plate Current. 210 ma ma, 70 ma,
Baximum D.C. Grid Current... ${ }^{70}$ ma.
Plate at top of envelope.
Class B Modulator or A.F Amplifier:

D.C. Plate Voltage 1250	1500 rolts
D.C. Grid Bias. 0	-16 rolt
1eak A-F Grid to Grid Voltage......... 235	280 volts
Zero Signal D.C. Plate Current (per tube) 74	42 ma .
Max. Sig. D.C. Plate Current (per tube) 200	200 ms .
Load Resistance (Plate to Plate)....... 6700	8200 ohms
Maximum Signal Driving Power......... 6	7 watts
Maxinum Signal Power Output.......... 300	370 watts

803
RCA. Suppressor Modulated telephony. Buffer or final amplifier in radio transmitters. Since it is a screen grid tube, no neutralization is needed. May be used

Medium Power 803 Final Amplifier
as a crystal oscillator or doubler at approximately 60% output

Frequency Range: 100% ratings up to 20 mc . IIigh interelectrode capacities also tend to reduce output circuit efficiencies at higher frequencies such as 30 mc .

Precaution: lnput and sutput circuits should be shielded and all circuits carefully by-passed for R.F. Screen voltage shorald not be applied unless plate voltage is connected.

Characteristics:

Fhlament Voltage
Filament Current
. 10 rolta

Mutual Conductance at $1 \mathrm{~b}=5$.
Input Capactity
.15 .5 mmfd.
Maximum Plate Dissipation.................................. 125 watti
Maximum sereen Dissipation............................. 30 watis
llate at top of envelope.

HD-203C HD-211C

Taylor U.H.F. amd II.F. oscillator for diathermy machines.
Characteristies:
Filament Voltage
Pilament Current
Amplification Factor
Grid to plate Capacity.
Plate to Fllament Capacity.
Maximun I'late Dissipation.
Maximum DC Plato Voltage..
Masimun D.C. Plate Current.
Haximurz D.C. Grid Current............................ 60 ma.
. standard 4 pin 50 wat
I'late at top of envelope.

$$
\% \text { \& }
$$

HD-203A
"lavlor heavy duty 203 A tube, intermediate between 204A and 203 A . Class \mathbf{B} audio amplifier or nodulator. Class \%; r.f. amplifier.

Vote: Girid driving power requirements vary over wide limits.
A. $I^{\text {. }}$ Drizer. 2A3s in push-pull with fixed grid
bias input transformer ratio of $\frac{\text { prinary }}{1 / 2 \mathrm{sec}}=\mathbf{1 . 6}$.

aracteristies :		
llament Voltage		
Fiament Current		
firid to l'late Capac		
Grid to Filarnent Ca		
Plate to Filament Capa		
Maximum 1'late D\|ssipation....................... 150 wat		
Maximum I.C. Plate Voltage. 2000 volts		
Class B Audio Amplifier (2 tubes) : 1500 1750 rolte		
1) C. (ridd Voltago.................... -45 -67.5 volts		
load Fresistance (I'late to Plate)	8000	9000 ohms
Static Plate Current (Per Tube)....... 18.18 ma.		
Maximimm D. ${ }^{\text {c. Plate Clurrent (2 Tubes) }}$	425	
Prwer Output		500 watts
Driter Power		18 watts

Class C R-F Amplifier:
D.C. I'late Voltage.
D.C. Grid Voltare.

1D.C. 1'late Current.
D.C. Grid Current.

Grid IVriving l'ower
Frid Bias Loss
Power Output

1500 150
-150

1750 vollt -180 volts 250 ma . 250 ma.
50 ma.
50 mat 19 watts
19 watts
9 watts
433 watt
300 watte

T-200 Taylor U.H.F. Triode, suitable for Oscillator or Amplifier serv. ice. Similar to HF-300.
Note: Grid driving requirements vary widely under diferent operating conditions.
Characteristics:

Filament Voltage	10 to 11 volts
Filament Current	${ }^{\text {amp }}$
Amplification Factor	
Grid to Ilate Capacity	
Grid to Vilament Capacity	5 mmfd .
Plate to Filament Capacity	3 mmfd .
Maximum Plate Dissination	atte
Maximum D.C. Plate Voltage	00 volt
Maximum D.C. Jlate Current	80 ma .
Maximum D.C. Grid Current	.

Class C R.F Amplifier:
D.C. Plate Voltage................................... 2500 volts

.. Plate current
(urrent
Grid Drising Power (Apprax.).......................... 24 watts
Grid Bias Loss... 15 watts
frid Bias Loss
750 watt
power Tmput
560 watt
$\therefore \%$
HF-200 Amperex general purpose high frequency triode, Suitahle for U.II.F. oscillators.
Note: Grid excitation requirements vary greatly due to plate load, efficiency required. and circuit design.

Frequency Range: 100% ratings up to 45 mc .

Class C R-F Amplifier:

1.C. l'late Voltage.	1.100	2000 solt
IM. ${ }^{\text {P. Grid Voltage. }}$	$\because 10$	- 300 volts
1).C. Ilate Current.	200	$\because 00$ ma.
D.(:. Grid Current	35	3.5 แı.
Gria Driving lower.	13	19 watts
Grid Blas Ioss.	7. ${ }^{3}$	10 watts
Power Input	3300	400 watts
1'ower Outjut	180	$\because 60$ watts

HK-354 Heintz \& Kaufman Triode. Tantalum plate and (lass C r.f. amplifier taxim Class B modulator. for plate modulation is 3000 volts .
Note (1): The values of grid drive may he low. ered for plate voltages less that 3500 without much sacrifice in plate eticiency. A 50% decrease of grid drive from the alove values will drop the efficiency 10% to 65% which will not cause excessive plate dissimation if the load is reduced slightly with correspondingly less output and less plate current.
Note (2): May he used as a linear (Class B) r.f. amplifier as alove and also with grid modulation under similar sperating conditions, but with higher grid bias.

Note (3): With forced ventilation, the plate dissipation may be increased to as high as 250 watts.
Frequcucy Range: 100% ratings up to 15 mc . Reduced ratings at ('.H.l'. (aloove 30 mc).

Character istics:

Class B Modulator or A.F Amplifier (2 Tubes):

150TEimac medium power triode for general use, either in r.f. or audio circuits. More efficient at high frequencies than tulhes with higher inter-electrode capacities (of equal power ratings).

Frequenty Kenge: 100% ratings up to 60 mc .
Note (1): Values of grid r.f. excitation vary nver wide limits depreading upon efficiency desired, circuit losses at higher frequencies, plate load impedance and circuit design. The driver should be designed to provide consiterably more output than shown by the talle. if possible.

Note (2): For keyed telegraphy, the alove ratings may be exceeded by 50%. Iligher grid bias and grid drive are tesirable if more output is wanted.

Characteristics:

Filament Voltage 5 to 5.25 colts 10 amps Amplification fractor11
Grid to l'late rapacity.. . 3.5 mmfd.
Grid to Filament Capacity............................... 3.0 mmfd .
1'late to Filament (apacity. 0.5 mmfd .
Vormal plate lissipation . 150 watt

Normal Grid vurrent ... 50 ma.
13ase............................ Stindard 4 lin 50 watt
l'late through top. grid through side of encelope

Class B Audio Amplifler (2 Tubes):

Circuit Diagram of 1507 Push. Pull-Parallel Final Amplifier. Only One Grid Choke Is Required

Haximum Plate Dissipation......... 175 watte Maximum D.E. Plate Voltage 3000 volta Maximum D.C. Plate Current. 50 me.
Class C R-F Amplifier:

I.C. Plate Voltuge.	2000	3000 rolts
$1 . \mathrm{C}$. Grid Voltage.	-400	600 volts
D.C. Plate Current	200	200 ma .
D.C. Grid Current		
(Approx.)	${ }_{26}^{40}$	
Grid Drive	26	24 watts
Grid Blas Luss	16	24 watts
Power 1nput	400	600 watts
Power Output	260	480 watts

HF-300
Amperex General purpose triode for high frequency and U.H.F. amplifiers or oscillators.

Note: Grid excitation requirements vary greatly due to circust design, plate load, and required effiriency.

Frequency Range: 100% ratings up 1045 mc .

Maximum Sig. D. C. P' rent (Approximate) 400	400	365 mıa.
Load Resistance (I_{4500}		20.000 dims
	13,500	20.00 17 Watts
Driving Power Outut $^{\text {a }}$	450	\%00 watts

Class C R.F Amplifier Telephooy or Telegraphy: D.C. Plate Voltage.... $1000 \quad 2000 \quad 3000$ volts D. \because. \therefore. Fride Voltage..... $200-400-600$ volts D.․․ Grid Volte Current.... 200 200 204 ma. $\begin{array}{lll}\text { D.e. Grid Current..... } & 3 . & 3.5 \\ 3.5 & 31 \\ \text { mat }\end{array}$
 Proner Iaput $200 \quad 400 \quad 600$ watts
 rer Loal Resistance. 2.500 $5000 \quad 8001$ oluns. Moi. D.C. Loall. $7000 \quad 10,000 \quad 15,004$ ohms

T-155
Taylor general purpose triode. suitable for E.HIF. service down to 2 meters.
Charatetristics:
Filament Voltage
Amplification Factor .3 mmfu.
Gred to Plate Capaeity. \qquad
Grid to Filament tapacity. . 5 mimfd.
Plate to Filament Capacity. $i \frac{1}{1}$ nimid.
Maximum plate Dissipation.
Maximum D.C. Plate Voltage. 155 Watts
Mraxinum D.C. Plate Current. 200 ma.
Maximum D.C. Grid Current................................... 60 ma.
Base...ndard 4 in of watt
Plate through top, grid through side of Invelone.
Class C R-F Amplifier:
D.C. Pate Voltake.. . . 2500 volts
D.C. Grid Voltage... volts
D.C. Plate Current. 200 ma.
D.C. Grid Current...

Grid Driving Power. .. 5 watts

posser input 370 watts

$\%$ \%

Federal Tel. Co. Ceneral purpose triode. Especially suitahle for very ligh fre-
quencies.
Note: Grid excisation requirements vary greatly, due to circuit design. plate load, and required efficiencies.

Frequency Range: 100% ratings up to 30 mc .

Characteristics:

Fliameut Voltage
.10 rolts
Filanent Current \qquad il amps.
Amplification Factor … 7 mmidd.
Gidid to Plate Capacity. .3 mmfd prite to Flament Capacity 2 mmfd Taylor H.F. Triode. Class C r.f. amplifier of high output with relatively low grid-driving requirements.
Frequency Range: 30 th 2 mc .

high power final amplifier
Characteristies:
Filament Current .. . 10 volts
Amplification Factor 4 amps.

Griate to Fllament Capacity
Maximum Plate Disgipation
13 mmfl .
Maximum Plate Dissipation.
.5 mmfd
Maximum D.C. Phate voltare watis
Maximum D.C. Plate Rurrent............................. 300 ma
Maximum D.C. Grid Current..................................... 75 ma.
pin... 40 watt
Class C R-F Amplifier:
D.C. Plate Voltage. 2000 volts
D.C. Grid Voltare
D.C. Plate Current
D. Frid Current...

Grid Driving Power.. 25 watts
Grid Bias Loss.. 18 watts
Power Output \cdots.. watts
$\%$ \% \%

822
'Taylor High•Mu Triode. Class R audio amplifer or modulator. May be used in Class C r.f. service.
A.F. Driter: Pushi-puli parallel 2 A3 tubes with
input transformer ratio of $\frac{\text { Primary }}{1 / 2 \mathrm{sec} .}=1.6$
Characteristics:
Filament Voltage
10 voits
Amplifiration Constant
4 amps.
Grid to Plate Capaclty. .. 27
Grid to Filament Caparity... 8 mmfd.
Plate to Filament Caparity. .8 mmfd .
Maximum Plate Dissipation... 9 mmfi. Maximum D. ©. Plate Voltage. 2000 volts Maximum D.C. Grid Current. 300 ma ma.
 1'late through top of envelope.

Class B Audio Amplifier (2 Tubes):
D.C. Plate Voltage. 2000 volts

Zero Sianal 1.C. Plate Current............................... 50 ma .
Maximum Signal D.C. Plate Current 450 ma .
Joad Impedance (Plate to Plate). 0000 ohms
Driving Power . 30 watts

Class C R-F Amplifier:

D.C. Jlate Voltage. 2000 volts
D.C. Grid Voltage. 290 volts
D.C. Plate Current . 300 ma.
D.C. Grid Current ... 50 ma.

Grid Driving Power. 20 watts
Grid Blas ILoss
.11 watts
Power Ouput … . 600 watts
ower Output 400 watts

250T
Eimac general purpose HIF Tri. odes with amplification con. stants of 30 and 11, respectively. Specially designed for UHF operation.

Maximum Plate Voltage
 Maximum D.C. Plate Current
 Maximum D.C. Grid Current
 Base: Standard 4-pin 50 watt
 204A

3500 rolts
.350 ma .
l'late through top, grid through sitie of envelope.
$\%$ \% Triode (RCA-Amperex-Jnited) Oscillator or antplifier for fre quencies below 3000 KC .
Frequency Range: 100% ratings up to 3 mc . 50% at 15 mc .

Note: Grid excitation requerements vary with plate impedance, circuit design and circuit losses, so the driver stage should be able to supply approximately twice as much output as listed for grid drive and bias loss.

Characteristics:

Filament Voltage .. 11 volts
Filament Current
85 amps.
Amplitication Factor

Grid to Filament Capactity.
2.3 mmfd .

Maximum l'late Dissipation.
.250 watts

Plate throush top.
Class B Modulator or A-F Amplifier:

WE-212F Western Elcetric reneral purpose triade for frequencies below 1500 KC . Vormally used in audio circuits

Frequency Range: 100% ratings up to 1.5 mc 33% plate voltage ratings at 4.5 mc .
Characteristics:

Special W.E. base.
Class B Audio Amplifier (2 tubes):

DC, Plate Volta	1500	9000 r
1.C. Grid Voltage	75	- 105 volts
Maxinum Signal D.C. Plate C	600	600 ma .
Zero Signal D.C. Plate Current	80	100 ma .
Load Resistance (Plate to Plate)	5900	8000 ohms
Power Output.	500	650 watts
Sriver Power	50	50 watts

	R-F Service		
	Class B R-F 2000	Class C Telephony	Class C Telegraphy
1).C. Grid V		1500	2000 volts
D.C. Plate Current	-120	-200 300	-250 volts
D.C. Grid Current.		60	300 ma .
Grid Drive (Approx.		21	25 watts
Grid Rias (Loss)....		12	15 watts
Power Input	400	450	600 watts
Power Output	135	300	400 watts

300TFimac. General ptupose "Low C' triode for audio and high frequency amplitiers.
Frcquency Range: 100% ratings up to 40 me.
. Sote: Values of grid r.f. excitation vary over wile limits so this should be taken into account when designing the driver stage.

1-K.W. AMPLIFIER

Characteristics:

Filanient Voltage	5 volt
Fhament Current	amps.
Normal Irlate Dissipation	00 watts
Ampliftration Fartor (Nvs	
Maximum llate current	
Naximum Plate Voltag	rols
Maximum Grid Current	
firil to P'late Caparity.	
Grid to Fllament Capacity	mt
plate to Fllament Capacit.	

Plate through top, grifl throngh side of envelope.

Class B Audio Amplifier (2 tubes):			
D.c. P'ate Yoltage........ 1000	$\because 000$:1004	:3000 volts
1).c. Grid Voltage (Ap.).-60	-13.0	- 200	-240 rolts
Yaro siznal D.s. Plate			40
	40	40	40
Surreat 00	700	700	600 ma .
I.tad Resislance (IPlate to .tan	8500	10.000	13.000 ohms
Driving power 30	38	43	46 watts
Ouput Power to	950	1500	1620 watts

Class 0 Amplifier (1 tube) Telephony or Telegraphy

Class C R-F Amplifier (I tube) Telephony or Telegraphy:
 fi. priat currant 300 . $300 \quad 300 \mathrm{ma}$. o.e. Girid Current............. $40 \quad 60 \quad 60 \mathrm{ma}$
(irid laining rower (Approx.). 2- Go
cirld lins Loss.................. 10 wats
rouser lnput
Pinver Output 4.41 z00 s00 watt Al Tomat Resistame.......... 3100 ..nnot :i800 ohms

$\%$ \&

HK-654 Heint? and $\mathfrak{C N a n m a n t r i}$ Tr ode for Class B, Modula tor and high.frequener RI: Service. Especially suitable for Class B RV and grid-n odtulated telephony. Tantalum plate and grid. (100\% ratings up to $1 \mathrm{H}^{\circ} \mathrm{MC}$; reduced ratings above 311 M

C saracteristies:

Filament Voltage

7.5 solts

Filament 'urrent .. is annps. Amplifecation Factor
Normal l'late lussination \qquad
Naximm ID.C. Plate Voltaze
Maximum D.C. Plate current
500 wates
.000 solts
. 100 ma
Ibse: standard 4 -pln 50 -wati. inate through iop, grld through silde of envelope.

```
& % %
```

WE-270A
Western Electric seneral purpose trionle for broadeast station operation in high frequetry transmitters.
 33 ,' plate voltage ratings at upher limit of 22.5 me.

Characteristics:

lament	Vo	. 10 rolta
Filament	Current	
Amplifiea	lion Factor	
Grid to	plate cajacti	1 muld.
Grid to	Flament C'ab	8 mmfd .
Plate to	Fjlament Capacit)	2 mmdd .
Maximum	J]ate Dissipation.	350 Hatt
Maximum	1). ${ }^{\text {c }}$ Prate Voltas	000 volt 3
Maximum	1).C. Jlate Current	宕 ma.
Maximum	1).1: Grld Curre	

Class B Andio Amplifter (2 Tubes)		
C. Grid Vo	105	140 volt 3
Maximum Sig. J.	750	650 ma .
\%ero sig. D.c. l'late c'urre	120	120 ma
Load liesintance (l'late to il	6000	8000 ohm
Prower buthit	8.5	1000 watts
Driver J'ower		55

	R-F Service		
	Class B $R-\Gamma$	Class C Teleohony	Class C Telography
D.C. Jlate Voltage	3010	2250	3000 volts (max)
D.C. Grid Voltage	-1×0	-300	-375 nolts
D.C. Plate Current.	175	300	350 ma .
I).C. (irid Current.		70	70 ma .
Find llriver (Approx		32	37 watts
Grid blas Lanss.		$2]$	11 watts
1'ower Jnput	5	67.1	10.50 watts
Power Ouiput	13	450	6010 watts

849'riocle. RCA-Amperex-United. Especially sutited for Class B modulators. May be used in Class C as well as Class B r.f. amplifiers
fircquency Ran!e: 101% ratings up to 3 me. 50% at 15 mc .
Characteristies:

861RC. $\operatorname{serecn~Grisl~RF.~Ammlifier~for~}$ normal peration up to 20 mega cycles.
Frequency Range: 104% ratings up to 20 mc . 7-, \%o as 30 me.

Note (1): Grid drivins power requirements vars over witle limits, depending upon load impedance and cirenit iosses.

Note (2): In modulated operation (plate type) the screen voltame should be modulated simultaneonny with the plate voltage. Grid modulation characteristics are approx. sinmlar to Class B r.f. operation, excent for grid bias.

Characteristics:

Maximum Plate Dissipation 3500 rolis

Maximum J. pro. 35 watts
Maximum D.C. Grid Current. . ..
Class B
Tele-
phony
3500
500
600
145
\cdots
\cdots
510
160

Plate Mod.

Plate Mod. ass C Teiephony		Class C Telegraphy	
≥ 000	3000 max.	2000	3500 vults
300	500	354	600 volts
- -200	-300	-1511	-250 voles
265	200	301	275 ma .
70	50	60	30 nıa.
40	35	413	25 watts
14	15	4	7.5 watts
530	600	6011	965 watts
285	360	$3: 5$	590 watts

831
RC. and Amperex Oscillator and r.f. amplitier for high frequency operation. Frequency Range: 100% ratings up to 20 mc . 55% at 75 mc .

Note: Grid driving requirements vary greatly under ditterent values of load impedance, neutraliz. ing circuits and circuit losses which vary with frequency.
Characteristics:
Filament Voltage
.11 volts
Filament Current
Amplifeation Faetor \qquad
Grid to Plate Capacity ... 14.5 ninfi.
Grid to Filament Capacity 3.8 mmfd.
Plate to Pilament Dapacity.............................. 1.4 mmfil. 400 watis
Maximum Plate Dissipation
 Maxinum D.'. Plate Current

R-F Service

500TEimac general purpose triode for audio and high-frequency amplifiers. Its low interelectrode capacities allow effective r.f. amplification at high radio frequencies.
Frequency Range: 100% ratings up to 40 me.
Note: Values of r.f. grid excitation vary over wide limits so this should be taken into account when designing the driver stage.

Characteristics:

F-100A
Useful up to 100 mc .

Federal Tel. (\%o. general purpose triode for high frequency transmitters.

Characteristics :

Filament Current
Amplitication Frator 10 14
Arid to Plate capacity .10 mmfd .
prid to Filament Capacity ... 4 mmfd.
Plate to Filament rapacit: 2 mmfd.
Maximum plate lyissibation 500 watts

. 300 ma .

851R('.)-Amperex-[':nted. High power air cooled triode for $\triangle F$ or KF service.
Frequency Range: 100% ratings up to 3 mc . 50% at 6 inc.

Characteristies:

Filament Voltage	
Filament Current	
Amplification Fartor	
Grid to Plate Capacity	
Grid to rilament Capaci	0 mmfd .
Maximum Plate Dissin	mmfd.
Maximum 1.C. liate Voltage	
Maximum 1).C. Plate Current	
Maximum J.C. Grid Current	

Ilate through top of envelone.

HK-1554Meintz \& Kaufnian gercral purpose triode. Designed for commercial transmitters in the high frequency range.
Note: Air-cooled plate. With forced ventilation, plate dissipation may lee increased to $1 \overline{500}$ watts. Characteristics:

Filament Voltage			
Normal Plate Dissipation 17 amps.			
Amplifiration Factor . 14.15 watts			
Grid to Plate Caparits 11 mmfr			
1rate to Fiament Capacity 15.5 mmfd .			
1late to Filament Caparity			mmid.
Plate through ton of envelo	nvelo		ecial HK
Class B Audio Amplifier:			
D.C. Plate Voltage... 2500	25003000	4000	5000 rolts
B.C. Grid Voltage -160	-160-200	-275	-350 voles
Zero simal ll.C. Plate 0 de			
$\begin{array}{cccccccl}\text { P'late Cur. (2 tubes) } & 1.74 & 1.59 & 1.34 & 1.15\end{array}$			
Peak Driving lower.. 106	106104	100	87 watts
RMs Signal Voltage.. 375	$375 \quad 389$	413	445 rolts
Power Output (2 tubes) 2850	28503260	3860	4260 watts
Load Resistance (blate			
Maximum Signal 1).C.	3000 4200	1000	10400 ohms
Grid Current (2 tubes) 122	129122	98	72 ma .

Class B R-F Telephony:

1).C: 11]ate	2500	3000	40110	3010 volts
13. \because Surd Voltage	-160	- 000	- \% 5	-350 volts
Jo. ${ }^{\text {che }}$ Ihate Curient	448	. 38	2×3	$24 *$ ma.
1-late looss	750	750	750	750 wates
Load hesisiance	750	1100	2040	$3: 00$ ohims
Deak lirid lbriving 	53	45	12	36 watts
(arriec 1'ower	350	385	4:0	4 40) watts
Ettleirnes	33	: 4	36	38%

Class e Operation (3000 Max. Plate Voltage wor Plate Midulation):

	2500	3000	4040)	50011 rolts
[$1 . C$ C. Iirid Voltage	- 6 i01)	-1311	7.40	-ind rolts
	d. 00	. 1330	1.40	1. 0 (1) amps.
ISM Girle E'urrent	110	9	$1{ }^{\text {a }}$-1	9.5 ma.
(irid lriving I'ower	115	125	12.1	1*) watts
tirla Eias lass	dis	5k	:3	\% watts
laad Ifesjstance	11*0	1140	1950	
Power Injut	-510)	2780	4000	D000 watts
I'ower butput	17.00	20:3:3	3040	34.J watts
Plate diflichancy	71	B	11	? 9 \%
1'late looss	7.3)	7.50	960	10.sl watts

$\% \%$

WE-251A

Western lilectric H.1:. triode loroat. cast or police transmitter tube for $1 . f$, or a.f. service.
Frcquenty Range: lum\% ratings up to 30 me. dis", plate voltage ratings at oll me.

Characteristics:

Fibmment Voltage ilament current
\qquad
\qquad 10 volts Amplimentin Factor \qquad Grid w I'late Capacits
firid fo Prlament Capacify firid (o) Filament Capacity
l.late to Filament Capacity late to Filament Capacity
Dixinam Flate Disslpation
 Maximum D.C. I'late Current Maximum I).'. Grid Current \qquad Air-cesoled thbe.

	$\begin{gathered} \text { Class } B \\ R-F \end{gathered}$	Class © Telephony	Class C Telegraphy
13.C. I'latc Voltage	30100	4.309	31:00 volts*
J.1. *irid Voltake.	- 3104	410	-i.in) rolts
1)c. Plate rurrent	400	400	'00 mat.
1rower Impat	1*00	!100	1s00 watts
fower butput	4110	;00	1:00 watts

- (Maximutm).

$\% \%$

WE-279AWestern Electric II.F triode broadcast or police station ofuration for $A F$ or $R F$ service.

Fircqucnicy Range: 100% ratings up to 20 me. bo\% phate voltage ratings at 40 me.

Charanteristics:

Class B Audio Amplifler (2 Tubest:

HK-3054 application. Largest air-cooled tube made.

Note: Itate dissipation may be increased to 3 KW by fored ventilation, air cooled ll.j. tube constructio:

Characteristir:s:

lament Voltage 1 ti volts	
Filament Current	0 amps .
Normal I'late lbissiphation	1.5 kw .
Amplification Factor	
Cirid to 1'late Cabarity	\% mmid.
firid to Fildment canacits	L, mmfd.
I'late to Fijament fabacits	5 manfd.
Maximum Ib, Prate Volta	00 volts
Maximum D.c. Pate corren	2 amps .
imum 1.e. Grid current	am

Class B Audio Amplifier (2 Tubes):

II.C. Ilate Voltage	$\because .500$::000	4014	Sifecto volts
1.c. Grid Voltare -105-130-184--20 volts				
Zero sig. D.C. Plate	10	. 10	. 10	. 10 amps.
Maximum sighal 13.0.				
Itate courront (2) fubes)	3.30	¢.00	2..11)	
Maximum Sos. Crid	11.7	4.5	4.	lis volts
Maximum Sig. bia'				
Grid Currint	3010	300	+4)	1-6) ma.
Maximum sbr. lower	*	0	10	1.3 kw .
Daxjmum Sig. l'ower outpre (2 tubes)	\%	6	;	8.2 kw.
Maximum Sas. Grid brive	300	-6is	23.7	190 watts
Class B R-F Telephony:				
II.C. Plate Voltage	201)	$\therefore 000$	4000	5000 rolts
1).c. (irid Foltage.	-10:	-130	-180	-330 rolts
Hoad Kesistance	3.11	5.0	1090	1530 ohms
Girid lrive	$1: 1 \%$	130	100	80 watts
W.S. Plate currm	81	-7	58.2	. 17 amps
Carrier Out put	Tlit	740	$83!$	Nrill watts
J late Fffiency	32.0	\$3.5	35.5	36.5\%
1'late Loss	1.910	1500	1500	15100 watis
Class C R-F Amplifier:				
1). ${ }^{\text {c }}$, 1'late Voltage	2800	3000	4010	5000 wolts
13. Grid Coltage	4 4,	-800	-1090	1110 volts
	1.tis	1.15	2.101	2. 00 amps.
1.C. Girid furment	13	20	步	\% amns.
Grid Iriving l'ower	19%	300	4.:	470 watts
Power Inpu:	40.0	48.30	8001	10000 watts
lower Cutbat	-30\%	2350	$5: 80$	7500 watts
Load Hesistonce		790	8 hn	1150 ohms
1'late Efficienes	6is	69	-	.5\%

Rectifiers

866-866A-872-872A

Note: The $866-\mathrm{A}$ and $872-\mathrm{A}$ rectifiers are limited to 5,000 peak inverse voltage if the temperature near the base of the tube is below $15^{\circ} \mathrm{C}$, or above $50^{\circ} \mathrm{C}$.
Uses: Half wave rectifiers, of the mercury vapor type, for high voltage plate supplies in radio transmitters. Two or four tubes nay be connected in full wave rectifier circuits. (See power supply chapter.)

Max. Peak inverse voltage is the highest peak voltage that the rectifier tube can safely stand in the opposite direction to which it is supposed to pass current. In a single phase, full wave choke input circuit, the peak inverse voltage is approx. 1.4 times the RMS voltage applied to the tube. In a single phase, half wave circuit with condenser input, the peak inverse voltage may be 2.8 times the RMS value.

RK-19, RK-21, RK-22

Raytheon Rectifiers. Intermediate between 83 and 866 rectifiers, but of high vacuum type construction. Designed for 1000 volt DC supplies.
Characteristies:

		Full Wave RK-19	Half Wave RK-21	Full Wave
		RK-22		

Max. peak plate current is the highest value of peak current that the rectifier tube can safely pass. With large choke inductance input to the filter, the peak current is not much higher than the load current. With condenser input, the peak current may be four times as high as the load current.

Characteristics:

	866	866-A	872	872-A
Filament Voltage	2.5	2.5	5.0	5.0 volts
Filament Current	5.0	5.0	10	6.75 amps.
Peak Inverse Voltag	7500	100ct	7500	10000 volts**
Tube Voltage Drop	.6	-b	2.5	2.5 amps.*
Base	4 pin	4 pin	$\begin{aligned} & 15 \\ & \text { owatt } \end{aligned}$	10 volts 50 watt

${ }^{*}$ Maximum.
 Maxlmum D.C. Load Current (with Cond. Input)... 200 ma .
\& * *
866B
Taylor mercury-vapor half wave rectifier for operation in full. wave or bridge rectifier systems. Intermediate in load capacity between 866 and 872 A rectifiers.

Charaeteristics:
Filament Voltage
Fllament Current
Peak Inverse Voltage 5 amps. Peak Inverse Current .8500 volts

Chapter 12

Radiotelephone Theory

- What can be defined as the average transmitter is that which consists of the following components: (1) a portion that generates and amplifies the radio-frequency carrier wave; (2) a portion that converts the sound waves into electrical waves; (3) a portion that takes amplified audio-frequency currents and mixes them (by a process known as modulation) with the radio-frequency carrier in such a manner that the power output of the transmitter varies in exact accordance with the variation in sound pressure applied to the microphone.

Modulation Fundamentals

- In general, all communication systems utilize audio-frequency waveforms. These may be either pure tones and square-topped waveforms for use in code transmission, or the waveforms may be quite complex for conveying telephonic speech directly, without translating the intelligence conveyed into dots and dashes of the telegraphic or radio codes. The range of audio-frequencies required to transmit the intelligence varies from a few cycles to 10,000 cycles per second, depending on whether telegraphic or high-definition amplification is used. For amateur purposes, an audio-frequency range of from 200 to 2800 cycles per second will provide intelligibility, although fully natural and pleasing reproduction of the transmitted speech requires a range of from at least 100 cycles to 4000 cycles. Jor high-definition, frequencies between 80 and 8000 cycles must be faithfully reproduced at the receiving point, such fidelity is seldom secured int amateur practice, but should be attained whenever conditions permit.

In the transmission of telegraphic signals aver a radio circuit, the carrier is radiated only during the "mark" period. The "space" is obtained and defined by an absence of the carrier. On the other hand, when telephonic communication is used on a radio chamnel. the carrier remains on between syllables and words. The audio signal periodically increases and reduces the amplitude of the carrier, while the average amplitude of the carrier remains constant.

When a modulated carrier is analyzed. it is found that the original carrier is present, plus two groups of the sum and difference frequencies, which have been named the mpper and lower sidebands. These sidehands are generated in the transmitter by the familiar heterodyne process. Thus, one
sideband consists of the waves whose frequencies equal that of the carrier plus that of all the individual audio components, and the other sideband consists of the waves whose frequencies equal that of the carrier minus all the audio components. In other words. the carrier and the audio signal were heterodyned together into a group of beat. frequencies by the action of the modulated amplifier.

(B)-AUDIO SIGNAL TO BE APPLIED TO CARRIER

(C)- modulated carrier

Curve (A) indicates the pure c-w wave applied to the grid of the modulated ampli. fier. Curve (B) shows the audio frequency output of the modulator. Curve (C) shows the combination of the two after being mixed in the modulated amplifier. Note that the average value of the modulated wave is constant.

The carrier takes up a relatively small position in the frequency spectrum, but, since each sideband contains all the audio signal components, the modulated signal will require a frequency band twice as wide as the lighest audio-modulating signal. For example: If the transmitter responds to frequencies between 100 and 4000 cycles per second, then the bandwidth must extend 4000 cycles above and below the carrier. This 8000 cycle band will cause some interference to any other station whose sidebands extend into this particular portion of what-
ever amateur band the transmitter is working in. Almost 85 per cent of the power radiated in the sidebands consists of the frequencies in the register below 1500 cycles, the remaining 15 per cent consist of frequencies of the upper register, which determine the quality of speech reproduction. The high audio-frequencies contain the greater portion of the harmonic content of sound which, if muted, depletes the fidelity and timbre of natural speech.

Power Distribution in a Modulated Wave

- The amplitudes of the sidebands depend on the percentage nudulation; the higher the clegree of modulation, the greater the sideband amplitude. It takes pozer to modulate a wave which is expended in altering its amplitude. When a carrier is $\mathbf{1 0 0}$ per cent modulated by a pure audio tone, the power in each of the two sidebands equals one-fnarter of the ummorlulated carrier power output. Thus the power in both sidebands equals one-ha'f the carrier wave and, therefore, complete modulation increases the average power output of the phone transmitter 50 per cent. If a class C radio-frequency amplifier is plate modulated, the plate power input must therefore be increased 50 per cent in order to get a 50 per cent increase in output, because the plate efficiency remains constant during modulation. This 50 per cent increase in plate input is obtained from the modnlator tuloes in the form of $A C$: It is superimposed on the DC plate input in such a maniner that the instantancous plate voltage (and current) is alternately raised to twice the ummodulated value, and then reduced to zero. In order to swing the plate voltage of the class C amplitier from zero to twice normal, the modulators must alternately supply and absorb power. This involves energy storage during the time the plate voltage is below normal. This energy is stored in the Heising choke, or in the modulation coupling transformer. depending upon whether capacitative or inductive coupling is used between the modulators and the modulated amplifier.

One hundred per cent modulation is approaclied only on the extrene voice peaks. Ordinarily these peaks should seldom be allowed to modulate a phone transmitter more than about 80 per cent. and the average modulation during the time that the operator is actually speaking should approximately average 40 per cent. However, the capability to modulate at 100 per cent is essential to mininize heterodyne interference between or with other stations.

All plate modılated RF amplifiers operate as class C amplitiers which require that the grids of the tubes be heavily excited by a buffer anuplifier so that the power
output of the stage will rise as the square of the plate voltage without any "dropping off" tendency as the instantancous plate voltage approaches twice the normal value minder modulation. HINT: In practice, choose tubes with as high a mutual conductance as possible to economize on driving power.

The plate input to a class C modulated amplifier increases during modulation, while the plate efficiency remains constant. On the other hand, the plate dissipation will increase when audio modulation is applied, necessitating that the tube operate below its maximum rating in order to allow some reserve dissipation for the heat radiated from the plate during complete modulation; incidentally, the heat increases upwards to 50 per cent during 100 per cent modulation.

Another reason for operating modulated amplifier tubes below their maximum rating is that the peak plate voltage and the peak plate current are doubled during complete modulation.

Shielding RF Portions of Phone Transmitters

- Additional sliclding or isclation of the RF portion of the transmitter will be reunired in order that all RF be kept out of the speech amplifier, such precautions will prevent the amplifier from overloading and "singing"; in some cases it will be even necessary to shield the entire speech amplifying equipment.

Phone Transmitter Components

The three principal parts of the phone transmitter are: (1) the radio frequency chamel: (2) the audio-frequency channel; and (3) the power supplies. In the subsequent treatment, an anaiysis is given to the major components comprising each of the aforementioned parts.

The RF Channel

The principal function of this channel is to generate and amplify radio-frequency al-ternating-current oscillations which are ultimately modulated by the voice impulses and then radiated from the antema.

The radio-freguency generator consists of a low-power AC nscillator tube whose fre(fuency is held within very close limits in order that the period of oscillation does not appreciably drift. In practically all modern amateur transmitters the frequency is maintained at a near-constant value by a quartz plate oscillator.

While the crystal has a tendency to resist changes in freguency caused ty changes in the plate voltage, or by other circuit char-
acteristics, it cannot entirely compensate itself from factors tending to alter the generated frequency. For these reasons, the crystal oscillator camot be modulated directly without some undesirable frequency modulation. These wide changes in plate voltage will have some effect on the circuit parameters of the most stable of crystal oscillators. Amplifiers which adjoin the crystal oscillator must not be modulated lest some reaction be reflected back into the oscillator which may have (it generally does) some effect on the frequency stability. A crystal oscillator must be isolated by at least one buffer stage between it and the succeeding radio-frequency amplifier which is modulated by the voice impulses.

The Modulated Amplifier

Power modulation, somretimes called "Heising Modulation," "Plate Modulation," or "Power Supply Modulation," is used in most amateur stations. In a previous explanation it was stated that all forms of plate-modulated amplifiers operated "class C" wherein the negative grid bias is greater than two times that value of bias which would reduce the plate current to zero if the RF grid drive is removed.
The process of plate modulation occurs whenever the plate voltage is varied up and down over its normal value at an audiofrequency rate, the variations being exactly in accord with the voice impulses which strike the diaphragm of the microphone. If the class C RF amplifier is properly biased and driven, the radio frequency AC voltage measured across the plate tank coil will, at all times, be exactly proportional to the instantaneous DC plate voltage. By instantaneous DC plate voltage is meant the sum of the constant DC plate voltage, plus the instantaneous AC voltage which is superimposed on it, and which comes from the modulator tube or tubes. This variation of radio-frequency voltage across the tank coil obviously causes a variation in the power output of that amplificr stage, and if the antenna is coupled to the modulated amplifier the RF energy is modulated in accordance with the variation of scuncl applied to the microphone. The RF signal in the detector circuit of a distant receiver, when the carrier is unmodulated, is inaudible-unless a beat-frequency oscillator supplies a heterodyning signal. However, as soon as the amplitude (or voltage) of the carrier signal is varied and is present in the distant receiver, the variations are changed by elec-tro-acoustic conversion in the reproducer and are heard as sound.

In order that the amplitude of the RF output shall be an exact replica of the voice impulses, it is essential that there be no regeneration in the class C amplifier. This
means that the RF amplifier must be perfectly neutralized. It takes an appreciable anlount of regeneration to make an amplifier break into self-oscillation: however, because an amplifier does not oscillate is not an indication that it is perfectly nentralized. There may not be enough regeneration to allow self-oscillation, but even a small amount of regeneration can seriously disturb the linearity of modulation and thereby cause distortion. The modulation must not only be linear, it must be perfectly symmetrical as well. In other words, the positive and negative peaks of modulation must be equal. This necessitates that the carrier output must swing up just as much as it swings down on the immediately succeeding half cycle. Non-symmetrical modulation causes a change in the average amplitude of the modulated wave, which results in carrier shift and serious interference, as well as introducing audio distortion. Interference due to non-symmetrical modulation is very much of the type as that resulting from over-modulation and is sometimes called "sideband splatter."

Non-symmetrical modulation is sometimes caused by having a very low C in the plate tank circuit of the modulated amplifier. If there is an excess of inductance and a deficiency of capacitance in the circuit, the proper amount of circulating current will not flow in the tank circuit to provide the necessary "fly wheel" effect.

See L to C Ratio Chart in C. IV. Theory Chapter for correct capacity to use at various freguencies.

Frequency Modulation

- The oscillator freguency will vary during modulation unless one or more buffer stages are used between the modulated stage and the oscillator. This variation of frequency is called "frequency modulation."

战 Linear Amplifiers

- To avoid distortion, any amplifier which amplifies a wave previousty modulated in some preceding stage must produce output wave shapes which are exactly similar, except for size, to the input wave slapes which excite the grid. This type of amplifier is called a "Linear Amplifier" because its output is a linear function of its input. The most common type of linear amplifier is usually biased exactly to cut-off and it is called a "class B Linear Amplifier."

The reasons why these amplifiers are not more widely used in amateur stations are because they are quite difficult to adjust and they require a rather expensive amount of tuhe capacity for their carrier output.

It is desirable to operate a linear amplifier at as high a plate voltage as possible to obtain the maximum possible unmodulated plate efficiency. Because the grid current

varies with the percentage modulation, the grid bias of a linear amplifier must be supplied from a separate source, such as batteries of a low-resistance power supply, to avoid distortion.

Linear amplifiers operate as efficiency modulated devices. The plate efficiency is controlled by the RF excitation voltage applied to the grid. The maximum theoretical unmodulated plate efficiency for a class B linear amplifier is 39 per cent. and 50 per cent for a class BC linear amplifier. In practice, the unmedulated plate efficiency of a class B linear amplifier seldom exceeds 30 per cent, and for the class BC linear amplifier the upper limit is about 40 per cent.

The modulated output is obtained by varying the instantaneous plate efficiency of the linear amplifier between the limits of zero efficiency and twice the normal unmodulated efficiency. Thus a class B linear anplifier might be 30 per cent efficient during periods of no modulation, and during periods of 100 per cent modulation the instantaneous efficiency would he varying at an audio-frequency rate between zero and 60 per cent. During the period of 100 per cent modulation the average plate efficiency increases 50 per cent. Because the average plate efficiency is lowest when unmodulated, the plate loss is lighest at that point, and it is therefore evident that all linear amplifiers cool off during modulation. Exactly the opposite occurs in a class C plate-modalated amplifier because its plate loss increases 50 per cent during periods of 100 per cent modulation and also because the plate efficiency of a class C amplifier remains approximately constant during modulation, although the average DC plate input is increased 50 per cent.

The Audio Channel

- The fidelity and faithfulness by which the voice frequencies are amplified depends wholly upon the individual characteristics of the parts comprising the audio-frequency amplifying equipment. To satisfactorily pattern any group of instruments into a well-designed speech amplifying system requires that each part be better than just "ordinary" or "cheap."

Microphones

The function of a microphone is to convert sound energy into electrical energy. In a perfect microphone the electrical output would be an exact replica of the sound input caused by the successive compressions and rarefactions of the air in front of the mouth of the person who speaks into the microphone.

The various types of microphones in use todlay are:
(1) The carbon microphene (with one or two buttons).
(2) The condenser microphone (air and nitrogen filled).
(3) The crystal miscrophone (Piezo-electric type).
(4) The inductive microphone (moving riblon) (velocity type).
(5) The dynamic micrephone (moving coil type).
(6) The non-directional dynamic microphone.

TI-Double Button
Mike-to-Grid Trans.
T2-3:1 Interstage
Transformer.
Choke: 20 henry, 200 M.A.

10-watt amplifier for double-button microphone.

The Carbon Microphone

- This type of microphone is the most common in use today. The electrical output results from the fact that the resistance of a group of carbon granules varies with the mechanical pressure exerted on them. The pressure is varied by a netal diaphragm whose oscillatory movement is conveyed directly to the pile of carbon particles which varies the microphone battery current flowing through the microphone. In the case of a double-button carbon microphone there are two groups of carbon particles located in metal buttons, one on each side of the diaphragm. This vibrating member is usually stretched so as to remove the mechanical resonant point of the diaphragm out of the most important part of the audio-frequency range. These two-button microphones are connected to a center-tapped primary winding o: the microphone coupting transformer so that the buttons are effectively in pushpull. This tends to minimize the even harmonic distortion which is inherent in all carbos microphones.

10-watt amplifier for use with a singlebutton microphone.

Unfortunately, all resistive types of acousoelectric converters have a rather high background hiss, due to the bunton current; in addition, are incapable of responding to wide frequency range, and generate more than a good portion of harmonic distortion. Fortunately, carbon microphones being low-impedance clevices (200-400 ohms) require little or no shielding. Another feature is that the ruggedness and mechanical construction of the device allows it to be handled without the consideration that would necessarily be required with a more delicate instrument.

The output of a highly damped two button type is rated at - 45 D.B.

The Condenser Microphone

- This type of microphone is capable of giving all the fidelity an amateur can use. It operates on the priuciple that any variation in the dielectric spacing of a small condenser generates a small At voltage across the condenser terminals. A rather high polarizing roltage must be applied between the condenser plates to secure sufficient output; voltages from 90 to 180 volts are common, The condenser microplione has a heavy back plate in front of which is located a thin "dural" diaphragm, tightly stretched to eliniinate resonance. The space between the diaphragra and back plate is sometimes filled with nitrogen to improve the over-all response characteristics. The diaphragm is usually a thousandtio of an inch thick, with that annount of spacing between the vibrating nember and the back plate. When sound waves are impressed on the diaphragm its uscillatory movement varies the electro-static capacity between the two condenser plates. which impresses an AC voltage on the DC polarizing voltage. This AC voltage is then transferred to the grid of the first audio amplifier through a small blocking condenser which isolates the polarizing voltage from the grid of the first andio tube. The output is aboat - -95 D.B. as compared with an ordinary single button telephone microphone with unstretched diaphragm.

The condenser microphone has the advantage that its extremely light diaphragm gives somewhat better high-frequency response than a carbon microphone. In addition, there is no carbon hiss. The disadvantage lies in the fact that the andio output is so low that a "pre-amplifier" is necessary to augment the minute currents up to a level equal to that of a standard 2 -button carbor microphone (-45 D.B.). Because the condenser microphone is a very high impedance device, it must be isolated from both RF and AC fickls. Weather conditions, such as humidity and barometric pressure, affect the response characteristics of practically all electro-static devires. Cavity resonance,
structural and resonatice peaks tend to alter the fidelity oi mans types of condenser microphones, especially those of inferior mannfacture. On account of these factors, prospective purchasers should carefully weigh both the electrical and mechanical features of a group of microphones before finally making their acquisition.

The Crystal Microphone

- There are two types of crystal microohones - the diaphragm type and the grill spe. lioth operate on the piezo-electric principles as defined by Curie. When a dielectric material in a condenser changes its mechanical dimensions or density, a change in capacity occurs " This change in capacity gencrates a small AC voltage. All crystal microphones use Fochelle salt crystals, which act like small condensers. If these erystals are subjected to a deformation by bending strains caused by an acoustic pressure, a small audio-frequency will be generated across the two small pieces of metal foil which are glued to opposite faces of the crestal. The voltage produced by the crystal is then fed into a pre-amplifier for the neeessary anplification.

The diaphragn type is the most inexpensive of crystal mir rophomes. While it is capable of somewhat better fidelity than the more common types of comdenser microphones, its quality is not comparable to that secured from the better types of electrostatic instruments. No polarizing voltage or magnetic field is recpuired, and the audio output is approximately equal to that obtained from the highly-damped types of twobutton carbon microphones. There is no background noise and the filelity depends upon the care with which the diaphragm has been installed.

The grill type of crystal microphone is capable of almost perfect ficlelity. It consists of a series of crestals (or souncl cells) connected in series-parallel to produce a high output. The energy developed by this type of microphone is equal to that of the lowerlevel moving coil types, and is somewhat higher than that of the moving coil varicty of microphones. Although the device is a high impedance scurce of audio voltage, its peculiar condenser caracteristics allow the use of a shielded lead which can be 100 feet long between the microphone and its associated pre-amplifier. One important advantage of the grill type crystal microphone is that it is less directional than other topes of microphones. The output level varies between -65 and -it D.B., depending upon the construction.

The Inductive Microphone

- These microphenes operate on the principle that the movement of a conductor in
a magnetic field induces a voltage in the conductor. The ribbon microphone utilizes a thin corrugated metal ribbon, or tape, a few thousandths of an inch thick, loosely supported between the pules of a form of horseshoe magnet. When actuated by sound waves, the diaphragm or ribbon oscillates in the magnetic field, which induces a very small current in it. The two ends of the ribbon are connected to the primary of a coupling transformer which steps-up the voltage output and applies it to the grid of a pre-amplifier tube. The ribbon microphone is very rugged and is of rather simple construction; in addition, is capable of high-definition in response with regard to the direction of the sound approach. Being actuated by velocity, rather than by pressure, the high frequency douhling is avoided which in other types of instruments impairs the fidelity. The microphone has an extremely low impedance (less than 1 ohm) and is therefore not affected by radio-frequency fields; on accomint of this feature the device may be placed close to the transmitter. Unfortunately, the microphone is sensitive to 60 -cycle or power line ficlds if in the proximity of these areas. Low freguencies are unduly emphasized when speaking close to the ribbon. Pecause the audio output is approximately the lowest of all acousto-electric devices, a high-gain pre-amplifier is required to bring the output up to a usable level. The output is about - 100 D.B.

The Dynamic Microphone

- This type of microphone operates on the same principle as the ribbon type. However, it uses a small coil of wire attached to a diapluragm to generate the audio voltage. A permanent magnet supplies the magnetic fick in most cases, and the audio output and fidelity are similar to those of the condenser microphone. The moving coil microphone is a low impedance device and thus can be remotely located from its associated pre-amplifier. The usual impedance of the moving coils is about 30 olims and the rated output level is -85 D.P.

The noving coil microphone is rapidly gaining popularity amongst the amateur fraternity. It is quite rugged and has the outstanding advantage that its characteristics do not readily change with age or atmospheric conditions: once the device is equalized, its fidelity remains constant.

The Non-Directional Microphone

- This is a type of microphone that will respond uniformly to all sound pressure and is built on the moving-coil principle. It differs radically from previous microphones in appearance, consisting of a two and one-half incli spherical housing with a two and one-
half inch acoustic screen held a fraction of an inch off the surfiace. In this type of microphone the directional effect is so slight as to be imperceptible: this effect is largely a function of the size of the microphone relative to the wavelength of sound.

With a spherical microphone mumted with the diaphragm horizontal (see the acconpanying figure) there would be a tendency for the response to be too high for high-fre-

Simplified cross-sectional view of Western Electric non-directional microphone.

quency sounds coming clown from above: that is, directly toward the diapliragm, and too low for similar frequencies coming from angles very much below the horizontal. The effects are completely avoided, and an essentially uniform response is obtained from sound coming from all directions, by mounting an acoustic screen in front of the diaphragm. This screen produces a loss in sound passing through it, but reflects back into the diaphragm all sound coming from behind the microphone. It thus compensates for the unequal diffractive effects and makes
the instrument nan-directional in its response.

Crystal microphone pre-amplifiex. Gain approximately 20 D.B.

The microphone has a uniform characteristic from 40 to 10,000 cycles; it is also free from electrical interierence and has such features as: high signal-to-noise ratio, ruggedness, clependability and freedom from temper. ature, barometric and humidity effects. Another characteristic is the low electrical impedance which allows its use several hundred feet from the amplifying equipment.

Pre-Amplifiers

Practically all types of high-ficlelity microphones have a very low audio-output and require an intermediate device between the microphone and main voltage amplifier to build-it) the weak electrical output; this device is called the "pre-amplifier." It consists of two stages of resistance or transformer coupled triodes connected in cascade. The over-all gain oí most pre-amplifiers ranges from 35 to 55 D.B., clepending upon the particular type of input microphone used; the decibel rating given here represents a voltage amplification of about 250 to 1000 times. (NOTE: It is almost prerequisite that all amateurs acquaint themselves with the D.B. unit; reference should therefore be made to the discussion appearing in Chapter 3, "Decibels and Loagarithms".

Since it is the function of pre-amplifiers to be associated with minute audio-frequency voltages, emphasis must be placed apon protecting the amplifier from all hum and background noises. To minimize the hum pick-up

Metal tube pre-amplifier for condenser microphone. Gain approximately 50 D.B. Tl-tube-to-line output tronsformer.
requires good shielding as well as RF chokes in the grid leads, the latter being required if the amplifier is to be operated close to a transmitter. The power supply leads energizing the equipment must be well shielded and not run closer than three feet to any choke or transformer which has AC flowing through it.

The heaters of the tubes can be operated from 6.3 volts AC if care is taken to completely by-pass and shield the filanient leads. Otherwise a small storage battery may be necessary if high gain is desired.

Gain controls are seldom incorporated in a pre-amplifier; this function is best left to a voltage divider or attenuator in the main voltage amplifier. (NOTE: Design information on pre-amplifiers may be found in Chapter 3, "hecibels and Logarithms".

Pre-Amplifier With New Metal Tubes

- The performance of a condenser microphone pre-amplifier cannot be improved un to any great extent, but the new developments in parts and tubes allow a more compact and better mechanical design.

Two of the new metal-envelope type 6F5 and 6 C 5 tubes form major parts complement of a modern pre-amplifier. Electrically, metal tubes have little advantage over others except for the lower hum level obtained and, in addition, to a slight increase in the gain. These tubes, however, take up less space and

Circuit diagram for condenser microphone amplifier illustrated above. A small dry cell (1.5 volts) can be used in place of the MaHory Bias Cell.
greatly simplify the problem of shielding. An entire two-stage pre-amplifier can be built into a case that formerly housed a "Stromberg-Carlson" audio transformer. The interior partitions are constructed from galvanized iron and then given a coat of lacquer to match the appearance of the case. The mechanical construction is such that all parts in the amplifier are accessible.

A "Mallory" bias cell furnishes the bias voltage on the 6 F 5 . A potentiometer arrangement reduces the polarizing voltage from 250 to 175 volts.

With some types of condenser heads, it is not possible to apply more than 100 volts as a polarizing voltage; the differences in potential can, however, be changed by making the proper adjustments on the potentiometer.
It is recommended that well-designed "noiseless type" resistors will be used. In the second stage the amplification level is of such a value that any good grade of carbon resistors will prove satisfactory. The shielded lead from the positive high-potential plate of the microphone head which energizes the grid circuit of the 6 F 5 must be well insulated between the shielding and the external wire. Considerable noise will be developed in this circuit if this insulation is faulty.

The output impedance of the pre-amplifier is low enough that no line coupling transformers will be necessary for distances up to 100 feet. The output is fed to the grid of the first tube in the main amplifier either through a regular inter-stage audio transformer or a 0.1 mfd . coupling condenser. The transformer should be located at the input of the main amplifier if transformer coupling is used. If resistor coupling is used. the $0,1 \mathrm{mfd}$, condenser should be located at the input of the main amplifier even though there is already one blocking condenser in the output lead at the pre-amplifier.

The filament leads nust be shielded and the grid leads short as possible. It is important that the heaters of the tubes be grounded either at the center-tap winding on the filament transformer or by a center-tap resistor scheme.

The power supply must be well-filtered and provided with at least three filter sections with a total of more than 30 mfd . capacity. Three small 50 hy . (or those having higher values) 10 MA. chokes shunted at each terminus with S mfd. electrolytic condensers will provide a hum-free source comparable to battery supply.

The Main Voltage Amplitier

- The main voltage amplifier is not clearly defined in most amateur stations. but is often combined with the driver stage for the highpowered modulator. Briefly, that part of the audio channel which starts at a point roughly corresponding to the output level of a damped high-quality two-button microphone which is approximately $-50 \mathrm{D} . \mathrm{B}$. below the zero level is termed the "main voltage amplifier." Throughout this HANDBOOK, a zero level equal to 6 milliwatts (.006 watts)

of power will be used as an arbitrary reference level. Thus - 45 D.B. corresponds to one-one-hundred thousandth oi 6 milliwatts. A good voltage amplifier must be capable of amplifying an input of - 45 D.B. up to full output, that is, to the zero level. Such an amplifier can consist of two stages of type 6E6 triodes, transformer coupled.
To control the input to a main voltage amplifier requires the use of some type of attenuating device; this can consist of a potentiometer of about 250,000 ohms whose sliding contact comnects to the grid of the first stage.

The main voltage amplifier drives either the "driver power amplifier" or, in certain cases, it directly drives the "low powered modulator." This amplifier operates at a considerably higher audio level than a preamplifier, and therefore does not require exceptional filtering or shielding to minimize
background noises. However, as a precautionary measure, the first stage should be well-filtered and shielded because of the hum which might occur due to faulty construction or design.

The best inter-stage coupling in amplifiers in which the tube components are either pentodes or screen-grid types is that obtained by resistance coupling. Coupling high-mu tubes with transformers reduces their operating efficiencies to a very low value: and audio chokes, unless specially designed for this service are also taboo. On the other hand, choke or transformer coupling will give splendid fidelity when functioning in conjunction with mediumor low-mu triodes. Resistance-coupling is ideally suitable to the following screengrid, pentodes or high-mu triodes; these are the $75,246,40,6 \mathrm{C} 6,57,6 \mathrm{~F} 5$, or 6 J 7 .

Widely Used Main Voltage Amplifier and Audio Driver

5-Watt Amplifier for use with highly-damped type of carbon microphones.
Tl-Mike to grid transformer.
$\begin{array}{ll}\text { T2-Interstage audio transformer. } & \text { T3-Push-pull input transformer. }\end{array}$

The Modulator and Its Associated Driver

- A modulator which operates Class A does not require that its driver supply power, but instead it necessitates that its input be supplied with a certain voltage; this is due to the fact that the control grid of a class A amplitier, or modulator, is never driven positive, and so never draws grid current. The driver, therefore, will function splendidly with the following tubes as voltage amplifiers: the $6 \mathrm{C} 6,56,76$ and others. With the 845,849 or 212 D operating in a class A modulator, the driver should be chosen from among the small tubes, such as the 45,42 (triode), 210 , etc. The larger tubes operating class A require somewhat more grid roltage swing than can be supplied by the smaller voltage amplifier triodes.

When modulator tubes are employed in push-pull class B or class $A B$ stages, the driver is frequently required to supply some grid power: this amount varies widely depending on the plate voltage and power output conditions. Class B modulators require slightly mare grid driving power than class $A B$ modrtators, but class 1 B modulators are often somewhat more economical to build and operate.

For example, class B 46 s and class AB 50s have the same maximum undistorted power output of approximately 23 watts for two tubes at rated plate voltage. The grids of the 4 (is require almost two watts of power, whereas the two 50 s require only about . 4 watt far the same output. Thus another 46 operating as a low-mu triode must adjoin the driver for the class B 46s, while push-pull $\tau 6$ s can easily supply the small grid driving power reguired by the class AB 50s. However, the 46 is are more modestly priced and operate with less plate voltage than the 50 s . Offsetting this economy is the fact that the input and output transformers for the class $B 4$ ss may be more expensive than the input and output transformers for the class $A B$ stage with the type 50 tubes.

The choice of a modulator tube depends on the DC plate input power drawn by the class C RF amplifier which is to be plate modulated. The maximum undistorted audio power output of the modulator stage must be 50 per cent of the DC power input to the class C amplifier.
Reference to the tube tables will indicate the audio autput to be expected from the more common modulator tube combinations, at commonly-found plate voltages. The same table will also suggest satisfactory tubes serviceable as drivers.
Low power modulators (up to 200 watts of autdio power) often operate from either a single-ended or push-pull driver chosen
from the following list of the most popular low power drivers: 45, 46 (low-mu triode), 59 (low-mut triode), 2A: $\boldsymbol{z} 1,42$ (triode), $2 \mathrm{B6}$ and 50.

Power Modulation

- Power modulation includes all forms of plate modulation because it involves the modulation of the source of power which is converted into RF carrier power by a vacuum tube amplifier. A radio-frequency class C amplifier normally operates under conditions such that the power output changes with the square of the plate voltage; thus the RF voltage output changes in exact accordance with the variation in the plate voltage. Ordinarily, all modulated class C amplifiers operate at a practically constant plate efficiency, but with a peak plate input varying above and below the normal ummodulated value in accordance with the audio-frequency AC supplied by the modulator. The plate efficiency of a plate-modulated class C amplifier can be made quite high; 92 per cent has been reached in laboratory amplifiers, although 6.5 per cent to 85 per cent is more common in amateur stations.
A study of the power distribution in a completely modulated wave shows that twothirds of the total power consists of the carrier, and the other one-third is divided equally between the two sidebands. Thus the average RF power output must be increased 50 per cent for complete 100 per cent modulation, and proportionately less for lower percentages.
The plate efficiency remains approximately constant during plate or power modulation, and so the RF power output can be increased only by increasing the plate input power during modulation. In order to derive a 50 per cent increase in average power output during complete modulation, the plate power input must also be increased by 50 per cent. Because the audiofrequency modulator. or modulators, are the sole source of this increase in power. it is seen that the maximum undistorted power output of the modulators must be equal to 50 per cent of the constant DC plate input supplied to the unmodulated class C RF amplifier. The modulator, or modulators, must be coumpled in the circuit between the source of DC plate power and the class C amplifier so that the peak AC voltage output and the peak AC current output of the modulators just equals the unmodulated DC plate voltage and plate current drawn by the class C stage. Under complete modulation, therefore, the constant DC plate input is alternately doubled and neutralized as the audio-frequency AC wave goes through its maximum positive and negative values. This shows that the im-
pedances of the load represented by the class C plate circuit and the impedance of the AC power source, which is the modulator tube, or tubes, must ive matched to each other if the AC voltages and currents are to exactly double and then neutralize the constant $D C$ voltage and current. which represents the inmodulated plate current input power to the class C amplifier.

Efficiency Modulation

- The average plate efficiency must increase 50 per cent during complete modulation of an efficiency modulated RF amplifier, and the plate peak efficiency can never exceed 100 per cent; hence, the ummodulated plate efficiency must be less than 00 per cent.
Efficiency modulated amplifiers include practically all forms of grid modulated amplifiers, whether they are modulated by variable excitation, in which case they are usually termed "linear amplifiers," or whether they are modulated by variable grid bias, in which case they are called "grid bias modulated amplifiers."

Grid Bias Modulation

- When the axis of the AC gricl excitation voltage is shifted by the sudio-frequency modulating voltage, it is tefmed grid bias modulation. If the control grid of the modulated tube draws any DC grixl current, then chough audin must be supplied from the modulator tube to modulate this DC grid current. Frequently this current is cuite smaall in comparison to the DC plate current and a real economy of audio power can be effected by grid bias modulation instead of plate-power modulation. Under certain conditions the vacuum tube amplifier can be operated so that the control grid draws no DC current, even when most positive, so that the modulator tube need not supply any power to effect deep modulation, as the effective grid impedance is, in that case, very high. It is poor economy to operate a RF amplifier control grid wholly on the negative side of zero bias because the efficiency of the plate power conversion is then low, unless high plate voltages are used together with a tube of exceptionally high mutual condictance. Most grid-hias modulated amplifiers operate so that some DC gridl current is drawn, at least on the peaks of modulation.

Screen Grid Modulation

- Practically all screen-grid tetrodes and pentodes built at the present time are incapable of complete and linear 100 per cent mochulation when the AC modulating voltage is applied to the DC screen voltage.

It is theoretically possible to design a
screen-grid pentode which will allow perfect and complete modulation to be effected by cascade screen voltage modulation, but such a tule has not been built to date, and even if such tubes were available, the use of two cascaderl efficiency modulated stages would not be economical.

Suppressor-Grid Modulation

- Suppressor-grid modulation is used quite extensively among amateurs in the United States. If some means can be found to increase the unnodulated plate efficiency around to per cent, suppressor-grid modulation should become universally acceptable. because it is probably the least critical modulation method of any in regards to adjustment.

Summary of Efficiency Modulation

- In all known efficiency-modulation systems, the plate power input must remain constant, if linear modulation is desired. The unmodtrated plate efficiency could be about doubled if it were possible to make some form of grid-modulated amplifier release its own addlitional plate input from the DC plate supply source during modulation.

In general, efficiency modulation is claracterized by the fact that it is rather difficult to adjust without the aid of an oscilloscope: there is also some question as to whether it is more economical to employ a large tube operating at 35 to $4^{4 t}$ per cent efficiency and a minimum of audio equipment, or to use a small high-efficiency class C amplifier stage together with extensive modulator and power supply apparatus.

Class AB Audio Considerations

- The best load impedance for class AB tubes is difficult to calculate accurately. As in class B , for a limited grid voltage the output power will be greatest when a plate load is chosen such that the product of plate voltage swing and plate current swing is a maximum. For maximum power with minimım distortion, the load resistance will decrease as the driving power is increased. In other words, with greater driving power the plate current swing on the output tube can be increased and greater power output will consequently be developed across a lower load. This again is governed by the peak current which the plate supply can deliver. It is not good practice to place a low load resistance in the circuit if the plate supply regulation is poor. This and the foregoing factors are of more or less importance, depending upon the magnitude of values in the particular design. However, a general method of determining load impedance for push-pull tubes where the grids are not driven very positive is shown in Figure 1, applied to 845 tubes. The published

FIG. 1
Method of graphically computing proper load impedance (see text).
plate characteristic must be obtained and an operating voltage E_{b} selected. A vertical line is erected at $.6 \mathrm{E}_{\mathrm{b}}$ and the $\mathrm{E}_{\mathrm{c}}=0$ line is extended to meet it. A line is then drawn from the intersection to E_{h}. The slope of this line multiplied by 4 is the proper plate-to-plate load. In the example drawn this load is equal to

$$
\frac{1250-750}{400} \times 4=5000 \text { ohms. }
$$

If the grids are driven sufficiently positive to make the normal output about four times that of a single class A amplifier with the same tube, this value of load impedance will have to be reduced about 20 per cent. If the plate supply regulation is better than 10 per cent, this load impedance can be reduced another 5 per cent. In the case shown, this would mean an effective plate load of 3750 ohms. The recommended RCA value is approximately this value.
The calculation of maximum power output is given herewith:

The power is equal to:
$P=\frac{\text { Max. plate current } \times \text { plate voltage }}{5}$ 5
As shown in Figure 3, this gives

$$
\frac{.40 \times 1250}{5}=100 \text { watts }
$$

From a summary of the above notes it will be seen that AB amplification is a system lying between class A and class B; high biased near cut-off. Not all tubes are suitable for this class of service. Those most applicable are the $42,245,2 \mathrm{~A} 3,250$, 84., WE283A, 212D and E, and 849.

Class B Audio Considerations

For obtaining high quality amplification from a class B amplifying system requires the consideration of the following precautions:
(1) The driver stage must be able to supply about two or three times the actual power required to drive the grids of the class B stage. This reserve power is necessary so that the driving voltage shall have good regulation under the variations in the load represented by the class B grids. In general, the driver output should be from 5 to 15 per cent of the class B stage.
(2) The class B input transformer must have sufficient step-down so that the driver load impedance never goes below the plate impedance of the driver tube, when the class B grids are most positive. It follows that less step-lown is necessary when the class B tubes have a high grid impedance. By the same token, the choice of the driver tube with a low plate impedance, such as the 45 , $50,2 \mathrm{~A} 3,2 \mathrm{~B} 6$, and 42 triode is necessary for minimum step-down ratios.
(3) The load impedance into which the class B stage works must be fairly high in comparison with the plate impedance of the class B tubes. The actual value of load impedance is not especially critical, and for practically all cominon tubes it can be between 5,000 to 20,000 ohms plate-to-plate.

When the plate load impedance of a class B stage is varied, the following action occurs: As long as the load impedance exceeds the static plate resistance of the tube, an

FIG. 2-A-prime 845 s used for high level plate modulation.

FIG. 3-The 849 bias should be adjusted so that the no-signal piate current is 40 M.A. per tube for Class A-prime operation, or $10 \mathrm{M} . \mathrm{A}$. per tube for class B operation. Other constants are not altered.
increase in load impedance will improve the quality by reclucing the har:nonic distortion: in addition, the power output will be reduced for a given grid excitation, and therefore more norgy will be required fo- the same power output, with higher loads. The plate efficiency increases as the loarl impedance is increased, so that more output cin be delivcred for a fixed plate loss by merely augmenting the grid drive. Howerer, as the load impedance and the grid drive are increasell. it is necessary to raise the plate voltage to prevent the maximun grid voltage from exceeding the minimum plate voltage at the peaks of the grid drive.
$59,19,49,89,53,79, \mathrm{KK} 31$ and 838.
(5) The plate power supply must lave good voltage regulation because the plate current varies quite widely with the grid drive. Any variation in plate voltage with changes in plate cutrent will cause amplitude (harmonic) distortion, and is to be avoided. Low resistance windings on the power transformer and filter chokes are essential. The use of a saturated, or swinging, input choke heips to keep the output voltage constant wifh variation in current. Mercury-vapor rectifiers have an inherent voltage drop that is inlependent, to a great extent, of the load current, and thus cause

sing mave
FIG. 4

FIG. 5

FIG. 6

FIG. 7
(4) The two halves of the circuit must be accurately matched. Because each class I3 tube works for only half the cycle, it is essential that they receive exactly the same dreing voltage and that they earll draw the same plate current in the resting condition. No two tubes will maintain their characteristics for any length of time aind it is essential that individual bias adjustments be provided so that the stage can be balanced. This precaution is only applicable with other than zero grid-bias tubes, which inckude the 46 ,
no sacrifice of regulation, as is the case with thermionic rectifiers.
(6) With certair tubes, notably some makes of $210 \mathrm{~s}, 20:$ As, $211 \mathrm{~s}, 800 \mathrm{~s}, 204 \mathrm{As}$ and 849 s, it is essential to take precautions against dynatronic distortion (see Figure 6). This type of distortion occurs when a stage starts to oscillate on the peaks, which gives rise to a rasping effect which greatly impairs the quality. This tendency toward oscillation is caused by a "dynatronic kink" in the grid characteristic of the tube: it can be
"swamped out" by placing 40 -olım parasitic resistors in each plate leasl, combined with 5000 to 20,000 chms shunted across each half of the input transformer secondary. Sometimes it is eren necessary to shunt each side of the input transformer with .001 mfd . condensers.

It is common practice to consider the average or effective audio power necessary to modulate 100 per cent, but the peak andio power is the correct accounting factor. When the peak audio voltage and power reaches a value equal to the DC input voltage and power on the modulated amplifier, 100 per cent morlulation is attained. The average audio posver at this point is of a value that is not known unless the wave form of the audio is known. The wave forms of voice or music are very complex and the effective power in them is much less than in a sine wave of equal peak voltage, although the peak voltage and peak power are the same. Because direct-current meters read average values, it is difficult to determine when the peak current has reached the correct value for 100 per cent modulation, the average values for voice and music being lower than for a constant sine wave input. The average audio power with a sine wave of constant amplitude necessary to modulate a carrier 100 per cent is 50 per cent of the $D C$ input to the class C amplifier. But, with voice or music, the average power necessary is considerably less.

The shaded areas of Figures 4 and 5 show the average power in two different wave forms of equal peak voltage and power. Figure 4 shows the power in a pure sine wave with no harmonics. Figure is shows the power in a wave of the same fundamental frequency with a strong second harmonic. The aggregate or combined peak power of the wave is equal to that of Figure 4, but the average power over the entire cycle is much less.

The illustrations indicate that under certain conditions the output from a given tuthe or tubes is greater with a normal roice input than one having a constant tone.

Because the "saturation plate current" is the value Hownis on peak audio swings during maximum nutput, further excitation will cause distortion. However by increasing the plate voltage and load impedance. the power output can be raised up to such factors as that which limits the insulation of the tube terminals and the stem seal. Tubes with the plate-lead coming out of the top are ideal as the plate voltage can he increased to a high value, resulting in higher audio outputs.

The grid voltage and grid current characteristics of a tube are the most important insofar as the quality or fidelity of the class B amplifier is concerned. When the grid goes positive, grid current fows, and

FIG. 8-203A operating characteristics.
if this curve is a straight line, little trouble will be encountered; however, such is seldom the case. As the grid becomes more positive, the grid current rises more rapidly until finally the grid current curve becomes almost vertical. Some tubes have a negative grid current slope such as shown in Figure \%. This gives rise to transient oscillation of the dynatronic variety and occurs only during a portion of the audio cycle. These parasitic oscillations. cause a sort of "fuzz" to appear on the output. They can be analyzed only with the aid of a cathode-ray oscillograph; the transients are too fast to be recorded on galvanometric mirror type. In practice, the type 203 A tube usually produces the spurious oscillatory effect; it can be reduced by placing a small capacitor (0005 mfd .) from grid to ground of both tubes, or by incorporating some scheme of neutralization.

Apparently it would seem that a tube of ligh amplification factor would be the most appropriate tube for class B service, due to the lower value of excitation voltage necessary, but actually more power is required to excite a pair of 203 As to 200 watts output than a pair of 211 s . The grid current rises to a higher value and there is a greater grid loss in the 203 A type than in the 211. Of course, the C bias supply for the lower-mu type of tubes must be given consideration. Owing to the much lower grid current surges, the C bias supply can be of a type of small power supply employing an 83 rectifier, whereas if the C bias supply were to be used on 203 As , it would have to maintain a constant of 30 volts at current changes as high as 7. milliamperes. Practically the same power output can be obtained with any of the 100 watt type tuhes. such as the 203.A. 211, 838, provided the proper excitation is applicd. The high-mu types require lower excitation voltage, but better voltage regulation of the driver output is needed. The low-mu type tuhes require more excitation voltage, but because of lower grid current the source does not need such good regulation. The tubes of nedium-mı are usually the best, all points considered.

Transformer Design

- Many types of andio distortion call be produced in a class B annplifier if the transformers have been improperly designed. The input transformer must deliver perfect quality to the class B grids, even though the grids are drawing current from zero to maximun during any one audiu cycle, 'Ihe grids of the class B tubes offer a load that tlatuate: from infinity down to several linnchred olms. It is therefore requisite that the input transformer supply a perfect reprodtuction of the signal wave-form without clistortion, even thougle the load is of a varyitig claracter.

The driver must be capable of delivering sufficient power to maintain the grid voltage swing with the current of the class 13 til)es flowing through the secondary of the input transformer; furthermore, the secondaries munst have a very low DC (resistance so that the bias on the class 13 tubes does not vary appreciably with the grid current. I'his fault is common with most infut transformers. All these points must be maintained with a fair degree of constancy over the entire frequency range.

The coils must be designed so that the primary has ilentical relationship with both halves oi the secondary. "The capacity and the leakage reactance must be the sane for the frinary and each secondary. If these precantions are not taken, the wave form of the voltage supplied to the class B grids is not the sanne for each grid and distortion of the wave form occurs, giving rise to larnomic: distortion.

The input transformer must have a stepdown ratio of such a value that the signal voltase applied to the class B arids is just suffic:ent to give the required cultput. This improves the regulation of the driver nutput voltage.
Most outphit transformers are designed to carry the current of the modulated stage, but this practice is not advisable if the best quality is to be had.

When the secondary is made to handle high currents, a large air gap in the core is necessary to prevent saturation. This, in turn, necessitates increasing the number of terns on the coils, which increases the IIC resistance, the leakage inductance, and the cistributed capacity to a point where the frequency response is impaired over a large portian of the frequency spectrum. When the secomary carries no DC, the core can le assembled without an air-gap, resulting in much better quality and greater output.
It is very important, however. when this practice is followed, that the tubes have like characteristics and are adjusted to identical static plate currents. The output of a single tube working class B consists essentially of a fundamental and a series of even
harmmics, chiefly the second harmonic. If two tubes are properly balanced in a pusl:pull circuit. the output will be free from even harmonic distortion. A correctly designed output transformer has a core of such dimensions that the flux density at peak plate current will be close to the upper bend of the $\mathrm{B} \& \mathrm{H}$ carve, in other words, close to saturation. Unless this is done, the incremental permeability will fall to a very low value for low percentage modulation, with a resulting loss of low frefuencies. The unlalanced plate current will swing the iron through different ranges of flux density on ahernate lalf cyces, prolucing high amplitude harmonics. Tlese harmonics can produce severe over-modulation and cause the carricr to "splatter" over a wide freghency hand, even though the fundamental frefurncy is modulating less than 100 per cent.

150-200 watt Class B modulator with 930-B tubes in push-pull.

In a class B circuit cnly one tube conducts at a tine, so it is assumed that one tube is supplying all the power during onehalf cycle and the other tube is supplying no power. The rated saif plate loss averaged over any audio-frefuency cycle is 20 watts, which is a conservative value. Considering that either tube is supplying no power one-half of the time the plate loss can be increased to double the rated value during the half cycle it is working. This would mean an average loss during the half cycle of 40 watts. The maxinum loss does not occur at maximum plate currert hut usuallv near zero grid voltage, so that the plate voltage. plate current curves of the tube must be consulted to determine the average plate loss. The average plate loss of the 801 is computed from the curves supplied ty the mamuacturer. The plate supply roltage is 750 volts. and the peak or maximum plate current is 250 IIA. The plate losses for the different grid voltages are given below:
Average loss 36.2 over one-half cycle or 18.1 watts loss over the whole cycle. This leaves sone margin of safety- below the

FIG. 10-Characteristics of a class B amplifier using push-pull 801 tubes.
rated 20 watt dissipation. Using the equation

$$
I_{p} \text { MAX }^{2} R_{L}=\mathrm{PO}_{\text {max }}
$$

where R_{L} represents the load impedance, and I_{p} MAX, the peak plate current.

With the peak plate current of $.250 \mathrm{am}-$ pere and a load of 2500 ohms, the result is 156.2 peak watts, or an effective power of 78.1 watts, which will modulate a DC input into a class C amplifier of 156.2 watts.

This output is possible with a pure sine wave of constant amplitude and with the tubes operating below rated plate loss, consequently, with normal voice or music input, the average or effective power being less than with constant sine wave input, the peak power can be increased to a value where the average plate loss is equal to the rated value.

Class C Amplifier Load Calculations

- The correct terminal or output impedance of a class C amplifier is important for plate modulated phone transmitters. A class B modulator must be matched correctly to the stage being modulated and the output transformer secondary to primary turns ratio is the method generally used. For example, if the class C stage is operating at 400 volts plate supply and drawing 110 MA . under load, the impedance to the modulator is $400 \% .110$, or about 3600 -ohms. The class B transformer then must have a turns ratio such that this value of impedance will be correctly transformed for the class B tubes. This impedance ratio varies as the square of the turns ratio, hence, if the class B tubes work into a 5800 -ohm load (class B 46 tubes), the output transformer must step-up the $3600-\mathrm{ohm}$ load to 5800 ohms. The impedance ratio is $5800 / 3600$, or 1.6 . The turns ratio would be the square-root of 1.6 or 1.26 , and the output transformer would require a step-down turns ratio of 1.26 to 1 into the load.

Quite often the class C load is higher in value so a step-up ratio is needed in the output or modulation transformer. For example, a class C 50 T tube operating at 2000 -volts plate supply at 100 MA . The impedance is $2000 / .100$. or 20.000 ohms . The class B andio power required is $1 / 2 \times 2,000$ $X .1$ or 100 watts. This power can be obtained from a pair of RK31 tubes at 1000 volts plate supply. These tubes require a load of 3400 ohms per tube or a total of 6800 ohms from plate to plate: $20000 / 6800$ $=2.94$ impedance ratio, with a turns ratio of $\sqrt{2.94}$, or approximately 1.7 to 1 step-up turns ratio. The secondary in this case would have 1.7 times as many turns as the whole primary winding.

930-B (or 830-B) modulator shown in diagram shown on preceding page.

Audio Output Block Diagrams

- Frum the group of 22 block diagrams here shown, the reader can quickiy find a satisfactory tube complement for audio outputs raaging from 1.5 watts to 600 watts. The Legend explains the varions comnection systems shown in the block diagrams: crystal or carbon microphones or pre-amplifier are demoted by the conventional symbel, shown directiy below the Legend. Correct operating plate voltages are shown under the tube symbols in each diagram. The arrow to the far right denotes the audio output of the amplifier. Outputs are listed in the respective order of the diagranls, beginning with the lowest (1.5 watts) and ending with the highest (600 watts).

AYSTAL NICROPMONE
CABEON MICIIOPMONE
OR PREAMPH IHER

Beam-Power Amplifiers

- An inductive load on a 6L6 pow er amplifier does not present a constant load impedance. A loudspeaker, or a bank of loudspeakers, does not have a constant impedance over the voice frequency range, in contrast with a Class C R-F amplifier load which has nearly pure res is tive load characteristics. By means of stabilized feedback in the 6L6 amplifier, the effect of a variable load impedance can be practically eliminated, w it h the result that the distortion can be reduced from about 10% to less than 2% over the voice frequency range. The illustration above shows the new U.T.C. Beam Pover Amplifier with stabilized teed-back for Public Address service
- By incorporating the new Thordarson "TruFidelity ' Transformers in the amplifier here showr, the hum level with gain open is approxirrately 58.7 DB down from maximum cutput or $18.7 \mathrm{D}: 3$ down from zero levei. The slicier on the voltage divider must be adjusted for 303 volts on the screen of the 6L6 tube:3, with negative 25 volts bias. Voltage measured irom plate to ground an ihe 6C5 tube should be 258 valts. Total plate current of final stage, 100 io 110 ma . with no sig-

Thordarson 60-Wati 6L6 Amplifier

Jefferson
 60-Watt 6L6 Amplifier

- Two GL6 tubes in Clars $A B$. The power transformer has one set of windinus for supplying both B currert requirements for the initial stages and a steady source of fixed bias and screen voltage for the output stage. Frequency range: 30 to 12,000 cycles. Gain 120 DB, or 88 DB, depending upon inpiat channel connection.

U. T. C.

6L6

Amplifier

- The Type PAK-1 United Transformer Corp. Beam Power Amplifier delivers 35 to 55 watts of output. It has high gain, 118 DB , with provision for immediate changeover ta 95 DB. The ontput circuit has stabilized feedback to increase available output and reduce distortion. Seli-cortained equalizer circuis enable bringing up the and migh frequencies simultaneously. All resisters are rated at one watt, except bleeder and 6L6 cathode resistors, which are 20 watt.

FIG. 11-R.F. speech and power supply for modern 160 meter phone, pictured in Fig. 13. All values are clearly shown.

FIG. 12-Practical circuit for 25 -watt phone with 47 oscillator link coupled to two 45 s . 292

Chapter 13 Radiotelephone Construction

25-Watt 160 Meter Phone Transmitter

- Two typical 160 meter phone transmitter circuits for newcomers are shown on the facing page. In the illustration in Fig. 13. a $5: 3$ or 6 A 6 push-pull oscillator drives a pair of 45 s in the final amplifier. The circuit diagrann is shown in Fig. 11. Approximately 25 watts output is delivered by the final amplifier. These transmitters should be used only on the 160 meter band. If they are to be operated on the higher freguencies, a buffer stage should be added. The coil winding data for the oscillator is the same as that shown for the single 53 push-pull $\mathrm{c}-\mathrm{w}$ transmitter described in the c-w cllapter, i. e., 60 to 70 turns of No. 22 DSC wire, close wound and center-tapped, on a 1 ² 2 -inl. dia. plug-in coil form. The larger plug-in forms, 2y/4-in. diameter, can also be used. but fewer turns will be required. Fifty-five turns of No. 22 DSC close wound will suffice. The oscillator coil should be tuned with a 100 mmf . or 150 mm . condenser. A reasonable amount of " C " should always be in use. Remove turns from the coil and increase the tuning capacity, so as to give a certain amount of leeway in aljusting the 1en meter circuit.
Link coupling is used between the oscillator and the amplifier. The coupling loops have two turns each. One of the 2 -turn lonps is coupled around the center of the oscillator coil, the other around the lower end of the amplifier grid coil. The circuit shown in Fig. 12 uses a 47 crystal oscillator, link roupled to a pair of 40 s in the final. It is just as satisfactory as the circuit shown
in Fig. 11. From 60 to $\mathbf{i} 0$ turns of No. 22 1) SC . close wound on a $11 / 2$-in. dia. coil form is suitable for the oscillator coil winding. The final amplifier plate coil has 55 turns, tured with a 100 nimf. or 150 mmf. con$\stackrel{\text { clenser. note teo mí }}{\sim}$

47-46-210 Phone-25 to 50 Watt Carnier

- This is a standard low-power transmitter for operation on 169,35 or 20 meters. It is extremely simple to construct. The CW portion of the transmitter should be constructed first. It is pre-requisite that the 46 and $: 10$ stages be both perfectly neutralized. Next, the andio channel can be constructed and tested. The test simply consists of energizing the amplifier by either phonographic or radio program material; during the procedure the output termintes $\mathrm{R}-13$ should be shunted with a pair of headphones for aurally detecting the fidelity and over-all response. The audio modtilation should not be applied to the plate supply of the Class 210 stage until both purtions of the transmitter are working 100 per cent. The plate currents read at the various plate current telephone-jacks, must remain constant during modulation, with the exception of the modulator plate current read at jack J6. The speech amplifier has ample gain 10 vork out of the average double-button carbon microphone. If any of the low-level microphones are used, a pre-amplifier must he added and coupled to T 1 in the conventional mamer.

FIG. 13-160 meter phone, 53 or 6A6 and two 45 s . See Fig. 12 for circuit.

75-Watt Modulator

More than ion watts of audio output power is supplied by the unit described herein. This power is sufficient to plate-modulate a 211 or 203 A operating at 1000 -volts with 150 to 160 MA of plate current. The device will economically modulate an input oi at least 150 -watts, or will fully modulate a 100 -watt carrier at 100 per cent.

The adrantage of using four 46 s , rather than a pair of 801 tubes in this class B audio circuit, is in the lower cost. No C-bias is required with these tubes, herce, only a very mod-estly-priced power supply is needed.

Technical Details

The 20,000 ohrm grid resistors across the input class B transformer provides a more constant load to the driver stage. The . 001 1000 -volt mica condensers across each grid
to ground tend to prevent high-frequency oscillation under conditions of high input. In some cases, 40 ohm 10 -watt resistors must be inserted in series with the plate leads to prevent parasitic oscillation.
If the microphone is of the diaphragm-

Conventional phone transmitter of standard design.
crystal-type, the input transformer should be eliminated and the first 57 -tube connected as a higli-gain pentode with a 250 ,00 H alm plate-resistor, 2 megolm series screen resistor and a .1 mfd . by-pass. and a 3500 olhm cathode resistor. The input should be shunted with a 3 or 5 megohm resistor, as well as being fuily shielded.

The cases of the transformers, the volune control mounting bracket, and either center or one side of the input transformer must be grounded. In cases of audio-frequency feedback, it is suggested that the transformer connections be reversed. Often the input transformer and tube must be double-shielded to prevent RF feedback or hum pick-up.
Other than the power supply filter, additional filtering is given to the 2.A3 stage be means of a semi-variable 50-watt 2000 olm resistor and another (x)-volt \& mfd.

Legend for 47-46-210 Phone circuit

R1-25,000 ohms. R2-30,000 ohms. R315,000 ohms. R4-200,000 ohms (tapered pot.). R5-100,000 ohms. R6-2,500 ohms. R7-100,* 000 ohms. R8- 10,000 ohms. R9- 500,000 ohms. R10-2.500 ohms. R11-5,000 ohms. R12-200.000 ohms. R13- 100.000 ohms, 10 watts. R1430,000 ohms, 100 watts. C1, C2, C7, C9-.001, C3. C4, C5, C6. C8- 100 mmi . C10- 35 mmi . double spaced. Cll-50-70 mmi. double spaced. C12, C13-. 1006 mica. C14, C15-350 mmi. single spaced. C16- $1 / 2 \mathrm{mfd}$. C17 to C22 -Any value from $1 / 2 \mathrm{mid}$. to 2 mid . C23-16 mid. 450 v. ($2-8$ mfd. units in series). Tl-Milse-to-grid transformex. T2-Plate to push* pull grids. T3-Class A-prime output, 1.25-to-1 step-down. CH1-15 henrys, 200 MA. CH230 herrys, 75 MA . Two power transformers are required, one 650 to 800 v ., one 1200 to 1400 v., center-tapped.

75-watt class B modulator for modulating any class C stage with inputs up to 150 watts.
condenser. The voltage at this point is between 325 and 350 volts. Further filtering in the form of a 20,000 ohm 5 -watt resistor and an 8 mfd . condenser is imposed on the two 57 stages. This in effect gives three sections of filter for the first two stages of hum-free audio amplification. Triode 57 stages give more gain than 56 stages.

Power supply for 75 -watt modulator.
The amplifier baseboard is $24 \mathrm{in} . x 11 \mathrm{in}$. $x 1$ in. with a cleat at each end so that resistors, wiring and terminal strips can be mounted underneath. The power supply baseboard is 20 in . $\times 8 \mathrm{in}$. $\times 1 \mathrm{in}$.

The total plate current drain is about 150 MA at 500 volts with no speech input, and on speech peaks the meter should not read more than 300 MA . By exercising these precautions, the 46 tubes will never operate at more than about 160 MA on voice input. On a steady sine wave tone input the plate current may increase to a total value of 350 to 400 MA for the same peak power output.

Practical Grid-Bias Modulation

The economical factors entering into the carrier powers obtained from either a bias or high-level plate-modulated transmitter are approximately equal. The reason may be attributed to the fact that certain tube combinations happen to work better for one or the other two systems of modulation.

The most outstanding feature of a biasmodulated transmitter (see the fundamental circuit shown in ligure 2) is that a minimum of audio equipment is required, in comparison to a plate modulated transmitter of the same power output. This is an invaluable feature for anyone who spends the greater part of the time operating on CW. Instead of having over half the transmitter idle, as when working CW with a plate modulated phone, less than 10 per cent remains inoperative when the bias-modulated transmitter is used for this class of service.

Several different types of grid bias modulation systems have been brought forward in the past years, one of the best systems from a quality standpoint being a class BC amplifier which is characterized by a constant angle of plate current fiow. The most practical test for linearity of any bias modulated amplifier is to determine whether or not the average plate current remains absolntely constant for all percentages of modnlation up to 100 per cent. The class BC amplifier is the only one, at the present time, which fulfills this requirement.

Amplitude or harmonic distortion occurring in other systems manifests itself because the average value of plate current is not proportional to the peak value of the same current during modulation. As the grid swings more positive (during modulation), plate current flows during a longer time interval, and as the grid goes more negative, plate current flows for a shorter time interval than when the bias is unmodulated. For distortionless modulation, the interval during which the plate current Hows must remain constant, regardless of the percentage modulation. This condition is fulfilled only when the fixed bias is exactly equal to the cut-off value. However, while fixed cut-off bias is entirely workable for a class B linear amplifier, which is amplifying a wave which was modulated in some preceding stage, it cannot be used in a grid modulated amplifier because the operating bias must always exceed cut-off by an amount equal or greater than one-half the audio signal voltage, in order to keep the negative halves of the RF excitation cycles from crossing the cut-off point during molulation.

Fundamentals of Grid-Bias Modulation

- Grid modulation is characterized by the fact that very little audio power is necessary to modulate the grid bias of an RF amplifier. However, the complexity of adjustment in the older systems has prevented about 99 per cent of those attempting it from obtaining satisfactory results. Usually terrific distortion and over-modalation followed most attempts to obtain the combination of 100 per cent modulation capability and high plate efficiency.

When audio modulation is used the radiofrequency carrier has two sidebands which carry the transmitted intelligence. Mathematics shows that one-third of the power in a completely modulated signal is contained in the two sidebands, while the other twothirds consists of the carrier. Thus the problem which faces the builder of a phone transmitter is to increase the power output of the transmitter, during modulation, up io per cent for complete modulation. This
additional power must be released in exact accordance with the variations in sound pressure which the operator's voice impresses on the microphone.

The source of power that increases the carrier output when the biased-modulated amplifier is modulated is explained as follows: The fundamental nature of a vacuum tube amplifier might be defined as a device which converts DC (plate power) into AC (RF output) power; but since the consersion process is never 100 per cent efficient. it must be concluded that the difference between the plate input and the power output energies are dissipated from the plate of the tube in the form of heat. The efficiency of a vacuum tube amplifier depends on numerous factors which vary widely for different types of amplifiers. If a given amplifier is, for example, 25 per cent efficient under a given set of condi-

Therefore, all grid modulation systems whicther they use the control-grid, screengrid or supprcssor-grid for the audio control. operate with constant plate input and variable officiency.

In class BC amplification (see Figure 1) the fixed bias is equal to cut-off bias. This bias should usually be supplied from batteries. Additional bias approximately equal to the fixed bias is obtained from a cathode bias resistor connected in the conventional manner. Tie extra bias supplied by the voltage drop tirrough this resistor is proporticnal to the plate current and therefore to the grid voltasc. When the ratio of grid voltage to this excess bias voltage is a constant, a condition arises where the plate current impulses all flow for the same time inverval, regardless of their peak amplitude.

In the older bias modulation systems the

FIG. 2-Fundamental circuit of grid
tions, it will have a certain power output. By maintaining a constant DC plate input to the amplifier and by changing some of its operating conditions, it is possible to increase the average plate efficiency 50 per cent ly swinging the instantaneous plate efficiency between zero and twice the unmondulated value.

By measuring the power output, it will be found that when the average plate efficiency is increased, while the plate input remains constant, the power output increases one and one-half times more than its former value. Thus, if some means is found to cause the plate efficiency to increase 50 per ceut, it will be possible to obtain a similar increase in average output necessary for complete modulation. Under certain conditions the grid-bias voltage affords this means of varying the plate efficiency of the amplifier.
disturtion increases almost directly as the ratio of fixed bias to cut-off bias. This limits any attempt to increase the plate efficiencies by using higher values of bias and driving voltage. However, in the class BC the total bias may be as high as desired in search for a higher plate efficiency and the absolute value of the total bias, and therefore the driving power is dictated by the usual class C amplifier considerations. A liniting factor in class $B C$ is the voltage drop across the cathode resistor which represents a waste of pate volts, as the bias is increased. There is no objection to driving the grid of the class BC amplifier to positive saturation, although extremely high values of grid current will cause some slight distortion because the grid current flows through the cathode resistor. Therefore the plate voltage should be as high as the tulse insulation and gas content will
allow, so that positive saturation will be as close to the zero bias line as possible.

The best tubes for class BC amplifier service are those of medium mu , such as the $210,211,800$, КК18, 242A, 852, $50 \mathrm{~T}, \mathrm{HK} 354$, and 150 T . The high-mu tubes, such as the $441,203 \mathrm{~A}, 530 \mathrm{~B}_{1} 46,838$ and the screen-grid tubes have an advantage in that a smaller cathode-resistor can be placed in the circuit because less bias is necessary to reach any given number of times cut-off. However, the high plate impedance of these tubes makes their use luadesirable because it is difficult to secure a linear diynamic characteristic. This limits the undistorted power output.

The low-mu tubes (245, 2i3, or HKシ幺.) have the most linear characteristic but the cathode-bias resistor must be so large in order to get enough bias for efficient operation that a large proportion of the plate voltage is lost. If there are no limitations to the plate voltage available, the low-mu tubes will give slightly better results than the medium-mu tubes. Perhaps the best single index of merit is the grid-plate transconductance, although this factor of tube merit is measured under such widely varying conditions that direct comparisons should be made with caltion, except for tubes of the same general type.

Designing the Bias-Modulated Amplifier

- The relationships which exist in the class BC amplifier circuit are given below so that the designer can calculate the unknown factors from those already known.

Technical note: The ummodulated plate efficiency of a class BC amplifier is approximately 40 per cent, but rises up to 60 per cent during comp'ete modulation. The limitation on the on1put of all hias modulated amplifiers is the arailable plate dissipation of the tube (or tubes) used in the amplifier.
The known factors in designing the biasmodulated amplifier are:
(1) $\mathrm{E}_{\mathrm{h}}=\mathrm{DC}$ plate supply voltage, in volts
(2) Wiate loss $=$ rated plate dissipation of the tube ir. watts.
(3) $\mu=$ amplification factor of the tube.

The above factors can be determined from tube tables and the plate supply voltage with a high voltage voltmeter. From this information, the cesigner must determine in advance all of the unknown factors, in order to allow the amplifier to operate properly. This is the only bias-modulation system which allows such data to be accurately determined in advance. The unknown factors which are to be determined from these shown above are:
(4) Winput $=$ DC plate input power, in watts.
(5) Woutpue $=$ RF unmodulated carrier output in watts.
(6) $I_{p}=D C$ plate current, amperes.
(7) Ecco $=\mathrm{DC}$ battery kias equal to theoretical cut-off bias (one-half total bias).
(8) $\mathrm{R}_{\mathrm{k}}=$ cathode bias resistance, in ohms.

The information given above simply describes the conditions ander which the class BC amplifier will oprerate when properly adjusted. Eceo, which equals the amount of DC bias equal to theoretical cutoff at the plate voltage used, is the battery bias which must be used, and is also equal to the voltage drop across the cathode bras resistor. The following furmulas define the unknown factors in terms of those already known:
(9) $W_{\text {input }}=1.66 \mathrm{~W}_{\text {plate loss }}$
(10) $\mathrm{W}_{\text {ousput }}=.66 \mathrm{~W}$ plate loss

The above formulas are based on 40 per cent plate efficiency, which can be realized from any tube operated at, or above its rated plate voltage. The class BC amplifier refuires closer coupling to the antema than is commonly used in CW transmitter.

Table of Data for Class BC Amplifier Operation

Tube Type	RF Unmodulated Carrier Power Plate			
	Input	Output	Loss	μ
		W	W	
210	25	10	15	8.3
801	33	13	20	8.5
800	60	25	35	15
$50 T$	125	50	75	13
211-242A	166	66	100	12
852	166	66	100	12
354	250	100	150	13
150 T	250	100	150	13
212D	333	133	200	16
204A	416	166	250	24
270A	500	200	300	16
849	583	233	350	19
851	1000	400	600	20
251A	1250	500	750	10.5

Note: The class BC anplifier makes an excentionally good linear RF amplifier for amplifying a previously modulated wave. It is capable of somewhat better linearity and plate efficiency than the conventional class B linear amplifier.

The RF excitation shoult be adjusted to the point where d-c grid current starts to flow. When audio-frequency is applied from
the modulator, small amounts of grid current may flow on the praks. The amount of audio-frequency power required for 100 per cent modulation of carrier powers up to :00 watts can be supplied by small andio amplifier, such as push-pull 45 or DA3 tubes. The impedance of the modulated $\mathrm{R} \mathrm{F}^{\circ}$ amplifier varies under operating conditions and is lowest when grid current flows. For this reason the modulator shouk le terminated with a resistance which will tend to properly match the output of the modulator. For systems which require high fidelity, push-pull tis or 2A: tubes give low distortion with sufficient output ior modulating final amplifiers having carrier outputs up to at least 200 watts. The andio output (moklulation) transformer should have a primary-to-secondary step-down turns ratio of $11 / 2$ -to-1, or 2 -to-1, in cases where the required audio peak voltage call be olotained without exceeding the limits of the modulator tube or tubes. Satisfactory vorice quality can be obtained with a $1-\mathrm{to}-1$ ratio transformer, even with modulator tubes of the pentode type. such as a 6 L ; or 42 . This tratsformer, in all cases, should be large enougl, ploysically, to handle from 3 to 15 watts of audio power without co:e saturation, and the wirdings should not have over 500 olms 1)C resistance. Smali class B input or output transformers are usually suitable for this purpose.

A relatively small RF anplifier. such as a grid modulated 211 stage, does not require as much RF or audio excitation as in the case of larger tubes, such as a 300 T or a pair of 354 , $150 \mathrm{~T}, \mathrm{Hk}=00$, or laylor 814 tuhes. The audio swing will range from 75 volts to upwards of 600 volts for various types of RF amplifiers. This value is dependent upon the plate voltage, tube amplification constant, and the ammint of cathode resistor bias. The latter introduces degeneration when it is not by-passed for audio frequencies which may require as much as so per cent increase in audio frequency
excitation. The phone quality at high percontage of modulation is improved when the cathode bias resistos is not by-passed for audio frequencies. small RF by-passes from each side of the filanent to KF ground alone ate needed. The capacity of these condensers should be not ower .005 mid . in order tu effectively by-pass RF, but not the andio ireguencies. The cathode resistor should provicle bias of at least half cut-off value; if high efficicucy is lesired this bias can be made greater than cut-off. "J"he fixed bias in series with the ered return should always he equal to cut-off.

For proper operation with grid modulation. the antema loading should be much greater than normally used with class C c c or phone transmitters. This adjustment is casily made by increasing the antema coupling slightly beyond the point of greatest antema or fecder RF current, as indicated hy a thermo-ammeter, field strength meter, or even a small incandescent lamp in serie's with the antenna. The value of tuming condenser rapacity to inductance ratio ir: the final aniplifier should be rather high. The tuning capacity should be at least twice as high as the values shown for CW operation in the I.C chart in the CW Tiansmitter Theory Chapter.
lligh output grid modulation can be secured if both the RF and AF excitation is varicel simultaneously. The RF excitation in this case must lie varied in accordance with the voice envelope, and the resultant carrier will vary in a manner similar to that secured in a controlled carrier transmitter. The variation in average carrier amplitade need not be more than 2 -to- $\mathbf{1}$, or :i-to-1, in order to obtain outputs approximately equal to the rated plate dissipation of the final amplifier tube. In order to secure these high outputs, relatively high plate voltages are needed; this system can hest be applied to tubes having very high vacuum, such as the tantalum plate types.

Grid Modulator

- Any cw transmitter with well-filtered plate supply can be converted into a gridmodulated phone, as shown in the circuit diagram to the right. A variable carrier control varies the buffer stage RF output in accordance with the voice envelope for a modified controlled carrier effect. The final antplifier is grid-modulated by means of the gits audio amplifier. The power output, when this circuit is used, is at least 50 per cont greater than with conventional grid-modulation. A 10,000 to 20,000 ohm 10 watt resistor must sometimes be comnected from the plate of the 53 to its cathode to serve as a bleeder for the buffer tube plate current in order to reduce the degree of RF control.

A popular standard type of Class P modulator is shown in the diagram and photo-

Complete Circuit Diagram for 60-Watt Modulator Shown in the Picture Below.

300

211 Plate Modulated Phone

- Plate modulation has long been popular because it is quise simple to put into operation, and its high efficiency results in ligh output. Normally the anteuna coupling should be less for phone than for cw opera-

211 Phone Relay Rack Mounted
tion, in order tos obtain proper circuit "Q" in the final tank circuit. For a given value of plate voltage in the final amplifier, nearly as much output is secured on phone as on c-w. Various forms of grid modnlation are less costly, yet they are more difficult to get into correct operation, and they give much less carrier output.

The transmitter here illustrated consists of complete RE and Al portions for a 200 or 250 watt carrier phone station. The DC input to the final amplifier can be run to slightly over 413 s watts, and a Class B modulator supplies at least 200 watts of audio power for $100 \% \%$ modulation. The transmitter is built into a standard relay rack of the table mounting type. A 5 or 6 foot rack could be nised in place of the $30^{\prime \prime}$ size if the various power supplies are to be mounted in the same frame.

Technical Notes

A pair of 211,838 or 203A tubes can be
used in the final R R amplifier, and the same holds true for the Class B audio modulator, providing proper C bias connections are made. Similarly, the RF buffer can be a $211, \$ 30 \mathrm{~B}, \mathrm{RK} 18,203 \mathrm{~A}$, or 838 tube.

For operation at 1000 volt plate supply, approximately 250 volts megative bias is needed for the 211 tubes, and -120 for 203 As or 838 s for phore service in Class C. From a separate 1000 volt supply, 838 s in Class B audio require no C bias, 203As about - 40 volts and 211 s about - 80 volts grid bias. B batteries, or a weil regulated C bias supply are suitable for the bias on the modulator. The output imperlance from plate to plate of a pair of 838 tubes should be about 11,000 ohms, or abotl1 5800 olims for a pair of 203 As , and ro00 olms for a pair of 211 s . A separate plate supply is needed because a pair of 866 rectifier tubes will not handle both the RF and nodulator loads without greatly exceeding the peak current ratings of the rectifiers.

Rear View of the Complete 211 Phone
The buffer operates from the 1000 volt Class 3 power supply system, and since it is coupled directly into the final grid circuit, it is heavily loaded. A 3000 ohm semivariable resistor can be adjusted so as to
drop the plate voltage to a point where the plate current rating of the RK18 tube is not exceeded. No difficulty is evidenced in obtaining 40 to 50 grid milliamperes in the final amplifier from this buffer stage. Higher efficiency could be had in the buffer stage with link coupling, but at the expense of another tuned circuit and additional space requirements. The method shown is better
normal. The 5 triode drives a pair of 2A3 tubes in push-pull which act as a driver for the Class 13 modulator stage. 838 tubes were chosen because no C bias is needed for this Class B stage. The output transformer is large enougl, physically, to handle the plate current of the RF amplifier thru its secondary. Some types require a coupling condenser (2 to 4 infd.) and a 20 to 30 leury choke for shunt feed of the RF amplifier DC plate current.

A pair of . 001 mfd . condensers and 20,000 olm resistors shunt the secondary of the Class 13 input transformer in order to improve audio quality and prevent parasitic oscillation on voice peaks. The to olim 10 watt plate resistors also aid this purpose, although they are not generally needed.

Constructional Notes

Relay rack construction makes a neat and inexpensive installation. Changes can be made at future times without completely rebuilding the transmitter, because individual chassis can be add-
for 211 s than for 203 or 8.38 tubes in the final RF amplifier. because 211 tubes have a higher grid input impedance, with consequent decrease in the load on the butfer stage.

A 646 push-pull crystal oscillator or a push-pull 6A6 frequency doubler drives the RK18 buffer stage. Approximately 300 volts plate supply is ample to provide sufficient drive to the RK 18 grid because this tube is not required to operate at peak efficiency in order to excite the 211 tubes. A combination of grid-leak and fixed bias on the buffer and final stages allows cw keying, or "push-to-talk," in the crystal oscillator cathorle circuit. Series connection of the two-turn coupling links provides grid excitation to the RK18 on either of two bands, depending tupont the frequency selected by the buffer tuned grid circuit. Only one doubler stage is included, because either a 40 or 20 meter crystal can be used for 20 meter operation. 10 meter operation at reduced imput could also be accomplished, although 211-type tubes are not as effective as the more modern Low C tubes at such high frequencies.

The speech amplifier consists of a 57 pentode actuating a 57 triode amplifier through resistance coupling. This provides enough gain for close-talking operation of a crystal microphone without raising one's voice above
ed or removed with ease
A standard relay rack panel is $19^{\prime \prime}$ long and some multiple of $13 / 4$ " high, such as $13 / 44^{\prime \prime}, 31 / 2^{\prime \prime}, 51 / 4^{\prime \prime}, \tau^{\prime \prime}, 83 / 4^{\prime \prime}, 10^{1 / 2^{\prime \prime}}, 121 / 4^{\prime \prime}, 14^{\prime \prime}$, ctc. For clearance between panels, about $3^{1} 2^{\prime \prime}$ is allowed, which means that the $7^{\prime \prime}$ panel woukl actually be cut to 6 it $8^{\prime \prime} \times 19^{\prime \prime}$. For anmateur use, steel panels of 14 gauge are heavy enough to support a chassis, A si" thickness is much casier to drill than a $1^{\circ \prime \prime}$ or $1 / 4^{\prime \prime}$ thickness, such as is customary for commercial purposes.

30 or 36 incl relay racks can be supported on fairly light channel iron frames, or even hard wood. When made of iron, the frame or rack should be drilled and tapped for 8-32 or $10-32$ machine screws, starting $1 / 4^{\prime \prime}$ from the top. Holes are also drilled $1^{1 / 2} 2^{\prime \prime}$ below the first hole, then $1 / 2^{\prime \prime}$, then $11 / 2^{\prime \prime}$ again, ete., down the sides of the rack. These rows of holes should be about $181 / 2^{\prime \prime}$ apart and the rack channels should provide $1 \pi / 2^{\prime \prime}$ clearance so that $1 z^{\prime \prime}$ chassis will fit into place. All these holes are not used at one time but they are a convenience when changing to pancls of different size. Normally the panels are slotted $11 / 2^{\prime \prime}$ from top and bottom, with center slots when needed, if the panels are more than $8.3 / 4^{\prime \prime}$ wide. The slot should be $3 / 8^{\prime \prime}$ long to a $1 / 4^{\prime \prime}$ diameter hole in the panel.

Standard sizes for the chassis are $17^{\prime \prime}$ long with quite a variation in width and depth. Those shown are $12^{\prime \prime}$ and $10^{\prime \prime}$ wide and $21 / 2^{\prime \prime}$ deep. All corners in both the chassis and frame are welded, taking care to see that all units are square while heing welded. End triangular pieces on each chassis form a rigid mount to the front panel. A 16 ga. or 18 ga . chassis is rigid enough if the bottom edges of the chassis are turned in and the corner pieces welded into place. Black crackle paint on the front panels. and aluminum paint on the rear, provides a neat appearing job to the finished product.
In this transmitter the bottom panel is $101 / 2^{\prime \prime}$. wide and the chassis $12^{\prime \prime} \times 17^{\prime \prime}$. The complete speech system is built on this bottom chassis and three meters mounted on the front panel. Different makes of transformers and parts require different mounting holes and the task of punching the holes is more easily accomplished by first laying all of the parts on the classis and then marking the location of the holes. The microphone jack shield is made from a pair of tube shield can tops. This "can" holds the jack, grid resistor and Mallory bias cell. The entire input circuit must be shielded, even to the microphone plug, tube and grid lead, in order to prevent AC hum pick-up or RF pickup. One meter serves as a universal milliammeter because it terminates on a plug and measures grid or cathode currents of several stages when plugged into the proper closed-circuit jack. Some of these jacks must be insulated from the front panel since the grid current flows in the apposite clirection to that in the cathode circuits and therefore the connections to the jacks must be reversed.

The crystal exciter is built on a $17^{\prime \prime} \times 10^{\prime \prime} \mathrm{x}$ $21 / 2^{\prime \prime}$ chassis and mounted behind an $83 / /^{\prime \prime} \times 19^{\prime \prime}$ pancl. This exciter circuit provides symmetrical leads and condenser mountings. It is practically sure-fire in operation. The crystal., tube, and coil sockets are mounted above the chassis with a large hole under the sockets to pass the connecting leads thru the chassis. The exciter tuning condensers are mounted on an insulated sub-panel, $21 / 2$ " $\times 13^{\prime \prime}$, with insulated shaft couplings for comnection to the tuning dials. Each common ground point of each stage is bonded
to the others with copper wire. The RK18 tuned grid circuit is also mounted on this chassis in order to shield it from the final amplifier by means of the top chassis. The grid lead from the RK13 socket (mounted below the surface of the top chassis) is less than $6^{\prime \prime}$ long.

The top chassis is $17^{\prime \prime} \times 12^{\prime \prime} \times 22^{1 / 2 "}$; it supports the buffer and final amplifier stages

The Modulator Deck. The Tube-Shield Can for the Microphone Jack Circuit Is at the Far Left. Near the Top of the Front Panel

An aluminum shield prevents reaction between the two tuned eircuits.

The capacity of the RK18 neutralizing condenser is only 4.8 mmfd . This condenser can be made by rebuilding a Cardwell midget condenser to about $3 / 8$ " spacing between adjacent rotor plates. Four rotor and four stator plates remain, although two of each would be sufficient. The ?11 neutralizing condensers are made of $1+$ gauge aluminum in the form of " U "-shapes. supported by another aluminum strip $3 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$. The latter is bent to a near right-angle and mounted on top of a stand-off insulator. The entire assembly bends back or forward, and once adjusted needs no further attention until tubes are changed or the transmitter shipped to some other location. The " U"-shaped pieces are made so as to have sides $2^{1 / 2 \prime \prime}$ square with $3 / 4 / 4$ spacing. Two sets form a neutralizing condenser with four plates. separated nearly $3 / \mathrm{s}^{\prime \prime}$. between adjacent plates. These neutralizing condensers require little space, are economical, and supply 10 to 15 mmid . capacity for neutralizing any tubes of the 211 type. The grid leads cross-over to opposite neutralizing condensers, and the plates tie to adjacent ones,

FIG. 1
R-F and Audio Portion of 211 Plate Modulated Phone Tramsmitter

Complete Power Supply for Transmitter Circuit Above

RK-18 Buffer and Push-Pull 211 Final Amplifier. The homebuilt Neutralizing Condensers Are Clearly Shown, Note Placement of Baffle Shield Near Buffer Plate Coil.
wound on a $1^{1 / 2 \prime \prime}$ form. The grid coil of 40 turns is wound over this coil un a celluloid spacer. Both coils are center tapped. The doubler and g :id coils for 30 meters are made of 35 turns of No. 18 wire, wound to cover $11 / 2^{\prime \prime}$ on a $1^{1 / 2 \prime \prime}$ dia. form.

Operating Notes

- An oscilloscope should be available for checking the amount of speech inpat necessary for peaks of 100% modulation. The oscilloscope is convenient for neutralizing and as a check for voice quality in the modulator. The swing of Class B modulator phate current with average speech will serve as a volume indicator after checks have been made with an oscilloscope.
resulting in short leads and absence of parasitic oscillations.

The 211 grid coil for 80 meters is made of No. 14 wire, 7 turns per inch, $2^{\prime \prime}$ diameter and $31 / 2^{\prime \prime}$. long. The plate coil is made of No. 12 wire. if turns per inch, $25 / 8^{\prime \prime}$ diameter and $41 / 2^{\prime \prime}$ long. Both coils are wound over thick celluloid strips supported by a cardboard tube. Duco cement is applied liberally to the wire along the celluloid strips, and the coils allowed to dry for a day before removing the cardboard. The coils are center-tapped and mounted on coil plugs for quick band clanging. Link coupling is necessary for coupling the final amplifier to the antenna circuit.

The 160 meter crystal oscillator coil is made of 60 turns No. $2+$ DSC wire, close-

Each stage should be tuned without plate voltage on the succeeding stages, until everything is operating satisfactorily. Three or four 100 watt Mazda lamps are useful as a durnmy antenna for tuning a transmitter and making preliminary modulation tests.
The Class B modulator should work into about an 11,000 olim load for 838 tubes. The Class C stage at 1000 volts and 350 ma . presents a little less than 3000 ohms, therefore the output transformer had a step-down ratio of nearly 2 -to- 1 . The Class B input transformer has a turns-ratio of 1.7 -to-1 of primary to $1 / 2$ secondary. The transformer for the 57 triode to 2 A 3 grids can be an ordinary interstage push-pull unit with a step-up) ratio of 1-to-2, or 1-to-3, primary to total secondary.

Push Pull Amplifier With Taylor T-55 Triodes

- High output at any amateur frequency can be obtained from a pair of Taylor T-5i high-mu triodes. The amplifier here illustrated will deliver as high as 250 watts output with 1250 volts on the plates. The unit was designed for a plate-modulated phone or c-w relay-rack transmitter.

In order to drive this amplifier to full output, a preceding stage with a single 210 tube with $5: 50$ volt plate supply is reeded. link coupled to the grids of the T-5.5 tubes. A push-pull 210 or 801 buffer with lower plate voltage can also be used as a driver. A circuit for such a stage is shown on this page.

The rotor of the plate turning condenser is insulated from the chassis, but hypassed with a 2,000 volt inica condenser as a safeguard against damage in case of flashover netween condenser plates during peaks of morlolation.

The chass is is 10 inches wide, 17 inches long and $13 / 4$ inches decp. The front panel

$\frac{1}{4} K W$ OUTPUT R F AMPLIFIER
Circuit for Taylor T-55 Amplifier.
is a standard $83 / 4$ inch $\times 19$ inch relay rack panel. The arrangement of parts on the chassis provides a symmetrical dial lay-out for the front panel and still maintains very short RF leads for effective operation at frequencies as high as $2 s$ mo.

250-Watt Push-Pull T-55 Amplifier.

The tuning condensers shown in the illustration are large enough to tune the plate and grid circuits to 160 meters, with the proper coils.

TYPICAL CLASS C PUSH.PULL MPLIFIER

A Suitable Driver for T-55 High Output Final Amplifier.

Controlled Carrier Suppressor-Modulated Transmitter

- Here is a good low power phone or c-w transmitter that will not become obsolete when more power is desired at some future time. A high power linear amplifier can always be added to give several hundred watts output at relatively high efficiency. Such a unit can be built into a similar 30 -inch high relay rack as the companion unit. The c -w output will depend upon the plate voltage available. U_{p} to 150 or 160 watts can be secured irom a pair of RK-20 or KCA-80t tubes. A phone carrier output of 30 watts is realized with good quality and voice contrulled carrier.

Circuit Notes

- A 5 push-pull crestal oscillator drives a $\quad .33$ puslı-push doubler for output on any two bands, depending upon the frequency of the crystal and the coils in service. More output is arailable than is needed for a pair of RK-‥0 tubes in parallel or pushi-pull. Push-pull is destrable for 10 or even 20 meter operation. but parallel comection allows either one or two tubes to be used without any circuit changes.

Crystal circuit keying is most suitable for c-w or pusin-to-talk operation on phone. The screen current on the RK-20) runs a little high when the final dlate circuit supply is primary-keyed. ()n c-w, the surpressur grids are at a positive petential of 50 volts with respect to flament.
A is pentode amplifier tube and a 45 power stage furnish modulating voltage for the negative suppressor grids. A high-quality :-hutton carbom microphome drives the is grid circuit through a mike-to-grid transformer. A separate 3 to $41 / 2$ volt dry battery or C battery supplies current of 8 or 10 ma. to each button of the microphone. A crystal microphone would require am alditional audio stage, stich as a resistance coupled 36 tube

A $1-\mathrm{V}$ rectifier tube functions as a simple diode control element for varying the sup-
pressur grid hias. For controlled carrier, the suppressor grid bias is varied from negative $951 / 2$ or 90 . volts down to abont 50 volts. the normal voice operating point. This is accomplished by rectifying some of the modulater voice outpest voltage. filtering it, and usime this curreat through a resistor to chanye the suppressor grid-bias voltage. This bias raries in accordance with the voice envelupe. and since the carrier ontput varies with the suppressor voltage, a simple method of controlled carrier is the result.
The suall io lienry choke and 1 mfd. 400

Front of Controlled Carrier Suppressor-Modulated Phone
volt condenser serves as a filter and audio by-pass on that the controlled carrier sestem - will mot affect the vice quality. A io,(iono ohm variable resistor forms a control of the degrec of carrier control by varying the amount of woice inpurt to the diode circuit. A $1-\frac{t}{}(0-1$ ratio small Class 13 output transformer woples the 4.5 modulator tube into the $1-V$ tube and into the suppressor grid circuit.

A series link coupling provides funda-
mental or second harmonic input to the final grid circuit, depending upon the tuning of this final grid circuit. Normally the DC grid current should be 12 to 16 ma., and the plate current from 25 to 90 ma. on phone and about 160 ma . on $\mathrm{c}-\mathrm{w}$. for a pair of RK-20s.

A separate C battery supplies negative bias for the control grid and suppressor grid. The latter may be set at either $671 / 2$ or 90 volts, depending upon the amoint of "idle" carrier desired.

Constructional Notes

- The three chassis are $12^{\prime \prime} \times 17^{\prime \prime} \times 2^{\prime \prime}$ each, made of No. 18 gauge iron, with end supports to the front panels. The latter are of 14 gauge iron, $19^{\prime \prime}$ long. The power supply and final amplifier panels are $10^{1 / 2^{\prime \prime}}$ wide and the exciter panel is $83 / 4^{\prime \prime}$ wide. A heavy aluminum shield separates the RK-20 grid and plate circuits. Insulated shafts extend out to the tuning dials for all four variable condensers which are mounted on insulated vertical subpanels.

The speech and modulator apparatus is built into the exciter chassis and because the audio leads are below the chassis, and all RF leads above it, no RF feedback takes place. The microphone plug and cable are shielded and the shielding is grounded. One plug-in milliammeter measures plate current in all stages by means of closed-circuit jacks.

For 80 meter operation from a 160 meter crystal, the oscillator coil has 60 turns of No. 24 DSC, center-tapped, on a $11 / 2^{\prime \prime}$ diameter plug-in coil form. The doubler grid coil has 50 turns of No. 24 DSC with center-tap, wound over the oscillator coil with a layer of celluloid to separate the coils. A $1 / 8^{\prime \prime}$ space is left open at the center, and the coils are all close-wound from this center space.

The doubler plate and final grid coils are alike. For 80 meters each has 35 turns of No. 20 DSC wire, wound on a $11 / 2^{\prime \prime}$ form to cover a winding length of $13 / 4^{\prime \prime}$. The final
tank coil consists of 22 turns of No. 12 wire on a $21 / 2^{\prime \prime}$ form, wound to cover $3^{\prime \prime}$ of space. Coils for other bands can easily be made by referring to the coil data for other transmitters.

Rear of Controlled Carrier Suppressor-Modulated Phone.
amplifier would be less than Kalf this value. The linear amplifier would be an eco-
nomical means for securing relatively high jower operation.

Complete Circuit Diagram of RK-20 or RCA-804 Controlled Carrier Suppressor-Modulated Phone Transmitter

275 Watt Modulator With Varimatch Transformer

- Any Class C RF amplifier with inputs as high as 5.50 watts can be morlulated with the audio system here described. Tle output transformer is a special type for matching the Class B^{3} audio amplifier into any Class C load. Type ?o:-HI tubes are shown in this amplifier, but other types such as $8: 5$. 203A, 211, 50T, HK-154, 「-5.5 and H1F-100 can he used in place of the $203-\mathrm{H}$.

Higher output can be secured with larger tubes such as the HK-3.54, 80\%, 150 T , Taylor 8:2 or HF-200. When these tubes are used, the output ratio of $2 . \mathrm{A} 3$ driver stage output transformer will depend upon the grid circuit imperlance of the Class B tubes.

The U'TC V arrimatch transformer shonld be connected ir such a manner that the particular Class C load calculated from the value of $D C$ plate voltage divided by DC plate current provides the proper load impedance to the Class B tibbes. Reference to the Transmitter Tube Chapter will slow the proper value of plate-to-plate impedance for any of the aforementioned tubes.

The value of C hias and Class B input transformer ratios will vary with the clifferent types of Class B audio tulbes. The pushpull 2A3 (or 6.t3) driver is suitable for any of above-named tube combinations. A 4:, triode come:ted, serves as a driver for
tube. The shield around the microphone jack and its associated parts is under the chassis; a shielded lead connects to the grid of the 75 tube.

The . 001 mfd . mica condensers from grids of the $203-\mathrm{H}$ tubes to ground prevent parasitic oscillation which is present in some

Varimatch High Power Class B Amplitier.
Class B modulator systems in the form of raspy quality. The 40 ohm 10 -watt resistors

the 2A3 tubes and it, in turn, is driven by a speech amplifier consisting of a 75 and 76 tube with resistance colupling. Sufficient gain is available to permit operation from a crystal micropionc. The microphone jack, grid condenser and grid-leak should be shielded in order to prevent AC hum pickup. A Mallory Sias Cell, or a single $1 / 2$ volt dry cell, supplies fixed bias to the 75 audio
comected in series with the $203-\mathrm{H}$ plate leads must sometimes be adkled to prevent parasitic oscillation. The complete amplifier is mounted on a metal chassis, 17 in . x $12 \mathrm{in} \times .13 / 4 \mathrm{in}$.

The transformers are: UTC Interstage Transformer. Type PA132, UTC Class B Input Transformer, Type PA-5:AX. UTC Varimatch. Type MV-4.

Controlled Carrier Grid-Bias Modulated Phone

- jixcellent results can he ohtained with grifl hias modulation when used in conjunction with controlled carrier. The final monlulated amplifier stage operates more eificiently, with the result that more output for a given amonnt of plate dissipation, or the same equivalent output with much less tulbe heating, is ultained.
()ne or two $2 . \mathrm{A}:$: tubes, biased to approximately cut-off, serve as a control for carrier output in the grid-monlulated phome transmister here illustrated. A ficture of the cartier control and speech channel is shown.
"wo 9.13 tubes in parallel will enable the KK-31 buffer stage to operate at a lower value of plate voltage than that shown. The :3. 13 tube serves as a cathode grid bias resistor which varies in accordance with the syllabic modnlation of the voice. The audio components are filtered by means of

Speech channel for Grid-Bias Phone a 20 henry filter choke and two $1 / 2$ mifl. condensers. These condensers shoruld have a rating of 600 volts. The grid hias on the S. $1:$: tule should be no higher than that required to reclace the RK-31 plate current to about 10 or 20 M. A . and the link coupling should he adjusted so that the funal amplifier will deliver from 25 to 50 wats carrier. The buffer ande finsl amplifier plate currents ine ease when modulation is apmlied, and thus 300 watts of car*ier can be obtained.

Witlı a plate supply of 3,000 volts, the actual plate-to-filament voltage will rum approxi-

Right: Jones Exciter, 802 buffer doubler and RK-31 buffer for high-power final amplifier shown below. Two HK-354

Gammatrons are used.

300 watt phone, 800 watt c-w transmitter, controlled carrier grd-bias modulation.

Final Amplifier for 300 Watt Grid-Bias Controlled Carrier Phone.
mately :2,60 volts because there should be a drop of more than 200 volts across the cathode or filament center-tap resistor. On voice peaks the plate current should run at about 320 watts, since the side-bands use up the remainder of the power, being 50% of
the carrier at 100% modulation.
Although the carricr output efficiency will not run over 40%, the fact remains that the actual output efficiency during modulation runs about 60%, which explains why 50% more power uutput can be obtained when

Coil Winding Data for High-Power Controlled Carrier Grid-Bias Modulated Phone

Band	6A6 Osc. or Doubler	$\begin{gathered} 802 \\ \text { Plate Coil } \end{gathered}$	RK-31 Plate Coil	Final Grid Coil	Final Plate Coil
16	56 turns, No. 24 DSC, $11 / 2$-in. dia. Close-wound.	56 turns, No. 24 DSC, 2-in. long, $11 / 2$-in. dia. 50 turns, No. 24 DSC, wound over plate coil for grid winding.	65 turns, No. 16 SCC, $21 / 2-\pi$. dia Close-wound, cen-ter-tapped.	40 turns, No. 16 Enam., 23 3/inch dia. 3-in. long.	40 turns, No. 12 Enam., 5-in. dia. 7-in. long. Centertapped.
80	30 turns, No. 20 DSC, $11 / 2$-in. dia. $11 / 2-\mathrm{in}$. long.	36 turns, No. 22 DSC, $13 / 4$-in. long, $11 / 2$ in. dia. 28 turns, No. 24 D S C, c 1 os e e- wound.	44 turns, No. 16 Enam., 2-in. dia. 3 3/4n. long. Cen-ter-tapped.		$\begin{aligned} & 24 \text { turns, No. } 10 \\ & \text { Enam. } 1 / 1 / 2 \text { in. } \\ & \text { dia. } 6 / 2 \text {-in. long. } \\ & \text { Center-tapped. } \end{aligned}$
40	20 turns, No. 20 DSC, $11 / 2$-in. dia. $13 / 4-\mathrm{in}$. long.	16 turns, No. 22 DSC, $11 / 2$-in. dia. $13 / 4-\mathrm{in}$. long. 16 turns, No. 24 DSC, Interwound.	22 turns, No. 12 Enam., 2-in. dia. $3-\mathrm{in}$. long. Centertapped.	$\begin{aligned} & \text { 11 turns, } \\ & \text { No. } 14 \\ & \text { Enam. } \\ & \text { dia. } 21 / 2 / 2 \text {-in. long. } \end{aligned}$	$\begin{aligned} & 18 \text { turns, No. } 10 \\ & \text { Enam., } 31 / 2 \text {-in. } \\ & \text { dia. } 61 / 2 \text {-in. long. } \\ & \text { Center-tapped. } \end{aligned}$
20	10 turns, No. 20 DSC, $11 / 2$-in. dia. $18 / 4 \mathrm{in}$. long.	$\begin{array}{\|l\|} \hline 7 \text { turns, No. } 20 \\ \text { DSC, } 11 / 2 \text {-in. dia. } \\ 11 / 2 \text {-in. long. } \\ \hline 7 \text { turns, No. } 20 \\ \text { DSC, Interwound. } \end{array}$	10 turns, No. 12 Enam., 2-in. dia. 3 -in. long. Centertapped.	6 turns, \quad No. 14 Enam. $14 / 2$ in. dia., $2^{2} 3$-in. long.	Ena., $61 / 2$-in. long. Center-tapped.

usingr carrier control with less plate heating than when normal grid-bias modulation is used. When no voice input is applied, the final amplifier is not putting out more than a small fraction of its normal output, which means that the plate dissipation is below nornal, even if the efficiency during such time, was as low as 20%.

This transmitter uses a 6 A 6 oscillatorconulaler with either an 802 or RK-2.s tube in the buffer or additional doubler stage. The screen grid tube requires no neutralizing when used as a buffer, and as a
doubler the output is ample for driving the $\mathrm{KK}-31$ tube which is rated at 40 watts plate dissipation. For c-w operation this tube has sulficient output to drive the final amplifier to nore than $1 \mathrm{k}-\mathrm{w}$ input at high efficiency on any band from : 0 to 160 meters. If 10 meter operation is desired, the final amplifier can be operated as a doubler. It would be better, however, to use push-pull connection for the $\mathrm{HK}-3 \mathrm{i}$ t tubes because the circuit shown has two much regeneration at 10 or 20 meters to allow satisfactory operation in the fual amplifier.

R. F. Portion of Standard 20 Meter Phone

Complete 150-Watt 20-Meter Transmitter and Antenna Coupler. The Circuit Diagram Is Shown Below. A 40-Meter Crystal Is Used in the Jones Exciler Unit Capacitively Coupled to an 801 Baffer Which Drives the 5CT in the Final Amplifier.

Circuit Diagram for $150-$ Watt 20 -Meter Phone.

Coil Data for 20 Meter Operation				
Final Plate Tank	Final Grid Coil	Buffer Plate	Doubler	Osc.
10 turns No. 10 E .	11 turns No. 16 E .	11 turns No. 16 E .	9 turns No. 16 E .	20 Turns No.
$31 / m-i n$. dia. 3 -in.	$11 / 2$ in. dia. $13 / 8$	$11 / 2-\mathrm{in}$. dia. $13 / 8$	$11 / 2$-in. dia. $13 / 8$ -	$18 \mathrm{E} .11 / 2 \mathrm{in}$ dia.
long. CT.	in. long.	in. long. C.T.	in. long.	$15 / 8$-in. long.

400 Watt Plate-Modulated Phone Transmitter

- A 6Af crystal oscillator-doubler is link coupled to a pursh-pull 210 buffer RF stage, which serves as the driver for the push-pull 211 final amplifier in the 400 watt phone transmitter shown in the accompanying pictures and diagrams. The final amplifier is plate-modula:ed by means of a Class P
should be able to supple 350 ma, at 1150 volts, with swinging-choke input to the filter for good voltage regulation. The power stuply for the :311 RF stage should be able to supply as high as 350 ma, at 1100 volts. I separate power supply is needed for the $R F^{\circ}$ and modulator stages The power sup-

RF Portion of 400-Watt Transmitter. The Companion Modulator Is Shown on the Facing Page.
audio amplifier with a pair of 838 zero-bias tubes. "This circuit design readily lends itself to relay-rack construction, in which case another stage of 5 ft resistance-coupled speech amplification could be added without introducing serious hum problem. Close
ply for the crystal oscillator and 210 buffer stage should supply 200 ma. at from 600 to Too volts.

The RF stages are link coupled in order to ohtain maximum grid drive with minimum buffer stages. The $\because 10$ buffer is operated

Breadboard Construction of the 400-Watt Transmitter With a Pair of 211 Tubes in the Final
talking into the microphone is essential with the circuit as shown, in order to obtain full output from the modulator, unless a sensitive crystal microphene is used.

The power supply for the 538 morlulator
between Class 13 and C. The plate tuming condenser for this stage slould be of the split-stator type if 20 meter operation is contenplated. A RF choke must then be comected into the center-tap of the coil L4;

High-Power Modulator With RCA-838 Tubes for 400-Watt Phone Transmitter Shown on Facing Page.

Complete Circuit Diagram of the 838 Modulator for Crystal Mike Operation.
the circuit diagram does not show this choke, because it is not needed for is and 160 meter operation.

When this transmitter is used for cw, primary keying is advocated because the key-click is climmated. which is not the case when the center-tap in the final stage is
keyed. moness an effecfive key-click filter is connected in the circuit.

A $1 / 2-\mathrm{mffl}$. 400 volt paper condenser should be connected from ground to the common point of comnection of the three resistors in the 5π screen and plate circuits. This condenser was inadvertently omitted in the circuit diagram.

Coil Table

Final Amplifier Plate Coil:
83 Meters-20 turns No. 10 nnameled, $41 / 2 \mathrm{in}$. dia.. $51 / 2$ in. long, center-*apped.
40 Meters-16 turns No. 10 enameled, $31 / 2 \mathrm{in}$. dic.. $51 / 4 \mathrm{in}$. long, center-tapped.
20 Meters- 8 :urns, No. 10 enameled, $31 / 4 \mathrm{in}$. dia.. 51/2 long, center-tapped.
Final Amp. Grid and Buffer Amp. Plate Coils:
90 Meters- 30 turns No. I6 nameled, $21 / 4 \mathrm{in}$. dic., 2 in. long, center-tapped.
40 Meters- 15 turns No. 16 enameled, $21 / 4$ in. dia.. $13 / 4 \mathrm{in}$. long, center-ikpped.
20 Meters- $91 / 3$ turns No. 16 enameled, $11 / 2$ in. dia., $11 / 2$ in. long, center-tapped.

Buffer Amp. Grid and Doubler Plate Coils:

80 Meters- 36 turns No. 22 DSC, $11 / 2$ in. dia., $11 / 2$ in. long, center-tapped.
40 Meters- 22 turns No. 18 enameled, $11 / 2$ in. dia.. $13 / 4 \mathrm{in}$. long, center tapped.
20 Meters- 10 turns No. 18 enameled, $11 / 2$ in. dia.. $13 / 4 \mathrm{in}$. long, center-tapped.

Oscillator Coils:

160 Meters-56 turns No. 24 DSC, closewound, $11 / 2 \mathrm{in}$. dia.
80 Meters- 31 turns No. 13 enameled, closewound. $11 / 2$ in. dia.
40 Meters-22 turns No. 18 enameled, $11 / 2$ in. dia., $13 / 4$ in. long.

300-T Phone Transmitter

- This phone t:ansmitter has a gricl-modulated controlled carrier stage driving a 300-T linear amplifier on all bands from 10 to 160 meters. Due to the varying carrier wave impressed on the grid of the linear stage, outputs of more than 300 watts of equivalent carrier can be obtained. On cw, the final stage works as a class C amplifier with ample grid drive for about 750 watts outprit on any band with one KlV input. The phone quality is excellent.

Circuit Notes

- A in crystal oscillator-doubler drives a 2 A3 buffer stage which has a variable grid bias depending upon the voice input to the modulated stage. The 2A3 drives a pair of 801 tudes in push-pull, grid modulated, and which have a variable kit input to obtain controlled carrier output.

The $300-\mathrm{T}$ tube stage is gricl-neutralized in order to make use of a simplified antenna matching network for an end-fed or single-wire-fed Hertz all-wave antenna. A splitstator grid tuming condenser is necessary for 10 meter operation in order to prevent instability when plate voltage is applied. This method reluces grid excitation due to lack of regeneration for c-w. A 1,000 ohm 10 or 20 watt $g=i d$ resistor serves as an! RF choke in the final split-grid coil circuit without allowing a low frequency parasitic to appear, as often happens in linear stages with both grid and plate RF chokes. A value of 1,000 chms or less does not cause much distortion on phone because the grid current, even on peaks, is only a few millianperes. The plate RF choke is placed across the antenna tuning condenser only. since both plate and antenna variable condensers are widely spaced (7,500 to 9,000 volt breakdown rating). A . $002 \mathrm{mfd} .5,000$ volt RF bypass condenser insulates the antema lead from the $2 \% 00$ or 2800 volt supply. This places less RF strain on the RF choke.

The speech amplifier and modulator are of the usual design for crystal microphone input. A 2-to-1 small Class B output transformer comnects the $4: \%$ triode modulator tube to the 801 grid circuit. A $\because \mathrm{A}: 3$ tube serves as a controlled carrier bias tube, with its grid driven by the 42 modulator plate circuit. This 213 serves as a cathode bias on the RI $2 \mathrm{~A}: 3$ stage, and voice input reduces its resistance, thus increasing the RF output in accordance with the voice envelope. A small 30 henry choke and a pair of $1 / 2$ mfaf. 600 volt condensers filter the woice pulsations from the $2 . A 3$ tulse circuits, leaving only a varying $D C$ biasing effect of varying intensity. The 2.43 con-

Front View of 300-T Phone Transmitter
trol tube is shunted by a 15,000 ohm resistor to prevent complete cut-off of carrier input to the 801 stage during periods of nts-voice input. Fir $\mathrm{c}-\mathrm{w}$, a switch short-circuits this
:A3 plate circuit, and more output is then a vailatle.

Rear View of 300.T Phone Transmitter

The set is completely $A C$ operated. An 866 bridge rectifier supplies high voltage to the final stage. The $300-\mathrm{T}$ tube will handle higher plate voltages than those used, but a full 1 KW input can the obtained on c-w without exceeding the piate current rating of the $300-\mathrm{T}$ for intermittent operation at the voltage shown.

Plug-itt coils (listed in the coil table) provide uperation on any band from 160 to 10 meters, inclusive. A 20 meter crystal is desirable for 10 meter operation, although the 2 A 3 can be used as a regencrative dloubler with fair success when only a 40 meter crystal is available. An additional 53 push-push doubler could be added, if needed.

Tests

- The usual neutralizing and line-up routine can be iollowed for $\mathrm{c}-\mathrm{w}$ operation. The final grid current should run at least 20 to 30 ma. The various bias voltage taps can be varied to obtain best quality and maximum: output. All stages should be biased to approximately cut-off. Cathode bias resistors or grit :eaks increase this grid bias to the proper value during either phone or $\mathrm{c}-\mathrm{w}$ operation. On c-w, the 53 crystal oscillator is keyed, and this also enables l:ush-to-talk phone operation.

On phone, the 2A3 plate circuit generally requires detuning in order to reduce the sol grid current to 2 or 3 ma. on voice peaks. Fewer grid turns on the 801 grid coil will reduce the $c-w$ output, thus detuning is the easiest method for securing proper RF grid excitation on the 801 tubes. A phone monitor is needed to check the voice quality in the output of the 801 stage, and to make certain that good voice quality is evident at this point before plate voltage is applied to the linear high power stage. The grid circuit link coupling and Mazda lemp load must je sufficient to load the 801 : tage for grid modulation linearity.
The final stage should run with no grid current, except on voice peaks, which may rum it up to 10 or 15 ma. Normally the $300-\mathrm{T}$ plate current will vary from about 80 or 90 ma. up to 200 or more on plone, and steady at 300 to 350 on c-w, with the key down. Primary keying tests resulted in several thlown-out 20 and 25 ampere 'ine fuses due to exciting current line surges. "Littlefuses" in the final amplifier circuit prevent DC arc damage in the event of unexpected RF tuning condenser flashover
The 50 watt Mazda lamp load can be link-coupled to either the firral grid or 801 plate circuit by means of 2 to $\&$ turns of hook-11p, wire around the center of the plug-in coil. The complete circuit diagram for this transmitter is shown on the following page.

Final Arrplifier Plate Coils

160 Meters-34 turns No. 12 Enameled, 5' long, 5" dia.
80 Meters-18 turn: No. 10 Enameled, $41 / 2^{\prime \prime}$ long, 43/4" dia.
40 Meters-12 turns; No. 10 Enameled. $33 / 4^{\prime \prime}$ long. $35 / 8^{\prime \prime}$ dia.
20 Meters- 6 turns No. 10 Enameled, 4" long, $33 / 8^{\prime \prime}$ dia.
10 Meters- 5 turns No. 8 Enameled, $3^{\prime \prime}$ long, $15 / 8^{\prime \prime}$ dia.

Final Grid Coils and 801 Plate Coils Both these coils are exactly similar, and both are center-tapped
160 Meters-62 turns No. 18 Enameled, closewound, $27 / \mathrm{g}^{\prime \prime}$ long, $21 / 4^{\prime \prime}$ dia.
80 Meters- 32 turns No. 16 Enameled, space. wound over $21 / 2^{\prime \prime}, 21 / 4^{\prime \prime}$ dia.
40 Meters- 16 turns No. 16 Enameled, spacewound over $2^{\prime \prime}, 21 / 4^{\prime \prime}$ dia.
20 Meters-10 turns No. 16 Enameled, spacewound over $11 / 2^{\prime \prime}$, $11 / 2^{\prime \prime}$ dia.
10 Meters- 5 turna No. 16 Enameled, spacewound over $11 / 4^{\prime \prime}$. $11 / 2^{\prime \prime}$ dia.

2A3 Plate Coils, Wound on 6-Prong Forms, $11 / 2^{\prime \prime}$ diam
160 Meters-Primary: 66 turns No. 24 DSC. $13 / 4^{\prime \prime}$ long, center-tapped. Secondary: Wound on celluloid strip over primary, 30 turns No. 24 DSC, close-wound, center-tapped.
80 Meters-Primary: 40 turns No. 24 DSC, $17 / 8^{\prime \prime}$ long, center-tapped. Secondary: Interwound with primary furns, starting at center and then winding 14 turns each way towards ends of primary, 28 turns in all, No. 24 DSC.
40 Meters-Primary: 20 turns No. 20 DSC. 11/2" long, center-tapped. Secondary: 20 turns No. 24 DCC. interwound with primary.
20 Meters-Primary: 10 turns No. 20 DSC, $13 / 8^{\prime \prime}$ long, center-tapped. Secondary: 10 turns No. 24 DCC, interwound with primary.
10 Meters-Primary: 5 turns No. 18 DCC. $11 / 2^{\prime \prime}$ long, center-tapped. Secondary: $51 / 2$ turns No. 18 DCC, interwound with primary.

53 Oscillator and Doubler Coils. (These coils are interchangeable.) These coils wound on standard $11 / 2^{\prime \prime}$ dia. receiver type plug-in coil forms
160 Meters- 67 turns No. 24 DCC, $21 / \mathrm{m}^{\prime \prime}$ long. 80 Meters-28 turns No. 18 DCC , $11 / /^{\prime \prime}$ long. 40 Meters- 16 turns No. 18 DCC, $11 / 2^{\prime \prime}$ long. 20 Meters- 7 turns No. 18 DCC, $11 / 2^{\prime \prime}$ long. 10 Meters- $33 / 4$ turns No. 18 DCC, $11 / 2^{\prime \prime}$ long.

RCA Phone Transmitters

- Circnit diagrams for two RCA factorybui't amateur transmitters are here shown. The smaller of the two, $A C 1 \cdot 40$, delivers 40 watts on phone and has a pair of $\mathrm{RC} \cdot \mathrm{C}-801$ tukes in push-pull in the final amplifer. The speech channel consists of a $5 \overline{2}-5:-4$-and-push-pull 801 tube complement. The RC. ACT 900 is a 200 watt output phore transmitter, shown in the circuit diagran on the facing page. Two RCA-838 tubes are in the fimal RF amplifier, with a similar pair of tulies in the final stage of the modulator. Both transmitters can obvionsly be operated on c-w, as well as on phone. These transmitters are monnted in commercial relayracks. fu!ly encased. with access to the components from the rear.

Chapter 14

Ultra-High-Frequency Communication

- The portion of the short-wave radio spectrum that lies below 10 meters is conmonly referred to as the Ulira-High-Frequency range. Begiuning with the amateur band of 10 meters, and continuing down the spectrum in wavelength (upward in frequency), the following radio services are in operation:
7 to 9 meters, approximately, Police and Experimental.
5 tor 8 meters, approximately, Telerision and Expcrimental.
5 meters, Amateur.
4 to 5 meters, approximately, Telcvision.
3 meters, Aircraft Bcacons For Landing Services and Facsimile Systoms.
$21 / 2$ Meters, Amateur.
From $21 / 2$ meters to 1 meter, Experimental and Remote Pick-up with the exception of the $1 \frac{1}{4}$ meter band which is for Amateurs.
1 meter to 1 centimeter (0.1 meter), $E x$ perimental Micro-Wave Region.
The ultra-ligh-frequency amateur bands are in harmonic relation witl one another, i.e., the harmonic frequencies fall in succeeding bands, such as $10,5,21 / 2$ and $11 / 4$ meters. These wavelengths correspond to frequercies of $30,60,120$ and 240 megacycles, respectively. A megacycle is $1.000,-$ 000 cycles; it is simply anotier term that expresses operating frequency.

The speed of light is approximately 300 million meters per second (apnreximately $18 \mathrm{G}_{4} 000$ miles per second), and in order to slow the relation between the frequency and wavelength of radio waves the following formulas are given:

$$
\begin{aligned}
\mathrm{F} & =\frac{300,000,010}{\lambda} \\
\text { or } \lambda & =\frac{300,000.000}{\mathrm{~F}}
\end{aligned}
$$

Where F is the frequency in cycles per second. λ is the wavelength in mrters

The nicro-waves extend into the region of heat-wavelengths, thence into wavelengths of light. Light waves are extremely short but there are other wavelengths still shorter, such as X-rays, Gamma-rays and Cosmicrays.

A radio transmitter sends a wave into space; the required band width for each type of transmitter varies with the type of service. Some services, such as television, require an extremely wide band, and thus the actual number of clanimels available between 1 and 10 meters is not as great as would be indicated by the tremendous range of frequencies involved. A very large number of stations can be accommodated in the ultra-high-irequency spectrum. The theoretical number of available frequencies between 1 and 10 meters excecls the range of the combined total of all slort-wave, broadeast and long-ware services.

Radio experiments were first conducted before the close of the last century on the ultra-high-frequencies by Hertz, and others. Most of the practical developments, however, were contributed within the last ten years.

Ultra High-Frequency Phenomena

- Very short radio waves behave more like light waves, whereas longer radio waves are reflected back to earth by the Heaviside Layer. The direct or ground waves travel in optical paths. The wavelength, however, is thousands of times greater than that of light, resulting in a greater curvature of the paths of the waves. For this reason the range is greater than that which can be obtained by means of light rays, and signals can be received from points somewhat beyond the horizon. The range of transmission is governed by the height of the transmitting and receiving antennas. Objects that lie in the path between transmitting and receiving antennas introduce a "shadow effect" which often prevents recepticn of the transmitted signal. Olujects such as hills, butildings, and even individual trees will often reflect or attenuate the radio wave. This shadow effect can be overcome to some extent by using greater power in the transmitter in order to produce a proportionately greater field strength at the receiving antenna. Longdistance communication is extremely erratic; occasionally the radio waves between 5 and 10 meters are reflected back to earth by the Heasiside Layer with the result that they are
sometimes received over great distances. This effect depends upon the degree of ionization in the Heaviside Layer, which varies with the season of year, time of day, and also seems to depend on sunspot activity. At distances somewhat beyond the horizon, transmission and reception is often erratic because the atmosphere changes its degree of temperature in layers close to the earth, which in turn may change the degree of refraction of these ultra-short radio waves. Refraction bends the radio wave into a curve along the earth's circumference, and therefore increases the range of the radio wave beyond the optical distance.

Remarkably little power is required and for communication over a range of only a few miles of free space, a transceiver output of less than one watt will provide very satisfactory results.

Technical Considerations

- A simple ultra-high-frequency receiver circuit is shown in lig. 1. It is similar to longer-wave receiver circuits, the only change being in the physical size of the components, such as the antenna, tuning coil and condenser, ard the degree of regeneration. Another iunportant factor in ultra-high-frequency receiver design is the length of the connecting leads in all radio-frequency circuits; these leads must be very short.

FIG. 1.
Fundamental U. H. F. Receiver Circuit.

Various forms of regenerative, super-regenerative and superheterodyne circuits are used for receiving. Fig. 1 can be operated in either a regenerative or super-regenerative condition, depending upon the applied plate voltage and the value of the grid-leak resistor $R I$.
Super-regeneration is regeneration carried beyond the point of oscillation without distortion to the received signal ; this is accomplished by allowing the detector to oscillate, then damping-out the oscillation a great many times jer second at a rate above audibility. Super-regeneration is a great deal more sensitive for weak signal reception, and becomes extremely effective in the
ultra-short-wave range. The quenching or damping effect can be accomplished either by a blocking grid-leak action or by means of separate low-frequency oscillation applied to grid or plate voltage of the detector. The circuit in Fig. 1 can be used as a blocking grid-leak type of super-regenerator by choosing the values of C_{3}, R_{I} and C_{I} in such a manner that radio-frequency oscillation is started and stopped at a rate above audibility. This circuit functions as an ordinary oscillator in which the resistance of the grid-leak is too high to permit the electrons on the grid to leak off at a rate that gives a constant value of grid-bias voltage. This blocking action causes a change in the average bias and stops the oscillation, because the plate current is decreased and the mutual conductance of the tube also decreases. If the circuit constants are correct, the blocking action takes place at an inaudible rate and super-regeneration is accomplished.
Another form of damping or quenching makes use of a separate oscillator functioning at approximately 100,000 cycles per second to control the ultra-high-frequency oscillation. The circuit is shown in Fig. 2.

FIG. 2.

U. H. F. Receiver Circuit with Separate Oscillator.

The low-frequency oscillator voltage is coupled into the detector plate circuit. In this case, the interruption frequency varies the detector plate voltage to such an extent that the detector tube goes in and out of oscillation at a rate determined by the low-
frequency oscillator. The circuit is similar to that of Heising Plate Modulation, as used in radio transmitters.

In either circuit, fairly heavy antema loading is needed in order to obtain good yuality and sensitivity; the antenna coupling can be varied by means of the coupling condenser C1 in Figs. 1 and 2, or by means of variable inductive coupling between the antenna and detector tuned circuit. Too much antenra coupling will tend to pull the detector out of super-regeneration.
Super-regeneration has a very distinct adlvantage; it provides high sensitivity to weak signals, and low sensitivity to strong signals. This automatic volume controi action greatly reduces automobile ignition interference because this kind of signal is of very short duration. The detector sensitivity automaticelly drops down during the small fraction of a second in which this impulse is present, and although the desired signal is also reduced the human ear will not respond to changes of such short duration. The ignition interference in this way does not cause an excessively loud signal in the audin amplifier output as compared with the strength of the received phone signal. Super-regeneration also provides very high sensitivity in relatively simple circuits. The hiss, or rushing sound, audible in the output of a super-regenerative receiver, is due to thermal and contact circnit noise. The detector is in an extremely sensitive operating condition when no signal is present, thus the noise is greatly amplified and made audible in the loud-speaker or heal-set. A carrier signal automatically reduces the sensitivity and consequently decreases the background noise or hiss. A strong signal will completely eliminate the background noise.

Unlike ordinary regeneration. super-regeneration always broadens the tuning. St:per-regenerative detectors radiate a signal fuily modulated by the quenching frequency. This signal will cause bad interference in other receivers within a radius of several miles. The blocking grid-leak detector is more troublesome in this respect and a RF amplifier should be placed betwen the antenna and any super-regencrative detector in order to minimize radiation. The RF amplifer will also provide some increase in sensitivity.
Receivers designed for 5 -meter operation are generally of the super-regenerative or super-heterodyne type. Regenerative or super-heterodyne circuits are more desirable for 10 meter reception because this band is used for both telegraph and phone. In the micro-wave range, below $1 / 2$ meter, superregeneration is difficult to obtain and Bark-hauscn-Kurz oscillator circuits are more
stuitable. The circcits are covered elsewhere in these pages.

Transmitters

For short range portable operation, selfexcited modulated oscillators are widely used. The circuit in Fig. 3 is a typical example of a transceiver and low-power transmitter.

FIG. 3.

Selk-Excited Modulated Oscillator.

The radio-frequency circuit is quite similar to that used for receiving, shown in Fig. 1, except that the value of grid-leak R_{I} is so low that no blocking effect takes place and stable oscillation is maintained. The modulator supplies an audio-frequency voltage which varies the effective plate voltage of the oscillator tube, resulting in a modulated carrier signal.

In the micro-wave region below 1 meter, regenerative oscillators with Acorn tubes are suilable for operation down to approximately 40 centimeters. Barkhausen-Kurz or Gill-Mterrel electronic oscillators are often used below 1 meter. Magnetron oscillators also provide a means of obtaining RF output down to a few centimeters in wavelength.

Crystal controlled transmitters give greater stability than any other form in the range between 3 and 10 meters, but at the disadvantage of reguiring more tubes and equipment. Resonant line oscillators have fairly good frequency stability, consistent with economy, and they are very popular for ultra-high-frequency transmission.

Modulated oscillators with tuning coils and condensers are suitable for portable operation because of their compactness but these oscillators are subject to excessive frequency modulation. This effect is detrimental to audio quality and causes the transmitted signal to spread out over a band of frequercies several times as wide as normally required for transmission of intelligence.

Transmitters for portable operation can operate successfully with power outputs of one watt or less. Those for mobile operation should have an output of from 5 to 10 watts; fixed amateur stations require power outputs varying from 5 to 30 watts. Experimental and commercial stations require higher outputs; several hundred watts will provide general coverage over a radius of 25 or 30 miles.

Antennas and Transmission Lines

- Point-to-point communication is most aconomically accomplished by means of directional antennas which confine the radiated fields to a narrow beam in the desired direction. If the power is concentrated into a narrow beam, the apparent power of the transmitter, or the sensitivity of the receiver. is increased a great many times. For general coverage in all directions the half wave vertical antenna is almost universally used. A vertical antenna transmits a wave of low angle radiation parallel to the surface of the earth and is therefore especially satisfactory for ultra-short-wave operation. Horizontal antennas are more directional in two directions, but they waste a great deal of the radiation in an upward direction. The radiation in a direction parallel to the earth is the only portion that is useful. The radiation from a horizontal antenna is horizontally polarized, thus it is best received on a horizontal antenna. Vertically polarized radio waves are not as easily reflected upward by the surface of the earth as are horizontally polarized waves.

The antenna system for either transmitting or receiving should be as high as possible above the earth and nearby objects. The physical size of half wave antennas is small, thus an effective system of supplying power from the transmitter to the radiator must be provided. The same holds true for receiving, Transmission lines serve this purpose; they consist of twisted-pair wires, spaced wires, concentric lines or single wire feeders. Two-wire spaced feeders, such as two No. 14 or 16 gauge copper wires spaced 2 to 4 inches apart, have the lowest losses. Concentric line feeders have lower losses than twisted-pair lines and they are nearly as efficient as spaced feeders. Single-wire feeders are not much more efficient than tuned feeders, suck as those used with Zepp. antennas. Tuned ieeders are only desirable for very short transmission lines.

Circuit Design

- Rigidity and compactness, with very highquality insulation and correct arrangement of parts are essential in ultra-high-frequency equipment clesign. Ceramic materials or
their equivalent should be used for sockets. condenser insulation, coi: supports and stand-off insulators. All parts should be rigidly mounted so that no frequency variation will result from vibration. All radiofrequency wiring should be very short anc direct, well soldered with non-corrosive solder. Pastes and acids must be avoided as well as excessive amounts of rosin on the joint to be soldered. Tuning condensers must be remote from metal panels, and control shafts should extend to control dials by means of bakelite extension shafts. Slight changes in physical design often change the value of resistors and condensers for satisfactory operation in both transmitters and receivers.

Wavelength and Frequency Determination

Lecher Wires

- The wavelength of an ultra-high-frequency receiver or transmitter can be measured by means of parallel wires (Lecher Wire Systems), by wavemeters or by means of harmonics from calibrated low-frequency oscillators.

Lecher Wire measuring systems are shown in Figs. 4 and 5 . They are suitable for wavelength measurements over the entire ultra-high-frequency range. An accuracy of approximately 1% can be expected; for more accurate frequency or wavelength determination the harmonic method should be used to supplement these measurements. A Lecher wire system consists of two parallel wires coupled to the transmitter or receiver by means of a closed loop or pickup coil, as shown by the Oscillator Coil in Fig. 5.

FIG. 4.

Standing waves of voltage and current will occur along the parallel line, and these standing waves can be located with a sliding bar or copper wire, as shown in Fig. 5.

The parallel line can be constructed of bare copper wire, spaced about three inches apart. The length of each wire will depend upon the wavelength being measured, such as 35 or 40 feet for 5 and 10 meter measurements, 17 to 20 feet for $21 / 2$ meters, or 5 to \% feet for wavelengths below 1 meter.

FIG. 5-Lecher Wire Measuring System.
When these wires are coupled to the oscillator, standing waves are produced in the wire, and the distances between points of maximum current are equal to half wavelengths. The oscillator should have an indicating device, such as a DC milliammeter in either its grid or plate circuit. When the wavelength of a receiver is being measured, a variation in super-regeneration or oscillation intensity will be audibly heard in the output of the receiver. Another indicator for transmitter measurements consists of a small turn of wire and a 6 -volt flashlight globe, or a RF thermo-galvanometer coupled to the closed end of the Lecher Wire system. A deflection in plate current, or dimming of the lamp, will be noticed when the shorting link is across some half wave point on the parallel wires. The exact wavelength of the oscillating circuit is found by sliding the shorting link betwen the first and second points of indication, makirg note of the points, then measuring the distance with a scale or tape measure. To obtain the wavelength in meters, this distance must be converted from feet into meters by multiplying the number of feet by 0.656 , or the number of inches by 0,0547 . This factor takes into consideration the half wave points when converting the results into actual wavelength.

Wavemeters

- Lecher Wire systems are bulky and considerable time is consumed in making the desired measurements. Wavemeters are more convenient and easy to construct. A simple absorption wavemeter, having a range of between 4.7 and 7 meters, consists of a 25 mmfd . midget variable condenser paralleled with a $3-30 \mathrm{mmfd}$. semi-fixed condenser of the "padder" type, and a coil wound with 5 turns of No. 10 wire in a winding space of one-inch, a half-inch in diameter, self-supported.

Another form of absorption wavemeter, having a range of from 4 to 14 meters, can be made from a 150 mmfl . variable condenser connected across a 2 -turn coil of No. 10 wire, 2 -inches in diameter. See Fig. 6.

The coil should te supported on bakelite spacers. A neon lamp or vacuum-tube diode can be shunted across the circuit for indicating resonance. In the design of any waventer, the entire circuit should be rigidly constructed. Hand-capacity effects can be eliminated by tuning the condenser with an extension havdle of wood or bakelite.

FIG. 6.
For $21 / 2$ meter measurements, a one-turn coil of heavy wire, approximately 1 -inch in diameter, and shunted with a 15 mmfd . midget variable condenser, will serve as an absorption wavemeter.
The wavemeter cin be calibrated over the tuning condenser scale by coupling the coil to an oscillator circuit; the oscillator wavelength can be varied and its frequency determined by Lecher Wires. When the wavemeter is tuned to resonance, the oscillator milliammeter or RF i:dicator will provide an indication. After the wavemeter has been calibrated, it can always be used for measuring the wavelength of oscillating receivers and transmitters.

Fig. 7 shows a wavemeter that is quite sensitive in the region of 3 to 10 meters. A type 30 tube with a single $1 / 2$ volt flash-
light cell serves as a diode to rectify the radio-frequency. A $0-1 \mathrm{~d}-\mathrm{c}$ milliammeter is the resonance indicator. A closed-circuit telephone jack enables this wavemeter to be used as a monitor for checking phone quality and over-modulation.

5-Meter Field Strength Meters

- Field strength meters give an indication of the power in a transmitter antenna. The circuit diagrams for two such devices are shown in Figs. 8 and 9. The field strength meter is placed in the vicinity of the transmitter antenna and maximum indication of the instrument denotes maximum antenna power. Field strength meters should be housed in completely shielded metal cans.

FIG. 8
5-Meter Field Strength Meter. The Two Antenna Wires Axe Each 3 to 4 ft . Long.

FIG. 9
Field Strength Meter with Diode Tube.

Harmonic Frequency Determination

- The harmonics of a quartz crystal oscillator provide an accurate means of frequency determination. An oscillating crystal in the 160 meter or broadcast band will produce strong harmonics irt the ultra-high-frequency region between 2 and 10 meters. A superregenerative receiver, when tuned to this region while loosedy coupled to the oscil-
lator, will indicate the harmonics by sharp reductions in hiss level in the receiver ortput. An oscillating regenerative receiver can be tuned to zero-beat with these harmonics, and then to the ultra-high-frequency transmitter for accurate frequency determination. An absorption wavemeter is a necessary adjunct for approximate wavelength measurements in order to make certain that operation is secured from the desired harmonic.

Micro-Waves

Micro-waves, as previously related, are those whose length is less than one meter. Micro-waves are generated by means of Magnetrons, Electron-Orbit Oscillators, and Regencrative Oscillators. Micro-waves are used by broadcast stations for remote pickup, by amateurs and experimenters, and for occasional telegraph and telephone communication, such as the British Channel spanning system. The technical problems of this field are numerous, yet new tubes designed for micro-waves have been instrumental in increasing the usefulness of the band.

The Magnetron Oscillator

- The Magnetron is a specially designed tube for very-short-wave operation. It consists of a filament or cathode between a split plate, as shown in Fig. 10.

FIG. 10
A magnetic field is produced at the filament by means of a large external field coil which is energized by several hundred watts of DC power. Ultra-high-frequency oscillations are produced in the split-plate circuit when this magnetic field is in the correct direction, and of the proper intensity. A parallel wire tuned circuit can be used for wavelengths below one meter, or for ordinary tuned circuits with wavelengths above one meter. These tubes are available for experimental purposes and will produce outputs of several watts. The frequency stability is not very good and it is difficult to obtain satisfactory voice modulation from Magnetron Oscillators.

Electron Orbit Oscillator

- The range of oscillation in ordinary circuits is limited by time required for electrons to travel from cathode :o anode. This transit time is negligible at low frequencies, but becomes an important factor below 5 meters. With ordinary tubes, oscillation cannat be secured below 1 meter, but by means of Electron Orbit Oscillators, in which the grid is made positive and the plate is kept at zero or slightly negative potential, oscillation can be obtained on wavelengtlis very much below 1 meter. Parallel wire tuning circuits can be connectet to these tube oscillators in order to increase the power output and efficiency. The tubes most suitable for this type of operation have cylindrical plates and grids, and their output is limited by the amount of power which can be dissipated by the grids. For transmitting, tubes such as the 35 T , 50 T or 852 can be used in the circuit shown in Fig. 11, which is a modification of the Gill-Morrel Oscillator. More output is obtained by using a tuned catloode, instead of tuned grid, circuit. Modulation can be applied to either the plate or grid. The frequency stability is very poor. The circuit in Fig. 11 is an early type oscillator.

FIG. 11

FIG. 12

Figs. 13 and 14 illustrate a $3 / 4$-meter transmitter and receiver used in 1933 by the autlor. The power output is rather low, but telephone communication over short distances can be satisfactorily accomplished.

FIG. 13
$3 / 4$ Meter Circuit U'sed by Jones in 1933.

FIG. 14
3/4 Meter Receiver (1933).

Regenerative Oscillators

- The introduction of the $R C A A \operatorname{corn} 955$, and Western Electric 316-A tubes made $1 / 2$-meter regenerative oscillators practical. These tubes are more efficient than ordinary types for ultra-high-frequency work. Fig. 15 illustrates the RCA Acorn triode. Circuits, such as that show: in Fig. 16, and a constructional plan in Fig. 17, are satisfactory for low-power transmitters and super-regenerative receives. The 955 Acorn can be used as an oscillator in super-heterodyne receiver circuits with its companion tube, RC. 4954 (or 956) 4cord Pentode, in the RF pertions of the circuit. The regenerative circuits are quite similar to those for longer wavelengths, except for the physical size of condensers and coils. The tube element spacing in these 4 corn tubes is made so small that electron transit time becomes a negligible factor for wavelengths above 0.6 meter.

FIG. 15
RCA Acorn 955

FIG. 16
RCA 955-Circuit Diagram and Suggested Layout.
L1-8 turns, $1 / 2$-in. outside diameter, No. 18 wire, spaced $1 / 4$-in. between tums.
Cl—Tuning condenser; 2 circular brass plates $3 / 4$-in. in diameter; $10 / 32$ thread on adjusting screws.
C2-. 00025 mica condenser, postage stamp type.
R1- 15,000 ohms, 1 watt carbon resistor. RFC-1/4-in. bakelite rod wound $11 / 2$-in. with No. 32 DCC wire.

FIG. 17-Plan view of transmitter.

Micro-Wave Transmitters

- A micro-wave t=ansmitter for operation slightly below 1 meter is illustrated in Fig. 18. The $R C A 955$ Acorn is used in a par-allel-rod oscillator with cathode, rather than

Micro-Wave Tube Characteristics RCA 954 PENTODE

Heater voltage ... 3
Heater current 0.15 amp.
(irid-to-plate capacity.............. . . . 007 mmid.
Input capacity 3 mmfd.
Output capacity 3 mmfd.
Max. plate voltage. 25 volts.
Max. screen voltage......................... 100 volts.
Grid voltage -3 volts.
Suppressor tied to cathode
Amplitication factor 2000
Plate resistance ${ }^{\prime}$ ver 1.5 megohm. Mutual conductance...................... 1400 mhos.
Plate current 2 ma

RCA 955 TRIODE

320MC TRANSMITTER
FIG. 18
grid-leak, bias. Another 95.5 serves as the modulator. This transmitter is similar to one built into a silk-top hat, and used by the NBC for remote pickup of commercial broadcasts. The antenna protrudes through the hat, the batteries and modulator are carried in a leather belt. A similar oscillator was built into a walking cane, the cane holds both the parallel-rod oscillator and antenna. Signals have been received over distances of 3 miles. Automobile ignition interference is practically absent at wavelengths below 1 meter.

66 CM (2/3-Meter) Transceiver

- This is perhaps the first disclosure of a transceiver that operates successfully on $1 / 2-$ or $2 / 3$ rds-meter. Operation at these very
sho-t wavelengths is accomplished with an Acorn triute and parallel wire circuits for grid, piate and filament. See Fig. 19 . The filament cathode circuit is tuned with a quarter wave parallel wire section which is adjusted by sliding a .001 mid . mica condenser along the parallel wires. See Fig. 20.
plate and grid paralle: wires. For $1 / 3-$-meter, this britging conderser is about $1^{1 / 2} \mathrm{in}$. away from the glass envelope of the 955 Acorn trbe. 40 CM oscillation takes place when the condenser is bridged across the wires at the point of connection to the terminal cliys of the tube. The wavelength of

FIG. $19-66 \mathrm{~cm}$. Transceiver with 955 Acorn Triode.

When this filament circuit is 1 roperly tuned, oscillation and super-regeneration can be obtained with relatively low values of plate voltage, even at wavelengths of 40 CM . This adjustment is not very critical over a range of a few centimeters. The ends of the quarter wave section have high RF potential ; the short-circuited end (.001 bridging condenser) have zero RF potential, and thus the parallel wires can extend a few inches beyond the short-circuited end. The cathode resistor, filament by-pass and cathode bypass condensers can then be connected in place without need of varying their position for tuning purposes. The insulated filament lead is twisted around the cathode filament wire in order to make the combination act as a single RF conductor. A small mica condenser connected between this wire and the cathode or ground wire will increase the capacity and prevent RF absorption by the extended filament leads. The latter may connect to either a 6.3 volt AC source, or to a 6 -volt storage battery.
operation increases a: this condenser is slid outwardy along the parallel wires toward the other .0001 mfd . bridging condenser near the end of the parallel wires, at which point $1 / 2 / 2$ meter operation can be secured.

As illustrated in t.ee photograph and circuit diagram, the po-tion of plate-grid parallel wires between the two .0001 mfd . condensers serves as a quarter wave tuning section which provides high efficiency when operating below $3 / 4$-nieter. The RF potential across the .0001 mfd condenser nearest the tube is not exactly zero at the ends of the condenser, since the physical length of the condenser becomes an appreciable portion of the tuned circuit between grid and plate. The quarter wave section, which at $2 / 3$ rdsmeter is about $61 / 2$ irtches, serves the purpose of two radio-frequen y chokes for connection to the audio components of the transceiver. A quarier wave section is much more effective than RF chokes in the micro-wave region.

FIG. 20

The frequency or wavelength is adjusted to the desired value by means of a .0001 mfd. mica condenser connected across the

The antenna can be inductively coupled to this transceiver by supporting a $3 / 4$-turn loop ($3 / 4 \mathrm{in}$. dia.) close to the parallel wires in
the grid and plate circuits of the 955 tube. This loop should be coupled to the oscillator between the tube and the .0001 mfd. bridging condenser mearest the tube. A half wave antenna for "/3rds-meter is approximately 13 inches long. A two-wire Zepp. feeder, or matched impedance line. couples the antenna to the transceiver. A directive antenna array, or a Yagi antenna, is infinitely better for increased range at these very short wavelengths.

With the DPST switch closed, the 955 operates as a grid-modulated oscillator with plate current of approximately 6 to 7 MA.

With the switch open, the headphones are connected in the plate circuit, and the microphone transformer is disconnected from the grid circuit. Reception is obtained by superregeneration in the detector circuit, and the plate current dreps to a value of between 1 and 2 milliamperes.

Plate modulation in the transmitter will give two to three times as much output, if more output is needed.

The RF circuit is very effective below 1 meter and outputs of $1 / 4$ to $1 / 2$ watt can be expected betweer $1 / 2$ and 1 meter. At 66% ($2 / 3 \mathrm{rds}$-meter) the transmitter output is high enough to give riore than half-scale deflection on a thermo-galvanometer having a range of 11 : MA.

W.E.316-A Micro-Wave Oscillator

- Western Electric has produced a new micro-wave triode which clelivers from is to 10 watts output on wavelengths as low as $1 / 2$ meter. The element spacing is so close that the tube operates efficiently as a regenerative oscillator with negative grid and positive plate for frequencies as high as 750 mc . The maximum plate dissipation is $: 10$

FIG. 21-W.E.-316A U.H.F. Triode.
sufficient for coverage over a visual range, although in one case a $3 / 4$-meter signal was heard over a distance of 80 miles, which is far beyond the optical path. A large variety of circuits could be suggested for microwave operation, but the most simple of these is the one shown in Fig. 2\%. It consists of two parallel half wave rods. spaced about $1 / 4$-inch apart, to provide a $3 / 4$-meter tuned circuit of fairly-high "Q". See Fig. 23. The grid and plate of the tube are comected to the copper rods; this capacity causes the physical length to be less than a half wavelength. As can be seen from the photograph, the plate RF choke and grid-leak do not connect to the center of the rods, but rather across the voltage node. The distance between this point and the free ends of the rods is a quarter wavelength. The other

FIG. 22-W.E.-316A $3 / 4$-Meter Oscillator.
watts. The transmitter illustrated in Fig. 22 delivers aproximately 7,5 watts with 400 volts on the plate. This power output is
distance is shortened by the tube capacity. Filament RF chokes, or tuned filament leads, are desirable for operation below 1 -meter be-

FIG. 23-W.E.-316A 3/4-Meter Oscillator Circuit.
cause the filament is near a point of high RF potential in the oscillating circuit. These filament chokes consist of 30 turns of No. 16 enameled wire, wound on a $1 / 4$-inch rod, then removed from the rod and air-supported, as the picture shows. The length of these chokes is aproximately 3 inches. A 200 ohm resistor is placed in series with the 110 -volt AC line to the filament transformer in order to reduce the transformer secondary voltage from $21 / 2$ to 2 volts, because the filament of the tube operates on 2 volts at 3.65 amperes. This particular oscillator gave outputs in excess of 5 watts on $3 / 4$ meters, even when no filament RF chokes were used.

This oscillator, when loaded with antemna, draws from 70 to 80 milliamperes at 400 volts plate supply. An audio modulator, such as a pair of 2 A 3 tubes, class AB connection, will supply approximately 15 watts of audio pewer for modulation. The oscillator should be tested at reduced plate voltage, preferably by means of a 1000 to 2000 olm resistor in series with the positive \mathbf{B} lead, until oscillation has been checked. A flashlight globe and loop of wire can be coupled to the parallel rods at a point near the voltage node, in order to indicate oscillation.

A 15 -inch antenna rod or wire can be fed by a one-or-two-wire feeder of the nonresonant type. A single-wire feeder can be c.apacitively coupled to the plate rod, either side of the voltage node, through a small biocking condenser. If a two-wire feeder is employed, a small coupling loop, placed parallel to the oscillator rods, witi the closed end of the loop near the voltage node of the oscillator, will provide a satisfactory means os coupling to the antenna. The power output is high enough so that operation is as simple as any 40 meter $\mathrm{c}-\mathrm{w}$ transmitter.

W. E. 316-A Characteristics

Filanent voltage............... 2 volts a.c or d.c. Filament current 3.05 amperes. Average thermionic emission......... 0.45 amperes. Amplifiction factor 6.
Plate-to-grid capacitance 1.6 mmfd.
Grid-to-hlament . 1.2 mmfd.
Ilate-to-ilament 0.3 mmfd.
Max. pliste dissipation. 30 watts.
Max. d-c plate voltage... 450 volts.
Max, d.c plate current. 80 MA.
Max. d-c grid current.......................... 12 MA.

11/4 Meter Receiver

- Extremely small capacity between tube elements, and very small values of tuning capacities and induetances are essential for $11 / 2$ meter receivers. Conventioral triode tubes have too much grid-to-plate capacity for effective operation at $11 / 4$ meters. However, once the correct components are chosen, it is a very simple matter to build a high-sensitivity $11 / 4$ meter receiver. See Fig. : 24.

FIG. 24
11/4-Meter Receiver.
The grid and plate leads to the tuning condenser are so short as to be almost negligible. Either a coil or parallel wires forms an inductance for connection across the tuming condenser. Parallel wires occupy a few inches more of space, but they are more efficient because the circuit " Q " is higher.

$1 \frac{1}{4} \lambda$ AND $2 \frac{1}{2} \lambda$ BAND RECEIVER
FIG. 25

The circuit shown in Fig. 25 is almost self-explanatory. Super-regeneration is secured by means of a blocking grid-leak condenser system. A cathode RF choke is generally necessary in order to obtain superregeneration. Impedance coupling is shown between the detector and 76 audio stage because this method of coupling gives sufficient volume for headset reception. An audio transformer could be substituted, together with a type 41 pentode tube, if loudspeaker reception is wanted. A potentiometer controls the plate voltage to the super-regenerative detector; adjustment should be made for greatest detector sensitivity. Insufficient detector plate voltage will generally result in an audio howl. Super-regeneration takes place at slightly ligher voltages, up to the
ting will depend upon the characteristics of the particular 955 Acorn tube in the circuit, and the degree of antenna coupling.
The RF coil, L1, can be compressed or extended in order to permit the tuning condenser to cover the $11 / 4$ or $21 / 2$ meter bands. Lecher wires provide a most convenient method for clecking the wavelength of the receiver.

11/4 Meter Transmitter with RCA-834 UHF Tube

- The advent of several new tubes particularly designed for the ultra high frequencies makes possible the construction of a transmitter which will deliver from 10 to 50 watts on wavelengths below 5 meters. Ratheon RK-32, Western Electric 304-B, and RCA 834 are equally suitable for use in the transmitter shown in Fig. 26. The characteristics of all three tubes are similar.

11/4-Meter Transmitter.

Cl -Aluminum Plates, $11 / 4 \mathrm{in}$. square. Copper Tubes- 3 -in. long for $11 / 4$ Meterso 9 in. long for $21 / 2$ Meters. RFCl-40 turns No. 28 DSC, $1 / 4$-in. dia. RFC2-25 turns No. 14 Enam., $1 / 2$-in. dia.

The grid and plate leads are brought out through the top of the tube envelope in all cases, resulting in operation down to $3 / 4$ meter.

FIG. 26-11/4-Meter Transmitter with RCA 834 U.H.F. Triode.
full battery voltage supply. Greatest sensitivity occurs when the actual detector plate potential is nearly 45 volts. The proper set-

The circuit in Fig. 27 is suitable for oscillation between 1 and 3 meters, depending upon the length of the parallel rods or pipes.

A slight variation of frequency is possible if two condenser plates each $1 / 4$ in. stitare, are connected across the pipes near the tube leads. This type of circuit works more efficiently than a conventional coil and condenser oscillator circuit. The tube leads fit into the ends of copper pipes, and small set screws provide goud electrical contact between pipe and tube leads. This type of motinting must be used with care in order to avoid breakage of the tube enselope. The tube socket mounting strip should have slotied holes in urder to make currect alignment with the copper pipes.

Filament RF chokes are necessary below 3 meters in order to secure oscillation. At $11 / 4$ meters. the metal sleell of the tube socket, and the metal support that holds the socket. introduce excessive capacity to the filament circuit of the tube, resulting in storparge of oscillation if either of these metal surfaces is grounded. A non-metallic soc!et and bakelite socket support would be preierable if operation in the neighborhood of 1 -meter is wanted. A tuned filament circuit. somewhat similar to that illustrated in the 66 CM Transccizer, will work more effectively than RF chokes for wavelengths below $1 / 2$ meters.

The antema feeder is corupled to the parallel pipes or tubes by means of a coupling loop. A hatf or quarter wave antema can be capacitively coupled through a very small variable condenser to the plate rod at a point approximately one to two inches from the plate blocking condenser. Trans-
meter operation in the transmitter illustrated in Fiss as. A parallel rod or wire tunedplate circuit gives gronl efficiency on $21 / 2$ meters. proved by tests where efficiencies of

FIG. 28
approximately 50% were realized. A carrier power output of 10 to 15 watts is easily obtainable on $2 \frac{1}{2}$ meters. The circuit is shown in Fig. :8. If a more powerful modulator is comected to the oscillator, together with plate potertials of 500 to 600 volts, outputs of 25 to 30 watts can be secured.
A 15.000 ohm grid-leak and 300 ohm cathode resistor give stable grid bias for the oscillator. The cathode resistor prevents all tendency for the plate current to "run away" during oferation. The grid coil consists of is turns of No. 18 wire, wound to cover a length of one iuch, with an inside diameter of $\% / 16$-inch. This coil is

FIG. 29-Raytheon RK-34 21/2-Meter Oscillator.
minsion ranges of 3 to 50 mies are possible if the antenna is located at high elevation. Even $11 / 4$ meter waves tend to curve along the surface of the earth to such an extent that communication can often be obtained beyond the optical range.

2 $1 / 2$ Meter Transmitter

An RK-34 twin-triode tube is connected in a tuned-grid-tuned-plate circuit for $21 / 2$
soldered directly to the tube socket terminals. The antenna feeders can be capactively coupled to the plate circuit through a pair of .001 mid . mica candensers. If a two-wire spaced feeder is used, these wires tap across the plate rods about two inches from the shorting bar.

The plate circuit is tuned to the desired frequency by sliding the shorting-bar along the rods. Antenna coupling is adjusted by
sliding the antema taps along these rods until normal plate current is drawn. The inductance in the grid circuit can be slightly varied in order to obtain the best amoment of feedback for high output.
A suitable modulator consists of a pair of type 42 pentorle tubes driven by a 76 speech amplifier. The 42 tubes can be operated from the commor: 350 volt plate supply by means of a 30 henry, 150 ma., modulation choke. The screen voltage should be reduced through a resistor from the 250 volt supply; a 10 watt, 10,000 ohm resistor is of the correct size. A $1 / 2 \mathrm{mfd}$. bypass condenser from screen to ground will pass the audio frequencies From screen to ground for normal operation. The cathode resistor of 300 ohms, 10 watt rating, should be bypassed by means of a 25 mfd . low voltage condenser. If greater input is applied to the oscillator, a more powerful modulator is needed. Class 1346 tubes, or push-pull 6L6 tubes, will give ample audio power for inputs as high as 40 or 50 watts on the RK-34 tube. Normal plate current to the latter is 80 ma., although in actual practice this oscillator has been operated over considerable periods of time at 100 ma. plate current.

Single-Tube $21 / 2$ Meter Transceiver

- An exceedingly simple $21 / 2$ and 5 meter transceiver can be built to operate from a type $\boldsymbol{7} 6$ tube. The set is shown in Fig. 30.

FIG. 30-Single-Tube Transceiver.

The 76 has low interelectrode capacities and high mutual conductance, thus it performs better than most other types of conventional tubes on $21 / 2$ meters.

The $\boldsymbol{i} 6$ tube acts as a grid-modulated oscillator for transmitting, and as a superregenerative detector for receiving, in the circuit shown in Fig. 31. Switching from send to receive is accomplished with a DP'ST switch, the "on" position shorts-out the headset, and comnects-in the grid modulation transformer when eransmitting. In the receive position, the half-megohm (500 ,000 ohm) grid-leak produces super-regeneration.

FIG. 31-Circuit Diagram.
Tl-Mike-to-grid transiormex.
Cl-Antenna lead twisted around plate lead.
L2-L3-(RFC)-Two RF chokes, each 100 turns.
No. 34 DSC. $3 / 8$-in. diameter.

The morlulation transformer can be any type of carbon microphone-to-grid transformer with a secondary resistance (grid winding) of from 3,000 to 5.000 olms. The primary is connected in series with a singlebutton microphone and battery. If AC is used on the heater of the 76 tube, a $41 / 2$ volt "C" battery can be connectec' in series with the microphone, switch and transformer primary, without a connection to the tube heater circuit. A 6 -volt storage battery or four dry cells in series will normally provide heater and microphone current, as shown in the circuit diagram.

For recciving, the $1 / 2$-megohm grid-leak connects to plus B in order to provide high audio output from the super-regenerative detector. When transmitting, grid-bias is supplied by a 400 ohm cathode resistor and

FIG. 32-Front Panel Layout.

FIG. 33
Side View, Showing Coil Support and Condenser Extension Shaft.

FIG. 34-Rear View.
the grid current through the resistance of the modulation transformer. Understandable voice modulation can be secured from grid modulation with a mininum of parts.

Very short leads to the grid and plate terminals of the 76 tube socket permit operation in the $21 / 2$ meter band. The tuning condenser shaft is insulated from the front dial with a flexible shaft coupling and extension shaft to the variable tuning condenser. The antenna is coupled by twisting one to three turns of insulated hook-up wire around the plate lead of the 76 tube. This capacity coupling should be as great as possible, waithout causing a cessation of the super-regenerative hiss in the headphones zehen the control switch is in the receive position. Coupling must be as tight as possible, however, in order to obtain a high degree of modulation when transmitting.

$21 / 2$ and 5 Meter Transceiver

- A simple breadboard-mounted transceiver is shown in Figs. $3 \overline{5}$ and 36. It uses a 76 tube as an oscillator and super-regenerative detector and a 41 tube as a modulator and audio amplifier. A DPDT switch changes the 76 tube from a super-regenerative detector into a RF oscillator for transmitting; at the same time the 41 tube is changed from an audio amplifier into a modulator for transmitting. The circnit is shown in Fig. 37.

FIG. 35
Simple $21 / 2$ 5-Meter Transceiver. The 5Meter Coil Is in the Foreground.

FIG. 36
Close-up of Mounting Bracket, Showing Correct Placement of Condenser, Coil, Chokes, Resistor, etc.

The transceiver is mounted on either a wood or metal chassis, 7 in. x 8 in. The tuning dial is comnected to the condenser through an insulated coupling. The 76 tube is mounted horizontally on an insulating subpanel, $21 / 3 \mathrm{in} . \mathrm{x} 5 \mathrm{in}$. This method of mounting facilitates the use of very short and direct leads to the tuning condenser and coils, resulting in high efficiency on both $21 / 2$ and 5 meters. The home-made RF choke coils are rather critical as to their number of turns, if operation on both bands is desired. If the values are not correct, dead spots will be found within the tuning ranges. This effect can also be checked by coupling a 6.3 volt pilot lamp in series with a turn of wire to the RF coil in the transmit position. lf the light goes out within the tuning range, RF choke trouble can be suspected. Modulation can also be checked with the aid of this lamp indicator. Brilliance should increase when the microphone is spoken into.

Antenna coupling should be as tight as possible without loss of super-regeneration, as evidented by a loud hiss in the receive position. Either an AC power pack or batteries can be used for the power supply. The "B" voltage can be any value from 180 to 250 volts. A conventional single-button microphone and a $41 / 2$ volt C battery can be used in the mike circuit. A switch should be connected either in the microphone circuit or as an integral part of the microphone so as to cut off the microphone current when the transceiver is either in the receive position or not in use. The layout of the transceiver should be as shown in the illustrations. If the leads are too long, or if

FIG. 37
$21 / 2$ - and 5-Meter Transceiver.
Ll-4 Turns No. 14, $3 / 8$-in. dia., $5 / 8-\mathrm{in}$. long for $21 / 2$ Meters.
Ll-9 Turns No. 14, 1/8-in. dia., $11 / 4-\mathrm{in}$. long for 5 Meters.
L2-1 Turn Hook-up Wire Over Center of 11.

RFC-100 Turns No. 34 DSC on $3 / 8-\mathrm{in}$. rod. Resistors-All One-Watt Rating.
the resistor and condenser values are not as specified, the set will not super-regenerate or oscillate on $21 / 2$ meters, and possibly not even on 5 meters. The 76 tube socket should be of a good grade of bakelite, or preferably ceramic material. Either a 76 and 41, or the 6 C 5 and 6 F 6 metal tube equivalents can be used. The transmit-receive switch can be of the toggle or knife variety.
The antenna coupling coil consists of one turn of insulated hookup wire slid between the center turns of the transceiver coil. Capacity coupling can be used, if desired, in which case one to three turns of insulated wire would be wrapped around the grid or plate lead of the 76 tube. The output of this set is approximately $1 / 2$ to 1 watt, depending upon the plate voltage.

76-41 $21 / 2$ or 5 Meter Transceiver

The power drain of a $21 / 2$ or 5 meter transceiver is low because the same tubes are used for both phone transmission and reception. On the other hand, the receiver radiates badly, causing "whistles" and interference in other sets within a radius mile or two. Generally the receiver frequency is not exactly the same as the transmitted frequency, even though the same tuned circuits and tubes are used in both cases. The change of grid or plate voltage when switching from transmit to receive always tends to change the tube element capacities which are in shunt with the tuned circuit, thus causing a
clange in frequency. This effect is usually more pronounced on $21 / 2$ than on 5 meters, but it can be minimized by proper elesign. In spite of these disadvantages, the low first cost, economy of operation and compactness warrants the use of transceiver, in many cases.

FIG. 38
Front View of $21 / 2$ or 5 Meter Transceiver. Loud Speaker Grille on Leit Side.

- This transceiver has a 76 and a 41 tube in a conventional circuit, with certain refinements. The 76 acts as a super-regenerative fetector of the blocking gricl-leak type, transformer coupled to the 41 pentode atudio amplitier in the receive position. In the transmit position the 76 acts as an oscillator, modulated by the 41 tube which serves as an amplifier for a single-button microphone. When receiving, a variable control of plate voltage for the 76 tube prevents excessive receiver radiation and holds the liss level to a minimum, thes maximum sensitivity is realized. The 4-pole-double-throw switch commerts the londspeaker, increases the 76 gr:d-leak resistance for super-regeneration, cuts in an audio amplifying tansformer and convet ts the 41 tube into a power audio amplifier for loudspeaker reception. The receiver audio volume control operates only on the grid of the 41 tube while actually receiving, so it has no effect on the micro-phone-to-grid circuit, such as is the case in most transceivers. The complete circuit is shown in Fig. 40.

In the transmit position the switci opens the loudspeaker circuit, reduces the gridleak to the proper value for transmitting, connects-in the microphone circuits, and converts the 41 tube into a modulator system. A 41 tube will furnish sufficient audio gain and cutput to fully modulate a 76 tube for
a plate voltage range of from 180 to 250 volts. An ordinary single-button hand microphome has enough electrical output for voice input and thus it is not necessary to slout into the "mike" in order to obtain a high de:sree of modulation.

A sepmate 4 t/2 vol C battery serves as a microphone battery in order to simplify the power supply. The latter consists of 180 to $2: 00$ volts of either $1 ;$ batteries or rectified and filtered $A C$ power supply, and either a 6 volt storage battery or 6.3 volt AC suipply for the heaters. The separate "tnike" battery makes it possible to use AC on the 76 and 41 tube heaters when an AC power supply is pieferreal, such: as at a fixed station.

FIG. 39
Looking Into the $21 / 2$ or 5 Meter Transceiver.

- The transceiver is built into a $73 / 4 \mathrm{in} . \times 73 / 4$ in. x 7 in. can, with a classis $13 / 4$ in. high for sub-base mounting of parts. The power socket is mounted at the rear, so that either battery or AC power pack supplies can be pluggec in at will.

The tuning conderser has two plates. One rotor phate is first =emoved from a standard 3 -plate midget condenser. This small condenser capacity gives better bandspread on $21 / 2$ or 5 meters. The condenser and the 76 tube socket are mounted on a vertical bakelite sub-panel, $2 / 4 \mathrm{in}$. x 4 in . x $3 / 16 \mathrm{in}$., which in turn motints on chassis with a right-angle bracket. This tuning condenser
must be well insulated from the chassis. A $1 / 4 \mathrm{in}$. diameter bakelite rod couples the dial to the condenser. The RF leads for $21 / 2$ meters must be extremely short. A horizontal mounting of the 76 tube places the grid and plate terminals near the tuming condenser and coil. Change from $21 / 2$ to 5 meters is accomplished by changing the 4 turn coil to one with about 9 turns of No. 14 wire, $1 / 2 \mathrm{in}$. diameter, and spaced slightly between turns. The coil is soldered to the condenser.

FIG. 40
$21 / 2^{-}$and 5-Meter Transceiver for Loud Speaker Operation.

No particular care need be exercised in the audio wiring circuit. The parts can be placed in any convenient location and ordinary push-back hook-up wire serves for all connections. The C battery, or microphone battery, can be placed either under or on top) of the chassis, or wedged behind an audio transformer.
Ground leads often cause trouble on $21 / 2$ meters. By changing the length of these leads, the output may be doubled. A 6.3 volt pilot lamp connected through a $3 / 4 \mathrm{in}$. diameter loop of wire will serve as a good test for RF output and degree of modulation when coupled to the transceiver coil. The lamp should light with a moderate yellow color, and increase in brilliance when the microphone is spoken into. On a meters the effect of the length of the ground lead is not very pronounced, and the location of the
.01 mid. by-pass condenser ground, 76 cathode ground and heater ground leads are not as critical. When the set is functioning properly it should super-regenerate easily over the entire dial range, and the RF output should not drop appreciably over the entire dial range when transmitting.

The audio output is sufficient to operate the small magnetic loudspeaker which is mounted behind a wire-screen grill on the side of the cabinet.

A one-turn antema coupling loop is self supporting. The antema lead connects to a through-type insulator on the front panel and passes through a hole in the bakelite panel, where it is cemented into the hole in order to give it rigidity.

- The receiver should super-regenerate over the $21 / 2$ meter range when 180 volts or more of plate potential is applied. The regeneration control in the plate circuit of the 76 tube is of more practical use on 5 meters than on $: 21 / 2$, since lower plate voltages will cause super-regeneration on the longer wavelength.

The voice quality when transmitting should be checked by listening to a phone monitor, or on another $21 / 2$ meter receiver. With a good microphone, the voice is clear and comparable to that on an ordinary telephone line. High quality audio and microphone transformers are not needed for amateur service. Small units are desirable in order to conserve space and weight.

A Lecher wire system, absorption wavemeter or another $21 / 2$ meter (or 5 meter) station can be used to check the $21 / 2$ meter band location on the tuning dial.
The possible range of this transceiver depends upon the type of antenna and its height above nearby objects or ground. A range of 2 or 3 miles can be expected.

High-Output 6A6 5 Meter Transmitter-Receiver

- It was previously stated that 5 -meter transceivers have many disadvantages, inluding excessive receiver radiation, low output when transmitting, poor sensitivity, high receiver hiss level, and variation of transmitter frequency with receiver frequency shift. The unit here shown has a separate transmitting RF circuit, a common audio system, and separate receiver $R F$ circuits. This permits the use of a RF stage which increases sensitivity and prevents receiver radiation. The transmitter frequency can be set to some fixed value, and the output is several times as high as that from a transceiver.

This transmitter-receiver is not much larger than a transceiver, in spite of its being a separate receiver and transmitter for 5meter operation. The receiver has a separate quench frequency tube and associated controls, thus the hiss level can be set at such a low value that it is no higher than the external interference noise in most locations. Regenerative RF amplification with regeneration control gives extremely high sensitivity when needed. A Class B 6A6 modulator supplies sufficient audio output to modulate the 5 -meter oscillator at approximately 5 watts carrier output when a 300 volt plate supply is available. Either an AC power supply, or B batteries and a 6 -volt storage hattery, can be used for portable or fixed station operation. The B supply can be of any value from 150 to 325 volts, much better results being secured with the higher values around 280 to 300 volts.

A small magnetic loudspeaker is built into 2 cabinet only $14 \mathrm{in} . \times 7 \mathrm{in} . \times 71 / 2 \mathrm{in}$. This set has all of the best features of mobile or medium power station units built into one, and it can be highly recommended for general 5 meter operation.

Technical Notes

- The transmitter has a TNT push-pull oscilfator with a 6A6 tube in a cathode bias arrangement. A Class B 6A6 modulator is driven by a 6A6 speech amplifier which delivers 8 to 10 watts output at 300 volts. The microphone is an ordinary single-button type.

The same two 6A6 audio tubes serve as an audio amplifier for the receiver when the 4-P-D-T. switch is thrown to the receive position. The latter also switches the antenna from transmit to receive. The 76 su-per-regenerative detector is not self-quenching, but uses a separate 76 interruption frequency oscillator. The latter permits a setting of the detector plate voltage to such a value that the tube continues to super-regenerate, but with a very low hiss level. This means that a great portion of the troublesome loud hiss or roar can be eliminated,
even when no station is tuned-in on the 5meter band.

The regenerative KF stage has a 6 K 7 metal tube, requiring less space and shorter leads. A slight amount of regeneration actually gives some RF gain on 5 meters and very weak signals can be received which would otherwise be inaudible. A 954 acorn RF tube will give more gain, but at a considerable increase in cost, thus a compromise was made in the form of the 6 K 7 tube.

The interruption frequency oscillator has two small universal-wound coils in a small shield can beneath the chassis. This oscillator functions at about 100 KC and causes a variation at 100 KC per second of the plate voltage on the 76 detector. This variation causes super-regeneration, with a gain of several thousand times on weak signals.

FIG. 42.
Front View of High-Output 6A6 TransmitterReceiver.

Audio volume is controlled, in the receiver only, by shunting a tapered 50,000 ohm control across the grid circuit of the first audio stage. The microphene-to-grid transformer carries the detector plate current through its secondary when receiving; it should therefore be wound with sufficiently heavy wire in order to carry approximately 5 ma . A push-pull pentode to dynamic loudspeaker voice coil transformer can be substituted for the "mike" transformer. The voice coil winding then becomes the microphone winding, and the detector lead can be connected through the switch to the center-tap, or to the grid ends of the secondary. The loudspeaker connects from one of the Class B plates through a $1 / 2-\mathrm{mfd}$. condenser back to a switch contact which disconnects it when transmitting. This send-receive switch also connects the B supply voltage to either the transmitting 6A6 oscillator or to the detector and $R F$ stages.

The 6A6 oscillator draws from 30 to 60 ma., depending upon plate voltage and antenna loading. The plate impedance is some
value between 5,000 and 10,000 ohms and the Class B outpur transformer should therefore have a total primary-to-secondary turns-ratio of befween 1.4-to-1 and 1-to-1. The transformer shown was rated for a 5,000 ohm load ont of a 6A6 Class B tube, which would indicate a 1.4 -to-1 ratio. The class B input transformer can be any type designed for a 6 A 6 or 53 driver into a 6 A 6 or 53 class B amplifier.

Construction

The sheet-iron can is 14 in. long, 7 in. high and $71 / 2 \mathrm{in}$. deep, a standard size available from many radio supply houses. A $13 / 4$ in. chassis depth is ample for the 4-P-D-T switch, variable and fixed resistors and fixed condensers.

The 4 -prong wafer socket for the power cable and the insulated microphone jack are
insulators. The two corresponding vernier tuning dials are of bakelite, thus a one-inch front panel hole insulates the tuning condensers from ground. Other types of dials would require an insulated coupling on the tuning condenser shafts in order to prevent RF noise, in one case, and as short circuit in the other.
The 6K7 RF tube mounts horizontally on a 4 in. $x 5$ in. No. 12 aluminum shield. The latter has a $1 / 2-\mathrm{in}$. lip bent at right angles along the bottom so that a pair of $6 / 32$ macline screws will hold it rigidly in place. Shakeproof lock-washers siould be placed under all machine screw nuts if the set is operated in mobile scrvice. The RF stage by-pass condensers, RF choke and plate coupling condenser mount directly at the 6A7 tube socket, with short leads to the alumi1111 m sheet for a ground connection. All ground points are bonded together with

FIG. 43-Complete Circuit Diagram of High-Output 6A6 Transmitter-Receiver.
mounted in the rear. The class B transformers are placed in such a manner that space is available for a $41 / 2$ volt C battery for microphone supply. The separate mike battery makes possible the use of either 1)C or AC for the heaters without wiring changes. The 5 -inch magnetic s!eaker is covered with a metal screen grill behind a 4 -inch diameter hole in the front panel.
The two recciving 15 mmfd . tuning condensers mount on small porcelain stand-off
hook-up wire and comected to the minus B power socket terminal.

The RF chokes are made by winding about $\tilde{5}$ turns of No. 34 DSC wire on a $3 / 8-\mathrm{in}$. diameter bakelite rod. The detector coil has 8 turns, $1 / 2$-in. inside diameter, tapped near the center, and the turns are spaced approximately the diameter of the No. 14 wire. The RF coil is similar in construction, except for the cathode tap, which is taken at about $3 / 4$-turn. The plate coil of the 6 A 6 os-
cillatcr has 7 turns, $5 / 8$-in. diameter, $1 / 2 / 2$-in. long. The wire for the coils should be No. 12 , or preferably No. 10 copper. The $6 . \mathrm{Ac}$ grid coil has 11 turns of No. 14 wire, $8 / 2$-in. diameter, with a center-tap. This coil motults on small stand-off insulators beneath the chassis and the two grid leads extend through the insulators directly to the grid terminals on the isolantite socket of the 6Ag. This arrangement gives equal and very short grid and plate leads to the 6 A 6 RF tube. The 6 A 6 RF tube and 76 detector both mount on isplantite sockets alove the chassis in order to reduce the length of the RF leads.

All coils are soldered to their terminals so as to prevent loose connections. losses and noise. The two al:tema coils are made of No. 18 insulated hook-up w:re and the coupling can thus be varied for best results with different antennas.

Operating Notes

- When first testing the receiver, the RF regeneration control should be set so that the value of screen voltage is approximately zero. The super-regeneration control should be decreased in resistance until a super-regenerative hiss is a:adible in the loud-speaker. The RIF control can then be rotated until RF oscillation takes place (without antemna), as indicated by a sudden cessation in hiss output when tuining the RF dial across its scale. When actually operating the receiver with an antenna, the RF regeneration control should never be set to the point of RF oscillation. A check on the operation of the RF stage and its tracking qualities with the detector tuning dial can be secured with the oscillation test just described.

A little practice is needed to operate the receiver for maximum sensitivity, because it has two tuning dials and two regencration controls. For normal operation the RF stage tunes very broadly, and the RF gain control need not be set to its critical position. The detector super-regeneration control should always be set to a position where it will maintain a low degree of hiss level when no signal is received. The RF stage prevents radiation of super-regeneration squeals from the detector circuit and therefore serves a good purpose; careful tuning of the RF stage will give a decided gain in receiver sensitivity on weak signals.

The transmutter should be tuned to some frequeney within the 5 -meter land between 56 and 60 meyacycles by means of a wavemeter or by checking it against another receiver. A diode tulic field strength metermonitor should be available for checking modulation. A single turn of wire in series with a 6 voit pilot lamp makes a good tuning indicator, in addinion to the field strength meter. The lamp, when coupled to the batg plate coil, stwould light up more brilliantly when the microphone is spoken into or energized by a whistle. Fairly heavy

FIG. 44-Looking Into the High Output Transmitter Receiver.
antenna coupling is essertial for best results. The modulation percentage is greatest at a print where the RF current in the antenna begins to drop slightly on steady carrier, due to close coupling to the antema ferder. The lamp indicator will also show a greater variation in RF current when modulating with a heavy antenna load. The spacing of the grid coil turns. and the value of the cathode resistor, both affect the degree of modulation for a given degree of antenna coupling.

The antenna coupling system is suitable for a spaced two-wire KF feeder, a singlewire feeder, or to a concentric jeed line. The latter is of especial benefit for automobile installations, and is also best from a standpoint of minimum moise pick-up at fixed stations. The antema can be a ve:tical half wave I'fed wire or roc, about 8 feet long, or a "J" type. A directional array will give better performance than a single element half wave antenna. For automobile installations the antenna can be 4 feet long, with the inner conductor of a concentric line feeding the lower end of the 4 -foot instlated rod.

Metal Tube 5-Meter Transmitter-Receiver

- This 5-meter transmitter and receiver has a separate RI unit and a conventional audio amplifier for loudspeaker and modulator operation. Metal tubes conserve space and give entire satisfaction on 5 meters. The 6D5 tubes are similar to glass type 45 s . The beam power tube 6L6 serves as a modulator. A 6 J r pentode functions as a regenerative RF amplifier which gives some amplification and minimizes radiation from the selfquenching super-regenerative 6 C 5 detector. This set is designed around standard circuits that have given most satisfactory service for portable 5 -meter operation.

The principles of operation and construction are similar to those of the 6A6 glass tube 5 meter transmitter-receiver, described at more length elsewhere in these pages. The detector is self-quenching with a blocking grid-leak. A 6L6 serves the same purpose as the $6 A 6$ driver and $6 A 6$ class B stage shown in the 6 A 6 glass tube set previously referred to. The GI)s tubes give about the same carrier output as a $6 . \mathrm{Ag}_{6}$ push-pull oscillator.

This set requires less space than most other sets of similar general design. The chassis is only 9 in. $x 6$ in. $x 13 / 4 \mathrm{in}$. The cabinet is 2 in . longer in order to make space
for a small magnetic loudspeaker at one end. The cabinet measures approximately 6 in. $\times 6$ in. $\times 11 \mathrm{in}$. and is formed by two L^{U}-shaped pieces with a flange along the edges of one piece. Self-tapping screws hold

FIG. 45-Front and Side View of Metal Tube Transmitter Receiver, Showing LoudSpeaker Grille on Left Side of Cabinet.
the top-back-bottom piece in place. The 6D5 grid coil consists of 14 turns of No. 14 wire, $1 / 2$-in. diameter, $13 / 4$-in. long, with a center-tap. The plate coil has 7 turns of No. 10 wire, center tapped, $5 / 8-\mathrm{in}$. diameter,

FIG. 46.
Metal Tube 5-Meter Transmitter Circuit. Type 6C5 Tubes Can Be Substituted for 6D5s. Shown in the Circuit, if the Value of the Grid-Leak Is Reduced to 2,500 Ohms.

11/4-in. long. A 2-turn pick-up coil of 18 ga. hook-up wire serves as an antenna coil which connects through the law capacity send-receive switch. All RF chokes can be made of 75 turns of No. $3+$ DSC wire, close wound on a $3 / 8$-in. bakelite rod. The modulation choke should have at least 15 henrys inductance at 150 ma . DC. The audio input transformer can be any type of three-winding transceiver transformer.

The 6J7 RF coil has 8 turns, $1 / 2-\mathrm{in}$. diameter, about $1 / 4-\mathrm{in}$. long, and is similar to the detector coil except for location of taps. The cathode tap is made on the first (one) turn, the antenna tap at two turns, or a separate antenna coil can be used. The detector coil is centertapped. These two circuits are made to track by compressing the turns on the coils, also by bending one of the plates on each of the 2-plate condensers which are ganged together for single-dial tuning. The RF and detector tuning adjustments are not very critical. A regeneration control on the super regenerative detector permits adjustment of plate volt-

FIG. 48-Under-Chassis View of Transmitter-Receiver.
in preference to a 6 K 7 , because j-meter signals are seldom strong enough to cause cross-talk in the RF stage; the high value of the cathode fixed resistor (1000 ohms) acts as a RF choke to force the cathode RF cur-

FIG. 47
Looking Into the 5-Meter Transmitter and Receiver.
rent through the cathode condenser and cathode coil tap. Short RF leads are essential in the RF and detestor stages. The shields of the 6 D : and 6 C 5 are not grounded.

A separate $41 / 2$ volt microphone battery enables the tube heaters to be connected to either a 6 -volt storage battery or to a 6.3-volt AC source. Heavy-duty B batteries for portable operation, or an AC line power supply can be plugged-in for operation at a fixed station location. Approximately 5 watts of carrier output can be secured from a 230 to 250 volt power supply. The constructor is urged to closely adhere to the mechanical design, otherwise the final results may not be satisfactory. Coil winding specifications should also be carefully followed. Some slight "pruning" of the coils will usu-
age to the value of lowest hiss level, with good sensitivity and ability to handle strong signal inputs. A 50,000 ohm cathode resistor provides a combination regenerative RF volume control for the 6J7. The latter was selected
ally be necessary; this is accomplished by slightly compressing or expanding the coils until they cover the correct frequency range. All ground leads should connect to a common bus-bar.

21/2-5-Meter Metal Tube Transceiver

- Metal tubes fit readily into the design of a very compact and powerful transceiver for 5 - and $21 / 2$-meter operation. This unit here illustrated transmits more power than most transceivers because heavy antenna loading is permissible fo: both transmitting and receiving. It is quite sensitive and the hiss level is low. The radiated interference is much less than from most transceivers while receiving, due to the separate interruption frequency coil circuit.

The set is built into a $51 / 2 \mathrm{in}$. x $51 / 2 \mathrm{in}$. x $41 / 4$ in. steel can formed into two U-shapes with lips along the top and bottom edges of one of the U-shaped pieces. The chassis is 4 in. $\times 53 / 8$ in. $x 13 / 4$ in., thus making it somewhat difficult to wire-up the 4 -pole-dou-ble-throw switch, but this job can be accomplished with a little patience. The tuning condenser, plug-in-coil and 6C5 tube are mounted on a vertical bakelite subpanel, $33 / 8$ in. high, $25 / 4$ in wide and $\frac{3}{16}$ in. thick. The RF chokes are made both 5 and $21 / 2$ meters must be wound to the correct size of inductance so that no resonant absorption dips occur in either band. About 75 turns of No. 34DSC wire, closewound on a piece of $3 / 8-\mathrm{in}$. takelite rod, serves the purpose. The terminals of these RF chokes are made by drilling small holes thru the ends of the bakelite rod and then soldering the fine wire to a piece of No. 22 wire twisted thru and around the ends of the rod.

The interruption frequency coil provides super-regeneration in the 6 C 5 tube when receiving, thus heavy antenna loading and low plate voltage can be used on 5 meters. On $21 / 2$ meters, the plate voltage should be 200 volts, preferably 250 , if available. The transmitter output with 135 volts supply on 5 meters will be approximately $1 / 3$ watt, and $11 / 4$ watts at 200 volts, which is greater than the output obtainable from most other transceivers. A 6 F 6 power pentode acts as modulator when transmitting and as an audio amplifier when receiving. The output in the latter condition is sufficient to drive a small magnetic loudspeaker to moderate volume. The detector regeneration control can be set to a point of very low hiss level and high sensitivity.

A separate $41 / 2$ volt microphone battery allows the use of either AC or DC supply for the heaters of the two tubes. Either an AC power supply or batteries can be used for
hone or portable operation. Variable antema coupling capacity will permit the use of any type of 5 or $21 / 2$ meter antenna. The coupling condenser can be adjusted through a hole in the front panel by means of a bakclite screw driver. The shield of the 6 C 5 ttibe should "float," i.e., it is not connected to ground, as is the nsual practice.

FIG. 49-Metal Tube 21/2-5-Meter Circuit Diagram.

The .j-meter coil consists of 9 turns No. 14 wire, $1 / 2$-in. diameter and $11 / 2$ in. long. The $21 / 2$-meter coil has 3 turns, $1 / 2-\mathrm{in}$. diameter, wound to a length of between 1 in . and $11 / 2$ in., depending upon the length of RF leads in the RF tuning assembly. Pin jacks serve as terminal plug receptacles for the little plug-in coils. The send-receive switch in its center position opens the heater supply circuit, but does not disconnect the B battery; consequently if dry cells are used, the regeneration control will absorb a small amount of current, even when the set is turned off.

This transceiver can be built on a larger chassis, if space requirements permit. The 6 C 5 G and 6 F 6 G large glass tube equivalents of the little 6 C 5 and 6 F 6 metal tubes can be substituted without change in circuit constants. Operation on $21 / 2$ meters should be slightly more efficient when using the glass 6C5G tube. These glass tubes have octal bases, but they require more space.

The same arrangement of horizontal RF tube mounting, very close to the tuning con-

FIG. 50.
Front View of Metal Tube Transceiver.
denser and coil, is recommended if $21 / 2$-meter operation is desired. The turing condenser has two plates. An insulated sliait connects the condenser rotor to the dial.

The three-winding midget audio transformer is manufactured by several concerns.

FIG. 51.
Interior View, Showing Coil and Condenser Support, Also Horizontal Mounting of 6C5.

Ary small 20 or 30 henry, 50 ma. filter choke is suitable for the modulation choke.

The performance of this unit is so superior to most other transceivers that it is highly recommended for the anateur.

Two-Tube Commercial Transceiver Circuits

Those who wish to design two-tube transceivers after the circlits adopted by manufacturers will find the iollowing schematic cliagrams of practical interest. In general, constructors are advised to follow the details as close as possible t_{1} those given if good results are to be expected.

Haigis Portophone Model PF-1.

Resistance-Coupled 5-Meter Super-Heterodyne

- One of the most widely imitated Jones developments is the simple 5 meter resist-ance-coupled super-heterodyne shown in Figs. 52 and 53 . The receiver has fur tules; a 6C6 autodyne detector, two stages of eesist-ance-coupled IF amplification with 6D6 tubes, and a 76 triode second detector. The values of resistors and condensers in the IF amplifier are correct to bypass the intermediate frequencies only; the coupling condensers and resistors are too small in value to pass audio frequencies. The response curve of the amplifier is quite broad in order to receive 5 -meter phone signals.
All of the .0001 mid. condensers should be of the nica "postage-stamp" variety. The resistors can all be $1 / 2$ watt in rating. The 500,000 olim screen control potentiometer in the 6 C 6 detector stage should be advanced only to the point where the detector oscillates weakly, and never to the point of howling or super-regeneration.
The coupling between the antenna coil and the first detector should be adjusted for best weaksignal reception. Too much coupling to a resonant antenna will prevent detectur oscillation and proper super-heterodyne action. In tuning the receiver dial, it will be found that all 5 -meter signals will have two points on the dial, very close to each other, because the detector functions in a simple autodyne circuit.

FIG. 52-The Complete 5-Meter Super-Heterodyne.

FIG. 53-The Extremely Simple Circuit Diagram of the 5 -Meter Super.

FIG. 54-Frank Jones' 7-Tube 5-Meter Superheterodyne Circuit.
by means of a variable antenna coupling condenser and resonant grid coil. This coil, L1 in the circuit diagram, is made of 16 turns of No. 16 enameled wire, $3 / 8-\mathrm{in}$. diameter selfsupported. The length of the coil is varied until greatest sensitivity is obtained at approximately 55 megacycles for a medium capacity setting of the antenna coupling condenser. The RF plate-to-first-detector coutpling condenser should be adjusted to a point which does not prevent oscillation in the first detector. The semi-tuned RF amplifier simplifirs the receiver and prevents interlock between the oscillating first detector and RF grid circuit. Interlock can be defined as the action which takes place when the two tuning circuits react upon each other, making it difficult to align the circuits.
The second detector functions somewhat like a Class B tube, in that grill current
starts to flow as soon as a signal is impressed. Detection is oftained in this tube and amplified by another type 41 tube connected as a pentode audio amplifier. The rectified grid current provides semi-AVC action, the voltage of which is fed back to the grids of the IF amplifiers.

The set is built on an 18 in. $\times 17 \mathrm{in}$. x $11 / 2 \mathrm{in}$. chassis, made of 12 -gauge aluminum. A standard $7 \mathrm{in} . \times 19 \mathrm{in}$. relay-rack is the front patel. All resistors are of the 1 -watt size, except the power supply bleeder resistor, which shoruld be rated at 35 watts. The .0001 mfd . condensers are of the small mica type, the other condensers are of the 600 -volt paper variety.
The power supply rectifier circuit includes a 200 volt center-tapped transformer, a 20 henry 80 ma. filter choke, and a 2500 ohm loudspeaker field.

FIG. 55-The 7-Tube 5-Meter Super Should Be Laid Out as Shown in the Illustration Above.

FIG. 56-Looking Down Into the 5-Meter Super. The RF Coil Is Mounted Horizontally to Permit Use of Very Short Leads. An Aluminum Shield Isolates the RF Stage From the Detector.

8-Tube 5-Meter Superheterodyne

By incorporating regeneration in either the RF or first detector stage of a superheterodyne, the sensitivity can be increased from 5 to 50 times. A regenerative first detector is used in preference to a regenerative RF stage in order to eliminate antenna tuning dead-spots.

The choice of a suitable intermediate frequency and the degree of coupling in the IF transformers depends upon the received band width. If modulated oscillator type phone reception is desired, the IF amplifier should pass a band at least 50 kilocycles wide. The IF transformers in this receiver were designed with this purpose in mind. They are made by winding 120 turns of No. 34 DSC wire, jumble-fashion, on $3 / 8$-inch diameter

Ll and L2-Each $11 / 2 \mathrm{in}$. Long, 7 Turns, No. 14 Enameled Wire, $1 / 2 \mathrm{in}$. Dia. L3-1 in. Long, 7 Turns, No. 14 Enameled Wire, $1 / 2$ in. Dia. C1, C2. C3-100 uufd. Double-Spaced Variable Condensers, With Only 7 of the Original Plates Remaining. Maximum Capacity of These Re-built Condensers to Be About 18 uufd. I.F. Transformers Tuned to Approximately $2,000 \mathrm{KC}$.
tubes, two of these windings being required. Each winding is $3 / 8$-inch long, and there is a space of $1 / 8$ inch between the two coils. The coils are tuned with mica trinmers which are an integral part of the original 465 KC transior:ners. The 465 KC windings are removed, and the new windings put on the form. The IF amplifier is aligned to 2.7 megacycles by means of an all-wave test oscillator.
All 5 meter coils are supported on small stanul-off insulators, close to the tuning condensers. The Kl tube is mounted in a horizontal piosition in order to provide a short plate lead to the detector tuned circuit. The RF clockes in the oscillator and RF stage are malle by winding 95 turt:s of No. 34 DSC wire on a $3 / 8$-inch diameter bakelite rod. A type 75 tube serves as a diole detector, AVC tube, and first stage andio amplifier. Loudspeaker operation is from a type 42 pentode andio amplifier.
The chassis is No. 14 gange aluminum, 9 in. $x 17$ in. $\times 13 / 4$ in., mourted behind a standard r in. $\times 19$ in. relay-rack panel. A separate dial tunes the oscillator, although it is possible to gang all three tuming condensers to one dial by using a wider chassis. Either capacitive coupling to the antema, as shown. or the same condenser connected to ground as a padder and inductivelv coupled to the antema, will give satisfactory results. Inductive coupling will reduce ignition interference if a twisted-pair lead-in is connected in a half wave antenna.

5-Meter Regenerative RF Receiver

- Extremely high sensitivity is obtained when a 954 Acorr: regenerative RF stage is comected aliead of a super-regenerative detector. A separate interruption frequency oscillator, a 6C5 tube, provices a type of super-regeneration in the 9 ans detector which can be adjusted to operate with very low hiss level. A 6F6 serves as an ordinary pentode amplifier of conventional design.

Regeneration in the RF stage makes the receiver more sensitive to weak signals and also intproves the selectivity. A cathode tap on the RF tuned circuit coil provides regeneration which is controlled by means of a 25,000 nhm potentiometer. The degree of super-regeneration in the detector is controlled by means of another 25,000 olum potentioncter. Aud:o volume is controlled hy a $\%: 00,000$ ohm potentioncter in the 6F6 audio amplifier, and either headphone or loudspeaker operation can be had at will.

The chassis is $6 \mathrm{in} . \times 9 \mathrm{in} . \times 2 \mathrm{in}$. , with a shield partition in the center which supports the twir Acorn tuhes and shiells the RF from the detector stage. The RF tube extends through this partition. Separate tuning con-
trols permit exact tuming of the RF stage at the peak of regeneration. Small tip jacks are mounted in hard rubber panels for plug-ging-in the coils. The disadvantage of two separate tuning controls is more than offset by the great sensitivity which can be obtained by careful adjustment of RF regencration and tuning.

FIG. 58-Front and Rear Views of U.H.F. Receiver With Metal Tubes and Regenerative RF Stage.

The correct value of the fixed condenser in shunt with the interruption frequency grid coil (labeled .0005 and comnected across the I.F. OSC. COIL.S in the circuit) depends upon the particular make of coils. Standard interruption frequency coil units are available from radio dealers, and it is clesirable to purchase these coils ready-made because they consist of many turus of fine wire, honeycomb wound.

FIG. 59.

Parallel Rod Oscillators

- Push-pull oscillators of the type shown in Figs. 60, 61 and 62 give good frequency stability in ultra-high-frequency transmitter circuits. The parallel grid rods act as a high " Q " circuit for frequency control. The plate parallel rods are tuned to resonance by sliding a shorting-bar along the rods to a point which gives lowest plate current. For 5 -meter operation, the grid rods are $41 / 2$ feet long and the grids connect to each rod $1 / 3$ to $1 / 3$ of the way up from the shorted end. Since the shorted end has no RF voltage, these rods can be supported in holes bored into a wood block.

A parallel rod oscillator can be platemodulated without excessive frequency modulation, as shown in Fig. ${ }^{\text {niz }}$.

High Power M.O.P.A. Transmitter

Power output of 250 watts can be secured on 5 -meters with the M.O.P.A. transmitter shown in Fig. 63. A stabilized $50-\mathrm{T}$ oscillator is link coupled to a neutralized pushpull $50-\mathrm{T}$ amplifier. Tubes with low interelectrode capacities function satisfactorily in this circuit. Frequency stability in the oscillator is obtained by a critical value of RF

FIG. 60.
feedback to the grid circuit. Mechanical rigidity is also necessary. Correct ratio of concenser plate spacing in the oscillator will provide a circuit having good frequency stability over a fairly wide range of plate voltage. Somewhat better frequency stability can be obtained in the oscillator portion by means of concentric pipe oscillators, similar to the one described elsewhere for $21 / 2$ meter operation.

FIG. 61-Parallel-Rod Oscillator Circuit.
Crystal control can be applied by mears of the Jones 4-6A6 Exciler, operating in conjunction with a $3:-\mathrm{T}$ doubler and $3 \mathrm{~F}-\mathrm{T}$ buffer. Type $80-T$ tubes can be crystal controlled on 3 meters in this manner, if an additional $35-\mathrm{T}$ doubler is added to the circuil.

For :-meter operation, the amplifier plate tuning condenser consists of two aluminum plates, No. 12 gauge, 3 in. square, mounted 1 iin. apart. A grounded plate is placed midwar between the two other plates. The nentrailizing plates are $1 \mathrm{in}, \times 1 \frac{1 / 2}{2} \mathrm{in}$. pieces of No. 12 gauge aluminum. separated nearly $1 / 2$ in. Fig. 63.

The oscillator condenser is made of three parallel plates of No. 12 gauge aluminum, alsu mounted rigidly on stand-off insulators.

The two plates across the coil are 4 in. \mathbf{x} 4 in., and the grid coupling plate is 3 in \mathbf{x} t in. Tuning is accomplished by varying the lengtl of the coils and the plate spacing of the tuning condensers. These adjustments are not easily made, therefore operation shot:ld always be on a fixed frequency.

Low P. F. Line Oscillator

- Large diameter pipes, a quarter wave long, are a practical means for stabilizing the frequency of u.h.f. oscillators. R-CA has been using these "pipe line" for frequency control in preference to a quartz crystal oscillator over the range of from 7 to 500 megacycles. Castings and heavy pipes are utilized in commercially-built lines, and temperature compensation is secured by means of a semiflexible metal bellows and invar-rod within the imner pipe.
The cunstruction can be greatly simplified for amateur operation below 10 meters. The complete copper concentric line for a $21 / 2-$ meter oscillator can be built in a sheet metal shop for less than $\$ 5.00$. This is only a fraction of the cost of a crystal control unit, yet comparable result:, can be obtained.
Crystal oscillators provide good frequency stability because of their relative "stiffness" of circuit constants. The circuit " Q " is much higher than can be obtained with a variable condenser and coil. Similarly, the

$$
\text { effective } Q=\frac{V A}{W} \text {, proving that oscillatory- }
$$

energy-10-power-loss is very high in a concentric line of the proper size. The "Q" is inversely proportiona! to the square-root of the pip material resistivity, therefore the use of copper is desirable. The " Q " is proportional to the square-root of the frequency, consequently the lines become more effective at $21 / 2$ meters than at 5 meters. The " Q " is propurtional to the diameter of the pipes

for a given ratio of dianıeters. The outer pipe is of ten made 2 ft . in diameter, the inner about 6 inclies for 5 meter oscillators. The length of the inner pipe should be $1 / 4$ wavelength and the outer pipe should connect to the inner at one end by means of a copper plate or casting, and the open end extends a few it:ches beyond the inner pipe.

FIG. 63-High Power M-O-p-A Transmitter.
The pipe or line oscillator illustrated in Figs. (i.4, 65 and 66 should have a " Q " of nearly 8.000 at $21 / 2$ meters, which is high enough to give excellent frequency

FIG. 64.
Low Power-Factor Line Oscillator.
stahility. The inner pipe is made of $1 / 2 / 2$-in. diameter conper tubing, aloout 27 in . long. Two-inch diameter tubing would be even more satisfactory. The outer pipe is made of $16-02$. sheet copper, from a piece 30 inl . x $2+$ in. The dianeter of the finished pipe is $7^{1 / 3 / 3}$ in. The average sheet netal roller equipment will handle lengths up to 30 in .
One encl of the pipe is soldered to an 8 in . x $1: 3$ in. $\times 18$ ga, piece of sleet copper. A $11 / 4-\mathrm{in}$. diameter hole is punched in the center in order to pass the inner pipe; the hole is then carefully reamed to a diamet.: of $11 / 2$ in. in order to give a tight sliding fit of good contact to the inner pipe. Waxed linen cords are wrapped around the free end of the smaller pipe, which is then centered in the larger pipe by three small holes in the outer pipe (not shown in the photographs) through which the waxed cord is passed and knotted.

FIG. 65.
Close-Up of Line Oscillator Components.
A wire comection to the inner tube is made at 5 in. to 6 in. from the closed end, which in this case is 8 in . from the actual end of the $27-\mathrm{in}$. tube. 24 in . to 25 in , of actual inner pipe length (inside the large pipe) is approximately correct for the $21 / 2-$ meter hand.

A 35 T is used as a regenerative Hartley oscillator in a low C plate-tuned circuit, shown in Fig. 66. A small variable con-
denser :ould be comnected across the plate coil for convenience in tuning, but with a reduction in the L-to-C ratio. Frequency control is due entirely to the larse low-power factor line which comnects across the grid and filament of the oscillator tube. Kegeneration (and plate taning, to some extent) is varied by means of a 15 mmid, grid excitation condenser. The capacity of this condenser should be varied until the tube oscillates (under load) over a range of pipe lengths. The plate current is relatively low when the proper adjustment is found. When the adjustments are not correct, the plate current is two or three times as higlt, and the heterodyne inte against a stable oscillator's harmonics will yary greatly with changes in plate voltage. The plate voltage can be varied 50%, up or down, with hardly a perceptible change of beat note when the circuit is properly adjusted. The entire transmitter should be suspended on a shock-absorbing system in order to prevent vibration, otherwise the frequency stability will be impaired. Without temperature control, the frequency orifts quite rapidly out of the range of audibility in the harmonic monitor for a few minutes during "warm-up" tine. The $35-\mathrm{T}$ can be platemodulated without apprecialle frequency modulation, as could be determined on a fairly-selective super-heterodyne receiver.
The plate coil consists of 8 turns of No. 12 wire, $5 / 8$ in. average diameter, and wound to cover a length of $1 / / 4 \mathrm{ill}$. The tap is made at $31 / 2$ turns from the arid end. An

absorption wavemeter can be used to tume the oscillator to $21 / 2$ meters as a preliminary adjustment with the concentric line disconnected.

The efficiency apparently runs quite high; values of 50% can be obtained. At a plate potential of 500 volts. plate current was 25 ma.; at 700 volts, 35 :o 40 ma.; at 1000 volts, from in to 90 ma. under load, in laboratory tests.

This type of frequency control line is superior ti a parallel-rad oscillator with small pipes.

Spiral Rod Oscillator

- A standard push-pull parallel rod oscillator can be coiled into a spiral, as shown in the illustration to the right, in order to conserce space. The spirals shotld be rigidly supported with high-grade insulation so as to prevent mechanical vibration. Adjustments are the same as for a comentional parallel rod oscillator. 400 watts input can be supplied to the 35 T spiral rod oscillator here shown.

Factory-Built U.H.F. Sets

- There is nothing very unusual in the design of factory-built 5 -meter sets because they conform to standard practice and the circuits are almost identical with those so widely used by amateur constructors. Only those who have long engaged in u-h-f manufacture have been successful in marketing their products because the engineering of a 5 -meter set calls for more than ordinary experience and knowledge. On the several pages that follow, a number of the better-known factory products are shown. Those on this and the facing page are manufactured by Radio Transceiver Laboratories of Richmond Hill,
 New York. The photographs to the right show the RTL-"Compact" (top), and (below) the PTR-ig Pack Transmitter Receiver. The photo to the left, at the top of the circuit diagram, shows the $T R-53-$ 6 A6 Duplex Transmitter-Receiver.

Circuit Diagrams of Factory-Built 5-Meter Sets

Radio Transceiver Laboratories TR53-6A6 Transmitter-Receiver. LI. L2, L3-7 turns No. 14, sti" dia., spaced one diameter. L4-2 turns, tubing. $2^{\prime \prime}$ dian

Factory-Built U.H.F. Transceivers

- The tube complement for this transceiver consists of two RCA-19 twin-triodes and one RCA-30 triode, connected as shown in the circuit diagram above. The transceiver is housed in a small case, equipped with a handle, so that it can easily be carried from place to place.
- Another transceiver circuit is shown be-
low. It is the Wholesale Radio Company's "Transceptor," designed by I'rank Lester, W2AMJ. In the transmit position, the type 19 tube in the lower portion of the circuit acts as a unity-coupled push-pull RF oscillator. For receiving, a serarate antenna is connected to the first type 30 tube which functions as a self-quenching super-regenerative detector.

"Transceptor"-Wholesale Radio Service Co., Inc., New York City.

Forest Service Transceiver

- Built into a compact carrying case, 6 inches wide, 9 inches long and 7 inches deep, the Forest Serite Transceiver pictured to the right is one of the smallest factorymade portable units for u.h.f. service. Miniatirre dry batteries are housed in the carrying case, and in spite of their small size they will give approximately 8 hours continuous service. A $4-1$-D-T anti-capacity switch clanges the circuit from send to receive.

Two-volt tubes are used, a type 30 and a 49 . The circuit diagram shows the values of condensers, resistors, etc. Coils L1 and L^{2} are the same as those for home-built transceivers shown elsewhere in these pages. The coils are "air supported" and wound with heavy enameled wire. A 15 mmfd . midget variable condenser is mounted directly below the coils. The antema is ca-

Circuit for Western Wireless Transceiver.
pacitively coupled through a .002 mfd . mica fixed condenser, momted above the coil.

The front panel of this transceiver is of cast aluminum. A through-panel porcelain insulator carriers the antenna lead through the panel and to the coil. The antenna is connected to a binding post which can be seen in the photograph of the complete transceiver. The other controls on the front panel are the condenser tuning knob and
the 4-1'-ID-T switch handle. A small carbon microphone and a pair of headphones fit into the compartment to the far right of the carrying case.

From the circuit diagram it is seen that the type 30 tube acts as a super-regenerative detector in the receive position, or a modu-

Carrying Case, Showing Compartments for " A " and " B " Batteries, "Mike" and Phones.
lated oscillator for transmitting; the 49 tube serves as a tetrode audio anplifier for receiving. and a moculator tube for transmitting. Transformer T1 serves the dual pur-

The Chassis. A $71 / 2$-Volt Miniature Battery Is Mounted Behind the 49 Tube.
pose of a modulation transformer for transmitting, or an ontput choke for receiving. The RF choke is a conventional 5 -meter type

High Power 10 and 5 Meter Power Amplifier

- A good mechanical layout for a higlı-frequency final amplifier with a standard neutralized push-pull circuit is shown in the photograph, Fig. 69.
- The grid and plate leads are very short and direct, with the result that the amplifier can be used effectively on 5 meters, as well as 10 and 20 meters. The tubes are type HF-200, with the plates at the top and the grids at the side, making for short RF connections throughout. The 10 meter coils consist of 10 turns of No. 8 copper wire, 2 in. diameter, wound to cover a length of approximately 4 inches. The 5 meter coils have 7 turns of No. 8 wire, 1 -inch diameter, 4 inches long. These coils are mounted on standard Johnson 4 -inch glazed porcelain antenna spreaders. Coil plugs are secured to these spreaders by means of $6 / 32$ machine screws. Center-tap connections to all coils are made with flexible leads and clips. A one-turn coupling link, $21 / 2$ inches in diameter, is wound around the center of grid coil and this link is fed with a twisted line of No. 8 rubber covered wire. This amplifier can be driven by a HF-100 RF stage.

The final plate tuning condenser is an

Audio Products Type WS-1502035, having a maximum capacity of 35 mmfd . per section. The grid tuning condenser is the new high-frequency Cardwell split-stator type. The neutralizing condensers consist of two machined aluminum plates, $1 / 4$-inch thick, $21 / 2$ inches in diameter, with an adjustable gap which is varied by means of a machinescrew threaded rod.

Chapter 15

Radio Therapy*

- One field of electronics that is growing to an extent little realized by many involves the use of ultra-high frequencies by the medical profession. While the therapeutic values of various frequencies is still under investigation by many research groups and hospitals, still enough has already been preverl so that this apparatus is becoming a standard item in medical treatment. Data is becoming available for the standardization of treatment as to fresuency, length of treatment and the amoint of power applied, for each of a long and growing list of physical abnormalities.

Much of the equipment that is now in use has heen designed without dine regard for stability and reproductability in the matter of frequency and power, so that the results from various investigations cannot be compared directly, at least at present, since these and other factors shift frequently, even during a single test.

The wide variety of tissues in the body-ca-tilage, muscular, fatty, bo:e, etc., all respond differently to applied radio waves. Some of these tissues are dielectrics, others are effective conductors, while most of them have an intermediate characteristic-that of a "leaky" dielectric-shunted by a capacitance. It is in such tissues that the heat is most intense. The actual energy dissipation therefore takes place as a dielectric loss, with some conductance current loss acided. It is generally assumed that there are no "ideal" frequencies to use, even for a single type of ailment (frequencies in which local resonance occurs) and at which very definite action results. On the other hand, definite effects are noted as the frequency is varied, wherein the change of the relation between conductive and dielectric losses may influence the location and degree of heating.

Since a highly complicated electron tube oscillator must be operated liy non-technical users, it becomes necessary to exactly predetermine and compensate attomatically for all circuit variations, leaving only those controls that are a part of stardard prescribed treatments. The correct "losage" for a pirticular treatment can be prescribed in terms of "frequency," "power" and "length of treatment." Other factors are the selection of a useful size and shape of the electrodes and their placement.

[^6]Radio amateurs are quite frequently confronted with technical questions concerning this field of short wave therapy. While the oscillator itself dues not present unusual difficulties to a transmitter man, still there are a large varicty of unusual loading conditions that must be met, and building such an outfit or servicing one is likely to prove a long and tedious job in some cases. The output load impedance varies over wide limits diae to the changes in the size of the applicator pads and their location on the body, to the frequency and also to variations in the spacing between the applicator pads and the skin (such spacing is due to the rubber insulation on the electrodes, to the patient's clothing and to inserted spacing mats). Another tyre of loading condition is found with the use of surgical cutting instrumerts and similar appliances.

The various manufacturers of this equipment have not standardized on a set of output load tests, so that there is very little agreement as to the load limits of working conditions. Many use lamp loads, others use salt water absorption tanks. Salesmen are accustomed to apply actual tests on a person. Most of these have been empirically determined, and as they stand, do not give much data as to comparative merits of any particular system.

Borrnwing from experience in radio matters, a lamp load has been determined which will enable fairly accurate tests of the output of any equipment. As is well known, a 500 watt lamp has a different impedance than five 100 watt lamps in series. Although the power absorption is the same, a different load ratio adjustment must be used with each. By comparative impedance tests, it is desirable, according to The Allen D. Cardaucll Manufarturing Corporation, to use the following load to simulate actual body loads and thus to do away with the necessity of a "humarı" guinea pir.

A sprecial lamp bank output load can be made either with a number of 230 volt lamps in parallel having a combined absorption eflual to the rated load of the equipment. or else from a series parallel combination of 115 volt iamps also equivalent to the rlesired load.

In latilding up tinis lamp bank load the arrangement shown in Fig. A may be useful. JIere the required lamps (in the arrangement shown four 100 watt 115 volt

lamps are comected series parallel) are comected between two parallel pick-up plates, about 8 in . square. The output electrode pads from the apparatus are each placed parallel with one of these pick-up plates, with an adjustable spacing, varying from three or four inches down to no spacing, to simulate various load impedances. Such an arrangement will prove the equivalent of the najority of the actual output loads found in practice, but as a final test actual loads should be used.

FIG. B. High power Cardwell short-wave condenser suitable for diathermy or transmitter service up to 500 watts.

It is an easy matter to locate troubles if the equipment has been well engineered at the start. The usual circuit is the well known "T N T" arrangentent" and is always self excited. Sometimes a cross comected grid pick-up coil is used, however, closely coupled to the plate coil. The output is usually a small coil similar to the first half of a link circuit. This coil may be shunted by a tuming condenser (of the
split-stator type) but usually is tuned with two series condensers, one section in each output lead of either type, such as shown in Fig. B.
These condensers were developed mainly for therapy and high power short wave transmitters. and have a minimum of metal in the field, wicle spacing between plates (which are of highly polished metal) and mycalex and isolantite insulation throughout. Since they are of heasy duty construction they are used in short wave circuits up to 500 watts.

It is usually desirable to wire in a grid current meter temporarily while checking excitation values. The most usual troubles are those common to radio transmitters, such as an open grid leak, power transformer failures. an unbalariced load condition between the tuhes, or a faulty tube.

A mumber of tubes are on the market which have found extensive use in therapy equipment. It is desirable that the data which accompanies these tabes as to maximum plate load. excitation, etc., be followed. Too much excitation is likely to cause undue dielectric strain in the glass parts of the tube. and too little will of course permit the tubes to pull out with immediate self destruction. Such accessories as overload circuit breakers and atutomatic cut-off timers are easy to install and are easily sold due to the additional safety which they provide.
Half wave self-rectified plate current is generally used in this equipment. This calls for a transformer with an unusually large amount of iron. and an air gap in the core. In full wave rectifier operation the current flows altermately through one-half the secondary winding and then in the other half. Assuming the same power output from half wave operation. a much larger pulse of current flows through a single winding, and if non-saturation is to be avoided ample core size should be provided. The effect is the same as if a DC component equivalent to the plate load flows through the secondary winding. It is :sual practice to provide an air gap in this core to take care of this flux saturation.
In desiguing this transformer, or buying one. remenher that inadequate insulation will turn this machine into a lethal instrument. As pointed out by cthers, it may be better to use a separate rectifier when building such an outfit, if you are favored with an order from a doctor. In addition to reduced interference, an improvement in the matter of surgical cutting will be noted, unless considerable experimenting is done.

[^7]

Complete circuit diagram of diathermy machine manufactured by Allen D. Cardwell Corp.

folluws (it being assumed that all effects of actual conduction currents, the diathermal principle, are absent): At lower frequencies, say from one to fifteen megacycles, the temperature increase has the effect of lowering the viscosity of the blood and dilating the blood vessels, which causes the blood to flow faster. The temperature increment in the portion of the body under the influence of the ficld is due primarily to dielectric losses from both electrostatic and electromagnetic fields, al-

The main disadvantage of the self-rectified systen is that a very large load is applied to the power line onl every other half cycle w:uch produces a very distortec wave form on the power line. If two or more machines are used on the same line (as in hospitals and clinics), it would be desirable to polarize the line connections so that the load is more cevenly divided, one-half of the machines are plugged in the opposite way so as to utilize both hatves of each cycle. This is done by measuring the line voltage with one machine comected, and to connect the second machine and to note the change in line voltage che to the extra current loacl. The machine's input line shoudd then be reversed and the voltage drop again noted. It should be left with the connections that prolluce the minimum voltage drop.

In order that any nscillator be equally efficient over a wide range of frequencies. accurate control of the excitation and other factors at each of those frequencies must be accomplished. This is done, as the photograph shows, by the use of interclangeable master control elements, one of which is supplied for each frequency required. These elenients establist the values of the circuit constants which are correct for the particular frequency: Then are supported in special ceramic holders so that a physician can insert the particular tuit desired from the "library" depending uipon case requirements. From a practical standpoint, this arrangement also assures the murchaser that some future research. which might show the advantage of a particular ireguency for some special purpose. will not render his apmaratus obsolete.

Medical research has irdic:ted that several effects are produced by high frequency fields which may he summarized briefly as
though the heat is fistributed and probably enlanced by the increased action of the blood tow as well.

At ligher frequencies a germicidal action also orcurs along with the localized fever, which if accurately controlled can be beneficial. At still higher frefuencies (of the order of 50 megacycles or over) other effects have been noted and their applications are still under investigation.

Carrying out the conditions usually asked for by medical men, of not desiring to fuss; with any controls that do not have a bearing, on the treatment, the system here shown has or:ly three controls, corresponding to the above three factors: frequency, length o! dosage and power. The proper preliminary selection of a suitable size and location of the electrode pads is assumed. Firequency is cortrolled by the insertion of the correct master muit. The output power is controlled by handwheels on either side of the apparatus, and the value indicated by the panel meter. The output circuit is arranged so that variations in the load impelante (i. e. the size. location and spacing of the electrodes) do not shift the frequency to any great degrec. and permit loading up the tubes to their full limit (if desired) under any load imperlance values. The output is strictly aperindic, as it is found that small shifting of the position of the electrodes on the patient often produces large changes in the load conditions, when tuning is resorted to. This would alter the effectiveness of the treatment. A time swite:' is incorporated in the circuit so that the treatment is automatically terminated at the end of the predetermined interval.

The prohlem of radio interference can be tackled and some improvement accomplished by the use of all metal cabinets. While the interference with tube oscillators is much less aggravating to the radio engineer than

FIG. C-Exterior view of Cardwell diathermy machine.
that produced by the quenched gap type of diathermal unit, on the other hand the wave lengths are usualiy lower with tube oscillators, so that even short wires are good radiators. Unlike most of the other apparatus heretofore available, this apparatus is enclosed in a metal cabinet as shown, with an appearance consistent with modern trends of styling. The cabinet is grounded when installed, and the input power lines
are filtered in such a way that radiation back into the power lines is eliminated. Radiation from the leads to the rubber covered electrodes is still possible, but the only improvement in this regard seems to be the use of shielded rooms or compartments for the patient. The leads are usually kept in a position where they remain parallel for a part of the distance, so as to keep radiation low.

Interior view of diathermy machine.
In the outfit shown, frequencies within the range of 6 to 16 meters are the ones most commonly utilized. The maximum power output is in excess of 400 watts.

Chapter 16

Cathode-Ray Television*

- With more television broadeasting stations on the air toclay than there were sound broadcasting stations fifteen years ago, and with the likelihood that the number will increase rapidly within the next year, radio experinenters in many localities may receive the transmissions by means of homeassembled equipment. This is now possible at a comparatively low cost, though the expense of picture transmission is too great for the average pockethook. For the information of the reader who may not be familiar with the fundamental principles of television equipment the foilowing elementary exposition is presented prior to an account of the circuit employed in a typical seceiver.

The najor problems of television were so.ved by imitating the action of the human eye, which constitutes a complete felevision system in miniature. In the eye, a lens focuses an aptional image of a sce:ne on the retina. This consists of about 130-milion tiny cells which convert light energy into an electrical current whose fluctuations correspond in
bundled tugether in the cable of the optic nerve. Fach filament conducts its tiny electrical current to a brain cell which detects or converts it into the physical sensation of light. The aggregate of these tiny effects reconstruct the scene as an optical inage.

The first difficulty encountered in imitating the action of the eye was that of providing the thousands of sets of light-sensitive cells and connecting wires which are necessary for the produttion of a high-definition jicture. The nechanical complexi-

FIG. 1-Farnsworth Poriable Pick-up Camera and Pre-Amplifier strangth to the varia-
tions in brilliance of the light from various parts of the scene. The function of the cells is to dissect a continuous image into a discontinuous mosaic of separate areas. Of these millions of cells, perhaps a hundred tho:1sand are in sharp enough focus to give a cleally-defined image of the central portion oi the scene, while the others give an indistinct image of the periphery. The eye quickly traverses the entire scene to bring all parts of it into focus, this process being facilitated by the fact that each cell retains the impression of a flash of light for about a tentli of a second after it has disappeared. It is this "persistence of vision" that makes possible the illusion of motion in the motion picture and in television.

Each cell is connected to the brain by a tiny nerve filament, millions of which are
ties and expense are so great that it has not yet been satisfactorily accomplished directly. But it is done indirectly by taking advantage of the eye's persistence of vision so as to allow a picture to be "scanned."

The scaming process is comparable to the action of the eye in repeatedly reading an entire pisge of printed matter in $1 / 10$ th second or less. Suppose, for example, that a 10×10 in. photograph be cut into 240 narrow strips each $1 / 2$ th in. wide, and that each strip be cut i:1to 240 sections each $1 / 2+$ th in. long. The picture will then be dissected into 57,600 elementary areas, which an be assembled in proper order and position like a jig-saw puzzle. I.et the entire picture be pasted on the wall of a room so dark that the picture is invisible. Then assume that a brilliant light is

[^8]focused into a narrow beam $1 /$ isth in. in cruss-section and by some ingenious means is caused to traverse the picture in a series of successive horizontal sweeps, all within the brief period of $1 / 10 t l_{1}$ second. The eve would then receive and retain the same inpression as if the entire picture were steadily illuminated ha broat beam of dimmer light.

This, in effect. is the indirect means employed in scanning a television picture. It substitutes a rapid sequence in time for the actual sexpence :n space pusition of the elements in the picture. The television pick-up equipment dissects or analyzes an optical image into a time sequence of electric currents and the receiving equipment assembles the image into a space sequence of light flashes which reoroduce the scene of action as a motion picture. This is clone by means of two types of cathode-ray tubes: The pick-up tube converts variations in the intensity of the light from different parts of the scene into corresponding fiuctuations in an electrical current. 'lhe delivery or receiving tube clatiges the fluctuations in electric current into variations in the intensity of light.

The action of both tubes, as does also the action of the cathode-ray tube in an oscillograph, depends primarily upon the emission of electrons from a cathode and their travel

The Pick-up Tube

- The tube first used by Farnsworth is an evacuated glass cylinder containing a photosensitive cathode at one end and an anode target at the other. Fifectrons are emitted irom the catlude by the action of light on a thin layer of cacsimm deposited on a silver-oside suriace. The light causing the emission is an optical image of a scene of action which is focused by a lens on the cathode in the same manner as an inage is focused on the ground-glass plate of a canera or on the retina of the eye.

FIG. 3-Farnsworth Dissector Tube with Electron Multiplier for Use at Transmitter.

The number of electrons emitted from any portion of the image focused on the plotosensitive surface depends upon the bright-

FIG. 2-"Shooting" a Television Picture in The Studio. ness of the light shining on a given spot. it large number of electrons are emitted from a loright spot in the image and a small numijer irom a dim spot. Consequently, all of the scene's gradations in light and shade are duplicated in the number of electrons emitted therefrom.

All of the emitted electrons: are attracted toward the positivelycharged target at the other cund of the tube. They have a natural tendency to repel one another and thus cause the cathode-ray to diverge or expand as it travels from the source. This natural
at high velocity to a highly charged anode. Their direction of travel is controlled by electric or magnetic fields which are used to focus them into a slender beam, or cathoderay, and to deflect that beam in any desired manner.
tendency is counteracted by the magnetic field from a coil within which the entire tube is placed like a finger in a glove. The strength of the field is adjusted so as to lold all of the electrons in their same relative position throughout the length of the
tube. Consequently, when they reach the plane of the target, they constitute what is called an electron image, in any portion of which the number of electrons is proportional to the intensity of the light in the corresponding portion of the scene.

At the center of the plane of the target is a ting hole through which are projected the electrons from that particular part of the electron image which covers the hole.

FIG. 4-Farnsworth Oscillight Assembly with Focusing and Deflection Coils.

These electrons are collected on a wire inside the target which is connected through a resistance to the positive terminal of a battery. As the electrons are drawn through the resistor they cause a difference in voltage which is proportional to the intensity of the light in that particular portion of the scene.

Assuming a $57,600-$ element picture, we have accounted for only one elementary area. From what has already been said about scanning. it should be obvious that if each of the other 57,599 elements could by some means be brought successively in front of the aperture. their corresponding electrons would likewise be projected through it. There thus would be produced an electric current whose fluctuations would be proportional to the variations in the intensity of the light in various parts of the scene. Furthermore, if the operation could be repeated at least ten times per second. the optical image would be converted into an electric current which can be reconverted into an optical image in the receiving tube. In actual practice. the operation is repeated 24 or more times per second to reduce the effect of flicker.

Such a means is providec by deflecting the cathode-ray between the poles of two sets of electromagnets supplied with alternating currents of 24 - and 5760 -cycles per second, respectively. The poles of the 24 . cycle magnet are placed above and below
the tube su ats to establish a vertical magnetic field acting in the same direction 24 times per second. Thuse of the 5 aro-cycle magnet are placed on eitler side of the tube so as to establish a horizontal magnetic field acting 5.60 times per second in the same direction. The resultant effect of their combined action is to detlect the entire electron image past the stationary aperture as a series of $: 40$ horizontal sweeps 24 times per second. If the diameter of the aperture is $1 /: 340$ h the width of the inlage, 57,600 clementary areas are successively swept past the ting hole in $1 / 24 t^{\circ}$ second.

Bach of these elementary areas has its own characteristic number of electrons and thus produces it own characteristic electric current as its electrons are projected throngh the aperture: As these currents pass through the resistance they produce corresponding differences in voltage which are amplified prior to radio transmission to the receiver. In this manner the variations in the light intensity of an optical inage which is focused on a photo-sensitive surface produce a variable-intensity cathode-ray and thus an electric current whose fluctuations are proportional to the variations in light intensity in the scenc.

FIG. 5-P. T. Farnsworth at Tranamitter Controle

The steady magretic field for focusing the beam is maintained by a DC supply from a battery or power-pack. The AC field for deflecting it vertically is maintained by a nt-cycle current generated by a vacuum

FIG. 6-Farmsworth Television Receiver.
tube circuit. The horizontal deflecting field is likewise maintained from a 5760 -cycle source. The AC current waves have a sawtooth shape so as to deflect the beam at a relatively slow speed in one direction and so quickly in the opposite direction that practically no elertrons are projected through the aperture during the retarn sweep. Details as to bow these currents are generated are too lengthy to be given now, especially as they tend to distract attention from the general metnod of operation.
The same comment applies to the means utilized to amplify the exceedingly small voltages from the pick-up tube. This is a stupendous task in itseif, nuvolving a mil-lion-fold amplification without distortion in a broad band of frequencies extending from 24 cycles to 1080 kilocycles. It may be acconplished by resistive-capacitive coupling of a nuniber of radio tubes in series, or better yet by a method of electron multiplication recently perfected by Farnsworth.

Radio Transmission

- The amplified picture-currents, together with the 24 -cycle and 5760 -cycle scanning pulses, are used to modulate or shape a radio carrier in much the same menner as a carrier is modulated by the audio frequencies used in broadcasting speech and music. But
there is one very important difference. The broadcasting of sound requires a channel width of only 10 kilocycles so that 96 channels are available in the 960 kilocycle spectrum allocated to all the North American broadcast stations. The broadcast of one 57,600-element picture 24 times per second requires a channel of nearly four times the width that suffices for 700 stations in the 200-550 meter range. Evidently there is no room for television in this portion of the radio spectrum.
Ample room is available, however, in the portion of the spectrum lelow 10 meters. So the Federal Communications Commission has allocated several wide channels in the $21 / 2$ $71 / 2$ meter band for experiments in broadcasting television. Experience has shown that these ultra-short wavelengths have several advantages, particularly as regards the elimination of double images and of interference between stations.

On the longer wavelengths, the signals travel to a receiver along two paths. One, known as the ground-wave, follows the curv-

FIG. 7-Famsworth "Multipactor"
ature of the earth. The other, known as the sky-wave, goes out into space until it is reflected and refracted in the upper atmosphere so as to return to earth at a considerable distance from the transmitting station. Most of the long-distance reception of radio signals is due to the sky-wave. The two waves interfere with one another and cause the "fading" which is so bothersome in long-distance reception. In television, they cause two images to appear at the receiver.
The sky-wave resulting from ultra-short

are attracted, an intermediate grid whicn varies the strength of the electron flow in accordance with the :ntensity of the received signal, and a fluorescent screen on which the picture appears or from which it is projected to a larger exterior screen.

The entire tube is housed in a framework of electromagnetic coils, similar to that at the transmitter, thus providing means for focusing and deflecting the cathode-ray. Quite a number of inventors have devised such tu'jes, which difier mainly in structural details. Any of them can be adapted to receive pictures fron. various types of pickup equipment. The tube developed by Farnsworth serves to illustrate the principle which is applied in all of them.

The invisible cathode-ray is established by a difference in voltage between the filament and plate, the latter containing an aperture througl: which the electrons are projected into the vacuous space beyond. Here the concent=ic magnetic field focuses the beam of high-velocity electrons to a small spot at the far end of the tube, which is coated with a fluorescent material. This material glows brilliantly wherever tlre cathode-ray strikes it, the end of the ray thus becoming visible as a tiny spot of brilliant light. The vertical and horizontal deflecting fields cause the spot to traverse the entire coating in a series of 240 closely adjacent horizontal lines 24 times per second, the general method of

FIG. 8
operation being the same as that employed in the pick-up tube. As a consequence, prior to the application of the picture currents, the entire coating glows uniformil.

Micanwhile the picture currents, as received on the aerial, are amplified and applied to the grid, which is simated between the filament and the positive plate in the tube. When a strong voltage is applied to the grid, corresponding to a bright spot in the scene, more electrons pass througln the grid than when a weak voltage is applied, corresponding to a dim spot in the scene. The cathode ray is thereby catised to vary in strength in accordance with the intensity of the light from various parts of the scene. As the brilliance of the fluorescent glow depends upon the strengtl of the cathode-ray which strikes the screen at any instant, the various elenentary areas in the screen reproduce the variations in light and shate in the scene of action. The cathode ray thus acts like a pencil in drawing a motion picture on the fluorescent screen. The present pictures are in black and white, as in a photograpl, though eventually they may be reproduced in natural colors.

A complete television receiver comprises both a sound and a picture reprorlucer. The sound reproducer may be a conventional ult-a-short-wave superheterociyne, including first detector, two RF stages and second detector, all using 955 tubes. and a one-stage AF amplifier with a 42 tube. The same aerial (sce Antema Chapter for design) and a heterodyne oscillator using a 95 tube suffice for reception of both sound and picture signals on adjacent channels. They are readily separated because of the fact that the oscillator beats with the two carriers to produce different I.F. Any possibility of interference between sound and picture currents is obviated by rejector circuits. The schematic circuit diagram of a Farnsworth receiver in Fig. 9 shows 11.25 nac as the I.F. for sound and 13.25 mc as the I.F. for pictures. Selectivity can be enhanced by two preliminary RF" stages not shown in the diagram.

In the picture reproducer the inage appears on the screen of a cathote-ray tube which may be regarded as taking the place of the speaker in a sound reproducer. The amplified picture-current voltages are applied to the grid of this thbe so as to n:odulate the slemder beam of high-velocity electrons from the heater-type cathode to the screen. These varying voltages prorluce corresponding variations in the intensity of the florescence of the screen due to the impingement of electrons thereon. The tuhe is provided with a moans for deflecting the beam horizontally and vertically and for focusing it. Farnsworth's oscillight employs magnetic focusing ant deflection. Zworykin's (RCA) kinescope uses electrostatic focusing and mag-

netic deflection. This account is confined to l'arnsworth's equipnent for the simple reason that the details are more readily available to the author.

As shown in the circuit diagram, the picture current amplificr is a superheterodyne with bist tubes in the first detector, three I.F., and second detector stages, with a 955 tube in the first video stage and a 42 tube in the second video stage. The I.F. stages are designed to pass a 2.5 mc band, which
is ample for a 300 -line picture with sequential scanning, but insufficient for a higherdefinition picture with interlaced scanning. The wide band-pass characteristic is obtained by winding the transformers with resistance wire and by adjusting the coupling between the primary and secondary windings to give a tlat-topped response curve. Any experimenter who is familiar with the design and construction of the usual type of narrowband receiver should have 110 difficulty in assembling this portion of the equipment.

The real difficulty arises in connection with the equipment for focusing and deflecting the beam. It is expected that the Farnsworth $9-\mathrm{in}$. oscillight and special coils in which it is housed may soon be available for experimental use from the Pliladelphia laboratories. The focusing coil consists of 30,000 turns of No. 36 wire wound on a bakelite tube 4 in long and $2 \mathrm{t} / 2 \mathrm{in}$. outside diameter. This fits over the neck of the cathode-ray tube. The lighl-frequency (line deflection) coils are coupled through a special transformer, code No. SA-2551, to the output of an 802 oscillator tuned approximately to the transmitter's line deflection frequency, say 6000 cycles, and synchronized by the amplified signals from the if tube
in the filter circuit comected to the second detector of the superheterodyne. This filter circuit also separates the synchronizing pulses for the low (field) frequency generator which furnishes deflecting currents to. the field deflecting coils. The circuit diagram shows 76 tubes as amplifier and oscillator for furnishing 25 or 30 cycle slopewave current, depending upon the number of picture repetitions per second with sequential scanning.

As Farnsworth, and likewise RCA, employ interlaced scanning at their transmitters, this circuit diagram is obsolete insofar as the field frequency scanning generator is concerned. Full details regarding the oscillator for interlaced scanning, together with all other constants for the complete circuit, will be published in supplements to the author's book on "Television with CathodeRays" as soon as the patent situation makes such publication possible.

The power unit consists of an 879 supplying 4200 volts to the anode of the oscillight and a $5 Z 3$ tube supplying 300 volts for the plates of other tubes in the circuit. Care should be excrcised in providing proper insulation to avoid accidental contact with the $4: 200$-volt circuit.

Chapter 17 TEST INSTRUMENTS

- The technique of making electrical measurements and the use of measuring equipment encountered in the problems of amateur radio practice are outlined in this section.

Voltage Multiplier

- In practically all radio measurement work a 0-1 DC milliammeter has been found to be sufficiently sensitive for average amateur service. To use this instrument for the measurement of voltage requires that a resisfor be placed in series with the meter, and the value of which depends upon the highest voltage to be measured and equals the range of the meter in milliamperes times the series resistance: expressed,

$$
\mathrm{R}=\mathrm{E}_{\max } / \mathrm{I}_{\max } \text { and } \mathrm{E}=\mathrm{IR}
$$

Current Shunts

- To increase the range of the above instrument up to say, 10 amperes, requires the use of a current shunt, whose function is to carry part of the total current thereby lowering the flow of current through the meter. For any current reading the value of the shunt resistance is found by dividing the resistance of the meter by the maximum range of the meter, minus 1 .

Resistance Measurements

Resistances can be measured with a precision comparable to that of the meter accuracy with the aid of the following resistance formula:

Fig. 1-Ohmmeter Circuit
where, in the diagram, R_{x} is the unknown resistance; R_{m}, the internal resistance of the meter; $\mathrm{R}_{\mathbf{o}}$, the limiting resistor; E , the battery voltage, and I_{m}, the current through the meter.

Simple Vacuum Tube Voltmeter

- This vacuum tube voltneter will measure RF or AF voltages, indicating peakvalues. It can be calibrated at 60 cycle input voltages and the same calibration curve will be satisfactory at radio frequencies. One purpose for this meter is in circuit alignment of a radio receiver in which the voltmeter is connected across an

Fig. 2-V. T. Voltmeter Mounted in CardFile Case

Fig. 3
audio amplifier through an isolating 0.1 mfd . condenser, or it may be connected across the voice coil of a dynamic loudspeaker. The instrument will determine the audio response of an amplifier, a radio receiver, or the gain of an audio or radio-frequency amplifier; in addition, it can be made to measure the percentage modulation of a phone transmitter or indicate frequency characteristics. In conjunction with an auxiliary full-wave linear rectifier, the peak voltmeter herein described will measure both positive and negative modulation loops of a modulated carrier signal.

Only a few parts are required for building this useful V. T. voltmeter. It has a range of from 1 to t volts. A small 45 volt B battery, $41 / 2 \mathrm{~V}$. C. battery, and single $11 / 2$ volt dry cell supply power for the type 30 tube. A 0 -to 1 I)(millianmeter serves as an indicator. The complete unit with batteries can be built into a $4^{4 \prime} \times 8^{\prime \prime} \times 0^{\prime \prime}$ card filing case, as illustrated in Fig. 2.
Fixed voltages of such value as to give approximate plate current cut-off are secured from the battery voltages indicated in the circuit diagram, Fig. 3. Since these voltages clange somewhat with age, this V. T. voltmeter can not be accurately calibrated; its simplicity and general usefulness around a laboratory of either a service-man or radio amateur more than compensates for this deficiency. Most r-f and a-f measurements are comparative and thus they do not require extremely accurate voltage calibration.
The unit may be calibrated by using a potentiometer and a low-reading AC voltmeter across a filament winding of a transformer. The $\Lambda \mathrm{C}$ voltmeter reads r.m.s. values; consequently 2.5 volts r.m.s. equals 3.53 volts peak. The potentioneter can be employed to impress a known ratio of this voltage across the V . T. voltmeter. The actual impressed peak voltage should never exceed the bias roltage of ahout 4.5 volts.

This same method can be utilized with higher C-bias and plate yoltage to read greater values of RF or AF voltage. In such cases, the micro-ammeter should have an opposing current network with a variable resistor arranged to allow a zero meter reading at the desired initial plate current.

Fig. 4

Ohmmeter

- A DC milliammeter can be comnected in series with a resistor and battery for making

Fig. 5-Interior View of Ohmmeter. Showing Battery. Rotary Switch and Ohmite Resistors

Fig. 6

Fig. 7
Position 1 of Switch.
Position 2 of Switch
\qquad O. 1 M.A. $0-100,000$ Ohms
Position 3 of Switch 0. 10 Volts

Position 4 of Switch $0-50$ Volts
Position 5 of Switch 0-250 Volts
Position 6 of Switch $0-500$ Volts
resistance or continuity tests. The ohmmeter illustrated in Fig. 4 has a number of additional resistors and a rotary single pole switch in order to make it function as a DC voltmeter with ranges of 0 -to-10, 0 -to-

50, 0-to-250, and 0-to-300 volts. One position of the switch connects the meter as a $0-1$ milliammeter. A box $4^{\prime \prime} \times 8^{\prime \prime} \times 3^{1 / 2 \prime 2}$ contains all parts which are moanted on a bakelite top panel, $4^{\prime \prime} \times 8^{\prime \prime} \times 1 /{ }^{\prime \prime}$. The ohmmeter has a variable resistor :11 series with a fixed resistor for setting the meter to "zero" resistance when the test prods are shortcirnuited.

Ohmmeter scales for standard makes of milliammeters can be purchased from radio meil order houses, or the scale in Fig. 7 can be cut from this page, because it is of the correct size for a 2 -inch Weston 0-1 miljianmeter.

This device is a necessity for all radio servicemen, and equally useful for amateurs or experimenters.

All-Wave Test Signal Generator

- Any type of superheterodyne receiver can be casily aligned if a test or signal generator is available. This oscillator is easily constructed in its simpler forms, such as the one shown here. Wither modulated or unmodulated test signals of any frequency from 150 KC 12 MC are available from five plug-in coils. Harmonics tan be used for higher frequencies. These coils plug into a 6-prong socket, and the coil is shiekded by an almminum cas which is also "plug-in," fitting over a ring mounting on the top of the panel.

Fig. 8
The circuit consists of a type 30 tube in a Hartley Uscillator with a 200 ohm potentiometer for a variable control of r. f. outpat. A variable grid-leak confrol provides unmodulated or self-modulated output for receiver testing, This resistor, at low values, provides an umodulaterl signal and higher values produce a modulated tone due to blocking-grid action. A $1 \% / 2$ volt filament battery and small $221 / 2$ volt B battery supply power for the type 30 tube. A twogang tuming condenser has its sections connected in parallel on the long-wave range by means of a link between two of the prongs of a 6 -prong coil form. The condenser show:1 has a 2-to-1 reducing gear drive shaft.

Fig. 9--All-Wave Test Signal Generator in Aluminum Shield Can. The coil is also shielded with a large coil-shield can, as shown

The entire unit, including batteries, is shieldec!. A $5^{\prime \prime} \times 5^{\prime \prime} \times 9^{\prime \prime}$ metal can contains the batteries and parts under $5^{\prime \prime} \times 9^{\prime \prime} \times 12^{\prime \prime}$ aluminum top pancl. For intermittent use, the batteries will last from six months to a year. Battery supply occupies less space than AC power supply.

Calilration of this oscillator can be accomplished by means of a broadcast receiver. The high frequency range of the oscillator down to 550 KC can be calibrated by means of direct or beat-iote reception of known frequency broadcast stations and the oscillator signal. The upper range may be ronghly calibrated by extending the curve, or more accurately, by employing the second harmonic which will be audlible in the broadcast range in the receiver. Dividing this reading in each case will give the fumdamental frequency of the oscillator. The latter should tune to about 350 KC . which makes it useful to line up 450 KC superhetcrodyne receivers.

If a careful calibration of the fundamental frepuency is made on the oscillator, the harmonics may be used to locate short wave stations, either amateur or broadcast. For example, if the shortwave station is listed at 6.01 megacycles, the oscillator can be set at 1542.5. 1202. 1001.66. 858.6 KC etc., which will all give harmonics on 6.01 MC . By checking at least two fundamenta: points, it is possible to ascertain which harmonic is heard in the short wave receiver. The fundamental of 150 ?. 5 has ar harmonic on 4.5 XC which mav cause ar error. but by swinging the oscillator setting over to 1202. the next fundamental having a $6,01 \mathrm{MC}$ harmonic would give no harmonic at 4.5 MC .

Test Signal Generator Coil Data		
Approx. Freq. Range	Secondary 11/4" Diam.	Caupling Coil (over center of sec.)
13 to 4.2 mc . (One tuning condenser)	15 turns No. 24 DSC, C. T., 11/2" long (space-wound)	1 tum
5100 to 1600 kc . (One tuning condenser)	38 turns No. 26 DSC, C. T., $13 / 8^{\prime \prime}$ long (space-wound)	2 turns
1800 to 530 kc . (One tuning condenser)	110 turns No. 30E. C. T., Close-wound	5 turns
550 to 150 kc . (Two tuning condensers)	285 turns No. 26 DSC, C. T., Jumble-wound over $11 / 2^{\prime \prime}$ of winding length	10 turns

The frequency of a quartz-crystal (a component in a single signal receiver) can be determined very closely by setting the quartz plate on, or leaning it against the grid of the oscillator. At resonance the oscillator will suldenly change, as listened

Fig. 10--Interior View of All-Wave Test Signal Generator, Showing Type 30 Tube, Dry Cells, Condensers and Resistors
to in a broadcast receiver tuned to the oscillator second harmonic. This test requires the manipulation of both the oscillator and the BCL receiver, but once the crystal frequency is found, the IF amplifier in the single signal receiver can be lined up to that frequency by means of the oscillator.
Note: Lining up an IF amplifier should always begin at the grid of the tube preceding the last stage of IF transformer. After that transformer is aligned (by ear or output meter), the next preceding stage
may be lined up using less coupling to the grid of the next preceding stage. It is emphasized that one must always work with a fairly weak signal, because many sets have AVC which would introduce errors with a strong signal peaking, unless a meter is used.
This test signal generator could make an ideal piece of apparatus for radio clubs. The club members would have a useful piece of equipment for testing new receivers, or aligning old receivers. A few simple pieces of test equipment could be built from club funds and the apparatus could be loaned to members in the same manner as library books are made available to readers. The advantages of a club to its members could be greatly enhanced in this manner.

An AC Frequency Meter-Monitor

- The device here shown uses a type 24 tube as an electron-coupled oscillator, tuned over the 160 meter band. Harmonics of the 160 meter range are used in the 80. 40 and 20 meter bands, and the actual calibration curve shown in Fig. 14 was plotted for the 80 meter band. For 160 meter use, the curve readings would be halved, because frequency in kilocycles is used instead of meters of wavelength.

The oscillator circuit uses a small tuning condenser shunted by a large band-setting condenser. The latter is adjusted only when calibrating the frequency meter. The smaller condenser has a vernier dial which can be read accurately for frequency determination.

The 56 tube is used as a detector, beating the external signal against the $2+$ oscillator fundamental or one of its harmonics. A slight external coupling through a pin jack to the grid of the 56 can be used to pick-up low power transmitter signals. The same coupling can be used to provide a beat note

Fig. 13-Complete Circuit Diagram of Frequency Meter-Monitor
into a receiver for checking the irequency of received signals.

The pictures show the constructional details. Of paramount importance is good rigidity and well-soldered connections. The coil is made of 78 turns of No. 32 I)SC wire, wound to cover about one-inch of space on a one-mich diameter bakelite tur)e. The cathode tap is made at a point 29 turns up fron. the ground end of the coil wi:ding.

Fig. 11-Front View of Frequency Meter-Monitor

The filament and B supply can be taken from the receiver power supply. A switch is provided which opens the negaite B lead to the frequency meter ground, making the instrument inoperative, when desired. The
filaments or heaters sliould be turned on during all oi the time the receiver or transmitter is to be operated. About a half-hour warn-up period should be allowed before calibration is made, in order to 1 ininimize frequency creepage.

This instrument can be calibrated either fromt standard frequency transmissions in the amateur bands, or liy means of broadcast station transmissions. The latter are required by law to operste within 50 cycles of their assigned frequency, and most of the higher power or better stations operate within 10 to 15 cycles of their exact assigmment. A broadcast receiver can be used to pick up these stations and a small oscillator using a B battery, a couple of dry cells and a type 30 tulbe ean be used to "zero beat" any particular received broadcast station. An elec-tron-coupled oscillator capable of tuning across the broadcast band will give stronger harmonics than a type 30 tube oscillator in this range, therefore a serviceman's test oscillator should be ased if possible. The local oscillator with zero beat to a station on 880 KC , for example, will have a second harmonic on 1760 KC in the 160 meter band. The fou th harmonic would be 3520 KC in the 80 meter hand, the 8 th harmonic on $\tau 040 \mathrm{KC}$ in the 40 meter band, and the 16 th harmoni:, if audible, on $14,080 \mathrm{KC}$ in the 20 meter band. The frequency meter is used to beat-note against this frequency and at zero beat. as heard in the broadcast band receiver and also in the frequency meter. An exact calibration point can be obtained. Several hroadcast stations can be used to provide "harmonics" in this manner for several calibration points of the frequency meter.

Graph paper with 10 divisions to the inch, both lorizontally and vertically, (100 squares to the sipuare inch) is used for drawing the curve. Fig. 14 shows a typical 75-80 meter (3500 KC to 4000 KC) curve as plotted

Fig. 12-Interior View of Frequency MeterMonitor. Note Placement of Grid Condenser and Wide Spacing of Coil from Metal Chassis
from the frefuency meter hare described. The horizontal line at the bettom of the graph denotes the tuning dial scale divisions from 1 to 100 , bit marked only in units of 10 on the graple praper. The vertical portion of the graph is used to denote frequency in kilocycles, beginning with 3400 KC and ending with 4000 KC . Similar charts can be plutted for the other amateur bands.

The first requirement is to finc a certain fequency, such as :50) KC°, so that the curveploting process can begin. Standard frequenry transmissions are sent on the amateur barrds at regular intervals.

When the standard frequency station amounces (in telegraplic corle) that it will transmit on $3 \therefore 00 \mathrm{KC}$, the receiver in the amateur station is then tuned to 3300 KC in such a inamuer that 3.500 KC falls at the exfreme end of the turing dial... at the 100 degree scale indication on the dial. Then with the chart at hand, and the standard frequency of 3500 KC known, the amateur receiver is tuned ta zero-beat. This found, the frequency meter diial is rotated until a point
is found where the irequency meter also zerobeats with the receiver. The next step is to observe the setting of the frequency meter dial, also the setting of the amateur receiver dial. If the receiver dial is at 100° for 3500 $K C$, and if the irequency meter dial is at 80°. a dot is placed on the graph paper at a point where the vertican line which corresponds with No. 80 on the horizontal line crosses this line, as shown in Fig, 1t. This point of intersection will be the 3500 KC point on the graph curve.

Ii a station asks you to check its frequency, yun first zero-beat the signal on your receiver, then you zero-beat the frequency meter against the receiver. Iou next observe the setting of the frequency meter tuning dial and ly means of the graph you can quickly find the frequency of the station which asks yon for a irequency check. Suppose this sigual is found at 600 on the frequency meter tuming scale; ruming your finger ' " 1 ' on the chart, you find that 60 on the horizontal line intersects with 3600 on the vertical line. Thus the frequency of the station you are checking is $3600 \mathrm{~K} \overline{\mathrm{C}}$.

To check the frequency of your own transmitter, zero-beat the frefuency meter against your transmitted signal and find the frequency from the curve.

Because there are 10 dividing lines for each unit of the graph, the frequency can be quite accurately shown, perhaps within 2 or 3 K C of the exact irequency. On the

Schedule of Radio Emissions of Standard Frequency

- The National Bureau of Standards has a regular schedule of standard frequency emissions from its station WWV. Heltsville, Md., near Washington, D. C. These broadcasts are available to transmitting stations for adjusting their transmitters to exact frequeicy, and to the public for calibrating frequency standards and transmitting and receiving apparatus.
These broadcasts are given on three days a week on three single frequencies 5000 . 10,000 and $15,000 \mathrm{KC}$. Those transmissions on .000 KC are particularly useful at distances within a few hundred miles from Waahington, those on $10,000 \mathrm{KC}$ are useful for the rest of the United States, and those on 15.000 KC are useful in the United States and other parts of the world as we.l.

Each Tuesday, Wednesclay and Friday (except legal holidays) three frequencies are transmitted as follows: noon to 1 p . ml ., Fasterir Standard Time, $15,000 \mathrm{KC}$; $1: 15$ to 2:1s p. $111 ., 10,000 \mathrm{KC}: 2: 30$ to $3: 30 \mathrm{p}$. m. 5000 KC .

T:ic tansmissions consist mainly of continupus, unkeyed carrier frequency, giving a continuous whistle in the phanes when received with an oscillating receiver. For the first five minutes the general call (CQ de IVWV) and the annomement of the frequency are transmitted. The frequency and the call letters of the stations (WWV) are given every 10 minutes thereafter.

The accuracy of the frequencies transnitted is at all times better than a part in five million. From any of them, tasing the method of harmonics, any fequency may be cherked.

Making Zero-Beat Adjustments

- Methods for making accurate zero-beat adjustments between two oscillators or carrier frequencies are given herewith:

$$
\text { Fig. } 15 \text { OUNING DIAL }
$$

"A-A" are the two sides of the signal
hawing the same "beat note" (tone).
" B " is the "zero beat" point (no tone).
To make a zero-beat aljustment between a transmitter and an oscillating receiver the first requirement is that a continuous wave (CTV) signal he received, properly identified. then the receiver set to zero-beat. Second, the regencration is refluced in the receiver
until uscillation nearly stops. The receiver is mext tuned slightily and the beat note heard (the strength of the note will be somewhat weaker) should be carefully reduced to zero frequency. When the condition is recognized, the receiver will be in EXACT zero-beat with the received signal. L'nless a beat-irequency indicator is used, a telephone headset will match the two frequencies to within one cycle. Precaution nulust be exercised during an audille adjustment due to the fact that the zero state may be more than one cycle per second.

To zero-heat two carrier frequencies such as a local oscillatur and transmitter signal, all that is required is the use of an oscillating receiver. First. whe transmitter signal is picked-up and the oscillating receiver made to zero-beat with it. Next, the beat oscillator is turned on and made to zerobeat with the receiver. The frequency of the receiver is NOT varied during this procedure. Now. says J. K. Clapp in an issue of the I. R. E. Proceedings, "If the frequency of the oscillating receiver is moved away from the zero audible beat setting an audible lreat tone of, say 1000 cycles is heard, the liffe-ence frequency between the signal and the local oscillator will be heard in the form of a waxing and waning andio-frequency tone. If the frequency of the receiver is varied slightly, thereby changing the audio-frequency, no change in the rate of waxing and wathing occurs. showing that the beat is between the signal and the local oscillator. If the waxilig and waning does change when the receiver frequency is varied, the beat note is between the wrong pair of oscillators. and the adjustment should be made agnin with more care-after the waxing and waning heat is heard, the oscillator may be readjusted to bring the rate of waxing and waning to one. or less cycles after which the two frequencies will he matched to within one cycle."

Absorption Type Wavemeter

- Known as "the old stand-by," this simiple wavemeter is useful in every amateur station. It consists of a tank circuit which, when tumed to resomance, gives a visual indication of resonance ly means of a g'ow from a tlash light glohe or nem lamp. Peak resonance is indicated isy peak brilliance of the lamp. This waveneter will not operate on harmonics or beats. The principle of operation is simple. Several methods of indicating devices and a suggested design for the wavencter are seen in the diagran, Fig. 16.
A shows the tuned tank systen with an aperiodic circuit (looped lanip). The lamp is lightecl by means of RF induced in the tank circuit.

In B resonance is indicated by a flashlight gilobe shumted across approximately
one inch of the lead. This is one of the best methods to use because it tumes very sharply and the indication of resonance is sharper on the condenser tuning scale than the system shown in A.
C is a variation of B, except that the coil is tapped instead of being of the plug-in type.

1) uses a nean lamp as the medium of indication.

A RF meter can be substituted for the lamp in any of the systems shown.

The wavemeter can be calibrated by checking it against a frequency meter. Or the "click" method can be used. Comple the

Fig. 16
Wavemeter to the detector of a regenerative circuit, or to the oscillator of a superheterodyne and by tuning the waveneter to resonance a distinct "click" is heard in the headphone connected to the receiver. There will be an error in the calibration due to the value of frecuency of the IF amplifier used in the receiver. This value can be rechecked and a curve can be plotted, so that ultimately the wavemeter can provide calibration within 10 KC , depending upon the type of circuit used.

A high C tank is best for sharp tuning. With a .00035 mfd . condenser, the following coils will cover the amateur bands with fair accuracy:

160 Meters: 36 turns. No. 18, close wound on a 4 -inch diam. form.

80 Meters: 18 turns. No. 18, spaced one diameter on a 4 -inch diam, form.

40 Meters: 8 ttirns, No. 18, spaced $1 / 4$-inch between turns on a 4 -inch diam. form.

20 Meters: 4 turns, No. 18, spaced $1 / 2$-inch between turns on a 4 -inch diam. form.

10 Meters: 8 turns, No. 14, spaced one diameter on a one-inch diam. form.

5 Meters: 4 turns, N(). 14, spaced one diameter on a one-inch form and tuned with a $3-30$ mmf. condenser.

The coil turns should be secured by applying small drops of ho:sehold cement or "coil dope" to the turns. Clear lacquer is also suitable for this purpose. The wavemeter should he housed in a metal can and the variable condenser rotor should be grounded to the can. A wavemeter of this type for 5 and 10 meter operation can be made by winding a small coil of bare wire, "air-wound" and supported directly to a midget variable condenser. This unit is then mounted on a support strip and the variable condenser is equipped with a bakelite rod, about 1 foot long, with the control knob at the end farthest from the tuning unit. Another rod is attached to the support which holds the condenser and coil, so that the wavemeter can be held in one hrand by means of this rod, the other hand being used to turn the long bakelite rod which varies the capacity of the tuning condenser. it 5 and 10 meter wavemeter of this type is not housed in a shield can.

Over-Modulation Indicator

- One of the Federal Communication Commission requirements is that every phone station is required to have a means for determining the limit of modulation. Thus, an over-modulation indicator must be in constant service when the phone transmitter is in operation.

Fig. 17-Circuit Diagram of Overmodula. tion Indicator

The Linear rectifier shown in Figure 17 will indicate the slightest amount of carrier shift, which means over-modulation. The instrument is simply adjusted by varying the capacity of a small condenser; thus, the optimum meter deflection is obtained with-
out resurting to coil-coupling schemes. The 50 mmfd. lixed condenser and 100 mmfd . variable condenser form a variable attenuator for RF voltage. The instrument is capacitively coupled to the antenna by running a line from the unit close to the antenta lead-in or feeder.

Fig. 18-A Piece of No. 12 Gauge Aluminum Is Bent in One Piece to Provide a Mounting Stand for the Overmodulation Indicator

The indicator is built into a $4^{\prime \prime} \times 12^{\prime \prime} \times 14^{\prime \prime}$ gamge aluminum strip, bent as shown in the photograph. Tlie wiring details appear in the schematic. The RF choke is of the piewound type and is connected in the circuit so as to allow monitoring the modulated signal : monitoring CW signals will show up key-clicks in the headphones and the meter can be usel to show relative radiation.

The needle on the meter should remain stationary at sume fixed reading on the scale, such as half or two-thirds maximum dellection.
This form of over-modulation indicator cantot be used with controlled carrier modulated transmitters. For such transmitters, a tis or 80 -tube. o: 8 an 9 should be comected in! such a manner as to indicate negative praks. and the transmitter menitored by a selective sungerheterodyne receiver with crys: tal filter, in order to test for voice transitions outside the chamel in urse. Such an indicator acts as a half-wave rectifier with its plate comected to the filament centertaf of the modulated class C stage and its filament crumected through a $0-5$ or $0-10 \mathrm{Ma}$
I)C meter and a 10,000 ohm resistor to the plate RIF -eturn circuit of the class C stage before it reaches the plate modulator.

A cathode-ray oscillograph is the best indicator for over-modulation. The trapezoidal figures readily show distortion and modulation capability even more clearly than the sine wave figures. The trapezoidal figise requires only a simple form of oscillograph.

Cathode-Ray Oscilloscope

A sketch of a modern cathode-ray tube is shown in Figure 19. The device functions as follows: A filament heats a tube called a cathode. and negatively charged particles of electricity are emitised in all directions. These electrons are attracted by a positively charged plate called an anode. This anode has a perforation in its center and a streail of electrons shoots out through this opening and impinge upon a clemically treated surface (willeraite or calcium-tungstate) called a screen, which is at the top end oi the tube. Electrons striking this surface produce a glow or fluorescence which in turn varies with the intensity of the elenent controlling the flow of electrons. A negatively charged cylinder concentrates the electrons emitted by the filament so that practically all pass through the small hole in the anode. The percentage of electrons passing through the hole in the anode depends upon the size of the hole, the field hetween the cathode and the anode, the shape of the surrounding electrodes, electrical conditions about the anode, and other factors dependent upon the temperature of the anode which are too numerous to menticn. Possibly the fraction passing through the hole can vary from one-ten millionth or less to possibly one per cent of the electrons. The energy given to the clectron to pass to the chemically treated screen ca:l only be approximated by direct experiment; however, the electrons ghin their energy from the electrical accelerating field.

Sweep Circuits

In order that the wave form of phenomena producing a vertical deflection may be viewed, a horizontal deflection is applied to sweep across the screen at a uniform rate. The linear time sweep may traverse the screea only once when observing a nonrecurrent wave form, or it may be arranged to be returned rapidly to its starting position and to repeat the linear time sweep.

When the frequency of the wave form to be obsersed is a multiple of the repetition frequency of the linear time sweep, the wave form remains stationary on the screen.

The number of cycles of the wave appearing throughout the sweep on the screen shows the ratio of the frequency of the wave form to the frequency of the linear sweep voltage. Thus, a sweep frequency of 3,000 cycles per second shows four cycles of a 12,000 cycle per second wave-form.

Fig. 19

A linear tine sweep generator with good linearity, short-return sweep time, excellent frequency stability, and adjustable in frequency over the complete audio-frequency spectrum, is available with the present tubes. The type KCA-885 gas-filled triode tube was especially designed for this service. With suitable circuits, a sweep of 200 volts amplitude (or by special arrangements, 400 volts amplitude) can be obtained. The linear time sweep is generated by charging a condenser at a constant current rate. The constant current characteristic of the plate circuit of a pentorle amplifier tube is used preferably as the constant-current controlling device. A diocle operated at low filament voltage to produce saturation may also be substituted for this purpose. Another means consists in using only a small portion of the initial charging eurve of the condenser.

Scanning or Deflecting the CathodeRay Beam

- The scanning of cathode rays upon the Huorescent screen is done by deflecting the beam of electrons verticaily and horizontally, that is, in a zig-zag fashion until the whole surface of the screen has been irradiated.

Fig. 20
The deflecting action may be accomplished by either electro-static or electro-magnetic fields. The fields must be at right angles to each other and must intersect at the tube axis. In practice, one field is controlled by the current or voltage under observation; the other is controlled by an alternating voltage to give a desired timing control. The field serves to spread the rays or tracing over the fluorescent screen. Whatever method is employed for deflecting the electronic beam, it need only be remembered that the rays are attracted or repelled by the charges in the electric field.

Notes

- An oscilloscope is easify affected by stray AC fields due to power transformers or filter chokes not being electro-magnetically shielded. This condition shows up as a curvature or ellipse of the straight line on the screen when an AC yoltage is impressed on one set of the plates. Stray RF fields from a relatively high-powered buffer stage will sometimes prevent a thin line from appearing on the screen when preparations are being made to test a final amplifier stage. The best method is to amply shield the transmitter, although in some cases shielded leads and a separate ground connection will solve the problem.

Radiotelephone Transmitter Circuit Connection to Cathode-Ray Oscilloscope

- The diagrams show how to measure the modulated RF wave of a radiotelephone transmitter with the aid of an Oscilloscope. This connection does not measure the audiofreguency characteristic of the speech amplifier and modulator.
The RF coupling and audio output voltage to the Oscilloscope are adjusted to give the desired size of figure on the cathode-ray

Fig. 21-Audio-Frequency Pick-up from Modulator for Connection to One Set of Oscilloscope Plates

Fig. 22-R-F Pick-up for Connection to P'ates of Cathode-Ray Ossilloscope
tube. The circuit connection here shown will provide trapezoidal figures for testing or montitoring the percentage of nodulation.

Applications of Cathode-Ray Tubes

Fundamentally, the cathode-ray tube may be regarded as an electron printer or the movement of an uncalibrated electrical indicating device. The calibrating scales and circuit are provided by the user to suit the conditions under which measurements or indications are being made. Only a few practical applications are given here, others of more wider scope are found in treatises solely devoted to this phase of the subject.
One of the simplest uses of the cathoderay tube is in the measurement of voltage. This is most conveniently dane with the electro-static deflection type of tabe. The displacenent of the spot on the screen is directly proportional to the applied voltage. When a DC voltage is applied, the polarity as well as the magnitude is indicated by the displacement of the spot. When an alternating voltage is applied, the spot sweeps bach and forth with an amplitude proportion al to the peak-to-peak valne of the applied voltage. For example, a 10 -volt r.mis. sine wave produces a sweep with an amplitude equal to 28 -volts. It frecuencies above 8 cycles per second, the sweep of the spot apprars as a line, due to the persistence of visitin. There is no error due to frequency until extremely high-frequencies are reached. Overvoltage on the deflecting plates, which is not excessive merely sweeps the sfot off the scresn. Thus, the cathode-ray tube, being rugiged, having a high-impedance, and being
independent of frequency, is useful as a peak voltmeter.

Since the electron beam can respond to several deflecting fields simultaneonsly or in rapid succession, the tathode-ray tube can be admirably applied to time or frequency comparisons. The feature of being able to conline in the cathode-ray tube the effects of two or even more factors makes it possible to cibtain graphical results directly on the screen.

Application Notes

- The high voltage anotle of the cathoderay tube requires 1000 velts DC for proper operation. Also DC voltages are required for the amplifier. The KCA-879 tube (rectifier) is used in a half-wave rectifying circuit for providing the necessary anode voltages for the RCA-906. The 80 -type tube, connected in a full-wave rectifying circuit is used for both rectifiers, individual filter circuits are provided. The transformer is oversize to prevent stray magnetic leakage that would otherwise affect the operation of the cathode-ray tube.

Fig. 23-Oscilloscope Chart, Showing Typical Trapezoidal Readings of a Phone Transmitter when Sweep Circuit Is Not Used

In application involving extremely accurate measurements, the: current to anode (2) should be reduced to the minimum value consistent with the desired brilliance of pattern. Where brightness is an important consideration, it may be obtained by increasing the voltage applied to anode (2) up to the maximum value. This practice, however, is not always desirable since the greater acceleration of the electrons in the beam causes reduced deflection sersitivity.

It should be noted that the beam produc.

FIG. 1-Phase relation between two AC voltages in an audio amplifier system.
FIG. $3 \mathrm{a}-400 \mathrm{cycle}$ audio waveform.
FIG. 3b-Grid Modula-tion-ideal condition.
FIG. 3c-Grid Modula-tion-over modulated.
FIG. 3d-Grid Modula-tion-with too much RF grid excitation.
FIG. 3e-Grid Modula-tion-partially modulated.
FIG. 3i-Grid ModulationTo much positive grid current.
FIG. 3g-Grid Modulation100% modulation.
FIG. 3h-Grid ModulationFinal tank circuit detuned from resonance.
FIG. 4a-Grid ModulationSame adjustment as FIG. 3 g .
FIG. 4b-Grid ModulationTypical adjustruent, heavily modulated with excessive. RF excitation and output.
FIG. 4c-Grid ModulationSame as 4b with no grid current when unmodulated.
FIG. 4d-Grid ModulationRF excitation very low and over-modulated.
FIG. 4e-Grid Modulationabout 50% modulated.

FIG. 4f-Grid Modulation-Zero per cent modulation.

FIG. 24-Oscilloscopic Patterns for Grid-Modulated Phone Transmitter.
ing a spot of high intensity will burn the fluorescent screen if it is allowed to remain stationary even for a short interval. Such operation may cause excessive heating of the glass with resultant puncture. To prevent this possibility, it is recommended that the beam be kept in notion. It is well to apply controlling voltage to the deflecting system before permitting the electron stream to flow. Stopping of the electron beam nay be accomplished by removing the voltage on anode
(2) or by increasing the bias on the control electrode to cut-off.
Users oi cathode-ray tubes are cautioned to strictly observe the techaical information printed on bulletins packed in the tube cartons. Emphasis must also be stressed on the fact that extremely high voltages are applied to the tube and wery precaution must be observed to keep from coming in contact with these potentials-fatalities can necur.

FIG. 6 -Plate Modulation-Maximum modulation with too heavy antenna load.
FIG. 6g-Plate Modulation-With insufficient grid RF excitation.
FIG. 7a-CW carrier with one section filter on final stage and saturated choke.

FIG. 7b-CW carrier with one section using larger choke.
FIG. 7c-CW carrier with two section filter, both filter chokes too small.
FIG. 7d-CW carrier 2 section filter with large chokes.

Fig. 25
Oscilloscopic Patterns for Plate-Modulated Phone Transmitter

Oscilloscopic Studies of Grid and Plate Modulation

- Interesting comparisons betweer grid and plate modulation can be revealed through the medium of the cathode-ray osciiloscope. The tracings accomptanying these paragraphs portray the conditions under which the average phone transmiter operates

In general, both grid and plate modulation systems can be made to produce nearly 160
per cent distortionless modulated output. The difficulties encountered are about equal ; for the average amateur station, grid modulation is nore easily adjusted for 20 -meter operation, and plate modulation is easier adjusted on 80 and 160 meters, due to excitation problems. A correctly adjusted plate modulated phone presents a number of problems, the magnitude of which can be verified by listening-in to seseral radio-telephonic transm'ssions.

Chapter 18

POWER SUPPLIES

- A source of high voltage direct current must be applied to the plate electrode of a vacuum tube in order that the tube may properly function. The power is usually obtained from the AC mains. It is then transformed, rectified and liltered to produce a uni-directional current.

All vactum tubes are rect fiers in principle and can be used for converting alternating currents into direct currents. In seneral, there are two types of rectifiers hnown as the half-wave and full-wave types. In a half-wave rectifier, the tube passes onehal: of the wave of each aiternation and blocks the other half; thus current flows for half the time and drops to zero the other half of the time. This causes a very uneven voltage output, because it varies from zero to maximum 60 times per second. Halfwave rectifiers prodtice a pulsating unicirectional current having a large undulatory DC characteristic.

To minimize the pulsations. and to make the current flow in a more continuous manner, a full-wave rectifier is used. This type of rectifier consists of two tithes, each connected to one end of the secondary of a transformer with a grounded center-tap connection. When one end of the transormer winding is going through the most positive part of the cycle, with respect to the center-tap, the other end of the transiormer is most aegative. Therefore, when ont tube is conducting, the other is inoperative (plate negative with respect to the cathode): one-half cycle later, the other tube conducts and the first is non-conducting, such is the process of full-wave rectification. The output voltages from the tules are connected together through a common rectifier tube filament circuit, and thus the tubes alternately supply current to the output circuit which is connecterl between the filament winding of the tuhes. and the cen-ter-tap of the high voltage transformer. The rectifier flaments are always positive in polarity.

Full-wave rectifiers deliver a direct current pulsation 120 times ner second instead of one pulsation for each cycle, therefore. the variation in output voltage is less. However, the pure direct current required for the amplifier tube is not yot availahle. so thit some form of a low-pass filter must be placed hetween the rectifier and load.

A low-pass filter is a device which selects and passes certain types of electric currents and rejects and by-passes ather unwanted types. It should be remembered that a pulsating DC voltage might he considered as that of a pure DC voltage which has a somewhat smaller aiternating vcltage superimpressed on it. In other words, the combina-
tion of the two voltages is, in every respect, exactly similar to the pulsating $D C$ voltage untput of the rectifier.

All filters and filter operations are designed to select and reject alternating currents. The characteristic of the alternating current which enable, the filter to function in the aioresaid manser is its frequency. A low-pass filter offers little impedance to the passage of alternating currents of low frequency, but materially impedes the flow of such currents of high frequency. DC can also be considered as AC of zero frequency, thus passes straight on through a low-pass filter to the load with little or no impedance. On the other hand, the pulsations, or ripple consists of an AC current laving a frequency of 120 cycles per second (twice the mains frequency) which the low-pass filter prevents from reaching the load where it would make its preseace known as hum. A low-pass filter generally consists of two clements; an inductance, or choke coil, placed in series with the load, and one or more capacities (filter condensers) shunted across the load. An inductance or choke coil is a device which resists any change in that current that flows througl it, and it offers a relatively high resistance to the flow of a varying current. The more variations there are per second, the more resistance it offers to the flow. Hecause it is in series with the load, the AC component (or ripple) passes with only the greatest of difficulty.

FIG. 1--Showing effects of rectification and
filtering of an AC current.
On the other hard, a capacity (or condenser) is a device which has exactly the opposite action to that of a choke. It offers a relatively low impedance path to the flow of alternating or pulsating current and yet represents a very high or often an infinite resistance to the flow of direct current.

Electricity always follows the path of
least resistance. Thus the DC will choose to travel throngin the choke and back to ground through the load serving the useful function of attracting electrons from the filament over to the plate of the amplifier tube on its way. The AC component. or ripple, on the other laand, faces a high resistance in the choke, but a very easy path back to ground, where it seeks to go, through the condenser. It also chooses the path of lowest resistance, and consequently is bypassed directly to ground. The choke prevents the AC ripple from reaching the plate circuit of the amplifier tube, where it would cause unclesirable hum.

FIG. 2-Common types of filter circuits.
The first three circuits, a, b, and c, indicate parallel types of filters, and d, indicates the resomant filter connected across the supply line direct from the rectifier. On account of the effectiveness of the filter it is rather bulky and requires large values of inductance and capacity for successful operation. The resonant-type choke requires much less equipment. yet more accurate adjustment. Its application is generally limited to high power efluipment. or to installations where proper equipment is available to determine effective filtering efficiency. For simple amateur installations. the "brute force" filter in some of its manyforms will prove to be highly practicable.
For amateur applications, the ripple voltage must not exceed about 1 per cent for radin telephone service. in the audin and preliminary amplifier stages. With crystal-control the power supply to the final stage (often isolated) shoulit have no more than 5 per cent ripple, and preferably much less. The simplest wav to determine ripple voltage is to measure it with a voltmeter, and from reliable reports from other stations, as to whether or not the "carripr" is pure DC .

The diagram, Figure 3, shows a simple scheme for measuring the ripple voltage with the aid of a fixed condenser (about $1 / 4$ to 1 midd.) and a high-resistance copper-oxide alternating current voltmeter. To make the measurement, comect the apparatus as shown. AFTER THE TRANSMITTER IS IN OPERATION, insert the voltmeter plug in the jack and read the voltage. This will be the approximate RMS ripple voltage (ap-

FIG. 3-Measuring ac-ripple.
proximate lecause it may be altered by the wave shape, and condenser capacity to a certain extent). Before turning off the plate current remoze the voltmeter from the circuit. If this precaution is not observed when the transmitter is started or stopped, the rush of current caused by the condenser charging or discharging may burn-out or damage the meter. The meter must be connected in the circuit in such a way that it is on the low potential or negative side of the condenser. Contact zerith the high roltage can cause a fatal shock!

Generally, an input filter system, such as shown in Figure 2b, is advisable, especially with mercury-vapor tubes. The cloke absorbs energy, similar to a fly-wheel. Due to the high inductance it resists any change in the current flowing through it. The choke coil selected should be large enough to carry the maximum direct current load without heating, and without losing too much inductance. Any coil wound on an iron or steel core has a certain amount of inductance. determined by the size of the core and the size and number of turns of wire wound on the core. The direct current which is impressed on it magnetizes the core. and this reduces the value of inductance. It is quite possible to raise the direct current up to magnetic saturation, in which case the cure will cease to exist magnetically, and the effect will be that of a pure resistance. Closed magnetic circuits of steel or iron will saturate quite casily. All cores on properly designed chokes are fitted with a break in the magnetic circuit. Usually this is in the form of a piece of fibre, bakelite, or other material which is inserted between the ends of the laminations: any methol of breaking the magnetic continuity will suffice. This gap is commonly called an "air-gap," but for mechanical reasons it is better to use a nonmagnetic substance. instead of air as the spacing. Magnetic saturation can be avoided in chokes by liberal design, and by the use
of plenty of copper and iron. Iron core material is often cheaper and easier to obtain than the employment of a large number of turas of wire; therefore, chokes should be designed with large cores, the dimensions of whish should be kept within certain limits for practicability.

Choke coils are easily built as they contain only a single winding. Care, however, must be exercised in insulating the windings from the core as the winding must often stand the full plate voltage, plus the "peak," or 1.41 times the output voltage which is delivered from the rectifier system.

Standard full-wave rectifier using 523 tube. This tube handles more current than the 80 .

The other portion of the "filter" is the capacity, or condenser. The latter consists of two types, paper and electrolytic. Paper condensers consist of two strips of tinfoil, separated by high-voltage waxed-paper, and are available in capacities up to about 2 mfd . for voltages up to nearly 5000 volts. The electrolytic types are available in several voltage ranges oi about 450 to 600 volts, maximum, per section, which is usually about 8 nifd. capacity. The action of an electrolytic condenser is dependent upon the fact when pure aluminum is immersed in a solution of sodium borate (other solutions are also used) a very thin film of oxide is formed on the suriace of the metal. This film, which is apparently of molecular dimensions, forms the die'ectric of the condenser. Because the capacity of any condenser is inversely proportional to the thicinness of the dielectric, and directly proportional to the dielectric constant, It will be seen that the very thin film of dielectric will give remarkably high capacities for extremely small areas of aluminum.

Electrolytic condensers have the following disadvantages: single units cannot be made for operation at more than about 450 volts; they draw an appreciable cirrrent (a few mililiarnperes), and, after a few years of service often break down. On voltages higher than 350 to 450 volts, it is necessary to connect several condensers in series, or in seriesparallel to obtain increased capacity. Under these conditions it is sometimes necessary to connect an equalizing resistor across each condenser as shown in Figure 4.
Some types of paper condensers are impregnated with wax, and some with oil, especially the higher voltage types. The oil
type is most desirous, although more expensive than the ordinary wax impregnated, types. F'aper condensers are rated for "flash" and "normal operating voltage" test ratings; the first refers to a test, usually about twice

FIG. 4-Electrolytic condensers connected in series plus to minus, with 500,000 ohm, 1 watt, resistor connected across each condenser in order to equalize the leakage and to prevent excessive strain on any one section of condenser.
or three times the nurmal operating voltage of the condenser, and :s only a manufacturers' test rating. The nomal operating voltage, or working voltage, is the maximum voltage the condensers will be required to stand in service; this value is often the square root of 2 , or $1 .+1$ times the direct current voltage. For reasons of safet, it is good practice to use condensers of at least 1.5 times the normal working or operating direct current voltage as read on the sutput voltmeter across the filter terminals.

All mercury-vapor tubes are rated by their "maximum peak" current and "maximum inverse peak voltage." The "maximum peak" current rating is a measure of the ability of

Typical low voltage power supply.
a tube to stand extenely high transient currents. This rating is intended to form a basis for set design in limiting the abnormal currents that occur during short circuit conditions or with certain types of filters. In addition to this rating can be included the "maximum average plate current," this is
based upon tube heating. It is the plate current as measured on a DC meter and represents the highest average current which can be continuously car-ied through the tube.

High voltage full-wave power supply using 866 or 866 A rectifier tubes.
The "maximurn peak inverse voltage" is the highest instantaneon: voltage that a tube will sately stand in the direction opposite to that which it is designed to pass current. In other words, it is the safe arc-back limit with the tube operating within the specified temperature range. The relations between peak inverse voltage, the dirsct voltage, and the r.m.s. value of alternating voltage depend largely upon the individual characteristics of the rectifier circuit and the power supply. The presence of line surges, keying surges, or any other transient wave form distortion may raise the actual peak voltage to a value which is higher than that calculated from the sine wave voltages in the transformer. It should, therefore, be emphasized that the maximum rating of the tube refers to the actual inverse vo'tage and not to the calculated values. A cathode-ray oscillograph or spark gap comected across a tube is useful in determining the actuad inverse peak voltage. In single-piase circuits, the peak inverse voltage on a rectifier tube is approximately 1.4 times the r.mis. value of the plate voltage applied to the tabe. In poly-phase circuits the peak inverse voltage must he determined vectorially.

Clarifying some points in the above paragraph it can be said that the maximum in:verse peak voltage deperds for its value on the peculiar qualities of alternating currents, where the usual type of thermo-couple, dynamometer, or similar conmon types of meters actually gire the "square root or mean square," or rim.s. value of the current, or voltage in a circuit. This means that ordinary meters read the effective current or voltage, or that which would cause the same heating effect by an equivalent direct current. In an AC circuit the masimum peak voltage or current is the square root of 2 , or 1.4 times that indicated by the meter reading. In other words, in an AC circuit, with say 100 volts indicated, the actual peak voltage is

141 volts. In a simple half-wave rectifier system, therefore, with 1000 r.m.s. volts across the transiormer secondary, there will be $1,+10$ volts peak voltage, and a single halfwave rectifier tul)e would have this voltage impressed on it, either positively when the current hlows, or "inverse" when the current does not How. The inverse peak may be twice this value if condenser input filter is used in a half-wave rectifier. With a fullwave system with a center-tap transformer, the voltage across the entire secondary will be twice that of a similar half-wave system, or 2,000 yolts, applying the above example. The maximum peak inverse voltage across each tube when not conducting (negative half of the cycle) will be $2,000 \times 1.41$, or 2,820 volts. Obviously, care must be taken in the choice of rectifier tubes and associated equipment, because it is the peak voltage which breaks down the insulation and causes failure.

In the rectifier output circuit the two halfwaves combine to form pulsating direct current, and the peaks of this current are also 1.41 times the indicated, or average value. This means that all units, such as condensers, etc., must be arranged to withstand this voltage.

Power supply for c-w operation. Low capacity filter condensers are used.

The voltage regulation of a rectifier and filter system must be given careful attention in the design of a power supply. It depends on the selection of a power transformer of substantial size and a reasonable overload capacity; the secondary should be of low resistance, and the transformer so designed that the voltage will not drop appreciably when the secondary load is increased. The selection of the proper chokes, of low resistance and high inductance and of low saturation, all contribute to the maintenance of good regulation in the power supply unit. The use of the so-called "swinging choke" which changes its inductance with variation in load, is also a help in this direction.
A heavy-dluty resistor shculd be connected across the filter output so as to draw an appreciable load. This "bleeder" resistor should normally draw about 10 per cent of
the full-load current. The resistor places a laad on the system so that a chance opencircuit will not allow the condense:s to build up to the full 1.4 times the nornal voltage which, obviously, would place a strain on the entire system. A blecter resistor must be wire-wound, preferably of the 50 or higher-watt dissipating variety. This resistor also heips keep the voltage cosistant. and to prevent "chirpy" signals when keying a CW or telegraph transmitter.

Technical Note

- Bleeder resistors must be mourited so as to allow free cirmation of air, and placed as far away as possible from transformers, condensers, and other equipment, or the latter may be damaged from the heat radiated. Ohmic values are given in the table below for blecder resistors satisfactory for most any amateur transmitter power supply.

Output Voltage	No. of Units in Series	Resistance Ohins.	Current Ma
500	1	25,000	20
1400	2	50,000	90
1,500	3	75,000	20
2400	4	100,000	20
2.00	5	125,000	20
3400	6	150,000	20

When "Cl" is connected in the circuit, the filter is termed "Condenser Input." If "Cl" is amitted, the filter is called "Choke Input."

A further methorl of obtaining good voltage regulation is to use choke input to the filter. This is essential for all types of circuits having mercury-vapor tubes. If a condenser is connected directly across the output of a mercury-vapor rectifier system (except in some form of voltage doulbers where a condenser is necessary) the conlenser will draw nearly the peak 1.4 tines the normal current from the rectifier at all times, and will also change the output voltage considerably; thus regulation will be poorer. Excent in small units, vacuum type rectifiers with choke input to filters is strong:y recommended, both for increased tube and condenser life, and for better regulation. A fuse placed in the power supply system may save a tube, condenser, or other piece of eqtipnrent, which costs many times the value oi the fuse. It
is desirable to mount the chokes in a position of minimum inductive field of the power transformer.

Bridge rectifier suitable for 1000 volt supply. Rl are equalizing resistors. 100 ohms each. 10 w .

Plate Supply Circuits and Ratings

- Inasmich as practically all antateır transmitter piate supplies use mercury-vapor rectifier tubes, the data compiled herein concern this type of tube onlv. Tubes of this type are rated on the basis of peak inverse voltage, and peak plate current.

Condenser Input

Where a filter circuit is used having condenser input, the peak plate current per tube in a full-wave circuit may rise to values as

great as four times the DC load current depending on the value of input capacitance. This naturally results in poor tube economy. In the case of B60 tubes, for example, the peak plate current of .6 ampere might be reached when the DC output obtained is only .15 ampere. A second factor which limits the application of condenser input filters for amateur work is the poor regulation obtained in such circuits.

Choke Input

With a filter circuit having a choke input, the peak plate current per tube in a fullwave circuit will generally be about 50 per cent greater than the DC. With a saturated reactor this peas current will be increased as the load current is increased to as high as $21 / 2$ times the DC .

With the knowledge of the peak inverse voltage, and the peak plate current of the rectifier tubes, it is apparent that the proper tube or tubes and associated components can be readily determined for any plate supply output. These values for given tubes are enumerated below :

Tube Type	Pcak Inv. Volts	Peak Plate Current (amp.)
82	1,400	.40
83	1,400	.80
66	7,500	.6
66 A	10,000	.6
T2	7.500	2.5
72 A	10.000	2.5
869	20,000	5.0

Standard Rectifier Circuits

Figures 1 to 6 on the facing page illustrate typical rectifier circuits applicable to amateur use. The single-phase half-wave circuit of Figure 1 is not very popular due to the fact that tine ripple is of greater magnitude and being of lower freptuency than other systems is more difficult to filter. With choke input, the DC voltage will be approximately .45 that oi the r.m.s. voltage E. Figure 2 illustrates the full-wave single-phase
circuit which every amateur is faniliar with. Figure 3 is identical in nature with Figure 2, except that four tubes (more if desired) are used to obtain higher current output. The resistors shown in the plate circuits of these tubes are very essential, otherwise one tube will generally take most of the load with the natural result that the tube life is greatly decreased; a drop of about six volts across these resistors will insure stability. Figure \pm shows a bridge circuit with four tubes, its advantage is that high DC voltages can be secured without expensive (high peak inverse voltage) tubes and with low vultage transformers. For full-wave rectification the DC voltage can be increased by using the entire secondary output of the plate transformer, in fact, the voltage will be exactly doubled; of course, this halves the current output due to the transformer current carrying limitations. Figures 5 and 6 are similar to that of Figure 2, except that they apply to threephase circuits. In the circuit of Figure 5, cach tube carries current for one-third cycle. The circuit of ligure 6 is very commonly employed in high power transmitters where three-phase power is available due to the high DC output voltage attained. This circuit has the added advantage that the ripple frequency is high, being six times the supply frequency, allowing simple filtering.

Analyzing these rectifier circuits have given the values indicated above as the maximum operating and output values for any of the tulees described.

As an example in applying these figures to the 866 tube, it is found that in a fullwave circuit (ligure 2), the maximum transformer voltage E, each side of the center-tap is $.35 \times \pi 500$, or 2650 volts. This gives a DC voltage at the input to the filter of $2650 \times .9$, or 2400 volts. The maximum I) C output is . 66 times the peak plate current of 6 ampere, or 400 MA . Hence, voltages and currents lower than these values can be used. With a saturated input reactor, the allowable DC is reduced. However, as these saturated reactors are normally used in conjunction with a class B amplifier load, the high DC and peak plate currents are normally of short duration, reducing the tube life by an amount which is not excessive.

Figure No.

Transformer Volts "E"
.7 x Inv. Pk. Vtg. $.35 \times$ Inv. Pk. Vtg. $.35 \times$ Inv. Pk. Vtg. . 7 x Inv. Pk. Vtg. $.43 \times$ Inv. Pk. Vtg. $.43 \times$ Inv. Pk . Vtg.

DC Output Volts at
Input to Filter
$.45 \times \mathrm{E}$
$.9 \times \mathrm{E}$
$.9 \times \mathrm{E}$
$.9 \times \mathrm{E}$
$1.12 \times \mathrm{E}$
$2.25 \times \mathrm{E}$
1)C Output Current in Amperes
$1.33 \times$ Pk. Plate
$.66 \times$ Pk. Plate
$1.32 \times$ Pk. Plate
. $66 \times$ Pk. Plate
$.83 \times$ Pk. Plate
1.0 x Pk. Plate

Predetermining DC Voltage

- An examination of Figure 7 will show that it can be reduced to the more simpler form of Figure 8. Here, the ratio of transformation is such that E volts are induced in the transformer secondary. From the theoretical DC output which is $.9 \times \mathrm{E}$, and subtracting all the voltage drops, which include the drop across R_{t} (the transformer resistance), across L_{t} (the transiormer leakage inductance, across V (the tube drop), across RL1 and RL2 (the choke resistances) it will be found that the output voltage can be accurately estimated. If the transformer regulation is known, a value of E can be obtained which already incorporates the transformer losses. The DC output is then $(.9 \times \mathrm{E})$ ninus 15 (the normal voltage drop) across a mercury-vapor tube, minus $I_{\text {de }} x$ (RL1 plus RL2). This gives a definite means of predeternining the DC output voltage from a rectifier using a choke input filter.

Notes on Operating Mercury-Vapor Rectifier Tubes

- In respect to the operation of the tube it is considered goorl practice to allow the filament of the tube to come up to full temperature before the plate voltage is appliect. Otherwise, the active material may be knocked off the filament. The precaution given is merely this: that the space charges around the cathotle reduce the fall of potential at the surface of the cathode so that the positive ions which are drawn to the hot cathode or filament do not have energy enough when they strike the filament to knock off the active material. It is the positive ions of mercury accelerated in the high field around the filament when there is a large space charge that is attracted to the negative filament and injure its surface.

Every precaution should be taken to keep the mercury tube out of intense radio-frequency fields. because radio-frequency oscillations introduce potentials into the gaps between the cathode and the anode of the tube which, superimposed upon conditions already existing, leads to ionization and changes of current' when they are not wanted. If the mercury tule is operating critically, it takes little to produce the necessary ionization which is needed for its operation. This added potential introduced by means of RF currents playing hetween the clectrodes is sufficient to start ionization that is not desired. The tube should likewise be kept out of magnetic fields as such fields have the effect of changing the energies of the electrons in the atoms of mercury-vapor by distorting their hypothetical orbits and making certain direction of motion easier than others. Much difficulty in filtering the output of the
rectifier may be eliminated by isolating the power supply from the transmitter and shunting the power supply with a fairly high mica condenser preceded by an adequate RF choke. A condenser of .002 mfd may be used advantageously for 40 meter operation.

Power Supply Components

- The design of a good power supply is as equally important as the design of the transmitter or receiver; too much emphasis cannot be placed upon the proper selection of the various electrical components going into the power supply assembly. The design specifications and other complementary features are outlined in the subsequent paragraphs.

Transformer Design

- A common problem in radio and allied work is to determine how a transformer can be built to supply certain power requirements for a particular application, or how to calculate the windings needecl to fit a certain transformer core which is already on hand. These problems can be solved by a small amount of calculation.
The most important factor in determining the size of any transformer is the amount of core material available. The electrical rating, as well as the physical size, is determined almost entirely by the size of the core. The core matcrial is also important, hut the present practice is to use high-grade silicon-steel shect. It will be assumed that this type of material is to be employed in all contruction herein described. Soft sheetiron, or stovepipe iron is sometimes substituted, but transformers made from such materials will have about 50 to 60 per cent of the power rating, pound for pound of core. as those made from silicon-steel. The core size determines the performance of a transformer because the entire encrgy circulating in the transformer (except small amounts of energy dissipated in resistance losses in the primary) must be transformed from electrical energy in the primary winding to magnetic energy in the core, and reconverted into electrical energy in the secondary. The amount of core material determines quite clefinitely the power that any transformer will handle.

Transformer cores are often designed so that if the losses per cubic inch of core material are determined, these losses can he used as a hasis for calculating the rating of the transformer. These losses exist in watts. and are divided between the eddy current loss and the hysteresis loss. The eddy current loss is the loss clue to the lines of force moving across the core, just as if it were a conductor, and setting up currents in it. Induced currents of this type are very undesirable and they are merely wasted in heating the
core, which then tends to heat the windings, increase the resistance of the coils and reduce the overall power handling ability of the transformer. To reduce such losses, transformer cores are made of thin sheets, usually about No. 29 gauge. These sheets are insulated from each other by a coat of thin varnish, shellac, or japan, or by the ironaxide scale which forms on the sheets during the manufacturing process, and which forms a good insulator between sheets.
"Hysteresis" means "to lag," and hysteresis in an iron-core means that the magnetic flux in the core lags behind the magnetizing force that produces it, which is, of course, the primary supply. Because all transformers operate on alternating current, the core is subjected to continuous magnetizing and denagnetizing force, due to the alternating effect of the AC field. This force heats the iron, due to molecular friction caused by the iron molecules reorienting themselves as the direction of the magnetizing flux changes. The higher the field strength, the greater the heat produced. A condition can be reached where a further increase in magnetizing flux does not produce a corresponding increase in the flux clensity. This is called "saturation" and is a condition which would cause considerable heat in a core. In practice, it has been found that all core material must he operated with the magnetic flux well below the limit of saturation.

Core losses manifest themselves as heat and these losses are the determining factor in transformer rating. They are spoken of as "total core loss," generally used as a single figure, and for common use a core loss of from . 55 -watts to 2.5 -watts per pound of core material can be assumed for 60 cycles. The lower figure is for the better grades of thin sheet, while the higher loss is for heavier grades. About 1 -watt per pound is a very satisfactory rating for common grades of material. This rating is also dependent on the manner in which the transformer is huilt and mounted, and in the ease with which the heat is radiated from the core. Transformers with higher losses nay be used for intermittent service.

The transformer core loss can be assumed to be from ; to 10 percent of the total rating for small transformers. Thus, if the core loss is known, the rating of the transformer can be easily determined. If the figure of 1 -watt per pound is assumed, the problem is further simplified. To determine the rating of the transformer, weigh the core. If for example, the core weighs 10 pounds, the transformer will handle from 100 to 200-watts. Such a transformer core can be assumed to have ahout 150 -watts nominal rating. If the weighing of the core is inconvenient, the weight can be calculated from the cubic contents, or vohme. Sheetsteel core laminae weigh appraximately onefourth pound per cubic inch.

Transformer cores are generally made of two types, shell and core. The shell-type has a center leg which accommodates the windings. and this is twice the cross-sectional areas of the side legs. The core-type is made from strips built-up into a hollow like affair of uniform cross section. For the shell-type core, the area is taken as the square section of the center leg, in this case $21 / 4$ in. $\times 41 / 2$ in. anff in the core-type, this area is taken as the section of 1 leg , and is also $21 / 4 \mathrm{in} . \times 4 \mathrm{t} / 2 \mathrm{in}$. . or an actual core area in both cases of 10.1 square inches, which is large enough for a comparatively large transformer.

To determine the number of turns for a given voltage, apply the following formula:

$$
\mathrm{F}=\frac{4.44 \mathrm{~N} \mathrm{~B} \mathrm{~A} \mathrm{~T}}{10^{\mathrm{s}}}
$$

Where l : equals the volts of the circuit ; N , the cycles of the circuit; B, the number of magnetic lines per square inch of the magnetic circuit ; A, the mumber of square inches of the magnetic circuit; and T, the number of turns.

The proper value for B , for small transformers, and for ordinary grades of sheetiron, such as are now being considered, is 75,000 for 25 cycles and 50,000 for 50 or 60 cycles.

Rewriting the above formula:

$$
\mathrm{T}=\frac{\mathrm{E} \times 10^{\mathrm{E}}}{4.44 \mathrm{NBAT}}
$$

and since N and B are known

$$
\mathrm{T}=\frac{10^{\mathrm{s}}}{4.44 \times 60 \times 50,000} \times \frac{\mathrm{E}}{\mathrm{~A}}
$$

from which

$$
\mathrm{T}=7.5 \times \frac{\mathrm{E}}{\mathrm{~A}}
$$

That is. for a transformer to be used on a 60 cycle circuit, the proper number of turns for the primary coil is obtained by multiplying the line-voltage by 7.5 and dividing this product by the number of square inches cross-section of the magnetic circuit.

On a 25 cycle circuit, the 7.5 becomes 12 . and on $\%$ cycles it becomes 9 .

Tentative Design

- Assume a transformer core that is to be used on a 115 volt, 60 cycle circuit for supplying power to two rectifier tubes, each of which takes 1,000 valts on the plate. The rectifier is of the full-wave type. The core measures $21 / 2$ inches $\times 41 / 2$ inches: hence,

$$
T=\frac{7.5 \times 115}{2.25 \times 4.5}=85 \text { (to the nearest turn) }
$$

SECONDARY WINDINGS (Turns for Voltages Given)

high-voltage winding

and th:e volts per turn equals 115 $\overline{85}=1.353$ which is the same for all colls.

Now, the secondary coil must have two wirdings in series, each to give $1,0,00$ volts, and with a middle-tap. The secondary turns
will be $\frac{2000}{1.353}=1478$ with a tap taken out
at the r39th turn.
Allowing $1,500 \mathrm{~cm}$ per ampere, the primary wire should be No. 12. The size of the wire on the plate coils may be No. 22 or $2 t$ for a 400 to 300 ma . rating.

To determine the quantity of iron to pile up for a core, it is well to consider 1 to 1.5 volts per turn as a conservative range. For trial assume 1.25 volts. Then by trinsforming the first equation:

$$
A=7.5 \times \frac{\mathrm{E}}{\mathrm{~T}} \text { or, the area reguired is } 7.5
$$

times the volts per turn: in this case. $7.5 \times$ $1.25=9.38$ sq. in.

The magnetic cross section must be measured at right angles to the laminations that are enclosed by the coil; the center leg when the core is built up around the coil: and either leg where the core is built i:p inside the coil, that is, between the arrows in the sketclies shown above.

It should he kept in mind that there is a copper, or resistance loss in all transformers. This is caused by the passage of the current through the windings, and is commonly spoken of as the "IR" loss. It manifests itself directly as heat, and varies as the load is varied: the heavier the loat, the more heat is developed. This heat, as well as other heat losses, must be removec., or the transformer will burn up. Most transformers are so arranged that both the core and windings can radiate heat into the surrounding air, and thus cool themselves. Large
transformers are mounted in oil, for cooling, and also for the purpose of increasing the insulation tactors.

In any transformer, the voltage ratio is directly proportional to the turns ratio. This mears that if the transformer is to have 110 volts input, ard 250 turns for the primary, and if the output is to be 1,100 volts, 2,500 turns will be needed. This may be expresscel as:

$$
\frac{\mathbf{E}_{p}}{\mathbf{E}_{s}}=\frac{\mathrm{T}_{p}}{T_{s}}
$$

It is often more convenient to take the figure obtained for the primary winding, and by dividing by the supply voltage the number of turns per volt is calculated. This accomplished, the number of turns for any given voltage can be calculated by simple multiplication.

Radio transformers are generally of small size. The matter of power factor can therefore be disregarded, more especially because they work into an almost-purely resistive load. In the design of radio transformers, the power factor can be safely assumed as unity, in which case the apparent watts and the actual watts are the same. Admittedly this is not always a correct assumption, but it will suffice for common applications.

The size of the wire to be used in any transformer depends upon the amperage to be carried. lior a current of 1 -ampere as a continuous load, at least 1,000 circular mils per ampere must be allowed. For transformers which have poor ventilation, or intermittent heavy load service, or where price is not the first consideration, 1.500 circular mils per ampere will suffice. If, for example, a transformer is rated at 100-watts primary load on 110 -volts. the current will be

$$
I=\frac{W}{V}=\frac{100}{110}=0.70 \text { amperes, }
$$

and if the assumption is $i .000$ circular mils per ampere, it will be foumd that this will require $1.000 \times .90$ or 900 circular mils. The wire table on page 14 shows that No. 20 wire for 1,200 mils, is entirely satisfactory. If it is desired to use 1,500 circular mils, instead of 1,000 , this will require $1,500 \times .90$ or 1.350 mils, which corresponds to approximately No. 19 wide. The difference seems to be small, yet it is large erough to reduce heating and to improve overall performance. Assume, for tentative design, a 600 -volt, 100MA high-voltage secondary: a 3 -ampere 5 -volt secondary; and 2.5 -volt 7.5 -ampere secondary. Simple cal.ulation will show a 60 -watt load on the high-voltage secondary; 15 -watts on the 5 -volt winding; and 16 -watts on the 2.5 -volt winding. a total of 91 -watts. The core and copper loss is 10 -watts. The wire sizes for the seconfaries will be for 100 mils current. No. 30 wire, 3 -amperes at

Choke Table for Transmitter Power Supply Units						
Current M.A.	Wire Sizo	No. Turns	Lbs. Wire	Approx. Core	Air Gap	wt.
200	No. 27	2000	1.5		3/32*	
250	No. 26	2000	1.75	$11 / 2 \times 2{ }^{2}$	$3 / 32^{\circ}$	5 lbs .
300	No. 25	2250	2	$2^{\circ} \times 2^{\circ}$		6 lbs .
400	No. 24	2250	3	$2^{\prime} \times 2 \times 1 /{ }^{\circ}$	$1 / 1 /{ }^{\circ}$	${ }_{7}$
500	No. 23	2500	4	21/3/ $\times 21 / 2^{\prime \prime}$		
750	No. 21	3000	6		\%	
1000	No. 20	3000	7.5	${ }^{3} \times 3^{\circ}$	${ }^{\circ}$	14
NotES: These are approximately based on high-grade silicon steol coros, with total alirgaps as						
exact inductance cannot be stated; these chokes will, however, give satisfactory service, in radio yystems.						
The wire used is based on 1000 clrcular mils per ampere; this will cause some heating on long runs, and if the chokes are to be used continuously, as in a radio telephone station in continuous						

j-volts, No. 1.5 wire; No. 11 wire for the 7.5 -ampere secundary.

For high valtage secondary windings, a small percentage should he allowed to overcome the resistance of the small wire used, so that the output voltage will be as high as anticipated. The figures given in the table include this percentage which is added to the theoretical ratio of turns, and consequently the number of turns shown in the table can be accepted as the actual number uf turns to be wound on the core of any given transformer.

Allowance should always be made for the insulation and size of the windings. Good insulation should be provided between the core and the windings, and also between cach winding and between turns. Numerous materials are satisfactory for this purpose; varnished paper or cloth, called "empire," or paper is very satisfactory, although costly. Good bond paper will serve well as an insulating medium for small transformer windings. Insialation between primary and secondary and to the core must be exceptionally good, as well as the insulation between windings. Thin mica, or "micanite" sheet is very good. Thin fibre, commonly called "fish naper" is also a good insulator. Bristol Board, or strong, thin cardboard may also be used. In all cases. the completed coil should be impregnated with insulating varnish, and either dried in air or baked in an oven. Com:mon varmishes or shellac are mosatisfactory on account of the moisture content of these materials. Air-drying insulating varnish is practical for all-around purposes; baking varmish may be substituted, but the fumes given off are inflammable and often explosive. Care must be exercised in the handling of this trpe of material. Col!odion and hanana oil lacquer is positively langerous. and in the event of a short-circuit of transformer burn-out, a serious fire may result.

If it is desired to wind a transformer on a given core, it is much better to calculate the actual space required for the windings. then determine whether there is enough available space on the core. If this precaution is nut observed, the designer may find that only about half the turns can actually be wound on the core, when the work is about three-fourths finished. From 15 to to per cent more space than is actually required must be allowed. The winding of transiormers by hand is a space consuming process. Unless the buikler is an experienced coilwinder, there is every chance that a sizable portion of the space will be used-up by insulation, etc.: not sufficient space remaining for the winding. Calculate the cubical space needed for the total number of turns, and allow from 15 to 40 per cent additional space in the core "window:" Thereby much time and labor will be saved.

Filter Chokes

- A choke is a coil of high inductance. It offers an extremely high impedance to alternating current, or to current which is substantially alternating, such as pulsating DC delivered at the output of a rectifier.

Choke coils are used in power supplies as part of the complete filter system in order to produce an effectively-pure direct current from the pulsating current source. that is, from the rectifier. The size of the choke must be such that the current flowing through it does not cause an appreciable voltage drop due to the ohmic resistance of the choke: at the same time sufficient inductance must he maintained to provide anmple smoothing of the rectified current.

Smoothing Chokes

- The function of a smoothing choke is to discriminate as much as possible between the

AC ripple which is present and the desired $D($ that is to be delivered to the output. Its air-gap should be large enough so that the inductance of the choke does lut vary materially over the normal range of load current drawn from the power supply.

Swinging Chokes

- In certain radio circuits the power drawn by a vacunm tube amplifier can wary widely. Class B audio amplifiers are good examples vi this type of amplifier. The plate current drawn by a class B audio amplifier can vary a thousand per cent, or more. It is clesirable to keep the DC output voltage applied to the plate of the amplifier as constant as possible, and the voltage should be independent of the current drawn from the power supply. The output voltage from a given power supply is always higher with a condenser input filter than with a choketyie input filter. When the input choke is of the saninging variety, it means that the inductance of the choke varies widely with the loack current drawn from the power supply. Thus, at low load currents the incluctance of the swinging choke is high and the filter acts as a choke input filter, with a relatively low output voltage. When the load current increases, the inductance of the swinging choke decreases and the filter circuit begins to act more and more like a condenser input filter. This causes the output voltage to rise somewhat. although the rise is usually adjusted so that it just offsets the voltage drop caused by the transformer and choke resistance, plus the drop across the rectified tubes. A swinging choke does not have much smoothing effect, but it is valuable in improving the voltage regulation of the power supply. The use of a swinging choke is desirable in a CW transmitter to reduce keying thumps which accur when a condenser input is used.

Design and Construction of Chokes

- A choke is made up from a silcon-steel core which consists of a number of thin sheets of steel, similar to a transformer core, but wound with only a single winding. The size of the core and the number of turns of wire together with the air-gap which must be provided to prevent the core from saturating, are factors which determine the inductance of a choke. The relative sizes of the core and coil determine the amount of DC which can flow through the choke withouf reducing the inductance to an undesirabie low value due to magnetization.

The same core material which is used in ordinary radio power transformers, or from those which are burned-out, is satisfactory for all general purposes.

In construction, the choke winding must

Two types of choke coil construction. The air-gap is approximately $1 / 32$ inch.

The air-gap can be filled with non-mag. netic material, such as brass, bakelite, etc.
be insulated from the core with a sufficient quantity of insulating material so that the highest peak voltages which are to he experienced in service will not rupture the insulation. It is good practice to operate chokes with the cores gromuled; in addition, the choke may be placed in the negative high voltage lead, in order to minimize breakdown and to keep the filtering properties at high efliciency. If the choke is monnted on a breadboard, the core need not be grounded. In some cases where extremely objectionable hum is introduced it may be necessary to completely shield and ground the entire choke assembly.

Design of Voltage Dividers

The calculation of the correct resistance values and the power ratings of voltage
dividers can be determined by the following procedlure:

Determine the voltage to be required at each tap and the current to be drawn from it. Vacuum tube manuals can be referred to for tuhe data.

Determine the bleeder current desired. This value will depend upon the total current drawn by all the tubes plus what the power supply can deliver without over-heating.

Determine the current Howing in each section of the divider.

Calculate the resistance of each section by Ohm's law.

Determine the power rating from the equation:

$$
\begin{aligned}
& \text { Watts }=\frac{I^{2} \mathbf{R}}{1,000,000} \\
& (\mathrm{I}=\text { Milliamperes })
\end{aligned}
$$

The value 1 represents the highest current any section is required to carry. If the divider is to consist of several resistors the wattage of each section should be calculated separately and the actual current in that section used for the calculation.

Voltage dividers offer a common impedance to several circuits and so may give rise to regeneration and degeneration. These effects may be eliminated by employing bypass condensers and extra filters in individual supply leads. (Hint: to constitute an efficient by-pass, the condenser reactance musst be considerahly lower than the circuit resistance, generally .1 ratio will suffice.)

FIG. 10

FIG. 11

Resistor-Capacity Filters

- Those excellent resistor-capacity filters that are featured in custom-built and very expensive equipment can be designed from very simple formula. In general, these filters function to stabilize, reduce hum and to prevent common coupling between stages. The effectiveness of the properties of an RC network is proportional to the ratio of the resistance to the reactance of the circuit; a resistive ratio of 50 to a capacitive ratio of 1 is satisfactory for all general purposes. In other words, the resistance in the filter must have a value about 50 times greater than the reactance of the condenser at the lowest frequency to be filtered.
Figures 10.11 and 12 show how to con-
nect RC filters. By-pass condensers such as those placed acruss C-hias resistors should have such a value that the impedance of the C-bias circuit is small in comparison to the olmage of the resistor.

FIG. 12

Winding Turns Per Inch

$\begin{gathered} \text { B\& S } \\ \text { Gauge } \\ \text { No. } \end{gathered}$	D.C.C.	S.C.C.	Eramel	$\begin{gathered} \text { B : }: \mathbf{S} \\ \text { Gange } \\ \text { No. } \end{gathered}$	D.C.C.	S.C.C..	Enamel
6	5.44	5.60		25	39.90	45.30	57.00
7	6.08	6.23		27	42.60	49.40	64.00
8	6.80	6.94		23	45.50	54.00	71.00
9	7.64	7.68		2 B	48.00	58.80	81.00
10	8.51	8.55		3)	51.10	64.40	88.00
11	9.58	9.60		. 71	56.80	69.00	104.00
12	10.62	10.80		教	60.20	75.00	120.00
13	11.88	12.06		33	64.30	81.00	130.00
14	13.10	13.45	14.00	3.4	68.60	87.60	140.00
15	14.68	14.90	16.00	35	73.00	94.20	160.00
16	16.40	17.20	18.00	33	78.50	101.00	190.00
17	18.10	18.80	21.00	37	84.00	108.00	195.00
18	20.00	21.00	23.00	33	89.10	115.00	205.00
19	21.83	23.60	27.00	37	95.00	122.50	215.00
20	23.91	26.40	29.00	40	102.50	130.00	230.00
21	26.20	29.70	32.00	41	112.00	153.00	240.00
22	28.58	32.00	36.00	42	124.00	168.00	253.00
23	31.12	34.30	40.00	43	140.00	192.00	265.00
24	33.60	37.70	45.00	44	153.00	210.00	275.00
25	36.20	41.50	50.00				

Rules of the Board of Underwriters Receiving Stations

Owners of insured residences and buildings are compelled to comply to the following Underwriter's rules:
a-Outdoor antemna ard counterpoise conductor sizes shall not be less than No. 14 if copper or No. 17 if of bronze or copperclad steel. Antemna and counterpoise conductors outside of buildings shall be kept well away from all electric light and power wires or any circuit of more than 600 volts. and from railway, trolley or feeder wires, so as to avoid the possibility of contact between the antema or counterpoise and such wires under accidental conditions.
b-Antenna and counterpoise where placed in proximity to electric light or power wires of less than 600 volts, or signal wires, shall be constructed and installed in a strong and durable manner, and shall be so located and provided with suitable clearances as to pre-
vent accidental contact with sucli wires by sagging or swinging.
c-Splices and joints in the antenna span shall be soldered unless made with approved splicing devices.
d-The preceding paragraphs a, b, and c, shall not apply to power circuits used as receiving antenna, but the devices used to comnect the light and power wires to radio receiving sets shall be of approved type.
e-Lead-in conductors, that is, conductors from outdoor antennas to protective devices, shall be of copper, approved copper-clad steel or other metal which will not corrode excessively and in no case shall they be smaller than No. 14, except that bronze or copper-clad steel not less than No. 17 may be used.
f-Lead-in conductors from the antenna to the first building attachment shall conform to the requirements for antennas similarly located. Lead-in conductors from the first building attachment to the building entrance shall, except as specified in the following paragraph, be installed and maintained sc that they cannot swing closer to open supply conductors than the following distances:

Supply wires 0 to 600 volts........ 2 feet
Supply wires exceeding 600 volts. 10 feet Where all conductors involved are supported so as to secure a permanent separation and the supply wires do not exceed 150 volts to ground, the clearance may be reduced to not less than 4 inches. Lead-in conductors on the outside of buildings shall not come nearer than the clearances specified above to electric light and power wires unless separated therefrom by a continuous and firmly fixed non-conductor which will maintain permanent separation. The non-conductor shall be in addition to any insulating covering on the wire.
g-Wach lead-in conductor from an outdoor antenna shall be provided with an approved protective device (lightning arrester) which will operate at a voltage of 500 volts or less, properly constructed and located either inside the building at some point between the entrance and the set which is convenient to a ground, or outside the building as near as practicable to the point of entrance. The protector shall not be placed in the immediate vicinity of easily ignitable material, or where exposed to inflammable gases or dust or flyings of combustible materials.
h-The grounding conductor from the protective device may be bare and shall be of copper, hronze or approved copper-clad steel, and if entirely outdoors shall not be smaller than No. 14 if of copper nor smaller than No. 17 if of bronze or copper-clad steel. If wholly indoors or with not more than ten feet outdoors it need not be larger than No. 18. The protective grounding conductor shall be run in as straight a line
as possible from the protective device to a good permanent ground. The ground connections shall be made to a cold-water pipe where such pipe is available and is in service connected to the street mains. An outlet pipe from a water tank fed from a street nuain or a well may be used, providing such outlet pipe is adequately bonded to the inlet pipe comected to the street water main or well. If water pipes are not available, ground connections may be made to a grounded steel frame of a building or to a grounding electrode, such as a galvanized pipe or rod driven into permanently damp earth or to a metal plate or other body of metal buried similarly. Gas piping shall not be used for the ground.
i-The protective grounding conductor shall be guarded where exposed to mechanical injury.

An approved ground clamp shall be used where the protective grounding conductor is connected to pipes or piping.
j-The protective grounding conductor may be run either inside or outside the building. The protective grounding conductor and ground, installed as prescribed in the preteding paragraphs h and i may be used as the operating ground.

It is recommended that in this case the operating grounding conductor may be connected to the ground terminal of the protective device.

If desired, a separate operating grounding connection and ground may be used, this operating grounding conductor may be either bare or provided with an instlated covering.
k -Wires inside buildings shall be securely fastened in a workman-like manner and except as provided in paragraph m of this section shall not come nearer than two inches to any electric light or power wire not in conduit unless separated therefrom by some continuous and firmly fixed nonconductor, such as porcelain tubes or approved fexible tubing, making a permanent separation. This non-conductor shall he in addition to any regular insulating covering on the wire.

1-Storage battery leads shall consist of concluctors having approved rubber insulation. The circuit from a filament "A," storage battery of more than 20 amperehours capacity, NEMA rating, shall be properly protected by a fuse or circuithreaker rated at not more than 5 amperes. The circuit from a plate, "B," storage battery or power supply shall be properly protected ly a fuse.

Transmitting Stations

- The following paragraphs apply to amateur stations only:
a-Antenna and counterpoise conductors outside buildings shall be kept well away
from all electric light or power wires or any circuit of more than 600 volts, and from railway, trolley or feeder wires, so as to avoid the possibility of contact between the antenna or counterpoise and such wires under accidental conditions. Antenna and counterpoise conductors when placed in proximity to electric light or power wires of less than 600 volts, or signal wires, shall be constructed and installed in a strong and durable manner, and shall be so located and provided with suitable clearances ats to prevent accidental contact with suci wires by sagging or swinging.
b-Antenna conductor sizes sliall not be less than given in the following table:
in the form of a grounding switch or suitable lightning arrester shall be provided. The grounding conductor for such protection shall be at least as large as the lead-in and in no case smaller than No. 14 copper, bronze, or approved copper-clad steel. The protective grounding conductor need not have an insulating covering or be mounted on insulating supports. The protective grounding conductor shall be run in as straight a line as possible to a good, permanent ground suitable for the purpose. The protective grounding conductor shall be protected where exposed to mechanical injury.
h-The operating grounding conductor

c-Splices and joints in the antenna and counterpoise span shall be soldered joints minless made with approved splicing devices. d-Lead-in conductors shall be of copper. bronze, approved copper-clad steel or other metal which wil! not corrode excessively and in no case shall be smaller than No. 14.
e-Antenna and counterpoise condluctors and wires leading therefrom to ground switch, where atfached to buildings, shall be firmly mounted five inches clear of the surface of the builxing, on a non-absorptive insulating support, such as treated pins or brackets, equipped with insulators having not less than five inches creepage and airgap distance to inflammable or conducting material, except that the creepage and airgap for continuous wave sets of 1,000 watts and less input to the transmitter shall not be less than 3 inches.
f-In passing the antenna or connterpoise lead-in into the building, a tuhe slanting upward toward the inside or a bushing of non-absorptive insulating material shall be used, and shall be so insulated as to have a creepage and air-gap distance in the case of continuous wave sets of 1,000 watts and less input to the transmitter, not less than three inches, and in all other cases not less than five inches. Fragile instulators shall be protected where exposed to mechanical injury. A drilled window pane may be lused in place of a bushing, provided the creepage and air-gap distance, as specified above, are maintained.
g-Adequate lightning protection either
where used shall be of conper strip not less than $3 / 8$ inch wide by in inch thick, or of copper, bronze or approved copper-clad stcel having a periphery, or girth, of at least $3 / 4$ inch, stich as No. 2 wire. and shall be firmly secured in place throughout its length.
i-The operating grounding conductor shall be bonded to a good, permanent ground. Preference shall be given to water piping. Other permissible grounds are grounded steel frames of buildings or other grounded metal work in the building, and artificial grounding devices such as driven pipes, rods. plates, cones, etc. Gas piping shall not be used for the ground.
j-The transmitter shall be enclosed in a metal frame, or grill, or separated from operating space by a barrier or other equivalent means, all metallic parts of which are effectually connected to ground.
k -All external metallic handles and controls accessible to the operating personnel shall be effectually grounded.

No circuit it excess of 150 volts should have any parts exposed to direct contact. A complete dead-front type of switchboard is preferred.

1-All access doors shall be provided with interlocks which will disconnect all voltages in excess of 750 volts when any access door is opened.
m-Under the conditions noted in paragraphs 1 and 2. below, wiring may be grouped in the same conduit armored cable.
electrical metallic tuhing, metal raceway, pull-box, junction box or cabinet.

1. Pcwer-supply wires art introduced solety for supplying power to the equipment to whici the other wires are connected.
2. Wires other than power-supply wires run in conduit, armored calle, electrical
metallic tubing, meta? raceways, pull-box, junction box or cabinet with power supply wires are insulated individually or collectively in groups by insulation at least equivalent to that on the power-supply wires or the power and other wires are separated by a lead sheath or other continuous metallic sheathing.

Q SIGNALS

Abbretisfion Qurtion
QRA- What is the neme of your station?
QRD- What is your epprosimate distence from my stetion?
By What privsts company (or Govatnment administeation) ere
the eccounts for cherges of your station liquidated?....................

ORD-Whare are yas going and where do you come from?
ORG-Will you indicete to memy enect frequency (or wevelength) in te. [or m.ll
inke. (or m.lf
ORH-Doni my frequency
QRJ—Are you receiving me bedly? Are "my signols weak?
QRK-Are you receiving m.woll Are my signels good?
QRL—Are you busy?
ORM-Are you being inparfered with
QRN-Are you bothered by itatic?
ORO-Shell I incrense power?
ORP-Shall I incrente power?
QRO-Shall I iend foster?
QRS-Shall I send ilower?
ORT-Shalt I stop seeding?
QRU-Have you somehing for me?
QRV-Are you ready?
QRW-Shell d tell
you ere calling him on
ORX-Shall I woit 7 When =ill you ceill me agein $7 .$.
QRY-Which is my twin?
QRZ-Who is calling mot
OSA-What is the strength of my signals (I to 5) ?
QSE-Does the strength of my signals vary?
QSO-Is my hering ac-urate 7 Artmy signals distinct?
OSG-Shall I transmit telograms (or one talegram) at ance?
OSJ-What is the cha*ge per word for ... including your interior telegraph charga?

OSK-Shall I continue the teanamission of all my traffic? I cen use broat-in operation

OSL-Can you give me achnomledgmant of recoipt?
OSM-Shall I pepeat the last telegram I sent to you? OSO-Can you comminicato with Whough
diroctly for
OSP-With you relay to 17 free of chorge?
OSR-Hes the distress call from been eltunded to?
QSU-Shall 1 transmit (or ecply) on Ac. for m.)
and or with ats of fypa A1, A2. A). or B?
QSV-Shall I transmit an series of VVV 7

OSX-OO you wish to h..er. [eall signal] on
(or m.)
OSY-Shall I change tw transmission on te. (or m.) whithout changing the irps of wave 7 or
al
OSZ- Shallit sond worct or group twica
QTA-Shall I cancel telegram numbor
as if it had not
OTG—Do you agreo with my word count 7.
OTC-How mary telegrams have you sent?
What is my true beating relative to (call sigmals) 7 or What is the truo bearing of ... [call signall to ?

QTF-Will you giva me the position of my station basad on bearings taten by radiocongasi stations you conteol?

QTG-Will you transmit your call signal for fifty seconds, ending with a dash of ten seconds. on lic. (or
m. 1 so that I can take your radiocompasis boaring?

QTH-What is your pastion in letitude and lengitude for eccording to eny ather indication?

QII-What is your true course?
QTJ-What is your sperd?
OTM-Sond esdio signals and subm ine sound signels so that I ca.t determine my beering and my distance.

OTO-Are you leaving the dock (or the part)?
QIP-Are you going to nnter the docl [or the port)?
QTO-Con you communicate with my station by means of the International Signal Cade?
QPR-What is the coprect time?
QTU-What are the working hours of your station?
QUA-Have you ny news of (cell signal of mobile station)?
QUB-Can you give me, in this order, information coneepning: visibilify, height of clouds, and ground wind for (place of observation)?
lcall
QUC- Whet is the lest messege peceived by you from
[cal)
oun-signal of mobilo station)? - Have you received the urgoncy signal made by
signal of mobile station)?
(cell
QUF-Here you recoived the disteess signal mede by (call
QUG-Are of mebile stationl?
QUH-Will you going to be forced to alight of seat (or on land)?
OUd-will you give mo the true head to follow. with no wind. for directing meto come to you?

Amuer
The neme of my stetion is
The epproximete distence between our stations it
The eccounts for charges of my station are liquideted by the privete company.
Itm going to
and 1 am coming from
Your erect frequency intc. (or wavelength in mi.) is
Your frequency (or wevelength) veries.
Your frequency
I con not rective you. Your signals ape too wedth
I receive you welf. Your signals ere good
I tm busy for 1 im buiy with-............ !. Plesese do not inferfere.
1 mm being interfered with.
1 mm bothered by stotic.
Increase power.
Decrease pewe
Send faster.
Send slower.
I have nothing for you.
I em reedy.
Pleale fell
Wait. for calling him on
C. (or m.)

1 shall call you of.
Your turn is number. for effer every other cell!.
You ere colled by
Tho strangth of your signats is
The strangth of your signats is
Your beying is ineccurate. Your signals ere bed.
Trensmit .. telegrams (or one telegram) it once.
The charge per word for
. is.......-................fronet, including
my interior telegraph charge.
Continue the transmission of all your traffic. I shall breat you if necestary.
I giva you ect nowiedgment of recsipt.
Repest the last telegram you sent to me.
Ean communiceta with free of chacgly (er through) I will peley to free of charge. hes been attended to Tho distress call received from
Tramsmit (or Reply) on
tc. for
m. 1 -nd/or with waves of type AI, A2.
I om going ot transmit (or I shall transmit) on
tc. lor m.$)$ and $/$ or with weves of type Al, A2. A3 or 1.
I hear. [call signal\} on he. [orm.!
Change to transmission on .. lic. (orm.) without cheng.
ing the typo of wave, of
Chang to trant ansther wave
Sind each word or group twieg.
Cancel telegram numbar as if it had not bean sent
1 do not agreo with your word count: I herewim repeat the first lefter of each word and the first figure of each number.
I have i... baaring relagrams for you for for deges, or
Your lisue
Your
Your true boaring retative to me. [call signal\} ise.... ...degrests
The true bearing of oclock, or (call signal) pelarive to \{call signal) is dagres of oicloch.

The oosition of your station es besed on radiocompans stetions that I
contral is
I om going to transmit ryy call signal for forty eeconds, onding with . dash of ton seconds. on ke. (or) so that you can tale my rediocompess eoering

My position in latitude, longitude (or eccord.
ing to any othep indicetionl.
My trua course is degreas.
My spend is Inots (or... Iitemeters) per hour.
I am sending endio signals and submarine sigsels so thet you can detarmine your besting and your distance.
om going to losve the dock (or the port).
1 om going to communicate with your station ky menas of the Inter. national Signal Code.
The correct time is.
The worting hours of my station ere from thebile tation] it
Following ara the weather deteils requested:

The last massege received by me from
(call signal of mobile
have received the urgoncy lignal made by
.. -.....(call signol of
mobile stetion\} at.
*. o'cloct.
lam going to be forced to alight at see lor on land] at (plece). The beromptric pressure ot sea level is … .-...... (units). The true heed to follow, with no wind. for directing you to comoto me.
OG ere reserved for special eneroneutical codes.

Chapter 19

LAWS AND REGULATIONS

General Information

- Any licensee receiving notice of violation of radio laws shall reply to said notice in writing to the FCC at Washington.

Recquests for special call-letters will not be considered.

The person manipulating the telegraph key of an antateur station must be a duly licensed operator.

The original license shall be posted in the station or kept in the personal possession of the operator on duty, except when it has been mailed to an office of the ICCC for endersement or change before date of its expiration.

Anrateur stations must nout be used to handle messages for precuniary interests, direct or indirect, paid or promised.

Anateur transmissions must be free from harmonics. Loosely-couplec circuits must be used, or devices that will result in giving equivalent effects to min!mize keying impacts, clicks, harmonics and parasitics.

1 KW power input to the stage which feeds the antenna is the maximum permissisle power for amateur operation.

Amateur operators must transmit their assigned call letters at the end of each transnission, or at least once during each 15 minutes 5 s. operation. If an amateur transmitter causes general inter ference with reception of broadcast signals in receivers of modern design, that amateur station shall not operate during the hours from 8 p . ml . to $10: 30 \mathrm{p}$. m ., local time, and on Sundays from $10: 30$ a. m., until 1 p. m., local time, upon such frequency or frequencies as eause such interference.

Each licensee of an amateur station must keep an accurate LOG of station operation, name of person operating the transmitter, with statement as to the nature of transmission. The call letters of the station, the input power to the stage which feeds the antenna, the frequency band used, the location of the station if portable operation is used. must all be entered in the station I.OG. A copy of each message sent and received must be kept on file for at least one year. This information must be available on request by authorized representatives of the Government of the United States. The statoon may be operated only t) the extent provided by the class of privileges for which the operator's license is endorsed.

Distress Signals

- The International Distress Signal is ...- - -... (three dots, three dashes, three dots) The distress signal is NOT SOS:
it is an easily-recognized group of characters of three dots, three dashes, three dots. For radiotelephony distress calls the signal is MAY'DAY. All communications must cease when a distress call is heard. Communication must not be resumed until it has been definitely determined that all is clear again. When you hear a distress call, notify the nearest source from which aid can be secured.
- It is unlawiul to sand fraudulent signals of distress or communications relating thereto; to maliciously interfere with any other radio commuricutions. Distress calls have precedence over all others. Minimum power must be used to effect reliable communication. The use of profane language is prohibited. The contents or meaning of a message must be kept secret, except to an authorized agency which takes part in the forwarding of the message, or to the addressec or his agent, or upon the demand of a court of competent jurisdiction or authority.
Secrecy provisions do not apply to broadcasts for public use, or to distress calls. In the event of a national emergency the station can be ordered closed.
In the event of an emergency an amateur station is permitted to communicate with stations other than ambetrur.
"AR" denotes the end of a message. "SK" denotes the end of a communication.
- The penalty for violating the provisions of the Communications Act of 1934 is $\$ 10$,000 . o: imprisonment not to exceed 2 years, or both, for each ofiense. The operator's license is liable to suspension for 2 years if a conviction is securel. The station license can also be revoked.
For violation of any of the regulations of the Federal Comm:ntications Commission a fine not to exceed $\$ 500$ can be imposed for each day of such offense. If the convicted person is a licensed operator his license carn be suspended for a period not to exceed : years. The station license can also be reyoked. The penalty ior not keeping a station \log is the same as related above. For malicious interference with distress communications the maximum penalty of $\$ 10,000$ and 2 years can be imposed. For malicious interference with other than distress communications the license can be suspended foup to 2 years. An amateur who accepts material compensation for any services rendered by his station is subject to a fine of not more than $\$ 500$ for each day of such offense. His license can also be suspended for as long as 2 years.

Anti－I．os 26
Atomie Number ．．．．．．．．．．． 5
Atpmation Networks．．．．． 22
Andjo I3lock Diagrams．．．．． 289
Aurlio Oncillators ．．．．．．．．．．． 33
Antomatic Key ．．．．．．．．．．． 35
Back－F．Nド ．．．．．．．．．．．．．．．．．．．．． 8
Bund I＇siss Filters．．．．．．．． 13,101
Band Spreadiny ．．．．．．．．．．． 91
Batul－Switching ．．．．．．．．．． 97
Bands，Amateur ．．．．．．．．．．．． 195
Battery bias ．．．．．．．．．．．．．．．．．． 183
13－K O＿cilator ．．．．．．．．．． 323
Beat Oscillator ．．．．．．．．．．．．．． 97
Beam I＇twer＂lubes．．．．．．．．．．． 15 \％
Beam I＇ower Amplitier．．．．．．291
13ias ．．．．．．．．．．．．．．．．．．．．．．．．91， 181
Bleeder ．．．．．．．．．．．．．．．．．． 389
Bridge Rectifier ．．．．．．．．．．．．． 389
Buzzer Corle Iractice．．．．．．．：3
（＂alibratmor Frequencs
Meter
376
（：apacitance ．．．．．．．．．．．．．．．．． 10
C：apacitive Couplins．．．．．．．．．．．． 1 \＆
（iapacitive Reactance．．．．．．． 8
Carbon Microphones．．．．．．．．．．277
Cibrier Frequency ．．．．．．．． 2 is
ciatloode ．．．．．．．．．．．．．．．．．．．．．． 15
Cathode Ibias ．．．．．．．．．．．．．．．． 183
（athore Ray Oscilloscoure．．．． $\mathrm{H}_{7} 9$
（athode Ray I＇Tevision ．．．．． 363
（：athorle Ray＇Tıbé．．．．．．．．．．．． 379
（ - L，Katio ．．．．．．．．．．．．．．．．． 18 B
Center－liap Resistor ．．．．．．．． 168
（ haranteristics．Vicmum
Tubes ．．．．．．．．．．．．．．．．．．．．33．248
Charts：
Abhreviations ．．．．．．．．．．． 401
Amateur Wiavelength－
Frequeney Bands．．．． 19.3
Antennas：
Arrays ．．．．．．．．．．．．．．．．．${ }^{4} 4$
（rallins ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51
Half－W：ave ．．．．．．．．．．．．．． 57
V ．．．．．．．．．．．．．．．．．．．．．．．．．． 6 ．
I and Diamond．．．．．． 68.69
Zиpp ．．．．．．．．．．．．．．．．．．．．．． 53
（＇hoke I）esirn ．．．．．．．．．． 397
Coil Specitications．．．．200，201
Color Code．Condenser．．．．22
Continental comle．．．．．．．．．．．． 33
Conversion ．．．．．．．．．．．．．．．．．． 411
Lquivalent＇Tube＇liable．．．l：s
Frequeney Meter．．．．．．．．．． 293
logarithms ．．．．．．．．．．．．．．．．．． 21
Meta］Tube Characteristics
※etwork Design ．．．．．．．．．．．．．．．．．．．．．．．．． 30
＂Q＂Signals ．．．．．．．．．．．．．．．．．． 402
Radio Data（＂hart ．．．．．．．． 31
Receiving lube Character－ isties ．．．．．．．．．．．．．．．．．．．．．． 1 is
Rectitier Tube Characteris－ tirs ．．．．．．．．．．．．．．．．．． 268
Replacement Tube Types．． 136
Resistor Color Corle Chart． 7
Schematic Symbols ．．．．．．． 36
Socket Connections ．．．135，137
Transformer Design ．．．．．．．39！
C＇niversal Tube Character－
isties

Vacumblabe Characteris
ties ．．．．．．．．．．．．．．．．．．．．．138． 140
Wire Thales ．．．．．．．．．．．．14， 398
Choke llesirn ．．．．．．．．．．．． 397
（ireuits．Recedvine \＆Trians－ mitting（see keceiver and Transmitter（hapters）．
Cliss A．IB，C Amplitiers．
．．19，20，274，265，284，288
Clickless Kesing ．．．．．．．．．．．．． 169
Code ．．．．．．．．．．．．．．．．．．．．．．．．．．． 34
Corle I＇ractice ．．．．．．．．．．．．． 33
Collins［II Coupler．．．．．．．．．i1， $\boldsymbol{i} 2$
Colpitts Circuit ．．．．．．．．．． 193
Communication Laws ．．．．．． 403
Concentric Lives．．．．．．．．．．． 80
Condensers，Series and I＇ar－
allel ．．．．．．．．．．．．．．．．．． 11
Condenser Reactance．．．．．．．．． 11
Condensers ．．．．．．．．．．．．．．．．．．9． 14
Condensers．Bilectrolytie and
liaper
Condenser（ammitnmeror
Conclenser Minrophone ．．．．．27i
Continental Corle．．．．．．．．．．．．．． $3!$
Controlled Carrier．．．．．．．．．． 307
Conversion Tanle．．．．．．．．．．．．．． 401
Copper＇Tuling（onls．．．．．．$\because(0), 201$
Coulomb ．．．．．．．．．．．．．．．．．．．．． 10
Counterpoise ．．．．．．．．．．．．．． 39
Compled Circeuts．．．．．．．．．．．．．．． 13

Inductive fouplinu．．．．．．．．．．．． 71
l．ink（ouplicg ．．．．．．．．．．．．．
Simplilied I＇I．．．．．．．．．．．．．．． ．sy
160 Meter Compler ．．．．．．．．is
Crystal Filter．．．．．．．．．．．．．．97．9！
Crystal Mierophome．．．．．．．．．．．．ar
Crysal Oscillators ．．．．．． 0 as．200
Crrotals：
cuts ．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ！！
（irinuling ．．．．．．．．．．．．． 100 ）
Current Amplitier．．．．．．．．．．．． 19
Current ．．．．．．．．．．．．．．．．．．．．．．．\quad ．
Current Shunts．．．．．．．．．．．．．．．．．． 371
Cut－（）ft I3ias．．．．．．．．．．．．．． 1 \＆1
D13 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2：
Dectibel ．．．．．．．．．．．．．．．．．．． 23
Detection ．．．．．．．．．．．．．．．． 20
Diatheriny ．．．．．．．．．．．．．．．．．． 3.54
Dielectrice Constant ．．．．．．．．．． 10
Diorle ．．．．．．．．．．．．．．．．．．．．．．．．．． 17
Dirmet Current．．．．．．．．．．．．．．．．is
Direction of（irrent F Fow．．．：
Directional Antennas．．．．．．． 60
Distributed Catuscity．．．．．．．．． 9
Doublers．．．．．．．．．．．．17シ．173．336
Domblet Antemia．．．．．．．．．．．．．．．．N
Doubling Frequency．．．．．．．．．． 177
Dummy Antenman ．．．．．．．．it，i．i
Dynamice Characteristica．．．．．is

Efficiency Moblulation．．． 276.283
Efficieney，＇ransmitting．．．．． 181
Electric Potential．．．．．．．．．．．．．． 3
Electrie Power．．．．．．．．．．．．．．．． 7
Electrolytic Condensers．．．．． 387
Electromagnetism ．．．．．．．．．． 7

Elect romotive-Force	Frequem'y Meter............3it	Modulated Test Oscillator..3z3
Electron 5.	Frequency Modulationz.2is	Moniturs 75
Electron Coupled Frequency	Frequenes Multipliers... ...17\%	Mounting Crystals.......... 198
Meter3.4	Full Wave Rectifler........ 388	Moving Coil Mierophone...2is
Electron Opbit Oscillator....327	(a aseous Conduction........ 17	Mu 18 $^{\text {d }}$
Electrostatie Couplinir...... 89	(irid Bias182	Mutual Conductance....... 18
Exciters:	(irid Biats Modnlationt... ...es3	Mutual Intuctance
53-2.A3	Grid Detection 15	Networks 29
di.6 Multi-land189. 215	Grid Excitation176	Neutralizing...167. 174, 179. 180
RK-:81才1. 208	Grial Neutralization178	Noise lieducing
Multi-Bandent	Grid saturation187	
Reimarta212	Grinding Crystals...... ... 98	Non-Directional Microphone.zis
Regencrative, Jones......stag	Grounds 76	Im
'Tritet210	Ground Wave 37	Ohm's Law
351211	Half Wave kectiters........391	Ohmmeter
80413	Harmonie (eneration... ... 203	Operator's livense......... 103
61.6 High Power..........elt	Harmonie Operation of An-	Oscillation 21
	tenna 41	Oscillators...97, 163 to 180. 211
Unity Coupled............eli	Hartley Circuit..........21, 193	Overmodulation Indicator...378
. ${ }^{\text {to }} 160$ Meters. 220	Heaviside Layer............ 38	Parallel Circuits..........0.187
	Henry	Parallel Jnductantes........ 11
Feeders (See Antemias).	Hertz Autenna............ 42	Parallel Oneration. 189
Field Strength Measuremen	Horizontal Directivity....... 61	Parallel Resistances......... 11
F'ilament by-1assing........192	Impedance 10, 39. 44	Parallel Wires..............ssı
Filter Cirruits.............. 386	Inductance8. 0	Parasitics181
Filter, Crystal.97. 99	Inductance Calenationo..... 11	Pentode Crysial Oscillato
Five Neters (see	Inductame : Series. lamallel	
Flux	Inductive Coupling......... . 5 ,	Permeability
Formulas:	Inductor Mierophonne.........2:8	Phase ingle.
Antenna l, engths.......... 45		Plate 1 1f
Capacitive Reactance...... 10		Plate Current
Capacity. Condenser...... 9	International Q Signals. ...402	Plate INetection
Coil "Q"................ 12	interruption Frequency . . 321	Plate Modulation
Collus Autenna.......... 50	Inverse Peak............... 268	Plate Neutralization1:8
Concentric lines......... so	Key Clicks........................16t	Plate Resistance is
Decibel 23		Polarization
Direetor Lengths.......... 62.	Kevin	Positive and Negat
Find Fed Antenna........ 50	Center-lipl69, 170	Power Amplitiers
Grid-Bias Modulation..... 298	Desights . . .16\%, 16\%. 169, 170	Power Fiactor
Hatr-Wave Antenna...... 53	(irid \ldots............ ...169	Power Levels
Impedance 11	Ker (lick Elimination.16\%, 169	Power Morl
Inductance Calculations	Keser Tubes............... 16109	Power lation
11, 18\%	Oscillator 16 tiz	Power Supplies.............385
Ohm's Law \qquad	Primary	Pre-Amplitier......2*, 2T9. 2x/r
Parallel Resomance Ciment		Pre-scleetor
Impendance Power 12	L-C Ratio Jaws. Amat	Push-l'ull Amplifiers.........
Poweri. 11 Power Factor 11	Lecher Wires................... 321	Push.Pusk Doubler.....ess. 172
$\begin{aligned} & \text { lower } \\ & \text { " }{ }^{\prime} \text { (} \end{aligned}$	L.ink Coupling...........te. 181	"Q". 12. 165. 184
Reflector langthis......... 68	1.owarithms 23	Q Sipnals...................402
Self Dias Resistance....... 94	Magnetic Flux.............. 8	Quartz Crystal F'ilfer....... ${ }^{\text {as }}$
series Resmance11.	Magnetron Oscilator...323, 326	Quartz Crystals.............. 193
Shunt Resistamee.. . . . il. 12	Magnetomoti	Quench Frequency3s3
Single Wire Antenna... 5.501	Mantisat 23	RMS 11
Surge Impedance it	Marconi Antenna.12. 59	Radiation l'atterns...40. 41. 43
Tank Capacitiesass	Mast construction 87	Radiation Resistame 39
T \& 11 Networks.......... 23	Memorizing Code........... 34	Radio-Frequency Dmplifi
Transmomer Voltave.....393	Mercury Vapor lectitie	Radio-Frequency thoke.
Transmission line spaciog st		K..............13, 165, 187
Turing Caparity...........asp	Metal Tumes	Radio-Frequency (ienerator.
Two-Wire Feeter 5	Mhus	
VHm Quarter Wave An-	Mier	Radiotelephony Theors.....273
tembits		Radiotelephones:
	Microphomeses,	
	Morlulation2:3. 288	7.5 Watt Moclulator ...e93, 291
	Modulation Methods. ..Ex2. 283	Grid Bias Momulator. 29i, 300
requency Control. ${ }^{\text {and }}$	Modutation Percentare	160 Meter l'hone.....292, 293

400 Watt Phone.......... 314	Series Resomance 12	UHF Transceivers:
30 Watt Suppress.Mod...307	Shadow Effects321	Single 76 ($21 / 2$ Meter).... 334
Variactor Control L'nit... 309	Shunt Feed................. . 167	$21 / 2$ alid 5 Meter..........331
275 Watt Modulator......310	Shunt Resistance............ 11	Metal Tube $21 / 25$ Meter. 344
$\underline{20}$ Modulator 300	Shielding 274	RCA Transceiver.......... 356
211 1rlate Mud. Phone301	Side Bands.............273. 275	Ilaigis345
210 RF Circuit	Signal (ienerators........... 373	Western Wireless.........357
'r-53 RF Amplitier........306	Skin Effect................. . ${ }^{89}$	LHF' Transmitter-Receivers:
150 Watt Phone..........313	Skip Distance............... 40	6 A 6 339
838 Modulator	Smoothing Choke........... 397	Metal Tube................ 342
300 T Transmitter 316	Socket Connections135. 137	R. T, 1..................... . 354
RCA Phone Tramsmitters.	Speech Amplitiers..277	1,afayette356
	Spheroid Microphone........ 279	
Bias Unit 311	Static Characteristics ('Tube) 18	11/2 Meter...
Radio Therapy............... 359	Standard Frequencs Trans- mission	Pipe Oscillator 361
Reactance, Caphe	Standing Waves,.......38, 77	larallel Rod Oscildator... 350
Reactance, Inductive	Super-Regeneration332	$21 / 2$ Meter...............333
Receivers:	Super-Repenerative Recoivers (See Ullf).	High l'ower M. O. P. A.. 350 11F-200 358
Antentas	Suppressor (irid............ 17	Spiral Kod Oscillator..... 353
Audio Coupling. 92	Suppressor Grid Modulation. 283	L'nderwriters' Rules........ 398
Bard-Spreading 91	Sweep Circuits.............. 379	Unity Coupling............. 186
Circuit "(9".... 89	Swinging Choke396	V. T. Voltmeter............ 371
Coil Winding Data...... 92	Symbols, Radio 36	Vacuum Tubes:
Coil Switching.......... 96	Symbols, Tubes133 'Tank Circuits............188, 189	Amplitication Fiactor...... 18
Construction	Television	Cathorle 1.5
Curnutt De-Luxe Suber. 121	Test Oseilaitor	haracteristics18. 141
Measurements....94, 96, 97	Thyratrons17, 18	1.1 and 1.5 Volt Tubes...141
R.ME-69 (ircuit......... 126	Transceivers (See UHF).	\% Volt Tubes...... 141 to 145
Single 19 Tube	Transformer Desi	2. 5 Volt Tubes..... 145 to 147
Super-(Gainer 1129. 11, 291, 392, 394	3 Volt Tubes............. 148
Superheterodyne Theory 95	Transmission Lines (Sce An-	Volt Tubes............ . 148
Super-Selective Phone	tennas).	6.3 Volt Tubes.... 149 to 160
Receiveri27	Transmitters (CW):	12 Volt Tubes............ 160
2-Tube Receiver......... 102	ingle 47	Diomles 16
1. 2-Tuhe AC Receiter. 105	47-210	- Gaseous Conduction....... 17
'TRF' Receiver.......... 108	25	(irid Control Rectifier..... 17
UHF (See UHF Chapter).	-2A3	Metal Tubes............... 133
Ultra-Gainer117	6-210	Pentodes 16
R-C Filters. 398	35 T	Plate Resistance......... 18
Rectification 16	3.1 Amplitier............ 23	Rectitiers............162, 163
Rectitier Filter Systems.... 389	11K-154 Amplitier........ 2	Socket Connections..135. 137
Rectitiers 391	$61.6-11 \mathrm{~K}-3.54$	Special Tubes. 152
Regenerative Detector.92-94	RK-35-RK-36 243	UIIF J'ubes............161-162
Retlectors61. 62	Taylor T814............... 246	Tables:
Repenerative Oscillator..... 209	Tritet Oscillator........172. 210	Antenna Tab
Regulations, Amatew 403	Tubes (Sce Vacumm Tube	53, 57, 64, 67, 68, 69
Reinartz Oscillator.. 212	Chapters).	Metal 'Iubes............... 133
Relay-Rack Construction.... 304	Tube Block Diagrams....... 223	Lomarithms 24
Reluctance	TNT Oscillator.............. 19	Wire Table...........14, 398
Resistance	T-G-T-P Circuit............ . 193	Vacuum Tube Voltmeter...371
Resistance Measurements	Tuning (apacities............190	Variactor Carrier Control. 309
....................371. 372	Twisted Pair Feeders...... 56	Velocity Microphone........278
Resistance, Series... 11	UHF Antennas.	volt 5
Resonance 12	. 64, 77, 78, 79, 80, 81, 324	Voltage Amplifier...19, 27, 280
Resonant (ircuit Impedance 12	UHF Theory 321	Voltage Dividers......397, 389
Ribbon Microphone......... 278	UHF Tubes161, 16	Voltage Regulation
Ripple 386	UHF Micro-W	Voltage Multiplier............3871
RMS Values 11	320 MC Transmitter...... 328	Volume Expander.......... 159
Screen-Grid 16	66 CM Transceiver........ 328	Watt ${ }^{\text {a }}$
Screen-Grid Modulation..... 283	WE-316A Oscillator....... 330	Wavelengths. Amateur. 195
Self Bias.................. 94	UHF Receivers:	Wavencters325, 377
Self-Excited Oscillaturs.....193	$11 / 4$ Meter................ 331	Wave Traps...............171
Sending 33	Acorn Regenerative $\mathbf{R F}$. . 349	Wire Tables.............14, 398
Series Circuits...........6. 167	4-Tube Superheterodyne...346	X and Y Cut Crystals..... 196
Series Feed167	7-Tube Superheterodyne... 347	Zero Beat. 3 \%7
Series Resistance 11	8 -Tulse Superheterodvne... 348	\%epp Antenna............51, 58

FM LIDS TO OT'S— ZL to TF! HARRISON serves 'em all!

Since 1925 "Harrison" has bewn the "buy-word" of discriminating Amateurs Hams, beginners and old-timers alike, have come to consider Harrison as the on fayber of frams, beginners and old-timers alike, have come to consider Harrison as the one really there are several-

- Prompt, intelligend SERVICE that makes mail order buying a pleasure!
- Prices that actually mean moxe watts per dollar!
- Enormous stock eaabling immediate shipment without substitution?
- Unconditional guasantee of eomplete satistaction with every transaction!
In addition to world famous "Speciris"' Harrison stocks the products of all leadirg manufacturers. As an AUTHORIZED DISTBIBUTOR maximum discount: are exterceded to all Amateurs.

We feature-
SEND YOUR NEXT ORDER TO HARRISONI

Aladdin
Amperite
Amphenol
Astatec
Beede Meters
Eirnbach
rush
Bud
Cardwell
Centralab
Cornell-Dubiliet
A meriean Mierophone
American
a mperex
a \& W Inductors
Bliley
Breting
Burgess
Coto-Cris
Eby
Esico Irons
Frost
General Elegtric
General Trawiformer
Gen-Ral
Guardiant Relays
Hammarlund
Hoyt Weters
ICA
Clough Eremgle
Communicati"n
Products
Dunco Rtlays
Eimac
Hallicrafters
L. R. C.
Jefferson
Johnson
Kenco Keys
Leicbner
Littefuse
Lymeh
Magnavox
Mallury
Nallunal
Ohnite
Heintz \& Kaufman
Hicknek
Janette
Kester
Krauter Tools
Mat. Key
Mueller Clips

Patterspn Peak Products Pioneer
Radio Receptor
Readrite
RME
Rola
Sangaro
Shure
Signal
Premier Speakerg
Pyrex
Radio Transeniver
Labs.
Ratheon RK
RCA-DeForest Tubes

Sylmania Thindarsen Trimm Tusgsol Turner Universal U. T. C. Ward-Leonard W right DeCoster Yaxley Yaxley RCA Transmitters Rider
Sargent
Triplett
Valpey
Wistinghouse Weston

RECEIVERS

HALLICRAFTERS HAMMARLUND RME RCA
SARGENT
PATTERSON BRETING NATIONAL
TIME PAYMENTS TRADE-INS

Come to the Friendly Ham Store!

Between Vesey, Barclay and Greenwich Streets.

MARL GOUPON

TODAY

For MORE WATTS PER DOLLAR!

Bill Harrison (W2AVA)

सHB 12 West Broadway, N. Y. C. Sa. OMI!
i am really interested in setting more real value for evers daliar I pend:

Pse pur mi name on ar mailing list fr wree Ham Bulferins.
Also sind me, without 'harge, the forlowing manafiaturers' cataloge eg or money saving discounts:
ivontinu4 list on a separate reet, if necessary) Tnx es CL.

Name \qquad
(!n.)

i	100	Fitament	$\{0.1\}$
\therefore	2.00	Filament	$11.1\}$
\therefore	100	Filament	10.9
\therefore	$\ldots 0$		

...HIGH QUALITY...LOW PRICE

ACI 200

ATR 219

The ACT-40 Transmitter is nominally rated at 40 watts output on either 'phone or c.w. The r-f system employs an RCA-47 as a crystal oscillator, an RCA-802 as a buffer or doubler and two RCA-801's as final amplifiers. Coils are available for the $20,40,80$ and 160 meter amateur bands. The a-f system employs two RCA-57's as speech amplifiers, 2 RCA-45's as drivers and 2 RCA-801's as Clasi "B" Modulators. Individual units of the ACT-40 may be purchased separately. The price complete for 'phone operation with one set of coils but less tubes, crystals, microphone, key and other accessories is $\$ 235.00$.
The ACT-200 Transmitter is nominally rated at 200 watts output on 'phone and 260 watts output on c.w. The r-f system employs the r-f unit used in the ACT-40 to drive 2 RCA-838's in the power amplifier. The a-f system consists of a separate speech amplifier unit which mounts on the operating table, driver stages mounted in the transmitter proper, and 2 RCA-838's as Class " R " Modulators. Individual units of the ACT-200 may be purchased separately. Coils are available for 20, 40, 80 and 160 meter hands. Amateur's net price for ACT-200 with one set of coils but less tubes, crystals, microphone, key and other accessories, \$47i.00.
The ACR-175 Receiver is an 11 tube supesheterodyne covering from 500 to 60,000 kilocycles. Incorporating such advanced design features as magnetite-core i-f transformers, crystal filter, electron-ray tuning and signalinput measuring tube, two i-f stages, a.v.c., band-change switch, single-control tuning, this receiver is ideally sulted for communication requirements. The amateur's net price complete with tubes, speaker and power supply is $\$ 119.50$.
The ATR-219 Transceiver is designed for operation by licersed amateurs in the five meter band. For transmitting. an RCA-19 is employed as a unity-coupled oscillator, another RCA-19 as a Class " B " Modulator and an RCA-30 as a speech amplifier. For receiving, one RCA-19 is used as a super-reg nerative detector, the RCA-30 as an a-f amplifier, and the other RCA-1") as a Class " B " audio-output tube. Space is provided in the cabinet for batteries. The amateur's net price, less tuhes, batteries, heacphones, microphone, ctc., is $\$ 19.95$.

[^9]

For more than a quarter of a century, Cornell-Dubilier has been the largest exclasive manufachyrer of condensers. C-D condenvers include every type reeded the radio and electrical fields, from the midget replacement to the larger transmitting capaciors.

CORNELL-DUBILIER CORP. - 1000 HAMILTON BLVD. SO. PLAINFIELD, N. J.

CONDENSER REQUIREMENTS..

TYPE TJ DYKANOL TRANSMITTING CAPACITORS

Dereloped after many years of laboratory research and study, the C-I) line of Dykanml impregnated and filled tramsmitting condensers are accepted as standard by all technicians in the radio industry. Their extreme compactness, sturdy construction and proven dependability make them most desirable where utmost satisfaction is demanded.

TYPE 86 Hermetically sealed in glazed porcelain containers. the Type 86 Mica Transmitting condensers are entirely impervious to the most severe temperature and humidity conditions. By the use of Mica as a dielectric, it has been possible to reduce the loss of power flowing through the capacitor to $1 / 20$ that of ordiany flint glass dielectric condensers. Supplied with heavy terminals and convenient mounting feet, this capacitor is the ideal transmitting condenser for use in tank, plate blocking, grid, and antenna coupling circuits.

Ma			Maximum Current in 15.00075003750				Amps.	Maximum			Maximım Current in 1500075003750				Amps 1875
Car	D.C.		List	K.C.		K.C.	K.C.	Cap.	D.C.		List	K.c.	K.C.	K.C.	K.C.
M fat	Voltage	Cat. No.	Price	20 m.	40 m	80 m .	160 m .	Mfd.	Voltage	Cat. No.	Price	211 M .	40 m .	80 m .	160 m .
00005	12,500	45A.86	\$3.75	3	2.5	1.5	1	. 0015	12.500	215A.86	\$5.50	9	10	11	12
. 00001	12.500	31A-86	3.75	5	4	3	2	. 002	7.000	22C-86	5.25	8	9	10	10
. 0 C0225	12.500	325A-86	3.75	7	8	6	4	. 002	12.500	22A-86	6.50	9	12	13	15
. 0005	7.000	$35 \mathrm{C}-86$	3.75	7	8	6	4	. 003	7.000	23C-86	6.00	9	10	10	10
. 0005	$1 \pm .500$	35A-86	4.25	8	9	8	7	. 005	7,000	25C. 86	7.00	9	11	12	11
. 001	7.000	$21 \mathrm{C}-86$	4.25	8	9	10	8	. 005	10.000	25B-86	9.50	10	13	14	15
. 001	12.500	21A-86	5.00	9	10	11	12	. 01	3.500	$110 \cdot 86$	7.00	10	13	14	14
. 0015	7.000	215C-86	4.75		9	10		. 01	7.000	11 C .86	9. 50	10	13	15	15

Type 9 and 4 Moulded Misa Transmitting Condensers. Only the finest of raw material. subjected to most severe laboratory tests is employed in the construction of these capacitors. Exten-
 sively utilized in aircraft, marine, and submarine transmitters because of their high degree of dependability and exceptional adaptability.

These, and other transmitting capacitors completely detailed and listed in Catalog No. 133 A supplied free on reyuest. Available at all C-D authorized distributors.

IF YOU WANT MORE OUTPUT

Use C and S Crystals In Your Jones Exciters

Jones 6L6 Oscillator

- You can operate a crystal oscillator on its fundamental frequency, as well as on its harmonics, in the new Jones All-Band Oscillextor circuit shown above. Try this new circuit . . and a C-\&-S Crystal at the same tirre. The performance of both will surprise you

C and S Holders, $\$ 1.00$ I. C. A. Holders........... $\$ 1.00$

The new C-\&-S Holder
Is Illustrated Above.

C and S Crystals Insure Success

$T O U$ can not realize the full benefits from the new Jones Oscillators or Exciters unless you use a GOOD crystal. If the crystal has two "humps" or "peaks." it is worthless for harmonic operation. C-and-S has a de-luxe crystal for the Jones Harmonic Oscillator: it is conservatively priced and it has the endorsement of Framk C. Jones.

Prices:

C-\&-S CUT K-96. A low-drift, high activity 40,80 or 160 meter MOUNTED crystal. $\$ 2.75$
Same Crystal as above, but unmounted. 80 or 160 mefers only ... $\$ 2.00$
THICT C-\&-S CUT. An extremely thick cut crystal. Lov drift, high activity. S-zpplied mounted only. 7.00J KC Band...... $\$ 3.50$ 14.00J KC Band...... $\$ 6.00$ 100-KC Standard Frequency Bars, X.cui, mounted.... $\$ 9.50$ SS Super IF Filter Bars, X-cut, mounted, 450-520 KC.... $\$ 4.50$ Specirl Crystal Grinding and Cutting for Wholesalers. Prices on Request.
We solicit orders for single frequenct networks, Army, Navy and Traffic Nets. These crysials are available at regular prices, if for 80 or 160 meter oferation.

- Commercial and Police-Frequency Crystals.

SUPEA-THICK C-\&S CUT. For Commercial and Police Fadio Only. Attractive Prices on Eequest.

\mathbf{C} and \mathbf{S}

IEFFERSON Ti

FILAMENT TRANSFORMERS

You Can Depend On

Typical of the values in the Jefferson line of fourtert Filamert Trarstormers are the following
Ca:. No. 464-201-Pri. 115 volts 60 cycles-Sec. $21 / 2$ vol: CT. 12 Amps. Secondary insulation tested at 7500 volts-Your cost \$1.20.
Cai. No. 464-321-Pri. 115 volts 60 cycles-Sec. 7.5 volts CT. (1) 6.5 Amps. Secondary Insulation tested at 2000
voits-Your Cost $\$ 1.80$.
The above units are also available completely shielded

PLATE SUPPLY TRANSFORMERS

Unuisual vaiues in all popular size pla'e supply transformeis are listed in the complete Jefferson catalog. The tollowing are representatuve:

Cat. Wo. 465-18 delivers 1000 : 1253 volts DC at 300 mill:amps. Weighs 30 pcund. - Your cost $\$ 13.80$.
Cat. No $455-211$ will deliver 1000 vois DC 400 MA with convertiona! full wave rectifier on 2000 volts DC205 M. writh bridge type rectifier-Your cost $\$ 15.00$.

SWNEING and SMOOTHNG CHOKES

Conservativoly rated swinging anit smoothing chokes a carrying capccities up 10500 MA are listed in the -itferson eafalog.

亏̌winging C?.cke No. 466-360 has capacity of 170 to 500 MA, -Inductance 15 to 5 hemies, -iesirtance 60 ohms. You. cost 59.00.
snowthing Choke No. 46E-370-with ccpacity of 500 MA - Lhducianse 15 henries, Resistance 1011 ohms,-priced at $\$ 10.29$.

MODULATION TRANSFORMERS

A Complete Jefferson Liae

A line of $: 1$ modulation transformers listeca to take care af all nopular requirements. The followirg is outstanding
Trensformer No. 467-526 for coupling PP 6L6's in Clas:a $A B_{2}$ to Class C load-60 watts capacity. Pri. 3800 ohmes Secordary: 720:) ohms with 120 MA DC or 3000 ohzs with 200 MA DC for single 03A or two MOO's-Your cosst oaly $\$ 5.40$.

WPIIF ER CIFEYYT DHAERARMS

Jones Radio Handbook

High Power Condensers

The Famous WS 1502035

35 mmf per sect. ort I5000 volts $\$ 15.00$ net

Users of WS
Condensers
W4DHZ
W6CUH
W6LLQ
W6ITH

SOME POPULAR SPLIT-STATORS ...

Type	Max. Cap.	Peak V.	Air Gap	Length	Net Price
WSI502035	2-35 Mmi.	15000	.480"	161/2"	\$15.00
WS 1202050	2-50 Mmi.	12000	.355"	161/2"	15.50
WS75210	2-100 Mmf.	7500	.230"	$161 / 2^{\prime \prime}$	13.33
WS60210	2-100 Mmi.	6000	.168"	$16^{\prime \prime}$	13.00
WS4204	$2-40 \mathrm{Mmf}$.	4000	.105"	43/4"	8.00

TUBE DATA SHEETS

Get more power from your tube. We have available on request data sheets on most of the medium and high power tubes giving detailed dope on "judicious overloading" as recommended by W6CUH. Drop us a card with your tube type.

NEW CATALOG
Write at once for our brand new Amateur Catalog R-110. Over 40 different types of High Power Condensers. New transmitting coils on Mycalex. 1936 Resonant Filter. High Power Amplifiers and Transmitters, Phone or C.W. Fully illustrated.

WSN204

30 mmf $\$ 5.00$
net

WSN2852
210 mmf
\$6.66
net

WSN852
10 mmf $\$ 3.33$
net

WSN204

ORDER DIRECI

Order direct from this page. By dealing direct with you we can not only give you better service, but also solve your technical problems. Goods shipped express collect unless otherwise requested. Terms are cash with order, or 50% deposit balance c.o.d.

WSN2852
WSN852

BROADCAST-RECORDING-SOUND

We design and build transmitters and special equipment of all kinds, including high quality speech input equipment for broadcast and sound picture installations. Our new Catalog R-112 lists high-grade attenuators, standard gain set, precision resistors, and special items.

AUDIO PRODUCTS CO.
 A. I. EDGCONB

1017 N. Sycamour Āve.
Since 1907
Hollywood, Calif.

IN COMBINATION

WITHthe RME-6i9 SSS Receiver forms a unit which now makes possibile an actual increase in sensitiviy of from 20 to 25 dezibels and provides an image rejection ratig of 30,000 tc 1

RME

is constartly endeavoring to provide amateurs with the best possible radio reception. The above combination has been designed to provide five tuned radio frequency circuits built around three stages of amplification cll calibrated in megacycles. Two wires between the receiver and selector complete the coupling link after anterna is connected and 110 volt plug is inserted. SIMPLE . . . HTGHLY EFFICIENT . . . PRACTICAL . . . and, above all, A REAL ASSET TO AN AMATEUR STATION OPERATOR WHO IS PARTICULAR.

RADIO MFG. ENGINEERS, INC., 306 FIRST AVE., PEORIA, ILL.

(9) ECONOMY without

1.C.A. parts for short-wave receivers and transmitters represent the best value on the marke today. Buy them for your next rig and learm how you can enjoy real economy without the slightest sacrifice of efticiency. With what you save on I.C.A. parts you can buy extra tubesl The equipment illustrated on these pages is only a small part of the complete Insuline line. See the whole line at your jobbars.

Racks, Panels, Chassis for every need
1.C.A. is ham headquarters for racks, panels, chassis, cabinets, bases of every kind. Everything from a transceiver box to a sectionalized rack six feet high. Why try to bend hard steel or do difficult machine work at home? If you can't find what you want in the extensive Insuline line, we'll make it to order-at the lowest prices imaginable! The tremendous business we do in this line enables us to give you fast service no matter where you live.

And don't forget.-we can furnish from stock, bakelite panels, rods, tubes, to suit every requirement. and we have our own special machinery for engraving on any material. Deal with us once through your jobber and you will know why 1.C.A. for 17 years has lead the radio parts field.

Knobs, dials, pmel plates-a big assortment in all popular sizes and finisher. A few cents invested in I.C.A. plates will make that old transmitter of yours look like a million bucksl

Easy 5-Meter Kit

Want to get started on 5 meters? Here's a fundamental kit for the popular pertagrid receiver described ir. May, 1936 QST. Includes the special quench frequency coil - an EXCLJSIVE I.C.A. item-and a neat crackle finished cabinet. See it at your jobbers.

INSULINE CORPORATION (5)

oss of EFFICIENCY (a)

I.C.A. has been famous tor years for its big variety of coils and forms tor receivers and tramsmitters. More than two dozen types to choose from. The famous I.C.A. slested and drilled form is specially designed for experimental work, and

COILS! to fill every

 receiver and transmitter requirement
R.F. Chokes and U.H.F. Components

R.F. ckokes for every transmitter-from flea-power rating to a full kilowatt are yours at startling money-saving prices. And of course ultra-high frequency parts, including fixed and plug-in coils,
accommodates either thin or heavy wire. Factorywound coil for $20,40,80$ and 160 meters are available for hams who want to be sure of their results on transmitting.

Sockets Galore!

Thirteen different kinds of sockets, for tubes ranging from "acorns" to fifty-watters, for panel or sub-panel maunting, and made of low-loss "In-

sulex." All with tightly gripping phosphor bronze contacts and husky bases. If vou intend to use the new 6L6's be sure to buy I.C.A. octal sockets for them.

Before you buy a single new part for your next receiver or transmitter, be sure to study the I.C.A. line and be sure to compare PRICES. Quantity production with modern machinery is the reason I.C.A. parts cost little but work well. If you haven't a copp of cur complete 40-page catalog, merely write on your QSL card "Pse send me catalog," and you'll receive it by return mail. Or ask your jobber ior a copy the next time you visit his store.

23-25 PARK PLACE ...
 NEW YORK, N. Y., U. S. A.

The necessity for correct Hook-Up Wire is just as important as the other component parts used in the construction of the circuits shown in this book. Hook-Up Wire must have proper insulation of high di-electric characteristics for the perfect operation of any transmitter or receiver. LENZ Hook-Up Wire is the best obtainable for short wave work.

It is a wire of extremely low losses at high frequencies. Designed especially for the RF. circuit. Conductors supplied in several sizes, either solid or stranded. Insulation pushes back freely without adhering to the conductor, and is mechanically strong enough to resist abrasion. A fine production wire with insulation impregnated in a high resistant, low-loss, moisture resisting compound.

LENZ wires and cables are carried in stock by leading Dealers and Distributors throughout the country. Use LENZ for better results.

Shielded Cables
Cotton Braid Overall

Twisted Pair Braid
Overall Cable for Doublet Antenna System

Shielded Rubber Jacketed Microphone Cable

PARTIAL LIST OF LENZ PRODUCTS:

Push-back wire
Indoor aerial Auto radio cable Microphone cable Short wave lead-in

Shielded wires and cables Speaker and head set cords Specially constructed shielded cables Battery and speaker extension cable Flexible rubber covered lead-in wire

Ground wire
Shielded low capacity cable Elevator annunciator cables Organ cables
Flameproof jumper wire

$$
\text { Established } 1904 \text { - Cable Address: Lenzco Chgo }
$$

> LENZ ELECTRIC MANUFACTURING CO. 1753 N. WESTERN AVE.

> CHICAGO, ILL.

TWENTY-FIVE years ago, the first HAM. MARLUND precision products made their appearance to the asplause of the rado engineering world. Their dominant superiority became a by word in laboratories, industrial plants, homes, and sctools the world over. Today, specialists show an even grester spproval of the distincitive and extensive Iine of HAMMARLIJND parts with priteless precision buill into every unit! They are specified for every conceivable type of radio instrument.

Every ieature of HAMMARLUND products is designed for peak elecirical and mechanical efficiency. Wide capacity ratios; vibration-proof construction roise-free operatior quality insulation; selected metals -all with an eye to depeadable troublefree, long-lasting service.

A wide variety of stock models is avail. able. ADove are shown a few popular HAMMARLUND products-single and split-
stator midget and micro condensers, transmitting condensers, acorn and standard Isolentite soctets, rensmitting chokes, Isolan tite coil forms, XP- 53 plug-in coils, air. tuned I.F. transtormers.

The new HAMMARLUND "37" cataloes completely describing all HAMMARLUNE. products with numerous illustrations, curves and mechanical drawings, has just been released. A copy will be rushed to you fee of charge ufon request. Just mail the coupon below.

MAIL COUPCN NOW!

GMMIIARHITIX 285

OHMITE Rheostats

These rheostats are the finest that money can buy. They are of the well-known Ohmite all-porcelain, vitreous enameled type, made up of porcelain and metal only. There are no organic materials which can smoke or char. Ohmite rheostats are ideal for giving that close control of filament voltages which is so essential to the long life and satisfactory operation of tubes. Available in seven models, rated at 25,50 , $100,150,300,500$, and 1000 watts respectively.

OHMITE Bandswitch

For instantaneous changing of wavefrequency bands this new band-changing switch has no rivals. It forever relegates the old plug-in coil method to the limbo of things of the past. It is especially efficient because of its low-loss porcelain construction. Sturdily built to do a job and do it well. Try it and you will become an OHMITE enthusiast.

OHMITE R. F. Plate Chokes

These chokes have been specially designed in four sizes, to cover all of the popular amateur bands-and also find many uses in other high frequency circuits. They are single-layer wound on ceramic tubes and covered with a moisture-resisting material which holds the windings firmly in place. Furnished with non-magnetic mounting brackets. Ample space at the ends prevents flash-overs.

GET YOUR FREE COPY OF THIS VAL. UABLE CATALOG
This crtalog lists the cull OHMITE LINE of Resistors anc Rheostats. Many items rot possible for us to show on these pages are described and illustrated theren-with complete tables of values and sizes available. Send tor yeur copy tod

All of the items shown on these pages, and many others, are stocked by most jobbers and dealers or can be obtained by them on short notice from us. Demand OHMITE Rheostats and Resistors if you want the best.

MANUFACTURING CO. 4842 Flournoy St. Chicago, III.

(OHMITE FIXED AND ADJUSTABLE RESISTORS

OHMITE "Brown Devil"
These are vitreous enameled resistors, made in bath 10 watt and 20 watt sizes: resistance values from 1 ohm to 100,100 ohms. A cement coated resistor, the famous "Red Devi.," is also made by us-Iong a favorite with amateurs and radio service men. The "Red Devils" have a five-to-one factor of safety and will not fail even when they get red hot. The 10 watt size has resistance values of from 1 to 25,000 ohms and the 20 watt size from 25,000 to 100,000 ohms.

OHMITE "Wirewatt" and Center-Tap Resistors

Ohmite "Wirewatt" is a small wire-wound, vitrecus enameled resistor of one watt rating. In stock values of from 100 to 25,000 ohms. This is the finest small resistor that monay can buy. Center-tapped resistors can be lurnished in either the "W"ewatt" or "Brcwn Devil." They are chief.y used to secure electrical centers of tube filament circuits.

 a coll of the tale = TRANSFORMERS
Un

for RADIO CODE

MACHINE vs. SHORT WAVE RECEIVER
$\mathbf{W}_{\text {HY }}$ WASTE valuable time trying to become an Operator by listening to your Short Wave Receiver alone, Few indeed, ever get beyond the scant Amateur stage by that method,

The "Instructograph Way" permits

MACHINES FOR RENT OR SALE

The "Instructograph" Code Machine is manufactured in two sizes. The "Standard," as illustrated above, includes a full set of ten tapes and the Book of Instructions. This machine may be rented at a nominal monthly zate, and the rental paid, may be applied on the purchase price, if it is desired to purcbase after three months' tria's or sooner.

The "Junior" Model, similar in appearance to the standard machine, orly smaller and with five tapes and the Book of Instructions, is not rented but may be purchased for $\$ 12.00$-delivered to $\begin{aligned} & \text { ang point in the United }\end{aligned}$ States or Possessions. The small machine operates just as efficiently as the larger one-the difference being mainly in the size, weight and number of tapes supplied. Additional tapes, however, may be purbhased at a reduced tate.

Send today for a detailed description of both machines. and the several renting, propositions. A post casd with your name and address is all that is necessary.

The Instructograph ran also be used for American Morse (Wire) Code Instruction, for which tapes art aiailable. you to practice uninterruptedly on whatever kind of sending you wish or need. You may practice any timeday or night; good or bad weather; slow or fast as your advancement demands. You regulate the speed of sending as you wish.

No "fishing around" for some Amateur sending at your speed, and have him stop just about the time you get started to practice. No dividing your attention by "tuning" with one hand and trying to copy with the other. No weather or static interference with schedules.

So, if you are tired of trying te get a start, or are a "10 per" man, get the Instructograph and quickly get ALL the enjoyment of the AIR. To be limited to 13 or 20 words per minute on your Short Wave Receiver is about like it would be to have your Broadcast Receiver limited to "Bed-Time Stories." Get in the game right.

Read what a few of the boys say about the "Instructograph Way." We have hundreds of such letters from all sections of the Country.

CHAS. O. WEBER

321 W. GRAISBURY AVE., AUDUBON, N. J., SAYS:

Choy, Oh lioy. Why I ever wasted about a year trying io learn to receive Code on mily Short Ware leceiver, when 1 could buy pive me lessons whenever I give me lessons whenerer was in the moo for ripuld not buy it back for many times thu amount if you wished to do so.
'ht'. I have made wonderful progress in the mast fars weeks. and with the assistance of the Instrurtorraph I am sure that I shall "on have all the sneed I desire."

JOSEPH P. SKUTNIK
PINE ISLAND, NEW YORK, W2JWK. SAYS:
"In sppreciation of the services the 'Instructograph' has rendered me, I wish to state that. in my opinion. there is no other machine on the market today that equals It When it comes to teaching the code.
"In my orn case I could not nass the 8 word ser minute mark after I had practieed four fhonths by other methods. Today. after practicing with the instructorraph for a period of seven weeks, I can comforiably re: ceire about 21 words per minute. On May 16 th I took the Amateur examination and passed the cole test whth ease.
"You have my permission to reprint any of the above statements. to convince others that the Instructorraph is just the machine that use in learning the eode, or gaining to uns.
speed.

JAMES W. DATES
17 SHERWOOD
PENNA., SAYS: PENNA., SAYS:

NA. SAYS: WELLSBORO, A. imtemi to keen your machine for another month. I
noney order for
and. 25 quire anl coming along very nicely, but reit for more time on nunibers, so am keepin it for another month.
"I hate a great deal of faith in your mathod of code instruction. as I have progressed further in one month with it than in fire months tistening on Short Ware."

CONDENSERS built to take the Sock!

AEROVOX oil-filled transmitting condensers cost less than any other high $\cdot \mathrm{veltage}$ condensers. And here's why: Standardized design and mass production bring prices down to new level. That's low first cost. And long, troubleproof service completes the hargain. Available in two popular types:

SQUARE CAN

 filleal fistiger sectionm ift frativil-pitefigl rep-

$$
t
$$

fific - tex wisit fillar insulatar terminalm.

+
fonitrvels weセpater proaf. ifermetfasily
 motistire. Oil-bathed section far cololemt "perationunder Nfeady land.

*

In 1600, 100N, 1500, E(K)O suld 8500 v. ratinge. 1. iz gimd imfl.
 full al miful.

ROUND CAN

Oll-йmprestiteal oilm tilled baper metilions in rotioni alumintum cans.
*
High-trrmion pillar finsulatior terminsta, Misindy
 trentely formpart.
\star
Hermetifestly netiled Serpmige pronf. Adeduate oll bath for aool, romwitatt oberatiolt.
\star
 rating\%. 1, : andi 4 mfd. Heinforeed winding prevelts troulblewime plate tlater.

Write for DATA

 covering these popular priced quality units, as well as miea, electrolytis: and other types. Also complete line of resistors from $1 / 3$ watt carbon unts to 200 -watt adjustable wire-wound resistors. sample copy of monthly R*search Worker will be inclucled with catalog.

BUID Creators and Producers of low loss, High AMATEUR RADIO PARTS

BUD SECTIONAL CABINET RELAY RACK

This new innovation in rack design, permits the building of a cabinet rack to your required height without having any waste space. The feature of this rack is that you can have a complete rack starting from $31 / 2^{\prime \prime}$ high and progressing in height in multiples of 13/4" until any desired height is attained. Additional sections can be added at any time.
A screw driver is the only tool necessary for assembling (illustrated at left). Other types and sizes of RELAY RACKS for any requirement, also
 rack panels and dust covers.

BUD METAL CABINETS AND CHASSIS BASES

Mace in nimerous iypes and sizes. Ruggedly constructed, of heavy gruge sheet giteel Cabinets have black crackle finish. Chassis in black crackle and zinc coated finish.

MIDGET CONDENSERS

] New Positive Wiping 1. Contact on rotor shalt with adjusting screw, eliminates mechanical noise on high Irequencies.
2 Close Fitting Bearings 2.hold rotor calibration and smoothness of operation.
3.

Insulate 1 with ISOLANTITE. Soldered biass, - plate assemblies, and heavy aluminum end plates make a prez:sion built, ruggedly constructed condenser

For S. W. Re:eiverz and Xmitters. Numerous capaciaies in :ingle and dual units with single or muitule spcising

Bakelite

PLUG-IN COIL FORMS

Three sizes, $11 / 4,11 / 2$ and $21 / 4$ inch Dia. Made in 4,5 and 5 prong iraits to fit standard tuke sockets. Ideal form for receiver or Xnitter Inductances.

Listec above are but a few items of the complete line of amateur parts in the BUD line. A new catalogree which illustrates and describes hundreds oi liems used by every branch of the radio intusty is Eree for the asking. Write Dep' RBH-37 for your copy.
BUD RADIO INC.
1937 E. 55TH STREET
Cleveland, O:HO

This EIMAC 50 T was finally retired after 12,500 hours of grueling 24 hour a day service in a 9 meter police trans. (mitter W6XBF.)
Just another example of the stamina and unusually long life built into each and every EIMAC tube.

PLAY SAFE-BUY EIMAC

At Leading Dealers Everywhere

EITEL-MCCULLOUGH, INC.
San Bruno, California, U. S. A.

YOUR FAVORITE CARDWELLS FOR 1936 LEAD THE FIELD FOR 1937

A survey of Cardwell sales to the amateur discloses 16 numbers so outstanding in popularity, we present them in a family group:

(1) XG-50 ED Cap. $50-50 \mathrm{mmf}$. airgap 171 in ., $\$ 10.00$ list 5500 V . condenser for \$.P. tanks

 -Mycalex insulatior.(2) XC-75-XD Cap. $75-75 \mathrm{mml}$. airoap . 200 in ., $\$ 17.00$ list 7000 V . condenser for P.P. tanks -Mycalex insulation.
(3) XC-100-XS Cap. 100 mmf argap 200 in ., $\$ 11.50$ list 7100 V . tonk condenser-Mycalex insulation.
(4) MR-365-BS Cap. 365 mmf . airgap 031 in . $\$ 3.30$ list 11100 V condenser. Compact unit for high "C" exciter units, butfer stages, etc.
(5) MT-100-GS Cap. 100 mm . airgap 070 in . $\$ 4.40$ list 3 fion V. For $500-1000 \mathrm{~V}$. buffer stages.
(6) MT-100-GD Cap. $100-100 \mathrm{mmf}$. airgap 070 $\$ 8.00$ list in., 3000 V. Mycalex insulation.
(7) XG-25-KS Cap. $25-9 \mathrm{mmi}$. airgap .171 in ., $\$ 3.00$ list 5500 V . neutralizer for $203-\mathrm{A}^{\prime} \mathrm{s}$, 211 's, etc.
(8) XT-220-PS Capacity 220 mmf . airgap . 070 $\$ 4.00$ list in. 3000 V . For antenna net works and medium power tanks.
(9) XT-210-PD Czp. $210-210 \mathrm{mmf}$., airgap .070 $\$ 8.00$ list in., 3000 V. For P.P. medium power tanks.
(10) NP-35-GD $\$ 6.00$ list
(11) NA-4-NS $\$ 3.60$ list
(12) NA-14-NS $\$ 5.00$ list
(13) ZT-30-AS $\$ 1.85$ list
(14) ZS-4-SS \$1.85 list
(15) 2R-25-AS $\$ 1.40 \mathrm{list}$
(16) 2H-15-AS $\$ 1.25$ list
(17) (L to R)

Cap. 35-35 mmk. airgap 084 in ., 4200 V. H. F. candenser for 5,10M.
Cap. and gap adjustable. No mally a 4 mmi. ne:utralizer for 800. 852's-Mycalex insulation. Rotor lock. Slotted shaft for screw driver adjustment.
H. F. neutralizer for 405 's, etc. Capacity 14-5, ai-gup .218 in 7000 V. condenser.
Trim-air neutralizer, capacity $30-4 \mathrm{mml}$., airgap. ©i. C in., 3000 V. Isolantite insulation.

Trim-air Neutralizer-Cap. 4-1.5 mmf ., airgap 150 in. 4500 V . buffed plates. For $35-\mathrm{T}$'s, $\mathrm{I}-55 \mathrm{~s}$, etc.
Trim-air-Cap. ${ }^{25-2}$ nimf. airgap . 031 in., 1000 V.
Trim-air-Cap. $15-1.5 \mathrm{mmf}$. airgap . 031 in., 1000 V.
Trim-air mounting bracket, extension shaft, mounting posts, and 804-A Inductance clip:; (for
No. 12 or No. 14 wire). and 804 -A Inductance ce.
No. 12 or No. 14 wire.
nt information on IOC
Write for our handy net prica bulletin with all pertinent information on $10 C$
quality variable cir condensers for every purpose and power including 1 KW phone.
THE ALLEN D. CARDWELL MANUFACTURING CORPORATION
81 PROSPECT STREET, BROOKLYN, N. Y.

Multi-Wave Assembly

Mono-tunit consitruction

In answer to the constant demand for an "All Wiase" coll assembly that will meet the temands of modern reaulrements, Melssner offors the coll and switeh assembly as shown in the lllustration, The unit embodies all colls, range zwitch, shunt trimmers. serles padclers. A. V.G., bywass condensers and necessary shielding. It is in f"act the entlre "wront End" of an all-wave set, exclusive of the gang condenser and tubes. Allgned and padded. No adjustmonta necessurs. ALIGN-AIRE (air dielectric) Trimming Condensers used on all bands, excepp the uttra high frequency band. whith requirea no trimmers. The essential features of this assembly are listed below in condensed form.

1. Altgred and padeled. Completely assenbled and atcurately balanced. Jkeady to work. No adjustmems necessary, No testing equipment necessary. 2. Simple, efficient coll construction-individual colls for rach band. 3. Essentially ho lends from colle to gwitch (ail colls excent long waye, 2000 reters supported by their lugs from switch. 4. No. cmmon grounds. Thed circuit ground ruturns, connect directly to respertive gang wipers. 5. All leads short and direct resulting in uniformity of all 6. ALIGN Al\&E (air dielectric) trimmlus condensers used on all bands, excent the ultra high frequency band
 Hich re 6 tixed mic. on the 6 to 18 Nic band and no pad on the ultra highireguelicy tand. 8. R.F. Stage is used on sumbands oxcept
 optimum conversation conductance on all bands. 10 . Simble compare chassig lay-outions

For L'se unth 410 monf. Condenser		
5 Mand	4 Band	3 Mand
7.5 to 20 meiers	7.5 to 20 meters	16.4 to 51 meters
16.4 to 51	16.4 to 51	48.5 to 177
18.5 to 177	48.510177	167 to 555
187 to 555	167 to 555	
732 to 2140		
Model No. $7505-$ List $\$ 21.00$	$\begin{aligned} & \text { Model No. } 7504-17.50 \\ & \text { List } \end{aligned}$	$\text { Model No. } \begin{aligned} & \text { List } \$ 16.00- \end{aligned}$

For use atith 260	mmf. Condenser
5 Hand	4 Fand
3.8 to 9.9 meters	3.8 to 9.9 meters
9.71025	9.7 to 25
24 to 68	24 to 68
67 to 200	67 to 200
190 to 555	
Model No. 7515	Model No. 7514
List \$21.00	List \$17.50

14-Tube "Communications" Receiver Kit

Utilizing the MEISSNER Completely Assembled Tuning Unit

5 Bands- 3.8 to 555 Meters

Especiall desfgned for the Radio Amateur who wants o receiver to coter all the banas. The five, ten, twenty, forty, eizhty, ene hundred and sixty, and thu broadeast bard. Every "proven" develomment in circuit design is Incorporated.
Some of the Outsianding Feutures:
Crystal Filter-Beat Frequency Oscillator with cut-out nwitch and pitch control Noise Silencer Circult-Variable Filectrital Band Expansion-dmplified A.V.C.-Variable Sensitivity Control-FERRO. CAITT (Iron-Core) I. 1 . Transformers-Audio Volume Con-
trol-Fourteen New Metal Tubes-I'. O. Output using the new
"Beam" 6I.6 Metal 'Tulses-Five Wands 3.8 to 555 Meters.

The conplete Coil Kit consists of the following: Completely wired iuning unit as descrlbed above. Nolse Silencer i.F. Transformer. Beat Frequency Oscillator Transformer. Matehed I'air of Crystal Filter Transformers. FER LiOCAHT (Iron Core) I.F. Output Transtormer. Band Expansion I.1. Transformer. FERROCART (Iron-Core). © shielded $12 . F$. Choke's. Complete set of diagrams and instruction

Complotely Wired Tuning Unit Only
The completely wired and accurately balanced and aligned tuning assembly, includes the Meissner multi-wave coil assembly, band-change switch, variable gang condenser, fube sockets for tuning unit (3), and a calibrated 6" Aeroslane dial with "Micromaster" mechanicai band pread.
Model No. 7512.
, List $\$ 35.00$

[^10]MEISSNER PRODUCTS ARE SOLD BY ALL LEADING JOBBERS
MOISSNER MFG. CO., MT. GARMEL, ILLINOIS

Don't Forget . . .the NEW UTC VARIMATCH Modulation Transformer will Match ANY Modulator Tubes to ANY RF Load

The Varimatch transformer will not only match PRESENT available modulator tubes, but any tube that may be released at a FUTURE date.

All you have to decide is the DC input to your RF stage. Then just pick the VARIMATCH output transformer that will handle the maximum audio power required.

These transformers will also match the line impedance output of PA or similar amplifiers direct to the Class C tubes.

VM-1 will handle any power tubes to modulate a 20 to 60 watt Class C stage. Maximum eudio output 30 watts.

$\substack{\text { Net 1 } \\ \text { Hams...... } \\ \hline}$
1.80

VM-2 will handle azy power tubes to madulate a 40 to 120 watt Class C stage. Maximum audio output 60 watts.
Net :o $\quad \$ 7.50$

VM-3 any power tubandle modulate a 100 to 250 watt Class C stage. Maximum audio output 125 watts.
Net to
Hams..... $\$ 12.00$

VM-4 will handle any power tubes to modulate a 200 to $60{ }^{\circ}$ watt Class C stage. Maximum audio out. put 300 watts.
Net to S19.50

VM-5
Will handle any power tubes to modulate a 450 watt to 1 KW plus. Class C stage. Mcoximum au= dio output 600 watts. Net to
Hams $\$ 42.00$ The secondaries of all Varimatch iransformers are designed to carry the Class C plate current.

The Varimatch Transformer Never Becomes Obsolete

NEW VARIMATCH INPUT TRANSFORMERS

PĀ-49

Pushpull 45, 59 or $6 L 6$ plates to push pull 845A prime grids. PA.2.
\$4.50 Net :o Hams

PA-50AX

Single 53, 56, 6C5, 6C6 triode, 6A6 to Class B 53. 6A6 or 6E6 gride or single 89 to Class B 89 grids. PA-L.
$\$ 3.30$

PA-51AX

Single 46 or $6 L 6$ to Class B 46 or 59 grids. Single 45 , 59, 2A3 or 6L6 to Class B 46 or 59 grids. Single 49 to Class 49 grids. Single 37, 76, 6C6 triode or 6C5 to Class B 19 or 79 grids. Single 30 to Class B 19 ar 79 grids. Siagle 89 to Class B 19 or 79 grids. Single 2A5, 42, 45 triode plate to A prime 45^{\prime} s. $2 A 5$'s or 42 's. PA-1.

Net to Hams
$\$ 3.30$

PA-52AX

2-46 Class B grids to $4-46$ or 59 Class B grids. Push pull 2A:s's to 2.841 Class B grids. PA-2. Net to Hams.
$\$ 3.90$

PA-53AX Push pull 42, 45, 50, 59, 2A3 or 6 L 6

 plates to two 210, 801. RK-18, $35 T$ or 800 Class B grids. Push puinl 2A3 plates to two 838, 203A, 50T, 35T, 2llA, 242A, 830B, 800. RK-18, 801 Dr 210 Class B grids. PA-2.Net to Hams
$\$ 4.50$
PA-59AX
500, 200 or 50 ohm line to two 805, 838, 203A, 8308, 800. RE-18. 801 or 210 Class B grids. $\$ 4.50$ Net to Hams.

PA-238AX

Push pull parallel 2A3. 45, 50. 59 or $6 L 6$ to tour 805, 838, or 203X Class B grids. Push pull parallel 2A3. 45, 50, 55, 6LG or two 2l1A, 845 plates to Class B 204A. HF-300 or 849 gxids. Push oall parallel 2A3, 45, 50 or two 50T. 211A, 845 plates to Class B 150 T or HF-200 Class B grads. PA-3.
Net to Hams.
$\$ 10.50$

[^11]
UNIVERSAL BEAM POWER AMPLIFIER

PAK amplifier kits feature: Power output 35 watts self bias, 55 watts fixed bias; gain 118 JB, immediate change-over to 95 DB; separate powar supply and audio decks; stabilized feedback; mobile operation with genemotor- 20 watts ont put; provision for electron mixer or low impedance , iaput if desired.

PAK-1 Complete 35 watt kit including all accessories and output transformer with line and voice coil impedances, type PAK-1, net price to hams
$\$ 45.00$
PAK-1X 35 watt kit with modulation outpul transformer, type PAK-1X, net price to hams
\$45.00

PAK-2 amplifier same as PAK-1, but with 55 watts output transiormer to line and voice coils, net price to hams
$\$ 48.00$
PAK-2X ulation output transformer, net price to hams
$\$ 48.00$

NEW UTC TRANSFCRMERS for use with 6L6 TUBES

PĀ-428 Power transiormer for push pall 6L6 tubes, self or tixed bias primary, 115 v. a.c., 60 cycles. Secondaries $450-0-450$ at 250 ma .; 6.3 VCT $4 \mathrm{~A}, 6.3$ VCT-2A tapped for $21 / 2$ volts-3A, 5 VCT 3-A. Net to hams.
$\$ 8.40$
PA-233 Input transformer from two 56, 6C6 triode, 6C5, or similar tubes to 6L6's self bias. Net to hams.
$\$ 3.60$
PA-333 This input transformer is designed to operate from 6C5's or similar driver tubes to two 6L6's fixed bias.
Net to hams.
$\$ 3.60$

PA-433 From 45 or $2 A 3$ plates to two or four lixed bias 6L6 grids.
Net to hams.
$\$ 3.90$
*PA-2L6 6600 ohms. plate to plate. Will match $35-40$ watts output. Secondary impedance, 500. 200. 16, 8, 5. 3. 1.5 ohms. Net to hams.
$\$ 6.00$
*PA-4L6 3800 and 3300 ohms. plate to plate. Will match two $6 \mathrm{~L} 6^{\prime}$ s fixed bias, 60 watts output; four 6L6's self bias, 60-80 watts output. Secondary impedance, $500,200,16.8,5,3$. 1.5 ohms. Net to hams.
$\$ 9.00$
-These transformers incorporate the new UTC Feedback (patent applied for). Winding which reduces harmonic distortion, increases arailable power and reduces plate resistance trmindously. No resistors or condensers are necessary.

Ask your distributor for the new UTC BEAM POWER AMPLIFIER BULLETIN. This attractive book dicusses the operation of 6L6 Beam Power Tubes and includes circuit diagrams.
UNITED TRANSFORNER GORP.

72 SPRING STREET
EXPORT DIVISION: 100 VARICK.STREET
HEW YORK. N.Y.
CABLES: "ARLAB "

LAPEL MODEL L-1

Astatic engineers have constructed a High Fidelity NONDIRECTIONAL crystal microphone of the ex clusive Astatic dual diaphragm construction in a compact area of only $11 / 2^{\prime \prime}$ dia. by $1 / 2^{\prime \prime}$ thick - and weighing only 1 oz . Clips neatly to lapel and is free from frictional disturbance. 25 it. of cord. Finish telephone black (Chrome optional). List Price $\$ 25$.

STUDIO MODEL K-2

The High Fidelity multi-unat Broadcast Station model of the Astatic Line. NON-DIRECTIONAL featuring exclusive Astatic dual diaphragm principle of construction functioning on Grafoil Bimorph crystals. Frequency response substantially flat from 30 to 6000 c.p.s. with rising characteristics to 10,000 c.p.s.; output level - 64 DB conservatively rated. Bright chromium finish-furnished with 8 ft . of twowire shielded rubber covered cable. List Price $\$ 37.50$.

ASK YOUR JOBBER

PUBLIC ADDRESS MODEL D-2

Shaped and styled like a watch-designed so that it does not obstruct face of user Essentially NON-DIRECTIONAL extilizing the exciusive Astatic tual diaphragm principle. Noted for fine frequency response, exceptional ruggedness, conventent size and beautiful chrome tinish. List Price $\$ 25$. Available with handle, handle with hand switch, handle with relay switch ar stand-slightly exira.

"SPEECH RANGE" MODEL D-104

The favorite microphone of the 'ham"-because of its superiority in the "speech range," its high output level, ruggedness, absence from background noise and trouble-free dependability. Bronze case heavily chrome plated. List Price $\$ 22.50$. Available with handle, handle with hand switch, handle with relay switch or stand--slightly extra.

Equipped 8 ft . one-wire shielded rubber covered cable.

S-TYPE PICKUP

Internationally iecognized for the faithful repreduction of recorded sounds. Strong in bass where normally records are weakest. Simple in construction, light in weight on records, free from extraneous sounds, engineere 1 for long life.
S-8 for 10° and $12^{\prime \prime}$ records-List Price $\$ 12$.
S-12 for 16^{\prime} records-List Price $\$ 15$.
 plated trimmings. Special lengths and finishes on request.

All Astatic Products Guaranteed. Licensed under Brush Development Company Patents-Astatic pending.

Type A i-f Transformers

Adjustable coupling, as offered in the Type A ALADDIN Polyiron transformers, permits a desirable degree of circuit variation by the advanced radio technician. A lateral adjustment is provided for the lower coil to secure the exact degree of coupling required for any i-f circuit. In doing this the following procedure should be followed: Loosen the set screws in the bakelite supports, reached through the bottom of the shield; adjust the coupling by carefully turning the nut on the side of the unit. A clockwise rotation of two turns increases the selectivity as shown by A in the accompanying curves, but reduces the gain. A counter-clockwise rotation of two turns praduces overcoup. ling, broadening the curve as shown in C and reducing the gain. B curve is the factory setting at optimum gain.

No factory replacements or adjustments will be made after the lateral coupling seal is broken.

The diagram and table below show three combinations of ALADDIN units for use in a crystal filter circuit.

T_{1} GIOIC or AlOOC or GA100C
T_{2} GIOIA Al00 GAlOIA
Ts G201 A201 GA201 for Diode
Th GIOIA Al00 GAlOlA for Triode 2nd Det.

Applications

The selection of an ALADDIN transformer should be governed by the types of tubes employed and the gain which the circuit will handle. While 465 kc is the present established i-f frequency, a few transformers are listed for use at other frequencies. The accompanying circuits show tubes corresponding to the types recommended in the data.

A resistor (1000-1500 ohms) bypassed by a condenser ($0.1 \mathrm{u}-\mathrm{f}$) appears in the plate circuits. This is recommended because the high gain of Polyiron transformers may cause oscillation if stray coupling exists.
Two stages (three transformers) are not advisable unless a crystal filter is used and then only in a carefully designed circuit. One stage of i-f amplification is ample for the finest receiver.
A typical diode stage ($75,6 \mathrm{H} 6$, etc.) shown on the left, working into a 0.5 meg. load (R_{1}) may have the following values: $R_{2}, 0.05 \mathrm{meg}$;

$\mathrm{R}_{1}, 0.5$ meg:
$R_{4}, 1000$
ohms;
C_{1}, $\mathrm{C}_{2}, 100$ uuf; $C_{4}, 0.1$ uf: $\mathrm{C}_{3}, C_{n}, 0.05$ uf.

Specifications and List Prices

Type		Alumnium Shiold $11 / 2^{\prime \prime}$ D. $\times 31 / 2^{\prime \prime}$ high, I $13 / 32^{\prime \prime}$ Mtg. Centers							
	Frequency	Factory			d.W	th			List
	Range, kc	Setting	Gain	23	10x	100x	Between	Use	Price
Aloim	$440-480$ $440-480$	465 kc	50	.	24	82	6A7-606	Cenverter	\$3.00
A100	$440-480$ $440-480$	465 ke	48	-	16	56	648-6K7	Converter	3.00
A201	440.480	465 kc	250		19	60	606-606	Interstage	3.00
A 200 m	440-480	465 kc	110	13	31	\cdots	606.75	Diode	3.00
A 100C	440.480	465 kc	113	(1)	5	\because	6K7-6H6	Diode	3.00
A200C	440-480	465 kc	. ${ }^{\text {, }}$	\cdots	\cdots		606-75	F. W. Diode	4.00
Al25	360.380	370 ke	49		16	53	6A7-606	Comerter	4.00
Al25	360-380	370 ke	220	\cdots	15	47	606-606	Interstato	3.00
A225	360-380	370 kc	110	12.	31		606-75	Diode	3.00
A 150	250-270	260 ke	62	\cdots	15	54	6A7-606	Converter	3.00
Al50	250.270	260 kc	330		15	41	606.606	Interstago	3.00
A250	250-270	260 kc	120	ii	31		6 D6-75	Diode	3.00
A175	165-185	175 ke	54		11	50	6A7-606	Converter	3.00
A 175	165-185	175 kc	300	\because	9	30	606-606	Interstage	3.00
A 275	165-185	175 ke	135	8	$\underline{9}$		606-75	Diode	3.00
Al85	105.125	115 kc	81	.	10	34	647-606	Converter	3.00
A185	105.125	115 kc	370	\because	9	28	606-606	Interstage	3.00
A285	105-125	115 ke	145	6	18		6D6.75	Diode	3.00

Polyiron Air-Tuned I-F's

Type G Fixed-Coupling i-f Transformers

An advanced design intended for precision amateur and commercial high. frequency communication receivers. Type G transformers use ar-trimmed coils on Polyiron Cores.

The purpose of this design is to provide the utmost freedom from frequency drift in communica-tion-type receivers. Normal temperature changes or variations in hemidity have a negligible effect up. on air-dieletric trimmers. Type G transformers may be used in circuits of the type showa on page 2.

The use of ALAD. DIN Polyiron results in a sharper resonance curve and a higher gain than is obtainable with aircore coils of the same physical dimensions.

The increased efficiency of the air trimmers over mica trimmers is evident in the adiacent curves.

Type GA

 Adjustable Coupling i-f TransformersThe adiustable coupling fealure of popular Type A ALADDIN Polyiron core i-f transformers is now available with dual air trimmers, in Type GA, suitable for use in eircuits shown on page 2.
This design is particularly suited to the needs of the advanced ameteur and desianers c \ddagger special equipment. wherein the utmost freedom from frequency drift must be maintained over long periods of time.

In the tabulations below, it may be observed that some items are listed twice with different gain figures. In each case the transformer is the same, the gain and band width changing with various tubes and circuits.

Type GH
 Band-Expansion i-f Transformer

is an air-tuned threetap band-expansion converter coupler for use in a circuit similar to that shown on page 5 for the HIO3, where high fideiity may be required for $B C L$ use and extra selectivity for the congested short-wave channels.

Specifications and List Prices

Aluminum Shield $1716^{*} \times 17 / 8 \times 4^{\prime \prime}$ high. $111 / 32^{\prime \prime}$ Mto. Centers

Typa	Frequency Range. ke
GIJI	456-465
G131 M*	456.465
GIDIA	456-465
GIPIA	456-465
G201	456.465
G201 1 ¢	456-465
G208	456.465
G mic	456.465
G 175	$170 \cdot 180$
G 175	170.180
G275	170-180
GA101	456.465
GA101M	456.465
GA101A	456.465
GA101A	456.465
GA201	456.465
GA201M	456.465
GA100C	456-465
G H ${ }^{\text {a }}$	456.465

Use
Converter
Eonverter
Interstage
Interstage
Diode
Diode
Silencer oiode
XJAL InD.
Converter
Interstage
Diode
Converter
Converter
Interstage
Interstage
Diode
Diode
XTAL Inp.
Converter

List
Price
Frice
5.5050
5.50 5.50
5.50
5.50
5.50
5.50
5.50
5.50
5.50
4.50
4.50
6.25
5.50
6.25
5.50
3.50
5.50
5.51
6.50
5.50
6.50
6.50
6.50
5.59
b.50
h. 59
1i. 51
T. 51
7.25
6. 50

Polyiron Radio Components
Type C Midget i-f Transformers

Type C ALADDIN Polyiron i-f transformers are designed for auto, home and portable receivers in which space is limited. The Litzwound coils and low-loss dual mica trimmers are contained in a small copper shield only $21 / 2^{\prime \prime}$ high by $11 / 8^{\prime \prime}$ square.
The gain of Type C transformers in circuits employing metal or metal-glass tubes averages better than the leading types of air-core coils, while the selectivity is distinctly better. Metal tubes have different interelectrode capacitances from glass tubes; hence, for best performance, associated circuit components must be specifically designed to match these tubes. The results achieved

with Type C i-f transformers in auto, home and portable receivers are proof of the value of this careful design in conjunction with metal tubes.

Specifications and List Prices

The accompanying performance curves and gain figures are made from average production samples, and are representative of the characteristics of these compact transformers. Circuits using metal tubes, as shown on page 2, right column are recommended for use with these ALADDIN Polyiron transformers.

	Frequency	Factory		Band Width			Between	Use	Llst Price
Type	Range, ke	Setting	Gain	2x	10 x	100 x			
Cl01 M	440-480	465 kc	52	.	22	72	6A8-6K7	Converter	\$2.50
C100M	440-480	465 kc	134	\cdots	23	75	6K7-6K7	Interstage	2.50 2.50
C200M	440-480	465 kc	96	13	35	\%	6K7-6H6	Diode	2.50
C350	440-480	465 ke	\cdots	.	.	.	$6 J 7$ or 6C6	BFO	2.50

Aladdin Wave Trap

Beat Frequency Oscillator

Type C350 is a beat-frequency oscillator unit for use in connection with a $6 J 7$ electron-coupled oscillator or an equivalent tube such as the type 6C6.

The accompanying circuit diagram illustrates the method of using the BFO Type C350 unit.

to neceiver
The ALADDIN wave trap is designed to be used in series between the aerial and antenna coil for the rejection of commercial interference at intermediate frequencies. The ALADDIN wave trap is tuned to the interfering signal by varying the inductance of the coil, accomplished by moving the Polyiron core with an adjusting screw.

[^12]
Aladdin Resonator

A flexible time saving alignment tool. When used with a reliable oscillator and output meter, mis. aligned circuits are immediately indicated, showing whether on increase or decrease in capacity is needed to align the circuit. Inserting the Polyiror end into a coil has the effect of adding capacity while the brass end has the effect of reducing the capacity. Proper alignment is indicated when bott ends, upon being separately placed in the field ol the coil, decrease the output of the receiver. „List price with instructions, $\$ 1.00$.

 FOR EVERY CAPACITY AND PURPOSE

GAS-ELECTRIC

OTIER GAS-ELECTRIC POWER IPANTN-AC or Di: from 6 to 110 rolts and 150 watts to 1500 watts. Irriced from s44.9.; list and up F. O. B. Chieggo.

WRITE FOR FULL INFORMATION
PIONEER GEN-E-MOTOR CORP. 452 W. SUPERIOR ST., CHICAGO, LLL.

All of the Wire Wound TANK COILS

Used by Frank C. Jones
In This Handbook Are

MERRILL

- They had to be better, otherwise they would not have been selected by Jones. MERRILL coils are shown in many trans. mitters in the pages of this Handbook. Every time you see a Wire-Wound LowLoss Tank Coil in a Jones Transmitter, you know it is a MERRILL.
- MERRILL COILS are available for all transmitters, from the smallest to the largest. There is a wide range of sizes lor various condenser capacities.
- MERRILL COILS are wound with enameled copper wire, supported by means of low-loss strips. They are easily attached to stand-off insulators.
- MERRILL COILS can be supplied with or without center-taps.
- MERRILL COILS have the proper length-to-diameter ratio.
- MERRILL COILS are stocked by good radio dealers and jobbers.
- If you can't get a MERRILL COIL from your nearest dealer, please let us hear from you.
- If you have a special transmitter coil problem, no matter how large or small, avail yourself of our engineering service.
- When you are ready to buy transmitter coils, use the coils that Jones uses.

Because MERRILL Means Ultra Efficiency Ruggedness Superior Performance

4 Dealers' Inquirics Solicited. 4
MERRILL MANUFACTURING CO. 4835 Edison St., Los Angeles, Calif.

A SYMBOL THAT STANDS FOR QUALITY IN AMATEUR ACCESSORIES

Amateurs from Coast to Coast who insist upon the "best" ask for Bimbach Products by name. Most dealers and

X'MITTING SOCKETS Featuring side wiping contacts. Brass, nickel plated shell. Highly vitrified, low absorption base.
All brass hardware. Low prices. No. 434. 50 watt, List ea prices. Na. 435. 10 watt, List ea.
 jobbers carry them, if not write to us direct giving dealer's name and address. We'll see that you are supplied.

T. R. McELROY

Official Record
6.7 wpm Brockton 1935

World's Champion Radio Telegrapher

23 BAYSIDE STREET
UPHAMS CORNER P. O.
BOSTON, MASS.

You can send better with a MAC KEY or your money refunded after five day trial

1. Massively constructed base and superstructure one solid casting. Vibrationless.
2. Name plate with serial number for operator's protection.
3. Binding post. Other post is number 19.
4. Vibration dampener on swivel so may be thrown out of way for handling weights.
5. Vibration dempener adjustment screw so that roll hits rod exect center.
6. Vibration dampener roll in machined slot for beautifully stutterproof sending.
7. Straight key changeover lever, locks rod for shipping and handling also.

$\$ 7.95$

f.o.b. Barton

AN OPEN LETTER TO THE OPERATORS

Writing an ad is an art itself and I haven't got it. As I've said many times I try to give every pennies worth of value possible in my items and it doesn't leave the extra dough to hire hifalutin' ad writers. So just read this as a kinda personal note from me to you fellers: -

I show a cut of my MAC KEY on the other page. Actually the ones I now ship are quite a lot better because when I had to make up special dies and jigs etc., to make extra special speed keys on an order from a certain government department (which, by the way, never purchased speed keys prior to my Mac Keys) - as I was saying, with these special tools, I was able to make an awful lot of improvements on the regular key

DELUXE MODEL MAC KEY @ $\$ 15.00$

No cut made, but just try to picture in your mind's eye the most beautiful instrument you ever thought of that's my deluxe model. Huge $1 / 4 \times 32$ bronze screws, $3 / 16^{\prime \prime}$ contacts, completely and beautifully chromium plated - that's it. It's a honey.

MAC AUTO @ $\$ 69.00$

I think (and I hope!) that most operators throughout the world know by this time that I try to be truthful in describing my items. I therefore ask that you please believe me when I say that my MAC AUTO is so incomparably superior to any automatic ever heretofore built that it is about impossible to over-emphasize its excellence.

Uses either $A C$ or $D C$

 110V. Complete with all tubes.Completely electrical. Not a single mechanical part except motor and wen motcr speed soverned electriceilly.
Oscillator is built into it operating directly from photo-electic cell. No rolays!

The first and the only automatic code machine using photo-electric cell.

The jobbers, who are your friends as well as mine, will sell this auto on time payments.

Entirely new in principle: it is completely electrical with no moving or mechanical parts excepting the motor and even the varying of motor speed is electrical, being accomplished by varying shunt windings juice. So far as I can determine from tests of my first working model, the speed is limitless!
MAC AUTO uses ordinary commercial recorder tape which means tiat the supply of tape is endless and the cost is but slightly more than the actual cost of the paper. MOREOVER AND OF UTMOST IMPORTANCE any code may be used - regular radio code (Continental Morse), telegraph code (American Morse) and other codes to which I do not care to refer in this ad, but will give information when it is sought.
The Mac Auto will probably be handled by Candler in connection with his courses, but it will also be sold by the radio distributors who've been such good friends of mine from the start and without whose support 1 just could not have lasted as long as I have. To them, now and publicly, my sincere thanks for their support. To the thousands of hams who've bought my stuff, written encouruging letters and boosted the key, my sincere thanks. Best wishes and good bye until we meet on these pages next year.

Mac.
 the unly receiver of its kiad avaitathe totay, buning from 3.76 th 萢 heters in 4 Bands. Built-in Noise sileneer eliminates much of the robe preatent in hiki frenuens revention. Sirest the wharts
 tuning. Dogen: uf corlusive equineming features make this the

* 10 All-Metal Tubrs * Direct Calibrated function as 13. Micro-Vernier Dial. * Tuning Range 3.76 *uilt-in Power to 53 meters. Packfor any
* Built-il Noistr si. Mron-Cor

Iron-Core Expand
ing I. F. Coils.

* Continuous Eler- Antenna Compensa trical Band Suread. tor.

SEE THEM AT YOUR DEALERS OR WRITE FOR COMPLETE INFORMATION
> the halilicrafters inc. 2613 INDIANA AVENUE \quad CHICAGO, U.S.A. CABLE ADDRESS "HALLICRAFT"

the Super Sky Rider - Unsurpassed for Design and Construction! Direct calibration tuning. 6L6 Beam Amplifier delivers 14 watts undistorted output. Cathode-Ray Field Strengtt Indicatos. 11 tubes; 10 of them metal. Five bands cover 4 C MC to 530 KC . Improved 10 -meter performance. The receiver sensation of 1937!

Other Outstanding 1937 Sky Riders:

- the Sky Rider Commercial - ll-tube SuperHet especially litted for commercial service.
- whe Ultra Sky Rider-the perfect receiver for Ultra High Frequency work.
- The Sky Chief-7-tube Super-Het with latest features of higher priced sets.
- The 5ky Buddy-a 5-tube Communications Receiver at an astonishingly low price.

the hallicrafters, inc.
2611 Indiana Avenue Chicago

The latest, most complete line of P. A. Equipment you can find anywhere! Newest developments in Ham transmitters and receivers-the last word in Servicemen': instruments, equipment, parts, tools, books. By using Wards Monthly Payment Plan you can use equipment while payng for it. Only $\$ 3$ Down, brings any $\$ 20$ ordersimilarly convenient terms on orders up to $\$ 500$. Full details are given in this great book. Be sure to send for your FREE copy today!

```
Minil to the Ward Hous+ Neapest You
Mansgomery Ward-Demt. RH
```

Name
Streect or Boy Na.
Pcost Office State

MONTCOMERY WARD

Chicago - Baltimore - Albany - Kansas City • St. Paul Denver • Portland • Oakland • Fort Worth

GARDNER ELECTRIC MFG. CO.

A NNOUNCES a new series of plate transformers. These transformers are designed to handle A the intermittent overloads such as are encountered in Class B modulation and telegraphy. Two or even three different voltages may be obtained simultaneously. Ratings given are according to A. I. E. E. standards for continuous service.

Cat. No.	ACV lolt. per side	Full Wave		Mridge		14riuge		$\begin{aligned} & \text { 1.ist } \\ & \text { Price } \end{aligned}$
		DC Volts	MA	DC Volts	MA	DC Vol	MA	
\%860,	1250	1100	300	2200	200	Three taps each side of center tap. Primary is tapped 115 130 volts.		\$16.00
	1100	1000	300	2000	200			S16.00
	950	850	300	1700	200			
	835	750	300	1500	200			
	650 575	575	300	1150	200			
	575	500	300	1000	200			
\%8663	1250	1000	400	2000	275	1000	5 5 0	29.00
	1850	1500	375	3000	250	1500	500	
				3500				
	2500	2000	350	4000	22.5	2000	450	
\#8668	1250	1000	550	2000	375	1000	750	35.00
	1850	1500	525	2500 3000	350	1500	700	
				3500				
	2500	2000	500	4000	325	2000	650	
\%8667	2400	2000	400	4000	275	2000	550	35.00
				4500				
	3000	2500	375	5000 5500	250	2500	500	
	36 m	3000	350	6000	225	:30\%	$1-1)$	

GARDNER ELECTRIC MFG. CO. EMERYVILLE, CALIFORNIA

Then Read This!

There are several thousand Hams who are our regular customers. They come to us for their requirements instead of a dozen other companies whom they might have chosen. And they swear by us . . . for we go out of our way to give them what they want, when they want it and at prices that are always as low as the lowest. We make no pretense of being the "Biggest in the World." We aren't - . because if we were we couldn't give quite that extra bit of service that is so important to the amateur who wants the kind of service that we are peculiarly geared up to render. We ask you to try us once just to satisfy yourself. YOU be the judge! Remember that we carry all natianally known lines for immediate shipment.

Mail Orders Filled SUN RADIO CO.

15 Years of Radio Reliability 227 Fulton Street, New York, N. Y. (Corner Greenwich St.)

Zyswest kITS

METAL TUBE "SUPER-GAINER" Chin Pin Padios ath! fo.athte band-brem come I jreme and in dial tatzel ionlablite for FixED atratuate huthling Mas.
diagrate and pats
ave Sten X MIIITEB just the thing to bunt ris up reblull so nothint is was call hito is jurreaser it for leas buth a witte induding gow het
 shbly mind stind coupon for complete detuils.
\qquad FREE Headquarters for Amateurs, Experimenters and IR adio
Buiders - that's ALLIRD-Radio's Leading Supply Honse. W'e specialize
in. Sholt Wave Transmitting and Receiving
gear, and Radio Building Supplies-receivers, transmitters. transceivers, parts, tubes, aerial equipment, etc. Onr technical stafi is always at your service to help yon select the equipment you need, conveniently and economically-to save you time, tromble anil money. Write for onf FREF, catalog. It shows page after page of parts-thousands of them-for building any typh of radio 'ircuit. It is Amatemr
Build the 5 seter Knight sizned ty Frank lones. Easy to construct Equally in cost. Equal sucerers. as either transmithe intable anse May le brove. Write for vany as shown atho parts list. diarrat meter unts med Catalog. the current ALLIED C

latest anatevi SHORT WAVE SETS

 the higher frequencies have produced.

GRAPHITE ANODE TRANSMITTING TUBES

- To supplement the full line of high power transmitter and rectifier tubes, and in response to an insistent demand, Amperex engineers have developed a special line of tubes... the H. F. 100, H. F. 200, H. F. 300 . . capable of delivering commercially satisfactory power at ultra high frequencies . . . possessing the highest ratio of transconductance to interelectrade capacitance attanable in this type of tube. Their remarkable efficiency is directly due to the many advanced and exclusive design features and engineering refinements which years of exploration and research in the realm of

HF 100
Ultra H. F. Oscillator and Amplifier, Class B Modulator; R. F. Power Oułput, 170 per tube; Audio Power Output, 350 per pair of tubes. In addition to its ability to deliver extraordinary amounts of power at ultra high frequencies, the HF 100 is also a truly efficient modulator and amplifier both in the amateur and broadcast bands. Its versatility and all-round economy have made it a decided favorite.
HF 200 Ultra H. F. Oscillator and Amplifier, Class B Modulator; R. F. Power Output per tube, 400 watts; Modulated R. F. Power Output per tube, 300 watts; Audio Power Oułput per pair of tubes, 600 watts.
HF 300
Power Amplifier, Class B Modulator; R. F. Power Outputs, per tube, up to 600 watts; Modulated R. F. Power Output, per tube, Up to 500 watts; Audio Power Output, up to 800 watts per $\$ 35$
pair of tubes.

WRITE to our engineering department for complete details and characferistics.

The ahove power outputs aro obtainablo at

ments, unusually low drivino obtainable at all amatour irsquoneles, with practical circuit constants and adjust.隹

The CANDLER System

For Years the Dominant Source of Code Training and Telegraph Technique!

This famous SYSTEM is backed by a Quarter Century of Suceess in training Amateurs and Commercial Operators who could be satisfied only with the best!

You Can Learn Code RIGH'T, from the beginning as you zeill be using it on the air, or obtain your commercial license and qualify for a good job by taking CANDLER TRAINING in your own home, as McElroy, Jean Hudson and many others have done and are doing. It is surprisingly easy and inexpensive.

CANDILER Trainel T. K. MeElrov. World's Otficial Champion. Class A. Speed 69 wpm.

Champion McElroy ssyys:
The CANDHER SYSTEM is the only training I had for my champion. ship code contests. It tausht me to read code by sound as easily as I read, print, and to put it dawn on my "mill!" by touch, as fast as it comes, without having to think of how words are spelled, Co-ordination and Concentra. spelled, Co-ordination and Concentra ton are necessary to the handing of SYSTEM in this respect is unique. GYsitil in this respect is unique scientific, exact. recommend it to those wanting to lesm code right, a they'll be using it over the air, and to those who want speed.

CANDINER SYETEM Taught at HARVAKD University l)y Champion MeEiray.

FREE-New Book of FACTS

Contains McElroy's story, "How I Learned Code" also little Jean's story and information that will aid you in learning code RIGHT or developing championship speed and copying on your "mill" several words behind. If you're "stuck" or need our advice on any phase of learning or handling code, write us. All questions personally answered. No obligation.
CANTMERESESENT CD.
Dept. RH-1
ASHEVILLE, N. C., U. S. A.

CROWE RADIO COMPONENTS FOR THE AMATEUR, EXPERIMENTER, SET BUILDER

As this book goes to press, December 5, 1936, we are preparing Bulletin No. 220, showing in: addition to our standard items carried in Bulletin No. 75, a new line of most unusual Dials, Knobs. Controls. Plates, etc., that will play an important part in the dressing up your Transmitting and Receiving Equipment.
Write today ior Bulletin No. 220, which includes these sensationally new items that will create a new style in 1937.

PRECISION INSTRUMENT CONTROLS

Io. 525. Front-O-Panel Tuning Unit with Two speed drive, slow ratio about 165 to 1 , tast zatio about 30 to 1 in 360°. Unusually smooth and extremely accurate for short wave. Beautitul etched netal scale.

No. 296. "Plan-O-Vernier" Genuine Reduced Speed Dial with Stationary Micrometer Marker, Ratio about $51 / 2$ to 1 in 360°. Many other sizes and stylos.

Airplane Dials for Receivers

No. 371. Micrometer Control lor Transmitters, Heceivers. Oscillators, etc. About 14 to 1 ratio in 360°. Bia. of scale $27 / \mathrm{g}^{\prime \prime}$ with Micrombter Pointer-You read to ane-tenth of each dial division.

No. 379. Smooth Friction Drive Unit. Ratio about 10 to 1 in 360°. Dia. of scale 2". A large variety to se. loct from.

Switch Plates

Wo. 275. OH-On Switch Plate.

No. 564. Switch Plate.
The Crowe Line of Switch Plates includes eleven other shapes and wordings.

No. 404. Micromanter Iwo Speed Unit for Hair Line Tuning. Dia. of scale $51 /{ }^{\prime \prime}$. Other styles and sizes.

Dial Plates

No. 123. Wedge Drive Unit. Ratio about 14 to 1 in 360°. Dicr. of scale 2 部". Many other sfyles and sizes.
Miscellaneous

No. 245. Metal Cabinet for Receivers, Monitors. etc.

Carried in stock by leading Jobbers and Dealers.
CROWE NAME PLATE \& MANUFACTURING COMPANY 1762 Grace St.. Chicago. IL.

Cable Address-Croname, Chicago

Jones Radio Handbook

ULL Pilce $\$ 2.75$

What You Get

 in Addition to a Copy of this book:- The price ($\$ 2.75$ per copy) includes a one-year supplementary service. consisting of at least 100 pages of vital technical data on Television. You merely insert these supplements in a loose-leaf binder which you receive with gour copy of the book. The first supplement is ready now . . it tells you how to solve intricate mathematical formulae by an entirely new and heretofore undisclosed metbod, a contribution by the author which has won wide acclaim. This first supplement is alone worth the price of the entire book.

Television Progress Has Been Amazing

This Authoritative Book Brings the Engineering Facts To You

"TELEVISION WITH CATHODE RAYS"

By Arthur H. Halloran

- The sale of this book has taken a pronounced increase in recent weeks. Editors of radio magazines and newspapers have acclaimed it as a reliable, authoritative work. It tells you how Television with Cathode Rays is accomplished by means of the Farnsworth and RCA Systems. If you have a knowledge of general radio theory you will find this baok one of the most valuable technical works ever produced. It is published in loose-leaf format, so that additional pages can be included as they are issued by the author. Thus the book automatically keeps itself up-todate in this fast-moving new engineering field. All that can be authentically and accurately related about modem Television at this time is found in this book. And when a major new technical development "breaks," you will find the data in this book. Keep your eye on Television . . . wise radio men are devoting their spare hours to a deep study of the subject NOW. Send $\$ 2.75$ for your copy of "Television With Cathode Rays." Order direct from the publisher, if your dealer cannot supply you.

28 New

Circuit Diagrams in the NEW

MILLER CATALOG

Every Amateur and Serviceman should have a Copy

Fourteen large pages of the very latest receiver circuits are in the new Miller Catalog-Superhets with metal tubes, pre-selectors, noise silencers, long-wave receivers, tuners, etc. Band-pass and converter circuits, aircraft and BCL hookups. All of the latest and best design.

All of the new MILLER PARTS are fully described.

MILLER QUALITY PRODUCTS include the most complete line of RF coils, I.F. transformers, chokes, and allied parts offered to the amateur, serviceman, and experimenter.

Over 140 types of Intermediate Frequency Transformers
Over 150 types of Radia Frequency Coils
Over 100 types of RF Chokes
Line Filters and Line Filter Chokes
Special Coils of all types
Accurate Mica Padding Condensers Dozens of Coil Kits
Pre-Selectors and Converters Band Change Switches Aluminum Coil Shields Variable Condensers Replacement Windings

Tie Points Wave Traps

Demand MILLER QUALITY PRODUCTS for YOUR Coil Needs

We invite correspondence on special units of all types.
Send l5c for Your Copy

J. W. MILLER CO.
5917 South Main Street
Los Angeles, California

vantages of this new, different and superior resistor!

- It's flat, taking up less room, ideal for replacement in crowded radio chassis.
- Zipohms are accurate within 5% and stay that way, regardless of heating and age.
- They are noiselessl
- Each Zipohm is thoroughly impregnated with a non-porous, high temperature, waterproof cement coating.
- Long adjustable leads contribute to ease of installation.
- Zipohms are available in all standard values, each clearly and legibly marked.
Write today for details of special kit!

JONES RADIO HANDBOOK BUYERS' GUIDE

W2VL

W2IJL

HARVEY'S RADIO CO.

We Carry a Complete Line of

NATIONALLY ADVERTISED EQUIPMENT at Lowest Prices

Including
EIMAC - TAYLOR AMPEREX - RAYTHEON and R.C.A. TUBES

Established 10 years, Catering to the AMATEUR TRADE

103 West 43rd Street, New York City

CANADA'S FOREMOST
RADIO PARTS SUPPLY HOUSE
A \& A RADIO SERVICE
SUPPLY
101 Quean SS... W., TORONTO. ONT.
BETTER SERVICE
AT NO EXTRA COST

You can get it at . . .
SCOTT WHOLESALE
RADIO CO.
344 E. 4th St., Long Beach, Calif.
Complete Line of Radio Parts and Amatour Equipment (W6NZP)

Quartz Crysial POWERPLATES

Specializing in economically priced LD Crystals for Commercial Frequencies.
Write for prices on frequencies suited for your special needs.

A. F. HOEFLICH

626 16th Ava., San Fancisco, Calii.

"Practical Amateur Radio Transmitter Designs"
 BY HOWARD S. PYLE
 Formerly Asst. U.S. Radio Inspector

TRANSMITER DESIGNS

上七,

A brand new manual devoted entirely to amateur radio transmitter design from the practical construction angle. No theory, but full of detailed construction drawings. circuits, photographs and descriptive data on modern, up-to-date amateur transmitters. Thoroughly tried and proven circuits ultra-modern rack and panel layouts.

You NEED this manuall
50c per copy, postpaid.
WESTERN TECHNICAL PRESS
807 Fourth Ave.
SEATTLE. WASH.

RADIO SUPPLY COMPANY

 912-14 South Broadway Los Angeles, Cal.Amateur Headquarters of the West

-•••RADIO AMATEUR NEWCOMER

68 page book for beginners. Tells how to build 4 types of beginners' sets, learn code, get license. Gives Badio Laws, etc. Twice as big as any other beginners' book. Only 25c per copy. Obtainable only from Pacific Radio Pub. Co., P. O. Box 3278, San Francisco.

FDFF Relay Circuit Diagrams TESTED-PROVED-

Model X-100 Adj. Overload Relay

with this New Line of RELAYS

Model K-100 Keying Relay by GUARDIAN...

These Guardian Relays Ere built and engineered for radio transmission in the amateux field, where size, current drain, and ease of wiring and meunting are of utmost importance.
Model K-100 Keying Refay, net.

Model L. 500 Overload Relay (500 ma .) net.
Model $\mathrm{X}-100$ Adjustable 0 verluad Relay (150 to 500 ma .),
Model T-100 Time-Delay Relay, net.. 9.00
Simplicity of design and efficiency of operation have always been the goal of our designers of control equipment, both in radio and industrial applications.
(UADDAMELECTRIC MFG. CO.

HAYNES ${ }^{\text { }}$

THE BIG RIGCHECKER Can be s.sed as:
1-Field Strength Meter.
2-Monitor; - Voice quality, hum. key chicks, etc.
3-Wave Meter.
4-Over Modulation and Frequency Shift Indicator.
5-V. T. Voltmeter. A.F. or R.F. Line or scale.
6-D.C. Voltmeter.
7-Receiver Tuning and Signal Strength Indicator.
8-O-I Milliammetermay be used separately with or without variable shunt or fixed series resistors.
Hasnes Bix RigChecker commlete with batteries, tube, rigistors. phome plug and it plug-in coils.
$\$ 17.90$ Net price to amteurs.
The Little RigChecker. Operates directly from the 110 Fint power lifie. Has all the features of the Blg RigChucker excent "tield strensth meter" (ilmited annliratimn only) ans "wavemetre," cmmplete with
$\$ 9.85$ Intre. ready to plug into 110 volt recepiacle..
Order from rour deeal+r. If he has none in stock and will not orcler one for you. please cmmmicate with us, and we will have one cent to you by the nearest dealer or direct.

IRADIO CONSTRUCTORS LABORATORIES
Dept. R 136 Liberty St. New York, N. Y.

HI-POWER FOR SOUND EQUIPMENT

No matter what kind of sound equipment you operate, you must have sufficieni " B " power; that's why the Carter Genemotor is preferred. It supplies constant " B " current for Class A or B amplifiers from a 6 or 12 voit battery. Output up to 500 volts. Sturdy-compret-quiet-no hasheasy to filter-requires no oiling. Guaranteed. Write for deserription of our complete line of Genemotors, Converter:; AC and DC motars, etc.
CARTER MOTOR CO. 373 W. Superior St., Chicago

CHI-RAD

SUPPLIERS OF QUALITY EQUIPMENT TO THE HAM SINCE 1921 WITH SATISFACTION GUARANTEED

Latest short wave receivers of all makes sold on convenient TIME PAYMENTS to suit your pocket book - with nominal Down Payment

Our complete stock of well known parts enables you to build and operate any of the circuits shown in this book.

We will gladly quote on your list of parts for that transmitter or receiver. We also make liberal allowance on your old receiver on the purchase of a new one.

Courteous Service - Absolute Guarantee - Low Prices Make Chi-Rad the Leading Ham Supply House in the Middle West.

Technical Information Gladly Given We Appreciate Your Business

Chicago Radio Apparatus Co. 415 So. Dearborn St.
 Chicago, Ill.

"HAMSWITCH"

nothod of using o single currents or voltages of ng 5 eircuits of an oma-Two-gang construction eing botwoen sactions to sounting. High insulatlow loss construction 1000 volts RMS-AC
ch, complete with knot,

Our revised catalog 53-57 includes the newest addition to the GAMMATRON LINE. Secure this catalog from your dealer or send his name to us and receive your copy direct.

[^13]
[^0]:

[^1]: 9.5 rolts

 亿-7 armperes
 L50 volts
 gii max. volts
 i milliamperes
 $1, \therefore$ max. milliamperes
 1;3:1
 1ll:i0 micromhos.
 0.007 max. mmfd.
 S. 3 tumfd.
 10.5 munfd.

[^2]: - 9 \% total harmontc distortion.

[^3]: RESISTANCE COUPLED A F $2 \boldsymbol{y} \boldsymbol{z}$.I ERA

[^4]: *Maxinum.

[^5]: *Maximum

[^6]: *This Chapter courtesy of Ralph R. Batcher.

[^7]: *These remarks refer to the usual machine handled by medical supply equipment firms through. out the country. They do not necessarily represent. in all cases, the best prabtice in the matter of circuits.

[^8]: "This Chapter Contributcd by Arthur H. Halloran, Tclezision Consultant.

[^9]: Note: All pricesare f.o.b. Fatmry and are suhjeat to cbange or withdraual u'itboul notice. For additional information on products listed or information on other RCA products, write to Amateur Radio Section.

[^10]: wave and special short wave tuning assemblies and complete coil kits for sets from two fo fourteen tubss You need this guide to help you select the proper coil or coil assembly.

[^11]: PA-512 500 . 200 or 50 ohm line to two 150 T , hr.

[^12]: Slize List Price
 $\begin{array}{lr}13 / 4^{\prime \prime} \times 1 / 2^{\prime \prime} \mathrm{s0} & \$ 2.00 \\ 13 / 4^{\prime \prime} \times 1{ }^{\prime \prime} \times 7 / 8^{"} & 1.50\end{array}$

[^13]: HEINTZ and KIAUFMAN,LTD South San Fy critaraig U.S.A

